A Study on Neutrosophic Bitopological Group

Bhimraj Basumatary

Nijwm Wary

Follow this and additional works at: https://digitalrepository.unm.edu/nss_journal

Recommended Citation

This Article is brought to you for free and open access by UNM Digital Repository. It has been accepted for inclusion in Neutrosophic Sets and Systems by an authorized editor of UNM Digital Repository. For more information, please contact amywinter@unm.edu, lsloane@salud.unm.edu, sarahrk@unm.edu.
A Study on Neutrosophic Bitopological Group

Bhimraj Basumatary1,* and Nijwm Wary2

1Department of Mathematical Sciences, Bodoland University, Kokrajhar; brbasumatary14@gmail.com
2Department of Mathematical Sciences, Bodoland University, Kokrajhar; nijwmwr0@gmail.com

*Correspondence: brbasumatary14@gmail.com

Abstract. In this paper we try to introduce neutrosophic bitopological group. We try to investigate some new definition and properties of neutrosophic bitopological group.

Keywords: Neutrosophic Group; Neutrosophic Topological Group; Neutrosophic Bitopological Group.

1. Introduction

In 1965, Zadeh [1] defined the concept of fuzzy set (FS). With the help of FS, defined the concept of membership function and explained the idea of uncertainty. In 1986, Atanassov [4] generalised the concept of FS and introduced the degree of non-membership as an independent component and proposed the intuitionistic fuzzy set (IFS). After that many researchers defined various new concepts on generalisation of FS. Smarandache [2, 3] introduced the degree of indeterminacy as independent component and discovered the neutrosophic set (NS).

In 2012, Salama and Alblowi [18] introduced the concept of neutrosophic set (NS) and neutrosophic topological space (NTS) and in 2018, Riad K. Al-Hamido, [28, 29] defined the concept of Neutrosophic Crisp Bi-Topological Spaces and Crisp Tri-Topological Spaces. Narmada Devi R. et al [27] discussed on separation axioms in an ordered neutrosophic bitopological space (NBTS). Ozturk and Ozkan discussion on neutrosophic bitopological spaces.

NS is used to control uncertainty by using truth membership function, indeterminacy membership function and falsity membership function. Whereas FS is used to control uncertainty by using membership function only. NS is used indeterminacy as an independent measure of the membership and non-membership function. As a result, NS is considered as a generalization of FS and intuitionistic fuzzy set (IFS) and shows more better result. NS is more necessary to manage the real-life information which are uncertain and inconsistent in nature. In various problem FS and IFS can not completely assured due to in exact inconsistent characteristic. Therefore, NS shows more rational to design the membership function. By observing this we
are going to do our research and try to study neutrosophic bitopological group (NBTG) by using NS and try to prove some of their properties.

2. Preliminaries

2.1. Definition:[18]

A NS A on a universe of discourse X is defined as $A = \{ (x, \mathcal{T}_A(x), \mathcal{I}_A(x), \mathcal{F}_A(x)) : x \in X \}$, where $\mathcal{T}, \mathcal{I}, \mathcal{F} : X \to [0,1]$. Note that $0 \leq \mathcal{T}_A(x) + \mathcal{I}_A(x) + \mathcal{F}_A(x) \leq 3$.

2.2. Definition:[21, 18]

The complement of NS A is denoted by A^c and is defined as $A^c(x) = \{ (x, \mathcal{T}_{A^c}(x) = \mathcal{F}_A(x), \mathcal{I}_{A^c}(x) = 1 - \mathcal{I}_A(x), \mathcal{F}_{A^c}(x) = \mathcal{T}_A(x)) : x \in X \}$.

2.3. Definition:[21, 18]

Let $X \neq \emptyset$ and $A = \{ (x, \mathcal{T}_A(x), \mathcal{I}_A(x), \mathcal{F}_A(x)) : x \in X \}$, $B = \{ (x, \mathcal{T}_B(x), \mathcal{I}_B(x), \mathcal{F}_B(x)) : x \in X \}$, are NSs. Then

(i) $A \land B = \{ (x, \min(\mathcal{T}_A(x), \mathcal{T}_B(x)), \min(\mathcal{I}_A(x), \mathcal{I}_B(x)), \max(\mathcal{F}_A(x), \mathcal{F}_B(x))) : x \in X \}$

(ii) $A \lor B = \{ (x, \max(\mathcal{T}_A(x), \mathcal{T}_B(x)), \max(\mathcal{I}_A(x), \mathcal{I}_B(x)), \min(\mathcal{F}_A(x), \mathcal{F}_B(x))) : x \in X \}$

(iii) $A \leq B$ if for each $x \in X$, $\mathcal{T}_A(x) \leq \mathcal{T}_B(x), \mathcal{I}_A(x) \leq \mathcal{I}_B(x), \mathcal{F}_A(x) \geq \mathcal{F}_B(x)$.

2.4. Definition:[21]

Let X and Y be two non empty sets and let ϕ be a function from a set X to a set Y. Let $A = \{ (x, \mathcal{T}_A(x), \mathcal{I}_A(x), \mathcal{F}_A(x)) : x \in X \}$, $B = \{ (y, \mathcal{T}_B(y), \mathcal{I}_B(y), \mathcal{F}_B(y)) : y \in Y \}$ be NS in X and Y. Then

(i) $\phi^{-1}(B)$, the preimage of B under ϕ is the NS in X defined by

$\phi^{-1}(B) = \{ (x, \phi^{-1}(\mathcal{T}_B)(x), \phi^{-1}(\mathcal{I}_B)(x), \phi^{-1}(\mathcal{F}_B)(x)) : x \in X \}$

where for all $x \in X$, $\phi^{-1}(\mathcal{T}_B)(x) = \mathcal{T}_B(\phi(x)), \phi^{-1}(\mathcal{I}_B)(x) = \mathcal{I}_B(\phi(x)), \phi^{-1}(\mathcal{F}_B)(x) = \mathcal{F}_B(\phi(x))$.

(ii) The image of A under ϕ denoted by $\phi(A)$ is a NS in Y defined by $\phi(A) = (\phi(\mathcal{T}_A), \phi(\mathcal{I}_A), \phi(\mathcal{F}_A))$, where for each $u \in Y$,

$\phi(\mathcal{T}_A)(u) = \left\{ \begin{array}{ll} \bigvee_{x \in \phi^{-1}(u)} \mathcal{T}_A(x), & \text{if } \phi^{-1}(u) \neq 0 \\ 0, & \text{otherwise} \end{array} \right\}$

$\phi(\mathcal{I}_A)(u) = \left\{ \begin{array}{ll} \bigvee_{x \in \phi^{-1}(u)} \mathcal{I}_A(x), & \text{if } \phi^{-1}(u) \neq 0 \\ 0, & \text{otherwise} \end{array} \right\}$

B. Basumatary and N. Wary, A Study on Neutrosophic Bitopological Group
\[\phi(F_A)(u) = \begin{cases} \bigvee_{x \in \phi^{-1}(u)} F_A(x), & \text{if } \phi^{-1}(u) \neq 0 \\ 0, & \text{otherwise} \end{cases}. \]

2.5. Definition:[19]

Let \(\alpha, \beta, \gamma \in [0,1] \) and \(\alpha + \beta + \gamma \leq 3 \). A neutrosophic point \(x_{(\alpha, \beta, \gamma)} \) of \(X \) is the NS in \(X \) defined by

\[x_{(\alpha, \beta, \gamma)}(u) = \begin{cases} (\alpha, \beta, \gamma), & \text{if } x = u \\ (0, 0, 1), & \text{if } x \neq u \end{cases}; \text{ for each } u \in X. \]

A neutrosophic point is said to belong to a NS \(A = \{ \langle x, T_A(x), I_A(x), F_A(x) \rangle : x \in X \} \) in \(X \) denoted by \(x_{(\alpha, \beta, \gamma)} \in A \) if \(\alpha \leq T_A(x), \beta \leq I_A(x) \) and \(\gamma \geq F_A(x) \).

3. Neutrosophic Group

3.1. Definition:[10]

Let \((X, \circ) \) be a group and let \(A \) be a neutrosophic group (NG) in \(X \). Then \(A \) is said to be a NG in \(X \) if it satisfies the following conditions:

(i) \(T_A(xy) \geq T_A(x) \land T_A(y), I_A(xy) \geq I_A(x) \land I_A(y) \) and \(F_A(xy) \leq F_A(x) \lor F_A(y) \),

(ii) \(T_A(x^{-1}) \geq T_A(x), I_A(x^{-1}) \geq I_A(x), \) and \(F_A(x^{-1}) \leq F_A(x) \).

3.2. Definition:[22]

Let \(X \) be a group and let \(G \) be NG in \(X \) and \(e \) be the identity of \(X \). We define the NS \(G_e \) by

\[G_e = \{ x \in X : T_G(x) = T_G(e), I_G(x) = I_G(e), F_G(x) = F_G(e) \}. \]

We note for a NG \(G \) in a group \(X \), for every \(x \in X : T_G(x^{-1}) = T_G(x), I_G(x^{-1}) = I_G(x) \) and \(F_G(x^{-1}) = F_G(x) \). Also for the identity \(e \) of the group \(X : T_G(e) \geq T_G(x), I_G(e) \geq I_G(x), \) and \(F_G(e) \leq F_G(x) \).

3.3. Proposition:

Let \(G \) be a NG in a group \(X \). Then for all \(x, y \in X \),

1. \(T_G(xy^{-1}) = T_G(e) \Rightarrow T_G(x) = T_G(y) \)
2. \(I_G(xy^{-1}) = I_G(e) \Rightarrow I_G(x) = I_G(y) \)
3. \(F_G(xy^{-1}) = F_G(e) \Rightarrow F_G(x) = F_G(y) \)

3.4. Proposition:

Let \(X \) be a group. Then the following statements are equivalent;

(i) \(G \) is neutrosophic group in \(X \).

B. Basumatary and N. Wary, A Study on Neutrosophic Bitopological Group
(ii) For all \(x, y \in X, T_G(xy^{-1}) \geq T_G(x) \wedge T_G(y), I_G(xy^{-1}) \geq I_G(x) \wedge I_G(y), F_G(xy^{-1}) \leq F_G(x) \vee F_G(y) \).

3.5. Definition:[10]

Let \(\phi : X \rightarrow Y \) be a group homomorphism and let \(A \) be a NG in a group \(X \). Then \(A \) is said to be neutrosophic-invariant if for any \(x, y \in X, T_A(x) = T_A(y), I_A(x) = I_A(y) \) and \(F_A(x) = F_A(y) \). It is clear that if \(A \) is neutrosophic invariant then \(f(A) \in NG(Y) \). For each \(A \in \text{neutrosophic group } (X) \), let \(X_A = \{ x \in X : T_A(x) = T_A(e), I_A(x) = I_A(e), F_A(x) = F_A(e) \} \). Then it is clear that \(X_A \) is a subgroup of \(X \). For each \(a \in X \), let \(r_a : X \rightarrow X \) and \(l_a : X \rightarrow X \) be the right and left translations of \(X \) into itself, defined by \(r_a(x) = xa \) and \(l_a(x) = ax \), respectively for each \(x \in X \).

3.6. Definition:[18]

Let \(X \) be a non empty set and \(A \) neutrosophic topology is a family \(\mathcal{T} \) of neutrosophic subsets of \(X \) satisfying the following axioms:

(i) \(0_A, 1_A \in \mathcal{T} \)

(ii) \(G_1 \cap G_2 \in \mathcal{T} \) for any \(G_1, G_2 \in \mathcal{T} \)

(iii) \(\bigcup G_i \forall \{G_i : i \in J\} \subseteq \mathcal{T} \)

In this case the pair \((X, \mathcal{T})\) is called a neutrosophic topological space (NTS) and any neutrosophic set in \(\mathcal{T} \) is known as neuterosophic open set. The elements of \(\mathcal{T} \) are called open neutrosophic sets, a neutrosophic set \(F \) is neutrosophic closed set if and only if it \(C(F) \) is neutrosophic open set.

3.7. Definition:[19]

Let \((X, \mathcal{T})\) be a NTS and \(A \) be a NS in \(X \). Then the induced neutrosophic topology on \(A \) is the collection of NSs in \(A \) which are the intersection of neutrosophic open sets in \(X \) with \(A \). Then the pair \((A, \mathcal{T}_A)\) is called a neutrosophic subspace of \((X, \mathcal{T})\). The induced neutrosophic topology is denoted by \(\mathcal{T}_A \).

4. Neutrosophic Continuity

It is known by [4] that \(f : (X, \mathcal{T}_X) \rightarrow (Y, \mathcal{T}_Y) \) is neutrosophic continuous if the preimage of each neutrosophic open set in \(Y \) is neutrosophic open set in \(X \).

4.1. Theorem:

Let \((X, \mathcal{T}_X)\) and \((Y, \mathcal{T}_Y)\) be two NTGs and \(f : (X, \mathcal{T}_X) \rightarrow (Y, \mathcal{T}_Y) \) be a mapping , then \(f \) is neutrosophic continuous if and only if \(f \) is neutrosophic continuous at neutrosophic point
$x_{(\alpha,\beta,\gamma)}$, for each $x \in X$.

5. Neutrosophic Bitopological Spaces

5.1. Definition:[23]

Let (X, \mathcal{T}_1) and (X, \mathcal{T}_2) be the two neutrosophic topologies on X. Then $(X, \mathcal{T}_1, \mathcal{T}_2)$ is called a neutrosophic bitopological space (In short NBTS).

5.2. Definition:[23]

Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a NBTS. A NS $A = \{\langle x, \mathcal{T}_A(x), \mathcal{I}_A(x), \mathcal{F}_A(x) \rangle : x \in X \}$ over X is said to be a pairwise neutrosophic open set in $(X, \mathcal{T}_1, \mathcal{T}_2)$ if there exist a NS $A_1 = \{\langle x, \mathcal{T}_{A_1}(x), \mathcal{I}_{A_1}(x), \mathcal{F}_{A_1}(x) \rangle : x \in X \}$ in \mathcal{T}_1 and a NS $A_2 = \{\langle x, \mathcal{T}_{A_2}(x), \mathcal{I}_{A_2}(x), \mathcal{F}_{A_2}(x) \rangle : x \in X \}$ in \mathcal{T}_2 such that $A = A_1 \cup A_2 = \{\langle x, \min(\mathcal{T}_{A_1}(x), \mathcal{T}_{A_2}(x)), \min(\mathcal{I}_{A_1}(x), \mathcal{I}_{A_2}(x)), \max(\mathcal{F}_{A_1}(x), \mathcal{F}_{A_2}(x)) \rangle : x \in X \}$.

6. Neutrosophic Topological Groups

6.1. Definition:[22]

Let X be a group and \mathcal{G} be a NG on X. Let \mathcal{T}_G be a neutrosophic topology on \mathcal{G} then $(\mathcal{G}, \mathcal{T}_G)$ is said to be neutrosophic topological group (In short NTG) if the following conditions are satisfied:

(i) The mapping $\psi : (\mathcal{G}, \mathcal{T}_G) \times (\mathcal{G}, \mathcal{T}_G) \to (\mathcal{G}, \mathcal{T}_G)$ defined by $\psi(x, y) = xy$, for all $x, y \in X$, is relatively neutrosophic continuous.

(ii) The mapping $\mu : (\mathcal{G}, \mathcal{T}_G) \to (\mathcal{G}, \mathcal{T}_G)$ defined by $\mu(x) = x^{-1}$, for all $x \in X$, is relatively neutrosophic continuous.

6.2. Definition:[18]

Let X be a group and U, V be two NSs in X. We define the product UV of U and V and the inverse V^{-1} of V as follows:

$UV(x) = \{\langle x, \mathcal{T}_{UV}(x), \mathcal{I}_{UV}(x), \mathcal{F}_{UV}(x) \rangle : x \in X \}$

where

$\mathcal{T}_{UV}(x) = \sup\{\min\{\mathcal{T}_U(x_1), \mathcal{T}_V(x_1)\}\}$

$\mathcal{I}_{UV}(x) = \sup\{\min\{\mathcal{I}_U(x_1), \mathcal{I}_V(x_1)\}\}$

$\mathcal{F}_{UV}(x) = \sup\{\min\{\mathcal{F}_U(x_1), \mathcal{F}_V(x_1)\}\}$

where $x = x_1.x_2$ and for $V = \{x(\mathcal{T}_V(x), \mathcal{I}_V(x), \mathcal{F}_V(x)) : x \in X \}$, we have
neutrosophic sets and systems, vol. 38, 2020

170

b. basumatary and n. wary, a study on neutrosophic bitopological group

7. main results:

7.1. definition:

let x be a group and g be a ng on x. let t_1^g, t_2^g be two neutrosophic topologies on g then (g, t_1^g, t_2^g) is said to be neutrosophic bitopological group (in short nbtg) if the following conditions hold good:

(i) the mapping ψ : (g, t_1^g) x (g, t_2^g) → (g, t_1^g) defined by ψ(x, y) = xy, for all x, y ∈ x, is relatively neutrosophic i-continuous for each i = 1, 2.

(ii) the mapping μ : (g, t_1^g) → (g, t_1^g) defined by μ(x) = x^−1, for all x ∈ x, is relatively neutrosophic i-continuous for each i = 1, 2.

7.2. definition:

let g be a ng of a group x. then for fixed a ∈ x, the left translation l_a : (g, t_1^g) → (g, t_1^g) for each i = 1, 2; is defined by l_a(x) = ax, for all x ∈ x, where ax = \{(a, t_i^g(ax), t_i^g(ax), f_i^g(ax)) : x ∈ x\} for each i = 1, 2.

similarly, the right translation r_a : (g, t_1^g) → (g, t_1^g) for each i = 1, 2; is defined by r_a(x) = xa, for all x ∈ x, where ax = \{(a, t_i^g(ax), t_i^g(ax), f_i^g(ax)) : x ∈ x\} for each i = 1, 2.

7.3. lemma:

let x be a group with nbtg g in x with two neutrosophic topologies t_1, t_2. then for each a ∈ g_e, the translation l_a and r_a are relatively neutrosophic homeomorphism of (g, t_1^g, t_2^g) into itself.

proof: from proposition 3.11 [10], we have l_a[g] = g and r_a[g] = g, for all a ∈ g_e and let h : (g, t_i^g) → (g, t_i^g) x (g, t_i^g), for each i = 1, 2; defined by h(x) = (a, x) for each x ∈ x. then r_a : ψ o h. since a ∈ g_e, t_i^g(a) = t_i^g(e), t_i^g(a) = t_i^g(e), and f_i^g(a) = f_i^g(e), for each i = 1, 2.

thus t_i^g(a) ≥ t_i^g(x), t_i^g(a) ≥ t_i^g(x), and f_i^g(a) ≤ f_i^g(x), for each x ∈ x. it follows from proposition 3.34 [11] that φ : (g, t_i^g) → (g, t_i^g) x (g, t_i^g) is relatively neutrosophic i-continuous for each i = 1, 2. by the hypothesis ψ is relatively neutrosophic i-continuous for each i = 1, 2.

so r_a is relatively neutrosophic i-continuous for each i = 1, 2. moreover r_a−1 = r_a−1. similarly we are shown the relatively neutrosophic i-continuous for each i = 1, 2 of l_a−1 = l_a−1.

7.4. theorem:

let g be a nbtg on x with t_1, t_2 two neutrosophic topologies. let u be a neutrosophic open set of (g, t_i^g) for each i = 1, 2 and x ∈ g_e, then xu and ux are neutrosophic open set.
Proof: Since U is neutrosophic open set of G and $x \in G_e$, $\lambda : (G, T^G_i) \rightarrow (G, T^G_i)$ is neutrosophic homeomorphism for each $i=1, 2$. This implies that $l_x(U) = xU$ is neutrosophic open set in G. Similarly Ux is neutrosophic open set in G.

7.5. Lemma:

Let X be a group and let G be NBTG in X. Then

(i) The inverse function $\phi : (G, T^G_i) \rightarrow (G, T^G_i)$ defined by $\phi(x) = x^{-1}$, for all $x \in X$ is relatively neutrosophic i-continuous homeomorphism for each $i=1, 2$.

(ii) The inner automorphism $\lambda : (G, T^G_i) \rightarrow (G, T^G_i)$ defined by $\lambda(g) = aga^{-1} = \{g, T^G_i(aga^{-1}), T^G_i(aga^{-1}), F^G_i(aga^{-1})\}$, where $g \in X$ and $a \in G_e$ is relatively neutrosophic homeomorphism for each $i=1,2$.

Proof: (i) Clearly ϕ is one-to-one. Since $\phi(G) = \{\langle x, \phi(T^G_i(x)), \phi(T^G_i(x)), \phi(F^G_i(x)) \rangle : x \in G\}$ for each $i=1, 2$ where

$$\phi(T^G_i(x)) = \begin{cases} \bigvee_{y \in \phi^{-1}(x)} T^G_i(y), & \text{if } \phi^{-1}(x) \neq 0 \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} T^G_i(x^{-1}), & \text{if } \phi^{-1}(x) \neq 0 \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} T^G_i(x), & \text{if } \phi^{-1}(x) \neq 0 \\ 0, & \text{otherwise} \end{cases}$$

Also, $\phi(I^G_i(x)) = I^G_i(x)$ and $\phi(F^G_i(x)) = F^G_i(x)$

Thus $\phi(G) = \{\langle x, I^G_i(x), I^G_i(x), F^G_i(x) \rangle : x \in G\}$, for each $i=1, 2$. Also ϕ is neutrosophic i-continuous for each $i=1,2$ by definition because (G, T^G_i, T^G_i) is NBTG. Since $\phi^{-1}(x) = x^{-1}$ is relatively neutrosophic i-continuous for each $i=1, 2$. Hence for every $x \in X$, ϕ is relatively neutrosophic open. Thus ϕ is relatively neutrosophic homeomorphism.

(ii) Since r_a and l_a are relatively neutrosophic homeomorphism and $r_a^{-1} = r_a^{-1}$. The inner automorphism λ is a composition r_a^{-1} and l. Hence λ is a relative neutrosophic homeomorphism.

7.6. Theorem:

Let G be a NBTG in a group X and e be the identity of X. If $a \in G_e$ and N is a neighbourhood of e such that $T^N_i(e) = 1, I^N_i(e) = 1, F^N_i(e) = 0$ for each $i=1, 2$ then aN is a nbd of a such that $aN(a) = 1_N$.

Proof: Since N is a nbd of e such that $T^N_i = 1, I^N_i = 1, F^N_i = 0$ for each $i=1, 2$; there exists a neutrosophic open set U such that $U \subseteq N$ and $T^U_i(e) = T^N_i(e) = 1, I^U_i(e) = I^N_i(e) = 1,$

B. Basumutary and N. Wary, A Study on Neutrosophic Bitopological Group
\[F_i^U(e) = F_i^N(e) = 0, \text{ for each } i=1, 2. \]

Let \(l_a : (G, T_i^G) \to (G, T_i^G) \) be a left translation defined by \(l_a(g) = ag, \) for each \(g \in X \) and \(i=1, 2. \) Then \(l_a \) is neutrosophic homeomorphism. Then \(aU \) is a neutrosophic open set. Now,

\[
aU(a) = \{(a, T_{aU}(a), T_{aU}(a), F_{aU}(a))\}, \text{ for each } i = 1, 2.
\]

\[
= \{(a, T_i^U(aa^{-1}), T_i^U(aa^{-1}), F_i^U(aa^{-1}))\}
\]

\[
= \{(a, T_i^U(e), T_i^U(e), F_i^U(e))\}
\]

\[
= \{(a, 1, 1, 0)\}
\]

Also,

\[
aN(x) = \{(x, T_i^{aN}(x), T_i^{aN}(x), F_i^{aN}(x)) : x \in X\}, \text{ for each } i = 1, 2.
\]

\[
= \{(x, T_i^N(a^{-1}x), T_i^N(a^{-1}x), F_i^N(a^{-1}x)) : x \in X\}
\]

\[
\geq \{(x, T_i^U(a^{-1}x), T_i^U(a^{-1}x), F_i^U(a^{-1}x)) : x \in X\}
\]

\[
= \{(x, T_i^aU(x), T_i^aU(x), F_i^aU(x))\}
\]

\[
= aU(x)
\]

\[
aN(x) \geq aU(x); \text{ for each } x \in X.
\]

and

\[
aN(a) = \{(a, T_{aN}(a), T_{aN}(a), F_{aN}(a))\}, \text{ for each } i = 1, 2.
\]

\[
= \{(a, T_i^N(aa^{-1}), T_i^N(aa^{-1}), F_i^N(aa^{-1}))\}
\]

\[
= \{(a, T_i^N(e), T_i^N(e), F_i^N(e))\}
\]

\[
= \{(a, 1, 1, 0)\}
\]

\[
\Rightarrow aN(a) = \{(a, 1, 1, 0)\}
\]

Thus, there exist a neutrosophic open set \(aU \) such that \(aU \subseteq aN \) and \(aU(a) = aN(a) = \{(a, 1, 1, 0)\}. \)

7.7. Proposition:

Let \(X \) be a group and \(G \) be a NBTG on \(X \) with \(T_1, T_2 \) two neutrosophic topologies. Let \(\lambda : X \times X \to X \) be the function defined by \(\lambda(g, h) = gh^{-1} \) for any \(g, h \in X. \) Then \(G \) is a NBTG in \(X \) iff the function \(\lambda : (G, T_i^G) \times (G, T_i^G) \to (G, T_i^G) \) is relatively neutrosophic \(i \)-continuous for each \(i=1, 2. \)

Proof: The function \(\mu : (G, T_i^G) \times (G, T_i^G) \to (G, T_i^G) \times (G, T_i^G) \) is neutrosophic relatively \(i \)-continuous for each \(i=1, 2; \) by the corollary to Proposition 3.28 [11]. Also since \(G \) is a NBTG in \(X \) by the Definition [7.1] \(\psi : (G, T_i^G) \times (G, T_i^G) \to (G, T_i^G) \) is relatively neutrosophic \(i \)-continuous for each \(i=1, 2. \) Then \(\beta : \psi \circ \mu : (G, T_i^G) \times (G, T_i^G) \to (G, T_i^G) \) is relatively neutrosophic \(i \)-continuous for each \(i=1, 2. \)
Conversely, let \(\beta : (G, \mathcal{T}_i^G) \times (G, \mathcal{T}_i^G) \to (G, \mathcal{T}_i^G) \) is relatively neutrosophic \(i \)-continuous for each \(i = 1, 2 \). If \(e \) is the identity element of \(X \), then \(\mathcal{T}_i^G(e) \geq \mathcal{T}_i^G(g) \), \(\mathcal{T}_i^G(e) \geq \mathcal{T}_i^G(g) \) and \(\mathcal{T}_i^G(e) \leq \mathcal{T}_i^G(g) \) for all \(g \in X \). By the Proposition 3.34 [11], the function \(\phi : (G, \mathcal{T}_i^G) \to (G, \mathcal{T}_i^G) \) defined by \(\phi(h) = (e, h) \) is relatively neutrosophic \(i \)-continuous for each \(i = 1, 2 \). Thus the function \(\alpha = \beta \circ \phi : (G, \mathcal{T}_i^G) \to (G, \mathcal{T}_i^G) \) is relatively neutrosophic \(i \)-continuous for each \(i = 1, 2 \).

Let \(\mu : (G, \mathcal{T}_i^G) \times (G, \mathcal{T}_i^G) \to (G, \mathcal{T}_i^G) \) is relatively neutrosophic \(i \)-continuous for each \(i = 1, 2 \) by the corollary to Proposition 3.28 [11]. Thus \(\psi = \beta \circ \mu : (G, \mathcal{T}_i^G) \times (G, \mathcal{T}_i^G) \to (G, \mathcal{T}_i^G) \) is relatively neutrosophic \(i \)-continuous for each \(i = 1, 2 \). Therefore \(G \) is a NBTG in \(X \).

7.8. Proposition:

Let \(\phi : X \to Y \) be a group homomorphism and \(\mathcal{T}_1, \mathcal{T}_2 \) and \(U_1, U_2 \) be the neutrosophic topologies on \(X \) and \(Y \) respectively, where \(\mathcal{T}_i \) is the inverse image of \(U_i \) under \(\phi \) and let \(G \) be a NBTG in \(Y \). Then the inverse image \(\phi^{-1}(G) \) of \(G \) is a NBTG in \(X \).

Proof: Consider the function \(\alpha : X \times X \to X \) defined by \(\alpha(g_1, g_2) = g_1 g_2^{-1} \) for any \(g_1, g_2 \in X \). We have to prove that the function \(\alpha : (\phi^{-1}(G), \mathcal{T}_i^{\phi^{-1}(G)}) \times (\phi^{-1}(G), \mathcal{T}_i^{\phi^{-1}(G)}) \to (\phi^{-1}(G), \mathcal{T}_i^{\phi^{-1}(G)}) \) is relatively neutrosophic \(i \)-continuous for each \(i = 1, 2 \). Since \(\mathcal{T}_i \) is the inverse image of \(U_i \) under \(\phi \), \(\phi : (X, \mathcal{T}_i) \to (X, U_i) \) is the neutrosophic \(i \)-continuous for each \(i = 1, 2 \). Also, \(\phi(\phi^{-1}(G)) \subset G \). By Proposition 3.9 [11], \(\phi : (\phi^{-1}(G), \mathcal{T}_i^{\phi^{-1}(G)}) \to (G, U_i^G) \) is relatively neutrosophic \(i \)-continuous for each \(i = 1, 2 \). Let \(U = \mathcal{T}_i^{\phi^{-1}(G)} \). Then there exist a \(V = U_i^G \) such that \(\phi^{-1}(V) = U \). Let \((g_1, g_2) \in X \times X \). Then

\[
\mathcal{T}_i^{\phi^{-1}(U)}(g_1, g_2) = \alpha^{-1}(\mathcal{T}_i^U)(g_1, g_2) = \mathcal{T}_i^U(\alpha(g_1, g_2)) = \mathcal{T}_i^U(g_1, g_2^{-1}), \text{ for each } i = 1, 2.
\]

Thus \(\mathcal{T}_i^{\phi^{-1}(U)}(g_1, g_2) = \mathcal{T}_i^V(\phi(g_1), (\phi(g_2))^{-1}) \)

Similarly we have \(\mathcal{T}_i^{\phi^{-1}(U)}(g_1, g_2) = \mathcal{T}_i^V(\phi(g_1), (\phi(g_2))^{-1}) \) and \(\mathcal{F}_i^{\phi^{-1}(U)}(g_1, g_2) = \mathcal{F}_i^V(\phi(g_1), (\phi(g_2))^{-1}) \) for each \(i = 1, 2 \). By the hypothesis, the function \(\beta : (G, \mathcal{T}_i^G) \times (G, \mathcal{T}_i^G) \to (G, \mathcal{T}_i^G) \) given by \(\beta(h_1, h_2) = h_1 h_2^{-1} \) for any \(h_1, h_2 \in Y \) is relatively neutrosophic \(i \)-continuous for each \(i = 1, 2 \). By corollary to the Proposition 3.28 [11] the product function \(\phi \times \phi : (\phi^{-1}(G), \mathcal{T}_i^{\phi^{-1}(G)}) \times (\phi^{-1}(G), \mathcal{T}_i^{\phi^{-1}(G)}) \to (G, \mathcal{T}_i^G) \) is the neutrosophic \(i \)-continuous for each \(i = 1, 2 \). Now, let \((g_1, g_2) \in X \times X \). Then

\[
\mathcal{T}_i^V(\phi(g_1), (\phi(g_2))^{-1}) = \mathcal{T}_i^{\phi^{-1}(V)}(\phi(g_1), \phi(g_2)) = \mathcal{T}_i^{(\phi \times \phi)^{-1}(\beta^{-1}(V))}(g_1, g_2),
\]

B. Basumatary and N. Wary, A Study on Neutrosophic Bitopological Group
Then there exist a family $\mathcal{I}_i^{(\phi(g_1), (\phi(g_2))^{-1}} = \mathcal{I}_i^{(\phi(g_1), \phi(g_2))} = \mathcal{I}_i^{(\phi \times \phi)^{-1}(V)}(g_1, g_2)

and $\mathcal{F}_i^{(\phi(g_1), (\phi(g_2))^{-1}} = \mathcal{F}_i^{(\phi(g_1), \phi(g_2))} = \mathcal{F}_i^{(\phi \times \phi)^{-1}(V)}(g_1, g_2)

for each $i = 1, 2$.

Thus $\alpha^{-1}(U) \cap (\phi^{-1}(G) \times \phi^{-1}(G)) = (\phi \times \phi)^{-1}(V) \cap (\phi^{-1}(G) \times \phi^{-1}(G))$

$= [\beta \circ (\phi \times \phi)]^{-1}(V) \cap (\phi^{-1}(G) \times \phi^{-1}(G)).$

So $\alpha^{-1}(U) \cap (\phi^{-1}(G) \times \phi^{-1}(G)) \in \mathcal{I}_i^{(\phi^{-1}(G))} \times \mathcal{I}_i^{(\phi^{-1}(G))},$ i.e., $\alpha : (\phi^{-1}(G), \mathcal{T}_i^{(\phi^{-1}(G))}) \times (\phi^{-1}(G), \mathcal{T}_i^{(\phi^{-1}(G))}) \rightarrow (\phi^{-1}(G), \mathcal{T}_i^{(\phi^{-1}(G))})$ is a relatively neutrosophic i-continuous for each $i=1,2$. By Result 3.9 [10], $\phi^{-1}(G)$ is neutrosophic group in X. Hence by Proposition [7.7], $\phi^{-1}(G)$ is NBTG in X.

7.9. Proposition:

Let $\phi : X \rightarrow Y$ be a group homomorphism. Let $\mathcal{T}_1, \mathcal{T}_2$ and U_1, U_2 be the neutrosophic topologies on X and Y respectively, where \mathcal{U}_i is the image under ϕ and of \mathcal{I}_i , for each $i=1, 2$; and let G be a NBTG in X. If G is the neutrosophic invariant, then the image $\phi(G)$ of G is a NBTG in Y.

Proof: Consider the function $\beta : Y \rightarrow Y$ defined by $\beta(h_1, h_2) = h_1h_2^{-1}$ for any $h_1, h_2 \in Y$.

We have to prove that the function $\beta : (\phi(G), \mathcal{U}_i^{(\phi(G))}) \times (\phi(G), \mathcal{U}_i^{(\phi(G))}) \rightarrow (\phi(G), \mathcal{U}_i^{(\phi(G))})$ is a relatively neutrosophic i-continuous for each $i=1, 2$. Suppose G is a neutrosophic invariant.

By the Definition 3.2, $\phi(G)$ is a neutrosophic group in Y. Let $U \in \mathcal{T}_i$. Also $U \subset \phi^{-1}(\phi(U))$.

Then there exist a family $\{U_{i\lambda}\}_{\lambda \in \Lambda} \subset \mathcal{T}_i$ such that $\phi^{-1}(\phi(U)) = \bigcup_{\alpha \in \Lambda} U_{i\alpha}$. So $\phi^{-1}(\phi(U)) \in \mathcal{T}_i$.

Since \mathcal{U}_i is the image of \mathcal{T}_i under ϕ, $\phi(U) \in \mathcal{U}_i$, for each $i=1, 2$. So ϕ is neutrosophic i-open.

Now, let $U \in \mathcal{T}_i^G$. Then there exist a $U = U_1 \cap G$. Since G is neutrosophic invariant, by Proposition 3.12 [10], $\phi(U) = \phi(U_1) \cap \phi(G)$. Since ϕ is neutrosophic i-open, $\phi(U_1) = \mathcal{T}_i$, for each $i=1,2$. Then $\phi(U) \in \mathcal{U}_i^{(\phi(G))}$, for each $i=1, 2$. Thus $\phi : (G, \mathcal{T}_i^G) \rightarrow (\phi(G), \mathcal{U}_i^{(\phi(G))})$ is relatively neutrosophic i-open for each $i=1, 2$. By Proposition 3.31 [11], the product function $(\phi \times \phi) : (G, \mathcal{T}_i^G) \times (G, \mathcal{T}_i^G) \rightarrow (\phi(G), \mathcal{U}_i^{(\phi(G))})$ is relative neutrosophic i-open for each $i=1, 2$.

Let $V \in \mathcal{U}_i^{(\phi(G))}$ and let $(g_1, g_2) \in X \times X$. Then

$\mathcal{T}_i^{(\phi \times \phi)^{-1}(V)}(g_1, g_2) = [\beta \circ (\phi \times \phi)]^{-1}\mathcal{T}_i^V(g_1, g_2), \text{ for each } i = 1, 2.

= \mathcal{T}_i^V[\beta \circ (\phi \times \phi)](g_1, g_2) = \mathcal{T}_i^V(\phi(g_1), \phi(g_2))$

$= \mathcal{T}_i^V(\phi(g_1), (\phi(g_2))^{-1}) = \mathcal{T}_i^V(\phi(g_1), \phi(g_2^{-1})[\text{Since } \phi \text{ is homomorphism}]

= \mathcal{T}_i^V(\phi(g_1, g_2^{-1})) = \mathcal{T}_i^V(\alpha(g_1, g_2)) = \mathcal{T}_i^V(\phi \circ \alpha(g_1, g_2))$
\[(\phi \circ \alpha)^{-1}(T_{i}^{V}(g_{1}, g_{2})) = T_{i}^{(\phi \circ \alpha)^{-1}(V)}(g_{1}, g_{2}),\]

where \(\alpha : X \times X \to X\) is the mapping given by \(\alpha(g_{1}, g_{2}) = g_{1}g_{2}^{-1}\) for each \((g_{1}, g_{2}) \in X \times X\). Thus \(T_{i}^{[\beta_{i}(\phi \circ \alpha)]^{-1}(V)} = T_{i}^{(\phi \circ \alpha)^{-1}(V)},\) \(T_{i}^{(\phi \circ \alpha)^{-1}[\beta_{i}^{-1}(V)]} = T_{i}^{\alpha^{-1}(\beta_{i}^{-1}(V))}\). Similarly, \(T_{i}^{(\phi \times \phi)^{-1}[\beta_{i}^{-1}(V)]} = T_{i}^{\alpha^{-1}(\beta_{i}^{-1}(V))}\) and \(T_{i}^{(\phi \times \phi)^{-1}[\beta_{i}^{-1}(V)]} = T_{i}^{\alpha^{-1}(\beta_{i}^{-1}(V))}\). Thus \((\phi \times \phi)^{-1}[\beta_{i}^{-1}(V)] = \alpha^{-1}(\beta_{i}^{-1}(V))\). Since \(G\) is NBTG in \(X\), \(\alpha : (G, \mathfrak{T}_{i}^{G}) \times (G, \mathfrak{T}_{i}^{G}) \to (G, \mathfrak{T}_{i}^{G})\) is relatively neutrosophic \(i\)-continuous for each \(i = 1, 2\). Since \(U_{i}\) is the image of \(\mathfrak{T}_{i}\) under \(\phi, \phi : (G, \mathfrak{T}_{i}^{G}) \to (G, \mathfrak{T}_{i}^{G})\), \(\mathfrak{T}_{i}^{\phi(G)}\) is relatively neutrosophic \(i\)-continuous for each \(i = 1, 2\). Then \((\phi \times \phi) : (G, \mathfrak{T}_{i}^{G}) \times (G, \mathfrak{T}_{i}^{G}) \to (\phi(G), \mathfrak{U}_{i}^{\phi(G)})\) is a relatively neutrosophic \(i\)-continuous for each \(i = 1, 2\). So \((\phi \times \phi)^{-1}[\beta_{i}^{-1}(V) \cap (\phi(G) \times \phi(G))] = (\phi \times \phi)^{-1}[\beta_{i}^{-1}(V)] \cap (G \times G)\).

So \((\phi \times \phi)^{-1}[\beta_{i}^{-1}(V) \cap (\phi(G) \times \phi(G))] \in \mathfrak{T}_{i}^{\phi(G)} \times \mathfrak{T}_{i}^{\phi(G)}\). Since \((\phi \times \phi)\) is relatively neutrosophic \(i\)-open for each \(i = 1, 2\), \((\phi \times \phi) \circ (\phi \times \phi)^{-1}[\beta_{i}^{-1}(V) \cap (\phi(G) \times \phi(G))] \in \mathfrak{U}_{i}^{\phi(G)} \times \mathfrak{U}_{i}^{\phi(G)}\) for each \(i = 1, 2\). But \((\phi \times \phi)(\phi \times \phi)^{-1}[\beta_{i}^{-1}(V) \cap (\phi(G) \times \phi(G))] = \beta_{i}^{-1}(V) \cap (\phi(G) \times \phi(G))\). Thus \(\beta_{i}^{-1}(V) \cap (\phi(G) \times \phi(G)) \in \mathfrak{U}_{i}^{\phi(G)} \times \mathfrak{U}_{i}^{\phi(G)}\) for each \(i = 1, 2\). Hence \(\phi(G)\) is a NBTG in \(Y\).

7.10. Proposition:

Let \(X\) be a group and let \(G\) be a NBTG in \(X\) with \(\mathfrak{T}_{1}, \mathfrak{T}_{2}\) two neutrosophic topologies. \(N\) a normal subgroup of \(X\) and let \(f\) be the canonical homomorphism of \(X\) onto the quotient group \(X/N\). If \(G\) is constant on \(N\), then \(G\) is \(f\) invariant.

Proof: Suppose \(f(x_{1}) = f(x_{2})\) for any \(x_{1}, x_{2} \in N\). Then \(x_{1}N = x_{2}N\). Thus there exist \(k_{1}, k_{2} \in N\) such that \(x_{1}k_{1} = x_{2}k_{2}\). Since \(G\) is a constant on \(N\), \(T_{i}^{\phi(G)}(x) = T_{i}^{\phi(G)}(e), I_{i}^{\phi(G)}(x) = I_{i}^{\phi(G)}(e)\) and \(F_{i}^{\phi(G)}(x) = F_{i}^{\phi(G)}(e)\) for each \(i = 1, 2\) and \(x \in X\). Then

\[
T_{i}^{\phi(G)}(x_{1}) = T_{i}^{\phi(G)}(x_{2}k_{2}k_{1}^{-1}) \geq T_{i}^{\phi(G)}(x_{2}) \wedge T_{i}^{\phi(G)}(k_{2}k_{1}^{-1})
\]

\[
= T_{i}^{\phi(G)}(x_{2}) \wedge T_{i}^{\phi(G)}(k_{2}k_{1}^{-1}) \in N
\]

\[
= T_{i}^{\phi(G)}(x_{2})
\]

i.e., \(T_{i}^{\phi(G)}(x_{1}) \geq T_{i}^{\phi(G)}(x_{2})\).

Similarly, we get \(T_{i}^{\phi(G)}(x_{2}) \geq T_{i}^{\phi(G)}(x_{1})\). Thus \(T_{i}^{\phi(G)}(x_{1}) = T_{i}^{\phi(G)}(x_{2})\). Similarly we can show that \(I_{i}^{\phi(G)}(x_{1}) = I_{i}^{\phi(G)}(x_{2})\) and \(F_{i}^{\phi(G)}(x_{1}) = F_{i}^{\phi(G)}(x_{2})\). Hence \(G\) is \(f\) invariant.
8. Conclusion:

The main characteristic of NS is that NS can deal with imprecises as well as inconsistent information which is very helpful to handle the various real-life application. By observing this we have studied NBTG on the basis of NS, so that we can deal with various problem of topological group with respect to NS. In this study we have introduced some new definition of NBTG. We investigated some properties and proved some propositions on NBTG. We hope our work will help in further study of generalised NBTG and also for study of neutrosophic almost topological group and neutrosophic almost bitopological group.

References

3. Smarandache, F. (2002). Neutrosophy and neutrosophic logic, first international conference on neutrosophy, neutrosophic logic, set, probability, and statistics, University of New Mexico, Gallup, NM 87301, USA.
19. Salama, A. A.; Smarandache, F. Neutrosophic Set Theory. The Educational Publisher 415 Columbus, Ohio 2015.

B. Basumatary and N. Wary, A Study on Neutrosophic Bitopological Group

Received: June 18, 2020. Accepted: Nov 20, 2020