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Abstract: Since the inception of operations research, linear programming has received the attention 

of researchers in this field due to the many areas of its use. The focus was on the methods used to 

find the optimal solution for linear models. The direct simplex method, with its three basic stages, 

begins by writing the linear model in standard form and then finding a basic solution that is improved 

according to the simplex steps until We get the optimal solution, but we encounter many linear 

models that do not give us a basic solution after we put it in a standard form, and here we need to 

solve a rule through which we reach the optimal solution. For these models, researchers and scholars 

in the field of operations research introduced the simplex method with an artificial basis, which 

helped to Find the optimal solution for linear models, given the importance of this method and as a 

complement to the previous research we presented using the concepts of neutrosophic science. In this 

research, we will reformulate the simplex algorithm with an artificial basis using concepts of 

neutrosophic science.  

Keywords: Linear Programming; Simplex Method; Neutrosophic Science; Simplex Neutrosophic 

Method; Artificial Variable. 

 

1. Introduction 

The great scientific development that our contemporary world has witnessed has led to the 

emergence of what is called operations research. This name refers to the group of scientific methods 

used in analyzing problems and searching for optimal solutions. Operations research is considered 

one of the modern sciences whose applications have achieved wide success in various fields of life. 

One of the methods of operations research is the linear programming method that allows us to model, 

analyze, and solve a wide range of issues that have resulted from the great scientific development 

that our contemporary world is witnessing [1]. In all previous studies, we have reached the optimal 

solution for solvable models, and this solution has a specific value resulting from specific data 

provided by the study. The field studies that were conducted are linked to the conditions that existed, 

but the reality of the situation indicates that the conditions surrounding the work environment are 

not fixed and the future cannot be predicted. These specific values for profits and available resources 

are subject to instantaneous change. Out of interest in keeping pace with scientific development, we 

have in this research reformulated one of the most important methods used to find the optimal 

solution for linear models: the simplex method with an artificial basis using the concepts of 

neutrosophic science, the science that has proven its ability to provide the best solution in many fields 

https://doi.org/10.61356/j.nswa.2024.130
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of science. Therefore, researchers’ interest has focused on providing studies and research in various 

fields according to the concepts of this science [2-6]. 

The purpose of solving linear models is to choose the optimal solution from the set of acceptable 

solutions. This is done based on a base solution that is improved using the direct simplex algorithm 

that was presented according to the concepts of neutrosophic science in the research [7]. It consists of 

three basic stages: 

(i). The stage of converting the imposed model into an equivalent systematic form [8]. 

(ii). The stage of converting the regular form into a basic form to obtain the non-negative 

basic solutions. 

(iii). The stage of searching for the ideal solution requires from among the non-negative basic 

solutions [7]. 

Therefore, the process of searching for the optimal solution does not begin until after obtaining a 

base solution, but in many linear models we face great difficulty in obtaining the base solution, so the 

simplex method with an artificial base was proposed, where a base is formed consisting of a set of 

artificial variables that are not negativity is added to constraints that do not contain a basic variable, 

thus obtaining the basic solution. Then we improve it using the direct simplex algorithm until we 

obtain the optimal solution. In this research, we will reformulate the simplex algorithm with an 

artificial basis to find the optimal solution for linear models for which it is difficult to obtain a basic 

solution, using the concepts of neutrosophic. 

 

2. Problem statement 

Find the optimal solution for the following neutrosophic linear model: 

𝑀𝑎𝑥 𝑍 = 𝑁𝐶1𝑥1 + 𝑁𝐶2𝑥2 + ⋯ + 𝑁𝐶𝑛𝑥𝑛 + 𝑁𝐶0 

Constraints: 
𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 + 𝜀1 = 𝑁𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 + 𝜀2 = 𝑁𝑏2

𝑎31𝑥1 + 𝑎32𝑥2 + ⋯ + 𝑎3𝑛𝑥𝑛 + 𝜀3 = 𝑁𝑏3

… … … … … … … … … … … … … … … … … …
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 + 𝜀𝑚 = 𝑁𝑏𝑚

 

 𝑥1, 𝑥2, … , 𝑥𝑛 ≥ 0 

 

where 𝑁𝐶𝑗 = 𝐶𝑗 ± 𝜀𝑗  ,    𝑁𝑏𝑖 = 𝑏𝑖 ± 𝛿𝑖 ,    𝑎𝑖𝑗 , 𝑗 = 1,2, … , 𝑛 , 𝑖 = 1,2, … , 𝑚   are constants having set or 

interval values according to the nature of the given problem, 𝑥𝑗 are decision variables. It is worth 

mentioning that the coefficients subscribed by the index 𝑁 are of neutrosophic values. The objective 

function coefficients 𝑁𝐶1, 𝑁𝐶2, … , 𝑁𝐶𝑛 have neutrosophic meaning are intervals of possible values: 

That is, 𝑁𝑐𝑗 ∈ [𝜆𝑗1, 𝜆𝑗2], where 𝜆𝑗1, 𝜆𝑗2 are the upper and the lower bounds of the objective variables 

𝑥𝑗  respectively, 𝑗 = 1,2, … , 𝑛 . Also, we have the values of the right-hand side of the inequality 

constraints 𝑁𝑏1, 𝑁𝑏2, … , 𝑁𝑏𝑚 are regarded as neutrosophic interval values: 

𝑁𝑏𝑖 ∈ [𝜇𝑖1, 𝜇𝑖2], here, 𝜇𝑖1, 𝜇𝑖2 are the upper and the lower bounds of the constraint 𝑖 = 1,2, … , 𝑚. 

 

In the previous model, we note that the number of variables is 𝑛 and the number of constraints is 𝑚, 

and this model is in the standard form. 

We move to the second stage, which is to find a basic solution. Here we use the simplex algorithm 

with an artificial base, which is represented by the following:  

(i). From the standard form, we form an artificial base form by adding to the left side of 

each of the constraint equations a non-negative artificial variable 𝜀𝑖. Thus, we form a 

base consisting of the non-negative variables 𝜀1, 𝜀2, … , 𝜀𝑚. 

(ii). Since the artificial variables are introduced into constraints that were originally linear 

equations, these variables must take the value of zero so that the linear constraints are 

not affected. 
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(iii). Therefore, we must move all of them from the base until they become non-base 

variables, and to be able to make this transition, we use the direct simplex algorithm. 

(iv). We introduce these variables into the objective function with the likes of 𝑀 (where 𝑀 

is a sufficiently large positive number that is at least greater than any |𝑁𝑐𝑗| ) and 

preceded by a minus sign (because the objective function is a maximization function) so 

that we do not transfer them back to the base variables again. 

(v). We obtain the following basic form of the neutrosophic linear model: 

𝑀𝑎𝑥 𝑍 = 𝑁𝐶1𝑥1 + 𝑁𝐶2𝑥2 + ⋯ + 𝑁𝐶𝑛𝑥𝑛 − 𝑀𝜀1 − 𝑀 𝜀2 − ⋯ − 𝑀 𝜀𝑚 + 𝑁𝐶0    

Constraints: 

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 + 𝜀1 = 𝑁𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 + 𝜀2 = 𝑁𝑏2

𝑎31𝑥1 + 𝑎32𝑥2 + ⋯ + 𝑎3𝑛𝑥𝑛 + 𝜀3 = 𝑁𝑏3

… … … … … … … … … … … … … … … … … … .
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 + 𝜀𝑚 = 𝑁𝑏𝑚

 

𝑥𝑗 ≥ 0  , 𝜀𝑖 > 0 , 𝑁𝑏𝑖 > 0 ; 𝑗 = 1,2, … , 𝑛 𝑎𝑛𝑑 𝑖 = 1,2, … , 𝑚 

 

(vi). After obtaining the basic solution, we use the direct simplex algorithm to improve this 

solution to reach the optimal solution. Therefore, we arrange the previous information 

in Table 1. 

 

Table 1. General data of the model. 

𝒃𝒊 𝜺𝒎 …. 𝜺𝟐 𝜺𝟏 𝒙𝒏 …. 𝒙𝟐 𝒙𝟏 
    Variables 

  Basic 

𝑏1 0 …. 0 1 𝑎1𝑛 …. 𝑎12 𝑎11 𝜺𝟏 

𝑏2 0 0 1 0 𝑎2𝑛 … 𝑎22 𝑎21 𝜺𝟐 

… … … … … … … … … …. 

𝑏𝑚 1 … 0 0 𝑎𝑚𝑛 … 𝑎𝑚2 𝑎𝑚1 𝜺𝒎 

𝑍 − 𝑁𝐶0 −𝑀 … −𝑀 −𝑀 𝑁𝐶𝑛 …. 𝑁𝐶2 𝑁𝐶1 
objective 

function 

 

We get rid of the artificial variables. Here we study the constants 𝑏𝑖 corresponding to the artificial 

variables and choose the largest of them, let it be 𝑏𝑡  corresponding to the variable 𝜀𝑡  and we 

consider its row to be the pivot row. Then we determine the pivot element in it by dividing the 

elements of the objective function row (elements 𝑁𝐶𝑗) by the elements of the 𝜀𝑡 row and then we 

take the smallest positive ratio 𝜃 where: 

 

𝜃 = Min
𝑗

[
𝑁𝐶𝑗

𝑎𝑡𝑗

> 0] =
𝑁𝐶𝑠

𝑎𝑡𝑠

 

 

where 𝑎𝑡𝑗 > 0, then the pivot element is 𝑎𝑡𝑠, and we exchange the variables 𝑥𝑠 and 𝜀𝑡, According to 

the direct neutrosophic Simplex algorithm instructions, see [7]. We repeat step (vi) until we get rid of 

all the artificial variables and obtain a normal base consisting of the basic variables. 

After getting rid of the artificial variables, we return to working according to the direct neutrosophic 

simplex algorithm. 

 

3. Examples  
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3.1 Example: All constraints are of type equals 

Find the ideal solution for the following linear model: 

𝑀𝑎𝑥 𝑍 = −12𝑥1 + [6,9]𝑥2 + 3𝑥3  

Constraints: 

8𝑥1 − 𝑥2 + 4𝑥3 = [4,6] 

6𝑥1 − 3𝑥2 + 3𝑥3 = [−12, −9] 

𝑥1, 𝑥2, 𝑥3 ≥ 0  

 Solution: 

1. We convert the model to the standard form, multiply the second equation by (-1) and we 

obtain the following model: 

Find a rule solution for the following neutrosophic linear model: 

𝑀𝑎𝑥 𝑍 = −12𝑥1 + [6,9]𝑥2 + 3𝑥3 

Constraints: 

8𝑥1 − 𝑥2 + 4𝑥3 = [4,6] 

−6𝑥1 + 3𝑥2 − 3𝑥3 = [9,12] 

𝑥1, 𝑥2, 𝑥3 ≥ 0  

 

2. We add the artificial variables and enter them into the objective function with a capital letter  

𝑀 preceded by a minus sign. Here we take 𝑀 = 15. 

Find a rule solution for the following neutrosophic linear model: 

𝑀𝑎𝑥 𝑍 = −12𝑥1 + [6,9]𝑥2 + 3𝑥3 − 15𝜀1 − 15𝜀2 

Constraints: 

8𝑥1 − 𝑥2 + 4𝑥3 = [4,6] 

−6𝑥1 + 3𝑥2 − 3𝑥3 = [9,12] 

𝑥1, 𝑥2, 𝑥3, 𝜀1, 𝜀2 ≥ 0  

 

We arrange the previous information in Table 2. 

 

Table 2. Artificial base. 

𝒃𝒊 𝜺𝟐 𝜺𝟏 𝒙𝟑 𝒙𝟐 𝒙𝟏 
       Variables 

Basic 

[4,6] 0 1 4 −1 8 𝜺𝟏 

[9,12] 1 0 −3 3 −6 𝜺𝟐 

𝑍 − 0 −15 −15 3 [6,9] −12 
objective 

function 

 

Since the rule is artificial, we study the constants 𝑏𝑖and find that the largest of them belong to the 

group [9,12] corresponding to the variable 𝜀2. Therefore, we divide the objective function row by 

the positive elements in the 𝜀2 row and calculate the index 𝜃, and we find that: 

 

𝜃 = Min
𝑗

[
[6,9]

3
] =

[6,9]

3
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Thus, the pivot element is (3) corresponding to 𝑥2 . Therefore, we replace 𝑥2  with 𝜀2 , then the 

variable 𝑥2  becomes a base variable and 𝜀2  comes out of the base. We perform the necessary 

calculations and obtain Table 3. 

 

Table 3. The first change table in the base. 

𝒃𝒊 𝜺𝟐 𝜺𝟏 𝒙𝟑 𝒙𝟐 𝒙𝟏 
   Variables 

Basic  

[𝟕, 𝟏𝟎] 1 3⁄  1 3 0 6 𝜺𝟏 

[𝟑, 𝟒] 1 3⁄  0 −1 1 −2 𝒙𝟐 

𝒁 − [𝟏𝟖, 𝟑𝟔] [−18, −17] −15 [9,12] 0 [0,6] 
objective 

function 

 

The artificial variable 𝜀1 is still present in the base, so we perform another substitution, adopting the 

pivot line as the line opposite it. To determine the pivot column, we calculate the index 𝜃, we find: 

 

𝜃 = Min
𝑗

[
[0,6]

6
,
[9,12]

3
] ∈

[0,6]

6
 

 

Thus, the pivot element is (6) corresponding to 𝑥1, so we move 𝑥1 to the base instead of 𝜀1, so we 

get the following Table 4. 

 

Table 4.The second change in the base. 

𝒃𝒊 𝜺𝟐 𝜺𝟏 𝒙𝟑 𝒙𝟐 𝒙𝟏 
   Variables 

Basic 

[
7

6
,
10

6
] 

1

18
 

3

6
 

1

2
 0 1 𝒙𝟏 

[
16

3
,
22

3
] 

4

9
 

1

3
 0 1 0 𝒙𝟐 

𝑍 − [18,46] [−18,
−50

3
] [−18, −15] 9 0 0 

objective 

function 

 

From the previous table, we note that the base variables 𝑥1, 𝑥2, and thus we have obtained an initial 

solution for the linear model, which gives us the following rule solution: 

 

(𝑥1 ∈ [
7

6
,
10

6
] , 𝑥2 ∈ [

16

3
,
22

3
] , 𝑥3 = 0, 𝜀1 = 0, 𝜀2 = 0) 

 

But it is clear from the table that this solution is not the ideal solution because, in the target function 

line, there is a positive value corresponding to the variable 𝑥3. Therefore, we apply the direct simplex 

algorithm to improve the basic solution. We obtain the ideal solution from Table 5. 
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Table 5. The optimal solution for the model. 

𝒃𝒊 𝜺𝟐 𝜺𝟏 𝒙𝟑 𝒙𝟐 𝒙𝟏 
Variables 

Basic 

[
7

3
,
10

3
] 

1

9
 1 1 0 2 𝒙𝟑 

[
16

3
,
22

3
] 

4

9
 

1

3
 0 1 0 𝒙𝟐 

𝑍 − [39,76] [−19,
−53

3
] [−27, −24] 0 0 −18 objective function 

 

The optimal solution for the linear model: 

 

𝑥1 = 0, 𝑥2 ∈ [
16

3
,
22

3
] , 𝑥3 ∈ [

7

3
,
10

3
] , 𝜀1 = 0, 𝜀2 = 0 

 

In this solution, the goal function takes its greatest value, which is: 

𝑍 ∈ [39,76] 

The solution can be verified by substituting the constraints and the objective function statement, we 

note that the values in the ideal solution of the previous linear model are neutrosophic values. 

 

3.2 Example: Constraints are mixed 

Find the ideal solution for the following linear model: 

𝑀𝑖𝑛 𝑍 = −3𝑥1 + [8,10]𝑥2 + [0,6]𝑥3  

Constraints: 

𝑥1 − 2𝑥2 + 𝑥3 ≤ [3,7] 

−4𝑥1 + 𝑥2 + 2𝑥3 ≥ [9,6] 

2𝑥1 − 𝑥3 = 1 

𝑥1, 𝑥2, 𝑥3 ≥ 0  

 

Converting this model to standard form the problem becomes: 

Find the ideal solution for the following linear model: 

𝑀𝑖𝑛 𝑍 = −3𝑥1 + [8,10]𝑥2 + [0,6]𝑥3 + 0𝑦1 + 0𝑦2  

Constraints: 

𝑥1 − 2𝑥2 + 𝑥3 + 𝑦1 = [3,7] 

−4𝑥1 + 𝑥2 + 2𝑥3 − 𝑦2 = [9,6] 

2𝑥1 − 𝑥3 = 1 

𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2 ≥ 0  

 

The variable 𝑦1 in the first constraint is a basic variable, and since there are no other basic variables, 

we add artificial variables to the second and third restrictions and enter them into the objective 

function in sufficiently positive times because the model is a minimization model, and thus we obtain 

the following basic form: 

Find the ideal solution for the following linear model: 
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𝑀𝑖𝑛 𝑍 = −3𝑥1 + [8,10]𝑥2 + [0,6]𝑥3 + 0𝑦1 + 0𝑦2 + 12𝜀1 + 12𝜀2 

 Constraints: 

𝑥1 − 2𝑥2 + 𝑥3 + 𝑦1 = [3,7] 

−4𝑥1 + 𝑥2 + 2𝑥3 − 𝑦2 + 𝜀1 = [9,6] 

2𝑥1 − 𝑥3 + 𝜀2 = 1 

𝑥1, 𝑥2, 𝑥3, 𝑦1 , 𝑦2, 𝜀1, 𝜀2 ≥ 0  

 

We follow the same steps mentioned in Example 1 to remove the artificial variables from the base 

and insert the basic variables. After obtaining the base solution, we use the direct simplex method to 

find the optimal solution. 

Important Notes: 

 If the row 𝜀𝑖   does not include a positive element and 𝑏𝑡 > 0, this indicates a conflict of 

constraints and the problem is unsolvable. 

 If we cannot find a positive ratio 
𝑁𝐶𝑗

𝑎𝑡𝑗
, we calculate the largest negative ratio 𝜃′ where: 

𝜃′ = 𝑀𝑎𝑥 [
𝑁𝐶𝑗

𝑎𝑡𝑗

< 0] =
𝑁𝐶𝑠

𝑎𝑡𝑠

 

where 𝑎𝑡𝑗 > 0, so 𝑎𝑡𝑠 is the pivot element and it is a positive element. 

4. Conclusions 

In this study, we presented one of the important methods for finding the optimal solution for 

neutrosophic linear models, which is the synthetic simplex method that we resort to when we are 

unable to find a rule solution. We found that the optimal solution that we obtained is neutrosophic 

values, indeterminate values, perfectly defined, belonging to a field that represents its minimum. The 

smallest value that the objective function can take and the highest alone represent the highest value 

of the objective function, which is proportional to the conditions surrounding the system’s operating 

environment, which can be represented by the linear model. 
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