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Abstract: The main focus of this article is to procurethe notions of pairwise neutrosophic 

continuous and pairwise neutrosophic b-continuous mappings in neutrosophic bitopological 

spaces. Then, we formulate some results on them via neutrosophic bitopological spaces. 
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________________________________________________________________________________________ 

1. Introduction 

Zadeh [31] presented the notions of fuzzy set (in short FS) in the year 1965. Afterwards, Chang 

[4] applied the idea of topology on fuzzy sets and introduced the fuzzy topological space. In the 

year 2017, Dutta and Tripathy [15] studied on fuzzy b- open sets via fuzzy topological space. Later 

on, Smarandache [23] grounded the idea of neutrosophic set (in short N-set) in the year 1998, as 

anextension of the concept of intuitionistic fuzzy set (in short IF-set) [3], where every element has 

threeindependent memberships values namely truth, indeterminacy, and false membership values 

respectively. Afterwards, Salama and Alblowi [21] applied the notions of topology on N-sets and 

introduced neutrosophic topological space (in short NT-space) by extending the notions of fuzzy 

topological spaces. Salama and Alblowi [22] also defined generalized N-set and introduced the 

concept of generalized NT-space. Later on, Arokiarani et al. [2] introduced the ideas of 

neutrosophic point and studied some functions in neutrosophic topological spaces. The notions of 

neutrosophic pre-open (in short NP-O) and neutrosophic pre-closed (in short NP-C) sets via 

NT-spaces are studied by Rao and Srinivasa [20]. The idea of b-open sets via topological spaces was 

established by Andrijevic [1]. Afterwards, Ebenanjar et al. [16] presents the concept of neutrosophic 

b-open set (in short N-b-O-set) via NT-spaces. In the year 2020, Das and Pramanik [8] presents the 

generalized neutrosophic b-open sets in NT-spaces. The notions of neutrosophic -open set and 

neutrosophic -continuous functions via NT-spaces was also presented by Das and Pramanik [9]. 

The concept of neutrosophic simply soft open set in neutrosophic soft topological space was studied 

by Das and Pramanik [10]. In the year 2021, Das and Tripathy [14] presented the notions of 

neutrosophic simply b-open set via NT-spaces. In the year 2020, Das and Tripathy [12] grounded 

the notions of neutrosophic multiset and applied topology on it. In the year 2021, Das et al. [5] 

studied the concept of quadripartitioned neutrosophic topological spaces. The notion of 

bitopological space was introduced by Kelly [17] in the year 1963. In the year 2011, Tripathy and 

Sarma [26] studied on b-locally open sets via bitopological spaces. The idea of pairwise b-locally 
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open and b-locally closed functions in bitopological spaces was studied by Tripathy and Sarma [27]. 

Tripathy and Sarma [28] also studied on weakly b-continuous mapping via bitopological spaces in 

the year 2013. Later on, the concept of generalized b-closed sets in ideal bitopological spaces was 

studied by Tripathy and Sarma [29]. Afterwards, Tripathy and Debnath [25] presented the notions 

of fuzzy b-locally open sets in fuzzy bitopological space. Thereafter, Ozturk and Ozkan [19] 

introduced the idea of neutrosophic bitopological space (in short NBi-T-space) in the year 2019. 

Recently, Das and Tripathy [13] presented the idea of pairwise N-b-O-sets and studied their 

different properties. 

The main focus of this article is to procure the notions of pairwise ij-neutrosophic-b-interior 

(in short P-ij-Nb-int), pairwise ij-neutrosophic-b-closure (in short P-ij-Nb-cl), pairwise neutrosophic 

continuous mapping (in short P-N-C-mapping), pairwise neutrosophic b-continuous mapping (in 

short pairwise N-bC-mapping) via NBi-T-spaces. 

2. Preliminaries and Definitions: 

The notion of N-set is defined as follows: 

Let X be a fixed set. Then, an N-set [23] L over X is denoted as follows: 

L={(t,TL(t),IL(t),FL(t)):tX}, where TL, IL, FL :X[0,1] are called the truth-membership, 

indeterminacy-membership and false-membership functions and 0 TL(t) + IL(t) + FL(t) 3, for all 

tX. 

The neutrosophic null set (0N) and neutrosophic whole set (1N) over a fixed set X are definedas 

follows: 

(i) 0N={(t,0,0,1): tX}; 

(ii) 1N={(t,1,0,0): tX}. 

The N-sets 0N and 1N also has three other representations. They are given below: 

0N={(t,0,0,0): tX} & 1N={(t,1,1,1): tX}; 

0N ={(t,0,1,0): tX} & 1N={(t,1,0,1): tX}; 

0N ={(t,0,1,1): tX} & 1N={(t,1,1,0): tX}. 

 

Let p, q, r[0,1]. An neutrosophic point (in short N-point) [2] xp.q.r is an N-set over X given by 

xp.q.r(y)={
(𝑝, 𝑞, 𝑟), 𝑖𝑓 𝑥 = 𝑦,

(0,0,1), 𝑖𝑓 𝑥 ≠ 𝑦,
 

where p, q, r denotes the truth, indeterminacy and false membership value of xp.q.r. 

 

The notion of NT-space is defined as follows: 

A family  of N-sets over X is called an [21] neutrosophic topology (in short N-topology) on X 

if the following axioms hold: 

(i) 0N, 1N; 

(ii) L1, L2L1L2; 

(iii) Li, for every {Li: i} , where  is the support set. 

Then, (X,) is called an NT-space. Each element of  is an neutrosophic open set (in short 

NO-set). If L is an NO-set in (X, ), then Lc is called an neutrosophic closed set (in short NC-set). 
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The notion of NBi-T-space is defined as follows:  

Let 1 and 2 be two different N-topologies on X. Then, (X,1,2) is [19] called an NBi-T-space. 

An N-set L is called a pairwise NO-set in (X,1,2), if there exist an NO-set L1 in 1 and an NO-set L2 

in 2 such that L=L1L2. The complement of L i.e., Lc is called a pairwise neutrosophic closed set (in 

short pairwise NC-set) in (X,1,2). 

Remark 2.1.[13] In an NBi-T-space(X,1,2), every i-NO-set is a pairwise ij-NO-set. 

Remark 2.2. Let G be an N-set over X and (X,1,2) be an NBi-T-space. Then, we shall use the 

following notations throughout the article: 

(i) 𝑁𝑐𝑙
𝑖 (G)= Neutrosophic closure of G in (X,i) (i=1, 2); 

(ii) 𝑁𝑖𝑛𝑡
𝑖 (G)= Neutrosophic interior of G in (X,i)(i=1, 2). 

Definition 2.1.[13] Let (X,1,2) be an NBi-T-space. Then, P is called a 

(i) i-neutrosophic semi-open set (in short i-NSO-set) if and only if P⊆ 𝑁𝑐𝑙
𝑖 𝑁𝑖𝑛𝑡

𝑖 (𝑃); 

(ii) i-neutrosophic pre-open set (in short i-NPO-set) if and only if P⊆ 𝑁𝑖𝑛𝑡
𝑖 𝑁𝑐𝑙

𝑖 (𝑃); 

(iii) i-neutrosophic b-open set (in short i-N-bO-set) if and only if P⊆ 𝑁𝑐𝑙
𝑖 𝑁𝑖𝑛𝑡

𝑖 (𝑃) ∪ 𝑁𝑖𝑛𝑡
𝑖 𝑁𝑐𝑙

𝑖 (𝑃). 

Remark 2.3.[13] Let (X,1,2) be an NBi-T-space. Then, an N-set P over X is called a i-neutrosophic 

b-closed set (in short i-N-bC-set) if and only if Pc is a i-N-bO-set. 

Proposition 2.1.[13] In an NBi-T-space (X,1,2), if P is i-NSO-set (i-NPO-set), then P is a 

i-N-bO-set. 

Proposition 2.2.[13] Let (X,1,2) be an NBi-T-space. Then, the union of any two i-N-bO-sets is a 

i-N-bO-set. 

Definition 2.2.[13] Let (X,1,2) be an NBi-T-space. Then, P is called a 

(i) ij-neutrosophic semi-open set (in short ij-NSO-set) if and only if P⊆ 𝑁𝑐𝑙
𝑖 𝑁𝑖𝑛𝑡

𝑗
(𝑃); 

(ii) ij-neutrosophic pre-open set (in short ij-NPO-set) if and only if P⊆ 𝑁𝑖𝑛𝑡
𝑗

𝑁𝑐𝑙
𝑖 (𝑃); 

(iii) ij-neutrosophic b-open set (in short ij-N-b-O-set) if and only if P⊆ 𝑁𝑐𝑙
𝑖 𝑁𝑖𝑛𝑡

𝑗
(𝑃) ∪ 𝑁𝑖𝑛𝑡

𝑗
𝑁𝑐𝑙

𝑖 (𝑃). 

Remark 2.4.[13] An N-set L over X is called a ij-neutrosophic b-closed set (in short ij-N-bC-set) if 

and only if Lc is a ij-N-bO-set in (X,1,2). 

Theorem 2.1.[13] Let (X,1,2) be an NBi-T-space. Then, every ij-NSO-set (ij-NPO-set) is a 

ij-N-bO-set. 

Definition 2.3.[13] An N-set L is called a pairwise ij-NPO-set (pairwise ij-NSO-set) in an 

NBi-T-space(X,1,2) if L=KM, where K is a ij-NPO-set (ij-NSO-set) and M is a ji-NPO-set 

(ji-NSO-set) in (X,1,2). 

Definition 2.4.[13] An N-set L is called a pairwise ij-N-bO-set in a NBi-T-space(X,1,2) if L=KM, 

where K is a ij-N-bO-set and M is a ji-N-bO-set in (X,1,2). If L is a pairwise ij-N-bO-set in (X,1,2), 

then Lc is called a pairwise ij-neutrosophic-b-closed set (in short pairwise ij-N-bC-set) in (X,1,2). 

Lemma 2.1.[13] In an NBi-T-space(X,1,2), every pairwise ij-NPO-set (pairwise ij-NSO-set) is a 

pairwise ij-N-bO-set. 

Proposition 2.3.[13] Let(X,1,2) be an NBi-T-space. Then, the union of two pairwise ij-N-bO-set in 

(X,1,2) is also a pairwise ij-N-bO-set. 

Theorem 2.2. Let (X,1,2) be an NBi-T-space. Then, the union of two pairwise ij-NSO-set in (X,1,2) 

is also a pairwise ij-NSO-set. 
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Proof. Let L and M be two pairwise ij-NSO-sets in an NBi-T-space(X,1,2). So, one can write 

L=L1L2 and M=M1M2, where L1, M1 are ij-NSO-sets and L2, M2 are ji-NSO-sets in (X,1,2). Since, 

L1 and M1 are ij-NSO-sets, so L1𝑁𝑐𝑙
𝑖 𝑁𝑖𝑛𝑡

𝑗 (L1) and M1𝑁𝑐𝑙
𝑖 𝑁𝑖𝑛𝑡

𝑗 (M1). Further, Since L2 and M2 are 

ji-NSO-sets, so L2𝑁𝑐𝑙
𝑗

𝑁𝑖𝑛𝑡
𝑖 (L2), M2𝑁𝑐𝑙

𝑗
𝑁𝑖𝑛𝑡

𝑖 (M2). 

Now, LM=(L1L2)(M1M2)=(L1M1)(L2M2). 

Therefore, L1M1 𝑁𝑐𝑙
𝑖 𝑁𝑖𝑛𝑡

𝑗
(𝐿1)𝑁𝑐𝑙

𝑖 𝑁𝑖𝑛𝑡
𝑗

(𝑀1) 

                 =𝑁𝑐𝑙
𝑖 (𝑁𝑖𝑛𝑡

𝑗
(𝐿1)𝑁𝑖𝑛𝑡

𝑗
(𝑀1)) 

                   𝑁𝑐𝑙
𝑖 𝑁𝑖𝑛𝑡

𝑗 (𝐿1𝑀1).  

This implies, L1M1 is a ij-NSO-set in (X,1,2).  

Similarly, it can be established that L2M2 is a ji-NSO-set in (X,1,2). Therefore, LM is a pairwise 

ij-NSO-set in (X,1,2). Hence, the union of two pairwise ij-NSO-set in (X,1,2) is again a pairwise 

ij-NSO-set in (X,1,2). 

Theorem 2.4. Let (X,1,2) be an NBi-T-space. Then, the union of two pairwise ij-NPO-set in (X,1,2) 

is a pairwise ij-NPO-set. 

Proof. Let L and M be two pairwise ij-NPO-sets in an NBi-T-space(X,1,2). So, one can write 

L=L1L2 and M=M1M2, where L1, M1 are ij-NPO-sets and L2, M2 are ji-NPO-sets in (X,1,2). Since, 

L1 and M1 are ij-NPO-sets, so L1𝑁𝑖𝑛𝑡
𝑗

𝑁𝑐𝑙
𝑖 (L1) and M1𝑁𝑖𝑛𝑡

𝑗
𝑁𝑐𝑙

𝑖 (M1). Further, since L2 and M2 are 

ji-NPO-sets, so L2𝑁𝑖𝑛𝑡
𝑖 𝑁𝑐𝑙

𝑗 (L2) and M2𝑁𝑖𝑛𝑡
𝑖 𝑁𝑐𝑙

𝑗 (M2).  

Now, LM=(L1L2)(M1M2)=(L1M1)(L2M2). 

Therefore, L1M1 𝑁𝑖𝑛𝑡
𝑗

𝑁𝑐𝑙
𝑖 (𝐿1)𝑁𝑖𝑛𝑡

𝑗
𝑁𝑐𝑙

𝑖 (𝑀1) 

                 =𝑁𝑖𝑛𝑡
𝑗 (𝑁𝑐𝑙

𝑖 (𝐿1)𝑁𝑐𝑙
𝑖 (𝑀1)) 

                  𝑁𝑖𝑛𝑡
𝑗

𝑁𝑐𝑙
𝑖 (𝐿1𝑀1).  

This implies, L1M1 is a ij-NPO-set in (X,1,2). Similarly, it can be established that L2M2 is a 

ji-NPO-set in (X,1,2). Therefore, LM is a pairwise ij-NPO-set in (X,1,2). Hence, the union of two 

pairwise ij-NPO-sets in (X,1,2) is again a pairwise ij-NPO-set. 

 

3. Pairwise b-Continuous Function: 

 In this section, we procure the notions of pairwise b-continuous functions via neutrosophic 

bitopological space and formulate some results on it. 

Definition 3.1. Let (X,1,2) be an NBi-T-space. Then, the pairwise ij-neutrosophic-b-interior (in 

short P-ij-Nb-int) of an N-set L is the union of all pairwise ij-N-bO-sets contained in L, i.e. 

P-ij-Nb-int(L)={K:K is a pairwise ij-N-bO-set in X and KL}. 

Clearly, P-ij-Nb-int(L) is the largest pairwise ij-N-bO-set which contained in L. 

Definition 3.2. Let (X,1,2) be an NBi-T-space. Then, the pairwise ij-neutrosophic-b-closure (in 

short P-ij-Nb-cl) of an N-set L is the intersection of all pairwise ij-N-bC-sets containing L, i.e. 

P-ij-Nb-cl(L)={K:K is a pairwise ij-N-bC-set in X and LK}. 

Clearly, P-ij-Nb-cl(L) is the smallest pairwise ij-N-bC-set which containing L. 

Theorem 3.1. Let L and K be two neutrosophic subsets of an NBi-T-space (X,1,2). Then, 

(i) P-ij-Nb-int(0N)=0N, P-ij-Nb-int(1N)=1N; 

(ii) P-ij-Nb-int(L)L; 

(iii) LM P-ij-Nb-int(L)P-ij-Nb-int(M); 
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(iv) P-ij-Nb-int(L)=L if L is a pairwise ij-N-bO-set. 

Proof. (i) Straight forward. 

(ii) By Definition 3.1, we have P-ij-Nb-int(L)={K:K is a pairwise ij-N-bO-set in X and KL}. Since, 

each KL, so {K:K is a pairwise ij-N-bO-set in X and KL}L, i.e. P-ij-Nb-int(L)L. Therefore, 

P-ij-Nb-int(L)L. 

(iii) Let L and M be two neutrosophic subset of an NBi-T-space (X,1,2) such that LM.  

Now, P-ij-Nb-int(L)={K:K is a pairwise ij-N-bO-set in X and KL} 

                  {K:K is a pairwise ij-N-bO-set in X and KM}  [since LM] 

                   =P-ij-Nb-int(M) 

 P-ij-Nb-int(L)P-ij-Nb-int(M). 

Therefore, LM P-ij-Nb-int(L)P-ij-Nb-int(M). 

(iv) Let L be a pairwise ij-N-bO-set in an NBi-T-space (X,1,2).  

Now, P-ij-Nb-int(L)={K: K is a pairwise ij-N-bO-set in X and KL}. Since, L is a pairwise ij-N-bO-set 

in (X,1,2), so L is the largest pairwise ij-N-bO-set in (X,1,2), which is contained in L. Therefore, 

{K:K is a pairwise ij-N-bO-set in X and KL}=L. This implies, P-ij-Nb-int(L)=L. 

Theorem 3.2. Let L and K be two neutrosophic subsets of an NBi-T-space (X,1,2). Then, 

(i) P-ij-Nb-cl(0N)=0N & P-ij-Nb-cl(1N)=1N; 

(ii) LP-ij-Nb-cl(L); 

(iii) LM P-ij-Nb-cl(L)P-ij-Nb-cl(M); 

(iv) P-ij-Nb-cl(L)=L if L is a pairwise ij-N-bC-set. 

Proof. (i) Straightforward. 

(ii) It is clear that P-ij-Nb-cl(L)={K:K is a pairwise ij-N-bC-set in X and LK}. 

Since, each LK, so L{K:K is a pairwise ij-N-bC-set in X and LK}, i.e. LP-ij-Nb-cl(L). 

(iii) Let L and M be two neutrosophic subset of an NBi-T-space (X,1,2) such that LM.  

Now, P-ij-Nb-cl(L)={K:K is a pairwise ij-N-bC-set in X and LK}. 

                {K:K is a pairwise ij-N-bC-set in X and MK}         [since LM] 

                 =P-ij-Nb-cl(M) 

 P-ij-Nb-cl(L)P-ij-Nb-cl(M). 

Therefore, LM P-ij-Nb-cl(L)P-ij-Nb-cl(M). 

(iv) Let L be a pairwise ij-N-bC-set in an NBi-T-space (X,1,2). Now, P-ij-Nb-cl(L)={K:K is a pairwise 

ij-N-bC-set in X and LK}. Since, L is a pairwise ij-N-bC-set in a (X,1,2), so L is the smallest 

pairwise ij-N-bC-set, which contains L. This implies, {K:K is a pairwise ij-N-bC-set in X and 

LK}=L. Therefore, P-ij-Nb-cl(L)=L. 

Proposition 3.3. Let L be a neutrosophic subset of an NBi-T-space (X,1,2). Then, 

(i) [P-ij-Nb-int(L)]c =P-ij-Nb-cl(Lc); 

(ii) [P-ij-Nb-cl(L)]c =P-ij-Nb-int(Lc). 

Proof. (i) Let (X,1,2) be an NBi-T-space. Let L={(w, TL(w), IL(w), FL(w)): wX} be an neutrosophic 

subset of (X,1,2).  

Now, P-ij-Nb-int(L) ={K: K is a pairwise ij-N-bO-set in X and KL} 

                 ={(w,𝑇𝐿𝑝
(w),𝐼𝐿𝑝

(w),𝐹𝐿𝑝
(w)):wX},  

where Lp is a pairwise ij-N-bO-set in X such that LpL, for each p. 
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This implies, [P-ij-Nb-int(L)]c ={(w,𝑇𝐿𝑝
(w),𝐼𝐿𝑝

(w),𝐹𝐿𝑝
(w)):wX}. 

Here 𝑇𝐿𝑝
(w)𝑇𝐿(w),𝐼𝐿𝑝

(w)𝐼𝐿(w), 𝐹𝐿𝑝
(w)𝐹𝐿(w), for each wX. 

Therefore, P-ij-Nb-int(Lc)={(w, 𝑇𝐿𝑝
(w), 𝐼𝐿𝑝

(w),𝐹𝐿𝑝
(w)): wX}  

                      = {Lp: p and Lp is a pairwise ij-N-bC-set in X such that LcLp} 

Hence, [P-ij-Nb-int(L)]c = P-ij-Nb-cl(Lc). 

(ii) Let (X,1,2) be an NBi-T-space and L={(w, TL(w), IL(w), FL(w)): wX} be a N-set over X. Then, 

P-ij-Nb-cl(L) = {K:K is a pairwise ij-N-bC-set in X and LK} 

            ={(w,𝑇𝐿𝑝
(w),𝐼𝐿𝑝

(w),𝐹𝐿𝑝
(w)):wX},  

where Lp is a pairwise ij-N-bC-set in X such that LLp, for each p.  

This implies, [P-ij-Nb-cl(L)]c = {(w,𝑇𝐿𝑝
(w),𝐼𝐿𝑝

(w),𝐹𝐿𝑝
(w)):wX}. 

Here, 𝑇𝐿𝑝
(w)𝑇𝐿(w),𝐼𝐿𝑝

(𝑤)𝐼𝐿(w),𝐹𝐿𝑝
(w)𝐹𝐿(w), for each wX. 

Therefore, P-ij-Nb-int(Lc)={(w,𝑇𝐿𝑝
(w),𝐼𝐿𝑝

(w),𝐹𝐿𝑝
(w)):wX} 

                     ={Lp: p and Lp is a pairwise ij-N-bO-set in X such that LpLc}.  

Hence, [P-ij-Nb-cl(L)]c= P-ij-Nb-int(Lc). 

Theorem 3.1. Let (X,1,2) be an NBi-T-space. Then, the neutrosophic null set (0N) and the 

neutrosophic whole set (1N) are both ij-N-bO-set and ji-N-bO-set. 

Proof. Let (X,1,2) be an NBi-T-space. Now, 𝑁𝑐𝑙
𝑖 𝑁𝑖𝑛𝑡

𝑗 (0N)𝑁𝑖𝑛𝑡
𝑗

𝑁𝑐𝑙
𝑖 (0N)=𝑁𝑐𝑙

𝑖 (0N)𝑁𝑖𝑛𝑡
𝑗 (0N)= 0N0N=0N. 

Therefore, 0N0N=𝑁𝑐𝑙
𝑖 𝑁𝑖𝑛𝑡

𝑗 (0N)𝑁𝑖𝑛𝑡
𝑗

𝑁𝑐𝑙
𝑖 (0N). Hence, the neutrosophic null set (0N) is a ij-N-bO-set. 

Similarly, it can be established that the neutrosophic null set (0N) is a ji-N-bO-set. 

Further, one can show that the neutrosophic whole set (1N) are both ij-N-bO-set and ji-N-bO-set. 

Theorem 3.2. In an NBi-T-space(X,1,2), every i-NO-set is a ji-N-bO-set. 

Proof. Let L be a i-NO-set in an NBi-T-space(X,1,2). Therefore, 𝑁𝑖𝑛𝑡
𝑖 (L)=L. Now,L𝑁𝑐𝑙

𝑗 (L)= 

𝑁𝑐𝑙
𝑗

𝑁𝑖𝑛𝑡
𝑖 (L). This implies, L𝑁𝑐𝑙

𝑗
𝑁𝑖𝑛𝑡

𝑖 (L)𝑁𝑖𝑛𝑡
𝑖 𝑁𝑐𝑙

𝑗 (L). Hence, L is a ji-N-bO-set in (X,1,2). 

Theorem 3.3. In an NBi-T-space (X,1,2), 

(i) every ij-N-bO-set is a pairwise ij-N-bO-set; 

(ii) every ji-N-bO-set is a pairwise ji-N-bO-set; 

(iii) every ij-N-bC-set is a pairwise ij-N-bC-set; 

(iv) every ji-N-bC-set is a pairwise ji-N-bC-set. 

Proof. (i) Let L be a ij-N-bO-set in an NBi-T-space (X,1,2). Then, L can be expressed as L=L0N, 

where L is a ij-N-bO-set and 0N is a ji-N-bO-set in (X,1,2). This implies, L is a pairwise ij-N-bO-set 

in (X,1,2). 

(ii) Straightforward. 

(iii) Let L be a ij-NC-set in an NBi-T-space (X,1,2). Then, L can be expressed as L=L1N, where L is 

a ij-NC-set and 1N is a ji-NC-set in (X,1,2). This implies, L is a pairwise ij-N-bC-set in (X,1,2). 

(iv) Straightforward. 

Theorem 3.4. In an NBi-T-Space (X,1,2), every i-NO-set is a pairwise ij-N-bO-set. 

Proof. Let L be a i-NO-set in an NBi-T-space(X,1,2). By Theorem 3.2., it is clear that L is a 

ji-N-bO-set. Further, by Theorem 3.3., it is clear that L is a pairwise ij-N-bO-set. 

Theorem 3.5. Let (X,1,2) be an NBi-T-space. Then, 0N and 1N are both pairwise ij-N-bO-set and 

pairwise ji-N-bO-set. 
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Proof. Let (X,1,2) be an NBi-T-space. One can write 0N=AB, where A=0N is a ij-N-bO-set and B=0N 

is a ji-N-bO-set in (X,1,2). This implies, 0N is a pairwise ij-N-bO-set in (X,1,2). 

Similarly, it can be established that 0N is a pairwise ji-N-bO-set in (X,1,2). 

Again, one can write 1N=LM, where L=1N is a ij-N-bO-set and M=1N is a ji-N-bO-set in (X,1,2). 

This implies, 1N is a pairwise ij-N-bO-set in (X,1,2). 

Similarly, it can be also established that 1N is a pairwise ji-N-bO-set in (X,1,2). 

Theorem 3.6. Let (X,1,2) be an NBi-T-space. Then, both 0N and 1N are pairwise ij-N-bC-set and 

pairwise ji-N-bC-set. 

Proof. By Theorem 3.5, it is clear that 0N is both pairwise ij-N-bO-set and pairwise ji-N-bO-set. 

Hence, its complement 1N is both pairwise ij-N-bC-set and pairwise ji-N-bC-set. 

Similarly, from Theorem 3.5, it is clear that 1N is both pairwise ij-N-bO-set and pairwise 

ji-N-bO-set. Hence, its complement 0N is both pairwise ij-N-bC-set and pairwise ji-N-bC-set. 

Remark 3.1. Throughout the article, we denote 𝜏𝑖𝑗
𝑏  as a collection of all pairwise ij-N-bO-sets and 

𝜏𝑖𝑗
𝐶  as a collection of all pairwise ij-N-bC-sets in (X,1,2). The collection 𝜏𝑖𝑗

𝑏  forms an neutrosophic 

supra topology on X. 

Definition 3.3. Let (X,1,2) and (Y,1,2) be two NBi-T-spaces. Then, an one to one and onto 

mapping  :(X,1,2)(Y,1,2) is called a 

(i) pairwise neutrosophic semi continuous mapping (in short P-NS-C-mapping) if and only if  

-1(L) is a i-NSO-set in X, whenever L is a pairwise ij-NO-set in Y. 

(ii) pairwise neutrosophic pre continuous mapping (in short P-NP-C-mapping) if and only if-1(L) is 

a i-NPO-set in X, whenever L is a pairwise ij-NO-set in Y. 

(iii) pairwise neutrosophic continuous mapping (in short P-N-C-mapping) if and only if-1(L) is a 

i-NO-set in X, whenever L is a pairwise ij-NO-set in Y. 

(iv) pairwise neutrosophic b-continuous mapping (in short P-N-b-C-mapping) if and only if-1(L) is a 

i-N-bO-set in X, whenever L is a pairwise ij-NO-set in Y. 

Theorem 3.7. Let (X,1,2) and (Y,1,2) be two NBi-T-spaces. Then, every P-N-C-mapping from 

(X,1,2) to (Y,1,2) is a P-NP-C-mapping (P-NS-C-mapping). 

Proof. Let L be a pairwise ij-NO-set in (Y,1,2). Since, :(X,1,2)(Y,1,2) is a P-N-C-mapping from 

(X,1,2) to (Y,1,2), so -1(L) is a i-NO-set in (X,1,2). It is known that every i-NO-set is a i-NPO-set 

(i-NSO-set). Therefore, -1(L) is a i-NPO-set (i-NSO-set) in (X,1,2). Hence, :(X,1,2)(Y,1,2) is a 

P-NP-C-mapping (P-NS-C-mapping). 

Theorem 3.8. Let (X,1,2) and (Y,1,2) be two NBi-T-spaces. Then, every P-NS-C-mapping 

(P-NP-C-mapping) from (X,1,2) to (Y,1,2) is a P-N-b-C-mapping. 

Proof. Let L be a pairwise ij-NO-set in (Y,1,2). Since, :(X,1,2)(Y,1,2) is a P-NS-C-mapping 

(P-NP-C-mapping) from (X,1,2) to (Y,1,2), so -1(L) is a i-NSO-set (i-NPO-set) in (X,1,2). It is 

known that, every i-NSO-set (i-NPO-set) is a i-N-bO-set. Therefore, -1(L) is a i-N-bO-set in 

(X,1,2). Hence, :(X,1,2)(Y,1,2) is a P-N-b-C-mapping. 

Theorem 3.9. Let (X,1,2) and (Y,1,2) be two NBi-T-spaces. Then, every P-N-C-mapping from 

(X,1,2) to (Y,1,2) is a P-N-b-C-mapping. 

Proof. Let L be a pairwise ij-NO-set in (Y,1,2). Since, :(X,1,2)(Y,1,2) is a P-N-C-mapping from 

(X,1,2) to (Y,1,2), so -1(L) is a i-NO-set in (X,1,2). It is known that, every i-NO-set is a 
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i-N-b-O-set. Therefore, -1(L) is a i-N-b-O-set in (X,1,2). Hence, :(X,1,2)(Y,1,2) is a 

p-N-b-C-mapping. 

Theorem 3.10. If :(X,1,2)(Y,1,2) and :(Y,1,2)(Z,1,2) be two P-N-C-mapping, then the 

composition mapping :(X,1,2)(Z,1,2) is also a P-N-C-mapping. 

Proof. Let :(X,1,2)(Y,1,2) and :(Y,1,2)(Z,1,2) be two P-N-C-mappings. Let L be a pairwise 

ij-NO-set in (Z,1,2). Since, :(Y,1,2)(Z,1,2) is a P-N-C-mapping, so -1(L) is a i-NO-set in Y. 

Since, :(X,1,2)(Y,1,2) is a P-N-C-mapping, so -1(-1(L))= ()-1(L) is a i-NO-set in X. 

Theorem 3.11. If :(X,1,2)(Y,1,2) be an one to one and onto mapping between two 

NBi-T-spaces, then the following two are equivalent: 

(i)  is a P-N-b-C-mapping. 

(ii) -1(P-ij-Nint(A)) i-Nb-int(-1(A)), for every neutrosophic subset A of Y. 

Proof. (i)(ii) 

Let :(X,1,2)(Y,1,2) be a P-N-b-C-mapping. Let A be an neutrosophic subset of Y. Here, 

P-ij-Nint(A) is a pairwise ij-NO-set in Y and P-ij-Nint(A)A. This implies, -1(P-ij-Nint(A))-1(A). By 

the hypothesis, -1(P-ij-Nint(A)) is a i-N-b-O-set in X. Therefore, -1(P-ij-Nint(A)) is a i-N-b-O-set in X 

such that -1(P-ij-Nint(A))-1(A). It is known that i-Nb-int(-1(A)) is the largest i-N-b-O-set in X, 

which is contained in -1(A). Hence, -1(P-ij-Nint(A))i-Nb-int(-1(A)). 

(ii)(i) 

Let A be a pairwise ij-NO-set in (Y,1,2). Therefore, P-ij-Nint(A)=A. By hypothesis, 

-1(P-ij-Nint(A))i-Nb-int(-1(A)). This implies, -1(A)i-Nb-int(-1(A)). It is known that i-Nb-int(-1(A)) 

-1(A). Therefore, i-Nb-int(-1(A))=-1(A). Hence,-1(A) is a i-N-b-O-set in (X,1,2). Therefore,  is a 

P-N-b-C-mapping from an NBi-T-space (X,1,2) to another NBi-T-space (Y,1,2).  

Theorem 3.12. An one to one and onto mapping :(X,1,2)(Y,1,2) is a P-N-b-C-mapping if and 

only if P-ij-Nint((A))(i-Nb-int(A)), for every N-set A over X and i, j= 1,2, and ij. 

Proof. Let :(X,1,2)(Y,1,2) be a P-N-b-C-mapping. Let A be an N-set over X. Then, (A) is also an 

N-set over Y. By Theorem 3.11, we have -1(P-ij-Nint((A)))i-Nb-int(-1((A))). This implies, 

-1(P-ij-Nint((A)))i-Nb-int(A). Hence, P-ij-Nint((A))(i-Nb-int(A)). Therefore, P-ij-Nint((A)) 

(i-Nb-int(A)), for every N-set A over X and i, j= 1,2; and ij. 

Conversely, let :(X,1,2)(Y,1,2) be a mapping between two NBi-T-spaces such that  

P-ij-Nint((A))(i-Nb-int(A))                                (1) 

for every N-set A overX and i, j = 1,2; and ij. 

Let A be an N-set over Y. Then, -1(A) is an N-set over X. By putting A=-1(A) in eq. (1), we have, 

P-ij-Nint((-1(A))) (i-Nb-int(-1(A))) 

P-ij-Nint(A)(i-Nb-int(-1(A)))  

-1(P-ij-Nint(A)i-Nb-int(-1(A)).  

Therefore, -1(P-ij-Nint(A)i-Nb-int(-1(A)), for every N-set A of Y. Hence, by Theorem 3.11., the 

mapping :(X,1,2)(Y,1,2) is a P-N-b-C-mapping. 

Corollary 3.1. If :(X,1,2)(Y,1,2) is an one to one and onto mapping from an NBi-T-space 

(X,1,2) to another NBi-T-space (Y,1,2), then the following two are equivalent: 

(i)  is a P-N-C-mapping. 

(ii) -1(P-ij-Nint(Q)) i-Nint(-1(Q)), for every N-set Q overY. 
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Definition 3.4. Let (X,1,2) be an NBi-T-space. Let xa,b,c be an N-point in X. Then, an N-set Q over X 

is called a pairwise ij-neutrosophic b-neighbourhood (in short P-ij-N-b-nbd) of xa,b,c, if there exist a 

pairwise ij-N-bO-set U such that xa,b,cUQ. 

Theorem 3.13. Let (X,1,2) be an NBi-T-space. An N-set Q over X is a pairwise ij-N-bO-set if and 

only if Q is a P-ij-N-b-nbd of all of its N-points. 

Proof. Let 𝑄 be a pairwise ij-N-bO-set in an NBi-T-space (X,1,2). Let xa,b,c be an N-point in X such 

that xa,b,c𝑄. Therefore, xa,b,cQ𝑄 . This implies, 𝑄 is a P-ij-N-b-nbd of xa,b,c. Hence, 𝑄  is the 

P-ij-N-b-nbd of all of its N-points. 

Conversely, let 𝑄 be a P-ij-N-b-nbd of all of its N-points. Assume that xa,b,c be an N-point in X, 

such that xa,b,c𝑄. Therefore, there exist a pairwise ij-N-bO-set G such that xa,b,cG𝑄. 

Now, 𝑄=⋃ 𝑥𝑎,𝑏,𝑐𝑥𝑎,𝑏,𝑐∈𝑄 ⋃ 𝐺𝑥𝑎,𝑏,𝑐∈𝑄 ⋃ 𝑄𝑥𝑎,𝑏,𝑐∈𝑄 =𝑄. This implies, 𝑄=⋃ 𝐺𝑥𝑎,𝑏,𝑐∈𝑄 , which is a pairwise 

ij-N-bO-set. Therefore, Q is a pairwise ij-N-bO-set in (X,1,2). 

Theorem 3.14. An one to one and onto mapping :(X,1,2)(Y,1,2) is a P-N-b-C-mapping if and 

only if for every N-point xa,b,cY and for any P-ij-N-b-nbd V of xa,b,c in Y, there exist a 

i-neutrosophic-b-neighbourhood (in short i-N-b-nbd) U of -1(xa,b,c) in X such that U -1(V). 

Proof. Let :(X,1,2)(Y,1,2) be a P-N-b-C-mapping. Let xa,b,c be an N-point in Y and V be a 

P-ij-N-b-nbd of xa,b,c. Then, there exist a pairwise ij-NO-set G in Y such that xa,b,cGV. This implies, 

-1(xa,b,c)-1(G)-1(V). Since, :(X,1,2)(Y,1,2) is a P-N-b-C-mapping, so -1(G) is a i-N-bO-set in 

X. By taking U=-1(G), we see that U is a i-N-bO-set in X such that -1(xa,b,c)U-1(V). Hence, 

U=-1(G) is a i-N-b-nbd of -1(xa,b,c) and U-1(V). 

Conversely, let for every N-point xa,b,cY and for any P-ij-N-nbd V of xa,b,c in Y, there exist a 

i-N-b-nbd U of -1(xa,b,c) in X such that U-1(V). Let G be a pairwise ij-NO-set in Y and xa,b,cG. By 

Theorem 3.13., G is a P-ij-N-nbd of xa,b,c. By hypothesis, there exists a i-N-b-nbd H of -1(xa,b,c)X 

such that -1(xa,b,c)H-1(G). This implies, -1(G) is the i-N-b-nbd of each of its N-points. Therefore, 

-1(G) is a i-N-bO-set in X. Hence, :(X,1,2)(Y,1,2) is a P-N-b-C-mapping. 

Theorem 3.15. If :(X,1,2)(Y,1,2) be a P-N-b-C-mapping and :(Y,1,2)(Z,1,2) be a 

P-N-C-mapping, then the composition mapping :(X,1,2)(Z,1,2) is a P-N-b-C-mapping. 

Proof. Let :(X,1,2)(Y,1,2) be a P-N-b-C-mapping and :(Y,1,2)(Z,1,2) be a P-N-C-mapping. 

Let L be a pairwise ij-NO-set in (Z,1,2). Since, :(Y,1,2)(Z,1,2) is a P-N-C-mapping, so -1(L) is 

a i-NO-set in Y. Now, by Lemma 2.1., it is clear that -1(L) is a pairwise ij-NO-set in (Y,1,2). Since, 

:(X,1,2)(Y,1,2) is a P-N-b-C-mapping, so -1(-1(L))=()-1(L) is a i-NO-set in X. Since, every 

i-NO-set is a i-N-bO-set, so ()-1(L) is a i-N-bO-set in X. Hence, :(X,1,2)(Z,1,2) is a 

P-N-b-C-mapping. 

 

4. Conclusion 

In this article, we introduce the notion of pairwise neutrosophic-b-interior, pairwise neutrosophic-b-closure, pairwise neutrosophic continuous mapping, pairwise neutrosophic b-continuous mapping in NBi-T-spaces. By defining pairwise neutrosophic-b-interior, pairwise neutrosophic-b-closure, pairwise neutrosophic continuous mapping, pairwise 

neutrosophic b-continuous mapping, we prove some propositions and theorems on NBi-T-spaces. In 

the future, we hope that based on these notions in NBi-T-spaces, many new investigations can be 

carried out. 
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