A Symbiotic Content Caching Approach in Next-Generation Information-Centric Networks based on Game Theory

Aisha B Rahman

University of New Mexico

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

Part of the Electrical and Computer Engineering Commons

Recommended Citation

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.
A Symbiotic Content Caching Approach in Next-Generation Information-Centric Networks based on Game Theory

by

Aisha B Rahman

B. Sc., Electrical and Electronic Engineering, 2019
M. Sc. Electrical and Electronic Engineering, 2021
University of Chittagong, Bangladesh

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science
Computer Engineering

The University of New Mexico
Albuquerque, New Mexico

December, 2023
Dedication

To my mother, who sacrificed so I could rise.

All that I am, or hope to be, I owe to you.
Acknowledgments

I would like to thank my advisor Dr. Eirini Eleni Tsiropoulou who has guided me tremendously through my academic career. Her advice and assistance have aided me in becoming more productive and confident, and I want to say thank you for having faith in me. Secondly, I would like to say thank you to my lab members Md Sadman Siraj and Panagiotis Charatsaris for always being available whenever I needed their guidance. Finally, I would like to express my gratitude to the committee members, Dr. Aris Leivadeas, Dr. Jim Plusquellic, and my advisor, Dr. Eirini Eleni Tsiropoulou, for generously sharing their valuable time and expertise.
A Symbiotic Content Caching Approach in Next-Generation Information-Centric Networks based on Game Theory

by

Aisha B Rahman

B. Sc., Electrical and Electronic Engineering, 2019
M. Sc. Electrical and Electronic Engineering, 2021
University of Chittagong, Bangladesh

M.S., Computer Engineering, University of New Mexico, 2023

Abstract

The continuous growth of mobile data traffic with strict time requirements calls for the development of sustainable edge content caching solutions. This becomes more prominent in the setting of Information-Centric Networking (ICN) architectures, where different ICNs are leasing caching slices to the available content providers (CPs), who in turn offer their services to the users. In this thesis, we introduce a novel symbiotic content caching framework that provides the necessary economic benefits to the ICNs and the CPs to mutualistically collaborate among each other. The corresponding mutualistic interactions among the ICNs and CPs are studied under the prism of two different market-based models, namely the competitive market and oligopoly market models. A game-theoretic approach is followed in order to determine the optimal leasing prices of the ICNs content caching slices and the CPs optimal amount of leased caching memory from the ICNs. The performance
evaluation of the proposed new symbiotic content caching paradigm is achieved via modeling and simulation, while the benefits and drawbacks of the competitive and oligopoly market modeling approaches are revealed and discussed.
Part of this work has been published in:

Contents

List of Figures x

Glossary xi

1 Introduction 1

1.1 Related Work & Motivation 2

1.2 Contributions & Outline 11

2 Next-Generation Information-Centric Networking 14

2.1 A Symbiotic Modeling 14

2.2 System Model 16

2.3 Symbionts Characteristics 17

3 Competitive Market Model 21

4 Oligopoly Market Model 23

5 Evaluation & Results 25
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>System Model</td>
<td>15</td>
</tr>
<tr>
<td>5.1</td>
<td>Price and demand analysis in pure operation of the symbiotic content</td>
<td></td>
</tr>
<tr>
<td></td>
<td>caching framework.</td>
<td>26</td>
</tr>
<tr>
<td>5.2</td>
<td>CPs’ utility and ICN’s profit analysis in pure operation of the sym-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>biotic content caching framework.</td>
<td>27</td>
</tr>
<tr>
<td>5.3</td>
<td>Profit comparison in the symbiotic content caching framework.</td>
<td>28</td>
</tr>
<tr>
<td>5.4</td>
<td>Scalability analysis regarding ICNs total profit.</td>
<td>29</td>
</tr>
<tr>
<td>5.5</td>
<td>Scalability analysis regarding CPs average utility.</td>
<td>30</td>
</tr>
<tr>
<td>5.6</td>
<td>Comparative evaluation.</td>
<td>31</td>
</tr>
</tbody>
</table>
Glossary

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{P})</td>
<td>Set of ICNs where, (\mathcal{P} = {A, R, C})</td>
</tr>
<tr>
<td>(A)</td>
<td>Access ICN</td>
</tr>
<tr>
<td>(R)</td>
<td>Regional ICN</td>
</tr>
<tr>
<td>(C)</td>
<td>Core ICN</td>
</tr>
<tr>
<td>(\mathcal{A})</td>
<td>Set of areas where (\mathcal{A} = {1, \ldots, a, \ldots,</td>
</tr>
<tr>
<td>(\mathcal{A}_A)</td>
<td>Set of areas served by the Access ICN</td>
</tr>
<tr>
<td>(\mathcal{A}_R)</td>
<td>Set of areas served by the Regional ICN</td>
</tr>
<tr>
<td>(\mathcal{A}_C)</td>
<td>Set of areas served by the Core ICN</td>
</tr>
<tr>
<td>(\mathbf{P})</td>
<td>ICNs’ pricing vector for Common Pool of Resources, where (\mathbf{P} = [\mathbf{P}_A, \mathbf{P}_R, \mathbf{P}_C])</td>
</tr>
<tr>
<td>(\mathbf{P}_A)</td>
<td>Price vector of the Access ICN</td>
</tr>
<tr>
<td>(\mathbf{P}_R)</td>
<td>Price vector of the Regional ICN</td>
</tr>
<tr>
<td>(\mathbf{P}_C)</td>
<td>Price vector of the Regional ICN</td>
</tr>
<tr>
<td>(\mathbf{P}_f)</td>
<td>ICNs’ pricing vector for fixed resources where (\mathbf{P}_f = [\mathbf{P}_f^A, \mathbf{P}_f^R, \mathbf{P}_f^C])</td>
</tr>
</tbody>
</table>
Glossary

\(I \) Set of CPs where \(I = \{1, \ldots, i, \ldots, I\} \)

\(b_{i,p,a}^{safe} \) CP’s \(i \) safe caching slices demand per area \(a \) from each ICN provider \(p \in \mathcal{P} \)

\(b_{i,p}^a \) CP’s \(i \) caching demand at each area \(a \) from each ICN provider \(p \in \mathcal{P} \)

\(P_{p,a} \) price of the CPR cache memory announced by ICN provider \(p \in \mathcal{P} \), in area \(a \in \mathcal{A} \)

\(U_i \) CP’s pure caching service utility experienced by the CP \(i \in I \)

\(D_{p,a} \) CPs’ aggregated CPR cache memory demand from an ICN provider \(p, \forall p \in \mathcal{P} \), in each area \(a \)

\(B_{p,a} \) CPs’ CPR cache memory demand in an area \(a \) from an ICN provider \(p \)

\(B_{p,\text{safe}} \) each CP’s minimum safe cache memory request

\(\mu_{A}^a \) sensitivity of the CPs’ CPR cache memory demand to a price change when the CPs are served by the ICN provider \(A \)

\(\mu_{A,C}, \mu_{A,R}^a \) flow of CPs’ CPR cache memory demand from the ICNs \(C \) and \(R \) considering an offered price by them to the CPs, respectively

\(d_{p} \% \) ICN’s discount factor

\(G \) Non-cooperative game where \(G = [\mathcal{P}, \{\mathbb{P}_p\}_{\forall p \in \mathcal{P}}, \{\Pi_p\}_{\forall p \in \mathcal{P}}] \) where \(\mathcal{P} = \{A, R, C\} \) is the set of players, i.e., ICNs, \(\mathbb{P}_p \) is the price strategy set of the ICN provider \(p \), and \(\Pi_p \) is its payoff function
Chapter 1

Introduction

The mobile data traffic continues to rise sharply, with annual traffic of almost 1 zettabyte by the end of 2022, while approximately 79% of the world’s mobile traffic is video [1]. Online video streaming Content Providers (CPs), such as Hulu, Amazon Video, Netflix, YouTube, just to name a few, have dramatically contributed to the rapid growth of the data traffic. Towards delivering the timely content delivery to the users, the concept of edge caching has been proposed, where the CPs cache content on edge devices closer to the users. The edge caching has additional multiple benefits such as lowering bandwidth consumption, shortening the delay in obtaining the content, alleviating backbone network burden, and meeting explosive traffic demands [2]. However, in order for edge caching to become a sustainable solution, the Internet Service Providers (ISPs) and the CPs should both benefit in terms of profit from such a solution [3]. The ISPs are responsible for routing the traffic and delivering the content to the users. Also, in the case of Information-Centric Networking (ICN), the ISPs support in-network caching by caching content on the users’ nearby routers. Thus, the CPs should buy cache slices from the ISPs in order for the content of the former ones to be cached on the routers of the latter ones. On the other hand, the users are charged by the CPs based on the content that they consume, thus, the
Chapter 1. Introduction

CPs should purchase the appropriate services and/or infrastructure from the ISPs to guarantee fast content delivery to the users. In this thesis, aiming at developing a sustainable network economics model among the Content Providers (CPs) and the Information-Centric Networking providers (ICNs), we introduce a novel symbiotic content caching framework inspired by the evolution of biological ecosystems, along with a next-generation ICN paradigm to support the rapid increase of video mobile data traffic.

1.1 Related Work & Motivation

The problem of developing network economics models to support the sustainable deployment of edge caching has attracted the interest of the research community in the last years [4]. In [5], a game-theoretic-based network economic model is devised to determine the optimal demand strategies for caching contents in the caching devices of the Mobile Network Operator (MNO) for a price declared by the MNO. In [6], a Stackelberg game is formulated between an ISP and a CP where the ISP acts as the leader and declares a price for the resources it is leasing, i.e., bandwidth and caching storage, and the CP is the follower who in response to the price declared by the leader, maximizes its own profit by deciding on the fee it will charge the users. In [7], the authors introduce a three-stage Stackelberg game in order to jointly maximize the profits of the ISPs and CPs, and the utilities of the users. The Stackelberg Equilibrium is determined based on a sub-gradient iterative algorithm that monotonically converges to the equilibrium. A similar theoretical approach is followed in [8], where the ISPs, CPs, Access Providers (APs), and the users are involved in the three-stage Stackelberg game. In this case, the Stackelberg Equilibrium jointly determines the cache space purchased by the CPs, the users’ cache fee, the backbone, and wireless access services prices by the ISPs and APs, respectively.
Chapter 1. Introduction

A two-stage Stackelberg game is formulated in [9] among the ISPs and the CPs in order to achieve maximum network benefits and optimal content caching, respectively. A multi-leader multi-follower Stackelberg game is formulated in [10] to formulate the competition among the network operators (leaders) to win over the CPs, and the competition among the CPs (followers) to lease the limited caching resources of the network operators. The Stackelberg equilibrium defines the optimal cache resource leasing price and the optimal caching strategy. A novel pricing model based on the freshness of the content is introduced in [11] following the concepts of Contract Theory [12,13]. The authors design a contract to optimize the profit of the CP while being able to meet the requirements of the users in terms of the freshness of the content and the content delivery time. The optimal contract is formed following a two-stage optimization problem consisting of the optimization of the price and the optimization of the frequency of updates. The concept of cache leasing is discussed in [14], where the CPs lease memory space from the ISPs in order to cache their content. A corresponding distributed optimization problem for each CP is formulated and solved aiming at maximizing each CP’s traffic offloading with minimum leasing cost. An incentivization mechanism is designed in [15] in order to motivate the CPs to lease fog caching services from the cloud. The relationship between the CPs and the cloud is formulated by a two-stage Stackelberg game where the cloud acts as the leader and the CPs are the followers. It is noteworthy that multiple followers also compete with each other to lease the fog cache services from the cloud. Authors of [16] design an incentivization mechanism to motivate privately owned base stations (s-BSs) to lease their caching devices to CPs, in exchange for a mutually agreed upon monetary reward, while the CPs consider the congestion probabilities to come into an agreement with the owner of the s-BS.

In [17], sequential bidding is proposed between the MNO and CPs for the caching of contents in the s-BSs where CPs are collaborating to serve their users. The authors prove that the proposed bidding is superior to the conventional Vickery-
Clarke-Groves model in terms of social welfare. A similar bidding mechanism is adopted in [18] in order to determine the optimal caching decision of the CPs at the s-BSs to enable its users to download content from the caches while maintaining its QoE requirements. Authors of [19] depict the real picture of a 5G network with abundantly and densely deployed s-BSs where the network service provider (NSP) can lease some of its memory in the base stations to CPs for extra profit, especially in the case of more base stations compared to the number of users in the serving area. The concept of contract theory is adopted to form the optimal contract between the NSP and the CP where both parties can benefit, i.e., the NSP benefits by leasing its unutilized resources to the CPs and the CPs benefit from the ability of in-time content delivery. In [20], by applying stochastic geometry the effect of the mobility of the users in the decision of the CPs caching their contents in the s-BSs is taken into consideration to determine the optimal caching strategy. A different scenario is captured in [21] where the NSP achieves the ownership of contents from CPs with the aim of reselling them to the users. The NSPs purchase the contents, cache it and deliver it to the users. The problem of determining the optimal selling price, caching strategy, and reselling price is determined through a sequential optimization problem. The presence of multiple CPs competing to lease caching resources in s-BSs is captured through auction-based pricing in [22, 23]. A similar auction-based pricing scheme following the concepts of contract theory to build a contract between NSP and CPs to lease caching at s-BSs is presented in [24], where the authors’ novel contribution to the existing contract theory-based s-BS caching is the consideration of the scalability of the videos cached while constructing the optimal contract. Authors of [25] also adopt the concept of contract theory to design a contract between the MNO and CPs for the CPs to lease caching storage at the s-BSs of the MNO. The stochasticity of the user behavior is considered hidden information from the MNO while the contract is being designed.

An incentivization mechanism [26] is designed following the concepts of contract
Chapter 1. Introduction

theory in [27] where the network service provider leases its edge caching resources to the CPs in exchange for the leasing price the CP needs to pay to the NSP, after coming to a price agreement stemming from the QoS experienced by the CPs. The price of caching contents in edge devices is significantly affected by the popularity of the content, which can vary from location to location, hence the authors of [28] derive a location-based caching and cache pricing mechanism through a Stackelberg game between the ISP and the CPs. In [29], virtualized content delivery network (VCDN) is depicted where the CPs can intelligently select the locations of the caching devices based on the content popularity of the serving area. Owing to the growth of virtual reality (VR) based services, authors of [30] design an incentive mechanism to pre-cache VR contents at the edge, i.e., unmanned aerial vehicles (UAVs). An optimal contract is formed between the the base station and the UAVs’ service provider (USP) to come to an agreement of incentives the service providers (SPs) need to provide to the USPs in order to meet the VR content delivery requirements. Authors of [31] propose a softwarized content delivery network (SCDN) [32] where the decision of caching and the associated pricing is taken by the infrastructure provider (IP). The simulation results show that the softwarization bring about 25% increased revenue to the CPs. In [33], coalition formation among an ISP and multiple CPs is studied where each coalition aim to optimize its joint profit. The formation of the coalition is based on the Okada bargaining model which is applied to solve the concave profit maximization problem. In [34], the authors consider all probable caching locations including data centers, content delivery networks, and edge devices, and determine the optimal caching, pricing, and delivery strategies by finding the Nash equilibrium point by applying the block coordinate descent method.

Edge caching can support a great variety of communication and services paradigms, such as vehicular networks [35], and device-to-device communications [36]. A cooperative edge caching framework is introduced in [37] in order to enable the vehicle to fetch location-based and popular content from multiple caching
servers. The cooperation takes place among the caching servers in order to determine the optimal content proportions and placing location, accounting for the corresponding service cost. A similar approach is proposed in [38] to determine the optimal content caching in roadside units (RSUs) considering the vehicles’ content access pattern, velocity, and road traffic density while assuming that the RSUs cooperate among each other. However, the storage of RSUs is limited. Hence, CPs compete among each other to cache their contents in RSUs limited cache storage. An auction based caching mechanism is introduced in [39] to determine the optimal caching storage to be leased to the CPs and the corresponding prices the CPs need to pay. Towards solving the user-centric utility from content caching in RSUs in vehicular networks, [40] employs a deep reinforcement learning model that determines the optimal caching policy, i.e., the optimal decision of caching from the cloud or from RSUs (whenever available during the mobility of the vehicle) to minimize the cost of the vehicle trying to access the content. Furthermore research on modelling caching and pricing policies while considering the mobility of the vehicles is presented in [41]. The dynamicity of the pricing and caching model proposed in [41] arises from several factors including backhaul link assignments [42], handover among base stations, transcoding rate, etc., which the authors capture through adapting stochastic geometry theory. A market-based edge caching approach in vehicular networks is designed in [43], where the Public Transportation Companies (PTCs) lease on-board cache storage in the mobile vehicles to the CPs to cache contents. A Stackelberg game is formulated among the PTCs (leaders) and the CPs (followers) in order to determine the optimal leasing price and cache storage space, respectively, towards optimizing the performance of the caching storage. [44] also applies the concept of Stackelberg game to determine the optimal caching in the cache-enabled vehicles. The base station acts as the leader and the cache-enabled vehicles act as the followers. The Stackelberg game results in a Stackelberg equilibrium where the leader caches the optimal contents (captured by the concept of Software Defined Networks.
Chapter 1. Introduction

(SDNs)) in the cache-enabled vehicles by optimally incentivizing the vehicles. A similar incentivization concept is adopted in [45]. Coupled with dynamic pricing, authors in [45] incorporates the successful prediction of future content requests by adopting the multi-factor stock selection model in order to enhance content delivery in vehicular networks. Authors of [46] adapt the concept of stochastic geometry and contract theory to design the optimal contract to find out the optimal caching in on-board caching in vehicles by the CPs in the vehicular network. [47] consider the cooperation offered by a vehicle as a relay to a CP to deliver the cached contents of the CP to the vehicle requesting the content. Authors show that the assistance of the intermediate vehicle brings about a higher profit for the CP as opposed to delivering the content directly to the vehicle requesting it. [48] further consider the cooperation of the cache-enabled vehicles in vehicular networks and introduce the concept of 'family' where members of a family are considered more likely to cooperate among each other for the purpose of near-end video fetching and delivery to the consumer. A pricing mechanism is developed in order to determine the sub-optimal caching distribution. A similar concept is adopted in [49], however, in this case, the family consists of consumers consuming similar content, and the content is fetched from a cache node while the cost of caching is shared by the members of the family. The authors study the competition among the families, and the interaction of the family with the cache nodes through Stackelberg game.

Focusing on the problems of edge caching in D2D communication systems [50], a pricing scheme is presented in [51], where seller and buyer devices co-exist. An optimal buying, caching, and reselling game-theoretic model is introduced to determine the optimal amount of allocated cached content bought by the seller devices from the CPs and the corresponding optimal reselling price to the buyer devices. A two-stage Stackelberg game is introduced in [52], where the D2D devices have the option to become caching devices or not, following an evolutionary game-theoretic approach. Based on the outcome of the game, i.e., the revenue sharing decision of
Chapter 1. Introduction

the CP, the caching devices decide to either become agents or not. A similar incenti-
vization mechanism is proposed in [53] to determine the optimal price for caching
services provided by the D2D transmitters to the users. A two-stage Stackelberg is
modelled to capture the profit of the operator by determining the optimal incentives
to the caching D2D devices, as a result of the optimal caching strategies selected by
the D2D devices.

With the advent of the Information-Centric Networking (ICN), content caching
became the main criterion in the design of networking architectures. In the ICN,
the first time requested content is retrieved by the origin server of the CP, while any
subsequent request of the same content is retrieved from the caches implemented
in the intermediate routers. Thus, the ICN, as it is currently designed, is location-
independent and the content can be cached and retrieved anywhere in the network.
This results in many research in the literature trying to optimize the efficiency of
the cache hit ratio [54], [55], [56], [57], [58], [59]. However, authors of [60] argue that
optimizing the cache hit ratio can be contrasting to optimizing the cost of caching
in the sense that not caching the least requested content can eventually result in a
high cost when it is time to retrieve it. As a result, [60] designs a cost-aware caching
scheme to balance out the caching of the contents throughout the network instead of
merely focusing on optimizing the caching of the most requested content. A similar
investigation is provided in [61] where the authors focus on optimizing the utility
of the CPs, not merely in terms of cache-hit ratio, but also in terms of the profit
the CP obtains by delivering the content to the consumers. Hence, a two-layer op-
timization model is designed where in the first stage the CPs optimize its caching
strategy (i.e., to optimize the cache hit ratio), and in the second stage optimize the
pricing of the caching in order to maximize its profit. [62] adapts a different approach
to managing the caching across the network by taking into account the congestion
price while maximizing the users’ utility. By considering the congestion price, the
optimal caching decision can be taken to ensure the reduction of congestion over the
network while retrieving the requested content. [63] also focuses on maximizing the users’ payoff by determining the optimal caching strategy in the ICN network. The strategy of a user consists of its caching station decision and bargaining the caching price with the caching station following a negotiation-based game-theoretic model. A Nash-bargaining solution [64,65] is devised in [66] which captures the practical benefits of cache-sharing among ISPs. The authors consider a three-tier content-centric network where the intermediate and bottom-tier ISPs cooperate among each other for the purpose of cache sharing. As a result, the authors show that the intermediate-tier ISPs can benefit more by caching from the bottom-tier ISPs as opposed to caching from the top-tier ISPs. Having the advantage of fetching content from the bottom-tier ISPs, it is required by the intermediate-tier ISPs to pay a price to the bottom-tier ISP, hence both entities enjoy a benefit out of the cooperation. In [67], an auction-based content caching approach is discussed, where the ISPs lease caching space in their routers to the CPs, while the latter ones can dynamically replace the content cached in their purchased caching spaces based on the users’ requests. In [68] CPs, in an auction to obtain edge caching devices from the Edge Network Operators (ENOs), start bidding until the ENO makes the decision of cache placement while considering the overall cost of placing contents from any CP at its caching device. The auction is a non-linear mixed-integer problem which includes the bidding, caching of the contents, and delivery of the contents, etc. A Stackelberg game is formulated among the ISPs and the CP in [69] in order to capture the incentive interactions between the entities and jointly determine the optimal incentivization that needs to be provided to the CP and the content that needs to be cached by the ISP. As opposed to [69], authors of [70] take into consideration the existence of multiple CPs, which is the more realistic scenario of ICNs, and formulate the non-simplistic relationship of the CPs which can be collaborative and competitive, through a game-theoretic analysis. The change in the market of content caching when newer caching devices enter the market is captured in [71]. Not only that the caching devices need to compete with
Chapter 1. Introduction

the existing devices to win over the CPs, but the CPs also need to determine its optimal caching strategy, whether to conform to its already decided caching devices or to switch to the new devices that have entered the market, while having a constraint in its budget. [72] studies the inter-domain caching among different tiers of ISPs in the ICN network to illustrate not only the competition competition among tier 2 ISPs to attract clients but also the competition among the clients to obtain content from the same serving ISP. A Nash bargaining game is formulated in order to capture the realistic scenario of the ICN network and determine the optimal pricing and caching strategies. Authors of [73] also adopt the concept of Nash bargaining game to formulate a non-convex binary programming problem to determine the optimal pricing and (secure) caching strategies of the edge caching devices and CPs, respectively, while taking into consideration the risks of caching contents in edge devices. The concept of blockchain is adopted in [74] where a smart contract is deployed to build a secure content caching and delivery network while optimizing the profits of the CPs within the blockchain. Authors of [75] also consider the concepts of blockchain to depict the content caching in content delivery networks. The direct interaction among the ICN providers (ICNs), who cache content in their routers, and users is studied in [76]. The authors formulate an optimization problem to determine the ICNs’ optimal pricing and the users’ optimal content consumption strategies. The relationship of the ISPs, CPs, and users is captured through a game-theoretic model in [77] where the authors focus on package-billing rather than content-size based billing. The determined Nash equilibrium point is the optimal solution regarding the price and caching strategies of the entities involved in the hierarchical relationship. A similar game-theoretic approach is presented in [78] to jointly determine the caching and pricing strategies of the ICNs, while considering different levels of content popularity. A similar investigation is conducted in [79]. [80] investigates a pricing model based on the duration of the caching of the contents by a CP on the router of a SP. The cache pricing model proposed in [80] is a non-linear model and
Chapter 1. Introduction

is based on the Time-to-live process as opposed to the Least-recently-used process. However, all these research works consider that all the ICNs have similar characteristics in terms of serving geographical areas and the content is dynamically cached in the routers without exploiting in advance any potential users’ interests in content per area [81].

1.2 Contributions & Outline

While pricing-based mechanisms enabling mobile edge caching have been thoroughly studied in the literature, their integration into the information-centric networking paradigm is still in its infancy. Also, the ICN paradigm is currently location-agnostic in terms of delivering content to the end-users, which still suffer from high delays even if the content is dynamically cached in the on-path routers. Motivated by these research gaps, in this article, we introduce a novel next-generation information-centric networking architecture to facilitate the sponsored content paradigm of the content providers, along with a new symbiotic content caching framework that provides the necessary economic benefits to the ICNs and the CPs to mutualistically collaborate among each other. Specifically, the main contributions of this thesis are summarized as follows [82, 83].

1. A novel next-generation information-centric networking architecture is introduced consisting of the access, regional, and core ICN providers (ICNs). The ICNs are leasing caching slices [84] to the content providers (CPs), such as Netflix, Hulu, YouTube, etc., who can in advance cache content to the ICNs routers to avoid the delay of the first-control requests by the users. The CPs and the ICNs adopt the concept of sponsored data plan, first introduced by AT&T [85], where the CPs pay the ICNs for the caching slices of the cached content consumed by the users, while the users consume the CPs cached con-
Chapter 1. Introduction

tent for free or they pay a small fee. This novel ICN architecture is mutually beneficial for all the involved entities, i.e., ICNs, CPs, and users, as the CPs pay for only their real caching needs, caching in advance the content in the ICNs’ routers, the ICNs collect profit from leasing their caching slices, the users consume for free (or with a small fee) the CPs’ cached content, and the network’s traffic congestion is ultimately reduced.

2. Considering the novel ICN architecture, a bio-inspired symbiotic content caching model is introduced to capture the mutualistic interactions among the ICNs and CPs under the prism of two market-based models. Initially, a competitive market model is studied among the access, regional, and core ICNs, who fully compete with each other to set the caching slices’ prices, while satisfying the content caching needs of the CPs. The competitive market model is formulated as a non-cooperative game among the ICNs and the existence of a Pure Nash Equilibrium is shown. The Nash Equilibrium (NE) determines the ICNs’ optimal caching slices’ prices in the competitive caching market.

3. Then, an oligopoly market model is analyzed, where the core ICN acts as the leader making an initial decision of the optimal caching slices price in order to maximize its profit. The core ICN acts as the leader due to its higher infrastructure availability in terms of caching routers and its larger coverage area in the network. The regional and access ICNs act as followers competing with each other to get a larger portion of the content caching market. This interaction among the ICNs at the different levels is captured by a Stackelberg game and the Stackelberg Equilibrium is analytically determined, thus, calculating the ICNs’ optimal caching slices’ prices.

4. A detailed simulation-based evaluation is performed to jointly demonstrate the benefits of the novel next-generation ICN architecture and the new symbiotic content caching paradigm. Also, a comparative evaluation of the com-
Chapter 1. Introduction

petitive and oligopoly market modeling, highlights the drawbacks and benefits of the two types of markets under different use case scenarios.

The rest of this thesis is organized as follows. Chapter 2 describes the next-generation ICN architecture and the symbiotic content caching paradigm, along with the symbionts’ characteristics. Chapter 3 presents the competitive market model among the various ICNs, while Chapter 4 introduces the oligopoly market model among the core ICN and the regional and access ICNs. Chapter 5 provides the performance evaluation of the proposed symbiotic content caching framework under both models, while Chapter 6 concludes the thesis.
Chapter 2

Next-Generation Information-Centric Networking

2.1 A Symbiotic Modeling

Inspired by the evolution of the biological ecosystems, we study the interactions among the ICNs and the CPs under the prism of the mutualistic symbiosis. Symbiosis, in principle, is defined as the close relationship and prolonged association between two or more different species, which are called symbionts. The symbionts engaging in the mutualistic symbiosis benefit from their interaction, and they cannot survive the one without the other. In a mutualistic symbiotic relationship, the involved symbionts can exchange resources, services, or a combination of them, among them [86]. Through this exchange of services and/or resources, both parties benefit, survive, and evolve [87]. A typical example of mutualistic symbiosis is the relationship between the Egyptian plover bird and the Nile crocodile. The Nile crocodile offers tiny bits of meat, i.e., a resource from between its teeth to the Egyptian plover bird, by simply opening its mouth and waiting for the bird. On the other hand, the
Egyptian plover bird, provides a service to the Nile crocodile, by flossing its teeth. Both species cannot survive the one without the other, as the bird cannot get meat food in any other way and the crocodile cannot clean its teeth in any other way, and the crocodile needs healthy teeth in order to capture its prey. Following this bio-inspired analogy, the ICNs, acting as the Nile crocodile, provide the resource of caching slices at their routers to the CPs, in order for the latter ones to cache in advance or on-the-fly their content, and ultimately decrease the latency in delivering the content to the end-users. On the other hand, the CPs provide a service to the ICNs to stay in business. It is evident that the ICNs and the CPs cannot operate the one without the support of the other, thus they engage in a mutualistic symbiotic relationship.
Chapter 2. Next-Generation Information-Centric Networking

2.2 System Model

Considering the identified mutualistic symbiotic environment among the ICNs and CPs, we introduce a novel next-generation ICN architecture. Three different types of ICNs are considered, named access, regional, and core ICNs, which are identified based on their coverage area depending on their deployed routers infrastructure, as presented in Fig. 2.1. The set of ICNs is denoted as $\mathcal{P} = \{A, R, C\}$, i.e., access (A), regional (R), and core (C) ICNs. Also, each ICN provider can support different geographical areas, as shown in Fig. 2.1. The overall set of areas is denoted as $\mathcal{A} = \{1, \ldots, a, \ldots, |\mathcal{A}|\}$, where the set of serving areas by each ICN provider is denoted as $\mathcal{A}_A, \mathcal{A}_R, \mathcal{A}_C$, for the access, regional, and core ICNs, respectively. Following the indicative example in Fig. 2.1, we have: $\mathcal{A}_A = \{3, 5, 7\}$, $\mathcal{A}_R = \{2, \ldots, 7\}$, $\mathcal{A}_C = \{1, \ldots, 7\}$. Thus, the ICNs create a hierarchical next-generation ICN architecture based on their available routers infrastructure in order to be able to cache the CPs’ content following the in-network caching principles and deliver the content to the end-users in an even faster manner, compared to the existing ICN architecture.

The ICNs lease caching slices at their routers to the CPs for a corresponding price related to the cache memory that the CPs request. The ICNs pricing vector is denoted as $\mathbf{P} = [\mathbf{P}_A, \mathbf{P}_R, \mathbf{P}_C][\frac{\text{Mbytes}}{\text{bytes}}]$, where $\mathbf{P}_A = [P_{A,3}, P_{A,5}, P_{A,7}]$, $\mathbf{P}_R = [P_{R,2}, P_{R,3}, \ldots, P_{R,7}]$, and $\mathbf{P}_C = [P_{C,1}, P_{C,2}, \ldots, P_{C,7}]$. The ICNs can lease two types of cache memory to the CPs. The exclusively used by an CP cache memory, which act as a safe resource given its non-shared nature, and the dynamically used cache memory, which acts as a Common Pool of Resource (CPR) [88], and the CPs can dynamically access it based on their on-demand content caching needs. The safe cache memory has a fixed high price $\mathbf{P}_f = [P^A_f, P^R_f, P^C_f][\frac{\text{Mbytes}}{\text{bytes}}]$, which is usually the same among the ICNs, while the CPR cache memory has a variable price $\mathbf{P} = [\mathbf{P}_A, \mathbf{P}_R, \mathbf{P}_C]$ that is shaped dynamically in the network based on the CPs’ CPR cache memory demand, and the corresponding availability CPR cache memory by
Chapter 2. Next-Generation Information-Centric Networking

the ICNs [89]. Focusing on the CPs’ point of view, the CPs follow the sponsored data plan paradigm, where they provide their content to the users for free or with a small fee, if the users consume content already owned by the CPS. Any other type of content is provided on-demand by the CPs to improve the users’ experience. In order for the CPs to improve the users’ experienced Quality of Service (QoS), they strategically cache in-advance content to the ICNs routers following the in-network caching paradigm, in order to decrease the users’ experienced latency at the first-attempt accessing the content and for the continuous content delivery. Towards achieving this goal and realizing the sponsored data plan concept, the CPs lease safe caching slices from the ICNs in order to cache in advance their proprietary content based on the statistically analyzed users’ preferences per area. The set of CPs is denoted as \(I = \{1, \ldots, i, \ldots, I\} \), where indicative CPs are Netflix, Hulu, YouTube, etc. Each CP’s safe caching slices demand per area \(a \) from each ICN provider \(p \in P \) is denoted as \(b_{i,p,a}^{safe}[Mbytes] \). Also, the CPs dynamically lease CPR cache memory from the ICNs and the corresponding caching demand of each CP \(i \) at each area \(a \) from each ICN provider \(p \) is denoted as \(b_{i,p}^{a}[Mbytes] \).

In the following analysis, we consider that the ICNs aim at maximizing their profit by leasing safe and CPR caching slices to the CPs, while acting in a rational and selfish manner. Also, the CPs aim at maximizing their experienced caching service utility, while considering the leasing caching slices’ cost. Both symbionts, i.e., ICNs and CPs, need to smoothly interact with each other in order to converge to a stable operational equilibrium.

2.3 Symbionts Characteristics

Each CP aims at maximizing its experienced caching service utility, while dynamically deciding the amount of CPR cache memory that it purchases from the ICNs per
each of the serving areas. It is noted that the safe cache memory needs are fixed and non-negotiable for each CP in order to serve the sponsored data plan and satisfy its customers, i.e., end-users. On the other hand, the CP’s CPR cache memory demand can dynamically be shaped by the ICNs’ announced price. Thus, the corresponding optimization problem for each CP can be formulated as follows:

\[\textbf{P1:} \quad \max_{b_{i,p}} [U_i(b_i) - \sum_{p \in P} P_{p,a} \cdot b_{i,p}] \]
\[\text{s.t.} \quad P_{p,a} \geq 0, \quad \forall p \in P, \forall a \in A \]
\[b_{i,p} \geq 0, \quad \forall i \in I \]

where \(P_{p,a}[\frac{\text{MB}}{\text{bytes}}] \) is the price of the CPR cache memory announced by ICN provider \(p \in P \), in area \(a \in A \), and \(U_i(P) \) is the CP’s pure caching service utility experienced by the CP \(i \in I \), as a function of the purchased CPR cache memory \(b_i \) in each of its serving areas from all the ICNs. The CPs’ pure caching service utility function \(U_i(b_i) \) can be defined as a quadratic and strictly concave function, where the CP’s CPR cache memory demand is linear, by extending the Singh and Vives model [90] as follows:

\[
U_i(b_i) = \alpha_A b_{i,A}^a + \alpha_R b_{i,R}^a + \alpha_C b_{i,C}^a - \frac{\beta_A b_{i,A}^2 + \beta_R b_{i,R}^2}{2} - \frac{\beta_C b_{i,C}^2}{2} + 2\gamma b_{i,A}b_{i,R}^a + 2\epsilon b_{i,R}b_{i,C}^a + 2\zeta b_{i,A}b_{i,C}^a
\]

where all the coefficients are real numbers and we can determine their values by exploiting the optimization problem’s (2.1a)–(2.1c) constraints, as explained in the following analysis. The optimization problem (2.1a)–(2.1c) can be solved by determining the solution of the following set of linear equations: \(\frac{\partial}{\partial b_{i,p}} [U_i(b_i) - \sum_{p \in P} P_{p,a} b_{i,p}] = 0, \forall p \in P = \{A, R, C\} \). To solve this linear system, we determine the determinants \(D_{b_i,A}^a, D_{b_i,R}^a, D_{b_i,C}^a, \) and \(D_a \), and all of them should be positive in order to find a feasible solution that satisfies Eq. 2.1c. Thus, based on these derived inequalities we can
determine the values of all the coefficients in Eq. 2.2. Then, the optimal leased CPR cache memory of each CP can be determined as follows by solving the optimization problem (2.1a)–(2.1c) at each area \(a \in \mathcal{A} \) that the CP serves:

\[
\begin{align*}
\hat{b}_{i,p}^a(P) &= B_{i,p} - \mu_A^i P_{A,a} + \mu_{A,C}^i P_{C,a} + \mu_{A,R}^i P_{R,a} \\
\end{align*}
\]

(2.3)

where \(B_{i,p} = \frac{\beta_R \beta_C \alpha_A + \lambda_R^2 \alpha_A + \lambda_R \beta_C \alpha_R - \lambda_C \beta_C \alpha_R - \lambda_R \lambda_C \alpha_C + \lambda_C \alpha_C \beta_R}{D} \) with \(\lambda_A = \gamma \), \(\lambda_{R,C} = \epsilon \), \(\lambda_{A,C} = \zeta \), and \(D = -\beta_A (\beta_R \beta_C - \lambda_R^2) + \lambda_A (\lambda_A \beta_C - \lambda_C \lambda_A) - \lambda_{A,C} (\lambda_R \lambda_C \lambda_A - \beta_R \lambda_A) \) and \(\mu_A^i = \frac{\beta_C \beta_R - \lambda_C^2}{D} \), \(\mu_{A,C}^i = \frac{\lambda_C \beta_C - \lambda_R \lambda_A}{D} \), \(\mu_{A,R}^i = \frac{\lambda_R \lambda_C - \lambda_C \lambda_R}{D} \) and applying the index rotation in the general case.

Based on the above analysis, the CPs’ aggregated CPR cache memory demand \(D_{p,a}(P) \) from an ICN provider \(p, \forall p \in \mathcal{P} \), in each area \(a \) can be determined as follows:

\[
\begin{align*}
D_{p,a}(P) &= \sum_{i \in \mathcal{I}_a} b_{i,p}^a = B_{p,a} - \mu_A^a P_{A,a} + \mu_{A,C}^a P_{C,a} + \mu_{A,R}^a P_{R,a} \\
\end{align*}
\]

(2.4)

where \(\mathcal{I}_a \) is the set of CPs serving area \(a \), \(B_{p,a}[\text{Mbytes}] \) denotes the CPs’ CPR cache memory demand in an area \(a \) from an ICN provider \(p \), and the coefficient \(\mu_A^a \) captures the sensitivity of the CPs’ CPR cache memory demand to a price change when the CPs are served by the ICN provider \(A \), while the coefficients \(\mu_{A,C}^a \) and \(\mu_{A,R}^a \) capture the flow of CPs’ CPR cache memory demand from the ICNs \(C \) and \(R \) considering an offered price by them to the CPs, respectively.

Focusing on the ICNs’ characteristics, the profit of each ICN provider \(p \in \mathcal{P} \), at each area \(a \in \mathcal{A} \) that it serves, can be derived as follows:

\[
\begin{align*}
\Pi_{p,a}(P_{p,a}, P_{-p,a}) &= D_{p,a} P_{p,a} + \left(\sum_{i \in \mathcal{I}_a} b_{i,p,a}^{safe} \right) P_{p} \\
&- \sum_{i \in \mathcal{I}_a} b_{i,p,a}^{safe} \cdot d_p [B_{p}^{safe} - \frac{B_{p,a} - D_{p,a}}{\sum_{i \in \mathcal{I}_a} b_{i,p,a}^{safe}}] \\
\end{align*}
\]

(2.5)
Chapter 2. Next-Generation Information-Centric Networking

The profit of each ICN provider p consists of the revenue from leasing CPR cache memory to the CPs (first term of Eq. 2.5), and safe cache memory (second term of Eq. 2.5) while considering its experienced cost from not satisfying the CPs’ safe cache memory request (third term of Eq. 2.5). Specifically, each CP’s minimum safe cache memory request is denoted as $B_{p}^{safe}[Mbytes]$, considering CPs with similar requests, and the ICN’s discount factor is $d_{p}\%$ of the price P_{f}^{p} for the safe cache memory. Considering all the areas that each ICN provider serves, its corresponding profit can be derived as follows:

$$
\Pi_{p}(P_{p}, P_{-p}) = \sum_{\forall a \in A_{p}} \Pi_{p,a}(P_{p,a}, P_{-p,a})
$$

(2.6)

where P_{-p} denotes the price vector of all the ICNs except for the ICN provider p.
Chapter 3

Competitive Market Model

The ICNs compete among each other in order to maximize their profit via getting a share of the CPR cache memory demand from the CPs. The ICNs’ competition can have different forms, such as a fully competitive market model or an oligopoly market model. In this section, we analyze the scenario where the ICNs participate in a competitive market model to determine the optimal prices of their CPR cache memory in each of their serving areas in order to maximize their profit. Thus, the corresponding optimization for each ICN provider can be formulated as follows:

\[
\max_{\{P_{p,a}\}_{a \in A_p}} \Pi_p(P_{p,a}, P_{-p}) = \sum_{a \in A_p} \Pi_{p,a}(P_{p,a}, P_{-p,a})
\]

(3.1a)

\[
s.t \quad P_{p,a} \geq 0, \forall a \in A_p
\]

(3.1b)

Given the competitive nature of the ICNs, which act as selfish profit maximizers, their interactions can be captured as a non-cooperative game \(G = [P, \{P_p\}_{p \in P}, \{\Pi_p\}_{p \in P}] \), where \(P = \{A, R, C\} \) is the set of players, i.e., ICNs, \(P_p \) is the price strategy set of the ICN provider \(p \), and \(\Pi_p \) is its payoff function, i.e., its profit, as defined in Eq. 2.6. Our goal is to show the existence of at least one Nash Equilibrium
in order for the overall symbiotic content caching ICN environment to operate in a beneficial manner, i.e., ICNs, CPs, and users.

Definition 1. (Nash Equilibrium - NE): The price vector $\mathbf{P}^* = [P^*_A, P^*_R, P^*_C]$ is a Nash Equilibrium for the non-cooperative game $G = [\mathcal{P}, \{P_p\}_{p \in \mathcal{P}}, \{\Pi_p\}_{p \in \mathcal{P}}]$, if for every ICN provider $p \in \mathcal{P}$, it holds true that $\Pi_p(P_p^*, P_{-p}^*) \geq \Pi_p(P_p, P_{-p}^*), \forall P_p \in \mathbb{P}_p$.

The non-cooperative $G = [\mathcal{P}, \{\mathbb{P}_p\}_{p \in \mathcal{P}}, \{\Pi_p\}_{p \in \mathcal{P}}]$ has a compact and continuous strategy set $\mathbb{P}_p, \forall p \in \mathcal{P}$ and we can easily show that the payoff function $\Pi_p(P_p, P_{-p})$ is concave with respect to the ICN providers’ strategy. Thus, we can conclude that at least one Nash Equilibrium exists for the non-cooperative game G. Towards determining the Nash Equilibrium, the concept of the best response function represents the best response strategy selected by an ICN provider, given the strategies of the rest of the ICNs, and it can be defined as follows:

$$B_p(P_p, P_{-p}) = \arg \max_{P_p} \Pi_p(P_p, P_{-p})$$ \hspace{1cm} (3.2)

By exploring the properties of Eq. 2.5 and Eq. 2.6, we can confirm the following properties for the best response function, defined in Eq. 3.2: $B_p(P_p, P_{-p}) > 0, \forall P_p > 0$, (ii) monotonicity: if $P_p > P_p'$, then $B_p(P_p, P_{-p}) > B_p(P_p', P_{-p})$, and (iii) scalability: for all $\xi > 1$, it holds true that $\xi B_p(P_p, P_{-p}) \geq B_p(\xi P_p, P_{-p})$. Based on this analysis, we conclude that the best response function $B_p(P_p, P_{-p})$ is a standard function, and the non-cooperative game G converges to the Nash Equilibrium. Towards practically determining the Nash Equilibrium, the set of linear equations $\frac{\partial \Pi_p(P_p, P_{-p})}{\partial P_{p,a}} = 0$ can be analyzed, following typical numerical methods, such as the gradient method. Concluding the above analysis, we have introduced and analyzed a fully competitive market model and determined the optimal prices $P^*_p, \forall p \in \mathcal{P}, \forall a \in \mathcal{A}$ following a non-cooperative game-theoretic approach while considering the CPs’ CPR cache memory demand, as derived by the solution of the optimization problem (2.1a) – (2.1c).
Chapter 4

Oligopoly Market Model

In this section, we focus our analysis on studying the ICNs interactions in order to decide the optimal prices of the CPR cache memory, per each of their serving areas, under the oligopoly market model. The core ICN provider is characterized by a larger coverage area and more available routers, respectively, in order to cache the CPs’ content. Thus, the core ICN provider can act as a leader in the CPR cache memory market deciding its optimal prices per area. Then, the access and regional ICNs, which are characterized by smaller coverage areas and caching routers infrastructure compete among each other, and obviously, with the core ICN provider, to get a share of the CPs’ CPR cache memory demand and ultimately maximize their personal profit, as defined in Eq. 2.6.

This interaction among the ICNs can be captured as a single-leader multiple-followers Stackelberg game, where the core ICN provider act as the leader and the access and regional ICNs are the followers. The core ICN provider announces first its optimal prices of the CPR cache memory at each of its serving areas, given the prices of the access and regional ICNs, aiming at maximizing its personal profit, as follows:
Chapter 4. Oligopoly Market Model

\[B_C(P_C, P_{-C}) = P_C^* = \arg \max_{P_C} \Pi_C(P_C, P_{-C}) \] \hspace{1cm} (4.1)

where \(P_{-C} = [P_A, P_R] \).

The access and regional ICNs participate in a non-cooperative game among each other in order to determine their own optimal prices for leasing their CPR cache memory resources to the CPs, given the optimal price \(P_C^* \) announced by the core ICN provider. The non-cooperative game among the access and regional ICNs can follow similar formulation and analysis in Section 3, and their best response functions can be derived as follows:

\[B_A(P_A, P_{-A}) = P_A^* = \arg \max_{P_A} \Pi_A(P_A, P_{-A}) \] \hspace{1cm} (4.2)

\[B_R(P_R, P_{-R}) = P_R^* = \arg \max_{P_R} \Pi_R(P_R, P_{-R}) \] \hspace{1cm} (4.3)

Similar to the analysis presented in Section 3, we can show that the non-cooperative game among the access and the regional ICNs has at least one Nash Equilibrium, and the ICNs’ best response functions are standard functions, thus, the Nash Equilibrium can be determined, as the non-cooperative game converges to it. The two-step Stackelberg game is repeated iteratively and converges to a Stackelberg Equilibrium. The Stackelberg Equilibrium can be practically determined by adopting existing numerical methods, such as the gradient method.
Chapter 5

Evaluation & Results

The performance of the proposed symbiotic content caching framework in next-generation information-centric networking systems is evaluated by extensive simulations. Specifically, in Section 5.1, a detailed analysis of the pure performance and the operation of the proposed symbiotic content caching model is provided under the competitive market and the oligopoly market models in order to demonstrate its operational characteristics and identify the benefits and drawbacks of each market model. In Section 5.2, a detailed scalability analysis is provided in order to show the efficiency and robustness of the proposed model. Finally, in Section 5.3, a comparative evaluation of the proposed model to the state-of-the-art is presented in order to capture the superiority of the symbiotic content caching model under different scenarios of the content providers’ sensitivity to the caching slices’ leasing price. The simulation parameters are listed as follows: $|\mathcal{A}| = 7$, number of users per area in the serving areas 1 – 7 is [80, 70, 70, 60, 60, 50, 50], $P_f = [20, 25, 30]$ [\frac{\text{Mbytes}}{\text{bps}}], $\alpha_A = \alpha_R = \alpha_C = 2000$, $\beta_A = -100.23$, $\beta_R = -50.11$, $\beta_C = -33.36$, $\gamma = 2.97$, $\epsilon = 0.79$, $\zeta = 1.29$, $\mu_{i_A}^i = 0.01$, $\mu_{i_R}^i = 0.02$, $\mu_{i_C}^i = 0.03$, $\mu_{A,C}^i \in [0.02, 0.032]$, $\mu_{C,R}^i \in [0.025, 0.04]$, $\mu_{A,R}^i \in [0.03, 0.048]$, $d_p = [20, 15, 10] \%$, $B_p^{afe} = [100, 50, 30]$, unless otherwise explicitly stated.
5.1 Operation and Performance of Symbiotic Content Caching

Fig. 5.1a - 5.1b present the leasing price of the CPR cache memory announced by the ICN provider, and the CPs’ total demand for each CP in three indicative serving areas, i.e., 3, 5, 7, where all the CPs serve the users simultaneously, respectively, under the competitive (free) market and oligopoly market model. Also, Fig. 5.2a presents the CPs’ utility per serving area under the two market models, while Fig. 5.2b presents the ICNs’ total profit in all serving areas, and the ICNs’ profit difference under the two market models. Fig. 5.3a - 5.3b illustrate the percentage market-share profit of the ICNs under the free market and the oligopoly market models, respectively.

The results show that the higher the area’s ID, the lower the demand for caching slices (Fig. 5.1b), given that the number of users in areas with higher ID is lower. This observation drives the proposed symbiotic content caching model to announce higher prices to areas with higher ID (Fig. 5.1a), given the lower demand in content caching slices under both market models. Also, we observe that the core ICNs
support a higher demand of CPR caching slices requested by the CPs compared to the regional ICNs and to the access ICNs (Fig. 5.1b), given the respective higher availability of routers infrastructure. The latter enables the core ICNs to announce a lower leasing price for the caching slices compared to the other ICNs under both market models (Fig. 5.1a). Furthermore, we observe that under the oligopoly market model, all the ICNs announce a higher price compared to the free market model (Fig. 5.1a), given the limited competition among them, resulting in a lower demand for caching slices from the CPs (Fig. 5.1b).

Focusing on Fig. 5.2a - 5.2b, we observe that the oligopoly market model benefits the ICNs in terms of achieving a higher profit (Fig. 5.2b), resulting in a substantially lower utility for the CPs (Fig. 5.2a), who are burdened with a higher leasing price for the resource of CPR caching slices. It is worth noting that the profit of the core ICN provider under the oligopoly market model is significantly higher compared to the corresponding profit achieved under the free market model as compared to the other ICN providers (Fig. 5.2b). This observation stems from the fact that the core ICN acts as the leader in the oligopoly market model, announcing first the leasing price of the caching slices and driving the market in a Stackelberg equilibrium that substantially benefits itself. This observation is further highlighted in Fig. 5.3a - 5.3b that present the percentage market-share profit of the ICNs under the free
Chapter 5. Evaluation & Results

Figure 5.3: Profit comparison in the symbiotic content caching framework.

market and the oligopoly market models, respectively. The results show that in the oligopoly market model, the core ICN achieves a higher percentage market-share profit compared to the free market scenario (Fig. 5.3b) and compared to the other ICNs, while it should also be noted that the overall profit under the oligopoly market model is substantially higher compared to the free market model, as presented in Fig. 5.2b.

5.2 Scalability Analysis

In this section, a scalability analysis is considered by studying two different scenarios. Specifically, we consider the scenario where the number of users per serving area increases with a constant step of 10 users added per area (green scenario), and the scenario that an equivalent increase of the number of users is captured by adding a new serving area in the overall system (blue scenario). Fig. 5.4a - 5.4c present the total profit of the core, regional, and access ICN providers, respectively, under both scalability analysis scenarios for the free market and the oligopoly market models. Fig. 5.5a - 5.5b illustrate the corresponding CPs’ average utility under both scalability analysis scenarios considering the free market and the oligopoly market models.
Chapter 5. Evaluation & Results

The results reveal that as the number of users increases under both scalability analysis scenarios, the profit of all the ICN providers increases under both market models (Fig. 5.4). However, it is observed that the increase in the number of users per area is more beneficial for the core and the regional ICNs (Fig. 5.4a - 5.4b), which are characterized by higher routers infrastructure availability compared to the access ICN provider. On the other hand, the scalability analysis scenario where the number of serving areas increases benefits the access ICN provider (Fig. 5.4c), which is capable of competing in more serving areas with additional routers infrastructure, thus, making this provider more competitive in the content caching market. Also, the results reveal that the oligopoly market model results in higher total profit for all the ICN providers under both scalability analysis scenarios (Fig. 5.4).

Focusing on CPs average utility, as presented in Fig. 5.5a - 5.5b under the free market and oligopoly market models, respectively, we observe that the free market model benefits the users under both scalability analysis scenarios, as the ICNs compete among each other to determine the CPR caching slices leasing price within a fully competitive market, thus, lowering the resulting leasing prices. Also, the results reveal that as the number of users increases (green scenario), the CPs average utility decreases under both market models (free market and oligopoly), as a larger number of users compete for the same CPR caching slices resources. On
the other hand, as the number of users increases, but also the number of serving areas increases (blue scenario), the average utility of the CPs increases as more CPR caching slices resources become available in the market under both market models.

5.3 Comparative Evaluation

In this section, a comparative evaluation analysis is provided considering the CPs’ sensitivity characteristics to the changes of the ICNs’ CPR caching slices leasing price. Specifically, the proposed symbiotic content caching model is compared to two alternative scenarios: (i) Scenario A: all the CPs are characterized by the same sensitivity to the CPR caching slices leasing price per area, however, the sensitivity parameters are personalized to each ICN, and (ii) Scenario B: all the CPs are characterized by the same sensitivity to the leasing price changes in all the serving areas. The results reveal that the personalized treatment of the CPs to the ICNs in different serving areas, regarding their sensitivity characteristics to the CPR caching slices leasing price, results in higher total profit for the ICNs both under the free market and the oligopoly market models, where in all cases the profit in the oligopoly market...
is higher than the free market. The results are shown in Fig. 5.6a – 5.6b.
Chapter 6

Conclusions and Future Works

In this thesis, a novel symbiotic content caching framework is introduced in next-generation information-centric networking systems in order to jointly support the cost-efficient leasing of caching slices for the CPs and maximize the ICNs profit. Specifically, a novel ICN architecture is introduced considering the core, regional, and access ICN providers in order to decrease the delay of the first-control requests by the users. Based on the novel ICN architecture, a symbiotic content caching model is introduced by capturing the mutualistic interactions among the ICNs and the CPs under the prism of the competitive market and oligopoly market models. A game-theoretic approach is proposed in order to determine the optimal leasing prices of the ICNs’ content caching slices and the CPs’ optimal amount of leased caching memory from the ICNs. A detailed simulation-based evaluation is provided to demonstrate the operational characteristics of the proposed model and highlight its benefits. Part of our current and future work is the extension of the proposed model in 3D networks, where content can be cached in Unmanned Aerial Vehicles (UAVs) and High Altitude Platforms (HAPs) enabled by advanced positioning, navigation, and timing solutions [91,92].
References

References

References

References

References

References

References

References

References

References
