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Abstract: The development of galaxy images classification automated schemes is necessary to 

identify, classify, and study the evolution and formation of galaxies in our universe as it is one of the 

main challenges faced by astronomers today. Scientists can also build a deeper understanding of 

galaxies evolution and formation by classifying them into various classes. This paper proposed a 

robust novel hybrid automated intelligent algorithm based on neutrosophic techniques (NTs) and 

machine learning techniques for classifying the galaxy morphological astronomical images into 

various types of galaxies images (Hubble types) based on its features into three main classes; 

Elliptical, Spiral and Irregular. A nine classifiers performance was assessed based on the machine 

learning (ML) techniques by using  a combination of a sets of morphic features (MFs); obtained from 

image analysis and principal component analysis (PCA) features. The results indicated that; the 

classifier which called, multilayer perceptron (MLP) gives the better results for the features set 

consisting of nine MFs and 24 PCs features among all tested cases; Mean squared error (MSE) = 0.0021; 

Normalized mean squared error (NMSE)= 0.0371; Correlation coefficient (r) = 0.9889, and the Error = 

0.7751 with an accuracy 99.2249 %. Then, to improve the system efficiency; the neutrosophic 

techniques were applied in combination with the classifier that gave the best results in the previous 

step on the same extracted features to get a three robust component namely; membership, 

indeterminacy and non-membership components to fed to the neural network. The results showed 

that; the combination between the NTs and MLP classifier for (MFs with 4PCs) gives the best results; 

MSE = 0.0001; NMSE = 0.0009; r = 0.9997, and Error = 0.4212 with an accuracy about 99.5788 % in total 

for all chosen sets of features. The results showed the high performance of the proposed method 

comparing with other methods. The experimental results are performed based on a sample from 

(EFIGI) catalog. 

 

Keywords: Galaxy classification, image processing, Multi-Layer Perceptron, Neutrosophic Techniques, 

Machine Learning Techniques. 
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1. Introduction 

Galaxies are the areas where hydrogen transforms into luminous stars and celestial bodies that 

are gravitationally bound, they have different sizes, colors and shapes, it consisting of dust, gas and 

billions of nuclear-powered stars that also contain most chemical elements [1]. One of the most 

important problems for astronomers is the galaxies classification, as it can provide significant 

information about the evolution and origin of the universe. It is becoming an essential trouble due to 

the fact of astrophysicists often use vast information databases either to check present theories, or to 

structure a new inference to clarify the physical processes that control nature of the universe, galaxies 

and the star formation [2]. The morphological classification of galaxies is a system used to classify 

galaxies based on their appearance and their external structure by astronomers. The system created 

by Sir Edwin Hubble in 1936 is the most frequent classification scheme; as he divides galaxies into 

three main classes in accordance of their visual appearance, namely; (i) Elliptical  galaxies:  are without 

features objects, smooth, denoted by letter E followed by integer n (E0, E3, E5, and E7); (ii) Spiral 

galaxies: have structures like the disk and are distinguished by a flat disk contains stars in the central 

bulge and on the spiral arms. The usual spirals are indicated by letter S and located at the upper half 

(S0, Sa, Sb, Sc, and Sd). The lower half of spiral galaxies denoted by SB (SBa, SBb, and SBc) knowen 

as barred spiral galaxies; and (iii) Irregular galaxies: that has very irregular shapes without galactic 

bulges or the spiral arms of spiral galaxies are indicated by letter I (Im, and Ibm ) as shown in Figure 

1 [3]. This scheme is also referred to as the “Hubble Tuning Fork”. This classification updated by 

another classification scheme called De Vaucouleurs scheme in 1959, to obtain the Revised Hubble 

System (RHS). In 1958 Morgan proposed further scheme and in 1960 Van Den Berghin proposed 

another one. NASA also provided a universal classification, called the revised morphological types 

[4].  

Wide catalogs have been used by astronomers over recent decades to research the fundamental 

physics of the universe and test theories [5]. One of the most successful modern data collection 

projects in astronomy is Sloan Digital Sky Survey (SDSS), which uses a dedicated 2.5-m wide-angle 

optical telescope for spectroscopic surveys and multi-filter imaging, its data collection began in 2000 

and in its final data release, it covered most of the sky area [6]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Galaxies used to be manually classified into classes based on their visual characteristics in the 

past, however as the present-day sky surveys include images of millions of galaxies, it is found that 

implementing classification algorithms can assist in solving this issue. Advances in algorithms and 

computational tools have begun to allow galaxy morphology automated analysis by analyzing its 

Figure 1. Hubble Galaxy Classification Scheme (Hubble 1936) [3].  
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internal structure in the past few years. Other attempts have been made to implement the artificial 

neural networks using the raw pixel data as well as the image-extracted features as inputs to the 

artificial neural networks. To solve classical artificial intelligence issues, several deep learning 

algorithms have been used. All of these algorithms are a branch of machine learning techniques. 

 In recent years, many machine learning algorithms have played a significant role in finding 

solutions with classification problems, such as;  Abd Elfattah et al. [7], presented Artificial Neural 

Network algorithms together with features extraction algorithms based on invariant moment. They 

have used self-organized feature maps SOFMs and time lag recurrent network TLRNs. The results 

showed that using SOFMs classifier have better results about 98.49 % in combination with invariant 

moments for feature extraction than using TLRNs classifier in combination with invariant moments 

about 97.29 %. Ferrari et al. [8], proposed linear discriminant analysis (LDA) to automatically classify 

galaxies images by measured the parameters of galaxy morphology, including asymmetry, 

concentration, the Gini coefficient, smoothness, entropy, spirality and moment with accuracy of more 

than 90%. Dieleman et al. [9], developed a rotation invariant convolutional neural network (CNN) 

algorithm. The achieved accuracy was approximately 99%.  

Polsterer et al. [10], proposed an unsupervised method, called parallelized rotation/flipping 

invariant kohonen (PINK) maps to classify a number of galaxy images by extracting a set of features. 

This approach is focused on an enhancement of self-organizing maps with invariant similarity 

measure flipping and intensive rotation. Also, it is used an environment of a multi-core CPU/GPU. 

Selim et al. [6], presented a supervised machine learning algorithm for classifying galaxy images from 

the Zsoltfrei catalog based on Non-Negative matrix factorization method. The accuracy was about 

approximately 93% compared to other manually classified methods. Selim et al. [4], presented a new 

supervised machine learning algorithm for classifying galaxy images automatically from the EFIGI 

catalog based on the nonnegative matrix factorization method. The algorithm was used a dataset of 

700 images (a large dataset) and 110 images (a small dataset). The results showed that the achieved 

accuracy was about 92% for large dataset and 93% for small dataset.  

Aniyan et al. [11], developed a convolutional neural network (CNN) approach and 3 binary 

classifiers, using images from the Fanaroff–Riley (FRI and FRII) class and bent-tailed radio galaxies. 

The results showed that the precision is at 91%, 75% and 95% for FRI, FRII and bent-tailed radio 

galaxies classes, while the recall is at 91% and at 79% for each (FRI, FRIIs) and the bent-tailed class 

respectively. Khalifa et al. [12], proposed a CNN and a SoftMax classifier model using a sample from 

the EFIGI catalogue. The accuracy result was about 97.272%. Khalifa et al. [13], developed a deep 

convolutional neural network algorithm for galaxy images classification using EFIGI catalogue with 

an accuracy about 97.772%. Abd Elaziz et al. [1], proposed a new algorithm depending on the 

machine learning techniques using feature selection method called, artificial bee colony based on 

gegenbauer orthogonal moments using a sample from the EFIGI catalog. The achieved accuracy was 

about 94.63%. Zhu et al. [5], proposed a Residual Networks (ResNets) variant along with 

convolutional neural networks (CNNs) for classification of galaxy morphology. The achieved 

accuracy was about 95.2083%. 

It is clear that prior researchers obtained successful results to some degree from the above 

researches. By using a new approach in the current work, the performance rate is very high by using 

a combination between neutrosophic techniques and machine learning based classifiers. This paper's 

contributions are summarized as follows: 

• Building a novel hybrid automated algorithm to classify galaxies images in an efficient 

manner. 

• Through these proposed tools, the galaxy classification process would decrease the system's 

complexity while achieving higher efficiencies needed to classify astronomical objects. 
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• Astronomers will be gaining a better understanding about the evolution of galaxies and to 

test many theories about the universe. In addition, they will be able to make use of the 

addition of this information to these catalogues of galaxies. 

• Several research students will be able to use these methods in discovering new astronomical 

objects and use it in their projects. 

• There can additionally be extension to these projects through classifying the galaxies 

morphology into extra than three classes. 

• The excited people can add more objects of astronomical for classification, such as nebulae, 

stars, etc. 

The paper is organized as follows: Section 2 presents the basic concepts of galaxy classification 

techniques. Section 3 presents the proposed approach for galaxies classification and its phases. 

Section 4 presents the experimental result and discussion. Finally, section 5 addresses conclusion (last 

section). 

2. Galaxy Classification Techniques 

The main objective of classification is to measure the structural characteristics of the galaxies or 

to distinguish between different types of these galaxies. The challenge is to create a robust automated 

intelligent algorithm that generates a high-performance classification which more efficient, simple, 

fast rating and produces higher results. There are different types of classifiers based on artificial 

neural networks (ANNs), nine of them were used and evaluated based on a set of selected features. 

We also utilized a mix between two different techniques, neutrosophic and machine learning 

techniques as described in the next section. 

2.1 Multilayer Perceptron (MLP) 

MLP is a feed forward network with layers usually trained on fixed back propagation. These 

networks have used into a myriad of applications that require classification of fixed patterns. Its 

advantages, is that any continuous and logical function can be represented as long as hidden units 

are suitable with using the appropriate activation function. In addition, it is simple in use, and it can 

round whatever output or input map [14]. MLP includes; input layer, more than a hidden layer that 

able to generate more efficient results and the output layer. The approach for updating weights 

known as back propagation in ANNs to gain the accuracy, it is aims to produce results with the least 

number of errors. The error is only seen at the output layer and that error is disseminated back again 

to preceding layers of neural network. Finally, the new weights are up to date and repetition followed 

again. Since the error size is large at the output layer, the same ratio of error is propagated again to 

the preceding layer [15].  

2.2 Modular Neural Network (MNN) 

MNN are a special category of MLP. It using multiple parallel MLPs, these networks process 

inputs and then reassemble the results. This helps to build inside the topology a certain structure, 

which enhances job specialization in each subunit (sub-module). Modular networks have no full 

connection between their layers, unlike MLP standard networks. Therefore, for the same size 

network, fewer weights are needed. This helps to decrease the number of necessary training models 

and accelerate training times. There are lots of methods to divide MLP in modules. It is not clear how 

the modular structure is best structured using the data [16].  

2.3 Generalized Feed-Forward (GFF) 

GFF networks are a generalization for MLP so that connections can leap over one or extra layers. 

MLP could in theory, solve any issue by the generalized forward feeding networks. However, in 
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practice, GFF networks addresses the issue more effectively. So, MLP takes more training cycles of 

hundreds of times than the GFF network comprising the same number of processing components 

[17].  

2.4 Principal Component Analysis (PCA) Network 

PCA networks combine supervised and unsupervised learning within the same structure. It is 

an unsupervised linear procedure finds major components and a set of uncorrelated features from 

the input. The nonlinear classification of these components is supervised by MLP [18]. 

2.5 Jordan/Elman Network (JEN) 

JEN expand multi-layered perception of context units, which are processing elements which 

remember previous operation. Network context units offer the ability to extract the time information 

from the data. The output of the network is copied by the Jordan network, while the first hidden 

processing elements actions, are transmitted to the contextual units in the Elman network. There are 

also networks that feed the final hidden layer to the context units and the input [19].  

2.6 Self-Organized Maps (SOMs) 

    SOMs networks convert the arbitrary dimension of the input into a topological (neighborhood 

preservation) restriction of a one- or two-dimensional discrete map. The main benefit of this network 

is the clustering provided by the SOM, which uses a self-organizing mechanism to reduce the input 

space to representative features. Then the input space basic structure is preserved, while the space 

dimensions are reduced. The feature maps are calculated by using unsupervised learning called 

Kohonen method. SOM output may be used as inputs to a supervised neural network used in 

classification like the network of MLP [20]. 

2.7 Radial Basis Function (RBF) Networks 

RBF are a non-linear and hybrid networks that normally including one hidden layer of 

processing elements. Instead of the sigmoidal functions used by MLPs, the RBF layer using Gaussian 

transfer functions. The learning process of these networks is far quicker than MLPs. Gaussian’s 

widths and centers are set by rules of non-supervised learning, and supervised learning is carried out 

on the output layer. All the network weights may be analytically determined if the net of generalized 

regression (GRNN) probabilistic (PNN) is selected. During this case, by definition, the cluster centers 

number and the model’s number is equivalent, and the same variance is given to all of them [21]. 

2.8 Recurrent Networks (RNs) 

RNs are the latest technology in classifying the time pattern of non-linear time series, 

identification of the system and prediction. Recurrent networks actually have two types: (i) partially 

recurrent net begin with a fully recurrent network, then it adding a feed forward connection which 

bypasses the recurrent portion and treating it effectively as a state memory and (ii) fully recurrent 

net that feedback the hidden layer to themselves. RNs may have a memory with an unlimited depth, 

and therefore they are finding the relationships both by the instantaneous space of input and through 

time [22]. 

2.9 Time Lagged Recurrent Networks (TLRNs) 

TLRN are a multilayered perceptron networks with systems of memory of short-term. In real-

world, many data consist of information in its time structure, that is, how data adjustments over time. 

However, most neural networks are fixed classifiers in purely. Time lagged recurrent networks are 
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the latest technology in classifying the time pattern of non-linear time series, identification of the 

system and prediction [23]. 

3. The Proposed Architecture 

The proposed architecture framework for classification of galaxy images is presented in details 

in Figure 2. It includes four basic phases, (i) Preprocessing phase, followed by (ii) Feature extraction 

phase, (iii) Neutrosophic techniques phase, then (iv) Machine learning and Classification phase. In 

this section, these four phases are defined in details with the involved steps, the features and the 

characteristics of each phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1 Image Preprocessing Phase 

Before extracting any features from the images, the pre-processing phase is necessary to enhance 

the images and also before applying the machine learning algorithm. Also, the dataset that collected 

is often of various sizes, colors, noise, positioning, etc. The image processing goal is to create fixed 

images, all of which are equal in color, noise elimination and size before feeding the images to the 

neural network [24].  

Figure 2. Visualizes The Proposed Architecture Galaxy Classification Framework.  
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3.2 Feature extraction phase 

    The extraction of features leads to some shift in the original features by performing 

transformations and combinations to create other more effective features by extracting the features 

from the entered data to improve the accuracy of learning models. This stage decreases data 

dimensions by removing redundant data and thus maintaining the most prominent features, as it 

improving the speed of training and inference. In generally, the features extraction is used to indicate 

the creation of linear sets of continuous features with a fine discriminatory force among categories 

[25].  In this paper, nine sets of morphic features (MFs) in addition to a set of principal components 

(PCs); (4, 8, 16 and 24) were extracted from the galaxy images, to get the efficient and the most salient 

features from the chosen database images. 

3.2.1 Principal Component Analysis (PCA) Features 

PCA is a statistical second order method which converts a number of associated variables into a 

smaller number of unassociated variables known as PCs. In general, principal component analysis is 

used to minimize the data set dimensions with maintaining as much information as possible. The 

data can be represented through a few base vectors instead of using all the covariance matrix PCs 

[26, 27]. In this paper, PCs were extracted from the whole training set; in which every image was 

expressed as a row vector. After that, every image coefficient was transformed into a collection of 

features and this is the new galaxy information representation. 

3.2.2 Morphological Features (MFs) 

MFs are based on the visual characteristics of the galaxy such as: (i) Minor axis: the minor ellipse 

axis length in pixels, which has the same natural central second moment as the area, (ii) Major axis: 

the major ellipse axis length in pixels, which has the same natural central second moment as the area; 

(iii) Orientation: expresses areas which can be described as having one dimension locally, in terms of 

edges or lines for example; (iv) Area: the real pixel count in the area; (v) Bounding box: shows the 

square with the smallest scale in which all points are located inside; (vi) Eccentricity: represents the 

degree to which the image of the galaxy deviates from being circular; (vii) Centroid: represents all 

straight lines intersection that divide the image into two equal-moment parts informally around the 

line, which is the average of all image points; (viii) Extrema: expresses the minimum value or the 

maximum value which takes in a point either in its entirety within the function domain; or within a 

particular neighborhood; and (ix) Convex area: represents the line segment that connects any two 

points within the shape, which are fully contained in the figure. 

3.3 Neutrosophic Techniques (NTs) Phase 

NTs are the techniques, which uses neutrosophic sets and the principles of neutrosophic logic 

for the classification. NTs includes a neutrosophic simple rule-based method such as: if X and Y then 

Z, to solve the problem rather than trying to model a mathematical similar system of fuzzy approach 

[28]. The architecture of the neutrosophic inference classification system using fuzzy approach is 

based on the fuzzy inference method principles of Mamdani [29]. The neutrosophic classification 

system block diagram is illustrated in Figure 3. The values of the neutrosophic components T, I and 

F are independent of each other. Thus, three components were constructed using MATLAB's fuzzy 

logic toolbox: one for the truth component of neutrosophic, the second for the component of 

indeterminacy and the third for the component of falsity. A correlation is drawn between the 

membership functions of these components in order to capture the input and output truthfulness, 

indeterminacy and falsity, although the operation of neutrosophic components are independent from 

each other [30]. 
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The NRCS is a Neutrosophic Rule-based Classification System where neutrosophic logic is used 

as a method to represent various types of knowledge about the existing issue, and also to model 

relationships and interactions between their variables that exist [31]. Figure 4, illustrates the general 

structure of NRCSs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let U be a universal set while W is a collection of bright pixels units, where W is a sub-set in U. 

The neutrosophic pixels sets (𝑃𝑁𝑆) of images are defined by, three degrees; 𝑇, 𝐼 and 𝐹. The degree 

of membership can be defined as 𝑇, the degree of indeterminacy can be defined as 𝐼, and the degree 

of non-membership can be defined as 𝐹 . A pixel P in the image is defined as 𝑃 (𝑇, 𝐼, 𝐹) which 

belonging to W with true in bright pixels (t%), indeterminate (i%) and false (f%), where t differs in 𝑇 

and i differs in 𝐼 and f differs in 𝐹. The 𝑝 (𝑖, 𝑗) pixel in domain of the image turns into: 

 

𝑁𝐷𝑃𝑁𝑠(𝑖, 𝑗) = {𝑇(𝑖, 𝑗), 𝐼(𝑖, 𝑗), 𝐹(𝑖, 𝑗)}                                                     (1) 

 

Figure 3. Block Diagram for The Neutrosophic Components [30]. 

Figure 4. Basic Structure of a Neutrosophic Rule-Based Classifier System [31]. 
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Where𝑁𝐷𝑃𝑁𝑠(𝑖, 𝑗) is the neutrosophic domain for image pixels,  𝑇(𝑖, 𝑗) belongs to white group, 

𝐼(𝑖, 𝑗) belongs to indeterminate group and 𝐹(𝑖, 𝑗) belongs to non-white group. Which can be 

described as [32]: 

 

𝑃𝑁𝑆(𝑖, 𝑗) =  {𝑇(𝑖, 𝑗), 𝐼(𝑖, 𝑗), 𝐹(𝑖, 𝑗)}                                                     (2) 

 

𝑇(𝑖, 𝑗) =
𝑔(𝑖, 𝐽)̅̅ ̅̅ ̅̅ ̅̅ − �̅�𝑚𝑖𝑛

�̅�𝑚𝑎𝑥 − �̅�𝑚𝑖𝑛
                                                            (3) 

 

𝐼(𝑖, 𝑗) = 1 −
𝐻𝑜(𝑖, 𝑗) − 𝐻𝑜

𝐻𝑜𝑚𝑎𝑥
− 𝐻𝑜𝑚𝑖𝑛

                                                     (4) 

 

𝐹(𝑖, 𝑗) = 1 −  𝑇(𝑖, 𝑗)                                                              (5) 

 

𝐻𝑜(𝑖, 𝑗) = 𝑎𝑏𝑠(𝑔(𝑖, 𝑗)) − 𝑔(𝑖, 𝐽)̅̅ ̅̅ ̅̅ ̅̅                                                    (6) 

 

Where 𝑔(𝑖, 𝐽)̅̅ ̅̅ ̅̅ ̅̅  is the local mean value of window size pixels, and 𝐻𝑜(𝑖, 𝑗) can be described as 

the homogeneity value of 𝑇 at(𝑖, 𝑗), which represented with using the absolute value of the various 

between the intensity  𝑔(𝑖, 𝑗) and the local mean value 𝑔(𝑖, 𝐽)̅̅ ̅̅ ̅̅ ̅̅ . 

The neutrosophic set fundamental concepts are presented by Smarandache in [33, 34] and 

Salama et al. in [35-38]. In 2014, Salama et al. [39] implemented and designed an object-oriented 

programming [OOP] to deal with the operations of the neutrosophic data. 

After extracting the features using MFs and PCA techniques, the neutrosophic techniques were 

used to extract three important and efficient components for every morphic and principal component 

feature which correlated with the most important variables for the algorithm of classification. The 

steps in this stage are given below, as shown in Figure 5: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Neutrosophic Galaxy Images Architecture. 
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• Firstly, we extracted the most efficient and outstanding features to represent each image 

content within the database. 

• Secondly, using the neutrosophic techniques, the data features have been converted from 

classic mode that helps with the classification process and therefore, we can make a better 

choice and arrange all alternatives according to three functions namely; membership, 

indeterminacy, and non-membership components. 

• Hence, the database of neutrosophic features of galaxy images was obtained. 

• finally, the three components were used to fed to the neural network to get more efficient 

and accurate result. 

3.4 Machine learning and Classification Phase 

In the machine learning and classification phase; Firstly, nine classifiers are used based on the 

ML techniques to conduct the learning method from the extracted features without using NTs as 

follows, Multilayer Perceptron (MLP), Modular Neural Network (MNN), Generalized Feed-Forward 

(GFF), Principal Component Analysis (PCA) Network, Jordan/Elman Network (JEN), Self-Organized 

Maps (SOMs), Radial Basis Function (RBF) Networks, Recurrent Networks (RNs), and Time Lagged 

Recurrent Networks (TLRNs). Algorithm 1, illustrates pseudo-code for the first proposed algorithm. 

 

 

 

Algorithm 1: First Proposed Galaxy Classification Algorithm Pseudo Code 

Begin 
1) Converting every image from the RGB to gray scale image. 
2) Defining the galaxy limits considering it as a nebulous object. 
3) Locating the exact position of the galaxy by the position of the center of the spheroid 

bulge.  
4) Choosing a suitable window size for eliminating the noise through property of preserving 

the edges. 
5) Measuring galaxy intensity region and building a complete map for the background to 

subtract it from the initial image.  
6) Subtracting outside objects and bright stars from outside the galaxy bulge.  
7) Rotating each galaxy image into a horizontal position. 
8) Cropping the galaxy body from the image. 
9) Centering the galaxy body to seem uniform. 
10) Extracting the visual characteristics of each galaxy (Morphological features). 
11) Computing the input data dimensions. 
12) Assuming a galaxy image vector set (n= 255); every (n) vector has the identical length (K). 
13) Making an n^2dimensional vector for every image. 
14) Establishing the PCA analysis input by arranging galaxy images in a big matrix. 
15) Creating the n dimensional matrix for every galaxy images type. 
16) Applying the PCA algorithm, to transform these vectors to a new vector for every case of 

the galaxies images vectors. 
17) Computing the mean for every type of the galaxy vector, then subtract it from every data 

value. 
18) Computing the input data matrix covariance matrix (C). 
19) Calculating the covariance matrix by choosing the largest eigenvalues (K) and the 

eigenvector, where (K << N). 
20) Obtaining the new feature vector of eigenvectors of principal components. 
21) Extracting the final data computed, i.e., the new data set. 
22) Introducing the new extracted features to the ANNs based classifiers to conduct the 

learning Method. 
23) Obtaining the classified galaxy images into three types of galaxies. 

End  
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Then, after seeing the results we using a combination between neutrosophic techniques and 

machine learning based classifier including the best classifier which gave the best results in the first 

algorithm classification phase and it was the multilayer perceptron (MLP) classifier. After extracting 

the neutrosophic three components (membership, indeterminacy and non-membership) for each 

principal component and morphic feature in order to get more efficient and accurate result, the three 

components were fed to the MLP classifier, and then compared with other methods, which indicated 

that our method has performed better in classifying the images of galaxies to one of three types from 

the obtained database. Algorithm 2, illustrates pseudo-Code for the second proposed algorithm. 

While Figure 6 represents the MLP classifier structure model, with an illustration of the number of 

input layers, hidden layers, and the output layers that were used for small set of images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Experimental Results and Discussion 

4.1 Data set Collection  

In this research, the used images were collected from the EFIGI catalog [40], the database 

contains a sample of all kinds of Hubble galaxies. EFIGI database are usually used in astronomical 

study as a benchmark, as the images are distinguished by good quality and high resolution. The 

catalog integrates data from standard catalogs and surveys such as (NASA Extragalactic Database, 

Value-Added Galaxy Catalogue, HyperLeda, Sloan Digital Sky Survey, and the Principal Galaxy 

Catalogue) [12]. Also, types of Hubble galaxies, such as the Elliptical, Spiral, and Irregular galaxies, 

were chosen according to the images captured availability. The images sizes differ in height and 

Algorithm 2: Second Proposed Galaxy Classification Algorithm Pseudo Code 

Begin 

1) Extracting the neutrosophic three components for each principal component and 
morphic feature. 

2) Introducing the extracted three components of features to the ANNs classifier to 
conduct the learning Method. 

3) Obtaining the classified galaxy images into three types of galaxies with highly efficient 
results. 

End  

Figure 6. The MLP Classifier Structure Model 
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width. The galaxies types and the number of training and testing images for every type of galaxy are 

shown in Table (1), while Figure 7 displays three samples from the galaxy images forms. 

 

Table 1. Number of galaxy type images in each set (data, training, and testing). 

Galaxy Type Data Set Training Set Testing Set 

Elliptical 150 105 45 

Spiral 130 100 30 

Irregular 110 85 25 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Performance measures  

Performance measures can be characterized as a logical and mathematical structure used for 

calculating how near the actual results are to what was projected or predicted. The performance 

measures are used to compare the predictions of the trained model with the actual data from the set 

of test data in machine learning regression experiments. These metrics results can directly affect the 

process of decision-making for choosing the types of machine learning algorithms [41]. In order to 

assess the efficiency of the classification approach, five various performance indices metrics have 

been used: (i) Mean-Square Error (MSE); (ii) Normalized Mean Square Error (NMSE); (iii) Correlation 

Coefficient (R); (iv) Error Percentage; and (v) Accuracy. They are described as follows: 

4.2.1 Mean squared error (MSE) 

MSE calculates the average of the squares of the errors, i.e., the average squared difference 

among the values included in the estimator and the calculated quantity's actual values. MSE is a 

function of risk, as it Corresponding to the squared error loss' expected value. If 𝑃𝑖𝑗 is n predictions 

vector, and  𝑇𝑖  is the real values vector. MSE is calculated for the predictor as within the equation 

(7) [2]: 

𝑀𝑆𝐸 =  
∑ (𝑃𝑖𝑗

𝑛
𝐽=0 − 𝑇𝑗)2

𝑛
                                                                 (7) 

where 𝑃𝑖𝑗 is the predicted value outside of 𝑛 sample cases or fitness cases measured through case 𝑖 for fitness 

case 𝑗, while the 𝑇𝑗 is the goal value of fitness case 𝑗. 

 

(a) 

Figure 7. Samples of EFIGI Catalog (a) Elliptical type, (b) Spiral type, (c) Irregular type 

(c) (b) 
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4.2.2 Normalized mean squared error (NMSE) 

NMSE is estimated the total deviations as described in the equation (8) between expected and 

measured values [2]: 

𝑁𝑀𝑆𝐸 =  ∑(𝑃𝑖𝑗 − 𝑇𝑗)
2

(𝑛 × 𝑃 × 𝑇)

𝑛

𝐽=0

,                                                    (8) 

 𝑃 =  ∑ 𝑃𝑖𝑗 𝑛⁄  𝑎𝑛𝑑 𝑃 = ∑ 𝑇𝑗 𝑛⁄
𝑛

𝑗=1

𝑛

𝑖=1
 

 

where 𝑃𝑖𝑗 is the predicted value outside of 𝑛 sample cases or fitness cases measured through case 𝑖 for 

fitness case 𝑗, while the 𝑇𝑗 is the goal value of fitness case 𝑗. 

 

4.2.3 Correlation coefficient (𝑟) 

𝑟 is the quantity which gives for the original image, the quality of the suitable least squares. The 

correlation coefficient is given as in equation (9) for two data sets 𝑥, 𝑦 as follow [42]: 

𝑟 =  
𝑐𝑜𝑣(𝑥. 𝑦)

𝜎𝑥 ×  𝜎𝑦
                                                                    (9) 

where 𝑐𝑜𝑣(𝑥. 𝑦) is the covariance of 𝑥 and 𝑦, while 𝜎𝑥 and 𝜎𝑦 are the image (𝑥 and 𝑦) standard 

deviation. 

4.2.4 Error percentage (Error %) 

The percentage of error is determined by subtract the value that accepted from the value that 

calculated [42]. 

 

4.2.5 Accuracy 

Accuracy is a qualitative performance characteristic, expressing the closeness of agreement 

between a measurement result and the value of the measurand. 𝑦𝑖 is the corresponding true value 

of the predicted value and 𝑦�̂� is the predicted value of the 𝑖 − 𝑡ℎ sample. Then, the fraction of 

right predictions over 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 is defined as [5]:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑦𝑖 , 𝑦�̂�)  =  
1 

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 ∑ 1(𝑦�̂� − 𝑦𝑖)

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0

                                       (10) 

4.3 Results and discussion 

The proposed system was trained using 390 images, with two hidden layers, and 1000 epochs, 

also was implemented by using (MATLAB 2017b) software package with a specific CPU and run in 

64bit windows support environment. All tests were performed using a server with core i5 Intel 

processor 2.60 GHz, and Ram with 4.00 GB.  
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     In the image preprocessing phase, each image converted from the color image that contains 

three matrices to a gray scale image containing one matrix in order for the system to be fast and more 

efficient, every image of galaxy is converted as follows: (i) Eliminating the image noise by removing 

outside objects and bright stars by converting image to black and white (binarize image) and isolating 

the perimeter of the biggest object for more accurate images, (ii) Rotating every image into a 

horizontal position in order to have higher performance for the classifier, (iii) Cropping the galaxy 

body to delete those irrelevant elements from the background and selecting the image bright part, 

and (iv) Centering the galaxy object to seem uniform for more efficient extraction of features. (v) 

Resizing the image to a standard size (212 × 212) for mnimizing the origenal data dimentions. As 

seen in figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The images were transformed using 4, 8, 16 and 24 element PC vector bases in the dataset as five 

sets of features have been organized: (i) MFs only; (ii) MFs along with 4 PCs, (iii) MFs along with 8 

PCs, (iv) MFs along with 16 PCs, and (v) MFs along with 24 PCs. There is no need to extract even 

more PCs because the findings indicate no apparent difference with the usage of PCs greater than 24 

PC. The all-tested classifiers performance, was assessed using various performance measures; MSE, 

NMSE, r, Error, and Accuracy. Figure 8. to Figure 12. shows the results of the nine ANN classifiers 

ratings discussed. The results showed the following; the MLP-based classifier using MFs only; gives 

 (g) 

 (a)  (b)  (c) 

 (e)  (f)  (d) 

Figure 8. Spiral Galaxy (a) Raw Image, (b) Gray Scale Image, (c) Binarize Image, (d) Image without Noise, (e) 

Rotated Image, (f) Cropped Image, (g) Centered Image and (h) Resized Image. 

 (h) 
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lower result from all selected features sets about; MSE = 0.1611; NMSE = 0.6011; R = 0.6131, and the 

Error = 4.7111 with an accuracy 95.2889% but when using the MFs with 24 PCs, the classifier 

performance give higher result from all chosen features sets about; MSE = 0.0021; NMSE= 0.0371; r = 

0.9889, and the Error = 0.7751 with achieving an accuracy of 99.2249 % (figure 9. a., b.). 

 The MNN-based classifier using MFs only gives lower result from all selected features sets 

about; MSE = 0.2051; NMSE = 0.6991; r = 0.5901, and the Error = 5.8110 with an accuracy 94.189 % but 

when using the MFs with 24 PCs, the classifier performance gives higher result from all chosen 

features sets about; MSE = 0.1113; NMSE = 0.2605; r =0.7926, and the Error = 2.1432 with an accuracy 

97.8568 % (figure 9. c., d.). 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The GFF-based classifier using MFs only gives lower result from all selected features sets about; 

MSE = 0.1551; NMSE = 0.5791; r = 0.7031, and the Error = 4.6011 with an accuracy 95.3989 % but when 

using the MFs with 24 PCs, the classifier performance gives higher result from all chosen features 

sets about; MSE = 0.0119; NMSE = 0.0459; r = 0.9817, and the Error = 1.0211 with an accuracy 98.9789% 

(figure 10. a., b.). 
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Figure 9. MLP Classification Results; (a) MSE, NMSE, r and Error, (b) Accuracy, and MNN 

Classification Results; (c) MSE, NMSE, r and Error, (d) Accuracy.  
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The PCA-based classifier using MFs with 24 PCs gives lower result from all selected features 

sets about; MSE = 0.1640; NMSE = 0.6413; r = 0.3897, and the Error = 6.4533 with an accuracy 93.5467 

% but when using the MFs with 4 PCs, the classifier performance gives higher result from all chosen 

features sets about; MSE = 0.1635; NMSE = 0.6412; r = 0.6246, and the Error = 5.4536 with an accuracy 

94.5464% (figure 10. c., d.).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The JEN-based classifier using MFs only gives lower result from all selected features sets about; 

MSE = 0.1131; NMSE = 0.3582; r = 0.8523, and the Error = 3.7112 with an accuracy 96.2888 % but when 

using the MFs with 24 PCs, the classifier performance gives higher result from all chosen features 

sets about; MSE = 0.0136; NMSE = 0.0205; r=0.9872, and the Error = 0.9664 with an accuracy 99.0336% 

(figure 11. a., b.). 

The SOMs-based classifier using MFs only gives lower result from all selected features sets 

about; MSE = 0.1235; NMSE = 0.5383; r = 0.6830, and the Error = 4.6557 with an accuracy 95.3443 % 

but when using the MFs with 16 PCs, the classifier performance gives higher result from all chosen 

features sets about; MSE = 0.1367; NMSE = 0.3541; r = 0.6247, and the Error = 3.1382 with an accuracy 

96.8618 % (figure 11. c., d.). 
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 Figure 10. GFF Classification Results; (a) MSE, NMSE, r and Error, (b) Accuracy, and PCA Classification 

Results; (c) MSE, NMSE, r and Error, (d) Accuracy.  
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The RBF-based classifier using MFs with 24 PCs gives lower result from all selected features sets 

about; MSE = 0.2632; NMSE = 0.8682; r = 0.1233, and the Error = 9.2390 with an accuracy 90.761% but 

when using the MFs only, the classifier performance gives higher result from all chosen features sets 

about; MSE = 0.1234; NMSE = 0.5381; r= 0.6832, and the Error = 4.6578 (figure 12. a., b.) with an 

accuracy 95.3422%. 
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Figure 11. JEN Classification Results; (a) MSE, NMSE, r and Error, (b) Accuracy, and SOMs Classification 

Results; (c) MSE, NMSE, r and Error, (d) Accuracy.  
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Figure 12. RBF Classification Results; (a) MSE, NMSE, r and Error, (b) Accuracy. 
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The RN-based classifier using MFs with 4 PCs gives lower result from all selected features sets 

about; MSE = 0.1998; NMSE = 0.6539; r = 0.5235, and the Error = 5.3830 with an accuracy 94.617% but 

when using the MFs with 24 PCs, the classifier performance gives higher result from all chosen 

features sets about; MSE = 0.1509; NMSE = 0.3397; r = 0.8257, and the Error = 2.4287 with an accuracy 

97.5713% (figure 13. a., b.).  

The TLRN-based classifier using MFs with 8 PCs gives lower result from all selected features 

sets about; MSE = 0.1999; NMSE = 0.5739; r = 0.5920, and the Error = 7.0739 with an accuracy 92.9261 

% but when using the MFs with 16 PCs, the classifier performance gives higher result from all chosen 

features sets about; MSE = 0.0321; NMSE = 0.156; r = 0.9201, and the Error = 1.986 with an accuracy 

98.014% (figure 13. c., d.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to the above results, it has been found that the MLP-based classifier gives the best 

results for all sets of chosen features among all tested ML classifiers while, the RBF-based classifier 

gives the worst results. 

 

Then, we applied the NTs in combination with the best classifier that give the best results 

through all tested ML classifiers (MLP). The NTs were applied on the chosen features to get a three 

Figure 13. RN Classification Results; (a) MSE, NMSE, r and Error, (b) Accuracy, and TLRN Classification 

Results; (c) MSE, NMSE, r and Error, (d) Accuracy.  
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efficient component. Figure 14. shows the neutrosophic components (NCs) graph; membership, 

indeterminacy, and non-membership for the MFs along with PCs features in the neutrosophic 

environment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From above results, it has been found that, the MLP classifier of (MFs with 24 PCs) features gives 

the best results without using NTs through all tested cases for all sets of chosen features but when 

applied the NTs on the all tested cases for all sets of features and fed to the neural network, the results 

showed that; using NTs of (MFs with 4PCs) in combination with classifier of MLP gives better result 

than using the classifier of MLP with the other sets of features; MSE = 0.0001; NMSE = 0.0009; r = 

0.9997, and Error = 0.4212 with total accuracy 99.5788 % as summarized in Table (2). The proposed 

system advantage is depending on a small features number that have been tested for classification, 

i.e., only MFs with 4PCs, and this reduces system complexity and saves time while getting higher 

efficiency in the classification process. This indicates, that a small set of features is enough to classify 

images of galaxy using the NTs. Additionally, there is no need to extract even more 4 PCs with using 

NTs because the results indicate no obvious difference with the use of PCs more than 4pc. 

 

Table 2. Performance measures* of the proposed algorithm.  

Performance 

Measures 

NCs for 

MFs 

NCs for 

MFs + 4 PCs 

NCs for MFs 

+ 8 PCs 

NCs for MFs 

+ 16 PCs 

NCs for MFs 

+ 24 PCs 

MSE 0.0015 0.0001 0.0012 0.0014 0.0021 

NMSE 0.0112 0.0009 0.0011 0.0013 0.0032 

r 0.8984 0.9997 0.8988 0.9956 0.9950 

Error  2.6875 0.4212 1.1743 1.4889 0.4257 

Accuracy % 97.3125 99.5788 98.8257 98.5111 99.5743 
* NCs: neutrosophic components, MFs: morphological features; PCs: principal components; MSE: Mean squared 

error; NMSE: normalized mean squared error; and r: correlation coefficient 
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Figure 15. represents the comparative results between the proposed system and other related 

works, which shows that the proposed method has high performance results for classifying galaxy 

images outperforms those of other related works. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The proposed algorithm achieved accuracy with 99.5788% at the testing process. Comparing 

with other related works, the proposed system improved the accuracy by 6.5788%, 1.0888%, 9.5788%, 

11.5788%, 1.8068%, 4.3705%, 5.8788%, 7.5788%, and 3.1788% comparing with [6], [7], [8], [11], [13], 

[19], [43], [44], and [45], respectively. Overall, the proposed architecture provides high efficiency in 

addition has a high level of reliability and achieves advanced performance. 

5. Conclusions  

       Modern sky surveys like, upcoming Large Synoptic Survey Telescope (LSST), Dark Energy 

Surveys (DES), and COSMOS surveys continue to generate more data, so, the classification of galaxies 

is one of the most important research topics and studies over the years. The main concern of research 

was the Hubble classification, as it allowed galaxies to be classified into one of three types based on 

their morphological features: Elliptical, Spiral, and Irregular. In this paper, a novel automated 

intelligent system for galaxy images classification into various galaxies types, which combines neural 

networks and their variants, machine learning algorithms and neutrosophic techniques to build more 

intelligent classification system was introduced. The obtained results showed that the use of MFs 

along with 4PCs for feature extraction in combination with NTs and the classifier of MLP gives better 

results compared to other methods as the testing accuracy was about 99.5788% in total and the 

performance measures; MSE = 0.0001; NMSE = 0.0009; r = 0.9997, and Error = 0.4212. In addition, we 

found that a small set of features is enough to classify images of galaxy and this necessary for 

reducing system complexity and saving time while getting higher efficiency in the process of 

classification. The results also illustrate the challenge of using the classification system on the 

irregular galaxies category. Since the category includes galaxies with no definite form that do not 

Figure 15. Comparative Accuracy Results for Galaxies Classification Comparing with Other Related 

Works. 
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follow the criteria of any of the other categories, the category within the set of features is difficult to 

classify and less diagnostic. Therefore, it is confused with other objects frequently. In upcoming 

surveys; our algorithm can be applied to a large-scale galaxy classification.   
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