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by

Ryan Brown
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M.S., Computer Engineering, University of New Mexico, 2023

Abstract

Federated Learning (FL) effectiveness depends, among others, on the quality and

quantity of the training data and process realized at the end computing nodes. In

this paper, we introduce a novel location-based federated learning model, enabled

by a low-cost and fast deployable Reconfigurable Intelligent Surfaces (RIS) - based

approach that allows to accurately determine the distributed computing nodes po-

sitions. Furthermore, in order to train a global model to support different types of

smart city applications, while considering two types of servers, offering a prime and

common service, respectively, under different costs, the proposed location-based FL

model is complemented by an appropriate incentivization mechanism. The latter

is based on the theory of Colonel Blotto games and aims at designing the optimal

rewards that should be provided to the computing nodes by the servers, in order the

former to be properly motivated to exploit a large amount of their raw data towards

improving the FL training performance. The outcome of this process depends on

the available budget of each server and on each nodes criticality - determined by its

position and available data. The performance evaluation of the proposed location-
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based federated learning model is obtained via modeling and simulation using a real

dataset.

This work has been published in:

Md Sadman Siraj, Md Sahabul Hossain, Ryan Brown, Eirini Eleni

Tsiropoulou, and Symeon Papavassiliou, "Incentives to Learn: A

Location-based Federated Learning Model," in 2022 Global Information

Infrastructure and Networking Symposium (GIIS), page(s) 40-45, 2022

[1].
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Chapter 1

Introduction

Federated Learning (FL) was initially introduced by Google in 2016, as a novel tech-

nique aiming to train a global model without needing to transfer raw and private data

over to a central server. Federated Learning introduces implicit collaboration among

distributed computing nodes, which execute machine learning (ML) algorithms on

local data and report the local model parameters to the central server. The latter

one aggregates the received parameters, updates the global model, reports the up-

dated global parameters to the distributed nodes, and the overall process is repeated

iteratively until the global model converges in terms of an acceptable level of accu-

racy [2]. In this thesis, a location-based Federated Learning model is studied under

scenarios of Global Positioning System (GPS) denial by introducing a novel alterna-

tive positioning, navigation, and timing approach [3]. The precise knowledge of the

distributed nodes’ position can be critical for the accuracy of the Federated Learning

global model, especially in applications where the data quality is location-dependent,

e.g., fire prediction. Also, a novel incentivization mechanism is proposed based on

the network economics theory of Colonel Blotto games in order to provide the suf-

ficient rewards to the distributed nodes to participate in the Federated Learning,

while simultaneously accounting for the accuracy of the global model.
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Chapter 1. Introduction

1.1 Related Work & Motivation

Federated Learning has attracted the interest of the scientific and industrial com-

munities due to its salient characteristics that can support a wide range of real-life

applications, ranging from communications to computing to control-based applica-

tions. In [4], the authors apply Federated Learning among an Unmanned Aerial

Vehicles (UAVs) swarm in order to perform trajectory planning and target recog-

nition. One UAV from the swarm acts as the central server updating the global

model, while the rest of the UAVs act as distributed nodes training locally an ML

model, based on their own collected data and reporting their local parameters to the

leader-UAV. Federated Learning has also been used to predict the energy demand

for electric vehicle networks. In [5], an energy demand Federated Learning-based

prediction model is proposed, where the charging station provider acts as the central

server updating the global energy demand prediction Federated Learning model, by

collecting the updated local parameters from the distributed charging stations. Fed-

erated Learning has also been used in wireless communications to optimize the beam

reflection on reconfigurable intelligent surfaces (RIS) [6–8]. Specifically, a central

server collects the users’ local parameters and updates the global model in order to

predict the RIS elements’ optimal phase shifts to optimize the users’ achievable data

rate. The users’ raw data are their channel state information and their experienced

data rate. Federated Learning has been applied also in blockchain-based applications

to reduce privacy and security concerns related to data sharing. In [9], a bank acts

as the central server receiving local parameters from several enterprises interacting

with customers in order to recommend financial products to them, while respecting

and preserving the customers’ privacy-sensitive information.

While the benefits of ML algorithms are becoming widely recognized, the idea

of centralizing streams of sensitive data and providing this data to tech companies

and/or governments has proven to be very contentious and unpopular. Furthermore,
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Chapter 1. Introduction

even if all participants are trustworthy, nefarious actors could be monitoring com-

munication links or even modifying the model parameters. So even when only the

model parameters are being transmitted for Federated Learning and not the sensitive

data, encryption is often used to provide additional privacy protection. The authors

in [10] discuss using homomorphic encryption-based algorithm when exchanging data

between each Federated Learning participant and the central server. Specifically, the

authors proposed a privacy-preserving federated learning algorithm that allowed each

user contributing to the global model with their own private key as opposed to [11,12]

where users shared the same private key making them vulnerable to insider attacks.

There are a variety of possible applications of Federated Learning in the medical

field where HIPAA privacy concerns could preclude the transmission and sharing of

patient data; but where machine learning could be utilized to reduce medical diagnos-

tic costs and improve accuracy [13–16]. For example images from X-rays, CT scans,

or other radiography could be characterized by Federated Learning algorithms to

automatically diagnose broken bones, tumors, coronary artery disease, etc. Another

medical application with obvious privacy concerns is drug detection.

It should be noted that Federated Learning is vulnerable to a variety of attacks

that can impact model performance and accuracy. One such attack is known as

the Data-Poisoning attack. In this attack, one of the participants tampers with the

model by creating poor-quality data for training that model which will generate bad

parameters. This type of attack can result in high incidence of misclassification. A

variant of this attack uses multiple adversarial nodes to boost the effectiveness of

this technique [17].

Model Poisoning is another attack which can be more effective than Data Poi-

soning. In Model Poisoning attacks the adversary modifies or corrupts the updated

model which is distributed to all participating nodes. The authors in [18–20] discuss

how this is a complicated issue to resolve while also preserving privacy of contribut-
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Chapter 1. Introduction

ing nodes. In certain applications, the users contributing to the global federated

learning model report their local model anonymously making it possible for a mali-

cious contributor to add false models to poison the global. The solution they found

included a privacy-preserving gradient to exclude models with low similarity to the

global.

Another type of attack that Federated Learning can be subject to is called a

Free-Riding Attack. As it sounds, in this attack a node attempts to preserve it’s own

resources by not participating in the learning process but still benefiting by leeching

off the work of the other nodes. In [21–23] they assume the reward for any user

contributing to the global model is the accuracy of the global model, in their model

of only selfish users the likelihood of free-riding as the number of users increases

becomes almost guaranteed.

In many practical Federated Learning use cases, data available at each node can

have varying values to the overall accuracy and convergence of the model [24]. So

an optimal subset of the nodes might be utilized instead of data from all available

nodes. It has been suggested that this optimal subset can be determined utilizing

an approach known as Federated Node Selection with Entropy (FedNSE).

Complementary to the developed Federated Learning models that have been de-

veloped in the existing literature, the multi-access edge computing technology can

support the computing needs of the system and the end-users. In [25], a novel data

offloading decision-making framework is proposed, where users have the option to

partially offload their data to a complex Multi-access Edge Computing (MEC) en-

vironment, consisting of both ground and UAV-mounted MEC servers. Also, the

authors in [26] bring artificial intelligence into the UAVs data offloading process in a

multi-server Mobile Edge Computing environment, by adopting principles and con-

cepts from game theory and reinforcement learning. Focusing on the profit perspec-

tive of the edge computing functionalities, a usage-based pricing policy for allowing
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Chapter 1. Introduction

the exploitation of the servers computing resources is proposed in [27]. An alter-

native data offloading framework is discussed in [28] in order to support the energy

and time-efficient video processing in surveillance systems based on game theory in

satisfaction form. The aspects of Serverless Computing (SC) functions are examined

in [29]. Specifically, a flexible resource-sharing paradigm is introduced, to enable the

allocation of users’ computing tasks in a social cloud computing system offering both

Virtual Machines (VMs) and Serverless Computing (SC) functions.

The problem of incentivizing the distributed computing nodes to participate in

the Federated Learning process becomes even more challenging, as compared to

implementing the training process itself, given that the limited participation of the

nodes can deeply impact the training performance. A Stackelberg game is proposed

in [30] among the central server (leader) and the distributed nodes (followers) in order

to determine the optimal incentives provided by the server and the corresponding

computing effort invested by the nodes to train the local ML models. A similar

approach is introduced in [31] considering a crowdsourcing platform as the computing

nodes, while tackling the problem of communication efficiency during the exchange

of local and global model parameters among the participating actors. Similarly,

focusing on Federated Learning-based crowdsourcing applications, the authors in [32]

aim at identifying fake crowdsourcing tasks to minimize the prediction loss.

The Colonel Blotto game model [33] a commonly adopted game theory frame-

work in problems involving competitive resource allocation. The model involves two

players battling over various nodes using their own allocated resources and for each

battlefield the player who dedicates the most resources wins the node in a winner

take all fashion. The Colonel Blotto game is used in various applications including

political and financial competition, cyber physical systems, communication systems,

etc. and is valuable being applied alongside a Federated Learning training tech-

nique. Federated learning involves collaborating nodes and in real life applications
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Chapter 1. Introduction

often the nodes need incentives to forfeit a portion of their resources to contribute

to the overall global model. The Colonel Blotto game is applied in [34] where they

develop a Network Formation game that considers two players with different resource

budgets bidding on the edges between various nodes to create a network layer. This

paper applies the game very similarly along with federated learning involving two

competing servers that bid over local models from various nodes to add to their

own global federated learning model. Alternatively Colonel Blotto as used in [35,36]

works for modeling security scenarios where the two players are defined as attacker

and defender and the nodes they bid over are represented by data/servers that need

protecting.

Despite the novel advances in the Federated Learning field, the problem of de-

termining the computing nodes’ position and the impact of not accurately knowing

the nodes’ position in the Federated Learning training performance has not been yet

properly studied and quantified. This problem becomes even more challenging when

it is combined with the problem of determining the optimal rewards provided by the

central server to the distributed computing nodes in order not only to locally train

an ML model, but also to incentivize them to exploit their available data [24].

Over the last few years the need to be able to operate in GPS denied environ-

ments has become increasingly important because of an increase in jamming and

spoofing incidents [37–40]. Also, certain geographical locations (e.g., urban canyons,

the interior of buildings) have inherently poor GPS coverage so it can be undesirable

to design systems dependent on GPS availability for full functionality. Signals of

opportunity (SOPs) have been discussed as a substitute for GPS or to supplement

locational determination in environments with degraded GPS coverage. SOPs are

ambient radio signals that are not intended for navigation or timing purposes, such

as AM/FM radio, WiFi, cellular, digital television, and low Earth orbit (LEO) satel-

lite signals. Techniques utilizing SOPs to provide Precision Navigation and Timing
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Chapter 1. Introduction

(PNT) in GPS-denied environments are discussed in [41].

Fire detection has conventionally used various heat sensors in order to detect

nearby fires but because of increased availability and on board processing power in

cameras there has been an increase in image fire detection research. Using image

fire detection has the advantage over traditional fire detection methods by not re-

quiring human interaction to confirm the existence of a fire. There already exists

a number of methods developed for various image classification using Convolutional

Neural Networks that have been applied similarly to fire detection. Convolutional

Neural Networks rely on assigning weight to aspects of an image and in order to

classify without overfitting. The authors in [42] use a modified image edge detection

algorithm aimed at accurately and timely detecting flame edges. The algorithm is

modified by first adjusting the image contrast in terms of gray level, smoothing the

image to eliminate any noise, and then removing any unrelated edges allowing them

to successfully track and recognize fire edges. While [43] proposes a fire detection

system that limits the processing constraints for each node while still being able to

detect a fire within a reasonable amount of time.

1.2 Contributions & Outline

In this thesis, we introduce a novel location-based federated learning model, enabled

by a low-cost and fast deployable Reconfigurable Intelligent Surfaces (RIS) - based

approach that allows to accurately determine the distributed computing nodes’ po-

sitions. The nodes’ position is of paramount importance regarding the raw data that

are available to them in order to locally train the ML models, and can deeply impact

several types of Federated Learning-based applications, such as public safety, and

surveillance. For example, in a fire safety application, where the Federated Learning

model aims at predicting a fire event, the accurate calculation of the participating

7



Chapter 1. Introduction

nodes’ positions in specific critical areas, e.g., natural gas infrastructure, hospitals,

etc., becomes of high importance as the raw data of those nodes become more im-

pactful in the training of the global model. The nodes’ positioning identification

becomes even more challenging in cases of GPS-denial, which are common in indoor

environments or due to jamming and spoofing of the satellite signals.

The proposed location-based Federated Learning model is further improved by

designing the optimal rewards that should be provided to the computing nodes by

the central servers, to properly motivate them to exploit a large amount of their raw

data towards improving the Federated Learning training performance. To achieve

this goal, the theory of Colonel Blotto games is adopted enabling the calculation of

the optimal rewards for the servers that aim to train an Federated Learning model.

The proposed game-theoretic model jointly incentivizes the computing nodes to learn,

i.e., participate in the Federated Learning process, and maximizes the servers’ benefit

by optimally allocating rewards to the nodes.

The remainder of the thesis is as follows. The system model is presented in

Section 2. Section 3 introduces the proposed location-based Federated Learning

model, while Section 4 describes the novel incentivization mechanism based on the

Colonel Blotto games. A detailed set of numerical results is presented in Section 5

based on a real dataset. Section 6 concludes the thesis.
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Chapter 2

System Model

We consider a smart city scenario, where a set of distributed computing nodes

N = {1, . . . , n, . . . , |N |}, such as surveillance cameras, users’ smartphones, Inter-

net of Things (IoT) nodes, etc., can participate in an FL process to support differ-

ent applications, such as fire prediction, traffic planning, etc. Two types of central

servers are assumed to exist in the smart city supporting and delivering the same

application/service, one offering however a prime service (P ) with higher accuracy

and another one offering a common service (C) with lower accuracy, under different

costs. The set of the servers is denoted as S = {P,C}. Each server s ∈ S has a total

budget Bs to allocate to the computing nodes at each iteration i of the FL process in

order to incentivize them to participate in the process, and accordingly invest their

computing resources. In the rest of the analysis, the notation of the ith FL iteration

is omitted for notation convenience. Let us denote as bs = [bs1, . . . , b
s
|N |] the server’s

s budget allocation to the |N | nodes, with
|N |∑
n=1

bsn = Bs.

The smart city is virtually divided into areas of interest, where G =

{1, . . . , g, . . . , |G|} denotes their set. The virtual center of each area has coordi-

nates Lg = (xg, yg, zg) and a node belongs to an area based on the minimum distance

9



Chapter 2. System Model

criterion ng = argmin
g∈G

(||Lg−Ln||), where Ln = (xn, yn, zn) denotes the node’s coordi-

nates. Thus, each node is characterized by a different importance factor Cg,n ∈ [0, 1],

which in turn represents the importance of the raw data collected from that area.

For example, in a fire prediction application, the criticality of a node residing in an

area with a natural gas infrastructure is higher compared to a node belonging to a

residential area. By combining the node’s importance factor Cg,n and the amount of

raw data Dn that the node collects from the area that it resides, we define the node’s

criticality qn = Cg,nDn∑
∀n∈N Cg,nDn

, qn ∈ [0, 1], which essentially represents the node’s po-

tential in contributing to the FL process and accurately training the global models.

This information, i.e., Cg,nDn, can be "advertised" by the computing nodes to the

servers to attract a higher reward, i.e., allocated budget.

Each server s experiences a utility that captures its benefit from collecting the

local parameters from the computing nodes by investing its rewards at each iteration

of the FL process, and is defined as follows:

U s(bs,b−s, κ) =

|N |∑
n=1

qn
π

arctan [κ(bsn − b−s
n )] +

qn
2

(2.1)

where bs = [bs1, . . . , b
s
|N |],b

−s = [b−s
1 , . . . , b−s

|N |], and κ ∈ R+ denotes the elasticity

factor capturing the fairness in terms of the received utility from the servers. Specif-

ically, small values of κ support a fairness balance among the servers in terms of

enjoying some level of utility even if they invested a small amount of rewards (com-

pared to the other server), while still allowing for provisioning of higher utility to

the server that invested more rewards. Also, the utility of the other type of server

is derived as U−s(bs,b−s, κ) = 1−U s(bs,b−s, κ), given that the total importance of

the nodes is finite, i.e.,
|N |∑
n=1

qn = 1 (constant-sum game).

Each node has a total amount of Dn raw data, where a portion Dtr.
n is used

for training the local model and the rest amount of data Dtest
n is used to test its

10



Chapter 2. System Model

accuracy, with Dtr.
n + Dtest

n = Dn. The computing nodes are incentivized to train

a part Us∑
∀s∈S UsD

tr.
n of their available data based on the announced utility levels by

each server and report their local parameters W
s(i)
n to each corresponding server s

to update its global FL model. Also, As
n denotes the accuracy of the reported local

parameters, as determined by the servers via their own testing dataset.

11



Chapter 3

A Location-based Federated

Learning Model

In this section, a novel location-based federated learning model is introduced to

account for the importance of the input local parameters to the training of the

global model. At the ith iteration of the FL process, the nodes report the outcome of

the local training W
s(i)
n to the servers P,C to update the global model. Each server

performs the aggregation of the received local parameters Wi+1
s = 1

|N |

|N |∑
n=1

Cg,n ·Ws(i)
n ,

where Cg,n ∈ [0, 1] denotes the importance of node n based on the area g that the

node resides, as explained earlier. The updated global models are broadcasted to

the computing nodes in order to be used in the training round of their local model.

It is highlighted that our goal is to improve the training outcome of the FL process

by accounting for the node’s importance level depending on the area that it resides,

which is assumed to directly correlate with the quality of the raw data available to

the computing nodes.

In order for the proposed location-based FL model to achieve an accurate train-

ing outcome, the nodes’ location should be accurately determined in order to be

12



Chapter 3. A Location-based Federated Learning Model

categorized in the corresponding areas of interest and derive their raw data impor-

tance factor Cg,n, as described above. However, the nodes’ position (xn, yn, zn) is

often unknown due to GPS-denial cases, which can be an outcome of several events,

such as interference, spoofing, jamming of the satellite signals, or cases of indoor

environments.

Several alternative positioning, navigation and timing (PNT) techniques have

been introduced in the recent literature, such as passive wide area multilateration,

distance measuring equipment, pseudolites, and local systems [44]. However, those

techniques suffer by high infrastructure cost, multi-path effects, and clocks’ synchro-

nization among the node and the ground infrastructure that transmits at least four

signals in order to perform the nodes’ positioning. Four singals are needed in or-

der to perform the multilateration technique and determine the node’s coordinates

(xn, yn, zn), as well as the clock bias ∆t among the node and the ground base stations

(BS).

In this thesis, we adopt the low-cost and fast deployable technology of Reconfig-

urable Intelligent Surfaces (RIS) in order to accurately perform the nodes’ position-

ing. RIS can be easily and fast deployed in every surface (static or mobile) and act as

a passive reflector of the incoming beams by appropriately constructing the reflecting

beam via tuning the phase shifts of the RIS elements [45,46]. This property is adopted

to design a reinforcement learning (RL) based PNT solution. Specifically, in a smart

city scenario, a plethora of RISs is expected to be developed to support the 6G com-

munications. A node with unknown coordinates can measure the four pseudoranges

from the signal transmitted by a BS and the signals reflected on three RISs, as follows:

rBS,n = |rn−rBS|−∆t·c, rBS,Ri,n = 1BS,Ri
(rRi

−rBS)+1Ri
(rn−rRi

)−∆t·c, where c de-

notes the speed of light, rn = (xn, yn, zn), rBS = (xBS, yBS, zBS), rRi
= (xRi

, yRi
, zRi

)

with Ri(i = 1, 2, 3) denoting a selected set of three RISs by the node to perform its lo-

calization. Based on those four measured pseudoranges, the node can determine the

13



Chapter 3. A Location-based Federated Learning Model

unknown variables xn, yn, zn,∆t by implementing the Iterative Least Square (ILS)

algorithm, as described below:

Step 1: The four pseudorange equations are set equal to zero, and the functions

g1− g4 are derived. We denote as x(k) = (xk
n, y

k
n, z

k
n,∆t(k)) the vector of the unknown

variables.

Step 2: Get the Jacobian (Eq.3.1) and Residual matrices (Eq.3.2).

J (k) =


∂g1(x(k))

∂xn

∂g1(x(k))
∂yn

∂g1(x(k))
∂zn

∂g1(x(k))
∂∆t

∂g2(x(k))
∂xn

∂g2(x(k))
∂yn

∂g2(x(k))
∂zn

∂g2(x(k))
∂∆t

∂g3(x(k))
∂xn

∂g3(x(k))
∂yn

∂g3(x(k))
∂zn

∂g3(x(k))
∂∆t

∂g4(x(k))
∂xn

∂g4(x(k))
∂yn

∂g4(x(k))
∂zn

∂g4(x(k))
∂∆t

 (3.1)

R(k) =


g1(x

(k))

g2(x
(k))

g3(x
(k))

g4(x
(k))

 (3.2)

Step 3: Determine the least squares problem solution (∆xn,∆yn,∆zn,∆(∆t)) =

(J (k)T · J (k))−1 · J (k)T · R(k) and derive the next best estimate x(k+1) = (x
(k)
n +

∆xn, y
(k)
n +∆yn, z

(k)
n +∆zn,∆t(k) +∆(∆t)).

The above steps are repeated iteratively until the difference among two sequential

iterations is sufficiently small. The ILS algorithm determines the node’s position

and its accuracy is evaluated based on the geometric dilution of precision parameter

GDOP =
√∑

∀i G(i, i), G = (J (k)T · J (k))−1. The lower is the GDOP value, the

more accurately the node’s position has been determined. The lowest value reported

in existing literature is GDOP = 1.5811 [47].

It is evident that the accuracy of the nodes’ position depends on the selection

of the RISs in order to measure the corresponding pseudoranges from the received
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Chapter 3. A Location-based Federated Learning Model

signals. In this thesis, we introduce a low complexity reinforcement learning (RL)

algorithm to enable the nodes, which act as learning agents, to appropriately select

three RISs from the plethora of RISs available in the surrounding environment in

order to determine their position [48]. We denote as RIS the set of the available

RISs in the examined area, and αn = {Ri, Rj, Rl}, i ̸= j ̸= l, Ri, Rj, Rl ∈ RIS

denotes the node’s action of selecting a subset of RISs. The Linear Reward Inaction

(LRI) algorithm is adopted to enable the nodes to learn the most beneficial choice of

RISs. The probability of selecting the same (Eq.3.3a) or a different action (Eq.3.3b)

is derived based on the following probability updating rules [49,50]:

Pr(α
(ite+1)
n ) = Pr(α

(ite)
n ) + β · r(α(ite)

n ) · (1− Pr(α
(ite)
n )),

if α(ite+1)
n = α(ite)

n (3.3a)

Pr(α
(ite+1)
n ) = Pr(α

(ite)
n )− β · r(α(ite)

n ) · Pr(α
(ite)
n ),

if α(ite+1)
n ̸= α(ite)

n (3.3b)

where β ∈ [0, 1] denotes the learning rate, r(α(ite)
n ) = 1.5811

GDOP (α
(ite)
n )

denotes the learning

reward from selecting a strategy α
(ite)
n , and ite denotes the iteration of the LRI

algorithm. The LRI algorithm is executed iteratively until the probability of selecting

one strategy is close to 1, and it is initiated with Pr|ite=0 =
1

|RIS| [51].
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Chapter 4

Incentives to Learn: A Generalized

Colonel Blotto Game

In this section, we introduce a novel incentivization mechanism based on the theory

of Colonel Blotto games to enable the servers to determine the optimal rewards bs∗ =

[bs∗1 , . . . , bs∗|N |], ∀s ∈ S that should be provided to the nodes in order to incentivize

them to process a large amount of their raw data at each iteration i of the FL process.

Each node receives a total reward b∗n =
|S|∑
s=1

bs∗n and is incentivized to train part of

its data Us∑
∀s∈S UsD

tr.
n at the iteration i of the FL process by investing its personal

computing resources.

The servers compete among each other to provide appropriate rewards to the

nodes in order to ultimately incentivize more the nodes to process their data and

contribute to the accuracy improvement of the global FL model of each server. As

described in Section 2, each server has a total budget Bs, ∀s ∈ S, that should be

sparingly allocated to the nodes, i.e., bs∗ = [bs∗1 , . . . , bs∗|N |], ∀s ∈ S, with
|N |∑
n=1

bsn = Bs.

Based on the announced utility of the servers, each node trains the local ML model

on Us∑
∀s∈S UsD

tr.
n amount of data, reports its corresponding local parameters W

s(i)
n to
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Chapter 4. Incentives to Learn: A Generalized Colonel Blotto Game

each server s. Each server updates its own global model and experiences an accuracy

level As
n.

The theory of Colonel Blotto (CB) games is adopted to determine the optimal

rewards at each iteration i of the FL process, while considering the servers’ available

budget Bs, ∀s ∈ S [52]. The traditional CB games consider two types of competi-

tors, who complete among each other over a set of finite battlefields by investing

their available resources. The one that invests more resources into a battlefield wins

and enjoys the battlefield’s value as a benefit, while the one that invests less re-

sources experiences zero benefit, even if it invested its resources. The traditional

CB model has been extended into the Generalized Colonel Blotto (GCB) model,

where the competitor that loses the battlefield still enjoys a level of benefits given

that invested its resources. Under the GCB model, the competitors’ utility is cap-

tured by a strictly increasing sigmoidal function with respect to the difference of the

competitors’ invested resources [53].

By adopting the GCB model in our proposed incentivization model, the servers

act as the competitors and the computing nodes are equivalent to the battlefields.

As defined in Section 2, each node is characterized by its criticality,

qn =
Cg,nDn∑

∀n∈N Cg,nDn

, qn ∈ [0, 1]

which is considered as equivalent to the value of the battlefield. We define the

GCB game at each iteration i of the FL process as

G = {S, {Bs}∀s∈S, {Bs}∀s∈S, N, {qn}∀n∈N , {U s}∀s∈S}

where S = {P,C} is the set of servers, Bs = {bs|
|N |∑
n=1

bsn ≤ Bs, bsn ≥ 0} is the

feasible strategy space of server s ∈ S, Bs is the server’s available budget in the ith

iteration of the FL process in order to provide rewards to the nodes, N is the set of

17
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computing nodes, qn is the criticality level of node n, and U s is the server’s utility

function (Eq. 2.1). Each server aims at selfishly optimizing its utility in order to

train its FL model, thus, the corresponding minimax problem is formulated.

min
b−s∈B−s

max
bs∈Bs

U s(bs,b−s, κ) =

|N |∑
n=1

qn
π

arctan [κ(bsn − b−s
n )] +

qn
2

(4.1)

Towards solving the above optimization problem, our goal is to determine a Pure

Nash Equilibrium (PNE) that will enable us to derive a stable and optimal allocation

of the servers’ rewards to the computing nodes.

Theorem 1. The GCB game G = {S, {Bs}∀s∈S, {Bs}∀s∈S, N, {qn}∀n∈N , {U s}∀s∈S}

has at least one PNE bC∗ = [bC∗
1 , . . . , bC∗

|N |] and bP∗ = bC∗ + [z∗1 , . . . , z
∗
|N |], where

bC∗ ∈ BC and z∗|N | is the positive solution of z|N |+
|N |−1∑
n=1

√
1

κ2q|N|
κ2z2|N |qn + qn − q|N | =

BP − BC for BP > BC and z∗n =
√

(z∗|N |)
2 qn
qN

+
qn−q|N|
q|N|κ2 , ∀n ∈ N\{|N |} for κ ≥

max{ 1
BP−BC

|N |−1√
q|N|(2|N |−1)

, 1
BP−BC

|N |−1∑
n=1

√
qn−q|N|
q|N|

}.

Proof: Similar steps can be followed as for Theorem 3 in [53]. Due to space

limitations, the proof is omitted here.

Based on the above analysis, each server can determine the optimal allocated

rewards bs∗, ∀s ∈ S at each iteration i of the FL process in order to optimize its

benefit in terms of accurately training its global model.
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Chapter 5

Numerical Results

In this section, the performance evaluation of the proposed location-based federated

learning model is obtained via modeling and simulation, in order to reveal its ben-

efits and tradeoffs. In particular, Section 5.1 presents the pure operation and the

characteristics of the proposed model, while a comparative evaluation against other

alternative models -in terms of identifying the computing nodes positions - is pro-

vided in Section 5.2. A real dataset of 2400 images containing 802 fire images and

1538 non-fire images has been used throughout the simulation-based evaluation [54].

The proposed framework’s evaluation was conducted in a Dell Tower Desktop with

Intel i7 11700K 3.60GHz processor, 32 GB available RAM, and an NVIDIA GeForce

GTX 1660 Ti with a 6 GB GDDR6 video memory. The computing nodes are training

a local end-to-end deep learning model which takes the fire or non-fire images as input

and provides the class predicted for each input image as the output. The model has

two convolutional layers stacked sequentially with each convolutional layer followed

by a max-pooling layer. The high-level features from the convolutional layers are

flattened into vectors which are then passed on to two fully connected layers. The

first and second convolutional layers have 8 and 16 filters respectively while the first

and second fully connected layers have 10 activation units and 1 activation unit re-

19



Chapter 5. Numerical Results

spectively. The model uses the Adam optimizer and loss function based on the binary

cross entropy between the actual and predicted classes [43]. In the rest of the analysis,

I = 20 FL training iterations are examined, while considering the following param-

eters: |N | = 5, BC = 800, BP = 1000, |G| = 5, Dn ∈ [96, 203, 309, 444, 642], κ = 10,

c = 299792458 m/s, |RIS| = 10, β = 0.01, Cg = [0.0625, 0.125, 0.25, 0.5, 1.0], unless

otherwise explicitly stated.

5.1 Pure Operation

Fig. 5.1a - Fig. 5.1d show the accuracy of the server P , the accuracy of the server

C, the node’s criticality for each computing node within the examined system, and

the global accuracy achieved by each server, as a function of the FL iterations,

respectively. Moreover, Fig. 5.2a - Fig. 5.2c demonstrate, for every server (P and

C) separately, the average percentage of processed data by each node, the average

received rewards by each node, and the average server’s utility over the total number

of FL iterations, as a function of the nodes’ ID.

The results reveal that the nodes of higher criticality (Fig. 5.1c) contribute to

a higher achieved accuracy for both servers P (Fig. 5.1a) and C (Fig. 5.1b), and

thus, the servers provide them with a higher amount of rewards (Fig. 5.2b) in

order to further incentivize them to contribute more data to the FL process and

exploit their local computing resources to better train the local ML model. It should

be highlighted that the nodes’ criticality is not constant over all the FL iterations

(Fig. 5.1c), given the accuracy of the proposed Iterative Least Square algorithm that

determines the nodes’ position, as described in Section 3. Furthermore, it is observed

that the server offering prime service (i.e., server P ), which is characterized by higher

budget BP , results in providing a larger amount of rewards to the computing nodes

(Fig. 5.2b) in order to incentivize them to participate in the FL process. In addition,

20



Chapter 5. Numerical Results

1 5 10 15 20
FL Iterations

50

60

70

80
Se

rv
er
 P
's
 A
cc
ur
ac
y 
(%

)
(a)

Node 1
Node 2
Node 3
Node 4
Node 5

1 5 10 15 20
FL Iterations

50

60

70

Se
rv
er
 C
's
 A
cc
ur
ac
y 
(%

)

(b)

Node 1
Node 2
Node 3
Node 4
Node 5

1 5 10 15 20
FL Iterations

0.0

0.2

0.4

0.6

N
od

e'
s 
Cr

it
ic
al
it
y (c)

Node 1
Node 2
Node 3
Node 4
Node 5

1 5 10 15 20
FL Iterations

60

70

80

G
lo
ba

l A
cc
ur
ac
y 
(%

) (d)

Server P
Server C

Figure 5.1: Pure operation of the proposed location-based federated learning frame-
work: (a) Accuracy of Server P , (b) Accuracy of Server C, (c) Node’s Criticality,
and (d) Global Accuracy of FL models as a function of the FL iterations.

the server with a higher available budget aims at incentivizing with higher rewards

the nodes with higher criticality regarding their contribution in the improvement of

the accuracy of the server’s global FL model. The latter observation concludes to

a higher portion of data being processed by the more critical nodes for the server

that provided a higher reward (Fig. 5.2a). Therefore, the server with higher budget

receives higher utility from the more critical nodes, while the server with the lower

budget receives a complementary utility (Fig. 5.2c), due to the constant-sum game

property, as explained in Section 2.
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Figure 5.2: Pure operation of the proposed location-based federated learning frame-
work: (a) Average Percentage of Processed Data, (b) Average Rewards, and (c)
Average Servers’ Utility as a function of the computing nodes’ ID.

5.2 Comparative Evaluation

In this section, a detailed comparative evaluation analysis is presented considering

four different scenarios regarding the nodes’ positioning characteristics, and corre-

sponding knowledge from the servers’ point of view. Specifically, the following sce-

narios are examined: (i) Scenario 1: the servers have perfect knowledge of the nodes’

position, (ii) Scenario 2: the nodes’ position is determined based on the proposed

alternative positioning, navigation, and timing solution presented in this thesis (Sec-

tion 3), (iii) Scenario 3: the servers have a noisy estimate of the nodes’ position,
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Figure 5.3: Comparative study: (a) Global Accuracy of Server P as a function of the
FL iterations, (b) Nodes’ Average Total Rewards, and (c) Nodes’ Average Percentage
of Processed Data.

where the noise is introduced in such a way that a node has equal probability to

be erroneously detected at the adjacent regions, and (iv) Scenario 4: the system

experiences a GPS denial, and the nodes’ position is unknown to the servers. It

is highlighted that based on the nodes’ position and the corresponding knowledge

from the servers’ side, the servers can determine the nodes’ criticality qn in terms of

contributing in the FL process.

Fig. 5.3a - Fig. 5.3c illustrate the global accuracy of the server P as a function of

the FL iterations, the average total rewards, and the average percentage of processed

data as a function of the nodes’ ID, respectively, considering the four comparative
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scenarios. The results reveal that the proposed alternative positioning, navigation,

and timing (PNT) solution, introduced in this thesis, achieves to accurately deter-

mine the nodes’ position, thus, resulting in a server’s global accuracy of the FL

model very close to the one achieved under the scenario of having perfect knowledge

of the nodes’ position, i.e., only 1.87% less (Fig. 5.3a). Furthermore, it is observed

that based on the accurate estimation of the nodes’ position, following the proposed

alternative PNT solution, the servers provide the same rewards to the nodes as in

the (ideal) scenario of assuming perfect knowledge of the nodes’ position (Fig. 5.3b),

thus, equivalently incentivizing the nodes to process the same average percentage

of data (Fig. 5.3c). On the other hand, the scenarios of having a noisy estimation

of the nodes’ position (Scenario 3), and the scenario of experiencing a GPS denial

(Scenario 4) demonstrate the worse accuracy of the global FL model of server P

(Fig. 5.3a). This is due to the fact that the servers do not provide their rewards to

the nodes in a targeted manner (Fig. 5.3b), which in turn results in not efficiently

incentivizing them to process their data (Fig. 5.3c).
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Chapter 6

Conclusion

In this thesis, a novel location-based federated learning model is introduced in order

to train a global model to support different types of smart cities applications, while

considering two types of servers and supporting services, i.e., prime and common.

Initially, an alternative low-cost positioning approach is introduced exploiting the

RIS technology in order to accurately determine the computing nodes’ position, and

derive their importance in the FL process based on their access to raw data. Then, a

novel incentivization mechanism is introduced based on the theory of Colonel Blotto

games, in order to determine the servers’ optimal provided rewards to the computing

nodes and accordingly mobilize them to determine the level of their participation in

the FL process and invest their computing resources to process their data. A detailed

numerical evaluation is presented under different scenarios to reveal the benefits and

tradeoffs of the proposed location-based federated learning model. Part of our current

and future work is the extension of the proposed model in a smart city scenario, where

the nodes are characterized by different mobility patterns, and our goal is to develop

a mobile crowdsourcing location-based federated learning model.
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