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A Reconfigurable Architecture for Matrix Multiplication  

for Low Power Applications 

by 

Jeffrey Love 

B.S., Computer Engineering, University of New Mexico, 2015 

M.S., Computer Engineering, University of New Mexico, 2023 

ABSTRACT 

This thesis presents a hardware architecture for performing matrix multiplication via a 

systolic array to reduce time complexity and power consumption. The proposed architecture, 

the Neural Network Accelerator (NNA), was designed in Verilog HDL to perform 8-bit 

multiplication to reduce the resources required to implement the NNA on low-power FPGAs. 

The NNA’s open architecture is designed to support radiation testing for fault tolerant 

designs targeting space applications.  

The NNA was compared against two matrix multiplication architectures: SARS and DAE.  

Max operating frequency for SARS and NNA was 210.2 MHz and 225 MHz respectively. 

DAE and NNA required 3,681 and 449 clock cycles for matrix multiplication respectively. 

The reconfigurable NNA architecture includes unique features: an 8-bit Instruction Set 

Architecture (ISA) to control ALU operations and data-flow, a neural network activation 

function (ReLU) module, 16-bit to 8-bit scaling of ALU results, and a max systolic array size 

of 255 x 255. 
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1. Chapter 1: Introduction 

Matrix multiplication is an essential component in machine learning and image processing 

for accumulating the weighted sums of neuron inputs and for performing convolution to 

smooth, sharpen and blur images. Matrix multiplication of matrices A and B, with 

dimensions M x N and N x P respectively, will have a time complexity of ϴ(MNP), when 

performed using the naïve matrix multiplication algorithm executed on Central Processing 

Units (CPUs) without parallelization. Graphics Processing Units (GPUs), Tensor Processing 

Units (TPUs), Application Specific Integrated Circuits (ASICs) and hardware accelerators 

such as Field Programmable Gate Arrays (FPGAs), are examples of domain specific 

hardware developed to optimize the execution of specific applications using parallelism to 

increase performance. A simplified hardware architecture designed only for matrix 

multiplication, with compute units arranged in a systolic array, can perform matrix 

multiplication with a time complexity of ϴ(n). 

1.1. Motivation 

In order to perform machine learning applications in space, efficient and radiation tolerant 

hardware is required. To determine the radiation tolerance of commercial hardware, Total 

Ionizing Dose (TID) and Single Event Effects (SEE) testing can be performed on the device. 

Without access to the device’s architecture information, determining the resilience of the 

hardware is difficult. Commercial hardware architecture information is not public 

knowledge, which led us to build our own matrix multiplication architecture so that we could 

study its feasibility for space applications. Developing the architecture in HDL using non-

vendor specific resources will allow the architecture to be deployed on the latest high-

performance and energy efficient space grade FPGAs. 



2 

 

After reviewing current literature, we found two matrix multiplication architectures (SARS 

[2] and DAE [7]) developed for FPGAs and one architecture (EES [8]) developed for an 

ASIC flow. The SARS architecture uses a systolic array design. The DAE and EES 

architectures use a non-systolic array design. The SARS, DAE and EES architectures were 

chosen because they provided metrics that could be used for comparison; max frequency 

when implemented on an FPGA or clock cycles required for operation. All architectures are 

presented in Chapter 2 and used for comparison in Chapter 4.    

1.2. Thesis Statement 

The goal of this thesis is to develop a low-power, domain-specific architecture for 

performing 8-bit matrix multiplication, called the Neural Network Accelerator (NNA). The 

architecture will be developed to accelerate matrix multiplication for space applications, 

using the fundamental concepts of domain-specific architecture and systolic arrays.  

1.3. Contribution 

The architecture will be written in Verilog HDL and implemented on a low-power FPGA. 

The architecture will use an 8-bit Instruction Set Architecture (ISA) to control ALU 

operations and data-flow through each node of the systolic array, a feature not found in any 

other architecture that was found in the literature. Prior research was focused on 

decomposing matrix multiplication into smaller matrices, resulting in an exponentially 

increasing number of cycles. The NNA architecture’s systolic array is configurable up to 255 

x 255 to avoid unnecessary matrix decompositions and thus perform matrix multiplication in 

less clock cycles than alternative approaches. In addition, each compute unit in the systolic 

array will include a module for implementing a rectified linear activation function (ReLU) 
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commonly used in neural networks. Every ALU can be configured to scale the 16-bit result 

to 8-bits. 

1.4. Overview 

The remainder of the thesis will contain four chapters. In Chapter 2, we provide background 

information on current literature review of matrix multiplication algorithms, evidence for 

implementing matrix multiplication using systolic arrays and utilizing domain-specific 

architecture concepts to reduce time complexity and power consumption. Systolic and Non-

systolic array, matrix multiplication architectures are presented in Chapter 2. We provide an 

analysis of the accuracy of 8-bit neural networks in Chapter 2. In Chapter 3, we provide 

details and block diagrams for the proposed Neural Network Accelerator (NNA) architecture. 

In Chapter 4, testbench results and performance metrics for the architecture will provide 

evidence that the NNA architecture performs matrix multiplication in less clock cycles than 

matrix multiplication architectures found in recent literature. Chapter 5 will provide 

concluding remarks and a plan for future work. 
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Chapter 2: Background 

This chapter will provide references to current research on reducing the time complexity of 

matrix multiplications algorithms, systolic array architecture for matrix multiplication, the 

advantages of domain specific architecture and non-systolic array matrix multiplication 

architectures. 

2.1. Matrix Multiplication Algorithms 

Research conducted to decrease time complexity to the theoretical lower bound has led to 

new algorithms; three examples are the Strassen algorithm [8][11], Coppersmith-Winograd 

[8][11] algorithm and the Laser method [10][11]. Naive matrix multiplication of an n x n 

matrix requires m2(m-1) additions, and m3 multiplications. Both algorithms reduce the 

number of multiplications in favor of more additions. 

The Strassen algorithm uses the divide-and-conquer technique to perform matrix 

multiplication in parallel. The algorithm has two requirements: 

1. Both matrices must have dimensions n x n. 

2. n must be a power of two. 

The matrices can be padded with zeros to meet the requirements. Any matrix that is greater 

than 2 x 2 will be decomposed into m, 2 x 2 matrices where, 

𝑚 =  22[𝑙𝑜𝑔2𝑛−1]. 

Each 2 x 2 matrix multiplication requires seven multiplications and eighteen additions as 

shown in the Equation 1 below for the multiplication of matrices A and B. 

[
𝐴11 𝐴12

𝐴21 𝐴22
] [

𝐵11 𝐵12

𝐵21 𝐵22
]  = [

𝐶11 𝐶12

𝐶21 𝐶22
].                  (1) 
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P1 = (A11 + A22)(B11 + B22). 

P2 = (A21 + A22)B11. 

P3 = A11(B11 - B22). 

P4 = A22(B21 - B11). 

P5 = (A11 + A12)B22. 

P6 = (A21 - A11)(B11 + B22). 

P7 = (A12 - A22)(B21 + B22). 

 

C11 = P1 + P4 – P5 + P7. 

C12 = P3 + P5. 

C21 = P2 + P4. 

C22 = P1 - P2 + P3 + P6. 

Strassen’s algorithm reduces the time complexity of matrix multiplication to ϴ(n2.81) [11]. 

The Coppersmith-Winograd algorithm improves upon the Strassen algorithm by reducing the 

number of additions to fifteen, which reduces the time complexity to ϴ(n2.376) [11]. Until 

2010, this was considered the fastest matrix multiplication algorithm. As of 2022, researchers 

are still attempting to reduce the time complexity to ϴ(n2), the Laser Method was used to 

create a new algorithm from the Coppersmith-Winograd algorithm, and is currently the 

fastest algorithm developed, with a time complexity of ϴ(n2.372) [11]. 

The Laser method is an indirect method used to create new matrix multiplication algorithms 

from existing algorithms. Strassen developed the Laser method, and it was optimized by 

Coppersmith and Winograd to achieve better results [11]. The matrices are converted to a 

trilinear polynomial tensor to perform matrix multiplication. The Laser method reduces the 

direct sum of matrix multiplication tensors (T) to powers of tensors. In 2022, the Laser 
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method was used to produce a new algorithm with a n0.004 improvement over the original 

Coppersmith-Winograd algorithm.  

2.2. Systolic Arrays 

The concept of the systolic array was first published in 1979 by H.T. Kung and Charles 

Leiserson [5]. Systolic arrays are inspired by biology where dataflow is similar to blood 

flow; the heart pumps blood to many cells which process it before returning to the heart [1]. 

In systolic arrays data flows from memory to ALUs or processing units, allowing each 

component to access the data before it returns to memory. The components are arranged in a 

two-dimensional array, where each 

component shares connections to 

other components allowing data to 

flow between them. Components in 

the middle of the array only have 

connections to their nearest 

neighbors, and only the boundary 

components have access to memory. 

Also, data only flows one-way, read 

once from memory and written to 

memory at the end. The components take two operands as inputs and produce one result, the 

operands are shifted into the ALU when needed so that local (distributed) memory is not 

required. Figure 1 shows two matrices being shifted into the systolic array to perform matrix 

multiplication. After matrix multiplication is complete, the result for each component is 

Figure 1: Systolic Array of Components. 
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shifted out of the matrix to the right or bottom until it is stored in memory. If an n x m matrix 

is too large for the systolic array, the matrix can be decomposed into smaller matrices. 

2.3. Domain Specific Architecture 

General purpose computing hardware offer generic resources suitable for a wide range of 

applications, from simple arithmetic to simulating ANNs. We first summarize 

implementations on CPUs and GPUs. CPUs are designed for low-latency and low throughput 

processing and GPUs are designed for high latency and high throughput processing. CPUs 

and GPUS can accomplish most tasks, but neither excels at any one application, for 

application specific performance improvements we can design domain specific hardware. 

According to Amdahl’s law, significant performance improvements are gained by using a 

faster mode of execution, if the faster mode of execution can be used for most of the 

computation time. Domain specific hardware are designed to provide performance 

improvements to specific applications and is optimal when the size of the memory(s), 

parallelism and data types match the target application [4]. To decrease power consumption 

and area, Arithmetic Logic Units (ALUs) or processing units are designed with only the 

specific hardware required for the application. 

AMD/Xilinx has developed their Versal family of FPGAs to provide specialized hardware 

engines for applications: cloud computing, network processing, domain-specific parallelism, 

convolution, machine learning and video/image processing [13]. The Versal AI engine is a 

2D array of vector-vector and matrix-matrix compute engines with tightly coupled memories. 

With AMD/Xilinx developing architecture to accelerate application performance we can 

conclude there is a market for highly efficient domain-specific hardware. 
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2.4. Systolic Array Matrix Multiplication Architectures 

In 2011, researchers Mahendra Vucha and Arvind Rajawat from the Maulana Azad National 

Institute of Technology (MANIT) presented their Systolic Architecture on Reconfigurable 

Systems (SARS) design for FPGAs [2]. Their architecture contains Processing Elements (PE) 

connected in a systolic array. Each PE contains a 4-bit multiplier and accumulator and the 

design shown in Figure 2 was implemented on a Spartan-3E FPGA. 

 

Figure 2: SARS Design [2]. 

The SARS design features a clock and reset and does not contain memory for the inputs and 

outputs. This design will be used in comparison with the NNA architecture. 
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2.5. Non-Systolic Array Matrix Multiplication Architectures 

In 2018, Zhe Chen [7], a researcher from Uppsala Universitet, presented a FPGA hardware 

accelerator for matrix multiplication based on a Decoupled Access-Execute (DAE) 

architecture [7]. The architecture separates data processing into two steps, memory access 

and data execution, which are performed concurrently. The architecture contains four 

subsystems: Data Select, Buffer, Calculation, and Processing/Output, shown in Figure 3. 

 In the Data Select module, the input is the first two rows of matrix A and the first two 

columns of matrix B, each divided into four 2 x 2 matrices which become the inputs of the 

Buffer module. The Buffer module uses two BRAMs to implement the DAE design, the 

output of the two BRAMs are added together and passed to the Calculation module. The 

Calculation module performs matrix multiplication on the four 2 x 2 matrices received from 

the Buffer module. Each 2 x 2 matrix is passed to the Processing/Output module which 

combines the 2 x 2 matrices and produces the output matrix C. 

In 2020, Shanmugakumar, M., Srinivasavarma, V. S. M., and Mahammad, N. from 

Madanapalle Institute of Technology and Science and IIITDM Kancheepuram, presented an 

energy efficient and scalable (EES) ASIC hardware architecture for matrix multiplication [8]. 

Figure 3: Multiplication Sub-Modules. [7] 
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The architecture performs matrix multiplication by taking all elements of the first matrix in 

parallel and the second matrix is separated into columns and each row is passed into the 

matrix sequentially. Figure 4 shows the design implemented for a 3 x 3 array. 

Each column of the output matrix is produced in parallel until all columns have been 

produced. The architecture is scalable to any m x m matrix but requires additional passes 

when m > 4; additional elements are shifted in during additional cycles. The ASIC design 

does not include memory to store the inputs and outputs. 

Both of the architectures referenced in this section will be used in comparison with the NNA 

architecture. 

2.6. Classification Accuracy of 8-Bit Neural Networks for MNIST 

Google has incorporated post-training quantization into their TensorFlow software, allowing 

64-, 32-, and 16-bit networks to be converted into 8-bit networks with minimal loss in 

Figure 4: 3x3 Matrix Multiplier. [8] 
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inference accuracy. The activation function outputs are converted from floating point to 

integer by running input data through the floating-point model and scaling the maximum and 

minimum values from 127 to -128. Post-training quantization may introduce errors in the 

neural network that cannot be corrected, requiring the developer to modify the network, 

perform training and post-training quantization and measure the accuracy of the network. As 

evidence of the effectiveness of post-training quantization we developed two neural networks 

created in TensorFlow/Keras and trained them using the MNIST database. After post-training 

quantization we measured the accuracy of both networks, shown below as “Network 1” and 

“Network 2”. 

 
Figure 5: Network 1. 

 

Network 2 was configured with layers of 196 dropout neurons. Four dropout rates were 

tested to determine which achieved the best accuracy: 0%, 10%, 30% and 50%. A dropout 

rate of 10% achieved the highest accuracy. 

Layer (type)                   Output Shape              Param #    

================================================================= 

 input_layer (Conv2D)           (None, 26, 26, 32)      320                                                           

 input_pooling (AveragePooling2D)   (None, 13, 13, 32)       0 

 hidden_layer (Conv2D)          (None, 11, 11, 50)      14450    

 hidden_pooling (AveragePooling2D)  (None, 5, 5, 50)          0          

 flatten (Flatten)              (None, 1250)              0   

 dense_layer (Dense)            (None, 500)                  

 output_layer (Dense)           (None, 10)                   

================================================================= 

Total params: 645,280 

Trainable params: 645,280 

Non-trainable params: 0 
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Figure 6: Network 2. 

 Network 1 Network 2 

32-bit Floating Point Accuracy 96.7% 97.0% 

8-Bit Integer Accuracy 94.8% 97.1% 
Figure 7: Network Accuracy. 

After post-training quantization the accuracy of Network 1 decreased, and the accuracy 

Network 2 remained the same. By reducing the data types from 32-bit to 8-bit, the resources 

and power required to perform matrix multiplication are reduced. 

This analysis will be included in a future feasibility study to determine if the NNA 

architecture can perform inferencing using 8-bit TensorFlow neural networks. 
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Chapter 3: Neural Network Accelerator (NNA) Architecture 

The proposed NNA architecture was developed as a systolic array with specialized ALUs to 

reduce the time complexity of matrix multiplication and power consumption when 

implemented on a FPGA. The goal was to create the hardware resources necessary for matrix 

multiplication and optimize the architecture for neural network applications. The architecture 

was developed in Verilog HDL and is scalable to meet application requirements and FPGA 

resource constraints. The architecture was developed for embedded systems with size, 

weight, and power (SWaP) constraints. The following sections present the design of the three 

subsystems of the NNA architecture: compartment, systolic array, and top level (data flow 

and control). 

3.1. Compartment 

 

The compartment contains interconnects 

(West, East, North, and South Bus) and 

control signals that move data into and out 

of the compartment. Data meant for 

neighboring compartments, moves from 

West to East, and North to South. The 

Instruction Memory is an 8-bit, single port 

memory with a configurable depth, which 

stores instructions for the compartment received through the North Bus. When the 

compartment is not running instructions, instructions are written into memory using a 2-bit 

control signal from the top level: 

Figure 8: Compartment. 
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• Mode[1:0]:   00 = Reset, 01 = Read Address, 10 = Load Instructions, 11 = Run 

Instructions 

When Mode is set to Reset, the compartment is idle. Each compartment contains a unique 8-

bit address, configured when it is instantiated during synthesis providing every compartment 

in a column with a unique address, and a global address of 256 (0xFF). When Mode is set to 

Read Address, the North Bus value is stored in a register. When Mode is set to Load 

Instruction, the North Bus value is stored in the instruction memory. The unique address 

allows each compartment to process a unique set of instructions allowing the architecture to 

be optimized for specific applications such as convolution. 

 Each compartment contains control registers for the ALU and the multiplexers that direct the 

flow of data. Control registers are updated every clock cycle when the program counter (PC) 

is running and according to the instructions stored in memory. The compartments instruction 

set architecture (ISA) uses 8-bit instructions. 

The East Mux Select bits route data to the East Bus interconnect: 00 = West Bus, 01 = 

MACC Result, 10 = Multiply Result, 11 = Activation Function Result. The Store bit is 

asserted when the East Bus output needs to be stored in memory. The Activation Function 

bits select the activation function: 00 = ReLU, and 01, 10, 11 = Reserved for Future Use. The 

Clear bit resets the accumulator in the ALU to zero. The ALU bits select the ALU operation: 

00 = NOOP, 01 = Multiply, 10 = MACC (multiply and accumulate), 11 = Activation 

Function.  

Figure 9: Compartment ISA. 
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Each ALU contains a multiplier, adder, and activation function module and performs signed 

or unsigned integer operations. The ALUs operand A input is connected to the West Bus, 

operand B is connected to North Bus. The input of the adder module is the output of the 

multiplier module, creating a MACC. The input of the activation function module is the 

output of the MACC. With the three modules in series, the output of each module can be 

selected as the output of the ALU: multiply, MACC, or activation function unit. The 16-bit 

output of the ALU is scaled with a Verilog parameter that specifies the number of right-shifts 

to perform resulting in efficient scaling by powers of two. The inputs and outputs of the ALU 

are 8-bits, requiring minimal hardware resources. Thus, multiplication and addition require 

one clock cycle.  

3.2. Systolic Array 

 

The systolic array connects multiple instantiations of the compartments in a n x n array, 

where the max value of n is 255 (256 is the global address). Data moves into the systolic 

Figure 10: Systolic Array. 
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array from the West Bus and North Bus, and data moves out of the array through the East 

Bus as shown in Figure 10. The compartments are synchronized by a global clock and 

synchronous reset from the top-level. Data will shift from each compartment to the next 

every clock period. The configuration of the systolic array is parametrized to take advantage 

of the data bus width at the top-level. Here, n must be an integer value divisible by the 

number of bytes in the data bus. 

3.3. Top-Level: Data Flow and Control 

 

The top-level controls the flow of data to and from the systolic array using control signals, 

memories, and multiplexers. The North Bus input is connected to an 8-bit memory or the 

data bus using a multiplexor. Instructions for each compartment are shifted in through the 

data bus and inputs for the matrix operations are stored memory until the program counter is 

activated. The West Bus input is connected to memory which is used to store the inputs from 

the data bus and the outputs of the matrix operations from the compartments. After the inputs 

for the matrix operations are shifted into the systolic array, the compartments will assert a 

signal to store the outputs of the matrix operations into memory starting at address zero. The 

output of each row memory is connected to inputs of a multiplexer, allowing the output of 

the matrix operations to be sent to a processor or simple logic. 
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The top-level module shown in Figure 11, has input and outputs that can be mapped to 

registers of an interface wrapper (AXI, APB, Wishbone, etc.). To reduce power consumption 

and hardware resources the memory depth and systolic array size can be configured using the 

parameters in the Verilog code. Each compartment is programmed to perform matrix 

multiplication via instructions loaded into local memory; the architecture can perform matrix 

multiplication on various matrix sizes without requiring the user to resynthesis the design for 

new applications. 

The top-level module has ten input and two output ports, as shown in Figure 12. 

Figure 11: Top-Level of NNA Architecture. 
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Figure 12: Top-Level Ports. 
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Chapter 4: Results 

The NNA architecture was tested using Verilog test benches for the ALU, compartment, and 

top-level design; each behavioral simulation was run using the Riviera-Pro functional 

verification software. The coverage report for each testbench includes statement and branch 

coverage results. The Verilog test benches can be found in Appendices A through D. 

4.1. Testbench Results 

The ALU testbench selects operands “A” and “B” for the ALU and verify the output of the 

multiplier, MACC, and activation function modules. The operands are incremented each loop 

iteration to test all permutations, the test will continue running until a verification fails. The 

simulation also tests the five-bits of the instruction (4:0) that control ALU operations. The 

ALU module testbench passed with 98.9% statement coverage and 96.5% branch coverage. 

The Compartment testbench ensures instructions and data flow through the module and bus 

interconnects, and the program counter is advancing and resetting when instructed. The 

Compartment testbench passed with 98.7% statement coverage and 97.5% branch coverage. 

Figure 13: ALU Testbench Waveform. 
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The Top-Level testbench ensures data flows from the top-level to the systolic array and 

ensures that the architecture can perform matrix operations. Instructions and matrix inputs 

are sent from the top-level to each compartment, the matrix operation is performed, and the 

results are shifted from the array to memory, and to the top-level module for verification by 

the testbench. The Top-Level testbench passed with 95.6% statement coverage and 88.8% 

branch coverage. 

4.2. Performance 

Performance results were obtained by synthesizing the architecture for three FPGAs: 

Microchip RTG4 and PolarFire, and Xilinx Kintex-7. The architecture was configured with a 

32-bit data bus, 12 x 12 systolic array (144 compartments) and 1K of instruction memory for 

each Compartment, so that it could be implemented in all three FPGA fabrics and not exceed 

the available resources. Multiplication and addition are performed using shift registers and 

adders synthesized in the FPGA fabric, the Math (PolarFire), MACC (RTG4) and DSP 

(Kintex-7) blocks are not used, as shown in Figure 14. 

The maximum operating frequency for each FPGA implementation and the place & route 

strategy used to achieve those results are shown in Figure 15 below. 

Figure 14: FPGA Resources. 
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Figure 15: Max Operating Frequency. 

The NNA architecture performs matrix multiplication in four steps: load instructions, load 

matrices, run instructions, and return results. As evidence of the architecture’s performance, a 

testbench was designed to perform matrix multiplication on two 8 x 8 matrices. The 

testbench moves data into the architecture through the 32-bit data bus and sets the top-level 

control signals to route the data to the Compartments and memories, after the architecture 

asserts the DONE flag the testbench retrieves the results from the memories. 

Loading the instructions required 334 clock cycles, loading the matrices required 72 clock 

cycles, running the instructions required 25 clock cycles, and returning the results required 

18 clock cycles; for a total of 449 clock cycles. When performing matrix multiplication on 

matrices of the same size, instructions are loaded into the architecture for the first operation 

and the same instructions are used for subsequent operations.  

FPGA Max Frequency (MHz) Strategy

Kintex-7 225 Performance_ExploreWithRemap(2018)

PolarFire 175 Timing-Driven, High-Effort Layout, Seed = 6

RTG4 90 Timing-Driven, High-Effort Layout, Seed = 6

Figure 16: Waveform Timing Measurements. 
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The NNA architecture is designed to provide CPUs an accelerator for matrix multiplication, 

we have chosen a RISC-V open-ISA soft-core CPU (MiV) to pair with the architecture. A 

behavioral simulation of the RISC-V running C code that implements naïve matrix 

multiplication using pointers for efficiency was created to determine the clock cycles 

required for the operation. The C code contains a matrix multiply function that takes two 

matrices as input, the code also contains software for CPU register initialization, so the time 

required for execution was measured from the first instruction of the matrix multiplication 

function to the last. Matrix multiplication on the RISC-V required ~34,892 clock cycles.  

Based on these results, the RISC-V used in the simulation required ~77x more clock cycles 

to perform 8-bit matrix multiplication versus the NNA architecture. 

Synthesis and place & route of the NNA architecture was performed in LiberoSoC for the 

PolarFire and RTG4, and Vivado for the Kintex7; the timing and resource utilization reports 

were used to estimate power consumption for each FPGA. Figure 18 below provides the total 

scenario power. 

Device Dynamic Power (85%) Static Power (15%) Total Power 

Polarfire (MPF500T) 869 mW 154 mW 1,023 mW 

Kintex7 (XC7K325T) 971 mW 167 mW 1,138 mW 

RTG4 (RT4G150L) 2,104 mW 178 mW 2282 mW 

Figure 18: FPGA Power Consumption. 

Figure 19 below shows the tradeoff between power and frequency for each device. 

Figure 17: RISC-V Simulation Results. 
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Figure 19: Power Versus Frequency. 

The NNA architecture achieves the lowest power consumption when implemented on the 

PolarFire and the best power versus frequency performance when implemented on the 

Kintex7. 

The largest array size that could be implemented on the PolarFire FPGA was 40 x 40 (1600 

compartments) with a max frequency of 100 MHz. 

4.3. Comparison 

The SARS [2] hardware design presented in the International Journal of Computer 

Applications in 2011 performed 4-bit matrix multiplication on 3 x 3 matrices. When 

implemented on a Spartan-3E FPGA the architecture achieved a max operating frequency of 

210.2 MHz. The NNA architecture performed 8-bit matrix multiplication on 8 x 8 matrices 

and achieved a max operating frequency of 225 MHz on a Kintex-7 FPGA. The NNA 

architecture showed a small performance improvement and improved upon the SARS design 

by performing 8-bit operations on larger matrices. 
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A DAE [7] hardware design from Uppsala Universitet published in 2018 (Hardware 

Accelerator of Matrix Multiplication on FPGAs), performed matrix multiplication on two 8 x 

8 matrices. The design decomposed each 8 x 8 matrix into sixteen 2 x 2 matrices to perform 

matrix multiplication in parallel. The architecture contains five parts: memory modules, 

registers, cache, high performance computing (HPC) multiplier, and HPC accumulator. 

Reading data from RAM, performing matrix multiplication and writing the data back to 

RAM required 3681 clock cycles. The NNA architecture performed matrix multiplication in 

449 clock cycles which is a significant increase in performance. 

Researchers presenting at the 2020 IEEE 4th Conference on Information & Communication 

Technology (CICT) proposed the EES [8] hardware design which decomposed the m x m 

input matrices into 2 x 2 matrices and performed the calculations in parallel. Performing an 8 

x 8 matrix multiplication on their architecture requires 66 clock cycles. Their design 

performs matrix multiplication but does not implement memory or logic to move data into or 

out of the architecture (see Figure 4). The NNA architecture is a complete system which uses 

memory to store data before and after matrix multiplication. For performing matrix 

multiplication alone, the NNA architecture requires 25 clock cycles which is a moderate 

increase in performance.   
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Chapter 5: Conclusion and Future Work 

The NNA architecture was developed to perform matrix operations in lieu of a CPU in a 

heterogeneous system. The ALU operations are configurable using software to allow 

designers to perform matrix operations for a specific application without having to 

resynthesis the design; this feature differentiates the NNA architecture from other designs.  

As part of our future research, we intend to synthesis the NNA architecture for an ASIC flow. 

The Verilog HDL has an option for implementing adders as Kogge-Stone or Carry-Ripple, 

the first uses propagate and generate signals for faster performance while the second offers a 

smaller footprint. Because a majority of the ASIC design area will be utilized by the RAMs, 

a customized RAM will be needed to reduce the amount of area used. 

Deep Neural Networks (DNNs) require at least two hidden layers. Thus, our future goal for 

the architecture is to modify it to become a neuromorphic architecture; all the computations 

for the neural network would be performed in the NNA architecture without the need for an 

external CPU to control the hardware. The next step would be to determine the optimal 

memory hierarchy to allow the results of each matrix operation to be forwarded into the next 

matrix operation.  

Convolution and cross correlation are the most widely used image processing operations, 

Convolutional Neural Networks (CNNs) contain convolutional layers which can be 

implemented using matrix multiplication but there are more efficient methods. In 2020 

[9][12], members of the Image and Video Processing and Communications Lab (ivPCL) 

presented a novel method for increasing 2D convolution and cross-correlation performance 
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using CPUs, we intend to use their research to create 2D convolution optimized hardware for 

the NNA.  

The analysis from chapter 2.6, will be used as part of a feasibility study to determine if the 

NNA architecture can perform inferencing. The study will implement an 8-bit TensorFlow 

neural network on the NNA architecture and verify the results against an implementation 

executed on a laptop/desktop computer.  
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Appendix A: Adder and Multiplier Testbench 

module tb_alu(); 

 

  // Registers 

  reg signed [7:0] a; 

  reg signed [7:0] b; 

  reg                     clk; 

  reg                     rst; 

     

  // Wires  

  wire [7:0] sum1, sum2; 

  wire       c_out1, c_out2; 

  wire [15:0] prod1, prod2; 

   

  // clock 

  initial begin 

    clk = 1'b0; 

    rst = 1'b1; 

    #40 rst = 1'b0; 

  end 

   

  always @(clk) begin 

    #20 clk <= ~clk; 

  end 

   

  // KS Adder instantiation 

  kogge_stone_adder #(.width(8)) adder1( 

    .a(a), 

    .b(b),     

    .sum(sum1), 

    .c_out(c_out1) 

  ); 

   

  // Ripple Carry Adder instantiation 

  n_adder #(.width(8)) adder2( 

    .a(a), 

    .b(b), 

    .sum(sum2), 

    .ovflw(c_out2) 

  ); 

   

  // Full Adder Multiplier instantiation 

  multiply #(.width(8)) multiply1(.a(a), .b(b), .result(prod1)); 

   

  // Kogge Stone Adder Multiplier instantiation 
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  multiply_ksa #(.width(8)) multiply2(.a(a), .b(b), .result(prod2)); 

   

  // Test logic 

  always @(posedge clk) begin 

    if (rst) begin 

      a <= -8'h7; 

      b <= 8'h3; 

    end 

    else begin 

      a <= a + 1; 

      b <= b + 1; 

    end 

  end 

endmodule 
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Appendix B: ALU Module Testbench 

module tb_alu_complete(); 

   

  // Parameters 

  localparam width                    = 8; 

  localparam INITIAL               = 0; 

  localparam OPCODE              = 1; 

  localparam WAIT                   = 2; 

  localparam CHECK_CODE   = 3; 

  localparam CLR_MACC        = 4; 

  localparam WAIT2                 = 5;   

  localparam CHECK_MACC  = 6; 

   

  // Registers 

  reg                     clk; 

  reg                     rst; 

  reg [width-1:0]  a; 

  reg [width-1:0]  b; 

  reg [4:0]            insn; 

  reg [4:0]            PSR; 

  reg [7:0]            prev_result; 

  reg [7:0]            mult; 

  reg [7:0]            macc; 

  reg [7:0]            act_func;   

   

  // Wires 

  wire [width-1:0] result; 

   

  // Clock and reset 

  initial begin 

    clk <= 1'b0;   

    rst <= 1'b1; 

    macc <= 8'h0; 

    #120 rst <= 1'b0; 

  end 

   

  always @(clk) begin 

    #20 clk <= ~clk; 

  end 

   

  // Instantiate ALU module 

  alu #(.width(width)) dut( 

    .clk(clk), 

    .rst(rst), 

    .clr_macc(insn[2]), 
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    .a(a), 

    .b(b), 

    .opcode(insn[1:0]), 

    .activ(insn[4:3]), 

    .result(result)   

  ); 

   

  // Test logic to test first five bits 

  // instruction bits used for ALU 

  always @(*) mult <= a * b; 

  always @(posedge clk) begin 

    if (insn[2] == 1'b1)   macc <= 8'h0; 

    else if (insn[2:0] == 3'h2) macc <= mult + macc; 

  end 

  always @(*) begin 

    if (insn[1:0] == 2'h3) begin 

      if (macc[7] == 1'b1) act_func <= 'h0; 

      else act_func <= macc; 

  end 

  end 

     

  always @(posedge clk) begin 

    if (rst) begin 

      a <= 8'h0; 

      b <= 8'h0; 

      insn <= 5'h0; 

      prev_result <= 8'h0; 

    end 

    else begin 

      case(PSR) 

        INITIAL: begin     // Increment operands 

          a <= a + 1; 

          if (a == 8'hFF) b <= b + 1; 

          insn <= 5'h0; 

          PSR <= OPCODE; 

        end 

        OPCODE: begin      // Increment opcode           

          PSR <= WAIT; 

        end 

        WAIT: begin 

          prev_result <= result; 

          PSR <= CHECK_CODE; 

        end 

        CHECK_CODE: begin   // Check opcode results 

          case(insn[1:0]) 

            2'h0: if(result != prev_result) $finish; 
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            2'h1: if(result != mult) $finish; 

            2'h2: if(result != macc) $finish;  

            2'h3: if(result != act_func) $finish; 

          endcase             

         

          if (insn[1:0] == 2'h3) PSR <= CLR_MACC; 

          else begin 

            insn[1:0] <= insn[1:0] + 1; 

            PSR <= OPCODE; 

          end 

        end 

        CLR_MACC: begin 

          insn[2:0] <= 3'h4;           

          PSR <= WAIT2; 

        end 

        WAIT2: PSR <= CHECK_MACC;     

        CHECK_MACC: begin 

          if(result != 'h0) $finish; 

          else PSR <= INITIAL; 

        end 

        default: PSR <= INITIAL; 

      endcase         

    end 

  end 

   

endmodule 
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Appendix C: Compartment Testbench 
 

module tb_compartment(); 
 
  // Parameters 
  localparam   INITIAL                = 0; 
  localparam   LOAD_INSN_1   = 1; 
  localparam   LOAD_INSN_2   = 2; 
  localparam   LOAD_INSN_3   = 3; 
  localparam   LOAD_INSN_4   = 4; 
  localparam   LOAD_INSN_5   = 5; 
  localparam   LOAD_INSN_6   = 6; 
  localparam   LOAD_INSN_7   = 7; 
  localparam   CHECK_INSN_1  = 8;   
  localparam   CHECK_INSN_2  = 9; 
  localparam   RUN_INSN_1      = 10; 
  localparam   RUN_INSN_2      = 11; 
  localparam   DONE                   = 12; 
  localparam   END                      = 13;   
  localparam   OPERAND_A       = 8'h3; 
  localparam   OPERAND_B       = 8'h7;   
   
  localparam   [7:0] INSN [15:0] = {8'h00, 8'h01, 8'h02, 8'h03, 
                                    8'h40, 8'h41, 8'h80, 8'h81, 
                                    8'hC0, 8'hC2, 8'h40, 8'h42, 
                                    8'h80, 8'h83, 8'hC0, 8'hC3}; 
 
  // Registers 
  reg                 clk; 
  reg                 rst; 
  reg [1:0]        mode; 
  reg [7:0]        west_bus; 
  reg [7:0]        north_bus; 
  reg [5:0]        PSR; 
  reg [3:0]        count;   
   
  // Wires 
  wire               clk_out; 
  wire               rst_out; 
  wire [1:0]     mode_out; 
  wire [7:0]     east_bus; 
  wire [7:0]     south_bus;   
   
  integer i; 
   
  // Clock and reset 
  initial begin 
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    clk <= 1'b0; 
   rst <= 1'b1; 
   #(120) rst <= 1'b0; 
  end 
   
  always @(clk) begin 
    #(20) clk <= ~clk; 
  end 
   
  // Instantiate Compartment, address "5" 
  compartment #(.comp_addr(5), .width(8)) node1(     
    .clk_in(clk), 
    .rst_in(rst), 
    .mode_in(mode), 
    .clk_out(clk_out), 
    .rst_out(rst_out), 
    .mode_out(mode_out), 
    .west_bus(west_bus), 
    .north_bus(north_bus),   
    .east_bus(east_bus), 
    .south_bus(south_bus) 
  ); 
   
  // Test logic for compartment 
  always @(posedge clk) begin 
    if(rst) begin 
      mode       <= 2'h0; 
      west_bus   <= 8'h0; 
      north_bus  <= 8'h0; 
      count      <= 8'h1;        
      PSR        <= INITIAL; 
    end 
    else begin 
      case(PSR) 
        INITIAL : begin 
          PSR <= LOAD_INSN_1; 
        end 
        LOAD_INSN_1 : begin       // Read address "6" 
          mode      <= 2'h1; 
          north_bus <= 8'h6; 
          PSR       <= LOAD_INSN_2; 
        end 
        LOAD_INSN_2 : begin 
          PSR       <= LOAD_INSN_3; 
        end  
        LOAD_INSN_3 : begin 
          if(node1.addr_valid) begin 
            $display("Failed: Node addr_valid is '1'"); 
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            $finish; 
          end 
          else begin 
            north_bus <= 8'h5;  
            PSR       <= LOAD_INSN_4; 
          end 
        end 
        LOAD_INSN_4 : begin       // Read address "5" 
          PSR       <= LOAD_INSN_5; 
        end 
        LOAD_INSN_5 : begin 
          if(node1.addr_valid == 1'b0) begin 
            $display("Failed: Node addr_valid is '0'"); 
            $finish; 
          end 
          else PSR <= LOAD_INSN_6; 
        end    
        LOAD_INSN_6 : begin       // Start loading instructions 
          mode      <= 2'h2; 
          north_bus <= INSN[0]; 
          PSR       <= LOAD_INSN_7; 
        end 
        LOAD_INSN_7 : begin       // Load remaining 15 instructions into memory           
          if(count == 4'hF) begin 
            north_bus <= INSN[count]; 
            PSR <= CHECK_INSN_1; 
          end 
          else begin 
            count     <= count + 1; 
            north_bus <= INSN[count]; 
          end 
        end 
        CHECK_INSN_1 : begin 
          mode    <= 2'h0; 
          PSR     <= CHECK_INSN_2; 
        end 
        CHECK_INSN_2 : begin 
          for(i=0;i<16;i++) begin 
            if(node1.insn_mem[i] != INSN[i]) begin 
              $display("Instruction memory address %d failed", i); 
              $finish; 
            end 
          end 
          PSR       <= RUN_INSN_1; 
          mode      <= 2'h3; 
          count     <= 4'h0; 
          west_bus  <= OPERAND_A; 
          north_bus <= OPERAND_B; 
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        end 
        RUN_INSN_1 : begin 
          if(count == node1.pc) begin 
            if(count < 4'hF) count <= count + 1; 
          end 
          else begin 
            $display("Program counter is not incrementing"); 
            $finish; 
          end 
           
          if(count == 4'hF) PSR <= RUN_INSN_2; 
           
          north_bus  <= north_bus + 1; 
          west_bus   <= west_bus  + 1; 
        end 
        RUN_INSN_2 : begin 
          mode    <= 2'h0; 
          PSR     <= DONE; 
        end 
        DONE : begin 
          north_bus <= 8'h0; 
          west_bus  <= 8'h0; 
          PSR       <= END; 
        end 
        END : begin 
          $display("Simulation completed successfully!"); 
          $finish; 
        end 
        default: PSR <= INITIAL; 
      endcase 
    end 
  end 
 
endmodule 
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Appendix D: Top-Level Testbench 
 

module tb_systolic_array(); 

 

  // Parameters 

  localparam clock_period   = 20;   // Clock period 

  localparam INITIAL        = 5'h0;   

  localparam LOAD_ADDR     = 5'h1;   

  localparam LOAD_INSN      = 5'h2;   

  localparam DISABLE_1      = 5'h3; 

  localparam WRITE_ROW_1  = 5'h4; 

  localparam WRITE_ROW_2   = 5'h5; 

  localparam WRITE_ROW_3   = 5'h6; 

  localparam DISABLE_2      = 5'h7; 

  localparam WRITE_COL_1   = 5'h8; 

  localparam WRITE_COL_2   = 5'h9; 

  localparam WRITE_COL_3  = 5'hA; 

  localparam DISABLE_3      = 5'hB; 

  localparam RUN            = 5'hC; 

  localparam READ_1        = 5'hD; 

  localparam READ_2         = 5'hE;   

  localparam DONE          = 5'hF; 

  localparam scale                               = 0; 

   

  localparam [31:0] insn_bank[0:29] = '{ 

       32'h02020202, 32'h02020202, 32'h02020202, 32'h02020202, 32'h02020202, 

       32'h02020202, 32'h02020202, 32'h02020202, 32'h02020202, 32'h02020202, 

       32'h02020202, 32'h02020202, 32'h42424242, 32'h04040404, 32'h04040404, 

       32'h04040404, 32'h04040404, 32'h24242424, 32'h24242424, 32'h24242424, 

       32'h00000000, 32'h00000000, 32'h00000000, 32'h00000000, 32'h00000000, 

       32'h00000000, 32'h00000000, 32'h00000000, 32'h00000000, 32'h00000000}; 

  localparam [31:0] weights[0:14]     = '{ 

       32'h0000000F, 32'h00003344, 32'h00667788, 32'h00AABBCC, 32'h00EEFF00, 

       32'h00121314, 32'h00161718, 32'h001A1B1C, 32'h00124500, 32'h00110000, 

       32'h00000000, 32'h00000000, 32'h00000000, 32'h00000000, 32'h00000000}; 

  localparam [31:0] inputs[0:14]      = '{ 

       32'h00000002, 32'h00000301, 32'h00020104, 32'h00050206, 32'h00080107, 

       32'h000A0305, 32'h00020102, 32'h00010201, 32'h00020100, 32'h00010000, 

       32'h00000000, 32'h00000000, 32'h00000000, 32'h00000000, 32'h00000000};                             

 

  // Registers 

  reg                 clk; 

  reg                 rst; 

  reg  [1:0]       mode; 

  reg  [4:0]       addr;  

  reg  [7:0]       row_we; 
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  reg  [7:0]       col_we; 

  reg                row_sel; 

  reg                col_sel; 

  reg  [31:0]    din; 

  reg  [1:0]      bank_sel;          

   

  reg  [4:0]       PSR; 

  reg  [15:0]     counter;  

  reg  [7:0]       row_count; 

  reg  [2:0]       pad_count;   

  reg  [3:0]       addr_count; 

   

  reg  [15:0]      test1; 

  reg  [15:0]      test2; 

  reg  [15:0]      test3; 

  reg  [7:0]        y1,y2,y3,y4,y5,y6,y7,y8,y9; 

 

  // Wires 

  wire [31:0]     dout; 

  wire               done; 

 

  // Integers   

  integer unsigned insn_count; 

  integer unsigned i,error; 

  integer unsigned test_i;     

   

  // Clock and reset 

  initial begin 

    clk <= 1'b0; 

    rst <= 1'b1; 

    #120 rst <= 1'b0; 

  end 

   

  always @(clk) begin 

    #(clock_period/2) clk <= ~clk; 

  end 

   

  // Verify results 

  initial begin 

    y1=0; 

    y2=0; 

    y3=0; 

    y4=0; 

    y5=0; 

    y6=0; 

    y7=0; 
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    y8=0; 

    y9=0; 

    test_i =0;     

    #10; 

    for(i=0;i<9;i++) begin 

      y1=y1+inputs[i][7:0]*weights[i][7:0]; 

      y2=y2+inputs[i][7:0]*weights[i+1][15:8]; 

      y3=y3+inputs[i][7:0]*weights[i+2][23:16]; 

      y4=y4+inputs[i+1][15:8]*weights[i][7:0]; 

      y5=y5+inputs[i+1][15:8]*weights[i+1][15:8]; 

      y6=y6+inputs[i+1][15:8]*weights[i+2][23:16]; 

      y7=y7+inputs[i+2][23:16]*weights[i][7:0]; 

      y8=y8+inputs[i+2][23:16]*weights[i+1][15:8]; 

      y9=y9+inputs[i+2][23:16]*weights[i+2][23:16]; 

    end 

    y1=y1 >> scale; 

    y2=y2 >> scale; 

    y3=y3 >> scale; 

    y4=y4 >> scale; 

    y5=y5 >> scale; 

    y6=y6 >> scale; 

    y7=y7 >> scale; 

    y8=y8 >> scale; 

    y9=y9 >> scale; 

  end   

  

  always @(posedge clk) begin 

    if(rst) begin 

      test1 <= 16'h0; 

      test2 <= 16'h0; 

      test3 <= 16'h0; 

    end 

    else if(test_i < 10) begin 

      test1 <= test1 + (inputs[test_i][7:0]*weights[test_i+1][15:8]); 

      test2 <= test2 + (inputs[test_i][7:0]*weights[test_i][7:0]); 

      test3 <= test3 + (inputs[test_i+1][15:8]*weights[test_i][7:0]); 

      test_i <= test_i + 1; 

    end 

  end     

   

  // Instantiate systolic array 

  systolic_array array #( 

    .scale(scale)) 

  array( 

    .clk(clk), 

    .rst(rst), 
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    .mode(mode), 

    .addr(addr), 

    .row_we(row_we), 

    .col_we(col_we), 

    .row_sel(row_sel), 

    .col_sel(col_sel), 

    .din(din), 

    .bank_sel(bank_sel), 

    .dout(dout), 

    .done(done) 

  ); 

   

  // Test logic 

  always @(posedge clk) begin 

    if(rst) begin 

      mode <= 2'h0; 

      addr <= 5'h0; 

      row_we <= 8'h0; 

      col_we <= 8'h0; 

      row_sel <= 1'b0; 

      col_sel <= 1'b0; 

      din <= 32'h0; 

      bank_sel <= 2'h0; 

      row_count <= 8'h0; 

      insn_count <= 20; 

      counter <= 16'h0; 

      pad_count <= 3'h0; 

      addr_count <= 4'h0; 

      PSR <= INITIAL; 

    end 

    else begin 

      case(PSR) 

        INITIAL: begin 

          row_count <= 8'h0; 

          insn_count <= 30; 

          counter <= 16'h0; 

          bank_sel <= 2'h3; 

          pad_count <= 3'h0; 

          addr_count <= 4'h0; 

          PSR <= LOAD_ADDR; 

        end 

        LOAD_ADDR: begin  

          counter <= 16'h0;         

          mode <= 2'h1; 

          din <= {row_count,row_count,row_count,row_count};           

          pad_count <= 3'h0; 
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          if (addr_count < 4'h8) begin 

            addr_count <= addr_count + 1; 

            PSR <= LOAD_ADDR; 

          end             

          else begin 

            row_count <= row_count + 1; 

            PSR  <= LOAD_INSN; 

          end             

        end             

        LOAD_INSN: begin  

          addr_count <= 4'h0;         

          din  <= insn_bank[counter]; 

          if(counter < insn_count) begin 

            if (pad_count < row_count - 1) begin 

              mode <= 2'h0; 

              pad_count <= pad_count + 1; 

            end               

            else mode <= 2'h2; 

            counter <= counter + 1; 

            addr_count <= 4'h0; 

            PSR <= LOAD_INSN; 

          end 

          else begin 

            mode <= 2'h0; 

            if (row_count < 8'h8) begin 

              pad_count <= 3'h0; 

              PSR <= LOAD_ADDR; 

            end 

            else begin 

              counter <= 16'h0;                          

              PSR <= DISABLE_1;  

            end               

          end 

        end         

        DISABLE_1: begin 

          mode <= 2'h0; 

          row_sel <= 1'b0; 

          col_sel <= 1'b0; 

          counter <= 16'h0; 

          addr <= 4'h0; 

          bank_sel <= 2'h0; 

          PSR <= WRITE_ROW_1; 

        end 

        WRITE_ROW_1: begin 

          din <= inputs[addr];           

          row_we <= 8'hFF; 
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          PSR <= WRITE_ROW_2; 

        end 

        WRITE_ROW_2: begin 

          if(addr < 15) begin 

            din <= inputs[addr+1]; 

            addr <= addr + 1;             

            row_we <= 8'hFF; 

          end 

          else begin 

            addr <= 4'h0; 

            row_we <= 8'h00; 

            din <= 32'h0;             

            PSR <= DISABLE_2; 

          end 

        end 

        WRITE_ROW_3: begin 

          if(addr < 15) begin             

            din <= inputs[addr+1]; 

            addr <= addr + 1;           

            row_we <= 8'hF0; 

          end 

          else begin 

            addr <= 4'h0; 

            row_we <= 8'h00; 

            din <= 32'h0; 

            PSR <= DISABLE_2; 

          end 

        end 

        DISABLE_2: begin 

          mode <= 2'h0; 

          row_sel <= 1'b0; 

          col_sel <= 1'b0; 

          counter <= 16'h0; 

          addr <= 4'h0; 

          row_we <= 8'h00; 

          PSR <= WRITE_COL_1; 

        end 

        WRITE_COL_1: begin 

          din <= weights[addr];           

          col_we <= 8'hFF; 

          PSR <= WRITE_COL_2; 

        end 

        WRITE_COL_2: begin 

          if(addr < 15) begin 

            din <= weights[addr+1]; 

            addr <= addr + 1;           
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            col_we <= 8'hFF; 

          end 

          else begin 

            addr <= 4'h0; 

            col_we <= 8'h00; 

            din <= 32'h0; 

            PSR <= DISABLE_3; 

          end 

        end 

        WRITE_COL_3: begin 

          if(addr < 15) begin             

            din <= weights[addr+1]; 

            addr <= addr + 1;           

            col_we <= 8'hF0; 

          end 

          else begin 

            addr <= 4'h0; 

            col_we <= 8'h00; 

            din <= 32'h0; 

            PSR <= DISABLE_3; 

          end 

        end 

        DISABLE_3: begin 

          mode <= 2'h0; 

          row_sel <= 1'b1; 

          col_sel <= 1'b1; 

          counter <= 16'h0; 

          addr <= 4'h0; 

          row_we <= 8'h00; 

          col_we <= 8'h00; 

          bank_sel <= 2'h3;           

          PSR <= RUN; 

        end 

        RUN: begin 

          mode <= 2'h3; 

          counter <= counter + 1; 

          if ((counter > 4) && done) begin 

            counter <= 16'h0; 

            mode <= 2'h0; 

            PSR <= READ_1; 

          end 

        end 

        READ_1: begin 

          mode <= 2'h0; 

          bank_sel <= 2'h1; 

          addr <= 5'h0; 
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          PSR <= READ_2; 

        end 

        READ_2: begin           

          if(addr == 4'h2) PSR <= DONE; 

          else addr <= addr + 1; 

        end  

        DONE: PSR <= DONE;                 

        default: begin  

          mode <= 2'h0; 

          addr <= 5'h0; 

          row_we <= 8'h0; 

          col_we <= 8'h0; 

          row_sel <= 1'b0; 

          col_sel <= 1'b0; 

          din <= 32'h0; 

          bank_sel <= 2'h0; 

          row_count <= 0; 

          insn_count <= 20; 

          counter <= 16'h0; 

          pad_count <= 3'h0; 

          PSR <= INITIAL; 

        end          

      endcase 

    end 

  end 

     

  // Verification Logic 

  always @(posedge clk) begin 

    if(rst) error <= 0; 

    case(PSR) 

      DISABLE_1: begin 

        for(i=0;i<30;i++) begin   // Instruction 

          if(array.array_row[0].array_column[0].genblk1.neuron.insn_mem[i] != 

insn_bank[i][7:0]) begin 

            $display("Memory Failure: Row 0, Column 0, Insn %d", i); 

            error = 1; 

          end 

          if(array.array_row[1].array_column[1].genblk1.neuron.insn_mem[i] != 

insn_bank[i][15:8]) begin 

            $display("Memory Failure: Row 1, Column 1, Insn %d", i); 

            error = 1; 

          end 

          if(array.array_row[2].array_column[2].genblk1.neuron.insn_mem[i] != 

insn_bank[i][23:16]) begin 

            $display("Memory Failure: Row 2, Column 2, Insn %d", i); 

            error = 1; 
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          end 

          if(array.array_row[3].array_column[3].genblk1.neuron.insn_mem[i] != 

insn_bank[i][31:24]) begin 

            $display("Memory Failure: Row 3, Column 3, Insn %d", i); 

            error = 1; 

          end 

          if(array.array_row[4].array_column[4].genblk1.neuron.insn_mem[i] != 

insn_bank[i][7:0]) begin 

            $display("Memory Failure: Row 4, Column 4, Insn %d", i); 

            error = 1; 

          end 

          if(array.array_row[5].array_column[5].genblk1.neuron.insn_mem[i] != 

insn_bank[i][15:8]) begin 

            $display("Memory Failure: Row 5, Column 5, Insn %d", i); 

            error = 1; 

          end 

          if(array.array_row[6].array_column[6].genblk1.neuron.insn_mem[i] != 

insn_bank[i][23:16]) begin 

            $display("Memory Failure: Row 6, Column 6, Insn %d", i); 

            error = 1; 

          end 

          if(array.array_row[7].array_column[7].genblk1.neuron.insn_mem[i] != 

insn_bank[i][31:24]) begin 

            $display("Memory Failure: Row 7, Column 7, Insn %d", i); 

            error = 1; 

          end 

        end           

         

        if(error) begin 

          $display("Neuron Instruction Failure!"); 

          $finish; 

        end 

      end 

      DISABLE_3: begin 

        for(i=0;i<10;i++) begin   // Data 

          // Check row memories 

          if(array.array_row[0].row_memory.mem[i] != inputs[i][7:0]) begin 

            $display("Input Failure: Row 0, Data %d", i); 

            error = 1; 

          end 

          if(array.array_row[1].row_memory.mem[i] != inputs[i][15:8]) begin 

            $display("Input Failure: Row 1, Data %d", i); 

            error = 1; 

          end 

          if(array.array_row[2].row_memory.mem[i] != inputs[i][23:16]) begin 

            $display("Input Failure: Row 2, Data %d", i); 
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            error = 1; 

          end 

          if(array.array_row[3].row_memory.mem[i] != inputs[i][31:24]) begin 

            $display("Input Failure: Row 3, Data %d", i); 

            error = 1; 

          end 

          if(array.array_row[4].row_memory.mem[i] != inputs[i][7:0]) begin 

            $display("Input Failure: Row 4, Data %d", i); 

            error = 1; 

          end 

          if(array.array_row[5].row_memory.mem[i] != inputs[i][15:8]) begin 

            $display("Input Failure: Row 5, Data %d", i); 

            error = 1; 

          end 

          if(array.array_row[6].row_memory.mem[i] != inputs[i][23:16]) begin 

            $display("Input Failure: Row 6, Data %d", i); 

            error = 1; 

          end 

          if(array.array_row[7].row_memory.mem[i] != inputs[i][31:24]) begin 

            $display("Input Failure: Row 7, Data %d", i); 

            error = 1; 

          end 

          // Check column memories 

          if(array.array_row[0].array_column[0].genblk2.col_memory.mem[i] != 

weights[i][7:0]) begin 

            $display("Weight Failure: Col 0, Data %d", i);  

            error = 1; 

          end 

          if(array.array_row[0].array_column[1].genblk2.col_memory.mem[i] != 

weights[i][15:8]) begin 

            $display("Weight Failure: Col 1, Data %d", i);  

            error = 1; 

          end 

          if(array.array_row[0].array_column[2].genblk2.col_memory.mem[i] != 

weights[i][23:16]) begin 

            $display("Weight Failure: Col 2, Data %d", i);  

            error = 1; 

          end 

          if(array.array_row[0].array_column[3].genblk2.col_memory.mem[i] != 

weights[i][31:24]) begin 

            $display("Weight Failure: Col 3, Data %d", i);  

            error = 1; 

          end 

          if(array.array_row[0].array_column[4].genblk2.col_memory.mem[i] != 

weights[i][7:0]) begin 

            $display("Weight Failure: Col 4, Data %d", i);  
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            error = 1; 

          end 

          if(array.array_row[0].array_column[5].genblk2.col_memory.mem[i] != 

weights[i][15:8]) begin 

            $display("Weight Failure: Col 5, Data %d", i);  

            error = 1; 

          end 

          if(array.array_row[0].array_column[6].genblk2.col_memory.mem[i] != 

weights[i][23:16]) begin 

            $display("Weight Failure: Col 6, Data %d", i);  

            error = 1; 

          end 

          if(array.array_row[0].array_column[7].genblk2.col_memory.mem[i] != 

weights[i][31:24]) begin 

            $display("Weight Failure: Col 7, Data %d", i);  

            error = 1; 

          end           

        end 

 

        if(error) begin 

          $display("Input/Weight Failure!"); 

          $finish; 

        end 

           

      end 

      READ_1: begin 

        if(array.array_row[0].row_memory.mem[2] != y1) $display("Y1 failed!"); 

        if(array.array_row[0].row_memory.mem[1] != y2) $display("Y2 failed!"); 

        if(array.array_row[0].row_memory.mem[0] != y3) $display("Y3 failed!"); 

        if(array.array_row[1].row_memory.mem[2] != y4) $display("Y4 failed!"); 

        if(array.array_row[1].row_memory.mem[1] != y5) $display("Y5 failed!"); 

        if(array.array_row[1].row_memory.mem[0] != y6) $display("Y6 failed!"); 

        if(array.array_row[2].row_memory.mem[2] != y7) $display("Y7 failed!"); 

        if(array.array_row[2].row_memory.mem[1] != y8) $display("Y8 failed!"); 

        if(array.array_row[2].row_memory.mem[0] != y9) $display("Y9 failed!");         

      end  

      DONE: begin 

        $display("Simulation complete!"); 

        $finish; 

      end         

    endcase             

  end 

   

endmodule 
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