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Abstract: In this paper we establish the notion of complex single-valued neutrosophic N -soft set. It improves the traits of three
general models, namely, single-valued neutrosophic sets, single-valued neutrosophic soft sets and single-valued neutrosophic N -
soft sets, in such way that it makes two dimensional ambiguous information and parameterized grading evaluation compatible.
We explain the modeling abilities of complex single-valued neutrosophic N -soft sets and investigate some of their fundamental
properties. Moreover, the intended approach hinges on rational attributes to support the choice of the most suitable solution. The
proposed method is explicated through an example from the islamic banking industry. We also perform a comparative analysis with
respect to the neutrosophic TOPSIS method.

Keywords: Complex single-valued neutrosophic set, N -soft set, TOPSIS method, MAGDM.

1 Introduction
A fascinating research article by Smarandache [29] has attracted the attention of many researchers since 1998. Neutrosophic sets (NSs) had
been born that year. They are based on formal logic that contemplates the nature, origin, and scope of objectivities with their relations for
numerous intellectual spectra. The neutrosophic theory comprises probability, set theory, logics, and statistics. As such it copes with real life events
characterized by degree of satisfaction, dissatisfaction and indeterminacy. It is therefore acknowledged to provide a generalization of both classic
set, fuzzy set, intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets and Pythagorean fuzzy sets [38, 17, 33]. Neutrosophic-inspired sets
are classified into many subclasses like interval-valued neutrosophic sets, single-valued neutrosophic sets (SVNSs), and the subclass known as
simplified neutrosophic set. The SVNSs were introduced by Wang and Smarandache [31, 30]. They can be characterized by three real valued
functions whose values are taken from the unit closed interval [0, 1], therefore it is more convenient and applicable in many areas of science and
engineering. After Wang and Smarandache, the single-valued neutrosophic environment has been scrutinized extensively. For example, Ye [34]
provided a correlation coefficient between SVNSs which became a useful tool for decision making, and Akram and Luqman [6] illustrated the
concept of SVNSs with the flavor of hypergraphs.
Another breakthrough was Ramot et al. [26] who extended the 1-dimensional fuzzy perspective [38] to 2-dimensional phenomena. The resulting
model was called complex fuzzy sets. This new perspective prompted many authors to adapt existing models to the complex spirit. Thus complex
intuitionistic fuzzy sets [15] and complex Pythagorean fuzzy sets [37], which are precisely related to multi-attribute decision making (MAGDM)
phenomena, were soon developed.
The two aforementioned expressions of vagueness were made compatible by Ali and Smarandache [13]. These authors put forward the notion of
complex neutrosophic set under the influence of both neutrosophic sets [29] and complex fuzzy sets [26].
In MAGDM problems, the opinions of people are not invariably expressed through binary evaluations. It is often easier to bring up decisions using
non-binary evaluations, specifically in the case of qualitative information such as the perceived performance of banking industry, people’s morality,
hospital assistance, etc. Hence, Fatimah et al. [21] firstly presented N -soft sets and applied them on decision making methods based on non-binary
evaluations. N -soft sets extended the scope of soft sets [25] whose foundation is that any alternative can be characterized by a selected list of
attributes. Many real examples were given [11, 21]. Stimulated from the novel concept of N -soft set, Akram et al. [5] solved decision making
problems using the hybrid combination of fuzzy set with N -soft set that improves the performance of fuzzy soft sets [10]. Further, Akram et al.
[9] presented the novel idea of intuitionistic fuzzy N -soft sets (IFNSfSs), Pythagorean fuzzy N -soft sets (PFNSfSs) have been introduced
by Zhang [39] in 2020, and recently the multi-fuzzy N -soft set model has been presented alongside its applications to decision-making [22]. This
proves that N -soft sets are a trendy topic and that the model is amenable to hybridization from many standpoints including rough set theory [11]
and hesitancy [4] in addition to the ideas discussed above.
The theoretical models called neutrosophic soft sets (NSfSs) and single-valued neutrosophic soft sets (SVNSfSs) were put forward by Maji
[40] and Jana et al. [23], respectively. The parametrized nature of the attributes that characterizes soft set theory is combined with neutrosophic
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information and the possibilities of these new models are discussed in detail. Ashraf and Butt [16] and Riaz et al. [27] first established a theoretical
model for neutrosophic N -soft sets (NNSfSs). They made applications to business and the medical field supported by the TOPSIS method,
respectively. Moreover, Sahin et al. [28] used the framework of (SVNSfSs) for the development of a TOPSIS method which helped to find
the most suitable supplier for a production industry. In 2015, Ye [36] introduced single-valued neutrosophic linguistic numbers (SVNLNs) as
an extension of intuitionistic linguistic numbers and further set theoretical description for single-valued neutrosophic linguistic-TOPSIS method.
More recently, Akram et al. [7, 8] have presented new decision making methods.
In this manuscript we present a quite general model known as complex single-valued neutrosophic N -soft set (CSVNSfS). It describes the
possibility that the parameterized nature of the universe may be complex single-valued neutrosophic, which comprises functions for satisfaction
degree, hesitancy degree and dissatisfaction degree whose values are taken from the complex unit circle. The hesitancy degree and ordered grades
endow the CSVNSfS with excellent qualities, so much so that this model dominates over the existing CNSs,NNSfSs and SVNSs.
The motivation for this paper depends upon the following elements:

1. The NNSfSs and IFNSfSs have the ability to express situations including an indeterminacy part with ordered grades, but they are not
designed to deal with two dimensional ambiguity in the parametric information.

2. Moreover, SVNSs and CNSs can tackle the hesitancy degree in human judgment with periodic terms, but they cannot assist us in the
decision making problems based on non-binary evaluations or ranking systems.

3. These limitations encouraged us to present the idea of CSVNSfS which competently handles the phase term of 2-dimensional problems
with ordered grades, indeterminacy, hesitancy and incomplete figures in their decisions.

The practical contribution of this article is the formalization of the CSVNSfS-TOPSIS technique for solving MAGDM problems that require the
use of CSVNSf information. For this purpose, we define some basic notions and the CSVNSfSSs and CSVNSf averaging and geometric
operators. These operators allow us to combine the decisions according to the performance of the alternatives and the weightage of the relevant
attributes and experts. We also define score and accuracy function sof CSVNSfNs for the sake of CSVNSf -PIS and CSVNSf -NIS. Finally,
we can sort out the alternatives using a revised closeness index whose values are totally based upon the normalized Euclidean distance.
The authenticity of the presented technique is verified by a numerical example that concerns the monitoring performance of the Islamic banking
industry on the basis of the CAMELS rating system. Moreover, a comparison of the proposed model with the SVN -TOPSIS method substantiates
the accuracy and reliability of the results and of our novel technique. For further useful notions related to N -soft sets not discussed in the paper,
the readers are referred to [1, 2, 12]
The arrangement of this paper is as follows. Section 2 contains some basic definitions related to the proposed model. In Section 3 we describe
the main features of the presented theory with some operations and properties. Section 4 presents the score function, accuracy function and
some aggregation operators related to CSVNNSfNs. Section 5, gives a brief description for the CSVNNSf -TOPSIS method with a specific
algorithm. Section 6, models a MAGDM problem and applies the proposed technique to find a solution. Section 7 comprises the comparison
analysis with the CSVN -TOPSIS method. In Section 8, we come to the conclusion with some ideas for future research works.

2 Preliminaries
Definition 1. [29] A neutrosophic set (NS) Ψ on a universe of discourse U has the form:

Ψ = 〈u,TΨ(u), IΨ(u),FΨ(u) : u ∈ U〉,

where, TΨ(u), IΨ(u) and FΨ(u) are degree of satisfaction, degree of indeterminacy and degree of dissatisfaction, respectively, belongs to non-
standard interval ]−0, 1+[, for every u ∈ U.

Definition 2. [31] A single-valued neutrosophic set (SVNS) Ψ on a universe of discourse U has the form

Ψ = 〈u,TΨ(u), IΨ(u),FΨ(u) : u ∈ U〉,

where TΨ(u), IΨ(u), FΨ(u) : U → [0, 1] are the degree of truthness, degree of hesitancy and degree of falsity, respectively, without any condition
on the sum of TΨ(u), IΨ(u) and FΨ(u) for all u ∈ U. The triplet (TΨ, IΨ,FΨ) is called single-valued neutrosophic number (SVNN).

Definition 3. [13] A complex single-valued neutrosophic set (CSVNS) Ψ, on the universe U is defined as:

Ψ = 〈u,TΨ(u), IΨ(u),FΨ(u) : u ∈ U〉,

where TΨ(u) = pΨ(u)ei2πtΨ(u), IΨ(u) = qΨ(u)ei2πωΨ(u) and FΨ(u) = rΨ(u)ei2πfΨ(u), denote the degree of truthness, degree of hesitancy
and degree of falsity, respectively, without any conditions on the sum of amplitude terms pΨ(u), qΨ(u), rΨ(u) : U → [0, 1] or the phase terms
tΨ(u), ωΨ(u), fΨ(u) : U → [0, 1] for all u ∈ U. The triplet (pΨ(u)ei2πtΨ(u), qΨ(u)ei2πωΨ(u), rΨ(u)ei2πfΨ(u)) is called complex single-valued
neutrosophic number (CSVNN).

Definition 4. [25] Let U be a non-empty set and K be a set of parameters and Y ⊆ K. A soft set SfS over U is a pair (Φ, Y ), where
Φ : K → P (U) is a set-valued function defined as:

(Φ, Y ) = {〈yw,Φ(yw)〉|yw ∈ Y,Φ(yw) ∈ P (U)}.
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Definition 5. Let U be a non-empty set and K be a set of parameters and Y ⊆ K. A complex single-valued neutrosophic soft set CSVNSfS
over U is a pair (Φ, Y ), where Φ : K → P(CSVNS) is a set-valued function defined as:

(Φ, Y ) = {〈yw,Φ(yw)〉|yw ∈ Y,Φ(yw) ∈ P(CSVNS)}
= {〈yw, (us, (Tws, Iws,Fws))〉}
= {〈yw, (us, (pwsei2πtws , qwsei2πωws , rwsei2πfws))〉},

where P(CSVNS) is the collection of all subsets of CSVNSs over the non-empty set U and pws, tws, qws, ωws, rws, fws ∈ [0, 1].

Definition 6. [21]Let U be a non-empty set and K be a set of parameters and Y ⊆ K. Let H = {0, 1, 2, . . . , N − 1} be a set of ordered grades
with N ∈ {2, 3, . . .}. A triple (Φ, Y,N) is called N -soft set (NSfS) over U if Φ is a mapping define as Φ : Y → 2U×H , that is there exist a
unique pair (us, h

s
w) ∈ U×H such that (us, h

s
w) ∈ Φ(yw), where us ∈ U, hsw ∈ H.

3 Complex single-valued neutrosophic N -soft sets
Definition 7. Let U be a non-empty set and K be a set of parameters with Y ⊆ K. Let H = {0, 1, 2, . . . , N − 1} be a set of ordered grades with
N ∈ {2, 3, . . .}. A triple (ΦΨ, Y,N) is called a complex single-valued neutrosophic N -soft set (CSVNNSfS) on Y, if (Φ, Y,N) is an NSfS
on U, and ΦΨ : Y → 2U×H ×CSVNN is a mapping, which is defined as:

ΦΨ(yw) = {〈(Φ(yw),Ψ(yw))〉 : yw ∈ Y },
= {〈((us, hsw), (Tws, Iws,Fws))〉},
= {〈((us, hsw), (pwse

i2πtws , qwse
i2πωws , rwse

i2πfws))〉},

where Φ : Y → 2U×H , Ψ : Y → CSVNN, and CSVNN denotes the collection of all complex single-valued neutrosophic numbers of U, hsw
denotes the rank of parameter for the alternative yw and pws, tws, qws, ωws, rws, fws ∈ [0, 1], with no conditions on their sum.

Example 1. Let U = {U1 = Emirates, U2 = Eithad Airways, U3 = Turkish airlines, U4 = Flynas } be the set of airlines from Pakistan to Turkey
and Y = {Y1 = Price , Y2 = Entertainment, Y3 = luxuries, Y4 = Safety } be the characteristics which are experienced by the passengers and
then passengers assigned ratings to these airlines. These ratings are aggregated by the experts and form a 6-soft set given Table 1, where

0 means ‘very Bad’

1 means ‘Bad’

2 means ‘Ok’

3 means ‘Good’

4 means ‘Great’

5 means ‘Excellent’

Table 1: 6-soft set evaluated by experts
Y/U U1 U2 U3 U4

Y1 3 5 0 1
Y2 1 4 2 0
Y3 2 1 4 3
Y4 5 0 1 2

For handling the alternatives with fuzziness property related to parameters, we need CSVNNSfSs. Therefore, authorities defined grading
criteria, given in Table 2, for the evaluation of airlines under the environment of CSVNNSfSs, where Table 2 is evaluated from the following
criteria:

when hsw = 0, − 4.00 ≤ S(Ψ) < − 3.30,

when hsw = 1, − 3.30 ≤ S(Ψ) < − 2.20,

when hsw = 2, − 2.20 ≤ S(Ψ) < − 1.00,

when hsw = 3, − 1.00 ≤ S(Ψ) < 0.20,

when hsw = 4, 0.20 ≤ S(Ψ) < 1.20,

when hsw = 5, 1.20 ≤ S(Ψ) ≤ 2.000.
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Table 2: Grading criteria for CSVN6SS
hwz /J degree of truthness degree of indeterminacy degree of falsity
grades pw 2πtw qw 2πωw rw 2πfw
hsw = 0 [0.00, 0.15) [0.0, 0.3π) (0.90, 1.00] [1.8π, 2.0π] (0.90, 1.00] [1.8π, 2.0π]
hsw = 1 [0.15, 0.30) [0.3π, 0.6π) (0.70, 0.90] [1.4π, 1.8π) (0.70, 0.90] [1.4π, 1.8π)
hsw = 2 [0.30, 0.50) [0.6π, 1.0π) (0.50, 0.70] [1.0π, 1.4π) (0.50, 0.70] [1.0π, 1.4π)
hsw = 3 [0.50, 0.70) [1.0π, 1.4π) (0.30, 0.50] [0.6π, 1.0π) (0.30, 0.50] [0.6π, 1.0π)
hsw = 4 [0.70, 0.90) [1.4π, 1.8π) (0.15, 0.30] [0.3π, 0.6π) (0.15, 0.30] [0.3π, 0.6π)
hsw = 5 [0.90, 1.00] [1.8π, 2π] [0.00, 0.15] [0.0, 0.3π) [0.00, 0.15] [0.0, 0.3π)

Using the prescribed information, the CSVN6SfS, shown in 3, is defined as:

ΦΨ(Y1) = {((U1, 3), (0.60ei1.26π, 0.35ei0.68π, 0.4ei0.84π)), ((U2, 5), (0.95ei1.92π, 0.05ei0.12π, 0.12ei0.26π)),

((U3, 0), (0.06ei0.14π, 0.95ei1.92π, 0.97ei1.96π)), ((U4, 1), (0.24ei0.50π, 0.86ei1.70π, 0.87ei1.72π))},

ΦΨ(Y2) = {((U1, 1), (0.17ei0.40π, 0.75ei1.48π, 0.81ei1.66π)), ((U2, 4), (0.81ei1.66π, 0.22ei0.42π, 0.25ei0.48π)),

((U3, 2), (0.36ei0.74π, 0.58ei1.18π, 0.54ei1.10π)), ((U4, 0), (0.08ei0.20π, 0.96ei1.94π, 0.98e1.98π))},

ΦΨ(Y3) = {((U1, 2), (0.32ei0.70π, 0.55ei1.12π, 0.52ei1.06π)), ((U2, 1), (0.2ei0.42π, 0.76ei1.54π, 0.78ei1.58π)),

((U3, 4), (0.75ei1.52π, 0.17ei0.36π, 0.20ei0.38π)), ((U4, 3), (0.69ei1.36π, 0.41ei0.84π, 0.48e0.94π))},

ΦΨ(Y4) = {((U1, 5), (0.98ei1.94π, 0.01ei0.04π, 0.1e0.24iπ)), ((U2, 0), (0.03ei0.10π, 0.91ei1.84π, 0.93e1.88iπ)),

((U3, 1), (0.21ei0.46π, 0.79ei1.60π, 0.83ei1.68π)), ((U4, 2), (0.38ei0.78π, 0.59ei1.20π, 0.55ei1.12π))}.

Table 3: The CSVN6SfS (ΦΨ, Y, 6)
(ΦΨ, Y, 6) U1 U2 U3 U4

Y1 (3, (0.60ei1.26π, 0.35ei0.68π, 0.40ei0.84π)) (5, (0.95ei1.92π, 0.05ei0.12π, 0.12ei0.26π)) (0, (0.06ei0.14π, 0.95ei1.92π, 0.97ei1.96π)) (1, (0.24ei0.50π, 0.86ei1.70π, 0.87ei1.72π))
Y2 (1, (0.17ei0.40π, 0.75ei1.48π, 0.81ei1.66π)) (4, (0.81ei1.66π, 0.22ei0.42π, 0.25ei0.48π)) (2, (0.36ei0.74π, 0.58ei1.18π, 0.54ei1.10π)) (0, (0.08ei0.20π, 0.96ei1.94π, 0.98e1.98π))
Y3 (2, (0.32ei0.70π, 0.55ei1.12π, 0.52ei1.06π)) (1, (0.20ei0.42π, 0.76ei1.54π, 0.78ei1.58π)) (4, (0.75ei1.52π, 0.17ei0.36π, 0.20ei0.38π)) (3, (0.69ei1.36π, 0.41ei0.84π, 0.48e0.94π))
Y4 (5, (0.98ei1.94π, 0.01ei0.04π, 0.10e0.24iπ)) (0, (0.03ei0.10π, 0.91ei1.84π, 0.93e1.88iπ)) (1, (0.21ei0.46π, 0.79ei1.60π, 0.83ei1.68π)) (2, (0.38ei0.78π, 0.59ei1.20π, 0.55ei1.12π))

Definition 8. A CSVNSfS(ΦΨ, Y,N) over a non-empty set U is said to be efficient where (Φ, Y,N) is an NSfS, if ΦΨ(yw) = 〈(us, N −
1), 1, 0, 0〉 for some yw ∈ Y, us ∈ U.

Example 2. Let (ΦΨ, Y, 6) be CSVN6SfS, as in Example 1. From Table 3, it is clear that Example 1 is not efficient.

Definition 9. Let (ΦΨ, Y,N1) and (χA, C,N2) be two CSVNSfSs on a universe of discourse U. Then, they are said to be equal if and only if
Φ = χ, Ψ = A, Y = C and N1 = N2.

Definition 10. Let (ΦΨ, Y,N) be a CSVNSfS on U. The weak complement of CSVNSfS is defined as the weak complement of the N -soft
set (Φ, Y,N), that is, any N -soft set such that Φc(yw) ∩ Φ(yw) = ∅ for all yw ∈ Y. The weak complement of CSVNSfS of (ΦΨ, Y,N) is
represented as (ΦcΨ, Y,N).

Example 3. Let (ΦΨ, Y, 6) be CSVN6SfS, as in Example 1. The weak complement (ΦcΨ, Y,N) is given in Table 4.

Table 4: A weak complement of the CSVN6SfS (ΦΨ, Y, 6)
(ΦcΨ, Y, 6) U1 U2 U3 U4

Y1 (5, (0.60ei1.26π, 0.35ei0.68π, 0.40ei0.84π)) (4, (0.95ei1.92π, 0.05ei0.12π, 0.12ei0.26π)) (1, (0.06ei0.14π, 0.95ei1.92π, 0.97ei1.96π)) (3, (0.24ei0.50π, 0.86ei1.70π, 0.87ei1.72π))
Y2 (4, (0.17ei0.40π, 0.75ei1.48π, 0.81ei1.66π)) (1, (0.81ei1.66π, 0.22ei0.42π, 0.25ei0.48π)) (3, (0.36ei0.74π, 0.58ei1.18π, 0.54ei1.10π)) (5, (0.08ei0.20π, 0.96ei1.94π, 0.98e1.98π))
Y3 (4, (0.32ei0.70π, 0.55ei1.12π, 0.52ei1.06π)) (3, (0.20ei0.42π, 0.76ei1.54π, 0.78ei1.58π)) (0, (0.75ei1.52π, 0.17ei0.36π, 0.20ei0.38π)) (5, (0.69ei1.36π, 0.41ei0.84π, 0.48e0.94π))
Y4 (0, (0.98ei1.94π, 0.01ei0.04π, 0.10e0.24iπ)) (2, (0.03ei0.10π, 0.91ei1.84π, 0.93e1.88iπ)) (3, (0.21ei0.46π, 0.79ei1.60π, 0.83ei1.68π)) (3, (0.38ei0.78π, 0.59ei1.20π, 0.55ei1.12π))
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Table 6: The complex single-valued neutrosophic complement (ΦΦc , Y,N) of the CSVN6SfS
(ΦΨc , Y, 6) U1 U2 U3 U4

Y1 (3, (0.40ei0.84π, 0.65ei1.32π, 0.60ei1.26π)) (5, (0.12ei0.26π, 0.95ei1.88π, 0.95ei1.92π)) (0, (0.97ei1.96π, 1.05ei1.92π, 0.06ei0.14π)) (1, (0.24ei0.50π, 0.14ei0.24π, 0.87ei1.72π))
Y2 (1, (0.81ei1.66π, 0.25ei0.52π, 0.17ei0.40π)) (4, (0.25ei0.48π, 0.88ei1.58π, 0.81ei1.66π)) (2, (0.54ei1.10π, 0.42ei0.08π, 0.36ei0.74π)) (0, (0.98e1.98π, 0.04ei0.06π, 0.08ei0.20π))
Y3 (2, (0.52ei1.06π, 0.45ei0.88π, 0.32ei0.70π)) (1, (0.78ei1.58π, 0.24ei0.46π, 0.20ei0.42π)) (4, (0.20ei0.38π, 0.83ei1.64π, 0.75ei1.52π)) (3, (0.48e0.94π, 0.59ei1.16π, 0.69ei1.36π))
Y4 (5, (0.10e0.24iπ, 0.09ei1.96π, 0.98ei1.94π)) (0, (0.93e1.88iπ, 0.09ei0.16π, 0.03ei0.10π)) (1, (0.83ei1.68π, 0.21ei0.40π, 0.21ei0.46π)) (2, (0.55ei1.12π, 0.41ei0.80π, 0.38ei0.78π))

Definition 11. Let (ΦΨ, Y,N) be a CSVNNSfS onU. The Strong complement of CSVNNSfS, denoted as (Φ
′
Ψ, Y,N), is defined as:

Φ
′
(yw) =

{
hsw − 1, if hsw = (N − 1)− hsw,
(N − 1)− hsw, otherwise,

for all yw ∈ Y and us ∈ U, satisfying the condition (ΦΨ, Y,N) ∩ (Φ
′
Ψ, Y,N) = ∅.

Example 4. Let (ΦΨ, Y, 6) be CSVN6SfS, then the strong complement (Φ
′
Ψ, Y, 6) of Example 1 is given in Table 5 such that (ΦΨ, Y, 6) ∩

(Φ
′
Ψ, Y, 6) = ∅.

Table 5: Strong complement of (ΦΨ, Y, 6)
(ΦΨ, Y, 6) U1 U2 U3 U4

Y1 (2, (0.60ei1.26π, 0.35ei0.68π, 0.40ei0.84π)) (0, (0.95ei1.92π, 0.05ei0.12π, 0.12ei0.26π)) (5, (0.06ei0.14π, 0.95ei1.92π, 0.97ei1.96π)) (4, (0.24ei0.50π, 0.86ei1.70π, 0.87ei1.72π))
Y2 (4, (0.17ei0.40π, 0.75ei1.48π, 0.81ei1.66π)) (1, (0.81ei1.66π, 0.22ei0.42π, 0.25ei0.48π)) (3, (0.36ei0.74π, 0.58ei1.18π, 0.54ei1.10π)) (5, (0.08ei0.20π, 0.96ei1.94π, 0.98e1.98π))
Y3 (3, (0.32ei0.70π, 0.55ei1.12π, 0.52ei1.06π)) (4, (0.20ei0.42π, 0.76ei1.54π, 0.78ei1.58π)) (1, (0.75ei1.52π, 0.17ei0.36π, 0.20ei0.38π)) (2, (0.69ei1.36π, 0.41ei0.84π, 0.48e0.94π))
Y4 (0, (0.98ei1.94π, 0.01ei0.04π, 0.10e0.24iπ)) (5, (0.03ei0.10π, 0.91ei1.84π, 0.93e1.88iπ)) (4, (0.21ei0.46π, 0.79ei1.60π, 0.83ei1.68π)) (3, (0.38ei0.78π, 0.59ei1.20π, 0.55ei1.12π))

Proposition 12. A strong complement of CSVNNSfS is also a weak complement but week complement may or may not be strong complement.

Proof. The proof is straight forward from the definitions of strong complement and weak complement.

Definition 13. Let (ΦΨ, Y,N) be a CSVNSfS on U. The complex single-valued neutrosophic complement of CSVNSfS is denoted as
(ΦΨc , Y,N) and is defined as

ΦΨc(yw) = 〈(us, hsw, (Fws, 1− Iws,Tws))〉 = 〈(us, hsw, (rwsei2πfws , (1− qws)ei2π(1−ωws), pwse
i2πtws))〉.

Example 5. Let (ΦΨ, Y, 6) be CSVN6SfS, as in Example 1. The complex single-valued neutrosophic complement (ΦΨc , Y,N), is given in
Table 6.

Definition 14. Let (ΦΨ, Y,N) be a CSVNSfS on U. (F cJc , Z,N) is referred to as a weak complex single-valued neutrosophic complement
of ((ΦΨ)c, Y,N) if and only if (ΦcΨ, Y,N) is a weak complement and (ΦΨc , Y,N) is a complex single-valued neutrosophic complement of
(ΦΨ, Y,N).

Example 6. Let (ΦΨ, Y, 6) be CSVN6SfS, as in Example 1. The weak complex single-valued neutrosophic complement (ΦcΦc , Y,N), is given
in Table 7.

Table 7: The weak complex single-valued neutrosophic complement (Φc
Ψc , Y, 6) of the CSVN6SfS

(ΦcΨc , Y, 6) U1 U2 U3 U4

Y1 (5, (0.40ei0.84π, 0.65ei1.32π, 0.60ei1.26π)) (4, (0.12ei0.26π, 0.95ei1.88π, 0.95ei1.92π)) (1, (0.97ei1.96π, 1.05ei1.92π, 0.06ei0.14π)) (3, (0.24ei0.50π, 0.14ei0.24π, 0.87ei1.72π))
Y2 (4, (0.81ei1.66π, 0.25ei0.52π, 0.17ei0.40π)) (1, (0.25ei0.48π, 0.88ei1.58π, 0.81ei1.66π)) (3, (0.54ei1.10π, 0.42ei0.08π, 0.36ei0.74π)) (5, (0.98e1.98π, 0.04ei0.06π, 0.08ei0.20π))
Y3 (4, (0.52ei1.06π, 0.45ei0.88π, 0.32ei0.70π)) (3, (0.78ei1.58π, 0.24ei0.46π, 0.20ei0.42π)) (0, (0.20ei0.38π, 0.83ei1.64π, 0.75ei1.52π)) (5, (0.48e0.94π, 0.59ei1.16π, 0.69ei1.36π))
Y4 (0, (0.10e0.24iπ, 0.09ei1.96π, 0.98ei1.94π)) (2, (0.93e1.88iπ, 0.09ei0.16π, 0.03ei0.10π)) (3, (0.83ei1.68π, 0.21ei0.40π, 0.21ei0.46π)) (3, (0.55ei1.12π, 0.41ei0.80π, 0.38ei0.78π))

Definition 15. Let (ΦΨ, Y,N) be a CSVNNSfS on U, then the strong complex single-valued neutrosophic complement ((ΦΨ)
′
, Y,N) is de-

fined as a strong complement (Φ
′
Ψ, Y,N) and a complex single-valued neutrosophic complement (ΦΨc , Y,N) of (ΦΨ, Y,N), defined as:

Φ
′
Ψc(yw) = {

(hsw − 1, (rwse
i2πfws , (1− qws)ei2π(1−ωws), pwse

i2πtws)) if hsw = (N − 1)− hsw,
((N − 1)− hsw, (rwsei2πfws , (1− qws)ei2π(1−ωws), pwse

i2πtws)) otherwise,

for all yw ∈ Y and us ∈ U.
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Example 7. Let (ΦΨ, Y, 6) be CSVN6SfS onU, then the strong single-valued neutrosophic complement (Φ
′
Ψc , Y,N), of (ΦΨ, Y, 6) arranged

in Table 3, is calculated in Table 8.

Table 8: Strong single-valued neutrosophic complement of (ΦΨ, Y, 6)
(Φ

′

Ψc , Y, 6) U1 U2 U3 U4

Y1 (2, (0.40ei0.84π, 0.65ei1.32π, 0.60ei1.26π)) (0, (0.12ei0.26π, 0.95ei1.88π, 0.95ei1.92π)) (5, (0.97ei1.96π, 1.05ei1.92π, 0.06ei0.14π)) (4, (0.24ei0.50π, 0.14ei0.24π, 0.87ei1.72π))
Y2 (4, (0.81ei1.66π, 0.25ei0.52π, 0.17ei0.40π)) (1, (0.25ei0.48π, 0.88ei1.58π, 0.81ei1.66π)) (3, (0.54ei1.10π, 0.42ei0.08π, 0.36ei0.74π)) (5, (0.98e1.98π, 0.04ei0.06π, 0.08ei0.20π))
Y3 (3, (0.52ei1.06π, 0.45ei0.88π, 0.32ei0.70π)) (4, (0.78ei1.58π, 0.24ei0.46π, 0.20ei0.42π)) (1, (0.20ei0.38π, 0.83ei1.64π, 0.75ei1.52π)) (2, (0.48e0.94π, 0.59ei1.16π, 0.69ei1.36π))
Y4 (0, (0.10e0.24iπ, 0.09ei1.96π, 0.98ei1.94π)) (5, (0.93e1.88iπ, 0.09ei0.16π, 0.03ei0.10π)) (4, (0.83ei1.68π, 0.21ei0.40π, 0.21ei0.46π)) (3, (0.55ei1.12π, 0.41ei0.80π, 0.38ei0.78π))

Proposition 16. Let ((ΦΨ)c, Y,N) and ((ΦΨ)
′
, Y,N) be weak and strong complex single-valued neutrosophic complement of CSVNNSfS

(ΦΨ, Y,N), then

1 ((Φc)cΨ, Y,N) 6= (ΦΨ, Y,N),

2 (((ΦΨ)c)c, Y,N) 6= (ΦΨ, Y,N),

3 ((Φ
′
)
′
Ψ, Y,N)

{
= (ΦΨ, Y,N) if N is even
6= (ΦΨ, Y,N) if N is odd.

}
.

4 ([(ΦΨ)
′
]
′
, Y,N)

{
= (ΦΨ, Y,N) if N is even
6= (ΦΨ, Y,N) if N is odd.

}
.

Proof. The proof is straight forward from the definitions.

Definition 17. LetU be a non-empty set and (ΦΨ, Y,N1) and (χA, C,N2) be CSVN1SfS and CSVN2SfS onU, respectively, their restricted
intersection is defined as (LM , G,O) = (ΦΨ, Y,N1)∩̂(χA, C,N2), with LM = ΦΨ∩̂χA, G = Y ∩ C, O = min(N1, N2), i.e., ∀xw ∈ G,
us ∈ U we have

LM (xw) = 〈(hsw, (Tws, Iws,Fws))〉,
= 〈(min(h1s

w , h
2s
w ),min(T1

ws,T2
ws),max(I1ws, I2ws),max(F1

ws,F2
ws))〉,

= 〈(min(h1s
w , h

2s
w ),min(p1

ws, p
2
ws)e

i2πmin(t1ws,t
2
ws),max(q1

ws, q
2
ws)e

i2πmax(ω1
ws,ω

2
ws),max(r1

ws, r
2
ws)e

i2πmax(f1
ws,f

2
ws))〉,

where (h1s
w , (T1

ws, I1ws,F1
ws)) = (h1s

w , (p
1
wse

i2πt1ws , q1
wse

i2πω1
ws , r1

wse
i2πf1

ws)) ∈ ΦΨ and (h2s
w , (T2

ws, I2ws,F2
ws))

= (h2s
w , (p

2
wse

i2πt2ws , q2
wse

i2πω2
ws , r2

wse
i2πf2

ws)) ∈ χA.

Table 9: The CSF5SfS(χA, C, 5)
U1 U2 U5

Y1 (0, (0.12ei0.23π, 0.91ei1.84π, 0.96ei1.96π)) (1, (0.21ei0.42π, 0.77ei1.50π, 0.82ei1.66π)) (0, (0.05ei0.14π, 0.87ei1.72π, 0.88ei1.80π))
Y2 (2, (0.42ei0.82π, 0.51ei1.04π, 0.56ei1.10π)) (4, (0.88ei1.78π, 0.09ei0.16π, 0.06ei0.10π)) (4, (0.90ei1.84π, 0.11ei0.20π, 0.14ei0.26π))
Y3 (3, (0.81ei1.64π, 0.17ei0.36π, 0.19ei0.40π)) (3, (0.83ei1.68π, 0.27ei0.56π, 0.30ei0.58π)) (1, (0.26ei0.48π, 0.72ei1.42π, 0.75ei1.52π))
Y4 (4, (0.95ei1.80π, 0.012ei0.02π, 0.10e0.22iπ)) (3, (0.70ei1.42π, 0.26ei0.54π, 0.31e0.64iπ)) (2, (0.49ei1.02π, 0.61ei1.24π, 0.59ei1.16π))

Example 8. The restricted intersection (LM , G,O) of (ΦΨ, Y, 6) and (χA, C, 5), given in Table 3 and Table 9, arranged in 10.

Table 10: The restricted intersection (LM , G, 5)
(LM , G, 56) U1 U2

Y1 (0, (0.12ei0.23π, 0.91ei1.84π, 0.96ei1.96π)) (1, (0.21ei0.42π, 0.77ei1.50π, 0.82ei1.66π))
Y2 (1, (0.17ei0.40π, 0.75ei1.48π, 0.81ei1.66π)) (4, (0.81ei1.66π, 0.22ei0.42π, 0.25ei0.48π))
Y3 (2, (0.32ei0.70π, 0.55ei1.12π, 0.52ei1.06π)) (1, (0.20ei0.42π, 0.76ei1.54π, 0.78ei1.58π))
Y4 (4, (0.95ei1.80π, 0.012ei0.02π, 0.10e0.22iπ)) (0, (0.03ei0.10π, 0.91ei1.84π, 0.93e1.88iπ))

Definition 18. Let (ΦΨ, Y,N1) and (χA, C,N2) be CSVN1SfS and CSVN2SfS on U, respectively, their extended intersection is defined as
(DQ, T,S) = (ΦΨ, Y,N1)∩̌(χA, C,N2), with DQ = ΦΨ∩̌χA, T = Y ∪ C, S = max(N1, N2), that is, ∀xw ∈ T and us ∈ U, we have

DQ(xw) =


(h1s
w , (T1

ws, I1ws,F1
ws)), if xw ∈ Y − C,

(h2s
w , (T2

ws, I2ws,F2
ws)), if xw ∈ C − Y ,(

min(h1s
w , h

2s
w ),min(p1

ws, p
2
ws)e

i2πmin(t1ws,t
2
ws),max(q1

ws, q
2
ws)e

i2πmax(ω1
ws,ω

2
ws),max(r1

ws, r
2
ws)e

i2πmax(f1
ws,f

2
ws)
)
, if xw ∈ C ∩ Y
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where (h1s
w , (T1

ws, I1ws,F1
ws)) = (h1s

w , (p
1
wse

i2πt1ws , q1
wse

i2πω1
ws , r1

wse
i2πf1

ws)) ∈ ΦΨ and (h2s
w , (T2

ws, I2ws,F2
ws)) = (h2s

w

, (p2
wse

i2πt2ws , q2
wse

i2πω2
ws , r2

wse
i2πf2

ws)) ∈ χA.

Example 9. The extended intersection (DQ, T, 6) of (ΦΨ, Y, 6) and (χA, C, 5), given in Table 3 and Table 9, arranged in 11.

Table 11: The extended intersection(DQ, T,S)
(DQ, T,S) U1 U2 U3 U4

Y1 (0, (0.12ei0.23π, 0.91ei1.84π, 0.96ei1.96π)) (1, (0.21ei0.42π, 0.77ei1.50π, 0.82ei1.66π)) (0, (0.06ei0.14π, 0.95ei1.92π, 0.97ei1.96π)) (1, (0.24ei0.50π, 0.86ei1.70π, 0.87ei1.72π))
Y2 (1, (0.17ei0.40π, 0.75ei1.48π, 0.81ei1.66π)) (4, (0.81ei1.66π, 0.22ei0.42π, 0.25ei0.48π)) (2, (0.36ei0.74π, 0.58ei1.18π, 0.54ei1.10π)) (0, (0.08ei0.20π, 0.96ei1.94π, 0.98e1.98π))
Y3 (2, (0.32ei0.70π, 0.55ei1.12π, 0.52ei1.06π)) (1, (0.20ei0.42π, 0.76ei1.54π, 0.78ei1.58π)) (4, (0.75ei1.52π, 0.17ei0.36π, 0.20ei0.38π)) (3, (0.69ei1.36π, 0.41ei0.84π, 0.48e0.94π))
Y4 (4, (0.95ei1.80π, 0.012ei0.02π, 0.10e0.22iπ)) (0, (0.03ei0.10π, 0.91ei1.84π, 0.93e1.88iπ)) (1, (0.21ei0.46π, 0.79ei1.60π, 0.83ei1.68π)) (2, (0.38ei0.78π, 0.59ei1.20π, 0.55ei1.12π))

U5

Y1 (0, (0.05ei0.14π, 0.87ei1.72π, 0.88ei1.80π))
Y2 (4, (0.90ei1.84π, 0.11ei0.20π, 0.14ei0.26π))
Y3 (1, (0.26ei0.48π, 0.72ei1.42π, 0.75ei1.52π))
Y4 (2, (0.49ei1.02π, 0.61ei1.24π, 0.59ei1.16π))

Definition 19. LetU be a non-empty set and (ΦΨ, Y,N1) and (χA, C,N2) be CSVN1SfS and CSVN2SfS onU, respectively, their restricted
union is defined as (LM,G,O) = (ΦΨ, Y,N1)∪̂(χA, C,N2), with LM = ΦΨ∪̂χA, G = Y ∩ C, O = max(N1, N2), i.e., ∀xw ∈ G, us ∈ U we
have

LM(xw) = 〈(hsw, (Tws, Iws,Fws))〉,
= 〈(min(h1s

w , h
2s
w ),min(T1

ws,T2
ws),max(I1ws, I2ws),max(F1

ws,F2
ws))〉,

= 〈(max(h1s
w , h

2s
w ),max(p1

ws, p
2
ws)e

i2πmax(t1ws,t
2
ws),min(q1

ws, q
2
ws)e

i2πmin(ω1
ws,ω

2
ws),min(r1

ws, r
2
ws)e

i2πmin(f1
ws,f

2
ws))〉,

where (h1s
w , (T1

ws, I1ws,F1
ws)) = (h1s

w , (p
1
wse

i2πt1ws , q1
wse

i2πω1
ws , r1

wse
i2πf1

ws)) ∈ ΦΨ and (h2s
w , (T2

ws, I2ws,F2
ws))

= (h2s
w , (p

2
wse

i2πt2ws , q2
wse

i2πω2
ws , r2

wse
i2πf2

ws)) ∈ χA.

Example 10. The restricted union (LM , G,O) of (ΦΨ, Y, 6) and (χA, C, 5), given in Table 3 and Table 9, arranged in 12.

Table 12: Restricted union (LM,G,O)
(LM,G,O) U1 U2

Y1 (3, (0.60ei1.26π, 0.35ei0.68π, 0.40ei0.84π)) (5, (0.95ei1.92π, 0.05ei0.12π, 0.12ei0.26π))
Y2 (2, (0.42ei0.82π, 0.51ei1.04π, 0.56ei1.10π)) (4, (0.88ei1.78π, 0.09ei0.16π, 0.06ei0.10π))
Y3 (3, (0.81ei1.64π, 0.17ei0.36π, 0.19ei0.40π)) (3, (0.83ei1.68π, 0.27ei0.56π, 0.30ei0.58π))
Y4 (5, (0.98ei1.94π, 0.01ei0.04π, 0.10e0.24iπ)) (3, (0.70ei1.42π, 0.26ei0.54π, 0.31e0.64iπ))

Definition 20. Let (ΦΨ, Y,N1) and (χA, C,N2) be CSVN1SfS and CSVN2SfS on U, respectively, their extended union is defined as
(PQ, T ,B) = (ΦΨ, Y,N1)∪̌(χA, C,N2), with PQ = ΦΨ∪̌χA, T = Y ∪ C,B = max(N1, N2), that is, ∀xw ∈ T and us ∈ U, we have

PQ(xw) =


(h1s
w , (T1

ws, I1ws,F1
ws)), if xw ∈ Y − C,

(h2s
w , (T2

ws, I2ws,F2
ws)), if xw ∈ C − Y ,(

max(h1s
w , h

2s
w ),max(p1

ws, p
2
ws)e

i2πmax(t1ws,t
2
ws),min(q1

ws, q
2
ws)e

i2πmin(ω1
ws,ω

2
ws),min(r1

ws, r
2
ws)e

i2πmin(f1
ws,f

2
ws)
)
, if xw ∈ C ∩ Y

where (h1s
w , (T1

ws, I1ws,F1
ws)) = (h1s

w , (p
1
wse

i2πt1ws , q1
wse

i2πω1
ws , r1

wse
i2πf1

ws)) ∈ ΦΨ and (h2s
w , (T2

ws, I2ws,F2
ws)) = (h2s

w

, (p2
wse

i2πt2ws , q2
wse

i2πω2
ws , r2

wse
i2πf2

ws)) ∈ χA.

Example 11. The extended union (LM , G,O) of (ΦΨ, Y, 6) and (χA, C, 5), given in Table 3 and Table 9, arranged in 13.
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Table 13: Extended union (PQ, T ,B)
(PQ, T ,B) U1 U2 U3 U4

Y1 (3, (0.60ei1.26π, 0.35ei0.68π, 0.40ei0.84π)) (5, (0.95ei1.92π, 0.05ei0.12π, 0.12ei0.26π)) (0, (0.06ei0.14π, 0.95ei1.92π, 0.97ei1.96π)) (1, (0.24ei0.50π, 0.86ei1.70π, 0.87ei1.72π))
Y2 (2, (0.42ei0.82π, 0.51ei1.04π, 0.56ei1.10π)) (4, (0.88ei1.78π, 0.09ei0.16π, 0.06ei0.10π)) (2, (0.36ei0.74π, 0.58ei1.18π, 0.54ei1.10π)) (0, (0.08ei0.20π, 0.96ei1.94π, 0.98e1.98π))
Y3 (3, (0.81ei1.64π, 0.17ei0.36π, 0.19ei0.40π)) (3, (0.83ei1.68π, 0.27ei0.56π, 0.30ei0.58π)) (4, (0.75ei1.52π, 0.17ei0.36π, 0.20ei0.38π)) (3, (0.69ei1.36π, 0.41ei0.84π, 0.48e0.94π))
Y4 (5, (0.98ei1.94π, 0.01ei0.04π, 0.10e0.24iπ)) (3, (0.70ei1.42π, 0.26ei0.54π, 0.31e0.64iπ)) (1, (0.21ei0.46π, 0.79ei1.60π, 0.83ei1.68π)) (2, (0.38ei0.78π, 0.59ei1.20π, 0.55ei1.12π))

U5

Y1 (0, (0.05ei0.14π, 0.87ei1.72π, 0.88ei1.80π))
Y2 (4, (0.90ei1.84π, 0.11ei0.20π, 0.14ei0.26π))
Y3 (1, (0.26ei0.48π, 0.72ei1.42π, 0.75ei1.52π))
Y4 (2, (0.49ei1.02π, 0.61ei1.24π, 0.59ei1.16π))

Now we discuss some properties and their proofs.

Theorem 21. Let (ΦΨ, Y,N1) be a CSVNNSfS over a non-empty setU. Then,

1 (ΦΨ, Y,N1)∩̌(ΦΨ, Y,N1) = (ΦΨ, Y,N1)

2 (ΦΨ, Y,N1)∩̂(ΦΨ, Y,N1) = (ΦΨ, Y,N1)

3 (ΦΨ, Y,N1)∪̌(ΦΨ, Y,N1) = (ΦΨ, Y,N1)

4 (ΦΨ, Y,N1)∪̂(ΦΨ, Y,N1) = (ΦΨ, Y,N1)

Proof. 1.
R.H.S = (ΦΨ, Y,N1)∩̌(ΦΨ, Y,N1), (1)

where the extended intersection of two CSVNNSfSs is calculated as:

(DQ, T,S) = (ΦΨ, Y,N1)∩̌(ΦΨ, Y,N1), (2)

with T = Y ∪ Y, S = max(N1, N1) and

DQ(xw) =


(h1s
w , (T1

ws, I1ws,F1
ws)), if xw ∈ Y − Y ,

(h1s
w , (T1

ws, I1ws,F1
ws)), if xw ∈ Y − Y ,

(min(h1s
w , h

1s
w ), (min(T1

ws,T1
ws),max(I1ws, I1ws),max(F1

ws,F1
ws))), if xw ∈ Y ∩ Y.

Case 1 : If xw ∈ Y − Y = ∅,
DQ(xw) = ΦΨ(xw). (3)

Case 2 : If xw ∈ Y − Y = ∅,
DQ(xw) = ΦΨ(xw). (4)

Case 3 : If xw ∈ Y ∩ Y = Y,

DQ(xw) = (min(h1s
w , h

1s
w ), (min(T1

ws,T1
ws),max(I1ws, I1ws),max(F1

ws,F1
ws))),

= (h1s
w , (T1

ws, I1ws,F1
ws)),

= ΦΨ(xw). (5)

From Equations 2, 3, 4 and 5, (DQ, T,S) = (ΦΨ, Y,N1) and further Eq.1 implies (ΦΨ, Y,N1)∩̌(ΦΨ, Y,N1) = (ΦΨ, Y,N1).

2.
R.H.S = (ΦΨ, Y,N1)∩̂(ΦΨ, Y,N1), (6)

where the restricted intersection of two CSVNNSfSs is calculated as:

(LM , G,O) = (ΦΨ, Y,N1)∩̂(ΦΨ, Y,N1), (7)

with G = Y ∩ Y = Y, O = min(N1, N1) = N1 and

LM (xw) = (min(h1s
w , h

1s
w ), (min(T1

ws,T1
ws),max(I1ws, I1ws),max(F1

ws,F1
ws))),

= (h1s
w , (T1

ws, I1ws,F1
ws)),

= ΦΨ(xw), (8)

clearly, from Equations 6, 7 and 8, we get the required result.

3.
R.H.S = (ΦΨ, Y,N1)∪̌(ΦΨ, Y,N1), (9)
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where the extended union of two CSVNNSfSs is calculated as:

(PQ, T ,B) = (ΦΨ, Y,N1)∪̌(ΦΨ, Y,N1), (10)

with T = Y ∪ Y,B = max(N1, N1) and

PQ(xw) =


(h1s
w , (T1

ws, I1ws,F1
ws)), if xw ∈ Y − Y ,

(h1s
w , (T1

ws, I1ws,F1
ws)), if xw ∈ Y − Y ,

(max(h1s
w , h

1s
w ), (max(T1

ws,T1
ws),min(I1ws, I1ws),min(F1

ws,F1
ws))), if xw ∈ Y ∩ Y.

Case 1 : If xw ∈ Y − Y = ∅,
PQ(xw) = ΦΨ(xw). (11)

Case 2 : If xw ∈ Y − Y = ∅,
PQ(xw) = ΦΨ(xw). (12)

Case 3 : If xw ∈ Y ∩ Y = Y,

PQ(xw) = (max(h1s
w , h

1s
w ), (max(T1

ws,T1
ws),min(I1ws, I1ws),min(F1

ws,F1
ws))),

= (h1s
w , (T1

ws, I1ws,F1
ws)),

= ΦΨ(xw). (13)

From Equations 9, 10, 11, 12 and 13, we get (ΦΨ, Y,N1)∪̌(ΦΨ, Y,N1) = (ΦΨ, Y,N1).

4.
R.H.S = (ΦΨ, Y,N1)∪̂(ΦΨ, Y,N1), (14)

where the restricted union of two CSVNNSfSs is calculated as:

(LM,G,O) = (ΦΨ, Y,N1)∪̂(ΦΨ, Y,N1), (15)

with G = Y ∩ Y = Y, O = max(N1, N1) = N1 and

LM(xw) = (max(h1s
w , h

1s
w ), (max(T1

ws,T1
ws),min(I1ws, I1ws),min(F1

ws,F1
ws))),

= (h1s
w , (T1

ws, I1ws,F1
ws)),

= ΦΨ(xw), (16)

clearly, from Equations 14, 15 and 16, we get the required result.

Theorem 22. Let (ΦΨ, Y,N1) and (χA, C,N2) be CSVNN1SfS and CSVNN2SfS, respectively, over the same universeU, then the absorp-
tion properties hold:

1. ((ΦΨ, Y,N1)∪̌(χA, C,N2))∩̂(ΦΨ, E,N1) = (ΦΨ, Y,N1)

2. (ΦΨ, Y,N1)∪̌((χA, C,N2)∩̂(ΦΨ, E,N1)) = (ΦΨ, Y,N1)

3. ((ΦΨ, Y,N1)∩̂(χA, C,N2))∪̌(ΦΨ, E,N1) = (ΦΨ, Y,N1)

4. (ΦΨ, Y,N1)∩̂((χA, C,N2)∪̌(ΦΨ, E,N1)) = (ΦΨ, Y,N1)

Proof. 1. Let the extended union of CSVNN1SfS (ΦΨ, Y,N1) and CSVNN2SfS (χA, C,N2), be

(PQ, T ,B) = (ΦΨ, Y,N1)∪̌(χA, C,N2),

with T = Y ∪ C,B = max(N1, N2) and
PQ(xw) = (hsw, (Tws, Iws,Fws)) =

(h1s
w , (T1

ws, I1ws,F1
ws)), if xw ∈ Y − C,

(h2s
w , (T

2
ws, I

2
ws,F

2
ws)), if xw ∈ C − Y ,

(max(h1s
w , h

2s
w ), (max(T1

ws,T
2
ws),min(I1ws, I2ws),min(F1

ws,F
2
ws))), if xw ∈ Y ∩ C.

(17)

Now, consider the restricted intersection of (PQ, T ,B) and (ΦΨ, Y,N1), that is defined as

(LM , G,O) = (PQ, T ,B)∩̂(ΦΨ, Y,N1),

with G = T ∩ Y, O = min(B, N1) = N1 and

LM (xw) = (min(hsw, h
1s
w ), (min(Tws,T1

ws),max(Iws, I1ws),max(Fws,F1
ws))), (18)
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for all xw ∈ G = Y ∩ C, so that xw ∈W, xw ∈ C. If xw ∈W, then there are three cases.

Case 1: if xw ∈ Y − C, using Equations 17 and 18, we get,

LM (xw) = (min(h1s
w , h

1s
w ), (min(T1

ws,T1
ws),max(I1ws, I1ws),max(F1

ws,F1
ws)))

= (h1s
w ,T1

ws,F1
ws)

= ΦΨ(xw) (19)

Case 2: if xw ∈ C − Y, since xw ∈ G = Y ∩ C implies xw ∈ Y, therefore, this case is omitted.

Case 3: if xw ∈ C ∩ Y, using Equations 17 and 18, we get,

LM (xw) = (min(max(h1s
w , h

2s
w ), h1s

w ), (min(max(T1
ws,T2

ws),T1
ws),max(min(I1ws,T2

ws), I1ws),max(min(F1
ws,T2

ws),F1
ws)))

= (h1s
w ,T1

ws,F1
ws)

= ΦΨ(xw) (20)

Thus from Equations 19 and 20, we get ((ΦΨ, E,N1)∪̌(χA, C,N2))∩̂(ΦΨ, E,N1) = (ΦΨ, E,N1).

2. proofs of 2, 3 and 4 are same as above.

Theorem 23. Let (ΦΨ, Y,N1), (χA, C,N2) and (Υκ, %,N3) be any three CSVNN1SfS, CSVNN2SfS, and CSVNN3SfS, and over the
same universeU, then the following properties hold:

1 (ΦΨ, Y,N1)∪̌(χA, C,N2) = (χA, C,N2)∪̌(ΦΨ, Y,N1),

2 (ΦΨ, Y,N1)∪̂(χA, C,N2) = (χA, C,N2)∪̂(ΦΨ, Y,N1),

3 (ΦΨ, Y,N1)∩̌(χA, C,N2) = (χA, C,N2)∩̌(ΦΨ, Y,N1),

4 (ΦΨ, Y,N1)∩̂(χA, C,N2) = (χA, C,N2)∩̂(ΦΨ, Y,N1),

5 ((ΦΨ, Y,N1)∪̌(χA, C,N2))∪̌(Υκ, %,N3) = (ΦΨ, Y,N1)∪̌(((χA, C,N2))∪̌(Υκ, %,N3)),

6 ((ΦΨ, Y,N1)∪̂(χA, C,N2))∪̂(Υκ, %,N3) = (ΦΨ, Y,N1)∪̂(((χA, C,N2))∪̂(Υκ, %,N3)),

7 ((ΦΨ, Y,N1)∩̌(χA, C,N2))∩̌(Υκ, %,N3) = (ΦΨ, Y,N1)∩̌(((χA, C,N2))∩̌(Υκ, %,N3)),

8 ((ΦΨ, Y,N1)∩̂(χA, C,N2))∩̂(Υκ, %,N3) = (ΦΨ, Y,N1)∩̂(((χA, C,N2))∩̂(Υκ, %,N3)),

9 (ΦΨ, Y,N1)∪̌((χA, C,N2)∩̂(Υκ, %,N3)) = ((ΦΨ, Y,N1)∪̌(χA, C,N2))∩̂((ΦΨ, Y,N1)∪̌(Υκ, %,N3)),

10 (ΦΨ, Y,N1)∩̌((χA, C,N2)∪̂(Υκ, %,N3)) = ((ΦΨ, Y,N1)∩̌(χA, C,N2))∪̂((ΦΨ, Y,N1)∪̌(Υκ, %,N3)),

11 (ΦΨ, Y,N1)∪̂((χA, C,N2)∩̌(Υκ, %,N3)) = ((ΦΨ, Y,N1)∪̂(χA, C,N2))∩̌((ΦΨ, Y,N1)∪̂(Υκ, %,N3)),

12 (ΦΨ, Y,N1)∩̂((χA, C,N2)∪̌(Υκ, %,N3)) = ((ΦΨ, Y,N1)∩̂(χA, C,N2))∪̌((ΦΨ, Y,N1)∩̂(Υκ, %,N3)).

4 Complex single-valued neutrosophic N -soft number
Definition 24. Let ΦΨ(yw) = ((us, h

s
w), (pwse

i2πtws , qwse
i2πωws , rwse

i2πfws)) be a CSVNNSfS. Then the complex single-valued neutro-
sophic N -soft number (CSVNNSfN) is defined as:

αws = (hsw, pwse
i2πtws , qwse

i2πωws , rwse
i2πfws),

Definition 25. Consider a CCSVNNSfN αws = (hsw, pwse
i2πtws , qwse

i2πωws , rwse
i2πfws). The score function S(αws) is:

S(αws) =
hsw

N − 1
+ (pws − qws − rws) + [tws − ωws − fws], (21)

where S(αws) ∈ [−4, 3]. The accuracy function A(αws) is:

A(αws) =
hsw

N − 1
+ (pws + qws + rws) + [tws + ωws + fws] (22)

where A(αws) ∈ [0, 7], respectively.

Definition 26. Let αws = (hsw, pwse
i2πtws , qwse

i2πωws , rwse
i2πfws) and αls = (hsl , plse

i2πtls , qlse
i2πωls , rlse

i2πfls) be two CSVNNSfNs
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1. If Sαws < Sαls , then αws ≺ αls (αws is inferior to αls),

2. If Sαws = Sαls , then

i Aαws < Aαls , then αws ≺ αls (αws is inferior to αls),

ii Aαws = Aαls , then αws ∼ αls (αws is equivalent to αls).

Definition 27. Let αws = (hsw, pwse
i2πtws , qwse

i2πωws , rwse
i2πfws) and αls = (hsl , plse

i2πtls , qlse
i2πωls , rlse

i2πfls) be two CSVNNSfNs
and β > 0. Some operation for CSVNNSfNs are

βαws =
(
hsw, [1− (1− pws)β ]ei2π[1−(1−tws)β ], qβwse

i2πωβws , rβwse
i2πfβws

)
,

αβws =
(
hsw, p

β
wse

i2πtβws , [1− (1− qws)β ]ei2π[1−(1−ωws)β ], [1− (1− rws)β ]ei2π[1−(1−fws)β ]
)
,

αws ⊕ αls =
(

max(hsw, h
s
l ), (pws + pls − pwspls)ei2π(tws+tls−twstls), (qwsqls)e

i2π(ωwsωls), (rwsrls)e
i2π(fwsfls)

)
,

αws ⊗ αls =
(

min(hsw, h
s
l ), (pwspls)e

i2π(twstls), (qws + qls − qwsqls)ei2π(ωws+ωls−ωwsωls), (rws + rls − rwsrls)ei2π(fws+fls−fwsfls)
)
.

Definition 28. Let αws = (hsw, pwse
i2πtws , qwse

i2πωws , rwse
i2πfws) and αls = (hsl , plse

i2πtls , qlse
i2πωls , rlse

i2πfls) be two CSVNNSfNs
and β > 0, then the following properties hold:

1. αws ⊕ αls = αls ⊕ αws,
2. αws ⊗ αls = αls ⊗ αws,
3. βαws ⊕ βαls = β(αls ⊕ αws), β > 0,

4. β1αws ⊕ β1αws = (β1 + β2)αws, β1, β2 > 0,

5. αβws ⊗ αβls = (αls ⊗ αws)β , β > 0,

6. αβ1
ws ⊗ αβ1

ws = α
(β1+β2)
ws . β1, β2 > 0.

Proof. 1.

αws ⊕ αls =
(

max(hsw, h
s
l ), (pws + pls − pwspls)ei2π(tws+tls−twstls), (qwsqls)e

i2π(ωwsωls), (rwsrls)e
i2π(fwsfls)

)
,

=
(

max(hsl , h
s
w), (pls + pws − plspws)ei2π(tls+tws−tlstws), (qlsqws)e

i2π(ωlsωws), (rlsrws)e
i2π(flsfws)

)
,

= αls ⊕ αws.

2.

αws ⊗ αls =
(

min(hsw, h
s
l ), (pwspls)e

i2π(twstls), (qws + qls − qwsqls)ei2π(ωws+ωls−ωwsωls), (rws + rls − rwsrls)ei2π(fws+fls−fwsfls)
)

=
(

min(hsl , h
s
w), (plspws)e

i2π(tlstws), (qls + qws − qlsqws)ei2π(ωls+ωws−ωlsωws), (rls + rws − rlsrws)ei2π(fls+fws−flsfws)
)

= αls ⊗ αws.

3.

βαws ⊕ βαls =
(
hsw, [1− (1− pws)β ]ei2π[1−(1−tws)β ], qβwse

i2πωβws , rβwse
i2πfβws)⊕ (hsl , [1− (1− pls)β ]ei2π[1−(1−tls)β ],

qβlse
i2πω

β
ls , rβlse

i2πf
β
ls

)
=
(

max(hsw, h
s
l ), ([1− (1− pws)β ] + [1− (1− pls)β ]− [1− (1− pws)β ][1− (1− pls)β ])

ei2π([1−(1−tws)β ]+[1−(1−tls)β ]−[1−(1−tws)β ][1−(1−tls)β ]), (qβwsq
β
ls)e

i2π(ωβwsω
β
ls

), (rβwsr
β
ls)e

i2π(qβwsq
β
ls

)
)

=
(

max(hsw, h
s
l ), [1− (1− pws + pls − pwspls)β ]ei2π[1−(1−tws+tls−twstls)β ], (qwsqls)

βei2π(ωwsωls)β ,

(rwsrls)
βei2π(fwsfls)β

)
= β

(
max(hsw, h

s
l ), (pws + pls − pwspls)e2π(pws+pls−pwspls), (qwsqls)e

2π(ωwsωls), (rwsrls)e
2π(fwsfls)

)
= β (αws ⊕ αls) .

Similarly, we can prove 4, 5 and 6.
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Definition 29. Let αws = (hsw, pwse
i2πtws , qwse

i2πωws , rwse
i2πfws) (w = 1, 2, . . . , k) be a collection of CSVNNSfNs and νw be the weight

vectors of αws with νw > 0 and
k∑

w=1

νw = 1. The complex single-valued neutrosophic N -soft weighted average operator (CSVNNSfWA) is a

mapping CSVNNSfWA : J k → J , where J is the set of CSVNNSfNs, defined as follows:

CSVNNSfWA(α1s, α2s, . . . , αls) = (ν1α1s ⊕ ν2α2s ⊕ . . .⊕ νkαks)

=
(

k
max
w=1

(hsw), [1−Πk
w=1(1− pws)νw ]ei2π[1−Πk

w=1(1− tws)νw ], [Πk
w=1(qws)

νw ]ei2π[Πk
w=1(ωws)

νw ], [Πk
w=1(rws)

νw ]ei2π[Πk
w=1(fws)

νw ]
)
.

Definition 30. Let αws = (hsw, pwse
i2πtws , qwse

i2πωws , rwse
i2πfws) (w = 1, 2, . . . , k) be a collection of CSVNNSfNs and νw be the

weight vectors of αws with νw > 0 and
k∑

w=1

νw = 1. The complex single-valued neutrosophic N -soft ordered weighted average operator

(CSVNNSfOWA) is a mapping CSVNNSfOWA : J k → J , where J is the set of CSVNNSfNs, defined as follows:

CSVNNSfOWA(α1s, α2s, . . . , αls)

=
(
ν1α%(1s) ⊕ ν2α%(2s) ⊕ . . .⊕ νkα%(ks)

)
=
(

k
max
w=1

(hs%(w)), [1−Πk
w=1(1− p%(ws))νw ]ei2π[1−Πk

w=1(1− t%(ws))νw ], [Πk
w=1(q%(ws))

νw ]ei2π[Πk
w=1(ω%(ws))

νw ],

[Πk
w=1(r%(ws))

νw ]ei2π[Πk
w=1(f%(ws))

νw ]
)
.

where, %(ws) is a permutation ordered by α%(ws) ≥ αφ(vs), for all w < v, (w, v = 1, 2, . . . , k) and (s = 1, 2, . . . , t).

Definition 31. Let αws = (hsw, pwse
i2πtws , qwse

i2πωws , rwse
i2πfws) (i = 1, 2, . . . , l) be a collection of CSVNNSfNs and νw be the weight

vectors of αws with νw > 0 and
k∑

w=1

νw = 1. The single-valued neutrosophic N -soft weighted geometric operator (CSVNNSfWG) is a

mapping CSVNNSfWG : J k → J , where J is the set of CSVNNSfNs, defined as follows:

CSVNNSfWG(α1s, α2s, . . . , αks) = (αν11s ⊗ α
ν2
2s ⊗ . . .⊗ α

νk
ks)

=
( k

min
w=1

(hsw), [Πk
w=1(pws)

νw ]e[Πk
w=1(tws)

νw ], [1−Πk
w=1(1− qws)νw ]e[1−Πk

w=1(1− ωws)νw ], [1−Πk
w=1(1− rws)νw ]e[Πk

w=1(1− fws)νw ]
)
.

Definition 32. Let αws = (hsw, pwse
i2πtws , qwse

i2πωws , rwse
i2πfws) (i = 1, 2, . . . , l) be a collection of CSVNNSfNs and νw be the weight

vectors of αws with νw > 0 and
k∑

w=1

νw = 1. The single-valued neutrosophic N -soft ordered weighted geometric operator (CSVNNSfOWG)

is a mapping CSVNNSfOWG : JK → J , where J is the set of CSVNNSfNs, defined as follows:

CSVNNSfOWG(α1s, α2s, . . . , αks)

=
(
α%(1s)ν1 ⊗ α%(2s)ν2 ⊗ . . .⊗ α%(ks)νk

)
=
( l

min
i=1

(hs%(w)), [Πk
w=1(p%(ws))

νw ]ei2π[Πk
w=1(t%(ws))

νw ], [1−Πk
w=1(1− q%(ws))νw ]ei2π[1−Πk

w=1(1− ω%(ws))νw ],

[1−Πk
w=1(1− r%(ws))νw ]ei2π[1−Πk

w=1(1− q%(ws))νw ]
)
,

where, %(ws) is a permutation ordered by α%(ws) ≥ αφ(vs), for all w < v, (w, v = 1, 2, . . . , k) and (s = 1, 2, . . . , t).

5 Complex single-valued neutrosophic N -soft TOPSIS method
In this section, we developed methodology for TOPSIS method under the framework of CSVNNSfSs for solving multi-attribute group decision
making (MAGDM) problem. For the optimal solution of the MADM problem, TOPSIS method specifically used ideal solutions of that problem.
Consider a MAGDM problem with U = {U1,U2,U3, . . . ,Ut} and Y = {Y1, Y2, Y3, . . . , Yk} be the set of alternative and attributes decided
by the experts Z̃1, Z̃2, Z̃3, . . . , Z̃f , where the experts weight vector for this MAGDM problem is ν = (ν1, ν2, ν3, . . . , νk)T . The procedure for
CSVNNSf -TOPSIS method is as follows:

5.1 Organizing the complex single-valued neutrosophic N -soft decision matrix
After studied the MADM problem properly, decision makers use rating system for assigning rank to each alternative, parallel to each semantic term,
relative to the attributes that indeed form a NSfS. Further, decision making panel associate CSVNNSfN corresponding to each rank (ordered

M. Akram, M. Shabir, A. Ashraf, Complex neutrosophic N -soft sets: A new model with applications.



Neutrosophic Sets and Systems, Vol. 42, 2021 290

grade) by defining grading criteria related to the aptitude of the MADM problem. Therefore, a complex single-valued neutrosophicN -soft decision
matrix (CSVNNSfDM)H = (H

(j)
ws)(s×w) is organized as follow:

H
(j)

=


(h1

1
(j)
, T(j)

11 , I
(j)
11 , F

(j)
11 ) (h1

2
(j)
, T(j)

12 , I
(j)
12 , F

(j)
12 ) . . . (h1

k
(j)
, T(j)

1k
, I(j)

1k
, F(j)

1k
)

(h2
1
(j)
, T(j)

21 , I
(j)
21 , F

(j)
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(ht1
(j)
, T(j)
t1 , I
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t1 , F

(j)
t1 ) (ht2

(j)
, T(j)
t2 , I

(j)
t2 , F

(j)
t2 ) . . . (htk

(j)
, T(j)
tk
, I(j)
tk
, F(j)
tk

)

 ,

where, H(j)
ws = ((hji )

(j),T(j)
ws, I(j)ws,F(j)

ws) = (hsw, p
(j)
wse

i2πt
(j)
ws , q

(j)
wse

i2πω
(j)
ws , r

(j)
wse

i2πf
(j)
ws ), s = {1, 2, 3, . . . , t}, j = {1, 2, 3, . . . , f}, and w =

{1, 2, 3, . . . , k}.

5.2 Aggregated complex single-valued neutrosophic N -soft decision matrix
As the decision makers (experts) are not equally weighted in MAGDM problems, therefore by utilizing the weightage of each expert decided by the
panel we cumulate the decision of all experts and get aggregated complex single-valued neutrosophicN -soft decision matrix (ACSVNNSfDM).
The CSVNNSfWA operator or CSVNNSfWG operator are precisely used to commulate the CSVNNSfDM (H) as follows:

Hws = CSVNNSfWA(H(1)
ws ,H

(2)
ws , . . . ,H

(f)
ws );

(OR) = CSVNNSfWG(H(1)
ws ,H

(2)
ws , . . . ,H

(f)
ws );

where,Hws = (h1
1,Tws, Iws,Fws) = (hsw, pwse

i2πtws , qwse
i2πωws , rwse

i2πfws).
The ACSVNNfSDM denoted as:

H =


(h1

1, T11, I11, F11) (h1
2, T12, I12, F12) . . . (h1

k, T1k, I1k, F1k)

(h2
1, T21, I21, F21) (h2

2, T22, I22, F22) . . . (h2
k, T2k, I2k, F2k)

.

.

.
.
.
.

. . .
.
.
.

(hs1, Ts1, Is1, Fs1) (h
q
2, Ts2, Is2, Fs2) . . . (hsk, Tsk, Isk, Fsk)

 .

5.3 Weights for parameters
To highlight the influence of the parameters in the MAGDM problem, experts judged each parameter and assign grades as the weight of the
parameter. Further, CSVNNSfNs are associated to each grade using the grading criteria finalized by the panel. Let θ(j)

w = (h
(j)
w ,T(j)

w , I(j)w ,F(j)
w )

be the weight of wth parameter given by the jth expert in the MAGDM problem. Let θ = (θ1, θ2, . . . , θk)T = (hw,Tw, Iw,Fw) be the weight
vector of attributes that is summarized, by CSVNNSfWA operator or CSVNNSfWG operator, as follows:

θw = CSVNNSfWA(θ
(j)
1 , θ

(j)
2 , . . . , θ

(j)
k );

(OR) = CSVNNSfWG(θ
(j)
1 , θ

(j)
2 , . . . , θ

(j)
k ).

where, θw = (h1,Tw, Iw,Fw) = (hw, pwe
i2πtw , qwe

i2πωw , rwe
i2πfw ).

5.4 Aggregated weighted complex single-valued neutrosophic N -soft decision matrix
The ACSVNNfSDM H is used within the weight vector (θ1, θ2, . . . , θk)T of parameter for the formulation of aggregated weighted single-
valued neutrosophic N -soft decision matrix (AWCSVNNSfDM). The calculations for are performed as follows:

H̄ws = Hws ⊗ θw
= (min((hsw), hw), (TwsTw), (Iws + Iw − IwsIw), (Fws + Fi − FwsFW ))

=

(
min(hsw, hw), pwspwe

i2πtwstw , (qws + qw − qwsqw)ei2π[ωws+ωws−ωwsωw ], (rws + rw − rwsrw)ei2π[fws+fws−fwsfw ]

)
= (h̄sw, T̄ws, Īws, F̄ws)

= (h̄sw, p̄wse
i2πt̄ws , q̄wse

i2πω̄ws , r̄wse
i2πf̄ws).
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The AWCSVNNSfDM is:

H̄ws =


(h̄1

1, T̄11, Ī11, F̄11) (h̄1
2, T̄12, Ī12, F̄12) . . . (h̄1

k, T̄1k, Ī1k, F̄1k)

(h̄2
1, T̄21, Ī21, F̄21) (h̄2

2, T̄22, Ī22, F̄22) . . . (h̄2
k, T̄2k, Ī2k, F̄2k)

.

.

.
.
.
.

. . .
.
.
.

(h̄s1, T̄s1, Īs1, F̄s1) (h̄s2, T̄s2, Īs2, F̄s2) . . . (h̄
q
k
, T̄sk, Īsk, F̄sk)

 .

5.5 Complex single-valued neutrosophic N -soft ideal solutions
Let BT be the collection of benefit-type criteria and CT be the collection of cost-type criteria opted from the number of parameters, keeping
in view the expertise of the given problem. Using these collection we are able to evaluate the complex single-valued neutrosophic positive ideal
solution CSVNNfS-PIS and complex single-valued neutrosophic N -soft negative ideal solution CSVNNSf -NIS of the MAGDM problem.
The CSVNNSf -PIS, related to the parameter Yw, is defined as:

H̄PIS
w =


s

max
j=1

H̄ws, if Yw ∈ BT,
s

min
j=1

H̄ws, if Yw ∈ CT,

and the CSVNNSf -NIS is defined as:

H̄NIS
w =


s

max
j=1

H̄ws, if Yw ∈ CT,
s

min
j=1

H̄ws, if Yw ∈ BT.

The CSVNNSf -PIS and CSVNNSf -NIS are denoted as: H̄PIS
w = (ḣw, ṗwe

i2πṫw , q̇we
i2πω̇w , ṙwe

i2πḟw )., and
H̄NIS
w = (ḧw, p̈we

i2πẗw , q̈we
i2πω̈w , r̈we

i2πf̈w ), respectively.

5.6 Formulation of normalized Euclidean distance
For evaluating the alternatives distance from the ideal solution, we can used similarity measures or distance measure. Moreover, from distance
measures we used the normalized Euclidean distance. The normalized Euclidean distance of any of the alternativeUs from the CSVNNSf -PIS
is defined as:

d(H̄PIS
w ,Us) =

( 1

7w

k∑
w=1

[(
ḣw

N − 1
)− (

h̄sw
N − 1

)2 + (ṗw − p̄ws)2 + (q̇w − q̄ws)2 + (ṙw − r̄ws)2 + (ṫw − t̄ws)2+

(ω̇w − ω̄ws)2 + (ḟw − f̄ws)2]
)

(23)

The normalized Euclidean distance between the CSVNNSf -NIS and any of the alternativeUs, can be evaluated as follows:

d(H̄NIS
w ,Us) =

( 1

7w

k∑
w=1

[(
ḧw

N − 1
)− (

h̄sw
N − 1

)2 + (p̈w − p̄ws)2 + (q̈w − q̄ws)2 + (r̈w − r̄ws)2 + (ẗw − t̄ws)2+

(ω̈w − ω̄ws)2 + (f̈w − f̄ws)2]
)

(24)

5.7 Revised closeness index
In TOPSIS method, at last we left with two values related to the alternative that prescribed the distance of that particular alternative from
CSVNNSf -PIS and CSVNNSf -NIS. Therefore, revised closeness index is utilized for the choice of right solution. The revised closeness
index Λ(Us) is calculated as:

Λ(Us) =
d(H̄PIS

w ,Us)

min
s
d(H̄PIS

w ,Us)
− d(H̄NIS

w ,Us)

max
s
d(H̄NIS

w ,Us)
, (25)

where, s = 1, 2, . . . , t.
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5.8 Identify dominant alternative
For the evaluation of dominant alternative with respect to their performance in MAGDM problem, revised closeness index related to each alternative
arranged in ascending order. So that the alternative with least revised closeness index will be the required one.
For solving a MAGDM problem, the Algorithm 1 is given as:

Algorithm 1: Steps to deal MAGDM problem by CSV NNf -TOPSIS method

1. Input:
U : Set of alternatives,
Y : Set of attributes,
ν : Weight vector for experts Z̃j ,
NSfS : (ΦΨ, Y,N) with H = {0, 1, 2, 3, . . . , N − 1}, N ∈ {1, 2, 3, . . .},

2. Construct the CSV NNSfDM H(j), using the input data.

3. Evaluate the ACSV NNSfDM as follows:

Hws =
(

f
max
j=1

(hsw)(j), [1−Πf
j=1(1− p(j)

ws)
νw ]ei2π[1−Πf

j=1(1− t(j)ws)νw ], [Πf
j=1(q(j)

ws)νw ]ei2π[Πf
j=1(ω(j)

ws)νw ],

[Πf
j=1(r(j)

ws)
νw ]ei2π[Πf

j=1(f (j)
ws )νw ]

)
.

4. Calculating the weight vector θ = (θ1, θ2, . . . , θk)T for parameters as:

θw =
(

f
max
j=1

(hw)(j), [1−Πf
j=1(1− p(j)

w )νw ]ei2π[1−Πf
j=1(1− t(j)w )νw ], [Πf

j=1(q(j)
w )νw ]ei2π[Πf

j=1(ω(j)
w )νw ],

[Πf
j=1(r(j)

w )νw ]ei2π[Πf
j=1(f (j)

w )νw ]
)
.

5. Compute the AWCSV NNSfDM using ACSV NNSfDM and the weight vector of attributes θw, as follows:

H̄ws =

(
min(hsw, hw), pwspwe

i2πtwstw , (qws + qw − qwsqw)ei2π[ωws+ωws−ωwsωw ], (rws + rw − rwsrw)ei2π[fws+fws−fwsfw ]

)
.

6. Evaluate the CSV NNSf PIS and CSV NNSf NIS.

7. Evaluate the normalized Euclidean distance d(H̄PIS
w ,Us) and d(H̄NIS

w ,Us)

8. Evaluate the revised closeness index Λ(Us) .

9. Arranged revised closeness index in ascending order.

Output: Choose the alternative with minimum revised closeness index.

6 Application
In this section, we solve a MAGDM problem using CSVNNSf − TOPSIS method for analyzing the performance of Islamic banks in Pakistan
with CAMELS rating system.

6.1 Monitoring performance of Islamic banking industry on the basis of CAMELS rating system.
The banks are more closely monitored other than any field of economy because of their constitution and important role in the economy of the
country. Analyzing the banking system create more assurance and reliability in making both short and long term decisions, that in return give on
to healthier business in the country. In banking industry, one of the flourishing institute is Islamic banking that follow the rules of Islamic Shariah
and promote the Islamic principles to the transaction of financial banking. The evaluation of financial performance of Islamic banking in Pakistan
using the CAMELS model and TOPSIS method is necessary for higher level of efficiency that further help to set a benchmark for the country. In
this MAGDM problem, following Islamic banks are considered as alternatives:

U1 : Bank Albarka(BA)

U2 : Bank Islamic (BIL)

U3 : Dubai Islamic Bank (DIB)
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U4 : Muslim Commercial Bank (MCB)

U5 : Meezan Bank (MBL)

For this MAGDM problem, decision making panel consists of three experts Z̃1, Z̃2, Z̃3 that collected data from the official websites of the banks
according to the CAMELS model. CAMELS model is generally apply to analyze the performance of the banks on the basis of five different
attributes described as follow:

Y1 : Capital adequacy: Experts rank the capital adequacy by checking the factors of growth plan and capacity to control financial risk and loan.

Y2 : Asset quality: In this attribute the banking stability is measure whenever the bank faced loss of values of the assets.

Y3 : Management: Experts rate this attribute by measuring the efficiency of banks while dealing with daily activities.

Y4 : Earning capacity: This attribute includes the existing assets, earnings and growth of the banks, as well as to remain competitive in economy.

Y5 : Liquidity: This attribute examine on the basis of the availability of adequate funds by converting assets into the cash.

We solve this MAGDM problem by following the CSVNNSf -TOPSIS method.

Step 1: According to these attributes each expert model 5-soft set in Table14 where

0 means ‘Bad’

1 means ‘Ok’

2 means ‘Good’

3 means ‘Great’

4 means ‘Excellent’

Table 14: Initial rating by decision making experts
Parameters Alternatives Z̃1 Z̃2, Z̃3

Y1 U1 ∗ ∗ ∗ ∗ = 4 ∗ ∗ ∗ = 3 ∗ ∗ = 2
U2 ∗ ∗ ∗ ∗ = 4 ∗ = 1 ∗ ∗ ∗ = 3
U3 ∗ ∗ ∗ = 3 ∗ ∗ = 2 ∗ = 1
U4 ∗ ∗ ∗ = 3 ∗ = 1 ∗ ∗ ∗ = 3
U5 ∗ ∗ ∗ ∗ = 4 • = 0 ∗ = 1

Y2 U1 ∗ ∗ ∗ = 3 ∗ ∗ = 2 ∗ ∗ ∗ = 3
U2 ∗ ∗ ∗ = 3 ∗ ∗ ∗ ∗ = 4 ∗ ∗ ∗ ∗ = 4
U3 ∗ ∗ ∗ ∗ = 4 • = 0 ∗ ∗ = 2
U4 ∗ ∗ ∗ ∗ = 4 ∗ ∗ ∗ = 3 ∗ ∗ ∗ ∗ = 4
U5 ∗ ∗ ∗ ∗ = 4 ∗ = 1 ∗ ∗ = 2

Y3 U1 • = 0 ∗ = 1 ∗ ∗ = 2
U2 ∗ ∗ ∗ ∗ = 4 ∗ ∗ ∗ ∗ = 4 ∗ ∗ ∗ = 3
U3 • = 0 ∗ ∗ = 2 ∗ = 1
U4 • = 0 ∗ ∗ ∗ = 3 ∗ ∗ ∗ ∗ = 4
U5 • = 0 • = 0 ∗ = 1

Y4 U1 • = 0 ∗ = 1 • = 0
U2 • = 0 ∗ ∗ ∗ = 3 ∗ ∗ = 2
U3 ∗ = 1 ∗ ∗ = 2 ∗ ∗ ∗ = 3
U4 ∗ ∗ ∗ ∗ = 4 ∗ ∗ ∗ ∗ = 4 ∗ ∗ ∗ = 3
U5 • = 0 • = 0 ∗ = 1

Y5 U1 ∗ ∗ = 2 • = 0 ∗ = 1
U2 ∗ ∗ ∗ = 3 ∗ ∗ = 2 ∗ = 1
U3 ∗ ∗ ∗ = 3 ∗ ∗ ∗ ∗ = 4 ∗ ∗ = 2
U4 ∗ ∗ ∗ ∗ = 4 ∗ ∗ ∗ = 3 ∗ ∗ = 2
U5 • = 0 ∗ = 1 • = 0

To assign CSVNNSfS to each rank in Table 14, experts defined grading criteria given in Table 15 and Tables 16, 17, 18 representing the
decision of the experts Z̃1, Z̃2, Z̃3, respectively.
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Table 15: Grading criteria for CSVN5SS
hwz /J degree of truthness degree of indeterminacy degree of falsity
grades pw 2πtw qw 2πωw rw 2πfw
hsw = 0 [0.00, 0.15) [0.0, 0.3π) (0.85, 1.00] (1.7π, 2.0π] (0.85, 1.00] (1.7π, 2.0π]
hsw = 1 [0.15, 0.35) [0.3π, 0.7π) (0.65, 0.85] (1.3π, 1.7π] (0.65, 0.85] (1.3π, 1.7π]
hsw = 2 [0.35, 0.65) [0.7π, 1.3π) (0.35, 0.65] (0.7π, 1.3π] (0.35, 0.65] (0.7π, 1.3π]
hsw = 3 [0.65, 0.85) [1.3π, 1.7π) (0.15, 0.35] (0.3π, 0.7π] (0.15, 0.35] (0.3π, 0.7π]
hsw = 4 [0.85, 1.00) [1.7π, 2.0π) [0.00, 0.15) [0.0, 0.3π) [0.00, 0.15) (0.0, 0.3π]

Table 16: CSVNDM related to expert Z̃1,
Y1 Y2 Y3 Y4

U1 (4, (0.86ei1.76π, 0.08ei0.14π, 0.07ei0.12π)) (3, (0.71ei1.46π, 0.31ei0.64π, 0.29ei0.60π)) (0, (0.11ei0.26π, 0.91ei1.84π, 0.93ei1.88π)) (0, (0.12ei0.28π, 0.87ei1.72π, 0.86ei1.74π))
U2 (4, (0.87ei1.78π, 0.09ei0.16π, 0.08ei0.14π)) (3, (0.66ei1.36π, 0.27ei0.56π, 0.31ei0.60π)) (4, (0.89ei1.74π, 0.04ei0.10π, 0.11ei0.24π)) (0, (0.13ei0.28π, 0.87ei1.72π, 0.86e1.74π))
U3 (3, (0.69ei1.42π, 0.19ei0.40π, 0.22ei0.46π)) (4, (0.88ei1.72π, 0.06ei0.14π, 0.10ei0.18π)) (0, (0.14ei0.26π, 0.88ei1.74π, 0.89ei1.76π)) (1, (0.34ei0.64π, 0.66ei1.32π, 0.67e1.36π))
U4 (3, (0.82ei1.78π, 0.18ei0.38π, 0.21e0.44iπ)) (4, (0.91ei1.86π, 0.02ei0.02π, 0.03e0.08iπ)) (0, (0.13ei0.28π, 0.88ei1.74π, 0.86ei1.74π)) (4, (0.93ei1.90π, 0.04ei0.06π, 0.01ei0.04π))
U5 (4, (0.87ei1.78π, 0.13ei0.28π, 0.12e0.26iπ)) (4, (0.90ei1.84π, 0.07ei0.12π, 0.10e0.22iπ)) (0, (0.02ei0.08π, 0.95ei1.72π, 0.97ei1.78π)) (0, (0.03ei0.02π, 0.96ei1.90π, 0.98ei1.70π))

Y5

U1 (2, (0.61ei1.18π, 0.41ei0.84π, 0.43ei0.88π))
U2 (3, (0.67ei1.38π, 0.25ei0.48π, 0.23ei0.44π))
U3 (3, (0.71ei1.44π, 0.24ei0.50π, 0.27ei0.52π))
U4 (4, (0.96ei1.94π, 0.05ei0.08π, 0.03ei0.04π))
U5 (0, (0.05ei0.06π, 0.95ei1.84π, 0.94e1.86iπ))

Table 17: CSVNDM related to expert Z̃2,
Y1 Y2 Y3 Y4

U1 (3, (0.72ei1.46π, 0.32ei0.66π, 0.66ei0.68π)) (2, (0.41ei0.86π, 0.51ei1.04π, 0.61ei1.24π)) (1, (0.16ei0.36π, 0.69ei1.40π, 0.72ei1.46π)) (1, (0.17ei0.28π, 0.75ei1.52π, 0.77ei1.56π))
U2 (1, (0.19ei0.42π, 0.72ei1.46π, 0.75ei1.52π)) (4, (0.93ei1.82π, 0.12ei0.26π, 0.13ei0.28π)) (4, (0.88ei1.74π, 0.08ei0.18π, 0.10ei0.22π)) (3, (0.73ei0.75π, 0.23ei0.48π, 0.20e0.38π))
U3 (2, (0.45ei0.94π, 0.46ei0.94π, 0.56ei1.04π)) (0, (0.09ei0.14π, 0.87ei1.76π, 0.86ei1.74π)) (2, (0.58ei1.20π, 0.37ei0.74π, 0.39ei0.80π)) (2, (0.59ei1.22π, 0.53ei1.08π, 0.44e0.86π))
U4 (1, (0.32ei0.68π, 0.67ei1.38π, 0.69e1.36iπ)) (3, (0.84ei1.66π, 0.16ei0.34π, 0.17e0.36iπ)) (3, (0.83ei1.62π, 0.18ei0.38π, 0.19ei0.40π)) (4, (0.98ei1.98π, 0.10ei0.16π, 0.01ei0.04π))
U5 (0, (0.11ei0.26π, 0.90ei1.82π, 0.91e1.84iπ)) (1, (0.22ei0.46π, 0.81ei1.64π, 0.84e1.66iπ)) (0, (0.08ei0.20π, 0.91ei1.80π, 0.92ei1.82π)) (0, (0.07ei0.18π, 0.87ei1.72π, 0.88ei1.74π))

Y5

U1 (0, (0.06ei0.08π, 0.91ei1.84π, 0.92ei1.86π))
U2 (2, (0.64ei1.26π, 0.36ei0.74π, 0.37ei0.76π))
U3 (4, (0.92ei1.82π, 0.05ei0.08π, 0.12ei0.22π))
U4 (3, (0.81ei1.02π, 0.20ei0.42π, 0.19ei0.26π))
U5 (1, (0.23ei0.48π, 0.83ei1.68π, 0.82e1.66iπ))

Table 18: CSVNDM related to expert Z̃3,
Y1 Y2 Y3 Y4

U1 (2, (0.62ei1.20π, 0.36ei1.74π, 0.39ei0.80π)) (3, (0.70ei1.36π, 0.26ei1.50π, 0.28ei1.58π)) (2, (0.59e1.22π, 0.43i0.88π, 0.42ei0.86π)) (0, (0.86ei1.74π, 0.02ei0.02π, 0.03ei0.04π))
U2 (3, (0.81ei1.66π, 0.20ei0.28π, 0.18ei0.28π)) (4, (0.95ei1.88π, 0.05ei0.08π, 0.07ei0.16π)) (3, (0.80ei1.64π, 0.21ei0.40π, 0.22ei0.46π)) (2, (0.62ei1.28π, 0.36ei0.74π, 0.38e0.78π))
U3 (1, (0.31ei0.66π, 0.68ei1.38π, 0.69ei1.40π)) (2, (0.60ei1.22π, 0.41ei0.80π, 0.42ei0.84π)) (1, (0.29ei0.62π, 0.70ei1.42π, 0.72ei1.46π)) (3, (0.79ei1.62π, 0.23ei0.44π, 0.20e0.42π))
U4 (3, (0.84ei1.72π, 0.17ei0.32π, 0.16e0.34iπ)) (4, (0.96ei1.96π, 0.03ei0.08π, 0.02e0.06iπ)) (4, (0.98ei1.93π, 0.04ei0.06π, 0.03ei0.04π)) (3, (0.82ei1.68π, 0.18ei0.34π, 0.19ei0.36π))
U5 (1, (0.27ei0.38π, 0.74ei1.46π, 0.73e1.50iπ)) (2, (0.57ei1.10π, 0.45ei0.92π, 0.47e0.96iπ)) (1, (0.25ei0.34π, 0.76ei1.54π, 0.78ei1.58π)) (1, (0.23ei0.50π, 0.79ei1.60π, 0.81ei1.64π))

Y5

U1 (1, (0.31ei0.64π, 0.69ei1.36π, 0.68ei1.38π))
U2 (1, (0.34ei0.64π, 0.66ei1.34π, 0.67ei1.38π))
U3 (2, (0.61ei1.26π, 0.39ei0.80π, 0.40ei0.82π))
U4 (2, (0.63ei1.22π, 0.38ei0.74π, 0.37ei0.72π))
U5 (0, (0.30ei0.58π, 0.95ei1.92π, 0.96e1.94iπ))

Step 2: The decision of all experts cumulated using the CSVNNSfWA operator with ν = (0.33, 0.40, 0.27)T be the weight vector for the
experts so that we get ACSVNNSfDM summarized in Table 19.
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Table 19: Aggregated complex single-valued neutrosophic N -soft decision matrix
Y1 Y2 Y3

U1 (4, (0.0680ei0.1440π, 0.9139ei1.8191π, 0.9096ei1.8092π)) (3, (0.0430ei0.0920π, 0.9591ei1.9208π, 0.9568ei1.91598π)) (2, (0.0041ei0.0098π, 0.9966ei1.9940π, 0.9974ei1.9956π))
U2 (4, (0.0710ei0.1520π, 0.9177ei1.8278π, 0.9139ei1.81914π)) (4, (0.0380ei0.95569π, 0.9544ei1.9114π, 0.9591ei1.9159π)) (4, (0.0760ei0.1400π, 0.8916ei1.7974π, 0.92434ei1.8544π))
U3 (3, (0.0040ei0.0860π, 0.9425ei1.8885π, 0.9474ei1.8979π)) (4, (0.0720ei0.1360π, 0.9045ei1.8192π, 0.9212ei1.8355π)) (2, (0.0053ei0.0098π, 0.9954ei1.9900π, 0.9958ei1.9909π))
U4 (3, (0.0590ei0.1260π, 0.9407ei1.8850π, 0.9458ei1.8949π)) (4, (0.0820ei0.0180π, 0.8698ei1.6972π, 0.8825ei1.7832π)) (4, (0.0050ei0.0108π, 0.9954ei1.9901π, 0.9946ei1.9901π))
U5 (4, (0.070ei0.1520π, 0.9323ei1.8597π, 0.9272ei1.8597π)) (4, (0.0780ei0.1720π, 0.9096ei1.8092π, 0.9212ei1.8486π)) (1, (0.0007ei0.0028π, 0.9982ei1.9970π, 0.9989ei1.9986π))

Y4 Y5

U1 (1, (0.0045ei0.0108π, 0.9977ei1.9948π, 0.9970ei1.9932π)) (2, (0.0330ei0.0624π, 0.9687ei1.9391π, 0.9704ei1.9423π))
U2 (3, (0.0050ei0.0106π, 0.9950ei1.9892π, 0.9946ei1.9900π)) (2, (0.0387ei0.0817π, 0.9517ei1.9008π, 0.9489ei1.8949π))
U3 (3, (0.0146ei0.0272π, 0.9853ei1.9716π, 0.9858ei1.9726π)) (4, (0.0432ei0.0887π, 0.9517ei1.9008π, 0.9544ei1.9062π))
U4 (4, (0.0904ei0.2024π, 0.8916ei1.7650π, 0.8486ei1.7397π)) (4, (0.1084ei0.2349π, 0.8987ei1.7832π, 0.8825ei1.7832π))
U5 (1, (0.0010ei0.0007π, 0.9985ei1.9962π, 0.9992ei1.9978π)) (1, (0.0182ei0.00216π, 0.9982ei1.9955π, 0.9978ei1.9948π))

Step 3: In CAMELS model each attribute has its own worth and value that continuously change as the time passing out, therefore experts rank
them and then assigned CSVNNSfNs accordingly. We summarized the weights of the experts related to the attributes, are arranged in
Table 20, using the CSVNNSfWA operator and get the weight vector θ, given as:

χ =


(2, (0.0079ei0.0168π, 0.9893ei1.9794π, 0.9902e1.9814iπ))
(4, (0.0387ei0.0794π, 0.9388ei1.8814π, 0.9425e1.8884iπ))
(4, (0.0820ei0.1720π, 0.9298ei1.8544π, 0.9243e1.8424iπ))
(3, (0.0408ei0.0804π, 0.9458ei1.8948π, 0.9489e1.9008iπ))
(3, (0.0180ei0.0372π, 0.9642ei1.9304π, 0.9842e1.9672iπ))



Table 20: Weights for attributes from experts
Z̃1 Z̃2 Z̃3

Y1 (1, (0.20ei0.42π, 0.74ei1.50π, 0.76ei1.54π)) (2, (0.42ei0.86π, 0.38ei0.778π, 0.62ei1.22π)) (0, (0.09ei0.24π, 0.92ei1.86π, 0.95ei1.88π))
Y2 (3, (0.67ei1.36π, 0.17ei0.36π, 0.19ei0.40π)) (4, (0.93ei1.88π, 0.09ei0.16π, 0.14ei0.26π)) (1, (0.18ei0.38π, 0.70ei1.42π, 0.72ei1.46π))
Y3 (4, (0.91ei1.84π, 0.13ei0.24π, 0.11ei0.20π)) (1, (0.16ei0.34π, 0.66ei1.37π, 0.68ei1.38π)) (2, (0.44ei0.90π, 0.40ei0.82π, 0.60ei1.18π))
Y4 (3, (0.69ei1.40π, 0.21ei0.44π, 0.23ei0.48π)) (3, (0.71ei1.42π, 0.25ei0.52π, 0.27ei0.56π)) (3, (0.75ei1.53π, 0.31ei0.64π, 0.33ei0.68π))
Y5 (2, (0.40ei0.82π, 0.36ei0.74π, 0.64ei1.26π)) (3, (0.73ei1.48π, 0.29ei0.60π, 0.30ei0.62π)) (3, (0.77ei1.56π, 0.31ei0.60π, 0.26ei0.50π))

Step 4: The weight vector θ and ACSVNNSfDM are encapsulated using the CSVNNSfWG operator into AWCSVNNSfDM, compile
in Table 21.

Table 21: Aggregated weighted complex single-valued neutrosophic N -soft decision matrix
Y1 Y2 Y3

U1 (2, (0.00053ei0.00120π, 0.99900ei1.99812π, 0.99911ei1.99822π)) (3, (0.00016ei0.00036π, 0.99749ei1.99528π, 0.99751ei1.9953π)) (2, (0.00032ei0.00084π, 0.99976ei1.99956π, 0.99980ei1.99964π))
U2 (2, (0.00055ei0.00126π, 0.99912ei1.99822π, 0.99916ei1.99832π)) (4, (0.00014ei0.00032π, 0.99720ei1.99474π, 0.99764ei1.99530π)) (4, (0.00062ei0.00120π, 0.99239ei1.98524π, 0.99427ei1.98852π))
U3 (2, (0.00031ei0.00072π, 0.99938ei1.99884π, 0.99948ei1.99906π)) (4, (0.00028ei0.00052π, 0.99416ei1.98868π, 0.99546ei1.9908π)) (2, (0.00043ei0.00084π, 0.99968ei1.99926π, 0.99968ei1.99928π))
U4 (2, (0.00046ei0.00104π, 0.99936ei1.99880π, 0.99946ei1.99902π)) (4, (0.00032ei0.00072π, 0.99203ei1.98928π, 0.99324ei1.9879π)) (4, (0.00041ei0.00092π, 0.99968ei1.99926π, 0.99959ei1.99920π))
U5 (2, (0.00055ei0.00128π, 0.99927ei1.99856π, 0.99928ei1.99868π)) (4, (0.00030ei0.00068π, 0.994466ei1.98868π, 0.99546ei1.9916π)) (1, (0.00057ei0.00024π, 0.99987ei1.99978π, 0.99990ei1.99980π))

Y4 Y5

U1 (1, (0.00018ei0.00044π, 0.99987ei1.99972π, 0.99984ei1.99964π)) (2, (0.00059ei0.00116π, 0.99880ei1.99786π, 0.99953ei1.99904π))
U2 (3, (0.00020ei0.00044π, 0.99973ei1.99942π, 0.99972ei1.99948π)) (3, (0.00069ei0.00152π, 0.99827ei1.99652π, 0.99919ei1.99826π))
U3 (3, (0.00059ei0.00114π, 0.99920ei1.99850π, 0.99927ei1.99986π)) (3, (0.00077ei0.00164π, 0.99827ei1.99654π, 0.99927ei1.9984π))
U4 (3, (0.00368ei0.00850π, 0.99412ei1.98760π, 0.99220ei1.98680π)) (3, (0.00195ei0.00436π, 0.99637ei1.99242π, 0.99814ei1.99644π))
U5 (1, (0.00004ei0.00002π, 0.99990ei1.99980π, 1.00000ei1.99980π)) (1, (0.00032ei0.00068π, 0.99990ei1.99980π, 0.99990ei2.00000π))

Step 5 The groundwork of the TOPSIS method that differentiate it from others is to evaluate the PIS and NIS that help to find out optimal solution
using the tool of distance measure. The criteria evaluated for this MAGDM problem based on CAMELS model and all are related to
benefit-type criteria. Therefore, the CSVNNSf -PIS and CSVNNSf -NIS, taking into account the nature of the attributes, are arranged
in Table 22.

Table 22: CSVNNSf -PIS and CSVNNSf -NIS
Us H̄PIS

w H̄NIS
w

U1 (2, (0.00055ei0.00126π, 0.99912ei1.99822π, 0.99916ei1.99832π)) (2, (0.00031ei0.00072π, 0.99938ei1.99880π, 0.99948ei1.99906π))
U2 (4, (0.00032ei0.00072π, 0.99203ei1.98928π, 0.99324ei1.98790π)) (3, (0.00016ei0.00036π, 0.99749ei1.99528π, 0.99751ei1.99530π))
U3 (4, (0.00062ei0.00120π, 0.99239ei0.03400π, 0.99427ei1.98852π)) (1, (0.00570ei0.00024π, 0.99987ei1.99970π, 0.99989e1.99980π))
U4 (3, (0.00368ei0.00850π, 0.99412ei1.98760π, 0.99220e1.98680π)) (1, (0.00004ei0.00002π, 0.99990ei1.99980π, 1.00000e1.99980π))
U5 (2, (0.00195ei0.00436π, 0.99637ei1.99242π, 0.99814ei1.99644π)) (1, (0.00032ei0.00068π, 0.99990ei1.99980π, 0.99990ei2.0000π))
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Step 6 For distance measure, normalized Euclidean distance is used that precisely evaluate the distance between the alternatives and the ideal
solutions, simultaneously. Table 23 describe the distance of each alternative from CSVNNSf -PIS and CSVNNSf -NIS, respectively.

Table 23: Distance measures of alternatives from ideal solution
Us d(H̄PIS

w ,Us) d(H̄NIS
w ,Us)

U1 0.133746 0.059764
U2 0.005061 0.179298
U3 0.084647 0.13363
U4 0.003998 0.1793085
U5 0.174320 0.042260

Step 7: Revised closeness index is used for ranking the alternatives having the properties of closeness and far-away from the ideal solution at a
time. The numeric values of revised closeness index calculated in Table ??

Table 24: Index of alternatives
Us Λ(Us)

U1 33.1199
U2 0.26594
U3 20.4343
U4 0.00000
U5 43.3661

Step 8: Clearly, from the values of revised closeness index we can easily highlight the bank with best performance that is actually theU4 = MCB
opting as best performer in Pakistan, where, the ascending order of the values of revised closeness index describe the ranks of the banks on
the basis of the CAMELS model and TOPSIS method, shown in Table 25

Table 25: Ranking of alternatives
Alternative U1 U2 U3 U4 U5

Ranking 4 2 3 1 5

7 Comparison
To prove the versatility of the CSVNNSf -TOPSIS method we compare the proposed method with SVN -TOPSIS method [28] by solving the
describe MAGDM problem of “Monitoring performance of Islamic banking industry on the basis of CAMELS rating syste” by SVN-TOPSIS
method[28]. The evaluation of the problem by SVN-TOPSIS method [28] is as follows:

Step 1 For the implication of SVN-TOPSIS method on the proposed MAGDM problem we have to exclude the grading part as well as reduce
the periodic terms to zero in the CSVNNSfN, so that experts Z̃1, Z̃2, Z̃3 assigned SVNs to each rank given in Tables 26, 27 and 28,
respectively.

Table 26: SVNDM related to expert Z̃1,
Y1 Y2 Y3 Y4 Y5

U1 (0.86, 0.08, 0.07) (0.71, 0.31, 0.29) (0.11, 0.91, 0.93) (0.12, 0.87, 0.86) (0.61, 0.41, 0.43)
U2 (0.87, 0.09, 0.08) (0.66, 0.27, 0.31) (0.89, 0.04, 0.11) (0.13, 0.87, 0.86) (0.67, 0.25, 0.23)
U3 (0.69, 0.19, 0.22) (0.88, 0.06, 0.10) (0.14, 0.88, 0.89) (0.34, 0.66, 0.67) (0.71, 0.24e, 0.27)
U4 (0.82, 0.18, 0.21) (0.91, 0.02, 0.03) (0.13, 0.88, 0.86) (0.93, 0.04, 0.01) (0.96, 0.05, 0.03)
U5 (0.87, 0.13, 0.12) (0.90, 0.07, 0.10) (0.02, 0.95, 0.97) (0.03, 0.96, 0.98) (0.05, 0.95, 0.94)
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Table 27: SVNDM related to expert Z̃2,
Y1 Y2 Y3 Y4

U1 (0.72, 0.32, 0.66) (0.41, 0.51, 0.61) (0.16, 0.69, 0.72) (0.17, 0.75, 0.77) (0.06, 0.91, 0.92)
U2 (0.19, 0.72, 0.75) (0.93, 0.12, 0.13) (0.88, 0.08, 0.10) (0.73, 0.23, 0.20) (0.64, 0.36, 0.37)
U3 (0.45, 0.46, 0.56) (0.09, 0.87, 0.86) (0.58, 0.37, 0.39) (0.59, 0.53, 0.44) (0.92, 0.05, 0.12)
U4 (0.32, 0.67, 0.69) (0.84, 0.16, 0.17) (0.83, 0.18, 0.19) (0.98, 0.10, 0.01) (0.81, 0.20, 0.19)
U5 (0.11, 0.90, 0.91) (0.22, 0.81, 0.84) (0.08, 0.91, 0.92) (0.07, 0.87, 0.88) (0.23, 0.83, 0.82)

Table 28: SVNDM related to expert Z̃3,
Y1 Y2 Y3 Y4 Y5

U1 (0.62, 0.36, 0.39) (0.70, 0.26, 0.28) (0.59, 0.43, 0.42) (0.86, 0.02, 0.03) (0.31, 0.69, 0.68)
U2 (0.81, 0.20, 0.18) (0.95, 0.05, 0.07) (0.80, 0.21, 0.22) (0.62, 0.36, 0.38) (0.34, 0.66, 0.67)
U3 (0.31, 0.68, 0.69) (0.60, 0.41, 0.42) (0.29, 0.70, 0.72) (0.79, 0.23, 0.20) (0.61, 0.39, 0.40)
U4 (0.84, 0.17, 0.16) (0.96, 0.03, 0.02) (0.98, 0.04, 0.03) (0.82, 0.18, 0.19) (0.63, 0.38, 0.37)
U5 (0.27, 0.74, 0.73) (0.57, 0.45, 0.47) (0.25, 0.76, 0.78) (0.23, 0.79, 0.81) (0.30, 0.95, 0.96)

Step 2 The weights of experts ν = (0.33, 0.40, 0.27)T and averaging operator [28], we can cumulate the aggregated single-valued neutrosophic
decision matrix (ASVNDM), as follows:

Hws =
(

[1−Πf
j=1(1− p(j)

ws)
νw ], [Πf

j=1(q(j)
ws)νw ], [Πf

j=1(r(j)
ws)

νw ]
)
.

The ASV NDM is arranged in Table 29.

Table 29: ASVNDM
Y1 Y2 Y3 Y4 Y5

U1 (0.0680, 0.9139, 0.9096) (0.0430, 0.9591, 0.9568) (0.0041, 0.9966, 0.9974) (0.0045, 0.9977, 0.9970) (0.0330, 0.9687, 0.9704)
U2 (0.0710, 0.9177, 0.9139) (0.0380, 0.9544, 0.9591) (0.0760, 0.8916, 0.92434) (0.0050, 0.9950, 0.9946) (0.0387, 0.9517, 0.9489)
U3 (0.0040, 0.9425, 0.9474) (0.0720, 0.9045, 0.9212) (0.0053, 0.9954, 0.9958) (0.0146, 0.9853, 0.9858) (0.0432, 0.9517, 0.9544)
U4 (0.0590, 0.9407, 0.9458) (0.0820, 0.8698, 0.8825) (0.0050, 0.9954, 0.9946) (0.0904, 0.8916, 0.8486) (0.1084, 0.8987, 0.8825)
U5 (0.070, 0.9323, 0.9272) (0.0780, 0.9096, 0.9212) (0.0007, 0.9982, 0.9989) (0.0010, 0.9985, 0.9992) (0.0182, 0.9982, 0.9978)

Step 3 The weights for attributes are calculated, by summarizing the experts opinion about the nature of attributes given in Table 30, as follows:

θw =
(

[1−Πf
j=1(1− p(j)

w )νw ], [Πf
j=1(q(j)

w )νw ], [Πf
j=1(r(j)

w )νw ]
)
.

Thus we have,

θ =


(0.0079, 0.9893, 0.9902)
(0.0387, 0.9388, 0.9425)
(0.0820, 0.9298, 0.9243)
(0.0408, 0.9458, 0.9489)
(0.0180, 0.9642, 0.9842)

 .
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Table 30: Weights for attributes from experts
Z̃1 Z̃2 Z̃3

Y1 (0.20, 0.74, 0.76) (0.42, 0.38, 0.62) (0.09, 0.92, 0.95)
Y2 (0.67, 0.17, 0.19) (0.93, 0.09, 0.14) (0.18, 0.70, 0.72)
Y3 (0.91, 0.13, 0.11) (0.16, 0.66, 0.68) (0.44, 0.40, 0.60)
Y4 (0.69, 0.21, 0.23) (0.71, 0.25, 0.27) (0.75, 0.31, 0.33)
Y5 (0.40, 0.36, 0.64) (0.73, 0.29, 0.30) (0.77, 0.31, 0.26)

Step 4 The aggregated weighted single-valued neutrosophic decision matrix(AWSVNDM), shown in Table 31, calculated as:

H̄ws =

(
pwspw, (qws + qw − qwsqw), (rws + rw − rwsrw)

)
.

Table 31: AWSVNDM
Y1 Y2 Y3 Y4 Y5

U1 (0.00053, 0.99900, 0.99911) (0.00016, 0.99749, 0.99751) (0.00032, 0.99976, 0.99980) (0.00018, 0.99987, 0.99984) (0.00059, 0.99880, 0.99953)
U2 (0.00055, 0.99912, 0.99916) (0.00014, 0.99720, 0.99764) (0.00062, 0.99239, 0.99427) (0.00020, 0.99973, 0.99972) (0.00069, 0.99827, 0.99919)
U3 (0.00031, 0.99938, 0.99948) (0.00028, 0.99416, 0.99546) (0.00043, 0.99968, 0.99968) (0.00059, 0.99920, 0.99927) (0.00077, 0.99827, 0.99927)
U4 (0.00046, 0.99936, 0.99946) (0.00032, 0.99203, 0.99324) (0.00041, 0.99968, 0.99959) (0.00368, 0.99412, 0.99220) (0.00195, 0.99637, 0.99814)
U5 (0.00055, 0.99927, 0.99928) (0.00030, 0.994466, 0.99546) (0.00057, 0.99987, 0.99990) (0.00004, 0.99990, 1.00000) (0.00032, 0.99990, 0.99990)

Step 5 Keeping in view the nature of data, Equation 26 and 27 is used for the evaluation of the single-valued neutrosophic positive ideal solution
and negative ideal solution arranged in Table 32.

H̄PIS
w =

{
(max

s
T̄ws,min

s
Īws,min

s
F̄ws), if Yw ∈ BT,

(min
s

T̄ws,max
s

Īws,max
s

F̄ws), if Yw ∈ CT,
(26)

and

H̄NIS
w =

{
(min
s

T̄ws,max
s

Īws,max
s

F̄ws), if Yw ∈ BT,

(max
s

T̄ws,min
s

Īws,min
s

F̄ws), if Yw ∈ CT,
(27)

Table 32: SVN -PIS and SVN -NIS
U1 (0.00055, 0.99900, 0.99911) (0.00031, 0.99938, 0.99948)
U2 (0.00032, 0.99203, 0.99324) (0.00014, 0.99749, 0.99764)
U3 (0.00062, 0.99239, 0.99427) (0.00033, 0.99987, 0.99990)
U4 (0.00368, 0.99412, 0.99220) (0.00004, 0.99990, 1.00000)
U5 (0.00195, 0.99637, 0.99814) (0.00032, 0.99990, 0.99990)

Step 6 To measure distance of alternatives from PIS and NIS, Euclidean distance used. The calculated values are given in Table 33

Table 33: Distance measures of alternatives from ideal solution
Us d(H̄PIS

w ,Us) d(H̄NIS
w ,Us)

U1 0.00935 0.00078
U2 0.00762 0.00660
U3 0.00810 0.00260
U4 0.00500 0.00763
U5 0.00890 0.00210
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Step 7 The revised closeness index calculated using Equation 28 , is tabulated in Table 34 and the ranks evaluated through the index values are
arranged in Table 35 in descending order, according to whichU4 is the best performer.

Λ(Us) =
d(H̄NIS

w ,Us)

d(H̄PIS
w ,Us) + d(H̄NIS

w ,Us)
, (28)

where, s = 1, 2, . . . , k.

Table 34: Revised closeness index of each alternative
Alternative Λ(Us)

U1 0.0769
U2 0.4641
U3 0.2429
U4 0.6041
U5 0.1900

Table 35: Ranking in single-valued neutrosophic environment
Alternative U1 U2 U3 U4 U5

Ranking 5 2 3 1 1

7.1 Discussion
1. The comparison of the CSVNNSf -TOPSIS method with the existing SVN-TOPSIS method have same findings for the Islamic bank as

best performer in Pakistan but the consequences relevant to the ranks of other banks have no analogy given in Table 36.

Table 36: Comparison
Model Ranks Best Performer

SVN -TOPSIS [28] U4 > U2 > U3 > U5 > U1 U4

CSVNNSf -TOPSIS(Proposed) U4 > U2 > U3 > U1 > U5 U4

2. The expertise of the presented methodology CSVNNSf -TOPSIS method to manipulate the indeterminacy degree and two dimensional
information in the MAGDM problems by using the frame of CSVNNSfSs.

3. The presented methodology of CSVNNSf -TOPSIS method has potential to operate the problems of IFNSfSs, being the generalization
of the IFSs.

4. The presented model has proficiency to overcome the latest problems characterized by parameterized ordered evaluation system but the
existing methods have no grip on such problems.

5. By employing N = 2 and periodic terms equal to zero, we switch from CSVNNNSf environment to single-valued environment so that
the CSVNNSf -TOPSIS method could sensibly handled the daily life problems under single-valued environment.

8 Conclusion
In this paper we have merged the idea of single-valued neutrosophic set withN -soft sets, and in doing so, we have initiated the idea ofCSVNNSfSs.
These sets combine the 2-dimensional single-valued neutrosophic nature of the attributes with parameterized ordered grades which demonstrates
their superiority over FNSfS, IFNSfS andNNSfS. A MAGDM model of TOPSIS method is extended to handle the real life problems under
the frame of CSVNNSfSs in which the ordered grades are assigned to each alternative as initial evaluation that are further characterized by
CSVNNSfNs. The PIS and NIS in CSVNNSf -TOPSIS method have been determined by the score function which has been further employed
to quantify the distance measures and the closeness index that sort the alternatives from highest to lowest rank. An example from the banking in-
dustry and the comparison with single-valued neutrosophic TOPSIS method have clarified the accuracy and superiority of the presented technique.
The new model and method pioneer a promising avenue for research in the decision making arena that we have only hinted at in this paper. More-
over, the proposed CSVNNSf -TOPSIS method does not evaluate the relative importance of the normalized Euclidean distances. Therefore we
will work for the extension of the VIKOR method under a CSVNNSf environment, which might be more credible and trustworthy.
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