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Abstract. The main purpose of this article is to develop and study the notion of interval-valued neutrosophic
subring. Also, we have studied some homomorphic characteristics of interval-valued neutrosophic subring.
Again, we have defined the concept of product of two interval-valued neutrosophic subrings and analyzed some
of its important properties. Furthermore, we have developed the notion of interval-valued neutrosophic normal

subring and studied some of its basic characteristics and homomorphic properties.

Keywords: Neutrosophic set; Interval-valued neutrosophic set; Interval-valued neutrosophic subring; Interval-

valued neutrosophic normal subring

ABBREVIATIONS

TN signifies “T-norm”.

SN signifies “S-norm”.

IVTN signifies “interval-valued T-norm”.
IVSN signifies “interval-valued S-norm”.
CS signifies “crisp set”.

F'S signifies “fuzzy set”.

IF'S signifies “intuitionistic fuzzy set”.
NS signifies “neutrosophic set”.

PS signifies “plithogenic set”.

FSG signifies “fuzzy subgroup”.

IFSG signifies “intuitionistic fuzzy subgroup”.
NSG signifies “neutrosophic subgroup”.
CR signifies “crisp ring”.

FSR signifies “fuzzy subring”.

IFSR signifies “intuitionistic fuzzy subring”.
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NSR signifies “neutrosophic subring”.

IVFSR signifies “interval-valued fuzzy subring”.

IVIFSR signifies “interval-valued intuitionistic fuzzy subring”.
IVINSR signifies “interval-valued neutrosophic subring”.
IVINNSR signifies “interval-valued neutrosophic normal subring”.
DMP signifies “decision making problem”.

1 (P) signifies “power set of P”.

L signifies “the set [0,1]”.

1. Introduction

Zadeh’s vision behind introducing the revolutionary concept of FS [1] theory was to tackle
uncertainty in a better way than CS theory, which has certain drawbacks. Later on, following
his vision Atanassov introduced a more general version of it, which is known as IF'S [2] theory.
These IFSs are a little step ahead in managing ambiguities and hence are welcomed by numer-
ous researchers. Furthermore, following their footsteps Smarandache introduced NS [3] theory,
which is more capable of handling vague situations. It is a significant generalization over CS,
FS, and IFS theories. Smarandache has also initiated the concept of PS [4] theory which has
broader aspects than those previously discussed concepts. In NS and PS theory, he has also
developed the notions of neutrosophic calculus [5], neutrosophic probability 6], neutrosophic
statistics [7], integral, measure [8], neutrosophic psychology [9], neutrosophic robotics [10],
neutrosophic triplet group [11], plithogenic hypersoft set [12], plithogenic fuzzy whole hyper-
soft set [13], plithogenic logic, probability [14], plithogenic subgroup [15], plithogenic hypersoft
subgroup [16], etc. Again, NS theory has various other contributions in different scientific re-
searches, like in linear programming [17-20], decision making [21-27], healthcare [28]29], short-
est path problem [30-37], neutrosophic forecasting [38|, resource leveling [39], transportation
problem [40,/41], project scheduling [42], brain processing [43], etc.

Gradually, interval-valued versions of FS [44], IFS [45], and NS [46] were introduced, which
are further generalizations of their CS, FS, IFS, and NS counterparts. Presently, these set
theories are extensively used in different scientific domains. From the very start, various
researchers have carried out this concepts and explored them in different dimensions. In the

subsequent Table [I| we have referred some significant aspects of these notions.

TABLE 1. Importance of interval-valued notions in different domains.

Author & references Year Contributions in various fields
Biswas [47] 1994 Introduced interval-valued FSG.

continued ...
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Author & references Year Contributions in various fields

Atanassov [45] 1999 Studied basic definition and some properties of
IVFS.

Mondal & Samanta [48] 2001 Defined and studied topology of IVIFSs.

Wang et al. [46] 2005 Proposed and studied IVNS and interval-valued
neutrosophic logic.

Ye [49] 2009 Worked on multi-criteria DMP under IVIFSs.

Kang & Hur [50] 2010 Introduced and studied the notion of IVFSR.

Akram & Dudek [51] 2011 Defined some basic operations on interval-valued

fuzzy graphs and studied some of their properties.

Aygiinoglu et al. [52] 2012 Introduced interval-valued IFSG and studied some
homomorphic properties of it.

Moorthy & Arjunan [53] 2014 Introduced and studied some properties of IVIFSR.

Aiwu et al. [54] 2015 Worked on multi-attribute DMP under IVNSs.

Broumi et al. [56] 2016 Worked on interval-valued neutrosophic graph the-
ory.

Deli [55] 2017 Applied soft version of IVNS in DMP.

Broumi et al. [56] 2019 Studied some properties of interval-valued neutro-

sophic graphs.

Group theory and ring theory are fundamental building blocks of abstract algebra, which
are utilized in different scientific domains. But, initially, these concepts were introduced upon
crisp environment. Gradually, from 1971 on-wards researchers started introducing these con-
cepts under various uncertain environments. Some significant developments of these notions
under uncertainty are the concepts of FSG [57], IFSG [5§], NSG [59], FSR [60,61], IFSR [62],
NSR [63], etc. Again some researchers have introduced these concepts under interval-valued
environments and initiated the notions of interval-valued FSG [47], interval-valued IFSG [52],
interval-valued NSG [64], interval-valued FSR [50], interval-valued IFSR [53], etc. Some more
articles which can be helpful to different researchers are [65(71], etc. But, still, the notion
of interval-valued NSR is undefined. Hence, by mixing interval-valued environment with neu-
trosophic environment, we can introduce a more general version of NSR, which will be called
IVNSR. Also, their homomorphic properties can be studied. Again, their product and normal
forms can be developed and analyzed. Based on these observations, the followings are some

of our main objectives for this article:

e Introducing the notion of IVNSR and a analyzing its homomorphic properties.
e Introducing the product of IVNSRs.
e Introducing subring of a IVNSR.
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e Introducing the notion of IVNNSR and a analyzing its homomorphic attributes.

The subsequent arrangement of this article is: in Section [2, some desk researches of FS,
IFS, NS, IVFS, IVIFS, IVNS, FSR, IFSR, NSR, IVFSR, IVIFSR, etc., are discussed. In
Section [3], the idea of IVNSR has been introduced and some basic theories are provided. Also,
their product and normal versions are defined. Also, some theories are given to understand
their algebraic attributes. Lastly, in Section {4l the concluding segment is given and also some

opportunities for further studies are mentioned.

2. Literature Review
Definition 2.1. [1] A FS of a CS P is defined as the function v : P — L.

Definition 2.2. [2] An IFS p of a CS P is defined as p = {(r,¢,(r), fy(r)) : 7 € P}, where
Vr € P, t,(r) and f,(r) known as the degree of membership and non-membership which satisfy
the inequality 0 < t,(r) + fo(r) < 1

Definition 2.3. [3] A NS x of a CS P is defined as k = {(r,tx(r),ix(r), fu(r)) : 7 € P},
where Vr € P, t.(r),ix(r), and f.(r) are known as degree of truth, indeterminacy, and falsity
which satisfy the inequality ~0 < t,(r) + ix(r) + fo(r) < 37.

Definition 2.4. [52] An interval number of L = [0,1] is denoted as k = [k~, k"], where
1>kt >k >0.

Definition 2.5. [44] An IVFS of P is defined as the mapping v : P — ¢(L).

Definition 2.6. [45] An IVIFS of P is defined as the mapping p : P — ¢(L) x ¢(L), It is
denoted as p = {(r,t5(r), f5(r)) : v € P}, where t5(r), f5(r) C [0,1].

Definition 2.7. [46] An IVNS of P is defined as the mapping & : P — (L) x (L) x (L), It
is denoted as & = {(r,1z(r),iz(r), fz(r)) : r € P} where Vr € P, tz(r), iz(r), and fz(r) C L.

Definition 2.8. [46] Let &y = {(rtq(r),ic(r),fe(r)) : r € P} and ky =
{(r,te(r),ig(r), fm(r)) : 7 € P} be two IVNSs of P. Then union of 1 and £3 is defined as
baum = |max {t;, ¢, } max {;f {1 }]

El{lU@ - [mln {Zm’ Hz} min {Zm’ :2 }

ZiﬁU@ = [mln {fm?fﬁz} mln{ K1) }]
Then intersection of K1 and K3 is defined as

Elﬁﬁ@ = [mln {tmp m} min {t;:l’t:2 }]

T + =+ ]

liinim = [max {Zm’ nz} max {va 1753

t_f{1mf{2 = [max{f/glaf;%}7ma‘x{f/{17fl{z}]
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Definition 2.9. [72] A function T': L — L is called a TN iff Vr, v,z € L, the followings can

be concluded

(i) T(r,1)=r

(ii) T'(r,v) =T(v,7r)

(iii) T(r,v) < T(z,v) ifr <z
(iv) T(r,T(v, 2)) = T(T(r,v), 2)

Definition 2.10. [73] A function T : (L) x (L) — (L) defined as T(k,w) =
[T(k~,w™), T(k*,w")], where T is a TN is known as an IVTN.

Definition 2.11. [72] A function S : L — L is called a SN iff Vr,v, z € L, the followings can

be concluded

Definition 2.12. [73] The function S : (L) x (L) — (L) defined as S(k,w) =
[S(k=,w™),S(k*,w")], where S is a SN is called an TVSN.

2.1. Puzzy, Intuitionistic fuzzy € Neutrosophic subrings

Definition 2.13. [60] Let (P, +,-) be a crisp ring. A FS X is called a FSR of P, iff Vr,v € P,
() A(r —v) = min{A(r), A(v)},
(ii) A(r-v) > min{A(r), A(v)}

The set of all FSR of a crisp ring (P, +,-) will be denoted as FSR(P).

Theorem 2.1. [61] Any FS X of a ring (P,+,-) is a FSR of P iff the level sets As (A\(6p) >

s > 0) are crisp subrings of P, where Op is the zero element of P.

Definition 2.14. [61] Let A be a FSR of (P, +,-) and A(fp) > s > 0, where p is the zero

element of P. Then A; is called a level subring of A.
Proposition 2.2. [61)] Let A1, \a € FSR(P). Then \1 N A2 € FSR(P).

Theorem 2.3. [61)] Let (P,+,-) and (R,+,-) be two crisp rings. Also, let | : P — R be a
homomorphism. If X is a FSR of P then l(\) is a FSR of R.

Theorem 2.4. [61)] Let (P,+,-) and (R,+,-) be two crisp rings. Also, let | : P — R be a
homomorphism. If X' is a FSR of R then I=*(X) is a FSR of P.
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Definition 2.15. [62] Let (P, +,-) be a crisp ring. An IFS v = {(r,t,(r), fy(r)) : r € P} is
called an IFSR of P, iff Vr,v € P,
(i) ty(r+v) > T(tv(r),tv(v)), fy(r+v) < S(f,y(r),i,y(v))
(i) ty(=7) = ty(r), fy(=r) < fy(7)
(i) £ v) = T(t (1), 4, (), (7 0) < S(f, (), 0).
Here, T is a TN and S is a SN.

The set of all IFSR of a crisp ring (P, +, - ) will be denoted as IFSR(P).

Proposition 2.5. [62] Let v € IFSR(P). Then the followings will hold

(i) ty(=7r) =ty(r), fy(=r) = fy(r) and

(ii) t4(0p) > ty(r), fy(0p) < fy(r), where Op is the zero element of P.
Proposition 2.6. [62] An IFS v = {(r,t,(r), fy(r)) : v € P} is called an IFSR of P, iff
Vr,v € P,

()twr—v > T(ty(r), t,(v)), fr(r—v) < S(fy(r), £(v))

(ii) ¢ 'y V) =2 ( o r)vt’y U))a fv(r'v) < S(fw( )af'y(v))

Proposition 2.7. [62] Let v1,v2 € IFSR(P). Then v1 N~z € IFSR(P).

Theorem 2.8. [62] Let (P,+,-) and (R,+,") be two crisp rings. Also, let | : P — R be a
homomorphism. If v is an IFSR of P then () is an IFSR of R.

Theorem 2.9. [62] Let (P,+,-) and (R,+,-) be two crisp rings. Also, let | : P — R be a
homomorphism. If v' is an IFSR of R then I=(v') is an IFSR of P.

Definition 2.16. [63] Let (P, +,) be a crisp ring. A NS w = {(r,t(r), i (r), fu(r)) : v € P}
is called a NSR of P, iff Vr,v € P,
(i) tw(r +v) > T(tw(r), tw(v)), iw(r+v) > 1(iy(r),iu(v)), fulr+v) < F(fulr), fu(v))
(i) tw(=r) 2 tu(r), iw(=7) = iw(r), fu(-r) < fulr)
(iii) tw(r-v) = T (tw(r), tw(v)), iu(r-v) = I(iu(r),iu(v)), fo(r-v) < S(fu(r), fu(v)).
Here, T and I are two TNs and S is a SN.

The set of all NSR of a crisp ring (P, +,-) will be denoted as NSR(P).
Proposition 2.10. [65] A NSw = {(r,tu(r),iu(r), fu(r)) : v € P} is called a NSR of P, iff
Vr,v € P,

(i) tw(r —v) = T(tw(r), tw(v)), iw(r —v) = I(iu(r),iw(v)), folr—v) < (fw( ) fu(v))
(ii) tw(r-v) > T(tw(r), tw(v)), iw(r-v) > I(iuw(r),iu@)), folr-v) <S(ful (v)).
Here, T and I are two TNs and S is a SN.
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Proposition 2.11. [63] Let wi,ws € NSR(P). Then wi Nwy € NSR(P).

Theorem 2.12. [63] Let (P,+,-) and (R,+,-) be two crisp rings. Also, letl: P — R be a
homomorphism. If w is a NSR of P then l(w) is a NSR of R.

Theorem 2.13. [63] Let (P, +,-) and (R,+,-) be two crisp rings. Also, letl: P — R be a
homomorphism. If w' is a NSR of R then I=1(w') is a NSR of P.

Definition 2.17. [63] Let w = {(r,tu(r),iu(r), fu(r)) : ¥ € P} be a NSR of P. Then
Vs € [0, 1] the s-level sets of P are defined as
(i) (tw)s ={r € P:ty,(r) > s},
(ii) (iw)s = {r € P :iy(r) > s}, and
(i) (f.)° = {r € P+ fulr) < s}.

Proposition 2.14. [63] A NS w = {(r,tw(r),iu(r), fu(r)) : 7 € P} of a crisp ring (P, +,")
is a NSR of P iff Vs € [0,1] the s-level sets of P, i.e. (ty)s, (iw)s, and (fu,)* are crisp rings of
P.

2.2. Interval-valued Fuzzy and intuitionistic fuzzy subrings

Definition 2.18. [50] Let (P, +,) be a crisp ring. AnIVFS A = {(r,#s(r)) : r € P} is called
an IVFSR of (P, +,-) with respect to IVIN T if Vr,v € P, the followings can be concluded:
(i) ta(r +v) > T(ta(r), ta(v)),
(i) ta(—r) > A(r), and
(iii) ta(r-v) > T(¢a(r), ta(v)),

The set of all IVFSR of a crisp ring (P, +, - ) with respect to an IVTN T will be denoted as
IVFSR(P,T).

Proposition 2.15. [50] Let \ = {(r, t,\('r)) ‘T e P} be a FSR of (P,+,-). Then A = [ty,t)]
is an IVFSR of P.

Proposition 2.16. [50] Let A = {(r,ta(r)) : v € P} be an IVFSR of (P,+,:). Then
A~ ={(r,t(r)) :r € P} and A* = {(r,t{(r)) : r € P} are FSRs of P.

Definition 2.19. [53] Let (P, +,-) be a crisp ring. An IVIFS T = {(r,tr(r), fr(r)) : r € P}
is called an IVIFSR of (P, +,-) if Vr,v € P, the followings can be concluded:

(i) tr(r+v) > T(fp(r),fp(v)), fr(r4+v) < F(fp(r),fp(v)),
(i) fr(—r) > ir(r), fr(—r) < Ji(r), and

(iii) tp(r-v) > T(tr(r),tr(v)), fr(r-v) < F(fr(r), fr(v)).

The set of all IVIFSR of a crisp ring (P, +,-) will be denoted as IVIFSR(P).
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Theorem 2.17. [55] If T = {(r,tr(r), fr(r)) : 7 € P} € IVIFSR(P), then tr(r) < tr(6p)
and fr(r) > fr(0p).

Theorem 2.18. [55] If Ty and Ty € IVIFSR(P), then Ty NTy € IVIFSR(P).

Theorem 2.19. (53] Let I' = {(r,tr(r), fr(r)) : v € P} € IVIFSR(P), then VYr,v € P
(i) tr(r —v) = tr(0p) implies that tr(r) = tr(v).
(ii) fr(r —v) = fr(0p) implies that fr(r) = fr(v).

3. Proposed notion of interval-valued neutrosophic subring

Definition 3.1. Let (P,+,-) be a crisp ring. An IVNS Q = {(r,{o(r),ia(r), fo(r)) : 7 € P}
is called an IVNSR of (P, +,) if Vr,v € P, the followings can be concluded:
((ta(r +v) 2T (ta(r), ta(v)),

(iii) io(r - v) §f(fg(r),gg(v)),
fa(r-v) <F(fa(r), fa(v)),
where T is an IVTN, I and F are two IVSNG.

The set of all IVNSR of a crisp ring (P, +,-) will be denoted as IVNSR(P).

Example 3.2. Let (Z,+,-) be the ring of integers with respect to usual addition and multi-
plication. Let 2 = {(r, ta(r),iq(r), fg(r)) (T e Z} be an IVNS of Z, where Vr € Z

[0.2,0.25] if 7 € 2Z

0,0 ifre2Z+1

[0, 0] if r € 27

1o(r) = , and

[0.1,0.12] if r € 2Z + 1

[0, 0] ifre2Z

0.75,0.8] if r € 2Z +1

Now, if we consider minimum TN and maximum SNs, then 2 € IVNSR(Z).
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Example 3.3. Let (Z4,+,-) be the ring of integers modulo 4 with usual addition and multi-
plication. Let Q = {(r,%o(r),i(r), fo(r)) : 7 € Z4s} be an IVNS of Z4, where interval-valued

memberships of elements belonging to €2 are mentioned in Table

TABLE 2. Membership values of elements belonging to 2

Q to i fa

0| [0.6,0.7] |[0.33,0.35] | [0.2,0.3]
1| [0.7,0.8 |[0.21,0.23] | [0.5,0.6]
2 | 0.75,0.85] | [0.24,0.26] | [0.3,0.7]
3| [0.75,0.9] | [0.31,0.33] | [0.5,0.7]

Now, if we consider the Lukasiewicz T-norm (7'(r,v) = max{0,r + v — 1}) and bounded sum
S-norms (S(r,v) = min{r + v,1}), then Q € IVNSR(Z4).

Proposition 3.1. An IVNS Q = {(r,ta(r),ia(r), fa(r)) : 7 € P} of a crisp ring (P,+,")
is an IVNSR iff the followings can be concluded (assuming that all the IVTN and IVSNs are
idempotent):

(i) { io

(ii) ¢ iq

Proof. Let 2 € IVNSR(P). Then we have

to(r —v) > T(ta(r),ta(—v)) [by condition (i) of Definition

(ta(r),ta(v)) [by condition (ii) of Definition

AV}
N

Similary, we will have

io(r —v) SI(EQ(T’), ig(v)), and
fa(r —v) <F(fa(r), fa(v)),
which proves (i).

Again, (ii) follows immediately from condition (iii) of Definition
Conversely, let (i) and (ii) of Proposition 3.1 hold. Also, let fp be the additive neutral element
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in (P,+,-). Then
tQ(HP) = _Q(T — 7”)
> T(EQ(T),{Q(T))
= tq(r) (3.1)
Similaly, we can show that
iq(0p) <iq(r) (3.2)
fa(p) < fa(r) (3.3)
Now,
tQ(—T) = _9(913 — 7”)
> T(EQ(QP),t_Q(T))
> T(ta(r), ta(r)) [by
= tq(r) [since T is idempotent] (3.4)
Similarly, we can prove
iq(—r) <ig(r) [since I is idempotent] (3.5)
fa(=r) < fa(r) [since F is idempotent] (3.6)
Hence,
fg(r +v) = 'EQ(T — (—v))
> T(ta(r), to(—v))
> T(fa(r), fa(v)) [by (3.7)
Similarly,
ia(r +v) < I(fa(r). Ta(v)) by B (3.5)
falr +v) < F(ta(r),ta(v)) [by (3.9)

So, by Equations and condition (i) of Proposition has been proved. Also,
condition (ii) of Proposition is same as condition (iii) of Definition Hence, Q) €

IVNSR(P). g

Theorem 3.2. Let (P,+,-) be a crisp ring. If Q1,Q9 € IVNSR(P), then Q1NQy € IVNSR(P)

(assuming all the IVTN and IVSNs are idempotent).
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Proof. Let Q = Q1N Q. Now, Vr,v € P
to(r +v) =T (ta, (r +v),to,(r +v))
> T(T(Fay (1) Fo, (v), T (o, (1), E, (v) )
- T(T(*Ql(r), fo, (v), T (Fa, (v), By (r))) [as T is commutative]
- T(T(‘Ql(r), T, (1)), T (Ea, (v), o, (v))) las T is associative]
=T (fa(r),la(v)) (3.10)
Similarly, as both I and S are commutative as well as associative, we will have
io(r +v) < I(ia(r),ia(v)) (3.11)
fa(r +v) < F(fa(r), fa(v)) (3.12)
Again,
fo(—r) = T(fn, (~1), fo (1))
> T (ta, (r), ta,(r)) [by Definition [3-1]
= #o(r) (3.13)
Also,
ia(—r) <ig(r) (3.14)
fa(=r) < fa(r) (3.15)
Similarly, we can show that
fa(r-v) > T(fa(r), fa(v)), (3.16)
iq(r-v) < I(ia(r),ig(v)), and (3.17)
fa(r-v) < F(fa(r), fa(v)) (3.18)

Hence, by Equations Q=01 NQ € IVNSR(P).

Remark 3.3. In general, if Q1,Q9 € IVNSR(P), then Q1 U Qo may not always be an IVNSR

Of (Pa+7 )

The following Example [3.4] will prove our claim.

Example 3.4. Let (Z,+,-) be the ring of integers with respect to usual addition and multi-
plication. Let Q; = {(7“, ta, (1), 10, (1), fo, (7")) ‘r € Z} and Qy = {(r, ta, (1), 10, (1), fo, (7“)) :
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r e Z} be two IVNSs of Z, where Vr € Z

~ [0.25,0.4] if r € 2Z

to, (7") = )
[0, 0] fre2z+1

~ [0, 0] ifre2z

i, (r) = , and
0.17,0.2] if r € 2Z + 1

~ [0, 0] ifr e 2Z

fou (r) = . :
[0.33,0.4] if r € 2Z + 1

and

[0.5,0.67] if r € 3Z

tQ2(7") = )
[0, 0] fre3z+1

~ [0, 0] ifr e 3Z

i, (r) = , and
0.2,0.25] if r € 3Z + 1

~ [0, 0] if r € 3Z

sz(r) =

0.33,05] if r €3Z+1

Now, if we consider minimum TN and maximum SNs, then Q;,Qs € IVNSR(Z).
Now let Q = Q7 UQy. Then for r =4 and v =9

to(r +v) = ta(4+9)
= 1(13)
= max{to, (13), 10, (13)}
= max{|0, 0], [0,0]}
= [0,0]
Again, if Q € IVNSR(P), then Vr,v € P, to(r +v) > min{tq(r),to(v)}. But, here for r = 4

and v = 9, min{fn(4),7a(9)} = min{[0.25,0.4], [0.5,0.67]} = [0.25,0.4] £ [0,0] = £o(4 + 9).
Hence, 2 ¢ IVNSR(P).

Corollary 3.4. If Q1,09 € IVNSR(P), then Q3 U Qo € IVNSR(P) iff one is contained in

other.

Definition 3.5. Let Q = {(r,1q(r), ia(r), fo(r)) : 7 € P} be an IVNS of a crisp ring (P, +, -).
Also, let [k1, s1], [k2,s2] and [ks3, s3] € W(L). Then the crisp set Q(
a level set of IVNSR 2, where for any r € Q(

[k1751]7[k2,52],[k37s3]) is called

[kl,sl},[k2752],[k3,53}) the following inequalities will

hold: fo(r) > [k1, s1], i(r) < [k2, so], and fo(r) < [ks, s3].
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Theorem 3.5. Let (P,+,-) be a crisp ring. Then Q € IVNSR(P) iff V[k1, s1], [k2, s2], [ks, s3] €
\I/(L) with EQ(QP) Z [k’l, 81], %Q(ep) S [k’g, 52], and fg(ep) S [k‘g, 83], Q([kl s1], k2,52, k3 33})
crisp subring of (P,+,-) (assuming all the IVTN and IVSNs are idempotent).

5 a

Proof. Since, tq(0p) > [k1,s1], io(@p) < [ko,s2], and fo(fp) < [k3,s3], Op €

ie., Q( ) is non-empty.

Q([kl581]7[/’62,82},[’63,83]) ’ k1,51, [k2,52], ks, 3]
Now, let Q@ € IVNSR(P) and r,v € Q(

r-v e

ot 1) o sel fisosal) To show that, (r — v) and

([kl ’81]7[k2752]’[k3,83]) : Herev

to(r —v) > T(ta(r), ta(v)) [by Proposition 3]
> T([k1, 51], [k1, 51]) [as T,V E Q([k1,sl},[k2,32],[k3,33})]

> [k1, s1] [as T is idempotent] (3.19)

Again,

to(r-v) > T (ta(r),ta(v)) [by Proposition [3.1]
> T([k1,51], [k1, 51]) [as TV € Q([kl751]7[,62782]7%3753])}

> [k1, s1] [as T is idempotent] (3.20)

Similarly, we can show that

io(r —v) < [ka, s2], (3.21)
ia(r-v) < [k, s2], (3.22)
fa(r —v) < [ks, s3], and (3.23)
fa(r-v) < [ks, s3] (3.24)

Hence, by Equations|3.1943.24| (r —v) and r-v € Q(

1 51), [k, 921, ks 55]) Le., {2 ([R50, [k2,52), [ 53] )

is a crisp subring of (P, +, ).
Conversely, let Q(
IVNSR(P).

Let r,v € P, then there exists [ki,s1] € ¥(L) such that T(fo(r),to(v)) = [ki,s1]. So,
ta(r) > [k1,s1] and to(v) > [k1,s1]. Also, let there exist [k, so], [k3,s3] € V(L) such that

I(iq(r),ia(v)) = [k2, s2] and F(fa(r), fo(v)) = [ks,ss). Then r,v € Q(
Again, as Q(

[khsl]’[k%sﬂ’[k&sg]) is a crisp subgroup of (P,+,-). To show that, Q €

[t 1], [z 2], [k3,s3])

is a crisp subring, r — v € and r - v €

[k1,51],[k2,52],[k3,53]) ([k1,51],[k2,52] [k, 5] )

([kl,81]7[192,82},[1?3,83]) '
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Hence,

ta(r —v) > [k1, 1]
=T (ta(r),ta(v)) and (3.25)
to(r-v) > [k, s1]

=T (ta(r), to(v)) (3.26)

Similarly, we can prove that

= I(ia(r),ia(v)), (3.27)

io(r-v) < [ke, s9]
= I(ia(r),ia(v)), (3.28)

fa(r —v) < [ks, s3]
= F(fa(r), fa(v)), and (3.29)

fa(r-v) < [ks, s3]
= F(fa(r), fa(v)) (3.30)

So, Equations 3.30| imply that €2 follows Proposition ie, Q € IVNSR(P).

Definition 3.6. Let © and Q' be two IVNSs of two CSs P and R, respectively. Also, let
l: P— R be a function. Then

(i) image of Q under [ will be ((Q) = {(v,fyq)(v ) i) (v), fya)(v)) : v € R}, where
tiay(v) = Sayl(v)tg_(s) o)(v _) li\l(v)_g( s), f Ev) Eli\l(v)_fg(s). Wh_erefrom, if
I is injective then &) (v) = ta(I7'(v)), i) (v) = ia(I71(v)), fia)(v) = fa(l7(v)),
and

(i) preimage of Q' under I will be I1(QY') = { (7, {-1 () (r), -1 () (r), fr-1(n) (1)) : 7 € R},
where -1 (1) = tar (1(r)), G100y (1) = i (1)), frr(ay(r) = for (1(r)).

Theorem 3.6. Let (P,+,:) and (R,+,-) be two crisp rings. Also, let l : P — R be a ring
isomorphism. If Q is an IVNSR of P then 1(Q) is an IVNSR of R.
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Proof. Let vy = I(r1) and vy = [(r3), where 11,72 € P and vy,v2 € R. Now,

Iy ny 1

tiqy(v1 — v2) =T (I7 " (v1 — v2)) [as [ is injective]

=to(I" (v1) =17 (v2)) [as 7! is a homomorphism]
=tq(r; —r2)
> T(ta(r1), ta(rz))
:T(’ (7 (01) o (7 (2))
=T (ty (v1), Ty (v2)) (3.31)
Again,
tiay(v1 - v2) =T (17 (v1 - v2)) [as L is injective]
=1t (I (v1) - 1" (v2)) [as 7! is a homomorphism]
=ta(ry-r2)
> T (ta(r1), ta(rs))
= T(fa (7 (o) (1 (1))
= T (tye) (v1): by (v2)) (3.32)
Similarly,
iy (1 = v2) < I (i) (1), i) (v2)), (3.33)
iy (01 - v2) < I (iyq)(v1), o) (v2)), (3.34)
Jiey (w1 —v2) < F(fi)(v1), f)(v2)), and (3.35)
Juy (w1 - v2) < F(fyay(v1), fya)(va)) (3.36)

Hence, Equations imply that {(2) follows Proposition ie., [(Q) is an IVNSR of
R.

Theorem 3.7. Let (P,+,-) and (R,+,-) be two crisp rings. Also, let | : P — R be a ring
homomorphism. If ' is an IVNSR of R then I=1(Y') is an IVNSR of P (Note that, I=! may

not be an inverse mapping but 171 (Q') is an inverse image of ).
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Proof. Let vy = I(r1) and vy = [(r3), where 11,72 € P and vy,v2 € R. Now,

El—l(Q’)(rl — 7“2) = EQ/ (l(?"l — 1"2))
(

:T(f (Q/)(T‘l) tl 1(Q/)(’I“2)) (337)
Again,
-1y (r1 - r2) = o (I(r1 - 72) )
=1, /(l ) as [ is a homomorphism)|
= E (’Ul . UQ)
Z T(f ’ ’l)1 t_Q/(U ))
= T (fer (1), T (1(r2)) )
:T t_ ( )( ) tl 1(9/)(?“2)) (338)
Similarly,
glfl(Q’)O’l — 7'2) S f(glfl(ﬂ/)( 7,1 1 Q) ) (339)
gl—l(Q/) (7‘1 . 7‘2) S I_(El (Q/)( 7’1 1 Q/ ) (340)
Ji=1@ (r1 = r2) < F(fi-10)(r1), fi-10)(r2)) (3.41)
fi=1n (r1 - 12) < F(fim1i0 (1), fier oy (r2)) (3.42)

Hence, Equations [3.37 imply that [71()') follows Proposition ie., 1) is an
IVNSR of P. g

Definition 3.7. Let (P, +, ) be a crisp ring and Q € IVNSR(P). Again, let 6 = [01, 03], 7 =
[71,72],8 = [61,02] € U(L). Then
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(i) Q is called a (7, 7,8)—identity IVNSR over P, if Vr € P

o ifr=20p

ta(r) = ;
[0,0] if r # Op

B T ifr=20p

io(r) = , and
[1,1] if ©+#0p

_ g if7’=9p

fQ(T) = . )
[1,1] if r # 0p

where 0p is the zero element of P.

(ii) Q is called a (7,7,d)—absolute IVNSR over P, if Vr € P, to(r) = 7, ig(r) = 7, and
fa(r) =6.
Theorem 3.8. Let (P,+,-) and (R,+,-) be two crisp rings and Q@ €IVNSR (P). Again, let
l: P — R be a ring homomorphism. Then
(i) 1(Q) will be a (7,7,0)—identity IVNSR over R, if ¥r € P
o ifre Ker(l)
[0,0] otherwise
T ifre Ker(l)
io(r) = , and
[1,1] otherwise
5 ifre Ker(l)

falr) = , ;
[1,1] otherwise

(ii) 1(Q) will be a (&,7,8)—absolute IVNSR over R, if Q is a (&,7,8)—absolute IVNSR

over P.

Proof. (i) Clearly, by Theorem [3.6{1(£2) € IVNSR(R). Let r € Ker(l), then I(r) = 0p.
So,

o) (0r) =ta(l"'(0R))
=tq(r)
=5 (3.43)
Similarly, we can show that
Zl(Q)(QR) =7, and (3.44)
fiey(Or) =6 (3.45)
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Again, let r € P\ Ker(l) and I(r) = v. Then

tiay(v) = ta (7' (v))

=tq(r)
=0,0] (3.46)
Similarly, we can show that
iyy(v) = [1,1] and (3.47)
fuy(v) = [1,1] (3.48)

Hence, by the Equations 1(Q) is a (7,7, 6)—identity IVNSR over R.
(ii) Let {(r) = v, for r € P and v € R. Then

tiay(v) = ta (17" (v))

=tq(r)
=0 (3.49)
Similarly, we can show that
i) (v) = 7 and (3.50)
fiy(w) =6 (3.51)

Hence, by the Equations 1(Q) is a (6,7,)—absolute IVNSR over R.

3.1. Product of interval-valued neutrosophic subrings

Definition 3.8. Let (P,+,:) and (R,+,:) be two crisp rings. Again, let Q; =

{(r.ta,(r),iq, (1), fo,(r)) : 7 € P} and Qo = {(v,%0,(v), i0,(v), fo,(v)) : v € R} are IVNSRs
of P and R respectively. Then Cartesian product of 2; and €y will be

Q:Ql><QQ

= {((rs0), T (E, (1), B0, () T (i (1), s (0)), F (Fou (1), fu (v) ) : (r,0) € P x R}
Similarly, product of 3 or more IVNSRs can be defined.

Theorem 3.9. Let (P,+,-) and (R,+,") be two crisp rings with Oy € IVNSR(P) and Qg €
IVNSR(R). Then Q1 x Qg is a IVNSR of P x R.
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Proof. Let Q = Q1 x Qg and (r1,v1), (r2,v2) € P X R. Then

to((ri,v1) — (r2,v2)) = ta,xq, ((r1 — r2,v1 — v2))
= T(fgl (r1 —r2), ta,(v1 — 1)2)) [by Definition
> T(T o, (1), ta, rg)) T(EQQ(vl),fQQ(vg))) [by Proposition [3.1]
= T(T to, (r1), T, (v1)), T (o, (r2), ta, (vg))) [as T is associative]
T (ta(r1,v1), ta(ra, v2)) (3.52)

Again,

to((ri,v1) - (r2,v2)) = ta,xa, ((r1 - 72,01 - v2))
T(fgl(rl “19), ta, (v1 - vg)) [by Definition

(T ta, (r1),to, 7“2)) T(fgz(vl),fQQ (’Ug))) [by Proposition [3.1]

T (ta(r1,v1),ta(re, v2)) (3.53)

IV Il

T (ta, (r1),ta,(v1)), T (ta, (r2), ta, (m))) [as T is associative]

Similary, the followings can be shown

ia((r1,v1) — (r2,v2)) < I(ig(r1,v1),i0(r2, v2)), (3.54)
io((r1,v1) - (r2,v2)) < I(ia(ry, vi), i0(r2, va2)), (3.55)
fa((ri,v1) = (r2,v2)) < F(fa(r1,v1), fa(ra,v2)), and (3.56)

fa((ri,v1) - (r2,v2)) < F(fa(ri,v1), falra, v2)) (3.57)

Hence, using Proposition [3.1| and by Equations Q) x Q9 € IVNSR(P x R).

Corollary 3.10. Let Vi € {1,2,...,n}, (P;,+,-) are crisp rings and ; € IVNSR(P;). Then
Q1 X Qo X xQyisa IVNSR of PL X Py X --- X P,, where n € N.

3.2. Subring of a interval-valued neutrosophic subgring

Definition 3.9. Let (P,+,-) be a crisp ring and Q1,09 € IVNSR(P), where Q; =
{(r,ta,(r),iq,(r), fo,(r)) : 7 € P} and Qo = {(r,%0,(r),i0,(r), fa,(r)) : ¥ € P}. Then

Q) is called a subring of Qg if Vr € P, tq, (r) < tq,(r), i, (r) > iq,(r), and fq,(r) > fo, (7).

Theorem 3.11. Let (P, +,-) be a crisp ring and Q € IVNSR(P). Again, let Q1 and Q2 be two
subrings of Q. Then 21 N Qs is also a subring of 2, assuming that all the IVTN and IVSNs

are idempotent.
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Proof. Here, Vr € P

t_QlﬂQz (T) = T(tﬂl (7’), tQ, (T))
T(fg(r), fg(r))
ta(r) [as T is idempotent] (3.58)

IN

Similarly, as I and F are idempotent we can show that,
0,00, (1) > ig(r) and (3.59)
fﬂlﬁQQ (7") 2 fQ(T) (360)

Hence, by Equations [3.58{3.60] €21 N €2 is a subring of .

Theorem 3.12. Let (P, +,-) be a crisp ring and 1, € IVNSR(P) such that Q is a subring
of Qa. Let (R,+,-) is another crisp ring and | : P — R be a ring isomorphism. Then

(1) 1(21) and 1(Q22) are two IVNSRs over R and

(ii) 1(Q1) is a subring of [(Q2).

Proof. (i) can be proved by using Theorem [3.6]
(ii) Let v = I(r), where r € P and v € R. Then

ta,(r) < ta,(r) [as Qp is a subring of ]
=to, (17! (v )) < t, (17 (v))
=1(0,)(v) < Tya,)(v) (3.61)

Similarly, we can prove that

il((h)(v) Z 51(92)(1]) and (362)
Jion (V) = fiay) () (3.63)

Hence, by Equations [(€1) is a subring of [(Q2).

3.3. Interval-valued neutrosophic normal subrings

Definition 3.10. Let (P,+,-) be a crisp ring and  is an IVNS of P, where Q =
{(r,ta(r),ia(r), fa(r)) : r € P}. Then Q is called an IVNNSR over P if

(i) ©Q is an IVNSR of P and

(ii) Vr,v € P, tq(r-v) =to(v-r), ig(r-v) = ig(v-r), and fo(r-v) = fo(v-r).

The set of all IVNNSR of a crisp ring (P, +, - ) will be denoted as IVNNSR(P).
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Example 3.11. Let (Z,+,-) be the ring of integers with respect to usual addition and mul-
tiplication. Let Q = {(r,tq(r),iq(r), fo(r)) : 7 € Z} be an IVNS of Z, where Vr € Z

[0.67,1] if r € 22

0,0 ifre2Z+1

[0,0] if r € 2Z

1o(r) = , and

[0.33,0.5] if € 27 + 1

0,0] ifre2z

0,0.33] if r € 2Z +1

Now, if we consider minimum TN and maximum SNs, then 2 € IVNNSR(Z).

Theorem 3.13. Let (P,+,-) be a crisp ring. If Q1,Q € IVNNSR(P), then Q1 NQq €
IVNNSR(P).

Proof. As 1,Q9 € IVNSR(P) by Theorem Q1 N Qe € IVNSR(P). Again,

ta,na, (1 v) = T(tgl(r ), ta, (1 v))

=T (tq,(v-7),to,(v- 7)) [as 21, Qs € IVNNSR(P)]

= EQIQQ2 (v-r) (3.64)

Similarly,
10,00, (1 V) = ig,n0, (v 1) (3.65)
fﬁlmQQ (T : U) = fQ1ﬂQQ (1) : 7") (366)

Hence, 21 N Qy € IVNNSR(P).

Remark 3.14. In general, if Q1,Q2 € IVNNSR(P), then Q1 U Qo may not always be an
IVNNSR of (P,+,").

Remark [3.14] can be proved by Example [3.4]

Theorem 3.15. Let (P,+,:) be a crisp ring. Then Q € IVNNSR(P) iff
V[k1, s1], [ka, s2], [ks, s3] € W(L) with ta(0p) > [k1, s1], ia(0p) < [k2,s2], and fo(0p) < [ks, s3],
Q([kl781]7[162782}’[163783]) is a crisp normal subring of (P,+,-) (assuming all the IVTN and IVSNs
are idempotent).

Proof. This can be proved using Theorem [3.5] g
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Theorem 3.16. Let (P,+,) and (R,+,) be two crisp rings. Also, let | : P — R be a ring
isomorphism. If Q is an IVNNSR of P then I[(Q2) is an IVNNSR of R.

Proof. As Q is an IVNSR of P by Theorem 1(©2) is an IVNSR of R. Let I(r1) = v1 and

l(r2) = va, where 1,72 € P and v1,vs € R. Then

i)y (v1 - v2) = o (l_l(vl -v2)) [as [ is injective]

(U7 (v1) - 17 (v2)) [as i7" is a homomorphism]

I
ol
- —

I
~

o(r1-m2)

I
~

a(re - r1) [as Q2 is an IVNNSR of P]

=to(I" (v2) - 17 (1))
=1tq (l Yy -y )
= EZ(Q) (v2 - v1) (3.67)
Similarly,
fl(g) (v -v9) = fl(g) (vg - v1) and (3.68)
Jiy(v1 - v2) = fyay(va - v1) (3.69)

Hence, by Equations [(2) is an IVNNSR of R.

4. Conclusions

As interval-valued neutrosophic environment is more general than regular one, we have
adopted it and defined the notions of interval-valued neutrosophic subring and its normal
version. Also, we have analyzed some homomorphic properties of these newly defined notions.
Again, we have studied product of two interval-valued neutrosophic subrings. Furthermore,
we have provided some essential theories to study some of their algebraic structures. These
newly introduced notions have potentials to become fruitful research areas. For instance, soft
set theory can be implemented and the notion of interval-valued neutrosophic soft subring can
be defined.
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