On New Types of Weakly Neutrosophic Crisp Continuity

Qays Hatem Imran
Riad K. Al-Hamido
Ali Hussein Mahmood Al-Obaidi

Follow this and additional works at: https://digitalrepository.unm.edu/nss_journal

Recommended Citation
https://digitalrepository.unm.edu/nss_journal/vol38/iss1/12
On New Types of Weakly Neutrosophic Crisp Continuity

Qays Hatem Imran*, Riad K. Al-Hamido2 and Ali Hussein Mahmood Al-Obaidi3

1Department of Mathematics, College of Education for Pure Science, Al-Muthanna University, Samawah, Iraq. E-mail: qays.imran@mu.edu.iq
2Department of Mathematics, College of Science, Al-Baath University, Homs, Syria. E-mail: riad-hamido1983@hotmail.com
3Department of Mathematics, College of Education for Pure Science, University of Babylon, Hillah, Iraq. E-mail: aalobaidi@uobabylon.edu.iq
* Correspondence: qays.imran@mu.edu.iq

Abstract: The article processes the conceptualizations of neutrosophic crisp α-open and neutrosophic crisp semi-α-open sets to define some new types of weakly “neutrosophic crisp continuity” essentially, neutrosophic crisp α*-continuous, neutrosophic crisp α**-continuous, neutrosophic crisp semi-α-continuous, neutrosophic crisp semi-α*-continuous and neutrosophic crisp semi-α**-continuous functions. Also, we shall explain the relationships between these types of weakly neutrosophic crisp continuity and the concepts of neutrosophic crisp continuity.

Keywords: Neutrosophic crisp α*-continuous, neutrosophic crisp α**-continuous, neutrosophic crisp semi-α-continuous, neutrosophic crisp semi-α*-continuous, and neutrosophic crisp semi-α**-continuous functions.

1. Introduction

2. Preliminaries

For the whole of the disquisition, (X, 𝒓1), (Y, 𝒓2), and (Z, 𝒓3) (merely X, Y, and Z) habitually intend NCTSs. Let C be a neutrosophic crisp set (shortly, NCS) in NCTS (X, 𝒓1) and denote its complement by Cc. Indicate the neutrosophic crisp open set as NC-OS, and the neutrosophic crisp closed set (its complement) as NC-CS in NCTS (X, 𝒓1). Additionally, we refer to the neutrosophic crisp closure and neutrosophic crisp interior of C via NCcl(C) and NCint(C), correspondingly.
Definition 2.1 [1]: Assume that nonempty particular under study space X has mutually disjoint subsets C_1, C_2 and C_3. A $NCS:\mathcal{C}$ with form $\mathcal{C} = \langle C_1, C_2 \rangle$ is called an object.

Definition 2.2: For any $NCS:\mathcal{C}$ in $NCTS(X, I_1)$, we have
(i) if $\mathcal{C} \subseteq NCint(NCcl(NCint(\mathcal{C})))$, then it is called a neutrosophic crisp α-open set and symbolize by $NCS\alpha$-OS. Furthermore, its complement is named neutrosophic crisp α-closed set and signified by $NCS\alpha$-CS. Likewise, we reveal the collection consisting of all $NCS\alpha$-OSs in X with $NCS\alphaO(X)$. [12]
(ii) if $\mathcal{C} \subseteq NCcl(NCint(NCcl(NCint(\mathcal{C}))))$, then it is said to be a neutrosophic crisp semi-α-open set and indicated via $NCS\alpha$-OS. Moreover, its complement is known as a neutrosophic crisp semi-α-closed set and referred with $NCS\alpha$-CS. Besides, we mentioned the collection of all $NCS\alpha$-OSs in X through $NCS\alphaO(X)$. [2]

Proposition 2.3 [12]: For any $NCS:\mathcal{C}$ in $NCTS(X, I_1)$, then $\mathcal{C} \in NCS\alphaO(X)$ iff we have at least a NC-OS D satisfying $D \subseteq \mathcal{C} \subseteq NCint(NCcl(D))$.

Proposition 2.4 [14]: Every NC-OS is a $NCS\alpha$-OS, but the opposite is not valid in general.

Proposition 2.5 [2]: In a $NCTS(X, I_1)$, the next assertions stand, but not vice versa:
(i) All NC-OSs are $NCS\alpha$-OSs.
(ii) All $NCS\alpha$-OSs are $NCS\alpha$-OSs.

Definition 2.6 [1]: Let $\eta: (X, I_1) \rightarrow (Y, I_2)$ be a function, we called it a neutrosophic crisp continuous and denoted by NC-continuous iff for all NC-OSs D from Y, then its inverse image $\eta^{-1}(D)$ is a NC-OS from X.

Theorem 2.7 [1]: A function $\eta: (X, I_1) \rightarrow (Y, I_2)$ is NC-continuous iff $\eta^{-1}(NCint(D)) \subseteq NCint(\eta^{-1}(D))$ for every $D \subseteq Y$.

Definition 2.8 [1]: Let $\eta: (X, I_1) \rightarrow (Y, I_2)$ be a function, we named it a neutrosophic crisp open and indicated via NC-open iff for all NC-OSs C from X, then its image $\eta(C)$ is a NC-OS from Y.

Definition 2.9 [13]: Let $\eta: (X, I_1) \rightarrow (Y, I_2)$ be a function, we said it a neutrosophic crisp α-continuous and referred through $NC\alpha$-continuous iff for all NC-OSs D from Y, then its inverse image $\eta^{-1}(D)$ is a $NC\alpha$-OS from X.

Proposition 2.10 [14]: Every NC-continuous function is a $NC\alpha$-continuous, but the opposite is not valid in general.

3. Weakly Neutrosophic Crisp Continuity Functions

Definition 3.1: Let $\eta: (X, I_1) \rightarrow (Y, I_2)$ be a function, we call it as
(i) a neutrosophic crisp α^*-continuous and denoted by $NC\alpha^*$-continuous iff for all $NC\alpha$-OSs \mathcal{D} from \mathcal{Y}, then its inverse image $\eta^{-1}(\mathcal{D})$ is a $NC\alpha$-OS from \mathcal{X}.
(ii) a neutrosophic crisp α^{**}-continuous and indicated via $NC\alpha^{**}$-continuous iff for all $NC\alpha$-OS \mathcal{D} from \mathcal{Y}, then its inverse image $\eta^{-1}(\mathcal{D})$ is a $NC\alpha$-OS from \mathcal{X}.

Definition 3.2: Let $\eta: (\mathcal{X}, \mathcal{I}_1) \rightarrow (\mathcal{Y}, \mathcal{I}_2)$ be a function, we named it as
(i) a neutrosophic crisp semi-α-continuous and referred through $NCS\alpha$-continuous iff for all $NC\alpha$-OSs \mathcal{D} from \mathcal{Y}, then its inverse image $\eta^{-1}(\mathcal{D})$ is a $NCS\alpha$-OS from \mathcal{X}.
(ii) a neutrosophic crisp semi-α^*-continuous and symbolize by $NCS\alpha^*$-continuous iff for all $NCS\alpha$-OSs \mathcal{D} from \mathcal{Y}, then its inverse image $\eta^{-1}(\mathcal{D})$ is a $NCS\alpha$-OS from \mathcal{X}.
(iii) a neutrosophic crisp semi-α^{**}-continuous and signified via $NCS\alpha^{**}$-continuous iff for all $NCS\alpha$-OSs \mathcal{D} from \mathcal{Y}, then its inverse image $\eta^{-1}(\mathcal{D})$ is a $NCS\alpha$-OS from \mathcal{X}.

Theorem 3.3: Let $\eta: (\mathcal{X}, \mathcal{I}_1) \rightarrow (\mathcal{Y}, \mathcal{I}_2)$ be a function, then the next declarations are same:

(i) η is a $NCS\alpha$-continuous.
(ii) Its inverse image of each $NC-CS$ from \mathcal{Y} is $NCS\alpha$-CS from \mathcal{X}.
(iii) $\eta(NCint(NCcl(NCint(C))) \subseteq NCcl(\eta(C)))$, for each $C \in \mathcal{X}$.
(iv) $NCint(NCcl(NCint(\eta^{-1}(\mathcal{D})))) \subseteq \eta^{-1}(NCcl(\mathcal{D}))$, for each $\mathcal{D} \in \mathcal{Y}$.

Proof:

(i) \Rightarrow (ii) Suppose \mathcal{D} is a $NC-CS$ from \mathcal{Y}. This implies that \mathcal{D}^c stands a NC-OS. Hence $\eta^{-1}(\mathcal{D}^c)$ is a $NCS\alpha$-OS from \mathcal{X}. In other words, $(\eta^{-1}(\mathcal{D}))^c$ stands a $NCS\alpha$-OS from \mathcal{X}. Thus $\eta^{-1}(\mathcal{D})$ is a $NCS\alpha$-CS in \mathcal{X}.

(ii) \Rightarrow (iii) Let $C \in \mathcal{X}$, then $NCcl(\eta(C))$ stays a $NC-CS$ from \mathcal{Y}. Hence $\eta^{-1}(NCcl(\eta(C)))$ is $NCS\alpha$-CS in \mathcal{X}. Thus we have $\eta^{-1}(NCcl(\eta(C))) \supseteq NCint(NCcl(\eta^{-1}(NCcl(C)))) \supseteq NCint(NCcl(\eta(C)))$.

(iii) \Rightarrow (iv) Since $\mathcal{D} \in \mathcal{Y}$, $\eta^{-1}(\mathcal{D}) \in \mathcal{X}$, so, we have by our hypothesis the corresponding notation $NCint(NCcl(\eta(C))) \subseteq NCcl(\eta^{-1}(\mathcal{D})) \subseteq NCcl(\mathcal{D})$, and that leads us to this fact $NCint(NCcl(\eta(C))) \subseteq \eta^{-1}(NCcl(\mathcal{D}))$.

(iv) \Rightarrow (i) Let \mathcal{D} be a NC-OS of \mathcal{Y}. Let $C = \mathcal{D}^c$ and $\mathcal{D} = \eta^{-1}(C)$ by (iii) we have $NCint(NCcl(\eta(C))) \subseteq \eta^{-1}(NCcl(\mathcal{D}))$. That is $NCint(NCcl(\eta(C))) \subseteq \eta^{-1}(\mathcal{D})$. Or $NCint(NCcl(\eta(C))) \supseteq \eta^{-1}(\mathcal{D})$. Hence $\eta^{-1}(\mathcal{D})$ is a $NCS\alpha$-OS in \mathcal{X} and thus η be there a $NCS\alpha$-continuous.

Proposition 3.4:

(i) all NC-continuous functions are $NCS\alpha$-continuous, but the opposite is not valid in general.

(ii) all $NC\alpha$-continuous functions are $NCS\alpha$-continuous, but the opposite is not exact in general.

Proof:

(i) Suppose $\eta: (\mathcal{X}, \mathcal{I}_1) \rightarrow (\mathcal{Y}, \mathcal{I}_2)$ is a NC-continuous function, and \mathcal{D} be a NC-OS from \mathcal{Y}. Next $\eta^{-1}(\mathcal{D})$ remains a NC-OS from \mathcal{X}. Since any NC-OS is a $NCS\alpha$-OS, $\eta^{-1}(\mathcal{D})$ stays a $NCS\alpha$-OS from \mathcal{X}. Thus η exists a $NCS\alpha$-continuous function.
(ii) Let \(\eta : (X, \Gamma_1) \rightarrow (Y, \Gamma_2) \) be a \(NCA \)-continuous function and \(D \) be a \(NCA \)-OS from \(Y \). Subsequently \(\eta^{-1}(D) \) happens a \(NCA \)-OS from \(X \). Since any \(NCA \)-OS is \(NCA \)-OS, \(\eta^{-1}(D) \) stays a \(NCA \)-OS from \(X \). Thus \(\eta \) is a \(NCA \)-continuous function.

Example 3.5: Suppose \(X = \{p, q, r, s\} \) and \(Y = \{u, v, w\} \). Then \(\Gamma_1 = \{\phi_X, X_0\} \cup \{(p), (\phi, \phi)\} \) and \(\Gamma_2 = \{\phi_Y, Y_0\} \cup \{(u), (\phi, \phi)\} \) be neurotropic crisp topologies (shortly, NCTs) on \(X \) and \(Y \), correspondingly. Define the function \(\eta : (X, \Gamma_1) \rightarrow (Y, \Gamma_2) \) via \(\eta((p), (\phi, \phi)) = \eta((q), (\phi, \phi)) = \eta((r), (\phi, \phi)) = \eta((s), (\phi, \phi)) = \eta((w), (\phi, \phi)) \). Then \(\eta \) is a \(NCA \)-continuous function but not \(NC \)-continuous since \(\eta((u), (\phi, \phi)) \) is \(NCA \)-OS but \(\eta^{-1}((u), (\phi, \phi)) = \{(p, q), (\phi, \phi)\} \) which is not \(NCA \)-OS in \(X \). Also, \(\eta \) is a \(NCA \)-continuous function but not \(NCA \)-continuous, since \(\eta((u), (\phi, \phi)) = \{(p, q), (\phi, \phi)\} \) is \(NCA \)-OS in \(Y \) but \(\eta^{-1}((u), (\phi, \phi)) = \{(p, q), (\phi, \phi)\} \) is not \(NCA \)-OS from \(X \).

Example 3.6: Suppose \(X = \{p, q, r\} \). Then \(\Gamma = \{\phi_X, X_0\} \cup \{(p), (\phi, \phi), (q), (\phi, \phi), (p, q), (\phi, \phi)\} \) be a \(NCT \) on \(X \).

Define the function \(\eta : (X, \Gamma) \rightarrow (X, \Gamma) \) via \(\eta((p), (\phi, \phi)) = \{(p), (\phi, \phi), (q), (\phi, \phi), (p, q), (\phi, \phi)\} \). It is easily seen that \(\eta \) is a \(NCA \)-continuous function but not \(NC \)-continuous, since \(\eta((q), (\phi, \phi)) = \{(p, q), (\phi, \phi)\} \) is \(NCA \)-OS in \(X \) but \(\eta^{-1}((q), (\phi, \phi)) = \{(p, q), (\phi, \phi)\} \) is not \(NCA \)-OS in \(X \).

Remark 3.7: The concepts of \(NCA \)-continuity and \(NCA \)-continuity are independent, for examples.

Example 3.8: Suppose \(X = \{p, q, r, s\} \) and \(Y = \{u, v, w\} \). Then \(\Gamma_1 = \{\phi_X, X_0\} \cup \{(p), (\phi, \phi), (q), (r), (\phi, \phi), (p, q, r), (\phi, \phi)\} \) and \(\Gamma_2 = \{\phi_Y, Y_0\} \cup \{(u), (\phi, \phi)\} \) be NCTs on \(X \) and \(Y \), correspondingly. Define the function \(\eta : (X, \Gamma_1) \rightarrow (Y, \Gamma_2) \) via \(\eta((p), (\phi, \phi)) = \{(u), (\phi, \phi)\} \). Then \(\eta \) is a \(NCA \)-continuous function but not \(NC \)-continuous, since \(\{(p, q), (\phi, \phi)\} \) is \(NCA \)-OS in \(Y \) but \(\eta^{-1}((p, q), (\phi, \phi)) = \{(p, q), (\phi, \phi)\} \) is not \(NCA \)-OS in \(X \).

Example 3.9: Assume \(X = \{p, q, r, s\} \) and \(Y = \{u, v, w\} \). Then \(\Gamma_1 = \{\phi_X, X_0\} \cup \{(p), (\phi, \phi)\} \) and \(\Gamma_2 = \{\phi_Y, Y_0\} \cup \{(u), (\phi, \phi)\} \) be NCTs on \(X \) and \(Y \), correspondingly. Define the function \(\eta : (X, \Gamma_1) \rightarrow (Y, \Gamma_2) \) via \(\eta((p), (\phi, \phi)) = \{(u), (\phi, \phi)\} \). Then \(\eta \) is a \(NCA \)-continuous function but not \(NC \)-continuous, since \(\{(p, q), (\phi, \phi)\} \) is \(NC \)-OS in \(Y \) but \(\eta^{-1}((p, q), (\phi, \phi)) = \{(p, q), (\phi, \phi)\} \) is not \(NC \)-OS in \(X \).

Theorem 3.10:

(i) If a function \(\eta : (X, \Gamma_1) \rightarrow (Y, \Gamma_2) \) is \(NC \)-open, \(NC \)-continuous, and bijective, then \(\eta \) is a \(NCA \)-continuous.

(ii) A function \(\eta : (X, \Gamma_1) \rightarrow (Y, \Gamma_2) \) is \(NCA \)-continuous iff \(\eta : (X, NC\alpha O(X)) \rightarrow (Y, NC\alpha O(Y)) \) is a \(NC \)-continuous.

Proof:

(i) Let \(D \in NC\alpha O(Y) \), to prove that \(\eta^{-1}(D) \in NC\alpha O(X) \), i.e., \(\eta^{-1}(D) \subseteq NC\alpha int(NC\alpha CL(\eta^{-1}(D))) \). Let \(r \in \eta^{-1}(D) \Rightarrow \eta(r) \in \subseteq \). Hence \(\eta(r) \in NC\alpha int(NC\alpha CL(\eta^{-1}(D))) \) (since \(D \in NC\alpha O(Y) \)). Therefore, at least \(NC \)-OS \(\eta \) from \(Y \) where \(\eta(r) \in \subseteq \). Then \(r \in \eta^{-1}(\subseteq) \subseteq \)

\[\eta^{-1}(NCcl(NCint(D))) \text{, but } \eta^{-1}(NCcl(NCint(D))) \subseteq NCcl(\eta^{-1}(NCint(D))) \text{ (since } \eta^{-1} \text{ is a NC -continuous, which is equivalent to } \eta \text{ is a NC-open and bijective). Then } r \in \eta^{-1}(H) \subseteq NCcl(\eta^{-1}(NCint(D))). \text{ Hence } r \in \eta^{-1}(H) \subseteq NCcl(\eta^{-1}(NCint(D))) \subseteq NCcl(\eta^{-1}(NCint(D))) \text{ (since } \eta \text{ is a NC-continuous). Hence } r \in \eta^{-1}(H) \subseteq NCcl(\eta^{-1}(NCint(D))), \text{ but } \eta^{-1}(H) \text{ remains a NC-OS from } X \text{ (because } \eta \text{ be present a NC-continuous). Therefore, } r \in NCint(NCcl(\eta^{-1}(NCint(D)))). \text{ Hence } \eta^{-1}(D) \subseteq NCint(NCcl(\eta^{-1}(NCint(D)))) \Rightarrow \eta^{-1}(D) \in NCaO(X) \Rightarrow \eta \text{ is a NC}\alpha^*\text{-continuous.}

(ii) The proof of (ii) is easily. □

Theorem 3.11: A function \(\eta : (X, \Gamma_1) \rightarrow (Y, \Gamma_2) \) is a NCS\(\alpha^*\)-continuous iff \(\eta : (X, NCaO(X)) \rightarrow (Y, NCaO(Y)) \) is a NC-continuous.

Proof: Obvious. □

Remark 3.12: The concepts of NC-continuity and NC\(\alpha^*\)-continuity are independent, for examples.

Example 3.13: Suppose \(X = \{p, q, r, s\} \) and \(Y = \{u, v, w\} \). Then \(\Gamma_1 = \{p_n, X_n\} \cup \{(p), (q), (r), (s), (p, q, r, \phi, \lambda)\} \) and \(\Gamma_2 = \{p_n, Y_n\} \cup \{(u), (v), (w)\} \) be NCT's on \(X \) and \(Y \), correspondingly. Define the function \(\eta : (X, \Gamma_1) \rightarrow (Y, \Gamma_2) \) via \(\eta((p), (q), (r), (s), (p, q, r, \phi, \lambda)) = ((u), (v), (w)) \). Then \(\eta \) is a NC-continuous function but not NC\(\alpha^*\)-continuous, since \((u, v, w) \) is not NC\(\alpha^*\)-OS in \(Y \).

Example 3.14: Assume \(X = \{p, q, r, s\} \) and \(Y = \{u, v, w\} \). Then \(\Gamma_1 = \{p_n, X_n\} \cup \{(p), (q), (r), (s), (p, q, r, \phi, \lambda)\} \) and \(\Gamma_2 = \{p_n, Y_n\} \cup \{(u), (v), (w)\} \) be NCT's on \(X \) and \(Y \), correspondingly. Define the function \(\eta : (X, \Gamma_1) \rightarrow (Y, \Gamma_2) \) via \(\eta((p), (q), (r), (s), (p, q, r, \phi, \lambda)) = ((u), (v), (w)) \). Then \(\eta \) is a NC\(\alpha^*\)-continuous function but not NC-continuous, since \((u, v, w) \) is NC-OS in \(Y \), but \(\eta^{-1}((u, v, w)) = ((p, q), (r, \phi, \lambda)) \) is NC-OS in \(X \).

Proposition 3.15: Every NC\(\alpha^*\)-continuous function is a NC\(\alpha \)-continuous and NC\(\alpha^* \)-continuous; however, the reverse generally is not valid.

Proof: Assume \(\eta : (X, \Gamma_1) \rightarrow (Y, \Gamma_2) \) is a NC\(\alpha^*\)-continuous function and let \(D \) be any NC-OS from \(Y \). Then we have \(D \) as a NC\(\alpha \)-OS from \(Y \) [from proposition 2.4]. Since \(\eta \) is a NCS\(\alpha^*\)-continuous, then \(\eta^{-1}(D) \) considers a NC\(\alpha \)-OS from \(X \). Thus, \(\eta \) stands a NC\(\alpha \)-continuous. Also, \(\eta \) is a NCS\(\alpha \)-continuous. □

Example 3.16: Let \(X = \{p, q, r, s\} \).

Then \(\Gamma = \{p_n, X_n\} \cup \{(p), (q), (r), (s), (p, q, r, \phi, \lambda)\} \) be a NCT on \(X \). Define the function \(\eta : (X, \Gamma) \rightarrow (X, \Gamma) \) by \(\eta((p), (q), (r), (s), (p, q, r, \phi, \lambda)) = ((p), (q), (r), (s), (p, q, r, \phi, \lambda)) \). It is easily seen that \(\eta \) is a NC\(\alpha \)-continuous function but not NC\(\alpha^*\)-continuous, since \(((p, q, r), (p, q, r)) \) is NC\(\alpha \)-OS in \(X \), but \(\eta^{-1}((p, q, r)) = ((p, s), (p, s)) \) is not NC\(\alpha \)-OS in \(X \).

Example 3.17: Let $X = \{p, q, r\}$. Then $\Gamma = \{\phi_N, \phi_S, \phi_L\} \cup \{\{(p, \phi, \phi), (q, \phi, \phi), (p, q, \phi, \phi)\}\}$ be a NCT on X. Define a function $\eta: (X, \Gamma) \rightarrow (X, \Gamma)$ by $\eta(((p, \phi, \phi), (q, \phi, \phi), (p, q, \phi, \phi))) = ((q, \phi, \phi))$. It is easily seen that η is a NCSα-continuous function but not NCSα-continuous, since $\eta^{-1}(((q, \phi, \phi))) = ((q, \phi, \phi))$ is not NCSα-OS in X. Thus, η is a NCSα-continuous but not NCSα-continuous function.

Definition 3.18: A function $\eta: (X, \Gamma) \rightarrow (Y, \Gamma)$ is called \mathcal{M}-function iff $\eta^{-1}(NCint(NCcl(D))) \subseteq NCint(NCcl(\eta^{-1}(D)))$, for every NCS$\alpha$-OS D from Y.

Theorem 3.19: If $\eta: (X, \Gamma) \rightarrow (Y, \Gamma)$ is a NCSα-continuous function and \mathcal{M}-function, then η is a NCSα-continuous function.

Proof: Let C be any NCSα-OS of Y, then we have at least a NCSα-OS of Y where $D \subseteq C \subseteq NCint(NCcl(D))$. Since η is a \mathcal{M}-function, we have $\eta^{-1}(D) \subseteq \eta^{-1}(C) \subseteq \eta^{-1}(NCint(NCcl(D))) \subseteq NCint(NCcl(\eta^{-1}(D)))$. By proposition 2.3, we have $\eta^{-1}(\mathcal{C})$ is a NCSα-OS. Hence, η is a NCSα-continuous function.

Remark 3.20: The concepts of NCSα-continuity and NCSα-continuity are independent as the following examples show.

Example 3.21: Assume $X = \{p, q, r, s\}$ and $Y = \{u, v, w\}$. Then $\Gamma_1 = \{\phi_N, \phi_S, \phi_L\} \cup \{(p, \phi, \phi), (q, \phi, \phi), (p, q, \phi, \phi)\}$ and $\Gamma_2 = \{\phi_N, \phi_S, \phi_L\} \cup \{(u, \phi, \phi), (v, \phi, \phi), (u, v, \phi, \phi)\}$ be NCT’s on X and Y, correspondingly. Define the function $\eta: (X, \Gamma_1) \rightarrow (Y, \Gamma_2)$ via $\eta(((p, \phi, \phi), (q, \phi, \phi))) = (\{(v, \phi, \phi), \{(q, \phi, \phi), (w, \phi, \phi)\})$ and $\eta(((q, \phi, \phi))) = (\{(u, \phi, \phi), (v, \phi, \phi), (u, v, \phi, \phi)\})$. It is easily seen that η is a NCSα-continuous function but not NCSα-continuous, since $\{(v, \phi, \phi), \{(q, \phi, \phi), (w, \phi, \phi)\}$ is NCSα-OS in Y but $\eta^{-1}(((q, \phi, \phi))) = (\{(p, \phi, \phi), \{(p, q, \phi, \phi)\})$ is not NCSα-OS in X.

Example 3.22: Suppose $X = \{p, q, r, s\}$. Then $\Gamma = \{\phi_N, \phi_L, \phi_S\} \cup \{(p, \phi, \phi), (q, \phi, \phi), (p, q, \phi, \phi)\}$ be a NCT on X. Define the function $\eta: (X, \Gamma) \rightarrow (X, \Gamma)$ via $\eta(((p, \phi, \phi))) = \eta(((q, \phi, \phi))) = ((s, \phi, \phi)), \eta(((p, q, \phi, \phi))) = ((r, \phi, \phi))$. It is easily seen that η is a NCSα-continuous function but not NCSα-continuous, since $\{(p, q, \phi, \phi)\}$ is NCSα-OS in X, but $\eta^{-1}(((p, q, \phi, \phi))) = (\{(p, q, \phi, \phi)\})$ is not NCSα-OS in X.

Theorem 3.23: If a function $\eta: (X, \Gamma_1) \rightarrow (Y, \Gamma_2)$ is NCSα-continuous, NC-open and bijective, then it is NCSα-continuous.

Proof: Let $\eta: (X, \Gamma_1) \rightarrow (Y, \Gamma_2)$ be a NCSα-continuous, NC-open and bijective. Let D be a NCSα-OS in Y. Then we have at least a NCSα-OS say P where $P \subseteq D \subseteq NCcl(P)$. Therefore $\eta^{-1}(P) \subseteq \eta^{-1}(NCcl(P)) \subseteq NCcl(\eta^{-1}(P))$ since η is a NC-open, but $\eta^{-1}(P) \in NCS\alpha\alpha(X)$ since η is a NCα-continuous. Hence $\eta^{-1}(P) \subseteq \eta^{-1}(D) \subseteq NCcl(\eta^{-1}(P))$. Thus, $\eta^{-1}(D) \in NCS\alpha\alpha(X)$. Therefore, η is a NCSα-continuous function.

Remark 3.24: Let $\eta_1: (X, \Gamma_1) \rightarrow (Y, \Gamma_2)$ and $\eta_2: (Y, \Gamma_2) \rightarrow (Z, \Gamma_3)$ be two functions, then:
(i) If \(\eta_1 \) and \(\eta_2 \) are NC \(\alpha \)-continuous, then \(\eta_2 \circ \eta_1 \colon (X, \Gamma_1) \to (Z, \Gamma_3) \) need not to be a NC\(\alpha \)-continuous.

(ii) If \(\eta_1 \) and \(\eta_2 \) are NCS \(\alpha \)-continuous, then \(\eta_2 \circ \eta_1 \colon (X, \Gamma_1) \to (Z, \Gamma_3) \) need not to be a NCS\(\alpha \)-continuous.

Theorem 3.25: Let \(\eta_1 \colon (X, \Gamma_1) \to (Y, \Gamma_2) \) and \(\eta_2 \colon (Y, \Gamma_2) \to (Z, \Gamma_3) \) be two functions, then:

(i) If \(\eta_1 \) is NC \(\alpha \)-continuous and \(\eta_2 \) is NC -continuous, then \(\eta_2 \circ \eta_1 \colon (X, \Gamma_1) \to (Z, \Gamma_3) \) is a NC\(\alpha \)-continuous.

(ii) If \(\eta_1 \) is NC \(\alpha^* \)-continuous and \(\eta_2 \) is NC \(\alpha \)-continuous, then \(\eta_2 \circ \eta_1 \colon (X, \Gamma_1) \to (Z, \Gamma_3) \) is a NC\(\alpha \)-continuous.

(iii) If \(\eta_1 \) and \(\eta_2 \) are NC\(\alpha^* \)-continuous, then \(\eta_2 \circ \eta_1 \colon (X, \Gamma_1) \to (Z, \Gamma_3) \) is a NC\(\alpha^* \)-continuous.

(iv) If \(\eta_1 \) and \(\eta_2 \) are NCS\(\alpha^* \)-continuous, then \(\eta_2 \circ \eta_1 \colon (X, \Gamma_1) \to (Z, \Gamma_3) \) is a NCS\(\alpha^* \)-continuous.

(v) If \(\eta_1 \) and \(\eta_2 \) are NC\(\alpha^{**} \)-continuous, then \(\eta_2 \circ \eta_1 \colon (X, \Gamma_1) \to (Z, \Gamma_3) \) is a NC\(\alpha^{**} \)-continuous.

(vi) If \(\eta_1 \) and \(\eta_2 \) are NCS\(\alpha^{**} \)-continuous, then \(\eta_2 \circ \eta_1 \colon (X, \Gamma_1) \to (Z, \Gamma_3) \) is a NCS\(\alpha^{**} \)-continuous.

(vii) If \(\eta_1 \) is NC \(\alpha^{**} \)-continuous and \(\eta_2 \) is NC \(\alpha^* \)-continuous, then \(\eta_2 \circ \eta_1 \colon (X, \Gamma_1) \to (Z, \Gamma_3) \) is a NC\(\alpha^* \)-continuous.

(viii) If \(\eta_1 \) is NC \(\alpha^{**} \)-continuous and \(\eta_2 \) is NC \(\alpha \)-continuous, then \(\eta_2 \circ \eta_1 \colon (X, \Gamma_1) \to (Z, \Gamma_3) \) is a NC\(\alpha \)-continuous.

(ix) If \(\eta_1 \) is NC \(\alpha \)-continuous and \(\eta_2 \) is NC \(\alpha^* \)-continuous, then \(\eta_2 \circ \eta_1 \colon (X, \Gamma_1) \to (Z, \Gamma_3) \) is a NC\(\alpha^* \)-continuous.

(x) If \(\eta_1 \) is NC -continuous and \(\eta_2 \) is NC \(\alpha^* \)-continuous, then \(\eta_2 \circ \eta_1 \colon (X, \Gamma_1) \to (Z, \Gamma_3) \) is a NC\(\alpha^* \)-continuous.

Proof:

(i) Assume \(\mathcal{F} \) considers a NC-OS from \(Z \). Since \(\eta_2 \) is a NC-continuous, \(\eta_2^{-1}(F) \) is a NC\(\alpha \)-OS in \(Y \). Since \(\eta_1 \) is a NC \(\alpha \)-continuous, \(\eta_1^{-1}(\eta_2^{-1}(F)) = (\eta_2 \circ \eta_1)^{-1}(F) \) is a NC \(\alpha \)-OS in \(X \). Thus, \(\eta_2 \circ \eta_1 \colon (X, \Gamma_1) \to (Z, \Gamma_3) \) exists a NC\(\alpha \)-continuous.

(ii) Let \(\mathcal{F} \) be a NC-OS in \(Z \). Subsequently \(\eta_2 \) stands a NC \(\alpha \)-continuous, and \(\eta_2^{-1}(F) \) stays a NC\(\alpha \)-OS from \(Y \). Since \(\eta_1 \) is a NC\(\alpha^* \)-continuous, \(\eta_1^{-1}(\eta_2^{-1}(F)) = (\eta_2 \circ \eta_1)^{-1}(F) \) is a NC\(\alpha \)-OS in \(X \). Thus, \(\eta_2 \circ \eta_1 \colon (X, \Gamma_1) \to (Z, \Gamma_3) \) is a NC\(\alpha \)-continuous.

(iii) Let \(\mathcal{F} \) be a NC\(\alpha \)-OS in \(Z \). Since \(\eta_2 \) is a NC\(\alpha^* \)-continuous, \(\eta_2^{-1}(F) \) is a NC\(\alpha \)-OS in \(Y \). Since \(\eta_1 \) is a NC\(\alpha^* \)-continuous, \(\eta_1^{-1}(\eta_2^{-1}(F)) = (\eta_2 \circ \eta_1)^{-1}(F) \) is a NC\(\alpha \)-OS in \(X \). Thus, \(\eta_2 \circ \eta_1 \colon (X, \Gamma_1) \to (Z, \Gamma_3) \) is a NC\(\alpha \)-continuous.

(iv) Let \(\mathcal{F} \) be a NCS\(\alpha \)-OS in \(Z \). Since \(\eta_2 \) is a NCS\(\alpha^* \)-continuous, \(\eta_2^{-1}(F) \) is a NCS\(\alpha \)-OS in \(Y \). Since \(\eta_1 \) is a NCS\(\alpha^* \)-continuous, \(\eta_1^{-1}(\eta_2^{-1}(F)) = (\eta_2 \circ \eta_1)^{-1}(F) \) is a NCS\(\alpha \)-OS in \(X \). Thus, \(\eta_2 \circ \eta_1 \colon (X, \Gamma_1) \to (Z, \Gamma_3) \) is a NCS\(\alpha \)-continuous.

(v) Let \(\mathcal{F} \) be a NC\(\alpha \)-OS in \(Z \). Since \(\eta_2 \) is a NC\(\alpha^{**} \)-continuous, \(\eta_2^{-1}(F) \) is a NC-OS in \(Y \). Since any NC-OS is a NC\(\alpha \)-OS, \(\eta_2^{-1}(F) \) is a NC-OS in \(Y \). Since \(\eta_1 \) is a NC\(\alpha^{**} \)-continuous, \(\eta_1^{-1}(\eta_2^{-1}(F)) = (\eta_2 \circ \eta_1)^{-1}(F) \) is a NC-OS in \(X \). Thus, \(\eta_2 \circ \eta_1 \colon (X, \Gamma_1) \to (Z, \Gamma_3) \) is a NC\(\alpha^{**} \)-continuous. The proof is obvious for others.

Remark 3.26: The next figure describes the relationship between various classes of weakly NC-continuous functions:
4. Conclusion

We shall use the concepts of NC_α-OS and NCS_α-CS to define several new types of weakly NC-continuity such as; NC_α^*-continuous, NC_α^{**}-continuous, NCS_α-continuous, NCS_α^*-continuous and NCS_α^{**}-continuous functions. The neutrosophic crisp α-open and neutrosophic crisp semi-α-open sets can be used to derive some new types of weakly NC-open (NC-closed) functions.

References

Received: May 15, 2020. Accepted: Nov, 20, 2020.