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Abstract 

Uncertainty, vagueness, and ambiguity surround us in many real-life 

problems and, therefore, always remain under consideration for 

researchers to quantify them. This study proposed neutrosophic 

discrete probability distribution as a generalization of classical or 

existing probability distributions, named neutrosophic geometric 

distribution. Case studies presented in the paper will help understand 

the concept and application of the proposed distribution. Several 

properties are derived, like the proposed distribution’s moment, 

characteristic, and probability-generating functions. Furthermore, the 

newly proposed distribution derives properties from the reliability 

analysis, such as survival function, hazard rate function, reversed 

hazard rate function, cumulative hazard rate function, mills ratio, and 

odds ratio. In addition, order statistics for NGD, including wth, the 

largest, and the smallest order statistics, are also derived from joint, 

median, minimum, and maximum order statistics. This examination 

opens the path for managing issues that follow traditional conveyances 

and simultaneously contain information that is not determined 

precisely. 

1. Introduction 

Smarandache first initiated neutrosophy in [1]. It is a new branch of the 

philosophy presented as a generalization of fuzzy logic and a generalization 

of intuitionistic fuzzy logic [2, 3]. The modern world is overfilled with 
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uncertainty, ambiguity, fuzzy (problems, circumstances, and ideas) [4]. The 

classical probability ignores extreme, aberrant, unclear values, so a new 

suitable instrument had to be used [5]. The basic concept of neutrosophic 

sets was introduced by [6] in a well-defined book in 2014 purely in a 

statistics scenario, which presents a new base for dealing with several issues 

containing indeterminate data. The primary objective of neutrosophic logic 

is to characterize a logical statement in a 3-D neutrosophic space. Each 

dimension of the nutrosophic space represents, respectively, Truth (T), False 

(U), and Indeterminacy (I) of the statements under consideration. The terms 

T, I, and U are the standard, non-standard real subsets  ( )+− 1,0  without any 

specific connection. Many researchers extended the classical distributions 

neutrosophically, including neutrosophic binomial distribution and 

neutrosophic normal distribution, neutrosophic multinomial distribution, 

neutrosophic Poisson distribution, neutrosophic exponential distribution          

and neutrosophic uniform distribution, neutrosophic gamma distribution, 

neutrosophic Weibull distribution and its several families, etc [7-10]. The 

readers can see further information on neutrosophic statistics vs classical 

statistics in [5, 8, 11-15]. This study extended classical geometric 

distribution, which is neutrosophically named neutrosophic geometric 

distribution, using neutrosophic logic. 

2. Neutrosophic Geometric Distribution (NGD) 

Geometric distribution from the distribution theory is a classical discrete 

probability distribution [16]. The distribution is related to the binomial 

distribution in terms of the nature of the experimental trial, i.e., the trials are 

independent and have two possible outcomes (success or failure). The 

random variable used in the geometric distribution is the number of trials 

needed to attain a first success. The geometric distribution requires the exact 

number of failure attempts before obtaining a first success, but the precise 

number of failures is hard to find in some situations. In such situations, the 

experimenter is not sure about the classification of the outcome, i.e., either 

classify the outcome as a success or failure. This indecisive situation is 
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called the indeterminate state of the experiment. It requires some specialized 

form of geometric distribution because the methodology of the classical 

geometric distribution does not support handling such situations. This 

section proposed a modified form of the classical geometric distribution 

called neutrosophic geometric distribution. 

The neutrosophic geometric distribution of discrete r.v. X is well-defined 

as the extension of the classical geometric distribution of X with some 

indeterminacy or vagueness in the experiment. A neutrosophic geometric 

experiment may result in some failures as well as indeterminate outcomes till 

the occurrence of the first success; for example, tossing a coin on an unstable 

surface that may have cracks, a coin may fall on its edge inside the        

crack, and one may get neither head nor tale but some indeterminacy.        

The probability of success is labeled as ( ),Spr  a failure ( )Upr  and 

indeterminate outcome as ( ).Ipr  

Neutrosophic geometric r.v. X represents the number of trials needed for 

first success when experimenting with a variable number of times - the 

neutrosophic probability distribution of r.v. X is called a neutrosophic 

geometric probability distribution. 

For { },...,,3,2,1 ∞∈x  rNp  (occurrences of first success after x trials) 

( ).,, xxx IUT=  

For cases where threshold ∗> th  will belong to indeterminate part and 

when threshold ,∗< th  the cases will belong to a determinate part. The 

probability mass function ( )xT  and the cumulative distribution function 

( )( )xF  of neutrosophic geometric distribution are given in equations (2.1) 

and (2.4): 

 ( ) ( )( ) ( )( )
∗

=

−−
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=
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h
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SpT

0

1
.

1
 (2.1) 

The same will be true when trials result in failures as there is only one 

success, not a fixed number of successes, like in binomial distribution: 
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The CDF corresponding to equation (2.1) is given by 
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The CDF corresponding to equation (2.3) is given by 

 ( ) ( ) ( )( ) ( )( ) 
∞

=′

∞

=′

−′−+′









′
−

⋅








+′
′+

−=
0 0

11
.

1

1
1

m m

mx
r

m
rr Up

m

x
Ip

m

mx
SpxF  (2.5) 

2.1. Physical conditions 

  (i) Each trial results in three mutually exclusive and exhaustive 

outcomes: success, failure, and indeterminacy. 

 (ii) All the trials must be independent. 

(iii) The probability of success remains fixed or constant for every trial. 

(iv) The experiment performs a variable number of times until the first 

success occurs. 

2.2. Case studies 

Case study 1. A physician is seeking an anti-depressant for five patients 

newly diagnosed. Assume that, of all available anti-depressant drugs,         

60% were found effective, 20% were found ineffective, and 30% have no 
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evidence about their effectiveness. What is the probability that the first drug 

is effective for the fifth patient? 

Using the information in the problem mentioned above, we compute the 

probability for all three parts of PMF. 

→X  No of patients until we get the one for which ant-depressant drug 

found effective. 

So 5,4,3,2,1=x  and we have to find ( ).5=xNGpr  

rp  (effective drug) ( ) ,6.0== Spr  

rp  (ineffective drug) ( ) ,2.0== Upr  

rp  (neither effective nor ineffective) ( ) .3.0== Ipr  

Let indeterminacy threshold be 2. Then 
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( ) ( )3101.81296.06.0 −×+=  

,08262.0=  

( ) ( ) ( )( ) 555 ITUpIpSpU
x

rrr −−++=  

( ) 08262.001968.02.03.06.0 5 −−++=  

.50821.1=  

If normalized, the computed vector becomes 

( ) ( ).50821.1,08262.0,01968.0,, 555 =UIT  

By dividing each component of the vector by its total sum, we have 

.61051.150821.108262.001968.0 =++  

Hence we get 

( ) ( ).93648.0,051301.0,012219.0,, 555 =UIT  

Case study 2. Suppose an investigator is searching for a student who 

lives five miles away from the investigator. The investigator knows that  

52% of the 25000 live within five miles of him, 33% do not, and there is                  

no information about 10% of students where they live. The investigator 

randomly calls college students until one says the student lives within 5 

miles of him. What is the probability that six people need a contact? 
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Using the information in the abovementioned problem, we compute the 

probability for all three parts of PMF. 

→X  Number of students the investigator must contact till one says yes. 

So, ...,3,2,1=x  (total number of students), we need to find the 

( ).6=xNGpr  

rp  (do live within five miles) ( ) ,52.0== Spr  

rp  (do not live within five miles) ( ) ,33.0== Upr  

rp  (no information about where they live) ( ) .1.0== Ipr  

Let indeterminacy threshold be 2. Then 
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If normalized, the computed vector becomes 

( ) ( ).105498.9,71856.0,006987.0,, 3
666

−×=UIT  

By dividing each component of the vector by its total sum, we have 

.735097.071856.0105498.9006987.0 3 =+×+ −  

Hence we get 

( ) ( ).97750.0,012991.0,1050487.9,, 3
666

−×=UIT  

Case study 3. Suppose that different computer components have a 

random selection, from which 30% were defective, 60% were non-defective, 

and 10% were unclear whether defective or not. How likely is the seventh 

component tested to cause the first defect? 
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Using the information in the abovementioned problem, we compute the 

probability for all three parts of PMF. 

X takes on values ...,,3,2,1  and we have to find ( ).7=xNGpr  

rp  (defective components) ( ) ,3.0== Spr  

rp  (non-defective components) ( ) ,6.0== Upr  

rp  (neither defective nor non-defective) ( ) .1.0== Ipr  

Let indeterminacy threshold be 3. Then 
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3. Main Properties of NGD 

3.1. Moment generating function 

Moment generating function (m.g.f) for the true part of PMF ~X  

( )( )SpxNGD r;  is given by 
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The indeterminate part of PMF is given as 
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where 
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3.2. Characteristic function 

The characteristic function of ( )( )SpxNGDX r;~  the true part of PMF 

is given by 
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The indeterminate part of PMF is given as 
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3.3. Probability generating function 

The probability generating function for the true part of PMF ~X  

( )( )SpxNGD r;  is given by 
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The indeterminate part of PMF is given as 
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4. Reliability Analysis 

This section finds various reliability properties like survival function, 

hazard rate function, reversed hazard rate function, and cumulative hazard 

rate function. In addition, the Mills ratio and the odd ratio for the new 

proposed distribution are derived. 
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4.1. Survival function 

The survival function of r.v. ( )( )SpxNGDX r;~  for the true part of 

PMF is given as: 
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The indeterminate part of PMF is given as: 
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4.2. Hazard rate or failure rate function 

The hazard rate function of r.v. ( )( )SpxNGDX r;~  for the true part of 

PMF is given as: 
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The indeterminate part of PMF is given as: 
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4.3. Reversed hazard rate function 

The reversed hazard rate function (RHRF) of r.v. ( )( )SpxNGDX r;~  

for the true part of PMF is given as: 
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For the indeterminate part of PMF, RHRF is given as: 
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4.4. Cumulative hazard rate function 

The cumulative hazard rate function (CHRF) of r.v. ~X  

( )( )SpxNGD r;  for true part of PMF is given as: 
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For the indeterminate part of PMF, CHRF is given as: 
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4.5. Mills ratio 

The Mills ratio of r.v. ( )( )SpxNGDX r;~  for the true part of PMF is 

given as: 
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For the indeterminate part of PMF, the Mills ratio is given as: 
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4.6. Odds ratio 

An odds ratio of r.v. ( )( )SpxNGDX r;~  for the true part of PMF is 

given as: 
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For an indeterminate part of PMF, the odds ratio is given as: 
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5. Order Statistics 

In this section, we derived the order statistics for the new proposed 

distribution NGD, such as wth order statistics, joint, largest, and smallest 
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order statistics, maximum and minimum, median order statistics, and 

smallest and largest order statistics. 

5.1. wth order statistics 

Let wXXX ...,,, 21  be the random sample from NGD, and let 

( ) ( ) ( )wXXX ...,,, 21  be the corresponding order statistics. The proposed wth 

order statistic for the true part of the NGD is: 
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wth order statistics for the indeterminate part of NGD can be given as: 
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5.2. Joint order statistics 

Joint order statistics of by :1  and buy :  for true part of NGD is derived as 

follows: 
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Joint order statistic for the indeterminate part of NGD is given as 

follows: 
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5.3. Largest order statistics 

For ,η′=u  the largest order statistic for the true part of NGD is given: 
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Largest order statistic for an indeterminate part of NGD is given as: 
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5.4. Smallest order statistics 

For ,1=u  smallest order statistics for the true part of NGD is given as: 
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Smallest order statistics for the indeterminate part of NGD is given as: 
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5.5. Median order statistics 

For ,1+= mu  median order statistics for the true part of NGD is given 

as: 
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The median order statistic for the indeterminate part of NGD is given as: 
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5.6. Minimum and maximum joint order statistics 

Minimum and maximum joint order statistics for the true part of NGD 

are given as follows: 
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Minimum and maximum joint order statistics for the indeterminate part 

of NGD are given as: 
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6. Conclusion 

This paper proposed one parameter discrete probability distribution 

named neutrosophic geometric distribution (NGD). One of the reasons for 

generalizing a classical geometric distribution to a neutrosophic geometric 

distribution is the property of dealing with the uncertain situation that 

classical geometric distribution fails to deal with, e.g., consider a coin toss 

problem where tossing a coin on an irregular surface in which each trial may 

result in success or failure. There may be an outcome we cannot examine 

whether its success or failure (almost pointing towards both); such outcome 

will be considered indeterminacy, which classical statistics exclude\ignored 

during the experiment. The proposed modified form of the geometric 

distribution is explained with the help of some case studies. Moreover, 

several distributional properties and characteristics were explored for the 

newly developed neutrosophic geometric distribution. 
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