
Neutrosophic Sets and Systems Neutrosophic Sets and Systems 

Volume 46 Article 10 

10-7-2021 

An Algorithm Based on Correlation Coefficient Under An Algorithm Based on Correlation Coefficient Under 

Neutrosophic hypersoft set environment with its Application for Neutrosophic hypersoft set environment with its Application for 

Decision-Making Decision-Making 

Rana Muhammad Zulqarnain 

Imran Siddique 

Shahzad Ahmad 

Sehrish Ayaz 

Said Broum 

Follow this and additional works at: https://digitalrepository.unm.edu/nss_journal 

Recommended Citation Recommended Citation 
Zulqarnain, Rana Muhammad; Imran Siddique; Shahzad Ahmad; Sehrish Ayaz; and Said Broum. "An 
Algorithm Based on Correlation Coefficient Under Neutrosophic hypersoft set environment with its 
Application for Decision-Making." Neutrosophic Sets and Systems 46, 1 (). 
https://digitalrepository.unm.edu/nss_journal/vol46/iss1/10 

This Article is brought to you for free and open access by UNM Digital Repository. It has been accepted for 
inclusion in Neutrosophic Sets and Systems by an authorized editor of UNM Digital Repository. For more 
information, please contact disc@unm.edu. 

https://digitalrepository.unm.edu/nss_journal
https://digitalrepository.unm.edu/nss_journal/vol46
https://digitalrepository.unm.edu/nss_journal/vol46/iss1/10
https://digitalrepository.unm.edu/nss_journal?utm_source=digitalrepository.unm.edu%2Fnss_journal%2Fvol46%2Fiss1%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/nss_journal/vol46/iss1/10?utm_source=digitalrepository.unm.edu%2Fnss_journal%2Fvol46%2Fiss1%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu


                                    Neutrosophic Sets and Systems, Vol. 46, 2021 
University of New Mexico  

 

Rana Muhammad Zulqarnain, Imran Siddique, Shahzad Ahmad, Sehrish Ayaz, Said Broumi, An Algorithm Based on 

Correlation Coefficient Under Neutrosophic hypersoft set environment with its Application for Decision-Making     

 

An Algorithm Based on Correlation Coefficient Under 
Neutrosophic hypersoft set environment with its Application for 

Decision-Making 

Rana Muhammad Zulqarnain1*, Imran Siddique2, Shahzad Ahmad1, Sehrish Ayaz2, Said Broumi3 

1 Department of Mathematics, University of Management and Technology, Lahore, Sialkot Campus, Pakistan. E-mail: 
shahzad.ahmed@skt.umt.edu.pk 

2 Department of Mathematics, University of Management and Technology, Lahore, Sialkot Campus, Pakistan. E-mail: 
imransiddique@umt.edu.pk 

3 Laboratory of Information Processing, Faculty of Science Ben M’Sik, University Hassan II, Casablanca. E-mail: 
broumisaid78@gmail.com. 

 
1* Correspondence: E-mail: ranazulqarnain7777@gmail.com 

Abstract:  

The correlation coefficient among the two parameters plays a significant part in statistics. Further, 

the exactness in the assessment of correlation depends upon information from the set of discourse. 

The data collected for various statistical studies is full of ambiguities. In this paper, we discuss some 

basic concepts which are helpful to build the structure of present research such as soft set, hypersoft 

set, and neutrosophic hypersoft set (NHSS). The neutrosophic hypersoft set is an extension of the 

neutrosophic soft set. In it, we establish the idea of correlation and weighted correlation coefficients 

with some desirable properties under NHSS. We also, propose a new decision-making technique 

and construct an algorithm based on developed correlation measures. Furthermore, To ensure the 

applicability of the proposed methods an illustrative example is given.  

Keywords: Hypersoft set, NHSS, correlation coefficient, weighted correlation coefficient 

 

1. Introduction 

Ambiguity plays a dynamic role in many areas of life (such as modeling, medicine, engineering, 

etc.). However, people have raised a common question, that is, how do we express and use the 

concept of uncertainty in mathematical modeling. Many researchers in the world have proposed and 

recommended different methods of using uncertainty theory. First of all, Zadeh developed the 

concept of a fuzzy set (FS) [1] to solve problems that contain uncertainty and ambiguity. In some 

cases, we must carefully consider membership as a non-membership value to correctly represent 

objects that FS cannot handle. To overcome these difficulties, Atanasov proposed the idea of 

intuitionistic fuzzy sets (IFS) [2]. Atanassov's intuitionistic fuzzy sets only deal with insufficient data 

due to membership and non-membership values, but IFS cannot deal with incompatible and 

imprecise information. Molodtsov [3] proposed a general mathematical tool to deal with uncertain, 

ambiguous, and uncertain matters, called soft set (SS). Maji et al. [4] extended the concept of SS and 

developed some operations with properties and used the established concepts for decision-making 

[5]. By combining the FS and SS Maji et al. [6] established the fuzzy soft set (FSS) and intuitionistic 

fuzzy soft set (IFSS) and studied their operations and properties [7]. Zulqarnain et al. [8] established 

the correlation coefficient for interval-valued intuitionistic fuzzy soft set and developed the TOPSIS 

approach based on their presented correlation measures. Zulqarnain et al. [9, 10] discussed the 

Pythagorean fuzzy soft sets (PFSS) and established the aggregation operator and TOPSIS technique 

to solve the MCDM problem. 
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Maji [11] offered the idea of a neutrosophic soft set (NSS) with necessary operations and 

properties. The idea of the possibility NSS was developed by Karaaslan [12] and introduced a 

possibility of neutrosophic soft decision-making method to solve those problems which contain 

uncertainty based on And-product. Broumi [13] developed the generalized NSS with some 

operations and properties and used the proposed concept for decision making. To solve MCDM 

problems with PFSS, Zulqarnain et al. [14] presented the interaction aggregation operators for PFSS. 

Based on the correlation of IFS, the term CC of SVNSs [15] was introduced. In [16] the idea of 

simplified NSs introduced with some operational laws and aggregation operators such as weighted 

arithmetic and weighted geometric average operators. They constructed an MCDM method on the 

base of proposed aggregation operators. Masooma et al. [17] progressed a new concept through 

combining the multipolar fuzzy set and neutrosophic set which is known as the multipolar 

neutrosophic set, they also established various characterization and operations with examples. 

Zulqarnain et al. [18, 19] utilized the neutrosophic TOPSIS model to solve the MCDM problem and 

for the selection of suppliers in the production industry.  

Correlation performs a significant part in statistics as well as engineering. By way of correlation 

analysis, the mixture of two variables can be utilized to compute the mutuality of the two variables. 

Although probabilistic methods have been applied to various practical engineering problems, there 

are still some obstacles to probabilistic strategies. For example, the probability of this process depends 

on the large amount of data collected, which is random. However, large complex systems have many 

fuzzy uncertainties, so it is difficult to obtain accurate probability events. Therefore, due to limited 

quantitative information, results based on probability theory do not always provide useful 

information for experts. In addition, in actual applications, sometimes there is not enough data to 

correctly process standard statistical data. Due to the aforementioned obstacles, results based on 

probability theory are not always available to experts. Therefore, probabilistic methods are usually 

insufficient to resolve such inherent uncertainties in the data. Many researchers in the world have 

proposed and proposed different methods to solve problems that contain uncertainty. To measure 

the relationship between fuzzy numbers, Yu [20] established the CC of fuzzy numbers. 

Recently, Smarandache [21] extended the concept of the SS to hypersoft set (HSS) by replacing 

the single-parameter function F with a multi-parameter (sub-attribute) function defined on Cartesian 

products of n different attributes. The established HSS is more flexible than SS and is more suitable 

for the decision-making environment. He also introduced the further extension of HSS, such as crisp 

HSS, fuzzy HSS, intuitionistic fuzzy HSS, neutrosophic HSS, and plithogenic HSS. Nowadays, HSS 

theory and its extensions are developing rapidly. Many researchers have developed different 

operators and properties based on HSS and its extensions [22-36]. Abdel-Basset [37] uses a plithogenic 

set theory to resolve uncertain information and evaluate the financial performance of manufacturing. 

Then, they use VIKOR and TOPSIS methods to find the weight vector of financial ratios using the 

AHP method to achieve this goal. Abdel-basset et al. [38] recommended an efficient combination of 

plithogenic aggregation operations as well as quality feature deployment strategies. The advantage 

of this combination is that it can improve accuracy as well as assess the decision-makers. 

The following research is organized as follows: In Section 2, we review some basic definitions 

used in the following sequels, such as SS, NSS, and NHSS, etc. In Section 3, the idea of CC and WCC 

is developed with some necessary properties. An algorithm and decision-making method will be 

developed in section 4. We also used the developed approach to solve decision making problems in 

an uncertain environment. Finally, the conclusion is made in section 5. 

2. Preliminaries  

In this section, we recollect some basic definitions which are helpful to build the structure of the 

following manuscript such as soft set, hypersoft set, and neutrosophic hypersoft set. 
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Definition 2.1 [3]  

Let 𝒰 be the universal set and ℰ be the set of attributes concerning 𝒰. Let 𝒫(𝒰) be the power set 

of 𝒰 and ⩜ ⊆ ℰ. A pair (ℱ, ⩜) is called a soft set over 𝒰 and its mapping is given as 

ℱ:⩜ → 𝒫(𝒰) 

It is also defined as: 

(ℱ,⩜) = {ℱ(ℯ) ∈ 𝒫(𝒰): ℯ ∈ ℰ, ℱ(ℯ) =  ∅ 𝑖𝑓 ℯ ∉⩜} 

Definition 2.2 [21] 

Let 𝒰 be a universe of discourse and 𝒫(𝒰) be a power set of 𝒰 and 𝑘 = {𝑘1, 𝑘2, 𝑘3,..., 𝑘𝑛},(n ≥ 1) be 

a set of attributes and set 𝐾𝑖 a set of corresponding sub-attributes of 𝑘𝑖 respectively with 𝐾𝑖 ∩ 𝐾𝑗 = 

φ for 𝑛 ≥ 1 for each 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛} and 𝑖 ≠ 𝑗. Assume 𝐾1  × 𝐾2  × 𝐾3 × … × 𝐾𝑛  = 𝒜  = 

{𝑎1ℎ × 𝑎2𝑘 ×⋯× 𝑎𝑛𝑙} be a collection of multi-attributes, where 1 ≤ ℎ ≤ 𝛼, 1 ≤ 𝑘 ≤ 𝛽, and 1 ≤ 𝑙 ≤ 

𝛾, and 𝛼, 𝛽, and 𝛾 ∈ ℕ. Then the pair (ℱ, 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = ⩜⃛) is said to be HSS over 𝒰 and 

its mapping is defined as  

ℱ: 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = ⩜⃛ →  𝒫(𝒰). 

It is also defined as  

(ℱ, ⩜⃛) = {𝑎̌, ℱ𝒜(𝑎̌): 𝑎̌ ∈⩜⃛, ℱ𝒜(𝑎̌)  ∈  𝒫(𝒰)} 

Definition 2.3 [21] 

Let 𝒰 be a universe of discourse and 𝒫(𝒰) be a power set of 𝒰 and 𝑘 = {𝑘1, 𝑘2, 𝑘3,..., 𝑘𝑛},(n ≥ 1) be 

a set of attributes and set 𝐾𝑖 a set of corresponding sub-attributes of 𝑘𝑖 respectively with 𝐾𝑖 ∩ 𝐾𝑗 = 

φ for 𝑛 ≥ 1 for each 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛} and 𝑖 ≠ 𝑗. Assume 𝐾1  × 𝐾2  × 𝐾3 × … × 𝐾𝑛  = ⩜⃛  = 

{𝑎1ℎ × 𝑎2𝑘 ×⋯× 𝑎𝑛𝑙} be a collection of sub-attributes, where 1 ≤ ℎ ≤ 𝛼, 1 ≤ 𝑘 ≤ 𝛽, and 1 ≤ 𝑙 ≤ 

𝛾, and 𝛼, 𝛽, and 𝛾 ∈ ℕ and 𝑁𝑆𝒰 be a collection of all neutrosophic subsets over 𝒰. Then the pair 

(ℱ, 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = ⩜⃛) is said to be NHSS over 𝒰 and its mapping is defined as  

ℱ: 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = ⩜⃛ →  𝑁𝑆𝒰. 

It is also defined as  

(ℱ , ⩜⃛) = {(𝑎̌, ℱ⩜⃛(𝑎̌)): 𝑎̌ ∈⩜⃛, ℱ⩜⃛(𝑎̌)  ∈  𝑁𝑆
𝒰} , where ℱ⩜⃛(𝑎̌)  = {〈𝛿, 𝜎ℱ(𝑎̌)(𝛿), 𝜏ℱ(𝑎̌)(𝛿), 𝛾ℱ(𝑎̌)(𝛿)〉: 𝛿 ∈ 𝒰} , 

where 𝜎ℱ(𝑎̌)(𝛿), 𝜏ℱ(𝑎̌)(𝛿), and 𝛾ℱ(𝑎̌)(𝛿) represent the truth, indeterminacy, and falsity grades of the 

attributes such as 𝜎ℱ(𝑎̌)(𝛿), 𝜏ℱ(𝑎̌)(𝛿), 𝛾ℱ(𝑎̌)(𝛿) ∈  [0, 1], and 0 ≤ 𝜎ℱ(𝑎̌)(𝛿) + 𝜏ℱ(𝑎̌)(𝛿) + 𝛾ℱ(𝑎̌)(𝛿) ≤ 3. 

Simply a neutrosophic hypersoft number (NHSN) can be expressed as ℱ  = 

{(𝜎ℱ(𝑎̌)(𝛿), 𝜏ℱ(𝑎̌)(𝛿), 𝛾ℱ(𝑎̌)(𝛿))}, where 0 ≤ 𝜎ℱ(𝑎̌)(𝛿) + 𝜏ℱ(𝑎̌)(𝛿) + 𝛾ℱ(𝑎̌)(𝛿) ≤ 3. 

Example 2.4  

Consider the universe of discourse 𝒰  = {𝛿1, 𝛿2}  and 𝔏 = {ℓ1 = 𝑇𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑚𝑒𝑡ℎ𝑑𝑜𝑙𝑜𝑔𝑦, ℓ2 =

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑠, ℓ3 = 𝐶𝑙𝑎𝑠𝑠𝑒𝑠}  be a collection of attributes with following their corresponding attribute 

values are given as teaching methodology = 𝐿1  = {𝑎11 = 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑏𝑎𝑠𝑒, 𝑎12 =  𝑐𝑙𝑎𝑠𝑠 𝑑𝑖𝑠𝑐𝑢𝑠𝑠𝑖𝑜𝑛} , 

Subjects = 𝐿2 = {𝑎21 = 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑠, 𝑎22 =  𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟 𝑆𝑐𝑖𝑒𝑛𝑐𝑒, 𝑎23 =  𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠}, and Classes = 𝐿3 = 

{𝑎31 = 𝑀𝑎𝑠𝑡𝑒𝑟𝑠, 𝑎32 =  𝐷𝑜𝑐𝑡𝑜𝑟𝑜𝑙}. Let ⩜⃛ = 𝐿1 × 𝐿2 × 𝐿3 be a set of attributes 

⩜⃛ = 𝐿1 × 𝐿2 × 𝐿3 = {𝑎11, 𝑎12} × {𝑎21, 𝑎22, 𝑎23} × {𝑎31, 𝑎32} 

= {
(𝑎11, 𝑎21, 𝑎31), (𝑎11, 𝑎21, 𝑎32), (𝑎11, 𝑎22, 𝑎31), (𝑎11, 𝑎22, 𝑎32), (𝑎11, 𝑎23, 𝑎31), (𝑎11, 𝑎23, 𝑎32),

(𝑎12, 𝑎21, 𝑎31), (𝑎12, 𝑎21, 𝑎32), (𝑎12, 𝑎22, 𝑎31), (𝑎12, 𝑎22, 𝑎32), (𝑎12, 𝑎23, 𝑎31), (𝑎12, 𝑎23, 𝑎32),
} 

⩜⃛ = {𝑎̌1, 𝑎̌2, 𝑎̌3, 𝑎̌4, 𝑎̌5, 𝑎̌6, 𝑎̌7, 𝑎̌8, 𝑎̌9, 𝑎̌10, 𝑎̌11, 𝑎̌12} 

Then the NHSS over 𝒰 is given as follows 
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(𝓕,⩜⃛) = 

{
 
 

 
 

(𝒂̌𝟏, (𝜹𝟏, (. 𝟔, . 𝟑, . 𝟖)), (𝜹𝟐, (. 𝟗, . 𝟑, . 𝟓))), (𝒂̌𝟐, (𝜹𝟏, (. 𝟓, . 𝟐, . 𝟕)), (𝜹𝟐, (. 𝟕, . 𝟏, . 𝟓))), (𝒂̌𝟑, (𝜹𝟏, (. 𝟓, . 𝟐, . 𝟖)), (𝜹𝟐, (. 𝟒, . 𝟑, . 𝟒))),

 (𝒂̌𝟒, (𝜹𝟏, (. 𝟐, . 𝟓, . 𝟔)), (𝜹𝟐, (. 𝟓, . 𝟏, . 𝟔))) , (𝒂̌𝟓, (𝜹𝟏, (. 𝟖, . 𝟒, . 𝟑)), (𝜹𝟐, (. 𝟐, . 𝟑, . 𝟓))) , (𝒂̌𝟔, (𝜹𝟏, (. 𝟗, . 𝟔, . 𝟒)), (𝜹𝟐, (. 𝟕, . 𝟔, . 𝟖))) ,

(𝒂̌𝟕, (𝜹𝟏, (. 𝟔. . 𝟓, . 𝟑)), (𝜹𝟐, (. 𝟒, . 𝟐, . 𝟖))), (𝒂̌𝟖, (𝜹𝟏, (. 𝟖, . 𝟐, . 𝟓)), (𝜹𝟐, (. 𝟔, . 𝟖, . 𝟒))), (𝒂̌𝟗, (𝜹𝟏, (. 𝟕, . 𝟒, . 𝟗)), (𝜹𝟐, (. 𝟕. . 𝟑, . 𝟓))),

(𝒂̌𝟏𝟎, (𝜹𝟏, (. 𝟖, . 𝟒, . 𝟔)), (𝜹𝟐, (. 𝟕, . 𝟐, . 𝟗))), (𝒂̌𝟏𝟏, (𝜹𝟏, (. 𝟖, . 𝟒, . 𝟓)), (𝜹𝟐, (. 𝟒, . 𝟐, . 𝟓))), (𝒂̌𝟓, (𝜹𝟏, (. 𝟕, . 𝟓, . 𝟖)), (𝜹𝟐, (. 𝟕, . 𝟓, . 𝟗))) }
 
 

 
 

 

3. Correlation Coefficient for Neutrosophic Hypersoft Set 

In this section, the concept of correlation coefficient and weighted correlation coefficient on 

NHSS has been proposed with some basic properties. 

Definition 3.1  

Let (ℱ,⩜⃛) = {(𝛿𝑖, 𝜎ℱ(𝑎̌𝑘)(𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)(𝛿𝑖), 𝛾ℱ(𝑎̌𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} and (𝒢,⩕⃛) = 

{(𝛿𝑖, 𝜎𝒢(𝑎̌𝑘)(𝛿𝑖), 𝜏𝒢(𝑎̌𝑘)(𝛿𝑖), 𝛾𝒢(𝑎̌𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} be two NHSSs defined over a universe of discourse 

𝒰. Then, the informational neutrosophic energies of (ℱ,⩜⃛) and (𝒢,⩕⃛) can be described as follows: 

Ϛ𝑁𝐻𝑆𝑆(ℱ,⩜⃛) = ∑ ∑ ((𝜎ℱ(𝑎̌𝑘)(𝛿𝑖))
2

+ (𝜏ℱ(𝑎̌𝑘)(𝛿𝑖))
2

+ (𝛾ℱ(𝑎̌𝑘)(𝛿𝑖))
2

)𝑛
𝑖=1

𝑚
𝑘=1                             (1) 

Ϛ𝑵𝑯𝑺𝑺(𝓖,⩕⃛) = ∑ ∑ ((𝝈𝓖(𝒂̌𝒌)(𝜹𝒊))
𝟐

+ (𝝉𝓖(𝒂̌𝒌)(𝜹𝒊))
𝟐

+ (𝜸𝓖(𝒂̌𝒌)(𝜹𝒊))
𝟐

)𝒏
𝒊=𝟏

𝒎
𝒌=𝟏 .         

(2) 

Definition 3.2 

Let (ℱ,⩜⃛) = {(𝛿𝑖, 𝜎ℱ(𝑎̌𝑘)(𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)(𝛿𝑖), 𝛾ℱ(𝑎̌𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} and (𝒢,⩕⃛) = 

{(𝛿𝑖, 𝜎𝒢(𝑎̌𝑘)(𝛿𝑖), 𝜏𝒢(𝑎̌𝑘)(𝛿𝑖), 𝛾𝒢(𝑎̌𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} be two NHSSs defined over a universe of discourse 

𝒰. Then, the correlation measure between (ℱ,⩜⃛) and (𝒢,⩕⃛) can be described as follows: 

𝓒𝑵𝑯𝑺𝑺((𝓕,⩜⃛), (𝓖,⩕⃛)) =  

∑ ∑ (𝝈𝓕(𝒂̌𝒌)(𝜹𝒊) ∗ 𝝈𝓖(𝒂̌𝒌)(𝜹𝒊) + 𝝉𝓕(𝒂̌𝒌)(𝜹𝒊) ∗ 𝝉𝓖(𝒂̌𝒌)(𝜹𝒊) + 𝜸𝓕(𝒂̌𝒌)(𝜹𝒊) ∗ 𝜸𝓖(𝒂̌𝒌)(𝜹𝒊))
𝒏
𝒊=𝟏

𝒎
𝒌=𝟏 .      

(3) 

Proposition 3.3 

Let (ℱ,⩜⃛) = {(𝛿𝑖, 𝜎ℱ(𝑎̌𝑘)(𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)(𝛿𝑖), 𝛾ℱ(𝑎̌𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} and (𝒢,⩕⃛) = 

{(𝛿𝑖, 𝜎𝒢(𝑎̌𝑘)(𝛿𝑖), 𝜏𝒢(𝑎̌𝑘)(𝛿𝑖), 𝛾𝒢(𝑎̌𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} be two NHSSs and 𝒞𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) be a 

correlation between them, then the following properties hold. 

1. 𝒞𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = Ϛ𝑁𝐻𝑆𝑆(ℱ,⩜⃛) 

2. 𝒞𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = Ϛ𝑁𝐻𝑆𝑆(𝒢,⩕⃛) 

Proof: The proof is trivial. 

Definition 3.4  

Let (ℱ,⩜⃛) = {(𝛿𝑖, 𝜎ℱ(𝑎̌𝑘)(𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)(𝛿𝑖), 𝛾ℱ(𝑎̌𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} and (𝒢,⩕⃛) = 

{(𝛿𝑖, 𝜎𝒢(𝑎̌𝑘)(𝛿𝑖), 𝜏𝒢(𝑎̌𝑘)(𝛿𝑖), 𝛾𝒢(𝑎̌𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} be two NHSSs, then correlation coefficient between 

them given as 𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) and expressed as follows: 

𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 
𝒞𝑁𝐻𝑆𝑆((ℱ,⩜⃛),(𝒢,⩕⃛)) 

√Ϛ𝑁𝐻𝑆𝑆(ℱ,⩜⃛)∗ √Ϛ𝑁𝐻𝑆𝑆(𝒢,⩕⃛)
                                                      (4) 

𝜹𝑵𝑯𝑺𝑺((𝓕,⩜⃛), (𝓖,⩕⃛)) =  

∑ ∑ (𝝈𝓕(𝒂̌𝒌)
(𝜹𝒊)∗𝝈𝓖(𝒂̌𝒌)

(𝜹𝒊)+ 𝝉𝓕(𝒂̌𝒌)
(𝜹𝒊)∗𝝉𝓖(𝒂̌𝒌)

(𝜹𝒊)+𝜸𝓕(𝒂̌𝒌)
(𝜹𝒊)∗𝜸𝓖(𝒂̌𝒌)

(𝜹𝒊))
𝒏
𝒊=𝟏

𝒎
𝒌=𝟏

√∑ ∑ ((𝝈𝓕(𝒂̌𝒌)
(𝜹𝒊))

𝟐

+(𝝉𝓕(𝒂̌𝒌)
(𝜹𝒊))

𝟐

+(𝜸𝓕(𝒂̌𝒌)
(𝜹𝒊))

𝟐

)𝒏
𝒊=𝟏

𝒎
𝒌=𝟏  √∑ ∑ ((𝝈𝓖(𝒂̌𝒌)

(𝜹𝒊))

𝟐

+(𝝉𝓖(𝒂̌𝒌)
(𝜹𝒊))

𝟐

)+(𝜸𝓖(𝒂̌𝒌)
(𝜹𝒊))

𝟐
𝒏
𝒊=𝟏

𝒎
𝒌=𝟏

    (5) 

Proposition 3.5 

Let (ℱ,⩜⃛) = {(𝛿𝑖, 𝜎ℱ(𝑎̌𝑘)(𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)(𝛿𝑖), 𝛾ℱ(𝑎̌𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} and (𝒢,⩕⃛) = 

{(𝛿𝑖, 𝜎𝒢(𝑎̌𝑘)(𝛿𝑖), 𝜏𝒢(𝑎̌𝑘)(𝛿𝑖), 𝛾𝒢(𝑎̌𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} be two NHSSs, then CC between them satisfies the 

following properties 
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1. 0 ≤ 𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) ≤ 1 

2. 𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 𝛿𝑁𝐻𝑆𝑆((𝒢,⩕⃛), (ℱ,⩜⃛)) 

3. If (ℱ,⩜⃛) = (𝒢,⩕⃛), that is ∀ 𝑖, 𝑘, 𝜎ℱ(𝑎̌𝑘)(𝛿𝑖) = 𝜎𝒢(𝑎̌𝑘)(𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)(𝛿𝑖) = 𝜏𝒢(𝑎̌𝑘)(𝛿𝑖), and 

𝛾ℱ(𝑎̌𝑘)(𝛿𝑖) = 𝛾𝒢(𝑎̌𝑘)(𝛿𝑖) then 𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 1. 

Proof 1. 𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) ≥ 0 is trivial, here we only need to prove that 𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) ≤ 1. 

From equation 3, we have 

𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = ∑ ∑ (𝜎ℱ(𝑎̌𝑘)(𝛿𝑖) ∗ 𝜎𝒢(𝑎̌𝑘)(𝛿𝑖) +  𝜏ℱ(𝑎̌𝑘)(𝛿𝑖) ∗ 𝜏𝒢(𝑎̌𝑘)(𝛿𝑖) + 𝛾ℱ(𝑎̌𝑘)(𝛿𝑖) ∗
𝑛
𝑖=1

𝑚
𝑘=1

𝛾𝒢(𝑎̌𝑘)(𝛿𝑖)) 

= ∑ (𝜎ℱ(𝑎̌𝑘)(𝛿1) ∗ 𝜎𝒢(𝑎̌𝑘)(𝛿1) +  𝜏ℱ(𝑎̌𝑘)(𝛿1) ∗ 𝜏𝒢(𝑎̌𝑘)(𝛿1) + 𝛾ℱ(𝑎̌𝑘)(𝛿1) ∗ 𝛾𝒢(𝑎̌𝑘)(𝛿1))
𝑚
𝑘=1  

+ ∑ (𝜎ℱ(𝑎̌𝑘)(𝛿2) ∗ 𝜎𝒢(𝑎̌𝑘)(𝛿2) +  𝜏ℱ(𝑎̌𝑘)(𝛿2) ∗ 𝜏𝒢(𝑎̌𝑘)(𝛿2) + 𝛾ℱ(𝑎̌𝑘)(𝛿2) ∗ 𝛾𝒢(𝑎̌𝑘)(𝛿2))
𝑚
𝑘=1  

+ 
⋮ 
+ 

∑(𝜎ℱ(𝑎̌𝑘)(𝛿𝑛) ∗ 𝜎𝒢(𝑎̌𝑘)(𝛿𝑛) + 𝜏ℱ(𝑎̌𝑘)(𝛿𝑛) ∗ 𝜏𝒢(𝑎̌𝑘)(𝛿𝑛) + 𝛾ℱ(𝑎̌𝑘)(𝛿𝑛) ∗ 𝛾𝒢(𝑎̌𝑘)(𝛿𝑛))

𝑚

𝑘=1

 

𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) 

= 

{
 
 

 
 (𝜎ℱ(𝑎̌1)(𝛿1) ∗ 𝜎𝒢(𝑎̌1)(𝛿1) +  𝜏ℱ(𝑎̌1)(𝛿1) ∗ 𝜏𝒢(𝑎̌1)(𝛿1) + 𝛾ℱ(𝑎̌1)(𝛿1) ∗ 𝛾𝒢(𝑎̌1)(𝛿1))

(𝜎ℱ(𝑎̌2)(𝛿1) ∗ 𝜎𝒢(𝑎̌2)(𝛿1) +  𝜏ℱ(𝑎̌2)(𝛿1) ∗ 𝜏𝒢(𝑎̌2)(𝛿1) + 𝛾ℱ(𝑎̌2)(𝛿1) ∗ 𝛾𝒢(𝑎̌2)(𝛿1))

⋮

(𝜎ℱ(𝑎̌𝑚)(𝛿1) ∗ 𝜎𝒢(𝑎̌𝑚)(𝛿1) + 𝜏ℱ(𝑎̌𝑚)(𝛿1) ∗ 𝜏𝒢(𝑎̌𝑚)(𝛿1) + 𝛾ℱ(𝑎̌𝑚)(𝛿1) ∗ 𝛾𝒢(𝑎̌𝑚)(𝛿1))}
 
 

 
 

 

+ 

{
 
 

 
 (𝜎ℱ(𝑎̌1)(𝛿2) ∗ 𝜎𝒢(𝑎̌1)(𝛿2) + 𝜏ℱ(𝑎̌1)(𝛿2) ∗ 𝜏𝒢(𝑎̌1)(𝛿2) + 𝛾ℱ(𝑎̌1)(𝛿2) ∗ 𝛾𝒢(𝑎̌1)(𝛿2)) +

(𝜎ℱ(𝑎̌2)(𝛿2) ∗ 𝜎𝒢(𝑎̌2)(𝛿2) + 𝜏ℱ(𝑎̌2)(𝛿2) ∗ 𝜏𝒢(𝑎̌2)(𝛿2) + 𝛾ℱ(𝑎̌2)(𝛿2) ∗ 𝛾𝒢(𝑎̌2)(𝛿2)) +

⋮

(𝜎ℱ(𝑎̌𝑚)(𝛿2) ∗ 𝜎𝒢(𝑎̌𝑚)(𝛿2) +  𝜏ℱ(𝑎̌𝑚)(𝛿2) ∗ 𝜏𝒢(𝑎̌𝑚)(𝛿2) + 𝛾ℱ(𝑎̌𝑚)(𝛿2) ∗ 𝛾𝒢(𝑎̌𝑚)(𝛿2))}
 
 

 
 

 

+ 
⋮ 
+ 

{
 
 

 
 (𝜎ℱ(𝑎̌1)(𝛿𝑛) ∗ 𝜎𝒢(𝑎̌1)(𝛿𝑛) +  𝜏ℱ(𝑎̌1)(𝛿𝑛) ∗ 𝜏𝒢(𝑎̌1)(𝛿𝑛) + 𝛾ℱ(𝑎̌1)(𝛿𝑛) ∗ 𝛾𝒢(𝑎̌1)(𝛿𝑛)) +

(𝜎ℱ(𝑎̌2)(𝛿𝑛) ∗ 𝜎𝒢(𝑎̌2)(𝛿𝑛) +  𝜏ℱ(𝑎̌2)(𝛿𝑛) ∗ 𝜏𝒢(𝑎̌2)(𝛿𝑛) + 𝛾ℱ(𝑎̌2)(𝛿𝑛) ∗ 𝛾𝒢(𝑎̌2)(𝛿𝑛)) +

⋮

(𝜎ℱ(𝑎̌𝑚)(𝛿𝑛) ∗ 𝜎𝒢(𝑎̌𝑚)(𝛿𝑛) + 𝜏ℱ(𝑎̌𝑚)(𝛿𝑛) ∗ 𝜏𝒢(𝑎̌𝑚)(𝛿𝑛) + 𝛾ℱ(𝑎̌𝑚)(𝛿𝑛) ∗ 𝛾𝒢(𝑎̌𝑚)(𝛿𝑛))}
 
 

 
 

 

= ∑ ((𝜎ℱ(𝑎̌𝑘)(𝛿1) ∗ 𝜎𝒢(𝑎̌𝑘)(𝛿1)) + (𝜎ℱ(𝑎̌𝑘)(𝛿2) ∗ 𝜎𝒢(𝑎̌𝑘)(𝛿2)) + ⋯+ (𝜎ℱ(𝑎̌𝑘)(𝛿𝑛) ∗ 𝜎𝒢(𝑎̌𝑘)(𝛿𝑛)))
m
k=1 +

∑ ((τℱ(𝑎̌𝑘)(𝛿1) ∗ τ𝒢(𝑎̌𝑘)(𝛿1)) + (τℱ(𝑎̌𝑘)(𝛿2) ∗ τ𝒢(𝑎̌𝑘)(𝛿2)) +⋯+ (τℱ(𝑎̌𝑘)(𝛿𝑛) ∗ τ𝒢(𝑎̌𝑘)(𝛿𝑛)))
m
k=1 +

∑ ((𝛾ℱ(𝑎̌𝑘)(𝛿1) ∗ 𝛾𝒢(𝑎̌𝑘)(𝛿1)) + (𝛾ℱ(𝑎̌𝑘)(𝛿2) ∗ 𝛾𝒢(𝑎̌𝑘)(𝛿2)) + ⋯+ (𝛾ℱ(𝑎̌𝑘)(𝛿𝑛) ∗ 𝛾𝒢(𝑎̌𝑘)(𝛿𝑛)))
m
k=1  

By using Cauchy-Schwarz inequality  
𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛))

2 ≤  

∑{
((𝜎ℱ(𝑎̌𝑘)(𝛿1))

2

+ (𝜎ℱ(𝑎̌𝑘)(𝛿2))
2

+⋯+ (𝜎ℱ(𝑎̌𝑘)(𝛿𝑛))
2

) + ((𝜏ℱ(𝑎̌𝑘)(𝛿1))
2

+ (𝜏ℱ(𝑎̌𝑘)(𝛿2))
2

+⋯+ (𝜏ℱ(𝑎̌𝑘)(𝛿𝑛))
2

)

+ ((𝛾ℱ(𝑎̌𝑘)(𝛿1))
2

+ (𝛾ℱ(𝑎̌𝑘)(𝛿2))
2

+⋯+ (𝛾ℱ(𝑎̌𝑘)(𝛿𝑛))
2

)
}

𝑚

𝑘=1

×∑{
((𝜎𝒢(𝑎̌𝑘)(𝛿1))

2

+ (𝜎𝒢(𝑎̌𝑘)(𝛿2))
2

+⋯+ (𝜎𝒢(𝑎̌𝑘)(𝛿𝑛))
2

) + ((𝜏𝒢(𝑎̌𝑘)(𝛿1))
2

+ (𝜏𝒢(𝑎̌𝑘)(𝛿2))
2

+⋯+ (𝜏𝒢(𝑎̌𝑘)(𝛿𝑛))
2

)

+ ((𝛾𝒢(𝑎̌𝑘)(𝛿1))
2

+ (𝛾𝒢(𝑎̌𝑘)(𝛿2))
2

+⋯+ (𝛾𝒢(𝑎̌𝑘)(𝛿𝑛))
2

)
}

𝑚

𝑘=1

 

𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛))
2 ≤  
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∑∑((𝜎ℱ(𝑎̌𝑘)(𝛿𝑖))
2

+ (𝜏ℱ(𝑎̌𝑘)(𝛿𝑖))
2

+ (𝛾ℱ(𝑎̌𝑘)(𝛿𝑖))
2

)

𝑛

𝑖=1

𝑚

𝑘=1

×∑∑((𝜎𝒢(𝑎̌𝑘)(𝛿𝑖))
2

+ (𝜏𝒢(𝑎̌𝑘)(𝛿𝑖))
2

+ (𝛾𝒢(𝑎̌𝑘)(𝛿𝑖))
2

)

𝑛

𝑖=1

𝑚

𝑘=1

 

𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛))
2 ≤ Ϛ𝑁𝐻𝑆𝑆(ℱ,⩜⃛) ×  Ϛ𝑁𝐻𝑆𝑆(𝒢,⩕⃛). 

Therefore, 𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛))
2 ≤ Ϛ𝑁𝐻𝑆𝑆(ℱ,⩜⃛) ×  Ϛ𝑁𝐻𝑆𝑆(𝒢,⩕⃛). Hence, by using definition 3.4, we have   

𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) ≤ 1. So, 0 ≤ 𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) ≤ 1. 

Proof 2. The proof is obvious. 

Proof 3. From equation 5, we have 

𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 

∑ ∑ (𝜎ℱ(𝑎̌𝑘)
(𝛿𝑖)∗𝜎𝒢(𝑎̌𝑘)

(𝛿𝑖)+ 𝜏ℱ(𝑎̌𝑘)
(𝛿𝑖)∗𝜏𝒢(𝑎̌𝑘)

(𝛿𝑖)+𝛾ℱ(𝑎̌𝑘)
(𝛿𝑖)∗𝛾𝒢(𝑎̌𝑘)

(𝛿𝑖))
𝑛
𝑖=1

𝑚
𝑘=1

√∑ ∑ ((𝜎ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

+(𝜏ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

+(𝛾ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

)𝑛
𝑖=1

𝑚
𝑘=1  √∑ ∑ ((𝜎𝒢(𝑎̌𝑘)

(𝛿𝑖))

2

+(𝜏𝒢(𝑎̌𝑘)
(𝛿𝑖))

2

)+(𝛾𝒢(𝑎̌𝑘)
(𝛿𝑖))

2
𝑛
𝑖=1

𝑚
𝑘=1

 

As we know that  

𝜎ℱ(𝑎̌𝑘)(𝛿𝑖) = 𝜎𝒢(𝑎̌𝑘)(𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)(𝛿𝑖) = 𝜏𝒢(𝑎̌𝑘)(𝛿𝑖), and 𝛾ℱ(𝑎̌𝑘)(𝛿𝑖) = 𝛾𝒢(𝑎̌𝑘)(𝛿𝑖) ∀ 𝑖, 𝑘. We get 

𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 

∑ ∑ ((𝜎ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

+(𝜏ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

+(𝛾ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

)𝑛
𝑖=1

𝑚
𝑘=1

√∑ ∑ ((𝜎ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

+(𝜏ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

+(𝛾ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

)𝑛
𝑖=1

𝑚
𝑘=1  √∑ ∑ ((𝜎ℱ(𝑎̌𝑘)

(𝛿𝑖))

2

+(𝜏ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

+(𝛾ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

)𝑛
𝑖=1

𝑚
𝑘=1

 

𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 1 

Thus, prove the required result. 

Definition 3.6  

Let (ℱ,⩜⃛) = {(𝛿𝑖, 𝜎ℱ(𝑎̌𝑘)(𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)(𝛿𝑖), 𝛾ℱ(𝑎̌𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} and (𝒢,⩕⃛) = 

{(𝛿𝑖, 𝜎𝒢(𝑎̌𝑘)(𝛿𝑖), 𝜏𝒢(𝑎̌𝑘)(𝛿𝑖), 𝛾𝒢(𝑎̌𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} be two NHSSs. Then, their correlation coefficient is 

given as 𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) and defined as follows: 

𝛿𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) = 

𝒞𝑁𝐻𝑆𝑆((ℱ,⩜⃛),(𝒢,⩕⃛)) 

𝑚𝑎𝑥{Ϛ𝑁𝐻𝑆𝑆(ℱ,⩜⃛),Ϛ𝑁𝐻𝑆𝑆(𝒢,⩕⃛)}
                                                    (6) 

𝛿𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) = 

∑ ∑ (𝜎ℱ(𝑎̌𝑘)
(𝛿𝑖)∗𝜎𝒢(𝑎̌𝑘)

(𝛿𝑖)+ 𝜏ℱ(𝑎̌𝑘)
(𝛿𝑖)∗𝜏𝒢(𝑎̌𝑘)

(𝛿𝑖)+ 𝛾ℱ(𝑎̌𝑘)
(𝛿𝑖)∗𝛾𝒢(𝑎̌𝑘)

(𝛿𝑖))
𝑛
𝑖=1

𝑚
𝑘=1

𝑚𝑎𝑥{∑ ∑ ((𝜎ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

+(𝜏ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

+(𝛾ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

)𝑛
𝑖=1

𝑚
𝑘=1 ,∑ ∑ ((𝜎𝒢(𝑎̌𝑘)

(𝛿𝑖))

2

+(𝜏𝒢(𝑎̌𝑘)
(𝛿𝑖))

2

+(𝛾𝒢(𝑎̌𝑘)
(𝛿𝑖))

2

)𝑛
𝑖=1

𝑚
𝑘=1 } 

     (7) 

Proposition 3.7  

Let (ℱ,⩜⃛) = {(𝛿𝑖, 𝜎ℱ(𝑎̌𝑘)(𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)(𝛿𝑖), 𝛾ℱ(𝑎̌𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} and (𝒢,⩕⃛) = 

{(𝛿𝑖, 𝜎𝒢(𝑎̌𝑘)(𝛿𝑖), 𝜏𝒢(𝑎̌𝑘)(𝛿𝑖), 𝛾𝒢(𝑎̌𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} be two NHSSs. Then, CC between them satisfies the 

following properties 

1. 0 ≤ 𝛿𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) ≤ 1 

2. 𝛿𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) = 𝛿𝑁𝐻𝑆𝑆

1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) 

3. If (ℱ,⩜⃛) = (𝒢,⩕⃛), that is ∀ 𝑖, 𝑘, 𝜎ℱ(𝑎̌𝑘)(𝛿𝑖) = 𝜎𝒢(𝑎̌𝑘)(𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)(𝛿𝑖) = 𝜏𝒢(𝑎̌𝑘)(𝛿𝑖), and 

 𝛾ℱ(𝑎̌𝑘)(𝛿𝑖) = 𝛾𝒢(𝑎̌𝑘)(𝛿𝑖), then 𝛿𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) = 1. 

Proof 1. 𝛿𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) ≥ 0 is trivial, here we only need to prove that 𝛿𝑁𝐻𝑆𝑆

1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) ≤ 1. 

From equation 3, we have 

𝛿𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) = ∑ ∑ (𝜎ℱ(𝑎̌𝑘)(𝛿𝑖) ∗ 𝜎𝒢(𝑎̌𝑘)(𝛿𝑖) +  𝜏ℱ(𝑎̌𝑘)(𝛿𝑖) ∗ 𝜏𝒢(𝑎̌𝑘)(𝛿𝑖) + 𝛾ℱ(𝑎̌𝑘)(𝛿𝑖) ∗

𝑛
𝑖=1

𝑚
𝑘=1

𝛾𝒢(𝑎̌𝑘)(𝛿𝑖)) 

= ∑ (𝜎ℱ(𝑎̌𝑘)(𝛿1) ∗ 𝜎𝒢(𝑎̌𝑘)(𝛿1) +  𝜏ℱ(𝑎̌𝑘)(𝛿1) ∗ 𝜏𝒢(𝑎̌𝑘)(𝛿1) + 𝛾ℱ(𝑎̌𝑘)(𝛿1) ∗ 𝛾𝒢(𝑎̌𝑘)(𝛿1))
𝑚
𝑘=1  

+ ∑ (𝜎ℱ(𝑎̌𝑘)(𝛿2) ∗ 𝜎𝒢(𝑎̌𝑘)(𝛿2) +  𝜏ℱ(𝑎̌𝑘)(𝛿2) ∗ 𝜏𝒢(𝑎̌𝑘)(𝛿2) + 𝛾ℱ(𝑎̌𝑘)(𝛿2) ∗ 𝛾𝒢(𝑎̌𝑘)(𝛿2))
𝑚
𝑘=1  

+ 
⋮ 
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+ 

∑(𝜎ℱ(𝑎̌𝑘)(𝛿𝑛) ∗ 𝜎𝒢(𝑎̌𝑘)(𝛿𝑛) + 𝜏ℱ(𝑎̌𝑘)(𝛿𝑛) ∗ 𝜏𝒢(𝑎̌𝑘)(𝛿𝑛) + 𝛾ℱ(𝑎̌𝑘)(𝛿𝑛) ∗ 𝛾𝒢(𝑎̌𝑘)(𝛿𝑛))

𝑚

𝑘=1

 

𝛿𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) 

= 

{
 
 

 
 (𝜎ℱ(𝑎̌1)(𝛿1) ∗ 𝜎𝒢(𝑎̌1)(𝛿1) +  𝜏ℱ(𝑎̌1)(𝛿1) ∗ 𝜏𝒢(𝑎̌1)(𝛿1) + 𝛾ℱ(𝑎̌1)(𝛿1) ∗ 𝛾𝒢(𝑎̌1)(𝛿1))

(𝜎ℱ(𝑎̌2)(𝛿1) ∗ 𝜎𝒢(𝑎̌2)(𝛿1) +  𝜏ℱ(𝑎̌2)(𝛿1) ∗ 𝜏𝒢(𝑎̌2)(𝛿1) + 𝛾ℱ(𝑎̌2)(𝛿1) ∗ 𝛾𝒢(𝑎̌2)(𝛿1))

⋮

(𝜎ℱ(𝑎̌𝑚)(𝛿1) ∗ 𝜎𝒢(𝑎̌𝑚)(𝛿1) + 𝜏ℱ(𝑎̌𝑚)(𝛿1) ∗ 𝜏𝒢(𝑎̌𝑚)(𝛿1) + 𝛾ℱ(𝑎̌𝑚)(𝛿1) ∗ 𝛾𝒢(𝑎̌𝑚)(𝛿1))}
 
 

 
 

 

+ 

{
 
 

 
 (𝜎ℱ(𝑎̌1)(𝛿2) ∗ 𝜎𝒢(𝑎̌1)(𝛿2) + 𝜏ℱ(𝑎̌1)(𝛿2) ∗ 𝜏𝒢(𝑎̌1)(𝛿2) + 𝛾ℱ(𝑎̌1)(𝛿2) ∗ 𝛾𝒢(𝑎̌1)(𝛿2)) +

(𝜎ℱ(𝑎̌2)(𝛿2) ∗ 𝜎𝒢(𝑎̌2)(𝛿2) + 𝜏ℱ(𝑎̌2)(𝛿2) ∗ 𝜏𝒢(𝑎̌2)(𝛿2) + 𝛾ℱ(𝑎̌2)(𝛿2) ∗ 𝛾𝒢(𝑎̌2)(𝛿2)) +

⋮

(𝜎ℱ(𝑎̌𝑚)(𝛿2) ∗ 𝜎𝒢(𝑎̌𝑚)(𝛿2) +  𝜏ℱ(𝑎̌𝑚)(𝛿2) ∗ 𝜏𝒢(𝑎̌𝑚)(𝛿2) + 𝛾ℱ(𝑎̌𝑚)(𝛿2) ∗ 𝛾𝒢(𝑎̌𝑚)(𝛿2))}
 
 

 
 

 

+ 
⋮ 
+ 

{
 
 

 
 (𝜎ℱ(𝑎̌1)(𝛿𝑛) ∗ 𝜎𝒢(𝑎̌1)(𝛿𝑛) +  𝜏ℱ(𝑎̌1)(𝛿𝑛) ∗ 𝜏𝒢(𝑎̌1)(𝛿𝑛) + 𝛾ℱ(𝑎̌1)(𝛿𝑛) ∗ 𝛾𝒢(𝑎̌1)(𝛿𝑛)) +

(𝜎ℱ(𝑎̌2)(𝛿𝑛) ∗ 𝜎𝒢(𝑎̌2)(𝛿𝑛) +  𝜏ℱ(𝑎̌2)(𝛿𝑛) ∗ 𝜏𝒢(𝑎̌2)(𝛿𝑛) + 𝛾ℱ(𝑎̌2)(𝛿𝑛) ∗ 𝛾𝒢(𝑎̌2)(𝛿𝑛)) +

⋮

(𝜎ℱ(𝑎̌𝑚)(𝛿𝑛) ∗ 𝜎𝒢(𝑎̌𝑚)(𝛿𝑛) + 𝜏ℱ(𝑎̌𝑚)(𝛿𝑛) ∗ 𝜏𝒢(𝑎̌𝑚)(𝛿𝑛) + 𝛾ℱ(𝑎̌𝑚)(𝛿𝑛) ∗ 𝛾𝒢(𝑎̌𝑚)(𝛿𝑛))}
 
 

 
 

 

= ∑ ((𝜎ℱ(𝑎̌𝑘)(𝛿1) ∗ 𝜎𝒢(𝑎̌𝑘)(𝛿1)) + (𝜎ℱ(𝑎̌𝑘)(𝛿2) ∗ 𝜎𝒢(𝑎̌𝑘)(𝛿2)) + ⋯+ (𝜎ℱ(𝑎̌𝑘)(𝛿𝑛) ∗ 𝜎𝒢(𝑎̌𝑘)(𝛿𝑛)))
m
k=1 +

∑ ((τℱ(𝑎̌𝑘)(𝛿1) ∗ τ𝒢(𝑎̌𝑘)(𝛿1)) + (τℱ(𝑎̌𝑘)(𝛿2) ∗ τ𝒢(𝑎̌𝑘)(𝛿2)) +⋯+ (τℱ(𝑎̌𝑘)(𝛿𝑛) ∗ τ𝒢(𝑎̌𝑘)(𝛿𝑛)))
m
k=1 +

∑ ((𝛾ℱ(𝑎̌𝑘)(𝛿1) ∗ 𝛾𝒢(𝑎̌𝑘)(𝛿1)) + (𝛾ℱ(𝑎̌𝑘)(𝛿2) ∗ 𝛾𝒢(𝑎̌𝑘)(𝛿2)) + ⋯+ (𝛾ℱ(𝑎̌𝑘)(𝛿𝑛) ∗ 𝛾𝒢(𝑎̌𝑘)(𝛿𝑛)))
m
k=1  

By using Cauchy-Schwarz inequality  
𝛿𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) ≤  

∑{
((𝜎ℱ(𝑎̌𝑘)(𝛿1))

2

+ (𝜎ℱ(𝑎̌𝑘)(𝛿2))
2

+⋯+ (𝜎ℱ(𝑎̌𝑘)(𝛿𝑛))
2

) + ((𝜏ℱ(𝑎̌𝑘)(𝛿1))
2

+ (𝜏ℱ(𝑎̌𝑘)(𝛿2))
2

+⋯+ (𝜏ℱ(𝑎̌𝑘)(𝛿𝑛))
2

)

+ ((𝛾ℱ(𝑎̌𝑘)(𝛿1))
2

+ (𝛾ℱ(𝑎̌𝑘)(𝛿2))
2

+⋯+ (𝛾ℱ(𝑎̌𝑘)(𝛿𝑛))
2

)
}

𝑚

𝑘=1

×∑{
((𝜎𝒢(𝑎̌𝑘)(𝛿1))

2

+ (𝜎𝒢(𝑎̌𝑘)(𝛿2))
2

+⋯+ (𝜎𝒢(𝑎̌𝑘)(𝛿𝑛))
2

) + ((𝜏𝒢(𝑎̌𝑘)(𝛿1))
2

+ (𝜏𝒢(𝑎̌𝑘)(𝛿2))
2

+⋯+ (𝜏𝒢(𝑎̌𝑘)(𝛿𝑛))
2

)

+ ((𝛾𝒢(𝑎̌𝑘)(𝛿1))
2

+ (𝛾𝒢(𝑎̌𝑘)(𝛿2))
2

+⋯+ (𝛾𝒢(𝑎̌𝑘)(𝛿𝑛))
2

)
}

𝑚

𝑘=1

 

𝛿𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛))2 ≤  

∑∑((𝜎ℱ(𝑎̌𝑘)(𝛿𝑖))
2

+ (𝜏ℱ(𝑎̌𝑘)(𝛿𝑖))
2

+ (𝛾ℱ(𝑎̌𝑘)(𝛿𝑖))
2

)

𝑛

𝑖=1

𝑚

𝑘=1

 

×∑∑((𝜎𝒢(𝑎̌𝑘)(𝛿𝑖))
2

+ (𝜏𝒢(𝑎̌𝑘)(𝛿𝑖))
2

+ (𝛾𝒢(𝑎̌𝑘)(𝛿𝑖))
2

)

𝑛

𝑖=1

𝑚

𝑘=1

 

𝛿𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛))2 ≤ Ϛ𝑁𝐻𝑆𝑆(ℱ,⩜⃛) ×  Ϛ𝐼𝐹𝐻𝑆𝑆(𝒢,⩕⃛). 

Therefore, 𝛿𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛))2 ≤ Ϛ𝑁𝐻𝑆𝑆(ℱ,⩜⃛) ×  Ϛ𝑁𝐻𝑆𝑆(𝒢,⩕⃛). Hence, by using definition 3.6, we have   

𝛿𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) ≤ 1. So, 0 ≤ 𝛿𝑁𝐻𝑆𝑆

1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) ≤ 1. 

Proof 2. The proof is obvious. 

Proof 3. From equation 7, we have 

𝛿𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) =  

∑ ∑ (𝜎ℱ(𝑎̌𝑘)(𝛿𝑖) ∗ 𝜎𝒢(𝑎̌𝑘)(𝛿𝑖) + 𝜏ℱ(𝑎̌𝑘)(𝛿𝑖) ∗ 𝜏𝒢(𝑎̌𝑘)(𝛿𝑖) + 𝛾ℱ(𝑎̌𝑘)(𝛿𝑖) ∗ 𝛾𝒢(𝑎̌𝑘)(𝛿𝑖))
𝑛
𝑖=1

𝑚
𝑘=1

𝑚𝑎𝑥 {∑ ∑ ((𝜎ℱ(𝑎̌𝑘)(𝛿𝑖))
2
+ (𝜏ℱ(𝑎̌𝑘)(𝛿𝑖))

2
+ (𝛾ℱ(𝑎̌𝑘)(𝛿𝑖))

2
)𝑛

𝑖=1
𝑚
𝑘=1 , ∑ ∑ ((𝜎𝒢(𝑎̌𝑘)(𝛿𝑖))

2
+ (𝜏𝒢(𝑎̌𝑘)(𝛿𝑖))

2
+ (𝛾𝒢(𝑎̌𝑘)(𝛿𝑖))

2
)𝑛

𝑖=1
𝑚
𝑘=1 } 

 

As we know that  

𝜎ℱ(𝑎̌𝑘)(𝛿𝑖) = 𝜎𝒢(𝑎̌𝑘)(𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)(𝛿𝑖) = 𝜏𝒢(𝑎̌𝑘)(𝛿𝑖), and 𝛾ℱ(𝑎̌𝑘)(𝛿𝑖) = 𝛾𝒢(𝑎̌𝑘)(𝛿𝑖) ∀ 𝑖, 𝑘. We get 
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𝛿𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) =  

∑ ∑ ((𝜎ℱ(𝑎̌𝑘)(𝛿𝑖))
2
+ (𝜏ℱ(𝑎̌𝑘)(𝛿𝑖))

2
+ (𝛾ℱ(𝑎̌𝑘)(𝛿𝑖))

2
)𝑛

𝑖=1
𝑚
𝑘=1

𝑚𝑎𝑥 {∑ ∑ ((𝜎ℱ(𝑎̌𝑘)(𝛿𝑖))
2
+ (𝜏ℱ(𝑎̌𝑘)(𝛿𝑖))

2
+ (𝛾ℱ(𝑎̌𝑘)(𝛿𝑖))

2
)𝑛

𝑖=1
𝑚
𝑘=1 , ∑ ∑ ((𝜎ℱ(𝑎̌𝑘)(𝛿𝑖))

2
+ (𝜏ℱ(𝑎̌𝑘)(𝛿𝑖))

2
+ (𝛾ℱ(𝑎̌𝑘)(𝛿𝑖))

2
)𝑛

𝑖=1
𝑚
𝑘=1 } 

 

𝛿𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) = 1 

Thus, prove the required result. 

Definition 3.8  

Let (ℱ,⩜⃛) = {(𝛿𝑖, 𝜎ℱ(𝑎̌𝑘)(𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)(𝛿𝑖), 𝛾ℱ(𝑎̌𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} and (𝒢,⩕⃛) = 

{(𝛿𝑖, 𝜎𝒢(𝑎̌𝑘)(𝛿𝑖), 𝜏𝒢(𝑎̌𝑘)(𝛿𝑖), 𝛾𝒢(𝑎̌𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} be two NHSSs. Then, their weighted correlation 

coefficient is given as 𝛿𝑊𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) and defined as follows: 

𝛿𝑊𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 
𝒞𝑊𝑁𝐻𝑆𝑆((ℱ,⩜⃛),(𝒢,⩕⃛)) 

√Ϛ𝑊𝑁𝐻𝑆𝑆(𝒢,⩕⃛)∗ √Ϛ𝑊𝑁𝐻𝑆𝑆(𝒢,⩕⃛)
                                                 (8) 

𝛿𝑊𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 

∑ Ω𝑘(∑ γ𝑖(𝜎ℱ(𝑎̌𝑘)
(𝛿𝑖)∗𝜎𝒢(𝑎̌𝑘)

(𝛿𝑖)+ 𝜏ℱ(𝑎̌𝑘)
(𝛿𝑖)∗𝜏𝒢(𝑎̌𝑘)

(𝛿𝑖)+ 𝛾ℱ(𝑎̌𝑘)
(𝛿𝑖)∗𝛾𝒢(𝑎̌𝑘)

(𝛿𝑖))
𝑛
𝑖=1 )𝑚

𝑘=1

√∑ Ω𝑘(∑ γ𝑖((𝜎ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

+(𝜏ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

+(𝛾ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

)𝑛
𝑖=1 )𝑚

𝑘=1  √∑ Ω𝑘(∑ γ𝑖((𝜎𝒢(𝑎̌𝑘)
(𝛿𝑖))

2

+(𝜏𝒢(𝑎̌𝑘)
(𝛿𝑖))

2

+(𝛾𝒢(𝑎̌𝑘)
(𝛿𝑖))

2

)𝑛
𝑖=1 )𝑚

𝑘=1

                                                                                                     

(9) 

Definition 3.9  

Let (ℱ,⩜⃛)  = {(𝛿𝑖, 𝜎ℱ(𝑎̌𝑘)(𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)(𝛿𝑖), 𝛾ℱ(𝑎̌𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰}  and (𝒢,⩕⃛)  = 

{(𝛿𝑖, 𝜎𝒢(𝑎̌𝑘)(𝛿𝑖), 𝜏𝒢(𝑎̌𝑘)(𝛿𝑖), 𝛾𝒢(𝑎̌𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰}  be two NHSSs. Then, their weighted correlation 

coefficient is given as 𝛿𝑊𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) and defined as follows: 

𝛿𝑊𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) = 

𝒞𝑊𝑁𝐻𝑆𝑆((ℱ,⩜⃛),(𝒢,⩕⃛)) 

𝑚𝑎𝑥{Ϛ𝑊𝑁𝐻𝑆𝑆(ℱ,⩜⃛),Ϛ𝑊𝑁𝐻𝑆𝑆(𝒢,⩕⃛)}
                                               (10) 

𝛿𝑊𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) = 

∑ Ω𝑘(∑ γ𝑖(𝜎ℱ(𝑎̌𝑘)
(𝛿𝑖)∗𝜎𝒢(𝑎̌𝑘)

(𝛿𝑖)+ 𝜏ℱ(𝑎̌𝑘)
(𝛿𝑖)∗𝜏𝒢(𝑎̌𝑘)

(𝛿𝑖)+ 𝛾ℱ(𝑎̌𝑘)
(𝛿𝑖)∗𝛾𝒢(𝑎̌𝑘)

(𝛿𝑖))
𝑛
𝑖=1 )𝑚

𝑘=1

𝑚𝑎𝑥{∑ Ω𝑘(∑ γ𝑖((𝜎ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

+(𝜏ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

+(𝛾ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

)𝑛
𝑖=1 )𝑚

𝑘=1 ,∑ ὡ𝑘(∑ Ω𝑘(∑ γ𝑖((𝜎𝒢(𝑎̌𝑘)
(𝛿𝑖))

2

+(𝜏𝒢(𝑎̌𝑘)
(𝛿𝑖))

2

+(𝛾𝒢(𝑎̌𝑘)
(𝛿𝑖))

2

)𝑛
𝑖=1 )𝑚

𝑘=1 )𝑚
𝑘=1 } 

                                                                                                    

(11) 

If we consider Ω  = {
1

𝑚
, 

1

𝑚
,…, 

1

𝑚
} and γ  = {

1

𝑛
, 

1

𝑛
,…, 

1

𝑛
}, then 𝛿𝑊𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛))  and 

𝛿𝑊𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) are reduced to 𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) and 𝛿𝑁𝐻𝑆𝑆

1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) respectively. 

Proposition 3.10  

Let (ℱ,⩜⃛) = {(𝛿𝑖, 𝜎ℱ(𝑎̌𝑘)(𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)(𝛿𝑖), 𝛾ℱ(𝑎̌𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} and (𝒢,⩕⃛) = 

{(𝛿𝑖, 𝜎𝒢(𝑎̌𝑘)(𝛿𝑖), 𝜏𝒢(𝑎̌𝑘)(𝛿𝑖), 𝛾𝒢(𝑎̌𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} be two NHSSs. Then, CC between them satisfies the 

following properties 

1. 0 ≤ 𝛿𝑊𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) ≤ 1 

2. 𝛿𝑊𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 𝛿𝑊𝑁𝐻𝑆𝑆((𝒢,⩕⃛), (ℱ,⩜⃛)) 

3. If (ℱ,⩜⃛) = (𝒢,⩕⃛), that is ∀ 𝑖, 𝑘, 𝜎ℱ(𝑎̌𝑘)(𝛿𝑖) = 𝜎𝒢(𝑎̌𝑘)(𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)(𝛿𝑖) = 𝜏𝒢(𝑎̌𝑘)(𝛿𝑖), and 

 𝛾ℱ(𝑎̌𝑘)(𝛿𝑖) = 𝛾𝒢(𝑎̌𝑘)(𝛿𝑖) then 𝛿𝑊𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 1. 

Proof Similar to proposition 3.5. 

4. Application of Correlation Coefficient for Decision Making Under NHSS Environment 

In this section, we proposed the algorithm based on CC under NHSS and utilize the proposed 

approach for decision making in real-life problems. 

4.1 Algorithm for Correlation Coefficient under NHSS 
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Step 1. Pick out the set containing sub-attributes of parameters. 

Step 2. Construct the NHSS according to experts in form of NHSNs. 

Step 3. Find the informational neutrosophic energies of NHSS. 

Step 4. Calculate the correlation between NHSSs by using the following formula 

𝓒𝑵𝑯𝑺𝑺((𝓕,⩜⃛), (𝓖,⩕⃛)) =  

∑∑(𝜎ℱ(𝑎̌𝑘)(𝛿𝑖) ∗ 𝜎𝒢(𝑎̌𝑘)(𝛿𝑖) + 𝜏ℱ(𝑎̌𝑘)(𝛿𝑖) ∗ 𝜏𝒢(𝑎̌𝑘)(𝛿𝑖) + 𝛾ℱ(𝑎̌𝑘)(𝛿𝑖) ∗ 𝛾𝒢(𝑎̌𝑘)(𝛿𝑖))

𝑛

𝑖=1

𝑚

𝑘=1

 

Step 5. Calculate the CC between NHSSs by using the following formula 

𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 
𝒞𝑁𝐻𝑆𝑆((ℱ,⩜⃛),(𝒢,⩕⃛)) 

√Ϛ𝑁𝐻𝑆𝑆(ℱ,⩜⃛)∗ √Ϛ𝑁𝐻𝑆𝑆(𝒢,⩕⃛)
  

Step 6. Choose the alternative with a maximum value of CC. 

Step 7. Analyze the ranking of the alternatives. 

A flowchart of the above-presented algorithm can be seen in figure 1. 

 

Figure 1: Flowchart for correlation coefficient under NHSS 

4.1 Problem Formulation and Application of NHSS For Decision Making 

Department of the scientific discipline of some university 𝒰 will have one scholarship for the 

position of post-doctorate. Several scholars apply to get a scholarship but referable probabilistic along 

with CGPA (cumulative grade points average), simply four scholars call for enrolled for 

undervaluation such as ℵ = {ℵ1, ℵ2, ℵ3, ℵ4} be a set of selected scholars call for the interview. The 

president of the university hires a committee of four decision-makers (DM) 𝒰 = {𝛿1, 𝛿2, 𝛿3, 𝛿4} for 

the selection post-doctoral scholar. The team of DM decides the criteria (attributes) for the selection 

of post-doctorate position such as 𝔏 = {ℓ1 = Publications, ℓ2 = Subjects, ℓ3 = IF} be a collection of 

attributes and their corresponding sub-attribute are given as Publications = ℓ1  = {𝑎11 =

𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 10, 𝑎12 =  𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 10}, Subjects = ℓ2  = {𝑎21 = 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑠, 𝑎22 =  𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟 𝑆𝑐𝑖𝑒𝑛𝑐𝑒}, 

and IF = ℓ3 = {𝑎31 = 45, 𝑎32 =  47}. Let 𝔏′ = ℓ1 × ℓ2 × ℓ3 be a set of sub-attributes 

𝔏′ = ℓ1 × ℓ2 × ℓ3 = {𝑎11, 𝑎12} × {𝑎21, 𝑎22} × {𝑎31, 𝑎32} 
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= {
(𝑎11, 𝑎21, 𝑎31), (𝑎11, 𝑎21, 𝑎32), (𝑎11, 𝑎22, 𝑎31), (𝑎11, 𝑎22, 𝑎32),

(𝑎12, 𝑎21, 𝑎31), (𝑎12, 𝑎21, 𝑎32), (𝑎12, 𝑎22, 𝑎31), (𝑎12, 𝑎22, 𝑎32) 
}, 𝔏′ = {𝑎̌1, 𝑎̌2, 𝑎̌3, 𝑎̌4, 𝑎̌5, 𝑎̌6, 𝑎̌7, 𝑎̌8} be a set 

of all multi sub-attributes. Each DM will evaluate the ratings of each alternative in the form of NHSNs 

under the considered multi sub-attributes. The developed method to find the best alternative is as 

follows. 

4.1.1. Application of NHSS For Decision Making 

Assume ℵ  = {ℵ1, ℵ2, ℵ3, ℵ4}  be a set of alternatives who are shortlisted for interview and  𝔏 = 

{ℓ1 = Publications, ℓ2 = Subjects, ℓ3 = Qualification}  be a set of parameters for the selection of 

scholarship positions. Let the corresponding sub-attribute are given as Publications = ℓ1  = 

{𝑎11 = 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 10, 𝑎12 =  𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 10} , Subjects = ℓ2  = {𝑎21 = 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑠, 𝑎22 =

 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟 𝑆𝑐𝑖𝑒𝑛𝑐𝑒} , and IF = ℓ3  = {𝑎31 = 45, 𝑎32 =  47}. Let 𝔏′  = ℓ1  × ℓ2  × ℓ3  be a set of sub-

attributes. Development of decision matrix according to the requirement of the scientific discipline 

department in terms of NHSNs. 

Table 1. Decision Matrix of Concerning Department 

℘ 𝒂̌𝟏 𝒂̌𝟐 𝒂̌𝟑 𝒂̌𝟒 𝒂̌𝟓 𝒂̌𝟔 𝒂̌𝟕 𝒂̌𝟖 

𝜹𝟏 (. 2, .5, .9) (. 5, .7, .6) (. 5, .6, .9) (. 5, .8, .7) (. 4, .7, .6) (. 8, .6, .3) (. 5, .4, .7) (. 6, .4, .8) 

𝜹𝟐 (. 5, .9, .7) (. 6, .4, .7) (. 5, .8 .2) (. 7, .4 .2) (. 9, .5, .7) (. 4, .7, .9) (. 9, .2, .5) (. 2, .8, .5) 

𝜹𝟑 (. 7, .3, .5) (. 7, .4, .2) (. 8, .2, .6) (. 7, .3, .6) (. 8, .4 .9) (. 7, .5, .8) (. 9, .6, .8) (. 6, .3, .8) 

𝜹𝟒 (. 5, .4, .7) (. 4, .7, .3) (. 6, .3, .8) (. 5, .4, .6) (. 7, .3, .5) (. 8, .3, .2) (. 5, .4, .7) (. 6, .2, .7) 

Table 2. Decision Matrix for Alternative ℵ(1) 

ℵ(𝟏) 𝒂̌𝟏 𝒂̌𝟐 𝒂̌𝟑 𝒂̌𝟒 𝒂̌𝟓 𝒂̌𝟔 𝒂̌𝟕 𝒂̌𝟖 

𝜹𝟏 (. 3, .5, .8) (. 2, .3, .6) (. 5, .1, .3) (. 8, .6, .7) (. 5, .9, .6) (. 8, .2, .6) (. 5, .4, .1) (. 9, .3, .5) 

𝜹𝟐 (. 5, .2, .7) (. 2, .4, .6) (. 3, .8 .4) (. 7, .5 .2) (. 9, .2, .6) (. 5, .2, .4) (. 9, .2, .5) (. 8, .4, .5) 

𝜹𝟑 (. 6, .2, .4) (. 4, .7, .5) (. 5, .1, .6) (. 7, .3, .4) (. 2, .6 .9) (. 9, .3, .5) (. 2, .3, .8) (. 6, .3, .8) 

𝜹𝟒 (. 2, .4, .7) (. 7, .2, .3) (. 6, .3, .8) (. 2, .4, .6) (. 7, .3, .5) (. 9, .3, .6) (. 3, .4, .5) (. 6, .2, .7) 

Table 3. Decision Matrix for Alternative  ℵ(2) 

ℵ(𝟐) 𝒂̌𝟏 𝒂̌𝟐 𝒂̌𝟑 𝒂̌𝟒 𝒂̌𝟓 𝒂̌𝟔 𝒂̌𝟕 𝒂̌𝟖 

𝜹𝟏 (.8,.5,.6) (.5,.4,.2) (.4,.3,.6) (.4,.8,.6) (.7,.6,.5) (.4,.1,.3) (.7,.8,.5) (.8,.4,.7) 

𝜹𝟐 (.6,.5,.2) (.5,.6,.5) (.9,.5,.8) (.6,.4,.5) (.7,.5,.8) (.7,.5,.7) (.3,.5,.9) (.6,.4,.9) 

𝜹𝟑 (.2,.5,.2) (.9,.4,.6) (.2,.5,.4) (.7,.3,.2) (.6,.4,.5) (.3,.5,.7) (.4,.6,.2) (.6,.7,.9) 

𝜹𝟒 (.5,.2,.4) (.7,.5,.9) (.6,.3,.4) (.9,.5,.1) (.3,.4,.6) (.6,.5,.2) (.9,.5,.6) (.3,.4,.3) 

Table 4. Decision Matrix for Alternative ℵ(3) 

ℵ(𝟑) 𝒂̌𝟏 𝒂̌𝟐 𝒂̌𝟑 𝒂̌𝟒 𝒂̌𝟓 𝒂̌𝟔 𝒂̌𝟕 𝒂̌𝟖 

𝜹𝟏 (.3,.5,.2) (.8,.7,.3) (.7,.2,.9) (.9,.5,.1) (.3,.4,.6) (.1,.5,.2) (.9,.5,.1) (.7,.4,.3) 

𝜹𝟐 (.6,.7,.2) (.7,.8,.3) (.2,.4,.6) (.6,.1,.2) (.9,.5,.6) (.7,.2,.3) (.4,.7,.6) (.7,.2,.4) 

𝜹𝟑 (.3,.9,.7) (.5,.9,.1) (.7,.3,.2) (.2,.1,.2) (.7,.9,.8) (.7,.2,.1) (.7,.4,.5) (.1,.7,.9) 
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𝜹𝟒 (.7,.8,.6) (.7,.2,.5) (.7,.3,.2) (.3,.2,.7) (.4,.6,.8) (.5,.6,.2) (.7,.2,.6) (.8,.6,.9) 

Table 5. Decision Matrix for Alternative ℵ(4) 

ℵ(𝟒) 𝒂̌𝟏 𝒂̌𝟐 𝒂̌𝟑 𝒂̌𝟒 𝒂̌𝟓 𝒂̌𝟔 𝒂̌𝟕 𝒂̌𝟖 

𝜹𝟏 (.7,.4,.1) (.7,.3,.1) (.7,.4,.6) (.4,.9,.6) (.7,.2,.5) (.7,.3,.2) (.7,.4,.6) (.9,.4,.3) 

𝜹𝟐 (.1,.4,.5) (.6,.2,.3) (.7,.4,.3) (.6,.2,.5) (.6,.2,.1) (.5,.4,.7) (.3,.5,.1) (.6,.2,.7) 

𝜹𝟑 (.5,.4,.3) (.6,.4,.7) (.6,.2,.1) (.6,.3,.5) (.4,.7,.9) (.2,.7,.4) (.5,.3,.9) (.3,.6,.2) 

𝜹𝟒 (.4,.2,.6) (.7,.4,.3) (.5,.4,.9) (.4,.2,.3) (.4,.1,.3) (.4,.5,.2) (.1,.6,.5) (.1,.5,.2) 

 

By using Tables 1-5, compute the correlation coefficient between 𝛿𝑁𝐻𝑆𝑆(℘, ℵ
(1)) , 𝛿𝑁𝐻𝑆𝑆(℘, ℵ

(2)) , 

𝛿𝑁𝐻𝑆𝑆(℘, ℵ
(3)), 𝛿𝑁𝐻𝑆𝑆(℘, ℵ

(4)) by using equation 5 given as follows: 

𝛿𝑁𝐻𝑆𝑆(℘, ℵ
(1)) = .99658, 𝛿𝑁𝐻𝑆𝑆(℘, ℵ

(2)) = .99732, 𝛿𝑁𝐻𝑆𝑆(℘, ℵ
(3)) = .99894, and 𝛿𝑁𝐻𝑆𝑆(℘, ℵ

(4)) = .99669. 

This shows that 𝛿𝐼𝑉𝑁𝐻𝑆𝑆(℘, ℵ
(3)) >  𝛿𝐼𝑉𝑁𝐻𝑆𝑆(℘, ℵ

(2)) > 𝛿𝐼𝑉𝑁𝐻𝑆𝑆(℘, ℵ
(4))  > 𝛿𝐼𝑉𝑁𝐻𝑆𝑆(℘, ℵ

(1)). It can be seen 

from this ranking alternative  ℵ(3) is the most suitable alternative. Therefore  ℵ(3) is the best alternative, the 

ranking of other alternatives given as ℵ(3) > ℵ(2) > ℵ(4) > ℵ(1). Graphical results of alternatives ratings can 

be seen in figure 2. 

 

Figure 2: Alternative’s rating based on correlation coefficient under NHSS 

5. Conclusion 

 The neutrosophic hypersoft set is a novel concept that is an extension neutrosophic soft set. In 

this manuscript, we studied some basic concepts which were necessary to build the structure of the 

paper. We introduced the correlation and weighted correlation coefficient with some necessary 

properties under the NHSS environment. A decision-making approach has been developed based on 

the established correlation coefficient and presented an algorithm under NHSS. Finally, a numerical 

illustration has been described to solve the decision-making problem by using the proposed 

technique.  In the future, anyone can extend the NHSS to interval valued NHSS, aggregation 

operators, TOPSIS technique based on developed CC. 
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