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ABSTRACT The dynamic landscape of cloud computing design presents significant challenges regarding
power consumption and quality of service (QoS). Virtual machine (VM) consolidation is essential for reduc-
ing power usage and enhancingQoS by relocatingVMs between hosts. OpenStackNeat, a leading framework
for VM consolidation, employs the Modified Best-Fit Decreasing (MBFD) VM placement technique, which
faces issues related to energy consumption and QoS. To address these issues, we propose an Energy Efficient
VM Consolidation (EEVMC) approach. Our method introduces a novel host selection criterion based on
the incurred loss during VM placement to identify the most efficient host. For validation, we conducted
simulations using real-time workload traces from Planet-Lab andMaterna over ten days, leveraging the latest
CloudSim toolkit to compare our approach with state-of-the-art techniques. For Planet-Lab’s workload, our
EEVMC approach shows a reduction in energy consumption by 80.35%, 59.76%, 21.59%, and 7.40%, and
fewer system-level agreement (SLA) violations by 94.51%, 94.85%, 47.17%, and 17.78% when compared
to Modified Best-Fit Decreasing (MBFD), Power-Aware Best Fit Decreasing (PABFD), Medium Fit Power
Efficient Decreasing (MFPED), and Power-Efficient Best-Fit Decreasing (PEBFD), respectively. Similarly,
forMaterna, EEVMCachieves a reduction in energy consumption by 16.10%, 61.0%, 4.94%, and 4.82%, and
fewer SLA violations by 76.99%, 88.88%, 12.50%, and 48.65% against the same benchmarks. Additionally,
Loss-Aware Performance Efficient Decreasing (LAPED) significantly reduces the total number of VM
migrations and SLA time per active host, indicating a substantial improvement in cloud computing efficiency.

INDEX TERMS Virtual machine consolidation, quality of service, energy efficient, VM migration, place-
ment algorithm, OpenStack cloud.

I. INTRODUCTION
Cloud computing has emerged as a revolutionary computa-
tional technique, offering access to on-demand computational
resources [1]. The concept of virtualization provides access
to physical resources in a virtual manner. Virtual machines
(VMs) run on these physical resources, and each VM has

The associate editor coordinating the review of this manuscript and

approving it for publication was Mehdi Sookhak .

its own operating system facilitating the scheduling of var-
ious user requests [2]. The significant challenge in computa-
tional resource handling is the increasing power consumption
and poor quality of service (QoS). Advancements in the
design and functionality of cloud applications have signifi-
cantly increased the power consumption of data centers [3].
The power consumption in data centers is projected to rise
from 286 TWh to 752 TWh by 2030 which is 2.13% of
global power availability [4]. On the other hand, maintaining
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QoS while providing access to physical resources is also
a significant challenge. The data centers need to fulfill the
demand from cloud users. This demand is referred to as a
service level agreement (SLA) [5]. One way to maintain the
SLA is to provide enough resources to fulfill each demand.
In this way, more physical resources will be used, and power
consumption will increase. If more requests are being accom-
modated for one or more physical resources, then there are
more chances that the physical resource(s)/host(s) will be
overutilized and SLA will be violated [5]. To resolve this
problem, the concept of virtual machine consolidation plays
an important role which migrating the virtual machines from
one physical resource to another if the host is overutilized
or underutilized without interruption in services [6]. If the
utilization of a host falls below a specific threshold, then
the host is considered to be underutilized. VMs running on
the underutilized host have to migrate to another host by
efficiently using the physical resources [7]. On the contrary,
VMs are migrated to another host to reduce the workload
if the host is overutilized. If these VM(s) migrations are
taken online, then this migration is called the Online or live
migration approach [8]. In this regard, the efficient algorithm
minimizes energy consumption, reduces the SLA violations
and the total number of VMmigrations [9]. It also reduced the
time in which an active host faces 100% of its utilization [10].

The VM consolidation can be accomplished in multiple
ways depending on the needs, objectives, and targets [11].
It also depends on which type of computational technique is
used to solve the problem [12]. The utilization of physical
resources in the normal data centers is an average of 12% to
18% [13], which is low utilization compared to cloud data
centers [14]. This low utilization causes more power con-
sumption [15]. While in the cloud data centers, the average
utilization is found near about 40% to 70%. So, VM con-
solidation plays a vital role in reducing energy consumption
in cloud data centers [16]. Multiple factors affect the VMC
technique such as the Band Width of the Network [17],
SLA [18], switching of the power cycles [19], performance
loss overheads due to migrations [20], load balancing, vir-
tual machine affinity [21], reliability, and resource utiliza-
tion [22]. Generally, to improve the energy efficiency, these
factors are taken into consideration [23].
We developed an open-source VM consolidation approach

for Open-Stack clouds. This framework mainly addresses
the four significant issues. Firstly, the framework identifies
overutilized and underutilized hosts by comparing current
utilization with a fixed threshold value. It performs robust
statistical analyses, including Median Absolute Deviation
(MAD), Interquartile Range (IQR), Local Regression (LR),
and Local Regression Robust (LRR), based on the histor-
ical utilization data of the hosts [24]. Secondly, if a host
is detected as overutilized or underutilized, the framework
selects VMs for migration using strategies such as Mini-
mum Migration Time (MMT), Maximum Correlation (MC),
Minimum Utilization (MU), and Random Selection (RS).

The combination of these strategies helps achieve a balance
between energy efficiency, performance, and SLA compli-
ance [25]. Thirdly, the VM placement process follows the
Power-Aware Best-Fit Decreasing (PABFD) technique by
default. This method is enhanced with additional efficient
heuristics like Power-Efficient First-Fit Decreasing (PEFFD),
Power-Efficient Best-Fit Decreasing (PEBFD), andMedium-
Fit Power-Efficient Decreasing (MFPED), which outperform
the default heuristics in the CloudSim toolkit [26]. Finally,
the framework integrates the unique logic and benefits of each
VM selection strategy and heuristic to address various aspects
of VM consolidation challenges in cloud data centers. This
comprehensive approach ensures effective resource manage-
ment and optimized performance of cloud environments [27].
Moreover, we employed efficient heuristics (i.e., PEFFD,
PEBFD, MFPED), which outperforms the default heuristics
for this framework [28].

The novelty of this paper is the introduction of an Energy
Efficient Virtual Machine Consolidation (EEVMC) approach
that employs a unique host selection criterion based on
the loss incurred during VM placement. This new crite-
rion focuses on minimizing both energy consumption and
SLA violations, setting it apart from existing methods. The
EEVMC approach was validated using real-time workload
traces from Planet-Lab and Materna, with simulations con-
ducted via the latest CloudSim toolkit. Results show sig-
nificant improvements over state-of-the-art techniques like
MBFD, PABFD, MFPED, and PEBFD, in both energy con-
sumption and SLA compliance. By decomposing the system
into multiple losses and selecting hosts based on their fit-
ness value, the EEVMC approach optimizes VM placement
and reduces energy consumption and SLA violations. This
method is particularly useful for cloud computing applica-
tions that require efficient resource management and energy
conservation, enhancing the performance and sustainability
of large-scale cloud data centers.

The main contributions of this work are listed below:
• To introduce an energy-efficient VM consolidation
(VMC) technique that reduces power consumption and
SLA violations within the OpenStack Neat framework
by efficiently placing VMs on available hosts.

• The proposed technique efficiently performed VM
placement in the existing framework with flexibility and
dynamism to adapt to system requirements, ensuring
implementation without incurring additional costs.

• The proposed approach minimized the VM migrations,
reduced the mean-time and standard deviation leading
up to a host shutdown, and decreased the duration during
which a single host operates at 100% of its utilization
capacity.

The rest of the paper is organized as follows; section II
discusses the related studies. The proposed approach is
elaborated in section III and results are presented in
section IV. Finally, section V concludes the paper with future
directions.
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II. LITERATURE WORK
VM consolidation is an NP-hard problem, and different
solutions have been proposed such as dynamic program-
ming, Constraint satisfaction, and linear programming [28].
M. Rezaei-Mayahi et al. proposed a solution to the VM place-
ment as Integer linear programming (ILP), which locates
the most suitable host based on its power consumption [29].
They have considered the number of active hosts, shelves,
and the relationship between the active hosts to minimize the
rotational airflow in cloud corridors. Medara, et al. presented
an approach related to the efficiency constraints of hosts and
VMs [5]. If the constraint is satisfied, then it may enhance the
host’s efficiency.

Integrating deep learning into the CloudSim toolkit can
significantly enhance the optimization of simulation results
for energy-efficient VM consolidation in cloud data cen-
ters. Deep learning models, trained on historical data, can
accurately predict resource usage patterns and optimize VM
placement decisions, thereby reducing energy consumption
and SLA violations. By considering various factors such as
CPU and memory usage, network bandwidth, and power
consumption, these models can dynamically adjust resource
allocation policies in real-time. This integration enables
CloudSim to simulate more realistic scenarios, ultimately
improving the overall energy efficiency and QoS of cloud
data centers.

Authors [30], [31], [32], [33], [34], [35], [36], [37], [38],
[39], [40], [41], [42] on the strategy for splitting resource
assignment, Virtual Machine Consolidation (VMC) tech-
niques are divided into two categories: static and dynamic.
The taxonomy considers several parameters. Table 1 provides
the metrics that are believed to be successful in achieving the
goals, such as lowering power consumption. The data set and
assessment methodologies are two more important aspects
to classify. Synthetic and actual data sets are included in
the data sets. Simulation, implementation, hybrid (simulation
plus implementation), and formal approaches are among the
evaluation methods.

The EEVMC approach builds upon the foundational con-
cepts of Sandpiper and incorporates advanced techniques
from recent literature to enhance energy efficiency and
performance in cloud data centers [33], [34]. By address-
ing power-performance trade-offs, interference-aware migra-
tion, reliability, heterogeneity, and performance overhead,
EEVMC aims to provide a comprehensive solution for
efficient VM consolidation. Integrating these insights can
lead to improved resource management and sustainability in
large-scale cloud environments [32], [42].
This technique determines themagnitude of the pessimistic

effect of VMs on each other following the specific VMs
allocated to the same host. Affinitive VMs and those VMs
that made each other performance as least coherent may
be placed on the host. Medara, et al. develop the inter and
intra-cloud data center traffic by making a suitable choice
of VM placement [5]. This method reduces the energy

consumption but increasing the distances causes inter VMs
to significantly reduce the available bandwidth, which further
causes the delay in the application execution and reduces
the QoS. In another work, the authors proposed the VM
placement problem as Particle swarm optimization [7]. This
algorithm was efficient in terms of energy efficiency and
reducing the SLA violations. They have provided a trade-off
between reducing power consumption and SLA violations.
Specifically related to the underlying framework, the authors
proposed the Power-Aware best-fit decreasing (PABFD)
heuristic [3]. This VM placement problem was a simple best-
fit bin-packing heuristic in which the bin represents the phys-
ical nodes. To apply this algorithm, they first sorted the VMs
according to decreasing utilization. Afterward, they allocated
the VMs to the hosts so that the increase in power would be
mini-mum. PABFD chooses a host with a minimum increase
in power, but such selection may increase the SLA violations.
This technique does not consider the idle power of the hosts,
which decreases the system’s energy efficiency overall. It can
be possible that a host gives a minuscule increase in power
after VM placement, but such allocation, in turn, increases
the total VM migrations and SLA violations. Another effi-
cient heuristic, modified best-fit decreasing (MBFD), was
proposed by the [45]. MBFD reduces energy consump-
tion and SLA violations. The motivation behind this tech-
nique is to utilize the resources efficiently. Some VMs have
over-provisioned the applications running on them. On the
contrary, some VMs are running with very low utilization.
This algorithm handles the available CPU MIPS resources
such that the allocated host will have the least available CPU
MIPS at the current time. If the situation is a tie between two
hosts, the host with minimum RAM available will be allo-
cated. MBFD is considered the baseline algorithm for many
energy-efficient approaches. A. Aryania, et al. proposed VM
placement algorithms Modified Worst fit decreasing VM
placement (MWFDVP) in which worst-fit bin-packing
heuristic is followed. In this, algorithm VMs are sorted
according to decreasing utilization [46]. The host with a
maximum increase in power is selected as the allocated host.
They have presented another version of their approach called
Second Worst Fit Decreasing (SWFDVP). This heuristic was
the same as the MWFDVP. The only difference is that it
selects the second host, which gives a maximum increase
in power. They have further provided another approach of
the Modified K-means (MK) algorithm, which modifies the
sorting of VMs in K-means clustering and makes the clusters
of VMs that further apply in Modified Worst-fit Placement
clustering (MWFCP-C). In this algorithm, the VMs from
dense clusters are allocated first to the hosts. This technique
improves power efficiency compared to baseline algorithms,
but this solution was computationally expensive as sorting
takes O(n log n), and K-means clustering takes O(n2) while
n is the number of migrating VMs. So, this solution can be
considered adequate when the number of migrating VMs is
not very large.
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TABLE 1. Static and dynamic consolidation of virtual machine.

In recent years more efficient heuristics methods have
been proposed by [47]. These heuristics were Power-efficient
first fit, decreasing (PEFFD) power-efficient best fit decreas-
ing (PEBFD), and Medium-fit power-efficient decreasing
(MFPED). In these algorithms, authors have declared the
criteria of a host being an efficient host by dividing the
total MIPS (Number of instructions a host can execute in
one second) by the maximum power of the host. Based on
these criteria, they have applied the First-fit heuristic rather
than the best-fit heuristic for the PEFFD and PEBFD. For
MFPED, they have taken the absolute value of the utilization
of CPU from a fixed desired value considered as fitness
value. Afterward, they applied the BFD algorithm for the host
offering the best fitness value as the least absolute distance.
The authors have shown the improvements of their techniques
by comparing them with the baseline algorithms MBFD and
PABFD.

According to the efficient heuristic criteria discussed ear-
lier, an efficient heuristic should place the VMs such that the
total energy consumption will be minimal, and there will be
fewer SLA violations. There are many existing standard bin-
packing heuristics, i.e., First Fit (FF), Best Fit (BF),Worst-Fit
(WF), Next-Fit (NF), and Any-Fit (AF), but these techniques
are suitable for the homogeneous hosts. In cloud data centers,
we have heterogeneous hosts, so there is a need to modify
these standard heuristics to define the fitness criteria for VM
placement. An algorithm is said to be more efficient than
baseline algorithms if it minimizes the energy consumption
on the same SLA orminimizes the SLA violations by keeping
the same energy consumption or minimizes the SLA and
energy consumption. Our objective is to present an efficient

algorithm and test the algorithm on real-time workload traces
and host configurations to show the efficiency over baseline
algorithms. In our work, we have presented a new approach
to declare the fitness of available hosts. Our approach decom-
poses the system into multiple losses. The criteria for select-
ing a suitable host for allocation is based on the fitness
value, and the host with the maximum fitness value will
be selected for allocation. We have compared our technique
with four baseline algorithms MBFD, PABFD, PEBFD, and
MFPED,and the experiment results show our approach out-
performs the baseline approaches by maximizing the energy
efficiency and reducing the SLA violations.

III. PROPOSED APPROACH
Before discussing the proposed work, it is necessary to dis-
cuss the worst-case asymptotic performance ratio (WCAPR).
This ratio determines the proposed solution’s distance com-
pared to the optimal solution in the worst-case performance
ratio. Let ALG(m) be the number of hosts whenm numbers of
VMs are going to be allocated to the hosts by any Algorithm
and OPT (m) be the number of hosts allocated by an optimal
solution for m number of VMs. Then the following equation
explains the number of hosts taken by algorithm ALG to the
optimal algorithm [27].

However, the paper could benefit from a more detailed
discussion of how WCAPR is used to guide the design and
implementation of the EEVMC approach. Specifically, the
authors could clarify:

Comparative Analysis: How does the WCAPR of the
EEVMC algorithm compare to existing algorithms like
MBFD, PABFD, MFPED, and PEBFD?

VOLUME 12, 2024 105237
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AlgorithmDesign: How insights fromWCAPR influenced
the design choices made in the EEVMC algorithm, particu-
larly in selecting hosts and VMs for migration.

Performance Guarantees: Explicit references to WCAPR
in the results section to highlight the worst-case performance
guarantees of the EEVMC approach.

The flowchart of the Python-controlled Energy-efficient
Genetic Algorithm (EGA) optimization design begins with
initializing parameters and settings, such as data size,
crossover rate, mutation rate, and selection criteria, followed
by generating a random initial data size of solutions. Each
solution’s effectiveness is then evaluated using a fitness func-
tion that quantifies energy efficiency and Quality of Service
(QoS), with VM ranked accordingly. Selection processes of
VMs like selection prioritize higher best-fit scores for VMC,
leading to crossover operations that combine parts of VMC to
create diverse offspring.Mutation further introduces diversity
by randomly altering VM, maintaining a balance between
exploration. The new VM is then transmitted to the Control
and Simulation Tool (CST) module for simulation in a cloud
data center environment, where performance data on energy
consumption and QoS is collected. This data is used to update
the fitness function, guiding the EGA toward better solutions
over multiple generations. Iterations continue until prede-
fined convergence criteria are met. Finally, the best solution
is selected based on fitness score and undergoes further val-
idation to ensure robustness and effectiveness. This compre-
hensive description ensures the clarity and reproducibility of
the optimization design, ultimately enhancing the efficiency
of virtual machine consolidation in cloud data centers.

RALG (m) =
ALG(m)
OPT (m)

APR (ALG) ≡ inf {r ≥ 1 : ForsomeN > 0,
RALG (m) ≤ r∀LwithOPT (m) ≥ N }

 (1)

In above equation (r ∈ R|r ≥ RALG(m)). WCAPR
for 17/10 for FF and BF heuristics. For FFD and BFD the
WCAPR is 11/9.

A. LOSS-AWARE PERFORMANCE EFFICIENT DECREASING
We have divided the available hosts into two categories. The
first category is related to the active hosts at time t, which at
least have one VM allocated to them, and the other category
is related to the active hosts that are not active at time t. The
time t denotes the time at which the decision of VM allocation
is taken. For each category, we compute the current loss such
that the total maximum loss is one and the minimum is zero.

Suppose we have the host list HostList = {h1, h2, . . . , hn}
while n is the total number of available hosts and VmList=
{vm1, vm2, . . . , vmm} is the VM list having a total number
of m VMs to be allocated. If Pi(t) is the power taken by the
hi at time t and Pmaxi is the maximum power taken by the host
hi define the current power ratio of hi as CPRi(t).{

CPRi (t) =
Pi(t)
Pmαx
i

CMRi (t) =
CPUi(t)
CPUmaxi

}
(2)

This shows max (CPRi(t)) = 1.IfCPUi (t) denotes the
current available frequency of hi at time t and CPUmax is
the maximum frequency of hi define the mips ratio of hi as
CMRi(t).

1) FITNESS OF ACTIVE HOSTS
The fitness metrics for active and inactive hosts are designed
to balance power efficiency and performance, ensuring that
VMs are allocated to the most suitable hosts based on
their current power consumption and CPU utilization. This
detailed mechanism provides a structured way to optimize
VMallocation in cloud data centers, enhancing overall energy
efficiency and service quality. Among all the hosts, we will
first select the hosts that will not be over-utilized after VM
allocation. We call these hosts as available hosts and the
hosts declared in the HostList are all available hosts. The
host overutilization detection is out of the scope of this paper,
and we will use any of the already discussed overutilization
detection policies in section I. A host hi is considered an
active host at time t if the host is available such that at least one
VM has already been assigned to it, and it is currently active.
Whenever a decision of VM allocation is made, this host is
not required to be activated, for which host activation loss
will not incur. As we have already discussed, the maximum
loss for the active hosts is one, and the minimum loss is zero;
therefore, we assign the active loss factor {α|0 ≤ α ≤ 1} as
the weight of importance to each loss. The active host loss
AHLi(t) of hi at time t can be defined as follows:

AHLi (t) = α × CPRi (t)+ (1− α)× CMRi (t) (3)

The Fit active host FAH(t) can be determined as{
hi|min {AHLi (t)}ni=1 ; ∀i ∈ activehost

}
the host giving the

minimum loss at time t. This can be computed as while n is
the total number of available hosts. This method is useful for
selecting the efficient host among active hosts because of the
heterogeneity of the hosts in data centers. Hosts have different
power consumption at different utilization levels. Compared
to PEBFD and PEFFD, we have defined active host fitness
by giving importance to the increase in power and frequency.
Such selection gives a suitable choice of the host at the time of
selection by deciding the importance of power consumption
and available CPU frequency as shown in Table 2.

TABLE 2. Hosts characteristics at time (t).

We compute for h1 CPR1(t) = 0.4628, CMR1(t) =
0.4108 and the same way we can computeCPR2(t)= 0.5469,
CMR2(t) = 0.6785 for h2. We set α = 0.6 for this problem
and compute AHL1(t) = 0.442 and AHL2(t) = 0.599. As h1
is giving the minimum loss which leads to FAH(t)= hithen it
will be suitable choice for Vm allocation at time t .
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2) FITNESS OF INACTIVE HOSTS
A host hi is considered an inactive host if no VM is allocated
to it at time t and it is currently inactive. Whenever a decision
of VM allocation is made to this host, it is first required to
be activated, which will incur host activation loss. If there are
any conditions in which active host selection is unsuitable or
active hosts will be overutilized after VM placement, we have
to select the most suitable host among inactive hosts. In this
section, we will discuss the selection criteria for the inactive
host.

If hi is the current inactive host then we compute the max-
imum CPU frequency of hi and compare it. The maximum
CPU frequency among all the inactive hosts we denote it as

MAXCPU

=
{
CPUmax

i |max
{
CPUmax

i
}n
i=1 ; ∀i ∈ inactivehosts

}
(4)

If the difference between MAXCPU and CPUmax
i is min-

imum then the loss will be minimum. We further compute
the current power ratio by considering if the inactive host
is bringing to an idle state from an inactive state. The host
which will consume minimum power will have the minimum
loss. For this purpose, we will compute the current power
ratio of the host hi. We further assign inactive loss factor
{β|0≤ β ≤ 1} as the weight of importance to each loss in
the inactive host. We compute inactive host loss IHLi(t) of hi
at time t as follows. IHLi(t) of hi at time t as follows:

IHLi (t) = β × CPRi (t)+ (1− β)

×

(
MAXCPU − CPUmax(t)

i

MAXCPU

)
(5)

The Fit inactive host FIH(t) can be determined as the host
giving the minimum loss at time t . This can be computed as
hi|min {IHLi (t)}ni=1 ; ∀i ∈ inactivehost while n is the total
number of available hosts.

B. ALGORITHM
The algorithm 1 describes the LA-PED. It takes HostList,
VmList, and MAXCPU as input and returns VmPlacement
as output. We initialize the α, β and set the values according
to requirements in the initial phases. Then we will assign null
values to FIH, FAH, and the allocated host in the initial phase.
At line 7, we will sort the VmList according to decreasing the
CPU utilization. Then at line 10, we check the feasibility of
the current host for VM allocation. This feasibility check will
contain the availability of resources and the host overutiliza-
tion detection. If the host is not feasible, it will be skipped, and
we check the next host. If the host is feasible, then for each
VM in VmList, we will check the FAH or FIH depending on
the host’s current state. We will select the allocated host and
add it to the VM placement list. The run-time complexity of
LA-PED is O (n log(n)+ (n×m)) while n is the total number
of migrating VMs and m is the total number of available
hosts.

This research should explore the integration steps and
technical requirements for implementing the proposed VM

Algorithm 1 Loss-aware performance efficient
decreasing LA-PED
Input: HosList,VmList,MAXCPU
Output: VmPlacement

1 initialize ·α, β
2 FAH← null
3 FIH← null
4 allocatedHost← null
5 Max_AH_efficiency←MaxValue
6 Max_IH_efficiency←MaxValue
7 Sort VmList according to decreasing CPU utilization
8 foreach Vm in VmList do
9 foreach host in HostList do
10 if host Is Feasible (host,vm)then
11 if host is inactive then
12 Compute IHL(t)
13 if IHL_i ( t)<Max_IH_efficiency then
14 Max_IH_efficiency← IHLi (t)
15 FIH← host

16 ;
17 if host is active then
18 Compute AHLi (t)
19 if AHL_i (t)<Max_AH_efficiency then
20 Max_AH_efficiency← AHLi (t)
21 FAH← host

22 if FAH̸= null then
23 allocatedHost← FAH

24 else
25 allocatedHost← FIH

26 add (allocatedHost, Vm) to VmPlacement

consolidation approach, offering detailed guidelines for a
seamless process. It should evaluate the impact on man-
agement complexity, comparing it with existing methods to
assess administrative overhead and operational practicality.
Additionally, the influence on user experience, including
service performance and satisfaction, should be investigated
through user feedback and case studies. Addressing these
aspects will provide a comprehensive view, ensuring the
approach meets the needs of both administrators and end-
users.

IV. EXPERIMENTATION AND RESULTS
Differences between simulations and real experimental
results in cloud data centers stem from several key factors.
Simulations using CloudSim offer a controlled environment
with idealized hardware variability, leading to consistent
results, while real data centers have diverse hardware with
varying performance, affected bywear, failures, and inconsis-
tencies, potentially reducing observed efficiency gains. Net-
work conditions in simulations may not capture real-world
complexities like congestion and packet loss, impact-
ing VM migration and efficiency in actual environments.
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Additionally, simulations use predefined workloads that lack
the dynamic variability of real user behavior, affecting
consolidation and migration patterns. Power consumption
models in simulators, based on theoretical data, may not accu-
rately reflect real power usage influenced by hardware effi-
ciency, cooling needs, and environmental conditions, leading
to discrepancies. Furthermore, environmental factors such as
temperature and humidity, often simplified in simulations,
are crucial in real data centers for maintaining hardware effi-
ciency and preventing thermal throttling. Recognizing these
differences is essential for translating simulation benefits into
real-world applications. To enhance the quality of service and
energy responsiveness we have to perform the experiments
in an environment that can easily support IaaS. This setup
should consist of many physical servers supporting multicore
architecture, high performance, high bandwidth, and storage
area network (SAN).

This setup should also include in-depth information about
the power utilization of the servers. However, building
such an environment is very hard for practical purposes.
Researchers have developed a simulation tool CloudSim [46]
to simulate large and small infrastructures. Instead of using
the analytical power model, they have used the Realtime
power model, which gives a more generic view of power con-
sumption. These experiments were performed on the latest
version of the CloudSim. CloudSim is a Java-based simulator
for testing and simulation of cloud data centers, including
IaaS. We have considered four state-of-the-art base-line algo-
rithms PEBFD, MFPED, PABFD, andMBFD, and compared
the efficiency of LA-PED to the baseline algorithms on ten
days of real-time work-load traces of PlanetLab and Stati-
cal Data of experimental evaluation of PlantLab work-load
(Mean-Values) of Materna trace-3.

A. PERFORMANCE MATRIX
Along with the power consumption, we explain some essen-
tial performance matrices for measuring SLA violations.
We use the same performance matrices. SLA is the service
level agreement between the consumer and service provider,
and service providers are bound to provide services to con-
sumers to meet the QoS criteria. According to authors in [46],
there are two groups in which SLA matrices can be distin-
guished.
• The percentage of time in which an active host faces
100% utilization. this is referred to as an SLA violation
per active host SLATAH.

• The overall performance degradation due to Vm migra-
tion which is referred to as PDM.

These matrices can be expressed as follows:
SLATAH = 1

m

m∑
i=1

Tmaκi
Ti

PDM = 1
n

n∑
j=1

EPDMj
RCPUj

 (6)

While m is the total number of hosts and Tmaκi is the time
in which a host hi experiences 100% utilization and Ti is

the time in which host hi remains active. On the other hand,
n is the total number of migrating VMs and EPDMj denotes
the estimate of degradation of performance of Vmj due to
migration and RCPUj is the total requested CPU capacity by
Vmj during its lifetime. A general performance metric SLAv
is defined by multiplying the SLATAH and PDM.

SLAv = SLATAH × PDM (7)

B. EXPERIMENTS ON PLANETLAB WORKLOAD
For PlanetLab ten-day workload, there are four types of
hosts with heterogeneous architecture. The total number of
hosts is 800, with 200 hosts of each type. The information
about servers is given in Table 4. The power consumption
model of the servers used in this experiment is obtained
from the SPEC. For this experiment, we set α = 0.6 and
β = 0.5. Moreover, to know the performance of the underly-
ing algorithm,we have fixed the host overutilization detection
policy as Local regression (LR) and VM selection policy as
Minimum Utilization (MU) for these experiments.

TABLE 3. PlanetLab workload characteristics.

The workload characteristics for ten days of PlanetLab
workload are given in Table 3. These characteristics include
the mean and standard deviation of workload for each day,
including No. of VMs for each day and the utilization for
each VM recorded after five minutes. There are four types
of VMs used in this experiment. Requirements of each VMs
including frequency, core, and RAM is shown in Table 4.

TABLE 4. VM types.

In the PlanetLab workload, EEVMC outperformed tra-
ditional methods such as MBFD and PABFD. The results
showed that EEVMC reduced energy consumption by
80.35% compared to MBFD, 59.76% compared to PABFD,
and 21.59% compared to MFPED. Additionally, EEVMC
achieved a reduction in SLA violations by 94.51% compared
to MBFD, 94.85% compared to PABFD, and 47.17% com-
pared to MFPED.
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It can be seen in Fig. 1a that the mean-energy con-
sumption of LA-PED for ten days workload of Planet-
Lab is less than other baseline algorithms. For this experi-
ment, LA-PED performs relatively better on average 80.35%,
59.76%, 21.59%, and 7.40% in energy efficiency com-
pared toMBFD, PABFD,MFPED, and PEBFD, respectively.
For SLATAH LA-PED performs relatively better on aver-
age 70.77%, 61.57%, 20.16%, 25.84% and in SLAv reduc-
tion LA-PED performs relatively better on average 94.83%,
94.85%, 47.20%, 17.78% for MBFD, PABFD, MFPED,
PEBFD respectively (See Fig. 1).

FIGURE 1. (a) Energy Consumption, (b) %SLATAH, (c) SLAv for ten days
workload of Planet Lab.

The performance efficiency of LA-PED is obvious in the
baseline algorithms. It also satisfies the definition of the
efficient algorithm presented earlier. If we observe the results,
we can see LA-PED improves 7.40% in energy efficiency
compared to PEBFD, but it improves 25.84% in reducing
%SLATAH and 17.78% in reducing SLAv. Although the
relative improvement of LA-PED compared to MFPED is
20.16% for SLATAH and 21.59% for energy efficiency,
it improves 47.20% for SLAv, which is a considerable

amount. If we analyze LAPED compared to MBFD and
MFPED, the improvement in energy efficiency, SLATAH,
and SLAv is significantly large, as discussed earlier.

FIGURE 2. Vm migrations of LA-PED as compared to baseline algorithms.

For further evaluation of LA-PED, we have computed the
total number of VM migrations which can be seen in Fig. 2.
We can see that LA-PED significantly reduces the number of
VM migrations as compared to the baseline algorithms.

This improvement is 73.77%, 74.23%,40.02%, and
12.46% for MBFD, PABFD, MFPED, and PEBFD respec-
tively. We have computed the Mean and Standard deviation
of the time before a host shutdown for each day, and the
performance of LA-PED can be seen in Fig. 3 where the
performance of LA-PED is relatively better than the baseline
algorithms as discussed in Table 6.

C. EXPERIMENTS ON MATERNA WORKLOAD
Experiments on a unique workload can give a pessimistic
overview of any algorithm. Therefore, we have performed the
experiments on fast Materna trace-3. The characteristics of
Materna’s workload for ten days are given in Table 7. The
server configuration is given in Table 5 and the VM types are
given in Table 4. We have kept the host overutilization detec-
tion policy as Local regression (LR), and the VM selection
policy as MinimumUtilization (MU) for this experiment also
to exactly determine the improvement due to Vm Placement
only. Further, we have kept the same values of α = 0.6 and
β = 0.5. Statistical data of the experimental evaluation of
Materna workload is given in Table 8.
It can be seen that the mean energy consumption of

LA-PED for the ten-day workload of Materna is less than
other baseline algorithms. For this experiment, LA-PED
performs relatively better on average 16.403%, 61.009%,
4.94%, and 4.827% in energy efficiency compared to
MBFD, PABFD, MFPED, and PEBFD, respectively. For
%SLATAH LA-PED performs relatively better on aver-
age 66.175%, 68.806%, 13.538%, 39.839%, and in SLAv
LA-PED performs relatively better on average 76.995%,
88.881%, 12.500%, 48.65% for MBFD, PABFD, MFPED,
PEBFD respectively.
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TABLE 5. Configuration of servers for planetlab and materna workload.

FIGURE 3. (a) Mean and (b) standard deviations of time before a host
shutdown on daily basis for PlanetLab.

TABLE 6. Statical data of experimental evaluation of plantlab workload
(Mean Values).

For Materna’s workload, the performance efficiency of
LA-PED is evident. We can see that the improvement in
energy efficiency is not too much compared to MFPED
and PEBFD, but the improvement in reducing SLATAH is
13.53%, and 29.83% for MFPED, and PEBFD, respectively.
In contrast, it is 66.17%, and 68.80% for MBFD and PABFD
respectively. It is a significant amount of improvement. If we
compare the results for SLAv, we can see the minimum

TABLE 7. PlanetLab workload characteristics.

improvement is 12.50% and the maximum improvement is
88.88% for MFPED and PABFD, respectively. For Maternal
workload, our technique also performs better in reducing
the total number of VM migrations (See Fig.5). The aver-
age VM migrations are 32.76%, 56.472%, 4.47%, 21.58%
for MBFD, PABFD, MFPED, PEBFD respectively (See
Fig.4).

TABLE 8. Statical data of experimental evaluation of materna workload
(Mean-Values).

We have performed experiments on two different workload
characteristics. The performance of LA-PED is evident for
both workloads. We can see that MBFD performs better
than PABFD in energy efficiency, %SLATAH, and SLAv,
especially in Materna. In Contrast, MFPED performs bet-
ter energy efficiency, %SLATAH, and SLAv than MBFD,
PABFD, and PEBFD. Our presented approach outperforms
the baseline techniques in both workloads. We have also
observed the efficiency by reducing the hosts’ heterogeneity,
increasing the host count, and varying the workload. LA-
PED still outperforms the baseline algorithms, which is a
considerable achievement.

The authors should provide a deeper analysis of the eval-
uation results, explaining the reasons behind the observed
performance improvements. Additionally, they should dis-
cuss the feasibility and potential challenges of applying the
proposed method in real-world cloud data centers.
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FIGURE 4. (a) Energy Consumption, (b) %SLATAH, (c) SLAv for ten days
workload of Materna.

FIGURE 5. Vm migrations of LA-PED as compared to baseline algorithms.

V. CONCLUSION
We introduced an energy-efficient VM placement technique
within the OpenStack Neat VM consolidation framework.
Our approach categorizes hosts as either active or inac-
tive and evaluates the loss incurred during VM placement.
Active hosts with minimal loss are prioritized, and if VM
placement leads to the overutilization of an active host,
an inactive host with minimal post-placement loss is selected.
Experiments using ten-day workloads from PlanetLab and

Materna demonstrate that our technique not only enhances
energy efficiency but also improves Quality of Service (QoS),
making it highly suitable for cloud computing. For Plan-
etLab’s ten-day workload, our technique achieved energy
efficiency improvements ranging from 7.40% to 80.35%
compared to PEBFD and MBFD, respectively. Similarly,
improvements in service level agreement violations (SLAv)
ranged from 17.78% to 94.83% relative to these benchmarks.
Additionally, our approach significantly reduced the total
number of VM migrations and the mean and standard devia-
tion before a host shutdown. Testing with theMaterna ten-day
workload yielded energy efficiency improvements between
4.827% and 61.009% compared to PABFD and PEBFD,
respectively, and SLAv improvements between 12.50% and
76.99% compared to MFPED and MBFD. Notably, while
baseline algorithms performed well with the PlanetLab work-
load, they underperformed with Materna, whereas our tech-
nique effectively managed both. In the future, we plan to
dynamically adjust loss criteria at runtime using reinforce-
ment learning to further improve QoS. The future work
section could be enhanced by detailing implementation plans,
addressing potential challenges, and highlighting the benefits
of using reinforcement learning for dynamic loss criteria
adjustment in VM consolidation.
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