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Abstract: In this paper we establish the notion of complex single-valued neutrosophic /N-soft set. It improves the traits of three
general models, namely, single-valued neutrosophic sets, single-valued neutrosophic soft sets and single-valued neutrosophic V-
soft sets, in such way that it makes two dimensional ambiguous information and parameterized grading evaluation compatible.
We explain the modeling abilities of complex single-valued neutrosophic N-soft sets and investigate some of their fundamental
properties. Moreover, the intended approach hinges on rational attributes to support the choice of the most suitable solution. The
proposed method is explicated through an example from the islamic banking industry. We also perform a comparative analysis with
respect to the neutrosophic TOPSIS method.

Keywords: Complex single-valued neutrosophic set, /N-soft set, TOPSIS method, MAGDM.

1 Introduction

A fascinating research article by Smarandache [29] has attracted the attention of many researchers since 1998. Neutrosophic sets (N'Ss) had
been born that year. They are based on formal logic that contemplates the nature, origin, and scope of objectivities with their relations for
numerous intellectual spectra. The neutrosophic theory comprises probability, set theory, logics, and statistics. As such it copes with real life events
characterized by degree of satisfaction, dissatisfaction and indeterminacy. It is therefore acknowledged to provide a generalization of both classic
set, fuzzy set, intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets and Pythagorean fuzzy sets [38, 17, 33]. Neutrosophic-inspired sets
are classified into many subclasses like interval-valued neutrosophic sets, single-valued neutrosophic sets (SV A Ss), and the subclass known as
simplified neutrosophic set. The SV N'Ss were introduced by Wang and Smarandache [31, 30]. They can be characterized by three real valued
functions whose values are taken from the unit closed interval [0, 1], therefore it is more convenient and applicable in many areas of science and
engineering. After Wang and Smarandache, the single-valued neutrosophic environment has been scrutinized extensively. For example, Ye [34]
provided a correlation coefficient between SV AN Ss which became a useful tool for decision making, and Akram and Lugman [6] illustrated the
concept of SV N Ss with the flavor of hypergraphs.

Another breakthrough was Ramot et al. [26] who extended the 1-dimensional fuzzy perspective [38] to 2-dimensional phenomena. The resulting
model was called complex fuzzy sets. This new perspective prompted many authors to adapt existing models to the complex spirit. Thus complex
intuitionistic fuzzy sets [15] and complex Pythagorean fuzzy sets [37], which are precisely related to multi-attribute decision making (MAGDM)
phenomena, were soon developed.

The two aforementioned expressions of vagueness were made compatible by Ali and Smarandache [13]. These authors put forward the notion of
complex neutrosophic set under the influence of both neutrosophic sets [29] and complex fuzzy sets [26].

In MAGDM problems, the opinions of people are not invariably expressed through binary evaluations. It is often easier to bring up decisions using
non-binary evaluations, specifically in the case of qualitative information such as the perceived performance of banking industry, people’s morality,
hospital assistance, etc. Hence, Fatimah et al. [21] firstly presented N-soft sets and applied them on decision making methods based on non-binary
evaluations. NN-soft sets extended the scope of soft sets [25] whose foundation is that any alternative can be characterized by a selected list of
attributes. Many real examples were given [11, 21]. Stimulated from the novel concept of N-soft set, Akram et al. [5] solved decision making
problems using the hybrid combination of fuzzy set with N-soft set that improves the performance of fuzzy soft sets [10]. Further, Akram et al.
[9] presented the novel idea of intuitionistic fuzzy N-soft sets (I F'NS;S's), Pythagorean fuzzy N-soft sets (PEF N S;Ss) have been introduced
by Zhang [39] in 2020, and recently the multi-fuzzy N-soft set model has been presented alongside its applications to decision-making [22]. This
proves that N-soft sets are a trendy topic and that the model is amenable to hybridization from many standpoints including rough set theory [11]
and hesitancy [4] in addition to the ideas discussed above.

The theoretical models called neutrosophic soft sets (NS¢ Ss) and single-valued neutrosophic soft sets (SVN'S;Ss) were put forward by Maji
[40] and Jana et al. [23], respectively. The parametrized nature of the attributes that characterizes soft set theory is combined with neutrosophic
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information and the possibilities of these new models are discussed in detail. Ashraf and Butt [16] and Riaz et al. [27] first established a theoretical
model for neutrosophic N-soft sets (NN SSs). They made applications to business and the medical field supported by the TOPSIS method,
respectively. Moreover, Sahin et al. [28] used the framework of (SVN'S;Ss) for the development of a TOPSIS method which helped to find
the most suitable supplier for a production industry. In 2015, Ye [36] introduced single-valued neutrosophic linguistic numbers (SVN LNs) as
an extension of intuitionistic linguistic numbers and further set theoretical description for single-valued neutrosophic linguistic-TOPSIS method.
More recently, Akram et al. [7, 8] have presented new decision making methods.

In this manuscript we present a quite general model known as complex single-valued neutrosophic N-soft set (CSVN'SfS). It describes the
possibility that the parameterized nature of the universe may be complex single-valued neutrosophic, which comprises functions for satisfaction
degree, hesitancy degree and dissatisfaction degree whose values are taken from the complex unit circle. The hesitancy degree and ordered grades
endow the C'SVN'S;S with excellent qualities, so much so that this model dominates over the existing CA'Ss, NN S;Ss and SVNSs.

The motivation for this paper depends upon the following elements:

1. The NNS;Ssand IFNSSs have the ability to express situations including an indeterminacy part with ordered grades, but they are not
designed to deal with two dimensional ambiguity in the parametric information.

2. Moreover, SVNSs and C/N Ss can tackle the hesitancy degree in human judgment with periodic terms, but they cannot assist us in the
decision making problems based on non-binary evaluations or ranking systems.

3. These limitations encouraged us to present the idea of C.SV NS S which competently handles the phase term of 2-dimensional problems
with ordered grades, indeterminacy, hesitancy and incomplete figures in their decisions.

The practical contribution of this article is the formalization of the C' SV N Sy S-TOPSIS technique for solving MAGDM problems that require the
use of CSV NSy information. For this purpose, we define some basic notions and the CSVN'S;SSs and CSV NSy averaging and geometric
operators. These operators allow us to combine the decisions according to the performance of the alternatives and the weightage of the relevant
attributes and experts. We also define score and accuracy function sof CSVAN Sy N s for the sake of CSVN S;-PIS and CSV N S;-NIS. Finally,
we can sort out the alternatives using a revised closeness index whose values are totally based upon the normalized Euclidean distance.

The authenticity of the presented technique is verified by a numerical example that concerns the monitoring performance of the Islamic banking
industry on the basis of the CAMELS rating system. Moreover, a comparison of the proposed model with the SV N -TOPSIS method substantiates
the accuracy and reliability of the results and of our novel technique. For further useful notions related to N-soft sets not discussed in the paper,
the readers are referred to [1, 2, 12]

The arrangement of this paper is as follows. Section 2 contains some basic definitions related to the proposed model. In Section 3 we describe
the main features of the presented theory with some operations and properties. Section 4 presents the score function, accuracy function and
some aggregation operators related to CSVAN NS Ns. Section 5, gives a brief description for the CSVAN NS ¢-TOPSIS method with a specific
algorithm. Section 6, models a MAGDM problem and applies the proposed technique to find a solution. Section 7 comprises the comparison
analysis with the CSV N-TOPSIS method. In Section 8, we come to the conclusion with some ideas for future research works.

2 Preliminaries
Definition 1. [29] A neutrosophic set (N'S) U on a universe of discourse U has the form:
U= <U7T‘I’(u)aﬂ‘1’(u)aF‘I’(u) ZUGU>7

where, Ty (u), Ly (u) and Fw(u) are degree of satisfaction, degree of indeterminacy and degree of dissatisfaction, respectively, belongs to non-
standard interval |~ 0,17 [, for every u € U.

Definition 2. [37] A single-valued neutrosophic set (SVN'S) U on a universe of discourse U has the form
U = (u,Te(u),le(u),Fe(u):ueU),

where Ty (u), Iy (u), Fu(u) : U — [0, 1] are the degree of truthness, degree of hesitancy and degree of falsity, respectively, without any condition
on the sum of Ty (u), Iy (u) and Fy (u) for all w € U. The triplet (Tw, Ly, Fy) is called single-valued neutrosophic number (SVN'N).

Definition 3. [13] A complex single-valued neutrosophic set (CSVNS) U, on the universe U is defined as:
U = (u,Te(u),le(u),Fe(u):ueU),

where Ty (u) = po(u)e?™* ™ Ty (u) = qo(w)e?™ ™ and Fy(u) = ro(u)e2™ ™ | denote the degree of truthness, degree of hesitancy
and degree of falsity, respectively, without any conditions on the sum of amplitude terms pw(u), quw(u), ro(u) : U — [0, 1] or the phase terms
tw(u), we (u), fo(u) : U = [0,1] for all u € U. The triplet (py (u)e"*™ ™ | gy (u)e™ ) 1y (u)e'? (W) s called complex single-valued
neutrosophic number (CSVNN).

Definition 4. [25] Let U be a non-empty set and K be a set of parameters and Y C K. A soft set S3S over U is a pair (®,Y), where
® : K — P(U) is a set-valued function defined as:

(@,Y) = {{yw, ®(yw))lyw € Y, ®(yu) € P(U)}.
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Definition 5. Let U be a non-empty set and K be a set of parameters and Y C K. A complex single-valued neutrosophic soft set CSVN S¢S
over U is a pair (®,Y), where ® : K — P(CSVN'S) is a set-valued function defined as:
(@,Y) {{Wws @(yw)) lyw € Y, @(yw) € P(CSVNS)}

{<yw7 (u57 (Tws, ]st7 Fws)»}

= { W, (us, (Pws€™™, quse > 1yse o))

where P(CSVN'S) is the collection of all subsets of CSVN'Ss over the non-empty set U and puws, tws, Gus, Wws, Tws, fws € [0, 1].

Definition 6. [2]]Let U be a non-empty set and K be a set of parameters and Y C K. Let H = {0,1,2,..., N — 1} be a set of ordered grades
with N € {2,3,...}. A triple (®,Y, N) is called N-soft set (NS;S) over U if ® is a mapping define as ® : Y — 2V that is there exist a
unique pair (us, hi,) € U X H such that (us, hy,) € ®(yw), where us € U, hj, € H.

3 Complex single-valued neutrosophic N-soft sets

Definition 7. Let U be a non-empty set and K be a set of parameters withY C K. Let H = {0,1,2,..., N — 1} be a set of ordered grades with
N €{2,3,...}. Atriple (Pw,Y, N) is called a complex single-valued neutrosophic N-soft set (CSVNNS;S) on Y, if (®,Y,N) isan NS¢S
onU, and &y : Y — 2V x CSVNN is a mapping, which is defined as:

Py (yw) = {{(PWuw), ¥ (yw))) : yw €Y},
= {<((u53h’fu)’(T’LUS7H’LUS7]F’LU5))>}" ‘
= {(((us, h3), (Puws€™™ % quse™ ™ ruse> o)),

where ® : Y — 2UH W . Y — CSVNN, and CSVN'N denotes the collection of all complex single-valued neutrosophic numbers of U, hS,
denotes the rank of parameter for the alternative iy, and Pws, tws, Qus, Wws, Tws, fws € [07 1]7 with no conditions on their sum.

Example 1. Let U = {Ul = Emirates, Us = Eithad Airways, Us = Turkish airlines, Uy = Flynas } be the set of airlines from Pakistan to Turkey
and Y = {Y1 = Price , Yo = Entertainment, Y5 = luxuries, Y1 = Safety } be the characteristics which are experienced by the passengers and
then passengers assigned ratings to these airlines. These ratings are aggregated by the experts and form a 6-soft set given Table 1, where

0 means ‘very Bad’
1 means ‘Bad’

2 means ‘Ok’

3 means ‘Good’

4 means ‘Great’

5 means ‘Excellent’

Table 1: 6-soft set evaluated by experts
Y/U U; Uy Us Uy
Y 3 5 0 1
Y, 1 4 2 0
Ys 2 1 4 3
Y, 5 0 1 2

For handling the alternatives with fuzziness property related to parameters, we need CSVN NS¢Ss. Therefore, authorities defined grading
criteria, given in Table 2, for the evaluation of airlines under the environment of CSVN NS Ss, where Table 2 is evaluated from the following
criteria:

when b =0, —4.00 < S(¥) < — 3.30,
when hy, =1, —3.30 < S(¥) < —2.20,
when hy, =2, —220 < S(¥) < —1.00,
when b, =3, —1.00 < S(¥) <  0.20,
when hy, =4, 0.20 < S(¥) < 1.20,
when hg, =5, 1.20 < S(¥) < 2.000.
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Table 2: Grading criteria for CSVN6SS

Y/ J degree of truthness degree of indeterminacy degree of falsity
grades Pw 27t Qu 2T Wy Tw 27 fuw
hi = [0.00,0.15) | [0.0,0.37) | (0.90,1.00] | [1.87,2.07] | (0.90,1.00] | [1.87,2.07]
hi, =11 [0.15,0.30) | [0.37,0.67) | (0.70,0.90] | [1.4m,1.87) | (0.70,0.90] | [1.47,1.87)
h = [0.30,0.50) | [0.67,1.07) | (0.50,0.70] | [1.07,1.47) | (0.50,0.70] | [1.07, 1.47)
hi, =3 | [0.50,0.70) | [1.0m, 1.47) | (0.30,0.50] | [0.67,1.07) | (0.30,0.50] | [0.67,1.0m)
hi, =4 110.70,0.90) | [1.4m,1.87) | (0.15,0.30] | [0.37,0.67) | (0.15,0.30] | [0.37,0.67)
hi, = [0.90,1.00] | [1.8m,27] | [0.00,0.15] | [0.0,0.37) | [0.00,0.15] | [0.0,0.37)

Using the prescribed information, the CSVN6S¢S, shown in 3, is defined as:

Dy (Yr)
Py(Y2) = |

(
Dy (Ys)

Dy (Ya)

{((Uh 3)’ (0.6061'14267\" 0.3561'06871'7 0.467108471'))7 ((UQ, 5)’ (0.95€i1.92ﬂ'7 0.0561'0.127\'7 0-1261'0.26‘"))7
(U

((Ug, 0)7 (0.0661'0147\'7 0.9561.1'92”7 0.9761'1967\'))7 (

4, 1)7 (0‘2461.050”, 0.8661'1A’707r7 0‘8761'1A727r))}7

((U17 1)7 (0'1761'0.40#7 0.7561.1'48”7 0.8161.1'667\—)), (([U27 4)7 (0'8161'1.6671'7 0.2261104427: 0'2561'0.48#))7
(Ug, 2)’ (0'36610.7477’ 0.58611'187‘-, 0.54611'1077)), ((U4, 0)7 (0.08610'20W, 0'9667,1.9477’ 0'9861.98”))}7

{(([[Jl7 2)’ (0.3261'0.7071" 0.5562'141277’ 0.5261'1.06‘"))7 ((UQ, 1)’ (0.261‘0442#7 0.766'L1.547r7 0.78675145877))’
(([Ud, 4)7 (0.75€i1,527r7 0.176750436#’ 0.2061'0,38‘”)), ((U4, 3)7 (0.6962'1436#7 0.41610'84‘"7 0.486049471'))}7

{((Ul, 5)7 (0.9861'1,94#7 0.0161004#, 0.160.242'#))7 (([UQ, 0)7 (0.0367,'01071'7 0.9162'1484#’ 0.9361.881'71'))7
(

(Us, 1), (0.21%4™ 0.79¢"-9°7 0.83¢"-55™)), (U,

Table 3: The CSVN6S;S (Py,Y, 6)

2)7 (0.3861'0/7871'7 0.5961'14207: 0.5561'11277))}.

(@4,Y,6) U, U, U,
)/1 (34 (0.60611'267‘0.35(110'58‘”‘0.40(3‘“'847{ (5 (O QOLLl 92w 0. 05(,“) 127 0 12(1111 Zbr)) (0 (0 06(}“ Tam 0 95(111 927 0 97(111 wa)) (] (0 24(11[) 507 0. 86(,11 707 0 87(,L1 72’\'))
Y, (1, (017670407 . 75¢71487 () 81¢i1-667 (4, (0.81¢71:667 0,927 427 ,0.25¢70487)) (2, (0.36¢70- Tdm ,0.58¢1 187 L0.54¢/1107)) (0, (0.08¢- 20m () 96eil-947 () 98¢l 987))
Ys (2, (0.32¢70707 (55611127 ().52¢71-067 (1, (0.20¢7 427 ,0.76¢71-547 (), 78e“ 587Y) (4, (0.75¢ 52 1017670 367 L0.20€70387)) (3, (0.69¢71-367, 0.4167084 ().48¢0-947))
)/4 (54 (0.98611.94'E70.0161[).047,0.1060.241” (0 (0 03670 10" 0 91?71 8«1’ .0. 9361 881%)) (1 (0 21?70 467 0 79671 601r .0. 83611 ﬁSﬂ)) (2 (0 38610.781r 0.F 9671 207 .0.55¢ il. 127{))

Definition 8. A CSVNS;S(®w,Y, N) over a non-empty set U is said to be efficient where (®,Y, N) is an NS¢ S, if Pw(yw) = ((us, N —
1),1,0,0) for some y» € Y,us € U.

Example 2. Let (Pw,Y,6) be CSVNG6SyS, as in Example 1. From Table 3, it is clear that Example 1 is not efficient.

Definition 9. Let (Pw,Y, N1) and (xa,C, N2) be two CSVNS;Ss on a universe of discourse U. Then, they are said to be equal if and only if

b=y, V=AY =Cand N1 =

No.

Definition 10. Ler (Pw,Y, N) be a CSVNS;S on U. The weak complement of CSVN Sy S is defined as the weak complement of the N -soft
set (®,Y, N), that is, any N-soft set such that ®°(y.,) N ®(yw) = O for all y, € Y. The weak complement of CSVNStS of (®w,Y, N) is

represented as (9g,Y, N).

Example 3. Let (Pw,Y,6) be CSVNG6SS, as in Example 1. The weak complement (9,,Y, N) is given in Table 4.

Table 4: A weak complement of the C’SVNGSfS (Pg,Y,06)

(94,.Y,6) U, Us Uy
Y (5, (0.60¢"-257_ 0.35¢70057_(0.40¢ 05T (4, (0.95¢"79%7_0.05¢0 127, 0.12¢0257)) (1, (0060177, 0. 90611 27 0.07¢190T)) (3, (02460507, 0.86¢71 707, 0.87¢ L 777))
’/‘2 (4 (0 ]7CLU -]U" 0 70(11 A48T 0 8](11 667 (] (0 8](zl .66 0 22¢ i0.427 0 25¢ 0. -187r)) (3 (0 36(10 evd 0 J8(11 187 0 5de il lU7r)) (5 (0 086“]'20‘", 0.96@“'947(‘ 0.98(’/1'98‘n))
Y, (4, (0.32¢70707 ) 55671127 ) 5211067 (3, (0.20¢1° A2m () 76i15AT () 7811587 ) (0, (0.75¢ 527 () 17610367 () 90¢i0- 387Y) (5, (0.69¢71367,0.41¢10-847 ) 48¢0.91))
Yy (0, (0.98¢ 4 ,0.01€0- odr ,0.10e0-24im (2, (0.03¢1 107 ,0.91¢i! s ,0.93¢1887)) (3, (0.21¢0 16r 0.79¢1- 607 L0.83¢11057)) (3, (0.38¢10-7870.50¢i1-207 (. 55¢i1127))
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Table 6: The complex single-valued neutrosophic complement (®ge, Y, N) of the CSVN6SS

(@y,Y,6) U, Uy Us Uy
Y] (37 (0.406“]'&”,0.65611'32", 0.606“'26”)) (5 (0 1261() 26m 0 95(,L1 887 0 906‘1 921r>) (0 (0 976‘1 96T 1 05¢ i1.927 0. 06610.14«)) (1 ( 24(,&] 507 0 146‘“ 24w 0 876“ (27r))
Ys (1, (0.81€71-607 (25610527 . 17¢10-407)) (4, (0.25¢10-487 0, 88e'- 357 0.81¢1957)) (2, (0.54€7110, 0.42¢70. ,0.36€0747)) (0, (0.98€!957, 0.04€70-067, 0.08¢0-207) )
Y3 (21 (0452671'067,0.45610 887r.’ 0'326i0.7ﬂﬁ)) (1 (0 78671 ST 0. 24670 467 ,0. 20(,10 -127r>) (47 (0 20(,10 387 0 836i1.64ﬁ.0475€11.527r>) (3 (0 4880 94 0 d9671 16m 0. 69611.367r))
Y4 (5A’ (0_1060v24wﬂ 0_09()11,967ﬂ 0A98Czlv94w)) (07 (0 93¢ 1. 88!7’, 0. 09(/0 167 0 03e i0. lt)n)) (13 (0.83(”1'68" 0. 21610,4(”7 0.21(310‘46”) ( (0 55(/1/1 127r 0 41e i0.807 0386;0'7:%))

Definition 11. Let (Pw,Y, N) be a CSVN NSS on U. The Strong complement of CSVN NS S, denoted as (<I>:I,, Y, N), is defined as:

C R -1, if iy = (N = 1) = hi,,
@(yw)—{(Nfl)fhfm otherwise,

forall yw €Y and us € U, satisfying the condition (Pw,Y, N) N (<I>11,, Y,N)=0.
Example 4. Let (Pw,Y,6) be CSVNG6S;S, then the strong complement (<I>:I,, Y, 6) of Example 1 is given in Table 5 such that (Pw,Y,6) N

(®y,Y,6) = 0.

Table 5: Strong complement of (P, Y 6)

(@4,Y,6) U, 0, T,
Yi (2 (0 60(€!lv26‘ﬁ>0.35€!0v6 7r>0_40()10v84w)) (0 (0 951927 ,0. 0570127 ,0.12¢ i0.267 )) (5 (0 06e70- 147 ,0. 9 Ll 927 ,0. 971967 )) (4 (0 94¢70-50m ,0. 86¢1-70T ,0. 87T ’r))
Y, (4 (O 176“140”,0.756“’487‘-,0.816“’667» (1 (O 81?“ 667 0 29¢10- 42— 0. 256,10 A8 )) (3 (O 36?10 Tdm 0 58?“ 87 0 54€11 10‘\')) (5 (0 08910 207\' 0. 9()6“ ke 0. 9861 98#))
)/3 (3 <0 %2610,7()#70l55611,12ﬁ,0.52611,0(5#)) (4 (0.20610’427‘-,0.76611’54ﬁ,04786“’58”)) (1 (0 75¢ il )2— 0 17610 367 0 20670 381\')) (2 (0 69611 36 0 41670 84w 0 4860 947'))
Y-’l (0 (0 98811'947.0.016“)'“47.0,106(]'24”{» (5 (0.036“)'1“W.0.916“'84‘”.0,9361'88”{)) (4 (0 21611) 467 .0. 79671 607 0 83611 (7871')) (3 (0 38671) T8m 0. 59611 20m 0 55¢ il. 127r))

Proposition 12. A strong complement of CSVN NS;S is also a weak complement but week complement may or may not be strong complement.
Proof. The proof is straight forward from the definitions of strong complement and weak complement. O

Definition 13. Let (Pw,Y,N) be a CSVNS;S on U. The complex single-valued neutrosophic complement of CSVNSS is denoted as
(Pwe, Y, N) and is defined as

(I)‘Ilc(yw) = <(US7 hzua (Fw87 1-— st, Tws))) = <(us7 h;, (Twsez'Qﬂ'fws7 (1 _ qws)ei%r(l—uws)7pwsei27rtws))>.

Example 5. Ler (Pw,Y,6) be CSVNGSS, as in Example 1. The complex single-valued neutrosophic complement (®we,Y, N), is given in
Table 6.

Definition 14. Let (Pw,Y,N) be a CSVNS;S on U. (F$e,Z, N) is referred to as a weak complex single-valued neutrosophic complement
of ((Pw)°,Y,N) if and only if (9G,Y, N) is a weak complement and (Pwe,Y, N) is a complex single-valued neutrosophic complement of
(Pw,Y, N).

Example 6. Let (Pw,Y,6) be CSVNG6StS, as in Example 1. The weak complex single-valued neutrosophic complement (9g.,Y, N), is given
in Table 7.

Table 7: The weak complex single-valued neutrosophic complement (®g,.,Y, 6) of the C'S VN 6575

(2%.,Y,6) U, Us Us

3
1/] (5 (0 4061(]'84W, 0.65611'32", 0.60511'26”)) (4 (0 12(,1() 26m 0 95¢ 11 88m 0 90611 (‘]21\')) (1‘ (0.97611 967r.’ 1.05(’,11'927, 0,0661(]'14W>) (3 (0 24(,L(] 507 0 14czl) 24 0 87511 727r))
Y2 (4 (0 Sleil.(}ﬁw, U.ZSG[U'SZWA 0A17ﬂ10.4OW)) (1 (0 25910 487 U 889“ 587 U 816’11 wa)) (3. (0.546“'107'A 0A42ﬂ10»08W1 UA3()'€1‘O 747r)) (57 ( 98\‘1 987 0. 04910 067 U 08910 207!'))
Y3 (1 (0 0287'1.06%. 0.45810'88", 0'3267',0.707)) (3 (0 78671 87' 0 24 1670 467r L0, 20(’70 427\')) (07 (0.20610 387\'.’ 0.836“'6474 0‘75671.527r>) (5 (0 1880 94m 0 09671 16m .0, 69611.367r))
Y, (0 (0 106“'241”,0.09(3'1'%". 0_98611v947r)) (2 (0 93¢l 88im ,0. 09¢0-16m ,0. 03¢0 ll)1r>) (3) (0.83(?'1'68"., 0.216""407(,0.21(310'46”)) (3 (0 55eil 127r ,0. 41¢0-80m 0_38610v787r))

Definition 15. Let (Pw,Y, N) be a CSVNNSS on U, then the strong complex single-valued neutrosophic complement (((13‘11)/, Y, N) is de-
fined as a strong complement (<I>:1,, Y, N) and a complex single-valued neutrosophic complement (Pyc,Y, N) of (Pw,Y, N), defined as:

Dye (yu) =

(hfu _ 17 (TwseiQwas7A(1 _ qws)emw(l—w.ws)7pwsei27rtws)) lfhi; — (N _ 1) _ hqi,,
(N =1) — hy, (Twseﬂﬂf“’s, (1- qws)eﬁ”(l*“”“),pwseﬂ”tws)) otherwise,

forall y, € Y and us € U.
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Example 7. Let (Py,Y,6) be CSVNG6SS on U, then the strong single-valued neutrosophic complement (<I>:I,c, Y,N), of (®w,Y,6) arranged
in Table 3, is calculated in Table 8.

Table 8: Strong single-valued neutrosophic complement of (®y, Y, 6)

(Py.,Y,6) U, U, Uy U,
Y, (2,(0.40¢™ 577, 0.65¢7-527, 0.60¢™257)) (0, (0. 12#0 27 0.95¢' 557 0.95¢T927)) (5, (0.97¢™957, 1.05¢™ 977, 0.06e™ 1)) (4, (0.24€™°07, 0.14e™ 217, .87 T2 )
YZ (4 (0 816'1 66 ,0.25¢e 70 52m 0 17610 4O7r)) (1 ( 10 487 0 88671 58m ,0. 81(’71 Fﬁn)) (3 (0 04671 107 0 42610 08w 0 36610 7-11r)> (5 (0 9861 98T 0. 04810 067 0. 08670 207r)>
Y3 (3 (0 592¢i1.06™ ,0.45¢ i0.88m () 3910.707 )) (4 (0 78[1.1 087r ,0.24¢ i0.467 ,0.20e i0. 427)) (1 (0 20¢i0-387 ,0. 83¢il b47r ,0.75¢ pil. abr)) (2 (0 4860'947& 0A59611.107>0.696L1.35W)>
Y4 (0 (0 1060'241‘",0.096‘“’96"4 04986“'947-)) (:) (0 q;el 88im 0 09610 161r 0 03610 101:)) (4 (U 83?“ 687 0. 21(,:0 0% 0 21‘,10 161)) (} (0 55611.121’0'41610.80( 0‘3861'0.787.'))

Proposition 16. Let ((Pv)°, Y, N) and ((<I>\p)/7 Y, N) be weak and strong complex single-valued neutrosophic complement of CSVN' NS¢S
(Pw,Y,N), then

2(((2w)), Y, N) # (Pw,Y, N),

N = (Pw,Y,N) if N iseven
3((2)w, Y, N) { # (®g,Y,N) if N is odd.
’or = (®w,Y,N) if N iseven

4([(®e) ], Y, N) { # (®y,Y,N) ifNisodd |°

Proof. The proof is straight forward from the definitions. O

Definition 17. Let U be a non-empty set and (P, Y, N1) and (xa,C, N2) be CSVN1S¢S and CSVN2S¢S on U, respectively, their restricted
intersection is defined as (Lnr, G, 0) = (Pw,Y, N1)N\(xa,C, N2), with Lyy = ®ulixa, G = Y N C, O = min(Ni, N2), i.e, V., € G,
us € U we have

LM(‘TU!) = <(hfm (Tw57HwSaFws))>,
= ((min(hllf, hff), min(Tllus, Ti,s) max(]lilus, His), max(]Fi,S7 IF?US)))
lemln(tws,tiﬁ)

i2 2 1 2 i2 R
i wmax(wws,wws) max(rws,rws)el wmax(fws,fws)»’

= ((min(hy’, hZ), min(py,s, pas)e ,MAX (s Gors )€

where (h;, (The,ﬂhsyme)) = (b, (pwseﬂ"t“’* ghee s 1l €2 us)) € Dy and (W25, (T2, 12, F2,))

2s 2 i2mt? 27w 2 a2
= (hw ) (pwse ws q se W Tws€ fws)) € Xxa.

Table 9: The CSF55¢S(xa,C,5)
U, U, Us

Yl (07 (0_12€i0.237r7 0.916i1.847r’ 0_96€i1.967r>) (17 (0_2167;0.4272 0.77ei1.507r’ 0_82€i1.667r)) (07 (0 05€i0 T4m 0. 87Fi1 27T 0 886” 807\'))
Y2 (2~ (0.4261'0,82#7 0.5161'1.04717 0.566“‘10")) (4~ (0.886“’78‘", O.Ogei().lﬁfr7 0.06€i0‘10")) (4 (0 90e i1.841 0 11610 207r 0 1467,0 261r))
YB (37 (0_81ei1,647r7 0.176i0'367r, 0_19€i0.407r)) (37 (0_83(,‘11.687r7 0276’50.56'”’ 0_30€i0.587r)) (17 (0 26("0 487 0 72Ptl 427r 0 75e i1.527 ))
Y4 (4A (0.956“’80‘"7 0.0128i0'02ﬂ, 0.1060,221'#)) (?L (0.706“’42‘"7 0.268i0'54ﬂ, 0.3160’64i")) (2 (0 49611 021r 0 61611 247r O 59611 161r))

Example 8. The restricted intersection (Ly, G, O) of (Pw,Y,6) and (xa,C,5), given in Table 3 and Table 9, arranged in 10.

Table 10: The restricted intersection (L, G, 5)

(L, G,56) U, U
Yl (0’ (0_126’[0.237T’ 0'9161'1.84#’ O.96€i1'96ﬂ)) (1’ (0.2167:0'4271-, 0.776“'50ﬂ-, 0'82€i1‘667r))
Y, (1, (0.17€™0-407 0. 751487 0.81¢"1-66m)) (4, (0.81e"-607 (.22¢7042T (.25¢0-457))
Y'3 (2’ (0_3261'0.70#’ 0.556“'12ﬂ-, 0.526“'06”)) (1’ (0‘2061'0.4277’ 0.76€i1'547r, 0.78€i1'58ﬂ))
Y4 (47 (0‘956721.80#7 0'0126710.02#7 0.1060’22”‘—)) (0’ (0.03610.10#’ 0'91€i1.847r7 0.9361.882%))

Definition 18. Let (Pw,Y, N1) and (xa,C, N2) be CSVN1S¢S and CSVN2S¢S on U, respectively, their extended intersection is defined as
(Dg,T,6) = (Pw,Y, N1)N(xa,C, Na), with Dg = PuNxa, T =Y UC, & = max(N1, N2), that is, Vz., € T and us € U, we have

(R, (Tays, T, Flts)), if 7w €Y = C,
DQ(JZ‘w) = (h%us7 (T?US,]IQ’UJS7F’IQJJS))7 lfﬁ:’w € C Y

. . 2 2 . 1 g2 .
(mln(h;lus7 h121)5)7 mln(pzlu.s ) pIZUS) 7’2ﬂ-mln(tw< 7t S)’ max(qlli)57 q121)3) Zzﬂ-max(wa 7ww5) max(r’i)é" Tﬁ}s)ezzwmax(fws ,fw5)> ) l.fxw E O m Y
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1
where (h'11usa (quucv Llusv F}ue)) = (h'11usa (p1lusel27rtwg q ws 127‘rww§ ,,,1 el2ﬂfws)) € &y and (hzf, (’]r?usa H?usa ]FQwe)) = (hZ}S

2 i2mt? i27w? 2 i2m f2
7(pwse ws q s€ WE Tws€ fws)) € Xa-

Example 9. The extended intersection (Dq, T, 6) of (Pw,Y,6) and (x4, C,5), given in Table 3 and Table 9, arranged in 11.

Table 11: The extended 1ntersect10n(DQ, T,6)

(Do, 1,6) U, U, U,
A (0, (0.12e™-237 0.91e™¥17 0.96™957)) (1, (0.21e™0-727,0.77e™-507 0.82¢™1-957)) (0, (0.06€7- 117 )9’36’1 927 10.97€T97)) (1, (0.24€™597 .86 707 (.87 T T2T))
Ys (1, (0.17¢0407 (. 75¢i1- 487 ,0.811-66m)) (4, (0.81e1:67 0.22¢%0 127 ,0.25¢70-48T)) (2, (0.36¢7- Tan L0.58¢7 1187 0 54¢i1:107)) (0, (0.08€™- 20 ,0.96¢#1:947_(.98¢1-987))
Y3 (2, (0.32¢% 707 L0.55¢i1127 () 52¢71:06T)) (1 (0.20€70- 127 ,0.76¢715 54m ,0. 78971 587T)) (4, (0.75¢" 521 ,0.17¢0-367 0.20¢0-387)) (3, (0.69¢'- 367 ,0.41¢/0847 (. 48¢0-947))
b (4, (09567807 0.01270927,0.100227)) (0, (008107, 09161847, 0.93¢1857)) (1, (0.21/0467, 0.79¢190%, 0.83¢1.057)) (2, (0.3860-7570.50¢1207 0.55¢1-127))
Us
Y (0, (0.05e™- 117 0.87e™-727 ().88¢™1-507))
Ys (4, (0.90671-847 0,11¢70-207 (),14¢70-267))
Y3 (1, (02610487 0.72¢71-427 () 75¢1-527))
Yy (2, (049671027 .61¢1-247 0.59¢i1167))

Definition 19. Let U be a non-empty set and (Pw,Y, N1) and (x4, C, N2) be CSVN15¢S and CSVN2S¢S on U, respectively, their restricted
union is defined as (L, ®,9) = (®w,Y, N1)U(x 4, C, Na), with Ly = ®9Uxa, & = Y N C, O = max(N1, N2), i.e., Vi, € 6, us € U we
have

LM('TU?) = <(hfu7(Tws7Hw37Fws))>7
((min(hy, hy), min(Tus, Tos ), max(Lys, ), max(Fus, Frl))),

te ) . i27rmin(wl w2 ) . 1 2 i277min(f i)
werws s, IIllIl(qu, qws) werTws IIllIl(Tws’ Tws)e werws )>7

i27wmax(t}
Je

<(ma'X(h71US7 h’lQl/s)7 max(p’llus7p121).5‘
Where (h"llus7 (T’llUS7]I’lIUS7F11US)) - (h"llus7 (p%us Z27rtws7q 127"0}“’5 T eZQWf&JS)) 6 @\I/ and (h3§7 (T12U.57I[22U.57F12US))
= (%, (pRee® s 2 2™ hs 12, 2T ie)) € Ya.

Example 10. The restricted union (L, G, O) of (Pw,Y,6) and (xa,C,5), given in Table 3 and Table 9, arranged in 12.

Table 12: Restricted union (Lyg, &, O)

(L, 8,9) Uy U,
Y] (3, (0.60e"1267 0.35¢'0-65™ 0.40e™054T)) (5, (095927, 0.05¢0- 12T, 0.12¢70-267))
}/’2 (27 (0'42€i0.827r7 0.516“'0471-, 0.566“'107‘-)) (4, (0.886“'78ﬂ-7 0'09€i0.167r7 0.066i0'10ﬂ))
Y3 (3, (0811047 0.17€/0-36m 0.19¢70-40T)) (3, (0.83¢"-657,0.27¢0-567, (.30™0-557))
Y;l (57 (0'98€i1.947r7 0.016i0'04ﬁ, 0.1060'24“-)) (3, (0'7061'1.42#7 0.26€i0'54ﬂ, 0.3160.641'#))

Definition 20. Let (Pw,Y,N1) and (xa,C, N2) be CSVN1S¢S and CSVN2S¢S on U, respectively, their extended union is defined as
(Pa,T,B) = (Pw, Y, N1)U(xa, C, Na), with Pg = PgUxa, T =Y UC, B = max(N1, Na), that is, Vx., € T and us € U, we have

(hﬂlusy (Tllusv]I}usanlus)L lf{]ﬁw €Y — O’
PQ(Iw) — (hi)sv (T?uw]li)m]Fi;s))v l‘fl'w eC— Y,

2 X ; coopl g2 .
(maX(h%usy h%us)z maX(Pilﬂmpfus) 127Tmax(tw5, ws) mln(Qw57 Qws) 127Tm1n(ww5,wws) mln(rﬂ}usyT?us)eﬂﬂmm(fwsMf'lw))’ lfxw eCny

where (hilf, (Thg,ﬂbmms)) (hqli, (pLei2™ s gl e2™us pl ¢i27fus)) € By and (RS, (T2, 12, F2,)) = (h2S

2
b (])’121J587127Tt“/g q )S 7’27“‘)1“5‘ ) TZ)SGZQWf’wg)) e XA'

Example 11. The extended union (L, G, O) of (Pw,Y,6) and (xa,C,5), given in Table 3 and Table 9, arranged in 13.
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Table 13: Extended union (P, ’T B)

Pa, T,%) of} T, T,
Y'l (r{ (U ()06“ 26T U 3:!670 68T U 40670 17\')) (r) ( 1] 927 0 05e 0. 127 0 12610 67{)) (0 (0 06670 Tam 0 95671 927 0 97(:71 901\')) (1 (0 24910 507 0 86(’” 707 0 87(’” 12#))
Y’2 (2 (O 42(10 827 ,0. 01(11 .04m ,0. 06(11 ll)n)) (4 (0 88(/L1 787r 0 OQCL(J l(:wr 0 OGLL(J l(]w)) (2 (D 36¢ i0. 741r ,0.58¢ il. l81r ,0.54e il. 107\')) (0 (0 08[/10 2(J7r 0. 96[/“ J47r 0. 98[/1 987r)>
Y; (3, (0.81ei1-047 0,17¢10-367 0. 19¢i0-407)) (3, (0.83¢71-057 0,27¢10-567 0.30¢10557)) (4, (0.75¢11-527, 0.17¢10-307,0.20€10357)) (3, (0.69¢71-07, 0. 4160847 0.48¢0947))
’/1 (5 (O 986“ 947 ,0. Olczl) 04m ,0. ]OCU 24ur)) (3 (0 70(’11 427r 0 26(’10 )47&' 0 31(,1) ()417()) (1 (0 21(‘1[) 46T ,0. 79(,“ -60m ,0. 83(,“ ()81r>) (2 (0 38(’,1(]'78”‘0.596“'207r‘0.556“'127r))

Us

Yl (0 (O 05¢ 10. 147 .0. 87611 2T .0. 88611 SI)W))
Y, (4 (0 906,;1 84w ,0. 1110-20m ,0. 14¢%0- 267\'))
YB (1 (0 26(’70 487\' 0 72(’71 427\' 0 T5e 11 )27\'))
Ya (2 (0 -196’” 027r ,0. ()16’” 2-17r ,0. 096”1 167r))

Now we discuss some properties and their proofs.

Theorem 21. Let (Pw,Y, N1) be a CSVN NS S over a non-empty set U. Then,

1 (@4, Y, N1 )A(®g, Y, N1) = (B, Y, N1)
2 (P, Y, N1 )N(Pw,Y,N1) = (Pg,Y, N1)
3(Qy,Y, N1)U(Pw,Y,N1) = (Pg,Y, N1)
4 (Py,Y,N1)U(Py,Y, N1) = (Pw,Y, N1)

Proof. 1.

R.H.S = (®g,Y, N1)N(Pw,Y, Ny), (1)
where the extended intersection of two C'SVAN NS¢ Ss is calculated as:
(D@, T,8) = (2w,Y, N1)N(Pw,Y, N1), )
withT =Y UY, & = max(N1, N1) and

(h%usa (quusv H’%l)s? ]F11u9))7 lf Tw € Y - Y7
DQ(Z’w) - (h'}us7(T'}us,H'}ust’llﬂs))7 lfx'w S Y_Y’
(min(hL, his), (min(Th., T, ), max(Lyy, ILy), max(Fly, L)), if 2., € Y O Y.

Casel: Ifz, €Y —Y =0,
Do(zw) = Po(Tw). 3)

Case2: Ifz, €Y —-Y =0,
Do (2w) = Pu(Tw). “

Case3: Ifx, €Y NY =Y,

(min(hyy, he), (min(Ty, s, Toy, ), max (L, I ), max(F,,, Fryl ),
= (ha, (T, Is, Fas))s
= @q/ (Iw) (5)

Dq(zw)

From Equations 2, 3,4 and 5, (Dq, T, &) = (®w, Y, N1) and further Eq.1 implies (P, Y, N1)N(Pw,Y, N1) = (Pw, Y, N1).

2.
R.H.S = (®g,Y, N1)N(Pw,Y, N1), (6)
where the restricted intersection of two CSVN NSy Ss is calculated as:
(Lm, G,0) = (Pw,Y, N1 )N(Pw,Y, N1), @)
withG=Y NY =Y, O = min(N1,N1) = N1 and
Ly(zw) = (min(hy', hy), (min(Ty,, Ty, ), max(Lys, Ly ), max(Fus, Fu, ),
= (h (Tus, Lus, Faoo)),
= Qu(w), (®)
clearly, from Equations 6, 7 and 8, we get the required result.
3.

R.H.S = (Py,Y, N1)U(Pw,Y, N1), O]
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where the extended union of two CSVN NS¢ Ss is calculated as:
(P97T7%) = ((I)‘IUY'?Nl)O((I)‘I’aKNl)v (10)
with 7 =Y UY, B = max(N1, N1) and
(h'llusy (T’llUS7]I’lIUS7F11US))7 if Tw € Y — Y’
Po(zw) =4 (A, (Tus, Lus, Fus)), ifzw €Y =Y,
(max(hif, hif), (max(Th,, Tes), min(Ih,,, It,,), min(FL,, FL.))),if z, € Y N Y.

Casel: Ifz, €Y —Y =10,

Po(rw) = Pw(2w). (1D
Case2: Ifz, €Y —Y =0,
Po(w) = Py (aw). (12)
Case3: Ifz, €Y NY =Y,
Po(zw) = (max(hy, hy), (max(Tys, Tus), min(Lu, L), min(Fu, Fus))),
= (s (Tus, Lus, Fu)),
= Oy(zw). (13)

From Equations 9, 10, 11, 12 and 13, we get (®w, Y, N1)U(Pw,Y, N1) = (Pw, Y, N1).

R.H.S = (®y,Y, N1)U(Pw,Y, N1), (14)
where the restricted union of two CSV N N Sy Ss is calculated as:
(Lit, ®,90) = (Pw,Y, N1)U(Pw, Y, N1), (15)
with =Y NY =Y, O = max(N1,N1) = Ny and
Lit(zw) = (max(hy’, hy), (0ax(Tus, Tus), min(lys, Lys), min(Fu, Fu,))),
= (A (Tus, Los Fus)),
= Pg(Tw), (16)

clearly, from Equations 14, 15 and 16, we get the required result.
O

Theorem 22. Let (Pw,Y, N1) and (xa,C, N2) be CSVN N1S;S and CSVN N2 Sy S, respectively, over the same universe U, then the absorp-
tion properties hold:

1. ((Pw,Y,N1)U (XA,C,NQ))ﬁ(q)q;,E,N1) (Pw,Y, N1)
(Pw, Y, N1)U((xa, C, N2)N(Pw, E, N1)) = (Pw,Y, N1)
3. ((®w,Y, N1)N(xa,C, N2))U( Py, E, N1) = (Py, Y, Ny)
(Pw,Y, N1)N((xa,C, N2)U(Pw, E, N1)) = (Pw,Y, N1)

Proof. 1. Let the extended union of CSVN' N1 S¢S (®,Y, N1) and CSVN N2S¢S (xa,C, N2), be
(/PQ7T7%) (q)‘INYNl) (XA7CN2)

with 7 =Y U C, B = max(N1, N2) and
PQ(xw) = (h'lstn (T’LUS7]I’LUS7IF’UJS)) =

(h'%us7 (T’}US’H’}US7]FI’111)S))7 lf.wa S Y - C,
(hﬁf’(Ti}svH?usti;s)L lfxw € C_Y’ (17)
(maax(hi?, B2, (max(The, T2,), min(Lhy, 12,.), min(FL,, E2,))), if 2w € Y N C,
Now, consider the restricted intersection of (Pg, T, B) and (Pw, Y, N1), that is defined as
(Lum,G,0) = (Po, T,B)N\(Dw,Y, N1),
withG =T NY, O = min(B, N1) = N; and

L]W (x'w) = (mln(hfm h’vlJJS)7 (min(T’wsv Tijs)? maX(HwS7 ]ﬁus)7 max(]Fw57 ]Fvli)s)))7 (18)
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forallz,, € G =Y NC,sothatx,, € W, z,, € C. If z, € W, then there are three cases.
Case 1: if z,, € Y — C, using Equations 17 and 18, we get,
Ly(zw) = (min(hy, hy), (min(Ty,, Ty), max (T, I,s), max(Fy,, Frg)))
= (hy, Tos i)
= Og(zw) (19)
Case 2: ifz,, € C =Y, since z,, € G =Y N C implies x,, € Y, therefore, this case is omitted.
Case 3: if z,, € C'NY, using Equations 17 and 18, we get,

Ly(zw) = (min(max(hqlf,his),h}f),(min(max(T,lus,']I‘i,s),quus),max(min(ﬂfvs,Tis),ﬂts),max(min(lﬁ‘bs,Ti,s),lﬁ‘fus)))
= (', Tos, Fuo)
= Py(zw) (20)

Thus from Equations 19 and 20, we get ((®w, E, N1)U(x 4, C, N2))"\(®w, E, N1) = (®y, E, N1).
2. proofs of 2, 3 and 4 are same as above.

O

Theorem 23. Let (Py,Y, N1), (xa,C, N2) and (Y., 0, N3) be any three CSVN N1S¢S, CSVN N2S;S, and CSVN N3S¢S, and over the
same universe U, then the following properties hold:

1 (®g,Y, N1)U(xa,C, N2) = (xa,C, N2)U(®w, Y, N1),

2 (®g,Y, N1)U(xa,C, N2) = (xa, C, N2)U(Py, Y, N1),

3 (®w,Y,N1)N(xa,C, N2) = (xa,C, N2)N(Pw,Y, N1),

4(CI>\1,,Y,Nl)A(XA,C,N2)=(XA,C' Ng) (q)q;,YNl

5 ((®w,Y, N1)U(xa, C, N2))U(Tk, 0, N3) = (Pw,Y, N1)U(((xa, C, N2))U(Tx, 0, N3)),

6 ((®w,Y, N1)U(xa,C, N2))U(Tx, 0, N3) = (Pw, Y, N1)U(((x4, C, N2))U(Yx, 0, N3)),

7 ((@w,Y, N1)N(xa,C, N2))N(Yr, 0, N3) = (®w, Y, N1)N(((xa,C, N2))N(Lx, 0, N3)),

8 ((Pw,Y, N1)N(xa,C, N2))(Lr, 0, N3) = (®w, Y, N1)N(((xa, C, N2))(T, 0, N3)),

9 (®w,Y, N1)U((xa,C, N2)\(Yr, 0, N3)) = ((Pw, Y, N1)U(xa, C, N2))N((Pw, Y, N1)U(T s, 0, N3)),
10 (®w, Y, N1)N((xa, C, N2)U(Tx, 0, N3)) = ((Pw, Y, N1)N(xa, C, N2))U((Pw, Y, N1)U(Yx, 0, N3)),
11 (®w,Y, N1)U((xa, C, N2)(Tx, 0, N3)) = ((Pw, Y, N1)U(xa, C, N2))N((Pw, Y, N1)U(Yx, 0, N3)),
12 (®w, Y, N1)N((x4, C, N2)U(Tw, 0, N3)) = ((Pw, Y, N1)N(xa, C, N2))U((Pw, Y, N1)N(Tx, 0, N3)).

4 Complex single-valued neutrosophic N-soft number

Definition 24. Let @y (yw) = ((us, hS), (pwse> ™%, quse™>™ s ryse®™we)) be a CSVNNSS. Then the complex single-valued neutro-
sophic N-soft number (CSVN NS;N) is defined as:
27ty s 2T W s iQTrfws)

s . E
Qs = (hwypwse y Qus€ s Tws€

Definition 25. Consider a CCSVN' NStN aups = (hfu,pwseiz"t“’s  Qus€ 2w rwsei%f“’s). The score function S(ouys) is:

ha
S(aws) - N 1 + (pws — Quws — T’ws) + [tws — Wws — fws], (21)
where S(aws) € [—4, 3]. The accuracy function A(ous) is:
ha
A(aws) = N _1 + (pws + Qus + T’ws) + [tws + Wws + fw.s] (22)

where A(aws) € [0, 7], respectively.

Definition 26. Let cvyys = (hsy, puws€ 2™ | us€2™v5 ryse2™vs) and cys = (h, prse>™ts | €2 11 ,e"2™1e) be two CSVN'NSfNs
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1. If Say, < Say.,then aws < aus (s IS inferior to oys),
2. If Says = Sa,,, then

i Aa,, < Aay,, then aups < aus (s is inferior to ays),

ii Aa,, = Aa,., then aws ~ aus (s is equivalent to o).
Definition 27. Letf ayys = (hwpws@l 27ty s , qwsemwwws , rwsemwfws) and s = (hl \Dls 61 27ty s qlsei27rwzs , ,r,lsei27rfzs) be two CSV_/\/’NSfNS
and B > 0. Some operation for CSVN NS¢ Ns are

Bouws

B B i B
wa[l_ 1_ ),8]6127r[1 (I—tws)?] qwseﬂﬂ'wws’rﬁsez%rfws)’

Qs D Qs

—(1— B 3 —(1— B
O‘?us (hu”pwsez%rt [1 _ (1 — qw ) } 27 [1—(1—wws) ]7 [1 _ (1 _ ,rws)B]eIQ'/r[l (1—fws) ])7
( hun hl (pws + Pis — PwsPis)€

) P27 (twsttis —twstis) ( ) 127 (WwsWis) (

s (Qusqis)e )eiQW(fwsts))

s \TwsTis )

Qs @ s = (min(hfw hy), (pwspls)61'27r(twstzs)7 (Gus + qus — qwsqls)ei%(wws+wzs—wmswzs)7 (Fws + T1s — rwsrls)eizﬂ(fws“'fls_f'ws.fls)).

Definition 28. Let oy = (hfmpwseﬂ”tws ) Qus€2TEws rwsem"fws) and ays = (hi, prse™ s | o€ | msem"f“) be two CSVN' NSy Ns
and 3 > 0, then the following properties hold:

1. Qs D Als = s ] Quys,
2. Qs ® Als = s ® Qus,
3. 5O¢ws @ Bays = 6(06ls b OéwS)7 B >0,
4. 51051115 (&) ﬁlaws = (ﬂl + ﬁ2)05w59 ﬂla ﬁ2 > 07
5. Oégs ® Oéli = (als ® aw5)67 /B > 07
6. afl @all = a2t g1, By > 0.
Proof. 1.
Qs B aps = (max(h’fua h?)? (pws + DPis — pwspls)ei%r(tws+tl$7twsns>a (qwsqls)emﬁ(wwsww)a (rwsrls)eﬂﬂ(wahS))’
- (max(hlsv hfu)7 (pls + pws - plspws)eiZW(tls+tw57tlSth)7 (qZSQws)eiQﬂ—(wZSMWS)7 (rlsrws)ei2ﬂ(fleWS))’
= ays D ays.
2.
Qs @ Qs = (mln(hfm h?)a (pwspls)€i2ﬂ(tw5tl's)7 (Qws + qis — qwsql8)6i2ﬂ(wws+w“ *wwswzs)7 (TU)S + 7 — rwsrls)ei277(f’ws+fls7fw3fl5))
— (mln(h;, hfy)y (plspws)eiQ‘K(tlSth)y (le + Gus — qlsqws)eiQ"r(wls""wws_wlswws)’ (Tls + rws — T,lsrws)eiz"r(fls"!‘fws_flsf'ws))
= s ® Qs
3.

s i‘/r——wsﬂ i2mwh i2n fP s iTr——SB
Bas @ fars = (Wi, [1 = (1= pu) e =070 gl 270 4 7H0) @ (h] 1 = (1= pra) ] 700",

bl 'U.)Se
qieﬂ“’lﬁs ’ rlﬁseizwffs)
= | max{f, ), - — Pws - — Pis - - — Pws - — Pis
(hw, hi), ([L = (1 P1+01-( 1-11-(Q - )’

2= (—tw) I 1= (1=t1) == (=t J=(=) ) (B (8 izn(wiowr) (nf ﬁ)eizﬂq{isqi))

wsq)s)€ TwsTs

27 [1—(1— —t, 27 ) B
= (max(h;,hf),p_(l — Puws + Dis — Pwspis) e’ = (I—tws+tis—twstys)? ]7(qwsqls)/8612 (@wswis)?

i B
(rwsrl‘s)ﬁel}’f(fwsfls) )

= B(max(hfm h;)a (pws + pis — pwspZS)eZW(prerls_pwspls>7 (QwSQlS)ezﬂ(wwswlS)v (Twsrls)GQ‘”(waflS))
=p (aws 2] OCls) .

Similarly, we can prove 4, 5 and 6.
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Definition 29. Let cys = (B3, Pus€ 2™05 | quse®2™vs 1y ee?™ws) (w = 1,2, ..., k) be a collection of CSVN NS;Ns and v, be the weight
k

vectors of Quys With vy, > 0 and Z vw = 1. The complex single-valued neutrosophic N-soft weighted average operator (CSVN NS;W A) is a

w=1

mapping CSVN'NS; WA : J* — T, where J is the set of CSVN NSy Ns, defined as follows:
CSVNNSfWA(OélS, Q25y .+ vy als) = (1/10615 D roaes @ ... 0 I/kaks)

. k v ) k Vw ) k Vw
= (mlx(ht), [1 = T (1 = pu) e Thoms (0= bus ) s (g Moms (o)™ ity et Mo (e ),

w=1 w

Definition 30. Let ays = (hfu,pwseﬂﬂ‘“7 qwsei%“’ws,rwseﬂﬁws) (w = 1,2,...,k) be a collection of CSVN'NSyNs and v, be the
k

weight vectors of au,s with vy, > 0 and Z vy = 1. The complex single-valued neutrosophic N-soft ordered weighted average operator

w=1

(CSVNNS;OW A) is a mapping CSVN'NS;OWA : T8 — J, where J is the set of CSVN NS Ns, defined as follows:
CSVNNSfOWA(als, Q2s5, ..., Oéls)

= (Vlag(ls) D v2,25) D ... D l/k%(ks))

. k Vaw X k Vo
= ((mlax(y (), [1 = Ty (1 = pygunsy) 12 Tomt (0 Feto) ™) 11t (g, )72t (ot )],

Vaw iTrH,ﬁ)f ws Yw
(I8 (7 (ws)) ] =1 (fewn) })'

where, o(ws) is a permutation ordered by cty(ys) > Qg(vs), for allw < v, (w,v =1,2,...,k) and (s = 1,2,...,1t).
Definition 31. Let avys = (hfu,pwsei%tws  Qus€2TEws rwsei%fws) (i =1,2,...,1) be a collection of CSVN NSy Ns and v,, be the weight
k
vectors of Quys With vy, > 0 and Z vw = 1. The single-valued neutrosophic N-soft weighted geometric operator (CSVN' NS;WQG) is a
w=1

mapping CSVN'NS;WG : J¥ — T, where J is the set of CSVN NS Ns, defined as follows:

CSVNNSWG(o1s, s,y .., o) = (]} @ a2 @ ... ® ap*)
k k 27 k Vo k Vay
= (min(h), [0y (pu) M=t (s ™ L o1 (1= gy egelt ™ ot (0= wu)™0 1l (10— e elfTomt (0 Fua) 1)

Definition 32. Let s = (b, pus€ 2™ 08 | qus€2™ws ryse®™ws) (3= 1,2,... 1) be a collection of CSVN NSt Ns and v, be the weight
k

vectors of auys with vy, > 0 and Z vy = 1. The single-valued neutrosophic N-soft ordered weighted geometric operator (CSVN NS;OW G)

w=1
is a mapping CSVN'NS;OWG : TK = T, where J is the set of CSVN' NS¢ Ns, defined as follows:
CSVNNSfOWG(OqS, 25y« vy Ozks)
= (A1 ® gas)ve ® ... @ Qphs)¥k )
! 5 Vq 27 k_ Yw V4 i27m[1— k_ — Yw
= (min(hg(w)), [y (pogusy) e 2 o=t o)™ ] 1 115y (1 — gy ) )er27 1 Tt (1= Watun)™),

. k Vw
(1= I (1= ) e s (1 o)),

where, o(ws) is a permutation ordered by aty(ys) > Qg(vs), forallw < v, (w,v =1,2,...,k) and (s = 1,2,...,1).

5 Complex single-valued neutrosophic N-soft TOPSIS method

In this section, we developed methodology for TOPSIS method under the framework of C'SVAN NS¢ S's for solving multi-attribute group decision
making (MAGDM) problem. For the optimal solution of the MADM problem, TOPSIS method specifically used ideal solutions of that problem.
Consider a MAGDM problem with U = {U;, Uz, Us,..., U} and Y = {Y7,Y>,Y3,..., Y} be the set of alternative and attributes decided
by the experts Zl, Zg, Zg, ceey Z r, where the experts weight vector for this MAGDM problem is v = (v1, v, vs,. .., z/k)T . The procedure for
C SV N N S;-TOPSIS method is as follows:

5.1 Organizing the complex single-valued neutrosophic N-soft decision matrix

After studied the MADM problem properly, decision makers use rating system for assigning rank to each alternative, parallel to each semantic term,
relative to the attributes that indeed form a NSy S. Further, decision making panel associate CSVN NSy N corresponding to each rank (ordered
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grade) by defining grading criteria related to the aptitude of the MADM problem. Therefore, a complex single-valued neutrosophic N-soft decision
matrix (CSVN' NSy DM)H = (]Hgg)(sxw) is organized as follow:

po B e T o
@ (h% ! ’T2J1 *H2J1 ’]F2J1 ) (h% ! ’T212 ’H2J2 ’]F2J2 ) (hf” ! ’T2Jk ’HQJk ’]F2Jk)
WO TP AP D) D PP D) DD D D)

; o NG ; N iortG) () sorw@) (5) s )
where, HY) = ((h)9), T, 1), FG)) = (hs,, plilei2mtios g@)ei2mens p@ei2nfusy g = (1,23, t}, 5 = {1,2,3,...,f}, and w =
{1,2,3,...,k}.

5.2 Aggregated complex single-valued neutrosophic /V-soft decision matrix

As the decision makers (experts) are not equally weighted in MAGDM problems, therefore by utilizing the weightage of each expert decided by the
panel we cumulate the decision of all experts and get aggregated complex single-valued neutrosophic N-soft decision matrix (ACSVN NSy DM).
The CSVN NSy W A operator or CSVN NS W G operator are precisely used to commulate the CSVN NSy DM (H) as follows:

Hows = CSVNNS;WAMY HZ, ... H);
(OR) = CSVNNS;WGMHE, HZ, . . H);

Where’ H’WS = (hi ']I’Wév st, Fwa) = (hinpwseizﬂ'tws ) Qwseﬂﬂ-wws ) Twsei%rfws )
The ACSVN N;SDM denoted as:

(h1,T11,111,F11) (R}, Ti2,T12,F12) ... (hg, Ty, Dig, Fip)

(h1,Ta1,l21,F21)  (h3,To2,l22,F22) ... (hg,Tag,lok,For)
H = . . .

(h3,Ts1,051,Fs1)  (hd,Ts2,1s2,Fs2) ... (b, Tor, Lk, Fsi)

5.3 Weights for parameters

To highlight the influence of the parameters in the MAGDM problem, experts judged each parameter and assign grades as the weight of the
parameter. Further, CSV N NSy N s are associated to each grade using the grading criteria finalized by the panel. Let o) = (hgj ) , T , 1 , FY ))
be the weight of wth parameter given by the jth expert in the MAGDM problem. Let @ = (01,0, ...,0k)" = (huw, Tw, Lu, Fy) be the weight
vector of attributes that is summarized, by CSVN NS W A operator or CSVN NSW G operator, as follows:

0, = CSVNNS;WA®OY 609, ...,69);
(OR) = CSVNNSWGOD,68, ... 09)).

where, 8, = (b1, T, L, Fuy) = (B, pue®>™%, que?®™@w 1y et27Fw),

5.4 Aggregated weighted complex single-valued neutrosophic /V-soft decision matrix

The ACSVNN;SDM H is used within the weight vector (61,05, ...,0x)7 of parameter for the formulation of aggregated weighted single-
valued neutrosophic N-soft decision matrix (AW CSVN NSy DM). The calculations for are performed as follows:

Hu)s - st & 9w
= (mln((h;)7 hw)7 (Tuf.sTiu)y (st + ]Iw - stﬂw)’ (Fws + Fz - ]FwsFW))

_ <min(hfv, hw)’pwspwei%twstw’ (Qws + Guw — qwsqw)eiQW[wws+wws7wwsww]’ (Tws Fory — ,r.ws,r.w)ei27r[fws+fwsfwsfw])

= (EZ,, Tw& Ewa IF‘ws)

s = i2mt, _ 27w - P27 s
= (hoys Dws€™ ", Guse"™ " Frpse’ V).
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The AWCSVNNS; DM is:

(A1, T11,T11,F11)  (hd,Ti2,T12,F12) oo (B, Tip, Tig, Fig)
- (h1,T21,121,F21)  (h3,T22,l22,F22) ... (hg,Tak, ok, Far)
Hys = . . .

(R, elaHelanl) (h3, Ts2, ng, Fs2) ... (B}, Tok, H@kﬂ Fsk)

5.5 Complex single-valued neutrosophic N-soft ideal solutions

Let BT be the collection of benefit-type criteria and CT be the collection of cost-type criteria opted from the number of parameters, keeping
in view the expertise of the given problem. Using these collection we are able to evaluate the complex single-valued neutrosophic positive ideal
solution C'SV N N S-PIS and complex single-valued neutrosophic N-soft negative ideal solution CSV NN S-NIS of the MAGDM problem.
The C'SVN N S;-PIS, related to the parameter Y, is defined as:

max H,,, ifY, € BT,
HPIS o J5:1
w -
min Ay, if Yy € CT,

and the CSVN N S;-NIS is defined as:

max Hys, ifY, € CT,
ANIS _ J=

H if Y, € BT.

The CSVN' NS;-PIS and CSVN NS¢-NIS are denoted as: HE'S = (s, Pue’>™te | qwew’“‘"w,fwe“”fw)., and
H«L];”S = (Huujjwe s Guwe

127ty 1270y

| Fwe?™w) respectively.

5.6 Formulation of normalized Euclidean distance

For evaluating the alternatives distance from the ideal solution, we can used similarity measures or distance measure. Moreover, from distance
measures we used the normalized Euclidean distance. The normalized Euclidean distance of any of the alternative U, from the CSVN N S¢-PIS
is defined as:

k ; 7
1 hfu . = J 7. & r ; t.
d(HPIS U ( Tw Z )2 + (pw - pws)2 + (qw - qu)Q + (Tw - Tws)z + (tw - tws)2+

(@ = @use)® + (Fu = Fus) ]) 23)

The normalized Euclidean distance between the CSVAN NS t-NIS and any of the alternative Uy, can be evaluated as follows:

d(ﬁﬁIS,Us) = (7% Z[(Nhf 1) - (Nhf_u 1)2 + (pw - ]511)5)2 + (Qw - Qws)Q + ('Fw - fws)z + (tw - 2?7118)24'
(d’w - @uw)2 + (fw - fw8)2]> (24)

5.7 Revised closeness index

In TOPSIS method, at last we left with two values related to the alternative that prescribed the distance of that particular alternative from
CSVNNS-PIS and CSVN N S;-NIS. Therefore, revised closeness index is utilized for the choice of right solution. The revised closeness
index A(U,) is calculated as:

d(E'PIS U ) d(FINIS U )
A(Uy) = — 25
(0.) mmd( IZEAN I maxd( Y™ U,)’ 2

where, s =1,2,...,t.
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5.8 Identify dominant alternative

For the evaluation of dominant alternative with respect to their performance in MAGDM problem, revised closeness index related to each alternative
arranged in ascending order. So that the alternative with least revised closeness index will be the required one.
For solving a MAGDM problem, the Algorithm 1 is given as:

Algorithm 1: Steps to deal MAGDM problem by C'SVNN;-TOPSIS method

1. Input:
U : Set of alternatives,
Y : Set of attributes, B
v : Weight vector for experts 7,
NS;S: (®y,Y,N)with H=1{0,1,2,3,...,N — 1}, N € {1,2,3,.. .},

2. Construct the CSVNNSyDM H) | using the input data.
3. Evaluate the ACSVNN Sy DM as follows:

. ) ) f _ +@)yrw . ) f (9) yvw
Huw = (i) O, (1= 1y (1= iy ege s T ()™, qray_ gghyregererMma (i)™

? ji=1 )
Jj= J

0y T)

ws

4. Calculating the weight vector @ = (61,0, . ..,0;)" for parameters as:
f j )\ Vw1, 127 [1— Hf_ 1-— t'(uz) Yw )\ Vw1, 227 Hf_ 8) Vw
0, = (max(h)?, [ =11, (= p@) e Tl By (qyegerr M= ()™,

) ) f (7)) \Vw
[H]f:l(rﬁuj))u'“’]eZZ"[HJ:l( W) ]>.

5. Compute the AWCSVNN Sy DM using ACSVNN Sy DM and the weight vector of attributes 6., as follows:

Hys = <min(hfm hw)vaspweﬂﬂtwﬁwv (Qws + Guw — Q'ws(Iw)eﬂw[wws-'—wws_wwsww]7 (Tws + T — Tws’l“w)eﬁw[fws-‘rfws_wafw]) .

6. Evaluate the CSVNN Sy PIS and CSVNN Sy NIS.

7. Evaluate the normalized Euclidean distance d( HE'®, U,) and d(HY, Us)
8. Evaluate the revised closeness index A(Us) .

9. Arranged revised closeness index in ascending order.

Output: Choose the alternative with minimum revised closeness index.

6 Application

In this section, we solve a MAGDM problem using CSVN NSy — TOPSIS method for analyzing the performance of Islamic banks in Pakistan
with CAMELS rating system.

6.1 Monitoring performance of Islamic banking industry on the basis of CAMELS rating system.

The banks are more closely monitored other than any field of economy because of their constitution and important role in the economy of the
country. Analyzing the banking system create more assurance and reliability in making both short and long term decisions, that in return give on
to healthier business in the country. In banking industry, one of the flourishing institute is Islamic banking that follow the rules of Islamic Shariah
and promote the Islamic principles to the transaction of financial banking. The evaluation of financial performance of Islamic banking in Pakistan
using the CAMELS model and TOPSIS method is necessary for higher level of efficiency that further help to set a benchmark for the country. In
this MAGDM problem, following Islamic banks are considered as alternatives:

U, : Bank Albarka(BA)
U, : Bank Islamic (BIL)
Us : Dubai Islamic Bank (DIB)
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U, : Muslim Commercial Bank (MCB)
Us : Meezan Bank (MBL)
For this MAGDM problem, decision making panel consists of three experts Z 1, Zg, Zs that collected data from the official websites of the banks

according to the CAMELS model. CAMELS model is generally apply to analyze the performance of the banks on the basis of five different
attributes described as follow:

Y1 : Capital adequacy: Experts rank the capital adequacy by checking the factors of growth plan and capacity to control financial risk and loan.
Y> : Asset quality: In this attribute the banking stability is measure whenever the bank faced loss of values of the assets.

Y3 : Management: Experts rate this attribute by measuring the efficiency of banks while dealing with daily activities.

Y. : Earning capacity: This attribute includes the existing assets, earnings and growth of the banks, as well as to remain competitive in economy.
Ys : Liquidity: This attribute examine on the basis of the availability of adequate funds by converting assets into the cash.

We solve this MAGDM problem by following the C'SVN N S-TOPSIS method.

Step 1: According to these attributes each expert model 5-soft set in Table14 where

0 means ‘Bad’
1 means ‘Ok’

2 means ‘Good’
3 means ‘Great’

4 means ‘Excellent’

Table 14: Initial rating by decision making experts

Parameters Alternatives Z1 Za, Z3
Y1 U, *kkx =4 kxx =3 * % =2
U, sxxx =4 % =1 * % % =3
Us *okk =3 * % =2 * =1
Uy *xx =3  * =1 xxkx =3
Us xxx*x =4 o =0 * =1
Y, U, *kk =3 * * =2 *%x% =3
U, xxx =3 xxxx =4 xxxx =4
Us xxxx =4 e = * % =2
U, *sxxx =4 kxx =3 kxxx =4
Us xkkk =4 % = xx =2
Y3 U, . =0 * = * % =2
U, f ok ok k = sxkx =4 kkx =3
Us . =0 * % =2 * =1
Uy . = *kk =3 kkxkx =4
Us . = . =0 * =1
Yy U, . =0 * =1 ° =0
U, . = *xk =3 * % =2
Us * = * % =2 xxx =3
U, xxx*x =4 xxx*x =4 xxx =3
Us . =0 ° =0 * =1
Ys U, * % = . =0 * =1
U, * ok k= * % =2 * =1
Us xkk =3 xkxx =4 k% =2
Uy Kok ok ok = ¥k k=3 * % =2
Us . =0 * =1 . =0

To assign CSV N N S¢S to each rank in Table 14, experts defined grading criteria given in Table 15 and Tables 16, 17, 18 representing the
decision of the experts Z1, Z2, Z3, respectively.
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Table 15: Grading criteria for CSVN5SS

Y/ J degree of truthness degree of indeterminacy degree of falsity

grades Pw 27t Qu 2T Wy Tw 27 fuw

hs, =0 | [0.00,0.15) | [0.0,0.37) | (0.85,1.00] | (1.77,2.0x] | (0.85,1.00] | (1.77,2.07]

hs =1 |[0.15,0.35) | [0.37,0.77) | (0.65,0.85] | (1.3m,1.77] | (0.65,0.85] | (1.37, 1.77]

hs =2 |[0.35,0.65) | [0.77,1.37) | (0.35,0.65] | (0.77,1.3x] | (0.35,0.65] | (0.77,1.37]

hi =3 | [0.65,0.85) | [1.37,1.77) | (0.15,0.35] | (0.37,0.77] | (0.15,0.35] | (0.37,0.77]

hs =4 | [0.85,1.00) | [1.77,2.07) | [0.00,0.15) | [0.0,0.37) | [0.00,0.15) | (0.0,0.37]

Table 16: CSVN DM related to expert Z;,
Yy Y ; Y

U;  (4,(0.86eT7070.08¢0 117 0.07¢0-127)) (3, (0.71e™-107 0.31e™-677 (.29¢70-507)) (0,(0A11e’0-26“‘,0‘912“-84",0‘93e“-88")) (0, (0.126™-257 [0.87¢1-727 [(.86¢71717))
Uy  (4,(0.87€787 0.09¢70-167 0.08¢70147)) (3, (0.66€'1-3070.27€70-567 0.31€70-507)) (4, (0.89¢% 747 0.040-107 0.11€0-247)) (0, (0.13¢70-287 0.87¢!1-727 (.86e!717))
Uz (3,(0.69¢1427,0.19¢70-407, 0.22¢/0-467)) (4, (0.88¢"1-727,0.06¢'*-147,0.10e'*157)) (0, (0.14¢/-267,0.88¢/1-747 0.89¢'1767)) (1, (0.34€™547 0.66¢™ 327, 0.67e!267))
Uy (3,(0.82¢1757,0.18¢™0-357, 0.21e™44)) (4, (0.91¢'1-567,0.02¢'0-027, 0.03¢™057)) (0, (0.13¢™-257, 0.88¢"1- 747, 0.86¢'1-747)) (4, (093907, 0.04¢™-057 0.0170-047))
Us  (4,(0.87e787,0.13¢70-257, 0.12e7267)) (4, (0.90e'1-847,0.07¢'-127, 0.10e™227)) (0, (0.02¢"957,0.95¢"1-727, 0.97¢1-757)) (0, (0.03¢™-027, 09690, 0.98¢"1-77))

Ys
0617757 0 4170577,

U, (2, ( 0.43¢0857))
Uy (3,(0.67eil387 (.25¢i0-487 () 93¢i0-44m))
Us  (3,(0.71ei1 447 (.24¢i0507 (. 27¢i0527))
Us  (4,(0.96611947 0.05¢i0-087 (. 03¢i0-047))
Us  (0,(0.05¢10067 (.95¢i1847 () 9gel 86im))
Table 17: CSVN DM related to expert Zs,

Y, Y, 3 Y,
U1 (3, (0.72¢77357 (3270657 () 66e0057)) (2, (0.41e™050% 0511097 (.61 -237)) (1, (0.16€-757, 0.69¢7 307 0.72¢71-357)) (L, (0.17€0-257 0.75e' 927 0.77¢'1-707))
U, (1 (0 19¢0-42m 072811.46720‘75611 527r)) (4 (0 93¢i1-82m () 19¢70-267 0A13810A28r>> (47 (0 88¢eil Tdm OAOSe"U']B” 0.10e%- uw)) (3 (0738’0‘75", 023810‘487“ 0206’0'38”))
U, (2 (0 45¢10-94m OA46810'94"¢0A56611'047‘)) (0 (0 Ogezu.ldr‘087811.76(0A86811A74r>> (27 (0 58l 207 0376"0'74” 0.39¢ 807()) (2 (0 59¢i1-227 () 53¢11-087 () 44¢0- 867r)>
]U4 (1. ((132810'68’" (1678“'38 A’0A6961.3617r)) (3 (0 848“‘66W, 0A168w‘34w, 0A1780,361w>> (3’ (0 83?71 627 OA18€7'U'38’” 0. 19670 4U7r)) (47 (0 986’” 98w 0 106’10 167 0. 016’10 U47r))
Us (0 (0 11¢0-267 090811.82720‘9161 84mr)) (1 (0 292¢10-467 () 81¢t1-64 08481’66’")) (07 (0 08¢0- 207 O(gleml.SUW 0.92¢1 827()) (07 (O 07¢- 187r’ 0.87¢t 7z7r’ 0.88¢t! 747r))

Ys
T; (0, (0.06e™ 057 0.91e 177 (.92¢71507Y)
Uy (2,(0.64¢i1267 (.36¢i0747 (.37¢i0-767))
Us  (4,(0.92¢i1327 (.05¢i0087 (.12¢i0227))
Us  (3,(0.81ei1027 (.20¢i0427 (.19¢i0267))
Us  (1,(0.23¢i0487 (.83¢i1687 ( g2l -66im))

Table 18: CSVN DM related to expert Zs,

Y Yy 3 Yy
Ul (2 (0 628“ 20m 0A3681|’74W,0A39670 80%)) (3 (0.708“‘3677, 0266“‘5077, OAQSEH‘S&T)) (2’ (0_59€|A227r‘ OA4310’88WA, (142810’86")) (0 (0 866’” TAm 0 02€1O .02m 0 036’10 U17r))
Uy (3,(0.81ei1667 (.20¢0:287 (.18¢i0-287)) (4, (0.95¢71-387 0.05¢0-087 0.07¢0-167)) (3, (0.80e'1-647 0.21¢70-407 (.22¢i0-467)) (2, (0.62¢7- 287 .0.36¢10- Tam ,0.38¢0-787))
]U3 (1 (0 31810 66 (1688“’38 A,OAGQEHAUW)) (2 (OA()‘OEH.ZZW‘ OA41610‘8077, OA42810‘84W>> (]1 (0.29610'627"0.70€“'42ﬂ‘0.72611"167()) (3 (O 79€1| 627 .0. 236’10 /I/I'r O 206’0 ’127r))
Uy (3,(0.84¢i1-727 0.17¢70-3 34m))(4,(0.96€71-957, 0.03€70-057 | 0.02¢%067)) (4, (0.98€11-93, 0.04€10-967 0.03¢10-047)) (3, (0.82¢i1-657 (0.18¢i0-347 (). 19¢i0-367))
Us  (1,(0.27€0387 0.74¢i1467 (. 73¢1-50m)) (2, (0.57¢71-107 0.45¢70-927 0.47¢%96im)) (1, (0.25¢70-347 0.76¢71-547 0.78¢11-957)) (1, (0.23€™- s07 ,0.79¢i1-607 () 81¢il-647))

Ys

@
e~~~
S

0310697 () 60¢ 71307
0.34¢10-647 () 661347 (6
0.61€-267 0.39¢10-807 0,
0.63¢12270.38¢70-747 0.
0.30¢%0-587 0.95¢71-927 (),

Step 2: The decision of all experts cumulated using the CSVAN NS;W A operator with v = (0.33,0.40,0.27)7

experts so that we get ACSVN NSy DM summarized in Table 19.

be the weight vector for the
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Table 19: Aggregated complex single-valued neutrosophic N-soft decision matrix

Y: Y, Y3

U; (4, (0.0680¢ 107 0.9139¢™-¥1917 [(0.9096¢71-50927)) (3, (0.0430e™0-97207 0.9591e 92057 0.9568¢71-91°957)) (2, (0.0041e™-70987 0.9966¢™ 179307 0.9974¢71-99567))

UQ (47 (0.0710610'1520”. 0.91776“'8278”. 0.91396“'8191’”)) (4, (0.0380610'955697( 0. 9544611 9114w 0 9591611 91a97r)) (4 (0 0760610.140()7&'Y 0.8916611'79””, 0.924346“'8‘3“”))

Us (3, (0.0040¢7005607 (. 9495188857 () 0474¢i1-89797)) (4, (00720013607 (.9045¢11-51927 () 9212¢71:83557)) (2, (0.0053¢i0-00987 (.995471-99007 () 958i199097)

Uy (3,(0.0590e™- 12607, 0.9407e 188507 (.9458¢i1-8949m)) (4, (0.0820€™0-01807 0.8698¢"1-69727 0.8825¢7!- 78327 (4,(0.0050€™-01087 0.9954¢'1-99017 (.9946¢"!-9901) )

Us (4’ (0070810.1520( 09323811.8597( 032726”'8597")) (-/L (0.07806"“'1720”ﬁ 0_9096611.809%" 0_9212611.8486w)) (1 (0 0007810.0028( 099826”'9970", 099896”'9986"))
Yy Ys

U (1,(0.0045¢01057 0.9977¢ 99987 [.9970¢-99527)) (2, (003306705247, 0.9687¢ 9591, 0.9704¢™ T 94257))

U, (3, (0_0050810.01()%' 0.9950¢i1-98927 () 9946¢i1-99007 ) (2, (0. 03871008177 () 95717¢i1-9008m 0.94896“‘5949”))

Uy (3,(0.0146¢7002727 0.9853¢1-97107 (.9858¢7197267)) (4, (0.0432¢70-95877 (.9517¢71-90087 (),9544¢i1-90627))

]U4 (4 (0‘0904ei0.2024ﬁ’ 0‘89166i1.7650ﬁ’ 0‘84866i1.7:397ﬁ>> (47 (0 10846?10'2349”7 0489876’,11'7832”7 0488256’,11'7832”))

Us  (1,(0.0010e7-00077 ().9985¢11-99627 (). 9992¢71-9978m)) (1, (0.0182¢70-002167 (),9982¢71-9955™ (), 9978ei1-99487))

Step 3: In CAMELS model each attribute has its own worth and value that continuously change as the time passing out, therefore experts rank
them and then assigned CSVN NSy Ns accordingly. We summarized the weights of the experts related to the attributes, are arranged in
Table 20, using the CSVN NS ;W A operator and get the weight vector 6, given as:

(2, (0.0079¢70-01687 .9893¢197947 ().9902¢!-9814i™
(4, (0.0387¢70-07947 ().9388¢11-88147 () 9425¢1-8884im
(4, (0.0820€70-17207 ().9298¢11-85447 () 92431842417
(3, (0.0408¢™-05047 |0.9458¢" 59457 0.9489¢ 200%™
(3,(0.0180€™ 93727 0.9642¢"1 23047 0.9842¢! 967"

)
)
)
)
)

Table 20: Weights for attributes from experts

Z Z Zg
Yl (17 (0.2067,0.42#7 0_74611.507r7 0.76621‘5477)) ( , (0.42620‘867"7 0.38810'77877, 0.6267'1'227r)) (0 (0 0967,0.2471'7 0.9267,1.86”7 0_95611.887r))
Y2 (37 (0.67€i1'367r, 0'1761'0.3671" 0.198i(]4407r)) (47 (0 9361'1488#7 0.098i()‘16ﬂ7 0‘146720.26#)) (1’ (0 186i[)'38777 0'7061'1.42#7 0'72611.467r))
Y3 (47 (0.9167,'1.84#, 0'1361().2417’ 0‘1182'042()7\')) (17 (0 16610‘347‘-, 0.666“‘37#, 0.686721.3877)) (2 (0 446750“()071'7 0.4067,'().827: 0'60611.1877))
Y4 (3’ (0.696“’407r7 0.21ei0.441r’ 0.2361'04487\')) (3 (O 7161'14427\" 0.2562'06271'7 0.2761.’0‘56”)) (3 (0 7561',1A537'r7 0.316i0'64ﬂ, 0.3361'0.6811'))
Y5 (27 (0.4061'()A827r7 0.3661',0.747r7 0.6467',1267\')) (3, (O 736771A41‘31r7 0.2961'06071'7 O.SOeiOAGQW)) (3 (0 7761'1‘5672 0.316i0‘60ﬂ7 0.26610.507\'))

Step 4: The weight vector § and ACSVN NSy DM are encapsulated using the CSVN NSy W G operator into AW CSVN NSy DM, compile
in Table 21.

Table 21: Aggregated weighted complex single-valued neutrosophic /N-soft decision matrix

Y Y Ys
U; (2, (0.00053™-00T207 (.99900¢™ 778127 [0.9991 1995227 )) (3, (0.000 16070507 [ 0.99749¢ 995257 [0.99751e199557)) (2, (0.00032¢™ 00057 [0.99976¢ 999507 (.99980¢ 777047 ) )
Uy (2, (0.00055¢70-001267 (. 99912¢71-995227 .99916671-998327)) (4, (0,00014€70-000327 (0 997201994747 . 99764¢71-995307)) (4, (0.00062¢0-001207 .99230¢71-985247 () 99427¢i1-98852))
].Uz (2. (0.000316i0‘00072", 0,999386i1‘99884", 0,999486i1‘99906")) (4, (0,000286i0‘00052", 0,994166i1‘98868", 0,995466i1‘9908")) (2 (0 00043(,10 000841r 0 99968(’11 999261r 0 99968(’11 999281r))
Us (2, (0.00046¢10-001047 () 999361199850 ( 99946671:999027)) (4, (0.00032¢70-000727 0. 99203¢i1-989287 (.99324¢71-98797)) (4, (0.00041¢70-000927 () 99968ei1-999267 () 99959¢i1-999207) )
Us  (2,(0.00055¢ 10001287 ,0. 9992761 998567 ,0. 99928¢i1- 998581r)) (4, (0. 00030({70.0006&, 0.994466¢¢1-988687 0(99546&19916«)) (1, (0.00057¢ i0.00024m 0. 09987¢i1-999787 ,0. 99990¢i1- 999801r))
Yy Ys

'Ul (l (0 00018910 000447 0 90987911 -90072m 0 90984911 999547r)) (2. (0.00059610‘00“5", 0.99880611‘997 Gw’ 0.99953611‘99904"))

le (31 (0 UUU?UE"U 000447 0 99973¢" 1.999427 0 J9972(’L1 999187r)) (37 (0.0006987,0.(]01527\" 0.998278"109652", 0_99919811.f198267r))

]U3 (3 (0 0005 %zo 001147 ,0. 09020611 L998507 ,0. 00027911 999851r)) (r; (0 00077910 001647 ,0. 00827611 99654 ,0. 00927911 L9984

]le (3 (0 003()8(’”) 008507 0.99412611‘(’8700"‘ 0_99220611.086&7“)) (3 (0 00195¢ I.U 004367 .0. 99037911 19924271 .0. 99814(’11 Q‘)Gﬂﬂ))

]U5 (1 (0 00004610 000027 0.99990611‘()9980“. 1.00000611‘999807')) (1 (0 00032610 000687 0 0‘)0()0611 999807 0.99990612 000007\'))

Step 5 The groundwork of the TOPSIS method that differentiate it from others is to evaluate the PIS and NIS that help to find out optimal solution
using the tool of distance measure. The criteria evaluated for this MAGDM problem based on CAMELS model and all are related to
benefit-type criteria. Therefore, the CSV N NS;-PIS and CSVN N S;-NIS, taking into account the nature of the attributes, are arranged

in Table 22.

Table 22: CSVN'NS4-PIS and CSVN N S;-NIS

Us HPIS HNIS

U, (27 (0 00055610 001267 ,0. 99912611 998227 ,0. 99916€l1 99832#)) ( , (0 00031610 000727 ,0. 99938611 998807 0. 99948671 9990671’))
Uy (4,(0.00032¢™ 000727: 0.99203¢- 9892877, 0.99324¢-98790m)) ~(3,(0.00016¢- 00036”7 0.99749¢!- 99528”, 0.99751¢!1-99530) )
Us (4, (0.00062¢70-00120m (.99239¢70-034007 () 99427¢1-98852m)) (1, (0.00570™0-000247 0.99987¢-99970m (.99989!-99980T))
Uy (3,(0.00368¢™0-00850m (0.9941 21957607 () 99220e!-95650T)) (1, (0.00004€"-0002T 1 0.99990¢-999807 1100000 999807) )
Us (2, (0.001956i0'00436ﬁ, 0.9963761'1.9924271'7 0.9981462'1.9964477)) (17 (0.OC’O32eiO.OOO()’EZﬂ'7 O.9999062'1.99980‘rr7 0.99990€i2'0000ﬂ))
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Step 6 For distance measure, normalized Euclidean distance is used that precisely evaluate the distance between the alternatives and the ideal
solutions, simultaneously. Table 23 describe the distance of each alternative from C' SV AN NS;-PIS and C'SVAN N S;-NIS, respectively.

Table 23: Distance measures of alternatives from ideal solution
U, dHPTS,U,) dHYTS U,)

w w

U, 0.133746 0.059764
U, 0.005061 0.179298
Us 0.084647 0.13363

Uy 0.003998 0.1793085
Us 0.174320 0.042260

Step 7: Revised closeness index is used for ranking the alternatives having the properties of closeness and far-away from the ideal solution at a
time. The numeric values of revised closeness index calculated in Table ??

Table 24: Index of alternatives

U, A(U,)
U, 33.1199
Uy 0.26594
Uz 20.4343
Uy 0.00000
Us 433661

Step 8: Clearly, from the values of revised closeness index we can easily highlight the bank with best performance that is actually the Uy = M CB
opting as best performer in Pakistan, where, the ascending order of the values of revised closeness index describe the ranks of the banks on
the basis of the CAMELS model and TOPSIS method, shown in Table 25

Table 25: Ranking of alternatives
Alternative U; U, Usg Uy Us
Ranking 4 2 3 1 5

7 Comparison

To prove the versatility of the C'SV AN NS;-TOPSIS method we compare the proposed method with SV A-TOPSIS method [28] by solving the
describe MAGDM problem of “Monitoring performance of Islamic banking industry on the basis of CAMELS rating syste” by SVN-TOPSIS
method[28]. The evaluation of the problem by SVN-TOPSIS method [28] is as follows:

Step 1 For the implication of SVN-TOPSIS method on the proposed MAGDM problem we have to exclude the grading part as well as reduce
the periodic terms to zero in the CSVN NSy N, so that experts Z 1, Zg, Z3 assigned SVNs to each rank given in Tables 26, 27 and 28,

respectively.
Table 26: SVN DM related to expert Z1,
Y) Y, Y3 Y, Y5

U, (0.86,0.08,0.07) (0.71,0.31,0.29) (0.11,0.91,0.93) (0.12,0.87,0.86)  (0.61,0.41,0.43)
U, (0.87,0.09,0.08) (0.66,0.27,0.31) (0.89,0.04,0.11) (0.13,0.87,0.86)  (0.67,0.25,0.23)
Us (0.69,0.19,0.22) (0.88,0.06,0.10) (0.14,0.88,0.89) (0.34,0.66,0.67) (0.71,0.24¢,0.27)
U, (0.82,0.18,0.21) (0.91,0.02,0.03) (0.13,0.88,0.86) (0.93,0.04,0.01)  (0.96,0.05,0.03)
Us (0.87,0.13,0.12) (0.90,0.07,0.10) (0.02,0.95,0.97) (0.03,0.96,0.98)  (0.05,0.95,0.94)
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Table 27: SVN DM related to expert Zg,

Y1 Yo Y3 Y,
U; (0.72,0.32,0.66) (0.41,0.51,0.61) (0.16,0.69,0.72) (0.17,0.75,0.77) (0.06,0.91,0.92)
Us (0.19,0.72,0.75) (0.93,0.12,0.13) (0.88,0.08,0.10) (0.73,0.23,0.20) (0.64,0.36,0.37)
Us (0.45,0.46,0.56) (0.09,0.87,0.86) (0.58,0.37,0.39) (0.59,0.53,0.44) (0.92,0.05,0.12)
U, (0.32,0.67,0.69) (0.84,0.16,0.17) (0.83,0.18,0.19) (0.98,0.10,0.01) (0.81,0.20,0.19)
Us (0.11,0.90,0.91 (0.22,0.81,0.84) (0.08,0.91,0.92) (0.07,0.87,0.88) (0.23,0.83,0.82)

Table 28: SV AN DM related to expert Zs,

Y Ys Y3 Yy Y5
U, (0.62,0.36,0.39) (0.70,0.26,0.28) (0.59,0.43,0.42) (0.86,0.02,0.03) (0.31,0.69, 0.68)
Us  (0.81,0.20,0.18) (0.95,0.05,0.07) (0.80,0.21,0.22) (0.62,0.36,0.38) (0.34,0.66,0.67)
Us (0.31,0.68,0.69 (0.60,0.41,0.42) (0.29,0.70,0.72)  (0.79,0.23,0.20) (0.61,0.39,0.40)
U, (0.84,0.17,0.16) (0.96,0.03,0.02) (0.98,0.04,0.03) (0.82,0.18,0.19) (0.63,0.38,0.37)
Us (0.27,0.74,0.73) (0.57,0.45,0.47) (0.25,0.76,0.78) (0.23,0.79,0.81) (0.30,0.95,0.96)

Step 2 The weights of experts v = (0.33,0.40, 0.27)T and averaging operator [28], we can cumulate the aggregated single-valued neutrosophic
decision matrix (ASVN DM), as follows:

s = ([0 =Ty (1= pE)™ ), (1, (02)"), [T, () 1),

The ASV N DM is arranged in Table 29.

Table 29: ASVN' DM

Y; Ys Ys Y, Ys
U; (0.0680,0.9139,0.9096) (0.0430,0.9591,0.9568)  (0.0041,0.9966,0.9974)  (0.0045,0.9977,0.9970) (0.0330,0.9687,0.9704)
U, (0.0710,0.9177,0.9139) (0.0380,0.9544,0.9591) (0.0760,0.8916,0.92434) (0.0050,0.9950,0.9946) (0.0387,0.9517,0.9489)
Us (0.0040,0.9425,0.9474)  (0.0720,0.9045,0.9212)  (0.0053,0.9954,0.9958)  (0.0146,0.9853,0.9858)  (0.0432,0.9517,0.9544)
Uy (0.0590,0.9407,0.9458)  (0.0820,0.8698,0.8825)  (0.0050,0.9954,0.9946)  (0.0904,0.8916,0.8486) (0.1084,0.8987,0.8825)
Us; (0.070,0.9323,0.9272)  (0.0780,0.9096,0.9212)  (0.0007,0.9982,0.9989)  (0.0010,0.9985,0.9992) (0.0182,0.9982,0.9978)

Step 3 The weights for attributes are calculated, by summarizing the experts opinion about the nature of attributes given in Table 30, as follows:

0, = (1= T, (= p) ], Iy @), I, () ]).

Thus we have,
(0.0079, 0.9893, 0.9902)
(0.0387,0.9388,0.9425)
0= (0.0820, 0.9298, 0.9243)
(0.0408,0.9458, 0.9489)
(0.0180,0.9642,0.9842)
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Table 30: Weights for attributes from experts

Z Zs Zs
Y: (0.20,0.74,0.76) (0.42,0.38,0.62) (0.09,0.92,0.95)
Y, (0.67,0.17,0.19) (0.93,0.09,0.14) (0.18,0.70,0.72)
Ys  (0.91,0.13,0.11) (0.16,0.66,0.68) (0.44,0.40,0.60)
Y, (0.69,0.21,0.23) (0.71,0.25,0.27) (0.75,0.31,0.33)
Ys  (0.40,0.36,0.64) (0.73,0.29,0.30) (0.77,0.31,0.26)

Step 4 The aggregated weighted single-valued neutrosophic decision matrix(AW SV N DM), shown in Table 31, calculated as:

st

(pwspw, (Qws + (Iw - (stqw), (rws + Tw — rws"”w)) .

Yi

Y,

Table 31: AW{/S’VNDM

Yy

Y5

(0.00053,0.99900,0.99911)
(0.00055,0.99912,0.99916)
(0.00031,0.99938,0.99948)
(0.00046, 0.99936, 0.99946)
(0.00055,0.99927,0.99928)

(0.00016,0.99749,0.99751)
(0.00014,0.99720,0.99764)
(0.00028,0.99416,0.99546)
(0.00032,0.99203,0.99324)
(0.00030, 0.994466, 0.99546)

(0.00032, 0.99976, 0.99980)
(0.00062, 0.99239, 0.99427)
(0.00043, 0.99968, 0.99968)
(0.00041, 0.99968, 0.99959)
(0.00057, 0.99987, 0.99990)

(0.00018, 0.99987,0.99984)
(0.00020, 0.99973,0.99972)
(0.00059, 0.99920, 0.99927)
(0.00368, 0.99412, 0.99220)
(0.00004, 0.99990, 1.00000)

(0.00059, 0.99880, 0.99953)
(0.00069, 0.99827,0.99919)
(0.00077,0.99827,0.99927)
(0.00195,0.99637,0.99814)
(0.00032, 0.99990, 0.99990)

Step 5 Keeping in view the nature of data, Equation 26 and 27 is used for the evaluation of the single-valued neutrosophic positive ideal solution

and

and negative ideal solution arranged in Table 32.

ngfsz{
|

rTINT
HNIS

(max Tys, min Lys, min Fys),
S S S

(min Tys, max Lys, max Fys),
S S S

(min Tys, max Ly, max Fus),
S S S

(max Tys, min Lys, min Fyy ),
S s S

if Y, € BT,
itY, € CT,

if Y,, € BT,
if Y, € CT,

Table 32: SVN-PIS and SVN-NIS

(26)

@n

0.00055, 0.99900, 0.99911)
0.00032, 0.99203, 0.99324

( (0.00031, 0.99938, 0.99948
(
Us  (0.00062,0.99239, 0.99427
(
(

)

0.00014, 0.99749,0.99764)
0.00033,0.99987, 0.99990)
0.00368, 0.99412, 0.99220 )
0.00195, 0.99637, 0.99814 )

0.00004, 0.99990, 1.00000
0.00032, 0.99990, 0.99990

~— — — —
N N N N

Step 6 To measure distance of alternatives from PIS and NIS, Euclidean distance used. The calculated values are given in Table 33

Table 33: Distance measures of alternatives from ideal solution

U, d(HLS,U,) d(HYTS,U,)
U, 0.00935 0.00078
U, 0.00762 0.00660
Us 0.00810 0.00260
Uy 0.00500 0.00763
Us 0.00890 0.00210
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Step 7 The revised closeness index calculated using Equation 28 , is tabulated in Table 34 and the ranks evaluated through the index values are
arranged in Table 35 in descending order, according to which Uy is the best performer.
d(H,"5,U.)

AU, = —— - , 28
(V) = HHETS,0,) T d(Hys, ) 28)

where, s = 1,2,...,k.

Table 34: Revised closeness index of each alternative
Alternative  A(Uy)

U, 0.0769
Us 0.4641
Us 0.2429
Uy 0.6041
Us 0.1900

Table 35: Ranking in single-valued neutrosophic environment
Alternative U; U, Usg Uy Us
Ranking 5 2 3 1 1

7.1 Discussion

1. The comparison of the CSV N N S-TOPSIS method with the existing SVN-TOPSIS method have same findings for the Islamic bank as
best performer in Pakistan but the consequences relevant to the ranks of other banks have no analogy given in Table 36.

Table 36: Comparison

Model Ranks Best Performer
SV N-TOPSIS [28] Uy > Uy > Ug > IU5 > Uy Uy
CSVNNS;-TOPSIS(Proposed) Uy > Uy > Us > Uy > Us Uy

2. The expertise of the presented methodology C'SVN N S-TOPSIS method to manipulate the indeterminacy degree and two dimensional
information in the MAGDM problems by using the frame of CSV N NSSs.

. The presented methodology of C'SV N N S;-TOPSIS method has potential to operate the problems of I/ F'N S;S's, being the generalization
of the I F'Ss.

4. The presented model has proficiency to overcome the latest problems characterized by parameterized ordered evaluation system but the
existing methods have no grip on such problems.

W

e

By employing N = 2 and periodic terms equal to zero, we switch from CSV AN NN S} environment to single-valued environment so that
the CSV N NS;-TOPSIS method could sensibly handled the daily life problems under single-valued environment.

8 Conclusion

In this paper we have merged the idea of single-valued neutrosophic set with N-soft sets, and in doing so, we have initiated the idea of CSVN N S S's.
These sets combine the 2-dimensional single-valued neutrosophic nature of the attributes with parameterized ordered grades which demonstrates
their superiority over FNS;S, IFN S¢S and N'N.S;S. A MAGDM model of TOPSIS method is extended to handle the real life problems under
the frame of CSV N N S;Ss in which the ordered grades are assigned to each alternative as initial evaluation that are further characterized by
CSVNNSfNs. The PIS and NIS in CSV N N S;-TOPSIS method have been determined by the score function which has been further employed
to quantify the distance measures and the closeness index that sort the alternatives from highest to lowest rank. An example from the banking in-
dustry and the comparison with single-valued neutrosophic TOPSIS method have clarified the accuracy and superiority of the presented technique.
The new model and method pioneer a promising avenue for research in the decision making arena that we have only hinted at in this paper. More-
over, the proposed C'SV N N S¢-TOPSIS method does not evaluate the relative importance of the normalized Euclidean distances. Therefore we
will work for the extension of the VIKOR method under a CSV N NS environment, which might be more credible and trustworthy.
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Data availability: No data were used to support this study.
Ethical approval: This article does not contain any studies with human participants or animals performed by any of the authors.
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