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Abstract. We introduce the concept of reverse subsystem and prove that the necessary and sufficient condition
for Ry, to be a reverse subsystem. Also, we prove that the union and intersection of reverse subsystems of

interval neutrosophic automata is reverse subsystem.
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1. Introduction

Fuzzy set theory which is a generalization of conventional set theory was proposed by Lofti A.
Zadeh in 1965 with his seminal paper 'Fuzzy Sets’ . Fuzzy set provides a simple mathematical
tool to represent vagueness, uncertainty and imprecision inherently present in day to day life.

Fuzzy Logic provides a simple way to arrive at a definite conclusion based on vague, ambigu-
ous, imprecise, noisy or missing input information. Since 1965, fuzzy set theory has witnessed
enormous development by several researchers. Fuzzy logic based applications range from con-
sumer products and industrial systems to biomedicine, decision analysis, information sciences
and control engineering.

Fuzzy automata was introduced by W. G. Wee |17]. Subsequently, number of works have
been contributed by many authors for development of generalizations of finite automata. Gen-
eral fuzzy automata was introduced by Doostfatemeh in [3]. It deals the problem of assigning

membership values to the active states.
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The neutrosophic set is the generalization of classical sets, fuzzy set [18], intuitionstic fuzzy
set [1], interval valued intuitionistic fuzzy sets [2], vague set [4] and so on. Florentin Smaran-
dache in 1998 |14] introduced the concept of neutrosophy and neutrosophic set. Single valued
and interval valued neutrosophic sets were introuced by Wang etal. in [1516]. Recently, neutro-
sophic sets and systems have important applications in various fields especially in multicriteria
decision making problems.

Tahir Mahmood et. al in [11,|12] were introduced single valued and interval neutrosophic
finite automata. Consequently, J. Kavikumar et.al were introduced neutrosophic general finite
automata and composite neutrosophic finite automata [9,/10].

Subsystems of finite fuzzy state machines was discussed in [13]. Later, Retrievability, sub-
systems, strong subsystems, and characterizations of submachines of Interval neutrosophic
automata were discussed by V. Karthikeyan in [5-8]. In this paper, we introduce reverse sub-
system (R.S) of interval neutrosophic automata and discuss their properties. We prove that the
necessary and sufficient condition for Ry, to be a reverse subsystem, union and intersection

of reverse subsystems of interval neutrosophic automata is reverse subsystems.

2. Preliminaries

Definition 2.1. [14] Let U be the universe of discourse. A neutrosophic set (NS) N in U is
defined by a truth membership T, indeterminacy membership I and a falsity membership
Fy, where T, Iy, and Fy are real standard or non-standard subsets of ]0~, 17 [. That is

N = {{(z,(Ty(2),In(z), FN(2))) ,2 € U, Tn,In,Fy €]07,1F[ } and

0~ < sup Tn(x) + sup Iy(z) + sup Fn(z) < 3*. We use the interval [0,1] instead of |0, 1F].
Definition 2.2. [16] Interval neutrosophic set (/NS for short) is of the form N =
{{an (@), By (2), x5 (2)) |z € U}

= {(z, [inf ay(x),sup ay(z)], [inf Sy (z),sup By (2)], [inf yn(z),supyn(z)])},

z e U, ay(x), pn(z), vv(z) C[0,1] and

0 <sup ay(z)+ sup fy(z) + sup yn(z) < 3.

Definition 2.3. |[16] An INS N is empty if inf ay(x) = sup an(z) = 0, inf By(z) =
sup Sy (z) =1, inf yy(x) = sup yn(z) =1 forall z € U.

Definition 2.4. [11] Interval neutrosophic automaton M = (Q, X, N) (INAforshort), where
() and ¥ are non-empty finite sets called the set of states and input symbols respectively, and
N = {{an(z), Bn(x),yn(z))} isan INS in Q X ¥ x Q.

The set of all words of finite length of 3 is denoted by ¥*. The empty word is denoted by e,
and the length of each x € ¥* is denoted by |z|.

Definition 2.5. [11] Let M = (Q, X, N) be an interval neutrosophic automaton and extended
interval neutrosophic set is defined as N* = {{(an=(z), Bn+(2), yv+(2))} in Q@ x £* x Q by
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[1, 1] 1f q; = Qj
an+ (i, € ¢;) = _

[0,0] if g¢; # q;

[0,0] if ¢ = g
Bn+(ai, € q5) = ‘ ’

[0, 0] if q; = q]‘
IN=(¢is € ¢5) = '

[1,1] if ¢; # qj

an+(gi, w, q;) = an+(¢i, 2y, 4j) = Veeqlon+(ai, ©,¢-) N an=(qr, y, )],

B+ (i, w, ;) = BN (Gi> 7Y, @) = Ngre@ BN+ (i, T, qr) V Bn+(ar, Y, 45)],

Y+ (Gis w, g5) = YN+ (i Y G5) = NgpeIn+(ai, T, qr) V Y+ (Gr, Y5 5)], Va5, 45 € Q,
w=zxy,r € X*and y € X.

3. Reverse Subsystems of Interval Neutrosophic Automata

Definition 3.1. Let M = (Q, ¥, N) be an interval neutrosophic automaton and
Ry, be an interval neutrosophic set of Q. Let ¢; € @, and Ry, is defined as Ry, =

{{ng (@), Brag (@), vy (ai)) |

= { (i, i, (05), supere, (00)], 08B, (06), 5upBr, ()], [0, (06), sup vy (a0)]) -
Here, ary, (4i); Bry, (), YRy, (@) € [0,1].

Then (Q, Rng, 2, N) is said to be an reverse subsystem of M if Vg;,¢q; € Q and x € ¥ such
that gy, (45) < Vae{ary, (4) N an(gi, =, 4;)},

Bry, (4) 2 Ngse{Bry, (@) V BN (gi 7, ¢;)} and

VR, (45) 2 Ngie@{ TRy, (6) V N (402, 45) -

In this case, the reverse subsystem (Q, Ry, %, N) of M is denoted by Ry, .

Example 3.2. Let M = (Q, ¥, N) be an interval neutrosophic automaton, where
Q={a01,0,0,9,9}, ¥={z}, and N, Ng(q;), i =1,2,3,4,5 are defined as below.
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[0.5,0.6],[0.1,0.2],[0.2, 0.3] [0.3,0.4], [0.2, 0.3],[0.5, 0.6]
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[0.1, 0.2], [0.3, 0.4],[0.7, 0.8] [0.1,0.2], [0.5, 0.6],[0.8, 0.9]
Fig- 3.1

In this case the above interval neutrosophic automaton M is said to be reverse subsystem.
Theorem 3.3. Let M = (Q, X, N) be an interval neutrosophic automaton and Ry, =
{<0‘RNQaﬁRNQ77RNQ>} be an interval neutrosophic subset in Q). Then Ry, is an reverse
subsystem of M if and only if Vg¢;,q; € @Q,Vr € ¥,
ARy, (95) < Vgeqlary, (@) N an(gi . 4j)},
PRy, (45) = Nase{Bry, (@) V BN (g%, ¢5)} and
VRng (45) < Ngie@{ TRy, (@) V YN (a0, 2, ¢5) }-
Proof. Suppose Ry, is an reverse subsystem of M. Let ¢;,¢; € Q and x € ¥*. We prove this
by induction on |z| = n. If n =0, then z = e. Now if ¢; = ¢;, then
ARy, (45) Nan(gis €, 05) = ary, (45), BRy, (45) V BN+(4is €, 5) = Bry,, (¢5), and
VRng (43) V YN+ (G5 € 45) = YRy, (45)-
Now if ¢; # g;, then
ARy, (@) N an+(ai€45) = ary, (45); Bry, (@) V BN+(4is€,¢5) < Bry, (¢5), and
VR (@) V YN+ (4ir €, ¢5) < YRy, (05)-
Therefore, the statement is true for n = 0.
Assume the statement is true for all y € ¥* such that |y =n —1,n > 0.
Let z = ya, |yl =n—1,y € ¥*,a € . Then
Vae@lary, (40) N an (g7, 45)} = Vaeolary, (4i) A an-(gi; ya, ¢;)}
= Vge{ary, (¢0) NM{Vaeq {an-(4i,y, @) N an(ar, a, )} 1}
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= Vgee{Vaeq {aRNQ (¢:) N an+(ai, y, ar) N an gk, a, Qj)}}
> Ve {aRNQ (qr) A an(gr. a, Qj)}
> ARy, (¢)-
Vaelanry, (@) N an(ai, 2, 45)} = ary, (45)-
Thus, ary, (4j) < Vgee{ary, (@) A an(a, =, ¢)}
Na:ie@{BRN, (@) V BN (462, 4)} = Nie{Bry, (¢1) V BN (4is ya, 4j) )
= Naie@iBry, (60) V {Ngre@ 1ON+(di > k) V B (ax, a: 4;) 11}
= Al Nawea {Brg (@) V Bx+ (a1 3. 46) V B (ak, 0. 5) )
< AgreQ {ﬁRNQ (qr) V Bn (g, a, Qj)}
< Bry,, (4))-
NaicQ{Brx,, (@) V BN (air 2, 45)} < PRy, (4)
Thus,Bry, (2) 2 Nge@{Bry,, (@) V B (g 7, 5)} and
Ngie@{ VR, (@) V YN (405 2, 45)} = N iR, (40) V N (9 ya, ;) }
= Naie{VRu, (40) V {Nge@ (v (a0, v, @) V v (ak, @, 45) 1}
= Nc{Ngeq {’YRNQ )V N+ (2 Y, @) V N (k, @ qg)}}
(q

< Agreq {VRNQ k) VN (ks a, qg)}

< TRy, (4)-

NaieQ{ VR, (@) VAN (45 25 45)} < YRy, (45)-

Thus, Yry,, (4) = Ne{VRn, (@) V YN (435 2, 45) }-

The converse part is obvious.

Theorem 3.4. LetM = (Q, X, N) be an interval neutrosophic automaton. Let RNQ1’ and
RNQ2

Proof. Since Ryg, and Ry, are reverse subsystem of an interval neutrosophic automaton

M. Then V ¢;,q; € Q and x € X such that

be reverse subsystems of M. Then RNQ1 \Y, RNQ2 is an reverse subsystem of M.

O“RNQ1 (qj> < \/QiEQ{aRN (QZ) A aN(Qia z qj)}

Bryg, (@) = /\qZGQ{BRNQ (@) V By a7 4)},
VRyg, (47) 2 Naie@{ VR, (4i) V ¥ (@is2,45)} and
ARy, (45) < Vaeolary, (@) Nan(az, )},
PRy, (47) < Naie@{ By, (Qz)vﬁN(Qiaxan)}7

TRyg, (4) < /\quQ{VRNQ (gi) V v (4> =, ¢5) }-
Now to prove Ry, V Ry, is reverse subsystem of interval neutrosophic automaton M, it is

enough to prove that

(@Ry,, V @Ry, )(85) < VaeQ{(@ry, V ORy, )(@) N an (a2, 47)}
(BRyg, V BRy N45) Z Ngie{(Bry, V PRy, )(4i) V B (4is @, q5)}, and
(g, Y Vhing, )@7) > At (Vg V Vit ) (@) ¥ (01,7.47)).
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Now, (ary, V @ry, Nd5) = (ary, (@) V ary, (45))
< {Vaeolary, (@) Nan(a,2,45)1) V {Vgelary, (@) Nan(a,z,¢)}}
= Vacelary, (@) V ary, (@) Aan(g,z,q;)}t}
VgeQl(@ry, V ary, )ai) N an (g2, 45)}
Thus, (ary, Vary, )4) < Vaeoi(any, Vary, (@) Nan(gz,q5)}—1)
(BRyg, V PRy, )(45) = (Bry, (@) V Bry, (45))
> {Ngse@iBrr, (4:) V BN (82, 45) 3}V {Ngie{ PRy, (@) V BN (4is @, 4)}}
= {/\qieQ{ﬁRNQl (@) Vv PRy, (¢) V Bn(gi,x,q5)}}
= NgieQ{(Brg, V PRy, )@) V BN (652, 45)},
Thus, (Bry,, V Brx,, N45) 2 Nie{(Bry,, V Bry, )(@) V BN (i, 2, ¢5)},—(2) and
(VRg, V TRy, )45) = (YR, (45) V YR, (45))
> {Naie@{ VR, (46) VN (G52, 45) 12V ANgie@{ VR, (40) V IN (0352, 45) 1}
= {Nae{rw, (@) V Ry, (@) V ¥ (g0 2, 45) )
= Naie{(VRng, V YRy, )(@0) V IN (g0 75 45)}-
Thus, (YRx, V YRyg, )(47) 2 Naie@{ VR, ¥ YRy, )(@0) V YN (40 75 45) }—(3)
Hence from (1), (2), and (3),Rn,, V Rng, Is reverse subsystem of interval neutrosophic au-

tomaton M.

Theorem 3.5. LetM = (Q, ¥, N) be an interval neutrosophic automaton. and RNQI, and

R,

Proof:

be reverse subsystems of M. Then RNQ1 A RNQ2 is reverse subsystem of M.

Since RNQ1 and RNQ2 are reverse subsystem of interval neutrosophic automaton M.
Then V ¢;,q; € Q and x € X such that
ARy, (4) < Vaeelary, (@) Nan(ai, =, q¢)},
BRyg, (47) 2 Nae@{Bry,, (@) V B (9,2, 45)
(@) 2 Nge{Vry,, (41) Vv (@i, 2, ¢5)} and
0, (4) < Vacalany, (@) Nav(ai,z,45)},
BRNQ (4) < Nic@{Bray, (qz) vV B (g, 2, 45)}

VRyg, (4) < /\qzec;{vRNQ (4) V yn (gi, %, 45) -
Now we have to prove RNQ1 A RNQ2 is a reverse subsystem of M.

It is enough to prove that

(@Ry,, ARy, )4) < Vaeeilary, Nary, @) Aan(g,z,q;)},
(BRyg, A 5RNQ2)(QJ) > NgieQ{(BRyg, A PR, )(@0) V BN (452, 95)}, and
(VRng, N VR, )(45) 2 Naie@{(VRng, A VRN, (@) V YN (g5 2, 45) -

Now, (ary, A ary, )45) = (@Rry, (4) N Ry, (45))

< {Vaeolary, (@) Nan(a,,45) 1 ANMVaeelary,, (@) Aan(a,z,¢)}}
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= {Vacolary, (@) ary, (@) N an(az,q)}}

= VgeQl(any, Aary, (@) Nan(g .45},

Thus, (ary, A ary, )(4) < VaeQllary, A ary, @) N an(gix4j)}—(4) (Bry, A
Brwg, )(45) = (Brxg, (45) A Bry,, (45)

> {Naie@{Bry, (@) V BN (4,2, 45) 1) A {Ngie{Bra,, (4:) V BN (4is =, 45)}}

= {Nae@{Bry, (@) A Bry, (40) V BN (ai 2, 45) 1}

= Nie{(Bryg, A PRy, (@) V BN (605 2,45)}, Thus, (Bry, A By, )(45) 2 Nae@{(Bry, A
BRug, (@) V BN (ai; 2, 45)},—(5) and

(VRg, N VR, N45) = (VR (@) A YR, (47))

> {Nae@{ VR, (40) VN (G52, 45) } ) AM{Ngie@{ VR, (40) V YN (9352, 45) } )

= {Nae@{VRrg (@) N YR, (40) VYN (G52, 45) }

= Ngie@{ YRy, N VRig, )(@i) VN (4is 7, 45)}

Thus, (Yrx, AV, ) (45) 2 Nac@{(VRng A VRN, )(@0) V N (437, 95)}—(6)

Thus, From (4), (5) and (6) Rn,, A Rn,, is reverse subsystem of interval neutrosophic au-

tomaton M.

4. Conclusions

In this paper, we introduce reverse subsystem of interval neutrosophic automata with
example. Also, we establish necessary and sufficient condition for Ry, to be a reverse sub-
system in interval neutrosophic automaton. Finally, we prove that the union and intersection
of reverse subsystems of interval neutrosophic automaton is reverse subsystem of an interval

neutrosophic automaton.
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