Neutrosophic Sets and Systems

Volume 39 Article 6

1-7-2021

Neutrosophic Pre-α, Semi-α & Pre- β Irresolute Functions

T.Rajesh Kannan

S. Chandrasekar

Follow this and additional works at: https://digitalrepository.unm.edu/nss_journal

Recommended Citation

Kannan, T.Rajesh and S. Chandrasekar. "Neutrosophic Pre-α, Semi-α & Pre- β Irresolute Functions." Neutrosophic Sets and Systems 39, 1 (). https://digitalrepository.unm.edu/nss_journal/vol39/iss1/6

This Article is brought to you for free and open access by UNM Digital Repository. It has been accepted for inclusion in Neutrosophic Sets and Systems by an authorized editor of UNM Digital Repository. For more information, please contact amywinter@unm.edu, lsloane@salud.unm.edu, sarahrk@unm.edu.
Neutrosophic Pre-\(\alpha\), Semi- \(\alpha\) & Pre- \(\beta\) Irresolute Functions

T.Rajesh Kannan \(^1\), S. Chandrasekar \(^2\)*

\(^{1,2}\)PG and Research Department of Mathematics, Arignar Anna Government Arts College, Namakkal(DT), Tamil Nadu, India.

E-mail: 'rajeshkannan03@yahoo.co.in,'chandrumat.chandrumat@gmail.com

* Correspondence: chandrumat@gmail.com

Abstract: Smarandache introduced and developed interesting concepts Neutrosophic set from the Intuitionistic fuzzy sets. A.A. Salama introduced NTSs and continuity. Aim of this paper is we introduce and study the concepts Neutrosophic Pre-\(\alpha\), Semi- \(\alpha\) & Pre- \(\beta\) Irresolute Functions and its Properties are discussed details.

Keywords: Neutrosophic Irresolute Functions, Neutrosophic Pre-\(\alpha\), Neutrosophic Semi- \(\alpha\), Neutrosophic Pre- \(\beta\) Irresolute Functions.

1. Introduction

Neutrosophic concepts have wide range of applications in the area of decision making Artificial Intelligence, Information Systems, Computer Science, Medicine, Applied Mathematics, Mechanics, Electrical & Electronic and, Management Science, etc. In 1980s the international movement called paradoxism based on contradictions in science and literature, was founded by Smarandache[15,16], who then extended it to neutrosophy, based on contradictions and their neutrals. The mapping is the one of the important concept in topology. Neutrosophic sets have three kind like T Truth, F -Falsehood, I -Indeterminacy. Neutrosophic topological spaces (N-T-S) introduced by Salama [27,28] etal., by using Smarandache neutrosophy set. In this Paper new type of functions called as Neutrosophic Pre-\(\alpha\) irresolute functions, Neutrosophic Pre-\(\alpha\), Semi- \(\alpha\) and Pre- \(\beta\) Irresolute Functions. Also the interrelationships of these functions with the other existing functions are established. Several characterizations and some interesting properties of these classes of functions are given.

2. Preliminaries

In this section, we provide basic definition and operation of Neutrosophic sets and its Results

Definition 2.1 [15,16] Let \(X_N\) be a non-empty fixed set. A Neutrosophic set \(E^*_1\) is a object having the form

\[E^*_1 = \{ x, \mu_{E^*_1}(x), \sigma_{E^*_1}(x), \gamma_{E^*_1}(x) : x \in X_N \}, \]

\(\mu_{E^*_1}(x)\) - membership function
\(\sigma_{E^*_1}(x)\) - indeterminacy and then
\(\gamma_{E^*_1}(x)\) - non-membership function
Definition 2.2 [15,16]. Neutrosophic set $E'_1 = \{< x, \mu_{E'_1}(x), \sigma_{E'_1}(x), \gamma_{E'_1}(x) >: x \in X_N \}$, on X_N and

$\forall x \in X_N$

$E'_2 = \{< x, \mu_{E'_2}(x), \sigma_{E'_2}(x), \gamma_{E'_2}(x) >= x \in X_N \}$

1. $E'_1 \cap E'_2 = \{< x, \mu_{E'_1}(x) \cap \mu_{E'_2}(x), \sigma_{E'_1}(x) \cap \sigma_{E'_2}(x), \gamma_{E'_1}(x) \cup \gamma_{E'_2}(x) >= x \in X_N \}$

2. $E'_1 \cup E'_2 = \{< x, \mu_{E'_1}(x) \cup \mu_{E'_2}(x), \sigma_{E'_1}(x) \cup \sigma_{E'_2}(x), \gamma_{E'_1}(x) \cap \gamma_{E'_2}(x) >= x \in X_N \}$

3. $E'_1 \subseteq E'_2 \Leftrightarrow \mu_{E'_1}(x) \leq \mu_{E'_2}(x), \sigma_{E'_1}(x) \leq \sigma_{E'_2}(x) \& \gamma_{E'_1}(x) \geq \gamma_{E'_2}(x)$

4. The complement of E'_1 is $E'_1^c = \{< x, \gamma_{E'_1}(x), 1 - \sigma_{E'_1}(x), \mu_{E'_1}(x) >: x \in X_N \}$

Definition 2.3 [28]. Let X_N be non-empty set and τ_N be the collection of Neutrosophic subsets of X_N satisfying the following properties:

1. $\emptyset, X_N \in \tau_N$

2. $T_1 \cap T_2 \in \tau_N$ for any $T_1, T_2 \in \tau_N$

3. $\cup T_i \in \tau_N$ for every $\{T_i : i \in I\} \subseteq \tau_N$

Then the space (X_N, τ_N) is called a Neutrosophic topological spaces (N-T-S).

The element of τ_N are called Ne.OS (Neutrosophic open set) and its complement is Ne.CS (Neutrosophic closed set).

Example 2.4. Let $X_N = \{x\}$ and $\forall x \in X_N$

$A_1 = (x, 6_{10}^6, 6_{10}^6, 5_{10}^5), A_2 = (x, 5_{10}^5, 7_{10}^7, 9_{10}^9), A_3 = (x, 6_{10}^6, 7_{10}^7, 5_{10}^5), A_4 = (x, 5_{10}^5, 6_{10}^6, 9_{10}^9)$

Then the collection $\tau_N = \{0_N, A_1, A_2, A_3, A_4, 1_N\}$ is called a N-T-S on X_N.

Definition 2.5. Let (X_N, τ_N) be a N-T-S and $E'_1 = \{< x, \mu_{E'_1}(x), \sigma_{E'_1}(x), \gamma_{E'_1}(x) >= x \in X_N \}$ be a Neutrosophic set in X_N. Then E'_1 is named as

1. Neutrosophic b closed set [20] (Ne.bCS) if $\text{Ne.cl}(\text{Ne.int}(E'_1)) \cap \text{Ne.int}(\text{Ne.cl}(E'_1)) \subseteq E'_1$.

2. Neutrosophic a-closed set [7] (Ne.aCS) if $\text{Ne.cl}(\text{Ne.int}(\text{Ne.cl}(E'_1))) \subseteq E'_1$.

3. Neutrosophic pre-closed set [30] (Ne.Pre-CS) if $\text{Ne.cl}(\text{Ne.int}(E'_1)) \subseteq E'_1$.

4. Neutrosophic regular closed set [7] (Ne.RCS) if $\text{Ne.cl}(\text{Ne.int}(E'_1)) = E'_1$.

5. Neutrosophic semi closed set [17] (Ne.SCS) if $\text{Ne.int}(\text{Ne.cl}(E'_1)) \subseteq E'_1$.

Definition 2.6. [9] (X_N, τ_N) be a N-T-S and $E'_1 = \{< x, \mu_{E'_1}(x), \sigma_{E'_1}(x), \gamma_{E'_1}(x) >= x \in X_N \}$ be a Neutrosophic set in X_N. Then E'_1 is named as

1. Neutrosophic closure of E'_1 is $\text{Ne.Cl}(E'_1) = \{H : H \in \text{Ne.CS in } X_N \text{ and } E'_1 \subseteq H\}$

2. Neutrosophic interior of E'_1 is $\text{Ne.Int}(E'_1) = \{M : M \in \text{Ne.OS in } X_N \text{ and } M \subseteq E'_1\}$

Definition 2.7. Let (X_N, \mathcal{T}_N) be an NTS and be an NS in X_N.

The Neutrosophic closure β-closure $\&$-β-interior of A are defined by

(i) $\mathcal{N}^\beta Cl(E'_1) = \{E'_1, E'_3 \in \beta CS \in X_N \text{ and } E'_3 \supseteq E'_1\}$.

T.Rajesh Kannan, S. Chandrasekar , Neutrosophic Pre-a, Semi-a & Pre-β Irresolute Functions
(ii) $\mathcal{N}β\text{int}(E'_1) = \cup[E'_4; E'_4]$ is a $\mathcal{N}β\text{OS}$ in X_Y and $E'_4 \subseteq E'_1$.

Lemma 2.8.

Let E'_1 be an NS in NTS (X_Y, T_N). Then

(i) $\text{int}(E'_1) \subseteq \text{NP int}(E'_1) \subseteq E'_1 \subseteq \text{NPcl}(E'_1) \subseteq \text{Ncl}(E'_1)$

(ii) $\text{int}(E'_1) \subseteq \text{Nint}(E'_1) \subseteq E'_1 \subseteq \text{Nc}(E'_1) \subseteq \text{Ncl}(E'_1)$

(iii) $\text{int}(E'_1) \in \text{NSint}(E'_1) \subseteq E'_1 \subseteq \text{NScl}(E'_1) \subseteq \text{Ncl}(E'_1)$

(iv) $\text{int}(E'_1) \in \text{Nβ int}(E'_1) \subseteq E'_1 \subseteq \text{Nβc}(E'_1) \subseteq \text{Ncl}(E'_1)$

Proof: It is easy to prove.

3. **Neutrosophic Pre-α, Semi-α & Pre-β Irresolute Functions**

In this section Neutrosophic pre-α-irresolute, semi-α-irresolute, Neutrosophic pre-β-irresolute functions are defined. Also, the relationships of these functions with the other existing functions are studied.

Definition 3.1.

A function $\hat{\beta}: (X_Y, T_N) \rightarrow (Y_N, G_N)$ from an NTS (X_Y, T_N) to another NTS (Y_N, G_N) is named as Neutrosophic β-irresolute if $\hat{\beta}^{-1}(E'_2)$ is a $\mathcal{N}β\text{OS}$ in (X_Y, T_N) for each $\mathcal{N}β\text{OS} E'_2$ in (Y_N, G_N).

Definition 3.2 A function $\hat{\beta}: (X_Y, T_N) \rightarrow (Y_N, G_N)$ from an NTS (X_Y, T_N) to another NTS (Y_N, G_N) is named as Neutrosophic pre-α-irresolute if $\hat{\beta}^{-1}(E'_2)$ is an NPOS in (X_Y, T_N) for each NPOS E'_2 in (Y_N, G_N).

Definition 3.3 A function $\hat{\beta}: (X_Y, T_N) \rightarrow (Y_N, G_N)$ from an NTS (X_Y, T_N) to another NTS (Y_N, G_N) is named as Neutrosophic α-irresolute if $\hat{\beta}^{-1}(E'_2)$ is a NaOS in (X_Y, T_N) for each NaOS E'_2 in (Y_N, G_N).

Definition 3.4 A function $\hat{\beta}: (X_Y, T_N) \rightarrow (Y_N, G_N)$ from an NTS (X_Y, T_N) to another NTS (Y_N, G_N) is named as Neutrosophic semi-α-irresolute if $\hat{\beta}^{-1}(E'_2)$ is an NSOS in (X_Y, T_N) for each NaOS E'_2 in (Y_N, G_N).

Definition 3.5 A function $\hat{\beta}: (X_Y, T_N) \rightarrow (Y_N, G_N)$ from an NTS (X_Y, T_N) to another NTS (Y_N, G_N) is named as Neutrosophic pre-β-irresolute if $\hat{\beta}^{-1}(E'_2)$ is a NPOS in (X_Y, T_N) for each $\mathcal{N}β\text{OS} E'_2$ in (Y_N, G_N).

Proposition 3.6 Every Na-irresolute function is $\text{Npre-α (NSemi-α, resp.)-irresolute function.}$

Proof: Let $\hat{\beta}: (X_Y, T_N) \rightarrow (Y_N, G_N)$ be Na-irresolute function from NTS (X_Y, T_N) to another NTS (Y_N, G_N). Let E'_2 be NaOS in Y_N. Since $\hat{\beta}$ is Na-irresolute function, $\hat{\beta}^{-1}(E'_2)$ is NaOS in X_Y. Every NaOS is NPOS (NSOS, resp.). So $\hat{\beta}^{-1}(E'_2)$ is NPOS (NSOS, resp.) in X_Y. Hence $\hat{\beta}$ is Npre-α (NSemi-α, resp.)-irresolute function.

Proposition 3.7 Every Npre-β-irresolute function is Npre-α (Npre, resp.) irresolute function.

Proof: Let $\hat{\beta}: (X_Y, T_N) \rightarrow (Y_N, G_N)$ be Npre-β irresolute function from NTS (X_Y, T_N) to another NTS (Y_N, G_N). Let E'_2 be NaOS (NPOS resp.) in Y_N. Every NaOS (NPOS, resp.) is $\mathcal{N}β\text{OS}$. Since $\hat{\beta}$ is Npre-β-irresolute function, $\hat{\beta}^{-1}(E'_2)$ is NPOS in X_Y. Hence $\hat{\beta}$ is Npre-α (Npre, resp.) irresolute function.

Proposition 3.8 Every Npre-β-irresolute function is $\mathcal{N}β$-irresolute function.

Proof: Let $\hat{\beta}: (X_Y, T_N) \rightarrow (Y_N, G_N)$ be Npre-β irresolute function from NTS (X_Y, T_N) to another NTS (Y_N, G_N). Let E'_2 be $β\text{OS}$. Since $\hat{\beta}$ is Npre-β-irresolute function, $\hat{\beta}^{-1}(E'_2)$ is NPOS in X_Y. As every NPOS is $\mathcal{N}β\text{OS}$. $\hat{\beta}^{-1}(E'_2)$ is $\mathcal{N}β\text{OS}$ in X_Y. Hence $\hat{\beta}$ is $\mathcal{N}β$-irresolute function.

Proposition 3.9 Every Nirresolute function is NS-α-irresolute function.
Proof: Let $\tilde{f} : (X_N, \mathcal{T}_N) \rightarrow (Y_N, \mathcal{G}_N)$ be Nirresolute function from NTS(X_N, \mathcal{T}_N) to another NTS (Y_N, \mathcal{G}_N). Let E_2' be NaOS in Y_N. Every NaOS is NSOS. Since \tilde{f} is Nirresolute function, $\tilde{f}^{-1}(E_2')$ is NSOS in X_N. Hence \tilde{f} is NS-α-irresolute function.

Example 3.10 Let $X_N=[a,b]$ $Y_N=[c,d]$ and $\mathcal{T}_N=\{0, E_1, 1\}$, $\mathcal{G}_N=\{0, E_2, 1\}$ are NTS on X_N and Y_N respectively where

\[
E_1^* = \{x\left(\frac{6}{10}, \frac{5}{10}, \frac{5}{10}\right), \left(\frac{5}{10}, \frac{5}{10}, \frac{5}{10}\right)\},
\]

\[
E_2^* = \{y\left(\frac{2}{10}, \frac{5}{10}, \frac{6}{10}\right), \left(\frac{4}{10}, \frac{5}{10}, \frac{5}{10}\right)\}.
\]

Define an Neutrosophic function $\tilde{f} : (X_N, \mathcal{T}_N) \rightarrow (Y_N, \mathcal{G}_N)$. By $\tilde{f} (a)=d$, $\tilde{f} (b)=c$ E_2' is a NOS in (Y_N, \mathcal{G}_N). So E_2' is NaOS, NPOS, and $N^\beta OS$ in Y_N.

Since $\tilde{f}^{-1}(E_2') = \{x\left(\frac{6}{10}, \frac{5}{10}, \frac{5}{10}\right), \left(\frac{4}{10}, \frac{5}{10}, \frac{5}{10}\right)\}$ is an NPOS in X_N.

\[
\tilde{f}^{-1}(E_2') \subseteq Nint(Ncl(\tilde{f}^{-1}(E_2'))) = 1_N
\]

Also $\tilde{f}^{-1}(E_2') \subseteq Ncl(Nint(Ncl(\tilde{f}^{-1}(E_2')))) = 1_N$

So $\tilde{f}^{-1}(E_2')$ is a $N^\beta OS$ in X_N. Thus \tilde{f} is Npre-β-Irresolute, Npre irresolute function, Npre-α-irresolute function and N^β-irresolute function. Also \tilde{f} is a N precontinuous and N^β-continuous. As $Nint(Ncl(Nint(\tilde{f}^{-1}(E_2')))) = 0_N$, $\tilde{f}^{-1}(E_2') \not\subseteq Ncl(Nint(Ncl(\tilde{f}^{-1}(E_2'))))$

$\tilde{f}^{-1}(E_2')$ is not NaOS in X_N. Also $\tilde{f}^{-1}(E_2') \not\subseteq Ncl(Nint(\tilde{f}^{-1}(E_2'))=0_N$. implies $\tilde{f}^{-1}(E_2')$ is not NSOS in X_N. Thus \tilde{f} is not Na- irresolute function, not NSemi-α-irresolute function, not Na-continuous, not NSemi continuous, and not Nirresolute function.

Example 3.11

Let $X_N=[a,b]$ $Y_N=[c,d]$ and $\mathcal{T}_N=\{0, E_1, 1\}$, $\mathcal{G}_N=\{0, E_2, 1\}$ are NTS on X_N and Y_N respectively is a NS in Y_N.

\[
E_1^* = \{x\left(\frac{2}{10}, \frac{5}{10}, \frac{3}{10}\right), \left(\frac{4}{10}, \frac{5}{10}, \frac{4}{10}\right)\},
\]

\[
E_2^* = \{y\left(\frac{4}{10}, \frac{5}{10}, \frac{4}{10}\right), \left(\frac{2}{10}, \frac{5}{10}, \frac{3}{10}\right)\},
\]

\[
E_3^* = \{y\left(\frac{4}{10}, \frac{5}{10}, \frac{4}{10}\right), \left(\frac{3}{10}, \frac{5}{10}, \frac{2}{10}\right)\},
\]

is a NS in Y_N.

Define a Neutrosophic function $\tilde{f} : (X_N, \mathcal{T}_N) \rightarrow (Y_N, \mathcal{G}_N)$ by $\tilde{f} (a)=d$, $\tilde{f} (b)=c$ E_2' is a NOS in (Y_N, \mathcal{G}_N). Also E_2' is NaOS, NPOS and NSOS in Y_N.

\[
\tilde{f}^{-1}(E_2') = \{x\left(\frac{2}{10}, \frac{5}{10}, \frac{3}{10}\right), \left(\frac{4}{10}, \frac{5}{10}, \frac{4}{10}\right)\}
\]

and $\tilde{f}^{-1}(E_2') \subseteq Nint(Ncl(\tilde{f}^{-1}(E_2'))) = E_1^*$. So $\tilde{f}^{-1}(E_2') \subseteq Nint(Ncl(\tilde{f}^{-1}(E_2')))$ This implies $\tilde{f}^{-1}(E_2')$ is a NaOS in X_N. Also $\tilde{f}^{-1}(E_2')$ is NPOS and NSOS in X_N. Hence \tilde{f} is a Na-irresolute.
function, NS-α-irresolute function, Npre-α-irresolute function, Nα-continuous, NSemicontinuous, and Nprecontinuous.E'_3 ⊆ Ncl(Nint(E'_3)) = E'_2. So E'_3 is a NOS in Y_N.

Also \(\hat{g}^{-1}(E'_2) = (x,(\frac{2}{10},\frac{5}{10},\frac{5}{10})) \). Then \(\hat{g}^{-1}(E'_2) \notin Ncl(Nint(\hat{g}^{-1}(E'_3))) = E'_1 \)

Hence \(\hat{g}^{-1}(E'_3) \) is not NaOS in X_N. Thus \(\hat{g} \) is not Nstrongly α-continuous.

Example 3.12 Let \(X_N = \{a,b\} \) \(\gamma_N = \{c,d\} \) and \(T_N = \{0, E'_1, 1\}, \Gamma_N = \{0, E'_2, 1\} \) are NTS on \(X_N \) and \(\gamma_N \) respectively, where

\[
E'_1 = ([x,(\frac{6}{10},\frac{5}{10},\frac{4}{10}), (\frac{5}{10},\frac{5}{10},\frac{5}{10}))],
\]

\[
E'_2 = ([y,(\frac{2}{10},\frac{5}{10},\frac{6}{10}), (\frac{4}{10},\frac{5}{10},\frac{5}{10})])
\]

Define a Neutrosophic function \(\hat{g}: (X_N,\gamma_N) \rightarrow (\gamma_N,\gamma_N) \). By \(\hat{g} \) (a)=d, \(\hat{g} \) (b)=c. \(E'_2 \) is a NOS in \(\gamma_N \).

Hence \(\hat{g}^{-1}(E'_2) \) is NaOS, NPOS, NSOS and \(\mathcal{N}\beta OS \) in \((\gamma_N,\gamma_N) \).

\(\hat{g}^{-1}(E'_2) \subseteq Ncl(Nint(\hat{g}^{-1}(E'_2))) = E'_1 \) implies \(\hat{g}^{-1}(E'_2) \) is a NSOS in \(X_N \). Also \(\hat{g}^{-1}(E'_2) \) is a \(\mathcal{N}\beta OS \) in \(X_N \), since \(\hat{g}^{-1}(E'_2) \subseteq Ncl(Nint(\hat{g}^{-1}(E'_2))) = E'_1 \). Hence \(\hat{g} \) is Nirresolute function, NS-α-irresolute function, NSemi continuous and \(\mathcal{N}\beta \) -continuous. Nint(Ncl(Nint(\hat{g}^{-1}(E'_2))) = E'_1. So \(\hat{g}^{-1}(E'_2) \) \(\notin \) Nint(Ncl(Nint(\hat{g}^{-1}(E'_2))). Hence \(\hat{g}^{-1}(E'_2) \) is not NaOS in \(X_N \). Also \(\hat{g}^{-1}(E'_2) \) \(\notin \) Nint(Ncl(\hat{g}^{-1}(E'_2))). Hence \(\hat{g}^{-1}(E'_2) \) is not NPOS in \(X_N \). Thus \(\hat{g} \) is not Na- irresolute function, not Npre-α-irresolute function, not Npre irresolute function, not Npre-β-irresolute function, not Nα-continuous and not Npre continuous.

Example 3.13

Let \(X_N = \{a,b,c\} = \gamma_N \) and \(T_N = \{0_n, 1_n, E'_1, E'_1 \cup E'_2, E'_1 \cap E'_2\}, \Gamma_N = \{0_n, 1_n, E'_3\} \) are NTS on \(X_N \) and \(\gamma_N \) where

\[
E'_1 = ([x,(\frac{5}{10},\frac{5}{10},\frac{7}{10}), (\frac{6}{10},\frac{5}{10},\frac{4}{10})]),
\]

\[
E'_2 = ([x,(\frac{2}{10},\frac{5}{10},\frac{7}{10}), (\frac{4}{10},\frac{5}{10},\frac{6}{10})]),
\]

\[
E'_3 = ([y,(\frac{5}{10},\frac{5}{10},\frac{6}{10}), (\frac{6}{10},\frac{5}{10},\frac{4}{10})])
\]

\[
E'_4 = ([y,(\frac{5}{10},\frac{5}{10},\frac{4}{10}), (\frac{6}{10},\frac{5}{10},\frac{4}{10})])
\]

is a NS in \(\gamma_N \). Define an identity Neutrosophic function \(\hat{g}: (X_N,\gamma_N) \rightarrow (\gamma_N,\gamma_N) \). \(E'_3 \) is a NOS in \(\gamma_N \) and \(\hat{g}^{-1}(E'_3) = ([x,(\frac{5}{10},\frac{5}{10},\frac{5}{10}), (\frac{6}{10},\frac{5}{10},\frac{4}{10})]) \).

Nint(Ncl(Nint(\hat{g}^{-1}(E'_3))) = E'_1 \cup E'_2. Thus \(\hat{g}^{-1}(E'_3) \) \(\subseteq \) Nint(Ncl(Nint(\hat{g}^{-1}(E'_3))) Hence \(\hat{g}^{-1}(E'_3) \) is a NaOS in \((X_N,T_N) \). Also \(\hat{g}^{-1}(E'_3) \) is NPOS, NSOS and \(\mathcal{N}\beta OS \) in \(X_N \). Therefore \(\hat{g} \) is \(\mathcal{N}\alpha \)-continuous, Npre continuous, NSemicontinuous and \(\mathcal{N}\beta \) -continuous. \(E'_4 \) is a NS in \(\gamma_N \) and \(E'_4 \) \(\subseteq \) Nint(Ncl(Nint(E'_4))) = 1_n. Hence \(E'_4 \) is a NaOS in \(\gamma_N \). Also \(E'_4 \) is NPOS, NSOS and \(\mathcal{N}\beta OS \) in \(\gamma_N \).
\[
\hat{\mathcal{f}}^{-1}(E_1^*) = \left(x \left(\frac{5}{10} \frac{5}{10} \frac{4}{10} \right), \left(\frac{4}{10} \frac{5}{10} \frac{4}{10} \right), \left(\frac{6}{10} \frac{5}{10} \frac{4}{10} \right) \right)
\]

And \(\hat{\mathcal{f}}^{-1}(E_1^*) \subseteq \text{Ncl}(\text{Nt}(\hat{\mathcal{f}}^{-1}(E_1^*))) = \overline{E_1^*} \). Hence \(\hat{\mathcal{f}}^{-1}(E_1^*) \) is NSOS and also \(\mathcal{N} \beta OS \) in \(X_N \). So \(\hat{\mathcal{f}} \) is Nirresolve function, NS-\(\alpha \)- irresolute function and \(\mathcal{N} \beta \) - irresolute function. Since
\[
\hat{\mathcal{f}}^{-1}(E_1^*) \notin \text{Nnt}(\text{Ncl}(\hat{\mathcal{f}}^{-1}(E_1^*))) = E_1^* \cup E_2^* , \quad \hat{\mathcal{f}}^{-1}(E_1^*) \text{ is not NaOS in } X_N \text{ and } \hat{\mathcal{f}}^{-1}(E_1^*) \notin \text{Nnt}(\text{Ncl}(\hat{\mathcal{f}}^{-1}(E_1^*)) = E_1^* \cup E_2^*, \quad \hat{\mathcal{f}}^{-1}(E_1^*) \text{ is not NPOS in } X_N \text{. Thus } \hat{\mathcal{f}} \text{ is not } \text{Na- irresolute function and not Npre- } \alpha \text{- irresolute function and not Npre- } \beta \text{- irresolute function.}
\]

Example 3.14

Let \(X_N = [a,b] \) \(Y_N = [c,d] \) and \(I_N = [0, E_1^*, 1] \), \(\Gamma_N = [0, E_2^*, 1] \), are NTS on \(X_N \) and \(Y_N \) respectively where

\[
E_1^* = \left(x \left(\frac{3}{10} \frac{5}{10} \frac{6}{10} \right), \left(\frac{4}{10} \frac{5}{10} \frac{5}{10} \right) \right)
\]

\[
E_2^* = \left(y \left(\frac{4}{10} \frac{5}{10} \frac{5}{10} \right), \left(\frac{5}{10} \frac{5}{10} \frac{3}{10} \right) \right)
\]

And \(E_3^* = \left(y \left(\frac{4}{10} \frac{5}{10} \frac{5}{10} \right), \left(\frac{6}{10} \frac{5}{10} \frac{2}{10} \right) \right) \) is a NS in \(Y_N \). Define a Neutrosophic function \(\hat{\mathcal{f}} : (X_N, \mathcal{F}_N) \rightarrow (Y_N, \mathcal{G}_N) \). By \(\hat{\mathcal{f}} \) \((a)=d, \hat{\mathcal{f}} \) \((b)=c E_1^* \) is a NOS in \((Y_N, \mathcal{G}_N) \). And \(\hat{\mathcal{f}}^{-1}(E_2^*) = \left(y \left(\frac{5}{10} \frac{5}{10} \frac{3}{10} \right), \left(\frac{4}{10} \frac{5}{10} \frac{5}{10} \right) \right) \) and

\[
\text{Ncl}(\text{Nnt}(\hat{\mathcal{f}}^{-1}(E_2^*))) = \overline{E_1^*} \text{. Thus } \hat{\mathcal{f}}^{-1}(E_2^*) \subseteq \text{Ncl}(\text{Nnt}(\hat{\mathcal{f}}^{-1}(E_2^*))) \text{. Hence } \hat{\mathcal{f}}^{-1}(E_2^*) \text{ is an NSOS in } X_N \text{, which implies } \hat{\mathcal{f}} \text{ is NSemi continuous and also } \hat{\mathcal{f}} \text{ is } \mathcal{N} \beta \text{-continuous. } E_3^* \text{ is a NS in } Y_N \text{. Also } E_3^* \subseteq \text{Nnt}(\text{Ncl}(\text{Nnt}(E_3^*))= 1_N \text{which implies } E_3^* \text{ is a NaOS in } Y_N \text{. Hence } E_3^* \text{ is NPOS, NSOS and } \mathcal{N} \beta OS \text{ in } Y_N \text{.} \hat{\mathcal{f}}^{-1}(E_3^*) = \left(y \left(\frac{5}{10} \frac{5}{10} \frac{3}{10} \right), \left(\frac{4}{10} \frac{5}{10} \frac{5}{10} \right) \right) \text{ So } \hat{\mathcal{f}}^{-1}(E_3^*) \text{ is a NPOS and } \mathcal{N} \beta OS \text{ in } X_N \text{. Thus } \hat{\mathcal{f}} \text{ is Npre- } \alpha \text{- irresolute function, Npre- } \beta \text{- irresolute function and } \mathcal{N} \beta \text{- irresolute function. Since } \hat{\mathcal{f}}^{-1}(E_3^*) \notin \text{Nnt}(\text{Ncl}(\hat{\mathcal{f}}^{-1}(E_3^*))) = E_1^* , \quad \hat{\mathcal{f}}^{-1}(E_3^*) \text{ is not NaOS in } X_N \text{. Also } \hat{\mathcal{f}}^{-1}(E_3^*) \notin \text{Nnt}(\text{Ncl}(\hat{\mathcal{f}}^{-1}(E_3^*)) \neq \overline{E_1^*} \text{. So } \hat{\mathcal{f}}^{-1}(E_3^*) \text{ is not NSOS in } X_N \text{. Hence } \hat{\mathcal{f}} \text{ is not } \text{Na- irresolute function, not } \text{Nirresolve function, and not NS- } \alpha \text{- irresolute function.}
\]

Example 3.15

Let \(X_N = [a,b] = Y_N \) and

\(\mathcal{J}_N = [0_n, 1_N, E_1^*, E_1^* \cup E_2^*, E_1^* \cap E_2^*] \)
\(\Gamma_N = [0_n, 1_N, E_3^*] \) are NTS on \(X_N \) and \(Y_N \) where

\[
E_1^* = \left(x \left(\frac{2}{10} \frac{5}{10} \frac{5}{10} \right), \left(\frac{2}{10} \frac{5}{10} \frac{4}{10} \right) \right)
\]

\[
E_2^* = \left(x \left(\frac{4}{10} \frac{5}{10} \frac{6}{10} \right), \left(\frac{4}{10} \frac{5}{10} \frac{6}{10} \right) \right)
\]

\[
E_3^* = \left(y \left(\frac{2}{10} \frac{5}{10} \frac{6}{10} \right), \left(\frac{4}{10} \frac{5}{10} \frac{6}{10} \right) \right)
\]

\[
E_4^* = \left(y \left(\frac{3}{10} \frac{5}{10} \frac{3}{10} \right), \left(\frac{4}{10} \frac{5}{10} \frac{5}{10} \right) \right)
\]
is a NS in \(Y_N \). Define an identity Neutrosophic function \(\hat{f}: (X_N,T_N) \to (Y_N,G_N) \), \(\epsilon_3^+ \) is a NOS in \(Y_N \). \(\epsilon_3^+ \) is a NOS, NaOS, NPOS in \((Y_N,G_N) \). \(\hat{f}^{-1}(\epsilon_3^+) = \{ \{ 2, 5, 3 \} , \{ 5, 10, 10 \} \} \)

So \(\hat{f}^{-1}(\epsilon_3^+) \subseteq \text{Nint}(\text{Ncl}(\hat{f}^{-1}(\epsilon_3^+))) = \epsilon_1 \cup \epsilon_2^+ \). Thus \(\hat{f}^{-1}(\epsilon_3^+) \) is a NaOS in \(X_N \). Hence \(\hat{f}^{-1}(\epsilon_3^+) \) is NPOS and NSOS in \(X_N \). Thus \(\hat{f} \) is \(\alpha \)-irresolute, \(\alpha \)-semi-irresolute and \(\alpha \)-pre-irresolute function, \(\alpha \)-continuous, \(\alpha \)-precontinuous and \(\alpha \)-semi-continuous. \(\epsilon_4 \) is a NS in \(Y_N \) and \(\text{Ncl}(\text{Nint}(\hat{f}^{-1}(\epsilon_4^+))) = \epsilon_3^+ \). Hence \(\epsilon_4^+ \subseteq \text{Ncl}(\text{Nint}(\epsilon_4^+)) \). Thus \(\epsilon_4^+ \) is a NSOS in \(Y_N \).

\[
\hat{f}^{-1}(\epsilon_3^+) = (x, \{ 3, 5, 3 \} , \{ 5, 10, 10 \})
\]

and \(\text{Ncl}(\text{Nint}(\hat{f}^{-1}(\epsilon_4^+))) = \epsilon_3^+ \cup \epsilon_2^+ \).

So \(\hat{f}^{-1}(\epsilon_3^+) \nsubseteq \text{Ncl}(\text{Nint}(\hat{f}^{-1}(\epsilon_4^+))) \). Thus \(\hat{f}^{-1}(\epsilon_3^+) \) is not NSOS in \(X_N \). Hence \(\hat{f} \) is not \(\alpha \)-irresolute function.

Example 3.16

Let \(X_N = \{ a, b, c \} = Y_N \) and \(T_N = \{ 0, 1 \}, \epsilon_1 \), \(\Gamma_N = \{ 0, 1 \}, \epsilon_2^+ \) are NTS on \(X_N \) and \(Y_N \) where

\[
\epsilon_1^+ = (x, \{ 7, 5, 3 \} , \{ 5, 10, 10 \})
\]

\[
\epsilon_2^+ = (x, \{ 5, 5, 2 \} , \{ 5, 10, 10 \})
\]

Define a Neutrosophic function \(\hat{f}: (X_N,T_N) \to (Y_N,G_N) \) by \(\hat{f}(a) = b, \hat{f}(b) = c, \hat{f}(c) = a \). \(\epsilon_2^+ \) is a NOS in \((Y_N,G_N) \). Also \(\epsilon_2^+ \) is NaOS, NPOS, NSOS and \(\mathcal{N}\beta OS \) in \(Y_N \) and

\[
\hat{f}^{-1}(\epsilon_2^+) = (x, \{ 3, 5, 4 \} , \{ 4, 5, 6 \})
\]

\[
\text{Nint}(\text{Ncl}(\hat{f}^{-1}(\epsilon_2^+))) = 1_N. \text{Since } \hat{f}^{-1}(\epsilon_2^+) \subseteq \text{Nint}(\text{Ncl}(\hat{f}^{-1}(\epsilon_2^+))), \hat{f}^{-1}(\epsilon_2^+) \text{ is a NPOS in } (X_N,T_N) \text{ and also } \hat{f}^{-1}(\epsilon_2^+) \text{ is } \mathcal{N}\beta OS \text{ in } X_N. \text{Thus } \hat{f} \text{ is a Npre irresolute function, Npre-} \alpha \text{-irresolute function, Npre continuous and } \mathcal{N}\beta \text{ -continuous. Now } \hat{f}^{-1}(\epsilon_2^+) \nsubseteq \text{Ncl}(\text{Nint}(\hat{f}^{-1}(\epsilon_2^+))) = 0_N. \text{So } \hat{f}^{-1}(\epsilon_2^+) \text{ is not NSOS in } X_N. \text{Also } \hat{f}^{-1}(\epsilon_2^+) \nsubseteq \text{Nint}(\text{Ncl}(\hat{f}^{-1}(\epsilon_2^+))) = 0_N. \text{Hence } \hat{f}^{-1}(\epsilon_2^+) \text{ is not NaOS in } X_N. \text{Thus } \hat{f} \text{ is not NaOS function, not NS-} \alpha \text{-irresolute function and not Na-continuous and not NSsemi-continuous.}

Example 3.17 Let \(X_N = \{ a, b \} \) \(Y_N = \{ c, d \} \) and \(T_N = \{ 0, 1 \}, \epsilon_1^+, \Gamma_N = \{ 0, 1 \}, \epsilon_2^+ \), \(\epsilon_2^+ \) are NTS on \(X_N \) and \(Y_N \) respectively where

\[
\epsilon_1^+ = (x, \{ 4, 5, 4 \} , \{ 5, 10, 10 \})
\]

\[
\epsilon_2^+ = (y, \{ 4, 5, 5 \} , \{ 5, 10, 10 \})
\]

\[
\epsilon_3^+ = (y, \{ 2, 5, 2 \} , \{ 4, 5, 5 \})
\]

is a NS in \(Y_N \). Define an Neutrosophic function \(\hat{f}: (X_N,T_N) \to (Y_N,G_N) \) by \(\hat{f}(a) = c, \hat{f}(b) = d \). \(\epsilon_2^+ \) is a NOS in \((Y_N,G_N) \). Also \(\epsilon_2^+ \) is NaOS, NPOS in \(Y_N \) and

\[
\hat{f}^{-1}(\epsilon_2^+) = (x, \{ 4, 5, 2 \} , \{ 3, 5, 5 \})
\]

and \(\hat{f}^{-1}(\epsilon_2^+) \subseteq \text{Nint}(\text{Ncl}(\hat{f}^{-1}(\epsilon_2^+))) = 1_N. \)

Thus \(\hat{f}^{-1}(\epsilon_2^+) \subseteq \text{Nint}(\text{Ncl}(\hat{f}^{-1}(\epsilon_2^+))) \). Hence \(\hat{f}^{-1}(\epsilon_2^+) \) is a NPOS in \(X_N \).
Now $\mathcal{E}^*_3 \subseteq \text{Nint} (\text{Ncl}(\mathcal{E}^*_3)) = 1_N$. Therefore \mathcal{E}^*_3 is an NPOS in \mathcal{Y}_N. Also \mathcal{E}^*_3 is an NβOS in \mathcal{Y}_N.

$$\text{Nint}(\text{Ncl}(\tilde{\mathcal{E}}^{-1}(\mathcal{E}^*_3))) = 0_N.$$ Thus $\tilde{\mathcal{E}}^{-1}(\mathcal{E}^*_3) \subseteq \text{Nint}(\text{Ncl}(\tilde{\mathcal{E}}^{-1}(\mathcal{E}^*_3)))$.

Hence $\tilde{\mathcal{E}}^{-1}(\mathcal{E}^*_3)$ is not an NPOS in \mathcal{X}_N. So $\tilde{\mathcal{E}}$ is not Npre-β-irresolute function and $\tilde{\mathcal{E}}$ is not Npre irresolute function. Since $\tilde{\mathcal{E}}^{-1}(\mathcal{E}^*_3) \not\subseteq \text{Ncl}(\text{Nint}(\text{Ncl}(\mathcal{E}^*_3))) = 0_N$.

$\tilde{\mathcal{E}}^{-1}(\mathcal{E}^*_3)$ is not NβOS in \mathcal{X}_N. So $\tilde{\mathcal{E}}$ is not Nβ-irresolute function.

Example 3.18 Let $\mathcal{X}_N = \{a, b\}$, $\mathcal{Y}_N = \{c, d\}$ and $\mathcal{T}_N = \{0, 1\}$, $\Gamma_N = \{0, 1\}$, are NTS on \mathcal{X}_N and \mathcal{Y}_N respectively where

$$\mathcal{E}^*_1 = \left(x, \left(\begin{array}{c} 4 \ 5 \\ 10 \ 10 \end{array} \right), \left(\begin{array}{c} 5 \ 0 \\ 10 \ 10 \end{array} \right) \right)$$

$$\mathcal{E}^*_2 = \left(y, \left(\begin{array}{c} 4 \ 5 \\ 10 \ 10 \end{array} \right), \left(\begin{array}{c} 5 \ 5 \\ 10 \ 10 \end{array} \right) \right)$$

$$\mathcal{E}^*_3 = \left(y, \left(\begin{array}{c} 2 \ 5 \\ 10 \ 10 \end{array} \right), \left(\begin{array}{c} 2 \ 5 \\ 10 \ 10 \end{array} \right) \right)$$

is a NS in \mathcal{Y}_N. Define an Neutrosophic function $\tilde{\mathcal{E}}: (\mathcal{X}_N, \mathcal{T}_N) \rightarrow (\mathcal{Y}_N, \mathcal{G}_N)$ by $\tilde{\mathcal{E}}(a) = c$, $\tilde{\mathcal{E}}(b) = d$. \mathcal{E}^*_2 is a NOS in $(\mathcal{Y}_N, \mathcal{G}_N)$. Also \mathcal{E}^*_3 is a NαOS, NPOS in \mathcal{Y}_N.

$$\tilde{\mathcal{E}}^{-1}(\mathcal{E}^*_2) = \left(x, \left(\begin{array}{c} 4 \ 5 \\ 10 \ 10 \end{array} \right), \left(\begin{array}{c} 5 \ 5 \\ 10 \ 10 \end{array} \right) \right)$$

and $\text{Nint} (\text{Ncl} (\tilde{\mathcal{E}}^{-1}(\mathcal{E}^*_2))) = 1_N$. Thus $\tilde{\mathcal{E}}^{-1}(\mathcal{E}^*_2) \subseteq \text{Nint} (\text{Ncl}(\tilde{\mathcal{E}}^{-1}(\mathcal{E}^*_2)))$. Hence $\tilde{\mathcal{E}}^{-1}(\mathcal{E}^*_2)$ is a NPOS in \mathcal{X}_N. Therefore $\tilde{\mathcal{E}}$ is a Npre irresolute, Npre-α-irresolute and Npre continuous.

\mathcal{E}^*_3 is a NS in \mathcal{Y}_N and $\mathcal{E}^*_3 \subseteq \text{Ncl}(\text{Nint}(\tilde{\mathcal{E}}^{-1}(\mathcal{E}^*_2)) = \mathcal{E}^*_2$. Hence \mathcal{E}^*_3 is a NβOS in \mathcal{Y}_N.

$$\tilde{\mathcal{E}}^{-1}(\mathcal{E}^*_3) = \left(x, \left(\begin{array}{c} 2 \ 5 \\ 10 \ 10 \end{array} \right), \left(\begin{array}{c} 2 \ 5 \\ 10 \ 10 \end{array} \right) \right)$$

and $\text{Nint} (\text{Ncl}(\tilde{\mathcal{E}}^{-1}(\mathcal{E}^*_3))) = 0_N$. Thus $\tilde{\mathcal{E}}^{-1}(\mathcal{E}^*_3) \not\subseteq \text{Nint}(\text{Ncl}(\tilde{\mathcal{E}}^{-1}(\mathcal{E}^*_3)))$. So $\tilde{\mathcal{E}}^{-1}(\mathcal{E}^*_3)$ is not an NPOS in \mathcal{X}_N. Hence $\tilde{\mathcal{E}}$ is not Npre-β-irresolute function.

Diagram: I
4. PROPERTIES

Theorem 4.1 If a function \(\tilde{f} : (X_N, T_N) \rightarrow (Y_N, G_N) \) is Npre-\(\alpha \)-irresolute (N\(\alpha \)-irresolute and NS\(\alpha \)-irresolute, resp.) then \(\tilde{f}^{-1}(E_1^\alpha) \) is NPCS (N\(\alpha \)-closed and NSemiclosed, resp.) in \(X_N \) for any N nowhere dense set \(E_1^\alpha \) of \(Y_N \).

Proof:
Let \(E_1^\alpha \) be an N nowhere dense set in \(Y_N \). Then \(\text{Nint}(\text{Ncl}(E_1^\alpha)) = \emptyset_N \). Now, \(\text{Nint}(\text{Ncl}(E_1^\alpha)) = 1_N \Rightarrow \text{Ncl}(\text{Nint}(E_1^\alpha)) = 1_N \). Hence \(E_1^\alpha \subseteq \text{Nint}(\text{Ncl}(E_1^\alpha)) \). Since \(\tilde{f} \) is Npre-\(\alpha \)-irresolute (N\(\alpha \)-irresolute and N semi-\(\alpha \)-irresolute, resp.), \(\tilde{f}^{-1}(E_1^\alpha) \) is a NPCS (N\(\alpha \)OS and NSOS, resp.) in \(X_N \). Hence \(\tilde{f}^{-1}(E_1^\alpha) \) is a NPCS (N\(\alpha \)CS and NSCS, resp.) in \(X_N \).

Theorem 4.2 If a function \(\tilde{f} : (X_N, T_N) \rightarrow (Y_N, G_N) \) is Npre-\(\beta \)-irresolute, then \(\tilde{f}^{-1}(E_1^\beta) \) is NPCS in \(X_N \) for any Nnowheredense set \(E_1^\beta \) of \(Y_N \).

Proof:
Let \(E_1^\beta \) be an Nnowheredense set in \(Y_N \). Then \(\text{Nint}(\text{Ncl}(E_1^\beta)) = \emptyset_N \). Now, \(\text{Nint}(\text{Ncl}(E_1^\beta)) = 1_N \Rightarrow \text{Ncl}(\text{Nint}(E_1^\beta)) = 1_N \). Since \(\text{Nint}(E_1^\beta) = 1_N \) and \(\text{Ncl}(\text{Nint}(E_1^\beta)) \subseteq \text{Ncl}(\text{Nint}(E_1^\beta)) \), then \(E_1^\beta \subseteq 1_N \subseteq \text{Ncl}(\text{Nint}(E_1^\beta)) \). Hence \(E_1^\beta \) is a N\(\beta \)OS in \(Y_N \). Since \(\tilde{f} \) is Npre-\(\beta \)-irresolute, \(\tilde{f}^{-1}(E_1^\beta) \) is a NPO in \(X_N \). Hence \(\tilde{f}^{-1}(E_1^\beta) \) is a NPCS in \(X_N \).

Theorem 4.3 A function \(\tilde{f} : (X_N, T_N) \rightarrow (Y_N, G_N) \) from an NTS \(X_N \) into an NTS \(Y_N \) is Npre-\(\alpha \)-irresolute if and only if for each NP \(p(\alpha, \beta) \) in \(X_N \) and NPOS \(E_1^\alpha \) in \(Y_N \), such that \(\tilde{f}(p(\alpha, \beta)) \subseteq E_2^\alpha \), there exists an NPO \(E_1^\alpha \) in \(X_N \) such that \(p(\alpha, \beta) \subseteq E_1^\alpha \) and \(\tilde{f}(E_1^\alpha) \subseteq E_2^\alpha \).

Proof:
Let \(\tilde{f} \) be any Npre-\(\alpha \)-irresolute function. \(p(\alpha, \beta) \) be an NP in \(X_N \) and \(E_2^\alpha \) be any NPO in \(Y_N \) such that \(\tilde{f}(p(\alpha, \beta)) \subseteq E_2^\alpha \). Then \(\tilde{f}^{-1}(E_2^\beta) \) is a NPO in \(X_N \) which containing NP \(p(\alpha, \beta) \) and \(\tilde{f}(E_1^\beta) \subseteq E_2^\beta \). Conversely, let \(E_2^\alpha \) be a NPO in \(Y_N \) and \(p(\alpha, \beta) \) be an NP in \(X_N \) such that \(p(\alpha, \beta) \subseteq \tilde{f}^{-1}(E_2^\beta) \). According to an assumption, there exists an NPO \(E_1^\alpha \) in \(X_N \) such that \(p(\alpha, \beta) \) be an NP in \(X_N \) and \(\tilde{f}(E_1^\alpha) \subseteq \tilde{f}^{-1}(E_2^\beta) \). Therefore, \(\tilde{f}^{-1}(E_2^\beta) \subseteq \text{Nint}(\text{Ncl}(\tilde{f}^{-1}(E_2^\beta))) \) is NPO in \(X_N \). Thus, \(\tilde{f} \) is a Npre-\(\alpha \)-irresolute function.

T.Rajesh Kannan, S. Chandrasekar, Neutrosophic Pre-\(\alpha \), Semi-\(\alpha \) & Pre-\(\beta \) Irresolute Functions
Theorem 4.4. A function \(\tilde{f} : (X_N, J_N) \rightarrow (Y_N, S_N) \) from an NTS \(X_N \) into an NTS \(Y_N \) is \(-\alpha\)- irresolute if and only if for each NP \(p(a,\beta) \) in \(X_N \) and NαOS \(E_2 \) in \(Y_N \) such that \((p(a,\beta)) E_2\), there exists an NαOS \(E'_1 \) in \(X_N \) such that \(p(a,\beta) \) and \(\tilde{f} (E'_1) \subseteq E'_2\).

Proof: Let \(\tilde{f} \) be any Nα- irresolute function. \(p(a,\beta) \) be an NP in \(X_N \) and \(E'_2 \) be any NαOS in \(Y_N \) such that \((p(a,\beta)) E_2\). Then \(p(a,\beta) \in \tilde{f}^{-1}(E_2) = \text{NInt} \tilde{f}^{-1}(E_2) \). Let \(E'_1 = \text{NInt} \tilde{f}^{-1}(E_2) \). Then \(E'_1 \) is a NαOS in \(X_N \) containing NP \(p(a,\beta) \) and \(\tilde{f} (E'_1) = \text{NInt} \tilde{f}^{-1}(E_2) = f(\tilde{f}^{-1}(E'_2)) \subseteq E'_2\).

Conversely, let \(E'_2 \) be an NαOS in \(Y_N \) and \(p(a,\beta) \) be an NP in \(X_N \) such that \((p(a,\beta)) E_2\). According to an assumption, there exists an NαOS \(E'_1 \) in \(X_N \) such that \((p(a,\beta)) E'_1 \) and \(\tilde{f} (E'_1) \subseteq E'_2\). Hence \(p(a,\beta) \subseteq E'_1 \) and \(\tilde{f} (E'_1) \subseteq E'_2\). Also \(\tilde{f}^{-1}(E'_2) \subseteq \text{NInt}(\tilde{f}^{-1}(E'_2)) \). Since \(p(a,\beta) \) is an arbitrary NP \(p(a,\beta) \subseteq E'_1 \) and \(\tilde{f}^{-1}(E'_2) \) is union of all NPs containing in \(\tilde{f}^{-1}(E'_2) \), which gives that \(p(a,\beta) \subseteq \text{NInt} \tilde{f}^{-1}(E'_2) \) is NαOS in \(X_N \). Hence \(\tilde{f} \) is a Nα- irresolute function.

Theorem 4.5 \(\tilde{f} \) function \((X_N,J_N) \rightarrow (Y_N,S_N)\) from an NTS \(X_N \) into an NTS \(Y_N \) is Nsemi-\(\alpha\)- irresolute if and only if for each NP \(p(a,\beta) \) in \(X_N \) and NαOS \(E_2 \) in \(Y_N \) such that \((p(a,\beta)) E_2\), there exists an NSOS \(E'_1 \) in \(X_N \) such that \(p(a,\beta) \subseteq E'_1 \) and \(\tilde{f} (E'_1) \subseteq E'_2\).

Proof: Let \(\tilde{f} \) be any NS-\(\alpha\)- irresolute function. \(p(a,\beta) \) be an NP in \(X_N \) and \(E'_2 \) be any NSOS in \(Y_N \) such that \((p(a,\beta)) E'_2\). Then \(p(a,\beta) \subseteq E'_2\). Let \(E'_1 = \tilde{f}^{-1}(E'_2) \). Then \(E'_1 \) is a NSOS in \(X_N \) containing NP \(p(a,\beta) \) and \(\tilde{f} (E'_1) = \tilde{f}^{-1}(E'_2) \subseteq E'_2\).

Conversely, let \(E'_2 \) be an NSOS in \(Y_N \) and \(p(a,\beta) \) be a NP in \(X_N \) such that \((p(a,\beta)) E'_2\). According to an assumption, there exists an NSOS \(E'_1 \) in \(X_N \) such that \(p(a,\beta) \subseteq E'_1 \) and \(\tilde{f} (E'_1) \subseteq E'_2\). Also \(p(a,\beta) \subseteq \text{NInt}(E'_1) \subseteq \text{NInt}(\tilde{f}^{-1}(E'_2)) \). Therefore, \(\tilde{f}^{-1}(E'_2) \subseteq \text{NInt}(\tilde{f}^{-1}(E'_2)) \). Since \(p(a,\beta) \) is an arbitrary NP \(\tilde{f}^{-1}(E'_2) \) is union of all NPs containing in \(\tilde{f}^{-1}(E'_2) \), which gives that \(\tilde{f}^{-1}(E'_2) \subseteq \text{NInt} \tilde{f}^{-1}(E'_2) \) is NSOS in \(X_N \). Hence \(\tilde{f} \) is a NS-\(\alpha\)- irresolute function.

Theorem 4.6 A function \(\tilde{f} : (X_N, J_N) \rightarrow (Y_N, S_N) \) from an NTS \(X_N \) into an NTS \(Y_N \) is Npre-\(\beta\)- irresolute if and only if for each NP \(p(a,\beta) \) in \(X_N \) and \(N\beta OS \) \(E_2 \) in \(Y_N \) such that \((p(a,\beta)) E_2\), there exists an NPOS \(E'_1 \) in \(X_N \) such that \(p(a,\beta) \subseteq E'_1 \) and \(\tilde{f} (E'_1) \subseteq E'_2\).

Proof: Let \(\tilde{f} \) be any Npre-\(\beta\)- irresolute mapping. \(p(a,\beta) \) be an NP in \(X_N \) and \(E'_1 \) be any \(N\beta OS \) in \(Y_N \) such that \((p(a,\beta)) E'_1\). Then \(p(a,\beta) \subseteq \tilde{f}^{-1}(E'_2) \). Let \(E'_1 = \tilde{f}^{-1}(E'_2) \). Then \(E'_1 \) is a NPOS in \(X_N \) which containing NP \(p(a,\beta) \) and \(\tilde{f} (E'_1) = \tilde{f}^{-1}(E'_2) \subseteq E'_2\).

Conversely, let \(E'_2 \) be an \(N\beta OS \) in \(Y_N \) and \(p(a,\beta) \) be a NP in \(X_N \) such that \((p(a,\beta)) E'_2\). According to an assumption, there exists an NPOS \(E'_1 \) in \(X_N \) such that \(p(a,\beta) \subseteq E'_1 \) and \(\tilde{f} (E'_1) \subseteq E'_2\). Also \(p(a,\beta) \subseteq \text{NInt}(E'_1) \subseteq \text{NInt}(\tilde{f}^{-1}(E'_2)) \). Therefore, \(\tilde{f}^{-1}(E'_2) \subseteq \text{NInt}(\tilde{f}^{-1}(E'_2)) \). Since \(p(a,\beta) \) is an arbitrary NP \(\tilde{f}^{-1}(E'_2) \) is union of all NPs containing in \(\tilde{f}^{-1}(E'_2) \), which gives that \(\tilde{f}^{-1}(E'_2) \subseteq \text{NInt} \tilde{f}^{-1}(E'_2) \) is NPOS in \(X_N \). Hence \(\tilde{f} \) is a Npre-\(\beta\)- irresolute function.

Theorem 4.7 A function \(\tilde{f} : (X_N, J_N) \rightarrow (Y_N, S_N) \) from an NTS \(X_N \) into an NTS \(Y_N \) is Npre-\(\alpha\)- irresolute if and only if for each NP \(p(a,\beta) \) in \(X_N \) and \(N\alpha OS \) \(E_2 \) in \(Y_N \) such that \((p(a,\beta)) E_2\), \(\tilde{f}^{-1}(E'_2) \) is a NN of NP \(p(a,\beta) \) in \(X_N \).

Proof: Let \(\tilde{f} \) be any Npre-\(\alpha\)- irresolute function. \(p(a,\beta) \) be an NP in \(X_N \) and \(E'_2 \) be any \(N\alpha OS \) in \(Y_N \) such that \((p(a,\beta)) E'_2\). Then \(p(a,\beta) \subseteq \tilde{f}^{-1}(E'_2) \). Then \(p(a,\beta) \subseteq \text{NInt}(\tilde{f}^{-1}(E'_2)) \). Hence \(\text{NInt}(\tilde{f}^{-1}(E'_2)) \) is IFN of \(p(a,\beta) \) in \(X_N \).

Conversely, let \(E'_2 \) be a \(N\alpha OS \) in \(Y_N \) and \(p(a,\beta) \) be an NP in \(X_N \) such that \((p(a,\beta)) E'_2\). Then \(p(a,\beta) \subseteq \tilde{f}^{-1}(E'_2) \). According to an assumption, \(\text{NInt}(\tilde{f}^{-1}(E'_2)) \) is NN of NP \(p(a,\beta) \) in \(X_N \). So \(p(a,\beta) \subseteq \text{NInt}(\tilde{f}^{-1}(E'_2)) \). Thus \(\tilde{f}^{-1}(E'_2) \subseteq \text{NInt}(\tilde{f}^{-1}(E'_2)) \). Hence \(\tilde{f}^{-1}(E'_2) \) is a NPOS in \(X_N \). Therefore \(\tilde{f} \) is a Npre-\(\alpha\)- irresolute function.

T.Rajesh Kannan, S. Chandrasekar , Neutrosophic Pre-\(\alpha\), Semi-\(\alpha\) & Pre-\(\beta\) Irresolute Functions
Theorem 4.8: A function $\hat{f}: (X_N, T_N) \to (Y_N, S_N)$ from an NTS X_N into an NTS Y_N is N pre-\(\beta\)-irresolute if and only if for each NP $p(\alpha, \beta)$ in X_N and $N\beta OS$ E_2' in Y_N such that $\hat{f}(p(\alpha, \beta)) \in E_2'$, $Ncl(\hat{f}^{-1}(E_2'))$, is a NN of NP $p(\alpha, \beta)$ in X_N.

Proof: Let \hat{f} be any N pre-\(\beta\)-irresolute function. $p(\alpha, \beta)$ be an NP in X_N and E_2' be any $N\beta OS$ in Y_N such that $\hat{f}(p(\alpha, \beta)) \in E_2'$. Then $p(\alpha, \beta) \in \hat{f}^{-1}(E_2') \subseteq Ncl(\hat{f}^{-1}(E_2')) \subseteq Ncl(Ncl(\hat{f}^{-1}(E_2'))).$

Hence $Ncl(Ncl(\hat{f}^{-1}(E_2'))) \subseteq Ncl(\hat{f}^{-1}(E_2'))$. Consequently, E_2' is a $N\beta OS$ in Y_N. Conversely, let E_2' be any $N\beta OS$ in Y_N and $p(\alpha, \beta)$ be an NP in X_N such that $\hat{f}(p(\alpha, \beta)) \in E_2'$. Then $p(\alpha, \beta) \in \hat{f}^{-1}(E_2')$. According to an assumption, $Ncl(Ncl(\hat{f}^{-1}(E_2'))) \subseteq Ncl(\hat{f}^{-1}(E_2'))$. Hence $\hat{f}^{-1}(E_2')$ is a NPOS in $N\beta OS$ in X_N. Therefore \hat{f} is a N pre-\(\beta\)-irresolute function.

Theorem 4.9

The following hold for functions $\hat{f}: X_N \to Y_N$ and $\hat{g}: Y_N \to Z_N$:

i) If \hat{f} is N pre irresolute and g is N pre-\(\alpha\)-irresolute (N pre-\(\beta\)-irresolute, resp.), then $\hat{g} \circ \hat{f}$ is N pre-\(\alpha\)-irresolute (N pre-\(\beta\)-irresolute, resp.) function.

ii) If \hat{f} is N pre-\(\alpha\)-irresolute (N pre-\(\beta\)-irresolute, resp.), and g is N continuous (N\(\beta\) – continuous, resp.), then $\hat{g} \circ \hat{f}$ is N pre continuous.

iii) If \hat{f} is N pre-\(\beta\)-irresolute (N pre-\(\alpha\)-irresolute, resp.) and g is N irresolute (N\(\alpha\) – irresolute, resp.), then $\hat{g} \circ \hat{f}$ is N pre-\(\alpha\)-irresolute (N pre-\(\beta\)-irresolute, resp.).

iv) If \hat{f} is NS-\(\alpha\)-irresolute (N irresolute, resp.) and g is IF\(\alpha\)-continuous, then $\hat{g} \circ \hat{f}$ is N semi continuous (N irresolute, resp.).

v) If \hat{f} is NS-\(\alpha\)-irresolute (N irresolute, resp.) and g is IF\(\alpha\)-irresolute, then $\hat{g} \circ \hat{f}$ is NS-\(\alpha\)-irresolute (N irresolute, resp.).

vi) If \hat{f} is N irresolute and g is NS-\(\alpha\)-irresolute, then $\hat{g} \circ \hat{f}$ is N NS-\(\alpha\)-irresolute.

vii) If \hat{f} is N irresolute and g is N strongly \(\alpha\)-continuous, then $\hat{g} \circ \hat{f}$ is N strongly \(\alpha\)-continuous.

Proof:

(i) Let E_2' be an N OS (N\(\beta\) OS, resp.) in Z. Since g is N pre-\(\alpha\)-irresolute (N pre-\(\beta\)-irresolute, resp.) $g^{-1}(E_2')$ is a NPOS in Y_N. Now $(\hat{g} \circ \hat{f})^{-1}(E_2') = \hat{f}^{-1}(\hat{g}^{-1}(E_2'))$. Since \hat{f} is N pre irresolute, $\hat{f}^{-1}(\hat{g}^{-1}(E_2'))$ is a NPOS in X_N. Hence $\hat{g} \circ \hat{f}$ is N pre-\(\alpha\)-irresolute (N pre-\(\beta\)-irresolute, resp.).

(ii) Let E_2' be an N OS in Z. Since g is N continuous (N\(\beta\) – continuous, resp.), $g^{-1}(E_2')$ is a N OS (N\(\beta\) OS, resp.) in Y_N. Now $(\hat{g} \circ \hat{f})^{-1}(E_2') = \hat{f}^{-1}(\hat{g}^{-1}(E_2'))$. Since \hat{f} is N pre-\(\beta\)-irresolute (N pre-\(\alpha\)-irresolute, resp.), $\hat{f}^{-1}(\hat{g}^{-1}(E_2'))$ is a NPOS in X_N. Hence $\hat{g} \circ \hat{f}$ is N pre continuous.

(iii) Let E_2' be an N OS (N\(\beta\) OS, resp.) in Z. Since g is N irresolute (N\(\beta\) – irresolute, resp.), $\hat{g}^{-1}(E_2') = \hat{f}^{-1}(\hat{g}^{-1}(E_2'))$. Since \hat{f} is N pre-\(\alpha\)-irresolute (N pre-\(\beta\)-irresolute, resp.), $\hat{f}^{-1}(\hat{g}^{-1}(E_2'))$ is a NPOS in X_N. Hence $\hat{g} \circ \hat{f}$ is N pre-\(\alpha\)-irresolute (N pre-\(\beta\)-irresolute, resp.).

(iv) Let E_2' be an N OS in Z. Since g is N continuous, $\hat{g}^{-1}(E_2')$ is an N OS in Y_N. Now $(\hat{g} \circ \hat{f})^{-1}(E_2') = \hat{f}^{-1}(\hat{g}^{-1}(E_2'))$. Since \hat{f} is NS-\(\alpha\)-irresolute (N irresolute, resp.), $\hat{f}^{-1}(\hat{g}^{-1}(E_2'))$ is a NSOS (N OS, resp.) in X_N. Hence $\hat{g} \circ \hat{f}$ is NS semi continuous (N continuous, resp.).
(v) Let \(E^*_2 \) be an NαOS in \(Z \). Since \(g \) is Nα-irresolute, \(g^{-1}(E^*_2) \) is an NαOS in \(\mathcal{Y}_N \). Now Since \(\hat{f} \) is NS-\(\alpha \)-irresolute (Nα- irresolute, resp.), \(\hat{f}^{-1}(g^{-1}(E^*_2)) \) is a NSOS (NαOS, resp.) in \(X_N \). Hence \(\hat{g} \circ \hat{f} \) is NS-\(\alpha \)-irresolute (Nα-irresolute, resp.).

(vi) Let \(E^*_2 \) be an NαOS in \(Z \). Since \(g \) is NS-\(\alpha \)-irresolute, \(g^{-1}(E^*_2) \) is a NSOS in \(\mathcal{Y}_N \). Now \((\hat{g} \circ \hat{f})^{-1}(E^*_2)=\hat{f}^{-1}(g^{-1}(E^*_2)) \). Since \(\hat{f} \) is Niirresolute, \(\hat{f}^{-1}(g^{-1}(E^*_2)) \) is a NSOS in \(X_N \). Hence \(\hat{g} \circ \hat{f} \) is NS-\(\alpha \)-irresolute.

(vii) Let \(E^*_2 \) be an NSOS in \(Z \). Since \(g \) is Nstrongly \(\alpha \)-continuous \(g^{-1}(E^*_2) \) is a NαOS in \(\mathcal{Y}_N \). Now \((\hat{g} \circ \hat{f})^{-1}(E^*_2)=\hat{f}^{-1}(g^{-1}(E^*_2)) \). Since \(\hat{f} \) is Niirresolute, \(\hat{f}^{-1}(g^{-1}(E^*_2)) \) is a NSOS in \(X_N \). Hence \(\hat{g} \circ \hat{f} \) is Nstrongly \(\alpha \)-continuous.

5. CHARACTERIZATIONS

In this section, several characterizations of Neutrosophic pre-\(\alpha \)-irresolute functions, Neutrosophic \(\alpha \)-irresolute functions, Neutrosophic semi-\(\alpha \)-irresolute functions and Neutrosophic pre-\(\beta \)-irresolute functions are established.

Theorem 5.1 If \(\hat{f} \) is a function from an NTS \((X_N, \mathcal{T}_N) \) to another NTS \((Y_N, \mathcal{G}_N) \), then the following are equivalent.

(a) \(\hat{f} \) is a Nprep-\(\alpha \)-irresolute.

(b) \(\hat{f}^{-1}(E^*_2) \subseteq \text{int}(\text{cl}(\hat{f}^{-1}(E^*_2))) \) for every NαOS \(E^*_2 \) in \(\mathcal{Y}_N \).

(c) \(\hat{f}^{-1}(E^*_2) \) is \(\mathcal{NPCS} \) in \(X_N \) for every NαCS \(E^*_2 \) in \(\mathcal{Y}_N \).

(d) \(\text{Ncl}(\text{Nint}(\hat{f}^{-1}(E^*_2)))=\text{Ncl}(\text{Ncl}(\hat{f}^{-1}(E^*_2))) \) for every NS \(E^*_2 \) of \(\mathcal{Y}_N \).

(e) \(\hat{f} \) (Ncl (Nint \(E^*_2 \))) = Ncl(\(f^{-1}(E^*_2) \)) for every NS \(E^*_2 \) of \(X_N \).

Proof:

(a) \(\Rightarrow \) (b): Let \(E^*_2 \) be an NαOS in \(\mathcal{Y}_N \). By (a), \(\hat{f}^{-1}(E^*_2) \) is \(\mathcal{NPCS} \) in \(X_N \). Hence (a) \(\Rightarrow \) (b) is proved.

(b) \(\Rightarrow \) (c): Let \(E^*_2 \) be any NαCS in \(\mathcal{Y}_N \). Then \(E^*_2 \) is NαOS in \(\mathcal{Y}_N \). By (b), \(\hat{f}^{-1}(E^*_2)=\text{Ncl}(\text{Ncl}(\hat{f}^{-1}(E^*_2))) \). But \(\hat{f}^{-1}(E^*_2) \subseteq \text{Ncl}(\text{Ncl}(\hat{f}^{-1}(E^*_2))) \) and \(\text{Ncl}(\text{Ncl}(\hat{f}^{-1}(E^*_2)))=\text{Ncl}(\text{Ncl}(\hat{f}^{-1}(E^*_2))) \).

(d) \(\Rightarrow \) (c): Let \(E^*_2 \) be an NS in \(X_N \). Then \(\text{Ncl}(\text{Nint}(\hat{f}^{-1}(E^*_2))) \subseteq \text{Ncl}(\text{Nint}(\hat{f}^{-1}(E^*_2))) \). Hence (c) \(\Rightarrow \) (d) is proved.

(e) \(\Rightarrow \) (a): Let \(E^*_2 \) be an NαOS in \(\mathcal{Y}_N \). Then \(\hat{f}^{-1}(E^*_2)=\text{Ncl}(\text{Ncl}(\hat{f}^{-1}(E^*_2))) \) is a NS in \(\mathcal{Y}_N \). Hence (e) \(\Rightarrow \) (a) is proved.

By (e),

\[
\hat{f}(\text{Ncl}(\text{Nint}(\hat{f}^{-1}(E^*_2)))) \subseteq \text{Ncl}(\hat{f}(\hat{f}^{-1}(E^*_2))) \subseteq \text{Ncl}(\text{Nint}(\hat{f}^{-1}(E^*_2))) = \text{Ncl}(\text{Ncl}(\hat{f}^{-1}(E^*_2))) \]

\[
\overline{\text{Nint}(\text{Ncl}(\hat{f}^{-1}(E^*_2)))}=\overline{\text{Ncl}(\text{Ncl}(\hat{f}^{-1}(E^*_2)))}=\overline{\text{Ncl}(\text{Ncl}(\hat{f}^{-1}(E^*_2)))}=\overline{\text{Ncl}(\text{Nint}(\hat{f}^{-1}(E^*_2)))} \]

Thus, \(\hat{f}(\text{Ncl}(\text{Nint}(\hat{f}^{-1}(E^*_2)))) \subseteq \text{Ncl}(\hat{f}(\hat{f}^{-1}(E^*_2))) \subseteq \text{Ncl}(\text{Nint}(\hat{f}^{-1}(E^*_2))) \), \(\text{Ncl}(\text{Nint}(\hat{f}^{-1}(E^*_2)))=\overline{\text{Ncl}(\text{Ncl}(\hat{f}^{-1}(E^*_2)))}=\overline{\text{Ncl}(\text{Ncl}(\hat{f}^{-1}(E^*_2)))}=\overline{\text{Ncl}(\text{Nint}(\hat{f}^{-1}(E^*_2)))} \)

Consider

\[
\text{Nint}(\text{Ncl}(\hat{f}^{-1}(E^*_2)))=\text{Ncl}(\text{Ncl}(\hat{f}^{-1}(E^*_2)))=\text{Ncl}(\text{Ncl}(\hat{f}^{-1}(E^*_2))) \]

---(2)
By (1) and (2), $\text{Nint}(Ncl(\tilde{f}^{-1}(E_2^2))) \subseteq \tilde{f}^{-1}(\text{Nint}(\tilde{f}^{-1}(E_2^2))) \subseteq \text{Nint}(Ncl(\tilde{f}^{-1}(E_2^2))) \Rightarrow \tilde{f}^{-1}(E_2^2) = \tilde{f}^{-1}(E_2^2) \Rightarrow \tilde{f}^{-1}(E_2) \subseteq \text{Nint}(Ncl(\tilde{f}^{-1}(E_2))) \Rightarrow \tilde{f}^{-1}(E_2)$ is NPOS in X_N. Thus \tilde{f} is Npre-α-irresolute. Hence (e) \Rightarrow (a) is proved.

Theorem 5.2 If $\tilde{f} : (X_N, T_N) \rightarrow (Y_N, G_N)$ be a mapping from NTS X_N into NTS Y_N. Then the following are equivalent.

(a) \tilde{f} is N-pre-irresolute.
(b) $\tilde{f}^{-1}(E_2^2)$ is NCS in X_N for each NCS E_2^2 in Y_N.
(c) \tilde{f} (Nacl(A)) \subseteq Nacl($\tilde{f}(A)$)) for each NS E_1 in X_N.
(d) Nac($\tilde{f}^{-1}(E_2^2)) \subseteq \tilde{f}^{-1}(\text{Nacl}(E_2^2))$ for each NS E_2^2 in Y_N.
(e) $\tilde{f}^{-1}(\text{Nint}(E_2^2)) \subseteq \text{Nint}(\tilde{f}^{-1}(E_2^2))$ for each NS E_2^2 in Y_N.

Proof:

(a)\Rightarrow(b): Let E_2^2 be NCS in Y_N. Then \tilde{E}_2^2 is NCS in Y_N. Since \tilde{f} is N-α-irresolute, $\tilde{f}^{-1}(E_2^2) = \tilde{f}^{-1}(E_2^2)$ is NCS in X_N. Hence $\tilde{f}^{-1}(E_2^2)$ is NCS in X_N. Thus (a)\Rightarrow(b) is proved.

(b)\Rightarrow(c): Let E_1^1 be NS in X_N. Then $E_1^1 \subseteq \tilde{f}^{-1}(\tilde{f}(E_1^1)) \subseteq \tilde{f}^{-1}(\text{Nacl}(\tilde{f}(E_1^1)))$. As Nacl($\tilde{f}(E_1^1)$) is NCS in Y_N, by (b), $\tilde{f}^{-1}(\text{Nacl}(\tilde{f}(E_1^1)))$ is a NCS in X_N. Nacl(E_1^1) \subseteq Nacl($\tilde{f}(E_1^1)$) $= \text{Nac}(\tilde{f}(E_1^1))$. Hence (b)$\Rightarrow$(c) is proved.

(c)\Rightarrow(d): For any NS E_2^2 in Y_N, let $\tilde{f}^{-1}(E_2^2) = E_1^1$. By (c), $\text{Nacl} (\tilde{f}^{-1}(E_2^2)) \subseteq \text{Nac} (\tilde{f}^{-1}(E_2^2)) \subseteq \text{Nac} (\tilde{f}(E_2^2))$. Thus $\text{Nac}(\tilde{f}^{-1}(E_2^2)) \subseteq \tilde{f}^{-1}(\text{Nac}(\tilde{f}(E_2^2)))$. Hence (c)$\Rightarrow$(d) is proved.

(d)\Rightarrow(e): For any NS E_2^2 in Y_N, Naint(E_2^2) $= \text{Naint}(E_2^2)$. Now $\tilde{f}^{-1}(\text{Naint}(E_2^2)) = \tilde{f}^{-1}(\text{Naint}(E_2^2)) = \text{Naint}(\tilde{f}^{-1}(E_2^2)) = \text{Naint}(\text{Naint}(E_2^2))$. Hence (d)$\Rightarrow$(e) is proved.

(e)\Rightarrow(a): Let E_2^2 be NCS in Y_N. Then $E_2^2 = \text{Naint}(E_2^2)$ and $\tilde{f}^{-1}(E_2^2) = \tilde{f}^{-1}(E_2^2) \subseteq \text{Naint}(E_2^2)$. By definition $\tilde{f}^{-1}(E_2^2) \supseteq \text{Naint}(\tilde{f}^{-1}(E_2^2))$, so $\tilde{f}^{-1}(E_2^2) = \text{Naint}(\tilde{f}^{-1}(E_2^2))$. Thus $\tilde{f}^{-1}(E_2^2)$ is a NCS in X_N, which implies \tilde{f} is N-α-irresolute. Thus (e)\Rightarrow(a) is proved.

Theorem 5.3 If \tilde{f} is a function from an NTS (X_N, T_N) to another NTS (Y_N, G_N), then the following are equivalent.

(a) \tilde{f} is a N-α-irresolute.
(b) $\tilde{f}^{-1}(E_2^2) \subseteq \text{Ncl}(\text{Nint}(\tilde{f}^{-1}(E_2^2)))$ for every NCS E_2^2 in Y_N.
(c) $\tilde{f}^{-1}(E_2^2)$ is NSemisclosed in X_N for every Nclosed set E_2^2 in Y_N.
(d) $\text{Nint}(\text{Ncl}(\tilde{f}^{-1}(E_2^2))) \subseteq \tilde{f}^{-1}(\text{Ncl}(\tilde{f}(E_2^2)))$ for every NS E_2^2 of Y_N.
(e) \tilde{f} (Nint(\text{Ncl}(E_2^2))) \subseteq Ncl(E_2^2) for every NS E_2^2 of X_N.

Proof:

(a)\Rightarrow(b): Let E_2^2 be an NCS in Y_N. By (a), $\tilde{f}^{-1}(E_2^2)$ is NS in X_N. \Rightarrow $\tilde{f}^{-1}(E_2^2) \subseteq \text{Ncl}(\text{Nint}(\tilde{f}^{-1}(E_2^2)))$. Hence (a)$\Rightarrow$(b) is proved.

T.Rajesh Kannan, S. Chandra Sekar, Neutrosophic Pre-α, Semi-α & Pre-β Irresolute Functions
(b)⇒ (c): Let E_3 be any NaCS in \mathcal{Y}_N. Then $\overline{E_3}$ is a NaOS in \mathcal{Y}_N. By (b), $\hat{f}^{-1}(\overline{E_3}) \subseteq \text{Ncl}(\text{Nint}(\hat{f}^{-1}(E_3)))$. Note that $\text{Ncl}(\text{Nint}(\hat{f}^{-1}(E_3))) \subseteq \text{Ncl}(\text{Ncl}(\hat{f}^{-1}(E_3))) = \text{Ncl}(\text{Ncl}(\hat{f}^{-1}(E_3))) \subseteq \hat{f}^{-1}(E_3)$.

(c)⇒ (d): Let E_4 be an NS in \mathcal{Y}_N. Then $\text{Na-cl}(E_4)$ is $\text{N} \beta$-closed in \mathcal{Y}_N.

(d)⇒ (e): Let E_5 be an NS in \mathcal{Y}_N. Then $\text{Ncl}(\text{Ncl}(E_5))$ is $\text{N} \beta$-closed in \mathcal{Y}_N.

(e)⇒ (a): Let E_6 be an NS in \mathcal{Y}_N. Then $\text{Ncl}(\text{Ncl}(E_6))$ is $\text{N} \beta$-closed in \mathcal{Y}_N.

Therefore $\text{Ncl}(\text{Ncl}(E_2)) \subseteq \hat{f}^{-1}(\text{Ncl}(\hat{f}^{-1}(E_2)))$.

Thus \hat{f} is $\text{N} \alpha$-irresolute. Hence (e)⇒ (a) is proved.

Theorem 5.4 If \hat{f} is a function from an NT (X_N,T_N) to another NT (Y_N,G_N), then the following are equivalent.

(a) \hat{f} is a Npre-β-irresolute.

(b) $\hat{f}^{-1}(E_2) \subseteq \int(\hat{f}^{-1}(E_2))$ for every $\mathcal{N} \beta$-OS E_2 in \mathcal{Y}_N.

(c) $\hat{f}^{-1}(E_3)$ is NPCS in \mathcal{X}_N for every $\mathcal{N} \beta$-closed set E_3 in \mathcal{Y}_N.

(d) $\int(\hat{f}^{-1}(E_4)) \subseteq \hat{f}^{-1}(\text{Ncl}(\hat{f}^{-1}(E_4)))$ for every NS E_4 of \mathcal{X}_N.

(e) $\hat{f}^{-1}(\int(\hat{f}^{-1}(E_5))) \subseteq \hat{f}^{-1}(\text{Ncl}(\hat{f}^{-1}(E_5)))$ for every NS E_5 of \mathcal{X}_N.

Proof: (a)⇒ (b): Let E_2 be an $\mathcal{N} \beta$-OS in \mathcal{Y}_N. By (a), $\hat{f}^{-1}(E_2)$ is $\mathcal{N} \beta$-OS in \mathcal{X}_N. Hence (a)⇒ (b) is proved.

(b)⇒ (c): Let E_3 be any $\mathcal{N} \beta$-OS in \mathcal{Y}_N. Then $\overline{E_3}$ is $\mathcal{N} \beta$-OS in \mathcal{Y}_N. By (b), $\hat{f}^{-1}(\overline{E_3}) \subseteq \text{Ncl}(\text{Nint}(\hat{f}^{-1}(\overline{E_3})) = \hat{f}^{-1}(\text{Ncl}(\hat{f}^{-1}(\overline{E_3})))$.

(c)⇒ (d): Let E_4 be an NS in \mathcal{Y}_N. Then $\text{Ncl}(\text{Ncl}(E_4))$ is $\mathcal{N} \beta$-closed in \mathcal{Y}_N. By (c), $\hat{f}^{-1}(\text{Ncl}(\text{Ncl}(E_4))) \subseteq \hat{f}^{-1}(\text{Ncl}(\text{Ncl}(E_4)))$.

(d)⇒ (e): Let E_5 be an NS in \mathcal{Y}_N. Then $\text{Ncl}(\text{Ncl}(E_5)) \subseteq \text{Ncl}(\text{Ncl}(\hat{f}^{-1}(E_5))) \subseteq \text{Ncl}(\text{Ncl}(\hat{f}^{-1}(E_5)))$.

(e)⇒ (a): Let E_2 be an $\mathcal{N} \beta$-OS in \mathcal{Y}_N. Then $\hat{f}^{-1}(E_2)$ is $\mathcal{N} \beta$-OS in \mathcal{X}_N. Hence (e)⇒ (a) is proved.

This implies $\text{Ncl}(\text{Ncl}(\hat{f}^{-1}(E_5))) \subseteq \hat{f}^{-1}(\text{Ncl}(\hat{f}^{-1}(E_5)))$.

Hence (e)⇒ (a) is proved.

This implies $\text{Ncl}(\text{Ncl}(\hat{f}^{-1}(E_5))) \subseteq \hat{f}^{-1}(\text{Ncl}(\hat{f}^{-1}(E_5)))$.

Hence (e)⇒ (a) is proved.

This implies $\text{Ncl}(\text{Ncl}(\hat{f}^{-1}(E_5))) \subseteq \hat{f}^{-1}(\text{Ncl}(\hat{f}^{-1}(E_5)))$.

Hence (e)⇒ (a) is proved.
By (e), $\tilde{f}(Ncl(Nint(\tilde{f}^{-1}(E^2_2)))) \subseteq N\beta cl(\tilde{f}^{-1}((E^2_2))) \subseteq E^2_2$------(1) Consider $Nint(Ncl(\tilde{f}^{-1}(E^2_2)))$

$= Ncl(Ncl(\tilde{f}^{-1}(E^2_2))) = Nint(Ncl(\tilde{f}^{-1}(E^2_2))) \subseteq Ncl(Nint(\tilde{f}^{-1}(E^2_2))) \subseteq \tilde{f}^{-1}(\tilde{f}(Ncl(Nint(\tilde{f}^{-1}(E^2_2))))$------(2)

By (1) and (2), $Nint(Ncl(\tilde{f}^{-1}(E^2_2))) \subseteq \tilde{f}^{-1}(Ncl(Nint(\tilde{f}^{-1}(E^2_2)))) \subseteq \tilde{f}^{-1}(E^2_2)$ This implies $\tilde{f}^{-1}(E^2_2) \subseteq Nint(Ncl(\tilde{f}^{-1}(E^2_2)))$ which proves $\tilde{f}^{-1}(E^2_2)$ is NPOS in X_N. Thus \tilde{f} is pre-β-irresolute. Hence (e)\Rightarrow(a) is proved.

References

T. Rajesh Kannan, S. Chandrasekar, Neutrosophic Pre-α, Semi-α & Pre-β Irresolute Functions

Received: Sep 8, 2020. Accepted: Jan 7, 2021