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Abstract

Stochastic disturbances arise in a variety of engineering applications. For tractability,

Gaussian disturbances are often assumed. However, this may not always be valid, such as

when a disturbance exhibits heavy-tailed or skewed phenomena. As autonomous systems

become more ubiquitous, non-Gaussian disturbances will become more common due to

the compounding effects of sensing, actuation, and external forces. Despite this, little has

been done to develop formal methods that are both computationally efficient and allow

for analytical assurances with non-Gaussian disturbances. Addressing convex polytopic

set acquisition and non-convex collision avoidance chance constraints with quantile and

moment-based reformulations, this dissertation proposes novel stochastic optimal con-

trol techniques that are computationally efficient and allow for analytic guarantees with

vi



arbitrary disturbances. These reformulations are amenable to optimization techniques

while eliminating costly, and frequently intractable, high-dimensional integrals. These

conservative reformulations guarantee chance constraint satisfaction and are numerically

tractable. I demonstrate these methods with applications to multi-satellite operations.
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Chapter 1

Introduction

1.1 Motivation

Enabling extended satellite lifetimes through advances in on-orbit refueling and servicing

depots has been a focal point for many private and public organizations [7, 8, 9]. Such

advances are requiring new technologies to enable efficient autonomous coordination be-

tween multiple satellites despite the harsh environment and limited resources such as fuel

or computational abilities. These new technologies must accommodate path planning and

optimization for mission critical vehicles under uncertain conditions that may arise from

modeling inaccuracies, inaccurate or time delayed sensing, and faulty or inconsistent ac-

tuation mechanisms. These stochastic elements are frequently modeled using Gaussian

disturbances for mathematical convenience. However, noise processes from conditions

like these can take on non-Gaussian characteristics, such as heavy tailed, skewed, or

multi-modal phenomena. In stochastic spacecraft systems, non-Gaussian phenomena can

arise from drag [10], third body gravity effects [11], faulty thrusters or sensors, extreme

weather or geological events such as hurricanes or earthquakes [12], or even magnetic

disturbances caused by solar winds and solar flares [13]. Computation of controllers that

meet required probabilistic safety thresholds for target acquisition and collision avoidance
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in these conditions require accurate assessments of disturbance characteristics.

To address arbitrary disturbances, many control theorists rely on stochastic optimal

control principals to develop techniques for controller synthesis [14, 15, 16]. Within

the stochastic optimal control framework, chance constraints have been widely used to

account for target set and collision avoidance restrictions in a probabilistic manner [17,

18]. Ideally, control theorists seek to find a convex reformulation of chance constraints

such that can be optimized with classical convex optimization guarantees [19, 20, 21].

In this dissertation, I propose three chance constrained stochastic optimal control

methods that are computationally efficient and tractable for cooperative multi-vehicle

coordination problems. Here, I focus on three challenges: 1) chance constraints for

polytopic target sets and 2-norm based collision avoidance, 2) arbitrary and potentially

unknown disturbances, and 3) computationally efficient methods. Individually, each

of these challenges have solutions. While brute force method can be used to handle

non-convex constraints or non-Gaussian distributions [5, 22], there is a dearth of com-

putationally efficient methods that can handle both non-convexity and non-Gaussianity.

This is particularly true for instances when non-Gaussian distributions are the cause of

non-convexities, such as multi-modal distributions. Figure 1.1 demonstrates the stochas-

tic motion planning scenario that is primarily considered throughout this work. In this

scenario, three satellites must reach a refueling station, while avoiding colliding with each

other, the refueling station, other spacecraft, and debris despite uncertainties corrupting

the dynamics.

One of the major motivators for this work is that the existing work in this field pri-

marily focuses on Gaussian disturbances and the few methods that can accommodate

non-Gaussian disturbance typically cannot handle non-convex constraints and are not

computationally efficient. There are several hurdles that each of these methods overcame

to be able to handle non-convex collision avoidance, non-Gaussian disturbances, and do

so in a computationally efficient manner. To address non-Gaussianity, the methods pre-
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Figure 1.1: A scenario in which three satellites need to rendezvous with a refueling station
while avoiding nearby spacecraft and space debris.

sented in this work are all based on general characteristics common to most disturbances,

such as moments or quantile functions. Through this lens, each method manipulates el-

ements of statistical theory to derive a closed form reformulation that can be applied to

most disturbances. Special care was taken such that each closed form reformulation could

be formatted as a difference of convex functions. While a difference of convex function is

inherently non-convex, formatting the methods in this manner allows for guarantees of

locally optimal solutions that do not inhibit the asymptotic or almost surely guarantees

of chance constraint satisfaction. Further, difference of convex functions programs can be

solved through an iterative convex approximation process. Despite being iterative, each

iteration results in a convex subproblem that can be solved quickly, making the whole

process relatively efficient.

The other primary motivator for developing several methods in this work is that not

every distribution has closed form expressions for the various elements each method is

based on. For example, Gaussian distributions do not have a closed form expression for

the quantile and Cauchy distributions do not have moments. Hence, not every method

can be applied to every distribution. Further, even if a distribution does have a closed

form expression for a statistical characteristic of interest, it may not be known. As this
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work progresses, it is assumed that less detailed knowledge is known of the underlying

disturbance processes than in the previous chapters. By the last method, no knowl-

edge is assumed to be known about the underlying disturbance, implying it can handle

any disturbance. However, the general utility of these methods comes at the cost of

conservatism, which increases as the chapters progress.

1.2 Related Work

Several chance constrained stochastic optimal control methods already exist in the liter-

ature. The robust model predictive control (MPC) method utilizes bounded disturbance

characteristics to develop upper and lower bounds the state must achieve to satisfy the

constraints in all scenarios [23, 24, 25, 26, 27, 28]. For disturbances on infinite supports,

the robust MPC method considers artificial bounds that represent a significant portion

of the distributions support [28]. Robust methods can be particularly useful when high

safety thresholds are required. However, by using upper and lower bounds that are

predetermined, the robust MPC method often lacks optimally.

Several quantile and conditional value at risk (CVaR) based approaches have been

posed to solve the chance constraints [29, 30, 31]. Both quantiles and CVaR are used as a

measure of the tail probability of the state not being safe with respect to the underlying

distribution. These methods rely on accurate knowledge of the underlying distribution

and closed form expressions for the quantile and CVaR. Quantile and CVaR tend to

result in less conservative controllers but the reliance on closed form expressions can be

limiting. Methods have been posed to alleviate the need for closed form expressions. The

work of [32, 33, 34] proposed the use of numerical inverse Fourier transforms to recover

the quantile from the characteristic function.

Moment based approaches that rely on concentration inequalities, such as Markov’s,

Chebyshev’s, and Cantelli’s inequalities [35], have been developed for distributions that

4



have analytic moments. For linear chance constraints reformulations have closed form

based on the linear and quadratic properties of the expectation and variance function

[1, 36, 37]. These methods benefit from linear systems and constraints allowing for

closed form chance constraint reformulations that are tractable. However, for non-linear

constraints, analytic computation of moments can be challenging, particularly for longer

time horizon problems.

Sampling approaches are a common way to bypass the need for closed form expres-

sions using sampled data. The two common sampling based approaches are the scenario

approach [4, 38, 39, 5, 40, 41] and particle control approach [22, 6, 42, 43]. The scenario

approach solves the stochastic optimal control problem with respect to each sample dis-

turbance in the sample data. For a given problem, users specify a confidence bound for

the likelihood of the solution satisfying chance constraints. As both the chance constraint

satisfaction threshold and the confidence bound increase, so too do the number of sam-

ples required. Recent work has been posed to alleviate the computational burden of large

sample size requirements thought a sample-and-discard approach [44] and an iterative

solution finding process [45]. Like the scenario approach is the particle control approach.

Commonly formatted as a mixed integer linear program, the particle control approach

solves the chance constrained problem for a fraction of the samples corresponding to the

chance constraint satisfaction threshold. Often this method more computationally bur-

densome than the scenario approach despite potentially using less disturbance samples.

Unlike the scenario approach, the particle control approach does not provide a confidence

bound and can only guarantee chance constraint satisfaction asymptotically. While both

methods can accommodate chance constraints without knowledge of the underlying dis-

turbance, they also suffer from the computational burden of large data sets.
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1.3 Implications for Multi-Satellite Rendezvous

Multi-satellite rendezvous problems provide unique challenges in that the vehicles are

often uniquely designed, safety critical, and (at time of writing) mostly unrepairable.

These facts, combined the harsh nature of the environment in which they operate, pro-

vide a scenario in which even small inaccuracies in modeling or unexpected disturbances

can lead to catastrophic failures that are cost prohibitive to rectify. However, as the

statistician George Box stated, ”All models are wrong, some are useful,” so we should

expect inaccuracies in our modeling techniques. Chance constrained stochastic optimal

control methods are a practical solution to this problem as we can account for these

inaccuracies probabilistically while maintaining considerations for finite resources, such

as fuel.

The use of stochastic optimal control techniques is not new to the satellite commu-

nity [46, 47]. Techniques to synthesize optimal rendezvous maneuvers have been mod-

eled with robust methods [48], differential games [49], quantile approaches [3, 50], and

moment based approaches [51]. However, many of the methods listed thus far have pri-

marily focused on target set acquisition. However, with the near exponential increase

in active satellites and debris over the past few years, collision avoidance has become

an increasingly important consideration in satellite control. Sequential convex program-

ming can be applied to saturation penalty functions based on 2-norm collision avoidance

constraints but suffers from singularities and potential non-convergence during gradient

decent [52, 53, 54, 55]. Techniques for calculating collision avoidance probabilities have

been posed [56] but are difficult to embed in control algorithms and may be limited by

the shape of the satellite. Methods for rendezvous and proximity operations between

a controlled satellite and a stationary or potentially non-cooperative satellite have been

proposed [57, 58, 59] but lack in their ability to accommodate multiple controlled vehicles.

In this work, multi-satellite rendezvous problems are the focus for application. For

safety critical systems, such as satellites, methods that can provide assurances of con-
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straint satisfaction apriori are required when developing new methodologies. As the meth-

ods presented in this work provide approximate or almost surely guarantees of chance

constraint satisfaction, these methods may be of interest to the satellite community.

1.4 Contributions, Publications, and Organization

1.4.1 Contributions

The focus of this work is on the theory of chance constrained stochastic optimal control.

The main contributions of this dissertation are summarized below.

1. Development of three controller synthesis methods in which stochastic optimal con-

trol problems with chance constraints for target sets and collision avoidance can be

solved in the presence of arbitrary and potentially unknown disturbances.

2. Derivations of closed form reformulations of chance constraints for target sets and

collision avoidance. These closed form reformulations result in a series on convex or

difference of convex constraints that can easily be solved with an iterative convex

approximation.

3. Derivation of probabilistic safety guarantees associated with each of the three de-

veloped methods. The developed probabilistic safety guarantees that are developed

in this work are not dependent on the choice of disturbance.

1.4.2 Publications

All the work presented in this dissertation has been published or submitted for publication

in peer-reviewed journals or conferences. The quantile based approach that is presented

in Chapter 3 has been published or submitted for publication in:

7



• S. Priore, A. Vinod, V. Sivaramakrishnan, C. Petersen and M. Oishi, ”Stochastic

multi-satellite maneuvering with constraints in an elliptical orbit,” 2021 American

Control Conference (ACC), New Orleans, LA, USA, 2021, pp. 4261-4268, doi:

10.23919/ACC50511.2021.9483158.

• S. Priore, C. Petersen and M. Oishi, ”Approximate Quantiles for Stochastic Op-

timal Control of LTI Systems with Arbitrary Disturbances,” 2022 American Con-

trol Conference (ACC), Atlanta, GA, USA, 2022, pp. 1814-1821, doi: 10.23919/

ACC53348.2022.9867580.

• S. Priore, C. Petersen and M. Oishi, ”Approximate Stochastic Optimal Control

for Linear Time Invariant Systems with Heavy-tailed Disturbances”, submitted to

AIAA Journal of Guidance, Control, and Dynamics

The analytic moment approach, which is presented in Chapter 4, has been submitted

for publication in:

• S. Priore and M. Oishi, ”Chance Constrained Stochastic Optimal Control for Arbi-

trarily Disturbed LTI Systems Via the One-Sided Vysochanskij–Petunin Inequal-

ity” submitted to IEEE Transactions on Automatic Control

The work on sample based moments, which is discussed in Chapter 5, has been

submitted for publication in:

• S. Priore and M. Oishi, ”Chance Constrained Stochastic Optimal Control Based

on Sample Statistics With Almost Surely Probabilistic Guarantees” submitted to

IEEE Transactions on Automatic Control

Although not discussed in this body of research, I have worked on several other

theoretical contributions in the field of chance constrained stochastic optimal control. I

have extended the work of Chapter 5 to a particular case involving Gaussian distributions

with unknown mean and variance parameters in
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• S. Priore and M. Oishi, ”Stochastic Optimal Control For Gaussian Disturbances

with Unknown Mean and Variance Based on Sample Statistics” submitted to 2023

IEEE Conference on Decision and Control

Further, I have considered chance constrained stochastic optimal control for cases when

stochasticity is present in the state matrix or the control matrix. This work has been

published or submitted for publication in

• S. Priore, A. Bidram and M. Oishi, ”Chance Constrained Stochastic Optimal Con-

trol for Linear Systems with Time Varying Random Plant Parameters” accepted,

to appear in 2023 American Control Conference (ACC)

• S. Priore and M. Oishi, ”Chance Constrained Stochastic Optimal Control for Linear

Systems with a Time Varying Random Control Matrix” submitted to 2023 IEEE

Conference on Control Technology and Applications

1.4.3 Organization

The remainder of this dissertation will be organized as follows.

In Chapter 2, I provide an overview of the necessary mathematical concepts used

in the remainder of this work. This includes a review of probability and optimization.

I formulate the chance constrained stochastic optimization problem that this body of

research focuses on solving. Finally, I provide a brief overview of the dynamics for

relative motion of on-orbit satellites.

In Chapter 3, I present the quantile based approach to solving the chance constrained

stochastic optimization problem. I detail how the chance constraints considered are

amenable to a form in which the stochasticity is separable from the control input. In

this form, I show the constraints can be written in terms of the input and the stochas-

tic quantile. The quantile is then approximated with a Taylor series expansion under
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assumptions of existence and differentiability of the probability density function. This

approach is demonstrated on three multi-satellite rendezvous scenarios.

In Chapter 4, I present the analytic moment based approach to solving the chance

constrained stochastic optimization problem. I detail how the chance constraints consid-

ered can be satisfied with non-probabilistic constraints based on the mean and standard

deviation of the event the chance constraint is bounding. For unimodal constraint, I

show that the one-sided Vysochanskij-Petunin inequality [60] allows for guaranteed sat-

isfaction of the chance constraints. This approach is demonstrated on two multi-satellite

rendezvous scenarios.

In Chapter 5, I present the sample moment based approach to solving the chance

constrained stochastic optimization problem. I detail how the chance constraints consid-

ered can be satisfied with non-probabilistic constraints based on the sample mean and

sample standard deviation of the event the chance constraint is bounding. I derive two

theorems that guarantee chance constraint satisfaction despite using sample statistics.

This approach is demonstrated on two multi-satellite rendezvous scenarios.

Chapter 6 summarizes the contributions of this body of research and identifies avenues

for future research.
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Chapter 2

Preliminaries

2.1 Notation

The following notation standards will be used throughout the remainder of this work.

The set of natural numbers, including zero, is denoted as N and a subset of the natural

numbers from a to b where a < b is denoted as N[a,b]. The set of real numbers is R. Scalars

and vectors will be denoted with a lower-case letter, the latter having an arrow accent,

i.e., x ∈ R or x⃗ ∈ Rn. Matrices will be denoted with a capital letter, i.e. A ∈ Rn×m.

The denote an identity matrix as In ∈ Rn×n and a matrix of all zeros as 0n ∈ Rn×n

or 0n×m ∈ Rn×m. Concatenated vectors will be noted with accented uppercase letters,

i.e. X⃗ =

[
x⃗⊤
1 x⃗⊤

2

]⊤
∈ R2n and concatenated matrices will use calligraphic uppercase

letters, i.e. A =

[
A1 A2

]
∈ Rn×2m. For a matrix A, the operator vec(A) vertically

concatenates the columns of A into a column vector. For two matrices A and B, I denote

the Kronecker product as A⊗B. For matrix entries A1, . . . , Am, I denote a block diagonal

matrix constructed with these elements as blkdiag(A1, . . . , Am). I denote the 2-norm of

a matrix or vector by ∥ · ∥.

The probability of an event A is demarcated as P(A). Random variables will be

boldcase, x, regardless of dimension. With respect to a random variable x, I denote the

11



probability density function (pdf) as ϕx (·), the cumulative distribution function (cdf) as

Φx (·), and the quantile (or the inverse of the cdf) as Φ−1
x (·). For a random variable x, I

denote the nth moment as E(xn), variance as V(x), and standard deviation as S(x). For

two random variables, x and y, C(x,y) denotes the covariance between the two variables.

The ith sample of the random variiable x will be denoted as x[j] and sample estimates

will have a hat accent ·̂, such as Ê(x) for the sample estimate of the first moment. The

indicator function Icond takes the value 1 if the condition, cond, is met and takes the

value 0 otherwise.

2.2 Notions of Probability and Statistics

A random variable x : X → Y is a Borel-measurable function from the probability space

(X ,B(X ),Px) to a state space (Y ,B(Y)). Here, the probability space is defined by the set

of outcomes X , Borel σ-algebra B(X ), and probability measure Px. Similarly, the state

space is defined by the set of outcomes Y , and Borel σ-algebra B(Y). The probability

that a random variable x takes a value in the measurable subset S ⊆ Y is Px (x ∈ S)

[61]. For brevity, I drop the subscript on the probability function when the referenced

random variable is referenced in the input of the function.

It is assumed throughout this work that all random variables are continuous. As such,

the cdf Φx : Y → [0, 1] is Φx (x) = P(x ≤ x) =
∫ x

−∞ dPx. For a given cdf Φx (x), the pdf

is the function that satisfies the equality
∫ x

−∞ ϕx (t) dt = Φx (x) for all x. Note, the pdf

of a function does not need to exist. The quantile Φ−1
x : [0, 1] → Y is the inverse of the

cdf such that Φ−1
x (p) = {x|Φx (x) = p}.

The nth moment of a random variable is defined as E(xn) =
∫∞
−∞ xnϕx (x) dx if the

integral exists. The first moment is commonly referred to as the expectation or mean

and is a measure of central tendency. The variance is a measure of dispersion and is

defined as V(x) = E
(
(x− E(x))2

)
. The standard deviation S(x) is the square root of
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the variance and also measures dispersion.

For a sample of independent and identically distributed random variables, x[1], . . . ,x[m],

the nth sample moment is computed as Ê(xn) =
∑m

i=1(x
[i])n. Similarly, for a function

f : R→ R, the sample expectation of f(x) is Ê(f(x)) =
∑m

i=1 f(x
[i]). This formula can

be used to compute the sample variance and standard deviation. It is not required that

the moment to exist for the sample moments to exist.

2.3 Optimization

2.3.1 Convex Optimization

A convex optimization problem has the form

min
x⃗

f0(x⃗) (2.1a)

s.t. fi(x⃗) ≤ 0 ∀ i (2.1b)

Ax⃗ = b⃗ (2.1c)

where x⃗ ∈ Rn is the decision variable, convex functions fi : Rn → R, and matrix

A ∈ Rm×n and vector b⃗ ∈ Rm. Convexity of the constraints and cost function guarantee

that any local minima are also a global minima. Convex optimization problems are

computationally efficient, and solutions can readily be found via the Lagrange duality

principal [62].

2.3.2 Difference of Convex Optimization

Difference of convex programming is a type of optimization that can be used to solve

non-convex optimization problems to a local minima. It is applicable to optimizations

whose cost and constraints are difference of convex functions.
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Definition 2.1 (Difference of Convex Function). A difference of convex function has the

form

f(x⃗)− g(x⃗) (2.2)

in which f, g : Rn → R are convex functions for x⃗ ∈ Rn.

Generally, a difference of convex functions optimization has the form

min
x⃗

f0(x⃗)− g0(x⃗)

s.t. fi(x⃗)− gi(x⃗) ≤ 0 ∀ i

(2.3)

where x⃗ ∈ Rn is the decision variable, and f0, fi(·) : Rn → R and g0, gi(·) : Rn →

R are convex. Here, the cost is a difference of convex function, and the constraints

are difference of convex as per Definition 2.1. The difference of convex formulations

in (2.3) covers a broad class of functions as any twice differentiable function can be

expressed as a difference of convex function [63]. For example, x3 can be written as

(x3 + x4 + x2)− (x4 + x2) which is difference of convex as both functions are convex.

By taking a first order approximation of the gi(·), I can solve the difference of convex

function optimization problem iteratively as the convex optimization problem,

min
x⃗

f0(x⃗)−
(
g0(x⃗

∗) +∇g0(x⃗∗)⊤(x⃗− x⃗∗)
)

s.t. fi(x⃗)−
(
gi(x⃗

∗) +∇gi(x⃗∗)⊤(x⃗− x⃗∗)
)
≤ 0 ∀ i

(2.4)

By updating the first order approximation at each iteration, the convex-concave pro-

cedure solves to a local optimum. The main benefit of solving this problem with the

convex-concave procedure is the first order approximation makes the constraint convex

while maintaining the convergence assurances [64]. Here, Algorithm 1 demonstrates the

convex-concave procedure [64] used to solve (2.3).

Feasibility of (2.3) is dependent on the feasibility of the initial conditions x⃗∗. A

common tactic is to add slack variables to accommodate potentially infeasible initial
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Algorithm 1: Computing solutions to (2.3) with convex-concave procedure

Input: Feasible initial condition for x⃗, denoted x⃗∗, maximum number of
iterations nmax.
Output: Solution to (2.3), x⃗∗

for i = 1 to nmax do
Solve the convex problem (2.4)
Set solution as new optimal solution, x⃗∗ = x⃗
if Solutions converged then

break
end

end

conditions [64, 65]. By penalizing the sum of slack variables, convergence and optimally

guarantees are nearly equivalent to those of Algorithm 1.

2.4 Relative Motion Dynamics For On-Orbit Satel-

lites

Consider a scenario, such as the one shown in Figure 1.1, where three satellites need

to rendezvous with a refueling station while avoiding each other, other spacecraft, sci-

entific instruments, and debris. I seek to synthesize the rendezvous maneuver, despite

potentially non-Gaussian disturbances corrupting the satellite dynamics. We presume

the evolution of vehicle i of v is governed by the discrete-time LTI system,

x⃗i(k + 1) = Ax⃗i(k) +Bu⃗i(k) + w⃗i(k) (2.5)

with state x⃗i(k) ∈ X ⊆ Rn, input u⃗i(k) ∈ U ⊆ Rm, w⃗i(k) ∈ Rn that follows an arbitrary

but known disturbance, and initial condition x⃗(0). I presume the initial conditions,

x⃗(0), are known, the bounded control authority, U , is a convex polytope, and that the

system evolves over a finite time horizon of N ∈ N steps. I presume each disturbance,

w⃗i(k) has probability space (Ω,B(Ω),Pw⃗i(k)) with outcomes Ω, Borel σ-algebra B(Ω),
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and probability measure Pw⃗i(k) [61]. For the remainder of this work, the distribution of

the stochastic elements will remain arbitrary.

We write the dynamics at time k as an affine sum of the initial condition and the

concatenated control sequence and disturbance,

x⃗i(k) = Akx⃗i(0) + C(k)U⃗i +D(k)W⃗ i (2.6)

with

U⃗i =
[
u⃗i(0)

⊤ . . . u⃗i(N − 1)⊤
]⊤ ∈ UN (2.7a)

W⃗ i =
[
w⃗i(0)

⊤ . . . w⃗i(N − 1)⊤
]⊤ ∈ RNn (2.7b)

C(k) =
[
Ak−1B . . . AB B 0n×(N−k)m

]
∈ Rn×Nm (2.7c)

D(k) =
[
Ak−1 . . . A In 0n×(N−k)n

]
∈ Rn×Nn (2.7d)

Throughout the examples presented in this work, I will demonstrate the methods pre-

sented in the context of multi-satellite rendezvous and proximity operations for satellites

orbiting Earth. Here, the motion of Nv satellites, dubbed the deputies, will be consid-

ered relative to the non-inertial, body fixed reference frame of a (potentially imaginary)

satellite, dubbed the chief. The continuous time relative dynamics of each spacecraft,

with respect to the chief are described by the Clohessy-Wiltshire-Hill (CWH) equations

[66]

ẍ− 3ω2x− 2ωẏ =
Fx

mc

(2.8a)

ÿ + 2ωẋ =
Fy

mc

(2.8b)

z̈ + ω2z =
Fz

mc

. (2.8c)

with input u⃗i = [ Fx Fy Fz ]⊤, and orbital rate ω =
√

µ
R3

0
, gravitational parameter

16



Figure 2.1: Graphic representation of non-inertial body fixed frame of reference used by
the CWH equations.

µ = 3.986×1014 m3·s−2, orbital radius of the chief R0, and mass of the deputy mc. Figure

2.1 is a graphic representation of the non-inertial body fixed frame of reference for the

CWH equations.

I rewrite the second order equations of motion in (2.8) as the first order system,



ẋ

ẏ

ż

ẍ

ÿ

z̈


︸︷︷︸

˙⃗x

=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3ω2 0 0 0 2ω 0

0 0 0 −2ω 0 0

0 0 −ω2 0 0 0


︸ ︷︷ ︸

Ac



x

y

z

ẋ

ẏ

ż


︸︷︷︸

x⃗

+



0 0 0

0 0 0

0 0 0

1
mc

0 0

0 1
mc

0

0 0 1
mc


︸ ︷︷ ︸

Bc


Fx

Fy

Fz


︸ ︷︷ ︸

U⃗

(2.9)

The autonomous first order system (2.9) has a closed form solution [67] for the state at
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time t for a given initial condition x⃗(0), x⃗(t) = eActx⃗(0) where

eAct=



4−3 cos(ωt) 0 0 1
ω
sin(ωt) 2

ω
(1−cos(ωt)) 0

6(sin(ωt)−ωt) 1 0 2
ω
(cos(ωt)−1) 4

ω
sin(ωt)−3t 0

0 0 cos(ωt) 0 0 1
ω
sin(ωt)

3ω sin(ωt) 0 0 cos(ωt) 2 sin(ωt) 0

6ω(cos(ωt)−1) 0 0 −2 sin(ωt) 4 cos(ωt)−3 0

0 0 −ω sin(ωt) 0 0 cos(ωt)


(2.10)

I discretize the first order system with sampling period k = ∆t seconds and impulsive

control assumptions. Then, I arrive at the discrete time linear time invariant system

x⃗(k + 1) = Ax⃗(k) +Bu⃗(k) (2.11a)

A = eAc∆t (2.11b)

B = eAc∆tBc (2.11c)

Through the remainder of this work, I assume an additive noise term is added to (2.11)

such that the dynamics become

x⃗(k + 1) = Ax⃗(k) +Bu⃗(k) + w⃗(k) (2.12)

Here, the disturbance is intended to capture uncertainties that can arise from faulty

thrusters or sensors, third body gravitational effects, and other noise processes that can

corrupt satellite dynamics.

Definition 2.2 (Reverse convex constraint). A reverse convex constraint is the comple-

ment of a convex constraint, that is, f(x) ≥ c for a convex function f : R → R and a

scalar c ∈ R.

I presume each vehicle has a desired polytopic target sets that it must reach, known
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and static obstacles that it must avoid, as well as the need for collision avoidance between

vehicles. Each of these constraints are considered probabilistically and must all hold with

desired likelihoods. Formally,

P

(
Nv⋂
i=1

N⋂
k=1

x⃗i(k) ∈ Ti(k)

)
≥ 1− α (2.13a)

P

(
Nv⋂
i=1

N⋂
k=1

∥S(x⃗i(k)− o⃗(k))∥ ≥ r

)
≥ 1− β (2.13b)

P

(
Nv−1⋂
i=1

Nv⋂
j=i+1

N⋂
k=1

∥S(x⃗i(k)− x⃗j(k))∥ ≥ r

)
≥ 1− γ (2.13c)

I presume convex, compact, and polytopic sets Ti(k) ⊆ Rn, known matrix S ∈ Rq×n

designed to extract the translational elements of the state, positive scalar r ∈ R+, static

object locations o⃗ ∈ Rn, and probabilistic violation thresholds α, β, γ. Note, the collision

avoidance constraints are reverse convex as per Definition 2.2. For the remainder of this

work, I will define the polytopic sets Ti(k) as the intersection ofNik half-space constraints,

Ti(k) ≡

{
x⃗i(k)

∣∣∣∣∣
Nik⋂
a=1

G⃗ikax⃗i(k) ≤ ha

}
(2.14)

I presume a convex performance objective J : XNv × UNv → R. I seek to solve the

following optimization problem.

minimize
U⃗1,...,U⃗Nv

J
(
X⃗1, . . . , X⃗Nv , U⃗1, . . . , U⃗Nv

)
(2.15a)

subject to U⃗i ∈ UN , (2.15b)

Stochastic linear dynamics (2.6) with x⃗i(0) (2.15c)

Probabilistic constraints (2.13) (2.15d)

where X⃗ i =

[
x⃗⊤
i (1) . . . x⃗⊤

i (N)

]⊤
is the concatenated state vector for vehicle i.

Throughout this work, I address the following problem,
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Problem 1. Solve the stochastic optimization problem (2.15) with open loop controllers

U⃗1, . . . , U⃗Nv ∈ UN , and probabilistic violation thresholds α, β, and γ.

The main challenge in solving Problem 1 is assuring the joint chance constraints

constraints (2.13). In general, the optimization problem (2.15) is non-convex because of

the probabilistic constraints. For an arbitrary disturbance, there is no guarantee that the

probability function has a closed form, let alone a convex one. Particularly, the reverse-

convex collision avoidance constraints are inherently non-convex and for most disturbance

assumptions lack a known distribution form. This is the case for many disturbances, such

as Multivariate t, Weibull, or gamma disturbances.
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Chapter 3

Quantile Based Approach

3.1 Introduction

As missions with multiple space vehicles become commonplace, new technologies are

required for effective autonomous operation that enable coordination amongst multiple

vehicles in a challenging environment, despite limited resources (such as fuel). Auton-

omy for spacecraft must accommodate the need to plan and optimize under uncertainty,

which may arise due to modeling inaccuracies, nonlinearities in sensing and estimation

processes, and actuation mechanisms. Many of these uncertainties may be stochastic,

but may not necessarily follow Gaussian distributions. Constructing optimal controllers

to ensure collision avoidance and performance constraints, despite such stochasticity,

requires accurate assessment of risk.

Algorithms for stochastic optimization often face significant computational hurdles

that can create undesirable trade-offs with accuracy [68], particularly in systems with lim-

ited computation. Particle approaches [4, 2] have employed sample reduction techniques

for convex [44, 45] and non-convex [5] problems, but still are subject to tradeoffs between

accuracy and computational burden. Approaches that rely upon moments [69, 70, 1] may

create excessive conservativism, and typically require an iterative approach to controller
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synthesis and risk allocation, to circumvent non-convexity that arises in the process of sep-

arating joint chance constraints into individual chance constraints via Boole’s inequality

[71, 25, 72]. Recent work has employed Fourier transforms in combination with piecewise

affine approximations [33, 29], to evaluate chance constraints without quadrature for LTI

systems with disturbance processes that have log-concave pdf.

My approach to constrained stochastic optimization of LTI systems with potentially

non-Gaussian disturbances is based on approximations of a quantile function, the inverse

of the cdf. I consider multi-vehicle planning problems with two types of constraints:

a) norm-based collision avoidance constraints, and b) polytopic feasibility constraints.

These forms readily arise when vehicles must avoid each other, as well as static obstacles

in the environment, while remaining in some desirable polytopic set and reaching a desired

convex target set. I show that these constraints can be reduced to chance constraints that

are affine in the control input and disturbance. The norm-based constraints yield reverse

convex constraints and the feasibility constraints yield convex constraints. In both cases,

assessment of a quantile function, the inverse of the cdf, is necessary to evaluate these

constraints. However, quantile functions are notoriously difficult to compute and often

do not have closed form.

My approach is to construct a Taylor series approximation of the quantile function

that is amenable to arbitrary distributions. I generate an affine approximation of the

quantile by evaluating the Taylor series approximation at regular intervals to yield a

piecewise affine constraint that can be embedded within a standard difference of convex

programming framework [64]. I employ an iterative approach as in [25], [3], to allocate risk

and synthesize an optimal control. Although iterative, my approach can be considerably

faster than a particle approach because it exploits convexity. The main contribution

of this chapter is the construction of a first-order quantile approximation that enables

efficient evaluation of chance constraints. My approach relies upon affine structure in

the collision avoidance and target set chance constraints.
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The chapter is organized as follows. Section 3.2 provides additional preliminaries

required for Problem 1. Section 3.3 reformulates the chance constraints by approximating

the quantile function. Section 3.4 demonstrates my approach on three multi-satellite

rendezvous problems, and Section 3.5 provides concluding remarks.

3.2 Problem Formulation

In addition to the problem formulation in Chapter 2.4, I add several assumptions and

observations that will be required for the work in this chapter. I first note that each

constraint in (2.13) can be rewritten in one of the three following forms, which are

convex in the control input and affine in a random variable (as shown in Section 3.3.1).

P

(
Nv⋂
i=1

N⋂
k=1

Nik⋂
a=1

fa(x⃗i(0), U⃗i) + gaya ≤ ca

)
≥ 1− α (3.1a)

P

(
Nv⋂
i=1

N⋂
k=1

fik(x⃗i(0), U⃗i)− gikyik ≥ cik

)
≥ 1− β (3.1b)

P

(
Nv−1⋂
i=1

Nv⋂
j=i+1

N⋂
k=1

fijk(x⃗i(0)− x⃗j(0), U⃗i − U⃗j)− gijkyijk ≥ cijk

)
≥ 1− γ (3.1c)

As a reminder Nik, as it appears in (3.1a), is the number of half-space constraints in the

target set Ti(k). The function f : X × UN → R is convex, g ∈ R+ is a positive scalar, y

is a real and continuous random variable that is a function of the disturbance, and c is

a constant.

For Problem 1 to be tractable for arbitrary disturbances, I make several key assump-

tions about the disturbance and its resulting impact on the constraints.

Assumption 3.1. The pdf of the random variable y can be differentiated at least Nd

times, and the quantile of y must be convex and non-negative in the region [1 − α, 1],

[1− β, 1], or [1− γ, 1].

23



This assumption is not overly restrictive, as it can be met by most distributions.

Differentiability is needed for the Taylor series approximation of the quantile; fewer

derivatives means a coarser approximation. Convexity over this range is met when 1)

the first derivative of the pdf is strictly negative on {y | Φy(y) ∈ [1− α, 1]}, and 2) the

pdf converges to zero as y increases on {y | Φy(y) ∈ [1− α, 1]}. The intuition behind

these criteria is that when both conditions are met, the cdf will be strictly concave

on {y | Φy(y) ∈ [1− α, 1]}, and hence, the quantile will be strictly convex. However, I

note that not all distributions will have a convex quantile in [1 − α, 1]: Consider the

beta distribution with shape parameters (α0, β0) both less than one, which results in a

bi-modal distribution with modes at both ends of the support.

The reformulation (3.1a)-(3.1c) requires the quantile evaluations be non-negative to

tighten the probabilistic constraints. For constraints like (2.13a), many models assume

a symmetric distribution and E(y) = 0. This implies the quantile is non-negative in the

convex region. Similarly, the use of distance metrics in (2.13b)-(2.13c) imply y will be

strictly positive. In the event that this is not the case, a slight modification to (3.1a)-

(3.1b) and Assumption 3.1 can be made to maintain tightening of the constraint.

Assumption 3.2. The random variable y has a known quantile, Φ−1
y (p), for some p ∈

(0, 1).

This assumption is easily met by symmetric distributions; many have either a lo-

cation parameter that represents the median or an easy way to find the median. For

distributions on a semi-infinite support or that are skewed, satisfying this assumption

may be more difficult. Approximations via brute force or other methods may be distri-

bution dependent. In practice, it may be sufficient to choose Φ−1
y (1−ε) to be some value

approaching the upper end of the support, setting ε to be arbitrarily small.

Problem 1.1. Under Assumptions 3.1-3.2, solve Problem 1 with probabilistic violation

thresholds α, β, and γ for open loop controllers U⃗1, . . . , U⃗Nv ∈ UN .
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The main challenge in solving Problem 1.1 is assuring (2.15d). In this chapter, I use

Assumptions 3.1-3.2 to introduce quantile based reformulations.

3.3 Methods

To solve Problem 1.1, I employ a standard risk allocation framework in conjunction with

a quantile reformulation. I then approximate the quantile function over its convex region,

via piecewise affine constraints. Lastly, I employ difference of convex programming to

iteratively solve reverse convex constraints to a local optimum. These reformulations

enable solution via a series of quadratic programs.

3.3.1 Reformulation of Constraints

Polytopic Target Set Constraint

Consider a polytopic target set constraint, captured by (2.13a) as

P

(
Nv⋂
i=1

N⋂
k=1

x⃗i(k) ∈ Ti(k)

)
≥ 1− α, (3.2)

From (2.14), I can write

x⃗i(k) ∈ Ti(k) (3.3a)

⇔
Nik⋂
a=1

G⃗ikax⃗i(k) ≤ hika (3.3b)

⇔
Nik⋂
a=1

G⃗ikaA
kx⃗i(0) + G⃗ikaC(k)U⃗i︸ ︷︷ ︸

fa(x⃗i(0),U⃗i)

+ G⃗ikaD(k)W⃗ i︸ ︷︷ ︸
gaya

≤ hika︸︷︷︸
ca

(3.3c)
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and

P

(
Nv⋂
i=1

N⋂
k=1

x⃗i(k) ∈ Ti(k)

)
≥ 1− α (3.4a)

⇔ P

Nv⋂
i=1

N⋂
k=1

Nik⋂
a=1

G⃗ikaA
kx⃗i(0) + G⃗ikaC(k)U⃗i︸ ︷︷ ︸

fa(x⃗i(0),U⃗i)

+ G⃗ikaD(k)W⃗ i︸ ︷︷ ︸
gaya

≤ hika︸︷︷︸
ca

 ≥ 1− α (3.4b)

as in (3.1a), with random variable ya that is a linear transformation of W⃗ i.

Norm Based Constraint

For probabilistic collision avoidance between vehicles i and j with minimum L2 distance

r ∈ R+ and violation threshold 1− γ, I consider

P

(
Nv−1⋂
i=1

Nv⋂
j=i+1

N⋂
k=1

∥S(x⃗i(k)− x⃗j(k))∥ ≥ r

)
≥ 1− β (3.5)

The derivation here follows similarly for the collision avoidance constraint with a (possibly

static) object. Using the reverse triangle inequality, I obtain

∥S(x⃗i(k)− x⃗j(k)∥ (3.6a)

= ∥SAk(x⃗i(0)− x⃗j(0)) + SC(k)(U⃗i − U⃗j) + SD(k)(W⃗ i − W⃗ j)∥ (3.6b)

≥ ∥SAk(x⃗i(0)− x⃗j(0)) + SC(k)(U⃗i − U⃗j)∥︸ ︷︷ ︸
fijk(x⃗i(0)−x⃗j(0),U⃗i−U⃗j)

−∥SD(k)(W⃗ i − W⃗ j)∥︸ ︷︷ ︸
gijkyijk

(3.6c)
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hence

P

(
Nv−1⋂
i=1

Nv⋂
j=i+1

N⋂
k=1

∥x⃗i(k)− x⃗j(k)∥ ≥ r

)
(3.7a)

≥ P

Nv−1⋂
i=1

Nv⋂
j=i+1

N⋂
k=1

∥SAk(x⃗i(0)−x⃗j(0))+SC(k)(U⃗i−U⃗j)∥︸ ︷︷ ︸
fijk(x⃗i(0)−⃗xj(0),U⃗i−U⃗j)

−∥SD(k)(W⃗ i−W⃗ j)∥︸ ︷︷ ︸
gijkyijk

≥ r︸︷︷︸
cijk


(3.7b)

≥ 1− γ (3.7c)

as in (3.1c). Note that this is a one-way implication.

3.3.2 Quantile Reformulation

First, consider the reformulation of (3.1a). I take the complement of (3.1a) such that

the probability function consists of a union of events,

P

(
Nv⋃
i=1

N⋃
k=1

Nik⋃
a=1

[
fa(x⃗i(0), U⃗i) + gaya ≤ ca

]c)
≤ α (3.8)

Next, I employ Boole’s inequality to create an upper bound for the original probability.

Theorem 3.1. Boole’s Inequality [61, Theorem 1.2.11.b] If Px is a probability function,

then P(∪∞i=1x ∈ Si) ≤
∑∞

i=1 P(x ∈ Si) for any sets S1,S2, . . . .

Hence,

P

(
Nv⋃
i=1

N⋃
k=1

Nik⋃
a=1

fa(x⃗i(0), U⃗i) + gaya ≥ ca

)
(3.9)

≤
Nv∑
i=1

N∑
k=1

Nik∑
a=1

P
(
fa(x⃗i(0), U⃗i) + gaya ≥ ca

)
(3.10)

Using the approach in [25], I introduce risk variables ωika to allocate risk to each of the
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individual probabilities

P
(
fa(x⃗i(0), U⃗i) + gaya ≥ ca

)
≥ 1− ωika (3.11a)

Nv∑
i=1

N∑
k=1

Nik∑
a=1

ωika ≤ α (3.11b)

ωika ≥ 0 (3.11c)

By inverting the argument of (3.11a), I obtain

P
(
ya ≤ 1

ga

(
ca − fa(x⃗i(0), U⃗i)

))
≥ 1− ωika

⇔ 1
ga

(
ca − fa(x⃗i(0), U⃗i)

)
≥ Φ−1

ya
(1− ωika)

(3.12)

Rearranging (3.12), I obtain

fa(x⃗i(0), U⃗i) ≤ ca − gaΦ
−1
ya

(1− ωika) (3.13)

The reformulation of (3.1b)-(3.1c) proceeds similarly, and results in reverse convex

constraints.

By combining the reformulations of (3.1a)-(3.1c), I obtain

fa(x⃗i(0), U⃗i) ≤ ca − gaΦ
−1
ya

(1− ωika) (3.14a)

Nv∑
i=1

N∑
k=1

Nik∑
a=1

ωika ≤ α (3.14b)

ωika ≥ 0 (3.14c)

fijk(x⃗i(0)− x⃗j(0), U⃗i − U⃗j) ≥ cijk + gijkΦ
−1
yijk

(1− ωijk) (3.14d)

Nv−1∑
i=1

Nv∑
j=i+1

N∑
k=1

ωijk ≤ γ (3.14e)

ωijk ≥ 0 (3.14f)
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Lemma 3.1. For the controller U⃗1, . . . , U⃗Nv , if there exists risk allocation variables

ωika satisfying (3.14b)-(3.14c) for constraints in the form of (3.14a) and risk alloca-

tion variables ωijk satisfying (3.14e)-(3.14f) for constraints in the form of (3.14d), then

U⃗1, . . . , U⃗Nv satisfy (2.15d).

Proof. Satisfaction of (3.14b)-(3.14c) and (3.14e)-(3.14f) implies (3.10) meets the prob-

abilistic violation thresholds α, β, and γ. Boole’s inequality and De Morgan’s laws

guarantee (2.15d) is satisfied.

The constraint (3.14a) is convex in U⃗ , however (3.14d) is reverse convex. Additionally,

while Assumption 3.1 guarantees the convexity of (3.14a), the expressions Φ−1
ya
(1− ωika)

and Φ−1
yijk

(1− ωijk) are non-conic and cannot be readily handled by off-the-shelf solvers.

3.3.3 Quantile Approximation

The quantile for many continuous random variables does not have a closed form, and

brute force numerical approximations may be costly to compute. Approximation meth-

ods are typically tailored to specific distributions [73], [74], [75], although some recent

approaches have focused on generic methods to approximate quantile functions of arbi-

trary distributions.

I use an approach that relies on a Taylor series expansion of the quantile [76]. For a

random variable X, and an initial evaluation point Φ−1
X (p0) for p0 ∈ (0, 1), [76] proposes

an iterative process that evaluates a finite Taylor series expansion at points that are an

interval h ∈ R apart. With Nd + 1 Taylor series terms, a quantile approximation at

pc+1 = pc + h is described by

Φ̂−1
X (pc+1) = Φ−1

X (pc) +

Nd+1∑
d=1

(−1)d ∂dΦ−1
X (p)

(∂η)d

∣∣∣∣
p=pc

· log(pc+1/pc)
d

d!

where η = − log(p) is a variable substitution used for numerical tractability. Typically,

Nd = 3 or 4 derivatives are sufficient, and steps c are computed until a predetermined
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terminating percentile.

Derivatives of the quantile are obtained via the inverse function theorem [77],

∂

∂η
Φ−1

X (p) = − e−η

ϕX(p)
(3.15)

where the ith derivative of the quantile will elicit the the i − 1th derivative of ϕX(·).

Analytical expressions for the first four derivatives are provided in [76].

The error in the approximation

ϵ = Φ−1
X (·)− Φ̂−1

X (·) (3.16)

is characterized by the unused Taylor series terms, such that

ϵ ∈ O
(
[h/min(pl−1, p0)]

Nd
)

(3.17)

so that ϵ converges to 0 as h→ 0 and Nd →∞ [76].

I presume a piecewise affine approximation to connect evaluation points. However, to

ensure a reasonable number of variables and constraints in the optimization, I selectively

choose evaluation points, rather than connecting all points. Given an arbitrarily chosen

error threshold, ξ, I seek a subset of l∗ affine terms, such that

Φ̂−1
X (pc) ≤ max

q∈N[1,l∗]
(mikaq ωika + cikaq) ≤ Φ̂−1

X (pc) + ξ (3.18)

for slopes and intercepts mikaq, cikaq, respectively, for ∀q ∈ N[1,l∗], as shown in Figure

3.1. Here, i and j refer to the vehicle and constraint indices, respectively. I propose

Algorithm 2 to compute the reduced set {mikaq, cikaq | ∀q ∈ N[1,l∗]}. Note that ξ will

affect the cardinality of the set {mikaq, cikaq | ∀q ∈ N[1,l∗]}, thus changing the number of

constraints. However, the choice of ξ does not effect the analysis presented in this work.
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Figure 3.1: Quantile approximation method applied to a Cauchy distribution. The blue
line represents the true quantile, the red points result from a Taylor series approximation
(3.15), the black points show the error threshold ξ, and the green lines represent the
affine approximation (3.18).

Further, although the error threshold, ξ, is formulated with respect to the approxima-

tion (not the true quantile), Assumption 3.1 guarantees that (3.18) becomes an affine

overapproximation of the true quantile as ϵ→ 0.

I reformulate (3.14a) with the piecewise affine approximation (3.18), as

fa(x⃗i(0), U⃗i) ≤ ca −
1

ga
(sika) (3.19a)

sika ≥ mikaq ωika + cikaq ∀q ∈ N[1,l∗] (3.19b)∑Nv

i=1

∑N
k=1

∑Nik

a=1 ωika ≤ α (3.19c)

ωika ≥ 0 (3.19d)

with slack variables sika. A similar reformulation can be posed for (3.14d). In the limit,

as (3.18) becomes an affine overapproximation of Φ−1(·), (3.19) is a tightening of (3.14)

and Assumption 3.1 ensures the convexity of (3.19).

Lemma 3.2. For a controller U⃗1, . . . , U⃗Nv , if there exists risk allocation variables ωika
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Algorithm 2: Computing {mijq, cijq} from ϕy

Input: The pdf of y, ϕy, and its derivatives ϕ
(1)
y , . . . , ϕ

(n)
y , instantiating point p0,

termination point pl, known quantile Φ−1
y (p0), step size h, and maximum error

threshold ξ.

Output: Affine terms of Φ̂−1
y , {mijq, cijq}

for pi = p0 + h to pl by h do

Pi ← Φ̂−1(pi) # Via (3.15)
end
i← 0
while i < l do

for j = l to i+ 1 by −1 do

m← Pj−Pi

h(j−i)

c← Pi − pi ×m
for y = i+ 1 to l − 1 by 1 do

ϵy = Py − (py ×m+ c)
if ϵy > ξ then

then next j
end

end
{mijq, cijq} ← m, c
break

end
i← j

end
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and ωijk, and slack variables s satisfying (3.19), then U⃗1, . . . , U⃗Nv asymptotically satisfies

(2.15d) as h→ 0 and n→∞.

Proof. By (3.17), the approximation error ϵ → 0 as h → 0 and n → ∞. In this case,

(3.19) conservatively enforces (3.14) by (3.18). By Lemma 3.1, (2.15d) is conservatively

enforced.

I note that a limitation of my approach is that I can only guarantee constraint satis-

faction in the limit. In practice, a sufficiently differentiable distribution will likely behave

well enough that four or more derivatives will result in an approximation with small errors

given a small enough step size. Many common distributions will fall into this category,

especially those of the exponential family of distributions. Where this methodology will

likely fail is multi-modal distributions or distributions that have a non-smooth termi-

nating derivative. I have found empirically that a step size, h, on the order of 10−6, is

sufficiently small that the approximation error, (3.16), is also on the order of 10−6.

3.3.4 Difference of Convex Programming

Combining the results from Sections 3.3 and 3.3.3 I obtain a new optimization problem.

minimize
U⃗1,...,U⃗Nv
ωika,ωijk
sika,...,sijk

J
(
X1, . . . , X⃗Nv , U⃗1, . . . , U⃗Nv

)
(3.20a)

subject to U⃗1, . . . , U⃗Nv ∈ UN , (3.20b)

Dynamics (2.6) with initial states x⃗1(0), . . . , x⃗Nv(0) (3.20c)

Constraints (3.19) (3.20d)

Reformulation 3.1. Under Assumptions 3.1-3.2, solve the stochastic optimization prob-

lem (3.20) with probabilistic violation thresholds α, β, and γ for open loop controllers
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U⃗1, . . . , U⃗Nv ∈ UN , and optimization parameters λijk.

Lemma 3.3. Solutions to Reformulation 3.1 are conservative solutions to Problem 1.1

asymptotically.

Proof. Lemma 3.2 guarantee the probabilistic constraints (2.13) are satisfied asymptoti-

cally as h→ 0 and n→∞. All other factors remain equivalent.

While (3.20a)-(3.20c) are convex, (3.20) is difference of convex due to the constraint

(3.14d) which is difference of convex when written as

gijkΦ
−1
yijk

(1− ωijk)− fijk(x⃗i(0)− x⃗j(0), U⃗i − U⃗j) ≤ −cijk (3.21)

We employ the convex-concave procedure [64] as outlined in Chapter 2.3.2 to solve

(3.20). By taking a first order approximation of fijk(x⃗i(0) − x⃗j(0), U⃗i − U⃗j), we can

solve the difference of convex function optimization problem iteratively as a convex op-

timization problem. By updating the first order approximation at each iteration, the

convex-concave procedure solves to a local optimum. Here, the first order approximation

transforms the difference of convex function constraint (3.14d) into the convex constraint

−
∥∥∥SAk(x⃗i(0)−x⃗j(0))+SC(k)(U⃗p

i −U⃗
p
j )
∥∥∥2︸ ︷︷ ︸

Evaluation of ∥SAk(x⃗i(0)−⃗xj(0))+SC(k)(U⃗i−U⃗j)∥2

− 2
(
SAk(x⃗i(0)−x⃗j(0))+SC(k)(U⃗p

i −U⃗
p
j )
)⊤

SC(k)
(
(U⃗i − U⃗j)− (U⃗p

i + U⃗p
j )
)

︸ ︷︷ ︸
Gradient of ∥SAk(x⃗i(0)−⃗xj(0))+SC(k)(U⃗i−U⃗j)∥2

≤
(
−r + 1

ga
(sika)

)2

(3.22)

where the superscript p indicated the value from the previous iteration’s solution. The

main benefit of solving this problem with the convex-concave procedure is the first order

approximation makes the constraint convex while maintaining the probabilistic assur-

ances. This problem can be readily solved via the methodologies outlined in Chapter
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2.3.2.

3.4 Experimental Results

I demonstrate my algorithms in simulation on a multi-vehicle spacecraft navigation prob-

lem with three disturbances: Gaussian, Cauchy, and multivariate t. All computations

were done on a 1.80GHz i7 processor with 16GB of RAM, using MATLAB, CVX [78]

and Gurobi [79]. Polytopic construction and plotting was done with MPT3 [80]. All code

is available at https://github.com/unm-hscl/shawnpriore-approximate-quantiles

and https://github.com/unm-hscl/shawnpriore-t-dist-cwh.

Convergence criteria was defined as the difference of sequential outputs and the sum

of slack variables both less than 10−8; difference of convex programs were limited to 100

iterations.

3.4.1 Gaussian Disturbance

I consider Gaussian noise with zero mean and covariance Σ = IN ⊗ diag(10−4 · I3, 5 ×

10−8 · I3). Once reformulated, the target set constraint has a Gaussian distribution and

the collision avoidance has a Chi distribution with three degrees of freedom. As neither

have an analytical expression for their quantile function, the use of standard tools or

methods [29, 3] for Gaussian distributions is not viable.

Consider a scenario in which three satellites are stationed in low earth orbit. Each

satellite is tasked with reaching a terminal target set, while avoiding other satellites. The

equations of motion are described by (2.12) with sampling time ∆t = 30s. I presume

U = [−5, 5]3, and time horizon N = 8, corresponding to 4 minutes of operation.

The terminal sets Ti(N) are 5 × 5 × 5m boxes centered around desired terminal

locations in x, y, z coordinates, with speeds bounded in all three directions by [−0.01, 0.01]

m/s. For collision avoidance, I presume that all satellites must remain at least r = 15m
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away from each other, hence S =

[
I3 03

]
to extract the positions. Violation thresholds

for terminal sets and inter-satellite collision avoidance are α = γ = 0.1, respectively.

The performance objective is based on fuel consumption.

J(U⃗1, U⃗2, U⃗3) =
3∑

i=1

U⃗⊤
i U⃗i (3.23)

The reformulation of the terminal constraint results in ya that is a univariate Gaussian

distribution with zero mean and variance G⃗ikaDkΣD⊤
k G⃗

⊤
ika, such that

gaya =
(
G⃗ikaDkΣD⊤

k G⃗
⊤
ika

)1/2
za

where za is a standard Gaussian random variable.

The reformulation of the collision avoidance constraint follows the derivation (3.7),

and results in

gijkyijk =
∥∥∥(2SDkΣD⊤

k S
⊤) 1

2 ρ
∥∥∥ (3.24)

where ρ is a standard multivariate Gaussian. By the compatibility of matrix norms, I

obtain

gijkyijk =
∥∥∥(2SDkΣD⊤

k S
⊤) 1

2

∥∥∥ · ∥ρ∥ (3.25)

where ∥ρ∥ follows a Chi distribution with three degrees of freedom.

When approximating the numerical quantile, I presume intervals h = 5 × 10−6, and

maximum approximation error ξ = 0.1. For the Gaussian distribution, I set the instanti-

ating point, p0, to 0.5 with known quantile Φ−1(p0) = 0. Computation of Φ−1(p0 = 0.9)

was completed with MATLAB’s implementation of the incomplete gamma function for

the Chi quantile. Each quantile approximation used the first three derivatives of the pdf.

I compare the proposed method with the mixed integer particle approach using two

polytopic overapproximations of the collision avoidance constraint, based on the L∞ and

L1 norm. I generated 10 disturbance samples to generate an open-loop controller. Note
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that different disturbance samples were used when generating the controller for either

variant.

The resulting trajectories, costs, and computation times differ dramatically, as shown

in Figure 3.2 and Table 3.1. (Differences in the z-coordinates were minimal, so I only

plot the x and y coordinates in Figure 3.2.) To assess constraint satisfaction, I generated

105 Monte-Carlo sample disturbances for each approach; the the L2 distance between the

mean positions at each time step are shown in Figure 3.3. Table 3.4.1 shows that while

all three methods satisfied the collision avoidance constraint, neither particle control

approach satisfied the terminal set constraint.

The proposed method performed two to three orders of magnitude faster than particle

control. Given the significant increase in binary variables needed to perform particle

control, this comes as no surprise. I attempted to increase the number of disturbance

samples, however, I could not generate a solution in a under two hours. Conversely, the

low number of disturbance samples is likely the cause for the poor performance with

respect to the target set constraint. Given the random nature of the sampling process,

ten samples is not enough to characterize the behaviour on a larger scale.

Figures 3.2 and 3.3 show that the differences in avoidance regions impacted the results.

With the L2 collision avoidance region overapproximated by both the L∞ and L1 regions,

I expected the collision avoidance likelihood to be significantly higher than the proposed

method. However, the sharp edges of the polytopes created control choices that led to

more aggressive direction changes. This phenomena is apparent in the lack of smoothness

in the particle control trajectories in Figure 3.2. Similarly, the larger avoidance regions

effectively increased the avoidance distance to 18m for the L∞ particle control run and

23m for the L1 particle control run, as observed in Figure 3.3. The additional distance

had a distinct impact on the overall cost of each of these controllers. To produce a closer

comparison, I also used 14- and 26-faced polytopes, however neither resulted in a solution

within a 24 hour time frame.
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Figure 3.2: Comparison of trajectories in (x, y) coordinates from quantile method (solid)
and particle control (dashed for L1 norm; dotted for L∞ norm).

Figure 3.3: Comparison of L2 inter-satellite distances between quantile method (solid)
and particle control (dashed for L1 norm; dotted for L∞ norm).

Metric Quantile method Particle control
L∞ L1

Computation Time (sec) 6.82 245.65 4199.10

J(U⃗1, U⃗2, U⃗3) 92.04 102.79 117.56

Table 3.1: Computation Time and Control Cost for CWH Dynamics with a Gaussian
Disturbance. Comparison of Quantile Method and Particle Control.
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Constraint Quantile method SAT Particle control
L∞ SAT L1 SAT

Terminal Sets 0.9127 ✓ 0.2183 0.0993
Avoid Each Other 0.9630 ✓ 0.9997 ✓ 1.0000 ✓

Table 3.2: Constraint Satisfaction (”SAT”) for CWH dynamics with Gaussian Distur-
bance, with 105 Samples and Probabilistic Violation Threshold of α = γ = 0.1. Compar-
ison of Quantile Method and Particle Control.

3.4.2 Cauchy Disturbance

I consider the planar 4-d CWH dynamics with a Cauchy disturbance that is parameterized

with location as zero and scale elements Γ,

Γj =


10−4 if j ∈ {4n+ {1, 2} | n ∈ N[0,N−1]}

5×10−8 if j ∈ {4n+ {3, 4} | n ∈ N[0,N−1]}
(3.26)

corresponding to position and velocity elements, respectively.

Consider a scenario in which three satellites are stationed in low earth orbit. Each

satellite is tasked with reaching a terminal target set, while avoiding other satellites. The

equations of motion are described by (2.12) with sampling time ∆t = 30s. I presume

U = [−5, 5]2, and time horizon N = 8, corresponding to 4 minutes of operation.

The terminal sets Ti(N) are 5× 5m boxes centered around desired terminal locations

in x and y coordinates, with speeds bounded in all three directions by [−0.01, 0.01]m/s.

For collision avoidance, I presume that all satellites must remain at least r = 15m away

from each other, hence S =

[
I2 02

]
to extract the positions. Violation thresholds for

terminal sets and inter-satellite collision avoidance are α = γ = 0.1, respectively.

The performance objective is based on fuel consumption.

J(U⃗1, U⃗2, U⃗3) =
3∑

i=1

U⃗⊤
i U⃗i (3.27)
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For the terminal set constraint, because the set is axis-aligned, gaya can be written

as function of a single Cauchy random variable, Here,

gaya = G⃗⊤
ikaD(k)Γza (3.28)

and za has a standard Cauchy distribution.

For the collision avoidance constraint, the main challenge arises from the coupling

across random variables that arises from taking a norm. By falsely considering each

dimension as independent, I can find

gijkyijk = max (SD(k)Γ) ∥ρ∥ (3.29)

where ρ is a 2D vector consisting of independent and identically distributed standard

Cauchy variables, and max(·) returns the element of the argument vector with the maxi-

mum value. Note that the random variable of interest is ∥ρ∥2, which I can show through

convolution to have closed-form expressions for the pdf, cdf, and the quantile,

ϕ∥ρ∥2(x) =
2

π
√
1 + x(2 + x)

(3.30a)

Φ∥ρ∥2(x) =
4
π
arctan

(√
1 + x

)
− 1 (3.30b)

Φ−1

∥ρ∥2(p) = tan2
(
π
4
(1 + p)

)
− 1 (3.30c)

When approximating the numerical quantile, I presume intervals h = 5 × 10−6, and

maximum approximation error ξ = 0.1. For the Cauchy distribution, I set the instan-

tiating point, p0, to 0.5 with known quantile Φ−1(p0) = 0. Analytical results were used

to compute Φ−1(p0) for the sum of squared Cauchy random variables. Each quantile

approximation used the first three derivatives of the pdf.

Figures 3.4 and 3.5, and Tables 3.4.2 and 3.4.2, show that the proposed method with

the numerical quantile performed nearly identically to the proposed method with an
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Figure 3.4: Comparison of trajectories in (x, y) coordinates for numerical quantile method
(solid) and with an analytic quantile (dashed). The trajectories are nearly indistinguish-
able as seen in the magnified subplot.

Metric Proposed method
Numerical Analytical

Computation Time (sec) 153.86 157.98

J(U⃗1, U⃗2, U⃗3) 93.11 93.11

Table 3.3: Computation Time and Control Cost for Proposed Method with Numerical
and Analytic Quantiles for CWH Dynamics with Cauchy Disturbance.

analytical quantile. I observed differences on the order of 10−4, as shown in the subplot

of Figure 3.4. This is likely attributed to my choice of a very small interval h, which

yielded a highly accurate quantile approximation.

Constraint Proposed method
Numerical SAT Analytical SAT

Terminal Sets 0.9086 ✓ 0.9085 ✓
Avoid Each Other 0.9979 ✓ 0.9978 ✓

Table 3.4: Constraint Satisfaction (“SAT”) Between Numerical and Analytic Quantiles
for CWH dynamics with Cauchy Disturbance, with 105 Samples and Probabilistic Vio-
lation Threshold of α = γ = 0.1.
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Figure 3.5: Comparison of inter-satellite distances between numerical quantile method
(solid) and with an analytic quantile (dashed). The inter-satellite distances are nearly
indistinguishable as seen in the magnified subplot.

3.4.3 Multivariate t Disturbance

Consider a scenario in which seven satellites are stationed in geosynchronous orbit. Each

satellite is tasked with reaching a terminal target set representing a docking location

with a static refueling station. Each satellite must avoid other satellites and the refueling

station while navigating to their respective target sets. The relative dynamics of each

spacecraft, with respect to the known location of the refueling station, are described by

the CWH equations (2.12) with sampling time ∆t = 300s. I presume U = [−3, 3]3, and

time horizon N = 8, corresponding to 40 minutes of operation.

I consider a Multivariate t disturbance for this example. The multivariate t distribu-

tion is the vector generalization of the Student’s t distribution [81]. The multivariate t

distribution encompasses a family of distributions characterized by parameters describing

location, correlation structure, and how heavy tailed a distribution is. It is defined as

follows.
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Definition 3.1 ([81]). A n-dimensional multivariate random variable that elicits the pdf

ϕx⃗ (x⃗) =
Γ ((ν + n)/2) νν/2

Γ(ν/2)πn/2det(Ψ)
1
2

[
ν + (x⃗− µ⃗)TΨ−1(x⃗− µ⃗)

]− ν+n
2 (3.31)

is said to have a multivariate t distribution with location µ⃗ ∈ Rn, positive definite scale

matrix Ψ ∈ Rn×n, degrees of freedom ν ∈ N+.

The degree of freedom parameter, ν, is a quantitative measure of how heavy the tails

of the distribution are. Lower values of ν correspond to heavier tails. Note that ν = 1

corresponds to the multivariate Cauchy distribution and the limiting distribution, as

ν →∞, is the multivariate Gaussian.

For this demonstration, I assume

W⃗ i ∼ t(0,Ψ, 20) (3.32)

where Ψ = I8 ⊗ diag (10−4I3, 5× 10−8I3). Here, the use of the multivariate t is used

to model perturbation forces of interest but not captured in the CWH dynamics. This

includes drag, solar radiation pressure, 3rd body acceleration from the Sun and Moon,

and impacts with small but unknown debris. I choose ν = 20 as the combined effect of

these perturbation forces may be small but are likely outliers in comparison to a Gaussian

distribution.

The terminal sets Ti(N) are 5× 5× 5m boxes centered around desired terminal loca-

tions in x, y, z coordinates approximately 9m away from the origin, with velocity bounded

in all three directions by [−0.01, 0.01]m/s. For collision avoidance, I presume that all

satellites must remain at least r = 8m away from each other and the refueling station,

hence S =

[
I3 03

]
to extract the positions. I presume the collision avoidance constraints

are valid only for the non-terminal time steps. Violation thresholds for terminal sets and

collision avoidance are α = β = γ = 0.2, respectively. I note that this problem has a

combined 196 collision avoidance constraints to be embedded in the problem.
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The performance objective is based on fuel consumption.

J(U⃗1, . . . , U⃗7) =
7∑

i=1

U⃗⊤
i U⃗i (3.33)

The reformulation of the terminal constraint results in ya that is a univariate t dis-

tribution with zero mean and variance G⃗ikaDkΨD⊤
k G⃗

⊤
ika, such that

gaya =
(
G⃗ikaDkΨD⊤

k G⃗
⊤
ika

)1/2
za

where za is a Student’s t random variable with ν = 20 [82].

The reformulation of the collision avoidance constraints result in the use of the beta

prime distribution.

Definition 3.2 ([83]). A non-negative univariate variate random variable that elicits the

pdf

ϕx (x) =
x−θ−1(1 + x)−θ−δ

β(θ, δ)
(3.34)

is said to have a beta prime distribution with shape parameters θ ∈ R+ and δ ∈ R+.

The shape parameters define the polynomial shape of the pdf and the quantile. Of

note, when θ ≤ 1, the quantile is strictly convex as the pdf is monotonically decreasing.

However, when θ > 1, the quantile is only convex in the region p ∈
[
Φx

(
θ−1
δ+1

)
, 1
]
.

Further, when θ = 1 and/or δ = 1, the cdf has an analytic form. However, in many cases

analytic expressions of the cdf do not guarantee analytic expressions of the quantile.

The reformulation of the collision avoidance constraint follows the derivation (3.7),

and results in

gijkyijk =
√
2νλmax (SD(k)ΨD(k)⊤S⊤)

√
1

ν

(
∥τ⃗ i∥2 + ∥τ⃗ j∥2

)
︸ ︷︷ ︸

yijk

(3.35)
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where τ⃗ ∼ t(⃗0, I3, ν). Here,

y2
ijk ∼BPrime(θ, δ) (3.36a)

θ =
2q
(

q
2
+
(
ν
2

)2 − ν +
(
qν
2

)
− 2q + 1

)
(ν − 2) (q + ν − 2)

(3.36b)

δ =
2
(
−q +

(
ν
2

)2 − (ν
2

)
+
(
qν
2

))
q + ν − 2

(3.36c)

where ν = 20 and q = 3 [84]. I recover the pdf of yi as

ϕyijk
(x) = 2xϕy2

ijk

(
x2
)

(3.37)

to be used in the quantile approximation. I note that the reformulation of (2.13b) follows

similar. Since the object is not stochastic, the resulting distribution is BPrime
(
q
2
, ν
2

)
.

When approximating the numerical quantiles, I presume intervals h = 5 × 10−6,

and maximum approximation error ξ = 0.01. For the Student’s t distributions, I set

the instantiating point, p0, to 0.5 with known quantile Φ−1(p0) = 0. For the beta prime

distributions, I set the instantiating point to 0.5. Computation of Φ−1(p0) was completed

using the median approximation [85]

Φ−1(0.5) =

√√√√2−
1
θ (log(2)− 1

2
+ θ)

2−
1
δ (log(2)− 1

2
+ δ)

(3.38)

Each quantile approximation used the first four derivatives of the pdf. This median

approximation was compared against the mode of the distribution to verify that β and

γ were in the convex region of the quantile.

The resulting trajectories are shown in Figure 3.6. To assess constraint satisfaction,

I generated 104 Monte-Carlo sample disturbances for each approach. Table 3.4.3 shows

that all constraints were satisfied to the required threshold. Note that all three constraints
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Figure 3.6: Trajectories of the seven satellites for CWH dynamics with Multivariate-t
disturbance computed with Qauntile Method.

Constraint Sample Satisfaction SAT
Terminal Sets 0.8207 ✓
Avoid The Refueling Station 0.9872 ✓
Avoid Each Other 0.9869 ✓

Table 3.5: Constraint Satisfaction for CWH Dynamics With Multivariate-t Disturbance
Computed With Qauntile Method, and Probabilistic Violation Threshold of α = 0.2.
Satisfaction ‘SAT’ Was Computed as a Ratio of 104 Samples That Met the Constraint.
Satisfaction Is marked With a ✓.

Metric Value
Solution Computation Time 33.3759 sec
Total Computation Time 43.3393 sec
Iterations to Converge 34
Objective Cost for Derived Solution 0.015873

Table 3.6: Computation Statistics for CWH Dynamics With Multivariate-t Disturbance.
Solutions Computed With Quantile Method.
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are satisfied to a more conservative threshold implying that the reformulation is not a

tight upper bound for the problem. I note that solutions using particle control could

not be found within a weeks time for 25 disturbance samples; thus, I do not provide a

comparison for this example.

Table 3.4.3 provides computational statistics on the difference of convex program.

The proposed method computed the trajectories in under a minute. With nearly 200

collision avoidance constraints embedded in this problem, solution convergence of this

speed warrants further consideration for this method.

3.5 Summary

In this chapter, I proposed a method for chance constrained stochastic optimal control of

LTI systems that exploits a numerical approximation of the quantile function. I reformu-

lated each chance constraint into one of two forms that allowed us to find a closed form

quantile reformulation. I show that for random variables with a sufficiently differentiable

pdf, I can approximate the quantile via a Taylor series approximation. I demonstrated

my approach on three multi-vehicle satellite control problem with Gaussian, Cauchy,

and multivariate t disturbances. The results show that the proposed method is not only

computationally efficient but also adaptable to many scenarios.
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Chapter 4

Analytic Moments Based Approach

4.1 Introduction

While quantile based approaches can be used to more directly evaluate chance con-

straints, there exists non-Gaussian processes which lack an analytic expressions for the

pdf, cdf, and quantile of the state as it evolves over time. Thus making the method

presented in Chapter 3 impossible. In contrast, methods that employ concentration

inequalities provide almost surely assurances of chance constraint satisfaction through

over-approximations based on analytic evaluations of moments. Chebyshev’s inequality

[35] and Cantelli’s inequality [35] have been used to develop chance constraint reformula-

tions that are an affine combination of a constraint’s expectation and standard deviation

[86, 87, 88, 1]. These inequalities only require knowledge of the expectation and the stan-

dard deviation, which can be easily calculated for linear constraints. However, reliance

on these inequalities typically provides quite conservative bounds [1].

My approach also invokes concentration inequalities, and hence provides almost surely

guarantees, but employs an inequality that is less conservative than those in [86, 87, 88, 1].

I use the one-sided Vysochanskij–Petunin inequality [60], a refinement of Cantelli’s in-

equality that is tailored to unimodal distributions. Although it has less generality than
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Cantelli’s inequality, the one-sided Vysochanskij–Petunin inequality typically results in

far less conservatism in the overapproximation. Indeed, its probabilistic bound is reduced

by a factor of 5/9, as compared to the bound from Cantelli’s inequality. Hence, I propose

application of the one-sided Vysochanskij–Petunin inequality to chance constraint eval-

uation that arises in multi-vehicle planning problems: that is, in a) reaching a terminal

target set and b) avoiding collision with obstacles in the environment as well as with

other vehicles. The main drawback in my approach is the need for unimodality of each

constraint, over the entire trajectory. Unimodality is assured for convex constraints in

LTI systems for certain classes of disturbance processes (such as Gaussian, Laplacian,

or uniform on a convex interval), however for other disturbance processes, unimodality

must be validated empirically.

The main contribution of this chapter is a closed-form reformulation of chance con-

straints, for polytopic target sets and collision avoidance constraints, that is amenable

to difference of convex programming solutions. My approach is relevant for LTI systems

with arbitrary distributions with finite moments, and with chance constraints that are

unimodal.

The chapter is organized as follows. Section 4.2 provides additional preliminaries

required for Problem 1. Section 4.3 reformulates the chance constraints by approximating

the quantile function. Section 4.4 demonstrates my approach on three multi-satellite

rendezvous problems, and Section 4.5 provides concluding remarks.

4.2 Problem Formulation

In addition to the problem formulation in Chapter 2.4, I add several assumptions and

observations that will be required for the work in this chapter. For this problem to be

tractable for arbitrary disturbances, I make several key assumptions about the distur-

bance and its resulting impact on the constraints.
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Assumption 4.1. Disturbance vectors, W⃗ i, are all pairwise independent. Hence, for

any i and j, where i ̸= j, the joint cdf, ΦW⃗ i,W⃗ j
(⃗a, b⃗) can be factored into the product of

the marginal cdfs, ΦW⃗ i
(⃗a) and ΦW⃗ j

(⃗b). So, ΦW⃗ i,W⃗ j
(⃗a, b⃗) = ΦW⃗ i

(⃗a)ΦW⃗ j
(⃗b).

Assumption 4.2. All components of the disturbance vector,

W⃗ i =

[
wi1 wi2 . . . wiNn

]
, are mutually independent. Hence, for any set of unique

integers S ⊆ N[1,Nn], the subset {wij|j ∈ S} has a joint cdf Φ{wij |j∈S}(·, . . . , ·) can be

factored into the product of the marginal cdfs, Φwij
(·) for j ∈ S. So, Φ{wij |j∈S}(·, . . . , ·) =∏

j∈SΦwij
(·).

Assumption 4.3. Each component of the disturbance vector,

W⃗ i =

[
wi1 wi2 . . . wiNn

]
, has finite and well defined moments at least up to the

fourth order, E
(
wp

ij

)
<∞ for p ∈ N[1,4].

Statistically, pairwise and mutual independence can be assumed in many cases with-

out much consequence as most multivariate distributions can be constructed in this man-

ner. However, the multivariate Cauchy and the multivariate t are the most prominent

examples that cannot meet Assumption 4.2 as elements are not independent by construc-

tion. In many ways, Assumption 4.2 is the most restrictive of these assumptions as many

physical phenomena may not disturb each state independently. Assumption 4.3 is easily

met as most distributions have analytic expressions for moments.

Lastly, I consider the impact of W⃗ i on the chance constraints in (2.13).

Definition 4.1 (Unimodal Distribution [89]). A unimodal distribution is a distribution

whose cdf is convex in the region (−∞, a) and concave in the region (a,∞) for some

a ∈ R.

Definition 4.2 (Strong Unimodal Distribution [89]). A strong unimodal distribution

is one in which unimodality is preserved by convolution. That is, for two independent

unimodal random variables, y and z, the random variable y + z is also unimodal.
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Figure 4.1: pdfs (top) and cdfs (bottom) of unimodal distributions as per Definition 4.1
with a = 0. Each of the distributions shown here have a log concave pdf, which in turn
implies a log concave cdf. Log concavity of the pdf assures strong unimodality as per
Definition 4.2.
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Assumption 4.4. The distribution that describes each probabilistic constraint in (2.13)

is marginally unimodal.

Assumption 4.4 is required such that I can develop bounds on the chance constraint

probabilities. In rare cases, unimodality can be verified analytically by properties of

strong unimodality. For example, Gaussian or exponential random variables are strong

unimodal and any affine summation of these random variables will always be unimodal.

One method to check for strong unimodality is to establish that the probability density

function (pdf) is log concave as all distributions that are strong unimodal also have a

log concave pdf per the Theorem of Ibragimov [90]. Figure 4.1 graphs the pdf and cdf

of several common strong unimodal distributions with pdfs that are easy to show are log

concave. As unimodality can be challenging to show analytically, the easiest method to

validate unimodality is empirically. By numerically evaluating the empirical cumulative

distribution function with a large enough sample size (I recommend at least on the order

of 104 samples), one can validate unimodality in terms of Definition 4.1 via Algorithm 3.

Algorithm 3 is constructing an affine approximation of empirical cumulative distribution

function then testing whether there is a single inflection point by comparing the slopes

of the affine segments.

Problem 1.2. Under Assumptions 4.1-4.4, solve Problem 1 with probabilistic violation

thresholds α, β, and γ for open loop controllers U⃗1, . . . , U⃗Nv ∈ UN .

The main challenge in solving Problem 1.2 is assuring (2.15d). In this form, assuring

(2.15d) requires the evaluation of high dimensional and frequently intractable integrals.

Additionally, even if these integrals could be evaluated and closed forms could be found,

the collision avoidance constraints (2.13b)-(2.13c) would still be reverse convex.
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Algorithm 3: Numerical check for unimodality.

Input: Empirical cumulative distribution function points (xi, F̂ (xi)) for samples
xi with i ∈ N[1,Ns], and maximum error threshold ξ.
Output: 1 if unimodal or 0 if not unimodal
i ← 0
S ← ∅
while i < Ns do

for j = Ns to i+ 1 by −1 do

m← F̂ (xj)−F̂ (xi)

xj−xi

b← F̂ (xj)− xj ×m
for k = i+ 1 to j − 1 by 1 do

ϵk = F̂ (xk)− (py ×m+ b)
if ϵk > ξ then

next j
end

end
S ← S ∪ {m}
break

end
i← j

end
w ← 0
Nc ← card(S) # cardinality of set S
for i = 2 to Nc by 1 do

# Si is the ith element of S
if Si ≥ Si−1 then

if w = 1 then
return 0

end

else
w ← 1

end

end
return 1
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4.3 Methods

My approach to solve Problem 1.2 involves reformulating each chance constraint as an

affine summation of the constraint’s expectation and standard deviation, i.e.,

E(∥S(x⃗i(k)−x⃗j(k))∥) and S(∥S(x⃗i(k)−x⃗j(k))∥), respectively for the collision avoidance

constraint. This form is amenable to the one-sided Vysochanskij–Petunin inequality [60],

which allows for almost surely guarantees of chance constraint satisfaction.

Theorem 4.1 (One-sided Vysochanskij–Petunin Inequality [60]). Let x be a real val-

ued unimodal random variable with finite expectation E(x) and finite, non-zero standard

deviation S(x). Then, for λ >
√
5/3,

P(x− E(x) ≥ λS(x)) ≤ 4

9(λ2 + 1)
(4.1)

By applying (4.1) to the random variable −x, I get the lower tail bound

P(x− E(x) ≤ −λS(x)) ≤ 4

9(λ2 + 1)
(4.2)

The one-sided Vysochanskij–Petunin inequality is applicable only to unimodal dis-

tributions. It is based on Gauss’s inequality, which provides a bound for one sided tail

probabilities of a unimodal random variable to be sufficiently far away from the expec-

tation. Specifically, the bound encompasses values at least λ standard deviations away

from the mean.

I first make use of (4.1) and (4.2) to bound the chance constraint probabilities based

on an affine summation of the expectation and standard deviation.

54



4.3.1 Polytopic Target Set Constraint

First, consider the reformulation of (2.13a). Without loss of generality, I presume Nv = 1

and N = 1 for brevity. From (2.14), I can write

P(x⃗i(k) ∈ Ti(k)) = P

(
Nik⋂
j=1

G⃗ikax⃗i(k) ≤ hika

)
(4.3)

where G⃗ika ∈ Rn and hika ∈ R. I take the complement and employ Boole’s inequality to

separate the combined chance constraints into a series of individual chance constraints,

P(xi(k) ̸∈ Ti(k)) = P

(
Nik⋃
j=1

G⃗ikax⃗i(k) ≥ hika

)
(4.4a)

≤
Nik∑
j=1

P
(
G⃗ikax⃗i(k) ≥ hika

)
(4.4b)

Using the approach in [25], I introduce variables ωika to allocate risk to each of the

individual chance constraints,

P
(
G⃗ikax⃗i(k) ≥ hika

)
≤ ωika (4.5a)

Nik∑
j=1

ωika ≤ α (4.5b)

ωika ≥ 0 (4.5c)

To find a solution to (4.5), I need to find an appropriate value for ωika. To that end, I

add an additional constraint

E
(
G⃗ikax⃗i(k)

)
+ λikaS

(
G⃗ikax⃗i(k)

)
≤ hika (4.6)
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to (4.5). Enforcement of (4.6) allows us to write (4.5a) as

P
(
G⃗ikax⃗i(k) ≥ hika

)
≤ P

(
G⃗ikax⃗i(k) ≥ E

(
G⃗ikax⃗i(k)

)
+ λikaS

(
G⃗ikax⃗i(k)

))
≤ ωika

(4.7)

Then, by Assumption 4.4 and Theorem 4.1, I can substitute ωika with 4
9(λ2

ika+1)
and

change the risk allocation variable from ωika to λika. Further, enforcement of (4.6) makes

(4.5a), and by extension (4.7), an unnecessary intermediary step between (4.6) and (4.5c).

Hence, I can remove (4.5a) from the system of equations to solve and write (4.5)-(4.7) as

E
(
G⃗ikax⃗i(k)

)
+λikaS

(
G⃗ikax⃗i(k)

)
≤ hika (4.8a)

Nik∑
j=1

4

9(λ2
ika + 1)

≤ α (4.8b)

λika ≥
√

5

3
(4.8c)

which is enumerated over the indices, i, j, and k.

Lemma 4.1. For the controllers U⃗1, . . . , U⃗Nv , if there exists risk allocation variables λika

satisfying (4.8) for constraints (2.13a), then U⃗1, . . . , U⃗Nv satisfy (2.15d).

Proof. Satisfaction of (4.8a) implies (4.7) holds. The Vysochanskij–Petunin inequality

upper bounds (4.7). Boole’s inequality and De Morgan’s law guarantee that if (4.8b)

holds then (2.15d) is satisfied.

Lastly, I show that the constraint reformulation (4.8) will always be convex.

Lemma 4.2. The constraint (4.8) is convex in U⃗i and in (λi1k, . . . , λipk)

Proof. I start by exploiting the properties of the expectation and variance operator to
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write (4.8a) as

G⃗ika

(
Akx⃗i(0) + C(k)U⃗i +D(k)E

(
W⃗ i

))
+ λika

√
G⃗⊤

ikaD⊤(k)V
(
W⃗ i

)
D(k)G⃗ika ≤ hika

(4.9)

which is affine, and hence convex, in U⃗i and λika. Then

∂2

∂λ2
ika

4

9(λ2
ika + 1)

= −8 (−3λ2
ika + 1)

9 (λ2
ika + 1)

3 (4.10)

which is positive, and hence convex, when λika ≥ 3−1/2. Hence, with the restriction

(4.8c), (4.8b) is a convex constraint. Thus, the set over which λi1k, . . . , λiqk is optimized

is convex. Further, in the problem formulation I defined the control authority to be a

closed and convex set. Hence, I can conclude the chance constraint reformulation (4.8)

is convex.

4.3.2 2-Norm Based Collision Avoidance Constraints

Next, consider the reformulation of the constraints (2.13b)-(2.13c). Here, I will derive the

reformulation for (2.13c), but the reformulation of (2.13b) is nearly identical. Without

loss of generality, let

z⃗ = SAk(x⃗i(0)− x⃗j(0)) + SC(k)(U⃗i − U⃗j) (4.11a)

z⃗ = SD(k)(W⃗ i − W⃗ j) (4.11b)

be the non-stochastic and stochastic element of S(x⃗i(k) − x⃗j(k)) from (2.13c), respec-

tively. Then, I can write the norm as

∥S(x⃗i(k)− x⃗j(k))∥ = ∥z⃗ + z⃗∥ (4.12)
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I start by observing

P

(
Nv−1⋂
i=1

Nv⋂
j=i+1

N⋂
k=1

∥z⃗ + z⃗∥ ≥ r

)
= P

(
Nv−1⋂
i=1

Nv⋂
j=i+1

N⋂
k=1

∥z⃗ + z⃗∥2 ≥ r2

)
(4.13)

as the norm is non-negative. Thus, I can write the 2-norm constraint as

P

(
Nv−1⋂
i=1

Nv⋂
j=i+1

N⋂
k=1

∥z⃗ + z⃗∥2 ≥ r2

)
≥ 1− γ (4.14)

By taking the complement and applying Boole’s inequality,

P

(
Nv−1⋃
i=1

Nv⋃
j=i+1

N⋃
k=1

∥z⃗ + z⃗∥2 ≤ r2

)
≤

Nv−1∑
i=1

Nv∑
j=i+1

N∑
k=1

P
(
∥z⃗ + z⃗∥2 ≤ r2

)
(4.15)

Using the approach in [25], I introduce risk variables ωijk to allocate risk to each of the

individual probabilities

P
(
∥z⃗ + z⃗∥2 ≤ r2

)
≤ ωijk (4.16a)

Nv−1∑
i=1

Nv∑
j=i+1

N∑
k=1

ωijk ≤ γ (4.16b)

ωijk ≥ 0 (4.16c)

In a similar fashion to Section 4.3.1, I add an additional constraint based on the

expectation and standard deviation of ∥z⃗+z⃗∥2 to (4.16) such that the constraint becomes

58



P
(
∥z⃗ + z⃗∥2 ≤ r2

)
≤ ωijk (4.17a)

E
(
∥z⃗ + z⃗∥2

)
− λijkS

(
∥z⃗ + z⃗∥2

)
≥ r2 (4.17b)

Nv−1∑
i=1

Nv∑
j=i+1

N∑
k=1

ωijk ≤ γ (4.17c)

ωijk ≥ 0 (4.17d)

By enforcing (4.17b), I can write (4.17a) as

P
(
∥z⃗ + z⃗∥2 ≤ r2

)
≤ P

(
∥z⃗ + z⃗∥2 ≤ E

(
∥z⃗ + z⃗∥2

)
− λijkS

(
∥z⃗ + z⃗∥2

))
≤ ωijk

(4.18)

From Assumption 4.4 and Theorem 4.1, I know that (4.18) is upper bounded as per (4.2).

Hence, I can use the substitution

ωijk =
4

9(λ2
ijk + 1)

(4.19)

and determine the value for λijk in terms of ωijk,

λijk =

√
4

9ωijk

− 1 (4.20)

so long as λ ≥
√

5/3. This implies ωijk ≤ 1/6 is a necessary restriction on ωijk. As
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γ < 1/6, any solution will require that ωijk < 1/6. Then, I can write (4.17) as

P
(
∥z⃗ + z⃗∥2 ≤ r2

)
≤ ωijk (4.21a)

E
(
∥z⃗+z⃗∥2

)
−

√
4

9ωijk

−1 · S
(
∥z⃗+z⃗∥2

)
≥ r2 (4.21b)

Nv−1∑
i=1

Nv∑
j=i+1

N∑
k=1

ωijk ≤ γ (4.21c)

ωijk ∈ (0, 1/6) (4.21d)

Since Theorem 4.1 guarantees that satisfaction of (4.21b) also satisfies (4.21a) for any

value γ ∈ (0, 1/6), (4.21a) is redundant and can be removed. The constraint is then

E
(
∥z⃗+z⃗∥2

)
−

√
4

9ωijk

−1 · S
(
∥z⃗+z⃗∥2

)
≥ r2 (4.22a)

Nv−1∑
i=1

Nv∑
j=i+1

N∑
k=1

ωijk ≤ γ (4.22b)

ωijk ∈ (0, 1/6) (4.22c)

Note that (4.22a) is a biconvex constraint [91]. For known risk allocation values ωijk, the

final constraint is,

E
(
∥z⃗ + z⃗∥2

)
−

√
4

9ω̃ijk

− 1 · S
(
∥z⃗ + z⃗∥2

)
≥ r2 (4.23)

Lemma 4.3. If the controller U⃗1, . . . , U⃗v, satisfies (4.23) for constraints (2.13b)-(2.13c),

then U⃗1, . . . , U⃗v satisfy (2.13).

Proof. Satisfaction of (4.23) implies (4.18) is satisfied for λijk =
√

4
9ω̃ijk

− 1. Theorem

4.1 guarantees satisfaction of (2.13).

Next, I find the expanded form of (4.23) and show that the constraint is always a

difference of convex function constraint.
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Definition 4.3 (Difference of Convex Functions Constraint). A difference of convex

functions constraint has the form

f(x⃗)− g(x⃗) ≤ 0 (4.24)

in which f, g : Rn → R are convex functions for x⃗ ∈ Rn.

Lemma 4.4. The constraint (4.23) is a difference of convex function constraint in U⃗i

for the constraint (2.13b) in U⃗i − U⃗j for the constraint (2.13c).

Proof. I first find the expectation and variance of the norm. To find the expectation, I

expand the norm,

E
(
∥z⃗ + z⃗∥2

)
= E

(
z⃗⊤z⃗ + 2z⃗⊤z⃗ + z⃗⊤z⃗

)
(4.25a)

= z⃗⊤z⃗ + 2z⃗⊤E(z⃗) + E
(
z⃗⊤z⃗

)
(4.25b)

=

∥∥∥∥∥∥∥∥
 Iq E(z⃗)

E(z⃗)⊤ E
(
z⃗⊤z⃗

)


1
2
z⃗
1


∥∥∥∥∥∥∥∥
2

(4.25c)

Remember q is the dimension of the matrix S designed to extract the position elements

of the state. Here, E(∥z⃗ + z⃗∥2) is the squared norm of a vector matrix product. Hence,

the expectation is convex. I compute the variance in a similar manner to the expectation,

V
(
∥z⃗ + z⃗∥2

)
= V

(
z⃗⊤z⃗ + 2z⃗⊤z⃗ + z⃗⊤z⃗

)
(4.26a)

= V
(
2z⃗⊤z⃗

)
+ 2C

(
2z⃗⊤z⃗, z⃗⊤z⃗

)
+ V

(
z⃗⊤z⃗

)
(4.26b)

= 4z⃗⊤V(z⃗) z⃗+4z⃗⊤C
(
z⃗, z⃗⊤z⃗

)
+V
(
z⃗⊤z⃗

)
(4.26c)

where

C
(
z⃗, z⃗⊤z⃗

)
= E

(
z⃗z⃗⊤z⃗

)
− E(z⃗)E

(
z⃗⊤z⃗

)
(4.27)
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Assumptions 4.1-4.3 guarantees a closed form for (4.26). Thus, I can write the standard

deviation as the 2-norm

S
(
∥z⃗ + z⃗∥2

)
=

∥∥∥∥∥∥∥∥
 4V(z⃗) 2C

(
z⃗, z⃗⊤z⃗

)
2C
(
z⃗, z⃗⊤z⃗

)⊤
V
(
z⃗⊤z⃗

)


1
2
z⃗
1


∥∥∥∥∥∥∥∥ (4.28)

Since the standard deviation is the 2-norm of an affine function, the standard deviation

is convex [62]. I can now write (4.23) as

∥∥∥∥∥∥∥∥
 Iq E(z⃗)

E(z⃗)⊤ E
(
z⃗⊤z⃗

)


1
2
z⃗
1


∥∥∥∥∥∥∥∥
2

−

√
4

9ω̃ijk

− 1

∥∥∥∥∥∥∥∥
 4V(z⃗) 2C

(
z⃗, z⃗⊤z⃗

)
2C
(
z⃗, z⃗⊤z⃗

)⊤
V
(
z⃗⊤z⃗

)


1
2
z⃗
1


∥∥∥∥∥∥∥∥ ≥ r2

(4.29)

which can be written as the difference of convex constraint

√
4

9ω̃ijk

−1

∥∥∥∥∥∥∥∥
 4V(z⃗) 2C

(
z⃗, z⃗⊤z⃗

)
2C
(
z⃗, z⃗⊤z⃗

)⊤
V
(
z⃗⊤z⃗

)


1
2
z⃗
1


∥∥∥∥∥∥∥∥−
∥∥∥∥∥∥∥∥
 Iq E(z⃗)

E(z⃗)⊤ E
(
z⃗⊤z⃗

)


1
2
z⃗
1


∥∥∥∥∥∥∥∥
2

≤−r2

(4.30)
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4.3.3 Difference of Convex Programming

Combining the results from Sections 4.3.1 and 4.3.2, I obtain a new optimization problem.

minimize
U⃗1,...,U⃗Nv

λika

J
(
X⃗1, . . . , X⃗Nv , U⃗1, . . . , U⃗Nv

)
(4.31a)

subject to U⃗1, . . . , U⃗Nv ∈ UN , (4.31b)

Moments defined by dynamics (2.6) (4.31c)

with initial conditions x⃗1(0), . . . , x⃗Nv(0)

Constraints (4.8) and (4.30) (4.31d)

Reformulation 4.1. Under Assumptions 4.1-4.4, solve the stochastic optimization prob-

lem (4.31) with probabilistic violation thresholds α, β, and γ for open loop controllers

U⃗1, . . . , U⃗Nv ∈ UN and optimization parameters λika.

Lemma 4.5. Solutions to Reformulation 4.1 are conservative solutions to Problem 1.2.

Proof. Lemmas 4.1 and 4.3 guarantee the probabilistic constraints (2.13) are satisfied.

The equations (4.1)-(4.2) are always conservative. Hence, the reformulated constraints

will be conservative with respect to the chance constraint. The expectation and variance

terms in Reformulation 4.1 encompass and replace the dynamics used in Problem 1.2.

The cost function and input constraints remain unchanged.

I note that (4.31) is a difference of convex functions optimization problem. While

(4.31a)-(4.31c) are convex, (4.31d) is difference of convex due to the constraint (4.30).

As in the previous chapter, I employ the convex-concave procedure [64] to solve (4.31).

Here, the first order approximation transforms the difference of convex function constraint
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(4.30) into the convex constraint

√
4

9ω̃ijk

− 1

∥∥∥∥∥∥∥∥
 4V(z⃗) 2C

(
z⃗, z⃗⊤z⃗

)
2C
(
z⃗, z⃗⊤z⃗

)⊤
V
(
z⃗⊤z⃗

)


1
2
z⃗
1


∥∥∥∥∥∥∥∥

−


∥∥∥∥∥∥∥∥
 Iq E(z⃗)

E(z⃗)⊤ E
(
z⃗⊤z⃗

)


1
2
z⃗p
1


∥∥∥∥∥∥∥∥
2

+ 2 (z⃗p + E(z⃗))⊤ SC(k)
(
(U⃗i − U⃗j)− (U⃗p

i + U⃗p
j )
)

︸ ︷︷ ︸
First order approximation of E(∥z⃗+z⃗∥2) based on previous iteration’s solution.

≤ −r2

(4.32)

where the superscript p indicated the value from the previous iteration’s solution. As I

use a difference of convex functions optimization framework, Lemma 4.3 guarantees that

any solution that is synthesized during this iterative process will be a feasible but locally

optimal solution.

4.4 Results

I demonstrate my method on a multi-satellite rendezvous problem with two different

disturbances that impact the relative satellite dynamics. All computations were done on

a 1.80GHz i7 processor with 16GB of RAM, using MATLAB, CVX [78] and Gurobi [79].

Polytopic construction and plotting was done with MPT3 [80]. All code is available at

https://github.com/unm-hscl/shawnpriore-moment-control.

Consider a scenario in which Nv satellites, called the deputies, are stationed in geosta-

tionary Earth orbit, and tasked to rendezvous with a refueling spacecraft, called the chief.

The satellites are tasked with reaching a new configuration represented by polytopic tar-

get sets. The relative planar dynamics of each deputy, with respect to the position of

the chief are described by the equations (2.12) with sampling time ∆t= 60s. Note that
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I only consider the planar dynamics of (2.12) for this demonstration. I assume that the

disturbances adhere to Assumptions 4.1-4.2.

4.4.1 Exponential Disturbance

Exponential disturbances are the type of distribution that is a big motivator for my

approach. They exist in real systems but very few methods can handle them. I presume,

for the purpose of demonstration, that I have an exponential disturbance. This could

occur because of inaccuracies in the impulsive thrust model, drag forces in low Earth

orbit, or third body gravity.

The exponential distribution is defined as follows.

Definition 4.4 (Exponential Distribution). An exponential distribution is one which

elicits the pdf

ϕ(x) = λe−λx (4.33)

with rate parameter λ > 0 and x ≥ 0.

The exponential distribution presents several challenges for existing methods. I define

the following two distributions to analyze these challenges.

Definition 4.5 (Hypoexponential Distribution). An hypoexponential distribution is one

which elicits the pdf

ϕ(x) = −a⃗exΘΘ1⃗ (4.34)

with probability row vector a⃗, subgenerator matrix Θ, and x ≥ 0.

Definition 4.6 (Weibull Distribution). An Weibull distribution is one which elicits the

pdf

ϕ(x) =
k

λ

(x
λ

)k−1

e−(x/λ)k (4.35)

with scale parameter λ > 0, shape parameter k > 0, and x ≥ 0.
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First, a linear sum of independent but not identically distributed exponential random

variables, as the case for the polytopic target set constraint, results in a hypoexponential

distribution. While a closed form expression of the cumulative distribution function ex-

ists, a closed form expression of the constraint would result in a reverse convex constraint.

Further, as the cumulative distribution function is not invertible, quantile methods can-

not be used.

Second, the squared difference of exponential random variables, as is the case with

the collision avoidance constraint, results in the sum of Weibull random variables. The

pdf, cdf, and characteristic function of a sum of Weibull random variables can only

be expressed as an infinite summation [92, 93]. Thus, closed form evaluations of the

chance constraint probabilities are practically impossible. At present, methods that

create bounds based on moments are the only methods that allow for almost surely

satisfaction of each chance constraint.

Experimental Setup

For this experiment, I presume there are three deputies such that Nv = 3. I presume the

admissible control set is Ui = [−0.75, 0.75]2N ·∆t−1 and time horizon N = 8, correspond-

ing to 8 minutes of operation. The performance objective is based on fuel consumption,

J(U⃗1, . . . , U⃗Nv) =
Nv∑
i=1

U⃗⊤
i U⃗i (4.36)

The terminal sets Ti(N) are 5×5m boxes centered around desired terminal locations in

x, y coordinates with velocity bounded in both directions by [−0.1, 0.1]m/s. For collision

avoidance, I presume that each deputy must remain at least r = 12m away from each

other, hence S =

[
I2 02

]
to extract the positions. Violation thresholds for terminal sets
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and collision avoidance are α = γ = 0.075. The chance constraints are defined as

P

(
3⋂

i=1

x⃗i(N) ∈ Ti(N)

)
≥ 1− α (4.37)

P

(
8⋂

k=1

3⋂
i,j=1

∥S (x⃗i(k)− x⃗j(k))∥ ≥ r

)
≥ 1− γ (4.38)

Figure 1.1 provides a graphic representation of the demonstration presented.

As has been established [25, 91], biconvexity associated with having both risk alloca-

tion and control variables can be addressed in an iterative fashion, by alternately solving

for the risk allocation variables, then for the control. However, for my demonstration, to

isolate the impact of the one-sided Vysochanskij-Petunin inequality, I presume a fixed

risk allocation. I uniformly allocate risk such that

P(∥S (x⃗i(k)− x⃗j(k))∥ ≥ r) ≥ 1− γ̂ ∀ i, j, k (4.39)

where γ̂ = γ
24 constraints

= .15
24

= 3.125× 10−3. These values remain constraint throughout

the iterative solution finding process.

I define the solution convergence thresholds for the convex-concave procedure as both

the difference of sequential performance objectives as less than 10−6 and the sum of slack

variables as less than 10−8. Difference of convex programs were limited to 100 iterations.

The first order approximations of the reverse convex constraints were initially computed

assuming no system input.

For a random variable x ∼ Exp(λ), where λ is the rate parameter,

E(xn) =
n!

λn
∀ n ∈ N (4.40)

Hence, Assumption 4.3 is valid. I keep with the notation used in Section 4.3.2. Since I
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assumed the disturbances are independent and identically distributed, from (4.40) I find

E(z⃗) = 0q×1

V(z⃗) = 2SD(k)V
(
W⃗ i

)
D⊤(k)S⊤

(4.41)

where

V
(
W⃗ i

)
= diag

(
20−2 · I2, 10−8 · I2, . . . , 20−2 · I2, 10−8 · I2

)
(4.42)

Next, from (4.41)

E
(
z⃗⊤z⃗

)
= tr (V(z⃗)) (4.43)

Next, I find V
(
z⃗⊤z⃗

)
. For brevity, I denote W⃗ i − W⃗ j as W⃗ . Then,

V
(
z⃗⊤z⃗

)
= V

(
W⃗

⊤
D⊤(k)S⊤SD(k)W⃗

)
(4.44a)

= V

(
Nn∑
p=1

Nn∑
q=1

apqW⃗pW⃗q

)
(4.44b)

=
Nn∑
p=1

Nn∑
q=1

Nn∑
r=1

Nn∑
s=1

C(apqWpWq, arsWrWs) (4.44c)

where apq is the (p, q)th element of D⊤(k)S⊤SD(k). Then

Nn∑
p=1

Nn∑
q=1

Nn∑
r=1

Nn∑
s=1

C
(
apqW⃗pW⃗q, arsW⃗rW⃗s

)
=

Nn∑
p=1

V
(
appW⃗

2

p

)
+ 4

∑
1≤p<q≤Nn

V
(
apqW⃗pW⃗q

) (4.45)

Here, all remaining covariance terms is zero as each element is mutually independent by
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Assumptions 4.1 and 4.2, and the first and third moments being zero. So,

Nn∑
p=1

V
(
appW⃗

2

p

)
+ 4

∑
1≤p<q≤Nn

V
(
apqW⃗pW⃗q

)
=

Nn∑
p=1

a2pp

(
E
(
W⃗

4

p

)
− E

(
W⃗

2

p

)2)
+ 4

∑
1≤p<q≤Nn

a2pqE
(
W⃗

2

p

)
E
(
W⃗

2

q

)
(4.46a)

= 3
Nn∑
p=1

a2ppE
(
W⃗

2

p

)2
+2

Nn∑
p=1

Nn∑
q=1

a2pqE
(
W⃗

2

p

)
E
(
W⃗

2

q

)
(4.46b)

as in this example E
(
W⃗

4

p

)
= 6E

(
W⃗

2

p

)2
. Then, let a⃗ be a vector consisting of the

diagonal elements of D⊤(k)S⊤SD(k). So,

Nn∑
p=1

a2ppE
(
W⃗

2

p

)2
+ 2

Nn∑
p=1

Nn∑
q=1

a2pqE
(
W⃗

2

p

)
E
(
W⃗

2

q

)
(4.47a)

= 12a⃗⊤V
(
W⃗ i

)2
a⃗+ 8tr

((
D⊤(k)S⊤V

(
W⃗ i

)
SD(k)

)2)
(4.47b)

Finally, I find C
(
z⃗, z⃗⊤z⃗

)
.

C
(
z⃗, z⃗⊤z⃗

)
= E

(
z⃗z⃗⊤z⃗

)
− E(z⃗)E

(
z⃗⊤z⃗

)
(4.48)

The second term is zero by (4.41). For a random vector, the expectation is a vector of

the expectations of each element. Then for the ith element,

E
(
z⃗iz⃗

⊤z⃗
)
= E

(
z⃗3
i

)
+

Nn∑
j=1
j ̸=i

E(z⃗i)E
(
z⃗2
j

)
(4.49)

Since the first and third moments of z⃗ are zero, then the sum is zero. Thus, C
(
z⃗, z⃗⊤z⃗

)
=

0.

For the target set constraint, I can determine that the chance constraint is unimodal

as the exponential distribution is a strongly unimodal distribution, as per Definition 4.2.
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Metric Proposed Method MPC with Cantelli’s Inequality [1]
Solve Time 6.5230 s 10.7012 s
Iterations 9 13
Solution Cost 0.1156 0.1244

Table 4.1: Comparison of Solution and Computation Time for CWH Dynamics with
Exponential Disturbance.

Hence, the affine constraint is unimodal. However, the Weibull random variables that

result in the collision avoidance constraint are not strong unimodal. Here, unimodality

of the constraint was validated numerically via Algorithm 3 for each vehicle pair and

each time step after computing the solution. Validation was completed with randomly

sampled 50,000 disturbances.

Comparison Methodology

I compare my method against the method in [1], the predecessor of the method proposed

in this work based on Cantelli’s inequality. This approach is effective for and has been

demonstrated on systems which have target constraints and can be solved via convex

optimization. I extend this method to accommodate 2-norm based collision constraints

(as in Section 4.3.2) for the purpose of comparison with my own approach. I do not

consider methods based on Chebyshev’s inequality because they have shown to be less

effective than [1] in a target constraint problem [87].

Theorem 4.2 (Cantelli’s inequality [35]). Let x be a real valued random variable with

finite expectation E(x) and finite, non-zero standard deviation S(x). Then, for any λ > 0,

P(x− E(x) ≥ λS(x)) ≤ 1

λ2 + 1
(4.50)

Experimental Results

The resulting trajectories are shown in Figure 4.2. I see that the two solutions result in

similar trajectories. The most noticeable difference is that the trajectory of the proposed
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Figure 4.2: Comparison of mean trajectories between proposed method (solid line with
filled in markers), and MPC with Cantelli’s inequality [1] (dotted line with white markers)
for planar CWH dynamics with exponential disturbance. The full trajectory is displayed
on the right and the terminal state is on the left. I see the two methods had similar
trajectories but notice the proposed method was closer to the boundary of the target
sets.

Constraint Proposed Method MPC with Cantelli’s Inequality [1]
Target Set (4.37) 0.9999 1.0000
Avoid Each Other (4.38) 1.0000 1.0000

Table 4.2: Constraint Satisfaction for CWH Dynamics with Exponential Disturbance,
with 104 Samples and Probabilistic Violation Threshold of α = γ = 0.075.
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Figure 4.3: Scenario in which the deputy must reach a desired target set while staying
within the chiefs line-of-sight cone.

method was consistently closer to the boundary of the target set. The solution cost,

iterations needed to converge, and computation times are shown in Table 4.1. In all

three categories, the proposed method performed better than the method of [1]. To

assess constraint satisfaction, I generated 104 Monte Carlo sample disturbances for each

approach. Table 4.2 shows that while both methods were conservative, the proposed

method was less conservative.

As this example demonstrates, I can make probabilistic guarantees for disturbances

that may arise in common circumstances. As discussed earlier, these distributional as-

sumptions made in this example result in complicated distributions that lack analytical

form. It is in distribution assumptions like these made in this example where this method

will thrive.

4.4.2 Gaussian Disturbance

I include an example with a Gaussian disturbance to facilitate comparison with more

conventional methods. In this example, I simplify the comparison example to only con-

sider a convex joint chance constraint with a time-varying target set, as in Section 4.3.1.

This scenario is demonstrated in Figure 4.3.
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Experimental Setup

For this experiment, I presume there is a single deputy that must stay within a predefined

line of sight cone and reach a terminal target set as shown in Figure 4.3. I presume the

admissible control set is Ui = [−0.1, 0.1]2N ·∆t−1 and time horizon N = 5, corresponding

to 5 minutes of operation. The performance objective is based on fuel consumption,

J(U⃗1) = U⃗⊤
1 U⃗1 (4.51)

The line-of-sight cone is defined by the inequalities

−x+ 2y ≤ 0

−x− 2y ≤ 0

x ≤ 10

(4.52)

The terminal sets T (N) is a 2 × 1m near the origin with velocity bounded in both

directions by [−0.1, 0.1]m/s. The violation thresholds for joint target set constraint is

α = 0.05. The chance constraint is defined as

P

(
5⋂

k=1

x⃗1(k) ∈ T1(k)

)
≥ 1− α (4.53)

I presume the disturbance is Gaussian,

w⃗1(k) ∼ N
(
0⃗, diag

(
10−3, 10−3, 10−8, 10−8

))
(4.54)

Using the properties of the Gaussian disturbance, I know that all moments exist such

that Assumption 4.3 is valid. Further, affine summations of Gaussian disturbances are

still Gaussian. Hence, each target set constraint is unimodal, validating Assumption 4.4.
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Comparison Methodologies

Here, I compare the proposed methodology against a broader field of chance constrained

stochastic optimal control methods. Several methods exist to solve convex chance con-

straints in a Gaussian regime. Hence, I select comparison methodologies that have been

used extensively to solve chance constrained problems with Gaussian disturbances but

can also handle non-Gaussian disturbances. Specifically, I compare the proposed method

with quantile approach in [2, 3], the scenario approach in [4, 5], and the particle control

approach in [6].

The quantile approach results in a reformulation that is a convex in the input and

the Gaussian quantile function. The quantile method allows for almost surely guarantees

of chance constraint satisfaction as the disturbance is Gaussian. The particle control

approach relies on sample disturbances and the chance constraint reformulation results

in a mixed integer linear program. The particle control approach can only guarantee

chance constraint satisfaction asymptotically as the number of samples goes to infinity.

To minimize computational complexity, I select 200 sample disturbances to compute the

optimal control trajectory with the particle control approach.

Like the particle control approach, the scenario approach relies on samples to compute

an optimal controller. The reformulation of the scenario approach results in a linear

program. The scenario approach can guarantee chance constraints up to a probabilistic

confidence bound δ. By setting the confidence bound to a sufficiently small value, the

probabilistic guarantees of the scenario approach closely resemble that of the proposed

method. I compute the number of samples required for the scenario approach with the

formula [38]

Ns ≥
2

α

(
ln

1

δ
+No

)
(4.55)

where Ns is the number of samples required and No is the number of optimization vari-

ables. Here, No = 10, and I choose δ = 10−16 and Ns = 937.
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Metric Solve Time Solution Cost Satisfaction of (4.53)
(sec) (10−4N2)

Proposed Method 0.1842 6.0075 1.0000
Quantile Method [2, 3] 1.0377 5.1885 0.9539
Scenario Approach [4, 5] 3.8575 5.3353 0.9937
Particle Control [6] 30.5232 5.1865 0.9449

Table 4.3: Comparison of Computation Time, Solution Cost, and Constraint Satisfaction
for CWH Dynamics with Multivariate Gaussian Disturbance with violation threshold
α = 0.05. Chance constraint satisfaction was measured as a ratio of 104 samples satisfying
the constraint.

I expect the proposed method to result in more conservative solutions compared with

these approaches. This stems from the conservative nature of the one-sided

Vysochanskij-Petunin inequality [60]. However, I also expect to see the proposed method

compute solutions in less time than the comparison methods. I expect this as the pro-

posed method doesn’t rely on samples as the scenario and particle control method, and

the simplicity of the proposed reformulation in comparison to the quantile approach.

Experimental Results

The resulting trajectories are not very different between the four methods as shown in

Figure 4.4. The most notable difference is that the trajectory of the proposed method is

further from the boundary of the target sets, implying conservatism of the trajectory, as

expected. This is also shown in Table 4.3. Here, I see the proposed method has higher

chance constraint satisfaction and larger solution cost. I note that in empirical testing

of chance constraint satisfaction, only particle control was not able to meet the required

probability violation threshold as expected.

Table 4.3 shows that the proposed method was able to compute the solution in sig-

nificantly less time. Indeed, the proposed method was an order of magnitude faster than

the quantile approach and the scenario approach, and two orders of magnitude faster

than the particle control approach.

As shown in this example, the method sacrifices optimality for broad applicability. In
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Figure 4.4: Comparison of mean trajectories between proposed method (red, circle),
quantile-based approach [2, 3] (blue, diamond), the scenario approach [4, 5] (green, tri-
angle), and the particle control approach [6] (purple, 6-pointed star) for CWH dynamics
with multivariate Gaussian disturbance. Here, I observe the trajectories are very similar.
Note that the quantile approach and the particle control approach had nearly identical
trajectories. This makes it difficult to see the trajectory of the quantile approach in this
figure.
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this particular case, the sacrifice was a solution cost that was approximately 13% larger

than the compared methods. However, the computational benefits, broad applicability

of this method, and almost surely guarantees of chance constraint satisfaction present a

strong case to use this method in instances where the improved speed is important.

4.5 Summary

I proposed a framework to solve chance-constrained stochastic optimal control problems

for LTI systems subject to arbitrary disturbances under moment and unimodality as-

sumptions. This work focuses on probabilistic requirements for polytopic target sets

and 2-norm based collision avoidance constraints. My approach relies on the one-sided

Vysochanskij–Petunin inequality to reformulate joint chance constraints into a series of

inequalities that can be readily solved as a difference of convex functions optimization

problem. I demonstrated my method on a multi-satellite rendezvous scenario under ex-

ponential and Gaussian disturbance assumptions and compare with an MPC approach

using Cantelli’s inequality (the predecessor of this work), a quantile-based approach, the

scenario approach, and the particle control approach. I showed that this approach is

amenable to disturbances that prove challenging or impossible to solve with other meth-

ods and demonstrated the proposed method has computational benefits in comparison

to other commonly used methods.
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Chapter 5

Sample Moments Based Approach

5.1 Introduction

In contrast to the previous two chapters, I now focus on a method based on samples

of the disturbance vector. This chapter is motivated by scenarios in which there is no

analytic knowledge of the underlying distribution, as can occur in space applications. For

this chapter the disturbance is considered both unknown and arbitrary but sampled.

One of the primary challenges preventing sample based methods from providing as-

surances of probabilistic constraint satisfaction, is lack of knowledge of the underlying

process. Without knowledge of the underlying distribution, analytic techniques cannot

be evoked to evaluate the chance constraint probability. Particle control approaches

utilize sample data to synthesize a controller that satisfies the constraint for a percent-

age of samples corresponding to the probabilistic safety threshold to avoid the need for

analytic evaluations [6]. However, the particle control approach does not have a finite

sample confidence bound and can only provide satisfaction assurances asymptotically

[22]. In contrast, the scenario approach relies on synthesizing a control that satisfies

the constraint for each disturbance sample in the sample set [4, 38]. For finite sample

sizes, the scenario approach guarantees the synthesized controller satisfies the chance
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constraint and is optimal up to a probabilistic confidence bound [4]. While the scenario

approach, and similarly the particle control approach, suffer from computational burden

of large sample sizes, methods have been proposed to decrease the computational burden

by discarding samples [44], as well as optimizing over a subset of the samples [45].

In contrast, data reduction methods have been posed to simplify sample-based ap-

proaches based on parameter estimation [94, 95, 96], a common tool from statistical

literature. By computing moments or extremum of the sample set, probabilistic evalu-

ations can be computed via robust control principals [28, 97] or taken as ground truth

and incorporated into moment based approaches [98] such as the method presented in

Chapter 4. While robust and ground truth assumptions can be sufficient asymptotically

via the central limit theorem, computation with finite sample sizes can lead to maneuvers

that are not safe when implemented.

My approach also relies on data reduction via moment estimation. However, through

a theorem derived in this chapter, this approach allows for almost surely probabilistic

guarantees of chance constraint satisfaction despite requiring no knowledge of the un-

derlying disturbance process. Hence, I propose application of this approach to chance

constraint evaluation that arises in multi-vehicle planning problems: that is, in a) reach-

ing a terminal target set and b) avoiding collision with obstacles in the environment as

well as with other vehicles. The main contribution of this chapter is a closed-form refor-

mulation of chance constraints based on sample statistics, for polytopic target sets and

collision avoidance constraints, that is amenable to difference of convex programming

solutions. The main drawback in this approach is that solutions are conservative with

respect to other sample based methods.

The chapter is organized as follows. Section 5.2 provides additional preliminaries

required for Problem 1. Section 5.3 reformulates the chance constraints by approximating

the quantile function. Section 5.4 demonstrates my approach on three multi-satellite

rendezvous problems, and Section 5.5 provides concluding remarks.
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5.2 Problem Formulation

In addition to the problem formulation in Chapter 2.4, I add several assumptions and

observations that will be required for the work in this chapter. With arbitrary and

unknown but sampled disturbances corrupting the satellite dynamics, I seek to synthesize

a controller to construct an optimal rendezvous maneuver that satisfies chance constraints

target set and collision avoidance.

Definition 5.1 (Almost Surely [61]). Let (Ψ,B(Ψ),P) be a probability space with out-

comes Ψ, Borel σ-algebra B(Ψ), and probability measure P. An event A ∈ B(Ψ) happens

almost surely if P(A) = 1 or P(Ac) = 0 where ·c denotes the complement of the event.

As the disturbance is unknown and arbitrary, I make several key assumptions about

the quantity and quality of the sampled disturbance data that allow us to make (2.15) a

tractable problem.

Assumption 5.1. For each vehicle, the concatenated disturbance vector W⃗ i has been

independently sampled Ns times. I denote the sampled values as W⃗
[j]

i for j ∈ N[1,Ns].

Assumption 5.2. The sample size Ns must be sufficiently large such that the reformu-

lations presented in this work are tractable.

Assumption 5.3. For each vehicle, the concatenated disturbance vector samples W⃗
[j]

i

are almost surely not all equal.

Assumptions 5.1-5.2 are required to compute sample mean and standard deviation.

Assumption 5.2 guarantees that the sample based concentration inequality developed

here can be applied for my reformulations. Assumption 5.3 guarantees the distribution

is not degenerate or deterministic.

Problem 1.3. Under Assumptions 5.1-5.3, solve Problem (1) with probabilistic violation

thresholds α, β, and γ for open loop controllers U⃗1, . . . , U⃗Nv ∈ UN .
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The main challenge in solving Problem 1.3 is assuring (2.13). Without knowledge of

the underlying distribution, analytic techniques cannot be used to derive reformulations

that allow for guarantees. Further, current sample based methods can only guarantee

chance constraint satisfaction approximately or asymptotically.

5.3 Methods

My approach to solve Problem 1.3 involves reformulating each chance constraint as an

affine summation of the random variable’s sample mean and sample standard devia-

tion, i.e., Ê(∥S(x⃗i(k)−x⃗j(k))∥) and Ŝ(∥S(x⃗i(k)−x⃗j(k))∥), respectively for the collision

avoidance constraint. The reformulation is a result of a concentration inequality based on

sample statistics that is developed in this work. Said concentration inequality guarantees

satisfaction of (2.13) almost surely.

5.3.1 Establishing Sample Bounds

Here, I state the pivotal theorem that allow us to solve Problem 1.3.

Theorem 5.1. Let x follow some distribution f . Let x[1], . . . ,x[Ns] be samples drawn

independently from the distribution f , for some Ns ≥ 2. Let

Ê(x) =
1

Ns

Ns∑
i=1

x[i] (5.1a)

Ŝ(x) =

√√√√ 1

Ns

Ns∑
i=1

(x[i] − Ê(x))2 (5.1b)

be the sample mean and sample standard deviation, respectively, with Ŝ(x) > 0 almost

surely. Then for any λ > 0

P
(
x− Ê(x) ≥ λŜ(x)

)
≤ (

√
Ns + 1 + λ)2

λ2Ns + (
√
Ns + 1 + λ)2

(5.2)
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For brevity, I define N∗
s = NS + 1 and

f(λ) =
(
√
N∗

s + λ)2

λ2Ns + (
√

N∗
s + λ)2

(5.3)

To prove Theorem 5.1, I first need to state and prove the following Lemma.

Lemma 5.1. Let x[1], . . . ,x[Ns] be identically distributed samples drawn independently

where Ns ≥ 2. Let

Ê(x) =
1

Ns

Ns∑
i=1

x[i] (5.4a)

Ŝ(x) =

√√√√ 1

Ns

Ns∑
i=1

(x[i] − Ê(x))2 (5.4b)

be the sample mean and sample standard deviation, respectively, with Ŝ(x) > 0 almost

surely. Then for λ > 0

P
(
x[i] − Ê(x) ≥ λŜ(x)

)
≤ 1

λ2 + 1
(5.5)

for i ∈ N[1,Ns].

Proof. Observe

P
(
x[i] − Ê(x) ≥ λŜ(x)

)
(5.6a)

= P

(
x[i] − Ê(x)

Ŝ(x)
≥ λ

)
(5.6b)

= P

(
x[i]−Ê(x)

Ŝ(x)
− E

(
x[i]−Ê(x)

Ŝ(x)

)
≥ λS

(
x[i]−Ê(x)

Ŝ(x)

))
(5.6c)
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as

E

(
x[i]−Ê(x)

Ŝ(x)

)
= 0 (5.7a)

S

(
x[i]−Ê(x)

Ŝ(x)

)
= 1 (5.7b)

Then by Cantelli’s inequality

P

(
x[i]−Ê(x)

Ŝ(x)
− E

(
x[i]−Ê(x)

Ŝ(x)

)
≥ λS

(
x[i]−Ê(x)

Ŝ(x)

))
≤ 1

λ2 + 1
(5.8)

for any λ > 0.

With Lemma 5.1 established, I can prove Theorem 5.1.

Proof of Theorem 5.1. Let Ê(x)∗ and Ŝ(x)∗ be the sample mean and sample standard

deviation calculates with N∗
s = Ns + 1 samples. Note that

x[N∗
s ] − Ê(x)∗ =

Ns

N∗
s

(x[N∗
s ] − Ê(x)) (5.9a)

N∗2
s V̂(x)∗ = NsN

∗
s V̂(x)+Ns(x

[N∗
s ] − Ê(x))2 (5.9b)

Then for λ > 0

P
(
x[N∗

s ] − Ê(x) ≥ λŜ(x)
)

(5.10a)

= P
(√

NsN∗
s (x

[N∗
s ]−Ê(x)) ≥ λ

√
NsN∗

s Ŝ(x)
)

(5.10b)

= P
(
(
√

NsN∗
s + λ

√
Ns)(x

[N∗
s ] − Ê(x)) ≥ λ

√
NsN∗

s Ŝ(x) + λ
√

Ns(x
[N∗

s ] − Ê(x))
)

(5.10c)

≤ P
(
(
√

NsN∗
s + λ

√
Ns)(x

[N∗
s ] − Ê(x)) ≥ λ

√
NsN∗

s V̂(x) +Ns(x[N∗
s ] − Ê(x))2

)
(5.10d)
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where (5.10d) results from the triangle inequality. Then,

P
(
(
√

NsN∗
s + λ

√
Ns)(x

[N∗
s ] − Ê(x)) ≥ λ

√
NsN∗

s V̂(x) +Ns(x[N∗
s ] − Ê(x))2

)
= P

(
(
√

NsN∗
s + λ

√
Ns)(x

[N∗
s ] − Ê(x)) ≥ λN∗

s Ŝ(x)
∗
)

(5.10e)

= P

(
(x[N∗

s ] − Ê(x)) ≥ λN∗
s√

NsN∗
s + λ

√
Ns

Ŝ(x)∗
)

(5.10f)

= P

(
Ns

N∗
s

(x[N∗
s ] − Ê(x)) ≥ λ

√
Ns√

N∗
s + λ

Ŝ(x)∗
)

(5.10g)

= P

(
x[N∗

s ] − Ê(x)∗ ≥ λ
√
Ns√

N∗
s + λ

Ŝ(x)∗
)

(5.10h)

= P
(
x[N∗

s ] − Ê(x)∗ ≥ κŜ(x)∗
)

(5.10i)

Where κ is a simple substitution. Here, λ > 0 implies κ > 0. So, by Lemma 5.1,

P
(
x[N∗

s ] − Ê(x)∗ ≥ κŜ(x)∗
)
≤ 1

κ2 + 1
(5.10j)

=
1(

λ
√
Ns√

N∗
s+λ

)2

+ 1

(5.10k)

Simplifying (5.10k) leads to (5.2).

Theorem 5.1 provides a bound for deviations of a random variable x from the sample

mean. For the purpose of generating open loop controllers in an optimization frame-

work, this will allow us to bound chance constraints based on sample statistics of sample

disturbance data.

To address the need for Assumption 5.2, I observe that

lim
λ→∞

f(λ) =
1

N∗
s

(5.11)

For any probabilistic violation threshold smaller than this value, Theorem 5.1 will not
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Figure 5.1: Graph of (5.11) for values of Ns ∈ {10, 100, 1000} and as Ns →∞.

be sufficiently tight to bound the constraint. Figure 5.1 graphs (5.3) for Ns taking the

values 10, 100, and 1000, and as Ns →∞.

Note that I did not use Bessel’s correction [61] in the sample variance formula to

simplify the probabilistic bound. Accordingly, the sample variance statistic I used is

biased in relation to the variance of the distribution. An analogous result can be derived

with Bessel’s correction, however, the bound becomes more complex.

I can easily find the lower tail bound with Theorem 5.1 by substituting x with −x as

P
(
x− Ê(x) ≤ −λŜ(x)

)
≤ f(λ) (5.12)

This observation will be useful in the reformulation of the collision avoidance constraints.

5.3.2 Polytopic Target Set Constraint

First, consider the reformulation of (2.13a). Without loss of generality, I presume Nv = 1

and N = 1 for brevity. From (2.14), I can write

P(x⃗i(k) ∈ Ti(k)) = P

(
Nik⋂
j=1

G⃗ikax⃗i(k) ≤ hika

)
(5.13)
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where G⃗ika ∈ Rn and hika ∈ R. I take the complement and employ Boole’s inequality to

separate the combined chance constraints into a series of individual chance constraints,

P(xi(k) ̸∈ Ti(k)) = P

(
Nik⋃
j=1

G⃗ikax⃗i(k) ≥ hika

)
(5.14a)

≤
Nik∑
j=1

P
(
G⃗ikax⃗i(k) ≥ hika

)
(5.14b)

Using the approach in [25], I introduce ωika to allocate risk for each individual chance

constraint,

P
(
G⃗ikax⃗i(k) ≥ hika

)
≤ ωika (5.15a)

Nik∑
j=1

ωika ≤ α (5.15b)

ωika ≥ 0 (5.15c)

To find a solution to (5.15), I need to find an appropriate value for ωika. To that end, I

add the additional constraints

Ê
(
G⃗ikax⃗i(k)

)
+ λikaŜ

(
G⃗ikax⃗i(k)

)
≤ hika (5.16a)

λika > 0 (5.16b)

with λika > 0 where Ê[G⃗ikax⃗i(k)] and ˆStd(G⃗ikax⃗i(k)) are the sample mean and sample

standard deviation, respectively. For brevity, I denote

F̂(x⃗i(k), λika) = Ê
(
G⃗ikax⃗i(k)

)
+ λikaŜ

(
G⃗ikax⃗i(k)

)
(5.17)
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Enforcement of (5.16) guarantees that

P
(
G⃗ikax⃗i(k) ≥ hika

)
≤ P

(
G⃗ikax⃗i(k) ≥ F̂(x⃗i(k), λika)

)
(5.18)

allowing us to write (5.15) as

P
(
G⃗ikax⃗i(k) ≥ F̂(x⃗i(k), λika)

)
≤ ωika (5.19a)

F̂(x⃗i(k), λika) ≥ hika (5.19b)

Nik∑
j=1

ωika ≤ α (5.19c)

ωika ≥ 0 (5.19d)

λika > 0 (5.19e)

Then, by Assumptions 5.1-5.3 and Theorem 5.1, I can substitute

ωika = f(λika) (5.20)

via (5.2). Then (5.19) becomes

P
(
G⃗ikax⃗i(k) ≥ F̂(x⃗i(k), λika)

)
≤ f(λika) (5.21a)

F̂(x⃗i(k), λika) ≥ hika (5.21b)

Nik∑
j=1

f(λika) ≤ α (5.21c)

f(λika) ≥ 0 (5.21d)

λika > 0 (5.21e)

To use Theorem 5.1, I must impose the restriction Ns ≥ 2. This restriction will be in

addition to Assumption 5.2.
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I can simplify (5.15b) as (5.21b)-(5.21c) enforce (5.21a) and (5.21e) enforces (5.21d).

Hence, (5.15b) becomes

F̂(x⃗i(k), λika) ≥ hika (5.22a)

Nik∑
j=1

f(λika) ≤ α (5.22b)

λika > 0 (5.22c)

with (5.22a) and (5.22c) iterated over the index j ∈ N[1,Nik].

Next, I show that F̂(x⃗i(k), λika) has a closed and convex form. Observe that the

sample mean vector and sample variance-covariance matrix of W⃗ are

Ê
(
W⃗ i

)
=

1

Ns

Ns∑
[i]=1

W⃗
[i]

i (5.23a)

V̂
(
W⃗ i

)
=

1

Ns

Ns∑
[i]=1

(
W⃗

[i]

i −Ê
(
W⃗ i

))(
W⃗

[i]

i −Ê
(
W⃗ i

))⊤
(5.23b)

Then, the sample mean and standard deviation for the each half-space constraint is

Ê
(
G⃗ikax⃗i(k)

)
= G⃗ika

(
Akx⃗i(0)+C(k)U⃗i+D(k)Ê

(
W⃗ i

))
(5.24a)

Ŝ
(
G⃗ikax⃗i(k)

)
=

√
G⃗ikaD(k)V̂

(
W⃗ i

)
D⊤(k)G⃗⊤

ijk (5.24b)

So,

F̂(x⃗i(k), λika)

= G⃗ika

(
Akx⃗i(0)+C(k)U⃗i+D(k)Ê

(
W⃗ i

))
+ λika

√
G⃗ikaD(k)V̂

(
W⃗ i

)
D⊤(k)G⃗⊤

(5.25)

which is affine, and hence convex, in the control input.

Finally, I note that (5.22b) is not convex over the set λika > 0. Here, I must find
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the values of λika that make the constraint (5.22b) convex. Observe the second partial

derivative of f(λ) with respect to λ is

∂2

∂λ2
f(λ) =

2Ns

(
λ3(N∗

s )
3/2 + 3λ2(N∗

s )
2 − (N∗

s )
2
)(

Nsλ2 +
(
λ+

√
N∗

s

)2)3 (5.26)

Then f(λ) has inflection points where

2√
N∗

s

λ3 + 3λ2 − 1 = 0 (5.27)

The function (5.27) has three real roots with the only positive root being [99]

λ =
√
N∗

s

[
cos

(
1

3
arccos

(
−Ns − 1

N∗
s

))
− 1

2

]
︸ ︷︷ ︸

Θ(Ns)

(5.28)

Further, for Θ(Ns) defined in (5.28), observe that λ > Θ(Ns)⇔ f ′′(λ) > 0 implying that

f(λ) is convex. Hence, the inequalities (5.22) become

F̂(x⃗i(k), λika) ≤ hika (5.29a)

Nik∑
j=1

f(λika) ≤ α (5.29b)

λika ≥ Θ(Ns) (5.29c)

with (5.29a) and (5.29c) iterated over the index j ∈ N[1,Nik].

In practice, it may be simpler to substitute Θ(Ns) with 3−1/2 as 3−1/2 ≥ Θ(Ns) for

all values of Ns. Here, λ ≤ 3−1/2 ⇔ f(λ) ≥ 0.75. In most cases, probabilistic violation

thresholds will not take values this large, and outcomes will not be affected as a result.
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Formally, the final reformulation is written as

G⃗ika

(
Akx⃗i(0) + C(k)U⃗i +D(k)Ê

(
W⃗ i

))
+ λika

√
G⃗ikaD(k)V̂

(
W⃗ i

)
D⊤(k)G⃗⊤

ika ≤ hika

(5.30a)

Nik∑
j=1

(
√

N∗
s + λika)

2

λ2
ikaNs + (

√
N∗

s + λika)2
≤ α

(5.30b)√
N∗

s

[
cos

(
1

3
arccos

(
−Ns − 1

N∗
s

))
− 1

2

]
≤ λika

(5.30c)

Lemma 5.2. The constraint reformulation (5.30) will always be convex in U⃗i and λika.

Proof. Here, (5.30a) is affine and hence convex, in both U⃗i and λika. Further, f(λ) is

convex by the restriction (5.30c). Since, (5.30b) is the sum of convex functions, it too

is convex. Finally, the control authority U is a closed and convex set. Therefore, the

chance constraint reformulation (5.30) will always be convex.

Lemma 5.3. For the controllers U⃗1, . . . , U⃗Nv , if there exists risk allocation variables λika

satisfying (5.30) for constraints in the form of (2.13a), then U⃗1, . . . , U⃗Nv satisfies (2.15d)

almost surely.

Proof. Satisfaction of (5.30a) implies (5.18) holds. Theorem 5.1 upper bounds (5.18).

Boole’s inequality and De Morgan’s law guarantee that if (5.22b) holds then (2.15d) is

satisfied.

I take a moment to discuss Assumption 5.2. From (5.11), I see that (5.30b) is lower

bounded by

Nik

N∗
s

≤
∑N

k=1

∑Nik

i=1f(λika) (5.31)
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In theory, this means the number of samples need to be

Ns ≥
∑N

k=1Nik

α
− 1 (5.32)

such that there may exist a solution that satisfies (5.30b). However, since (5.11) is an

asymptotic bound, more samples will be required to allow for finite values of λika. In

practice, the minimum number of samples needed will be dependent on α, the volume

of the polytopic region, number of hyperplane constraints, and the magnitude of the

variance term.

5.3.3 2-Norm Based Collision Avoidance Constraints

Next, consider the reformulations of the 2-norm constraints (2.13b)-(2.13c). Here, I will

derive the reformulation of (2.13c), but the reformulation of (2.13b) is nearly identical.

Without loss of generality define

z⃗ = S
(
Ak (x⃗i(0)− x⃗j(0)) + C(k)

(
U⃗i − U⃗j

))
(5.33a)

z⃗[i] = SD(k)
(
W⃗

[i]

i − W⃗
[i]

j

)
(5.33b)

to be the non-stochastic and stochastic element of S(x⃗
[i]
i (k)−x⃗

[i]
j (k)), respectively. Then,

I can write the norm as,

∥S(x⃗i(k)− x⃗j(k))∥ = ∥z⃗ + z⃗∥ (5.34)

I start by observing

P

(
Nv−1⋂
i=1

Nv⋂
j=i+1

N⋂
k=1

∥z⃗ + z⃗∥ ≥ r

)
= P

(
Nv−1⋂
i=1

Nv⋂
j=i+1

N⋂
k=1

∥z⃗ + z⃗∥2 ≥ r2

)
(5.35)
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as the norm is non-negative. Thus, I can write the 2-norm constraint as

P

(
Nv−1⋂
i=1

Nv⋂
j=i+1

N⋂
k=1

∥z⃗ + z⃗∥2 ≥ r2

)
≥ 1− γ (5.36)

By taking the complement and applying Boole’s inequality,

P

(
Nv−1⋃
i=1

Nv⋃
j=i+1

N⋃
k=1

∥z⃗ + z⃗∥2 ≤ r2

)
≤

Nv−1∑
i=1

Nv∑
j=i+1

N∑
k=1

P
(
∥z⃗ + z⃗∥2 ≤ r2

)
(5.37)

Using the approach in [25], I introduce risk variables ωika to allocate risk to each of the

individual probabilities

P
(
∥z⃗ + z⃗∥2 ≤ r2

)
≤ ωijk (5.38a)

Nv−1∑
i=1

Nv∑
j=i+1

N∑
k=1

ωijk ≤ γ (5.38b)

ωijk ≥ 0 (5.38c)

In a similar fashion to Section 5.3.2, I add an additional constraint based on the

sample mean and sample tandard deviation of ∥z⃗+ z⃗∥2 to (5.38) such that the constraint

becomes

P
(
∥z⃗ + z⃗∥2 ≤ r2

)
≤ ωijk (5.39a)

Ê
(
∥z⃗ + z⃗∥2

)
− λijkŜ

(
∥z⃗ + z⃗∥2

)
≥ r2 (5.39b)

Nv−1∑
i=1

Nv∑
j=i+1

N∑
k=1

ωijk ≤ γ (5.39c)

ωijk ≥ 0 (5.39d)

λijk ≥ 0 (5.39e)
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For brevity, I denote

Ĝ(x⃗i(k), x⃗j(k), λijk) = Ê
(
∥z⃗ + z⃗∥2

)
− λijkŜ

(
∥z⃗ + z⃗∥2

)
(5.40)

Enforcement of (5.39b) guarantees that

P
(
∥z⃗ + z⃗∥2 ≤ r2

)
≤ P

(
∥z⃗ + z⃗∥2 ≤ Ĝ(x⃗i(k), x⃗j(k), λijk)

)
(5.41)

Then, by Assumptions 5.1-5.3 and Theorem 5.1, I can substitute

ωijk = f(λijk) (5.42)

and determine the value for λijk in terms of ωijk,

λijk =

√
N∗

s (1− ωijk)√
Nsωijk −

√
1− ωijk

(5.43)

so long as λ ≥ 0. Here, ωijk > 0⇔ λijk > 0. Then, I can write (5.39) as

P
(
∥z⃗ + z⃗∥2 ≤ r2

)
≤ ωijk (5.44a)

Ĝ

(
x⃗i(k), x⃗j(k),

√
N∗

s (1− ωijk)√
Nsωijk −

√
1− ωijk

)
≥ r2 (5.44b)

Nv−1∑
i=1

Nv∑
j=i+1

N∑
k=1

ωijk ≤ γ (5.44c)

ωijk ≥ 0 (5.44d)

Since Theorem 5.1 guarantees that satisfaction of (5.44b) also satisfies (5.44a) for any
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value ωijk > 0, (5.44a) is redundant and can be removed. The constraint is then

Ĝ

(
x⃗i(k), x⃗j(k),

√
N∗

s (1− ωijk)√
Nsωijk −

√
1− ωijk

)
≥ r2 (5.45a)

Nv−1∑
i=1

Nv∑
j=i+1

N∑
k=1

ωijk ≤ γ (5.45b)

ωijk ≥ 0 (5.45c)

Next, I show that Ĝ(x⃗i(k), x⃗j(k), λijk) has a difference of convex and closed form in

U⃗i− U⃗j. Observe that the sample mean vector and sample variance-covariance matrix of

z⃗ are

Ê(z⃗) =
1

Ns

Ns∑
[i]=1

z⃗[i] (5.46a)

V̂(z⃗) =
1

Ns

Ns∑
[i]=1

(
z⃗[i]−Ê(z⃗)

)(
z⃗[i]−Ê(z⃗)

)⊤
(5.46b)

(5.46c)

the sample mean and sample variance of z⃗⊤z⃗ are

Ê
(
z⃗⊤z⃗

)
=

1

Ns

Ns∑
[i]=1

z⃗[i]⊤z⃗[i] (5.46d)

V̂
(
z⃗⊤z⃗

)
=

1

Ns

Ns∑
[i]=1

(
z⃗[i]⊤z⃗[i]−Ê

(
z⃗⊤z⃗

))2
(5.46e)

and the sample covariance vector between z⃗ and z⃗⊤z⃗ is

Ĉ
(
z⃗, z⃗⊤z⃗

)
=

1

Ns

Ns∑
[i]=1

(
z⃗[i]−Ê(z⃗)

)(
z⃗[i]⊤⃗z[i]−Ê

(
z⃗⊤⃗z

))
(5.46f)
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Then the sample mean for the 2-norm constraint is

Ê
(
∥z⃗ + z⃗∥2

)
=

1

Ns

Ns∑
[i]=1

∥z⃗ + z⃗[i]∥2 (5.47a)

=

∥∥∥∥∥∥∥∥
 Iq Ê(z⃗)

Ê(z⃗)⊤ Ê
(
z⃗⊤z⃗

)


1
2
z⃗
1


∥∥∥∥∥∥∥∥
2

(5.47b)

and the sample standard deviation for the 2-norm constraint is

Ŝ
(
∥z⃗ + z⃗∥2

)
=

√√√√ 1

Ns

Ns∑
[i]=1

(
∥z⃗ + z⃗[i]∥2−Ê(∥z⃗ + z⃗∥2)

)2
(5.48a)

=

∥∥∥∥∥∥∥∥
 4V̂(z⃗) 2Ĉ

(
z⃗, z⃗⊤z⃗

)
2Ĉ
(
z⃗, z⃗⊤z⃗

)⊤
V̂
(
z⃗⊤z⃗

)


1
2
z⃗
1


∥∥∥∥∥∥∥∥ (5.48b)

Finally, I can write Ĝ
(
x⃗i(k), x⃗j(k),

√
N∗

s (1−ωijk)√
Nsωijk−

√
1−ωijk

)
as

Ĝ

(
x⃗i(k), x⃗j(k),

√
N∗

s (1− ωijk)√
Nsωijk −

√
1− ωijk

)

=

∥∥∥∥∥∥∥∥
 Iq Ê(z⃗)

Ê(z⃗)⊤ Ê
(
z⃗⊤z⃗

)


1
2
z⃗
1


∥∥∥∥∥∥∥∥
2

︸ ︷︷ ︸
Ê(∥z⃗+z⃗∥2)

−
√
N∗

s (1− ωijk)√
Nsωijk −

√
1− ωijk︸ ︷︷ ︸

λijk

∥∥∥∥∥∥∥∥
 4V̂(z⃗) 2Ĉ

(
z⃗, z⃗⊤z⃗

)
2Ĉ
(
z⃗, z⃗⊤z⃗

)⊤
V̂
(
z⃗⊤z⃗

)


1
2
z⃗
1


∥∥∥∥∥∥∥∥︸ ︷︷ ︸

Ŝ(∥z⃗+z⃗∥2)

(5.49)

Both Ê(∥z⃗ + z⃗∥2) and Ŝ(∥z⃗ + z⃗∥2) are convex terms containing the controller U⃗i − U⃗j.

Hence, (5.49) is a difference of convex function per Definition 2.1.

Note that (5.49) is biconvex [91] from the interaction of ωijk and U⃗i − U⃗j in
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λijkŜ(∥z⃗ + z⃗∥2). For known risk allocation values ω̃ijk, the constraint (5.49) becomes,

Ĝ

(
x⃗i(k), x⃗j(k),

√
N∗

s (1− ω̃ijk)√
Nsω̃ijk −

√
1− ω̃ijk

)
≥ r2 (5.50)

Lemma 5.4. The constraint (5.50) is always a difference-of-convex function constraint

in U⃗i for constraints in the form (2.13b) and in U⃗i − U⃗j for constraints in the form

(2.13c).

Proof. Observe that z⃗ is affine in the control input. Then both (5.47b) and (5.48b) are

quadratic functions about a positive semi-definite matrix. Hence, both terms are convex.

Then (5.49) is a difference of convex function per Definition 2.1. As ω̃ijk > 0 and is fixed,

it follows that (5.50) is always a difference-of-convex functions constraint.

Lemma 5.5. If the controller U⃗1, . . . , U⃗Nv , satisfies (5.50) for constraints in the form of

(2.13b)-(2.13c), then U⃗1, . . . , U⃗Nv satisfy (2.15d) almost surely.

Proof. Satisfaction of (5.50) implies (5.41) is satisfied for

λijk =

√
N∗

s (1− ωijk)√
Nsωijk −

√
1− ωijk

(5.51)

Assumption 5.2 guarantees λijk is sufficiently tight. Then Theorem 5.1 guarantees satis-

faction of (2.15d) almost surely.
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5.3.4 Difference of Convex Programming

Combining the results from Sections 5.3.2 and 5.3.3, I obtain a new optimization problem.

minimize
U⃗1,...,U⃗Nv

λika

J
(
X⃗1, . . . , X⃗Nv , U⃗1, . . . , U⃗Nv

)
(5.52a)

subject to U⃗1, . . . , U⃗Nv ∈ UN , (5.52b)

Sample mean and standard deviation (5.52c)

terms defined by (5.24) and (5.47)− (5.48)

Constraints (5.30) and (5.50) (5.52d)

Reformulation 5.1. Under Assumptions 5.1-5.2, solve the stochastic optimization prob-

lem (5.52) with probabilistic violation thresholds α, β, and γ for open loop controllers

U⃗1, . . . , U⃗Nv ∈ UN and optimization variables λika.

Lemma 5.6. Solutions to Reformulation 5.1 are conservative solutions to Problem 1.3.

Proof. Lemmas 5.3 and 5.5 guarantee the probabilistic constraints (2.13) are satisfied

almost surely. Chance constraint bounds provided by Theorem 5.1 are asymptotically

convergent (in Ns) to Cantelli’s inequality. As Cantelli’s inequality is conservative, so

is Theorem 5.1. The sample mean and standard deviation terms in Reformulation 5.1

encompass and replace the dynamics used in Problem 1.3. The cost and input constraints

remain unchanged.

Note that (5.52) is a difference-of-convex functions optimization problem. As in pre-

vious chapters, I employ the convex-concave procedure [64] to solve (5.52). Here, the

first order approximation transforms the difference of convex function constraint (5.50)
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into the convex constraint

√
N∗

s (1− ωijk)√
Nsωijk −

√
1− ωijk

∥∥∥∥∥∥∥∥
 4V̂(z⃗) 2Ĉ

(
z⃗, z⃗⊤z⃗

)
2Ĉ
(
z⃗, z⃗⊤z⃗

)⊤
V̂
(
z⃗⊤z⃗

)


1
2
z⃗
1


∥∥∥∥∥∥∥∥

−


∥∥∥∥∥∥∥∥
 Iq Ê(z⃗)

Ê(z⃗)⊤ Ê
(
z⃗⊤z⃗

)


1
2
z⃗p
1


∥∥∥∥∥∥∥∥
2

+ 2
(
z⃗p + Ê(z⃗)

)
SC(k)

(
(U⃗i−U⃗j)−(U⃗p

i +U⃗p
j )
)

︸ ︷︷ ︸
First order approximation of Ê(∥z⃗+z⃗∥2) based on previous iteration’s solution.

≤ −r2

(5.53)

where the superscript p indicated the value from the previous iteration’s solution. When

using a difference of convex functions optimization problem, Lemma 5.5 guarantees a

feasible but locally optimal solution.

5.4 Results

I demonstrate my method on a multi-satellite rendezvous problem with two different

simulated disturbances that impact the relative satellite dynamics. All computations

were done on a 1.80GHz i7 processor with 16GB of RAM, using MATLAB, CVX [78]

and Gurobi [79]. Polytopic construction and plotting was done with MPT3 [80]. All code

is available at https://github.com/unm-hscl/shawnpriore-sample-bound-mpc.

Consider a scenario in which Nv satellites, called the deputies, are stationed in geosta-

tionary Earth orbit, and tasked to rendezvous with a refueling spacecraft, called the chief.

The satellites are tasked with reaching a new configuration represented by polytopic tar-

get sets. Each deputy must avoid other deputies while navigating to their respective

target sets as shown in Figure 1.1. The relative planar dynamics of each deputy, with

respect to the position of the chief are described by the equations (2.12) with sampling
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time ∆t= 60s.

5.4.1 Gaussian Disturbance

I compare my method against the method in [1], the asymptotic and analytic counter-

part of the method proposed in this work based on Cantelli’s inequality (see Theorem

4.2). This approach is effective for and has been demonstrated on systems which have

target constraints and can be solved via convex optimization. I extend this method to

accommodate 2-norm based collision constraints (as in Section 5.3.3) for the purpose of

comparison with my own approach.

As mentioned in the proof of Lemma 5.6, Theorem 5.1 is asymptotically convergent

in Ns to the Cantelli’s inequality [35] inequality per the central limit theorem [61]. In

this demonstration, I show that Theorem 5.1 does not add significant conservatism in

comparison to Cantelli’s inequality despite using sample statistics over analytic expres-

sions of moments. This can be particularly useful as computing sample statistics requires

little computational overhead and no knowledge of the underlying disturbance.

Experimental Setup

I presume there are three deputies with the initial conditions are given by Table 5.1, the

admissible control set is Ui = [−4, 4]3N ·∆t−1, and time horizon N = 5, corresponding

to 5 minutes of operation. The performance objective is based on fuel consumption.

J(U⃗1, . . . , U⃗3) =
3∑

i=1

U⃗⊤
i U⃗i (5.54)

I presume the disturbance is a zero-mean Gaussian distribution,

W i ∼ N (⃗0, I5 ⊗ blkdiag(10−5 · I3, 10−8 · I3)) (5.55)

Here, I have selected the sample size for the proposed method to be Ns = 5, 000. For
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comparison, I use the expectation and covariance matrix parameters(5.55) to compute a

solution with the method of [1].

The terminal sets Ti(N) are 5 × 5 × 5m boxes centered around desired terminal

locations in x, y coordinates approximately 11m away from the origin, with velocity

bounded in all directions by [−0.25, 0.25]m/s. For collision avoidance, I presume that

the deputies must remain at least r = 10m away from each other and the chief, hence

S =

[
I3 03

]
to extract the positions. Violation thresholds for terminal sets and collision

avoidance are α = β = γ = 0.05, respectively. The chance constraints are defined as

P

(
3⋂

i=1

x⃗i(N) ∈ Ti(N)

)
≥ 1− α (5.56)

P

(
5⋂

k=1

3⋂
i=1

∥Sx⃗i(k)∥ ≥ r

)
≥ 1− β (5.57)

P

(
5⋂

k=1

3⋂
i,j=1

∥S (x⃗i(k)− x⃗j(k))∥ ≥ r

)
≥ 1− γ (5.58)

Here S =

[
I3 03

]
.

As has been established [25, 91], biconvexity associated with having both risk alloca-

tion and control variables can be addressed in an iterative fashion, by alternately solving

for the risk allocation variables, then for the control. However, for my demonstration, to

isolate the impact of Theorem 5.1, I presume a fixed risk allocation. I uniformly allocate

risk such that

P(∥Sxi(k)∥ ≥ r) ≥ 1− β̂ ∀ i, k (5.59)

P(∥S (xi(k)− xj(k))∥ ≥ r) ≥ 1− γ̂ ∀ i, j, k (5.60)

where γ̂ = γ
15 constraints

= .05
15

= 0.003 and similarly β̂ = 0.003. These values remain

constant throughout the iterative solution finding process.

I define the solution convergence thresholds for the convex-concave procedure as both
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Chief Dep 1 Dep 2 Dep 3
Radius (km) 42164.14 0.080 0.085 0.087
Eccentricity 0 0 0 0
Inclination (◦) 10 -2×10−5 0 10−5
RAAN (◦) 0 0 0 0
Arg. of perigee (◦) 0 0 0 0
True anomaly (◦) 90 1.8×10−5 -9×10−6 9×10−6

Table 5.1: Orbital Elements Describing The Initial Orbits Of Each Satellite. Values For
The Deputies Are Relative To The Chief’s Position.

the difference of sequential performance objectives as less than 10−6 and the sum of slack

variables as less than 10−8. Difference of convex programs were limited to 100 iterations.

The first order approximations of the reverse convex constraints were instantiated with

no system input.

Experimental Results

Figure 5.2 shows the resulting trajectories of the two methods and Table 5.2 compares the

time to compute a solution, solution cost, and empirical chance constraint satisfaction

with 104 additional samples disturbances. The two methods preformed near identically.

The only notable difference is that the proposed method resulted in an approximate 2%

increase in solution cost. This is a small increase if I consider the proposed method does

not require full knowledge of the underlying distribution. Here, I have shown that the

proposed method results in only a small deviation for a finite sample size in comparison

to that of its asymptotic and analytic counterpart as in [1].

5.4.2 Disturbance from Gravitational Effects

The CWH equations (2.8) are the result of a Taylor series expansion of the relative

dynamics modeled via the 2-body problem [67]. While the 2-body problem models the

predominant force in satellite motion, it ignores all the lesser forces that effect satellite

motion. Forces such as the J2 effect, solar and lunar third body gravity, and drag can
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Figure 5.2: Comparison of mean trajectories between proposed method (solid line) and
MPC approach using Cantelli’s inequality [1] (dashed line) for CWH dynamics with
Gaussian disturbance. Notice the trajectories are nearly identical.

Metric Proposed MPC with Cantelli’s Ineq. [1]
Solve Time (sec) 6.9472 6.9833
Iterations 8 8
Solution Cost (N2) 0.2020 0.1971
Terminal Set (5.56) 1.0000 1.0000
Avoid the Chief (5.57) 1.0000 1.0000
Avoid Each Other (5.58) 1.0000 1.0000

Table 5.2: Solution Cost, Computation Time, and Empirical Constraint Satisfaction
for CWH Dynamics with Gaussian Disturbance and probabilistic violation thresholds
α = β = γ = 0.05. Constraint Satisfaction is Measured as a Ratio of 104 Monte Carlo
Disturbance Samples that Satisfy the Constraint.
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Chief Dep 1
Radius (km) 42164.14 0.012
Eccentricity 0 0
Inclination (◦) 10 9 ×10−6

RAAN (◦) 0 0
Arg. of perigee (◦) 0 0
True anomaly (◦) 90 -8.1×10−6

Table 5.3: Orbital Elements Describing The Initial Orbits Of The Deputy in Section
5.4.2. Values of The Deputy are Relative To The Chief’s Position.

greatly affect the trajectory of the satellite over a long enough time horizon. In the 2-

body model, these forces must be considered as disturbances despite lacking a standard

distribution form [11, 10]. It is disturbances like these that motivate my approach.

In this demonstration, I use the disturbance term to capture the three largest distur-

bances to satellites at altitudes equivalent to geostationary orbit, the J2 effect, and solar

and lunar third body gravity. I compare the proposed method with the scenario approach

in [4, 5], and the particle control approach in [6]. These methods are commonly used to

address chance constraints with sample data. Note that neither the scenario approach

or the particle control approach can accommodate the 2-norm collision avoidance con-

straint without embedding an arbitrarily chosen polytopic approximation of the collision

avoidance region. To facilitate a fair comparison, I only consider the convex target set

chance constraint so that I need not choose a particular polytopic approximation that

may bias the results.

Experimental Setup

I presume there is one deputy with an initial condition given in Table 5.3, the admissible

control set is Ui = [−0.04, 0.04]3N · ∆t−1, and time horizon N = 5, corresponding to 5

minutes of operation. The performance objective is based on fuel consumption.

J(U⃗1) = U⃗⊤
1 U⃗1 (5.61)
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I choose target sets T1(k) that represent a line-of-sight cone for time steps 1 to N − 1

and a docking position for the terminal time step. The line-of-sight cone for time steps

1 to N − 1 is defined by

Gk =



−1 0 1 0 0 0

−1 1 0 0 0 0

−1 0 −1 0 0 0

−1 −1 0 0 0 0

1 0 0 0 0 0


h⃗k =



0

0

0

0

10


(5.62)

The terminal set is defined by

GN = I6 ⊗

 1

−1

 h⃗N =



2

0

1⃗4

0.5 · 1⃗6


(5.63)

This scenario was previously represented in Figure 4.3. The chance constraint is defined

as

P

(
5⋂

k=1

x⃗1(k) ∈ T1(k)

)
≥ 1− α (5.64)

The violation threshold is chosen to be α = 0.05.

I compare all three methods with the same sample set. Because the scenario approach

has the largest sample size requirement, I will use its sample size for all three methods.

To determine the number of samples needed for the scenario approach, I use the formula

Ns ≥
2

α

(
ln

1

β
+No

)
(5.65)

where β ∈ (0, 1) is the confidence bound and No is the number of optimization variables

[38]. I set β = 10−16 and observe that No = 15, hence, I use Ns = 2, 073 samples.
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To generate my disturbance data, I propagate the chief and the deputy in one time

step increments via both the 2-body equations and the force model:

¨⃗x =
1

m
(FGM + FJ2 + FSun + FMoon) (5.66)

where FGM is the 2-body force, FJ2 is the force created by the J2 gravitational harmonic,

and FSun and FMoon are the third body gravity forces from the Sun and Moon, respec-

tively. For the equations of motion, and the position calculations for the Sun and Moon,

I follow Sections 3.2 and 3.3 of [100]. I do not include them here for brevity. I then

convert the propagated trajectories into the chief’s body fixed local frame and take the

difference as the disturbance. This process was completed for Ns = 2, 073 sample distur-

bances with sun and moon positions calculated with a random and uniformly distributed

time between midnight on November 13th, 2022 and January 12th, 2023. Figure 5.3 plots

a histogram for each element of the Deputy’s disturbance vector at time step 0, w⃗
[i]
1 (0).

As I can see, each of the histograms display very different and non-Gaussian distur-

bances. Each of these distributions would be challenging to characterize with standard

distributions, leading to poor results from modeling-based approaches.

Experimental Results

Figure 5.4 shows the resulting trajectories of the three methods. I see that while the tra-

jectories of the scenario approach and particle control are similar, the proposed method

resulted in a trajectory that is less smooth. The lack of smoothness is an embodiment of

the conservatism present in my approach. Solution statistics and empirical chance con-

straint satisfaction can be found in Table 5.4. I see the solution cost was larger for the

proposed method, as expected. To assess constraint satisfaction, I generated 104 addi-

tional disturbances and empirically tested whether the target set constraint was satisfied.

I expect the proposed method to always empirically satisfy the chance constraint given
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Figure 5.3: Histograms of Ns = 2, 073 sampled disturbances for each element of the
Deputy’s disturbance vector at time step 0, w⃗

[i]
1 (0). Disturbance samples were collected

as the difference of positions between a model propagated with the 2-body model and a
model propagated with (5.66). Notice they all have highly irregular shapes.

Lemma 5.3. However, this guarantee cannot be made for either the scenario approach or

the particle control approach. While in this instance, the scenario approach did satisfy

the chance constraint empirically, the particle control approach did not.

I point out in Table 5.4 the large difference in computation time between the three

methods. The time to solve the solution with the proposed method is two orders of

magnitude faster than both the scenario approach and the particle control approach. Here,

the computational benefits and almost surely guarantees of chance constraint satisfaction

present a strong case to use this method in instances where chance constraint satisfaction

and speed are important.
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Figure 5.4: Comparison of mean trajectories between proposed method (solid line) and
robust control approach (dashed line) for CWH dynamics. Disturbances were sampled
from the difference in the CWH frame between 2-body dynamics and dynamics with
2-body acceleration, J2 gravitational acceleration, and solar and lunar acceleration.

Metric Proposed Scenario Approach [4, 5] Particle Control [6]
Solve Time (sec) 0.3472 15.7706 64.8701
Solution Cost (10−3N2) 6.1954 1.5832 1.5824
Terminal Set (5.64) 1.0000 1.0000 0.2061

Table 5.4: Solution Cost, Computation Time, and Empirical Constraint Satisfaction
for CWH Dynamics with Simulated J2, Sun, and Moon Acceleration Disturbance and
probabilistic violation threshold α = 0.05. Constraint Satisfaction is the Ratio of 104

Additional Simulated Disturbance Samples that Satisfied the Constraint.
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5.5 Summary

I proposed a method based on sample statistics to solve chance constrained stochastic op-

timal control problems with almost surely guarantees of chance constraint satisfaction.

This work focuses on probabilistic requirements for polytopic target sets and 2-norm

based collision avoidance constraints in disturbed LTI systems. I derived a concentra-

tion inequality that allow us to bound tail probabilities of a random variable being a set

number of sample standard deviations away from the sample mean. My approach relies

on a derived theorem to reformulate joint chance constraints into a series of inequalities

that can be readily solved as a difference of convex functions optimization problem. I

demonstrated my method on two multi-satellite rendezvous scenarios. The first scenario

was modeled with disturbance data generated from the J2 gravitational harmonic, and

third body gravity from the Sun and Moon, and compared against the scenario approach

and particle control. The second scenario was modeled with a zero-mean Gaussian dis-

turbance and compared against a model predictive control approach using Cantelli’s

inequality, the analytic analogue of Theorem 5.1. In the two examples, I showed that

this approach is amenable to probabilistic guarantees, is efficient to compute, and may

be a effective alternative to moment based model predictive control methods.
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Chapter 6

Conclusion

This dissertation proposes novel theory to solve chance constrained stochastic opti-

mal control problems with arbitrary disturbances in a computationally efficient man-

ner through exploitation of statistical theory. I developed three frameworks that are

amenable to arbitrary disturbances and solve chance constraints for both target set ac-

quisition and collision avoidance. Each of the proposed methods allows for either almost

surely guarantees or asymptotic guarantees of chance constraint satisfaction. Further,

each method results in a difference of convex reformulation to handle the 2-norm collision

avoidance chance constraint. This allows for us to show the methods proposed are con-

servative, but solutions satisfy Problem 1. Each method was demonstrated on multiple

satellite rendezvous problems.

6.1 Summary of Contributions

I first developed an extension of the quantile-based approaches to accommodate collision

avoidance constraints. I then present a approximation of the quantile function via a Tay-

lor series expansion. The Taylor series approximation is built on the fact that derivatives

of the quantile are functions of the probability density function and its derivatives via

the inverse function theorem. The Taylor series approximation implies chance constraint
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satisfaction can only be guaranteed asymptotically. This method was experimentally

validated through three multi-satellite rendezvous problems involving Gaussian, Cauchy,

and multivariate-t disturbances. These experiments show that the proposed method is

not only computationally efficient but also adaptable to many scenarios.

Second, I develop an extension of existing moment-based methods to accommodate

2-norm collision avoidance constraints. I show that for constrains that are represented by

unimodal random variable and have well defined moments, I can employ the one-sided

Vysochanskij-Petunin inequality to bound the chance constraints probability. The one-

sided Vysochanskij-Petunin inequality reduced the conservatism by at least a factor of

5/9 over existing methods. As this method relies on the one-sided Vysochanskij-Petunin

inequality, chance constraint satisfaction is guaranteed almost surely. This method is ex-

perimentally validated with a multi-satellite rendezvous problem involving an exponential

disturbance and a planning scenario with a single satellite with a Gaussian disturbance.

These experiments show that the proposed method is less conservative than existing

moment-based approaches and is computationally efficient in comparison to existing and

commonly used methods.

Finally, I present a sample-based method that uses sample statistics to reformulate

chance constraints. In this work, I develop a concentration inequality based on the devi-

ation of a random variable from the sample mean. The derived theorem allows for almost

surely guarantees of chance constraint satisfaction despite not needing any information

about the underlying disturbance process. This method is experimentally validated with

two multi-satellite rendezvous problems involving an disturbance generated from J2, and

solar and lunar third body gravity, and a Gaussian disturbance. These experiments

show that the proposed method is both computationally efficient and can handle odd

disturbances that can arise in real world applications.
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6.2 Future Work

This dissertation presents several new methods that analyze chance constrained stochas-

tic optimal control with arbitrary disturbances. I describe a few of the exciting directions

that may be explored next.

• Arbitrary chance constraints : The methods developed in this work are focused

on reformulations for two common chance constraints that arise in multi-vehicle

planning problems a) convex target sets and b) collision avoidance. In practice,

a target set may not be convex, connected, or polytopic. Each of these scenarios

would be a challenge for the methods developed. Extensions of this work to arbi-

trary chance constraints would provide a powerful tool for the stochastic optimal

control community.

• Non-linear systems : The methods developed in this work required systems to be lin-

ear such that we can develop closed form reformulations of the chance constraints.

Each method presented in this work could, in theory, be extended to non-linear

systems. There are non-linear systems, particularly systems with polynomial dy-

namics, that could allow for easy extensions of the methods presented in this work.

• Better concentration inequalities : The methods presented in Chapters 4-5 are based

on either existing or derived concentration inequalities. For certain classes of distri-

bution, such as log-concave or infinitely divisible distributions, there is potential for

new and less conservative concentration inequalities to be developed. This could

allow for moment-based approaches that provide tighter bounds and reduce the

conservatism commonly associated with these methods.

• Methods to bypass Boole’s inequality : Each of the methods presented in this work

use Boole’s inequality to separate joint chance constraints into a series of indi-

vidual chance constraints. Boole’s inequality is conservative by nature and this
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conservatism propagates into solutions. Methods that can compute bounds or val-

ues for joint probabilities can significantly reduce the conservatism of the methods

presented in this work.
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[37] M. B. Saltık, L. Özkan, and S. Weiland, “Moment based model predictive control

for linear systems: Additive perturbations case,” International Journal of Robust

and Nonlinear Control, vol. 32, no. 15, pp. 8252–8279, 2022.

[38] M. C. Campi, S. Garatti, and M. Prandini, “The scenario approach for systems

and control design,” IFAC Proceedings Volumes, vol. 41, no. 2, pp. 381–389, 2008.

17th IFAC World Congress.

[39] N. Kariotoglou, K. Margellos, and J. Lygeros, “On the computational complex-

ity and generalization properties of multi-stage and stage-wise coupled scenario

programs,” Systems & Control Letters, vol. 94, pp. 63–69, 2016.

[40] Y. Yang and C. Sutanto, “Chance-constrained optimization for nonconvex pro-

grams using scenario-based methods,” ISA Trans., vol. 90, pp. 157–168, 2019.

117
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