About Neutrosophic Countably Compactness

Murad Arar

Follow this and additional works at: https://digitalrepository.unm.edu/nss_journal

Recommended Citation

This Article is brought to you for free and open access by UNM Digital Repository. It has been accepted for inclusion in Neutrosophic Sets and Systems by an authorized editor of UNM Digital Repository. For more information, please contact amywinter@unm.edu, lsloane@salud.unm.edu, sarahrk@unm.edu.
About Neutrosophic Countably Compactness

Murad Arar *
Prince Sattam Bin Abdulaziz University ; muradshhada@gmail.com
*Correspondence: muradshhada@gmail.com

Abstract. We answer the following question: Are neutrosophic \(\mu \)-compactness and neutrosophic \(\mu \)-countably compactness equivalent? which posted in [10]. Since every neutrosophic topology is neutrosophic \(\mu \)-topology, we answer the question for neutrosophic topological spaces, more precisely, we give an example of neutrosophic topology which is neutrosophic countably comapact but not neutrosophic compact

Keywords: Neutrosophic topological spaces; Neutrosophic compact; Neutrosophic Lindelöf; Neutrosophic countably compact space

1. Introduction

Neutrosophic sets first introduced in [25][27] as a generalization of intuitionistic fuzzy sets [14], where each element \(x \in X \) has a degree of indeterminacy with the degree of membership and the degree of non-membership. Operations on neutrosophic sets are investigated after that. Neutrosophic topological spaces are studied by Smarandache [27], Lupianez [19][20] and Salama [23]. The interior, closure, exterior and boundary of neutrosophic sets can be found in [26]. Neutrosophic sets applied to generalize many notions about soft topology and applications [18], [22], [15], generalized open and closed sets [28], fixed point theorems [18], graph theory [17] and rough topology and applications [21]. Neutrosophy has many applications specially in decision making, for more details about new trends of neutrosophic applications one can consult [1]- [7].

Generalized topology and continuity introduced in 2002 in [13], where many generalized open sets in general topology become examples in generalized topological spaces, and it become one of the most important generalization in topology which has different properties than general topology, see for example [9], [11] and [12]. There are a lot of studies about neutrosophic topological spaces that shows the importance of studying neutrosophic topology where it has
possible applications, see for example [24], Neutrosophic μ-topological spaces first introduced in [10], and since Neutrosophic μ-topological space is a generalization of neutrosophic topological space it guarantees generalized results that are still true for neutrosophic topological spaces, see for example Theorem 2.30 in [10] which shows that neutrosophic μ-compactness and neutrosophic μ-countably compactness are equivalent, and this is not true in crisp topology, but it becomes true for neutrosophic topological spaces since every neutrosophic μ-topological space is neutrosophic topological space, another thing about the importance of neutrosophic μ-topological space is that some existing notations about neutrosophic topology can be considered as examples of neutrosophic μ-topological spaces, see for example Theorem 2.9 in [10] which shows the relationship between μ-topological space and previous studies where we can consider all neutrosophic α-open sets over $(X; \tau)$ and all neutrosophic pre-closed sets in $(X; \tau)$ (introduced in [8]) as examples of strong neutrosophic μ-topology over X. The following question appeared in [10].

Definition 1.1. [25]: A set A is said neutrosophic on X if $A = \{\langle x, \mu_A(x), \sigma_A(x), \nu_A(x) \rangle; x \in X \}$; $\mu, \sigma, \nu : X \to [-1, 1]$ and $-1 \leq \mu(x) + \sigma(x) + \nu(x) \leq 3$.

The class of all neutrosophic set on the universe X is by $\mathcal{N}(X)$. We will exhibit the basic neutrosophic operations definitions (union, intersection and complement. Since there are different definitions of neutrosophic operations, we will organize the existing definitions into two types, in each type these operation will be consistent and functional.

Definition 1.2. [24] [Neutrosophic sets operations] Let $A, A_\alpha, B \in \mathcal{N}(X)$ such that $\alpha \in \Delta$. Then we define the neutrosophic:

1. (Inclusion): $A \subseteq B$ if $\mu_A(x) \leq \mu_B(x)$, $\sigma_A(x) \geq \sigma_B(x)$ and $\nu_A(x) \geq \nu_B(x)$.
2. (Equality): $A = B$ if $A \subseteq B$ and $B \subseteq A$.
3. (Intersection) $\bigcap_{\alpha \in \Delta} A_\alpha = \{\langle x, \bigwedge_{\alpha \in \Delta} \mu_{A_\alpha}(x), \bigvee_{\alpha \in \Delta} \sigma_{A_\alpha}(x), \bigvee_{\alpha \in \Delta} \nu_{A_\alpha}(x) \rangle; x \in X \}$.
4. (Union) $\bigcup_{\alpha \in \Delta} A_\alpha = \{\langle x, \bigvee_{\alpha \in \Delta} \mu_{A_\alpha}(x), \bigwedge_{\alpha \in \Delta} \sigma_{A_\alpha}(x), \bigwedge_{\alpha \in \Delta} \nu_{A_\alpha}(x) \rangle; x \in X \}$.
5. (Complement) $A^c = \{\langle x, \nu_A(x), 1 - \sigma_A(x), \mu_A(x) \rangle; x \in X \}$.
6. (Universal set) $1_X = \{\langle x, 1, 0, 0 \rangle; x \in X \}$; will be called the neutrosophic universal set.
7. (Empty set) $0_X = \{\langle x, 0, 1, 1 \rangle; x \in X \}$; will be called the neutrosophic empty set.

Proposition 1.3. [24] For $A, A_\alpha \in \mathcal{N}(X)$ for every $\alpha \in \Delta$ we have:

1. $A \cap \bigcup_{\alpha \in \Delta} A_\alpha = \cup_{\alpha \in \Delta} (A \cap A_\alpha)$.
2. $A \cup \bigcap_{\alpha \in \Delta} A_\alpha = \cap_{\alpha \in \Delta} (A \cup A_\alpha)$.

Definition 1.4. [24] [Neutrosophic Topology] $\tau \subset \mathcal{N}(X)$ is called a neutrosophic topology for X if

Murad Arar, About Neutrosophic Countably Compactness
(1) $0_X, 1_X \in \tau$.
(2) If $A_\alpha \in \tau$ for every $\alpha \in \Delta$, then $\bigcup_{\alpha \in \Delta} A_\alpha \in \tau$.
(3) For every $A, B \in \tau$, we have $A, B \in \tau$.

The ordered pair (X, τ) will be said a neutrosophic space over X. The elements of τ will be called neutrosophic open sets. For any $A \in \mathcal{N}(X)$, if $A^c \in \tau$, then we say A is neutrosophic closed.

2. Neutrosophic Countably Compact Spaces

Definition 2.1. [10] Let X be nonempty, $0 < \alpha, \beta, \gamma < 1$. Then $A \in \mathcal{N}(X)$ is said a neutrosophic point iff there exists $x \in X$ such that $A = \{\langle x, \alpha, \beta, \gamma \rangle\} \cup \{\langle x, 0, 1, 1 \rangle; x \neq x\}$. Neutrosophic points will be denoted by $x_{\alpha, \beta, \gamma}$.

Definition 2.2. [10] We say $x_{\alpha, \beta, \gamma}$ in the neutrosophic set A -in symbols $x_{\alpha, \beta, \gamma} \in A$- iff $\alpha < \mu_A(x), \beta > \sigma_A(x)$ and $\gamma > \nu_A(x)$.

Lemma 2.3. [10] Let $A \in \mathcal{N}(X)$ and suppose that for every $x_{\alpha, \beta, \gamma} \in A$ there exists $B(x_{\alpha, \beta, \gamma}) \in \mathcal{N}(X)$ such that $x_{\alpha, \beta, \gamma} \in B(x_{\alpha, \beta, \gamma}) \subseteq A$. Then $A = \bigcup\{B(x_{\alpha, \beta, \gamma}); x_{\alpha, \beta, \gamma} \in A\}$.

Corollary 2.4. [10] $A \in \mathcal{N}(X)$ is neutrosophic open in (X, τ) iff for every $x_{\alpha, \beta, \gamma} \in A$ there exists a neutrosophic set $B(x_{\alpha, \beta, \gamma}) \in \tau$; $x_{\alpha, \beta, \gamma} \in B(x_{\alpha, \beta, \gamma}) \subseteq A$.

Definition 2.5. [10] Let (X, τ) be a neutrosophic topology on X. A sub-collection $B \subseteq \tau$ is called a neutrosophic base for τ if for any $U \in \tau$ there exists $\bigcup\{B(x_{\alpha, \beta, \gamma}); x_{\alpha, \beta, \gamma} \in A\} = U$.

Definition 2.6. [10] Consider the neutrosophic space (X, τ). We say the collection \mathcal{U} from τ is a neutrosophic open cover of X, if $1_X = \bigcup\{U; U \in \mathcal{U}\}$.

Definition 2.7. [10] Consider the space (X, τ) and the neutrosophic open cover \mathcal{U} of X. Then we say the sub-collection $\hat{\mathcal{U}} \subseteq \mathcal{N}(X)$ is a neutrosophic subcover of X from \mathcal{U}, if $\hat{\mathcal{U}}$ is neutrosophic covers X and $\hat{\mathcal{U}} \subseteq \mathcal{U}$.

The following is an immediate result of Corollary 2.4.

Corollary 2.8. [10] A sub-collection \mathcal{U} from the neutrosophic space (X, τ) is an open cover of X iff for every $x_{\alpha, \beta, \gamma}$ in X there exists $U \in \mathcal{U}$ such that $x_{\alpha, \beta, \gamma} \in U$.

Theorem 2.9. Consider the collection \mathcal{B} of neutrosophic sets on the universe X. Then \mathcal{B} is a neutrosophic base for some neutrosophic topology on X iff

1. For every $U \in \tau$ and every $x_{\alpha, \beta, \gamma} \in U$ there exists $B \in \mathcal{B}$ such that $x_{\alpha, \beta, \gamma} \in B \subseteq U$.
2. For every $A, B \in \mathcal{B}$ we have $A \cap B$ is a union of elements from \mathcal{B}.

Murad Arar, About Neutrosophic Countably Compactness
Proof. \(\rightarrow\) Obvious!

\(\leftarrow\) Suppose \(B\) satisfies the two conditions in the theorem. Let \(\tau(B)\) be all possible neutrosophic unions of elements from \(B\) with \(0_X\). It suffices to show that \(\tau(B)\) is a neutrosophic topology on \(X\). From the first condition and the construction of \(\tau(B)\) we have \(0_X, 1_X \in \tau(B)\). Now let \(H, K \in \tau(B)\). Then \(H = \bigcup_i H_i\) and \(K = \bigcup_j K_j\) where \(H_i, K_j \in B\) for every \(i, j\). So we have (by parts (3) and (4) of Proposition 1.3)

\[
H \cap K = (\bigcup_i H_i) \cap (\bigcup_j K_j) = \bigcup_j ((\bigcup_i H_i) \cap K_j) = \bigcup_j (H_i \cap K_j)
\]

Since \(H_i, K_j \in B\) for every \(i, j\), we have \(H \cap K \in \tau(B)\). The proof that the union of elements from \(\tau(B)\) is an element from \(\tau(B)\) is easy! And we done.

\(\tau(B)\) will be called the neutrosophic topology generated by the neutrosophic base \(B\) on \(X\).

Definition 2.10. \[10\] \((X, \tau)\) is said to be neutrosophic compact if each neutrosophic open (in \(\tau\)) cover of \(X\) has a finite neutrosophic subcover.

Theorem 2.11. \[10\] Consider the space \((X, \tau)\), and let \(B\) be a neutrosophic base for \(\tau\). Then \((X, \tau)\) is a neutrosophic compact space if and only if every neutrosophic open cover of \(X\) from \(B\) has a finite neutrosophic subcover.

Definition 2.12. \[10\] A neutrosophic space \((X, \tau)\) is said:

1. A neutrosophic Lindelöf space if each neutrosophic open cover of \(X\) from \(\tau\) has a countable neutrosophic subcover of \(X\).

2. A neutrosophic countably compact space if each neutrosophic open countable cover of \(X\) from \(\tau\) has a finite neutrosophic subcover of \(X\).

The following three results have proofs similar to their correspondings about neutrosophic \(\mu\)-topological spaces in \[10\].

Theorem 2.13. Every neutrosophic space with a countable neutrosophic base is neutrosophic Lindelöf.

Theorem 2.14. Every neutrosophic Lindelöf and countably compact space is compact.

Corollary 2.15. Every neutrosophic countably compact space with a neutrosophic countable base is neutrosophic compact.

The following example show that neutrosophic Lindelöf spaces are not neutrosophic countably compact.

Example 2.16. Let \(Y = \{a, b\}\) and let \(B = \{A_n; n = 1, 2, 3, \ldots\}\) where \(A_n = \{y, 1 - \frac{1}{2n}, \frac{1}{2n}, \frac{1}{2n}; y \in X\}\). We will show that \(B\) is a base for some neutrosophic topology on \(Y\).

Murad Arar, About Neutrosophic Countably Compactness
i.e. we want to show B satisfies (1) and (2) in Theorem 2.9.

First condition: B neutrosophic covers Y, actually:

$$\sqcup B = \sqcup \{A_n; n = 1, 2, 3, \ldots\} = \{\langle y, \vee_1^\infty 1 - \frac{1}{2^n}, \wedge_1^\infty \frac{1}{2^n}, \wedge_1^\infty \frac{1}{2^n} \rangle; y \in Y\} = \{\langle y, 1, 0, 0 \rangle; y \in Y\} = 1_Y.$$

Second condition: The neutrosophic intersection of two elements from B, but is clear that for any A_n and A_m in B we have $A_n \cap A_m = A_t$ where $t = \max\{n, m\}$ which an element of B, so that B is a neutrosophic base form some neutrosophic topology $\tau(B)$ on Y. Since $\tau(B)$ has a countable base, $\tau(B)$ is neutrosophic Lindelöf. Now, we will show that $\tau(B)$ is not neutrosophic countably paracompact (which implies it is not neutrosophic compact). By contrapositive, suppose Y is neutrosophic countably paracompact. Then $U = B$ is a countable neutrosophic open cover of Y. But Y is a neutrosophic countably paracompact space, so that we have U has a neutrosophic finite subcover, say $U^* = \{A_{n1}, A_{n2}, ..., A_{nk}\}$. But $A_{n1} \cup A_{n2} \cup ... \cup A_{nk} = A_t$ where $t = \max\{n_1, n_2, ..., n_k\}$, and $A_t = \{\langle y, 1 - \frac{1}{2^n}, \frac{1}{2^n}, \frac{1}{2^n} \rangle; y \in Y\} \neq 1_Y$, a contradiction. So Y is not neutrosophic countably paracompact and hence it is not neutrosophic compact.

The following theorem shows that neutrosophic compact spaces and neutrusophic countably compact spaces are equivalent if the universe of discourse is countable, which is not true for topological spaces.

Theorem 2.17. For every countable neutrosophic topological space Y, the following two statements are equivalent:

1. Y is neutrosophic compact.
2. Y is neutrosophic countably compact.

Proof. \Rightarrow) Obvious!

\Leftarrow Suppose that Y is a countable neutrosophic countably compact space, and let U be a neutrosophic open cover of Y. For every $y \in Y$ we define the following three subsets of $[0, 1]$.

1. $D_\mu^y = \{\mu_A(y); A \in U\}$.
2. $D_\nu^y = \{\nu_A(y); A \in U\}$.
3. $D_\sigma^y = \{\sigma_A(y); A \in U\}$.

Let D_1^y, D_2^y and D_3^y be three countable dense subsets of D_μ^y, D_ν^y and D_σ^y respectively in the usual sense (the usual topology on the unit interval). Since U is a neutrosophic μ-open cover of Y, we have $\sup D_1^y = \sup D_\mu^y = 1$, $\inf D_2^y = \inf D_\nu^y = 0$ and $\inf D_3^y = \inf D_\sigma^y = 0$. Let $U(y) = \{A \in U; \mu_A(y) \in D_1^y, \sigma_A(y) \in D_2^y \text{ or } \nu_A(y) \in D_3^y\}$. It is clear that $U(y)$ is countable. Let $U^* = \sqcup \{U(y); y \in Y\}$. Since Y is countable, U^* is a countable sub-collection from U. We will show that U^* is a neutrosophic cover of Y. Set $B = \sqcup U^*$. For every $y \in Y$ we have:

1. $\mu_B(y) = \vee\{\mu_A(y); A \in B\} \geq \vee\{\mu_A(y); A \in D_1^y\} = \sup D_1^y = 1$.
(2) \(\sigma_B(y) = \land \{ \sigma_A(y); A \in B \} \geq \land \{ \sigma_A(y); A \in D_1^y \} = \inf D_1^y = 0. \)

(3) \(\nu_B(y) = \land \{ \nu_A(y); A \in B \} \geq \land \{ \lor_A(y); A \in D_1^y \} = \inf D_3^y = 0. \)

Which implies that \(B = 1_Y \) and \(\mathcal{U}^* \) is a neutrosophic countable open cover. Since \(Y \) is a neutrosophic \(\mu \)-countably compact space, \(\mathcal{U}^* \) has a finite subcover, that is \(Y \) is compact. □

The following example shows that neutrosophic compactness and neutrosophic countably compactness are not equivalent.

Example 2.18. Consider the set of all countable ordinals \(W_0 \) with the usual ordering. Let \(\beta = \{ [s, t), s, t < \omega_1 \text{(the first uncountable ordinal)} \} \). We know that \(\beta \) is a base for some topology \(\tau \) on \(Y = W_0 \). For every \([s, t) \in \beta \) define the neutrosophic set

\[
A_{[s,t)} = \begin{cases}
(y, 1, 0, 0) & \text{if } y \in [s, t) \\
(y, 0, 1, 1) & \text{if } y \notin [s, t)
\end{cases}
\]

Set \(\hat{\beta} = \{ A_{[s,t)}; [s, t) \in \beta \} \). We will show that \(\hat{\beta} \) is a base for some neutrosophic topology on \(Y \). First we show it is a neutrosophic cover for \(Y \). Let \(A = \sqcup \beta \); it suffices to show that \(A = 1_Y \). But for every \(y \in Y \), we have \(y \in [s, y) \) for some \(s < y \), so that \(\mu_A(y) = \lor \{ \mu_C(y); C \in \hat{\beta} \} \geq \mu_{[s, y)} = 1, \sigma_A(y) = \land \{ \sigma_C(y); C \in \hat{\beta} \} \leq \sigma_{[s, y)} = 0 \), and \(\nu_A(y) = \land \{ \nu_C(y); C \in \hat{\beta} \} \leq \nu_{[s, y)} = 0 \), that means \(A = 1_Y \) and \(\beta \) covers \(Y \). Now, we will show that the intersection of any two elements from \(\beta \) is empty or an element of \(\beta \). Let \(A_{[s_1,t_1)} \) and \(A_{[s_2,t_2)} \) be two neutrosophic sets in \(\beta \) and set \(C = A_{[s_1,t_1)} \cap A_{[s_2,t_2)} \); if \([s_1,t_1) \cap [s_2,t_2) = \emptyset \), then for every \(y \in Y \) we have \(y \notin [s_1, t_1) \) or \(y \notin [s_2, t_2) \), which implies \(\mu_C = \mu_{[s_1,t_1)} \land \mu_{[s_2,t_2)} = 0 \), \(\sigma_C = \sigma_{[s_1,t_1)} \lor \sigma_{[s_2,t_2)} = 1 \) and \(\nu_C = \nu_{[s_1,t_1)} \lor \nu_{[s_2,t_2)} = 1 \) and that means \(A_{[s_1,t_1)} \cap A_{[s_2,t_2)} = 0_Y \). Now, suppose that \([s_1, t_1) \cap [s_2, t_2) \neq \emptyset \). Then for every \(y < \max \{ s_1, s_2 \} \) or \(y \geq \min \{ t_1, t_2 \} \) we have \(y \notin [s_1, t_1) \) or \(y \notin [s_2, t_2) \), which means \(\mu_C = 0, \sigma_C = 1 \) and \(\nu_C = 1 \), and if \(\max \{ s_1, s_2 \} \leq y \leq \min \{ t_1, t_2 \} \), then \(y \in [s_1, t_1) \) and \(y \in [s_2, t_2) \), that is \(\mu_C = 1, \sigma_C = 0 \) and \(\nu_C = 0 \), so that we have

\[
A_{[s_1,t_1)} \cap A_{[s_2,t_2)} = A_{[s,t)} = \begin{cases}
(y, 1, 0, 0) & \text{if } y \in [s, t) \\
(y, 0, 1, 1) & \text{if } y \notin [s, t)
\end{cases} \quad \forall \beta
\]

where \(s = \max \{ s_1, s_2 \} \) and \(t = \max \{ t_1, t_2 \} \). Let \(\tau (\beta) \) be the neutrosophic topology generated on \(Y \) by \(\beta \). Then \(\tau (\beta) \) is a neutrosophic countably compact space: We will prove this by showing \(\tau (\beta) \) has no countable cover form \(\beta \). Let \(\mathcal{C} = \{ A_n = [s_n, t_n); n = 1, 2, 3, \ldots \} \) be any countable subset from \(\beta \), it suffices to show that \(\mathcal{C} \) does not cover \(Y \); by contrapositive, suppose \(\mathcal{C} \) covers \(Y \), then \(D = \sqcup \mathcal{C} = \sqcup_{i=1}^{\infty} A_n = 1_Y \). So that for every \(y \in Y \) we have

\(Murad Arar, About Neutrosophic Countably Compactness \)
\(\mu_C = \bigvee_{i=1}^{\infty} \mu_{A_n} = 1 \); since \(\mu_{A_n} = 1 \) or 0 for every \(n = 1, 2, 3, \ldots \), there exist \(i \) such that \(\mu_{A_i} = 1 \), that is \(y \in A_i = [s_i, t_i] \), which implies \(Y = \bigcup_{i=1}^{\infty} [s_n, t_n] \), a contradiction, since \(Y \) is uncountable and \(\bigcup_{i=1}^{\infty} [s_n, t_n] \) is countable, so \(\beta \) has no countable cover for \(Y \), and so \(Y \) is neutrosophic countably compact. Now, to show that \(Y \) is not neutrosophic compact. But \(\beta \) is a neutrosophic open cover of \(Y \) and has no countable, and hence no finite, subcover, that means \(Y \) is not neutrosophic compact.

Corollary 2.19. There is a neutrosophic \(\mu \)-topological spaces which is neutrosophic countably compact but not neutrosophic compact.

Proof. Since every neutrosophic space is \(\mu \)-topological space, we have Example 2.18 is an example of a neutrosophic \(\mu \)-topological spaces which is neutrosophic countably compact but not neutrosophic compact. \(\square \)

The approach we used in Example 2.18 can be generalized to get more counterexample for neutrosophic topological spaces as follows.

Theorem 2.20. Let \((X, \tau)\) be a topological space and for every \(U \in \tau \) set

\[
A_U = \begin{cases} (x, 1, 0, 0) & \text{if } x \in U \\ (x, 0, 1, 1) & \text{if } x \notin U \end{cases}
\]

and let \(\text{Neut}(\tau) = \{A_U; U \in \tau\} \). Then \((X, \text{Neut}(\tau))\) is a neutrosophic topological space.

Proof. Since \(\emptyset, X \in \tau \), we have \(A_{\emptyset}, A_X \in \text{Neut}(\tau) \), but

\[
A_{\emptyset} = \begin{cases} (x, 1, 0, 0) & \text{if } x \in \emptyset \\ (x, 0, 1, 1) & \text{if } x \notin \emptyset \end{cases} = \begin{cases} (x, 1, 0, 0) & \text{if } x \in \emptyset \\ (x, 0, 1, 1) & \text{if } x \in X \end{cases} = 0_X
\]

\[
A_X = \begin{cases} (x, 1, 0, 0) & \text{if } x \in X \\ (x, 0, 1, 1) & \text{if } x \notin X \end{cases} = \begin{cases} (x, 1, 0, 0) & \text{if } x \in X \\ (x, 0, 1, 1) & \text{if } x \in \emptyset \end{cases} = 1_X
\]

So we have \(0_X, 1_X \in \text{Neut}(\tau) \). Now, let \(H = A_U \cap A_V \) where \(A_U, A_V \in \text{Neut}(\tau) \). Then

\[
\mu_H(x) = \begin{cases} 1 & \text{if } x \in U \\ 0 & \text{if } x \notin U \end{cases} \land \begin{cases} 1 & \text{if } x \in V \\ 0 & \text{if } x \notin V \end{cases} = \begin{cases} 1 & \text{if } x \in U \cap V \\ 0 & \text{if } x \notin U \cap V \end{cases} = \mu_{A_U \cap A_V}(x)
\]

Murad Arar, About Neutrosophic Countably Comapctness
\[\sigma_H(x) = \begin{cases} 0 & \text{if } x \in U \\ 1 & \text{if } x \notin U \end{cases} \lor \begin{cases} 0 & \text{if } x \in V \\ 1 & \text{if } x \notin V \end{cases} = \sigma_{A(U \cap V)}(x) \]

\[\nu_H(x) = \begin{cases} 0 & \text{if } x \in U \\ 1 & \text{if } x \notin U \end{cases} \lor \begin{cases} 0 & \text{if } x \in V \\ 1 & \text{if } x \notin V \end{cases} = \nu_{A(U \cap V)}(x) \]

So we have \(A_U \cap A_V = A_{(U \cap H)} \in \text{Neut}(\tau) \). Similarly we show that \(\sqcup A_\alpha \in \text{Neut}(\tau) \) whenever \(A_\alpha \in \text{Neut}(\tau) \) for every \(\alpha \in \Delta \).

3. Applications and further studies

This paper is a completion part of [10] and gives an answer for the following question: Are neutrosophic \(\mu \)-compactness and neutrosophic \(\mu \)-countably compactness equivalent? which posted in [10]. We give an example to show that the answer is no! the approach is used to give such example can be generalized to give many counter examples in neutrosophic topology using those existing in general topology. This paper, also, studied more advanced notations about neutrosophic topology such as neutrosophic comapactness and neutrosophic Lindelöf, which opens doors for more studies about neutrosophic topology, such as neutrosophic para-compactness, and other covering properties.

Funding: This Project was supported by the Deanship of Scientific research at Prince Sattam Bin Abdulaziz University under the research project ♯ 2019/01/9633.

References

Murad Arar, About Neutrosophic Countably Comapactness

20. F. G. Lupiáñez, *Interval neutrosophic sets and topology*, The International

Murad Arar, About Neutrosophic Countably Comapctness
27. F. Smarandache, *Neutrosophy and neutrosophic logic*, first international conference on neutrosophy, neutrosophic logic, set, probability, and statistics, University of New Mexico, Gallup, NM 87301, USA(2002).

Received: June 9, 2020 / Accepted: Aug 16, 2020