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Abstract: The main focus of this article is to procurethe notions of pairwise neutrosophic
continuous and pairwise neutrosophic b-continuous mappings in neutrosophic bitopological

spaces. Then, we formulate some results on them via neutrosophic bitopological spaces.
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1. Introduction

Zadeh [31] presented the notions of fuzzy set (in short FS) in the year 1965. Afterwards, Chang
[4] applied the idea of topology on fuzzy sets and introduced the fuzzy topological space. In the
year 2017, Dutta and Tripathy [15] studied on fuzzy b-0 open sets via fuzzy topological space. Later
on, Smarandache [23] grounded the idea of neutrosophic set (in short N-set) in the year 1998, as
anextension of the concept of intuitionistic fuzzy set (in short IF-set) [3], where every element has
threeindependent memberships values namely truth, indeterminacy, and false membership values
respectively. Afterwards, Salama and Alblowi [21] applied the notions of topology on N-sets and
introduced neutrosophic topological space (in short NT-space) by extending the notions of fuzzy
topological spaces. Salama and Alblowi [22] also defined generalized N-set and introduced the
concept of generalized NT-space. Later on, Arokiarani et al. [2] introduced the ideas of
neutrosophic point and studied some functions in neutrosophic topological spaces. The notions of
neutrosophic pre-open (in short NP-O) and neutrosophic pre-closed (in short NP-C) sets via
NT-spaces are studied by Rao and Srinivasa [20]. The idea of b-open sets via topological spaces was
established by Andrijevic [1]. Afterwards, Ebenanjar et al. [16] presents the concept of neutrosophic
b-open set (in short N-b-O-set) via NT-spaces. In the year 2020, Das and Pramanik [8] presents the
generalized neutrosophic b-open sets in NT-spaces. The notions of neutrosophic ®-open set and
neutrosophic ®-continuous functions via NT-spaces was also presented by Das and Pramanik [9].
The concept of neutrosophic simply soft open set in neutrosophic soft topological space was studied
by Das and Pramanik [10]. In the year 2021, Das and Tripathy [14] presented the notions of
neutrosophic simply b-open set via NT-spaces. In the year 2020, Das and Tripathy [12] grounded
the notions of neutrosophic multiset and applied topology on it. In the year 2021, Das et al. [5]
studied the concept of quadripartitioned neutrosophic topological spaces. The notion of
bitopological space was introduced by Kelly [17] in the year 1963. In the year 2011, Tripathy and
Sarma [26] studied on b-locally open sets via bitopological spaces. The idea of pairwise b-locally
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open and b-locally closed functions in bitopological spaces was studied by Tripathy and Sarma [27].
Tripathy and Sarma [28] also studied on weakly b-continuous mapping via bitopological spaces in
the year 2013. Later on, the concept of generalized b-closed sets in ideal bitopological spaces was
studied by Tripathy and Sarma [29]. Afterwards, Tripathy and Debnath [25] presented the notions
of fuzzy b-locally open sets in fuzzy bitopological space. Thereafter, Ozturk and Ozkan [19]
introduced the idea of neutrosophic bitopological space (in short NBi-T-space) in the year 2019.
Recently, Das and Tripathy [13] presented the idea of pairwise N-b-O-sets and studied their
different properties.

The main focus of this article is to procure the notions of pairwise tij-neutrosophic-b-interior
(in short P-ti+Np-int), pairwise tij-neutrosophic-b-closure (in short P-1i-Ni-a), pairwise neutrosophic
continuous mapping (in short P-N-C-mapping), pairwise neutrosophic b-continuous mapping (in
short pairwise N-bC-mapping) via NBi-T-spaces.

2. Preliminaries and Definitions:

The notion of N-set is defined as follows:

Let X be a fixed set. Then, an N-set [23] L over X is denoted as follows:
L={(t, Tu(t),Iu(t),FL(t)):teX]), where Ti, I, Fr :X—[0,1] are called the truth-membership,
indeterminacy-membership and false-membership functions and 0 <Tr(t) + Ii(t) + Fu(t)< 3, for all
teX.
The neutrosophic null set (On) and neutrosophic whole set (1n) over a fixed set X are definedas
follows:
(1) On={(£,0,0,1): teX};
(i1) In={(£,1,0,0): te X}.
The N-sets On and 1w also has three other representations. They are given below:
0n={(t,0,0,0): te X} & In={(t,1,1,1): te X};
On ={(£,0,1,0): te X} & 1n={(#,1,0,1): teX};
On ={(+,0,1,1): te X} & 1In={(¢,1,1,0): te X}.

Let p, g, r€[0,1]. An neutrosophic point (in short N-point) [2] xp.qr is an N-set over X given by
_(®.an)ifx=y,
O G017 x % 3

where p, g, v denotes the truth, indeterminacy and false membership value of xp.4.r.

The notion of NT-space is defined as follows:
A family t of N-sets over X is called an [21] neutrosophic topology (in short N-topology) on X
if the following axioms hold:
() On, IneT;
(i1) L1, Laet=LinleT;
(iif) ULiet, for every {Li: ieA} ct, where A is the support set.
Then, (X,t) is called an NT-space. Each element of t is an neutrosophic open set (in short

NO-set). If L is an NO-set in (X, t), then L¢ is called an neutrosophic closed set (in short NC-set).
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The notion of NBi-T-space is defined as follows:

Let 11 and 12 be two different N-topologies on X. Then, (X,11,12) is [19] called an NBi-T-space.
An N-set L is called a pairwise NO-set in (X,t1,12), if there exist an NO-set L1 in 11 and an NO-set Lz
in 12 such that L=L1UL2. The complement of L i.e., L¢is called a pairwise neutrosophic closed set (in
short pairwise NC-set) in (X, 11,12).
Remark 2.1.[13] In an NBi-T-space(X,1,12), every 1-NO-set is a pairwise 1;-NO-set.
Remark 2.2. Let G be an N-set over X and (X,t1,72) be an NBi-T-space. Then, we shall use the
following notations throughout the article:
(i) N%(G)=Neutrosophic closure of G in (X,t) (i=1, 2);
(ii) Ni.(G)=Neutrosophic interior of G in (X,t:)(i=1, 2).
Definition 2.1.[13] Let (X,11,72) be an NBi-T-space. Then, P is called a
(i) t-neutrosophic semi-open set (in short t-NSO-set) if and only if P N} N}, (P);
(ii) t-neutrosophic pre-open set (in short t-NPO-set) if and only if PS N/, N, (P);
(iii) t-neutrosophic b-open set (in short 1-N-bO-set) if and only if P N5 N}, (P) U N, N/ (P).
Remark 2.3.[13] Let (X,11,72) be an NBi-T-space. Then, an N-set P over X is called a t-neutrosophic
b-closed set (in short 1-N-bC-set) if and only if P¢is a ©-N-bO-set.
Proposition 2.1.[13] In an NBi-T-space (X,t1,12), if P is t-NSO-set (1-NPO-set), then P is a
1-N-bO-set.
Proposition 2.2.[13] Let (X,t1,12) be an NBi-T-space. Then, the union of any two t-N-bO-sets is a
1-N-bO-set.
Definition 2.2.[13] Let (X,11,72) be an NBi-T-space. Then, P is called a
(i) ti-neutrosophic semi-open set (in short t;-NSO-set) if and only if PE NC‘IINL.],‘M(P);
(if) ti-neutrosophic pre-open set (in short t-NPO-set) if and only if PS Ni{“NC"l (P);
(iii) t-neutrosophic b-open set (in short 1-N-b-O-set) if and only if PS N4N/ (P) U N] N} (P).
Remark 2.4.[13] An N-set L over X is called a tneutrosophic b-closed set (in short t;-N-bC-set) if
and only if L¢is a 1i-N-bO-set in (X, 11,72).
Theorem 2.1.[13] Let (X,t1,72) be an NBi-T-space. Then, every ti-NSO-set (ti-NPO-set) is a
1i-N-bO-set.
Definition 2.3.[13] An N-set L is called a pairwise ti-NPO-set (pairwise 1ij-NSO-set) in an
NBi-T-space(X,t1,12) if L=KUM, where K is a 1;-NPO-set (1i-NSO-set) and M is a ti-NPO-set
(ti-NSO-set) in (X, 11,12).
Definition 2.4.[13] An N-set L is called a pairwise 1;-N-bO-set in a NBi-T-space(X,11,12) if L=KUM,
where K is a 1j-N-bO-set and M is a 1j-N-bO-set in (X,11,12). If L is a pairwise 1+-N-bO-set in (X,11,12),
then L¢is called a pairwise tj-neutrosophic-b-closed set (in short pairwise tj-N-bC-set) in (X, 11,12).
Lemma 2.1.[13] In an NBi-T-space(X,t1,12), every pairwise t-NPO-set (pairwise 1;-NSO-set) is a
pairwise 1j-N-bO-set.
Proposition 2.3.[13] Let(X,t1,12) be an NBi-T-space. Then, the union of two pairwise t;-N-bO-set in
(X,11,12) is also a pairwise 1-N-bO-set.
Theorem 2.2. Let (X,t1,72) be an NBi-T-space. Then, the union of two pairwise tj-NSO-set in (X, 11,72)

is also a pairwise Ti-NSO-set.
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Proof. Let L and M be two pairwise 1-NSO-sets in an NBi-T-space(X,t1,12). So, one can write
L=L1ULl2 and M=Mi1UM?>, where Li, M1 are 1;-NSO-sets and Lz, M2 are ti-NSO-sets in (X,11,12). Since,
L1 and M are ti-NSO-sets, so Llc;NcilNi;t(Ll) and M1gN§lNi£1t(M1). Further, Since L and M are
1-NSO-sets, s0 L:cNJ N, (L2), MoacN/ NE, (M),
Now, LuM=(L1UL2)U(M1uM2)=(LiuM1)U(L2UM2).
Therefore, LiuMi gN}lNi’,'lt(Ll)uNC"lNi;t(Ml)

=Ny (N7 (Ly)ONG, (M)

gNLl:lNi{'),t(LIUMl)'

This implies, LiuMi is a 1-NSO-set in (X, 11,12).
Similarly, it can be established that L2UM: is a 1-NSO-set in (X,11,12). Therefore, LUM is a pairwise
1-NSO-set in (X,11,12). Hence, the union of two pairwise 1;-NSO-set in (X,11,12) is again a pairwise
1i-NSO-set in (X, 11,72).
Theorem 2.4. Let (X,11,12) be an NBi-T-space. Then, the union of two pairwise t;-NPO-set in (X, 11,72)
is a pairwise 1;-NPO-set.
Proof. Let L and M be two pairwise t;-NPO-sets in an NBi-T-space(X,t1,12). So, one can write
L=L1ULl2 and M=M1UM?z, where L1, M1 are ti-NPO-sets and L2, M2 are 1-NPO-sets in (X,11,12). Since,
Li and Mi are 1-NPO-sets, so LicN/ NY(L1) and M1gNiJT'ltNCil(M1). Further, since L> and M: are

int
1i-NPO-sets, 50 LacN}, N/ (L2) and Mac N}, N/, (Mo).
Now, LuM=(L1UL2)u(M1uM2)=(L1uM1)U(L2UM>).
Therefore, LiuMi N/, N& (L) UN/ N (M)

=NJo (NG (L) ONG (My))

N/ N (LyuMy).

This implies, LiuM is a 1-NPO-set in (X,11,12). Similarly, it can be established that L2UM: is a
1i-NPO-set in (X,11,12). Therefore, LUM is a pairwise 1;-NPO-set in (X,11,12). Hence, the union of two

pairwise 1ij-NPO-sets in (X,11,12) is again a pairwise 1;-NPO-set.

3. Pairwise b-Continuous Function:

In this section, we procure the notions of pairwise b-continuous functions via neutrosophic
bitopological space and formulate some results on it.
Definition 3.1. Let (X,t1,12) be an NBi-T-space. Then, the pairwise ti-neutrosophic-b-interior (in
short P-ti-Np-int) of an N-set L is the union of all pairwise t;-N-bO-sets contained in L, i.e.
P-tij-No-in(L)=U{K:K is a pairwise 1;-N-bO-set in X and KcL}.
Clearly, P-1i-Np-int(L) is the largest pairwise 1i-N-bO-set which contained in L.
Definition 3.2. Let (X,t1,72) be an NBi-T-space. Then, the pairwise tj-neutrosophic-b-closure (in
short P-1i-Nva) of an N-set L is the intersection of all pairwise tj-N-bC-sets containing L, i.e.
P-1ij-Nb-a(L)=n{K:K is a pairwise 1;j-N-bC-set in X and LcK]}.
Clearly, P-ti-Nu-a(L) is the smallest pairwise 1i-N-bC-set which containing L.
Theorem 3.1. Let L and K be two neutrosophic subsets of an NBi-T-space (X,t1,12). Then,
(1) P-7ij-Np-int(ON)=0N, P-Tij-Np-in:(IN)=1n;
(11) P-tij-Np-int(L)L;
(1i1) LeM= P-tij-Np-int(L)P-ij-Np-int(M);
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(iv) P-1i}-Nv-in(L)=L if L is a pairwise tj-N-bO-set.
Proof. (i) Straight forward.
(if) By Definition 3.1, we have P-tj-Np-int(L)=U{K:K is a pairwise ti-N-bO-set in X and KcL}. Since,
each KcL, so U{K:K is a pairwise tiN-bO-set in X and KcL}cL, i.e. P-tj-Np-nt(L)cL. Therefore,
P-ti-Nv-int(L)L.
(iii) Let L and M be two neutrosophic subset of an NBi-T-space (X,t1,12) such that LcM.
Now, P-i-Ne-int(L)=U{K:K is a pairwise 1j-N-bO-set in X and KcL}
cU{K:K is a pairwise 1ij-N-bO-set in X and KcM}  [since LcM]
=P-Tij- Np-int(M)
= P-1ij-Np-int(L)=P-tij-Nbv-int(M).
Therefore, LcM =P-1ij-Nu-int(L)ZP-1ij-Np-int(M).
(iv) Let L be a pairwise 1;-N-bO-set in an NBi-T-space (X, 11,12).
Now, P-1ij-Ne-in(L)=U{K: K is a pairwise 1i-N-bO-set in X and KcL}. Since, L is a pairwise 1;-N-bO-set
in (X,11,12), so L is the largest pairwise 1j-N-bO-set in (X,t1,12), which is contained in L. Therefore,
U{K:K is a pairwise 1i-N-bO-set in X and KcL}=L. This implies, P-tij-Ne-int(L)=L.
Theorem 3.2. Let L and K be two neutrosophic subsets of an NBi-T-space (X,11,12). Then,
(1) P-ij-Np-a(ON)=0n & P-7ij-Ne-a(1n)=1n;
(i1) LcP-1i-No-a(L);
(717 LeM= P-7ij-Np-a(L)=P-1i-Nv-a(M);
(iv) P-tii-Nv-a(L)=L if L is a pairwise 1i-N-bC-set.
Proof. (i) Straightforward.
(ii) It is clear that P-1i-Np-a(L)=n{K:K is a pairwise 1i-N-bC-set in X and LcK}.
Since, each LcK, so Len{K:K is a pairwise 1-N-bC-set in X and LcK]}, i.e. LeP-1i-Ne-a(L).
(iif) Let L and M be two neutrosophic subset of an NBi-T-space (X,t1,12) such that LcM.
Now, P-ti-Ne-a(L)=n{K:K is a pairwise 1j-N-bC-set in X and LcK}.
cN{K:K is a pairwise t-N-bC-set in X and McK} [since LcM]
=P-1ij-Nv-a(M)
= P-1ij-Np-a(L)P-tij-Np-a(M).
Therefore, LcM =P-1ij-Ne-a(L)<=P-1i-Ne-a(M).
(iv) Let L be a pairwise 1j-N-bC-set in an NBi-T-space (X,11,12). Now, P-1i-Nb-a(L)=N{K:K is a pairwise
1-N-bC-set in X and LcK}. Since, L is a pairwise ti-N-bC-set in a (X,11,12), so L is the smallest
pairwise 1j-N-bC-set, which contains L. This implies, N{K:K is a pairwise t;-N-bC-set in X and
LcK}=L. Therefore, P-tij-Ne-a(L)=L.
Proposition 3.3. Let L be a neutrosophic subset of an NBi-T-space (X,11,12). Then,
(7) [P-tij-Nbp-int(L)]c =P-1i}-No-a(L°);
(17) [P-ti-No-ci(L)]¢ =P-Tij-Ne-int(L¢).
Proof. (i) Let (X,t1,12) be an NBi-T-space. Let L={(w, Ti(w), I.(w), Fi(w)): weX} be an neutrosophic
subset of (X,11,12).
Now, P-i-Ne-int(L) =U{K: K is a pairwise 1i-N-bO-set in X and KcL}
=@ Ty, (W), Al (w),AF (w)):weX},

where Ly is a pairwise ti-N-bO-set in X such that LycL, for each peA.
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This implies, [P-Tij-Np-int(L)]*={ (w,/\TLp (w),vI Ly (w),VvF, Ly (w)):weX]}.
Here AT, (w)STL(w),ILIZ7 (w)=I;, (w), Fy, (w)=F; (w), for each weX.
Therefore, P-tij-Np-int(L)={(w, /\TLp (w), vI Ly (w),vFLp (w)): weX}
=N{Lp: peA and Ly is a pairwise 1;-N-bC-set in X such that LccLy}
Hence, [P-tij-Np-int(L)]¢ = P-tij-Np-a(L¢).
(if) Let (X,11,12) be an NBi-T-space and L={(w, Te(w), I.(w), F.(w)): we X} be a N-set over X. Then,
P-ti-Ne-a(L) = N{K:K is a pairwise 1ij-N-bC-set in X and LcK}
={(@AT (@) VI, (@), VFy, () 0eX),
where L, is a pairwise 1i-N-bC-set in X such that LcLy, for each peA.
This implies, [P-tij-No-a(L)]*= {(w, VT, (w),AlL, (w),AFy (w)):weX]}.
Here, VT, (w)2T,(w),AlL, (W)SIL(w),/\FLp(w)ﬁFL(w), for each weX.
Therefore, P-’Eij—Nh-int(LC)={(w,VTLp(’LU),/\[ Lp(w),/\FLp(w)):weX}
=U{Ly: peA and Ly is a pairwise 1i-N-bO-set in X such that LycLc}.
Hence, [P-tij-Np-a(L)]= P-Tij-No-int(L°).
Theorem 3.1. Let (X,11,72) be an NBi-T-space. Then, the neutrosophic null set (Ov) and the
neutrosophic whole set (1n) are both 1-N-bO-set and 1ji-N-bO-set.
Proof. Let (X,11,2) be an NBi-T-space. Now, N}N/,.(ONJUN],N&(On)=NE (On)UN/(ON)= OnUON=ON.
Therefore, ONQOFNélNiLt(ON)UN{;tNCil(ON). Hence, the neutrosophic null set (On) is a 1-N-bO-set.
Similarly, it can be established that the neutrosophic null set (On) is a 7;-N-bO-set.
Further, one can show that the neutrosophic whole set (1n) are both ti-N-bO-set and 1ji-N-bO-set.
Theorem 3.2. In an NBi-T-space(X,11,12), every 1-NO-set is a 1j-N-bO-set.
Proof. Let L be a 1-NO-set in an NBi-T-space(X,t1,12). Therefore, N/, (L)=L. Now,Lc Nc]l (L)=
N’ Ni.(L). This implies, LEN? Ni, (L)YUNE, N (L). Hence, L is a 1-N-bO-set in (X,11,12).
Theorem 3.3. In an NBi-T-space (X,11,12),
(i) every 1i-N-bO-set is a pairwise ti-N-bO-set;
(ii) every Ti-N-bO-set is a pairwise 1i-N-bO-set;
(iif) every 1;-N-bC-set is a pairwise ti-N-bC-set;
(iv) every 1j-N-bC-set is a pairwise T1;-N-bC-set.
Proof. (i) Let L be a 1ij-N-bO-set in an NBi-T-space (X,t1,72). Then, L can be expressed as L=L0y,
where L is a 1i-N-bO-set and O is a 1j-N-bO-set in (X,t1,72). This implies, L is a pairwise ti-N-bO-set
in (X,11,12).
(if) Straightforward.
(iif) Let L be a 1i-NC-set in an NBi-T-space (X,t1,12). Then, L can be expressed as L=LN1n, where L is
a 1j-NC-set and 1~ is a 1-NC-set in (X, 11,72). This implies, L is a pairwise 1;-N-bC-set in (X,11,12).
(iv) Straightforward.
Theorem 3.4. In an NBi-T-Space (X,11,12), every 1-NO-set is a pairwise 1i-N-bO-set.
Proof. Let L be a t-NO-set in an NBi-T-space(X,t1,12). By Theorem 3.2, it is clear that L is a
1j-N-bO-set. Further, by Theorem 3.3., it is clear that L is a pairwise ti-N-bO-set.
Theorem 3.5. Let (X,11,12) be an NBi-T-space. Then, On and 1n are both pairwise ti-N-bO-set and

pairwise Tji-N-bO-set.
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Proof. Let (X,11,72) be an NBi-T-space. One can write ON=AUB, where A=0x is a 1j-N-bO-set and B=0n
is a 1-N-bO-set in (X, 11,72). This implies, Ov is a pairwise tj-N-bO-set in (X,11,12).

Similarly, it can be established that Ow is a pairwise 1-N-bO-set in (X,11,12).
Again, one can write 1n~=LUM, where L=1~ is a 1-N-bO-set and M=1n is a 1-N-bO-set in (X,11,12).
This implies, 1n is a pairwise 1;-N-bO-set in (X, 11,12).

Similarly, it can be also established that 1n is a pairwise 1j-N-bO-set in (X, 11,12).
Theorem 3.6. Let (X,t1,72) be an NBi-T-space. Then, both On and 1n are pairwise tj-N-bC-set and
pairwise Tji-N-bC-set.
Proof. By Theorem 3.5, it is clear that On is both pairwise 1;-N-bO-set and pairwise 1;-N-bO-set.
Hence, its complement 1w is both pairwise 1i-N-bC-set and pairwise 1;i-N-bC-set.

Similarly, from Theorem 3.5, it is clear that 1n is both pairwise 1i-N-bO-set and pairwise
7i-N-bO-set. Hence, its complement Ov is both pairwise 1;-N-bC-set and pairwise 71;-N-bC-set.

Remark 3.1. Throughout the article, we denote Tf’j as a collection of all pairwise 1;-N-bO-sets and
iC].
supra topology on X.

7;; as a collection of all pairwise tj-N-bC-sets in (X, 11,72). The collection Tf’j forms an neutrosophic
Definition 3.3. Let (X,t,12) and (Y,81,82) be two NBi-T-spaces. Then, an one to one and onto
mapping & :(X,t1,72)—>(Y,31,82) is called a

(i) pairwise neutrosophic semi continuous mapping (in short P-NS-C-mapping) if and only if
&1(L) is a T-NSO-set in X, whenever L is a pairwise 8;-NO-set in Y.

(if) pairwise neutrosophic pre continuous mapping (in short P-NP-C-mapping) if and only if&(L) is
a t-NPO-set in X, whenever L is a pairwise 8;-NO-set in Y.

(iif) pairwise neutrosophic continuous mapping (in short P-N-C-mapping) if and only if&(L) is a
1-NO-set in X, whenever L is a pairwise 3;-NO-set in Y.

(iv) pairwise neutrosophic b-continuous mapping (in short P-N-b-C-mapping) if and only if&'(L) is a
1-N-bO-set in X, whenever L is a pairwise 3;-NO-set in Y.

Theorem 3.7. Let (X,11,72) and (Y,81,82) be two NBi-T-spaces. Then, every P-N-C-mapping from
(X,11,12) to (Y,81,82) is a P-NP-C-mapping (P-NS-C-mapping).

Proof. Let L be a pairwise 3;-NO-set in (Y,81,82). Since, &:(X,11,12)—>(Y,01,82) is a P-N-C-mapping from
(X,t1,12) to (Y,81,82), so EN(L) is a t-NO-set in (X,t1,12). It is known that every t-NO-set is a t1-NPO-set
(t-NSO-set). Therefore, &1(L) is a ti-NPO-set (1-NSO-set) in (X,11,72). Hence, &:(X,t1,12)—>(Y,61,82) is a
P-NP-C-mapping (P-NS-C-mapping).

Theorem 3.8. Let (X,t,72) and (Y,81,82) be two NBi-T-spaces. Then, every P-NS-C-mapping
(P-NP-C-mapping) from (X,t1,12) to (Y,61,82) is a P-N-b-C-mapping.

Proof. Let L be a pairwise 6;j-NO-set in (Y,51,62). Since, &:(X,t1,12)—>(Y,01,02) is a P-NS-C-mapping
(P-NP-C-mapping) from (X,11,12) to (Y,01,82), so &'(L) is a 1-NSO-set (1-NPO-set) in (X,11,12). It is
known that, every t-NSO-set (1-NPO-set) is a t-N-bO-set. Therefore, &1(L) is a 1-N-bO-set in
(X,11,12). Hence, &:(X,11,12)—(Y,01,82) is a P-N-b-C-mapping.

Theorem 3.9. Let (X,11,72) and (Y,81,82) be two NBi-T-spaces. Then, every P-N-C-mapping from
(X,11,12) to (Y,81,82) is a P-N-b-C-mapping.

Proof. Let L be a pairwise 3i~NO-set in (Y,81,82). Since, &:(X,11,12)—>(Y,01,82) is a P-N-C-mapping from
(X,t,12) to (Y,01,82), so &(L) is a t-NO-set in (X,t1,72). It is known that, every t-NO-set is a
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1-N-b-O-set. Therefore, &(L) is a t-N-b-O-set in (X,t1,12). Hence, &:(X,t1,12)—(Y,51,82) is a

p-N-b-C-mapping.

Theorem 3.10. If &:(X,t1,72)—(Y,51,82) and y:(Y,01,62)—>(Z,01,02) be two P-N-C-mapping, then the

composition mapping y°&:(X,t1,12)—>(Z,01,02) is also a P-N-C-mapping.

Proof. Let &:(X,11,72)—>(Y,81,62) and y:(Y,01,82)—(Z,01,62) be two P-N-C-mappings. Let L be a pairwise

0;-NO-set in (Z,01,02). Since, 3:(Y,81,62)—(Z,01,02) is a P-N-C-mapping, so (L) is a 8-NO-set in Y.

Since, &:(X,11,12)—>(Y,01,82) is a P-N-C-mapping, so &' (x(L))= (x°&)"(L) is a t-NO-set in X.

Theorem 3.11. If &:(X,t1,72)—>(Y,81,02) be an one to one and onto mapping between two

NBi-T-spaces, then the following two are equivalent:

(i) € is a P-N-b-C-mapping.

(ii) EY(P-84-Nint(A)) cti-Ne-in(E1(A)), for every neutrosophic subset A of Y.

Proof. (i)=(ii)

Let &:(X,t1,12)—>(Y,61,02) be a P-N-b-C-mapping. Let A be an neutrosophic subset of Y. Here,

P-3i-Nint(A) is a pairwise 8NO-set in Y and P-8i-Nin(A)cA. This implies, &1(P-34-Nint(A))<E1(A). By

the hypothesis, &'(P-6i-Nin(A)) is a 1-N-b-O-set in X. Therefore, &'(P-6i-Nint(A)) is a t-N-b-O-set in X

such that &1(P-34-Nin(A))cE'(A). It is known that ti-Np-in(&1(A)) is the largest t-N-b-O-set in X,

which is contained in &1(A). Hence, &(P-8ij-Nint(A))ti-No-int(E1(A)).

(i)=()

Let A be a pairwise &6j-NO-set in (Y,561,082). Therefore, P-8;-Niu(A)=A. By hypothesis,

E1(P-8i-Nint(A))cti-Ne-in(E1(A)). This implies, &(A)cti-Np-in(E1(A)). It is known that Ti-Ne-int(&1(A))

c&1(A). Therefore, ti-Np-in(&1(A))=E1(A). Hence,&1(A) is a 1-N-b-O-set in (X,11,72). Therefore, € is a

P-N-b-C-mapping from an NBi-T-space (X,11,12) to another NBi-T-space (Y,51,52).

Theorem 3.12. An one to one and onto mapping &:(X,t1,12)—(Y,01,82) is a P-N-b-C-mapping if and

only if P-8i-Nint(§(A))=E(Ti-Ne-int(A)), for every N-set A over X and i, j=1,2, and i=j.

Proof. Let &:(X,11,72)—(Y,01,82) be a P-N-b-C-mapping. Let A be an N-set over X. Then, (A) is also an

N-set over Y. By Theorem 3.11, we have &'(P-8i-Nin(§(A)))=ti-Ne-in(E1(E(A))). This implies,

E1(P-8i-Nint(§(A)))ti-No-int(A).  Hence, P-6i-Nint(§(A))<E(ti-No-nt(A)).  Therefore, P-6i-Ni(E(A))

E(ti-Nu-int(A)), for every N-set A over X and i, j=1,2; and i#j.

Conversely, let &:(X,11,72)—>(Y,01,82) be a mapping between two NBi-T-spaces such that
P-8ii-Nint(E(A))E(ti-No-int(A)) 1

for every N-set A overX and i, j =1,2; and i#j.

Let A be an N-set over Y. Then, £'(A) is an N-set over X. By putting A=£(A) in eq. (1), we have,

P-3i-Nim(&(&1(A))) <&(ti-No-int(E7(A)))

=P-8i-Nint(A)E(1i-No-int(E1(A)))

=EY(P-6i-Nint(A)Ti-Np-int(E1(A)).

Therefore, &'(P-6ii-Nin(A)cti-No-ine(E1(A)), for every N-set A of Y. Hence, by Theorem 3.11., the

mapping &:(X,t1,12)—>(Y,061,82) is a P-N-b-C-mapping.

Corollary 3.1. If &:(X,t1,172)—>(Y,81,82) is an one to one and onto mapping from an NBi-T-space

(X,71,72) to another NBi-T-space (Y,51,82), then the following two are equivalent:

(i) & is a P-N-C-mapping.

(i1) &1(P-8s-Nint(Q)) cti-Nimt(£1(Q)), for every N-set Q overY.
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Definition 3.4. Let (X,11,12) be an NBi-T-space. Let x4 be an N-point in X. Then, an N-set Q over X
is called a pairwise tij-neutrosophic b-neighbourhood (in short P-ti-N-b-nbd) of xsb,, if there exist a
pairwise 1i-N-bO-set U such that xspc€ UcQ.

Theorem 3.13. Let (X,11,72) be an NBi-T-space. An N-set Q over X is a pairwise 1i-N-bO-set if and
only if Q is a P-ti-N-b-nbd of all of its N-points.

Proof. Let Q be a pairwise 1i-N-bO-set in an NBi-T-space (X,11,12). Let xat.c be an N-point in X such
that xepce Q. Therefore, xopceQcQ. This implies, Q is a P-ti-N-b-nbd of xane. Hence, Q is the
P-1i-N-b-nbd of all of its N-points.

Conversely, let Q be a P-1i-N-b-nbd of all of its N-points. Assume that xasc be an N-point in X,
such that xapce Q. Therefore, there exist a pairwise 1i-N-bO-set G such that xasc.€ GCQ.

Now, Q=Ux,, €0 *Xab,cSVUx, ;.0 GSUx, , co@=Q. This implies, Q=Uy,, eo G, which is a pairwise
1i-N-bO-set. Therefore, Q is a pairwise 1i-N-bO-set in (X, 11,12).

Theorem 3.14. An one to one and onto mapping &:(X,11,12)—(Y,01,82) is a P-N-b-C-mapping if and
only if for every N-point x.»ceY and for any P-3iN-b-nbd V of xane in Y, there exist a
ti-neutrosophic-b-neighbourhood (in short t-N-b-nbd) U of &'(xsbe) in X such that U c&1(V).

Proof. Let &:(X,t1,12)—>(Y,01,62) be a P-N-b-C-mapping. Let xapc be an N-point in Y and V be a
P-8i-N-b-nbd of xsbc. Then, there exist a pairwise 6;-NO-set G in Y such that xa5ce GEV. This implies,
E(xape) eENG)E(V). Since, &:(X,11,12)—>(Y,81,82) is a P-N-b-C-mapping, so £(G) is a 1-N-bO-set in
X. By taking U=£'(G), we see that U is a t-N-bO-set in X such that &'(xssc)eUcE (V). Hence,
U=£1(G) is a t-N-b-nbd of &1(xabc) and UcE(V).

Conversely, let for every N-point xasrc€Y and for any P-6;i-N-nbd V of xsuc in Y, there exist a
1i-N-b-nbd U of &' (xapc) in X such that Uc&(V). Let G be a pairwise 6i-NO-set in Y and xabc€G. By
Theorem 3.13., G is a P-3;-N-nbd of xauc. By hypothesis, there exists a ©-N-b-nbd H of &'(xanc)eX
such that &'(xssec) e HSEY(G). This implies, &1(G) is the 1-N-b-nbd of each of its N-points. Therefore,
&1(G) is a 1-N-bO-set in X. Hence, &:(X,11,12)—>(Y,61,82) is a P-N-b-C-mapping.

Theorem 3.15. If &:(X,11,12)—>(Y,01,62) be a P-N-b-C-mapping and y:(Y,51,62)—>(Z,01,02) be a
P-N-C-mapping, then the composition mapping % °&:(X,11,12)—(Z,01,62) is a P-N-b-C-mapping.

Proof. Let &:(X,11,72)—>(Y,81,62) be a P-N-b-C-mapping and y:(Y,61,82)—(Z,01,02) be a P-N-C-mapping.
Let L be a pairwise 8;-NO-set in (Z,01,02). Since, y:(Y,81,62)—(Z,01,02) is a P-N-C-mapping, so y (L) is
a 8-NO-set in Y. Now, by Lemma 2.1,, it is clear that y(L) is a pairwise 3;-NO-set in (Y,31,82). Since,
£:(X,11,12)>(Y,01,02) is a P-N-b-C-mapping, so & (x(L))=(x ) (L) is a ©1-NO-set in X. Since, every
7-NO-set is a 1-N-bO-set, so (x°¢)*(L) is a 1-N-bO-set in X. Hence, y°&:(X,t1,12)—>(Z,01,02) is a
P-N-b-C-mapping.

4. Conclusion

In this article, we introduce the notion of pairwise neutrosophic-b-interior, pairwise neutrosophic-b-closure, pairw
neutrosophic b-continuous mapping, we prove some propositions and theorems on NBi-T-spaces. In

the future, we hope that based on these notions in NBi-T-spaces, many new investigations can be

carried out.
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