Neutrosophic Simply Soft Open Set in Neutrosophic Soft Topological Space

Suman Das
Surapati Pramanik

Follow this and additional works at: https://digitalrepository.unm.edu/nss_journal

Recommended Citation

This Article is brought to you for free and open access by UNM Digital Repository. It has been accepted for inclusion in Neutrosophic Sets and Systems by an authorized editor of UNM Digital Repository. For more information, please contact amywinter@unm.edu, lsloane@salud.unm.edu, sarahrk@unm.edu.
Neutrosophic Simply Soft Open Set in Neutrosophic Soft Topological Space

Suman Das¹, and Surapati Pramanik²,*

¹Department of Mathematics, Tripura University, Agartala, 799022, Tripura, India.
Email: suman.mathematics@tripurauniv.in, sumandas18842@gmail.com
²Department of Mathematics, Nandalal Ghosh B. T. College, Narayanpur, 743126, West Bengal, India.
Email: sura_pati@yahoo.co.in

* Correspondence: sura_pati@yahoo.co.in Tel.: (+91-9477035544)

Abstract: In this paper, we introduce the notion of Neutrosophic Simply Soft Open (NSS-O) set, Neutrosophic Simply Soft (NSS) compact set in Neutrosophic Soft Topological Spaces (NSS-TS) and investigate several properties of it. Also, we furnish the proofs of some theorems associated with NSS-compact spaces. Then, the notion of neutrosophic simply soft continuous (NSS-continuous) mapping, NSS-O mapping on an NSS-TS and its properties are developed here.

Keywords: neutrosophic simply soft open, neutrosophic simply soft closed, neutrosophic simply soft compact, neutrosophic simply soft continuous.

1. Introduction

Maji (2012; 2013) grounded the idea of Neutrosophic Soft Set (NSS) by combining Neutrosophic Set (NS) (Smarandache, 1998) and Soft Set (Molodtsov, 1999). The impact of NS and NSS has been reflected in their applicability in decision making (Smarandache & Pramanik, 2016; 2018; Mondal, Pramanik, & Giri, 2018a; 2018b; 2018c; Biswas, Pramanik, & Giri, 2014a; 2014b; 2019; Pramanik, Mallick, & Dasgupta, 2018; Dalapati et al., 2017; Pramanik, Dalapati, Alam, Smarandache, Roy, 2018; Das et al., 2019; Dey, Pramanik, & Giri, 2015; 2016a; 2016b; Karaaslan, 2015; Pramanik & Dalapati, 2016; Pramanik, Dey, & Giri, 2016; Jha et al., 2019). Broumi (2013) further studied NSS-S and proposed generalized NSS-S by combining generalized neutrosophic set (Salama and Alblowi, 2012a) and soft set (Molodtsov, 1999). Smarandache (2018) generalized the soft set to the hypersoft set and plithogenic hypersoft set.

Das and Pramanik (2020) recently presented neutrosophic b-open sets in NTS. Mehmood et al. (2020) presented neutrosophic soft α-open set in N^S-SS.

El Sayed, & Noaman (2013) presented the simply fuzzy generalized open and closed sets, simply fuzzy continuous mappings, simply fuzzy compactness, simply connectedness. In a neutrosophic soft set environment, these concepts have not been introduced.

Research gap: Investigations on Neutrosophic Simply Soft Open (N^S-S-O) set in N^S-TS, N^S-continuous mapping, N^S-S-O mapping, N^S-compactness on an N^S-TS have not been reported in the literature.

Motivation: Since NS generalizes fuzzy set (Zadeh, 1965) and NS is more suitable to deal with uncertainty including inconsistency and indeterminacy, we get the motivation to extend the simply fuzzy set in a neutrosophic environment. To address the research gap, we introduce the N^S-S-O set, N^S-compactness on an N^S-TS.

The rest of the paper is designed as follows:

Section 2 recalls of some definitions, properties of N^S-S, N^S-T, and N^S-TS. Section 3 introduces N^S-S-O set, N^S-compactness, and proofs of some theorems, propositions on N^S-TS. Also, in this section, we develop the concept of N^S-continuous mapping, N^S-S-O mapping. Finally, Section 4 presents concluding remarks.

2. Preliminaries and some properties

Definition 2.1. Assume that W is a non-empty fixed set and P is a collection of parameters. Assume that NS(W) denotes the set of all NSs over W. Then, for any S \subseteq P, a pair (N, S) is said to be an N^S-S (Maji, 2012) over W, where N: S \rightarrow NS(W) is a mapping.

An N^S-S (N, S) is represented as follows:

(N, S) = \{(f, \{(u, T_{NS}(u), I_{NS}(u), F_{NS}(u)): u \in W\}) | f \in P\}, where T_{NS}(u), I_{NS}(u), F_{NS}(u) are the truth, indeterminancy, and falsity membership values of each u w.r.t. the parameter f \in P.

Example 2.1. Assume that W = \{m_1, m_2, m_3\} is a set consisting of three mobiles and P = \{f_1(display), f_2(RAM), f_3(cost)\} be a set of parameters with respect to which the nature of mobile is described.

Let,

- N(f_1) = \{(m_1, 0.6, 0.5, 0.5), (m_2, 0.3, 0.8, 0.5), (m_3, 0.5, 0.3, 0.4)\},
- N(f_2) = \{(m_1, 0.7, 0.4, 0.6), (m_2, 0.6, 0.5, 0.4), (m_3, 0.7, 0.3, 0.3)\},
- N(f_3) = \{(m_1, 0.8, 0.5, 0.4), (m_2, 0.7, 0.8, 0.5), (m_3, 0.5, 0.3, 0.6)\}.

Then (N, P) = \{(f_1, N(f_1)), (f_2, N(f_2)), (f_3, N(es))\} is an N^S-S over W w.r.t the set P.

Definition 2.2. The complement of an N^S-S (N, P) (Maji, 2012) is denoted by (N, P) and is defined by (N^c, P) = \{(f, \{(u, 1-T_{NS}(u), 1-I_{NS}(u), 1-F_{NS}(u)): u \in W\}): f \in P\}.

Definition 2.3. Assume that (S_1, P) and (S_2, P) are any two N^S-Ss over W. Then (S_1, P) is said to be a neutrosophic soft subset (Maji, 2012) of (S_2, P) if \forall f \in P and \forall u \in W, T_{S_1(f)}(u) \leq T_{S_2(f)}(u), I_{S_1(f)}(u) \leq I_{S_2(f)}(u), F_{S_1(f)}(u) \leq F_{S_2(f)}(u)
\[\geq_{S(f)}(u), \text{ and } F_{S(f)}(u) \geq F_{S(f)}(u) \]. We write \((S_i, P) \subseteq (S_j, P)\). Then \((S_j, P)\) is called the neutrosophic soft superset of \((S_i, P)\).

Definition 2.4. Assume that \((S_i, P)\) and \((S_j, P)\) be any two \(N^8\)-Ss over \(W\). Then their union (Maji, 2012) is denoted by \((H, P)\), where \(H = S_i \cup S_j\) and is defined as:

\[
(H, P) = \{(f, (u, T_{S_i}(u), I_{S_i}(u), F_{S_i}(u)): u \in W) \mid f \in P\}, \text{ where } T_{S_i}(u) = \max \{T_{S_i}(f)(u), T_{S_j}(f)(u)\}, \quad I_{S_i}(u) = \min \{I_{S_i}(f)(u) \text{ and } I_{S_j}(f)(u)\}, \quad \text{and } F_{S_i}(u) = \min \{F_{S_i}(f)(u), F_{S_j}(f)(u)\}.
\]

Definition 2.5. Assume that \((S_i, P)\) and \((S_j, P)\) are any two \(N^8\)-Ss over \(W\). Then their intersection (Maji, 2012) is denoted by \((H, P)\), where \(H = S_i \cap S_j\) and is defined as:

\[
(H, P) = \{(f, (u, T_{S_i}(u), I_{S_i}(u), F_{S_i}(u)): u \in W) \mid f \in P\}, \text{ where } T_{S_i}(u) = \min \{T_{S_i}(f)(u), T_{S_j}(f)(u)\}, \quad I_{S_i}(u) = \max \{I_{S_i}(f)(u) \text{ and } I_{S_j}(f)(u)\}, \quad \text{and } F_{S_i}(u) = \max \{F_{S_i}(f)(u), F_{S_j}(f)(u)\}.
\]

Definition 2.6. An \(N^8\)-S \((S, P)\) over a non-empty set \(W\) is said to be a null \(N^8\)-S (Bera, & Mahapatra, 2017) if \(T_{S_0}(u) = 0, I_{S_0}(u) = 1, F_{S_0}(u) = 1 \forall u \in W\) w.r.t. the parameter \(f \in P\). It is denoted by \(0_{S, P}\).

Definition 2.7. An \(N^8\)-S \((S, P)\) over a non-empty set \(W\) is called an absolute \(N^8\)-S (Bera, & Mahapatra, 2017) if \(T_{S_0}(u) = 1, I_{S_0}(u) = 0, F_{S_0}(u) = 0 \forall u \in W\) w.r.t. the parameter \(f \in P\). It is denoted by \(I_{S, P}\).

Clearly, \(1_{S, P} = 0_{S, P}\) and \(0_{S, P} = 1_{S, P}\).

Definition 2.8 Assume that \(N^8\)-(\(W, P\)) be the collection of all \(N^8\)-Ss over \(W\) via parameters in \(P\) and \(\tau \subseteq N^8\)(\(W, P\)). Then \(\tau\) is said to be an \(N^8\)-T (Bera, & Mahapatra, 2017) on \((W, P)\) if the following axioms are satisfied.

(i) \(0_{N, P} , 1_{N, P} \in \tau\);
(ii) \((R, P), (Q, P) \in \tau \Rightarrow (R \cap Q, P) \in \tau\)
(iii) \([(Q, P), i \in A] \subseteq \tau \Rightarrow (\cup_{i \in A} Q, P) \subseteq \tau\).

The triplet \((W, P, \tau)\) is said to be an \(N^8\)-TS. Every element of \(\tau\) is called an \(N^8\)-O set. An \(N^8\)-S \((S, P)\) is called a neutrosophic soft closed \((N^8\)-C) set iff its complement \((S', P)\) is an \(N^8\)-O set.

Definition 2.9. Assume that \((W, P, \tau)\) be an \(N^8\)-TS over \((W, P)\) and \((M, P)\) be an arbitrary element of \(N^8\)-S \((W, P)\). Then the neutrosophic soft interior \((N^8_{int})\) (Bera, & Mahapatra, 2017) and neutrosophic soft closure \((N^8_{cl})\) of \((M, P)\) is defined as follows:

\[
N^8_{int}(M, P) = \cap \{(Q, P): (Q, P) \text{ is an } N^8\text{-O set in } W \text{ and } (Q, P) \subseteq (M, P)\}.
\]

\[
N^8_{cl}(M, P) = \cap \{(Q, P): (Q, P) \text{ is an } N^8\text{-C set in } W \text{ and } (M, P) \subseteq (Q, P)\}.
\]

Proposition 2.1. Assume that \((W, P, \tau)\) be an \(N^8\)-TS over \((W, P)\) and \(M, N \in N^8\)-S \((W, P)\). Then the following results holds:

(i) \(M \subseteq N \Rightarrow N^8_{cl}(M) \subseteq N^8_{cl}(N) \text{ and } N^8_{int}(M) \subseteq N^8_{int}(N)\);
(ii) \(N^8_{int}(M) \subseteq M \subseteq N^8_{cl}(M)\);
(iii) \(N^8_{int}(0_{N, P}) = 0_{N, P} \text{ and } N^8_{cl}(0_{N, P}) = 0_{N, P}\);
(iv) \(N^8_{int}(1_{N, P}) = 1_{N, P} \text{ and } N^8_{cl}(1_{N, P}) = 1_{N, P}\);
(v) \(N^8_{int}(M \cup N) = M \cup N^8_{int}(N)\);
(vi) \(N^8_{int}(M \cap N) = N^8_{int}(M) \cap N^8_{int}(N)\);
(vii) \(N^8_{int}(M \cup N) \supseteq N^8_{int}(M) \cup N^8_{int}(N)\);

Suman Das, Surapati Pramanik, Neutrosophic simply soft open set in neutrosophic soft topological space
(viii) $N^\delta(M \cup N) = N^\delta(M) \cup N^\delta(N)$;
(ix) $N^\delta(M \cap N) \subseteq N^\delta(M) \cap N^\delta(N)$.

Proof. For proof see (Bera & Mahapatra, 2017).

Proposition 2.2. Assume that (X, E, τ) be an N^S-TS over (X, E) and $M \in NSS(X, E)$. Then the following results hold:
(i) $(N^\delta_{int}(M))^\sigma = N^\delta(M)$;
(ii) $(N^\delta_{int}(M))^\cap = N^\delta_{int}(M)$.

Proof. For proof see (Bera & Mahapatra, 2017)

Definition 2.10. Assume that (W, P, τ) be an N^S-TS over (W, P). Then a family $\{(Q_n, P): \alpha \in \Delta\}$ of N^S-O sets in (W, P, τ), is called an N^S-O cover (Bera & Mahapatra, 2018) of an N^S-S (Q, P) if $(Q, P) \subseteq \bigcup_{\alpha \in \Delta} (Q_n, P)$.

Definition 2.11. An (W, P, τ) over (W, P) is said to be an N^S-compact set (Bera, & Mahapatra, 2018) if every N^S-O cover of W has a finite subcover.

3. Neutrosophic Simply Soft Open Set

Definition 3.1. Assume that (W, P, τ) be an N^S-TS over (W, P). Then (Q, P), a neutrosophic soft subset of (W, P, τ) is said to be a neutrosophic simply soft open (N^SS-O) set if $N^\delta_{int}N^\delta_{int}(Q, P) \subseteq N^\delta_{int}(Q, P)$.

Definition 3.2. Assume that (W, P, τ) be an N^S-TS over (W, P). Then (Q, P), a neutrosophic soft subset of (W, P, τ) is said to be a neutrosophic simply soft closed (N^SS-C) set if its complement is an N^SS-O set in (W, P, τ).

Theorem 3.3. In an N^S-TS (W, P, τ), every N^S-O set is an N^SS-O set.

Proof. Assume that (Q, P) be an N^S-O set in an N^S-TS (W, P, τ). Therefore $N^\delta_{int}(Q, P) = (Q, P)$.

Now, $(Q, P) \subseteq N^\delta_{int}(Q, P)$. This implies $(Q, P) \subseteq N^\delta_{int}N^\delta_{int}(Q, P)$.

Now $(Q, P) \subseteq N^\delta_{int}N^\delta_{int}(Q, P)$

$\Rightarrow N^\delta_{int}(Q, P) \subseteq N^\delta_{int}N^\delta_{int}(Q, P)$

$= N^\delta_{int}(Q, P)$ \hspace{1cm} [since $N^\delta_{int}N^\delta_{int}(Q, P)$ is an N^S-C set in (W, P, τ)]

$\Rightarrow N^\delta_{int}(Q, P) \subseteq N^\delta_{int}N^\delta_{int}(Q, P)$

(1)

Again, $N^\delta_{int}N^\delta_{int}(Q, P) \subseteq N^\delta_{int}(Q, P)$ \hspace{1cm} (2)

From (1) and (2), we obtain,

$N^\delta_{int}N^\delta_{int}(Q, P) \subseteq N^\delta_{int}N^\delta_{int}(Q, P)$.

Hence (Q, P) is an N^SS-O set in (W, P, τ).

Definition 3.3. Assume that (W, P, τ) be an N^S-TS. Then the Neutrosophic Simply Soft interior (N^{SS}_{int}) and Neutrosophic Simply Soft closure (N^{SS}_{cl}) of a neutrosophic soft subset (Q, P) of (W, P, τ) is defined by

$N^{SS}_{int}(M, P) = \cup\{(Q, P): (Q, P) \text{ is an } N^S\text{-O set in } W \text{ and } (Q, P) \subseteq (M, P)\}$

$N^{SS}_{cl}(M, P) = \cap\{(K, P): (K, P) \text{ is an } N^S\text{-C set in } W \text{ and } (M, P) \subseteq (K, P)\}$.

Definition 3.4. Assume that (W, P, τ) be an N^S-TS over (W, P). Then a collection $\{(Q_n, P): \alpha \in \Delta\}$ of N^S-O sets in (W, P, τ), is said to be an N^S-O cover of an N^S-S (Q, P) if $(Q, P) \subseteq \bigcup_{\alpha \in \Delta} (Q_n, P)$.

Suman Das, Surapati Pramanik, Neutrosophic simply soft open set in neutrosophic soft topological space
Definition 3.5. An N^S-TS (W, P, τ) over (W, P) is said to be an N^S-compact space if every N^S-O cover of W has a finite subcover.

Definition 3.6. A neutrosophic soft subset (K, P) of (W, P, τ) is said to be an N^{S^S}-Compact set relative to W if every N^S-O cover of (K, P) has a finite subcover.

Definition 3.6. A function $\psi: (W, P, \tau) \rightarrow (G, P, \tau)$ is said to be an N^{S^S}-continuous function if for each N^S-O set (Z, P) in G, $\psi^{-1}(Z, P)$ is an N^{S^S}-O set in W.

Definition 3.7. A function $\psi: (W, P, \tau) \rightarrow (G, P, \tau)$ is said to be an N^{S^S}-O function if $\psi(K, P)$ is an N^{S^S}-O set in G whenever (K, P) is an N^{S^S}-O set in W.

Theorem 3.2. Every N^{S^S}-C subset of an N^S-compact space (W, P, τ) is an N^{S^S}-compact set relative to W.

Proof. Assume that (W, P, τ) be an N^{S^S}-compact space and (K, P) be an N^{S^S}-C set in (W, P, τ). Therefore (K, P) is an N^{S^S}-O set in (W, P, τ). Let $U=\{(U_i, P): i \in \Delta \text{ and } (U_i, P) \in N^{S^S}(W)\}$ be an N^S-O cover of (K, P). Then $\mathcal{H}=\{(K, P)\cup U\}$ is an N^{S^S}-O cover of W. Since W is an N^{S^S}-compact space then it has a finite subcover say $\{(H_1, P), (H_2, P), (H_3, P), \ldots, (H_n, P), (K, P)\}$. Then $\{(H_1, P), (H_2, P), (H_3, P), \ldots, (H_n, P)\}$ is a neutrosophic finite simply soft open cover of (K, P). Hence (K, P) is an N^{S^S}-compact set relative to W.

Theorem 3.3. Every N^{S^S}-compact space is a neutrosophic soft compact space.

Proof. Assume that (W, P, τ) is an N^{S^S}-compact space. Suppose that (W, P, τ) is not an N^S-compact space. Therefore, there exists an N^S-O cover \mathcal{R} (say) of W, which has no finite subcover. Since every N^S-O set is an N^{S^S}-O set, so we have an N^{S^S}-O cover \mathcal{R} of W, which has no finite subcover. This contradicts our assumption. Hence (W, P, τ) must be an N^S-compact space.

Theorem 3.4. If $\psi: (W, P, \tau) \rightarrow (G, P, \tau)$ is an N^{S^S}-O function and (G, P, τ) is an N^{S^S}-compact space then (W, P, τ) is also an N^{S^S}-compact space.

Proof. Assume that $\psi: (W, P, \tau) \rightarrow (G, P, \tau)$ be an N^{S^S}-O function and (G, P, τ) be an N^{S^S}-compact space. Let $\mathcal{H}=\{(K_i, P): i \in \Delta \text{ and } (K_i, P) \in N^{S^S}(W)\}$ be an N^S-O cover of W. This implies that $\psi(\mathcal{H}) = \{(K_i, P): i \in \Delta \text{ and } \psi(K_i, P) \in N^{S^S}(G)\}$ is an N^{S^S}-O cover of G. Since (G, P, τ) is an N^{S^S}-compact space, so there exists a finite subcover $\{\psi(K_1, P), \psi(K_2, P), \ldots, \psi(K_n, P)\}$ such that $M \subseteq \cup \{(\psi(K_i, P): i = 1, 2, \ldots, n\}$. This implies that $\{(K_1, P), (K_2, P), \ldots, (K_n, P)\}$ is a finite subcover for W. Therefore (W, P, τ) is an N^S-compact space.

Theorem 3.5. If $\psi: (W, P, \tau) \rightarrow (G, P, \tau)$ is an N^S-continuous function then for each N^S-compact set (Q, P) relative to W, $\psi(Q, P)$ is an N^{S^S}-compact set in (G, P, τ).

Proof. Assume that $\psi: (W, P, \tau) \rightarrow (G, P, \tau)$ is an N^S-continuous function and (Q, P) is an N^{S^S}-compact set relative to W. Let $\mathcal{H} = \{(H_i, P): i \in \Delta \text{ and } (H_i, P) \text{ be an } N^S \text{-O set in } G\}$ be an N^S-O cover of $\psi(Q, P)$. Therefore, by hypothesis $\psi^{-1}(\mathcal{H}) = \{\psi^{-1}(H_i, P): i \in \Delta \text{ and } \psi^{-1}(H_i, P) \text{ is an } N^{S^S} \text{-O set in } W\}$ is an N^{S^S}-O cover of $\psi^{-1}(\psi(Q, P)) = (Q, P)$. Since every N^S-O set is an N^{S^S}-O set, so $\psi^{-1}(\mathcal{H}) = \{\psi^{-1}(H_i, P): i \in \Delta \text{ and } \psi^{-1}(H_i, P) \text{ is an } N^S \text{-O set in } W\}$ is an N^S-O cover of (Q, P). Since (Q, P) is an N^{S^S}-compact set relative to W.
W, so there exists a finite subcover of \((Q, P)\) say \(\{\psi^i(H_i, P), \psi^i(H_j, P), ..., \psi^i(H_n, P)\}\) such that \((Q, P) \subseteq \bigcup_{i=1}^{n} \psi^i(H_i, P): i = 1, 2, ..., n\).

Now \((Q, P) \subseteq \bigcup_{i=1}^{n} \psi^i(H_i, P): i = 1, 2, ..., n\).

\[\Rightarrow \psi(Q, P) \subseteq \bigcup_{i=1}^{n} \psi^i(H_i, P): i = 1, 2, ..., n = \bigcup_{i=1}^{n} \bigcup_{i=1}^{n} \psi^i(H_i, P): i = 1, 2, ..., n. \]

Therefore there exist a finite subcover \(\{(H_1, P), (H_2, P), ..., (H_n, P)\}\) of \(\psi(Q, P)\) such that \(\psi(Q, P) \subseteq \bigcup_{i=1}^{n} \bigcup_{i=1}^{n} \psi^i(H_i, P): i = 1, 2, ..., n\). Hence \(\psi(Q, P)\) is an \(\mathbb{N}^S\)-compact set relative to \(G\).

Theorem 3.6. Every neutrosophic soft continuous function from an \(\mathbb{N}^S\)-TS \((W, P, \tau_i)\) to another \(\mathbb{N}^S\)-TS \((G, P, \tau)\) is an \(\mathbb{N}^S\)-continuous function.

Proof. Assume that \(\psi: (W, P, \tau_i) \rightarrow (G, P, \tau)\) be a neutrosophic soft continuous function. Let \((Q, P)\) be an \(\mathbb{N}^S\)-O set in \((G, P, \tau)\). Since \(\psi\) is a neutrosophic soft continuous function, \(\psi^i(Q, P)\) is an \(\mathbb{N}^S\)-O set in \((W, P, \tau_i)\). Since every \(\mathbb{N}^S\)-O set is an \(\mathbb{N}^S\)-O set, \(\psi^i(Q, P)\) is an \(\mathbb{N}^S\)-O set in \((G, P, \tau)\). Therefore \(\psi^i(Q, P)\) is an \(\mathbb{N}^S\)-O set in \((G, P, \tau)\), whenever \((Q, P)\) is an \(\mathbb{N}^S\)-O set in \((W, P, \tau)\). Hence \(\psi: W, P, \tau_i) \rightarrow (G, P, \tau)\) is a \(\mathbb{N}^S\)-continuous function.

Theorem 3.8. If \(\psi: (W, P, \tau_i) \rightarrow (G, P, \tau)\) is an \(\mathbb{N}^S\)-continuous mapping and \(\gamma: (G, P, \tau) \rightarrow (H, P, \tau)\) is a neutrosophic soft continuous mapping, then the composition mapping \(\gamma \circ \psi: (W, P, \tau_i) \rightarrow (H, P, \tau)\) is an \(\mathbb{N}^S\)-continuous mapping.

Proof. Assume that \((Q, P)\) is an \(\mathbb{N}^S\)-O set in \((H, P, \tau)\). Since \(\gamma\) is a neutrosophic soft continuous mapping, \(\gamma\) is an \(\mathbb{N}^S\)-O set in \((G, P, \tau)\). Again since \(\psi\) is a neutrosophic soft continuous mapping, \(\psi^i\) is an \(\mathbb{N}^S\)-O set in \((W, P, \tau)\). Hence \(\gamma \circ \psi^i\) is an \(\mathbb{N}^S\)-O set in \((H, P, \tau)\). Therefore \(\gamma \circ \psi^i: (W, P, \tau_i) \rightarrow (H, P, \tau)\) is an \(\mathbb{N}^S\)-continuous mapping.

4. Conclusions

In this article, we have introduced the \(\mathbb{N}^S\)-cover, \(\mathbb{N}^S\)-compact set, in an \(\mathbb{N}^S\)-TS. By defining \(\mathbb{N}^S\)-cover, \(\mathbb{N}^S\)-compact set, we have proved some propositions, theorems on \(\mathbb{N}^S\)-TS. In the future, we hope that based on these notions of neutrosophic simply soft compactness, many new investigations can be carried out. The proposed concepts can be explored in various neutrosophic hybrid sets such as rough neutrosophic set (Broumi, Smarandache, & Dhar, 2014), bipolar neutrosophic set (Deli, Ali, & Smarandache, 2015), etc.

References:

Suman Das, Surapati Pramanik, Neutrosophic simply soft open set in neutrosophic soft topological space

Received: June 20, 2020. Accepted: Nov, 22, 2020