
University of New Mexico University of New Mexico

UNM Digital Repository UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

Spring 5-1-2023

A Reconfigurable Architecture for Matrix Multiplication for Low A Reconfigurable Architecture for Matrix Multiplication for Low

Power Applications Power Applications

Jeffrey Love
University of New Mexico

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Love, Jeffrey. "A Reconfigurable Architecture for Matrix Multiplication for Low Power Applications."
(2023). https://digitalrepository.unm.edu/ece_etds/580

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has
been accepted for inclusion in Electrical and Computer Engineering ETDs by an authorized administrator of UNM
Digital Repository. For more information, please contact disc@unm.edu.

https://digitalrepository.unm.edu/
https://digitalrepository.unm.edu/ece_etds
https://digitalrepository.unm.edu/eng_etds
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F580&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalrepository.unm.edu%2Fece_etds%2F580&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/580?utm_source=digitalrepository.unm.edu%2Fece_etds%2F580&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

i

 Jeffrey Love
 Candidate

 Electrical and Computer Engineering

 Department

 This thesis is approved, and it is acceptable in quality and form for publication:

 Approved by the Thesis Committee:

 Dr. Marios Pattichis, Chairperson

 Dr. Xiang Sun

 Dr. Alonzo Vera

ii

 A Reconfigurable Architecture for Matrix Multiplication

for Low Power Applications

by

Jeffrey Love

B.S., Computer Engineering, University of New Mexico, 2015

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Computer Engineering

The University of New Mexico

Albuquerque, New Mexico

May 2023

iii

A Reconfigurable Architecture for Matrix Multiplication

for Low Power Applications

by

Jeffrey Love

B.S., Computer Engineering, University of New Mexico, 2015

M.S., Computer Engineering, University of New Mexico, 2023

ABSTRACT

This thesis presents a hardware architecture for performing matrix multiplication via a

systolic array to reduce time complexity and power consumption. The proposed architecture,

the Neural Network Accelerator (NNA), was designed in Verilog HDL to perform 8-bit

multiplication to reduce the resources required to implement the NNA on low-power FPGAs.

The NNA’s open architecture is designed to support radiation testing for fault tolerant

designs targeting space applications.

The NNA was compared against two matrix multiplication architectures: SARS and DAE.

Max operating frequency for SARS and NNA was 210.2 MHz and 225 MHz respectively.

DAE and NNA required 3,681 and 449 clock cycles for matrix multiplication respectively.

The reconfigurable NNA architecture includes unique features: an 8-bit Instruction Set

Architecture (ISA) to control ALU operations and data-flow, a neural network activation

function (ReLU) module, 16-bit to 8-bit scaling of ALU results, and a max systolic array size

of 255 x 255.

iv

Table of Contents
List of Figures ... v

1. Chapter 1: Introduction ... 1

1.1. Motivation ... 1

1.2. Thesis Statement .. 2

1.3. Contribution ... 2

1.4. Overview ... 3

Chapter 2: Background .. 4

2.1. Matrix Multiplication Algorithms ... 4

2.2. Systolic Arrays .. 6

2.3. Domain Specific Architecture ... 7

2.4. Systolic Array Matrix Multiplication Architectures .. 8

2.5. Non-Systolic Array Matrix Multiplication Architectures.. 9

2.6. Classification Accuracy of 8-Bit Neural Networks for MNIST .. 10

Chapter 3: Neural Network Accelerator (NNA) Architecture ... 13

3.1. Compartment ... 13

3.2. Systolic Array .. 15

3.3. Top-Level: Data Flow and Control ... 16

Chapter 4: Results .. 19

4.1. Testbench Results .. 19

4.2. Performance ... 20

4.3. Comparison ... 23

Chapter 5: Conclusion and Future Work .. 25

Appendix A: Adder and Multiplier Testbench .. 27

Appendix B: ALU Module Testbench .. 29

Appendix C: Compartment Testbench .. 32

Appendix D: Top-Level Testbench ... 36

References ... 48

v

List of Figures
Figure 1: Systolic Array of Components. ... 6

Figure 2: SARS Design [2]... 8

Figure 3: Multiplication Sub-Modules. [7] .. 9

Figure 4: 3x3 Matrix Multiplier. [8] ... 10

Figure 5: Network 1. .. 11

Figure 6: Network 2. .. 12

Figure 7: Network Accuracy. ... 12

Figure 8: Compartment. ... 13

Figure 9: Compartment ISA. .. 14

Figure 10: Systolic Array. .. 15

Figure 11: Top-Level of NNA Architecture. .. 17

Figure 12: Top-Level Ports. ... 18

Figure 13: ALU Testbench Waveform. .. 19

Figure 14: FPGA Resources. .. 20

Figure 15: Max Operating Frequency. ... 21

Figure 16: Waveform Timing Measurements. ... 21

Figure 17: RISC-V Simulation Results. ... 22

Figure 18: FPGA Power Consumption. .. 22

Figure 19: Power Versus Frequency. ... 23

file:///D:/Users/LoveJ/Documents/Thesis/docs/manuscript/Thesis-Systolic_Array-Rev8.docx%23_Toc132178068
file:///D:/Users/LoveJ/Documents/Thesis/docs/manuscript/Thesis-Systolic_Array-Rev8.docx%23_Toc132178070
file:///D:/Users/LoveJ/Documents/Thesis/docs/manuscript/Thesis-Systolic_Array-Rev8.docx%23_Toc132178071
file:///D:/Users/LoveJ/Documents/Thesis/docs/manuscript/Thesis-Systolic_Array-Rev8.docx%23_Toc132178075
file:///D:/Users/LoveJ/Documents/Thesis/docs/manuscript/Thesis-Systolic_Array-Rev8.docx%23_Toc132178076
file:///D:/Users/LoveJ/Documents/Thesis/docs/manuscript/Thesis-Systolic_Array-Rev8.docx%23_Toc132178077
file:///D:/Users/LoveJ/Documents/Thesis/docs/manuscript/Thesis-Systolic_Array-Rev8.docx%23_Toc132178078
file:///D:/Users/LoveJ/Documents/Thesis/docs/manuscript/Thesis-Systolic_Array-Rev8.docx%23_Toc132178080
file:///D:/Users/LoveJ/Documents/Thesis/docs/manuscript/Thesis-Systolic_Array-Rev8.docx%23_Toc132178081
file:///D:/Users/LoveJ/Documents/Thesis/docs/manuscript/Thesis-Systolic_Array-Rev8.docx%23_Toc132178083
file:///D:/Users/LoveJ/Documents/Thesis/docs/manuscript/Thesis-Systolic_Array-Rev8.docx%23_Toc132178084

1

1. Chapter 1: Introduction

Matrix multiplication is an essential component in machine learning and image processing

for accumulating the weighted sums of neuron inputs and for performing convolution to

smooth, sharpen and blur images. Matrix multiplication of matrices A and B, with

dimensions M x N and N x P respectively, will have a time complexity of ϴ(MNP), when

performed using the naïve matrix multiplication algorithm executed on Central Processing

Units (CPUs) without parallelization. Graphics Processing Units (GPUs), Tensor Processing

Units (TPUs), Application Specific Integrated Circuits (ASICs) and hardware accelerators

such as Field Programmable Gate Arrays (FPGAs), are examples of domain specific

hardware developed to optimize the execution of specific applications using parallelism to

increase performance. A simplified hardware architecture designed only for matrix

multiplication, with compute units arranged in a systolic array, can perform matrix

multiplication with a time complexity of ϴ(n).

1.1. Motivation

In order to perform machine learning applications in space, efficient and radiation tolerant

hardware is required. To determine the radiation tolerance of commercial hardware, Total

Ionizing Dose (TID) and Single Event Effects (SEE) testing can be performed on the device.

Without access to the device’s architecture information, determining the resilience of the

hardware is difficult. Commercial hardware architecture information is not public

knowledge, which led us to build our own matrix multiplication architecture so that we could

study its feasibility for space applications. Developing the architecture in HDL using non-

vendor specific resources will allow the architecture to be deployed on the latest high-

performance and energy efficient space grade FPGAs.

2

After reviewing current literature, we found two matrix multiplication architectures (SARS

[2] and DAE [7]) developed for FPGAs and one architecture (EES [8]) developed for an

ASIC flow. The SARS architecture uses a systolic array design. The DAE and EES

architectures use a non-systolic array design. The SARS, DAE and EES architectures were

chosen because they provided metrics that could be used for comparison; max frequency

when implemented on an FPGA or clock cycles required for operation. All architectures are

presented in Chapter 2 and used for comparison in Chapter 4.

1.2. Thesis Statement

The goal of this thesis is to develop a low-power, domain-specific architecture for

performing 8-bit matrix multiplication, called the Neural Network Accelerator (NNA). The

architecture will be developed to accelerate matrix multiplication for space applications,

using the fundamental concepts of domain-specific architecture and systolic arrays.

1.3. Contribution

The architecture will be written in Verilog HDL and implemented on a low-power FPGA.

The architecture will use an 8-bit Instruction Set Architecture (ISA) to control ALU

operations and data-flow through each node of the systolic array, a feature not found in any

other architecture that was found in the literature. Prior research was focused on

decomposing matrix multiplication into smaller matrices, resulting in an exponentially

increasing number of cycles. The NNA architecture’s systolic array is configurable up to 255

x 255 to avoid unnecessary matrix decompositions and thus perform matrix multiplication in

less clock cycles than alternative approaches. In addition, each compute unit in the systolic

array will include a module for implementing a rectified linear activation function (ReLU)

3

commonly used in neural networks. Every ALU can be configured to scale the 16-bit result

to 8-bits.

1.4. Overview

The remainder of the thesis will contain four chapters. In Chapter 2, we provide background

information on current literature review of matrix multiplication algorithms, evidence for

implementing matrix multiplication using systolic arrays and utilizing domain-specific

architecture concepts to reduce time complexity and power consumption. Systolic and Non-

systolic array, matrix multiplication architectures are presented in Chapter 2. We provide an

analysis of the accuracy of 8-bit neural networks in Chapter 2. In Chapter 3, we provide

details and block diagrams for the proposed Neural Network Accelerator (NNA) architecture.

In Chapter 4, testbench results and performance metrics for the architecture will provide

evidence that the NNA architecture performs matrix multiplication in less clock cycles than

matrix multiplication architectures found in recent literature. Chapter 5 will provide

concluding remarks and a plan for future work.

4

Chapter 2: Background

This chapter will provide references to current research on reducing the time complexity of

matrix multiplications algorithms, systolic array architecture for matrix multiplication, the

advantages of domain specific architecture and non-systolic array matrix multiplication

architectures.

2.1. Matrix Multiplication Algorithms

Research conducted to decrease time complexity to the theoretical lower bound has led to

new algorithms; three examples are the Strassen algorithm [8][11], Coppersmith-Winograd

[8][11] algorithm and the Laser method [10][11]. Naive matrix multiplication of an n x n

matrix requires m2(m-1) additions, and m3 multiplications. Both algorithms reduce the

number of multiplications in favor of more additions.

The Strassen algorithm uses the divide-and-conquer technique to perform matrix

multiplication in parallel. The algorithm has two requirements:

1. Both matrices must have dimensions n x n.

2. n must be a power of two.

The matrices can be padded with zeros to meet the requirements. Any matrix that is greater

than 2 x 2 will be decomposed into m, 2 x 2 matrices where,

𝑚 = 22[𝑙𝑜𝑔2𝑛−1].

Each 2 x 2 matrix multiplication requires seven multiplications and eighteen additions as

shown in the Equation 1 below for the multiplication of matrices A and B.

[
𝐴11 𝐴12

𝐴21 𝐴22
] [

𝐵11 𝐵12

𝐵21 𝐵22
] = [

𝐶11 𝐶12

𝐶21 𝐶22
]. (1)

5

P1 = (A11 + A22)(B11 + B22).

P2 = (A21 + A22)B11.

P3 = A11(B11 - B22).

P4 = A22(B21 - B11).

P5 = (A11 + A12)B22.

P6 = (A21 - A11)(B11 + B22).

P7 = (A12 - A22)(B21 + B22).

C11 = P1 + P4 – P5 + P7.

C12 = P3 + P5.

C21 = P2 + P4.

C22 = P1 - P2 + P3 + P6.

Strassen’s algorithm reduces the time complexity of matrix multiplication to ϴ(n2.81) [11].

The Coppersmith-Winograd algorithm improves upon the Strassen algorithm by reducing the

number of additions to fifteen, which reduces the time complexity to ϴ(n2.376) [11]. Until

2010, this was considered the fastest matrix multiplication algorithm. As of 2022, researchers

are still attempting to reduce the time complexity to ϴ(n2), the Laser Method was used to

create a new algorithm from the Coppersmith-Winograd algorithm, and is currently the

fastest algorithm developed, with a time complexity of ϴ(n2.372) [11].

The Laser method is an indirect method used to create new matrix multiplication algorithms

from existing algorithms. Strassen developed the Laser method, and it was optimized by

Coppersmith and Winograd to achieve better results [11]. The matrices are converted to a

trilinear polynomial tensor to perform matrix multiplication. The Laser method reduces the

direct sum of matrix multiplication tensors (T) to powers of tensors. In 2022, the Laser

6

method was used to produce a new algorithm with a n0.004 improvement over the original

Coppersmith-Winograd algorithm.

2.2. Systolic Arrays

The concept of the systolic array was first published in 1979 by H.T. Kung and Charles

Leiserson [5]. Systolic arrays are inspired by biology where dataflow is similar to blood

flow; the heart pumps blood to many cells which process it before returning to the heart [1].

In systolic arrays data flows from memory to ALUs or processing units, allowing each

component to access the data before it returns to memory. The components are arranged in a

two-dimensional array, where each

component shares connections to

other components allowing data to

flow between them. Components in

the middle of the array only have

connections to their nearest

neighbors, and only the boundary

components have access to memory.

Also, data only flows one-way, read

once from memory and written to

memory at the end. The components take two operands as inputs and produce one result, the

operands are shifted into the ALU when needed so that local (distributed) memory is not

required. Figure 1 shows two matrices being shifted into the systolic array to perform matrix

multiplication. After matrix multiplication is complete, the result for each component is

Figure 1: Systolic Array of Components.

7

shifted out of the matrix to the right or bottom until it is stored in memory. If an n x m matrix

is too large for the systolic array, the matrix can be decomposed into smaller matrices.

2.3. Domain Specific Architecture

General purpose computing hardware offer generic resources suitable for a wide range of

applications, from simple arithmetic to simulating ANNs. We first summarize

implementations on CPUs and GPUs. CPUs are designed for low-latency and low throughput

processing and GPUs are designed for high latency and high throughput processing. CPUs

and GPUS can accomplish most tasks, but neither excels at any one application, for

application specific performance improvements we can design domain specific hardware.

According to Amdahl’s law, significant performance improvements are gained by using a

faster mode of execution, if the faster mode of execution can be used for most of the

computation time. Domain specific hardware are designed to provide performance

improvements to specific applications and is optimal when the size of the memory(s),

parallelism and data types match the target application [4]. To decrease power consumption

and area, Arithmetic Logic Units (ALUs) or processing units are designed with only the

specific hardware required for the application.

AMD/Xilinx has developed their Versal family of FPGAs to provide specialized hardware

engines for applications: cloud computing, network processing, domain-specific parallelism,

convolution, machine learning and video/image processing [13]. The Versal AI engine is a

2D array of vector-vector and matrix-matrix compute engines with tightly coupled memories.

With AMD/Xilinx developing architecture to accelerate application performance we can

conclude there is a market for highly efficient domain-specific hardware.

8

2.4. Systolic Array Matrix Multiplication Architectures

In 2011, researchers Mahendra Vucha and Arvind Rajawat from the Maulana Azad National

Institute of Technology (MANIT) presented their Systolic Architecture on Reconfigurable

Systems (SARS) design for FPGAs [2]. Their architecture contains Processing Elements (PE)

connected in a systolic array. Each PE contains a 4-bit multiplier and accumulator and the

design shown in Figure 2 was implemented on a Spartan-3E FPGA.

Figure 2: SARS Design [2].

The SARS design features a clock and reset and does not contain memory for the inputs and

outputs. This design will be used in comparison with the NNA architecture.

9

2.5. Non-Systolic Array Matrix Multiplication Architectures

In 2018, Zhe Chen [7], a researcher from Uppsala Universitet, presented a FPGA hardware

accelerator for matrix multiplication based on a Decoupled Access-Execute (DAE)

architecture [7]. The architecture separates data processing into two steps, memory access

and data execution, which are performed concurrently. The architecture contains four

subsystems: Data Select, Buffer, Calculation, and Processing/Output, shown in Figure 3.

 In the Data Select module, the input is the first two rows of matrix A and the first two

columns of matrix B, each divided into four 2 x 2 matrices which become the inputs of the

Buffer module. The Buffer module uses two BRAMs to implement the DAE design, the

output of the two BRAMs are added together and passed to the Calculation module. The

Calculation module performs matrix multiplication on the four 2 x 2 matrices received from

the Buffer module. Each 2 x 2 matrix is passed to the Processing/Output module which

combines the 2 x 2 matrices and produces the output matrix C.

In 2020, Shanmugakumar, M., Srinivasavarma, V. S. M., and Mahammad, N. from

Madanapalle Institute of Technology and Science and IIITDM Kancheepuram, presented an

energy efficient and scalable (EES) ASIC hardware architecture for matrix multiplication [8].

Figure 3: Multiplication Sub-Modules. [7]

10

The architecture performs matrix multiplication by taking all elements of the first matrix in

parallel and the second matrix is separated into columns and each row is passed into the

matrix sequentially. Figure 4 shows the design implemented for a 3 x 3 array.

Each column of the output matrix is produced in parallel until all columns have been

produced. The architecture is scalable to any m x m matrix but requires additional passes

when m > 4; additional elements are shifted in during additional cycles. The ASIC design

does not include memory to store the inputs and outputs.

Both of the architectures referenced in this section will be used in comparison with the NNA

architecture.

2.6. Classification Accuracy of 8-Bit Neural Networks for MNIST

Google has incorporated post-training quantization into their TensorFlow software, allowing

64-, 32-, and 16-bit networks to be converted into 8-bit networks with minimal loss in

Figure 4: 3x3 Matrix Multiplier. [8]

11

inference accuracy. The activation function outputs are converted from floating point to

integer by running input data through the floating-point model and scaling the maximum and

minimum values from 127 to -128. Post-training quantization may introduce errors in the

neural network that cannot be corrected, requiring the developer to modify the network,

perform training and post-training quantization and measure the accuracy of the network. As

evidence of the effectiveness of post-training quantization we developed two neural networks

created in TensorFlow/Keras and trained them using the MNIST database. After post-training

quantization we measured the accuracy of both networks, shown below as “Network 1” and

“Network 2”.

Figure 5: Network 1.

Network 2 was configured with layers of 196 dropout neurons. Four dropout rates were

tested to determine which achieved the best accuracy: 0%, 10%, 30% and 50%. A dropout

rate of 10% achieved the highest accuracy.

Layer (type) Output Shape Param #

===

 input_layer (Conv2D) (None, 26, 26, 32) 320

 input_pooling (AveragePooling2D) (None, 13, 13, 32) 0

 hidden_layer (Conv2D) (None, 11, 11, 50) 14450

 hidden_pooling (AveragePooling2D) (None, 5, 5, 50) 0

 flatten (Flatten) (None, 1250) 0

 dense_layer (Dense) (None, 500)

 output_layer (Dense) (None, 10)

===

Total params: 645,280

Trainable params: 645,280

Non-trainable params: 0

12

Figure 6: Network 2.

 Network 1 Network 2

32-bit Floating Point Accuracy 96.7% 97.0%

8-Bit Integer Accuracy 94.8% 97.1%
Figure 7: Network Accuracy.

After post-training quantization the accuracy of Network 1 decreased, and the accuracy

Network 2 remained the same. By reducing the data types from 32-bit to 8-bit, the resources

and power required to perform matrix multiplication are reduced.

This analysis will be included in a future feasibility study to determine if the NNA

architecture can perform inferencing using 8-bit TensorFlow neural networks.

13

Chapter 3: Neural Network Accelerator (NNA) Architecture

The proposed NNA architecture was developed as a systolic array with specialized ALUs to

reduce the time complexity of matrix multiplication and power consumption when

implemented on a FPGA. The goal was to create the hardware resources necessary for matrix

multiplication and optimize the architecture for neural network applications. The architecture

was developed in Verilog HDL and is scalable to meet application requirements and FPGA

resource constraints. The architecture was developed for embedded systems with size,

weight, and power (SWaP) constraints. The following sections present the design of the three

subsystems of the NNA architecture: compartment, systolic array, and top level (data flow

and control).

3.1. Compartment

The compartment contains interconnects

(West, East, North, and South Bus) and

control signals that move data into and out

of the compartment. Data meant for

neighboring compartments, moves from

West to East, and North to South. The

Instruction Memory is an 8-bit, single port

memory with a configurable depth, which

stores instructions for the compartment received through the North Bus. When the

compartment is not running instructions, instructions are written into memory using a 2-bit

control signal from the top level:

Figure 8: Compartment.

14

• Mode[1:0]: 00 = Reset, 01 = Read Address, 10 = Load Instructions, 11 = Run

Instructions

When Mode is set to Reset, the compartment is idle. Each compartment contains a unique 8-

bit address, configured when it is instantiated during synthesis providing every compartment

in a column with a unique address, and a global address of 256 (0xFF). When Mode is set to

Read Address, the North Bus value is stored in a register. When Mode is set to Load

Instruction, the North Bus value is stored in the instruction memory. The unique address

allows each compartment to process a unique set of instructions allowing the architecture to

be optimized for specific applications such as convolution.

 Each compartment contains control registers for the ALU and the multiplexers that direct the

flow of data. Control registers are updated every clock cycle when the program counter (PC)

is running and according to the instructions stored in memory. The compartments instruction

set architecture (ISA) uses 8-bit instructions.

The East Mux Select bits route data to the East Bus interconnect: 00 = West Bus, 01 =

MACC Result, 10 = Multiply Result, 11 = Activation Function Result. The Store bit is

asserted when the East Bus output needs to be stored in memory. The Activation Function

bits select the activation function: 00 = ReLU, and 01, 10, 11 = Reserved for Future Use. The

Clear bit resets the accumulator in the ALU to zero. The ALU bits select the ALU operation:

00 = NOOP, 01 = Multiply, 10 = MACC (multiply and accumulate), 11 = Activation

Function.

Figure 9: Compartment ISA.

15

Each ALU contains a multiplier, adder, and activation function module and performs signed

or unsigned integer operations. The ALUs operand A input is connected to the West Bus,

operand B is connected to North Bus. The input of the adder module is the output of the

multiplier module, creating a MACC. The input of the activation function module is the

output of the MACC. With the three modules in series, the output of each module can be

selected as the output of the ALU: multiply, MACC, or activation function unit. The 16-bit

output of the ALU is scaled with a Verilog parameter that specifies the number of right-shifts

to perform resulting in efficient scaling by powers of two. The inputs and outputs of the ALU

are 8-bits, requiring minimal hardware resources. Thus, multiplication and addition require

one clock cycle.

3.2. Systolic Array

The systolic array connects multiple instantiations of the compartments in a n x n array,

where the max value of n is 255 (256 is the global address). Data moves into the systolic

Figure 10: Systolic Array.

16

array from the West Bus and North Bus, and data moves out of the array through the East

Bus as shown in Figure 10. The compartments are synchronized by a global clock and

synchronous reset from the top-level. Data will shift from each compartment to the next

every clock period. The configuration of the systolic array is parametrized to take advantage

of the data bus width at the top-level. Here, n must be an integer value divisible by the

number of bytes in the data bus.

3.3. Top-Level: Data Flow and Control

The top-level controls the flow of data to and from the systolic array using control signals,

memories, and multiplexers. The North Bus input is connected to an 8-bit memory or the

data bus using a multiplexor. Instructions for each compartment are shifted in through the

data bus and inputs for the matrix operations are stored memory until the program counter is

activated. The West Bus input is connected to memory which is used to store the inputs from

the data bus and the outputs of the matrix operations from the compartments. After the inputs

for the matrix operations are shifted into the systolic array, the compartments will assert a

signal to store the outputs of the matrix operations into memory starting at address zero. The

output of each row memory is connected to inputs of a multiplexer, allowing the output of

the matrix operations to be sent to a processor or simple logic.

17

The top-level module shown in Figure 11, has input and outputs that can be mapped to

registers of an interface wrapper (AXI, APB, Wishbone, etc.). To reduce power consumption

and hardware resources the memory depth and systolic array size can be configured using the

parameters in the Verilog code. Each compartment is programmed to perform matrix

multiplication via instructions loaded into local memory; the architecture can perform matrix

multiplication on various matrix sizes without requiring the user to resynthesis the design for

new applications.

The top-level module has ten input and two output ports, as shown in Figure 12.

Figure 11: Top-Level of NNA Architecture.

18

Figure 12: Top-Level Ports.

19

Chapter 4: Results

The NNA architecture was tested using Verilog test benches for the ALU, compartment, and

top-level design; each behavioral simulation was run using the Riviera-Pro functional

verification software. The coverage report for each testbench includes statement and branch

coverage results. The Verilog test benches can be found in Appendices A through D.

4.1. Testbench Results

The ALU testbench selects operands “A” and “B” for the ALU and verify the output of the

multiplier, MACC, and activation function modules. The operands are incremented each loop

iteration to test all permutations, the test will continue running until a verification fails. The

simulation also tests the five-bits of the instruction (4:0) that control ALU operations. The

ALU module testbench passed with 98.9% statement coverage and 96.5% branch coverage.

The Compartment testbench ensures instructions and data flow through the module and bus

interconnects, and the program counter is advancing and resetting when instructed. The

Compartment testbench passed with 98.7% statement coverage and 97.5% branch coverage.

Figure 13: ALU Testbench Waveform.

20

The Top-Level testbench ensures data flows from the top-level to the systolic array and

ensures that the architecture can perform matrix operations. Instructions and matrix inputs

are sent from the top-level to each compartment, the matrix operation is performed, and the

results are shifted from the array to memory, and to the top-level module for verification by

the testbench. The Top-Level testbench passed with 95.6% statement coverage and 88.8%

branch coverage.

4.2. Performance

Performance results were obtained by synthesizing the architecture for three FPGAs:

Microchip RTG4 and PolarFire, and Xilinx Kintex-7. The architecture was configured with a

32-bit data bus, 12 x 12 systolic array (144 compartments) and 1K of instruction memory for

each Compartment, so that it could be implemented in all three FPGA fabrics and not exceed

the available resources. Multiplication and addition are performed using shift registers and

adders synthesized in the FPGA fabric, the Math (PolarFire), MACC (RTG4) and DSP

(Kintex-7) blocks are not used, as shown in Figure 14.

The maximum operating frequency for each FPGA implementation and the place & route

strategy used to achieve those results are shown in Figure 15 below.

Figure 14: FPGA Resources.

21

Figure 15: Max Operating Frequency.

The NNA architecture performs matrix multiplication in four steps: load instructions, load

matrices, run instructions, and return results. As evidence of the architecture’s performance, a

testbench was designed to perform matrix multiplication on two 8 x 8 matrices. The

testbench moves data into the architecture through the 32-bit data bus and sets the top-level

control signals to route the data to the Compartments and memories, after the architecture

asserts the DONE flag the testbench retrieves the results from the memories.

Loading the instructions required 334 clock cycles, loading the matrices required 72 clock

cycles, running the instructions required 25 clock cycles, and returning the results required

18 clock cycles; for a total of 449 clock cycles. When performing matrix multiplication on

matrices of the same size, instructions are loaded into the architecture for the first operation

and the same instructions are used for subsequent operations.

FPGA Max Frequency (MHz) Strategy

Kintex-7 225 Performance_ExploreWithRemap(2018)

PolarFire 175 Timing-Driven, High-Effort Layout, Seed = 6

RTG4 90 Timing-Driven, High-Effort Layout, Seed = 6

Figure 16: Waveform Timing Measurements.

22

The NNA architecture is designed to provide CPUs an accelerator for matrix multiplication,

we have chosen a RISC-V open-ISA soft-core CPU (MiV) to pair with the architecture. A

behavioral simulation of the RISC-V running C code that implements naïve matrix

multiplication using pointers for efficiency was created to determine the clock cycles

required for the operation. The C code contains a matrix multiply function that takes two

matrices as input, the code also contains software for CPU register initialization, so the time

required for execution was measured from the first instruction of the matrix multiplication

function to the last. Matrix multiplication on the RISC-V required ~34,892 clock cycles.

Based on these results, the RISC-V used in the simulation required ~77x more clock cycles

to perform 8-bit matrix multiplication versus the NNA architecture.

Synthesis and place & route of the NNA architecture was performed in LiberoSoC for the

PolarFire and RTG4, and Vivado for the Kintex7; the timing and resource utilization reports

were used to estimate power consumption for each FPGA. Figure 18 below provides the total

scenario power.

Device Dynamic Power (85%) Static Power (15%) Total Power

Polarfire (MPF500T) 869 mW 154 mW 1,023 mW

Kintex7 (XC7K325T) 971 mW 167 mW 1,138 mW

RTG4 (RT4G150L) 2,104 mW 178 mW 2282 mW

Figure 18: FPGA Power Consumption.

Figure 19 below shows the tradeoff between power and frequency for each device.

Figure 17: RISC-V Simulation Results.

23

Figure 19: Power Versus Frequency.

The NNA architecture achieves the lowest power consumption when implemented on the

PolarFire and the best power versus frequency performance when implemented on the

Kintex7.

The largest array size that could be implemented on the PolarFire FPGA was 40 x 40 (1600

compartments) with a max frequency of 100 MHz.

4.3. Comparison

The SARS [2] hardware design presented in the International Journal of Computer

Applications in 2011 performed 4-bit matrix multiplication on 3 x 3 matrices. When

implemented on a Spartan-3E FPGA the architecture achieved a max operating frequency of

210.2 MHz. The NNA architecture performed 8-bit matrix multiplication on 8 x 8 matrices

and achieved a max operating frequency of 225 MHz on a Kintex-7 FPGA. The NNA

architecture showed a small performance improvement and improved upon the SARS design

by performing 8-bit operations on larger matrices.

24

A DAE [7] hardware design from Uppsala Universitet published in 2018 (Hardware

Accelerator of Matrix Multiplication on FPGAs), performed matrix multiplication on two 8 x

8 matrices. The design decomposed each 8 x 8 matrix into sixteen 2 x 2 matrices to perform

matrix multiplication in parallel. The architecture contains five parts: memory modules,

registers, cache, high performance computing (HPC) multiplier, and HPC accumulator.

Reading data from RAM, performing matrix multiplication and writing the data back to

RAM required 3681 clock cycles. The NNA architecture performed matrix multiplication in

449 clock cycles which is a significant increase in performance.

Researchers presenting at the 2020 IEEE 4th Conference on Information & Communication

Technology (CICT) proposed the EES [8] hardware design which decomposed the m x m

input matrices into 2 x 2 matrices and performed the calculations in parallel. Performing an 8

x 8 matrix multiplication on their architecture requires 66 clock cycles. Their design

performs matrix multiplication but does not implement memory or logic to move data into or

out of the architecture (see Figure 4). The NNA architecture is a complete system which uses

memory to store data before and after matrix multiplication. For performing matrix

multiplication alone, the NNA architecture requires 25 clock cycles which is a moderate

increase in performance.

25

Chapter 5: Conclusion and Future Work

The NNA architecture was developed to perform matrix operations in lieu of a CPU in a

heterogeneous system. The ALU operations are configurable using software to allow

designers to perform matrix operations for a specific application without having to

resynthesis the design; this feature differentiates the NNA architecture from other designs.

As part of our future research, we intend to synthesis the NNA architecture for an ASIC flow.

The Verilog HDL has an option for implementing adders as Kogge-Stone or Carry-Ripple,

the first uses propagate and generate signals for faster performance while the second offers a

smaller footprint. Because a majority of the ASIC design area will be utilized by the RAMs,

a customized RAM will be needed to reduce the amount of area used.

Deep Neural Networks (DNNs) require at least two hidden layers. Thus, our future goal for

the architecture is to modify it to become a neuromorphic architecture; all the computations

for the neural network would be performed in the NNA architecture without the need for an

external CPU to control the hardware. The next step would be to determine the optimal

memory hierarchy to allow the results of each matrix operation to be forwarded into the next

matrix operation.

Convolution and cross correlation are the most widely used image processing operations,

Convolutional Neural Networks (CNNs) contain convolutional layers which can be

implemented using matrix multiplication but there are more efficient methods. In 2020

[9][12], members of the Image and Video Processing and Communications Lab (ivPCL)

presented a novel method for increasing 2D convolution and cross-correlation performance

26

using CPUs, we intend to use their research to create 2D convolution optimized hardware for

the NNA.

The analysis from chapter 2.6, will be used as part of a feasibility study to determine if the

NNA architecture can perform inferencing. The study will implement an 8-bit TensorFlow

neural network on the NNA architecture and verify the results against an implementation

executed on a laptop/desktop computer.

27

Appendix A: Adder and Multiplier Testbench

module tb_alu();

 // Registers

 reg signed [7:0] a;

 reg signed [7:0] b;

 reg clk;

 reg rst;

 // Wires

 wire [7:0] sum1, sum2;

 wire c_out1, c_out2;

 wire [15:0] prod1, prod2;

 // clock

 initial begin

 clk = 1'b0;

 rst = 1'b1;

 #40 rst = 1'b0;

 end

 always @(clk) begin

 #20 clk <= ~clk;

 end

 // KS Adder instantiation

 kogge_stone_adder #(.width(8)) adder1(

 .a(a),

 .b(b),

 .sum(sum1),

 .c_out(c_out1)

);

 // Ripple Carry Adder instantiation

 n_adder #(.width(8)) adder2(

 .a(a),

 .b(b),

 .sum(sum2),

 .ovflw(c_out2)

);

 // Full Adder Multiplier instantiation

 multiply #(.width(8)) multiply1(.a(a), .b(b), .result(prod1));

 // Kogge Stone Adder Multiplier instantiation

28

 multiply_ksa #(.width(8)) multiply2(.a(a), .b(b), .result(prod2));

 // Test logic

 always @(posedge clk) begin

 if (rst) begin

 a <= -8'h7;

 b <= 8'h3;

 end

 else begin

 a <= a + 1;

 b <= b + 1;

 end

 end

endmodule

29

Appendix B: ALU Module Testbench

module tb_alu_complete();

 // Parameters

 localparam width = 8;

 localparam INITIAL = 0;

 localparam OPCODE = 1;

 localparam WAIT = 2;

 localparam CHECK_CODE = 3;

 localparam CLR_MACC = 4;

 localparam WAIT2 = 5;

 localparam CHECK_MACC = 6;

 // Registers

 reg clk;

 reg rst;

 reg [width-1:0] a;

 reg [width-1:0] b;

 reg [4:0] insn;

 reg [4:0] PSR;

 reg [7:0] prev_result;

 reg [7:0] mult;

 reg [7:0] macc;

 reg [7:0] act_func;

 // Wires

 wire [width-1:0] result;

 // Clock and reset

 initial begin

 clk <= 1'b0;

 rst <= 1'b1;

 macc <= 8'h0;

 #120 rst <= 1'b0;

 end

 always @(clk) begin

 #20 clk <= ~clk;

 end

 // Instantiate ALU module

 alu #(.width(width)) dut(

 .clk(clk),

 .rst(rst),

 .clr_macc(insn[2]),

30

 .a(a),

 .b(b),

 .opcode(insn[1:0]),

 .activ(insn[4:3]),

 .result(result)

);

 // Test logic to test first five bits

 // instruction bits used for ALU

 always @(*) mult <= a * b;

 always @(posedge clk) begin

 if (insn[2] == 1'b1) macc <= 8'h0;

 else if (insn[2:0] == 3'h2) macc <= mult + macc;

 end

 always @(*) begin

 if (insn[1:0] == 2'h3) begin

 if (macc[7] == 1'b1) act_func <= 'h0;

 else act_func <= macc;

 end

 end

 always @(posedge clk) begin

 if (rst) begin

 a <= 8'h0;

 b <= 8'h0;

 insn <= 5'h0;

 prev_result <= 8'h0;

 end

 else begin

 case(PSR)

 INITIAL: begin // Increment operands

 a <= a + 1;

 if (a == 8'hFF) b <= b + 1;

 insn <= 5'h0;

 PSR <= OPCODE;

 end

 OPCODE: begin // Increment opcode

 PSR <= WAIT;

 end

 WAIT: begin

 prev_result <= result;

 PSR <= CHECK_CODE;

 end

 CHECK_CODE: begin // Check opcode results

 case(insn[1:0])

 2'h0: if(result != prev_result) $finish;

31

 2'h1: if(result != mult) $finish;

 2'h2: if(result != macc) $finish;

 2'h3: if(result != act_func) $finish;

 endcase

 if (insn[1:0] == 2'h3) PSR <= CLR_MACC;

 else begin

 insn[1:0] <= insn[1:0] + 1;

 PSR <= OPCODE;

 end

 end

 CLR_MACC: begin

 insn[2:0] <= 3'h4;

 PSR <= WAIT2;

 end

 WAIT2: PSR <= CHECK_MACC;

 CHECK_MACC: begin

 if(result != 'h0) $finish;

 else PSR <= INITIAL;

 end

 default: PSR <= INITIAL;

 endcase

 end

 end

endmodule

32

Appendix C: Compartment Testbench

module tb_compartment();

 // Parameters
 localparam INITIAL = 0;
 localparam LOAD_INSN_1 = 1;
 localparam LOAD_INSN_2 = 2;
 localparam LOAD_INSN_3 = 3;
 localparam LOAD_INSN_4 = 4;
 localparam LOAD_INSN_5 = 5;
 localparam LOAD_INSN_6 = 6;
 localparam LOAD_INSN_7 = 7;
 localparam CHECK_INSN_1 = 8;
 localparam CHECK_INSN_2 = 9;
 localparam RUN_INSN_1 = 10;
 localparam RUN_INSN_2 = 11;
 localparam DONE = 12;
 localparam END = 13;
 localparam OPERAND_A = 8'h3;
 localparam OPERAND_B = 8'h7;

 localparam [7:0] INSN [15:0] = {8'h00, 8'h01, 8'h02, 8'h03,
 8'h40, 8'h41, 8'h80, 8'h81,
 8'hC0, 8'hC2, 8'h40, 8'h42,
 8'h80, 8'h83, 8'hC0, 8'hC3};

 // Registers
 reg clk;
 reg rst;
 reg [1:0] mode;
 reg [7:0] west_bus;
 reg [7:0] north_bus;
 reg [5:0] PSR;
 reg [3:0] count;

 // Wires
 wire clk_out;
 wire rst_out;
 wire [1:0] mode_out;
 wire [7:0] east_bus;
 wire [7:0] south_bus;

 integer i;

 // Clock and reset
 initial begin

33

 clk <= 1'b0;
 rst <= 1'b1;
 #(120) rst <= 1'b0;
 end

 always @(clk) begin
 #(20) clk <= ~clk;
 end

 // Instantiate Compartment, address "5"
 compartment #(.comp_addr(5), .width(8)) node1(
 .clk_in(clk),
 .rst_in(rst),
 .mode_in(mode),
 .clk_out(clk_out),
 .rst_out(rst_out),
 .mode_out(mode_out),
 .west_bus(west_bus),
 .north_bus(north_bus),
 .east_bus(east_bus),
 .south_bus(south_bus)
);

 // Test logic for compartment
 always @(posedge clk) begin
 if(rst) begin
 mode <= 2'h0;
 west_bus <= 8'h0;
 north_bus <= 8'h0;
 count <= 8'h1;
 PSR <= INITIAL;
 end
 else begin
 case(PSR)
 INITIAL : begin
 PSR <= LOAD_INSN_1;
 end
 LOAD_INSN_1 : begin // Read address "6"
 mode <= 2'h1;
 north_bus <= 8'h6;
 PSR <= LOAD_INSN_2;
 end
 LOAD_INSN_2 : begin
 PSR <= LOAD_INSN_3;
 end
 LOAD_INSN_3 : begin
 if(node1.addr_valid) begin
 $display("Failed: Node addr_valid is '1'");

34

 $finish;
 end
 else begin
 north_bus <= 8'h5;
 PSR <= LOAD_INSN_4;
 end
 end
 LOAD_INSN_4 : begin // Read address "5"
 PSR <= LOAD_INSN_5;
 end
 LOAD_INSN_5 : begin
 if(node1.addr_valid == 1'b0) begin
 $display("Failed: Node addr_valid is '0'");
 $finish;
 end
 else PSR <= LOAD_INSN_6;
 end
 LOAD_INSN_6 : begin // Start loading instructions
 mode <= 2'h2;
 north_bus <= INSN[0];
 PSR <= LOAD_INSN_7;
 end
 LOAD_INSN_7 : begin // Load remaining 15 instructions into memory
 if(count == 4'hF) begin
 north_bus <= INSN[count];
 PSR <= CHECK_INSN_1;
 end
 else begin
 count <= count + 1;
 north_bus <= INSN[count];
 end
 end
 CHECK_INSN_1 : begin
 mode <= 2'h0;
 PSR <= CHECK_INSN_2;
 end
 CHECK_INSN_2 : begin
 for(i=0;i<16;i++) begin
 if(node1.insn_mem[i] != INSN[i]) begin
 $display("Instruction memory address %d failed", i);
 $finish;
 end
 end
 PSR <= RUN_INSN_1;
 mode <= 2'h3;
 count <= 4'h0;
 west_bus <= OPERAND_A;
 north_bus <= OPERAND_B;

35

 end
 RUN_INSN_1 : begin
 if(count == node1.pc) begin
 if(count < 4'hF) count <= count + 1;
 end
 else begin
 $display("Program counter is not incrementing");
 $finish;
 end

 if(count == 4'hF) PSR <= RUN_INSN_2;

 north_bus <= north_bus + 1;
 west_bus <= west_bus + 1;
 end
 RUN_INSN_2 : begin
 mode <= 2'h0;
 PSR <= DONE;
 end
 DONE : begin
 north_bus <= 8'h0;
 west_bus <= 8'h0;
 PSR <= END;
 end
 END : begin
 $display("Simulation completed successfully!");
 $finish;
 end
 default: PSR <= INITIAL;
 endcase
 end
 end

endmodule

36

Appendix D: Top-Level Testbench

module tb_systolic_array();

 // Parameters

 localparam clock_period = 20; // Clock period

 localparam INITIAL = 5'h0;

 localparam LOAD_ADDR = 5'h1;

 localparam LOAD_INSN = 5'h2;

 localparam DISABLE_1 = 5'h3;

 localparam WRITE_ROW_1 = 5'h4;

 localparam WRITE_ROW_2 = 5'h5;

 localparam WRITE_ROW_3 = 5'h6;

 localparam DISABLE_2 = 5'h7;

 localparam WRITE_COL_1 = 5'h8;

 localparam WRITE_COL_2 = 5'h9;

 localparam WRITE_COL_3 = 5'hA;

 localparam DISABLE_3 = 5'hB;

 localparam RUN = 5'hC;

 localparam READ_1 = 5'hD;

 localparam READ_2 = 5'hE;

 localparam DONE = 5'hF;

 localparam scale = 0;

 localparam [31:0] insn_bank[0:29] = '{

 32'h02020202, 32'h02020202, 32'h02020202, 32'h02020202, 32'h02020202,

 32'h02020202, 32'h02020202, 32'h02020202, 32'h02020202, 32'h02020202,

 32'h02020202, 32'h02020202, 32'h42424242, 32'h04040404, 32'h04040404,

 32'h04040404, 32'h04040404, 32'h24242424, 32'h24242424, 32'h24242424,

 32'h00000000, 32'h00000000, 32'h00000000, 32'h00000000, 32'h00000000,

 32'h00000000, 32'h00000000, 32'h00000000, 32'h00000000, 32'h00000000};

 localparam [31:0] weights[0:14] = '{

 32'h0000000F, 32'h00003344, 32'h00667788, 32'h00AABBCC, 32'h00EEFF00,

 32'h00121314, 32'h00161718, 32'h001A1B1C, 32'h00124500, 32'h00110000,

 32'h00000000, 32'h00000000, 32'h00000000, 32'h00000000, 32'h00000000};

 localparam [31:0] inputs[0:14] = '{

 32'h00000002, 32'h00000301, 32'h00020104, 32'h00050206, 32'h00080107,

 32'h000A0305, 32'h00020102, 32'h00010201, 32'h00020100, 32'h00010000,

 32'h00000000, 32'h00000000, 32'h00000000, 32'h00000000, 32'h00000000};

 // Registers

 reg clk;

 reg rst;

 reg [1:0] mode;

 reg [4:0] addr;

 reg [7:0] row_we;

37

 reg [7:0] col_we;

 reg row_sel;

 reg col_sel;

 reg [31:0] din;

 reg [1:0] bank_sel;

 reg [4:0] PSR;

 reg [15:0] counter;

 reg [7:0] row_count;

 reg [2:0] pad_count;

 reg [3:0] addr_count;

 reg [15:0] test1;

 reg [15:0] test2;

 reg [15:0] test3;

 reg [7:0] y1,y2,y3,y4,y5,y6,y7,y8,y9;

 // Wires

 wire [31:0] dout;

 wire done;

 // Integers

 integer unsigned insn_count;

 integer unsigned i,error;

 integer unsigned test_i;

 // Clock and reset

 initial begin

 clk <= 1'b0;

 rst <= 1'b1;

 #120 rst <= 1'b0;

 end

 always @(clk) begin

 #(clock_period/2) clk <= ~clk;

 end

 // Verify results

 initial begin

 y1=0;

 y2=0;

 y3=0;

 y4=0;

 y5=0;

 y6=0;

 y7=0;

38

 y8=0;

 y9=0;

 test_i =0;

 #10;

 for(i=0;i<9;i++) begin

 y1=y1+inputs[i][7:0]*weights[i][7:0];

 y2=y2+inputs[i][7:0]*weights[i+1][15:8];

 y3=y3+inputs[i][7:0]*weights[i+2][23:16];

 y4=y4+inputs[i+1][15:8]*weights[i][7:0];

 y5=y5+inputs[i+1][15:8]*weights[i+1][15:8];

 y6=y6+inputs[i+1][15:8]*weights[i+2][23:16];

 y7=y7+inputs[i+2][23:16]*weights[i][7:0];

 y8=y8+inputs[i+2][23:16]*weights[i+1][15:8];

 y9=y9+inputs[i+2][23:16]*weights[i+2][23:16];

 end

 y1=y1 >> scale;

 y2=y2 >> scale;

 y3=y3 >> scale;

 y4=y4 >> scale;

 y5=y5 >> scale;

 y6=y6 >> scale;

 y7=y7 >> scale;

 y8=y8 >> scale;

 y9=y9 >> scale;

 end

 always @(posedge clk) begin

 if(rst) begin

 test1 <= 16'h0;

 test2 <= 16'h0;

 test3 <= 16'h0;

 end

 else if(test_i < 10) begin

 test1 <= test1 + (inputs[test_i][7:0]*weights[test_i+1][15:8]);

 test2 <= test2 + (inputs[test_i][7:0]*weights[test_i][7:0]);

 test3 <= test3 + (inputs[test_i+1][15:8]*weights[test_i][7:0]);

 test_i <= test_i + 1;

 end

 end

 // Instantiate systolic array

 systolic_array array #(

 .scale(scale))

 array(

 .clk(clk),

 .rst(rst),

39

 .mode(mode),

 .addr(addr),

 .row_we(row_we),

 .col_we(col_we),

 .row_sel(row_sel),

 .col_sel(col_sel),

 .din(din),

 .bank_sel(bank_sel),

 .dout(dout),

 .done(done)

);

 // Test logic

 always @(posedge clk) begin

 if(rst) begin

 mode <= 2'h0;

 addr <= 5'h0;

 row_we <= 8'h0;

 col_we <= 8'h0;

 row_sel <= 1'b0;

 col_sel <= 1'b0;

 din <= 32'h0;

 bank_sel <= 2'h0;

 row_count <= 8'h0;

 insn_count <= 20;

 counter <= 16'h0;

 pad_count <= 3'h0;

 addr_count <= 4'h0;

 PSR <= INITIAL;

 end

 else begin

 case(PSR)

 INITIAL: begin

 row_count <= 8'h0;

 insn_count <= 30;

 counter <= 16'h0;

 bank_sel <= 2'h3;

 pad_count <= 3'h0;

 addr_count <= 4'h0;

 PSR <= LOAD_ADDR;

 end

 LOAD_ADDR: begin

 counter <= 16'h0;

 mode <= 2'h1;

 din <= {row_count,row_count,row_count,row_count};

 pad_count <= 3'h0;

40

 if (addr_count < 4'h8) begin

 addr_count <= addr_count + 1;

 PSR <= LOAD_ADDR;

 end

 else begin

 row_count <= row_count + 1;

 PSR <= LOAD_INSN;

 end

 end

 LOAD_INSN: begin

 addr_count <= 4'h0;

 din <= insn_bank[counter];

 if(counter < insn_count) begin

 if (pad_count < row_count - 1) begin

 mode <= 2'h0;

 pad_count <= pad_count + 1;

 end

 else mode <= 2'h2;

 counter <= counter + 1;

 addr_count <= 4'h0;

 PSR <= LOAD_INSN;

 end

 else begin

 mode <= 2'h0;

 if (row_count < 8'h8) begin

 pad_count <= 3'h0;

 PSR <= LOAD_ADDR;

 end

 else begin

 counter <= 16'h0;

 PSR <= DISABLE_1;

 end

 end

 end

 DISABLE_1: begin

 mode <= 2'h0;

 row_sel <= 1'b0;

 col_sel <= 1'b0;

 counter <= 16'h0;

 addr <= 4'h0;

 bank_sel <= 2'h0;

 PSR <= WRITE_ROW_1;

 end

 WRITE_ROW_1: begin

 din <= inputs[addr];

 row_we <= 8'hFF;

41

 PSR <= WRITE_ROW_2;

 end

 WRITE_ROW_2: begin

 if(addr < 15) begin

 din <= inputs[addr+1];

 addr <= addr + 1;

 row_we <= 8'hFF;

 end

 else begin

 addr <= 4'h0;

 row_we <= 8'h00;

 din <= 32'h0;

 PSR <= DISABLE_2;

 end

 end

 WRITE_ROW_3: begin

 if(addr < 15) begin

 din <= inputs[addr+1];

 addr <= addr + 1;

 row_we <= 8'hF0;

 end

 else begin

 addr <= 4'h0;

 row_we <= 8'h00;

 din <= 32'h0;

 PSR <= DISABLE_2;

 end

 end

 DISABLE_2: begin

 mode <= 2'h0;

 row_sel <= 1'b0;

 col_sel <= 1'b0;

 counter <= 16'h0;

 addr <= 4'h0;

 row_we <= 8'h00;

 PSR <= WRITE_COL_1;

 end

 WRITE_COL_1: begin

 din <= weights[addr];

 col_we <= 8'hFF;

 PSR <= WRITE_COL_2;

 end

 WRITE_COL_2: begin

 if(addr < 15) begin

 din <= weights[addr+1];

 addr <= addr + 1;

42

 col_we <= 8'hFF;

 end

 else begin

 addr <= 4'h0;

 col_we <= 8'h00;

 din <= 32'h0;

 PSR <= DISABLE_3;

 end

 end

 WRITE_COL_3: begin

 if(addr < 15) begin

 din <= weights[addr+1];

 addr <= addr + 1;

 col_we <= 8'hF0;

 end

 else begin

 addr <= 4'h0;

 col_we <= 8'h00;

 din <= 32'h0;

 PSR <= DISABLE_3;

 end

 end

 DISABLE_3: begin

 mode <= 2'h0;

 row_sel <= 1'b1;

 col_sel <= 1'b1;

 counter <= 16'h0;

 addr <= 4'h0;

 row_we <= 8'h00;

 col_we <= 8'h00;

 bank_sel <= 2'h3;

 PSR <= RUN;

 end

 RUN: begin

 mode <= 2'h3;

 counter <= counter + 1;

 if ((counter > 4) && done) begin

 counter <= 16'h0;

 mode <= 2'h0;

 PSR <= READ_1;

 end

 end

 READ_1: begin

 mode <= 2'h0;

 bank_sel <= 2'h1;

 addr <= 5'h0;

43

 PSR <= READ_2;

 end

 READ_2: begin

 if(addr == 4'h2) PSR <= DONE;

 else addr <= addr + 1;

 end

 DONE: PSR <= DONE;

 default: begin

 mode <= 2'h0;

 addr <= 5'h0;

 row_we <= 8'h0;

 col_we <= 8'h0;

 row_sel <= 1'b0;

 col_sel <= 1'b0;

 din <= 32'h0;

 bank_sel <= 2'h0;

 row_count <= 0;

 insn_count <= 20;

 counter <= 16'h0;

 pad_count <= 3'h0;

 PSR <= INITIAL;

 end

 endcase

 end

 end

 // Verification Logic

 always @(posedge clk) begin

 if(rst) error <= 0;

 case(PSR)

 DISABLE_1: begin

 for(i=0;i<30;i++) begin // Instruction

 if(array.array_row[0].array_column[0].genblk1.neuron.insn_mem[i] !=

insn_bank[i][7:0]) begin

 $display("Memory Failure: Row 0, Column 0, Insn %d", i);

 error = 1;

 end

 if(array.array_row[1].array_column[1].genblk1.neuron.insn_mem[i] !=

insn_bank[i][15:8]) begin

 $display("Memory Failure: Row 1, Column 1, Insn %d", i);

 error = 1;

 end

 if(array.array_row[2].array_column[2].genblk1.neuron.insn_mem[i] !=

insn_bank[i][23:16]) begin

 $display("Memory Failure: Row 2, Column 2, Insn %d", i);

 error = 1;

44

 end

 if(array.array_row[3].array_column[3].genblk1.neuron.insn_mem[i] !=

insn_bank[i][31:24]) begin

 $display("Memory Failure: Row 3, Column 3, Insn %d", i);

 error = 1;

 end

 if(array.array_row[4].array_column[4].genblk1.neuron.insn_mem[i] !=

insn_bank[i][7:0]) begin

 $display("Memory Failure: Row 4, Column 4, Insn %d", i);

 error = 1;

 end

 if(array.array_row[5].array_column[5].genblk1.neuron.insn_mem[i] !=

insn_bank[i][15:8]) begin

 $display("Memory Failure: Row 5, Column 5, Insn %d", i);

 error = 1;

 end

 if(array.array_row[6].array_column[6].genblk1.neuron.insn_mem[i] !=

insn_bank[i][23:16]) begin

 $display("Memory Failure: Row 6, Column 6, Insn %d", i);

 error = 1;

 end

 if(array.array_row[7].array_column[7].genblk1.neuron.insn_mem[i] !=

insn_bank[i][31:24]) begin

 $display("Memory Failure: Row 7, Column 7, Insn %d", i);

 error = 1;

 end

 end

 if(error) begin

 $display("Neuron Instruction Failure!");

 $finish;

 end

 end

 DISABLE_3: begin

 for(i=0;i<10;i++) begin // Data

 // Check row memories

 if(array.array_row[0].row_memory.mem[i] != inputs[i][7:0]) begin

 $display("Input Failure: Row 0, Data %d", i);

 error = 1;

 end

 if(array.array_row[1].row_memory.mem[i] != inputs[i][15:8]) begin

 $display("Input Failure: Row 1, Data %d", i);

 error = 1;

 end

 if(array.array_row[2].row_memory.mem[i] != inputs[i][23:16]) begin

 $display("Input Failure: Row 2, Data %d", i);

45

 error = 1;

 end

 if(array.array_row[3].row_memory.mem[i] != inputs[i][31:24]) begin

 $display("Input Failure: Row 3, Data %d", i);

 error = 1;

 end

 if(array.array_row[4].row_memory.mem[i] != inputs[i][7:0]) begin

 $display("Input Failure: Row 4, Data %d", i);

 error = 1;

 end

 if(array.array_row[5].row_memory.mem[i] != inputs[i][15:8]) begin

 $display("Input Failure: Row 5, Data %d", i);

 error = 1;

 end

 if(array.array_row[6].row_memory.mem[i] != inputs[i][23:16]) begin

 $display("Input Failure: Row 6, Data %d", i);

 error = 1;

 end

 if(array.array_row[7].row_memory.mem[i] != inputs[i][31:24]) begin

 $display("Input Failure: Row 7, Data %d", i);

 error = 1;

 end

 // Check column memories

 if(array.array_row[0].array_column[0].genblk2.col_memory.mem[i] !=

weights[i][7:0]) begin

 $display("Weight Failure: Col 0, Data %d", i);

 error = 1;

 end

 if(array.array_row[0].array_column[1].genblk2.col_memory.mem[i] !=

weights[i][15:8]) begin

 $display("Weight Failure: Col 1, Data %d", i);

 error = 1;

 end

 if(array.array_row[0].array_column[2].genblk2.col_memory.mem[i] !=

weights[i][23:16]) begin

 $display("Weight Failure: Col 2, Data %d", i);

 error = 1;

 end

 if(array.array_row[0].array_column[3].genblk2.col_memory.mem[i] !=

weights[i][31:24]) begin

 $display("Weight Failure: Col 3, Data %d", i);

 error = 1;

 end

 if(array.array_row[0].array_column[4].genblk2.col_memory.mem[i] !=

weights[i][7:0]) begin

 $display("Weight Failure: Col 4, Data %d", i);

46

 error = 1;

 end

 if(array.array_row[0].array_column[5].genblk2.col_memory.mem[i] !=

weights[i][15:8]) begin

 $display("Weight Failure: Col 5, Data %d", i);

 error = 1;

 end

 if(array.array_row[0].array_column[6].genblk2.col_memory.mem[i] !=

weights[i][23:16]) begin

 $display("Weight Failure: Col 6, Data %d", i);

 error = 1;

 end

 if(array.array_row[0].array_column[7].genblk2.col_memory.mem[i] !=

weights[i][31:24]) begin

 $display("Weight Failure: Col 7, Data %d", i);

 error = 1;

 end

 end

 if(error) begin

 $display("Input/Weight Failure!");

 $finish;

 end

 end

 READ_1: begin

 if(array.array_row[0].row_memory.mem[2] != y1) $display("Y1 failed!");

 if(array.array_row[0].row_memory.mem[1] != y2) $display("Y2 failed!");

 if(array.array_row[0].row_memory.mem[0] != y3) $display("Y3 failed!");

 if(array.array_row[1].row_memory.mem[2] != y4) $display("Y4 failed!");

 if(array.array_row[1].row_memory.mem[1] != y5) $display("Y5 failed!");

 if(array.array_row[1].row_memory.mem[0] != y6) $display("Y6 failed!");

 if(array.array_row[2].row_memory.mem[2] != y7) $display("Y7 failed!");

 if(array.array_row[2].row_memory.mem[1] != y8) $display("Y8 failed!");

 if(array.array_row[2].row_memory.mem[0] != y9) $display("Y9 failed!");

 end

 DONE: begin

 $display("Simulation complete!");

 $finish;

 end

 endcase

 end

endmodule

47

48

References

[1] N.A. Campbell et al. Biology: Concepts & Connections, 6th Edition, pp. 563-576, 2009.

[2] M. Vucha, A. Rajawat, “Design and FPGA Implementation of Systolic Array

Architecture for Matrix Multiplication,” International Journal of Computer Applications

(0975-8887), vol. 26, Jul 2011.

[3] A. Geron, Hands-On Machine Learning with Scikit-Learn & TensorFlow, Sebastopol:

O’Reilly Media, 2017.

[4] W. J. Dally, Y. Turakhia, S. Han, “Domain-specific hardware accelerators,”

Communications of the ACM, vol 63, pp. 48-57, Jul 2020.

[5] H. T. Kung, “Let’s Design Algorithms for VLSI Systems,” in CALTECH Conference on

VLSI, Pasadena, CA, 1979

[6] G. Maan, “Hardware acceleration of matrix multiplication,” BS thesis, Dept. Computer

Science, Universiteit Leiden, The Netherlands, 2019.

[7] Z. Chen, “Hardware Accelerator of Matrix Multiplication on FPGAs,” thesis, Dept.

Information Technology, Uppsala Universitet, Uppsala, Sweden, 2018

[8] M. Shanmugakumar, V. S. M. Srinivasavarma, N. Mahammad, “Energy Efficient

Hardware Architecture for Matrix Multiplication,” in 2020 IEEE 4th Conference on

Information & Communication Technology (CICT), Chennai, India, 2020

[9] C. Carranza, D. Llamocca, M. Pattichis, “Fast and Scalable 2D Convolutions and Cross-

correlations for Processing Image Databases and Videos on CPUs,” in IEEE Southwest

Symposium on Image Analysis and Interpretation (SSIAI) 2020, Sante Fe, NM, 2020.

49

[10] R. Duan, H. Wu, R. Zhou, “Faster Matrix Multiplication via Asymmetric Hashing,”

Arvix [Online], Nov 9 2022, Available: https://arxiv.org/pdf/2210.10173.pdf

[11] J. Alman, V.V. Williams, “A Refined Laser Method and Faster Matrix Multiplication,”

Arvix [Online], Oct 12 2020. Available: https://arxiv.org/pdf/2010.05846.pdf

[12] C. Carranza, M. Pattichis, D. Llamocca, “Fast and Parallel Computation of the Discrete

Periodic Radon Transform on GPUs, multi-core CPUs and FPGAs,” in 2018 25th IEEE

International Conference on Image Processing (ICIP), Athens, Greece, 2018, pp. 4158-4162

[13] AMD/Xilinx, “System-Level Benefits of the Versal Platform”, WP539 v1.2, Feb 15,

2022

	A Reconfigurable Architecture for Matrix Multiplication for Low Power Applications
	Recommended Citation

	tmp.1681443457.pdf.OkOFP

