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Introductory Note 

This seventh volume of Collected Papers includes 70 papers comprising 974 pages on (theoretic and applied) 
neutrosophics, written between 2013-2021 by the author alone or in collaboration with the following 122 co-authors 
from 22 countries: Mohamed Abdel-Basset, Abdel-Nasser Hussian, C. Alexander, Mumtaz Ali, Yaman Akbulut, 
Amir Abdullah, Amira S. Ashour, Assia Bakali, Kousik Bhattacharya, Kainat Bibi, R. N. Boyd, Ümit Budak, Lulu 
Cai, Cenap Özel, Chang Su Kim, Victor Christianto, Chunlai Du, Chunxin Bo, Rituparna Chutia, Cu Nguyen Giap, 
Dao The Son, Vinayak Devvrat, Arindam Dey, Partha Pratim Dey, Fahad Alsharari, Feng Yongfei, S. Ganesan, 
Shivam Ghildiyal, Bibhas C. Giri, Masooma Raza Hashmi, Ahmed Refaat Hawas, Hoang Viet Long, Le Hoang Son, 
Hongbo Wang, Hongnian Yu, Mihaiela Iliescu, Saeid Jafari, Temitope Gbolahan Jaiyeola, Naeem Jan, R. Jeevitha, 
Jun Ye, Anup Khan, Madad Khan, Salma Khan, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan 
Karabašević, Kifayat Ullah, Kishore Kumar P.K., Sujit Kumar De, Prasun Kumar Nayak, Malayalan Lathamaheswari, 
Luong Thi Hong Lan, Anam Luqman, Luu Quoc Dat, Tahir Mahmood, Hafsa M. Malik, Nivetha Martin, Mai 
Mohamed, Parimala Mani, Mingcong Deng, Mohammed A. Al Shumrani, Mohammad Hamidi, Mohamed Talea, 
Kalyan Mondal, Muhammad Akram, Muhammad Gulistan, Farshid Mofidnakhaei, Muhammad Shoaib, Muhammad 
Riaz, Karthika Muthusamy, Nabeela Ishfaq, Deivanayagampillai Nagarajan, Sumera Naz, Nguyen Dinh Hoa, Nguyen 
Tho Thong, Nguyen Xuan Thao, Noor ul Amin, Dragan Pamučar, Gabrijela Popović, S. Krishna Prabha, Surapati 
Pramanik, Priya R, Qiaoyan Li, Yaser Saber, Said Broumi, Saima Anis, Saleem Abdullah, Ganeshsree Selvachandran, 
Abdulkadir Sengür, Seyed Ahmad Edalatpanah, Shahbaz Ali, Shahzaib Ashraf, Shouzhen Zeng, Shio Gai Quek, 
Shuangwu Zhu, Shumaiza, Sidra Sayed, Sohail Iqbal, Songtao Shao, Sundas Shahzadi, Dragiša Stanujkić, Željko 
Stević, Udhayakumar Ramalingam, Zunaira Rashid, Hossein Rashmanlou, Rajkumar Verma, Luige Vlădăreanu, 
Victor Vlădăreanu, Desmond Jun Yi Tey, Selçuk Topal, Naveed Yaqoob, Yanhui Guo, Yee Fei Gan, Yingcang Ma, 
Young Bae Jun, Yuping Lai, Hafiz Abdul Wahab, Wei Yang, Xiaohong Zhang, Edmundas Kazimieras Zavadskas, 
Lemnaouar Zedam.

Florentin Smarandache’s Collected Papers series: 

Collected Papers, Vol. I
(first edition 1996, second edition 2007) 
Free download: http://fs.unm.edu/CP1.pdf 

Collected Papers, Vol. II
(Chişinău, Moldova, 1997) 
Free download: http://fs.unm.edu/CP2.pdf 

Collected Papers, Vol. III
(Oradea, Romania, 2000) 
Free download: http://fs.unm.edu/CP3.pdf 

Collected Papers, Vol. IV (100 Collected Papers of Sciences) 
Multispace & Multistructure. Neutrosophic Transdisciplinarity
(Hanko, Finland, 2010) 
Free download: http://fs.unm.edu/MultispaceMultistructure.pdf 

Collected Papers, Vol. V: Papers of Mathematics or Applied mathematics 
(Brussels, Belgium, 2014)
Free download: http://fs.unm.edu/CP5.pdf 

Collected Papers, Vol. VI: on Neutrosophic Theory and Applications 
(Neutrosphic Science International Association, 2022)
Free download: http://fs.unm.edu/CP6.pdf 
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Abstract. In this paper we study the concept of intuitionistic neutrosophic set of Bhowmik and Pal. We 
have introduced this concept in soft sets and defined intuitionistic neutrosophic soft set. Some definitions and 
operations have been introduced on intuitionistic neutrosophic soft set. Some properties of this concept have 
been established. 

Keywords: Soft sets, Neutrosophic set,Intuitionistic neutrosophic set, Intuitionistic neutrosophic soft set. 

1. Introduction
In wide varities of real problems like , engineering problems, social, economic, computer science, medical 
science…etc. The data associated are often uncertain or imprecise, all real data are not necessarily crisp, 
precise, and deterministic because of their fuzzy nature. Most of these problem were solved by different 
theories, firstly by fuzzy set theory provided by Lotfi , Zadeh [1] ,Later several researches  present a number 
of results using different direction of fuzzy set such as : interval fuzzy set [13], intuitionistic fuzzy set  by 
Atanassov[2], all these are successful to some extent in dealing with the problems arising due to the 
vagueness present in the real world ,but there are also cases where these theories failed to give satisfactory 
results, possibly  due to indeterminate and  inconsistent information which exist in belif system, then in 1995, 
Smarandache [3] intiated the theory of neutrosophic as new mathematical tool for handling problems 
involving imprecise, indeterminacy,and inconsistent data. Later on  authors like Bhowmik and Pal [7] have 
further studied the intuitionistic  neutrosophic set and presented various properties of it. In 1999 Molodtsov 
[4] introduced the concept of soft set which was completely a new approche for dealing with vagueness and 
uncertainties ,this concept can be seen free from the inadequacy of parameterization tool. After 
Molodtsovs’work, there have been many researches in combining fuzzy set with soft set, which  incorporates 
the beneficial properties of both fuzzy set and soft set techniques ( see [12] [6] [8]). Recently , by the concept 
of neutrosophic set and soft set, first time,  Maji [11] introduced  neutrosophic soft set, established its 
application in decision making, and thus opened a new direction, new path of thinking to engineers, 
mathematicians, computer scientists and many others in various tests. This paper is an attempt to combine 
the concepts: intuitionistic neutrosophic set and soft set together by introducing a new concept called 
intuitionistic neutrosophic sof set, thus we introduce its operations namely equal ,subset, union ,and 
intersection, We also  present an application of intuitionistic neutrosophic soft set in decision making 
problem. 

The organization of this paper is as follow : in section 2, we briefly present some basic definitions and 
preliminary results are given which will be used in the rest of the paper. In section 3, Intuitionistic 
neutrosophic soft set. In section 4 an application of intuitionistic neutrosophic soft set in a decision making 
problem. Conclusions are there in the concluding section 5. 
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consideration with respect to U, usually, parameters are attributes , characteristics, or properties of objects in 
U. We now recall some basic notions of neutrosophic set , intuitionistic neutrosophic set and soft set . 
Definition 2.1 (see[3]). Let U be an universe of discourse  then the neutrosophic set A is an object having 
the form A = {< x: TA(x),I A(x),FA(x) ∈>,x  U}, where the functions T,I,F : U→]−0,1+[  define respectively the 
degree of membership , the degree of indeterminacy, and the degree of non- ∈membership of the element x  
X to the set A with the condition.  

−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+. 
From philosophical point of view, the neutrosophic set takes the value from real standard or non-standard 
subsets of ]−0,1+[.so instead of ]−0,1+[ we need to take the interval [0,1] for 
technical applications, because ]−0,1+[will be difficult to apply in the real applications  such as in scientific 
and engineering problems.  
Definition 2.2 (see [3]). A neutrosophic set A is contained in another neutrosophic set B i.e. A ⊆ B if ∀x ∈ U, TA(x) ≤ TB(x), IA(x) ≤ IB(x), FA(x) ≥ FB(x).  
A complete account of the operations and application of neutrsophic set  can be seen  in [3 ] [10 ].  
Definition 2.3(see[7]).  intuitionistic neutrosophic set 
An element x of  U is called significant with respect to neutrsophic set A of U if the degree  of  truth-
membership or falsity-membership or indeterminancy-membership value, i.e.,TA(x) or FA(x)or IA(x) ≤ 0.5. 
Otherwise, we call it insignificant. Also, for neutrosophic set the truth-membership, indeterminacy-
membership and falsity-membership all can not be significant. We define an intuitionistic neutrosophic set 
by A = {< x: TA(x),I A(x),FA(x) ∈>,x  U},where  
 min { TA( x ), FA( x ) } ≤ 0.5, 
 min { TA( x ) , IA( x ) } ≤ 0.5, 
 min { FA( x ) , IA( x ) } ≤ 0.5, for all x ∈ U, 
with the condition  0  ≤ TA(x) + IA(x) + FA(x) ≤  2. 
As an illustration ,let us consider the following example. 
Example2.4.Assume that the universe of discourse U={x1,x2,x3},where x1  
characterizes the capability, x2 characterizes the trustworthiness and x3 indicates  
the prices of the objects. It may be further assumed that the values of x1, x2 and x3  
are in [0,1] and they are obtained from some questionnaires of some experts. The 
experts may impose their opinion in three components viz. the degree of goodness, 
the degree of indeterminacy and that of poorness to explain the characteristics of 
the objects. Suppose A is an intuitionistic neutrosophic set ( IN S ) of U, such that, 
A = {< x1,0.3,0.5,0.4 >,< x2,0.4,0.2,0.6 >,< x3,0.7,0.3,0.5 >}, where the degree of goodness of 
capability is 0.3, degree of indeterminacy of capability is 0.5 and degree of falsity of capability is 0.4 etc. 

Definition 2.5 (see[4]). Let U be an initial universe set and E be a set of parameters. 
Let P(U) denotes the power set of U. Consider a nonempty set A, A ⊂ E. A pair 
( F, A ) is called a soft set over U, where F is a mapping given by F : A → P(U).  
As an illustration ,let us consider the following example. 
Example 2.6. Suppose that U is the set of houses under consideration, say U = {h1, h2, . . ., h5}. Let E be the 
set of some attributes of such houses, say E = {e1, e2, . . ., e8}, where e1, e2, . . ., e8 stand for the attributes 
“expensive”, “beautiful”, “wooden”, “cheap”, “modern”, and “in bad repair”, respectively.  
In this case, to define a soft set means to point out expensive houses, beautiful houses, and so on. For 
example, the soft set (F, A) that describes the “attractiveness of the houses” in the opinion of a buyer, say 
Thomas, may be defined like this:  
A={e1,e2,e3,e4,e5};  
F(e1) = {h2, h3, h5}, F(e2) = {h2, h4}, F(e3) = {h1}, F(e4) = U, F(e5) = {h3, h5}.  
For more details on the algebra and operations on intuitionistic neutrosophic set and soft set, the reader may 
refer to [ 5,6,8,9,12].  

3. Intuitionistic Neutrosophic Soft Set
In this section ,we will initiate the study on hybrid structure involving both intuitionstic neutrosophic set and 
soft set theory. 

2. Preliminaries
Throughout this paper, let U be a universal set and E be the set of all possible parameters under
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Definition 3.1. Let U be an initial universe set and A ⊂ E  be a set of parameters. Let N( U ) denotes the set 
of all intuitionistic neutrosophic sets of U. The collection (F,A) is termed to be the soft intuitionistic 
neutrosophic set over U, where F is a mapping given by F : A → N(U).  
Remark 3.2. we will denote the intuitionistic neutrosophic soft set defined over an universe by   INSS. 
Let us consider the following example. 
Example 3.3. Let U be the set of blouses under consideration and E is the set of parameters (or qualities). 
Each parameter is a intuitionistic neutrosophic word or sentence involving intuitionistic neutrosophic words. 
Consider E = { Bright, Cheap, Costly, very costly, Colorful, Cotton, Polystyrene, long sleeve , expensive }. 
In this case, to define a intuitionistic neutrosophic soft set means to point out Bright blouses, Cheap blouses, 
Blouses in Cotton and so on. Suppose that, there are five blouses in the universe U given by, U = 
{b1,b2,b3,b4,b5} and the set of parameters A = {e1,e2,e3,e4}, where each  ei  is a specific criterion for blouses: 

e1 stands for ‘Bright’, 
e2 stands for ‘Cheap’, 

   e3 stands for ‘costly’, 
  e4 stands for ‘Colorful’, 

Suppose that, 

F(Bright)={<b1,0.5,0.6,0.3>,<b2,0.4,0.7,0.2>,<b3,0.6,0.2,0.3>,<b4,0.7,0.3,0.2> 
       ,<b5,0.8,0.2,0.3>}. 

F(Cheap)={<b1,0.6,0.3,0.5>,<b2,0.7,0.4,0.3>,<b3,0.8,0.1,0.2>,<b4,0.7,0.1,0.3> 
        ,<b5,0.8,0.3,0.4}.  

F(Costly)={<b1,0.7,0.4,0.3>,<b2,0.6,0.1,0.2>,<b3,0.7,0.2,0.5>,< b4,0.5,0.2,0.6 > 
       ,< b5,0.7,0.3,0.2 >}.  

F(Colorful)={<b1,0.8,0.1,0.4>,<b2,0.4,0.2,0.6>,<b3,0.3,0.6,0.4>,<b4,0.4,0.8,0.5> 
 ,< b5,0.3,0.5,0.7 >}.  

The intuitionistic neutrosophic soft set ( INSS ) ( F, E ) is a parameterized family {F(ei),i = 1,···,10} of all 
intuitionistic neutrosophic sets of U and describes a collection of approximation of an object. The mapping F 
here is ‘blouses (.)’, where dot(.) is to be filled up by a parameter ei ∈ E. Therefore, F(e1) means ‘blouses 
(Bright)’ whose functional-value is the intuitionistic neutrosophic set  
{< b1,0.5,0.6,0.3 >,< b2,0.4,0.7,0.2 >, < b3,0.6,0.2,0.3 >,< b4,0.7,0.3,0.2 >,< b5,0.8,0.2,0.3 >}. 
Thus we can view the intuitionistic neutrosophic soft set ( INSS ) ( F, A ) as a collection of approximation as 
below:  
( F, A ) = { Bright blouses= {< b1,0.5,0.6,0.3 >,< b2,0.4,0.7,0.2 >, < b3,0.6,0.2,0.3 >,< b4,0.7,0.3,0.2 >,< 
b5,0.8,0.2,0.3 >}, Cheap blouses= {< b1,0.6,0.3,0.5 >,< b2,0.7,0.4,0.3 >,< b3,0.8,0.1,0.2 >, < b4,0.7,0.1,0.3 >,< 
b5,0.8,0.3,0.4 >}, costly blouses= {< b1,0.7,0.4,0.3 > ,< b2,0.6,0.1,0.2 >,< b3,0.7,0.2,0.5 >,< b4,0.5,0.2,0.6 >,< 
b5,0.7,0.3,0.2 >}, Colorful blouses= {< b1,0.8,0.1,0.4 >,< b2,0.4,0.2,0.6 >,< b3,0.3,0.6,0.4 >, < 
b4,0.4,0.8,0.5>,< b5,0.3,0.5,0.7 >}}.  
where each approximation has two parts: (i) a predicate p, and (ii) an approximate value-set v ( or simply to 
be called value-set v ).  
For example, for the approximation ‘Bright blouses= {< b1,0.5,0.6,0.3 >, < 
b2,0.4,0.7,0.2 >,<b3,0.6,0.2,0.3>,<b4,0.7,0.3,0.2>,<b5,0.8,0.2,0.3>}’.  
we have (i) the predicate name ‘Bright blouses’, and (ii) the approximate value-set 
is{<b1,0.5,0.6,0.3>,<b2,0.4,0.7,0.2>,<b3,0.6,0.2,0.3>,<b4,0.7,0.3,0.2> ,< b5,0.8,0.2,0.3 >}. Thus, an 
intuitionistic neutrosophic soft set ( F, E ) can be viewed as a collection of approximation like ( F, E ) = {p1 = 
v1,p2 = v2,···,p10 = v10}. In order to store an intuitionistic neutrosophic soft set in a computer, we could 
represent it in the form of a table as shown below ( corresponding to the intuitionistic neutrosophic soft set in 
the above example ). In this table, the entries are cij corresponding to the blouse bi  and the parameter ej, 
where cij = (true-membership value of bi, indeterminacy-membership value of bi, falsity membership value of 
bi) in F(ej). The table 1 represent the intuitionistic neutrosophic soft set ( F, A ) described above. 
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U bright cheap costly colorful 
b1 ( 0.5,0.6, 0.3 ) ( 0.6,0.3, 0.5 ) ( 0.7,0.4, 0.3 ) ( 0.8,0.1, 0.4 ) 
b2 ( 0.4,0.7, 0.2 ) ( 0.7,0.4, 0.3 ) ( 0.6,0.1, 0.2 ) ( 0.4,0.2, 0.6 ) 
b3 ( 0.6,0.2, 0.3 ) ( 0.8,0.1, 0.2 ) ( 0.7,0.2, 0.5 ) ( 0.3,0.6, 0.4 ) 
b4 ( 0.7,0.3, 0.2 ) ( 0.7,0.1, 0.3 ) ( 0.5,0.2, 0.6 ) ( 0.4,0.8, 0.5 ) 
b5 ( 0.8,0.2, 0.3 ) ( 0.8,0.3, 0.4 ) ( 0.7,0.3, 0.2 ) ( 0.3,0.5, 0.7 ) 

Table 1: Tabular form of the INSS ( F, A ). 

Remark 3.4.An intuitionistic neutrosophic soft set is not an intuituionistic neutrosophic set but a 
parametrized family of an intuitionistic neutrosophic subsets. 

Definition 3.5. Containment of two intuitionistic neutrosophic soft sets. 
For two intuitionistic neutrosophic soft sets ( F, A ) and ( G, B ) over the common universe U. We say 
that ( F, A ) is an intuitionistic neutrosophic soft subset of ( G, B ) if and only if 
    (i) A ⊂ B. 
   (ii) F(e) is an intuitionistic neutrosophic subset of G(e).  
        Or TF(e)(x) ≤ TG(e)(x), IF(e)(x) ≤ IG(e)(x), FF(e)(x) ≥ FG(e)(x), ∀e ∈ A, x ∈ U.  
We denote this relationship by ( F, A ) ⊆ ( G, B ). 
( F, A ) is said to be intuitionistic neutrosophic soft super set of ( G, B ) if ( G, B ) is an intuitionistic neutrosophic 
soft subset of ( F, A ). We denote it by ( F, A ) ⊇ ( G, B ). 
Example 3.6. Let (F,A) and (G,B)  be two INSSs over the same universe U = {o1,o2,o3,o4,o5}. The 
INSS (F,A) describes the sizes of the objects whereas the INSS ( G, B ) describes its surface textures. 
Consider the tabular representation of the INSS ( F, A ) is as follows. 

U small large colorful
O1 ( 0.4,0.3, 0.6 ) ( 0.3,0.1, 0.7 ) ( 0.4,0.1, 0.5 ) 
O2 ( 0.3,0.1, 0.4 ) ( 0.4,0.2, 0.8 ) ( 0.6,0.3, 0.4 ) 
O3 ( 0.6,0.2, 0.5 ) ( 0.3,0.1, 0.6 ) ( 0.4,0.3, 0.8 ) 
O4 ( 0.5,0.1, 0.6 ) ( 0.1,0.5, 0.7 ) ( 0.3,0.3, 0.8 ) 
O5 ( 0.3,0.2, 0.4 ) ( 0.3,0.1, 0.6 ) ( 0.5,0.2, 0.4 ) 

    Table 2: Tabular form of the INSS ( F, A ). 

The tabular representation of the INSS ( G, B ) is given by table 3. 
U small large colorful very smooth
O1 (0.6,0.4, 0.3 ) ( 0.7,0.2, 0.5 ) ( 0.5,0.7, 0.4 ) ( 0.1,0.8, 0.4 ) 
O2 ( 0.7,0.5, 0.2 ) ( 0.4,0.7, 0.3 ) ( 0.7,0.3, 0.2 ) ( 0.5,0.7, 0.3 ) 
O3 ( 0.6,0.3, 0.5 ) ( 0.7,0.2, 0.4 ) ( 0.6,0.4, 0.3 ) ( 0.2,0.9, 0.4 ) 
O4 ( 0.8,0.1, 0.4 ) ( 0.3,0.6, 0.4 ) ( 0.4,0.5, 0.7 ) ( 0.4,0.4, 0.5 ) 
O5 ( 0.5,0.4, 0.2 ) ( 0.4,0.1, 0.5 ) ( 0.6,0.4, 0.3 ) ( 0.5,0.8, 0.3 ) 

Table 3: Tabular form of the INSS ( G, B ). 

 Clearly, by definition 3.5 we have ( F, A ) ⊂ ( G, B ).  
Definition 3.7. Equality of two intuitionistic neutrosophic soft sets.  
Two INSSs ( F, A ) and ( G, B ) over the common universe U are said to be intuitionistic neutrosophic soft 
equal if ( F, A ) is an intuitionistic neutrosophic soft subset of ( G, B ) and ( G, B ) is an intuitionistic 
neutrosophic soft subset of ( F, A ) which can be denoted by ( F, A )= ( G, B ). 
Definition 3.8. NOT set of a set of parameters. 
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 Let E = {e1,e2,···,en} be a set of parameters. The NOT set of E is denoted by ⌉E is defined by ⌉E ={ ⌉ e1, ⌉e2, ··· ,⌉ en}, where ⌉ ei = not ei,∀i ( it may be noted that ⌉ and ⌉ are different operators ).  
Example 3.9. Consider the example 3.3. Here ⌉E = { not bright, not cheap, not costly, not colorful }. 
Definition 3.10. Complement of an intuitionistic neutrosophic soft set.  
The complement of an intuitionistic neutrosophic soft set ( F, A ) is denoted by (F,A)c and is defined by 
(F,A)c= (Fc,⌉A), where Fc :⌉A → N(U) is a mapping given by 
Fc(α) = intutionistic neutrosophic soft complement with TF

c
(x) = FF(x),IF

c
(x) = IF(x) and  FF

c
(x) = TF(x).  

Example 3.11.  As an illustration consider the example presented in the example 3.2. the complement (F,A)c 
describes the ‘not attractiveness of the blouses’. Is given below.
F( not bright) = {< b1,0.3,0.6,0.5 >,< b2,0.2,0.7,0.4 >,< b3,0.3,0.2,0.6 >,  

        < b4,0.2,0.3,0.7 >< b5,0.3,0.2,0.8 >}.  
F( not cheap ) = {< b1,0.5,0.3,0.6 >,< b2,0.3,0.4,0.7 >,< b3,0.2,0.1,0.8 >,  

        < b4,0.3,0.1,0.7 >,< b5,0.4,0.3,0.8 >}.  
F( not costly ) = {< b1,0.3,0.4,0.7 >,< b2,0.2,0.1,0.6 >,< b3,0.5,0.2,0.7 >,  

       < b4,0.6,0.2,0.5 >,< b5,0.2,0.3,0.7 >}.  
F( not colorful ) = {< b1,0.4,0.1,0.8 >,< b2,0.6,0.2,0.4 >,< b3,0.4,0.6,0.3 >,  

       < b4,0.5,0.8,0.4 >< b5,0.7,0.5,0.3 >}.  
Definition 3.12:Empty or Null intuitionistic neutrosopphic soft set.  
An intuitionistic neutrosophic soft set (F,A) over U is said to be empty or null intuitionistic neutrosophic soft 
(with respect to the set of parameters) denoted by ΦA or (Φ,A) if TF(e)(m) = 0,FF(e)(m) = 0 and IF(e)(m) = 
0,∀m ∈ U,∀e ∈ A.  
Example 3.13. Let U = {b1,b2,b3,b4,b5}, the set of five blouses be considered as the universal set and A = 
{ Bright, Cheap, Colorful } be the set of parameters that characterizes the blouses. Consider the 
intuitionistic neutrosophic soft set ( F, A) which describes the cost of the blouses and  
F(bright)={< b1,0,0,0 >,< b2,0,0,0 >,< b3,0,0,0 >,< b4,0,0,0 >, < b5,0,0,0 >},  
F(cheap)={< b1,0,0,0 >,< b2,0,0,0 >,< b3,0,0,0 >,< b4,0,0,0 >, < b5,0,0,0 >}, 
F(colorful)={< b1,0,0,0 >,< b2,0,0,0 >,< b3,0,0,0 >, < b4,0,0,0 >,< b5,0,0,0 >}.  
Here the NINSS ( F, A ) is the null intuitionistic neutrosophic soft set.  
Definition 3.14. Union of two intuitionistic neutrosophic soft sets.  
Let (F,A) and (G,B) be two INSSs over the same universe U.Then the 
union of (F,A) and (G,B) is denoted by ‘(F,A)∪(G,B)’ and is defined 
by (F,A)∪(G,B)=(K,C), where C=A∪B and the truth-membership, 
indeterminacy-membership and falsity-membership of ( K,C) are as follows:  
TK(e)(m)   = TF(e)(m), if e ∈ A − B, 

  = TG(e)(m), if e ∈ B – A , 
      = max (TF(e)(m),TG(e)(m)), if e ∈ A ∩ B. 

IK(e)(m)   = IF(e)(m), if e ∈ A − B, 
  = IG(e)(m), if e ∈ B – A , 

      = min (IF(e)(m),IG(e)(m)), if e ∈ A ∩ B. 
FK(e)(m)   = FF(e)(m), if e ∈ A − B, 

  = FG(e)(m), if e ∈ B – A , 
   = min (FF(e)(m),FG(e)(m)), if e ∈ A ∩ B. 

Example 3.15. Let ( F, A ) and ( G, B ) be two INSSs over the common universe U. Consider the tabular 
representation of the INSS ( F, A ) is as follow:  

Bright Cheap Colorful 
b1 ( 0.6,0.3, 0.5 ) ( 0.7,0.3, 0.4 ) ( 0.4,0.2, 0.6 ) 
b2 ( 0.5,0.1, 0.8 ) ( 0.6,0.1, 0.3 ) ( 0.6,0.4, 0.4 ) 
b3 ( 0.7,0.4, 0.3 ) ( 0.8,0.3, 0.5 ) ( 0.5,0.7, 0.2 ) 
b4 ( 0.8,0.4, 0.1 ) ( 0.6,0.3, 0.2 ) ( 0.8,0.2, 0.3 
b5 ( 0.6,0.3, 0.2 ) ( 0.7,0.3, 0.5 ) ( 0.3,0.6, 0.5 

          Table 4: Tabula form of the INSS ( F, A ). 
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The tabular representation of the INSS ( G, B ) is as follow: 

U Costly Colorful
b1 ( 0.6,0.2, 0.3) ( 0.4,0.6, 0.2 ) 
b2 ( 0.2,0.7, 0.2 ) ( 0.2,0.8, 0.3 ) 
b3 ( 0.3,0.6, 0.5 ) ( 0.6,0.3, 0.4 ) 
b4 ( 0.8,0.4, 0.1 ) ( 0.2,0.8, 0.3 ) 
b5 ( 0.7,0.1, 0.4 ) ( 0.5,0.6, 0.4 ) 

Table 5: Tabular form of the INSS ( G, B ). 
Using definition 3.12 the union of two  INSS (F, A ) and ( G, B ) is ( K, C ) can be represented into the 
following Table.  

U Bright Cheap Colorful Costly 
b1 ( 0.6,0.3, 

0.5 ) 
( 0.7,0.3, 
0.4 )

( 0.4,0.2, 
0.2 )

( 0.6,0.2, 
0.3 ) 

b2 ( 0.5,0.1, 
0.8 ) 

( 0.6,0.1, 
0.3 )

( 0.6,0.4, 
0.3 )

( 0.2,0.7, 
0.2 ) 

b3 ( 0.7,0.4, 
0.3 ) 

( 0.8,0.3, 
0.5 )

( 0.6,0.3, 
0.2 )

( 0.3,0.6, 
0.5 ) 

b4 ( 0.8,0.4, 
0.1 ) 

( 0.6,0.3, 
0.2 )

( 0.8,0.2, 
0.3 )

( 0.8,0.4, 
0.1 ) 

b5 ( 0.6,0.3, 
0.2 ) 

( 0.7,0.3, 
0.5 )

( 0.5,0.6, 
0.4 )

( 0.7,0.1, 
0.4 ) 

Table 6: Tabular form of the INSS ( K, C ). 

Definition 3.16. Intersection  of  two  intuitionistic  neutrosophic soft sets.  
Let (F,A) and (G,B) be two INSSs over the same universe U such that A ∩ B≠0. Then the intersection of 
(F,A) and ( G,B) is denoted by ‘( F,A) ∩ (G, B)’ and is defined by ( F, A ) ∩( G, B ) = ( K,C),where C 
=A∩B and the truth-membership, indeterminacy membership and falsity-membership of ( K, C ) are 
related to those of (F,A) and (G,B) by:  

TK(e)(m)   = min (TF(e)(m),TG(e)(m)),  
IK(e)(m)   = min (IF(e)(m),IG(e)(m)),  
FK(e)(m) = max (FF(e)(m),FG(e) ∈(m)), for all e C. 

Example 3.17. Consider the above example 3.15. The intersection of ( F, A ) and ( G, B ) can be represented 
into the following table :  

U Colorful 
b1 ( 0.4,0.2,0.6) 
b2 ( 0.2,0.4,0.4) 
b3 ( 0.6,0.3,0.4) 
b4 ( 0.8,0.2,0.3) 
b5 ( 0.3,0.6,0.5) 

  Table 7: Tabular form of the INSS ( K, C ). 

Proposition 3.18. If (F, A) and (G, B) are two INSSs over U and on the basis of the  operations defined 
above ,then: 
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(1) idempotency laws: (F,A) ∪ (F,A) = (F,A). 
       (F,A) ∩ (F,A) = (F,A). 

(2) Commutative laws : (F,A) ∪ (G,B) = (G,B) ∪ (F,A). 
      (F,A) ∩ (G,B) = (G,B) ∩ (F,A). 

(3)    (F,A) ∪ Φ = (F,A). 
(4)    (F,A) ∩ Φ = Φ.  
(5)    [(F,A)c]c = (F,A).  
Proof. The proof of the propositions 1 to 5 are obvious. 
Proposition 3.19 . If ( F, A ), ( G, B ) and ( K, C ) are three INSSs over U,then: 
 (1) (F,A) ∩ [(G,B) ∩ (K,C)] = [(F,A) ∩ (G,B)] ∩ (K,C). 
 (2) (F,A) ∪ [(G,B) ∪ (K,C)] = [(F,A) ∪ (G,B)] ∪ (K,C). 
 (3) Distributive  laws: (F,A) ∪ [(G,B) ∩ (K,C)] = [(F,A) ∪ (G,B)] ∩ [(F,A) ∪ (K,C)]. 
 (4) (F,A) ∩ [(G,B) ∪ (K,C)] = [(H,A) ∩ (G,B)] ∪ [(F,A) ∩ (K,C)]. 
Exemple 3.20. Let (F,A) ={〈b1 ,0.6,0.3,0. 1 〉 ,〈 b2,0.4,0.7,0. 5) ,(b3,0.4,0.1,0.8) } , (G,B) ={ (b1,0.2,0.2,0.6), (b2 
0.7,0.2,0.4), (b3,0.1,0.6,0.7) } and (K,C) ={ (b1, 0.3,0.8,0.2) ,〈b2, 0.4,0.1,0.6) ,〈 b3,0.9,0.1,0.2)} be three INSSs of U, 
Then: 

(F,A) ∪ (G,B) = { 〈b1, 0.6,0.2,0.1 〉 , 〈b2, 0.7,0.2,0.4 〉 , 〈 b3,0.4,0.1,0.7 〉 }. 
(F,A) ∪ (K,C) = { 〈 b1,0.6,0.3,0.1 〉 , 〈b2, 0.4,0.1,0.5 〉 , 〈 b3,0.9,0.1,0.2 〉 }. 
(G,B) ∩ (K,C)] =  { 〈 b1,0.2,0.2,0.6 〉 , 〈 b2,0.4,0.1,0.6 〉 , 〈b3, 0.1,0.1,0.7 〉 }. 
 (F,A) ∪ [(G,B) ∩ (K,C)]  =  { 〈 b1,0.6,0.2,0.1 〉 , 〈 b2,0.4,0.1,0.5 〉 , 〈 b3,0.4,0.1,0.7 〉 }. 
 [(F,A) ∪ (G,B)] ∩ [(F,A) ∪ (K,C)] = {〈b1,0.6,0.2,0.1〉,〈b2,0.4,0.1,0.5〉,〈b3,0.4,0.1,0.7〉}. 
Hence distributive (3)  proposition verified. 
Proof, can be easily proved from definition 3.14.and 3.16. 
Definition 3.21. AND operation on two intuitionistic neutrosophic soft sets. 
Let ( F, A ) and ( G, B ) be two INSSs over the same universe U. then ( F, A ) ‘’AND ( G, B) denoted 
by ‘( F, A ) ∧ ( G, B )and is defined by ( F, A ) ∧ ( G, B ) = ( K, A × B ), where K(α, β)=F(α)∩ B(β) 
and the truth-membership, indeterminacy-membership and falsity-membership of ( K, A×B ) are as 
follows:  

TK(α,β)(m) = min(TF(α)(m),TG(β)(m)), IK(α,β)(m) = min(IF(α)(m),IG(β)(m)) 
FK(α,β)(m) = max(FF(α)(m),FG(β)(m)), ∀ ∈α  A,∀ ∈β  B.

Example 3.22. Consider the same example 3.15 above. Then the tabular representation of (F,A) AND ( G, 
B ) is as follow: 

u (bright, costly) (bright, Colorful) (cheap, costly) 
b1 ( 0.6,0.2, 0.5 ) ( 0.4,0.3, 0.5 ) ( 0.6,0.2, 0.4 ) 
b2 ( 0.2,0.1, 0.8 ) ( 0.2,0.1, 0.8 ) ( 0.2,0.1, 0.3 ) 
b3 ( 0.3,0.4, 0.5 ) ( 0.6,0.3, 0.4 ) ( 0.3,0.3, 0.5 ) 
b4 ( 0.8,0.4, 0.1 ) ( 0.2,0.4,0.3 ) ( 0.6,0.3, 0.2 ) 
b5 ( 0.6,0.1, 0.4 ) ( 0.5,0.3, 0.4 ) ( 0.7,0.1, 0.5) 
u (cheap, colorful) (colorful, costly) (colorful, colorful) 
b1 ( 0.4,0.3, 0.4 ) ( 0.4,0.2, 0.6 ) ( 0.4,0.2, 0.6 ) 
b2 ( 0.2,0.1, 0.3 ) ( 0.2,0.4, 0.4 ) ( 0.2,0.4, 0.4 ) 
b3 ( 0.6,0.3, 0.5 ) ( 0.3,0.6, 0.5 ) ( 0.5,0.3, 0.4 ) 
b4 ( 0.2,0.3, 0.3 ) ( 0.8,0.2, 0.3 ) ( 0.2,0.2, 0.3 ) 
b5 ( 0.5,0.3, 0.5 ) ( 0.3,0.1, 0.5 ) ( 0.3,0.6, 0.5 ) 

Table 8: Tabular representation of the INSS ( K, A × B). 

Definition 3.23. If (F,A) and (G,B) be two INSSs over the common universe U then ‘(F,A) OR(G,B)’ 
denoted by (F,A) ∨ (G,B) is defined by ( F, A) ∨ (G, B ) = (O,A×B), where, the truth-membership, 
indeterminacy membership and falsity-membership of O( α, β) are given as follows:  
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TO(α,β)(m) = max(TF(α)(m),TG(β)(m)),

I
O(α,β)(m) = min(IF(α)(m),IG(β)(m)), 
FO(α,β)(m) = min(FF(α)(m),FG(β) ∀ ∈ ∀ ∈(m)), α  A, β  B.

Example 3.24  Consider the same example 3.14 above. Then the tabular representation of ( F, A ) OR ( G, 
B ) is as follow: 
u (bright, costly) (bright, colorful) (cheap, costly) 
b1 ( 0.6,0.2, 0.3 ) ( 0.6,0.3, 0.2 ) ( 0.7,0.2, 0.3 ) 
b2 ( 0.5,0.1, 0.2 ) ( 0.5,0.1, 0.3 ) ( 0.6,0.1, 0.2 ) 
b3 ( 0.7,0.4, 0.3 ) ( 0.7,0.3, 0.3 ) ( 0.8,0.3, 0.5 ) 
b4 ( 0.8,0.4, 0.1 ) ( 0.8,0.4, 0.1 ) ( 0.8,0.3, 0.1 ) 
b5 ( 0.7,0.1, 0.2 ) ( 0.6,0.3, 0.4 ) ( 0.7,0.1, 0.4 ) 
u (cheap, colorful) (colorful, costly) (colorful, colorful) 
b1 ( 0.7,0.3, 0.2 ) ( 0.6,0.2, 0.3 ) ( 0.4,0.2, 0.2 ) 
b2 ( 0.6,0.1, 0.3 ) ( 0.6,0.4, 0.2 ) ( 0.6,0.4, 0.3 ) 
b3 ( 0.8,0.3, 0.4 ) ( 0.5,0.6, 0.2 ) ( 0.5,0.7, 0.2 ) 
b4 ( 0.6,0.3, 0.2 ) ( 0.8,0.2, 0.1 ) ( 0.8,0.2, 0.3 ) 
b5 ( 0.7,0.3, 0.4 ) ( 0.7,0.1, 0.4 ) ( 0.5,0.6, 0.4) 

Table 9: Tabular representation of the INSS ( O, A × B). 

Proposition 3.25. if ( F, A ) and ( G, B ) are two INSSs over U, then : 
(1) [(F,A) ∧ (G,B)]c = (F,A)c ∨ (G,B)c

(2) [(F,A) ∨ (G,B)]c = (F,A)c ∧ (G,B)c

Proof1. Let (F,A)={<b, TF(x)(b), IF(x)(b), FF(x)(b)>|b ∈ U}  
and  

(G,B) = {< b, TG(x)(b), IG(x)(b), FG(x)(b) > |b ∈ U} 
be two INSSs over the common universe U. Also let (K,A × B) = (F,A) ∧ (G,B),  
where, K(α, β) = F(α) ∩ G(β) for all (α, β) ∈ A × B then 
K(α, β) = {< b, min(TF(α)(b),TG(β)(b)), min(IF(α)(b),IG(β)(b)), max(FF(α)(b),FG(β)(b)) >| b ∈ U}.  
Therefore,  
[(F,A) ∧ (G,B)]c = (K,A × B)c  
= {< b, max(FF(α)(b),FG(β)(b)), min(IF(α)(b),IG(β)(b)), min(TF(α)(b),TG(β)(b)) >|b ∈ U}. 
Again  
(F,A)c ∨ (G,B)c  
= {< b, max(FF

c
(α)(b)),FG

c
(β)(b)), min(IF

c
(α)(b),IG

c
(β)(b)), min(TF

c
(α)(b), TG

c
(β)(b)) >| b ∈ U}.  

= {< b, min(TF(α)(b),TG(β)(b)), min(IF(α)(b),IG(β)(b)), max(FF(α)(b),FG(β)(b)) >| b ∈ U}c 
.

= {< b, max(FF(α)(b), FG(β)(b)), min(IF(α)(b),IG(β)(b)), min(TF(α)(b),TG(β)(b)) >| b ∈ U}.  

It follows that [(F,A) ∧ (G,B)]c = (F,A)c ∨ (G,B)c . 

Proof 2. 
 Let ( F, A ) = {< b, TF(x)(b), IF(x)(b), FF(x)(b) > |b ∈ U} and  
(G,B) = {< b, TG(x)(b),IG(x)(b),FG(x)(b) > |b ∈ U} be two INSSs over the common universe U. 
Also let (O,A × B) = (F,A) ∨ (G,B), where, O (α,β) = F(α) ∪ G(β) for all (α,β) ∈ A × B. then 
O(α,β) = {< b, max(TF(α)(b),TG(β)(b)), min(IF(α)(b),IG(β)(b)), min(FF(α)(b),FG(β)(b)) > |b ∈ U}. 
[(F,A)∨(G,B)]c = (O,A×B)c ={< b, min(FF(α)(b),FG(β)(b)), min(IF(α)(b),IG(β)(b)), 
max(TF(α)(b),TG(β)(b)) > |b ∈ U}.  
Again  
(H,A)c ∧ (G,B)c  
= {< b,min(FF

c
(α)(b),FG

c
(β)(b)),min(IF

c
(α)(b),IG

c
(β)(b)), max(TF

c
(α)(b),TG

c
(β)(b)),>| b ∈ U}.  
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= {< b,max(TF(α)(b),TG(β)(b)),min(IF
c
(α)(b),IG

c
(β)(b)),min(FF(α)(b),FG(β)(b))>| b ∈ U}c . 

= {< b, min(FF(α)(b),FG(β)(b)),min(IF(α)(b),IG(β)(b)), max(TF(α)(b),TG(β)(b)) >| b ∈ U}.  
It follows that [(F,A) ∨ (G,B)]c = (F,A)c ∧ (G,B)c .  

4. An application of intuitionistic neutrosophic soft set in a decision making
problem

For a concrete example of the concept described above, we revisit the blouse purchase problem in Example 
3.3.  So let us consider the intuitionistic  neutrosophic soft set S = (F,P) (see also Table 10 for its tabular 
representation), which describes the "attractiveness of the blouses" that Mrs.  X is going to buy.  on the basis 
of her  m number of parameters (e1,e2,…,em) out of  n  number of blouses(b1,b2,…,bn). We also assume that 
corresponding to the parameter ej(j =1,2,···,m) the performance value of the blouse bi (i = 1,2,···,n) is a tuple 
pij = (T F(ej) (bi),I F(ej) (bi),T F(ej) (bi)), such that for a fixed i that values  pij (j = 1,2,···,m) represents an 
intuitionistic  neutrosophic soft set of all the n objects. Thus the performance values could be arranged in 
the form of a matrix called the ‘criteria matrix’. The more are the criteria values, the more preferability of the 
corresponding object is. Our problem is to select the most suitable object i.e. the object which dominates each 
of the objects of the spectrum of the parameters ej. Since the data are not crisp but intuitionistic neutrosophic 
soft the selection is not straightforward. Our aim is to find out the most suitable blouse with the choice 
parameters for Mrs. X. The blouse which is suitable for Mrs. X need not be suitable for Mrs. Y or Mrs. Z, as 
the selection is dependent on the choice parameters of each buyer. We use the technique to calculate the score 
for the objects. 

4.1. Definition: Comparison matrix 
    The Comparison matrix is a matrix whose rows are labelled by the object names of the universe such as 
b1,b2,···,bn and the columns are labelled by the parameters e1,e2,···,em. The entries are cij, where  cij, is the 
number of parameters for which the value of bi exceeds or is equal to the value bj.  The entries are calculated 
by cij =a + d - c, where ‘a’ is the integer calculated as ‘how many times Tbi (ej) exceeds or equal to Tbk (ej)’, 
for bi ≠ bk, ∀ bk ∈  U, ‘d’is the integer calculated as ‘how many times Ibi(ej) exceeds or equal to Ibk(ej)’, for bi 
≠ bk, ∀ bk ∈  U and ‘c’ is the integer ‘how many times Fbi(ej) exceeds  or equal to Fbk(ej)’, for bi ≠ bk, ∀ bk ∈ 
U. 
Definition 4.2.  Score of an object.  The score of an object bi  is Si  and is calculated as : 

Si =∑j cij
Now the  algorithm for most appropriate selection of an object will be as follows.  
Algorithm  
(1) input the  intuitionistic Neutrosophic Soft Set ( F, A).  
(2) input P, the choice parameters of Mrs. X which is a subset of A.  
(3) consider the INSS ( F, P) and write it in tabular form.  
(4) compute the comparison matrix of the INSS ( F, P).  
(5) compute the score Si of bi,∀i.  
(6) find Sk = maxi Si  
(7) if k has more than one value then any one of bi  may be chosen.  
To illustrate the basic idea of the algorithm, now we apply it to the intuitionistic neutrosophic soft set 
based decision making problem. 
Suppose the wishing parameters for Mrs. X where P={Bright,Costly, Polystyreneing,Colorful,Cheap}. 

Consider the INSS ( F, P )  presented into the following table.  
U Bright costly Polystyreneing Colorful Cheap

b1 ( 0.6,0.3, 0.4 ) ( 0.5,0.2, 0.6 ) ( 0.5,0.3, 0.4 ) ( 0.8,0.2, 0.3 ) ( 0.6,0.3, 0.2 ) 

b2 ( 0.7,0.2, 0.5 ) ( 0.6,0.3, 0.4 ) ( 0.4,0.2, 0.6 ) ( 0.4,0.8, 0.3 ) ( 0.8,0.1, 0.2 ) 

b3 ( 0.8,0.3, 0.4 ) ( 0.8,0.5, 0.1 ) ( 0.3,0.5, 0.6 ) ( 0.7,0.2, 0.1 ) ( 0.7,0.2, 0.5 ) 

b4 ( 0.7,0.5, 0.2 ) ( 0.4,0.8, 0.3 ) ( 0.8,0.2, 0.4 ) ( 0.8,0.3, 0.4 ) ( 0.8,0.3, 0.4 ) 
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b5 ( 0.3,0.8, 0.4 ) ( 0.3,0.6, 0.1 ) ( 0.7,0.3, 0.2 ) ( 0.6,0.2, 0.4 ) ( 0.6,0.4, 0,2 ) 

Table 10: Tabular form of the INSS (F, P). 

The comparison-matrix of the above INSS ( F, P) is represented into the following table. 
U Bright  Costly Polystyreneing  Colorful Cheap 
b1 0 -2 3 0 2 
b2 -1 1 -2 2 2 
b3 3 5 0 4 -1 
b4 6 3 3 3 4 
b5 7 2 6 -1 3 

Table 11: Comparison matrix of the INSS ( F, P ). 

Next we compute the score for each bi as shown below:  

U Score (Si)
b1 3 
b2 2 
b3 11 
b4 19 
b5 17 

Clearly, the maximum score is the score 19, shown in the table above for the blouse b4.  
Hence the best decision for Mrs. X is to select b4 , followed by  b5  . 

5. Conclusions

In this paper we study the notion of intuitionistic  neutrosophic set initiated by Bhowmik and Pal. We use this concept in 
soft sets considering the fact that the parameters ( which are words or sentences ) are mostly intutionistic neutrosophic set; 
but both the concepts deal with imprecision, We have also defined some operations on INSS and prove some propositions. 
Finally, we present an application of INSS in a decision making problem. 
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Abstract  Intuitionistic Neutrosophic soft set theory 
proposed by S.Broumi and F.Samarandache [28], has been 
regarded as an effective mathematical tool to deal with 
uncertainties. In this paper  new operations on intuitionistic 
neutrosophic soft sets have been introduced . Some results 
relating to the properties of these operations have been 
established. Moreover ,we illustrate their interconnections 
between each other. 

1. Introduction
The theory of neutrosophic set (NS), which is the 

generalization of the classical sets, conventional fuzzy set 
[1], intuitionistic fuzzy set [2]and interval valued fuzzy set 
[3],was introduced by Samarandache [4]. This concept has 
been applied in many fields such as Databases [5, 6], 
Medical diagnosis problem [7], Decision making problem 
[8],Topology [9],control theory [10] and so on. The concept 
of neutrosophic set handle indeterminate data whereas 
fuzzy set theory, and intuitionstic fuzzy set theory failed 
when the relation are indeterminate. 

Later on, several researchers have extended the 
neutrosophic set theory, such as Bhowmik and M.Pal in [11, 
12], in their paper, they defined “intuitionistic neutrosophic 
set”.In [13], A.A.Salam, S.A.Alblowi introduced another 
concept called “Generalized neutrosophic set”. In [14], 
Wang et al. proposed another extension of neutrosophic set 
which is” single valued neutrosophic”. In 1998 a Russian 
researcher, Molodtsov proposed a new mathematical tool 
called” Soft set theory” [ 15],for dealing with uncertainty 
and how soft set theory is free from the parameterization 
inadequacy syndrome of fuzzy set theory, rough set theory, 
probability theory. 

In recent time, researchers have contributed a lot towards 
fuzzification of soft set theory which leads to a series of 
mathematical models such as Fuzzy soft set [17, 18, 19, 20], 

generalized fuzzy soft set [21, 22], possibility fuzzy soft set 
[23] and so on, therafter, P.K.Maji and his coworker [24] 
introduced the notion of intuitionistic fuzzy soft set which is 
based on a combination of the intuitionistic fuzzy setsand 
soft set models and studied the properties of intuitionistic 
fuzzy soft set. Later a lot of extentions of intuitionistic 
fuzzy soft are appeared such as generalized intuitionistic 
fuzzy soft set [25], Possibility intuitionistic fuzzy soft set 
[26]and so on. Few studies are focused on 
neutrosophication of soft set theory. In [25] P.K.Maji, first 
proposed a new mathematical model called “Neutrosophic 
Soft Set” and investigate some properties regarding 
neutrosophic soft union, neutrosophic soft 
intersection ,complement of a neutrosophic soft set ,De 
Morgan law etc. Furthermore , in 2013, S.Broumi and F. 
Smarandache [26] combined the intuitionistic neutrosophic 
and soft set which lead to a new mathematical model called” 
intutionistic neutrosophic soft set”. They studied the 
notions of intuitionistic neutrosophic soft set union, 
intuitionistic neutrosophic soft set intersection, complement 
of intuitionistic neutrosophic soft set and several other 
properties of intuitionistic neutrosophic soft set along with 
examples and proofs of certain results. Also ,in [27] 
S.Broumi presentedthe concept of “Generalized 
neutrosophic soft set” by combining the generalized 
neutrosophic sets [13] and soft set models ,studied some 
properties on it, and presented an application of generalized 
neutrosophic soft set in decision making problem. 

In the present work, we have extended the intuitionistic 
neutrosophic soft sets defining new operations on it. Some 
properties of these operations have also been studied.  

The rest of this paper is organized as follow: section II 
deals with some definitions related to soft set 
theory ,neutrosophic set, intuitionistic neutrosophic set, 
intuitionistic neutrosophic soft set theory. Section III deals 
with the necessity operation on intuitionistic neutrosophic 
soft set. Section IV deals with the possibility operation on 
intuitionistic neutrosophic soft set. Finally ,section V give 
the conclusion. 
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In this section we represent definitions needful for next 
section,we denote by N(u) the set of all intuitionistic 
neutrosophic set. 

2.1. Soft Sets (see [15]). 

Let U be a universe set and E be a set of parameters. Let 𝜁𝜁 
( U ) denotes the power set of U and A ⊂ E.  

2.1.1. Definition [15] 
A pair ( P, A ) is called a soft set over U, where F is a 
mapping given by P : A →  𝜁𝜁 ( U ). In other words, a soft set 
over U is a parameterized family of subsets of the universe U. 
For e ∈ A, P (e ) may be considered as the set of e- 
approximate elements of the soft set ( P, A ).  

2.2 Intuitionistic Fuzzy Soft Set 

Let  U  be an initial universe set and  E  be the set of 
parameters. Let  IFU denote the collection of all 
intuitionistic fuzzy subsets of  U. Let . A ⊆  E pair (P  A) 
is called an intuitionistic fuzzy soft set over U where P is a 
mapping given by P: A→ IFU . 

2.2.1. Defintion 
Let  P: A→ IFU  then  F is a function defined as  P (𝜀𝜀) ={ x, 
𝝁𝝁𝑷𝑷(𝜀𝜀)(𝒙𝒙) , 𝝂𝝂𝑷𝑷(𝜀𝜀)(𝒙𝒙) : 𝒙𝒙 ∈ 𝑼𝑼 , 𝜀𝜀 ∈ 𝑬𝑬}   where  𝜇𝜇 , 𝜈𝜈 denote 
the degree of  membership and degree of non-membership 
respectively and  𝜋𝜋 = 1- 𝜇𝜇-  𝜈𝜈 , denote the hesitancy degree. 

2.3. Neutrosophic Sets (see [4 ]). 

Let U be an universe of discourse then the neutrosophic set A 
is an object having the form  
A = {< x: TA(x),IA(x),FA(x)>,x ∈ U}, where the functions T, I, F : 
U→ ]−0, 1+[  define respectively the degree of membership 
(or Truth) , the degree of indeterminacy, and the degree of 
non-membership (or Falsehood) of the element x ∈ U to the 
set A with the condition. 

−0 ≤ TA (x) + IA (x)+ FA (x)≤ 3+.    (1) 

From philosophical point of view, the neutrosophic set 
takes the value from real standard or non-standard subsets 
of ]−0, 1+[. So instead of ]−0, 1+[ we need to take the interval 
[0, 1] for technical applications, because ]−0, 1+[will be 
difficult to apply in the real applications  such as in 
scientific and engineering problems.  

2.4. Single Valued Neutrosophic Set(see [ 14]). 

2.4.1. Definition (see [14] ) 
Let X be a space of points (objects) with generic elements in 
X denoted by x. An SVNS A in X is characterized by a 
truth-membership function TA(x), an 
indeterminacy-membership function IA(x), and a 

falsity-membership function FA(x) for each point x in X, 
TA(x), IA(x), FA(x) ∈ [0, 1].  
When X is continuous, an SVNS A can be written as 

A=∫ <𝑇𝑇𝐴𝐴 (𝑥𝑥), 𝐼𝐼𝐴𝐴 (𝑥𝑥), 𝐹𝐹𝐴𝐴 (𝑥𝑥),>
𝑥𝑥𝑋𝑋 , 𝑥𝑥 ∈ 𝑋𝑋.  (2) 

When X is discrete, an SVNS A can be written as 

A= ∑ <𝑇𝑇𝐴𝐴 (𝑥𝑥𝑖𝑖 ), 𝐼𝐼𝐴𝐴 (𝑥𝑥𝑖𝑖 ),𝐹𝐹𝐴𝐴 (𝑥𝑥𝑖𝑖 ),>
𝑥𝑥𝑖𝑖

𝑛𝑛
1 , 𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋    (3) 

2.4.2. Definition (see [4,14]) 
A neutrosophic set or single valued neutrosophic set (SVNS ) 
A is contained in another neutrosophic set B i.e. A ⊆ B if ∀x 
∈ U, TA(x) ≤ TB(x), IA(x) ≥ IB(x), FA(x) ≥ FB(x). 

2.4.3. Definition (see [2]) 
The complement of a neutrosophic set A is denoted by Ac 
and is defined as TA

c
(x) = FA(x),  IA

c
(x) = IA(x) and F A

c
(x) = TA(x) 

for every x in X. 
A complete study of the operations and application of 
neutrosophic set can be found in [4] . 

2.5. Intuitionistic Neutrosophic Set 

2.5.1. Definition (see[11]) 
An element x of  U is called significant with respect to 

neutrsophic set A of U if the degree  of  truth-membership 
or falsity-membership or indeterminancy-membership value, 
i.e.,  TA (x) or FA (x) or IA (x) )≤0.5. Otherwise, we call it
insignificant. Also, for neutrosophic set the 
truth-membership, indeterminacy-membership and 
falsity-membership all can not be significant. We define an 
intuitionistic neutrosophic set by A = {< x: TA (x)  , IA (x) ,
FA (x) >,x ∈U},where  

min { TA (x), FA (x)} ≤ 0.5, 

  min { TA (x), , IA (x)} ≤ 0.5, 

min { FA (x), IA (x) } ≤ 0.5, for all x ∈U,  (4) 

with the condition 

0 ≤ TA (x) + IA (x)+ FA (x)≤ 2.  (5) 

As an illustration ,let us consider the following example. 

2.5.2. Example 
Assume that the universe of discourse U={x1,x2,x3},where x1
characterizes the capability, x2 characterizes the 
trustworthiness and x3indicates the prices of the objects. It 
may be further assumed that the values of x1, x2 and x3 are in 
[0,1] and they are obtained from some questionnaires of 
some experts. The experts may impose their opinion in three 
components viz. the degree of goodness, the degree of 
indeterminacy and that of poorness to explain the 
characteristics of the objects. Suppose A is an intuitionistic 
neutrosophic set ( IN S ) of U, such that, 

2. Preliminaries
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A = {< 𝑥𝑥1 ,0.3,0.5,0.4 >,< 𝑥𝑥2 ,,0.4,0.2,0.6 >,< 𝑥𝑥3 , 0.7,0.3,0.5 >}, 

where the degree of goodness of capability is 0.3, degree of indeterminacy of capability is 0.5 and degree of falsity of 
capability is 0.4 etc. 

2.6. Intuitionistic Neutrosophic Soft Sets (see [28 ]). 

2.6.1. Definition 
Let U be an initial universe set and A ⊂ E  be a set of parameters. Let N( U ) denotes the set of all intuitionistic 

neutrosophic sets of U. The collection (P,A) is termed to be the soft intuitionistic neutrosophic set over U, where F is a 
mapping given by P : A → N(U).  

2.6.2. Example 
Let U be the set of blouses under consideration and E is the set of parameters (or qualities). Each parameter is a 

intuitionistic neutrosophic word or sentence involving intuitionistic neutrosophic words. Consider E = { Bright, Cheap, 
Costly, very costly, Colorful, Cotton, Polystyrene, long sleeve , expensive }. In this case, to define a intuitionistic 
neutrosophic soft set means to point out Bright blouses, Cheap blouses, Blouses in Cotton and so on. Suppose that, there are 
five blouses in the universe U given by, U = {b1, b2, b3 , b4 , b5} and the set of parameters A = {e1,e2,e3,e4}, where each  ei  
is a specific criterion for blouses: 
𝑒𝑒1  stands for ‘Bright’, 
𝑒𝑒2  stands for ‘Cheap’, 
𝑒𝑒3  stands for ‘Costly’, 
𝑒𝑒4  stands for ‘Colorful’, 
Suppose that, 
P(Bright)={< b1,0.5,0.6,0.3>,<b2 ,0.4,0.7,0.2>,<b3 ,0.6,0.2,0.3>,<b4 ,0.7,0.3,0.2>  ,< b5 ,0.8,0.2,0.3>}. 
P(Cheap)={< b1,0.6,0.3,0.5>,<b2 ,0.7,0.4,0.3>,<b3,0.8,0.1,0.2>,<b4 ,0.7,0.1,0.3> ,< b5 ,0.8,0.3,0.4}. 
P(Costly)={< b1,0.7,0.4,0.3>,<b2 ,0.6,0.1,0.2>,<b3 ,0.7,0.2,0.5>,< b4 ,0.5,0.2,0.6 >,< b5 ,0.7,0.3,0.2 >}.  
P(Colorful)={< b1,0.8,0.1,0.4>,<b2,0.4,0.2,0.6>,<b3 ,0.3,0.6,0.4>,<b4 ,0.4,0.8,0.5> ,< b5,0.3,0.5,0.7 >}.  

2.6.3.Definition([28]).Containment of two intuitionistic neutrosophic soft sets 
For two intuitionistic neutrosophic soft sets ( P, A ) and ( Q, B ) over the common universe U. We say that ( P, A ) is an 

intuitionistic neutrosophic soft subset of ( Q, B ) if and only if 
(i) A ⊂B. 
(ii)P(e) is an intuitionistic neutrosophic subset of Q(e). 
Or TP(e)(x) ≤ TQ(e)(m) ,  IP(e)(m)≥ IQ(e)(m), FP(e)(m) ≥ FQ(e)(m),∀e ∈ A, x ∈ U.  
We denote this relationship by ( P, A ) ⊆ ( Q, B ). 
( P, A ) is said to be intuitionistic neutrosophic soft super set of ( Q, B ) if ( Q, B ) is an intuitionistic neutrosophic soft subset 
of ( P, A ). We denote it by ( P, A ) ⊇ ( Q, B ). 

2.6.4 .Definition [28]. Equality of two intuitionistic neutrosophic soft sets 
Two INSSs ( P, A ) and ( Q, B ) over the common universe U are said to be intuitionistic neutrosophic soft equal if ( P, A ) 

is an intuitionistic neutrosophic soft subset of ( Q, B ) and (Q, B ) is an intuitionistic neutrosophic soft subset of ( P, A ) which 
can be denoted by ( P, A )= ( Q, B ). 

2.6.5. Definition [28]. Complement of an intuitionistic neutrosophic soft set 
The complement of an intuitionistic neutrosophic soft set ( P, A ) is denoted by (P,A)c and is defined by (P,A)c= (Pc,⌉A), 

where Pc :⌉A → N(U) is a mapping given by  Pc(α) = intutionistic neutrosophic soft complement with TP
c
(x) = FP(x), IP

c
(x) = IP(x) 

and FP
c
(x) = TP(x). 

2.6.6. Definition [28] Union of two intuitionistic neutrosophic soft sets 
Let (P, A) and (Q, B) be two INSSs over the same universe U.Then the union of (P, A) and (Q, B) is denoted by ‘(P, 

A)∪(Q, B)’ and is defined by (P,A)∪(Q, B) =(K, C), where C=A∪B and the truth-membership,  
indeterminacy-membership and falsity-membership of ( K,C) are as follows:  

𝑇𝑇𝐾𝐾(𝑒𝑒)(m) = �
TP(e)(m)  , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
TQ(e)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑚𝑚𝑥𝑥�𝑇𝑇𝑃𝑃(𝑒𝑒)(m), 𝑇𝑇𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖  𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 
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𝐼𝐼𝐾𝐾(𝑒𝑒)(m) = �
𝐼𝐼𝑃𝑃(𝑒𝑒)(m)  , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝐼𝐼𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑖𝑖𝑛𝑛 �𝐼𝐼𝑃𝑃(𝑒𝑒)(m), 𝐼𝐼𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖  𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

𝐹𝐹𝐾𝐾(𝑒𝑒)(m)  = �
𝐹𝐹𝑃𝑃(𝑒𝑒)(m)  , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝐹𝐹𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑖𝑖𝑛𝑛�𝐹𝐹𝑃𝑃(𝑒𝑒)(m) , 𝐹𝐹𝑄𝑄(𝑒𝑒)(m) �, 𝑖𝑖𝑖𝑖  𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
�     (6) 

2.6.7. Definition. Intersection of two intuitionistic neutrosophic soft sets [28] 
Let (P,A) and (Q,B) be two INSSs over the same universe U such that A ∩ B≠0. Then the intersection of (P,A) and ( Q, 

B) is denoted by ‘( P,A) ∩ (Q, B)’ and is defined by ( P, A ) ∩( Q, B ) = ( K,C),where C =A∩B and the truth-membership,
indeterminacy membership and falsity-membership of ( K, C ) are related to those of (P,A) and (Q,B) by: 

𝑇𝑇𝐾𝐾(𝑒𝑒)(m) = �
𝑇𝑇𝑃𝑃(𝑒𝑒)(m)  , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝑇𝑇𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑖𝑖𝑛𝑛�𝑇𝑇𝑃𝑃(𝑒𝑒)(m), 𝑇𝑇𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖  𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

𝐼𝐼𝐾𝐾(𝑒𝑒)(m) = �
𝐼𝐼𝑃𝑃(𝑒𝑒)(m)  , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝐼𝐼𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑖𝑖𝑛𝑛 �𝐼𝐼𝑃𝑃(𝑒𝑒)(m) , 𝐼𝐼𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖  𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

𝐹𝐹𝐾𝐾(𝑒𝑒)(m) = �
𝐹𝐹𝑃𝑃(𝑒𝑒)(m)  , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝐹𝐹𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑚𝑚𝑥𝑥�𝐹𝐹𝑃𝑃(𝑒𝑒)(m), 𝐹𝐹𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖  𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
�      (7) 

In this paper we are concerned with intuitionistic neutrosophic sets whose TA, IA and FA values are single points in [0, 1] 
instead of subintervals/subsets in [0, 1] 

3. The Necessity Operation on Intuitionistic Neutrosophic Soft Set
In this section,we shall introduce the necessity operation on intuitionistic neutrosophic soft set 

3.1. Remark 

𝑠𝑠𝐴𝐴= 𝑇𝑇𝐴𝐴+𝐼𝐼𝐴𝐴+𝐹𝐹𝐴𝐴, 𝑠𝑠𝐵𝐵  =𝑇𝑇𝐵𝐵+𝐼𝐼𝐵𝐵+𝐹𝐹𝐵𝐵  .if 𝑠𝑠𝐴𝐴= 𝑠𝑠𝐵𝐵  we put S = 𝑠𝑠𝐴𝐴= 𝑠𝑠𝐵𝐵  

3.2. Definition 

The necessity operation on an intuitionistic neutrosophic soft set ( P, A ) is denoted by ( P, A ) and is defined as 

⊡ (P, A) = {<m, T𝑃𝑃(𝑒𝑒)(𝑚𝑚), I𝑃𝑃(𝑒𝑒)(𝑚𝑚), 𝑠𝑠𝐴𝐴–T𝑃𝑃(𝑒𝑒)(𝑚𝑚)> |m ∈ U and e ∈A}, 

where 𝑠𝑠𝐴𝐴=T+I+F. 
Here TP(e)(m) is the neutrosophic membership degree that object m hold on parameter e , I𝑃𝑃(𝑒𝑒)(𝑚𝑚)represent the 
indeterminacy function and P is a mapping P : A → N(U), N(U) is the set of aintuitionistic neutrosophic sets of U.  

3.3. Example 

Let there are five objects as the universal set where U = { m1, m2, m3, m4, m5 }and the set of parameters as E = { beautiful, 
moderate, wooden, muddy, cheap, costly }and  
Let A = {beautiful, moderate, wooden}. Let the attractiveness of the objects represented by the intuitionistic neutrosophic 
soft sets (P, A) is given as  

P(beautiful)={ m1/(.6,.2,.4), m2/(.7, .3, .2), m3/(.5, .4, .4), m4/(.6, .4, .3), m5/(.8, .4, .1)}, 
P(moderate)={m1/(.7, .3, .2), m2/(.8,.1, .1), m3/(.7, .5, .2), m4/(.8, .5, .1), m5/(1, .2, 0)} 

and P(wooden) ={ m1/(.8, .5, .1), m2/(.6, .4,0), m3/(.6, .5, .2), m4/(.2, .3, .4), m5/(.3, .2, .5)}. 

Then the intuitionistic neutrosophicsoft sets  (P,A) becomes as  
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P(beautiful) ={ m1/(.6,.2,.6), m2/(.7, .3, .5), m3/(.5, .4, .8), m4/(.6, .4, .7), m5/(.8, .4, .5)}, 
P(moderate) ={ m1/(.7, .3, .5), m2/(.8,.1, .2), m3/(.7, .5, .7), m4/(.8, .5, .6), m5/(1, .2,.2} 

And 
P(wooden) ={ m1/(.8, .5, .6), m2/(.6, .4,.4), m3/(.6, .5, .7), m4/(.2, .3, .7), m5/(.3, .2, .7)}. 

Let (P, A) and (Q, B) be two intuitionistic neutrosophic soft sets over a universe  
U and A, B be two sets of parameters. Then we have the following propositions:  

3.4. Proposition 

i. ⊡ [( P, A ) ∪( Q, B ) ] =⊡ ( P, A ) ∪ ⊡ ( Q, B ).   (8) 

ii. ⊡ [( P, A ) ∩( Q, B ) ] = ⊡ ( P, A ) ∩ ⊡ ( G, B ). (9) 

iii. ⊡ ⊡ ( P, A ) = ⊡ ( P, A ).   (10) 

iv. ⊡ [( P, A )]n = [⊡ ( P, A )]n (11) 

for any finite positive integer n. 

v. ⊡ [( P, A )  ∪  ( Q, B )]𝑛𝑛  = [⊡  ( P, A )  ∪ ⊡  ( Q, B )]𝑛𝑛 . (12) 

vi. ⊡ [( P, A )  ∩  ( Q, B )]𝑛𝑛  = [⊡  ( P, A )  ∩ ⊡  ( Q, B )]𝑛𝑛 . (13) 

Proof 
i. [( P, A ) ∪ ( Q, B ) ]
suppose (P ,A) ∪ (Q , B) =(H, C) ,where C= A∪ B and for all e ∈ C and 
𝑠𝑠𝐴𝐴  =𝑇𝑇𝑃𝑃(𝑒𝑒)+𝐼𝐼𝑃𝑃(𝑒𝑒)+𝐹𝐹𝑃𝑃(𝑒𝑒)  and 𝑠𝑠𝐵𝐵  =𝑇𝑇𝑄𝑄(𝑒𝑒)+𝐼𝐼𝑄𝑄(𝑒𝑒)+𝐹𝐹𝑄𝑄(𝑒𝑒) , 𝑠𝑠𝐴𝐴 − T𝑃𝑃(𝑒𝑒)(𝑚𝑚) = I𝑃𝑃(𝑒𝑒)(𝑚𝑚)  + F𝑃𝑃(𝑒𝑒)(𝑚𝑚),  𝑠𝑠𝐵𝐵 − T𝑄𝑄(𝑒𝑒)(𝑚𝑚) = I𝑄𝑄(𝑒𝑒)(𝑚𝑚) +
F𝑄𝑄(𝑒𝑒)(𝑚𝑚), 

𝑇𝑇𝐻𝐻(𝑒𝑒)(m) = �
T𝑃𝑃(𝑒𝑒)(𝑚𝑚) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
T𝑄𝑄(𝑒𝑒)(𝑚𝑚) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑚𝑚𝑥𝑥�𝑇𝑇𝑃𝑃(𝑒𝑒)(𝑚𝑚), 𝑇𝑇𝑄𝑄(𝑒𝑒)(𝑚𝑚 )�, 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

𝐼𝐼𝐻𝐻(𝑒𝑒)(m) = �
I𝑃𝑃(𝑒𝑒)(𝑚𝑚) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
I𝑄𝑄(𝑒𝑒)(𝑚𝑚) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑖𝑖𝑛𝑛�I𝑃𝑃(𝑒𝑒)(𝑚𝑚), I𝑄𝑄(𝑒𝑒)(𝑚𝑚)�, 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

𝐹𝐹𝐻𝐻(𝑒𝑒)(m) = �
F𝑃𝑃(𝑒𝑒)(𝑚𝑚), 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
F𝑄𝑄(𝑒𝑒)(𝑚𝑚) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑖𝑖𝑛𝑛�F𝑃𝑃(𝑒𝑒)(𝑚𝑚), F𝑄𝑄(𝑒𝑒)(𝑚𝑚)�, 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

Since [( P, A ) ∪ ( Q, B ) ] =  ( H, C ) and m ∈ U, by definition 3.2 we Have 

𝑇𝑇𝐻𝐻(𝑒𝑒)(m) = �
𝑇𝑇𝑃𝑃(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝑇𝑇𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑚𝑚𝑥𝑥�𝑇𝑇𝑃𝑃(𝑒𝑒)(m), 𝑇𝑇𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

𝐼𝐼𝐻𝐻(𝑒𝑒)(m) = �
𝐼𝐼𝑃𝑃(𝑒𝑒) (m), 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝐼𝐼𝑄𝑄(𝑒𝑒) (m), 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑖𝑖𝑛𝑛�𝐼𝐼𝑃𝑃(𝑒𝑒)(m), 𝐼𝐼𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
�   

𝐹𝐹𝐻𝐻(𝑒𝑒)(m) = �
𝑠𝑠𝐴𝐴 − 𝑇𝑇𝑃𝑃(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B ,
𝑠𝑠𝐵𝐵 − 𝑇𝑇𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑆𝑆 − 𝑚𝑚𝑚𝑚𝑥𝑥�𝑇𝑇𝑃𝑃(𝑒𝑒)(m), 𝑇𝑇𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

For all e ∈ C =A ∪ B and m ∈ U. Assume that ⊡ (P, A)={<m, 𝑇𝑇𝑃𝑃(𝑒𝑒)(𝑚𝑚) ,𝐼𝐼𝑃𝑃(𝑒𝑒)(𝑚𝑚) ,𝑠𝑠𝐴𝐴-𝑇𝑇𝑃𝑃(𝑒𝑒)(𝑚𝑚)>,m ∈ U} and ⊡ 

(Q, A)={< 𝑚𝑚,  𝑇𝑇𝑂𝑂(𝑒𝑒)(m)  ,𝐼𝐼𝑂𝑂(𝑒𝑒)(m)  ,𝑠𝑠𝐵𝐵-𝑇𝑇𝑂𝑂(𝑒𝑒)(m)  ,m ∈ U} .Suppose that (P,A) ∪  (Q,B) =(O,C), where C= A ∪ 

B,and for all e ∈ C and m ∈ U. 
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𝑇𝑇𝑂𝑂(𝑒𝑒)(m) = �
𝑇𝑇𝑃𝑃(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝑇𝑇𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑚𝑚𝑥𝑥�𝑇𝑇𝑃𝑃(𝑒𝑒)(m), 𝑇𝑇𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

𝐼𝐼𝑂𝑂(𝑒𝑒)(m) = �
𝐼𝐼𝑃𝑃(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝐼𝐼𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑖𝑖𝑛𝑛�𝐼𝐼𝑃𝑃(𝑒𝑒)(m), 𝐼𝐼𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

𝐹𝐹𝑂𝑂(𝑒𝑒)(m) = �
𝑠𝑠𝐴𝐴 − 𝑇𝑇𝑃𝑃(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝑠𝑠𝐵𝐵 − 𝑇𝑇𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑖𝑖𝑛𝑛�𝑠𝑠𝐴𝐴 − 𝑇𝑇𝑃𝑃(𝑒𝑒)(m), 𝑠𝑠𝐴𝐴 − 𝑇𝑇𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

= 

⎩
⎪
⎨

⎪
⎧ 𝑠𝑠𝐴𝐴 − 𝑇𝑇𝑃𝑃(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 

𝑠𝑠𝐵𝐵 − 𝑇𝑇𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A
𝑆𝑆 − 𝑚𝑚𝑚𝑚𝑥𝑥�𝑇𝑇𝑃𝑃(𝑒𝑒)(m), 𝑇𝑇𝑄𝑄(𝑒𝑒)(m)�,

𝑖𝑖𝑖𝑖 𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 𝑤𝑤𝑖𝑖𝑤𝑤ℎ 𝑆𝑆 = 𝑠𝑠𝐴𝐴 = 𝑠𝑠𝐵𝐵

� 

Consequently, (H,C) and (O, C) are the same intuitionistic neutrosophic soft sets.Thus , 

⊡ ( (P,A) ∪ (Q,B))= ⊡ (P,A) ∪ ⊡ (Q,B). 

Hence the result is proved.  
(ii ) and (iii) are proved analogously. 
iii. Let

(P, A) = {<m, TP(e)(m), IP(e)(m), FP(e)(m), >|m ∈ U and e ∈ A}. 

Then 

⊡ (P, A) = {<m, TP(e)(m), IP(e)(m), sA –TP(e)(m) >|m ∈ U and e ∈A}. 

So 

⊡  ⊡ (P, A) = {<m, TP(e)(m), I𝑃𝑃(𝑒𝑒)(m), 𝑠𝑠𝐴𝐴- 𝑇𝑇𝑃𝑃(𝑒𝑒)(m) >|m ∈ U and e ∈A}. 

Hence the result follows.  
iv. Let the intuitionistic neutrosophic soft set

( P, A ) = {<m, 𝑇𝑇𝑃𝑃(𝑒𝑒)(m) , I𝑃𝑃(𝑒𝑒)(m),  F𝑃𝑃(𝑒𝑒)(m)>|m ∈ U and e ∈A}. 

Then for any finite positive integer n  

( P, A )𝑛𝑛 = {<m, [TP(e)(m)  ]𝑛𝑛 , [IP(e)(m)  ]𝑛𝑛 , 𝑠𝑠𝐴𝐴-[𝑠𝑠𝐴𝐴–FP(e)(m)]n>|m ∈ U and e ∈A} 

So, 

⊡ ( P, A )𝑛𝑛  = {<m, [TP(e)(m)]𝑛𝑛 , [IP(e)(m)  ]𝑛𝑛 ,𝑠𝑠𝐴𝐴- [TP(e)(m)]𝑛𝑛 >|m∈U and e ∈A}. 

Again, [⊡ (P, A)]𝑛𝑛 = {<m, [TP(e)(m)]𝑛𝑛 , [IP(e)(m)]𝑛𝑛  , 𝑠𝑠𝐴𝐴- [TP(e)(m) ]𝑛𝑛 >|m ∈ U and e ∈ A} as   

⊡ (P, A) = {<m, 𝑇𝑇𝑃𝑃(𝑒𝑒)(m) , I𝑃𝑃(𝑒𝑒)(m),  𝑠𝑠𝐴𝐴–𝑇𝑇𝑃𝑃(𝑒𝑒)(m) >|m ∈ U and e ∈ A}. 

Hence the result. 

v. As ( P, A )𝑛𝑛 ∪  ( Q, B )𝑛𝑛 = [( P, A )  ∪  ( Q, B )  ]𝑛𝑛

⊡ [  ( P, A )  ∪  ( Q, B )  ]𝑛𝑛  = [ ⊡  [( P, A ) ∪  ( Q, B )] ]𝑛𝑛   by the proposition 3.4.iv 
      = [⊡ ( P, A )  ∪ ⊡ ( Q, B )  ]𝑛𝑛    by the proposition 3.4.i 

vi. As ( P, A )𝑛𝑛 ∩ ( Q, B )𝑛𝑛 =[( P, A )  ∩  ( Q, B )  ]𝑛𝑛

So, ⊡ [  ( P, A )  ∩  ( Q, B )  ]𝑛𝑛 = [ ⊡  [( P, A ) ∩  ( Q, B )] ]𝑛𝑛  by the proposition3.4.iv 
     = [⊡ ( P, A )  ∩ ⊡ ( Q, B )  ]𝑛𝑛  by the proposition 3.4.ii 

The result is proved. 

The concept of  necessity operation on intuitionistic neutrosophic soft set can also be applied to measure  the necessity 
operation on intuitionistic fuzzy soft set (IFSS) ,proposed by P.K .Maji  [30] ,where the indeterminacy degree IP(e)(m) 
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should be replaced by IP(e)(m) = 1-TP(e)(m)- FP(e)(m) in case of IFSS. In this case, we conclude that the necessity 
operation on intuitionistic neutrosophic soft set is a generalization of the necessity operation on intuitionistic fuzzy soft set 

4. The Possibility Operation on Intuitionistic Neutrosophic Soft Sets
In this section, we shall define another operation, the possibility operation on intuitionistic neutrosophic soft sets. 
Let U be a universal set. E be a set of parameters and A be a subset of E. Let the intuitionistic neutrosophic soft set. 

(P, A) = {<m, T𝑃𝑃(𝑒𝑒)(𝑚𝑚), I𝑃𝑃(𝑒𝑒)(𝑚𝑚) , F𝑃𝑃(𝑒𝑒)(𝑚𝑚)  >| m ∈ U and e ∈A}, where T𝑃𝑃(𝑒𝑒)(𝑚𝑚), I𝑃𝑃(𝑒𝑒)(𝑚𝑚) , F𝑃𝑃(𝑒𝑒)(𝑚𝑚)be the 
membership, indeterminacyand non-membership functions respectively.  

4.1. Definition 

Let U be the universal set and E be the set of parameters. The possibility operation on the intuitionistic neutrosophic soft 
set (P, A) is denoted by ◊(P, A) and is defined as  

◊ ( P, A ) =  {<m, 𝑠𝑠𝐴𝐴– FP(e)(m),  IP(e)(m),  FP(e)(m) >| m ∈U and e ∈A },

where 

𝑠𝑠𝐴𝐴=  T𝑃𝑃(𝑒𝑒)(𝑚𝑚)+ I𝑃𝑃(𝑒𝑒)(𝑚𝑚)+ F𝑃𝑃(𝑒𝑒)(𝑚𝑚) and  0- ≤ 𝑠𝑠𝐴𝐴 ≤3+ 

4.2. Example 

Let there are five objects as the universal set where U = {m1, m2, m3, m4, m5}. Also let the set of  parameters as E = 
{ beautiful, costly, cheap, moderate, wooden, muddy } and A = { costly, cheap, moderate}. The cost of the objects 
represented by the intuitionistic neutrosophic soft sets  
(P, A) is given as  

P(costly)={ m1/(.7, .1, .2), m2/(.8, .3, 0), m3/(.8, .2, .1), m4/(.9, .4, 0), m5/(.6, .2, .2)}, 
P(cheap)={ m1/(.5, .3, .2),m2/(.7, .5, .1), m3/(.4, .3, .2), m4/(.8, .5, .1), m5/(.4, .4, .2)} 

and 
P(moderate) ={ m1/(.8, .4, .2), m2/(.6, .1, .3), m3/(.5, .5, .1), m4/(.9, .4, 0),m5/(.7, .3,.1)}. 

Then the neutrosophic soft set ◊( P, A )  is as  
P(costly) ={ m1/(.8, .1, .2), m2/(1.1, .3, 0), m3/(1, .2, .1), m4/(1.3, .4, 0), m5/(.8, .2, .2)}, 

P(cheap) ={ m1/(.8, .3, .2),m2/(1.2, .5, .1), m3/(.7, .3, .2), m4/(1.3, .5, .1), m5/(.8, .4, .2} 

and 
P(moderate) ={  m1/(1.2, .4, .2), m2/(.7, .1, .3), m3/(1, .5, .1), m4/(1.3, .4, 0),m5/(1, .3,.1)}. 

The concept of  possibilty operation on intuitionistic neutrosophic soft set can also be applied to measure  the necessity 
operation on intuitionistic fuzzy soft set (IFSS) ,proposed by P.K .Maji  [30] ,where the indeterminacy degree IP(e)(m) 

should be replaced by IP(e)(m) = 1-TP(e)(m)- FP(e)(m) in case of IFSS. In this case, we conclude that the possibility 
operation on intuitionistic neutrosophic soft set is a generalization of the possibility operation on intuitionistic fuzzy soft 
set. 

Let ( P, A ) and ( Q, B ) be two intuitionistic neutrosophic  soft sets over the same universe U and A, B be two sets of 
parameters. Then we have the propositions 

4.3. Proposition 

i.◊ [( P, A ) ∪( Q, B ) ] = ◊ ( P, A ) ∪  ◊ ( Q, B ).  (14) 

ii.◊ [( P, A ) ∩( Q, B ) ] = ◊ ( P, A ) ∩ ◊ ( Q, B )    (15) 
iii. ◊◊ ( P, A ) = ◊ ( P, A ).      (16) 

iv. ◊ [(P, A)]𝑛𝑛 = [◊ (P, A)]𝑛𝑛       (17) 

for any finite positive integer n. 

Florentin Smarandache (ed.) Collected Papers, VII

43



v.◊ [( P, A )  ∪  ( Q, B )  ]𝑛𝑛 = [◊  ( P, A )  ∪ ◊  ( Q, B )   ]𝑛𝑛 .      (18) 

vi.◊ [( P, A )  ∩  ( Q, B )  ]𝑛𝑛= [◊  ( P, A )  ∩ ◊  ( Q, B )   ]𝑛𝑛    (19) 

Proof 
i. ◊ [( P, A ) ∪ (Q, B ) ]  
suppose (P ,A) ∪ (Q , B) =(H, C) ,where C= A∪ B and for all e ∈ C and 

𝑠𝑠𝐴𝐴  =T𝑃𝑃(𝑒𝑒)(𝑚𝑚)+ I𝑃𝑃(𝑒𝑒)(𝑚𝑚)+ F𝑃𝑃(𝑒𝑒)(𝑚𝑚)  and 𝑠𝑠𝐵𝐵  =T𝑄𝑄(𝑒𝑒)(𝑚𝑚)+ I𝑄𝑄(𝑒𝑒)(𝑚𝑚)+ F𝑄𝑄(𝑒𝑒)(𝑚𝑚) 

 𝑠𝑠𝐴𝐴 − 𝐹𝐹𝑃𝑃(𝑒𝑒)(m) = 𝐼𝐼𝑃𝑃(𝑒𝑒)(m) + 𝑇𝑇𝑃𝑃(𝑒𝑒)(m) , 

 𝑠𝑠𝐵𝐵 − 𝐹𝐹𝑄𝑄(𝑒𝑒)(m)  = 𝐼𝐼𝑃𝑃(𝑒𝑒)(m) + 𝑇𝑇𝑄𝑄(𝑒𝑒)(m) 

𝑇𝑇𝐻𝐻(𝑒𝑒)(m) = �
𝑇𝑇𝑃𝑃(𝑒𝑒)(m)  , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝑇𝑇𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑚𝑚𝑥𝑥�𝑇𝑇𝑃𝑃(𝑒𝑒)(m)  , 𝑇𝑇𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖  𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

𝐼𝐼𝐻𝐻(𝑒𝑒)(m) = �
𝐼𝐼𝑃𝑃(𝑒𝑒)(m)  , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝐼𝐼𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑖𝑖𝑛𝑛 �𝐼𝐼𝑃𝑃(𝑒𝑒)(m), 𝐼𝐼𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖  𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

𝐹𝐹𝐻𝐻(𝑒𝑒)(m) = �
𝐹𝐹𝑃𝑃(𝑒𝑒)(m)  , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝐹𝐹𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑖𝑖𝑛𝑛�𝐹𝐹𝑃𝑃(𝑒𝑒)(𝑚𝑚), 𝐹𝐹𝑄𝑄(𝑒𝑒)(𝑚𝑚)�, 𝑖𝑖𝑖𝑖  𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

Since ◊ [(P, A ) ∪ (Q, B ) ] =◊ (H, C ) and m ∈ U, by definition 4.1 we Have 

𝑇𝑇𝐻𝐻(𝑒𝑒)(m) = 

⎩
⎪
⎨

⎪
⎧ 𝑠𝑠𝐴𝐴 − 𝐹𝐹𝑃𝑃(𝑒𝑒)(m)    , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 

𝑠𝑠𝐵𝐵 − 𝐹𝐹𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A
𝑆𝑆 − 𝑚𝑚𝑖𝑖𝑛𝑛�𝐹𝐹𝑃𝑃(𝑒𝑒)(m), 𝐹𝐹𝑄𝑄(𝑒𝑒)(m)�,

𝑖𝑖𝑖𝑖  𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵, 𝑤𝑤𝑖𝑖𝑤𝑤ℎ 𝑆𝑆 = 𝑠𝑠𝐴𝐴 = 𝑠𝑠𝐵𝐵

� 

𝐼𝐼𝐻𝐻(𝑒𝑒)(m)  = �
𝐼𝐼𝑃𝑃(𝑒𝑒)(m)  , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝐼𝐼𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑖𝑖𝑛𝑛�𝐼𝐼𝑃𝑃(𝑒𝑒)(m), 𝐼𝐼𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖  𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

𝐹𝐹𝐻𝐻(𝑒𝑒)(m) = �
𝐹𝐹𝑃𝑃(𝑒𝑒)(m)  , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝐹𝐹𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑖𝑖𝑛𝑛 �𝐹𝐹𝑃𝑃(𝑒𝑒)(m), 𝐹𝐹𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖  𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

For all e ∈ C =A ∪ B and m ∈ U. Assume that 

◊ (P, A)={<m, 𝑠𝑠𝐴𝐴-𝐹𝐹𝑃𝑃(𝑒𝑒)(m), 𝐼𝐼𝑃𝑃(𝑒𝑒)(m) , 𝐹𝐹𝑃𝑃(𝑒𝑒)(m)>,m ∈ U}

and 

◊ (Q, B)={< 𝑚𝑚,   𝑠𝑠𝐵𝐵-𝐹𝐹𝑄𝑄(𝑒𝑒)(m) , 𝐼𝐼𝑄𝑄(𝑒𝑒)(m) , 𝐹𝐹𝑄𝑄(𝑒𝑒)(m)  > ,m ∈ U} .

Suppose that 

◊ (P, A) ∪ ◊ (Q, B ) = (O, C) ,

where C= A ∪ B, and for all e ∈ C and m ∈ U. 

𝑇𝑇𝑂𝑂(𝑒𝑒)(m) = �
𝑠𝑠𝐴𝐴 − 𝐹𝐹𝑃𝑃(𝑒𝑒)(m),   , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝑠𝑠𝐵𝐵 − 𝐹𝐹𝑄𝑄(𝑒𝑒)(m), , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑚𝑚𝑥𝑥�𝑠𝑠𝐴𝐴 − 𝐹𝐹𝑃𝑃(𝑒𝑒)(m), 𝑠𝑠𝐵𝐵 − 𝐹𝐹𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖  𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

= 

⎩
⎪
⎨

⎪
⎧ 𝑠𝑠𝐴𝐴 − 𝐹𝐹𝑃𝑃(𝑒𝑒)(m)  , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 

𝑠𝑠𝐵𝐵 − 𝐹𝐹𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A
𝑆𝑆 − 𝑚𝑚𝑖𝑖𝑛𝑛�𝐹𝐹𝑃𝑃(𝑒𝑒)(m), 𝐹𝐹𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖  𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵,

𝑤𝑤𝑖𝑖𝑤𝑤ℎ 𝑆𝑆 = 𝑠𝑠𝐴𝐴 = 𝑠𝑠𝐵𝐵

� 

Florentin Smarandache (ed.) Collected Papers, VII

44



𝐼𝐼𝑂𝑂(𝑒𝑒)(m) = �
𝐼𝐼𝑃𝑃(𝑒𝑒)(m)  , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝐼𝐼𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑖𝑖𝑛𝑛 �𝐼𝐼𝑃𝑃(𝑒𝑒)(m) , 𝐼𝐼𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖  𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

𝐹𝐹𝑂𝑂(𝑒𝑒)(m) = �
𝐹𝐹𝑃𝑃(𝑒𝑒)(m)  , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝐹𝐹𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑖𝑖𝑛𝑛�𝐹𝐹𝑃𝑃(𝑒𝑒)(m), 𝐹𝐹𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖  𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

Consequently, ◊ (H,C) and (O, C) are the same intuitionistic neutrosophic soft sets.Thus , 

◊ ( (P, A) ∪  (Q, B))=◊ (P, A) ∪ ◊ (Q, B).

Hence the result is proved.  
(ii ) and (iii) are proved analogously. 

iii. ◊( P, A ) = {<m, 𝑠𝑠𝐴𝐴- F𝑃𝑃(𝑒𝑒)(𝑚𝑚), I𝑃𝑃(𝑒𝑒)(𝑚𝑚)], F𝑃𝑃(𝑒𝑒)(𝑚𝑚)]>|m ∈U and e∈A}. 

So 

◊◊( P, A ) = {<m, 𝑠𝑠𝐴𝐴–F𝑃𝑃(𝑒𝑒)(𝑚𝑚) , I𝑃𝑃(𝑒𝑒)(𝑚𝑚), F𝑃𝑃(𝑒𝑒)(𝑚𝑚)] >| m ∈ U and e ∈A}. 

Hence the result. 
iv. For any positive finite integer n,

  (P, A)𝑛𝑛  ={<m, [T𝑃𝑃(𝑒𝑒)(𝑚𝑚)]𝑛𝑛 ,  [I𝑃𝑃(𝑒𝑒)(𝑚𝑚)]𝑛𝑛 ,  𝑠𝑠𝐴𝐴-[𝑠𝑠𝐴𝐴 −  F𝑃𝑃(𝑒𝑒)(𝑚𝑚)]]𝑛𝑛 >|m∈U } ∀e∈A, 

So, 

◊(P, A)𝑛𝑛 = {<m, 𝑠𝑠𝐴𝐴- [𝑠𝑠𝐴𝐴-[𝑠𝑠𝐴𝐴 −  F𝑃𝑃(𝑒𝑒)(𝑚𝑚)]𝑛𝑛 ], [I𝑃𝑃(𝑒𝑒)(𝑚𝑚)]𝑛𝑛 , 𝑠𝑠𝐴𝐴-[𝑠𝑠𝐴𝐴 −  F𝑃𝑃(𝑒𝑒)(𝑚𝑚)]𝑛𝑛 >|m ∈U }

= {<m, [𝑠𝑠𝐴𝐴 −  F𝑃𝑃(𝑒𝑒)(𝑚𝑚)]𝑛𝑛 , [I𝑃𝑃(𝑒𝑒)(𝑚𝑚)]𝑛𝑛  , 𝑠𝑠𝐴𝐴-[𝑠𝑠𝐴𝐴 −  F𝑃𝑃(𝑒𝑒)(𝑚𝑚)]𝑛𝑛 >|m∈U } ∀ e ∈A. 

Again 

     [◊ (P, A)]𝑛𝑛  = {<m, [𝑠𝑠𝐴𝐴 −  F𝑃𝑃(𝑒𝑒)(𝑚𝑚)]𝑛𝑛 , [I𝑃𝑃(𝑒𝑒)(𝑚𝑚)]𝑛𝑛 , 𝑠𝑠𝐴𝐴-[𝑠𝑠𝐴𝐴 −  F𝑃𝑃(𝑒𝑒)(𝑚𝑚)]𝑛𝑛   >| m∈U } ∀ e ∈A. 

Hence the result follows.  

v. As [( P, A )  ∪  ( Q, B )  ]𝑛𝑛 = (P, A)𝑛𝑛∪(Q, B)𝑛𝑛 ,

◊[( P, A )  ∪  ( Q, B )  ]𝑛𝑛 = = ◊(P, A)𝑛𝑛  ∪ ◊ (Q, B)𝑛𝑛 .

the result is proved 

vi.As  [( P, A )  ∩  ( Q, B )  ]𝑛𝑛  = (P, A)𝑛𝑛 ∩ (Q, B)𝑛𝑛 ,

◊[( P, A )  ∩  ( Q, B )  ]𝑛𝑛 = ◊ (P, A)𝑛𝑛 ∩◊ (Q, B)𝑛𝑛 .

Hence the result follows. 
For any intuitionistic neutrosophic soft set ( P,  A ) we have the following  propositions. 

4.4. Proposition 

i. ◊ ⊡ (P, A)  =  ⊡ (P, A)     (20) 

ii. ⊡ ◊ (P, A)  = ◊ (P, A)    (21) 

Proof 
i.Let ( P, A ) be a intuitionistic neutrosophic soft set over the universe U.
Then ( P, A ) = { <m, T𝑃𝑃(𝑒𝑒)(𝑚𝑚), I𝑃𝑃(𝑒𝑒)(𝑚𝑚), F𝑃𝑃(𝑒𝑒)(𝑚𝑚)> |m ∈ U} where e ∈ A. 
So, ⊡ ( P, A ) = { <m, T𝑃𝑃(𝑒𝑒)(𝑚𝑚), I𝑃𝑃(𝑒𝑒)(𝑚𝑚), 𝑠𝑠𝐴𝐴- T𝑃𝑃(𝑒𝑒)(𝑚𝑚)> | m ∈ U}, and  
◊ ( P, A ) = { <m, 𝑠𝑠𝐴𝐴- F𝑃𝑃(𝑒𝑒)(𝑚𝑚), I𝑃𝑃(𝑒𝑒)(𝑚𝑚), F𝑃𝑃(𝑒𝑒)(𝑚𝑚)>| m ∈ U}.
So ◊⊡ ( P, A ) = { <m, 𝑠𝑠𝐴𝐴- (𝑠𝑠𝐴𝐴- T𝑃𝑃(𝑒𝑒)(𝑚𝑚)), I𝑃𝑃(𝑒𝑒)(𝑚𝑚), 𝑠𝑠𝐴𝐴- T𝑃𝑃(𝑒𝑒)(𝑚𝑚)>| m ∈ U}. 
= { <m, T𝑃𝑃(𝑒𝑒)(𝑚𝑚), I𝑃𝑃(𝑒𝑒)(𝑚𝑚), 𝑠𝑠𝐴𝐴- T𝑃𝑃(𝑒𝑒)(𝑚𝑚)> | m ∈ U}.   
= ⊡ (P, A )  
ii.The proof is similar to the proof of the proposition 3.4.i.
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Let ( P, A ) and ( Q, B ) be two intuitionistic neutrosophic soft sets over the common universe U, then we have the 
following propositions: 

4.5. Proposition  

i. ⊡ [ ( P, A ) ∧ ( Q, B ) ] = ⊡ ( P, A ) ∧ ⊡ ( Q, B ).  (22) 

ii. ⊡ [ ( P, A ) ∨ ( Q, B ) ]  = ⊡ ( P, A ) ∨  ⊡ ( Q, B ). (23) 

iii.◊ [ ( P, A ) ∧ ( Q, B ) ]  = ◊ ( P, A ) ∧ ◊ ( Q, B ).  (24) 

iv.◊ [ ( P, A ) ∨ ( Q, B ) ] = ◊ ( P, A ) ∨ ◊ ( Q, B ).     (25) 

Proof 
i. Let ( H, A ×B ) = ( P, A ) ∧ ( Q, B ).
Hence, 

( H, A × B ) = {<m,T𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m),I𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m),F𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m)(m)>|m∈U }, 

where 

T𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m)= min { T𝑃𝑃(𝛼𝛼)(m), T𝑄𝑄(𝛽𝛽 )(m)} , F𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m) = max {F𝑃𝑃(𝛼𝛼)(m), F𝑄𝑄(𝛽𝛽 )(m) } 

and 

I𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m)= max {I𝑃𝑃(𝛼𝛼)(m), I𝑄𝑄(𝛽𝛽 )(m) }. 

So, 

⊡ ( H, A × B ) = { <m, T𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m),I𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m), S - T𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m)>|m∈U }, (𝛼𝛼, 𝛽𝛽 ) ∈A × B 

= { < m, min (T𝑃𝑃(𝛼𝛼)(m), T𝑄𝑄(𝛽𝛽 )(m) ),max (I𝑃𝑃(𝛼𝛼)(m), I𝑄𝑄(𝛽𝛽 )(m)), S - min (T𝑃𝑃(𝛼𝛼)(m), T𝑄𝑄(𝛽𝛽 )(m)) > |m∈U } 

= { < m, min (T𝑃𝑃(𝛼𝛼)(m), T𝑄𝑄(𝛽𝛽 )(m)),max (I𝑃𝑃(𝛼𝛼)(m), I𝑄𝑄(𝛽𝛽 )(m)),max (S - T𝑃𝑃(𝛼𝛼)(m), S- T𝑄𝑄(𝛽𝛽 )(m) ) > |m∈U } 

= { < m, T𝑃𝑃(𝛼𝛼)(m), I𝑃𝑃(𝛼𝛼)(m), S- T𝑃𝑃(𝛼𝛼)(m)>|m∈U} AND {<m, T𝑄𝑄(𝛽𝛽 )(m),I𝑄𝑄(𝛽𝛽 )(m), S- T𝑄𝑄(𝛽𝛽 )(m)>|m∈U} 

=⊡ ( P, A ) ∧ ⊡ ( Q, B ). 

Hence the result is proved 
ii. Let ( L, A × B ) = ( P, A ) ∨ ( Q, B ).
Hence , 

( L, A × B ) = { <m, T𝐿𝐿(𝛼𝛼 ,𝛽𝛽 )(m), I𝐿𝐿(𝛼𝛼 ,𝛽𝛽 )(m),F𝐿𝐿(𝛼𝛼 ,𝛽𝛽 )(m)>|m∈U }, 

where 

T𝐿𝐿(𝛼𝛼 ,𝛽𝛽 )(m) = max { T𝑃𝑃(𝛼𝛼)(m), T𝑄𝑄(𝛽𝛽 )(m) } ,I𝐿𝐿(𝛼𝛼 ,𝛽𝛽 )(m) = min {IP(α)(m), I𝑄𝑄(𝛽𝛽 )(m) } 

And  F𝐿𝐿(𝛼𝛼 ,𝛽𝛽 )(m) = min{ F𝑃𝑃(𝛽𝛽 )(m), F𝑄𝑄(𝛽𝛽 )(m)}. 

So, 

⊡ ( L, A × B ) = { <m, T𝐿𝐿(𝛼𝛼 ,𝛽𝛽 )(m),I𝐿𝐿(𝛼𝛼 ,𝛽𝛽 )(m) ,S - T𝐿𝐿(𝛼𝛼 ,𝛽𝛽 )(m)>|m∈U }, for (𝛼𝛼, 𝛽𝛽 ) ∈A × B 

= { < m, max (T𝑃𝑃(𝛼𝛼)(m), T𝑄𝑄(𝛽𝛽 )(m)), min (IP(α)(m), I𝑄𝑄(𝛽𝛽 )(m)), S - max (T𝑃𝑃(𝛼𝛼)(m), T𝑄𝑄(𝛽𝛽 )(m) ) > |m∈U } 

= { < m, max (T𝑃𝑃(𝛼𝛼)(m), T𝑄𝑄(𝛽𝛽 )(m) ),min (IP(α)(m), I𝑄𝑄(𝛽𝛽 )(m)),min (S - T𝑃𝑃(𝛼𝛼)(m), S- T𝑄𝑄(𝛽𝛽 )(m)) > |m∈U } 

= { < m, T𝑃𝑃(𝛼𝛼)(m), IP(α)(m), S- T𝑃𝑃(𝛼𝛼)(m)> |m∈U} OR {<m, T𝑄𝑄(𝛽𝛽 )(m),I𝑄𝑄(𝛽𝛽 )(m), S- T𝑄𝑄(𝛽𝛽 )(m)> |m∈U} 

=⊡ ( P, A ) ∨ ⊡ ( Q, B ). 

Hence the result is proved 
iii. Let ( H, A × B ) =( P, A ) ∧ ( Q, B ).
Hence, 

( H, A × B ) = {<m, T𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m), I𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m), F𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m)>|m ∈ U }, 

where 

T𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m)= min {T𝑃𝑃(𝛼𝛼)(m), T𝑄𝑄(𝛽𝛽 )(m)},I𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m)= max {I𝑃𝑃(𝛼𝛼)(m),I𝑄𝑄(𝛽𝛽 )(m)}. 
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and 

F𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m)= max {F𝑃𝑃(𝛼𝛼)(m),F𝑄𝑄(𝛽𝛽 )(m)}. 

So, 

◊ ( H, A × B ) = { <m, S - F𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m),I𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m),F𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m)>|m ∈ U }, for (𝛼𝛼, 𝛽𝛽 ) ∈A × B

= { < m, S - max ( F𝑃𝑃(𝛼𝛼)(m), F𝑄𝑄(𝛽𝛽 )(m)), max (I𝑃𝑃(𝛼𝛼)(m), I𝑄𝑄(𝛽𝛽 )(m)), max ( F𝑃𝑃(𝛼𝛼)(m), F𝑄𝑄(𝛽𝛽 )(m) ) > |m ∈U } 

= { < m, min (S- F𝑃𝑃(𝛼𝛼)(m), S- F𝑄𝑄(𝛽𝛽 )(m)), max (I𝑃𝑃(𝛼𝛼)(m), I𝑄𝑄(𝛽𝛽 )(m)), max ( F𝑃𝑃(𝛼𝛼)(m),  F𝑄𝑄(𝛽𝛽 )(m)) > |m ∈U } 

= {< m, S- F𝑃𝑃(𝛼𝛼)(m),I𝑃𝑃(𝛼𝛼)(m), F𝑃𝑃(𝛼𝛼)(m)> |m∈ U} AND {<m, S- F𝑄𝑄(𝛽𝛽 )(m),I𝑄𝑄(𝛽𝛽 )(m), F𝑄𝑄(𝛽𝛽 )(m)> |m∈U} 

= ◊ ( P, A ) ∧ ◊ ( Q, B ). Hence the result is proved  
iv. The proof  is similar to the proof of the proposition 3.5.iii.

5. Conclusion
In the present work ,We have continued to study the 

properties of intuitionistic neutrosophic soft set. New 
operations such as necessity and possibility on the 
intuitionistic neutrosophic soft set are introduced. Some 
properties of these operations and their interconnection 
between each other are also presented and discussed. We 
conclude that necessity and possibility operations  on the 
intuitionistic neutrosophic soft set are generalization of 
necessity and possibility operations  on the intuitionistic 
fuzzy soft set. The new operations can be applied also on 
neutrosophic soft set [27] and generalized neutrosophic 
soft set [29]. We hope that the findings, in this paper will 
help researcher enhance the study on the intuitionistic 
neutrosophic soft set theory. 
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ABSTRACT 

Multi-attribute decision making (MADM). Play an important role in many 

applications, due to the efficiency to handle indeterminate and inconsistent 

information, single valued neutrosophic sets is widely used to model 

indeterminate information. In this paper, a new MADM method based on 

neutrosophic trapezoid linguistic weighted arithmetic averaging aggregation 

SVNTrLWAA operator and neutrosophic trapezoid linguistic weighted 

geometric aggregation SVNTrLWGA operator is presented. A numerical 

example is presented to demonstrate the application and efficiency of the 

proposed method. 

Keywords: Single valued neutrosophic trapezoid linguistic weighted 

arithmetic averaging aggregation (SVNTrLWAA) operator, neutrosophic 

trapezoid linguistic weighted weighted geometric aggregation 

(SVNTrLWGA) operator, single valued neutrosophic sets. 

1.INTRODUCTION

F. Smarandache [6] proposed the neutrosophic set (NS) by adding an independent 

indeterminacy-membership  function. The concept of  neutrosophic set  is generalization 

of classic set, fuzzy set [26], intuitionistic fuzzy set [22], interval  intuitionistic fuzzy set 

[24,25] and so on. In NS, the indeterminacy is quantified explicitly and truth-

membership, indeterminacy membership, and false-membership are completely 

independent. From scientific or engineering point of view, the neutrosophic set and set- 

theoretic view, operators need to be specified. Otherwise, it will be difficult to apply in 
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the real applications. Therefore, H. Wang et al [7] defined a single valued neutrosophic 

set (SVNS) and then provided the set theoretic operations and various properties of single 

valued neutrosophic sets. Furthermore, H. Wang et al.[8] proposed the set theoretic 

operations on an instance of neutrosophic set called interval valued neutrosophic set 

(IVNS) which is more flexible and practical than NS. The works on neutrosophic set 

(NS)  and interval valued neutrosophic set (IVNS), in theories and application have been 

progressing rapidly (e.g, [1,2,3,4,5,7,9,10,11,12,13,14,15,16,17, 

21,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49]. 

Multiple attribute decision making (MADM) problem  are of importance in most 

kinds of fields such as engineering, economics, and management. In many situations 

decision makers have incomplete , indeterminate and inconsistent information about 

alternatives  with respect to attributes. It is well known that the conventional and fuzzy or 

intuitionistic fuzzy decision making analysis [27, 50, 51, 52] using different techniques 

tools  have been found to be inadequate to handle  indeterminate an inconsistent data. So 

,Recently, neutrosophic multicriteria decision making problems have been proposed to 

deal with such situation.  

In addition, because the aggregation operators are the important tools to process 

the neutrosophic decision making problems. Lately, research on aggregation methods and 

multiple attribute decision making theories under neutrosophic environment is very active 

and lot of results have been obtained from neutrosophic information. Based on the 

aggregation operators, J. Ye [20] developed some new weighted arithmetic averaging and 

weighted geometric averaging operators for simplified neutrosophic sets.  P. Liu [28] 

present the generalized neutrosophic Hamacher aggregation operators such as 

Generalized neutrosophic number Hamacher weighted averaging (GNNHWA) operator, 

Generalized neutrosophic number Hamacher ordered weighted averaging (GNNHOWA) 

operator, and Generalized neutrosophic number Hamacher hybrid averaging (GNNHA) 

operator and studied some properties of these operators and analyzed some special cases 

and gave a decision-making method based on these operators for multiple attribute group 

decision making with neutrosophic numbers. Based on the idea of Bonferroni mean, P. 

Liu [32] proposed  some Bonferroni mean operators such a s the single-valued 

neutrosophic normalized weighted Bonferroni mean.  J. J. Peng et al [22 ] defined the  

novel operations and aggregation operators, which were based on the operations in J. Ye 

[20].  

Based on the linguistic variable and  the concept of interval neutrosophic sets, J. 

Ye [18] defined interval neutrosophic  linguistic variable, as well as its operation 

principles, and developed some new aggregation  operators for the interval neutrosophic 

linguistic  information,  including  interval  neutrosophic  linguistic arithmetic weighted 

average(INLAWA) operator,  linguistic geometric weighted average(INLGWA) operator 
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and discuss some  properties. Furthermore, he  proposed  the decision making method for 

multiple attribute decision making (MAGDM) problems with an illustrated example to  

show the process of decision making and the effectiveness of the proposed method.  

In order to deal with the more complex neutrosophic information. J. Ye [19] 

,further proposed the interval neutrosophic uncertain linguistic variables by extending an 

uncertain linguistic variables with an interval neutrosophic set, and proposed the 

operational rules, score function, accuracy function and certainty function of interval 

neutrosophic uncertain linguistic variables. Then, the interval neutrosophic uncertain 

linguistic weighted arithmetic averaging operator and interval neutrosophic uncertain 

linguistic weighted geometric averaging operator are developed, and a multiple attribute 

decision making method with interval neutrosophic linguistic information is proposed. 

To the our knowledge, The existing approaches under the neutrosophic linguistic 

environment are not suitable for dealing with MADM problems under single valued 

neutrosophic trapezoid linguistic environment. Indeed, human judgments including 

preference information may be  stated by possible trapezoid linguistic variable which has 

a membership ,indeterminacy and non-membership degree. Therefore, it is necessary to 

pay enough attention on this issue and propose more appropriate methods for dealing 

with MADM, which is also our motivation.  Based on Trapezoid linguistic terms and the 

single valued  neutrosophic sets, in this paper, we define  a new concept called single 

valued  neutrosophic  trapezoid linguistic variable, then  propose score function and  and 

some new aggregation operators, and an approach for dealing with single valued  

neutrosophic  trapezoid linguistic environment in the MADM process. The main 

advantage of the  SVNTrLS is that is composed of trapezoid linguistic term, which is 

generalization case of  SVINLS, a special case of INLS, proposed by J. Ye [18]. 

In order to process incomplete, indeterminate and inconsistent information more 

efficiency and precisely, it is necessary to make a further study on the extended form of 

the single valued  neutrosophic  uncertain linguistic variables by  combining trapezoid 

fuzzy linguistic variables and single valued  neutrosophic set. For example, we can 

evaluate the investment alternatives problem by the linguistic set: S={ (extremely 

low); (very low); (low); (medium); (high); (very high); (extermley 

high)}.Perhaps, we can use the trapezoid fuzzy linguistic [ , , , ], 

( ) to describe the evaluation result, but this is not accurate, 

because it merely provides a linguistic range. In this paper , we  can use single valued  

neutrosophic trapezoid linguistic (SVNNTrL), [ )(xsθ , )(xsρ , )(xsµ , )(xsν ],( )(xTA , )(xI A , )(xFA ) 

to describe the investment problem giving the membership degree, indeterminacy degree, 

and non-membership degree to  [ θs , ρs , µs , νs ]. This is the motivation of our study .As a 
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fact, SVNTrL avoids the information  distortions and losing in decision making process, 

and overcomes the shortcomings of the single valued  neutrosophic linguistic  variables 

[18] and single valued  neutrosophic uncertain linguistic variables [19 ]. 

To  achieve  the  above  purposes,  The remainder of this paper is organized as 

follows: some basic definitions of trapezoid linguistic term set, neutrosophic set, single 

valued neutrosophic set  and single valued neutrosophic uncertain linguistic set are 

briefly reviewed in section 2. In section3, the concept, operational laws, score function, 

accuracy function and certainty function of including  single valued  neutrosophic 

trapezoid linguistic  elements are defined. In Section 4, some  single valued neutrosophic 

trapezoid linguistic aggregation operators are proposed,  such single valued neutrosophic 

trapezoid linguistic  weighted  average  (SVNTrLWAA)  operator,  single valued 

neutrosophic trapezoid linguistic  weighted  average  (SVNTrLWGA) operators , then 

some desirable properties of the proposed operators are investigated. In section 5, we 

develop an approach for  multiple attribute decision making problems  with single valued 

neutrosophic trapezoid  linguistic information based on the proposed operators. In section 

6, a numerical example is given to illustrate the application of the proposed method. The 

paper is concluded in section 7. 

2-PRELIMINARIES 

In the following, we shall introduce some basic concepts related to trapezoidal 

fuzzy linguistic variables, single valued neutrosophic set , single valued neutrosophic 

linguistic sets and single valued neutrosophic uncertain linguistic sets. 

2.1 Trapezoid fuzzy linguistic variables 

A linguistic set is defined as a finite and completely ordered discreet term set, 

=( , ,…, ), where l is the odd value. For example, when l=7,the linguistic term set 

S can be defined as follows: S={ (extremely low); (very 

low); (low); (medium); (high); (very high); (extermley high)} 

Definition 2.1 :[49] 

Let  = { | [0,  -1]}, which is the continuous form of linguistic set S. 

, , , are four linguistic terms in , and  if 

, then the trapezoid linguistic variable is defined as = 

[ , , , ], and  denotes a set of the trapezoid linguistic variables. 
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 In particular , if any two of , , ,  are equal, then  is reduced to triangular fuzzy 

linguistic variable; if any three of , , ,  are equal, then  is reduced to uncertain 

linguistic variable 

2.2 The expected value of trapezoid fuzzy linguistic variable 

Let = ([ θs , ρs , µs , νs ]) be a trapezoid fuzzy linguistic variable, then the expected value 

E( ) of  is defined as: 

E( )=

2.3 Neutrosophic sets 

Definition 2.2 [7] 

Let U be a universe of discourse then the neutrosophic set A is an object having the form  

A = {< x: )(xTA , )(xI A , )(xFA >, x ∈  X }, 

Where the functions )(xTA , )(xI A , )(xFA : U→]
-
0,1+[define respectively the degree of

membership, the degree of indeterminacy, and the degree of non-membership of the 

element x  X to the set A with the condition.  −0 up A(x)  +sup A(x) +sup A(x)  3
+
.

From philosophical point of view, the neutrosophic set takes the value from real standard 

or non-standard subsets of ]
−
0,1

+
[. So instead of ]

−
0,1

+
[ we need to take the interval [0,1]

for  technical applications, because ]
−
0,1

+
[will be difficult to apply in the real applications

such as in scientific and engineering problems. 

2.4 Single valued Neutrosophic Sets 

Definition 2.3 [7] 

Let X be an universe of discourse then the neutrosophic set A is an object having the 

form  

A = {< x: )(xTA , )(xI A , )(xAF >, x ∈ X },

where the functions )(xTA , )(xI A , )(xFA :U→[0,1] define respectively the degree of 

membership , the degree of indeterminacy, and the degree of non-membership of the 

element x  X to the set A with the condition.  

0 ≤  )(xTA + )(xI A + )(xFA ≤ 3 

Definition 2.4 [7] 

 A single valued neutrosophic set A is contained in another single valued neutrosophic 

set B i.e. A ⊆ B if ∀x ∈ U, )(xTA ≤ )(xTB , )(xI A ≥ )(xI B , )(xFA ≥ )(xFB  
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Based on interval neutrosophic set and linguistic variables, J. Ye [18] presented the 

extension form of the linguistic set, i.e, interval neutrosophic linguistic set. The interval 

neutrosophic linguistic set is reduced to single valued neutrosophic linguistic sets if the 

components )(xT L
A = )(xT U

A = )(xTA , )(xI L
A = )(xI U

A = )(xI A and  )(xF L
A = )(xFU

A = )(xFA and is 

defined as follows as follows: 

2.5 Single valued neutrosophic linguistic set 

Based on single valued neutrosophic set and linguistic variables, Ye [18] presented the 

extension form of the linguistic set, i.e., single valued neutrosphic linguistic set, which is 

shown as follows: 

Definition 2.5: [18] A single valued neutrosophic linguistic set A in X can be defined as 

A ={<x, )(xsθ , ( )(xTA , )(xI A , )(xFA )>| x ∈  X} 

Where )(xsθ ∈  , )(xTA   [0.1], )(xI A  [0.1], and )(xFA  [0.1] with the condition 0 ≤

)(xTA + )(xI A + )(xFA ≤ 3 for any x ∈  X. The  function )(xTA , )(xI A  and )(xFA  express, 

respectively, the truth-membership degree, the indeterminacy –membership degree, and 

the falsity-membership degree with values of the element x in X to the   linguistic 

variable )(xsθ . 

Also. Based on interval neutrosophic set and linguistic variables, J. Ye [19] presented the 

extension form of the uncertain linguistic set, i.e., interval neutrosophic uncertain 

linguistic set. The interval neutrosophic uncertain linguistic set is reduced to single 

valued neutrosophic uncertain linguistic sets if the components )(xT L
A = )(xT U

A = )(xTA , 

)(xI L
A  = )(xIU

A  = )(xI A  and )(xF L
A = )(xFU

A = )(xFA and is defined as follows: 

2.6 Single valued neutrosophic uncertain linguistic set. 

Definition2.6:[19] A single valued neutrosophic uncertain linguistic set A in X can be 

defined as 

A ={<x, [ )(xsθ , )(xsρ ],( )(xTA , )(xI A , )(xFA )>: x ∈  X} 

Where )(xsθ , )(xsρ ∈ , )(xTA  ∈  [0.1], )(xI A  ∈  [0.1], and )(xFA  ∈  [0.1] with the condition 

0 ≤ )(xTA + )(xI A + )(xFA ≤ 3 for any x ∈  X. [ )(xsθ , )(xsρ ] is an uncertain linguistic term, 

The  function )(xTA , )(xI A  and )(xFA  express, respectively, the truth-membership degree , 

the indeterminacy –membership degree, and the falsity-membership degree of the 

element x in X belonging to the linguistic term [ )(xsθ , )(xsρ ]. 
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Definition 2.7 Let A ={<x, [ )(xsθ , )(xsρ ], ( )(xTA , )(xI A , )(xFA ) >: x ∈  X} be a SVNULN. 

Then the eight tuple < [ )(xsθ , )(xsρ ],( )(xTA , )(xI A , )(xFA )) > is called an NULV and A can 

be viewed as a collection of NULVs. Thus, the SVNULs can also be expressed as  

A ={<x, [ )(xsθ , )(xsρ ] , ( )(xTA , )(xI A , )(xFA )) >: x ∈  X}  

For any two SVNULVNs 1
~a =< [ )~( 1asθ , )~( 1asρ ], ( )~( 1aT , )~( 1aI , )~( 1aF )> and 2

~a = < 

[ )~( 2asθ , )~( 2asρ ], ( )~( 2aT , )~( 2aI , )~( 2aF )> and 0≥λ , defined the following operational rules: 

21
~~ aa ⊕  =< [ )~()~( 21 aas θθ + , )~()~( 21 aas ρρ + ],(( )~( 1aT + )~( 2aT - )~( 1aT )~( 2aT ), )~( 1aI )~( 2aI , )~( 1aF )~( 2aF )> 

21
~~ aa ⊗ =< [ )~()~( 21 aas θθ × , )~()~( 21 aas ρρ × ], ( )~( 1aT )~( 2aT , ( )~( 1aI + )~( 2aI  - )~( 1aI )~( 2aI ), ( )~( 1aF + )~( 2aF  -

)~( 1aF )~( 2aF )>

1
~aλ =<[ )~( 1a

sλθ , )~( 1a
sλρ ], (1-

λ
))~(1(

1
aT− , λ

))~((
1

aI , λ
))~((

1
aF )> 

λ
1

~a =<[ )~( 1a
s λθ , )~( 1a

s λρ ], ( λ
))~((

1
aT , (1-

λ
))~(1( 1aI− ), (1- λ

))~(1(
1

aF− )> 

Definition 2.8 Let ia~ =< [ , ], ( )(
~

iT a , )(
~

iI a , )(
~

iF a )> be a SVNULN, the expected 

function E( ia~ ), the accuracy H( ia~ )  and the certainty C( ia~ )  are define  as follows:

E ( a~ ) =

2

))~()~(())~()~()~(2(
3

1
aaSaFaIaT ρθ +×−−+

= 
))~()~(())~()~()~(2(

6

1
aaaFaIaT

S
ρθ +×−−+

 

H ( a~ ) =
2

))~()~(())~()~(( aaSaFaT ρθ +×−

=
))~()~(())~()~((

2

1
aaaFaT

S
ρθ +×−

 

C ( a~ ) =
2

))~()~(())~(( aaSaT ρθ +×

=
))~()~(())~((

2

1
aaaT

S
ρθ +×

 

Assume that  ia~  and ja~  are two SVNULNs, they can be compared by the following rules:
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1.If  E ( ia~ ) > E ( ja~ ), then ia~  > ja~ ;

2.If E ( ia~ ) = E ( ja~ ), then

If H ( ia~ ) > H ( ja~ ), then ia~  > ja~ ,

If H ( ia~ ) = H ( ja~ ), then ia~  = ja~ ,

H ( ia~ ) < H ( ja~ ), then ia~ < ja~ ,

3- SINGLE VALUED NEUTROSOPHIC TRAPEZOID LINGUISTIC SETS. 

Based on the concept of  SVNS and trapezoid linguistic variable, we extend the 

SVNLS to define the SVNTrLS and SVNTrLNs. The operations and ranking method of 

SVNTrLNs are also given in this section 

Definition 3.1  Let X be a finite universal set and  [ )(xsθ , )(xsρ , )(xsµ , )(xsν ]∈  be trapezoid 

linguistic variable. A SVNTrLs in X is defined as 

A ={<x, [ )(xsθ , )(xsρ , )(xsµ , )(xsν ], ( )(xTA , )(xI A , )(xFA )>| x ∈  X}  

Where )(xsθ , )(xsρ , )(xsµ , )(xsν ∈  , )(xTA  ∈  [0.1], )(xI A  ∈  [0.1], and )(xFA ∈  [0.1] with the 

condition 0 ≤  )(xTA + )(xI A + )(xFA ≤ 3 for any x ∈X. [ )(xsθ , )(xsρ , )(xsµ , )(xsν ] is a trapezoid 

linguistic term, The  function )(xTA , )(xI A and )(xFA express, respectively, the truth-

membership degree , the indeterminacy –membership degree, and the falsity-membership 

degree of the element x in X belonging to the linguistic term [ )(xsθ , )(xsρ , )(xsµ , )(xsν ]. 

Definition 3.2 Let A ={<x, [ )(xsθ , )(xsρ , )(xsµ , )(xsν ],( )(xTA , )(xI A , )(xFA ) >: x ∈  X} be an 

SVNTrLN. Then the eight tuple < [ )(xsθ , )(xsρ , )(xsµ , )(xsν ], ( )(xTA , )(xI A , )(xFA ) > is called 

an SVNTrLV and A can be viewed as a collection of SVNTrLV s. Thus, the SVNTrLVs 

can also be expressed as  

A ={<x, [ )(xsθ , )(xsρ , )(xsµ , )(xsν ], ( )(xTA , )(xI A , )(xFA ) >: x ∈  X}[ )~( 1asθ , )~( 1asρ , )~( 1asµ , )~( 1asν ] 

Definition 3.3 Let 1
~a =< [ )~( 1asθ , )~( 1asρ , )~( 1asµ , )~( 1asν ],  ( )~( 1aT , )~( 1aI , )~( 2aF )> and 2

~a ={<x, 

[ )~( 2asθ , )~( 2asρ , )~( 2asµ , )~( 2asν ],  ( )~( 2aT , )~( 2aI , )~( 2aF )> be two SVNTrLVs and 0≥λ ,then the 

operational laws of SVNTrLVs are defined as follows:  

1. 21
~~ aa ⊕  =< [ )~()~( 21 aas θθ + , )~()~( 21 aas ρρ + , )~()~( 21 aas µµ + , )~()~( 21 aas νν + ],  (( )~( 1aT + )~( 2aT -

)~( 1aT )~( 2aT ), )~( 1aI )~( 2aI ,  )~( 1aF )~( 2aF )> 
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2. 21
~~ aa ⊗ =< [ )~()~( 21 aas θθ × , )~()~( 21 aas ρρ × , )~()~( 21 aas µµ × , )~()~( 21 aas νν × ],  ( )~( 1aT )~( 2aT , ( )~( 1aI + )~( 2aI  -

)~( 1aI )~( 2aI ), ( )~( 1aF + )~( 2aF  - )~( 1aF )~( 2aF )> 

3. 1
~aλ =<[ )~( 1a

sλθ , )~( 1a
sλρ , )~( 1a

sλµ , )~( 1a
sλν ],((1-

λ
))~(1(

1
aT− , λ

))~((
1

aI , λ
))~((

1
aF )> 

4. λ
1

~a =<[ )~( 1a
s λθ , )~( 1a

s λρ , )~( 1a
s λµ , )~( 1a

s λν ] , ( λ
))~((

1
aT , (1-

λ
))~(1( 1aI− ), (1- λ

))~(1(
1

aF− )> 

Obviously, the above operational results are still SVNTrLVs. 

Theorem3.4: Let 1
~a =<[ )~( 1asθ , )~( 1asρ , )~( 1asµ , )~( 1asν ], ( )~( 1aT , )~( 1aI , )~( 2aF )> and

2
~a =<[ )~( 2asθ , )~( 2asρ , )~( 2asµ , )~( 2asν ],( )~( 2aT , )~( 2aI , )~( 2aF )> be any two  single valued 

neutrosophic trapezoid linguistic variables, and  , , 0, then the characteristics of 

single valued neutrosophic trapezoid linguistic variables are shown as follows: 

1. 1
~a  2

~a  = 2
~a  1

~a

2. 1
~a  2

~a = 2
~a  1

~a

3. (  2
~a )=

4. =( + ) 1
~a ; 

5. = ; 

6. = 

Theorem 3.4 can be easily proven according to definition 3.3  (omitted). 

To rank SVNTrLNs, we define the score function, accuracy function and certainty 

function of an SVNTrLN based on [7, 49], which are important indexes for ranking 

alternatives in decision-making problems. 

Definition 3.5. a~ =<[ )~(asθ , )~(asρ , )~(asµ , )~(asν ],  ( )~(aT  , )~(aI  , )~(aF )> be a  SVNTrLV. Then, 

the score function, accuracy function and certainty function of a SVNTrLN a~  are 

defined, respectively, as follows: 

E( a~ )=

4

))~()~()~()~(())~()~()~(2(
3

1
aaaaSaFaIaT νµρθ +++×−−+

=
))~()~()~()~(())~()~()~(2(

12

1
aaaaaFaIaT

S
νµρθ +++×−−+

(1) 

Florentin Smarandache (ed.) Collected Papers, VII

57



H( a~ )=
4

))~()~()~()~(())~()~(( aaaaSaFaT νµρθ +++×−

=
))~()~()~()~(())~()~((

4

1
aaaaaFaT

S
νµρθ +++×−

(2)

C( a~ ) =
4

))~()~()~()~(())~(( aaaaSaT νµρθ +++×

=
))~()~()~()~(())~((

4

1
aaaaaT

S
νµρθ +++×

(3)

Based on definition 3.5, a ranking method between SVNTrLVs can be given as follows. 

Definition 3.6 Let 1
~a  and 2

~a  be two SVNTrLNs. Then, the ranking method can be 

defined as follows: 

If E ( 1
~a ) > E ( 2

~a ), then 1
~a  > 2

~a

If E ( 1
~a ) = E ( 2

~a ) and H ( 1
~a ) > H ( 2

~a ), then 1
~a  > 2

~a , 

If E( 1
~a ) = E( 2

~a ) and H( 1
~a ) = H( 2

~a ) and C( 1
~a ) > C( 2

~a ),then 1
~a  > 2

~a , 

If E( 1
~a ) = E( 2

~a ) and H( 1
~a ) = H( 2

~a ) and C( 1
~a ) = C( 2

~a ),then 1
~
a = 2

~a , 

4. SINGLE VALUED NEUTROSOPHIC TRAPEZOID LINGUISTIC 

AGGREGATION OPERATORS 

Based on the operational laws in definition 3.3, we can propose the following 

weighted arithmetic aggregation operator and weighted geometric aggregation operator 

for SVNTrLNs, which are usually utilized in decision making. 

4.1 Single valued neutrosophic trapezoid linguistic weighted arithmetic Averaging 

operator. 

Definition 4.1.  Let ja~ =<[ )( jasθ , )( jasρ , )( jasµ , )( jasν ], (
jaT ,

jaI ,
jaF )> (j=1,2,…,n) be a collection 

of SVNTrLNs. The single valued neutrosophic trapezoid linguistic weighted arithmetic 

averaging average SVNTrLWAA operator can be defined  as follows and 

SVNTrLWAA: 

SVNTrLWAA ( 1
~a , 2

~a ,…, na~ ) = ∑
=

n

j

jj a
1

~ω (4) 
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 Where, = is the weight vector of ja~  (j= 1,2,…,n),  ∈  [0,1]and  ∑
=

n

j

j

1

ω

=1. 

Theorem 4.2 : ja~ =<[ )~( jasθ , )~( jasρ , )~( jasµ , )~( jasν ], (
jaT~ ,

jaI ~ ,
jaF~ )> (j=1,2,…,n) be a collection of 

SVNTrLNs, Then by Equation (4) and the operational laws in Definition 3.3 , we have 

the following result  

SVNTrLWAA ( 1
~a , 2

~a ,…, na~ )= <[ 
∑

=

n

j

jj a

s

1

)~(θω
,  

∑
=

n

j

jj a

s

1

)~(ρω
, 

∑
=

n

j

jj a

s

1

)~(µω
, 

∑
=

n

j

jj a

s

1

)~(νω
],  (1-

( ) jn
j jaT

ω
∏ = −1 )~(1 , ( ) jn

j jaI
ω

∏ =1 )~( , ( ) jn
j jaF

ω
∏ =1 )~( > (5)      

Where, = is the weight vector of ja~  (j= 1,2,…,n),
j

ω  [0,1] and ∑
=

n

j

j

1

ω

=1. 

Proof 

The proof of  Eq.(5) can be done by means of mathematical induction 

(1) When n=2, then 

1
ω 1

~a  = <[ )~( 11 as θω , )~( 11 as ρω , )~( 11 as µω , )~( 11 as νω ], (1- ( ) 1)~(1 1
ω

aT− , ( ) 1)~( 1
ω

aI , ( ) 1)~( 1
ω

aF > 

2ω 2
~a  = <[ )~( 21 as θω , )~( 22 as ρω , )~( 12 as µω , )~( 22 as νω ], (1- ( ) 2)~(1 2

ω
aT− , ( ) 2)~( 2

ω
aI , ( ) 2

2)~(
ω

aF > 

Thus, 

SVNTrLWAA ( 1
~a , 2

~a ) = 
1

ω 1
~a  ⊕  

2ω 2
~a

=< [
∑

=

2

1

)~(

j

jj a

s
θω

, 
∑

=

2

1

)~(

j

jj a

s
ρω

, 
∑

=

2

1

)~(

j

jj a

s
µω

, 
∑

=

2

1

)~(

j

jj a

s
νω

], ( (1- 1))~(1( 1
ω

aT− +1- 2))~(1( 2
ω

aT− – (1-

1))~(1( 1
ω

aT− ) (1- 2))~(1( 2
ω

aT− ), 1))~(( 1
ω

aI 2))~(( 2
ω

aI , 1))~(( 1
ω

aF 2))~(( 2
ω

aF > 

= <[
∑

=

2

1

)~(

j

jj a

s
θω

, 
∑

=

2

1

)~(

j

jj a

s
ρω

, 
∑

=

2

1

)~(

j

jj a

s
µω

, 
∑

=

2

1

)~(

j

jj a

s
νω

], ((1- 1))~(1( 1
ω

aT− ) (1- 2))~(1( 2
ω

aT− ) , 

( ) j

j jaF
ω

∏ =
2

1 )~( , ( ) j

j jaF
ω

∏ =
2

1 )~( > (6) 

(2) When n=k, by applying Eq.(5) , we get 
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SVNTrLWAA ( 1
~a , 2

~a ,…, ka~ )=<[
∑

=

k

j

jj a

s

1

)~(θω
, 

∑
=

k

j

jj a

s

1

)~(ρω
, 

∑
=

k

j

jj a

s

1

)~(µω
,

∑
=

k

j

jj a

s

1

)~(νω
],  (1-

( ) jk
j jaT

ω
∏ −=1 )~(1 ,  ( ) jk

j jaI
ω

∏ =1 )~( , ( ) jk
j jaF

ω
∏ =1 )~( )> (7) 

(3) When n=k+1, by applying Eq.(6) and Eq.(7) , we can get 

SVNTrLWAA ( 1
~a , 2

~a ,…, ka~ , 1
~

+ka ) =

<[
∑

+

=
+++

1

1

11 )~()~(
k

j

kkjj aa

s
θωθω

,
∑

+

=
+++

1

1

11 )~()~(
k

j

kkjj aa

s
ρωρω

,
∑

+

=
+++

1

1

11 )~()~(
k

j

kkjj aa

s
µωµω

,
∑

+

=
+++

1

1

11 )~()~(
k

j

kkjj aa

s
νωνω

],([1- 

( ) jk
j jaT

ω
∏ −=1 )~(1 +1- 1))~(1( 1

+
+− k

kaT
ω  –(1- ( ) jk

j jaT
ω

∏ −=1 )~(1 ) (1- ( ) 1

1 1)~(1 +
∏ = +− kk

j kaT
ω

), 

( ) jk
j jaI

ω
∏ +

=
1
1 )~( , ( ) jk

j jaF
ω

∏ +
=

1
1 )~( >

=<[
∑

+

=

1

1

)~(
k

j

jj a

s
θω

,  
∑

+

=

1

1

)~(
k

j

jj a

s
ρω

, 
∑

+

=

1

1

)~(
k

j

jj a

s
µω

,  
∑

+

=

1

1

)~(
k

j

jj a

s
νω

],  (1- ( ) jk
j jaT

ω
∏ +

= −1
1 )~(1 ,  ( ) jk

j jaI
ω

∏ +
=

1
1 )~( ,

( ) jk
j jaF

ω
∏ +

=
1
1 )~( )>

Therefore, considering the above results, we have Eq.(5) for any. This completes the 

proof. 

Especially when =   , then SVNTrLWAA  operator reduces to a 

neutrosophic trapezoid linguistic arithmetic averaging operator for SVNTrLVs. 

It is obvious that the SVNTrLWAA  operator satisfies the following properties: 

(1) Idempotency : Let ja~  (j=1,2,…,n) be a collection of SVNTrLVs. If ja~

(j=1,2,…,n) is equal, i.e ja~  = a~  for j=1,2,…,n, then

NTrFLWAA ( 1
~a , 2

~a ,…, na~ )= a~ .

(2) Boundedness: Let ja~  (j=1,2,…,n) be a collection of SVNTrLVs and

min
~a = min( 1

~a , 2
~a ,…, na~ ) and max

~a = max( 1
~a , 2

~a ,…, na~ )   for j=1,2,…,n,  min
~a  ≤

SVNTrLWAA( 1
~a , 2

~a ,…, na~ )   ≤  max
~a then  be a collection of SVNTrLVs. 

(3) Monotoncity : Let ja~  (j=1,2,…,n) be a collection of SVNTrLVs. If  for 

j= 1,2,…,n.Then SVNTrLWAA( 1
~a , 2

~a ,…, na~ ) ≤ SVNTrLWAA(  ,  ,…,  ). 
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(1) Since ja~  = a~  for j=1,2,…n, we have

SVNTrLWAA( 1
~a , 2

~a ,…, na~ ) = <[
∑

=

n

j

jj a

s

1

)~(θω
,  

∑
=

n

j

jj a

s

1

)~(ρω
, 

∑
=

n

j

jj a

s

1

)~(µω
,  

∑
=

n

j

jj a

s

1

)~(νω
],  (1-

( ) jn
j jaT

ω
∏ = −1 )~(1 , ( ) jn

j jaI
ω

∏ =1 )~( , ( ) jn
j jaF

ω
∏ =1 )~( >     

= <[
∑

=

n

j

ja

s

1

)~( ωθ
,  

∑
=

n

j

ja

s

1

)~( ωρ
, 

∑
=

n

j

ja

s

1

)~( ωµ
, 

∑
=

n

j

ja

s

1

)~( ων
],  (1-

∑
− =

n

j

j

aT 1)~(1(

ω

), 
∑

=

n

j

j

aI 1))~((

ω

,
∑

=

n

j

j

aF 1))~((

ω

> 

=<[ )~(asθ , )~(asρ , )~(asµ , )~(asν ],( aT~ , aI~ , aF~ )> 

= a~

(2)  Since min
~a  = min( 1

~a , 2
~a ,…, na~ ) and max

~a  = max( 1
~a , 2

~a ,…, na~ )   for j=1,2,…,n, 

there is   min
~a ≤ ≤  max

~a . Thus, there exist is   min
~a ≤

 max
~a . This is  min

~a  ≤ . i.e.,  min
~a  SVNTrLWAA 

( 1
~a , 2

~a ,…, na~ )  max
~a . 

(3) Since ja
~

≤ ∗
ja

~
for j= 1,2,…,n. There is   Then 

INTRLWAA( 1
~a , 2

~a ,…, na~ ) ≤  SVNTrLWAA( ∗
1

~
a  , ∗

2
~
a  ,…, ∗

na
~  ). 

Thus,  we complete the proofs of these properties. 

4.2 Single valued neutrosophic trapezoid linguistic weighted geometric averaging 

operator 

Definition 4.3.  Let : ja~ =<[ )~( jasθ , )~( jasρ , )~( jasµ , )~( jasν ], (
jaT~ ,

jaI ~ ,
jaF~ )>  (j=1,2,…,n) be a 

collection of SVNTrLNs. The single valued neutrosophic trapezoid linguistic weighted 

geometric averaging SVNTrLWGA operator can be defined  as follows: 

 SVNTrLWGA: 

SVNTrLWGA ( 1
~a , 2

~a ,…, na~ ) =  ∏ =
n

j
j

ja
1

~ ω (8) 

 Where, = is the weight vector of ja~  (j= 1,2,…,n), [0,1] and  

 =1. 

Proof. 
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Theorem 4.4 : : ja~ =<[ )~( jasθ , )~( jasρ , )~( jasµ , )~( jasν ], (
jaT~ ,

jaI ~ ,
jaF~ )> (j=1,2,…,n) be a collection

of SVNTrLS, Then by Equation (8) and the operational laws in Definition 3.3 , we have 

the following result 

SVNTrLWGA ( 1
~a , 2

~a ,…, na~ )=<[
∏ =

n

j j
j a

s
1

)~(
ω

θ
, 

∏ =
n

j j
j

i a
s

1
)~(

ωρ
, 

∏ =
n

j j
j

i a
s

1
)~(

ωµ
 , 

∏ =
n

j j
j a

s
1

)~(
ω

ν
], 

( ( ) jn
j jaT

ω
∏ =1 )~( ,1- ( ) jn

j jaI
ω

∏ = −1 )~(1 , 1- ( ) jn
j jaF

ω
∏ = −1 )~(1 > (9) 

Where, =  is the weight vector of ja~  (j= 1,2,…,n),  [0,1]and 

=1. 

By  a similar proof manner of theorem 4.2, we can also give the proof of theorem 4.4 

(omitted). 

Especially when = , then SVNTrLWGA operator reduces to a single valued 

neutrosophic trapezoid linguistic geometric averaging operator for SVNTrLVs. 

It is obvious that the SVNTrLWGA  operator satisfies the following properties: 

(1) Idempotency : Let ja~  (j=1,2,…,n) be a collection of SVNTrLVs. If ja~

(j=1,2,…,n) is equal, i.e ja~  = a~  for j=1,2,…,n, then

SVNTrLWGA ( 1
~a , 2

~a ,…, na~ )= a~ .

(2) Boundedness: Let ja~  (j=1,2,…,n) be a collection of SVNTrLVs and

min
~a  = min( 1

~a , 2
~a ,…, na~ ) and max

~a  = max( 1
~a , 2

~a ,…, na~ )   for j=1,2,…,n,   min
~a ≤

SVNTrFLWGA ( 1
~a , 2

~a ,…, na~ )   ≤  max
~a  then  be a collection of SVNTrLVs. 

(3) Monotonity : Let ja~  (j=1,2,…,n) be a collection of SVNTrLVs. If ja
~

≤ ∗
ja

~
 for j= 

1,2,…,n. Then SVNTrLWGA ( 1
~a , 2

~a ,…, na~ ) ≤  SVNTrLWGA ( ∗
1

~
a  , ∗

2
~
a  ,…, ∗

na
~

 ). 

Since the proof process of these properties is similar to the above proofs, we do not 

repeat it here. 

5.DECISION –MAKING METHOD BY SVNTrLWAA AND SVNTrLWGA 

OPERATORS. 

This section presents a method for multi attribute decision making problems based 

on the SVNTrLWAA  and SVNTrLWGA operators and the score, accuracy, and 
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certainty functions of  SVNTrLVs under single valued neutrosophic trapezoid linguistic 

variable environment. 

In a multiple attribute decision-making problem, assume that 

A={ , , ,…, } is a setoff alternatives and C ={ 1C , ,,…, } is a set of attributes. 

The weight vector of the attributes  (j=1,2,…,n), entered by the decision maker, is = 

 where   [0,1]and  =1.In the decision process, the evaluation 

information of the alternatives iA  (i=1,2,…,m) with respect to the attribute jC  

(j=1,2,…,n)is represented by the form of an SVNTrLS: 

iA ={[ )( ji Csθ , )( ji Csρ , )( ji Csµ , )( ji Csν ], ( )( jA CT
i

, )( jCAI
i

, )( jA CF
i

) | jC ∈  C  } 

Where [ )( ji Csθ , )( ji Csρ , )( ji Csµ , )( ji Csν  ] ∈  , )( jA CT
i

 ∈  [0.1], )( jA CI
i

 ∈  [0.1], and )( jA CF
i

 

[0.1] with the condition 0 ≤ )( jA CT
i

 + )( jA CI
i

 + )( jA CF
i

 ≤ 3 for j=1,2,..,n and i=1,2,…,m. 

For convenience, an SVNTrLV is a SVNTrLS is denoted by 

ijd
~

= <[
ij

sθ , 
ij

sρ , 
ij

sµ ,
ij

sν ], ( ijT , ijI , ijF )> (i=1=1,2,..m) j=1,2,…,n) thus, one can establish a 

single   valued neutrosophic trapezoid  linguistic decision matrix D = . 

Using the  SVNTrLWAA or SVNTrLWGA operator, we now formulate an 

algorithm to solve multiple attribute decision making problem with single valued 

neutrosophic linguistic information. 

Step1 : Calculate the individual overall value of the SVNTrLV id
~

 for  (i=1,2,…,m) by 

the following aggregation formula: 

id
~

= <[
i

sθ , 
i

sρ , 
i

sµ ,
i

sν ], ( iT , iI , iF )> 

    = SVNTrLWAA ( 1

~
id , 2

~
id ,…, ind

~
) 

    = <[
∑

=

n

j

ijj

s

1

θω
,  

∑
=

n

j

ijj

s

1

ρω
, 

∑
=

n

j

ijj

s

1

µω
,  

∑
=

n

j

ijj

s

1

νω
],  (1- ( ) jn

j ijT
ω

∏ = −1 1 ,  ( ) jn
j ijI

ω
∏ =1 , ( ) jn

j ijF
ω

∏ =1 )>       (10) 

id
~

= <[
i

sθ , 
i

sρ , 
i

sµ ,
i

sν ], ( iT , iI , iF )> 

 = SVNTrLWGA ( 1

~
id , 2

~
id ,…, ind

~
)= <[

∏ =
n

j
j

ij

s
1

ωθ
, 

∏ =
n

j
j

ij

s
1

ωρ
, 

∏ =
n

j
j

ij

s
1

ωµ
, 

∏ =
n

j
j

ij

s
1

ων
], 

( ( ) jn
j ijT

ω
∏ =1 ,1- ( ) jn

j ijI
ω

∏ = −1 1 ,  1- ( ) jn
j ijF

ω
∏ = −1 1  > (11)

Florentin Smarandache (ed.) Collected Papers, VII

63



Step 2 :Calculate the score function E( id
~

) (i=1,2,…,m) (accuracy function H( id
~

) and 

certainty function C( id
~

) by applying Eq,(1) (Eqs.(2) and (3)). 

Step 3 :Rank the alternatives according to the values of E( id
~

) (H( id
~

) and C( id
~

)) 

((i=1,2,…,m) by the ranking method in Definition 3.5, and then select the best one(s). 

Step 4 : End 

6.ILLUSTRATIVE EXAMPLE

An illustrative example about investment alternatives problem adapted from [18] 

is used to demonstrate the applications of the proposed decision –making method under 

single valued neutrosophic trapezoid linguistic environment. There is an investment 

company, which wants to invest a sum of money in the best option. To invest the money, 

there is a panel with four possible alternatives: (1) 1A  is car company; (2) 2A  is food 

company; (3) 3A  is a computer company; (4) 4A  is an arms company. The investement 

company must take a decision according to the three attributes: (1) 1C  is the risk; (2) 

2C  is the growth; (3) 3C  is a the environmental impact. The weight vector of the 

attributes is = .The expert evaluates the four possible alternatives of 

(i=1,2,3,4) with respect to the three attributes of jC  (j=1,2,3), where the evaluation 

information is expressed by the form of SVNTrLV values under the linguistic term set 

S={ =extremely poor, =very poor, = poor, = medium, = good, = very good, 

= extremely good}. 

The evaluation information of an alternative iA  (i=1,2, 3,4) with respect to an 

attribute jC  (j=1, 2, 3) can be given by the expert.  For example, the SVNTrL value of 

an alternative 1A  with respect to an attribute 1C  is given as < ]3.5,3,7.2,4.1[ ssss  (0.4 ,0.2, 

0.3)> by the expert, which indicates that the mark of the alternative 1A  with respect to 

the attribute 1C   is about the  trapezoid linguistic value ]3.5,3,7.2,4.1[ ssss  with the satisfaction 

degree 0.4 indeterminacy degree 0.2, and dissatisfaction degree  0.3, similarly, the four 

possible alternatives with respect to the three attributes can be evaluated by the expert, 

thus we can obtain the following  single valued neutrosophic trapezoid linguistic decision 

matrix: 

D= nmijd ×)(
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<
<

<
<

<
<

<<<
<<<

)4.0,7.0,6.0(],3.5,3.4,8.1,2.1([

)5.0,3.0,6.0(],3.5,3,7.2,4.1([

)4.0,3.0,7.0(],4.5,4,9.2,7.1([

)4.0,5.0,6.0(],5.5,4.4,8.2,8.1([

)5.0,2.0,8.0(],9.5,7.4,1.3,5.1([

)4.0,2.0,6.0(],7.5,5.4,2.3,1.2([

)5.0,6.0,6.0(],4.5,4.1,1.2,1.1([)4.0,5.0,4.0(],5.5,5.4,5.2,5.1([)4.0,3.0,4.0(],1.5,8.3,8.2,4.1([

)4.0,4.0,3.0(],1.5,8.3,2.2,8.0([)4.0,2.0,4.0(],4.5,4.4,3.2,3.1([)4.0,3.0,7.0(],5.5,5.4,4.3,8.1([

ssss

ssss

ssss

ssss

ssss

ssss

ssssssssssss

ssssssssssss

The  proposed decision –making method can handle this decision –making 

problem according to the following calculation steps: 

Step1: By applying Eq.(10), we can obtain the individual overall value of the SVNTrLV 

id
~

 for iA  (i=1,2,.3,4). 

1

~
d =<[ 275.1s , 645.2s , 195.4s , 315.5s ],(0.4933, 0.1397, 0.400)> 

2

~
d =<[ 305.1s , 445.2s , 015.3s , 320.5s ],(0.4898, 0.2612, 0.4373)> 

3

~
d =<[ 745.1s , 900.2s , 875.3s , 490.5s ],(0.600, 0.2460, 0.4373)> 

4

~
d =<[ 430.1s , 530.2s , 365.4s , 535.5s ],(0.7079, 0.4379, 0.4325)> 

Step 2: By applying Eq.(1) , we can obtain the score value of E( 1

~
d ) (i=1,2,3,4) 

E( 1

~
d )= 1931.2s , E( 2

~
d ) = 8040.1s ,  E( 3

~
d )= 2378.2s  , E( 4

~
d )= 1224.2s  

Step 3 : since E( 3

~
d )  E( 4

~
d )  E( 1

~
d )  E( 2

~
d ), the ranking order of four alternatives . 

Therefore, we can see that the alternative 3A   is the best choice among all the alternative. 

On the other hand, we can also utilize the  SVNTrLWGA operator as the following 

computational steps: 

Step 1:By applying Eq.(11) , we can obtain the individual overall value of the 

SVNTrLV  for iA  (i=1,2,.3,4) 

1

~
d =<[ 200.1s , 591.2s , 182.4s , 312.5s ],(0.4337, 0.3195, 0.4000)> 

2

~
d =<[ 293.1s , 426.2s , 659.2s , 317.5s ],(0.4704, 0.4855, 0.4422)> 

3

~
d =<[ 718.1s , 892.2s , 805.3s , 487.5s ],(0.6, 0.3527, 0.4422)> 
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4

~
d =<[ 416.1s , 453.2s , 356.4s , 528.5s ],(0.690, 0.477, 0.437)> 

Step2: By applying Eq.(1), we can obtain the score value of E( id
~

) (i=1,2,3,4) 

E( 1

~
d )= 8978.1s   , E( 2

~
d ) = 5035.1s ,  E( 3

~
d )= 1146.2s  , E( 4

~
d )= 0354.2s

Step 3 : since E( 3

~
d )  E( 4

~
d )  E( 1

~
d )  E( 2

~
d ), the ranking order of four alternatives . 

Therefore, we can see that the alternative 3A  is the best choice among all the alternative. 

Obviously, we can see that the above two kinds of ranking orders  of the alternatives are 

the same and the most desirable choice is the alternative 3A . 

7-CONCLUSION 

In this paper, we have proposed some single valued neutrosophic trapezoid  

linguistic operators such as single valued neutrosophic trapezoid linguistic weighted 

arithmetic averaging SVNTrLWAA and single valued neutrosophic trapezoid linguistic 

weighted geometric averaging SVNTrLWGA operator. We have studied some desirable 

properties of the proposed operators, such as commutativity, idempotency and 

monotonicity, and applied the SVNTrLWAA and SVNTrLWGA operator to decision 

making with single valued neutrosophic trapezoid linguistic information. Finally, an 

illustrative example has been given to show the developed operators. 
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Abstract— The selection of shortest path problem is one the 
classic problems in graph theory. In literature, many algorithms 
have been developed to provide a solution for shortest path 
problem in a network.  One of common algorithms in solving 
shortest path problem is Dijkstra’s algorithm. In this paper, 
Dijkstra’s algorithm has been redesigned to handle the case in 
which most of parameters of a network are uncertain and given 
in terms of neutrosophic numbers. Finally, a numerical example 
is given to explain the proposed algorithm. 

Keywords— Dijkstra’s algorithm; Single valued neutrosophic 
number; Shortest path problem; Network. 

I. INTRODUCTION 

To express indeterminate and inconsistent information which 
exist in real world, Smarandache [1] originally proposed the 
concept of a neutrosophic set from a philosophical point of 
view. The concept of the neutrosophic set (NS for short) is 
powerful mathematical tool which generalizes the concept of 
classical sets, fuzzy sets [3], intuitionistic fuzzy sets [4], 
interval-valued fuzzy sets [5] and interval-valued intuitionistic 
fuzzy sets [6]. The concept of the neutrosophic has three basic 
components  such that a truth-membership (T), indeterminacy-
membership (I) and a falsity membership (F), which are 
defined independently of one another. But a neutrosophic set 
So will be more difficult to apply it in real scientific and 
engineering areas. Thus , Wang et al. [7] proposed the concept 
of single valued neutrosophic set (for short SVNS), which is 
an instance of a neutrosophic set, whose functions of truth, 
indeterminacy and falsity lie in [0, 1] and provided the set 
theoretic operators and various properties of SVNSs.  Some of 
the recent research works on neutrosophic set theory and its 
applications in various fields can be found in [8]. In addition, 
Thamaraiselvi and Santhi [9] introduced a mathematical 
representation of a transportation problems in neutrosophic 

environment based  on single valued trapezoidal  neutrosophic 
numbers and also provided the solution method. The operations 
on neutrosophic sets and the ranking methods are presented in 
[10] 
The shortest path problem (SPP) is one of the most 
fundamental and well-known combinatorial problems that 
appear in various fields of science and engineering, e.g, road 
networks application, transportation and other applications. In 
a network, the shortest path problem aims at finding the path 
from one source node to destination node with minimum 
weight, where some weight is attached to each edge 
connecting a pair of nodes. The edge length of the network 
may represent the real life quantities such as, time, cost, etc. In 
conventional shortest path problem, it is assumed that decision 
maker is certain about the parameters (distance, time etc) 
between different nodes. But in real life situations, there 
always exist uncertainty about the parameters between 
different nodes. For this purpose, many algorithms   have been 
developed to find the shortest path under different types of 
input data, including fuzzy set, intuitionistic fuzzy sets, vague 
sets [11-15]. One of the most used methods to solve the 
shortest path problem is the Dijkstra’s algorithm [16]. 
Dijkstra’s algorithm solves the problem of finding the shortest 
path from a point in a graph (the source) to a destination.  
Recently, numerous papers have been published on 
neutrosophic graph theory [17-23]. In addition, Broumi et al. 
[24-26] proposed some algorithms to find the shortest path of 
a  network (graph) where edge weights are characterized  by a 
neutrosophic numbers including single valued neutrosophic 
numbers, bipolar neutrosophic numbers and interval valued 
neutrosophic numbers.  
The main purpose of this paper is to propose a new version of 
Dijkstra algorithm for solving shortest path problem on a 
network where the edge weights are characterized by a single 
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valued neutrosophic numbers. The proposed method is more 
efficient due to the fact that the summing operation and the 
ranking of SVNNs can be done in a easy and straight manner.  
The rest of the article is organized as follows. Section 2 
introduces some basic concepts of neutrosophic sets, single 
valued neutrosophic sets. In Section 3, a network terminology 
is presented, In section 4, we propose the new version of 
Dijkstra’algorithm for solving the shortest path with 
connected edges in neutrosophic data. Section 5 illustrates a 
practical example which is solved by the proposed algorithm. 
Conclusions and further research are given in section 6.  

II. PRELIMINARIES

In this section, some basic concepts and definitions on 
neutrosophic sets and single valued neutrosophic sets are 
reviewed from the literature. 

Definition 2.1 [1]. Let X  be a space of points (objects) with 
generic elements in X denoted by x;  then the neutrosophic set 
A (NS A) is an object having the form A = {< x: ( )AT x , 

( )AI x , ( )AF x >, x ∈  X}, where the functions T, I, F: 
X→]−0,1+[define respectively the truth-membership function, 
an indeterminacy-membership function, and a falsity-
membership function of the element x ∈  X to the set A with 
the condition: 

   −0 ≤ ( )AT x + ( )AI x + ( )AF x ≤ 3+.    (1) 

The functions ( )AT x , ( )AI x  and ( )AF x  are real standard or 
nonstandard subsets of ]−0,1+[. 
Since it is difficult to apply NSs to practical problems, Wang 
et al. [7] introduced the concept of a SVNS, which is an 
instance of a NS and can be used in real scientific and 
engineering applications. 

Definition 2.2 [7]. Let X  be a space of points (objects) with 
generic elements in X denoted by x. A single valued 
neutrosophic set A (SVNS A) is characterized by truth-
membership function ( )AT x , an indeterminacy-membership 

function ( )AI x , and a falsity-membership function ( )AF x . 

For each point x in X ( )AT x , ( )AI x , ( )AF x ∈  [0, 1]. A 
SVNS A can be written as 

 A = {< x: ( )AT x , ( )AI x , ( )AF x >, x ∈X}        (2) 

Definition 2.3 [10]. Let 1 1 1 1( , I ,F )A T= and 2 2 2 2( , I ,F )A T=
be two single valued neutrosophic number. Then, the 
operations for SVNNs are defined as below; 

i. 1 2 1 2 1 2 1 2 1 2, I I ,F FA A T T T T⊕ =< + − >  (3) 
ii. 1 2 1 2 1 2 1 2 1 2 1 2, I I I I ,F F F F )A A T T⊗ =< + − + − >   (4) 

iii. 1 1 1 11 (1 ) ), I , )A T Fλ λ λλ =< − − >                  (5) 

iv. 1 1 1 1( ,1 (1 ) ,1 (1 ) )A T I Fλ λ λ λ= − − − − where 0λ >  (6)                         

Definition 2.4 [10]. 0n may be defined as follow: 

         0 { x, (0,1,1) : x X}n = < > ∈                                (7) 
A convenient method for comparing of single valued 
neutrosophic number is by use of score function. 
Definition 2.5 [11]. Let 1 1 1 1( , I ,F )A T=  be a single valued

neutrosophic number. Then, the score function 1( )s A , 

accuracy function 1( )a A and certainty function 1( )c A of a
SVNN are defined as follows: 

(i) 1 1 1
1

2( )
3

T I Fs A + − −
=  (8)  

(ii) 1 1 1( )a A T F= −   (9) 

(iii) 1 1c( )A T=    (10) 

Definition 2.6 [11]. Suppose that 1 1 1 1( , I ,F )A T=

and 2 2 2 2( , I , F )A T=   are two single valued neutrosophic
numbers. Then, we define a ranking method as follows:  

i. If 1 2( ) ( )s A s A , then 1A  is greater than 2A , that is, 

1A is superior to 2A , denoted by 1 2A A

ii. If  1 2( ) ( )s A s A= ,and  1 2( ) ( )a A a A then 1A  is 
greater than 2A , that is, 1A is superior to 2A , denoted 
by 1 2A A

iii. If  1 2( ) ( )s A s A= , 1 2( ) ( )a A a A= , and 1 2c( ) ( )A c A

then 1A  is greater than 2A , that is, 1A is superior
to 2A , denoted by 1 2A A

iv. If  1 2( ) ( )s A s A= , 1 2( ) ( )a A a A= , and 1 2c( ) ( )A c A=

then 1A  is equal to 2A , that is, 1A is indifferent to 2A ,
denoted by 1 2A A=

III. NETWORK TERMINOLOGY

Consider a directed network G = (V, E) consisting of a finite 
set of nodes V={1, 2,…,n} and a set of m directed edges 
E⊆ V x V.  Each edge is denoted by an ordered pair (i, j) 
where i, j ∈  V and i j≠ . In this network, we specify two 
nodes, denoted by  s and t, which are the source node and the 
destination node, respectively. We define a path as a sequence 

ijP ={i= 1i , 1 2( , )i i , 2i ,…, 1li − , 1( , )l li i− , li =j} of alternating 

nodes and edges. The existence of at least one path siP in G 
(V, E) is assumed for every i ∈V-{s}. 

ijd  Denotes a single valued neutrosophic number associated 
with the edge (i ,j), corresponding to the length necessary to 
traverse (i, j) from i to j. In real problems, the lengths 
correspond to the cost, the time, the distance, etc. Then 
neutrosophic distance along the path P is denoted as d(P) is 
defined as  
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 d(P)=
(i, j P)

ijd
∈
∑     (14)

Remark: A node i is said to be predecessor node of node j if 
(i) Node i is directly connected to node j. 
(ii) The direction of path connecting node i and j from i to j. 

IV.  SINGLE VALUED NEUTROSOPHIC DIJIKSTRA ALGORITHM

In this subsection, we slightly modified the fuzzy Dijkstra 
algorithm adapted from [27] in order to deal on a network 
with parameters characterized by a single valued neutrosophic 
numbers. 
This algorithm finds the shortest path and the shortest distance 
between a source node and any other node in the network. The 
algorithm advances from a node i to an immediately 
successive node j using a neutrosophic labeling procedure. Let 

iu  be the shortest distance from node 1 to node i and 

s ( ) 0ijd ≥  be the length of  (i, j) edge. Then, the neutrosophic
label for node j is defined as: 

[ ju , i] =[ i iju d⊕ , i].    S ( ) 0ijd ≥ .  (15) 

Here label [ ju , i] mean we are coming from nodes i after 

covering a distance ju  from the starting node. Dijkstra’s 
algorithm divides the nodes into two subset groups: 
Temporary set (T) and Permanent set (P). A temporary 
neutrosophic label can be replaced with another temporary 
neutrosophic label, if shortest path to the same neutrosophic 
node is detected. At the point when no better path can be 
found, the status of temporary label is changed to permanent. 
The steps of the algorithm are summarized as follows: 
Step 1 Assign to source node (say node 1) the permanent label 
[ (0,1,1) ,-]. Set i=1.  
Making a node permanent means that it has been included in 
the short path. 
Step 2 Compute the temporary label [ i iju d⊕ , i] for each node
j that can be reached from i, provided j is not permanently 
labeled. If node j is already labeled as [ ju , k] through another 

node k, and if S( i iju d⊕ ) < S( ju ) replace [ ju , k] with

[ i iju d⊕ , i].
Step 3 If all the nodes are permanently labeled, the algorithm 
terminates. Otherwise, choose the label [ ru , s] with shortest 
distance ( ru ) from the list of temporary labels. Set i= r and 
repeat step 2. 
Step 4 Obtain the shortest path between node 1 and the 
destination node j by tracing backward through the network 
using the label’s information. 
Remark: 
At each iteration among all temporary nodes, make those 
nodes permanent which have smallest distance. Note that at 
any iteration we can not move to permanent node, however, 
reverse is possible. After all the nodes have permanent labels 
and only one temporary node remains, make it permanent. 

After describing the proposed algorithm, in next section we 
solve a numerical example and explain the proposed method 
completely.  

V. ILLUSTRATIVE EXAMPLE 
Now we solve an hypothetical example to verify the proposed 
approach. Consider the network shown in figure1; we want to 
obtain the shortest path from node 1 to node 6 where edges 
have a single valued neutrosophic numbers. Let us now apply 
the extended Dijkstra algorithm to the network given in figure 
1.  

Fig. 1. A network with single valued neutrosophic weights 

In this network each edge have been assigned to single valued 
neutrosophic number as follows: 

Edges  Single valued Neutrosophic 
distance 

1-2 (0.4, 0.6, 0.7) 
1-3 (0.2, 0.3, 0.4) 
2-3 (0.1, 0.4, 0.6) 
2-5 (0.7, 0.6, 0.8) 
3-4 (0.5, 0.3, 0.1) 
3-5 (0.3, 0.4, 0.7) 
4-6 (0.3, 0.2, 0.6) 
5-6 (0.6, 0.5, 0.3) 

  Table 1.  weights of the graphs 

According to Dijikstra’s algorithm we start with  
Iteration 0: Assign the permanent label [ (0,1,1) ,-]  to node 1.
Iteration 1: Node 2 and node 3can be reached from (the last 
permanently labeled) node 1. Thus, the list of labeled nodes 
(temporary and permanent) becomes 

Nodes  label Status 
1 [ (0,1,1) , -] P 
2 [(0.4, 0.6, 0.7), 1] T 
3 [(0.2, 0.3, 0.4), 1] T 

In order to compare the (0.4, 0.6, 0.7)  and  (0.2, 0.3, 0.4) we 
use the Eq.8

S (0.2, 0.3, 0.4) = 2
3

T I F+ − − = 2 0.2 0.3 0.4
3

+ − − =0.5

(0.4,0.6, 0.7)

(0.5,0.3, 0.1) 

(0.1,0.4, 0.6) (0.3,0.4, 0.7) 

(0.7,0.6, 0.8) 

(0.6,0.5, 0.3) 

(0.3,0.2, 0.6) 

(0.2,0.3, 0.4) 

2

1

3 
4 

2 5 

6 
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S (0.4, 0.6, 0.7) = 2
3

T I F+ − − = 2 0.4 0.6 0.7
3

+ − − =0.36 

Since the rank of  [(0.4, 0.6, 0.7), 1] is less than [(0.2, 0.3, 
0.4), 1]. Thus the status of node 2 is changed to permanent.  
Iteration 2: Node 3 and 5 can be reached from node 2. Thus, 
the list of labeled nodes ( temporary and permanent) becomes 

Nodes  label Status 
1 [ (0,1,1) , -] P 
2 [(0.4, 0.6, 0.7), 1] P 
3 [(0.2, 0.3, 0.4), 1] or 

[(0.46, 0.24, 0.42), 2] 
T 

5 [(0.82, 0.36, 0.56), 2]  T 

S (0.46, 0.24, 0.42) = 2 0.46 0.24 0.42
3

+ − − =0.6 

S (0.82, 0.36, 0.56) = 2 0.82 0.36 0.56
3

+ − − =0.63 

Among the temporary labels [(0.2, 0.3, 0.4), 1] or 
[(0.46, 0.24, 0.42), 2], [(0.82, 0.36, 0.56), 2] and since the rank 
of (0.2, 0.3, 0.4) is less than of (0.46, 0.24, 0.42) and (0.82, 
0.36, 0.56), So the status of node 3 is changed to permanent.  

Iteration 3: Node 4and 5 can be reached from node 3. Thus , 
the list of labeled nodes ( temporary and permanent) becomes 

Nodes  label Status 
1 [ (0,1,1) , -] P 
2 [(0.4, 0.6, 0.7), 1] P 
3 [(0.2, 0.3, 0.4), 1] P 
4 [(0.6, 0.09, 0.04), 3] T 
5 [(0.82, 0.36, 0.56), 2] 

or 
[(0.44, 0.12, 0.28), 3] 

T 

S (0.6, 0.09, 0.04) = 2 0.6 0.09 0.04
3

+ − − =0.82 

S (0.44, 0.12, 0.28) = 2 0.44 0.12 0.28
3

+ − − =0.68 

Among the temporary labels [(0.6, 0.09, 0.04), 3] or 
[(0.82, 0.36, 0.56), 2], [(0.44, 0.12, 0.28), 3] and since the rank 
of (0.82, 0.36, 0.56), is less than of (0.44, 0.12, 0.28) and (0.6, 
0.09, 0.04). So the status of node 5 is changed to permanent.  

Iteration 4: Node 6 can be reached from node 5. Thus , the 
list of labeled nodes ( temporary and permanent) becomes 

Nodes  label Status 
1 [ (0,1,1) , -] P 
2 [(0.4, 0.6, 0.7), 1] P 
3 [(0.2, 0.3, 0.4), 1] P 
4 [(0.6, 0.09, 0.04), 3] T 

5 [(0.82, 0.36, 0.56), 2]  P 
6 [(0.93, 0.18, 0.17), 5]  T 

Since, there exit  one permanent node  from where we can 
reach at node 6. So, make temporary  label  [(0.93, 0.18, 0.17), 
5] as permanent.
Iteration 5:  the only temporary  node is 4, this node can be 
reached from node 3 and 6. Thus , the list of labeled nodes ( 
temporary and permanent) becomes 

Nodes  label Status 
1 [ (0,1,1) , -] P 
2 [(0.4, 0.6, 0.7), 1] P 
3 [(0.2, 0.3, 0.4), 1] P 
4 [(0.6, 0.09, 0.04), 3] or 

[(0.95, 0.04, 0.10),6]  
T 

5 [(0.82, 0.36, 0.56), 2]  P 
6 [(0.93, 0.18, 0.17), 5]  P 

In order to compare the (0.6, 0.09, 0.04) and  (0.95, 0.04, 
0.10)  we use the Eq.8
S(0.6, 0.09, 0.04) =0.82 and S(0.95, 0.04, 0.10) = 0.94   
Since the rank of  [(0.6, 0.09, 0.04), 3] is less than [(0.95, 
0.04, 0.10),6]. And the node 4 is  the only one temporary node 
remains then, the status of node 4 is changed to permanent.  

Nodes  label Status 
1 [ (0,1,1) , -] P 
2 [(0.4, 0.6, 0.7), 1] P 
3 [(0.2, 0.3, 0.4), 1] P 
4 [(0.6, 0.09, 0.04), 3] P 
5 [(0.82, 0.36, 0.56), 2]  P 

6 [(0.93, 0.18, 0.17), 5]  P 

 Based on the step 4, the following sequence determines the 
shortest path from node 1 to node 6  
(6) → [(0.93, 0.18, 0.17), 5] → (5) → [(0.82, 0.36, 0.56), 2] 
→ (2) → [(0.4, 0.6, 0.7), 1] → (1) 
Thus, the required shortest path is 1 2 5 6→ → →  

 

 
FIG 2. Network with single valued neutrosophic shortest 

distance of each node from node 1 

2

1

3
4 

2 5 

6

(0.5,0.3, 0.1) 

(0.6,0.5, 0.3)

(0.3,0.2, 0.6) 

(0.4,0.6, 0.7)

[(0.6,0.09, 0.04), 3] 
[(0.2,0.3, 0.4), 1] 

[(0.93,0.18, 0.17), 5] 

[(0.4,0.6, 0.7), 1] 

(0.3,0.4, 0.7) 

(0.7,0.6, 0.8) [(0.82,0.36, 0.56), 2] 

(0.2,0.3, 0.4)

(0.1,0.4, 0.6)

[(0.,1, 1), -] 
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This paper extended the fuzzy Dijkstra’s algorithm to find the 
shortest path of a network with single valued neutrosophic 
edge weights. The use of neutrosophic numbers as weights in 
the graph express more uncertainty than fuzzy numbers. The 
proposed algorithm proposes solution to one issue, this issue 
is addressed by identification of shortest path in neutrosophic 
environment. A numerical example was used to illustrate the 
efficiency of the proposed method. In future, we will research 
the application of this algorithm. 

Conclusion
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Abstract - This paper presents relevant aspects of the idea of 
using the digital medicine in cancer, so that to shape a viable 
strategy for creating and implementing an interactive digital 
platform, NEO-VIP, that should be the basic support to design 
the strategy for integration of basic, clinical and environmental 
research on neoplasia progression to cancer. The two main 
components of the VIPRO Platform are represented by the 
workstation “Engineering Station” for CPS (Cyber Physical 
System) and “omics” technology and by the “Graphical Station” 
for the development of a virtual mechatronic system environment 
and virtual reality for system components' motion. The NEO-VIP 
Platform will consolidate the collaboration of specialized 
institutions in IT, medicine, health, life standards so that to 
enhance their capabilities to work as a consortium. The results 
lead to the possibility developing NEO-VIP Platform in the IT 
modelling field, applied on bio-medical data, as a new player 
alongside with the existing ones. So, new improved methodologies 
for investigating social implications of machines working with 
and for people will be applied. 

Keywords—intelligent control systems; cyber physical system, 
“omics” technology; modelling system; virtual reality; digital 
medicine in cancer 

I.  INTRODUCTION 
In recent years the identification of missing 

information/links/principles on different biological, medical, 
and organizational levels regarding carcinogenesis and possible 
solutions for designing an integrative platform able to use the 
data and merge, complement and develop in a transformative 
approach the high impacting tools have gained attention among 
the research community [1-3], but also in manufacturing 
industry, resulting in an outstanding development in terms of 
hardware and software [4-6]. 

According to the World Health Organization (WHO) report 
“Health in 2015: from MDGs to SDGs”, cancer is a leading 
cause of death worldwide and accounted for 8.2 million deaths 
(22% of all non-communicable disease deaths) in 2012. The 
emergence of this disease is caused by molecular, genetic, 
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epigenetic alterations and environmental factors that favor 
neoplasia. Cancer incidence and mortality increase with age, 
and both the absolute number and the percentage of the 
population that is older are increasing in all regions of the 
globe. Dealing with a context characterized by ageing 
populations, rapid urbanization and globalization of markets 
that promote inactivity and unhealthy diets is a priority for 
WHO that will focus on the development and implementation 
of strong national plans that emphasize prevention and 
treatment access for all [7, 8]. 

The paper main objective is that of supporting the use of 
digital medicine in cancer, so that to shape a viable strategy for 
creating and implementing an interactive digital platform that 
should be the basic support, to design the strategy for 
integration of basic, clinical and environmental research on 
neoplasia progression to cancer.   

The paper main objective supporting the use of digital 
medicine in cancer, is to shape a viable strategy for creating 
and implementing an interactive digital platform, and to design 
the strategy to integrate basic, clinical and environmental 
research on neoplasia progression to cancer and use the support 
of the NEO-VIP platform, by developing of the VIPRO 
Platform [9-11], to progress beyond the state of art. 

A lot of initiatives were launched in the last decade in the 
purpose of coordinating research projects that have the 
common aim to elucidate comprehensively mainly the genomic 
changes present in many forms of cancers. One of these 
initiatives, the International Cancer Genome Consortium 
(ICGC) was launched in 2010 [12] with the scope to generate 
comprehensive database of genomic abnormalities (somatic 
mutations, abnormal expression of genes, epigenetic 
modifications) in tumors from 50 different cancer types and/or 
subtypes which are of clinical and societal importance and 
make the data available to the entire research community. 

In United States exists a wide interest in developing 
databases on different types of cancers that would be fit to be 
connected and explored by a the new integrative NEO-VIP 
Platform presented in paper. The NAR Database 
(https://www.oxfordjournals.org/our_journals/nar/database/sub 
cat/8/33)  provides  a summary of the most known and used 
databases grouped on categories addressing to genomic, 
trascriptomic, and proteomic-field, and also library databases 
on several others domains. 

Most of existing databases are “niche specific” and an 
represent integration approach of different "omics" with 
suggestions for treatment or adequate nutrition to minimize the 
risks of cancer development , so this is why they might be very 
useful for clinical practice and ultimately to the patients. To the 
best of our knowledge, none of the existing databases focus on 

the early detection of neoplastic transformation and none of 
them relates to the prevention. 

The innovative NEO-VIP  platform, developed as open 
architecture system and adaptive networks integrates Future 
Internet Systems vision enabling: cyber-physical systems by 
adaptive networks, intelligent network control systems,  human 
in the loop principles, data mining, big data, intelligent control 
interfaces, network quality of service, shared resources and 
distributed server network - remote control and e-learning users 
by interconnected global clouds. Based on all the above, the 
challenges and, therefore, expected progress of NEO-VIP are 
its ability to be interactive, integrated and competitive with 
scientific research DMC (Digital Medicine for Cancer) 
platforms such as ICGC Data Portal, TCGA Data Portal, NCI 
Genomic Data Commons (GDC) thus supporting the ITfoM 
(IT Future of Medicine) concepts. 

II. CSP AND OMICS TECHNOLOGY APLLIED ON NEO-VIP
PLATFORM 

NEO-VIP is extendable for integration, testing and 
experimenting clinical research on neoplasia progression 
through building an open architecture system and adaptive 
networks, combining the expertise of a team of specialists in 
biomedical engineering, electronics, mathematics, computer 
sciences with the expertise of a diverse group of researchers in 
different oncologic specialties (hematologic, head and neck, 
breast, hepatic, gastric, pancreatic, lung, cervical), immunology, 
pharmacogenomics. NEO-VIP will facilitate new ways to 
corroborate data to produce predictive models of neoplastic 
transformation and prevention and nucleate scientific groups 
that will be able to answer the extremely complex problems 
posed by oncogenesis. The computational platform NEO-VIP 
developed in this project is based on the virtual projection 
method [9, 13- 15]. 

Human remotely controlled intelligent networks, are 
estimated to have an increasingly significant role in events that 
could put at risk human lives. This is why, the development of 
an Interactive and Versatile Intelligent Portable Platform, 
NEO-VIPP is of high benefit. This platform should be able to 
integrate clinical research on neoplasia progression to cancer 
and fit these data in predictive patterns of oncogenesis. 
Nowadays neoplasia research encounters some barriers that 
prevent researchers from completely exploring all the genomic 
data available, thus impeding progress. Some of these 
weaknesses are mentioned next 
 Neoplasia data that would be available from various

projects, clinical trials, and neoplasia tests are stored on
various media with secured management systems, for
accessing these data.
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 Neoplasia data are many times generated by different
methods, so that even if two different datasets are
explored, the researcher cannot use both in the same time

 Large size of datasets files, difficult access to efficient
storage media and specific software represent a barriers
for researchers to get efficient knowledge and
information.

The Versatile, Intelligent, Portable NEO-VIPP platform 
breaks down these barriers by bringing neoplasia progression 
datasets and associated clinical data into one location that any 
researcher may access, and “harmonizing” the data so that 
datasets that were generated with different protocols can be 
studied side by side. These data are available by modern 
computing and network technology, so that NEO-VIPP 
enables any researcher to study, search and ask new and 
fundamental questions about cancer. 

As foster of large scale cooperation at the European level is 
the development of an e-learning and remote-control platform 
that should enable community interested in the topic and long-
term plans to further develop research and innovation. This, in 
fact, is the tool of ensuring the ability of continuously learning, 
adapting and improving in “real world” complex environments, 
modeling in real time the information gathered by “omics” 
technologies, clinical, imaging so as to provide support in “big 
data” management and development of international clusters 
able to process the information in an unifying vision. This way, 
networking activities will be in good balance with scientific 

and technical activities contributing equally to advance the 
scientific research and to improve people life by prevention of 
neoplasia progression to cancer. 

The VIPRO architecture for humanoid and cooperative 
robots [9, 11], is extendable for integration, testing and 
experimenting clinical research on neoplasia progression 
through building an open architecture system and adaptive 
networks over the classic control system, as shown in Figure 1. 
The virtual platform developed and extended, NEO-VIPP, is 
the tool for transforming data in knowledge on oncogenesis 
and use it in personalized/precision medicine. The need to 
manage all behaviours and interactions is solved by 
developing a new interface for intelligent control based on 
advanced control strategies, such as extended control 
(Extenics), neutrosophic control, human adaptive 
mechatronics, implemented by high speed processing IT&C 
techniques in real time communication for a high amount of 
data processing, including a remote control & e-learning 
component and an adaptive networked control. This will allow 
the development of new methodologies, evaluation metrics, 
test platforms, reproducibility of experiments, novel 
approaches to academia-industry co-operation for enabling 
disruptive product and process innovation and last but not 
least an inter-academic network for research and modeling 
complex bio-medical data for neoplasia early diagnosis of 
progression and management towards personalized medicine.

Fig. 1. Architecture of the NEO-VIP Platform 
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The NEO-VIPP innovative platform will be competitive 
with other similar DMC virtual application platforms,  ICGC 
Data Portal, TCGA Data Portal, NCI Genomic Data Commons 
(GDC), or the powerful worldwide platforms for CAD 
applications (SolidWorks), medical imaging reconstruction 
(Simpleware, Mimics), multiphysics numerical modeling 
(Comsol), mathematical and biomedical modeling 
(Matlab+Simulink, Mathematica), virtual instrumentation and 
measurements (Labview), or virtual reality environment 
(Coreograph, Webot, USARSIM, V-RAP), but additionally to 
these platforms, it enables the design, test and experimentation 
by intelligent control  methods in real time integrating classical 
control in modelling and simulation [16-18].   
 The VIPRO Platform architecture for modelling and 
simulation of mobile robots is based on the virtual projection 
method, through which robotics and mechatronics systems are 
developed in a virtual environment. 

The technical solution, presented in an open architecture 
real time control structure, contains the main modules of the 
VIPRO Platform. The intelligent control interface module uses 
advanced control strategies adapted to the research 
environment such as research data mining, big data or decision 
control through extenics [19-20], neutrosophic logics control 
[21-23], etc.,  implemented through computational techniques 
for fast processing and real time communication. The 
following intelligent control interfaces have been designed and 
implemented on the NEO-VIP Platform: data mining 
intelligent interface, big data strategy intelligent interface, 
extenics & neutrosophic intelligent interface. 

The two main components of the VIPRO Platform are 
represented by the workstation “Engineering Station” for CPS 
(Cyber Physical System) and “omics” Technology and by the 
“Graphical Station” for the development of a virtual robot 
environment and virtual reality for system motion. 

The NEO-VIP Platform has allotted 5 user stations 
dedicated to simulation using data repository, Comsol & 
Labview, Simpleware & Mimics, CT&MR Imagingor Matlab 
&Simulink. 

For remote control in establishing the e-learning component 
of the NEO-VIP Platform, a PC server was integrated to ensure 
large data traffic for internet communication, with two addition 
workstations for end-user applications. 
 The “Engineering Station” component is mainly aimed at 
integrating the AC500 development environment for 
programmable automate (PLC) applications, control of the CPS 
application through the virtual projection method and decision 
testing of the intelligent neutrosophic control, extenics control, 
and dynamic hybrid force position control DHFPC interfaces. 

After testing, these are integrated in real-time control of a 
new CPS or “omics” technology with improved system 
performance through  the Graphical Station, as follows: for 
multi-users through the components of the NEO-VIP Platform 
consisting of Remote_Control & eLearning_User1, 
Remote_Control&eLearning_User2 or individually through the 
NEO-VIP Platform components consisting of the dedicated 
intelligent interfaces on the Notebook workstations, namely 
simulation by data repository, Comsol_ & Labview, 
Simpleware_& Mimics, CT&MR Imaging or Matlab_& 
Simulink  or intelligent interfaces: neutrosophic, extenics and 
DHFPC interfaces. 

NEO-VIPP is an innovative platform which makes the 
difference from existing ones in that it is the only one which 
ensures real-time testing and experimentation on its own real 
time control system and adaptive networked control for remote 
users through e-learning & remote communication  in addition 
to  the design, modelling and simulation facilitated by scientific 
research platforms such as ICGC Data Portal, TCGA Data 
Portal, NCI Genomic Data Commons (GDC), being integrated 
into the  DMC platforms through  using the ITfoM (IT Future 
of Medicine) concepts. 

The NEO-VIPP platform is more than just a data 
repository; it will continue to evolve by encouraging scientists 
to submit the data for early diagnosis of neoplasia progression 
from their own investigations. When researchers submit data 
to the NEO-VIPP, they will be able to access and, analyze all 
NEO-VIPP available datasets in neoplasia, while further 
expanding these resources to the cancer research community. 

The NEO-VIPP will also house data from a new era of 
NCI programs that will sequence the DNA of patients enrolled 
in clinical trials. These datasets will lead to a much deeper 
understanding of which therapies are most effective for 
individual neoplasia patients. There is also to be developed an 
interface to e-Health Literacy that ensures that data and results 
from NEO_VIPP will be accessed, explored and applied by all 
interested people. 

Each new datasets entry to NEO-VIPP will evolve into a 
smarter, more comprehensive knowledge base that will foster 
important achievements in neoplasia research. It will increase 
the success of neoplasia early diagnosis and management, 
basically from Virtual Patient” health models to personalized 
cancer treatment. 

Personalized treatment may benefit of using reliable 
biomedical numerical models concerning patient-specific, 
morphologically realistic computational domains (built out of 
medical MRI, CT, PET, Doppler, etc. images) that present 
detailed and accurate virtualizations of organs, tissues or 
regions of interest (ROI) that may produce results, which can 
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be checked against experimental data. Along this path, 
medication delivery through existing or yet to be accepted 
techniques (e.g., magnetic drug targeting, general or localized 
hyperthermia) may be explored.  

III. RESULTES AND CONCLUSIONS

NEO-VIP Platform aims to demonstrate and validate the 
usability and benefit of DMC in healthcare as well as to enable 
stockholders to adopt and implement models, strategy and the 
platform. 

The platform represent a tool and a warrant of sustainable 
learning, testing, adjusting and improving in “real world” 
various complex environments, mining data gathered from 
H2020 research programs such as FET (Future and Emerging 
Technologies) and HDCW (Health, Demographic Change and 
Wellbeing). It should also enable real time modeling of the 
information got from “omics” technologies, validation by 
multinational and multidisciplinary scientists work, appropriate 
link with various medical, imaging, environmental exposure 
data, in predictive patient treatment algorithms and strategies 
for patient management.  

New enabling methodologies, and techniques, relying 
inclusively on medical physics, statistical and applied 
mathematics (methods, protocols and algorithms, 
implementation; procedures for data mining; procedures for 
exploring, handling and connecting big data, etc.), and 
biomedical engineering, developed by NEO-VIP Platform, 
may be needed to provide the patient-related approach in DMC. 

To provide the patient-related approach in Digital Medicine 
for Cancer, the NEO_VIPP platform would represent a reliable 
tool for providing vital support to “big data” management so 
that data processing in an unified vision to be ensured.  

The platform aims to bring high value and positive impact 
on accessing, exploring and management of impressive amount 
of data generated by research prevention, detection, treatment 
and management of neoplasia and its associated diseases. 
Establishing original links, by the NEO-VIP Platform, between 
novel genomic alterations in oncogenesis, is estimated to make 
possible the identification of new, relevant biomarkers and, 
consequently to indicate new ways of cancer therapy. 

At the same time, NEO-VIP Platform allows in a dynamic 
way, our understanding of the causes and mechanisms 
underlying healthy ageing and disease, providing opportunity 
an approach for multiscale modeling in real time the 
information gathered by “omics” technologies, clinical, 
imaging, nutritional, and environmental exposure data, in 
predictive algorithms and personalized strategies for patient 
management, completing and increasing the impact of the 
existing initiatives in disease prevention, detection, treatment 
and management. 

Multidisciplinary, large scale cooperation in the 
development and implementation of the NEO_VIP Platform, 
will establish a nucleus of competence that will integrate 
various specialists (biomedical engineers, mathematicians, 
biochemists, biologists, physicians, bio-physicists, etc.) and 
will deliver coherent recommendations for implementing this 
interactive platform. So, through the networking activities will 
increase the awareness of all stakeholders, including healthcare 
professionals and patients. The NEO-VIP Platform will 
consolidate the collaboration of the specialized institutions in 
IT, medicine, health, life standards so that to enhance their 
capabilities to work as a consortium. 

This will lead VIP Platform to be integrated in the IT 
modelling field as a new player alongside with the existing 
ones. The NEO-VIP knowledge transfer facility aims to 
achieve a strategic, sustainable and long-term partnership (pole 
of excellence) that will improve the theoretical, technical and 
best practices of researchers in the EU and worldwide on 
neoplasia progression. So, new improved methodologies for 
investigating social implications of machines working with and 
for people will be applied.  
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Abstract— In this work, a neutrosophic network method is 
proposed for finding the shortest path length with single valued 
trapezoidal neutrosophic number. The proposed algorithm gives 
the shortest path length using score function from source node to 
destination node. Here the weights of the edges are considered to 
be single valued trapezoidal neutrosophic number. Finally, a 
numerical example is used to illustrate the efficiency of the 
proposed approach 

Keywords— Single valued trapezoidal neutrosophic number; 
Score function;   Network; Shortest path problem. 

I. INTRODUCTION 

In 1998, the concept of the neutrosophic set (NS for short) 
and neutrosophic logic were introduced  by Smarandache in 
[1, 2] in order to efficiently  handle the indeterminate and 
inconsistent information in real world. Neutrosophic set is a 
generalization of the theory of fuzzy set [3], intuitionistic 
fuzzy sets [4], interval-valued fuzzy sets [5] and interval-
valued intuitionistic fuzzy sets [6]. The concept of the 
neutrosophic set is characterized by a truth-membership 
degree (t), an indeterminacy-membership degree (i) and a 
falsity-membership degree (f) independently, which are within 
the real standard or nonstandard unit interval ]−0, 1+[. 
However, the neutrosophic theory is difficult to be directly 
applied in real scientific and engineering areas. To easily use 
it in science and engineering areas, Wang et al. [7] proposed 
the concept of SVNS, which is an instance of a neutrosophic 
set, whose functions of truth, indeterminacy and falsity lie in 
[0, 1]. Recent research works on neutrosophic set theory and 
its applications in various fields are progressing rapidly [8]. 

Recently, based on the neutrosophic set theory, Subas [9] 
presented the concept of triangular and trapezoidal 
neutrosophic numbers and applied to multiple-attribute 
decision making problems. Then Biswas et al [10] presented a 
special case of trapezoidal neutrosophic numbers and applied 
to multiple-attribute decision making problems by introducing 
the cosine similarity measure. Deli and Subas [11] presented 
the single valued trapezoidal neutrosophic numbers (SVN-
numbers) as a generalization of the intuitionistic trapezoidal 
fuzzy numbers and proposed a methodology for solving 
multiple-attribute decision making problems with SVN-
numbers. In addition, Thamaraiselvi and Santhi [12] 
introduced a mathematical representation of a transportation 
problems in neutrosophic environment based on single valued 
trapezoidal  neutrosophic numbers and also provided the solution 
method. 
The shortest path problem (SPP) is one of the most 
fundamental and well-known combinatorial problems that 
appear in various fields of science and engineering, e.g, road 
networks application, transportation, routing in 
communication channels and scheduling problems. The main 
objective of the shortest path problem is to find a path with 
minimum length between any pair of vertices. The edge (arc) 
length of the network may represent the real life quantities 
such as, time, cost, etc. In a classical shortest path problem, 
the distances of the edge between different nodes of a network 
are assumed to be certain. Numerous algorithms have been 
developed with the weights on edges on network being  fuzzy 
numbers, intuitionistic fuzzy numbers, vague numbers [13-
16]. 
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Recently, Broumi et al. [17-22] presented the concept of 
neutrosophic graphs, interval valued neutrosophic graphs and 
bipolar single valued neutrosophic graphs. To this day, only a 
few papers dealing with shortest path problem in neutrosophic 
environment. The paper proposed by Broumi et al. [23] is one 
of the first on this subject. The authors proposed an algorithm 
for solving neutrosophic shortest path problem based on score 
function. The same authors [24] proposed another algorithm 
for solving shortest path problem in a bipolar neutrosophic 
environment. Also, in [25] they proposed the shortest path 
algorithm in a network with its edge lengths as interval valued 
neutrosophic numbers.   
The goal of this work is to propose an approach for solving 
shortest path problem in a network where edge weights are 
charectreized by a single valued trapezoidal neutrosophic 
numbers .  
In order to do, the paper is organized as follows: In Section 2, 
we review some basic concepts about neutrosophic sets, single 
valued neutrosophic sets and single valued trapezoidal 
neutrosophic sets. In Section 3, we propose some modified 
operations of single valued trapezoidal neutrosophic numbers. 
In section 4, a network terminology is presented, In section 5, 
we propose an algorithm for finding the shortest path and 
shortest distance in single valued trapezoidal  neutrosophic 
graph. In section 6, we illustrate a practical example which is 
solved by the proposed algorithm. Finally, some concluding 
remarks are presented in section 7.  

II. PRELIMINARIES

In this section, some basic concepts and definitions on 
neutrosophic sets, single valued neutrosophic sets and single 
valued trapezoidal neutrosophic sets are reviewed from the 
literature. 

Definition 2.1 [1]. Let X  be a space of points (objects) with 
generic elements in X denoted by x;  then the neutrosophic set 
A (NS A) is an object having the form A = {< x: ( )AT x , 

( )AI x , ( )AF x >, x ∈  X}, where the functions T, I, F: 
X→]−0,1+[define respectively the truth-membership function, 
an indeterminacy-membership function, and a falsity-
membership function of the element x ∈  X to the set A with 
the condition: 

   −0 ≤ ( )AT x + ( )AI x + ( )AF x ≤ 3+.              (1)       

The functions ( )AT x , ( )AI x  and ( )AF x  are real standard or 
nonstandard subsets of ]−0,1+[. 
Since it is difficult to apply NSs to practical problems, Wang 
et al. [7] introduced the concept of a SVNS, which is an 
instance of a NS and can be used in real scientific and 
engineering applications. 

Definition 2.2 [7]. Let X  be a space of points (objects) with 
generic elements in X denoted by x. A single valued 
neutrosophic set A (SVNS A) is characterized by truth-
membership function ( )AT x , an indeterminacy-membership 

function ( )AI x , and a falsity-membership function ( )AF x . 

For each point x in X ( )AT x , ( )AI x , ( )AF x ∈  [0, 1]. A 
SVNS A can be written as 

 A = {< x: ( )AT x , ( )AI x , ( )AF x >, x ∈X}        (2) 

Definition 2.3 [11]. A single valued trapezoidal neutrosophic 
number (SVTN-number) 1 1 1 1(a , , , ); , I ,Fa a aa b c d T=< > is a special 
neutrosophic set on the real number set R, whose truth 
membership, indeterminacy-membership, and a falsity-
membership are given as follows 
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Where  0≤ aT ≤ 1; 0≤ aI ≤ 1; 0≤ aF ≤ 1 and  

0≤ aT + aI + aF ≤ 3; 1 1 1 1a , , ,b c d R∈

Definition 2.3 [11]. Let 1 1 2 3 4 1 1 1(a , , , ); , I ,FA a a a T=< > and 

2 1 2 3 4 2 2 2( , , , ); , I ,FA b b b b T=< > be two single valued trapezoidal 
neutrosophic numbers. Then, the operations for SVTN-
numbers are defined as below; 
(i) 

1 2 1 1 2 2 3 3 4 4 1 2 1 2 1 2(a ,a ,a ,a );min( , ),max(I , I ),max(F ,F )A A b b b b T T⊕ =< + + + + >

   (6) 
(ii) 

1 2 1 1 2 2 3 3 4 4 1 2 1 2 1 2(a ,a ,a ,a );min( , ),max(I , I ),max(F ,F ))A A b b b b T T⊗ =<

   (7) 
(iii) 

1 1 2 3 4 1 2 1 2 1 2( a , a , a , a );min( , ), max(I , I ), max(F , F )A T Tλ λ λ λ λ=< >
   (8) 

 A convenient method for comparing of single valued 
trapezoidal neutrosophic number is by use of score function. 
Definition 2.4 [11]. Let 1 1 2 3 4 1 1 1(a , , , ); , I ,FA a a a T=< >  be a 
single valued trapezoidal neutrosophic number. Then, the 
score function 1( )s A and accuracy function 1( )a A  of a SVTN-
numbers are defined as follows: 
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(i) [ ]1 1 2 3 4 1 1 1
1( ) 2

12
s A a a a a T I F = + + + × + − −   

 
  (9)  

(ii) [ ]1 1 2 3 4 1 1 1
1( ) 2

12
a A a a a a T I F = + + + × + − +   

 
  (10)                      

Definition 2.5 [11]. Let 1A  and 2A be two SVTN-numbers the 

ranking of 1A  and 2A by score function is defined as follows: 

(i) If 1 2( ) ( )s A s A  then     1 2A A

(ii) If 1 2( ) ( )s A s A=  and if

(1)  1 2a( ) ( )A a A   then  1 2A A

(2)  1 2a( ) ( )A a A   then  1 2A A

(3)  1 2a( ) ( )A a A=   then  1 2A A=

III.ARITHMETIC OPERATIONS BETWEEN TWO SV-
TRAPEZOIDAL NEUTROSOPHIC NUMBERS 

In this subsection, we make a slight modification of the 
operations between single valued trapezoidal neutrosophic 
numbers proposed by Deli and Subas [11], required for the 
proposed algorithm. 
Let 1 1 2 3 4 1 1 1(a , , , ); , I ,FA a a a T=< > and 2 1 2 3 4 2 2 2( , , , ); , I ,FA b b b b T=< >  
be two single valued trapezoidal neutrosophic number. Then, 
the operations for SVTNNs are defined as below; 
(i) 

1 2 1 1 2 2 3 3 4 4 1 2 1 2 1 2 1 2(a ,a ,a ,a ); , I I ,F FA A b b b b T T T T⊕ =< + + + + + − >  
 (11) 

(ii) 
1 2 1 1 2 2 3 3 4 4 1 2 1 2 1 2 1 2 1 2(a ,a ,a ,a ); , I I I I ,F F F F )A A b b b b T T⊗ =< + − + − >

  (12)  
(iii) 1 1 2 3 4 1 1 1( a , a , a , a );1 (1 ) ), I , )A T Fλ λ λλ λ λ λ λ=< − − >

 (13) 

IV. NETWORK TERMINOLOGY
Consider a directed network G = (V, E) consisting of a finite 
set of nodes V={1, 2,…,n} and a set of m directed edges 
E⊆ V x V.  Each edge is denoted by an ordered pair (i, j) 
where i, j ∈  V and i j≠ . In this network, we specify two 
nodes, denoted by  s and t, which are the source node and the 
destination node, respectively. We define a path as a sequence 

ijP ={i= 1i , 1 2( , )i i , 2i ,…, 1li − , 1( , )l li i− , li =j} of alternating 

nodes and edges. The existence of at least one path siP in G 
(V, E) is assumed for every i ∈V-{s}. 

ijd  denotes a single valued trapezoidal neutrosophic number 
associated with the edge (i ,j), corresponding to the length 
necessary to traverse (i, j) from i to j. In real problems, the 
lengths correspond to the cost, the time, the distance, etc. 
Then, neutrosophic distance along the path P is denoted as 
d(P) is defined as  

 d(P)=
(i, j P)

ijd
∈
∑  (14)

Remark : A node i is said to be predecessor node of node j if 

(i) Node i is directly connected to node j. 
(ii) The direction of path connecting node i and j from i to j. 
V . SINGLE VALUED TRAPEZOIDAL NEUTROSOPHIC

PATH PROBLEM
In this section, motivated by the work of Kumar [14], an 
algorithm is proposed to find the path of minimum distance 
between the source node (i) and the destination node (j) in a 
single valued trapezoidal neutrosophic graph. 
 The main steps of the algorithm are as follows: 
Step 1 Assume 1 (0,0,0,0);0,1,1d =< >  and label the source

node (say node1) as [ 1 (0,0,0,0);0,1,1d =< > ,-]. The label
indicating that the node has no predecessor. 
Step 2 Find jd = minimum{ i ijd d⊕ };j=2,3,…,n.
Step 3 If minimum occurs corresponding to unique value of i 
i.e., i= r then label node j as [ jd ,r]. If minimum occurs
corresponding to more than one values of i then it represents 
that there are more than one single valued trapezoidal 
neutrosophic path between source node and node j but single 
valued trapezoidal neutrosophic distance along path is jd , so
choose any value of  i. 
Step 4 Let the destination node (node n) be labeled as [ nd , l],

then the single valued trapezoidal neutrosophic shortest 
distance between source node and destination node is nd .

Step 5 Since destination node is labeled as [ nd ,l], so, to find
the single valued trapezoidal neutrosophic shortest path 
between source node and destination node, check the label of 
node l. Let it be [ ld , p], now check the label of node p and so
on. Repeat the same procedure until node 1 is obtained. 
Step 6 Now the single valued trapezoidal neutrosophic 
shortest path can be obtained by combining all the nodes 
obtained by the step 5. 
Remark 5.1 Let iA ; i =1, 2,…, n be a set of single valued 

trapezoidal neutrosophic numbers, if S( kA ) < S( iA ), for all i, 
the single valued trapezoidal neutrosophic number  is the 
minimum of kA . 
After describing the proposed algorithm, in next section we 
solve a numerical example and explain the proposed method 
completely.  

IV. ILLUSTRATIVE EXAMPLE
Now we solve an hypothetical example to verify the proposed 
approach. Consider the network shown in figure1, we want to 
obtain the shortest path from node 1 to node 6 where edges 
have a single valued trapezoidal neutrosophic numbers. Let us 
now apply the proposed algorithm to the network given in 
figure 1.  

<(1,2,3,4) ; 0.4,0.6, 0.7>

<(3,7,8,9) ; 0.1,0.4, 0.6>
<(3,4,5,10) ; 0.3,0.4, 0.7> 

<(2,4,5,7) ; 0.6,0.5, 0.3>

<(7,8,9,10) ; 0.3,0.2, 0.6>

<(2,4,8,9) ; 0.5,0.3, 0.1> 

<(2,5,7,8) ; 0.2,0.3, 0.4>

2

1

3 4 

2 5 

6

<(1,5,7,9) ; 0.7,0.6, 0.8> 
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Fig. 1. A network with single valued trapezoidal neutrosophic 
edges

In this network each edge have been assigned to single valued 
trapezoidal neutrosophic number as follows: 

Edges  single valued trapezoidal 
Neutrosophic distance 

1-2 <(1, 2, 3, 4); 0.4, 0.6, 0.7> 
1-3 <(2, 5, 7, 8); 0.2, 0.3, 0.4> 
2-3 <(3, 7, 8, 9); 0.1, 0.4, 0.6> 
2-5 <(1, 5, 7,9); 0.7, 0.6, 0.8> 
3-4 <(2, 4, 8, 9); 0.5, 0.3, 0.1> 
3-5 <(3, 4 , 5, 10); 0.3, 0.4, 0.7> 
4-6 <(7, 8, 9, 10); 0.3, 0.2, 0.6> 
5-6 <(2, 4, 5, 7); 0.6, 0.5, 0.3> 

  Table 1.  Weights of the graphs 

The calculations for this problem are as follows: 
since node 6 is the destination node, so n= 6. 
Assume ( )1 0,  0,  0,  0 ;  0,  1,  1d < >= and label the source

node ( say node 1) as [ ( )0,  0,  0,  0 ;  0,  1,  1< > ,-], the value

of  jd ; j= 2, 3, 4, 5 ,6 can be obtained as follows:

Iteration 1 Since only node 1 is the predecessor node of node 
2, so putting i=1 and j= 2  in step2 of the proposed algorithm, 
the value of 2d  is

2d = minimum{ 1 12d d⊕ }=minimum{<(0, 0, 0, 0); 0, 1, 1>⊕
<(1, 2, 3, 4); 0.4, 0.6, 0.7>= <(1, 2, 3, 4); 0.4, 0.6, 0.7> 
Since minimum occurs corresponding to i=1, so label node 2 
as [<(1, 2, 3, 4); 0.4, 0.6, 0.7>, 1] 
Iteration 2 The predecessor node of node 3 are node 1 and 
node 2, so putting i= 1, 2 and j= 3 in step 2 of the proposed 
algorithm, the value of 3d  is

3d =minimum{ 1 13 2 23,d d d d⊕ ⊕ }=minimum{<(0, 0, 0, 0); 0,
1, 1>⊕  <(2, 5, 7, 8); 0.2, 0.3, 0.4>, <(1, 2, 3, 4); 0.4, 0.6, 
0.7>⊕  <(3, 7, 8, 9); 0.1, 0.4, 0.6>}= minimum{<(2, 5, 7, 8); 
0.2, 0.3, 0.4> , <(4, 9, 11, 13); 0.46, 0.24, 0.42>} 

S ({<(2, 5, 7, 8); 0.2, 0.3, 0.4>) 

= [ ]1 2 3 4 1 1 1
1 2

12
a a a a T I F  + + + × + − −   

 
=2.75 

= 
S (<(4, 9, 11, 13); 0.46, 0.24, 0.42>) =5.55 
Since S ({<(2, 5, 7, 8); 0.2, 0.3, 0.4>) <  S (<(4, 9, 11, 13); 
0.46, 0.24, 0.42>) 

So minimum{<(2, 5, 7, 8); 0.2, 0.3, 0.4> , <(4, 9, 11, 13); 
0.46, 0.24, 0.42>} 
= <(2, 5, 7, 8); 0.2, 0.3, 0.4> 
Since minimum occurs corresponding to i=1, so label node 3 
as [<(2, 5, 7, 8); 0.2, 0.3, 0.4>, 1] 
Iteration 3. The predecessor node of node 4 is node 3, so 
putting i= 3 and j= 4 in step 2 of the proposed algorithm, the 
value of 4d  is 4d =minimum { 3 34d d⊕ }=minimum{<(2, 5,
7, 8); 0.2, 0.3, 0.4>, ⊕  <(2, 4, 8, 9); 0.5, 0.3, 0.1> }=<(4, 9, 
15, 17); 0.6, 0.09, 0.04> 
So minimum {<(2, 5, 7, 8); 0.2, 0.3, 0.4>, ⊕  <(2, 4, 8, 9); 
0.5, 0.3, 0.1> }= <(4, 9, 15, 17); 0.6, 0.09, 0.04> 
Since minimum occurs corresponding to i=3, so label node 4 
as [<(4, 9, 15, 17); 0.6, 0.09, 0.04>,3] 

Iteration 4 The predecessor node of node 5 are node 2 and 
node 3, so putting i= 2, 3and j= 5 in step 2 of the proposed 
algorithm, the value of 5d  is

5d =minimum{ 2 25 3 35,d d d d⊕ ⊕ }=minimum{<(1, 2, 3, 4); 
0.4, 0.6, 0.7>⊕  <(1, 5, 7, 9); 0.7, 0.6, 0.8>, <(2, 5, 7, 8); 0.2, 
0.3, 0.4>⊕  <(3, 4, 5, 10); 0.3, 0.4, 0.7>}=  
minimum{<(2, 7, 10, 13); 0.82, 0.36, 0.56>, <(5, 9, 12, 18); 
0.44, 0.12, 0.28>} 
S (<(2, 7, 10, 13); 0.82, 0.36, 0.56>) =5.06 
S (<(5, 9, 12, 18); 0.44, 0.12, 0.28>) =7.48 
Since S (<(2, 7, 10, 13); 0.82, 0.36, 0.56>) <  S (<(5, 9, 12, 
18); 0.44, 0.12, 0.28>) 
minimum {<(2, 7, 10, 13); 0.82, 0.36, 0.56>, <(5, 9, 12, 18); 
0.44, 0.12, 0.28>} 
= <(2, 7, 10, 13); 0.82, 0.36, 0.56> 

5d = <(2, 7, 10, 13); 0.82, 0.36, 0.56>
Since minimum occurs corresponding to i=2, so label node 5 
as [<(2, 7, 10, 13); 0.82, 0.36, 0.56>, 2] 
Iteration 5 The predecessor node of node 6 are node 4 and 
node 5, so putting i= 4, 5and j= 6 in step 2 of the proposed 
algorithm, the value of 6d  is

6d =minimum{ 4 46 5 56,d d d d⊕ ⊕ }=minimum{<(4, 9, 15, 17); 
0.6, 0.09, 0.04>⊕  <(7, 8, 9, 10); 0.3, 0.2, 0.6>, <(2, 7, 10, 
13); 0.82, 0.36, 0.56>⊕  <(2, 4, 5, 7); 0.6, 0.5, 0.3>}= 
minimum{<(11, 17, 24, 27); 0.72, 0.018, 0.024>,  <(4, 11, 15, 
20); 0.93, 0.18, 0.17>} 
S (<(11, 17, 24, 27); 0.72, 0.018, 0.024>) =17.63 
S (<(4, 11, 15, 20); 0.93, 0.18, 0.17>) =10.75 
Since S (<(4, 11, 15, 20); 0.93, 0.18, 0.17>) <  S (<(11, 17, 
24, 27); 0.72, 0.018, 0.024>) 
So minimum{<(11, 17, 24, 27); 0.72, 0.018, 0.024>,  <(4, 11, 
15, 20); 0.93, 0.18, 0.17>} 
= <(4, 11, 15, 20); 0.93, 0.18, 0.17> 

6d =<(4, 11, 15, 20); 0.93, 0.18, 0.17>
 Since minimum occurs corresponding to i=5, so label node 6 
as [<(4, 11, 15, 20); 0.93, 0.18, 0.17>, 5] 
Since node 6 is the destination node of the given network, so 
the single valued trapezoidal neutrosophic shortest distance 
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between node 1 and node 6 is <(4, 11, 15, 20); 0.93, 0.18, 
0.17>. 
Now the single valued trapezoidal neutrosophic shortest path 
between node 1 and node 6 can be obtained by using the 
following procedure: 
Since node 6 is labeled by [<(4, 11, 15, 20); 0.93, 0.18, 0.17>, 
5], which represents that we are coming from node 5. Node 5 
is labeled by [<(2, 7, 10, 13); 0.82, 0.36, 0.56>, 2], which 
represents that we are coming from node 2. Node 2 is labeled 
by [<(1, 2, 3, 4); 0.4, 0.6, 0.7>, 1], which represents that we 
are coming from node 1. Now the single valued trapezoidal 
neutrosophic shortest path between node 1 and node 6 is 
obtaining by joining all the obtained nodes. Hence the single 
valued trapezoidal neutrosophic shortest path is 
1 2 5 6→ → →  
The single valued trapezoidal neutrosophic shortest distance 
and the single valued trapezoidal neutrosophic shortest path of 
all nodes from node 1 is shown in the table 2 and the labeling 
of each node is shown in figure 2 

Node 
No.(j) id Single valued 

trapezoidal 
Neutrosophic shortest 
path between jth and 

1st node 
2 <(1, 2, 3, 4); 0.4, 0.6, 0.7> 1 2→  
3 <(2, 5, 7, 8); 0.2, 0.3, 0.4> 1 3→
4 <(4, 9, 15, 17); 0.6, 0.09, 0.04> 1 3 4→ →
5 <(2, 7, 10, 13); 0.82, 0.36, 0.56> 1 2 5→ →  
6 <(4, 11, 15, 20); 0.93, 0.18, 0.17> 1 2 5 6→ → →

Table 2. Tabular representation of different single valued 
trapezoidal neutrosophic shortest paths 

 

FIG 2. Network with single valued trapezoidal neutrosophic 
shortest distance of each node from node 1 

VI. CONCLUSION

In this paper, we have developed an algorithm for solving 
shortest path problem on a network with single valued 
trapezoidal neutrosophic edge lengths. The process of ranking 
the path is very useful to make decisions in choosing the best 
of all possible path alternatives. Numerical example via six 
node network showed the performance of the proposed 
methodology for the shortest path. Next, we will research the 
application of this algorithm. 
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Abstract—Personality tests are most commonly objective type,
where the users rate their behaviour. Instead of providing a
single forced choice, they can be provided with more options. A
person may not be in general capable to judge his/her behaviour
very precisely and categorize it into a single category. Since it is
self rating there is a lot of uncertain and indeterminate feelings
involved. The results of the test depend a lot on the circumstances
under which the test is taken, the amount of time that is spent, the
past experience of the person, the emotion the person is feeling
and the person’s self image at that time and so on.

In this paper Triple Refined Indeterminate Neutrosophic Set
(TRINS) which is a type of the refined neutrosophic set is
introduced. It provides the additional possibility to represent
with sensitivity and accuracy the imprecise, uncertain, incon-
sistent and incomplete information which are available in real
world. More precision is provided in handling indeterminacy; by
classifying indeterminacy (I) into three, based on membership; as
indeterminacy leaning towards truth membership (IT ), indeter-
minacy membership (I) and indeterminacy leaning towards false
membership (IF ). This kind of classification of indeterminacy
is not feasible with the existing Single Valued Neutrosophic Set
(SVNS), but it is a particular category of the refined neutrosophic
set (where each T , I , F can be refined into T1, T2, . . . ; I1, I2, . . . ;
F1, F2, . . . ). TRINS is better equipped at dealing indeterminate
and inconsistent information, with more accuracy than SVNS and
Double Refined Indeterminate Neutrosophic Set (DRINS), which
fuzzy sets and Intuitionistic Fuzzy Sets (IFS) are incapable of.
TRINS can be used in any place where the Likert scale is used.
Personality test usually make use of the Likert scale. In this
paper a indeterminacy based personality test is introduced for
the first time. Here personality classification is made based on
the Open Extended Jung Type Scale test and TRINS.

I. INTRODUCTION

Carl Jung in his collected work [1] had theorized the
eight psychological types based on two main attitude types:
extroversion and introversion, two observing functions: intu-
ition and sensation and two judging functions: feeling and
thinking. Psychological types are Extraverted sensation, Intro-
verted sensation, Extraverted intuition, Introverted intuition,
Extraverted thinking, Introverted thinking, Extraverted feel-
ing and Introverted feeling. The MyersBriggs Type Indicator
(MBTI) [2], is based on the theory given by Carl Jung. The
psychological variations are sorted into four contrary pairs, or
”dichotomies”, that provides 16 feasible psychological types.
The MBTI is a reflective self-analytic questionnaire designed
to find the psychological inclinations of people’s view of the
world and their decision making. These personality tests are

mostly objective in nature, where the test taker is forced to
select a dominant choice. Quoting Carl Jung himself ”There
is no such thing as a pure extrovert or a pure introvert. Such
a man would be in the lunatic asylum.”, it is clear that there
are degrees of variations, no person fits into a category 100%.
Since it is not feasible for a person to put down his answer as
single choice in reality, without ignoring the other degrees of
variation. It necessitates a tool which can give more than one
choice to represent their personality. The choice also depends
highly on the situation and circumstance the individual faces
at that time,

Fuzzy set theory introduced by Zadeh (1965) [3] proposes a
constructive analytic method for soft division of sets. Zadeh’s
fuzzy set theory [3] was extended to intuitionistic fuzzy set
(A-IFS), in which every entity is assigned a non-membership
degree and a membership degree by Atanassov (1986) [4]. A-
IFS is more suitable than fuzzy set in dealing with data that has
fuzziness and uncertainty. A-IFS was further generalized into
the concept of interval valued intuitionistic fuzzy set (IVIFS)
by Atanassov and Gargov (1989) [5].

To characterize inconsistent, imprecise, uncertain, and in-
complete information which are existing in real world, the
notion of neutrosophic set from philosophical angle was given
by Smarandache [6]. The neutrosophic set is a existing frame-
work that generalizes the notion of the tautological set, fuzzy
set, paraconsistent set, interval valued fuzzy set, intuitionistic
fuzzy set, paradoxist set, interval valued intuitionistic fuzzy
set and classic set. The neutrosophic set articulates indepen-
dently truth, indeterminacy and falsity memberships. From
the philosophical angle the aforesaid sets are generalized by
the neutrosophic set. Its functions TA(x), IA(x), and FA(x)
are real standard or nonstandard subsets of ]−0, 1+[, that
is, TA(x) : X →]−0, 1+[, IA(x) : X →]−0, 1+[, and
FA(x) : X →]−0, 1+[, respectively with the condition −0 ≤
supTA(x) + supIA(x) + supFA(x) ≤ 3+.

It is challenging to adapt neutrosophic set in this structure
in engineering fields and scientific research. To overcome this
difficulty, Wang et al. [7] introduced a Single Valued Neutro-
sophic Set (SVNS), which is another form of a neutrosophic
set. Fuzzy sets and intuitionistic fuzzy sets cannot deal with
inconsistent and indeterminate information, which SVNS is
capable of.

Owing to the fuzziness, uncertainty and indeterminate na-
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ture of many practical problems in the real world, neu-
trosophy has found application in various fields including
Social Network Analysis (Salama et al [8]), Decision-making
problems (Ye [9], [10], [11], [12]), Image Processing (Cheng
and Guo[13], Sengur and Guo[14], Zhang et al [15]), Social
problems (Vasantha and Smarandache [16], [17]) etc.

To provide more accuracy and precision to indeterminacy,
the value of indeterminacy present in the neutrosophic set
has been classified into two; based on membership; as in-
determinacy leaning towards truth membership and as inde-
terminacy leaning towards false membership. They make the
indeterminacy involved in the scenario to be more accurate and
precise. This modified refined neutrosophic set was defined
as Double Refined Indeterminacy Neutrosophic Set (DRINS)
alias Double Valued Neutrosophic Set (DVNS) by Kandasamy
[18] and Kandasamy and Smarandache [19].

To increase the accuracy, precision and to fit in the Likert’s
scale which is usually used in personality test; here the
indeterminacy concept is divided into three, as indeterminacy
leaning towards truth, indeterminacy and indeterminacy lean-
ing towards false. This refined neutrosophic set is known as
the Triple Refined Indeterminate Neutrosophic Sets (TRINS).

Consider an example from a personality test ”You tend to
sympathize with others”. The person need not be forced to opt
for a single choice; cause it is natural that the behaviour is de-
pendent on several external and internal factors, varying from
the person’s mood to surrounding. So a person might not al-
ways react in a particular way, in a particular scenario. There is
always a degree to which the person will strongly agree to the
statement (say 0.7), will just agree (0.1), neither agree or dis-
agree (0.05), will agree (0.1) and will strongly disagree(0.05).
When a person is taking a personality test he/she is forced to
opt for a single choice, thereby the degrees of membership
of others are completely lost. Whereas using TRINS this
statement is represented as ⟨07, 0.1, 0.05, 0.1, 0.05⟩, it can
be evaluated accurately; thereby giving very useful necessary
precision to the result. All the various choices are captures
thereby avoiding the preferential choice that is executed in the
classical method.

Section one is introductory in nature. Section two recalls
some basic concepts about neutrosophy and The Open Ex-
tended Jungian Type Scales (OEJTS) personality test. Section
three introduces TRINS and related set theoretic concepts.
Section four defines the distance measure over TRINS. The
indeterminacy based OEJTS is introduced in section five.
Section six provides the comparison of existing personality test
and the indeterminacy based OEJTS test. The conclusions and
future research on this topic is provided in the final section.

II. BASIC CONCEPTS

A. Personality test

Of all the categories of personality tests, the usual type is
the objective personality tests.

It comprises of several questions/statements given to people
who answer by rating the degree to which each item reveals
their nature and which can be evaluated objectively. These

statements on questionnaires allow people to specify the
degree of acceptance.

Frequently taken personality test is the Myers-Briggs Type
Indicator test. Many personality tests available on the internet
provide meagre information about their formulation or evalu-
ation.

A comparative study of different tests has not been car-
ried out. There are currently no criteria for what makes a
good Myers-Briggs/Jungian type. Of course, it could just
be accepted that the Myers-Briggs Type Indicator (MBTI)
defines Myers-Briggs/Jungian types and so that means that
the measure of a test is just how similar it is to the MBTI.

The Open Extended Jungian Type Scales test [20] is an
open source alternative to the Myers Briggs type indicator
test. A comparative validity study of the Open Extended
Jungian Type Scales was done using three other on-line tests.
The OEJTS test has the capacity to distinguish personalities
considerably better than other tests. It indicates OEJTS test
is best precise on-line Myers-Briggs/Jungian type test. Of
the numerous on-line Myers-Briggs tests, only three were
selected on the basis of their acceptance within Myers-Briggs
supporters. The Human Metrics Jung Typology Test, Similar
Minds Jung Personality Test and 16-Personalities personality
test were the selected ones.

The OEJTS test alone is taken for future discussion in this
paper.

B. The Open Extended Jungian Type Scales (OEJTS)

An extension of the Jung’s Theory of psychological type
casting is the Myers-Briggs Type Indicator (MBTI). It has
four personality dichotomies that are combined to yield 16
personality types. The dichotomies given in [20] are

1) Introversion (I) vs. Extroversion (E); sometimes is de-
scribed as a persons orientation, they either orient within
themselves or to the outside world. Other times the
focus is put more openly on social communication
and interactions, with some stating that social activities
and interactions tires introverts whereas it increases the
energy level of extroverts.

2) Sensing (S) vs. Intuition (N); how a person takes in
information. Sensors generally focus on the five senses
while intuitives focus on possibilities.

3) Feeling (F) vs. Thinking (T); is based on what a person
uses to take their decisions: whether it is interpersonal
considerations or through dispassionate logic.

4) Judging (J) vs. Perceiving (P); was a dichotomy added
by Myers and Briggs to choose between the 2nd and 3rd
pair of functions. Individuals who desire a organized
lifestyle are supposed to use their judging functions
(thinking and feeling) while individuals who prefer a
flexible lifestyle use their sensing functions (intuition
and sensing).

The Open Extended Jungian Type Scales (OEJTS) evaluates
four scales, each planned to produce a huge score differential
along one dichotomy.
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TABLE I
QUESTIONNAIRE

Q Scale

Q1 makes lists 1 2 3 4 5 relies on memory
Q2 sceptical 1 2 3 4 5 wants to believe
Q3 bored by time alone 1 2 3 4 5 needs time alone
Q7 energetic 1 2 3 4 5 mellow
Q11 works best in groups 1 2 3 4 5 works best alone
Q15 worn out by parties 1 2 3 4 5 gets fired up by parties
Q19 talks more 1 2 3 4 5 listens more
Q23 stays at home 1 2 3 4 5 goes out on the town
Q27 finds it difficult to 1 2 3 4 5 yelling to others when they

yell very loudly are far away comes naturally
Q31 perform in public 1 2 3 4 5 avoids public speaking

The format for the OEJTS has been preferred to be two
statements that form a bipolar scale (e.g. humble to arrogant),
operationalized on a five point scale. A sample questionnaire
is shown in Table I.

C. Working of the Open Extended Jungian Type Scales

The OEJTS personality test provides a result equivalent to
the Myers-Briggs Type Indicator, even though it is not the
MBTI and has no association with it. In this test 32 pairs of
personality descriptions are connected by a five point scale.
For each pair, marking on the scale is a choice based on what
you think you are. For example, if the personality description
is angry versus calm, you should circle 1 if you think you
are mostly angry and never calm; 3 if you are sometimes
angry and sometimes calm, and so on. Sample questions are
as shown in Table I. Questions 3, 7, 11, 15, 19, 23, 17 and 31
are related to Extrovert Introvert.

The scoring instructions from [20] are as follows:

IE = 30−Q3 −Q7 −Q11 +Q15 −Q19 +Q23 +Q27 −Q31

SN = 12 +Q4 +Q8 +Q12 +Q16 +Q20 −Q24 −Q28 +Q32

FT = 30−Q2 +Q6 +Q10 −Q14 −Q18 +Q22 −Q26 −Q30

JP = 18 +Q1 +Q5 −Q9 +Q13 −Q17 +Q21 −Q25 +Q29

If IE score is more than 24, you are extrovert (E), otherwise
you are introvert (I). If SN score is greater than 24, you are
intuitive (N), otherwise you are sensing (S). If FT score is
more than 24, you are thinking (T), otherwise you are feeling
(F). If JP score is higher than 24, you are perceiving (P),
otherwise you are judging (J). The four letters are combined
together to obtain the personality type (e.g. I, S, F, P = ISFP).

D. Neutrosophy and Single Valued Neutrosophic Set (SVNS)

Neutrosophy is a section of philosophy, familiarized by
Smarandache [6], that analyses the beginning, property, and
scope of neutralities, as well as their connections with various
concepts. It studies a concept, event, theory, proposition, or
entity, “A” in relation to its contrary, “Anti-A” and that which
is not A, “Non-A”, and that which is neither “A” nor “Anti-
A”, denoted by “Neut-A”. Neutrosophy is the foundation

of neutrosophic set, neutrosophic probability, neutrosophic
statistics and neutrosophic logic.

The notion of a neutrosophic set from philosophical angle,
founded by Smarandache [6], is as follows.

Definition 1. [6] Let X be a space of points (objects), with a
generic element in X denoted by x. A neutrosophic set A
in X is described by a truth membership function TA(x),
an indeterminacy membership function IA(x), and a falsity
membership function FA(x). The functions TA(x), IA(x), and
FA(x) are nonstandard or real standard subsets of ]−0, 1+[,
that is, TA(x) : X →]−0, 1+[, IA(x) : X →]−0, 1+[, and
FA(x) : X →]−0, 1+[, under the rule −0 ≤ supTA(x) +
supIA(x) + supFA(x) ≤ 3+.

This concept of neutrosophic set is not easy to use in
real world application of scientific and engineering fields.
Therefore, the concept of Single Valued Neutrosophic Set
(SVNS), which is an instance of a neutrosophic set was
introduced by Wang et al. [7].

Definition 2. [7] Let X be a space of points (objects)
with generic elements in X denoted by x. An Single Valued
Neutrosophic Set (SVNS) A in X is characterized by truth
membership function TA(x), indeterminacy membership func-
tion IA(x), and falsity membership function FA(x). For each
point x in X , there are TA(x), IA(x), FA(x) ∈ [0, 1], and
0 ≤ TA(x) + IA(x) + FA(x) ≤ 3. Therefore, an SVNS A can
be represented by A = {⟨x, TA(x), IA(x), FA(x)⟩ | x ∈ X}.
The following expressions are defined in [7] for SVNSs A,B:

• A ∈ B ⇐⇒ TA(x) ≤ TB(x), IA(x) ≥ IB(x), FA(x) ≥
FB(x) for any x in X .

• A = B ⇐⇒ A ⊆ B and B ⊆ A.
• Ac = {⟨x, FA(x), 1− IA(x), TA(x)⟩|x ∈ X}.

The refined neutrosophic logic defined by [21] is as follows:

Definition 3. T can be split into many types of truths:
T1, T2, . . . , Tp, and I into many types of indeterminacies: I1,
I2, . . . , Ir, and F into many types of falsities: F1, F2, . . . , Fs,
where all p, r, s ≥ 1 are integers, and p + r + s = n.
In the same way, but all subcomponents Tj , Ik, Fl are not
symbols, but subsets of [0, 1], for all j ∈ {1, 2, . . . , p} all
k ∈ {1, 2, . . . , r} and all l ∈ {1, 2, . . . , s}. If all sources of
information that separately provide neutrosophic values for a
specific subcomponent are independent sources, then in the
general case we consider that each of the subcomponents
Tj , Ik, Fl is independent with respect to the others and it is
in the non-standard set ]−0, 1+[.

III. TRIPLE REFINED INDETERMINACY NEUTROSOPHIC
SET (TRINS)

Here the indeterminacy concept is divided into three, as
indeterminacy leaning towards truth membership, indetermi-
nacy membership and indeterminacy leaning towards false
membership. This division aids in increasing the accuracy
and precision of the indeterminacy and to fit in the Likert’s
scale which is usually used in personality test. This refined
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neutrosophic set is defined as the Triple Refined Indeterminate
Neutrosophic Sets (TRINS).

Definition 4. Consider X to be a set of points (objects)
with generic entities in X denoted by x. A Triple Refined
Indeterminate Neutrosophic Set (TRINS) A in X is considered
as truth membership function TA(x), indeterminacy leaning
towards truth membership function ITA(x), indeterminacy
membership function IA(x), indeterminacy leaning towards
falsity membership function IFA(x), and falsity membership
function FA(x). Each membership function has a weight
wm ∈ [0, 5] associated with it. For each generic element
x ∈ X , there are

TA(x), ITA(x), IA(x), IFA(x), FA(x) ∈ [0, 1],
wT (TA(x)), wIT (ITA(x)), wI(IA(x)), wIF (IFA(x)),

wF (FA(x)) ∈ [0, 5],

and

0 ≤ TA(x) + ITA(x) + IA(x) + IFA(x) + FA(x) ≤ 5.

Therefore, a TRINS A can be represented by

A = {⟨x, TA(x), ITA(x), IA(x), IFA(x), FA(x)⟩ | x ∈ X}.

A TRINS A is represented as

A =

∫
X

{⟨T (x), IT (x), I(x), IF (x), F (x)⟩/dx, x ∈ X} (1)

when X is continuous. It is represented as

A =
n∑

i=1

{⟨T (xi), IT (xi), I(xi), IF (xi), F (xi)⟩ | xi, xi ∈ X}

(2)
when X is discrete.

Example 1. Let X = [x1, x2] where x1 is question 1 and
x2 is question 2 from Table II. Let x1, x2 ∈ [0, 1] and when
the membership weight is applied the values of wm(x1) and
wm(x2) are in [1, 5]. This is obtained from the questionnaire
of the user.

Consider question 1, instead of a forced single choice; their
option for question 1 would be a degree of “make list”, a
degree of indeterminacy choice towards “make list” , a degree
of uncertain and indeterminate combination of making list and
depending on memory, an degree of indeterminate choice more
of replying on memory, and a degree of “relying on memory”.

A is a TRINS of X defined by

A = ⟨0.0, 0.4, 0.1, 0.0, 0.5⟩/x1 + ⟨0.5, 0.1, 0.1, 0.1, 0.2⟩/x2.

The associated membership weights are wT = 1, wIT =
2, wI = 3, wIF = 4, wF = 5. Then the weighted
TRINS wT (TA(x)), wIT (ITA(x)), wI(IA(x)), wIF (IFA(x)),
wF (FA(x)) ∈ [0, 5], will be

A = ⟨0.0, 0.8, 0.3, 0.0, 1.5⟩/x1 +⟨0.5, 0.2, 0.3, 0.4, 1.0⟩/x2.

Definition 5. Consider TRINS A, its complement is denoted
by c(A) and is defined as

1) Tc(A)(x) = FA(x)

2) ITc(A)(x) = 1− ITA(x)
3) Ic(A)(x) = 1− IA(x)
4) IFc(A)(x) = 1− IFA(x)
5) Fc(A)(x) = TA(x)

for all x in X .

Definition 6. A TRINS A is contained in the other TRINS B,
A ⊆ B, if and only if

1) TA(x) ≤ TB(x)
2) ITA(x) ≤ ITB(x)
3) IA(x) ≤ IB(x)
4) IFA(x) ≤ IFB(x)
5) FA(x) ≥ FB(x)

for all x in X .

X is a partially ordered set and not a totally ordered set,
by the containment relation definition.

For example, let A and B be the TRINSs as defined in
Example 1, then A * B and B * A.

Definition 7. Two TRINSs A and B are equal, denoted as
A = B ⇐⇒ A ⊆ B and B ⊆ A.

Theorem 1. A ⊆ B ⇐⇒ c(B) ⊆ c(A) .

Definition 8. The union of two TRINSs A and B is a TRINS
C, denoted as C = A ∪ B, whose truth membership, inde-
terminacy leaning towards truth membership, indeterminacy
membership, indeterminacy leaning towards falsity member-
ship and falsity membership functions are associated to A and
B by the following

1) TC(x) = max(TA(x), TB(x))
2) ITC(x) = max(ITA(x), ITB(x))
3) IC(x) = max(IA(x), IB(x))
4) IFC(x) = max(IFA(x), IFB(x))
5) FC(x) = min(FA(x), FB(x))

∀x in X .

Theorem 2. A ∪B is the smallest TRINS containing both A
and B.

Proof. It is direct from definition of union operator.

Definition 9. The intersection of two TRINSs A and B is a
TRINS C, denoted as C = A∩B, whose truth, indeterminacy
leaning towards truth, indeterminacy, indeterminacy leaning
towards falsity, and falsity memberships functions are associ-
ated to A and B by the following

1) TC(x) = min(TA(x), TB(x))
2) ITC(x) = min(ITA(x), ITB(x))
3) IC(x) = min(IA(x), IB(x))
4) IFC(x) = min(IFA(x), IFB(x))
5) FC(x) = max(FA(x), FB(x))

for all x ∈ X .

Theorem 3. The largest TRINS contained in both A and B
is A ∩B.

Proof. From the intersection operator definition, it is direct.
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Definition 10. The difference of two TRINSs D, written as
D = A \ B, whose truth membership, indeterminacy lean-
ing towards truth membership, indeterminacy membership,
indeterminacy leaning towards falsity membership and falsity
membership functions are related to those of A and B by

1) TD(x) = min(TA(x), FB(x))
2) ITD(x) = min(ITA(x), 1− ITB(x))
3) ID(x) = min(IA(x), 1− IB(x))
4) IFD(x) = min(IFA(x), 1− IFB(x))
5) FD(x) = min(FA(x), TB(x))

for all x in X .

Three operators truth favourite (△), falsity favourite (▽)
and indeterminacy neutral (∇) are defined over TRINSs.
Two operators truth favourite (△) and falsity favourite (▽)
are defined to alter the indeterminacy in the TRINSs and
convert it into intuitionistic fuzzy sets or paraconsistent sets.
Similarly the TRINS is transformed into a SVNS by operator
indeterminacy neutral (∇) by combining the indeterminacy
values of the TRINS. These three operators are unique on
TRINS.

Definition 11. The truth favourite of a TRINS A is a TRINS
B, written as B = △A, whose truth membership and falsity
membership functions are related to those of A by

1) TB(x) = min(TA(x) + ITA(x), 1)
2) ITB(x) = 0
3) IB(x) = 0
4) IFB(x) = 0
5) FB(x) = FA(x)

for all x in X .

Definition 12. The falsity favourite of a TRINS A, written as
B = ▽A, whose truth membership and falsity membership
functions are related to those of A by

1) TB(x) = TA(x)
2) ITB(x) = 0
3) IB(x) = 0
4) IFB(x) = 0
5) FB(x) = min(FA(x) + IFA(x), 1)

for all x in X .

Definition 13. The indeterminacy neutral of a TRINS A is
a TRINS B, written as B = ∇A, whose truth membership,
indeterminate membership and falsity membership functions
are related to those of A by

1) TB(x) = TA(x)
2) ITB(x) = min(ITA(x) + IB(x) + IFB(x), 1)
3) IB(x) = 0
4) IFB(x) = 0
5) FB(x) = FA(x)

for all x in X .

Proposition 1. The following set theoretic operators are
defined over TRINS X , Y and Z.

1) (Property 1) (Commutativity):
X ∪ Y = Y ∪X,

X ∩ Y = Y ∩X,
X × Y = Y ×X.

2) (Property 2) (Associativity):
X ∪ (Y ∪ Z) = (X ∪ Y ) ∪ Z,
X ∩ (Y ∩ Z) = (X ∩ Y ) ∪ Z,
X × (Y × Z) = (X × Y )× Z.

3) (Property 3) (Distributivity):
X ∪ (Y ∩ Z) = (X ∪ Y ) ∩ (X ∪ Z),
X ∩ (Y ∪ Z) = (X ∩ Y ) ∪ (X ∩ Z).

4) (Property 4) (Idempotency):
X ∪X = X, X ∩X = X,

△△X = △X, ▽▽X = ▽X.

5) (Property 5)
X ∩ ϕ = ϕ, X ∩X = X,

where Tϕ = Iϕ = 0, Fϕ = 1 and TX = ITX = IFX =
1, FX = 0.

6) (Property 6)
X ∪ ϕ = X, X ∩X = X,

where Tϕ = IIϕ = IFϕ = 0, Fϕ = 1 and TX = IX =
1, FX = 0.

7) (Property 7) (Absorption):
X ∪ (X ∩ Y ) = X, X ∩ (X ∪ Y ) = X.

8) (Property 8) (De Morgan’s Laws):
c(X ∪ Y ) = c(X) ∩ c(Y ), c(X ∩ Y ) = c(X) ∪ c(Y ).

9) (Property 9) (Involution): c(c(X)) = X.

Almost all properties of classical set, fuzzy set, intuitionistic
fuzzy set and SNVS are satisfied by TRINS. The principle of
middle exclude is not satisfied by these sets.

IV. DISTANCE MEASURES OF TRINS
The weight measures over TRINS is defined in the follow-

ing:
Consider TRINS A in a universe of discourse, X = {xl,

x2, . . . , xn}, which are denoted by A = {⟨xi, TA(xi),
ITA(xi), IA(xi), IFA(xi), FA(xi)⟩ | xi ∈ X}, where
TA(xi), ITA(xi), IA(xi), IFA(xi), FA(xi),∈ [0, 1] for ev-
ery xi ∈ X . Let wm be the weight of each membership,
then wT (TA(x)), wIT (ITA(x)), wI(IA(x)), wIF (IFA(x)),
wF (FA(x)) ∈ [0, 5]. Hereafter by the membership TA(xi),
ITA(xi), IA(xi), IFA(xi), FA(xi), we mean the weight mem-
bership wT (TA(x)), wIT (ITA(x)), wI(IA(x)), wIF (IFA(x)),
wF (FA(x)).

Then, the generalized Triple Refined Indeterminate Neutro-
sophic weight is defined as follows:

w(A) = {
n∑

i=1

{wT (TA(xi)) + wIT (ITA(xi))+

wI(IA(xi)) + wIF (IFA(xi)) + wF (FA(xi))}
(3)

The distance measures over TRINSs is defined in the fol-
lowing and the related algorithm for determining the distance
is given:

Consider two TRINSs A and B in a universe of discourse,
X = xl, x2, . . . , xn, which are denoted by
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A = {⟨xi, TA(xi), ITA(xi), IA(xi), IFA(xi), FA(xi)⟩ | xi ∈
X}, and B =

{⟨xi, TB(xi), ITB(xi), IB(xi), IFB(xi), FA(xi)⟩ | xi ∈ X},

where TA(xi), ITA(xi), IA(xi), IFA(xi), FA(xi), TB(xi),
ITB(xi), IB(xi), IFB(xi), FB(xi) ∈ [0, 5] for every xi ∈ X .
Let wi(i = 1, 2, . . . , n) be the weight of an element
xi(i = 1, 2, . . . , n), with wi ≥ 0(i = 1, 2, . . . , n) and∑n

i=1
wi = 1.

Then, the generalized Triple Refined Indeterminate Neutro-
sophic weighted distance is defined as follows:

dλ(A,B) = {1
5

n∑
i=1

wi[| TA(xi)− TB(xi) |λ

+ | ITA(xi)− ITB(xi) |λ + | IA(xi)− IB(xi) |λ +

| IFA(xi)− IFB(xi) |λ + | FA(xi)− FB(xi) |λ]}1/λ

(4)

where λ > 0.
Equation 4 reduces to the Triple Refined Indeterminate

Neutrosophic weighted Hamming distance and the Triple
Refined Indeterminate Neutrosophic weighted Euclidean dis-
tance, when λ = 1, 2, respectively. The Triple Refined Inde-
terminate Neutrosophic weighted Hamming distance is given
as

dλ(A,B) =
1

5

n∑
i=1

wi[| TA(xi)− TB(xi) |

+ | ITA(xi)− ITB(xi) | + | IA(xi)− IT (xi) |
+ | IFA(xi)− IFB(xi) | + | FA(xi)− FB(xi) |]

(5)

where λ = 1 in Equation 4.
The Triple Refined Indeterminate Neutrosophic weighted

Euclidean distance is given as

dλ(A,B) = {1
5

n∑
i=1

wi[| TA(xi)− TB(xi) |2

+ | ITA(xi)− ITB(xi) |2 + | IA(xi)− IB(xi) |2

| IFA(xi)− IFB(xi) |2 + | FA(xi)− FB(xi) |2]}1/2

(6)

where λ = 2 in Equation 4.
The algorithm to obtain the generalized Triple Refined

Indeterminate Neutrosophic weighted distance dλ(A,B) is
given in Algorithm 1.

The following proposition is given for the distance measure.

Proposition 2. The generalized Triple Refined Indeterminate
Neutrosophic weighted distance dλ(A,B) for λ > 0 satisfies
the following properties:

1) (Property 1) dλ(A,B) ≥ 0;
2) (Property 2) dλ(A,B) = 0 if and only if A = B;
3) (Property 3) dλ(A,B) = dλ(B,A);
4) (Property 4) If A ⊆ B ⊆ C,C is an TRINS in X , then

dλ(A,C) ≥ dλ(A,B) and dλ(A,C) ≥ dλ(B,C).

It can be easily seen that dλ(A,B) satisfies the properties
(Property 1) to (Property 4).

The Triple Refined Indeterminate Neutrosophic distance
matrix D is defined in the following.

Algorithm 1: Generalized Triple Refined Indeterminate
Neutrosophic weighted distance dλ(A,B)

Input: X = xl, x2, . . . , xn, TRINS A,B where A =
{⟨xi, TA(xi), ITA(xi), IA(xi), IFA(xi), FA(xi)⟩ |
xi ∈ X}, B =
{⟨xi, TB(xi), ITB(xi), IB(xi), IFB(xi), FA(xi)⟩ |
xi ∈ X}, wi(i = 1, 2, . . . , n)

Output: dλ(A,B)
begin

dλ ← 0
for i = 1 to n do

dλ ← dλ + wi[| TA(xi)− TB(xi) |λ +
| ITA(xi)− ITB(xi) |λ + | IA(xi)− IB(xi) |λ +
| IFA(xi)− IFB(xi) |λ + | FA(xi)− FB(xi) |λ]

end
dλ ← dλ /5

dλ ← d
{ 1

λ}
λ

end

Definition 14. Let Aj(j = 1, 2, . . . ,m) be a collection of
m TRINs, then D = (dij)m×m is called a Triple valued
neutrosophic distance matrix, where dij = dλ(Ai, Aj) is the
generalized Triple distance valued neutrosophic between Ai

and Aj , and its properties are as follows:
1) 0 ≤ dij ≤ 5 for all i, j = 1, 2, . . . ,m;
2) dij = 0 if and only if Ai = Aj;
3) dij = dji for all i, j = 1, 2, . . . ,m.

The algorithm to calculate the Triple Refined Indeterminate
Neutrosophic weighted distance matrix D is given in Algo-
rithm 2.

Algorithm 2: Triple Refined Indeterminate Neutrosophic
weighted distance matrix D

Input: TRINS A1, . . . , Am,
Output: Distance matrix D with elements dij
begin

for i = 1 to m do
for j = 1 to m do

if i = j then
dij ← 0

else
dij ← {dλ (Ai, Aj)}

end
end

end
end

V. THE INDETERMINACY BASED OPEN EXTENDED
JUNGIAN TYPE SCALES USING TRINS

A. Sample Questionnaire

A sample questionnaire of the indeterminacy based Open
Extended Jungian Type Scales personality test using TRINS
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TABLE II
SAMPLE QUESTIONNAIRE OF THE INDETERMINACY BASED OEJTS

Q Scale weight
1 2 3 4 5

Q1 makes lists � � � � � relies on memory
Q2 sceptical � � � � � wants to believe
Q3 bored by time alone � � � � � needs time alone
Q7 energetic � � � � � mellow
Q11 works best in groups � � � � � works best alone
Q15 worn out by parties � � � � � gets fired up by parties
Q19 talks more � � � � � listens more
Q23 stays at home � � � � � goes out on the town
Q27 finds it difficult to � � � � � yelling to others

yell very loudly . . . comes naturally
Q31 perform in public � � � � � avoids public speaking

will be as given in table II.
The user is expected to fill the degree accordingly.

Example 2. Consider question 1, the different options would
be

1) a degree of “make list”,
2) a degree of indeterminacy choice towards “make list” ,
3) a degree of uncertain and indeterminate combination of

making list and depending on memory,
4) a degree of indeterminate choice more of relying on

memory, and
5) a degree of “relying on memory”.

Suppose the user thinks and marks a degree of “make list”
is 0.0, a degree of indeterminate choice towards “make list”
is 0.4 , a degree of uncertain and indeterminate combination
of making list and depending on memory is 0.1, an degree of
indeterminate choice more of relying on memory 0.3, and a
degree of “relying on memory” is 0.2.

A is a TRINS of Q = {q1} defined by

A = ⟨0.0, 0.4, 0.1, 0.3, 0.2⟩/q1.

When the weight of each membership is applied, the TRINS
A becomes

A = ⟨0.0, 0.8, 0.3, 1.2, 1.0⟩/q1
w(A) = 3.3.

In the general test, a whole number value from 1 to 5 will
be obtained, whereas in the indeterminacy based OEJTS an
accurate value is obtained. Thus the accuracy of the test is
evident.

B. Calculating Results

Depending on the questionnaire the following grouping was
carried out

TRINS E is defined in the discourse QE =
{Q15, Q23, Q27} deals with the extrovert aspect and the
introvert aspect is defined by TRINS I which is defined in
the discourse QI = {Q3, Q7, Q11, Q19, Q31}. The Sensing
versus Intuition dichotomy is given by TRINSs S and N ; S is
defined in the discourse QS = {Q24, Q28} and N is defined
in the discourse QN = {Q4, Q8, Q12, Q16, Q20, Q32}.

Similarly Feeling versus Thinking dichotomy is given
by TRINSs F and T ; F is defined in the discourse
QF = {Q2, Q14, Q18, Q26, Q30} and T is defined the
discourse QT = {Q6, Q10, Q22}. TRINSs J and P are used
to represent the judging versus perceiving dichotomy; J is
defined in the discourse QJ = {Q17, Q25} and P is defined
in the discourse QP = {Q1, Q5, Q13, Q21, Q29}.

The weight of a TRINS E is given in Equations 3.
The calculation for scoring is as follows:

IE = 30− w(I) + w(E)

SN = 12− w(S) + w(N)

FT = 30− w(F ) + w(T )

JP = 18− w(J) + w(P ).

The score results are based on the following rules:
1) If IE is greater than 24, you are extrovert (E), otherwise

you are introvert (I).
2) If SN is greater than 24, you are intuitive (N), otherwise

you are sensing (S).
3) If FT is higher than 24, you are thinking (T), otherwise

you are feeling (F).
4) If JP is higher than 24, you are perceiving (P), otherwise

you are judging (J).

C. Comparing results of two people

Consider this personality test is taken by a group of people.
Using the distance measure given in Algorithm 1 is defined
over TRINS the difference and similarity in two or more per-
son’s personality can be analysed along a particular dichotomy.
They can be analysed along extroversion (E), introversion
(I), Intuitive (N), Sensing (S), Thinking (T), Feeling (F),
Perceiving (P) or judging (J) or any combination of the eight.
Clustering of the results using the distance matrix given in
Algorithm 2 can also be carried out, it cluster and find similar
personality people. This topic is left for future research.

VI. COMPARISON

The existing classical personality test force the test taker to
select only one option and it is mostly what the user thinks
he/she does often. The other options are lost to the test taker. It
fails to capture the complete picture realistically. The dominant
choice is selected, the selection might have very small margin.
In such cases the accuracy of the test fails. Whereas when the
indeterminacy based OEJTS Test is considered, it provides five
different options to the test taker using TRINS for representing
the choice.

It is important to understand why TRINS makes the can-
didate for this kind of personality test. The reason can be
obtained by the following comparative analysis of the methods
and their capacity to deal indeterminate, inconsistent and
incomplete information.

TRINS is an instance of a neutrosophic set, which ap-
proaches the problem more logically with accuracy and pre-
cision to represent the existing uncertainty, imprecise, in-
complete, and inconsistent information. It has the additional
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feature of being able to describe with more sensitivity the
indeterminate and inconsistent information. TRINS alone can
give scope for a person to express accurately the exact realistic
choices instead of opting for a dominant choice. While, the
SVNS can handle indeterminate information and inconsistent
information, it is cannot describe with accuracy about the
existing indeterminacy. It is known that the connector in fuzzy
set is defined with respect to T (membership only) so the
information of indeterminacy and non membership is lost.
The connectors in intuitionistic fuzzy set are defined with
respect to truth membership and false membership only; here
the indeterminacy is taken as what is left after the truth and
false membership. Hence a personality test based on TRINS
gives the most accurate and realistic result, because it captures
the complete scenario realistically.

VII. CONCLUSIONS

In objective type personality test like the MBTI or the
OEJTS, the user is forced to select an option, and mostly
lands up selecting the most dominant choice. The rest of the
options are lost. A person may not be in general capable to
judge his/her behaviour very precisely and categorize it into
a particular choice. Since it is the person doing self rating
there is a lot of uncertain, inexpressible and indeterminate
feelings involved. The results of the test depend on a number
of internal and external factors. To provide a more accurate
and realistic result, a personality test needs to provide more
choices and a degree of acceptance with that particular choice.
To represent the Likert scale using neutrosophy, the concept of
Triple Refined Indeterminate Neutrosophic Set (TRINS) was
introduced. More precision is provided in handling indeter-
minacy; by classifying indeterminacy (I) into three, based on
membership; as indeterminacy leaning towards truth member-
ship (IT ), indeterminacy membership (I) and indeterminacy
leaning towards false membership (IF ). TRINS can be used in
any place where the Likert scale is used like personality test. In
this paper a indeterminacy based personality test based on the
OEJTS and TRINS was proposed. The calculation of results
and personality types was discussed. This personality test is
capable of accurately describing the perception of the test taker
and their decision making tendencies. The personality of two
people can be compared in detail using the distance measures
defined over TRINS, however this is left for future study.
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Abstract. The paper presents automated estimation techniques 
for robot parameters through system identification, for both PID 
control and future implementation of intelligent control laws, 
with the aim of designing the experimental model in a 3D virtual 
reality for testing and validating control laws in the joints of 
NAO humanoid robots. After identifying the maximum 
likelihood model, the PID amplification factors are optimized and 
introduced into the Unity environment as a script for controlling 
the joint. The program used for identifying PID parameters for 
the NAO robot is developed using the virtual reality platform 
Unity 3D and integrated into the Graphical Station component of 
the VIPRO Platform for the control of versatile, intelligent, 
portable robots. The obtained results, validated in the virtual 
reality environment, have led to the implementation of the PID 
identification and optimization component on the VIPRO 
Platform.   

Keywords—intelligent robotic control systems; robotic system 
identification; modelling system; virtual reality; robot stability 

I.  INTRODUCTION 
The last few years have seen mobile robots gain increased 

attention in the research community, as well as in the 
manufacturing industry, resulting in remarkable hardware and 
software development. Among the applications of great interest 
for researchers are: dangerous activities such as detection of 
antipersonnel mines and other explosives, surveillance 

activities (“Remotec” has developed the Marauder technology 
which later led to the development of the Andros Mark V robot) 
and rescue operation in case of calamity. 

Following the devastating earthquakes in Japan, an 
international project has been developed which reunites 
renowned research teams from all over the world for the design 
of search and rescue robots, under the banner of the RoboCup – 
Rescue Project, divided into two sub-projects: multi-agent 
simulation using a virtual robot and development of a real 
robot. 

Developing remote-controlled, autonomous mobile robots, 
which can support humans in search and rescue operations in a 
contaminated nuclear environment, after fires or in calamitous 
earthquake areas has become a priority and entails a complex 
challenge. To this end, numerous robot control methods have 
been developed for moving on uneven and uncertain 
environments, which allows improvements in robot mobility 
and stability, through intelligent algorithms: fuzzy logic, 
extenics, neutrosophy, neural networks, Petri nets with Markov 
models, hybrid force-position control method, among others. 

II. 3D UNITY SIMULATION COMPONENT APPLIED ON 
VIPRO PLATFORM 

Real time, remotely-controlled robots with the capabilities 
of a human operator have an increasingly important role in 
hazardous or challenging environments, where human life 
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might be endangered, such as nuclear contamination areas, 
fires and earthquake zones [1 - 3]. 

Research in these fields have led to an accumulation of 
important expertise regarding robot movement in virtual 
environments, with improvements in navigation, obstacle 
avoidance, high fidelity environment simulation, etc., but 
lacking the environment – virtual robot – robot interactions. In 
this context by developing an innovative platform [4 - 7], the 
VIPRO Platform has been conceived for brings virtual robots 
into the real world, mainly consisting in the projection into a 
virtual environment of the robot mechanical structure, and 
communicate in real time through a high-speed interface with 
real robotic control systems, in order to improve performances 
of the robot control laws. The result is a versatile, intelligent, 
portable robot platform (VIPRO), which allows improved of 
the robot motion and stability performance in a virtual and real 
environment on uneven and unstructured terrain for mobile, 
autonomous, intelligent robots, such as the NAO robots, or in 
particular the search and rescue robots RABOT.  
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Figure 1. VIPRO Platform Architecture 

The VIPRO Platform architecture for modelling and 
simulation of mobile robots is based on the virtual projection 
method [6, 8-11], through which robotics and mechatronics 
systems are developed in a virtual environment. 

The technical solution, presented in an open architecture 
real time control structure (Figure 1), contains the main 
modules of the VIPRO Platform. The intelligent control 
interface module uses advanced control strategies adapted to 
the robot environment such as extended control (extenics) [12 - 
14] , neutrosophic control [15 - 18], human adaptive
mechatronics, etc., implemented through computational 
techniques for fast processing and real time communication. 
The following intelligent control interfaces have been designed 
and implemented on the VIPRO Platform: neutrosophic robot 
control interface (ICNs), extended control interface for robot 
extenics control (ICEx) and the neural network interface (INN) 
for dynamic hybrid force position control DHFPC [19, 20]. 

The two main components of the VIPRO Platform are the 
workstation “Engineering Station” for the PLC classic position 
control of robot joint actuators and speed control of load 
actuators, and the “Graphical Station” for the development of a 
virtual robot environment and virtual reality for robot motion. 

The VIPRO Platform has allotted 5 user stations dedicated 
to modelling the NAO robot using direct and inverse 
kinematics, modelling the RABOT robot in the Unity 
development environment, neutrosophic intelligent control 
(ICN) through the integration of the RNC method, extended 
control through the extenics method (ICEx) and modelling 
inverse kinematics in the robot motion control using fuzzy 
inference systems and neural networks. 

For remote control in establishing the e-learning component 
of the VIPRO Platform, a PC server was integrated to ensure 
large data traffic for internet communication, with two addition 
workstations for end-user applications. 
 The “Engineering Station” component is mainly aimed at 
integrating the AC500 development environment for 
programmable automate (PLC) applications, control of the 
application stand for the virtual projection method on 6 DOF, 
and testing of the intelligent neutrosophic control (ICNs), 
extenics control (ICEx) and dynamic hybrid force position 
control DHFPC interfaces. 

After testing, these are integrated in real-time control of a 
new robot with improved performance and stability of motion 
through  the Graphical Station, as follows: for multi-users 
through the components of the VIPRO Platform consisting of 
Remote Control& eLearning User 1, Remote Control& 
eLearning User 2 or individually through the VIPRO Platform 
components consisting of the dedicated intelligent interfaces on 
the Notebook workstations, namely “Extenics Intelligent 
Interface Notebook”, “Neutrosophic Intelligent Interface 
Notebook” and “Neural Network Intelligent Interface 
Notebook”. 

Using 3D UNITY Simulation Component Applied to the 
VIPRO Platform, the paper presents automated estimation 
techniques for robot system identification. 

III. AUTOMATED TECHNIQUES FOR PARAMETER
ESTIMATION 

A. Identification of PID parameters for the NAO robot 
Designing the experimental model in a virtual 3D 

environment for testing and validation of the PID control law 
parameters of the robot joints entails an accurate identification 
of the system model through automated parameter estimation 
algorithms for both the PID controller, as well as the future 
implementation of intelligent control laws [21 - 23]. 

Ensuring the stability of the experimental virtual model, 
using PID control in the robot joints, requires knowledge of an 
approximate model of the controlled process, based on which 
the amplification factors for the parallel PID structure are 
established. The model is developed through system 
identification algorithms using known vectors of input and 
related output data of the unknown system. The Unity 3D 
environment allows data generation for input references to a 
virtual robot joint and monitoring its behavior, thus obtaining 
the required output data. These are used for the parameter 
estimation of system models applied to the phenomenon. After 
identifying the maximum likelihood model, the amplification 
factors for a PID controller structure are optimized and 
introduced into the Unity environment as a controller script for 
the robot joint. The robot joint in the Unity environment is 
treated as a black-box system, without the need to intervene on 
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the development environment’s libraries or source code (as 
relates to understanding or modifying the physics engine). 

B. NAO Leg Joint 3D Simulation Data in UNITY 
 

The two sets of data (the input and output vectors, 
respectively) are exported to an Excel working file in *.csv 

format, to be further imported into the numerical processing 
environment. An example is shown in Figure 2. 

The data is imported into Matlab using the function xlsread, 
resulting in a data vector structure used to identify the position 
controlled system. 

Figure 2. Data structure exported from Unity to a *.csv file 

With the help of the native xlsread function, the file obtained in 
the Unity 3D tests can be imported into the Matlab 
environment for processing.  

The result is shown in Figure 3, in which the data is 
structured as two vectors representing the reference (input 
variable) and the system output. 

Figure 3. Vector imported into the workspace 
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C. Data pre-processing 

The obtained data is pre-processed, as can be seen in Figure 
4, to ease the task of system identification by eliminating 
nonessential areas and their respective noise. For example, the 

reference has a null value for the beginning of the test in order 
to calibrate the system. However, the acquired data shows 
nonzero values due to the existing noise in the simulation 
environment and the inexactness assumed in representing the 
mechanical system. 

Figure 4. Pre-processing the obtained data 

IV. SYSTEM IDENTIFICATION

System identification using the automated identification 
function from the Matlab toolbox is tried for a number of 
various order systems. 

After the input data has been brought to a desired form and 
the possible noise components removed, system identification 

can begin in earnest. In the respective application in the Matlab 
programming environment are investigated a number of 
possible system models, with the program handling the 
automatic parameter identification. 

Given a certain model chosen for representation, the 
interface optimizes automatically the model parameters using 
the samples from the input and output vectors (Figure 5).  

Figure 5. Model identification for two paired poles

A. Control model adaptation 
For complex black-box system identification and adaptation 

to the nonlinear behaviour of the data set, the separate system 
identification interface is used. The various available options 
and the parameter optimization algorithms are shown in Figure 
6. 

B. Control law optimization interface 
Optimization of the PID controller in a varied number of 

options and of the amplification factors for each of these, 
which control the chosen process, is developed in the virtual 
environment through an intelligent control interface. 

Within the existing interface, the controller type was chosen 
(P/PI/PD/PID), as well as the desired response for a closed 
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loop system including this controller. The estimated result, 
seen within the interface in Figure 7, has allowed establishing 
the desired transitive response, the convergence speed and the 

direct adjustment of the amplification factors of the three 
branches of the controller. 

Figure 6. Comprehensive interface for robotic system identification

After the theoretical validation of the model, the obtained 
data is exported back into the virtual reality 3D environment in 
Unity, in which the controller behaviour is simulated through a 

compiled script, which generated the amplifications determined 
in the Matlab control interface presented above. 

Figure 7.  PID answer estimated 

V. RESULTS AND CONCLUSIONS 
Identifying the control law parameters for the Nao walking 

robot, using the 3D simulation component of the virtual reality 
platform Unity 3D, through automated parameter estimation 
techniques, for both PID control and future implementations of 
intelligent control laws, allows an improvement in stability and 
robot motion control in a virtual reality environment.  

By applying the virtual projection method, the 
improvement in robot performance is transferred from the 
virtual world of modelling and simulation to the real world of 

experimental models, representing a powerful experimental 
validation tool. 

The PID parameter identification program for the Nao 
humanoid robot using the virtual reality platform Unity 3Dand 
the 3D simulation component are shown in Figure 8, are 
available for users of the VIPRO platform and accessible from 
the VIPRO interface, either locally or from a remote location. 
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Fig.8. Robot system identification on VIPRO Platform 

The obtained results, validated in the virtual reality 
environment, have led to the implementation on the VIPRO 
Platform in the 3D environment Unity, of the simulation 
component for the PID parameter identification for the NAO 
humanoid robot, with the possibility of extension to the 
RABOT search and rescue robot. 
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Abstract—The single valued neutrosophic graph is a new 
version of graph theory presented recently as a generalization of 
fuzzy graph and intuitionistic fuzzy graph. The single valued 
neutrosophic graph (SVN-graph) is used when the relation 
between nodes (or vertices) in problems are indeterminate. In 
this paper, we examine the properties of various types of degrees, 
order and size of single valued neutrosophic graphs and a new 
definition for regular single valued neutrosophic graph is given. 

Keywords— single valued neutrosophic graph; total degree; 
effective degree; neighborhood degree; Order; Size. 

I. INTRODUCTION  
Neutrosophic set (NS for short) proposed by Smarandache 
[11, 12] is a powerful tool to deal with incomplete, 
indeterminate and inconsistent information in real world. It is 
a generalization of the theory of fuzzy set [16], intuitionistic 
fuzzy sets [22, 24], interval-valued fuzzy sets [18] and 
interval-valued intuitionistic fuzzy sets [23], then the 
neutrosophic set is characterized by a truth-membership 
degree (t), an indeterminacy-membership degree (i) and a 
falsity-membership degree (f) independently, which are within 
the real standard or nonstandard unit interval ]•0, 1+[. 
Therefore, if their range is restrained within the real standard 
unit interval [0, 1], Nevertheless, NSs are hard to be apply in 
practical problems since the values of the functions of truth, 
indeterminacy and falsity lie in]•0, 1+[. Therefore, Wang et 
al.[14] presented single-valued neutrosophic sets (SVNSs) 
whose functions of truth, indeterminacy and falsity lie in [0, 
1]. The same authors introduced the notion of interval valued 
neutrosophic sets [15] as subclass of neutrosophic sets in 
which the value of truth-membership, indeterminacy-
membership and falsity-membership degrees are intervals of 
numbers instead of the real numbers. neutrosophic sets and its 
extensions such as single valued neutrosophic sets, interval 
neutrosophic sets, simplified neutrosophic sets and so on have 
been applied in a wide variety of fields including computer 
science, engineering, mathematics, medicine and economic [1, 
2, 3, 7, 8, 10, 11, 12, 13, 17,19, 20, 21, 27, 33, 34, 35]. 

 Many works on fuzzy graphs and intuitionistic fuzzy graphs 
[4, 5, 6, 27, 28, 41] have been carried out and all of them have 
considered the vertex sets and edge sets as fuzzy and /or 
intuitionistic fuzzy sets. But, when the relations between 
nodes (or vertices) in problems are indeterminate, the fuzzy 
graphs and intuitionistic fuzzy graphs are failed. For this 
purpose, Smarandache [9] have defined  four main categories 
of neutrosophic graphs, two based on literal indeterminacy (I), 
which called them; I-edge neutrosophic graph and I-vertex 
neutrosophic graph, these concepts are studied deeply and has 
gained popularity among the researchers due to its 
applications via real world problems [38, 39, 40]. The two 
others graphs are based on (t,  i,  f) components and called 
them; The (t, i, f)-edge neutrosophic graph and the (t, i, f)-
vertex neutrosophic graph, these concepts are not developed at 
all. Later on, Broumi et al. [30] introduced a third 
neutrosophic graph model combined the (t, i, f)-edge and and 
the (t, i, f)-vertex neutrosophic graph and investigated some of 
their properties. The third neutrosophic graph model is called 
‘single valued neutrosophic graph’ (SVNG for short). The 
single valued neutrosophic graph is the generalization of fuzzy 
graph and intuitionistic fuzzy graph. Also, Broumi et al.[31] 
introduced the concept of bipolar single valued neutrosophic 
graph as a generalization of fuzzy graphs, intuitionistic fuzzy 
graph, N-graph, bipolar fuzzy graph and single valued 
neutrosophic graph and studied some of their related 
properties. The same authors [32, 33, 34], introduced the 
concept of interval valued neutrosophic graph as a 
generalization of single valued neutrosophic graph and have 
discussed some of their  properties with proof and examples. 
The remainder of this paper is organized as follows. In Section 
2, we review some basic concepts about neutrosophic sets, 
single valued neutrosophic sets, single valued neutrosophic 
graph and complete single valued neutrosophic graph. The 
type of degrees in single valued neutrosophic graphs such as 
degree of vertex, total degree, effective degree, neighborhood 
degree, closed neighborhood degree are defined in Section 3. 
Furthermore, some properties of the proposed degrees are 
discussed with numerical examples. In Section 4, we present 
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the concept of regular single valued neutrosophic graph and 
proved some propositions. In addition, Section 5 also present 
the concept of order and size of single valued neutrosophic 
graph. Finally, Section 6 outlines the conclusion of this paper 
and suggests several directions for future research. 

II. PRELIMINARIES
In this section, we mainly recall some notions related to 

neutrosophic sets, single valued neutrosophic sets, fuzzy graph, 
intuitionistic fuzzy graph, single valued neutrosophic graphs, 
relevant to the present work. See especially [12, 14, 26, 28] for 
further details and background. 

Definition 2.1 [12]. Let X  be a space of points (objects) with 
generic elements in X denoted by x;  then the neutrosophic set 
A (NS A) is an object having the form A = {< x: ( )AT x , 

( )AI x , ( )AF x >, x ∈  X}, where the functions T, I, F: 
X→]−0,1+[define respectively the truth-membership function, 
an indeterminacy-membership function, and a falsity-
membership function of the element x ∈  X to the set A with 
the condition: 

   −0 ≤ ( )AT x + ( )AI x + ( )AF x ≤ 3+.      (1) 

The functions ( )AT x , ( )AI x  and ( )AF x  are real standard or 
nonstandard subsets of ]−0,1+[. 
Since it is difficult to apply NSs to practical problems, Wang 
et al. [14] introduced the concept of a SVNS, which is an 
instance of a NS and can be used in real scientific and 
engineering applications. 

Definition 2.2 [14]. Let X  be a space of points (objects) with 
generic elements in X denoted by x. A single valued 
neutrosophic set A (SVNS A) is characterized by truth-
membership function ( )AT x , an indeterminacy-membership 

function ( )AI x , and a falsity-membership function ( )AF x . 

For each point x in X ( )AT x , ( )AI x , ( )AF x ∈  [0, 1]. A 
SVNS A can be written as 

 A = {< x: ( )AT x , ( )AI x , ( )AF x >, x ∈X}        (2) 

Definition 2.3[7]. A fuzzy graph is a pair of functions G = 
(σ , µ ) where σ  is a fuzzy subset of a non empty set V and 
µ  is a symmetric fuzzy relation on σ . i.e  σ  : V →  [ 0,1] 
and μ: VxV →  [0,1] such that   ( ) ( ) ( )uv u vµ σ σ≤ ∧  for 
all u, v ∈V where uv denotes the edge between u and v and 

( ) ( )u vσ σ∧ denotes the minimum of ( )uσ  and ( )vσ . σ  
is called the fuzzy vertex set of V and  µ  is called the fuzzy 
edge set of E. 

Definition 2.4 [26]:  An intuitionistic fuzzy graph (IFG) is of 
the form G= (V, E) where  

1.V= ={ 1v , 2v , …, nv } such that 1µ :V → [0, 1] and 

1γ :V → [0, 1] denotes the degree of membership and non-

membership of the element iv  ∈  V, respectively,  and 

0 ≤  1( )ivµ  + 1( )ivγ  ≤ 1 for every iv ∈  V (i=1, 2, …,n) 
(3)  
2. E ⊆  V x V where 2µ :V x V → [0, 1] and 2γ :V x V 
→ [0, 1] are such that 
 2 ( , )i jv vµ  ≤  min[ 1( )ivµ , 1( )jvµ ]         (4)  

2 ( , )i jv vγ  ≥ max[ 1( )ivγ , 1( )jvγ ]         (5)  

0 ≤  2 ( , )i jv vµ   + 2 ( , )i jv vγ  ≤ 1    for every  ( , )i jv v ∈ E 
(i, j=  1, 2, …,n)    (6)  
Definition 2.4 [28]. A single valued neutrosophic graph 
(SVN-graph) with underlying set V is defined to be a pair G= 
(A, B) where  
1.The functions AT :V →  [0, 1], AI :V → [0, 1] and 

AF :V → [0, 1] denote the degree of truth-membership, degree 
of indeterminacy-membership and falsity-membership of the 
element iv ∈  V, respectively,  and 

   0 ≤  ( )A iT v  + ( )A iI v  + ( )A iF v  ≤ 3 for all  iv ∈  V. 

2. The functions BT : E ⊆  V x V → [0, 1], BI :E ⊆  V x V 

→ [0, 1] and BI : E ⊆  V x V →  [0, 1] are defined by 

( , )B i jF v v  ≤  min [ ( )A iT v , ( )A jT v ], ( , )B i jI v v  ≥  max 

[ ( )A iI v , ( )A jI v ] and ( , )B i jF v v  ≥  max [ ( )A iF v , 

( )A iF v ]   
Denotes  the degree of truth-membership, indeterminacy-
membership and falsity-membership of the edge ( , )i jv v  ∈  
E respectively, where 
  0 ≤  ( , )B i jT v v + ( , )B i jI v v + ( , )B i jF v v ≤  3 for all 

( , )i jv v ∈ E  (i, j = 1, 2,…, n) 
We call A the single valued neutrosophic vertex set of V, B 
the single valued neutrosophic edge set of E, respectively. 

           

Fig.1. Single valued neutrosophic graph 
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Definition 2.5 [28]. A partial SVN-subgraph of  SVN-graph G 
= (A, B)  is a SVN-graph H = ( 'V , 'E ) such that 
- 'V ⊆  V, where ' ( )A iT v ≤  ( )A iT v , ' ( )A iI v ≥  ( )A iI v ,and 

' ( )A iF v ≥  ( )B iF v , for all iv ∈  V. 

- 'E ⊆  E, where ' ( , )B i jT v v ≤  ( , )B i jT v v , ' ( , )B i jI v v ≥  

( , )B i jI v v ,and ' ( , )B i jF v v ≥  ( , )B i jF v v , for all ( , )i jv v ∈ 
E. 

Definition 2.6[28]. A single valued neutrosophic graph G=(A, 
B) of *G =(V, E) is called complete single valued
neutrosophic graph if  

( , )B i jT v v = min [ ( )A iT v ,  ( )A jT v ] 

( , )B i jI v v = max [ ( )A iI v ,  ( )A jI v ]  

( , )B i jF v v =max [ ( )A iF v , ( )A jF v ] for all ,i jv v ∈ V. 

FIG. 2.  COMPLETE SINGLE VALUED NEUTROSOPHIC GRAPH 

III.TYPE OF DEGREES IN SINGLE VALUED
NEUTROSOPHIC GRAPHS 

In this section, degree of vertex, total degree, effective degree, 
neighbourhood degree, closed neighbourhood degree are 
introduced. 
Definition 3.1: Let G= (A, B) be a single valued neutrosophic 
graph. Then the degree of a vertex iv ∈  G is sum of degree of 
truth-membership, sum of degree of indeterminacy-
membership and sum of degree of falsity-membership of all 
those edges which are incident on vertex v denoted by  
  ( )id v  = ( ( )T id v , ( )I id v , ( )F id v ) where 

( )T id v = ( , )
i j

B i jv v
T v v

≠ denotes degree of truth-

membership vertex. 
( )I id v = ( , )

i j
B i jv v

I v v
≠  denotes degree of indeterminacy-

membership vertex. 

( )F id v = ( , )
i j

B i jv v
F v v

≠  denotes degree of falsity-

membership vertex, for ,i jv v ∈ A and ( , )B i jT v v =0, 
( , )B i jI v v =0, ( , )B i jF v v =0 for ,i jv v ∉ A. 

Definition 3.2: Let G= (A, B) be a single valued neutrosophic 
graph. Then the total degree of a vertex iv ∈  G is defined by   

( )itd v = ( ( )T itd v , ( )I itd v , ( )F itd v )where  

( )T itd v = ( , )
i j

B i jv v
T v v

≠ + ( )A iT v  denotes total degree of 

truth-membership vertex. 
( )I itd v = ( , )

i j
B i jv v

I v v
≠ + ( )A iI v denotes total degree of 

indeterminacy-membership vertex. 
( )F itd v = ( , )

i j
B i jv v

F v v
≠ + ( )A iF v denotes total degree 

of falsity-membership vertex. for ,i jv v ∈ A. 

Definition 3.2:The minimum degree of G is ( )Gδ = 

( ( )T Gδ , ( )I Gδ , ( )F Gδ ),  where 

( )T Gδ = ∧ { ( )Td v  |v ∈  V} denotes the minimum T- 
degree. 

( )I Gδ = ∧ { ( )Id v  |v ∈  V} denotes the minimum  I- 
degree. 

( )F Gδ = ∧ { ( )Fd v  |v ∈  V} denotes the minimum F- 
degree. 
Definition 3.3: The maximum degree of G is ( )G∆ = 
( ( )T G∆ , ( )I G∆ , ( )F G∆ ), where 

( )T G∆ = ∨ { ( )Td v  |v ∈  V} denotes the maximum T- 
degree. 

( )I G∆ = ∨ { ( )Id v  |v ∈  V} denotes the maximum I- 
degree. 

( )F G∆ = ∨ { ( )Fd v  |v ∈  V} denotes the maximum F- 
degree. 

Example 3.4: Consider a SVN-graph G= (V, E), such that 
V={ 1v , 2v , 3v , 4v } and E={( 1v , 2v ), ( 2v , 3v ), ( 3v , 4v ),

( 4v , 1v )} 
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Fig. 3. Single valued neutrosophic graph 

By usual computation, we have  

1( )d v =(0.8, 0.8, 1.8),  2( )d v =(0.6, 0.5, 1.4) 

3( )d v =(0.6, 1, 1.9),    4( )d v =(0.4, 0.7, 1.1)  

1( )td v =(1.3, 1, 2.2),   2( )td v =(1.6, 0.6, 2.1)  

3( )td v =(0.8, 1.3, 1.3),  4( )td v =(0.7, 0.8, 1.6) and  

( )Gδ  = (0.4 , 0.5, 1.1)       Δ (G) = (0.8, 1, 1.9). 
Proposition 3.5: In any  single valued neutrosophic graph 
G=(V, E), the sum of the degree of  truth- membership 
value of all vertices is equal to twice the sum of the truth-
membership value of all edges, the sum of the degree of 
indeterminacy- membership value of all vertices is equal to 
twice the sum of the indeterminacy- membership value of all 
edges and the sum of the degree of falsity-membership value 
of all vertices is equal to twice the sum of the falsity-
membership value of all edges. 

( )id v = ( )iT
d v ( )iI

d v ( )iF
d v ]

= ( , )
i j

B i jv v
T v v

≠ ( , )
i j

B i jv v
I v v

≠
( , )

i j
B i jv v

F v v
≠                    (9) 

1v , 2v , …, nv } 

( )id v ( )iT
d v ( )iI

d v ( )iF
d v ]

1( )Td v 1( )Id v 1( )Fd v 2( )Td v 2( )Id v 2( )Fd v
( )T nd v ( )I nd v ( )F nd v

1 2( , )BT v v 1 2( , )BI v v 1 2( , )BF v v 1 3( , )BT v v

1 3( , )BI v v 1 3( , )BF v v 1( , )B nT v v 1( , )B nI v v

1( , )B nF v v 2 1( , )BT v v 2 1( , )BI v v 2 1( , )BF v v

2 3( , )BT v v 2 3( , )BI v v 2 3( , )BF v v 2( , )B nT v v

2( , )B nI v v 2( , )B nF v v

1( , )B nT v v 1( , )B nI v v 1( , )B nF v v 2( , )B nT v v

2( , )B nI v v 2( , )B nF v v 1( , )B n nT v v− 1( , )B n nI v v−

1( , )B n nF v v−

1 2( , )BT v v 1 2( , )BI v v 1 2( , )BF v v 1 3( , )BT v v

1 3( , )BI v v 1 3( , )BF v v 1( , )B nT v v 1( , )B nI v v

1( , )B nF v v

( , )
i j

B i jv v
T v v

≠ ( , )
i j

B i jv v
I v v

≠
( , )

i j
B i jv v

F v v
≠

Proposition 3.6: The maximum degree of any vertex in a 
SVN-graph with n vertices is n-1. 

Proof: Let G = (A, B)  be a SVN-graph.  The maximum truth-
membership value given to an edge is 1 and the number of 
edges incident on a vertex can be at most n-1. Hence, the 
maximum truth- membership degree ( )T id v of any vertex 

iv  in a SVN-graph  with n vertices is n-1. Similarly, the 
maximum  indeterminacy –membership value given to an edge 
is 1 and the number of edges incident on a vertex can be at 
most n-1. Hence the maximum indeterminacy- membership 
degree ( )I id v . Also, the maximum falsity-membership value 
given to an edge is 1 and the number of edges incident on a 
vertex can be at most n-1. Hence the maximum falsity-
membership degree ( )F id v  of any vertex iv  in a SVN-graph 
with n vertices is n-1. Hence the result. 

Definition 3.7: An edge e = (v, w) of a SVN-graph G = (A, 
B) is called an effective edge if ( , )BT v w = 

( ) ( )A AT v T w∧ , ( , )BI v w  = ( ) ( )A AI v I w∨ and ( , )BF v w
= ( ) ( )A AF v F w∨  for all (v, w) ∈E. In this case, the vertex v 
is called a neighbor of w and conversely. 

N(v) ={w ∈ V : w is a neighbor of v} is called the 
neighborhood of v. 

Example 3.8. Consider a SVN-graph G= (A, B), such that 
A={ 1v , 2v , 3v , 4v } and B={( 1v , 2v ), ( 2v , 3v ), ( 3v , 4v ), 

( 4v , 1v )} 

Fig. 4. Single valued neutrosophic graph 

In this example, 4v 1v  and 4v 3v  are effective edges. Also 

N( 4v ) ={ 1v , 3v }, N( 3v )={ 4v }, N( 1v ) ={ 4v }, N( 2v ) =  ∅
 (the empty set). 

Definition 3.9: The effective degree of a vertex ‘v’ in G is 
defined by ( )Ed v = ( ( )ETd v , ( )EId v , ( )EFd v ),where 

( )ETd v is the sum of the truth-membership values of the 

effective edges incident with v, ( )EId v is the sum of the 
indeterminacy-membership values of the effective edges 
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02
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incident with v and ( )EFd v  is the sum of the falsity-
membership values of effective edges incident with v. 
Definition 3.10: The minimum effective degree of G is 

[ ]E Gδ = ( [ ]ET Gδ , [ ]EI Gδ , [ ]EF Gδ ) where

[ ]ET Gδ = ∧ { [ ]ETd v  |v ∈  V} denotes the minimum 
effective  T- degree. 

[ ]EI Gδ = ∧ { [ ]EId v  |v ∈  V} denotes the minimum 
effective  I- degree. 

[ ]EF Gδ = ∧ { [ ]EFd v  |v ∈  V} denotes the minimum
effective  F- degree. 
Definition 3.11: The  maximum  effective  degree  of  G  is 

[ ]E G∆ = ( [ ]ET G∆ , [ ]EI G∆ , [ ]EF G∆ ) where 

[ ]ET G∆ = ∨ { [ ]ETd v  |v ∈  V} denotes the maximum 
effective  T- degree. 

[ ]EI G∆ = ∨ { [ ]EId v  |v ∈  V} denotes the maximum 
effective  I- degree. 

[ ]EF G∆ = ∨ { [ ]EFd v  |v ∈  V} denotes the maximum 
effective  F- degree. 
Example 3.12: Consider a SVN-graph as in Fig.3. By usual 
computation, we have the effective degrees for all vertices 

( )1Ed v =(0, 0, 0)     ( )2Ed v =(0.2, 0.3, 0.7), 

( )3Ed v =(0.2, 0.3, 0.7)      ( )4Ed v = (0, 0, 0) 

 ( )E Gδ  = (0 , 0, 0)   ( )E G∆ = (0.2, 0.3, 0.7) 

Here 2 3v v  is only effective degree. 

Note: ( )1Ed v =(0, 0, 0) means that there is no effective edge 

incident on 1v . 
Now, we can defined the neighborhood concept in SVN- 
graph.  
Definition 3.13: Let G =(A, B) be a SVN-graph. The 
neighbourhood of any vertex v is defined as N(v)= 
( ( )TN v , ( )IN v , ( )FN v ),where 

( )TN v ={ ( , )BT v w = ( ) ( )A AT v T w∧ ; w ∈  V} denotes the 
neighbourhood  T- vertex. 

( )IN v = { ( , )BI v w  = ( ) ( )A AI v I w∨ ; w ∈  V } denotes 
the neighbourhood  I- vertex. 

( )FN v = { ( , )BF v w  = ( ) ( )A AF v F w∨ ; w ∈  V } denotes 
the neighbourhood  F- vertex. 

And N[v]= N(v) {v} is called the closed neighbourhood 
of v. 

Definition 3.14: Let G=(A, B) be a single valued neutrosophic 
graph (SVN-graph). The neighbourhood degree of a vertex ‘v’ 
is defined as the sum of truth-membership, indeterminacy-

membership and falsity-membership value of the 
neighbourhood vertices of v and is denoted by 
 ( )Nd v = ( ( )NTd v , ( )NId v , ( )NFd v ),where 

 ( )NTd v  = 
( )

( )Aw N v
T w

∈  denotes the neighbourhood T- 

degree. 
 ( )NId v  = 

( )
( )Aw N v

I w
∈  denotes the neighbourhood I- 

degree. 
 ( )NFd v  = 

( )
( )Aw N v

F w
∈  denotes neighbourhood  F- 

degree. 
Definition 3.15: The minimum neighbourhood degree is 
defined as   

( )N Gδ = ( ( )NT Gδ , ( )NI Gδ , ( )NF Gδ ),where  

( )NT Gδ = ∧ { ( )NTd v  |v ∈  V} denotes the minimum 
neighbourhood T- degree. 

( )NI Gδ = ∧ { ( )NId v  |v ∈  V} denotes the minimum 
neighbourhood I- degree. 

( )NF Gδ = ∧ { ( )NFd v  |v ∈  V} denotes the minimum 
neighbourhood F- degree. 
Definition 3.16: The maximum neighbourhood degree is 
defined as  

( )N G∆ = ( ( )NT G∆ , ( )NI G∆ , ( )NF G∆ ) where 

( )NT G∆ = ∨ { ( )NTd v  |v ∈  V} denotes the maximum 
neighbourhood T- degree. 

( )NI G∆ = ∨ { ( )NId v  |v ∈  V} denotes the maximum 
neighbourhood I- degree. 

( )NF G∆ = ∨ { ( )NFd v  |v ∈  V} denotes the maximum 
neighbourhood F- degree. 

Example 3.17: Consider a SVN-graph as in Fig. 2. By usual 
computation, we have the neighbourhood degrees for all 
vertices, minimum and maximum neighbourhood degrees 

( )1Nd v =(1.9,  0.4 ,0.8) ( )2Nd v = (2, 0.5 ,0.7) 

( )3Nd v = (2.1,0.6 ,0.7)     ( )4Nd v = (1.8, 0.6 ,0.8) 

( )N Gδ = (1.8, 0.4,0.7)    ( )N G∆ = (2.1,0.6 ,0.8). 
Definition 3.18: A vertex v ∈  V of SVN-graph G=(A, B) is 
said to be an  isolated vertex if ( , )B i jT v v  = ( , )B i jI v v  = 

( , )B i jF v v  =0   For all v ∈  V,  i jv v≠   that is  N(v) =∅   
(the empty set). 
Definition 3.19: Let G =(A, B) be a single valued 
neutrosophic graph (SVN-graph). The closed  neighbourhood 
degree of  a  vertex  ‘v’  is  defined as the sum of truth-
membership, indeterminacy- membership and falsity-
membership value of the neighbourhood vertices of v and 
including truth-membership, indeterminacy- membership and 
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falsity-membership value of v, and is denoted by 
[ ]Nd v =( [ ]NTd v , [ ]NId v , [ ]NFd v ) where 

[ ]NTd v =
( )

( )Aw N v
T w

∈ + ( )AT v  denotes the closed 

neighborhood T- degree. 
[ ]NId v =

( )
( )Aw N v

I w
∈ + ( )AI v denotes the closed 

neighborhood I- degree. 
[ ]NFd v =

( )
( )Aw N v

F w
∈ + ( )AF v  denotes the closed 

neighborhood F- degree. 
Definition 3.20: The minimum closed neighborhood degree 
is defined as 

[ ]N Gδ = ( [ ]NT Gδ , [ ]NI Gδ , [ ]NF Gδ )where

[ ]NT Gδ = ∧ { [ ]NTd v  |v ∈  V} denotes the minimum 
closed neighborhood T- degree 

[ ]NI Gδ = ∧ { [ ]NTd v  |v ∈  V} denotes the minimum 
closed neighborhood I- degree 

[ ]NF Gδ = ∧ { [ ]NId v  |v ∈  V} denotes the minimum 
closed neighborhood F- degree 
Definition 3.21: The maximum closed neighborhood degree 
is defined as 

[ ]N G∆ = ( [ ]NT G∆ , [ ]NI G∆ , [ ]NF G∆ ) where  

[ ]NT G∆ = ∨ { [ ]NTd v  |v ∈  V} denotes the maximum 
closed neighborhood T- degree 

[ ]NI G∆ = ∨ { [ ]NId v  |v ∈  V} denotes the maximum closed 
neighborhood I- degree 

[ ]NF G∆ = ∨ { [ ]NFd v  |v ∈  V} denotes the maximum 
closed neighborhood F- degree. 

IV. REGULAR SINGLE VALUED NEUTROSOPHIC GRAPH.
Definition 4.1:  A single valued neutrosophic graph G = (A, 
B) is said to be regular single valued neutrosophic graph
(RSVN-graph), if all the vertices have the same closed 
neighborhood degree. (i.e) if [ ]NT Gδ = [ ]NT G∆ ,  [ ]NI Gδ
= [ ]NI G∆  and  [ ]NF Gδ = [ ]NF G∆

Example 4.2: Consider a SVN-graph as in Fig. 2. By usual 
computation, we have the closed neighborhood degrees for all 
vertices, minimum and maximum neighborhood degrees 

[ ]1Nd v  = [ ]2Nd v  = [ ]3Nd v = [ ]4Nd v  = (2.6, 0.7, 1) 

[ ]N Gδ = [ ]N G∆  = (2.6, 0.7, 1) 
It is clear from calculation that G is regular single valued 
neutrosophic graph (RSVN-graph). 

Theorem 4.3: Every complete single valued neutrosophic is 
a regular single valued neutrosophic graph 

Proof: 
Let G = (A, B) be a complete SVN-graph then by 

definition of complete SVN-graph we have 

( , )BT v w  = ( ) ( )A AT v T w∧ , ( , )BI v w  = ( ) ( )A AI v I w∨ , 

( , )BF v w  = ( ) ( )A AF v F w∨ , for every v, w ∈V. 

By  definition,  the  closed  neighborhood T-degree  of 
each  vertex  is  the  sum  of  the truth-membership values of 
the vertices and itself, the closed neighborhood I-degree of 
each vertex is the sum of the indeterminacy- membership 
values of the vertices and itself and the closed neighborhood 
F-degree of each vertex is the sum of the falsity-
membership values of the vertices and itself, Therefore all 
the vertices will have the same closed neighborhood T-
degree, closed neighborhood -degree and closed 
neighborhood F -degree. This implies minimum closed 
neighborhood degree is equal to maximum closed 
neighborhood degree (i.e) [ ]NT Gδ = [ ]NT G∆ ,  [ ]NI Gδ
= [ ]NI G∆  and [ ]NF Gδ = [ ]NF G∆ . This implies G is a 
regular single valued neutrosophic graph. Hence the theorem.  

V.ORDER AND SIZE OF SINGLE VALUED NEUTROSOPHIC 
GRAPH 

 In this section we introduce the definition of  order and size 
of a single valued neutrosophic graph which are  an important 
terms in single valued neutrosophic graph theory.  
Definition 5.1:  Let G =(A, B) be a  SVN-graph.  The order 
of  G, denoted O(G) is defined as O(G)= 
( ( )TO G , ( )IO G , ( )FO G ), where  

 ( )TO G = Av V
T

∈  denotes the T- order of G. 

 ( )IO G = Av V
I

∈  denotes the I- order of G. 

 ( )FO G = Av V
F

∈  denotes the F- order of G.

Definition 5.2: Let G =(A, B) be a  SVN-graph.  The size of 
G, denoted S(G) is defined as: 

 S(G) = ( ( )TS G , ( )IS G , ( )FS G ), where 

 ( )TS G = ( , )Bu v
T u v

≠  denotes the T- size of G.   

 ( )IS G = ( , )Bu v
I u v

≠  denotes the I- size of G 

 ( )FS G = ( , )Bu v
F u v

≠  denotes the F- size of G 

Example 5.3: Consider a SVN-graph as in Fig. 3. By routine 
computation, we have 

 O (G) = (2, 0.7, 2.1), S (G) = (1.2, 1.5, 3.1) 

Proposition 5.4: In a complete single valued neutrosophic 
graph G=(A, B), the closed neighbourhood degree of any 
vertex is equal to the order of single valued neutrosophic graph 
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(i.e)  ( )TO G = ( [ ]NTd v  | v ∈  V ), ( )IO G = ( [ ]NId v  | v 

∈  V ) and ( )FO G = ( [ ]NFd v  | v ∈  V) 

Proof: 
Let G = (A, B) be a complete single valued neutrosophic graph. 
The T-order of G, ( )TO G  is the sum of the truth-
membership value of all the vertices, the I-order of G, 

( )IO G  is the sum of the indeterminacy- membership value of 

all the vertices and the F-order of G,  ( )FO G  is the sum of the 
falsity-membership value of all the vertices. Since G is a 
complete SVN-graph, the closed neighborhood T-degree of 
each vertex is the sum of the truth-membership value of 
vertices, the closed neighborhood I-degree of each vertex is the 
sum of the indeterminacy- membership value of vertices and 
the closed neighborhood F-degree of each vertex is the sum of 
the falsity-membership value of vertices. Hence the result. 

VI. CONCLUSION
In this paper we have described degree of a vertex, total 

degree, effective degree, neighborhood degree, closed 
neighborhood, order and size of single valued neutrosophic 
graphs. The necessary and sufficient conditions for a single 
valued neutrosophic graph to be the regular single valued 
neutrosophic graphs have been presented. Further, we are 
going to study some types of single valued neutrosophic graphs 
such irregular and totally irregular single valued neutrosophic 
graphs and single valued neutrosophic hypergraphs. 
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Abstract. In this paper, we make distinctions between 
Classical Logic (where the propositions are 100% true, or 
100 false) and the Neutrosophic Logic (where one deals 
with partially true, partially indeterminate and partially 
false propositions) in order to respond to K. Georgiev’s 

criticism [1]. We recall that if an axiom is true in a clas-
sical logic system, it is not necessarily that the axiom be 
valid in a modern (fuzzy, intuitionistic fuzzy, neutrosoph-
ic etc.) logic system. 

Keywords: Neutrosophic Logic, Neutrosophic Logical Systems, Single Valued Neutrosophic Set, Neutrosophic Logic Negations, 
Degree of Dependence and Independence, Degrees of Membership, Standard and Non-Standard Real Subsets.

1 Single Valued Neutrosophic Set 

We read with interest the paper [1] by K. Georgiev. 
The author asserts that he proposes “a general simplifica-
tion of the Neutrosophic Sets a subclass of theirs, compris-
ing of elements of R3”, but this was actually done before, 
since the first world publication on neutrosophics [2]. The 
simplification that Georgiev considers, is called single val-
ued neutrosophc set. 

The single valued neutrosophic set was introduced for 
the first time by us [Smarandache, [2], 1998]. 

Let  
n = t + i + f      (1) 
In Section 3.7, “Generalizations and Comments”, [pp. 

129, last edition online], from this book [2], we wrote: 
“Hence, the neutrosophic set generalizes: 
- the intuitionistic set, which supports incomplete set 

theories (for 0 < n < 1; 0 ≤ t, i, f ≤ 1) and incomplete 
known elements belonging to a set; 

- the fuzzy set (for n = 1 and i = 0, and 0 ≤ t, i, f ≤ 1); 
- the classical set (for n = 1 and i = 0, with t, f either 0 

or 1); 
- the paraconsistent set (for n > 1, with all t, i, f < 1); 
- the faillibilist set (i > 0); 
- the dialetheist set, a set M whose at least one of its 

elements also belongs to its complement C(M); thus, the 
intersection of some disjoint sets is not empty; 

- the paradoxist set (t = f = 1); 
- the pseudoparadoxist set (0 < i < 1; t =1 and f > 0 or 

t > 0 and f = 1); 
- the tautological set (i, f < 0).” 
It is clear that we have worked with single-valued neu-

trosophic sets, we mean that t, i, f were explicitly real 
numbers from [0, 1]. 

See also (Smarandache, [3], 2002, p. 426). 
More generally, we have considered that: t varies in the 

set T, i varies in the set I, and f varies in the set F, but in 
the same way taking crisp numbers n = t + i + f, where all t, 
i, f are single (crisp) real numbers in the interval [0, 1]. See 
[2] pp. 123-124, and [4] pp. 418-419. 

Similarly, in The Free Online Dictionary of Computing 
[FOLDOC], 1998, updated in 1999, ed. by Denis Howe [3]. 

Unfortunately, Dr. Georgiev in 2005 took into consid-
eration only the neutrosophic publication [6] from year 
2003, and he was not aware of previous publications [2, 3, 
4] on the neutrosophics from the years 1998 - 2002.

The misunderstanding was propagated to other authors 
on neutrosophic set and logic, which have considered that 
Haibin Wang, Florentin Smarandache, Yanqing Zhang, 
Rajshekhar Sunderraman (2010, [5]) have defined the sin-
gle valued neutrosophic set. 

2 Standard and Non-Standard Real Subsets 

Section 3 of paper [1] by Georgiev is called “Reducing 
Neutrosophic Sets to Subsets of R3”. But this was done al-
ready since 1998. In our Section 0.2, [2], p. 12, we wrote: 

 “Let T, I, F be standard or non-standard real sub-
sets…”. 

“Standard real subsets”, which we talked about above, 
mean just the classical real subsets. 

We have taken into consideration the non-standard 
analysis in our attempt to be able to describe the absolute 
truth as well [i.e. truth in all possible worlds, according to 
Leibniz’s denomination, whose neutrosophic value is equal 
to 1+], and relative truth [i.e. truth in at least one world, 
whose truth value is equal to 1]. Similarly, for absolute in-
determinacy and absolute falsehood. 

We tried to get a definition as general as possible for 
the neutrosophic logic (and neutrosophic set respectively), 
including the propositions from a philosophical point of 
[absolute or relative] view. 
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Of course, in technical and scientific applications we 
do not consider non-standard things, we take the classical 
unit interval [0, 1] only, while T, I, F are classical real sub-
sets of it. 

In Section 0.2, Definition of Neutrosophic Components 
[2], 1998, p. 12, we wrote: 

“The sets T, I, F are not necessarily intervals, but may 
be any real sub-unitary subsets: discrete or continuous; 
single-element, finite, or (countable or uncountable) infi-
nite; union or intersection of various subsets; etc. 

They may also overlap. The real subsets could repre-
sent the relative errors in determining t, i, f (in the case 
when the subsets T, I, F are reduced to points).” 

So, we have mentioned many possible real values for T, 
I, F. Such as: each of T, I, F can be “single-element” {as 
Georgiev proposes in paper [1]}, “interval” {developed 
later in [7], 2005, and called interval-neutrosophic set and 
interval-neutrosophic logic respectively}, “discrete” 
[called hesitant neutrosophic set and hesitant neutrosophic 
logic respectively] etc. 

3 Degrees of Membership > 1 or < 0 of the Ele-
ments 

In Section 4 of paper [1], Georgiev says that: “Smaran-
dache has adopted Leibniz’s ‘worlds’ in his work, but it 
seems to be more like a game of words.” 

As we have explained above, “Leibniz’s worlds” are 
not simply a game of words, but they help making a dis-
tinction in philosophy between absolute and relative truth / 
indeterminacy / falsehood respectively. {In technics and 
science yes they are not needed.} 

Besides absolute and relative, the non-standard values 
or hyper monads (-0 and 1+) have permitted us to intro-
duce, study and show applications of the neutrosophic 
overset (when there are elements into a set whose real 
(standard) degree of membership is > 1), neutrosophic un-
derset (when there are elements into a set whose real de-
gree of membership is < 0), and neutrosophic offset (when 
there are both elements whose real degree of membership 
is > 1 and other elements whose real degree of membership 
is < 0). Check the references [8-11]. 

4 Neutrosophic Logic Negations 
In Section 4 of the same paper [1], Georgiev asserts 

that “according to the neutrosophic operations we have 
A A         (2)                                                                                        

and since  
A A             (3)                                                                                         

is just the assumption that has brought intuitionism to life, 
the neutrosophic logic could not be a generalization of any 
Intuitionistic logic.” 

First of all, Georgiev’s above assertation is partially 
true, partially false, and partially indeterminate (as in the 
neutrosophic logic). 

In neutrosophic logic, there is a class of neutrosophic 
negation operators, not only one. For some neutrosophic 
negations the equality (2) holds, for others it is invalid, or 
indeterminate. 

Let A(t, i, f) be a neutrosophic proposition A whose 
neutrosophic truth value is (t, i, f), where t, i, f are single 
real numbers of [0, 1]. We consider the easiest case. 

a) For examples, if the neutrosophic truth value of
A , the negation of A, is defined as:

(1-t, 1-i, 1-f) or (f, i, t) or (f, 1-i, t) (4)     
then the equality (2) is valid. 

b) Other examples, if the neutrosophic truth value of
A , the negation of A, is defined as:

(f, (t+i+f)/3, t) or (1-t, (t+i+f)/3, 1-f)  (5)     
then the equality (2) is invalid, as in intuitionistic fuzzy 
logic, and as a consequence the inequality (3) holds. 

c) For the future new to be designed/invented neu-
trosophic negations (needed/adjusted for new ap-
plications) we do not know {so (2) has also a per-
centage of indeterminacy.

5 Degree of Dependence and Independence be-
tween (Sub)Components 

In Section 4 of [1], Georgiev also asserts that “The 
neutrosophic logic is not capable of maintaining modal 
operators, since there is no normalization rule for the 
components T, I, F”. This is also partially true, and 
partially false. 

In our paper [12] about the dependence / independence 
between components, we wrote that: 

“For single valued neutrosophic logic, the 
sum of the components t+i+f is: 

0 ≤ t+i+f ≤ 3 when all three components are 
100% independent; 

0 ≤ t+i+f ≤ 2 when two components are 100% 
dependent, while the third one is 100% independ-
ent from them; 

0 ≤ t+i+f ≤ 1 when all three components are 
100% dependent. 

When three or two of the components t, i, f 
are 100% independent, one leaves room for in-
complete information (therefore the sum t+i +f < 
1), paraconsistent and contradictory information 
(t+i+f > 1), or complete information (t+i+f = 1).  

If all three components t, i, f are 100% de-
pendent, then similarly one leaves room for in-
complete information (t+i+f < 1), or complete in-
formation (t+i+f = 1).”  

Therefore, for complete information the normalization 
to 1, 2, 3 or so respectively {see our paper [12] for the case 
when one has degrees of dependence between components 
or between subcomponents (for refined neutrosophic set 
respectively) which are different from 100% or 0%} is 
done. 
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But, for incomplete information and paraconsistent 
information, in general, the normalization is not done. 

Neutrosophic logic is capable of maintaining modal 
operators. The connection between Neutrosophic Logic 
and Modal Logic will be shown in a separate paper, since 
it is much longer, called Neutrosophic Modal Logic (under 
press). 

6 Definition of Neutrosophic Logic 

In Section 5, paper [1], it is said: “Apparently there 
isn’t a clear definition of truth value of the neutrosophic 
formulas.” The author is right that “apparently”, but in 
reality the definition of neutrosophic logic is very simple 
and common sense: 

In neutrosophic logic a proposition P has a degree of 
truth (T); a degree of indeterminacy (I) that means neither 
true nor false, or both true and false, or unknown, 
indeterminate; and a degree of falsehood (F); where T, I, F 
are subsets (either real numbers, or intervals, or any 
subsets) of the interval [0, 1]. 

What is unclear herein? 
In a soccer game, as an easy example, between two 

teams, Bulgaria and Romania, there is a degree of truth 
about Bulgaria winning, degree of indeterminacy (or 
neutrality) of tie game, and degree of falsehood about 
Bulgaria being defeated. 

7 Neutrosophic Logical Systems 

a) Next sentence of Georgiev is
“in every meaningful logical system if A and B are sets 
(formulas) such that A ⊆ B then B ‘ A, i.e. when B is 
true then A is true.”                              (6)                                   
In other words, when B  A (B implies A), and B is 

true, then A is true. 
This is true for the Boolean logic where one deals with 

100% truths, but in modern logics we work with partial 
truths.  

If an axiom is true in the classical logic, it does not 
mean that that axiom has to be true in the modern logical 
system. Such counter-example has been provided by 
Georgiev himself, who pointed out that the law of double 
negation {equation (2)}, which is valid in the classical 
logic, is not valid any longer in intuitionistic fuzzy logic. 

A similar response we have with respect to his above 
statement on the logical system axiom (6): it is partially 
true, partially false, and partially indeterminate. All depend 
on the types of chosen neutrosophic implication operators. 

In neutrosophic logic, let’s consider the neutrosophic 
propositions A(tA, iA, fA) and B(tB, iB, fB), 

and the neutrosophic implication: 
B(tB, iB, fB)  A(tA, iA, fA),    (7) 
that has the neutrosophic truth value  
(BA)(tBA, iBA, fBA).    (8) 

Again, we have a class of many neutrosophic 
implication operators, not only one; see our publication 
[13], 2015, pp. 79-81. 

Let’s consider one such neutrosophic implication for 
single valued neutrosophic logic:  

(BA)(tBA, iBA, fBA) is equivalent to B(tB, iB, fB)  
A(tA, iA, fA)  

which is equivalent to  B(fB, 1-iB, tB)A(tA, iA, fA)
which is equivalent to (  BA)(max{fB, tA}, min{1-iB,

iA}, min{tB, fA}).                         (9) 
Or: 
(tBA, iBA, fBA) = (max{fB, tA}, min{1-iB, iA}, min{tB, 

fA}).                                                        (10) 
Now, a question arises: what does “(B ) A is true” 

mean in fuzzy logic, intuitionistic fuzzy logic, and 
respectively in neutrosophic logic? 

Similarly for the “B is true”, what does it mean in these 
modern logics? Since in these logics we have infinitely 
many truth values t(B) ∈ (0, 1); {we made abstraction of 
the truth values 0 and 1, which represent the classical 
logic}. 

b) Theorem 1, by Georgiev, “Either A H k(A) [i.e.
A is true if and only if k(A) is true] or the neutrosophic 
logic is contradictory.” 

We prove that his theorem is a nonsense. 
First at all, the author forgets that when he talks about 

neutrosophic logic he is referring to a modern logic, not to 
the classical (Boolean) logic. The logical propositions in 
neutrosophic logic are partially true, in the form of (t, i, f), 
not totally 100% true or (1, 0, 0). Similarly for the 
implications and equivalences, they are not classical (i.e. 
100% true), but partially true {i.e. their neutrosophic truth 
values are in the form of (t, i, f) too}. 

- The author starts using the previous classical logi-
cal system axiom (6), i.e. 

“since k(A) ⊆ A we have A ‘ k(A) ” meaning that  
A k(A) and when A is true, then k(A) is true. 
- Next Georgiev’s sentence: “Let assume k(A) be 

true and assume that A is not true”. 
The same comments as above: 
What does it mean in fuzzy logic, intuitionistic fuzzy 

logic, and neutrosophic logic that a proposition is true? 
Since in these modern logics we have infinitely many 
values for the truth value of a given proposition. Does, for 
example, t(k(A)) = 0.8 {i.e. the truth value of k(A) is equal 
to 0.8}, mean that k(A) is true? 

If one takes t(k(A)) = 1, then one falls in the classical 
logic. 

Similarly, what does it mean that proposition A is not 
true? Does it mean that its truth value  

t(A) = 0.1 or in general t(A) < 1 ? Since, if one takes 
t(A) = 0, then again we fall into the classical logic. 

The author confuses the classical logic with modern 
logics. 
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- In his “proof” he states that “since the Neutro-
sophic logic is not an intuitionistic one,  A should be true 
leading to the conclusion that k( A)   =  k(A) is true”. 

For the author an “intuitionistic logic” means a logic 
that invalidates the double negation law {equation (3)}. 
But we have proved before in Section 4, of this paper, that 
depending on the type of neutrosophic negation operator 
used, one has cases when neutrosophic logic invalidates 
the double negation law [hence it is “intuitionistic” in his 
words], cases when the neutrosophic logic does not 
invalidate the double negation law {formula (2)}, and 
indeterminate cases {depending on the new possible 
neutrosophic negation operators to be design in the future}. 

- The author continues with “We found that 
k(A)  k(A) is true which means that the simplified neu-
trosophic logic is contradictory.” 

Georgiev messes up the classical logic with modern 
logic. In classical logic, indeed  

k(A)  k(A) is false, being a contradiction.
But we are surprised that Georgiev does not know that 

in modern logic we may have 
k(A)  k(A) that is not contradictory, but partially

true and partially false. 
For example, in fuzzy logic, let’s say that the truth 

value (t) of k(A) is  
t(k(A)) = 0.4, then the truth value of its negation, 

 k(A), is t( k(A)) = 1 – 0.4 = 0.6.
Now, we apply the t-norm “min” in order to do the 

fuzzy conjunction, and we obtain: 
t(k(A)  k(A)) = min{0.4, 0.6} = 0.4 ≠ 0.
Hence, k(A)  k(A) is not a contradiction, since its

truth value is 0.4, not 0. Similarly in intuitionistic fuzzy 
logic. The same in neutrosophic logic, for example: 

Let the neutrosophic truth value of k(A) be (0.5, 0.4, 
0.2), that we denote as: 

k(A)(0.5, 0.4, 0.2), then its negation  k(A) will have 
the neutrosophic truth value: 

 k(A)(0.2, 1-0.4, 0.5) =  k(A)(0.2, 0.6, 0.5).
Let’s do now the neutrosophic conjunction: 
k(A)(0.5, 0.4, 0.2)   k(A)(0.2, 0.6, 0.5) =

(k(A)  k(A))(min{0.5, 0.2}, max{0.4, 0.6}, max{0.2,
0.5}) = (k(A)  k(A))(0.2, 0.6, 0.5).

In the same way, k(A)  k(A) is not a contradiction
in neutrosophic logic, since its neutrosophic truth value is 
(0.2, 0.6, 0.5), which is different from (0, 0, 1) or from (0, 
1, 1). Therefore, Georgiev’s “proof” that the simplified 
neutrosophic logic [ = single valued neutrosophic logic] is 
a contradiction has been disproved! 

His following sentence, “But since the simplified 
neutrosophic logic is only a subclass of the neutrosophic 
logic, then the neutrosophic logic is a contradiction” is 
false. Simplified neutrosophic logic is indeed a subclass of 
the neutrosophic logic, but he did not prove that the so-
called simplified neutrosophic logic is contradictory (we 
have showed above that his “proof” was wrong). 

Conclusion 

We have showed in this paper that Georgiev’s critics 
on the neutrosophic logic are not founded. We made dis-
tinctions between the Boolean logic systems and the neu-
trosophic logic systems.  

Neutrosophic logic is developing as a separate entity 
with its specific neutrosophic logical systems, neutrosophic 
proof theory and their applications. 
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Abstract: Extreme learning machine (ELM) is known as a kind of single-hidden layer feedforward
network (SLFN), and has obtained considerable attention within the machine learning community and
achieved various real-world applications. It has advantages such as good generalization performance,
fast learning speed, and low computational cost. However, the ELM might have problems in the
classification of imbalanced data sets. In this paper, we present a novel weighted ELM scheme based
on neutrosophic set theory, denoted as neutrosophic weighted extreme learning machine (NWELM),
in which neutrosophic c-means (NCM) clustering algorithm is used for the approximation of the
output weights of the ELM. We also investigate and compare NWELM with several weighted
algorithms. The proposed method demonstrates advantages to compare with the previous studies
on benchmarks.

Keywords: extreme learning machine (ELM); weight; neutrosophic c-means (NCM); imbalanced data
set

1. Introduction

Extreme learning machine (ELM) was put forward in 2006 by Huang et al. [1] as a single-hidden
layer feedforward network (SLFN). The hidden layer parameters of ELM are arbitrarily initialized and
output weights are determined by utilizing the least squares algorithm. Due to this characteristic, ELM
has fast learning speed, better performance and efficient computation cost [1–4], and has, as a result,
been applied in different areas.

However, ELM suffers from the presence of irrelevant variables in the large and high dimensional
real data set [2,5]. The unbalanced data set problem occurs in real applications such as text
categorization, fault detection, fraud detection, oil-spills detection in satellite images, toxicology,
cultural modeling, and medical diagnosis [6]. Many challenging real problems are characterized by
imbalanced training data in which at least one class is under-represented relative to others.

The problem of imbalanced data is often associated with asymmetric costs of misclassifying
elements of different classes. In addition, the distribution of the test data set might differ from that of
the training samples. Class imbalance happens when the number of samples in one class is much more
than that of the other [7]. The methods aiming to tackle the problem of imbalance can be classified
into four groups such as algorithmic based methods, data based methods, cost-sensitive methods
and ensembles of classifiers based methods [8]. In algorithmic based approaches, the minority class
classification accuracy is improved by adjusting the weights for each class [9]. Re-sampling methods

Florentin Smarandache (ed.) Collected Papers, VII

112

A Novel Neutrosophic Weighted Extreme Learning 

Machine for Imbalanced Data Set  

Yaman Akbulut, Abdulkadir Sengür, Yanhui Guo, Florentin Smarandache 

Yaman Akbulut, Abdulkadir Sengür, Yanhui Guo, Florentin Smarandache (2017). A Novel 
Neutrosophic Weighted Extreme Learning Machine for Imbalanced Data Set. Symmetry 9, 142; 
DOI: 10.3390/sym9080142 

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-4760-4843
https://orcid.org/0000-0003-1614-2639
http://dx.doi.org/10.3390/sym9080142
http://www.mdpi.com/journal/symmetry


can be viewed in the data based approaches where these methods did not improve the classifiers [10].
The cost-sensitive approaches assign various cost values to training samples of the majority class
and the minority class, respectively [11]. Recently, ensembles based methods have been widely used
in classification of imbalanced data sets [12]. Bagging and boosting methods are the two popular
ensemble methods.

The problem of class imbalance has received much attention in the literature [13]. Synthetic
minority over–sampling technique (SMOTE) [9] is known as the most popular re-sampling method
that uses pre-processing for obtaining minority class instances artificially. For each minority class
sample, SMOTE creates a new sample on the line joining it to the nearest minority class neighbor.
Borderline SMOTE [14], SMOTE-Boost [15], and modified SMOTE [14] are some of the improved
variants of the SMOTE algorithm. In addition, an oversampling method was proposed that identifies
some minority class samples that are hard to classify [16]. Another oversampling method was presented
that uses bagging with oversampling [17]. In [18], authors opted to use double ensemble classifier
by combining bagging and boosting. In [19], authors combined sampling and ensemble techniques
to improve the classification performance for skewed data. Another method, namely random under
sampling (RUS), was proposed that removes the majority class samples randomly until the training
set becomes balanced [19]. In [20], authors proposed an ensemble of an support vector machine
(SVM) structure with boosting (Boosting-SVM), where the minority class classification accuracy was
increased compared to pure SVM. In [21], a cost sensitive approach was proposed where k-nearest
neighbors (k-NN) classifier was adopted. In addition, in [22], an SVM based cost sensitive approach
was proposed for class imbalanced data classification. Decision trees [23] and logistic regression [24]
based methods were also proposed in order to handle with the imbalanced data classification.

An ELM classifier trained with an imbalanced data set can be biased towards the majority class
and obtain a high accuracy on the majority class by compromising minority class accuracy. Weighted
ELM (WELM) was employed to alleviate the ELM’s classification deficiency on imbalanced data sets,
and which can be seen as one of the cost-proportionate weighted sampling methods [25]. ELM assigns
the same misclassification cost value to all data points such as positive and negative samples in
a two-class problem. When the number of negative samples is much larger than that of the number of
positive samples or vice versa, assigning the same misclassification cost value to all samples can be
seen one of the drawbacks of traditional ELM. A straightforward solution is to obtain misclassification
cost values adaptively according to the class distribution, in the form of a weight scheme inversely
proportional to the number of samples in the class.

In [7], the authors proposed a weighted online sequential extreme learning machine (WOS-ELM)
algorithm for alleviating the imbalance problem in chunk-by-chunk and one-by-one learning. A weight
setting was selected in a computationally efficient way. Weighted Tanimoto extreme learning machine
(T-WELM) was used to predict chemical compound biological activity and other data with discrete,
binary representation [26]. In [27], the authors presented a weight learning machine for a SLFN to
recognize handwritten digits. Input and output weights were globally optimized with the batch
learning type of least squares. Features were assigned into the prescribed positions. Another weighted
ELM algorithm, namely ESOS-ELM, was proposed by Mirza et al. [28], which was inspired from
WOS-ELM. ESOS-ELM aims to handle class imbalance learning (CIL) from a concept-drifting data
stream. Another ensemble-based weighted ELM method was proposed by Zhang et al. [29], where the
weight of each base learner in the ensemble is optimized by differential evolution algorithm. In [30],
the authors further improved the re-sampling strategy inside Over-sampling based online bagging
(OOB) and Under-sampling based online bagging (UOB) in order to learn class imbalance.

Although much awareness of the imbalance has been raised, many of the key issues remain
unresolved and encountered more frequently in massive data sets. How to determine the weight values
is key to designing WELM. Different situations such as noises and outlier data should be considered.

The noises and outlier data in a data set can be treated as a kind of indeterminacy. Neutrosophic
set (NS) has been successfully applied for indeterminate information processing, and demonstrates
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advantages to deal with the indeterminacy information of data and is still a technique promoted
for data analysis and classification application. NS provides an efficient and accurate way to define
imbalance information according to the attributes of the data.

In this study, we present a new weighted ELM scheme using neutrosophic c-means (NCM)
clustering to overcome the ELM’s drawbacks in highly imbalanced data sets. A novel clustering
algorithm NCM was proposed for data clustering [31,32]. NCM is employed to determine a sample’s
belonging, noise, and indeterminacy memberships, and is then used to compute a weight value for that
sample [31–33]. A weighted ELM is designed using the weights from NCM and utilized for imbalanced
data set classification.

The rest of the paper is structured as follows. In Section 2, a brief history of the theory of ELM
and weighted ELM is introduced. In addition, Section 2 introduces the proposed method. Section 3
discusses the experiments and comparisons, and conclusions are drawn in Section 4.

2. Proposed Method

2.1. Extreme Learning Machine

Backpropagation, which is known as gradient-based learning method, suffers from slow
convergence speed. In addition, stuck in the local minimum can be seen as another disadvantage of a
gradient-based learning algorithm. ELM was proposed by Huang et al. [1] as an alternative method
that overcomes the shortcomings of gradient-based learning methods. The ELM was designed as
an SLFN, where the input weights and hidden biases are selected randomly. These weights do not
need to be adjusted during the training process. The output weights are determined analytically with
Moore–Penrose generalized inverse of the hidden-layer output matrix.

Mathematically speaking, the output of the ELM with L hidden nodes and activation function g(·)
can be written as:

oi =
L

∑
j=1

β jg(aj, bj, xj), i = 1, 2, . . . , N, (1)

where xj is the jth input data, aj = [aj1, aj2, . . . , ajn]
T is the weight vector, β j = [β j1, β j2, . . . , β jn]

T is the
output weight vector, bj is the bias of the jth hidden node and oi is the ith output node and N shows
the number of samples. If ELM learns these N samples with 0 error, then Equation (1) can be updated
as follows:

ti =
L

∑
j=1

β jg(aj, bj, xj), i = 1, 2, . . . , N, (2)

where ti shows the actual output vector. Equation (2) can be written compactly as shown in
Equation (3):

Hβ = T, (3)

where H = {hij} = g(aj, bj, xj) is the hidden-layer output matrix. Thus, the output weight vector can
be calculated analytically with Moore–Penrose generalized inverse of the hidden-layer output matrix
as shown in Equation (4):

β̂ = H+T, (4)

where H+ is the Moore–Penrose generalized inverse of matrix H.

2.2. Weighted Extreme Learning Machine

Let us consider a training data set [xi, ti], i = 1, . . . , N belonging to two classes, where xi ∈ Rnand
ti are the class labels. In binary classification, ti is either −1 or +1. Then, a N × N diagonal matrix Wii
is considered, where each of them is associated with a training sample xi. The weighting procedure
generally assigns larger Wii to xi, which comes from the minority class.
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An optimization problem is employed to maximize the marginal distance and to minimize the
weighted cumulative error as:

Minimize : ‖Hβ− T‖2 and ‖β‖. (5)

Furthermore:

Minimize : LELM =
1
2
‖β‖2 + CW

1
2

N

∑
i=1
‖ξi‖2, (6)

Subjected to : h(xi)β = tT
i − ξT

i , i = 1, 2, . . . , N, (7)

where T = [t1, . . . , tN ], ξi is the error vector and h(xi) is the feature mapping vector in the hidden layer
with respect to xi, and β. By using the Lagrage multiplier and Karush–Kuhn–Tucker theorem, the dual
optimization problem can be solved. Thus, hidden layer’s output weight vector β becomes can be
derived from Equation (7) regarding left pseudo-inverse or right pseudo-inverse. When presented
data with small size, right pseudo-inverse is recommended because it involves the inverse of an N× N
matrix. Otherwise, left pseudo-inverse is more suitable since it is much easier to compute matrix
inversion of size L× L when L is much smaller than N:

When N is small : β = HT(
I
C
+ WHHT)−1WT, (8)

When N is large : β = HT(
I
C
+ HTWT)−1HTWT. (9)

In the weighted ELM, the authors adopted two different weighting schemes. In the first one,
the weights for the minority and majority classes are calculated as:

Wminority =
1

#(t+i )
and Wmajority =

1
#(t−i )

, (10)

and, for the second one, the related weights are calculated as:

Wminority =
0.618
#(t+i )

and Wmajority =
1

#(t−i )
. (11)

The readers may refer to [25] for detail information about determination of the weights.

2.3. Neutrosophic Weighted Extreme Learning Machine

Weighted ELM assigns the same weight value to all samples in the minority class and another
same weight value to all samples in the majority class. Although this procedure works quite well in
some imbalanced data sets, assigning the same weight value to all samples in a class may not be a
good choice for data sets that have noise and outlier samples. In other words, to deal with noise and
outlier data samples in an imbalanced data set, different weight values are needed for each sample in
each class that reflects the data point’s significance in its class. Therefore, we present a novel method
to determine the significance of each sample in its class. NCM clustering can determine a sample’s
belonging, noise and indeterminacy memberships, which can then be used in order to compute a
weight value for that sample.

Guo and Sengur [31] proposed the NCM clustering algorithms based on the neutrosophic set
theorem [34–37]. In NCM, a new cost function was developed to overcome the weakness of the Fuzzy
c-Means (FCM) method on noise and outlier data points. In the NCM algorithm, two new types of
rejection were developed for both noise and outlier rejections. The objective function in NCM is given
as follows:
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JNCM(T, I, F, C) =
N

∑
i=1

C

∑
j=1

(w1Tij)
m‖xi − cj‖2 +

N

∑
i=1

(w2 Ii)
m‖xi − cimax‖2 + δ2

N

∑
i=1

(w3Fi)
m, (12)

where m is a constant. For each point i, the cimax is the mean of two centers. Tij, Ii and Fi are the
membership values belonging to the determinate clusters, boundary regions and noisy data set.
θ < Tij,Ii,Fi < 1:

c

∑
j=1

Tij + Ii + Fi = 1. (13)

Thus, the related membership functions are calculated as follows:

Tij =
w2w3(xi − cj)

−( 2
m−1 )

∑C
j=1(xi − cj)

−( 2
m−1 ) + (xi − cimax)

−( 2
m−1 ) + δ−(

2
m−1 )

, (14)

Ii =
w1w3(xi − cimax)

−( 2
m−1 )

∑C
j=1(xi − cj)

−( 2
m−1 ) + (xi − cimax)

−( 2
m−1 ) + δ−(

2
m−1 )

, (15)

Fi =
w1w2(δ)

−( 2
m−1 )

∑C
j=1(xi − cj)

−( 2
m−1 ) + (xi − cimax)

−( 2
m−1 ) + δ−(

2
m−1 )

, (16)

Cj =
∑N

i=1(w1Tij)
mxi

∑N
i=1(w1Tij)m

, (17)

where cj shows the center of cluster j, w1, w2, and w3 are the weight factors and δ is a regularization
factor which is data dependent [31]. Under the above definitions, every input sample in each minority
and majority class is associated with a triple Tij, Ii, Fi. While the larger Tij means that the sample belongs
to the labeled class with a higher probability, the larger Ii means that the sample is indeterminate with
a higher probability. Finally, the larger Fi means that the sample is highly probable to be a noise or
outlier data.

After clustering procedure is applied in NCM, the weights for each sample of minority and
majority classes are obtained as follows:

Wminority
ii =

Cr

Tij + Ii − Fi
and Wmajority

ii =
1

Tij + Ii − Fi
, (18)

Cr =
#(t−i )
#(t+i )

, (19)

where Cr is the ratio of the number of samples in the majority class to the number of the samples in the
minority class.

The algorithm of the neutrosophic weighted extreme learning machine (NWELM) is composed of
four steps. The first step necessitates applying the NCM algorithm based on the pre-calculated cluster
centers, according to the class labels of the input samples. Thus, the T, I and F membership values
are determined for the next step. The related weights are calculated from the determined T, I and F
membership values in the second step of the algorithm.

In Step 3, the ELM parameters are tuned and samples and weights are fed into the ELM in order
to calculate the H matrix. The hidden layer weight vector β is calculated according to the H, W and
class labels. Finally, the determination of the labels of the test data set is accomplished in the final step
of the algorithm (Step 4).

The neutrosophic weighted extreme learning machine (NWELM) algorithm is given as following:

Input: Labelled training data set.
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Output: Predicted class labels.
Step 1: Initialize the cluster centers according to the labelled data set and run NCM algorithm in

order to obtain the T, I and F value for each data point.
Step 2: Compute Wminority

ii and Wmajority
ii according to Equations (18) and (19).

Step 3: Adapt the ELM parameters and run NWELM. Compute H matrix and obtain β according to
Equation (8) or Equation (9).

Step 4: Calculate the labels of test data set based on β.

3. Experimental Results

The geometric mean (Gmean) is used to evaluate the performance of the proposed NWELM method.
The Gmean is computed as follows:

Gmean =

√
R

TN
TN + FP

, (20)

R =
TP

TP + FN
, (21)

where R denotes the recall rate and TN, FP denotes true-negative and false-positive detections,
respectively. Gmean values are in the range of [0–1] and it represents the square root of positive class
accuracy and negative class accuracy. The performance evaluation of NWELM classifier is tested on
both toy data sets and real data sets, respectively. The five-fold cross-validation method is adopted
in the experiments. In the hidden node of the NWELM, the radial basis function (RBF) kernel is
considered. A grid search of the trade-off constant C on

{
2−18, 2−16, . . . , 248, 250} and the number of

hidden nodes L on
{

10, 20, . . . , 990, 2000
}

was conducted in seeking the optimal result using five-fold
cross-validation. For real data sets, a normalization of the input attributes into [−1, 1] is considered.
In addition, for NCM, the following parameters are chosen such as ε = 10−5, w1 = 0.75, w2 = 0.125,
w3 = 0.125 respectively, which were obtained by means of trial and error. The δ parameter of NCM
method is also searched on

{
2−10, 2−8, . . . , 28, 210}.

3.1. Experiments on Artificial Data Sets

Four two-class artificial imbalance data sets were used to evaluate the classification performance of
the proposed NWELM scheme. The illustration of the data sets is shown in Figure 1 [38]. The decision
boundary between classes is complicated. In Figure 1a, we illustrate the first artificial data set that
follows a uniform distribution. As can be seen, the red circles of Figure 1a belong to the minority class,
with the rest of the data samples shown by blue crosses as the majority class. The second imbalance
data set, namely Gaussian-1, is obtained using two Gaussian distributions with a 1:9 ratio of samples
as shown in Figure 1b. While the red circles illustrate the minority class, the blue cross samples show
the majority class.

Another Gaussian distribution-based imbalance data set, namely Gaussian-2, is given in Figure 1c.
This data set consists of nine Gaussian distributions with the same number of samples arranged in
a 3× 3 grid. The red circle samples located in the middle belong to the minority class while the blue cross
samples belong to the majority class. Finally, Figure 1d shows the last artificial imbalance data set. It is
known as a complex data set because it has a 1:9 ratio of samples for the minority and majority classes.

Table 1 shows the Gmean achieved by the two methods on these four data sets in ten independent
runs. For Gaussian-1, Gaussian-2 and the Uniform artificial data sets, the proposed NWELM method
yields better results when compared to the weighted ELM scheme; however, for the Complex artificial
data sets, the weighted ELM method achieves better results. The better resulting cases are shown in
bold text. It is worth mentioning that, for the Gaussian-2 data set, NWELM achieves a higher Gmean

across all trials.
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(a) (b)

(c) (d)

Figure 1. Four 2-dimensional artificial imbalance data sets (X1, X2): (a) uniform; (b) gaussian-1;
(c) gaussian-2; and (d) complex.

Table 1. Comparison of weighted extreme learning machine (ELM) vs. NWELM on artificial data sets.

Data Sets
Weighted ELM NWELM

Data Sets
Weighted ELM NWELM

Gmean Gmean Gmean Gmean

Gaussian-1-1 0.9811 0.9822 Gaussian-2-1 0.9629 0.9734
Gaussian-1-2 0.9843 0.9855 Gaussian-2-2 0.9551 0.9734
Gaussian-1-3 0.9944 0.9955 Gaussian-2-3 0.9670 0.9747
Gaussian-1-4 0.9866 0.9967 Gaussian-2-4 0.9494 0.9649
Gaussian-1-5 0.9866 0.9833 Gaussian-2-5 0.9467 0.9724
Gaussian-1-6 0.9899 0.9685 Gaussian-2-6 0.9563 0.9720
Gaussian-1-7 0.9833 0.9685 Gaussian-2-7 0.9512 0.9629
Gaussian-1-8 0.9967 0.9978 Gaussian-2-8 0.9644 0.9785
Gaussian-1-9 0.9944 0.9798 Gaussian-2-9 0.9441 0.9559
Gaussian-1-10 0.9846 0.9898 Gaussian-2-10 0.9402 0.9623

Uniform-1 0.9836 0.9874 Complex-1 0.9587 0.9481
Uniform-2 0.9798 0.9750 Complex-2 0.9529 0.9466
Uniform-3 0.9760 0.9823 Complex-3 0.9587 0.9608
Uniform-4 0.9811 0.9836 Complex-4 0.9482 0.9061
Uniform-5 0.9811 0.9823 Complex-5 0.9587 0.9297
Uniform-6 0.9772 0.9772 Complex-6 0.9409 0.9599
Uniform-7 0.9734 0.9403 Complex-7 0.9644 0.9563
Uniform-8 0.9785 0.9812 Complex-8 0.9575 0.9553
Uniform-9 0.9836 0.9762 Complex-9 0.9551 0.9446
Uniform-10 0.9695 0.9734 Complex-10 0.9351 0.9470
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3.2. Experiments on Real Data Set

In this section, we test the achievement of the proposed NWELM method on real data sets [39].
A total of 21 data sets with different numbers of features, training and test samples, and imbalance
ratios are shown in Table 2. The selected data sets can be categorized into two classes according to their
imbalance ratios. The first class has the imbalance ratio range of 0 to 0.2 and contains yeast-1-2-8-9_vs_7,
abalone9_18, glass-0-1-6_vs_2, vowel0, yeast-0-5-6-7-9_vs_4, page-blocks0, yeast3, ecoli2, new-thyroid1
and the new-thyroid2 data sets.

Table 2. Real data sets and their attributes.

Data Sets Features (#) Training Data (#) Test Data (#) Imbalance Ratio

yeast-1-2-8-9_vs_7 8 757 188 0.0327
abalone9_18 8 584 147 0.0600
glass-0-1-6_vs_2 9 153 39 0.0929
vowel0 13 790 198 0.1002
yeast-0-5-6-7-9_vs_4 8 422 106 0.1047
page-blocks0 10 4377 1095 0.1137
yeast3 8 1187 297 0.1230
ecoli2 7 268 68 0.1806
new-thyroid1 5 172 43 0.1944
new-thyroid2 5 172 43 0.1944
ecoli1 7 268 68 0.2947
glass-0-1-2-3_vs_4-5-6 9 171 43 0.3053
vehicle0 18 676 170 0.3075
vehicle1 18 676 170 0.3439
haberman 3 244 62 0.3556
yeast1 8 1187 297 0.4064
glass0 9 173 43 0.4786
iris0 4 120 30 0.5000
pima 8 614 154 0.5350
wisconsin 9 546 137 0.5380
glass1 9 173 43 0.5405

On the other hand, second class contains the data sets, such as ecoli1, glass-0-1-2-3_vs_4-5-6,
vehicle0, vehicle1, haberman, yeast, glass0, iris0, pima, wisconsin and glass1, that have imbalance ratio
rates between 0.2 and 1.

The comparison results of the proposed NWELM with the weighted ELM, unweighted ELM and
SVM are given in Table 3. As the weighted ELM method used a different weighting scheme (W1, W2),
in our comparisons, we used the higher Gmean value. As can be seen in Table 3, the NWELM method
yields higher Gmean values for 17 of the imbalanced data sets. For three of the data sets, both methods
yield the same Gmean. Just for the page-blocks0 data set, the weighted ELM method yielded better
results. It is worth mentioning that the NWELM method achieves 100% Gmean values for four data sets
(vowel0, new-thyroid1, new-thyroid2, iris0). In addition, NWELM produced higher Gmean values than
SVM for all data sets.

The obtained results were further evaluated by area under curve (AUC) values [40]. In addition,
we compared the proposed method with unweighted ELM, weighted ELM and SVM based on the
achieved AUC values as tabulated in Table 4. As seen in Table 4, for all examined data sets, our
proposal’s AUC values were higher than the compared other methods. For further comparisons of the
proposed method with unweighted ELM, weighted ELM and SVM methods appropriately, statistical
tests on AUC results were considered. The paired t-test was chosen [41]. The paired t-test results
between each compared method and the proposed method for AUC was tabulated in Table 5 in terms
of p-value. In Table 5, the results showing a significant advantage to the proposed method were shown
in bold–face where p-values are equal or smaller than 0.05. Therefore, the proposed method performed
better than the other methods in 39 tests out of 63 tests when each data set and pairs of methods are
considered separately.
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Table 3. Experimental results of binary data sets in terms of the Gmean. The best results on each data set
are emphasized in bold-face.

Data (Imbalance Ratio)

Gaussian Kernel Radial Base Kernel

Gmean Unweighted Weighted ELM Neutrosophic
ELM max (W1,W2) SVM Weighted ELM

C Gmean(%) C Gmean(%) Gmean(%) C Gmean(%)

im
ba

la
nc

e
ra

ti
o:

0,
0.

2

yeast-1-2-8-9_vs_7 (0.0327) 248 60.97 24 71.41 47.88 2−7 77.57
abalone9_18 (0.0600) 218 72.71 228 89.76 51.50 223 94.53
glass-0-1-6_vs_2 (0.0929) 250 63.20 232 83.59 51.26 27 91.86
vowel0 (0.1002) 2−18 100.00 2−18 100.00 99.44 27 100.00
yeast-0-5-6-7-9_vs_4 (0.1047) 2−6 68.68 24 82.21 62.32 2−10 85.29
page-blocks0 (0.1137) 24 89.62 216 93.61 87.72 220 93.25
yeast3 (0.1230) 244 84.13 248 93.11 84.71 23 93.20
ecoli2 (0.1806) 2−18 94.31 28 94.43 92.27 210 95.16
new-thyroid1 (0.1944) 20 99.16 214 99.72 96.75 27 100.00
new-thyroid2 (0.1944) 22 99.44 212 99.72 98.24 27 100.00

im
ba

la
nc

e
ra

ti
o:

0.
2,

1

ecoli1 (0.2947) 20 88.75 210 91.04 87.73 220 92.10
glass-0-1-2-3_vs_4-5-6 (0.3053) 210 93.26 2−18 95.41 91.84 27 95.68
vehicle0 (0.3075) 28 99.36 220 99.36 96.03 210 99.36
vehicle1 (0.3439) 218 80.60 224 86.74 66.04 210 88.06
haberman (0.3556) 242 57.23 214 66.26 37.35 27 67.34
yeast1 (0.4064) 20 65.45 210 73.17 61.05 210 73.19
glass0 (0.4786) 20 85.35 20 85.65 79.10 213 85.92
iris0 (0.5000) 2−18 100.00 2−18 100.00 98.97 210 100.00
pima (0.5350) 20 71.16 28 75.58 70.17 210 76.35
wisconsin (0.5380) 2−2 97.18 28 97.70 95.67 27 98.22
glass1 (0.5405) 2−18 77.48 22 80.35 69.64 217 81.77

Table 4. Experimental result of binary data sets in terms of the average area under curve (AUC).
The best results on each data set are emphasized in bold-face.

Data (Imbalance Ratio)

Gaussian Kernel Radial Base Kernel

AUC Unweighted Weighted ELM Neutrosophic
ELM max (W1,W2) SVM Weighted ELM

C AUC (%) C AUC (%) AUC (%) C AUC (%)

im
ba

la
nc

e
ra

ti
o:

0,
0.

2

yeast-1-2-8-9_vs_7 (0.0327) 248 61.48 24 65.53 56.67 2−7 74.48
abalone9_18 (0.0600) 218 73.05 228 89.28 56.60 223 95.25
glass-0-1-6_vs_2 (0.0929) 250 67.50 232 61.14 53.05 27 93.43
vowel0 (0.1002) 2−18 93.43 2−18 99.22 99.44 27 99.94
yeast-0-5-6-7-9_vs_4 (0.1047) 2−6 66.35 24 80.09 69.88 2−10 82.11
page-blocks0 (0.1137) 24 67.42 216 71.55 88.38 220 91.49
yeast3 (0.1230) 244 69.28 248 90.92 83.92 23 93.15
ecoli2 (0.1806) 2−18 71.15 28 94.34 92.49 210 94.98
new-thyroid1 (0.1944) 20 90.87 214 98.02 96.87 27 100.00
new-thyroid2 (0.1944) 22 84.29 212 96.63 98.29 27 100.00

im
ba

la
nc

e
ra

ti
o:

0.
2,

1

ecoli1 (0.2947) 20 66.65 210 90.28 88.16 220 92.18
glass-0-1-2-3_vs_4-5-6 (0.3053) 210 88.36 2−18 93.94 92.02 27 95.86
vehicle0 (0.3075) 28 71.44 220 62.41 96.11 210 98.69
vehicle1 (0.3439) 218 58.43 224 51.80 69.10 210 88.63
haberman (0.3556) 242 68.11 214 55.44 54.05 27 72.19
yeast1 (0.4064) 20 56.06 210 70.03 66.01 210 73.66
glass0 (0.4786) 20 74.22 20 75.99 79.81 213 81.41
iris0 (0.5000) 2−18 100.00 2−18 100.00 99.00 210 100.00
pima (0.5350) 20 59.65 28 50.01 71.81 210 75.21
wisconsin (0.5380) 2−2 83.87 28 80.94 95.68 27 98.01
glass1 (0.5405) 2−18 75.25 22 80.46 72.32 217 81.09
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Table 5. Paired t-test results between each method and the proposed method for AUC results.

Data Sets Unweighted ELM Weighted ELM SVM

im
ba

la
nc

e
ra

ti
o:

0,
0.

2
yeast-1-2-8-9_vs_7 (0.0327) 0.0254 0.0561 0.0018
abalone9_18 (0.0600) 0.0225 0.0832 0.0014
glass-0-1-6_vs_2 (0.0929) 0.0119 0.0103 0.0006
vowel0 (0.1002) 0.0010 0.2450 0.4318
yeast-0-5-6-7-9_vs_4 (0.1047) 0.0218 0.5834 0.0568
page-blocks0 (0.1137) 0.0000 0.0000 0.0195
yeast3 (0.1230) 0.0008 0.0333 0.0001
ecoli2 (0.1806) 0.0006 0.0839 0.0806
new-thyroid1 (0.1944) 0.0326 0.2089 0.1312
new-thyroid2 (0.1944) 0.0029 0.0962 0.2855

im
ba

la
nc

e
ra

ti
o:

0.
2,

1

ecoli1 (0.2947) 0.0021 0.1962 0.0744
glass-0-1-2-3_vs_4-5-6 (0.3053) 0.0702 0.4319 0.0424
vehicle0 (0.3075) 0.0000 0.0001 0.0875
vehicle1 (0.3439) 0.0000 0.0000 0.0001
haberman (0.3556) 0.1567 0.0165 0.0007
yeast1 (0.4064) 0.0001 0.0621 0.0003
glass0 (0.4786) 0.0127 0.1688 0.7072
iris0 (0.5000) NaN NaN 0.3739
pima (0.5350) 0.0058 0.0000 0.0320
wisconsin (0.5380) 0.0000 0.0002 0.0071
glass1 (0.5405) 0.0485 0.8608 0.0293

Another statistical test, namely the Friedman aligned ranks test, has been applied to compare the
obtained results based on AUC values [42]. This test is a non-parametric test and the Holm method
was chosen as the post hoc control method. The significance level was assigned 0.05. The statistics
were obtained with the STAC tool [43] and recorded in Table 6. According to these results, the highest
rank value was obtained by the proposed NWELM method and SVM and WELM rank values were
greater than the ELM. In addition, the comparison’s statistics, adjusted p-values and hypothesis results
were given in Table 6.

Table 6. Friedman Aligned Ranks test (significance level of 0.05).

Statistic p-Value Result

29.6052 0.0000 H0 is rejected

Ranking

Algorithm Rank

ELM 21.7619
WELM 38.9047
SVM 41.5238

NWELM 67.8095

Comparison Statistic Adjusted p-Value Result

NWELM vs. ELM 6.1171 0.0000 H0 is rejected
NWELM vs. WELM 3.8398 0.0003 H0 is rejected
NWELM vs. SVM 3.4919 0.0005 H0 is rejected

We further compared the proposed NWELM method with two ensemble-based weighted ELM
methods on 12 data sets [29]. The obtained results and the average classification Gmean values are
recorded in Table 7. The best classification result for each data set is shown in bold text. A global view
on the average classification performance shows that the NWELM yielded the highest average Gmean

value against both the ensemble-based weighted ELM methods. In addition, the proposed NWELM
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method evidently outperforms the other two compared algorithms in terms of Gmean in 10 out of 12
data sets, with the only exceptions being the yeast3 and glass2 data sets.

As can be seen through careful observation, the NWELM method has not significantly improved
the performance in terms of the glass1, haberman, yeast1_7 and abalone9_18 data sets, but slightly
outperforms both ensemble-based weighted ELM methods.

Table 7. Comparison of the proposed method with two ensemble-based weighted ELM methods.

Vote-Based Ensemble DE-Based Ensemble NWELM

C Gmean(%) C Gmean(%) C Gmean(%)

glass1 230 74.32 218 77.72 217 81.77
haberman 212 63.10 228 62.68 27 67.34
ecoli1 240 89.72 20 91.39 220 92.10
new-thyroid2 210 99.47 232 99.24 27 100.00
yeast3 24 94.25 22 94.57 23 93.20
ecoli3 210 88.68 218 89.50 217 92.16
glass2 28 86.45 216 87.51 27 85.58
yeast1_7 220 78.95 238 78.94 2−6 84.66
ecoli4 28 96.33 214 96.77 210 98.85
abalone9_18 24 89.24 216 90.13 223 94.53
glass5 218 94.55 212 94.55 27 95.02
yeast5 212 94.51 228 94.59 217 98.13
Average 87.46 88.13 90.53

A box plots illustration of the compared methods is shown in Figure 2. The box generated by the
NWELM is shorter than the boxes generated by the compared vote-based ensemble and differential
evolution (DE)- based ensemble methods. The dispersion degree of NWELM method is relatively low.
It is worth noting that the box plots of all methods consider the Gmean of the haberman data set as an
exception. Finally, the box plot determines the proposed NWELM method to be more robust when
compared to the ensemble-based weighted ELM methods.

Figure 2. Box plots illustration of the compared methods.

4. Conclusions

In this paper, we propose a new weighted ELM model based on neutrosophic clustering. This new
weighting scheme introduces true, indeterminacy and falsity memberships of each data point into
ELM. Thus, we can remove the effect of noises and outliers in the classification stage and yield
better classification results. Moreover, the proposed NWELM scheme can handle the problem of
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class imbalance more effectively. In the evaluation experiments, we compare the performance of the
NWELM method with weighted ELM, unweighted ELM, and two ensemble-based weighted ELM
methods. The experimental results demonstrate the NEWLM to be more effective than the compared
methods for both artificial and real binary imbalance data sets. In the future, we are planning to extend
our study to multiclass imbalance learning.
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Abstract: k-nearest neighbors (k-NN), which is known to be a simple and efficient approach,
is a non-parametric supervised classifier. It aims to determine the class label of an unknown sample
by its k-nearest neighbors that are stored in a training set. The k-nearest neighbors are determined
based on some distance functions. Although k-NN produces successful results, there have been some
extensions for improving its precision. The neutrosophic set (NS) defines three memberships namely
T, I and F. T, I, and F shows the truth membership degree, the false membership degree, and the
indeterminacy membership degree, respectively. In this paper, the NS memberships are adopted to
improve the classification performance of the k-NN classifier. A new straightforward k-NN approach
is proposed based on NS theory. It calculates the NS memberships based on a supervised neutrosophic
c-means (NCM) algorithm. A final belonging membership U is calculated from the NS triples as
U = T + I − F. A similar final voting scheme as given in fuzzy k-NN is considered for class label
determination. Extensive experiments are conducted to evaluate the proposed method’s performance.
To this end, several toy and real-world datasets are used. We further compare the proposed method
with k-NN, fuzzy k-NN, and two weighted k-NN schemes. The results are encouraging and the
improvement is obvious.

Keywords: k-NN; Fuzzy k-NN; neutrosophic sets; data classification

1. Introduction

The k-nearest neighbors (k-NN), which is known to be the oldest and simplest approach,
is a non-parametric supervised classifier [1,2]. It aims to determine the class label of an unknown
sample by its k-nearest neighbors that are stored in a training set. The k-nearest neighbors are
determined based on some distance functions. As it is simplest and oldest approach, there have
been so many data mining and pattern recognition applications, such as ventricular arrhythmia
detection [3], bankruptcy prediction [4], diagnosis of diabetes diseases [5], human action recognition [6],
text categorization [7], and many other successful ones.

Although k-NN produces successful results, there have been some extensions for improving its
precision. Fuzzy theory-based k-NN (Fuzzy k-NN) has been among the most successful ones. As k-NN
produces crisp memberships for training data samples, fuzzy k-NN replaces the crisp memberships
with a continuous range of memberships which enhances the class label determination. Keller et al. [8]
was the one who incorporated the fuzzy theory in the k-NN approach. Authors proposed three
different methods for assigning fuzzy memberships to the labeled samples. After determination
of the fuzzy memberships, some distance function was used to weight the fuzzy memberships for
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final class label determination of the test sample. The membership assignment by the conventional
fuzzy k-NN algorithm has a disadvantage in that it depends on the choice of some distance function.
To alleviate this drawback, Pham et al. [9] proposed an optimally-weighted fuzzy k-NN approach.
Author introduced a computational scheme for determining optimal weights which were used to
improve the efficiency of the fuzzy k-NN approach. Denœux et al. [10] proposed a k-NN method
where Dempster-Shafer theory was used to calculate the memberships of the training data samples.
Author assumed that each neighbor of a sample to be classified was considered as an item of
evidence and the degree of support was defined as a function of the distance. The final class label
assignment was handled by Dempster’s rule of combination. Another evidential theory-based k-NN
approach, denoted by Ek-NN, has been proposed by Zouhal et al. [11]. In addition to the belonging
degree, the authors introduced the ignorant class to model the uncertainty. Then, Zouhal et al. [12]
proposed the generalized Ek-NN approach, denoted by FEk-NN. Authors adopted fuzzy theory for
improving the Ek-NN classification performance. The motivation for the FEk-NN was arisen from
the fact that each training sample was considered having some degree of membership to each class.
In addition, Liu et al. [13] proposed an evidential reasoning based fuzzy-belief k-nearest neighbor
(FBK-NN) classifier. In FBK-NN, each labeled sample was assigned with a fuzzy membership to
each class according to its neighborhood and the test sample’s class label was determined by the
K basic belief assignments which were determined from the distances between the object and its K
nearest neighbors. A belief theory based k-NN, denoted by the BK-NN classifier was introduced
by Liu et al. [14]. The author aimed to deal with uncertain data using the meta-class. Although,
the proposed method produced successful results, the computation complexity and the sensitivity to k
makes the approach inconvenient for many classification application. Derrac et al. [15] proposed an
evolutionary fuzzy k-NN approach where interval-valued fuzzy sets were used. The authors not only
defined a new membership function, but also a new voting scheme was proposed. Dudani et al. [16]
proposed a weighted voting method for k-NN which was called the distance-weighted k-NN (WKNN).
Authors presumed that the closer neighbors were weighted more heavily than the farther ones,
using the distance-weighted function. Gou et al. [17] proposed a distance-weighted k-NN (DWKNN)
method where a dual distance-weighted function was introduced. The proposed method has improved
the traditional k-NN’s performance by using a new method for selection of the k value.

In [18–21], Smarandache proposed neutrosophic theories. Neutrosophy was introduced as
a new branch of philosophy which deals with the origin, nature, and scope of neutralities, and their
interactions with different ideational spectra [19]. Neutrosophy is the base for the neutrosophic set
(NS), neutrosophic logic, neutrosophic probability, neutrosophic statistics, and so on. In NS theory,
every event has not only a certain degree of truth, but also a falsity degree and an indeterminacy
degree that have to be considered independently from each other [20]. Thus, an event, or entity, {A} is
considered with its opposite {Anti-A} and the neutrality {Neut-A}. NS provides a powerful tool to deal
with the indeterminacy. In this paper, a new straightforward k-NN approach was developed which is
based on NS theory. We adopted the NS memberships to improve the classification performance of the
k-NN classifier. To do so, the neutrosophic c-means (NCM) algorithm was considered in a supervised
manner, where labeled training data was used to obtain the centers of clusters. A final belonging
membership degree U was calculated from the NS triples as U = T + I − F. A similar final voting
scheme as given in fuzzy k-NN was employed for class label determination.

The paper is organized as follows: In the next section, we briefly reviewed the theories of k-NN
and fuzzy k-NN. In Section 3, the proposed method was introduced and the algorithm of the proposed
method was tabulated in Table 1. The experimental results and related comparisons were given
in Section 4. The paper was concluded in Section 5.
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2. Related works

2.1. k-Nearest Neighbor (k-NN) Classifier

As it was mentioned earlier, k-NN is the simplest, popular, supervised, and non-parametric
classification method which was proposed in 1951 [1]. It is a distance based classifier which needs to
measure the similarity of the test data to the data samples stored in the training set. Then, the test data
is labelled by a majority vote of its k-nearest neighbors in the training set.

Let X = {x1, x2, . . . , xN} denote the training set where xi ∈ Rn is a training data point in the
n-dimensional feature space and let Y = {y1, y2, . . . , yN} denotes the corresponding class labels.
Given a test data point x́ whose class label is unknown, it can be determined as follows:

• Calculate the similarity measures between test sample and training samples by using a distance
function (e.g., Euclidean distance)

• Find the test sample’s k nearest neighbors in training data samples according to the similarity
measure and determine the class label by the majority voting of its nearest neighbors.

2.2. Fuzzy k-Nearest Neighbor (k-NN) Classifier

In k-NN, a training data sample x is assumed to belong to one of the given classes so the
membership U of that training sample to each class of C is given by an array of values in {0, 1}.
If training data sample x belongs to class c1 then Uc1(x) = 1 and Uc2(x) = 0 where C = {c1, c2}.

However, in fuzzy k-NN, instead of using crisp memberships, continuous range of memberships
is used due to the nature of fuzzy theory [8]. So, the membership of training data sample can be
calculated as:

Uc1(x) =

{
0.51 + 0.49

kc1
K i f c = c1

0.49
kc1
K otherwise

(1)

where kc1 shows the number of instances belonging to class c1 found among the k neighbors of x́ and k
is an integer value between [3,9].

After fuzzy membership calculation, a test sample’s class label can be determined as following.
Determine the k nearest neighbors of the test sample via Euclidean distance and produce a final vote
for each class and neighbor using the Euclidean norm and the memberships:

V
(
k j, c

)
=

Uc(kj)

(‖x́ −kj‖)
2

m−1

∑k
i=1

1

(‖x́ −ki‖)
2

m−1

(2)

where k j is the jth nearest neighbor and m = 2 is a parameter. The votes of each neighbor are then
added to obtain the final classification.

3. Proposed Neutrosophic-k-NN Classifier

As traditional k-NN suffers from assigning equal weights to class labels in the training dataset,
neutrosophic memberships are adopted in this work to overcome this limitation. Neutrosophic
memberships reflect the data point’s significance in its class and these memberships can be used as
a new procedure for k-NN approach.

Neutrosophic set can determine a sample’s memberships belonging to truth, false,
and indeterminacy. An unsupervised neutrosophic clustering algorithm (NCM) is used in a supervised
manner [22,23]. Crisp clustering methods assumed that every data points should belong to a cluster
according to their nearness to the center of clusters. Fuzzy clustering methods assigned fuzzy
memberships to each data point according to their nearness to the center of cluster. Neutrosophic
clustering assigned memberships (T, I, and F) to each data point not only according to its nearness to a
cluster center, but also according to the nearness to the center mean of the two clusters. Readers may
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refer to [22] for detailed information about the NCM clustering. As the labels of a training dataset
samples are known in a supervised learning, the centers of the clusters can be calculated accordingly.
Then, the related memberships of true (T), false (F), and indeterminacy (I) can be calculated as follows:

Tij =
(xi − cj)

−( 2
m−1 )

∑C
j=1
(
xi − cj

)−( 2
m−1 ) + (xi − cimax)

−( 2
m−1 ) + δ−(

2
m−1 )

(3)

Fi =
(δ)−(

2
m−1 )

∑C
j=1
(
xi − cj

)−( 2
m−1 ) + (xi − cimax)

−( 2
m−1 ) + δ−(

2
m−1 )

(4)

Ii =
(xi − cimax)

−( 2
m−1 )

∑C
j=1
(
xi − cj

)−( 2
m−1 ) + (xi − cimax)

−( 2
m−1 ) + δ−(

2
m−1 )

(5)

where m is a constant, δ is a regularization parameter and cj shows the center of cluster j. For each
point i, the cimax is the mean of two cluster centers where the true membership values are greater than
the others. Tij shows the true membership value of point i for class j. Fi shows the falsity membership
of point i and Ii determines the indeterminacy membership value for point i. Larger Tij means that the
point i is near a cluster and less likely to be a noise. Larger Ii means that the point i is between any
two clusters and larger Fi indicates that point i is likely to be a noise. A final membership value for
point i can be calculated by adding indeterminacy membership value to true membership value and
subtracting the falsity membership value as shown in Equation (6).

After determining the neutrosophic membership triples, the membership for an unknown sample
xu to class label j, can be calculated as [9]:

µju =
∑k

i=1 di
(
Tij + Ii − Fi

)
∑k

i=1 di
(6)

di =
1

‖xu − xi‖
2

q−1
(7)

where di is the distance function to measure the distance between xi and xu, k shows the number of
k-nearest neighbors and q is an integer. After the assignment of the neutrosophic membership grades
of an unknown sample xu to all class labels, the neutrosophic k-NN assigns xu to the class whose
neutrosophic membership is maximum. The following steps are used for construction of the proposed
NS-k-NN method:

Step 1: Initialize the cluster centers according to the labelled dataset and employ Equations (3)–(5)
to calculate the T, I, and F values for each data training data point.

Step 2: Compute membership grades of test data samples according to the Equations (6) and (7).
Step 3: Assign class labels of the unknown test data points to the class whose neutrosophic

membership is maximum.

4. Experimental Works

The efficiency of the proposed method was evaluated with several toy and real datasets. Two toy
datasets were used to test the proposed method and investigate the effect of the parameters change on
classification accuracy. On the other hand, several real datasets were used to compare the proposed
method with traditional k-NN and fuzzy k-NN methods. We further compare the proposed method
with several weighted k-NN methods such as weighted k-NN (WKNN) and distance-weighted
k-nearest neighbor (DWKNN).
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Figure 1. Toy datasets. (a) Corner data; (b) line data. 
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In addition to our results, we also compared our results with k-NN and fuzzy k-NN results on the
same datasets. The obtained results were tabulated in Table 2 where the best results were indicated
with bold-face. As seen in Table 2, the proposed method performed better than the other methods
in 27 of 39 datasets. In addition, k-NN and fuzzy k-NN performed better on six and seven datasets
out of 39 datasets, respectively. Our proposal obtained 100% accuracy for two datasets (new thyroid
and wine). Moreover, for 13 datasets, the proposed method obtained accuracy values higher than
90%. On the other hand, the worse result was recorded for “Wine quality-white” dataset where the
accuracy was 33.33%. Moreover, there were a total of three datasets where the accuracy was lower than
50%. We further conducted experiments on several datasets from UCI-data repository [25]. Totally,
11 datasets were considered in these experiments and compared results with two weighted k-NN
approaches, namely WKNN and DWKNN. The characteristics of the each dataset from UCI-data
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repository were shown in Table 3, and the obtained all results were tabulated in Table 4. The boldface
in Table 4 shows the higher accuracy values for each dataset.

Table 2. Experimental results of k-NN and fuzzy k-NN vs. the proposed method.

Data Sets k-NN Fuzzy
k-NN

Proposed
Method Data Sets k-NN Fuzzy

k-NN
Proposed
Method

Appendicitis 87.91 97.91 90.00 Penbased 99.32 99.34 86.90
Balance 89.44 88.96 93.55 Phoneme 88.49 89.64 79.44
Banana 89.89 89.42 60.57 Pima 73.19 73.45 81.58
Bands 71.46 70.99 75.00 Ring 71.82 63.07 72.03
Bupa 62.53 66.06 70.59 Satimage 90.94 90.61 92.53

Cleveland 56.92 56.95 72.41 Segment 95.41 96.36 97.40
Dermatology 96.90 96.62 97.14 Sonar 83.10 83.55 85.00

Ecoli 82.45 83.34 84.85 Spectfheart 77.58 78.69 80.77
Glass 70.11 72.83 76.19 Tae 45.79 67.67 86.67

Haberman 71.55 68.97 80.00 Texture 98.75 98.75 80.73
Hayes-roth 30.00 65.63 68.75 Thyroid 94.00 93.92 74.86

Heart 80.74 80.74 88.89 Twonorm 97.11 97.14 98.11
Hepatitis 89.19 85.08 87.50 Vehicle 72.34 71.40 54.76

Ionosphere 96.00 96.00 97.14 Vowel 97.78 98.38 49.49
Iris 85.18 84.61 93.33 Wdbc 97.18 97.01 98.21

Mammographic 81.71 80.37 86.75 Wine 96.63 97.19 100.00
Monk-2 96.29 89.69 97.67 Winequality-red 55.60 68.10 46.84

Movement 78.61 36.11 50.00 Winequality-white 51.04 68.27 33.33
New thyroid 95.37 96.32 100.00 Yeast 57.62 59.98 60.81
Page-blocks 95.91 95.96 96.34 - - - -

Table 3. Several datasets and their properties from UCI dataset.

Data set Features Samples Classes Training Samples Testing Samples

Glass 10 214 7 140 74
Wine 13 178 3 100 78
Sonar 60 208 2 120 88

Parkinson 22 195 2 120 75
Iono 34 351 2 200 151

Musk 166 476 2 276 200
Vehicle 18 846 4 500 346
Image 19 2310 7 1310 1000
Cardio 21 2126 10 1126 1000

Landsat 36 6435 7 3435 3000
Letter 16 20,000 26 10,000 10,000

Table 4. The accuracy values for DWKNN vs. NSKNN.

Data set WKNN (%) DWKNN (%) Proposed Method (%)

Glass 69.86 70.14 60.81
Wine 71.47 71.99 79.49
Sonar 81.59 82.05 85.23

Parkinson 83.53 83.93 90.67
Iono 84.27 84.44 85.14

Musk 84.77 85.10 86.50
Vehicle 63.96 64.34 71.43
Image 95.19 95.21 95.60
Cardio 70.12 70.30 66.90

Landsat 90.63 90.65 91.67
Letter 94.89 94.93 63.50

As seen in Table 4, the proposed method performed better than the other methods in eight
of 11 datasets and DWKNN performed better in the rest datasets. For three datasets (Parkinson,
Image and Landsat), the proposed method yielded accuracy value higher than 90% and the worse
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result was found for the ‘Glass’ dataset where the accuracy was 60.81%. DWKNN and the WKNN
produced almost same accuracy values and performed significantly better than the proposed method
on ‘Letter and Glass’ datasets. We further compared the running times of each method on each
KEEL dataset and the obtained running times were tabulated in Table 5. We used MATLAB 2014b
(The MathWorks Inc., Natick, MA, USA) on a computer having an Intel Core i7-4810 CPU and 32 GB
memory. As seen in Table 5, for some datasets, the k-NN and fuzzy k-NN methods achieved lower
running times than our proposal’s achievement. However, when the average running times took into
consideration, the proposed method achieved the lowest running time with 0.69 s. The k-NN method
also obtained the second lowest running time with 1.41 s. The fuzzy k-NN approach obtained the
average slowest running time when compared with the other methods. The fuzzy k-NN method’s
achievement was 3.17 s.

Table 5. Comparison of running times for each method.

Data Sets k-NN Fuzzy
k-NN

Proposed
Method Data Sets k-NN Fuzzy

k-NN
Proposed
Method

Appendicitis 0.11 0.16 0.15 Penbased 10.21 18.20 3.58
Balance 0.15 0.19 0.18 Phoneme 0.95 1.88 0.71
Banana 1.03 1.42 0.57 Pima 0.45 0.58 0.20
Bands 0.42 0.47 0.19 Ring 6.18 10.30 2.55
Bupa 0.14 0.28 0.16 Satimage 8.29 15.25 1.96

Cleveland 0.14 0.18 0.19 Segment 1.09 1.76 0.63
Dermatology 0.33 0.31 0.22 Sonar 0.15 0.21 0.23

Ecoli 0.12 0.26 0.17 Spectfheart 0.14 0.25 0.22
Glass 0.10 0.18 0.18 Tae 0.13 0.12 0.16

Haberman 0.13 0.24 0.16 Texture 6.72 12.78 4.30
Hayes-roth 0.07 0.11 0.16 Thyroid 5.86 9.71 2.14

Heart 0.22 0.33 0.17 Twonorm 5.89 10.27 2.69
Hepatitis 0.06 0.06 0.16 Vehicle 0.17 0.31 0.27

Ionosphere 0.13 030 0.25 Vowel 0.47 0.62 0.31
Iris 0.23 0.13 0.16 Wdbc 0.39 0.46 0.26

Mammographic 0.21 0.22 0.20 Wine 0.08 0.14 0.17
Monk-2 0.27 0.33 0.17 Winequality-red 0.28 0.46 0.34

Movement 0.16 0.34 0.35 Winequality-white 1.38 1.95 0.91
New thyroid 0.14 0.18 0.17 Yeast 0.44 0.78 0.30
Page-blocks 1.75 2.20 0.93 Average 1.41 3.17 0.69

Generally speaking, the proposed NS-k-NN method can be announced successful when the
accuracy values which were tabulated in Tables 3–5, were considered. The NS-k-NN method obtained
these high accuracies because it incorporated the NS theory with the distance learning for constructing
an efficient supervised classifier. The running time evaluation was also proved that the NS-k-NN was
quite an efficient classifier than the compared other related classifiers.

5. Conclusions

In this paper, we propose a novel supervised classification method based on NS theory called
neutrosophic k-NN. The proposed method assigns the memberships to training samples based on
the supervised NCM clustering algorithm, and classifies the samples based on their neutrosophic
memberships. This approach can be seen as an extension of the previously-proposed fuzzy k-NN
method by incorporating the falsity and indeterminacy sets. The efficiency of the proposed method
was demonstrated with extensive experimental results. The results were also compared with other
improved k-NN methods. According to the obtained results, the proposed method can be used in
various classification applications. In the future works, we plan to apply the proposed NS-k-NN
on imbalanced dataset problems. We would like to analyze the experimental results with some
non-parametric statistical methods, such as the Freidman test and Wilcoxon signed-ranks test.
In addition, some other evaluation metrics such as AUC will be used for comparison purposes.
We will also explore the k-NN method where Dezert-Smarandache theory will be used to calculate the
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data samples’ memberships, replacing Dempster’s rule by Proportional Conflict Redistribution Rule
#5 (PCR5), which is more performative in order to handle the assignments of the final class.
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Abstract: A fundus image is an effective tool for ophthalmologists studying eye diseases.
Retinal vessel detection is a significant task in the identification of retinal disease regions. This study
presents a retinal vessel detection approach using shearlet transform and indeterminacy filtering.
The fundus image’s green channel is mapped in the neutrosophic domain via shearlet transform.
The neutrosophic domain images are then filtered with an indeterminacy filter to reduce the
indeterminacy information. A neural network classifier is employed to identify the pixels whose
inputs are the features in neutrosophic images. The proposed approach is tested on two datasets,
and a receiver operating characteristic curve and the area under the curve are employed to evaluate
experimental results quantitatively. The area under the curve values are 0.9476 and 0.9469 for
each dataset respectively, and 0.9439 for both datasets. The comparison with the other algorithms
also illustrates that the proposed method yields the highest evaluation measurement value and
demonstrates the efficiency and accuracy of the proposed method.

Keywords: retinal vessels detection; shearlet transform; neutrosophic set; indeterminacy filtering;
neural network; fundus image

1. Introduction

A fundus image is an important and effective tool for ophthalmologists who diagnose the eyes for
determination of various diseases such as cardiovascular, hypertension, arteriosclerosis and diabetes.
Recently, diabetic retinopathy (DR) has become a prevalent disease and it is seen as the major cause
of permanent vision loss in adults worldwide [1]. Prevention of such adult blindness necessitates
the early detection of the DR. DR can be detected early by inspection of the changes in blood vessel
structure in fundus images [2,3]. In particular, the detection of the new retinal vessel growth is quite
important. Experienced ophthalmologists can apply various clinical methods for the manual diagnosis
of DR which require time and steadiness. Hence, automated diagnosis systems for retinal screening
are in demand.

Various works have been proposed so far where the authors have claimed to find the retinal
vessels automatically on fundus images. Soares et al. proposed two-dimensional Gabor wavelets
and supervised classification method to segment retinal vessel [4], which classifies pixels as vessel
and non-vessel pixels. Dash et al. presented a morphology-based algorithm to segment retinal
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vessel [5]. Authors used 2-D Gabor wavelets and the CLAHE method for enhancing retinal images.
Segmentation was achieved by geodesic operators. The obtained segmentation result was then refined
with post-processing.

Zhao et al. introduced a methodology where level sets and region growing methods were
used for retinal vessel segmentation [6]. These authors also used CLAHE and 2D Gabor filters for
image enhancement. The enhanced images were further processed by an anisotropic diffusion filter
to smooth the retinal images. Finally, the vessels segmentation was achieved by using level sets
and region growing method. Levet et al. developed a retinal vessel segmentation method using
shearlet transform [7]. The authors introduced a term called ridgeness which was calculated for all
pixels at a given scale. Hysteresis thresholding was then applied for extracting the retinal vessels.
Another multi-resolution approach was proposed by Bankhead et al. [8], where the authors used
wavelets. The authors achieved the vessel segmentation by thresholding the wavelet coefficients.
The authors further introduced an alternative approach for center line detection by use of spline fitting.
Staal et al. extracted the ridges in images [9]. The extracted ridges were then used to form the line
elements which produced a number of image patches. After obtaining the feature vectors, a feature
selection mechanism was applied to reduce the number of features. Finally, a K-nearest-neighbors
classifier was used for classification. Kande et al. introduced a methodology combining vessel
enhancement and the SWFCM method [10]. The vessel enhancement was achieved by matched filtering
and the extraction of the vessels was accomplished by the SWFCM method. Chen et al. introduced a
hybrid model for automatic retinal vessel extraction [11], which combined the signed pressure force
function and the local intensity to construct a robust model for handling the segmentation problem
against the low contrast. Wang et al. proposed a supervised approach which segments the vessels in
the retinal images hierarchically [12]. It opted to extract features with a trained CNN (convolutional
neural network) and used an ensemble random forest to categorize the pixels as a non-vessel or
vessel classes. Liskowski et al. utilized a deep learning method to segment the retinal vessels in
fundus images [13] using two types of CNN models. One was a standard CNN architecture with
nine layers and the other just consisted of convolution layers. Maji et al. introduced an ensemble
based methodology for retinal vessels segmentation [14] which considered 12 deep CNN models for
constructing the classifier structure. The mean operation was used for the outputs of all networks for
the final decision.

In this study, a retinal vessel detection approach is presented using shearlet transform and
indeterminacy filtering. Shearlets are capable to capture the anisotropic information which makes
it strong in the detection of edges, corners, and blobs where there exists a discontinuity [15–17].
Shearlets are employed to describe the vessel’s features and map the image into the neutrosophic
domain. An indeterminacy filter is used to remove the uncertain information on the neutrosophic
set. A line-like filter is also utilized to enhance the vessel regions. Finally, the vessel is identified via a
neural network classifier.

2. Proposed Method

2.1. Shearlet Transform

Shearlet transformation enables image features to be analyzed in more flexible geometric
structures with simpler mathematical approaches and is also able to reveal directional and anisotropic
information at multi-scales [18]. In the 2-D case, the affine systems are defined as the collection:

SHφ f (a, s, t) = < f , φa,s,t > (1)

φa,s,t(x) = |detMa,s|−
1
2 φ
(

M−1
a,s x− t

)
(2)
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where φa,s,t is the shearlet coefficient. Ma,s = Bs Aa =

(
a
√

as
0
√

a

)
, and Aa =

(
a 0
0
√

a

)
is

parabolic scaling matrix and Bs =

(
1 s
0 1

)
is shear matrix (a > 0, s ∈ R, t ∈ R2). In this equation

a scale parameter is a real number greater than zero and s is a real number. In this case Ma,s is the
composition of the Aa and Bs.

2.2. Neutrosophic Indeterminacy Filtering

Recently, the neutrosophic theory extended from classical fuzzy theory denotes that neutrosophy
has been successfully used in many applications for reducing the uncertainty and indeterminacy [19].
An element g in the neutrosophic set (NS) is defined as g (T, I, F), where T identifies true degree in the
set, I identify the indeterminate degree in the set, and F identifies false in the set. T, I and F are the
neutrosophic components. The previously reported studies demonstrated that the NS has a vital role
in image processing [20–22].

A pixel P(x, y) at the location of (x,y) in an image is described in the NS domain as
PNS(x, y) = {T(x, y), I(x, y), F(x, y)}, where T(x, y), I(x, y) and F(x, y) are the membership values
belonging to the bright pixel set, indeterminate set, and non-white set, respectively.

In this study, the fundus image’s green channel is mapped into NS domain via shearlet feature values:

T(x, y) =
STL(x, y)− STLmin
STLmax − STLmin

(3)

I(x, y) =
STH(x, y)− STHmin
STHmax − STHmin

(4)

where T and I are the true and indeterminate membership values. STL(x, y) is the low-frequency
component of the shearlet feature at the current pixel P(x,y). In addition, STLmin and STLmax are the
minimum value and maximum value of the low-frequency component of the shearlet feature in the
whole image, respectively. STH(x, y) is the high-frequency component of the shearlet feature at the
current pixel P(x,y). Moreover, STHmin and STHmax are the minimum value and maximum value of the
high-frequency component of the shearlet feature in the whole image, respectively. In the proposed
algorithm, we only utilize neutrosophic components T and I for segmentation.

Then an IF (indeterminacy filter) is defined using the indeterminacy membership to reduce the
indeterminacy in images. The IF is defined based on the indeterminacy value Is(x, y) having the kernel
function as:

OI(u, v) =
1

2πσ2
I

e
(− u2+v2

2σ2
I (x,y)

)
(5)

σI(x, y) = f (I(x, y)) = rI(x, y) + q (6)

where OI(u, v) is the kernel function in the local neighborhood. u and v are coordinator values of local
neighborhood in kernel function. σI is the standard deviation of the kernel function, which is defined
as a linear function associated to the indeterminate degree. r and q are the coefficients in the linear
function to control the standard deviation value according to the indeterminacy value. Since the σI
becomes large with a high indeterminate degree, the IF can create a smooth current pixel by using its
neighbors, while with a low indeterminate degree, the value of σI is small and the IF performs less
smoothing operation.

T′(x, y) = T(x, y)⊕OI(u, v) =
y+m/2

∑
v=y−m/2

x+m/2

∑
u=x−m/2

T(x− u, y− v)OI(u, v) (7)

where T′ is the indeterminate filtering result.
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2.3. Line Structure Enhancement

A multiscale filter is employed on the image to enhance the line-like structure [17]. The local
second-order partial derivatives, Hessian matrix, is computed and a line-likeness is defined using
its eigenvalues. This measure can describe the vessels region in the fundus images and is shown
as follows:

En(s) =


0 i f λ2 > 0 or λ3 > 0(

1− e−
R2

A
2α2

)
.e
− R2

B
2β2 .
(

1− e−
S2

2c2

)
otherwise

(8)

S =
√

∑
j≤D

λ2
j (9)

RA = RA =
|λ2|
|λ3|

(10)

RB = RB =
|λ1|√
|λ2λ3|

(11)

where λk is the eigenvalue with the k-th smallest magnitude of the Hessian matrix. D is the dimension
of the image. α, β and c are thresholds to control the sensitivity of the line filter to the measures
RA, RB and S.

2.4. Algorithm of the Proposed Approach

A retinal vessel detection approach is proposed using shearlet transform and indeterminacy
filtering on fundus images. Shearlet transform is employed to describe the vessel’s features and map
the green channel of the fundus image into the NS domain. An indeterminacy filter is used to remove
the indeterminacy information on the neutrosophic set. A multiscale filter is utilized to enhance the
vessel regions. Finally, the vessel is detected via a neural network classifier using the neutrosophic
image and the enhanced image. The proposed method is summarized as:

1. Take the shearlet transform on green channel Ig;
2. Transform the Ig into neutrosophic set domain using the shearlet transform results, and the

neutrosophic components are denoted as T and I;
3. Process indeterminacy filtering on T using I and the result is denoted as T′;
4. Perform the line-like structure enhancement filter on T′ and obtain the En;
5. Obtain the feature vector FV = [T′ I En] for the input of the neural network;
6. Train the neural network as a classifier to identify the vessel pixels;
7. Identify the vessel pixels using the classification results by the neural network.

The whole steps can be summarized using a flowchart in Figure 1.
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T,I     Shearlet Transform

T'     Neutrosophic
Indeterminacy Filtering on T 

using I

En      Line structure 
enhancement on T’

FV=[T' I En]     Obtain 
Feature Vector

Ig     Green Channel

Train Neural 
Network

Training Testing

Test Neural 
Network

3. Experimental Results

3.1. Retinal Fundus Image Datasets 

STARE (STructured Analysis of the REtina) Project was designed and initialized in 1975 by Michael
Goldbaum, M.D. at the University of California, San Diego. 
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3.2. Experiment on Retinal Vessel Detection

(a) b) c)

Figure 2. Detection results by our proposed methods on three samples randomly taken
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(a) b) (c)

Figure 3. Detection results by our proposed methods on three samples randomly taken

In Table 1, Maji et al. [14] have developed a collective learning method using 12 deep CNN
models for vessel segmentation, Fu et al. [25] have proposed an approach combining CNN and CRF
(Conditional Random Field) layers, and Niemeijer et al. [26] presented a vessel segmentation algorithm
based on pixel classification using a simple feature vector. The proposed method achieved the highest
AUC value for the DRIVE dataset. Fu et al. [25] also achieved the second highest AUC value.
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5. Conclusions 

This study proposes a new method for retinal vessel detection. It initially forwards the input
retinal fundus images into the neutrosophic domain via shearlet transform. The neutrosophic domain
images are then filtered with two neutrosophic filters for noise reduction. Feature extraction and
classification steps come after the filtering steps. The presented approach was tested on DRIVE and 
STARE. The results were evaluated quantitatively. The proposed approach outperformed the others 
by means of both evaluation methods. The comparison with the existing algorithms also stressed the 
high accuracy of the proposed approach. In future, we will employ some post-processing methods
for improving the quality of the vessel detection.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tr
ue

 P
os

iti
ve

 R
at

e

ROC

Figure 5 .

Figure 4 .

Florentin Smarandache (ed.) Collected Papers, VII

140



In Table 2, Kande et al. [10] have recommended an unsupervised fuzzy based vessel segmentation
method, Jiang et al. [2] have proposed an adaptive local thresholding method and Hoover et al. [27]
also have combined local and region-based properties to segment blood vessels in retinal images.
The highest AUC value was also obtained for STARE dataset with the proposed method.

In the proposed method, the post-processing procedure is not used to deal with the classification
results from neural network. In future, we will employ some post-processing methods for improving
the quality of the vessel detection.

Table 1. Comparison with the other algorithms on DRIVE dataset.

Method AUC

Maji et al. [14] 0.9283
Fu et al. [25] 0.9470

Niemeijer et al. [26] 0.9294
Proposed method 0.9476

Table 2. Comparison with the other algorithm on STARE dataset.

Method AUC

Jiang et al. [2] 0.9298
Hoover et al. [27] 0.7590
Kande et al. [10] 0.9298

Proposed method 0.9469

5. Conclusions

This study proposes a new method for retinal vessel detection. It initially forwards the input
retinal fundus images into the neutrosophic domain via shearlet transform. The neutrosophic domain
images are then filtered with two neutrosophic filters for noise reduction. Feature extraction and
classification steps come after the filtering steps. The presented approach was tested on DRIVE and
STARE. The results were evaluated quantitatively. The proposed approach outperformed the others
by means of both evaluation methods. The comparison with the existing algorithms also stressed the
high accuracy of the proposed approach. In future, we will employ some post-processing methods for
improving the quality of the vessel detection.
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Abstract—Interval valued bipolar neutrosophic sets is a new 
generalization of fuzzy set, bipolar fuzzy set, neutrosophic set 
and bipolar neutrosophic set so that it can handle uncertain 
information more flexibly in the process of decision making. In 
this paper, an algorithm for finding minimum spanning tree 
(MST) of an undirected neutrosophic weighted connected 
graph (UNWCG) in which the  edge weights is represented by 
a  an interval  valued bipolar neutrosophic number is presented. 
The proposed algorithm is based on matrix approach to design 
the MST of UNWCG. A numerical example is provided to show 
the effectiveness of the proposed algorithm. Lastly, a 
comparative study with other existing methods is proposed. 

I. INTRODUCTION 
In 1998, Smarandache [1] explored the concept of 

neutrosophic set (NS) from the philosophical point of view, 
to represent uncertain, imprecise, incomplete, inconsistent, 
and indeterminate information that are exist in the real world. 
The concept of neutrosophic set is a generalization of the 
concept of the classic set, fuzzy set, intuitionistic fuzzy set 
(IFS). The neutrosophic sets are characterized by a 
truth-membership function (t), an indeterminate-membership 
function (i) and a false-membership function (f) 
independently, which are within the real standard or 
nonstandard unit interval ]−0, 1+[. To apply the concept of 
neutrosophic sets (NS) in science and engineering 
applications, Smarandache [6] introduced for the first time, 
the single valued neutrosophic set (SVNS). Later on, Wang et 

al. [2] studied some properties related to single valued 
neutrosophic sets. The neutrosophic set model is an important 
tool for dealing with real scientific and engineering 
applications because it can handle not only incomplete 
information but also the inconsistent information and 
indeterminate information. Some more literature about the 
extension of neutrosophic sets and their applications in 
various fields can be found in the literature [17]. 

In classical graph theory, there are common algorithms for 
solving the minimum spanning tree including Prim and 

Kandasamy [3] proposed a double-valued Neutrosophic 
Minimum Spanning Tree (DVN-MST) clustering algorithm, 
to cluster the data represented by double-valued neutrosophic 
information.Mandal and Basu [5] presented a solution 
approach of the optimum spanning tree problems considering 
the inconsistency, incompleteness and indeterminacy of the 
information. The authors consider a network problem with 
multiple criteria which are represented by weight of each 
edge in neutrosophic setsThe approach proposed by the 
authors is based on similarity measure. Recently Mullai [18] 
solved the minimum spanning tree problem on a graph in 
which a bipolar neutrosophic number is associated to each 
edge as its edge length, and illustrated it by a numerical 
example.  

The principal objective of this paper is to propose a new 
version of Prim‘s algorithm based on matrix approach for 
finding the cost minimum spanning tree of an undirected 
graph in which an interval valued bipolar neutrosophic 
number [19] is associated to each edge as its edge length.  

The rest of the paper is organized as follows. Section 2 
briefly introduces the concepts of neutrosophic sets, single 
valued neutrosophic sets and the score function of interval 
valued bipolar neutrosophic number. Section 3 proposes a 
novel approach for finding the minimum spanning tree of 
interval valued bipolar neutrosophic undirected graph. In 
Section 4, an illustrative example is presented to illustrate the 
proposed method. In section 5, a comparative study with 
other existing methods is provided. Finally, Section 6 
concludes the paper. 

II. PRELIMINARIES

Some of the important background knowledge for the 
materials that are presented in this paper is presented in this 
section. These results can be found in [1], [2], [19]. 

Definition 2.1 [1] Le     be an universal set. The 

neutrosophic set A on the universal set  categorized in to 

three membership functions called the true AT (x), 
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kruskal algorithm. By applying the concept of single valued 
neutrosophic sets on graph theory, a new theory is developed 
and called single valued neutrosophic graph theory (SVNGT).  
The concept of SVNGT and their extensions finds its 
applications in diverse fields [6]-[16]. Very recently few 
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dissimilarity between the corresponding samples has been 
derived.
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indeterminate 
AI (x) and  false 

AF (x) contained in real 
standard or non-standard subset of  ]-0, 1+[  respectively. 

  −0   sup AT  (x) + sup AI  (x)   + sup AF  (x)   3+   (1)

Definition 2.2 [2] Let   be a universal set. The single 

valued neutrosophic sets (SVNs) A on the universal    is 
denoted as following 

 A = {x: 
AT (x), AI  (x), AF  (x) x }     (2) 

The functions AT (x)   [0. 1], AI (x)   [0. 1] and AF  (x) 
  [0. 1] are named degree of truth, indeterminacy and falsity 
membership of x in A, satisfy the following condition: 

 0   AT   (x) + AI  (x) + AF  (x)   3  (3) 

Definition 2.3 [4]. An interval valued bipolar neutrosophic 
set A in X is defined as an object of the form 

A={<x, 
, , , , , , , ,

, , ,

p p p p p p n n
L M L M L M L M

n n n n
L M L M

T T I I F F T T

I I F F

       
       

    
   

>: x 

  X}, where p
LT , p

MT p
LI , p

MI , p
LF , p

MF :X  [0, 1]

and n
LT , n

MT n
LI , n

MI , n
LF , n

MF : X   [-1, 0] .The

positive interval membership degree where p
LT , p

MT p
LI , 

p
MI , p

LF , p
MF  denotes the lower and upper truth 

membership, lower and upper indeterminate membership and 
lower and upper false membership of an element   X
corresponding to a bipolar neutrosophic set A and the 
negative interval membership degree n

LT , n
MT n

LI , n
MI , n

LF , 
n

MF : denotes the lower and upper truth membership, lower 
and upper indeterminate membership and lower and upper 
false membership of an element   X to some implicit
counter-property corresponding to an interval valued bipolar 
neutrosophic set A. 

Deli et al.  [19], introduced a concept of score function. 
The score function is applied to compare the grades of 
IVBNS. This function shows that greater is the value, the 
greater is the interval valued bipolar neutrosphic sets and by 
using this concept paths can be ranked 

Definition 2.4 [19]. Let 

, , , , , , , ,

, , ,

p p p p p p n n
L M L M L M L M

n n n n
L M L M

A T T I I F F T T

I I F F

       
       

    
   

be an 

interval valued bipolar neutrosophic number, Then, the score 
function ( )s A , accuracy function ( )a A and certainty 

function ( )c A of an IVBNN are defined as follows: 

(i) 
1 1 1

1( ) 1 1
12

1

p p p p
L M L M

p p n
L M L

n n n n n
M L M L M

T T I I

s A F F T

T I I F F

       
  

       
   

       

      (4) 

(ii) ( ) p p p p n n n n
L M L ML L L Ma A T T F F T T F F             (5) 

(iii) ( ) p p n n
L ML Mc A T T F F     (6) 

Comparison of interval valued bipolar neutrosophic 
numbers 

Let 1 1 1 1 1 1 1

1 1 1 1 1 1

, , , , , ,

, , , , ,

p p p p p p
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2 2 2 2 2 2 2

2 2 2 2 2 2
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p p p p p p
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n n n n n n
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A T T I I F F

T T I I F F

     
     

      
     

be two interval 

valued bipolar neutrosophic numbers then 

If 1 2( ) ( )s A s A , then 1A  is greater than 2A , that is, 1A is 

superior to 2A , denoted by 1 2A A

If 1 2( ) ( )s A s A ,and 1 2( ) ( )a A a A then 1A  is greater 

than 2A , that is, 1A is superior to 2A , denoted by 1 2A A

If 1 2( ) ( )s A s A , 1 2( ) ( )a A a A , and 1 2c( ) ( )A c A  then 

1A  is greater than 2A , that is, 1A is superior to 2A , denoted by 

1 2A A

If 1 2( ) ( )s A s A , 1 2( ) ( )a A a A , and 1 2c( ) ( )A c A  then 

1A  is equal to 2A , that is, 1A is indifferent to 2A , denoted by 

1 2A A

III. MINIMUM SPANNIG TREE ALGORITHM OF IVBN- 
UNDIRECTED GRAPH 

In this section, a neutrosophic version of Prim’s algorithm 
is proposed to handle minimum spanning tree in a 
neutrosophic environment. In the following, we propose an 
interval valued bipolar neutrosophic minimum spanning tree 
algorithm (IVBNMST), whose steps are described below: 

Algorithm: 

Input: The weight matrix M = ij n n
W


   for the undirected

weighted neutrosophic graph G. 
Output: Minimum cost Spanning tree T of G. 
Step 1: Input interval valued bipolar neutrosophic 

adjacency matrix A. 
Step 2:Translate the IVBN-matrix into score 

matrix ij n n
S


    by using score. 

Step 3: Iterate step 4 and step 5 until all (n-1) entries 
matrix of S are either marked or set to zero or other words all 
the nonzero elements are marked. 

Step 4: Find the score matrix S either columns-wise or 
row-wise to find the unmarked minimum entries 

ijS ,which 

is the weight of the corresponding edge 
ije in S. 

Step 5: If the corresponding edge 
ije  of selected 

ijS produce a cycle with the previous marked entries of the 

score matrix S then set 
ijS = 0 else mark

ijS . 

Florentin Smarandache (ed.) Collected Papers, VII

144



Step 6: Construct the graph T including only the marked 
entries from the score matrix S which shall be desired 
minimum cost spanning tree of G. 
Step 7: Stop. 

IV. NUMERICAL EXAMPLE

In this section, a numerical example of IVBNMST is used 
to demonstrate of the proposed algorithm. Consider the 
following graph G= (V, E) shown in Figure 2, with fives 
nodes and fives edges. The different steps involved in the 
construction of the minimum cost spanning tree are described 
as follow: 

Fig. 2. Undirected IVBN- graphs. 

e Edge length 

<

The IVBN- adjacency matrix A is given below: 

=

Thus, using the score function, we get the score matrix 

S =

Fig. 3. Score matrix. 

According to the Fig. 3, we observe that the minimum 
entries 0.358 is selected and the corresponding edge (1, 4) is 
marked by the brown color. Repeat the procedure until the 
iteration will exist. 

According to the Fig. 4 and Fig. 5, the next non zero 
minimum entries 0.408 is marked and corresponding edges (3, 
5) are also colored

Fig. 4. The marked edge (1,4) of G in next iteration. 

S =

 Fig. 5. The marked next minimum entries 0.408 of S. 

    Fig. 6. The marked edge (3,5) of G in next iteration. 

S=

 Fig. 7. The marked next minimum entries 0.433 of S  

According to the Fig. 7, the next minimum non zero 
element 0.433  is marked.  

 Fig. 8. The marked edge (1, 2) of G in next iteration. 

According to the Fig. 9. The next minimum non zero 
element 0.442 is marked, and corresponding edges (3, 4) are 
also colored 
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S =

Fig. 9. The marked next minimum entries 0.442 of S. 

 Fig. 10. The marked edge (3, 4) of G in next iteration. 

According to the figure 11. The next minimum non zero 
element 0.5 is marked. But while drawing the edges it 
produces the cycle. So we delete and mark it as 0 instead of 
0.5 

S =

 Fig. 11. The marked next minimum entries 0.5 of S. 

The next non zero minimum entries 0.525 is marked it is 
shown in the Fig. 12. But while drawing the edges it produces 
the cycle. So, we delete and mark it as 0 instead of 0.525 

S  =

 Fig. 12. The marked next minimum entries 0.525 of S. 

According to the Fig. 13. The next minimum non zero 
element 0.583 is marked. But while drawing the edges it 
produces the cycle so we delete and mark it as 0 instead of 
0.583. 

S   =

Fig. 13. The marked next minimum entries 0.583 of S. 

After the above steps, the final path of minimum cost of 
spanning tree of G is portrayed in Fig. 14. 

Fig. 14. Final path of minimum cost of spanning tree of G. 

Using the above steps described in section 4, hence,  the 
crisp minimum cost spanning tree is 1,641 and the final path 
of minimum cost of spanning tree is{2,1},{1, 4},{4, 3},{3, 
5}. 

V. Comparative STUDY 
In order to illustrate the rationality and effectiveness of the 

proposed method, we apply the algorithm proposed by Mullai 
et al. [18] on our IVBN-graph presented in Section 4. 
Following the setps of Mullai’s algorithm we obtained the 
results 

Iteration 1:  

Let ={1} and ={2, 3,4 ,5} 

Iteration 2: 

Let ={1,4} and ={2, 3 ,5} 

Iteration 3: 

Let ={1,4, 2} and ={3, 5} 

Iteration 4: 

Let ={1,4, 2, 3} and  ={5} 

Finally, IVBN minimal spanning tree is 

Fig. 15. IVBN minimal spanning tree obtained by Mullai’s algorithm. 

So, it can be seen that the IVBN minimal spanning tree {2, 
1},{1, 4},{4, 3},{3, 5}obtained by Mullai’s algorithm, After 
deneutrosophication of edges’weight using the score function, 
is the same as the path obtained by proposed algorithm. 

The difference between the proposed algorithm and 
Mullai’s algorithm is that our approach is based on Matrix 
approach, which can be easily implemented in Matlab, 
whereas the  Mullai’s algorithm is based on the comparison 
of edges  the in each iteration of the algorithm, which  leads to 
high computation. 

VI. CONCLUSION

This paper deals with minimum spanning tree problem  on 
a network where the edges weights are represented by an 
interval valued bipolar neutrosophic numbers. This work can 
be extended to the case of directed neutrosophic graphs and 
other types of neutrosophic graphs . 
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The aim of this paper is to extend the concept of cubic sets to the neutrosophic sets. The notions

of truth-internal (indeterminacy-internal, falsity-internal) neutrosophic cubic sets and truth-

external (indeterminacy-external, falsity-external) neutrosophic cubic sets are introduced, and
related properties are investigated.

Keywords: Neutrosophic (cubic) set; truth-internal (indeterminacy-internal, falsity-internal)

neutrosophic cubic set; truth-external (indeterminacy-external, falsity-external) neutrosophic

cubic set.

1. Introduction

Fuzzy sets, which were introduced by Zadeh,9 deal with possibilistic uncertainty,

connected with imprecision of states, perceptions and preferences. Based on the

(interval-valued) fuzzy sets, Jun et al.1 introduced the notion of (internal, external)

cubic sets, and investigated several properties. Jun et al. applied the notion of cubic

sets to BCK/BCI-algebras. They introduced the notions of cubic subalgebras/ideals,

cubic �-subalgebras and closed cubic ideals in BCK/BCI-algebras, and then they

investigated several properties.2{5 The concept of neutrosophic set (NS) developed by

Smarandache6,7 is a more general platform which extends the concepts of the classic

set and fuzzy set, intuitionistic fuzzy set and interval valued intuitionistic fuzzy set.

Neutrosophic set theory is applied to various part (refer to the site http://fs.gallup.

unm.edu/neutrosophy.htm).

In this paper, we extend the concept of cubic sets to the neutrosophic sets. We

introduce the notions of truth-internal (indeterminacy-internal, falsity-internal)

neutrosophic cubic sets and truth-external (indeterminacy-external, falsity-external)

neutrosophic cubic sets, and investigate related properties. We show that the P-union

and the P-intersection of truth-internal (indeterminacy-internal, falsity-internal)
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neutrosophic cubic sets are also truth-internal (indeterminacy-internal, falsity-in-

ternal) neutrosophic cubic sets sets. We provide examples to show that the P-union

and the P-intersection of truth-external (indeterminacy-external, falsity-external)

neutrosophic cubic sets may not be truth-external (indeterminacy-external, falsity-

external) neutrosophic cubic sets, and the R-union and the R-intersection of truth-

internal (indeterminacy-internal, falsity-internal) neutrosophic cubic sets may not be

truth-internal (indeterminacy-internal, falsity-internal) neutrosophic cubic sets. We

provide conditions for the R-union of two T-internal (resp. I-internal and F-internal)

neutrosophic cubic sets to be a T-internal (resp. I-internal and F-internal) neu-

trosophic cubic set.

2. Preliminaries

A fuzzy set in a set X is de¯ned to be a function � : X ! ½0; 1�. Denote by ½0; 1�X the

collection of all fuzzy sets in a set X. De¯ne a relation � on ½0; 1�X as follows:

ð8�; � 2 ½0; 1�XÞ ð� � � , ð8x 2 XÞð�ðxÞ � �ðxÞÞÞ:
The join (_) and meet (^) of � and � are de¯ned by

ð� _ �ÞðxÞ ¼ maxf�ðxÞ; �ðxÞg;
ð� ^ �ÞðxÞ ¼ minf�ðxÞ; �ðxÞg;

respectively, for all x 2 X. The complement of �; denoted by �c; is de¯ned by

ð8x 2 XÞ ð�cðxÞ ¼ 1� �ðxÞÞ:

For a family f�iji 2 �g of fuzzy sets in X; we de¯ne the join (_) and meet (^)
operations as follows:

W
i2�

�i

� �
ðxÞ ¼ supf�iðxÞji 2 �g;

V
i2�

�i

� �
ðxÞ ¼ inff�iðxÞji 2 �g;

respectively, for all x 2 X.

By an interval number we mean a closed subinterval ~a ¼ ½a�; aþ� of ½0; 1�; where
0 � a� � aþ � 1. The interval number ~a ¼ ½a�; aþ� with a� ¼ aþ is denoted by a.

Denote by ½½0; 1�� the set of all interval numbers. Let us de¯ne what is known as

re¯ned minimum (brie°y, rmin) of two elements in [[0,1]]. We also de¯ne the symbols

\º ", \¹ ", \¼" in case of two elements in [[0,1]]. Consider two interval numbers

~a1 :¼ ½a�
1 ; a

þ
1 � and ~a2 :¼ ½a�

2 ; a
þ
2 �. Then

rmin ~a1; ~a2f g ¼ min a�
1 ; a

�
2f g;min aþ

1 ; a
þ
2

� �� �
;

~a1 º ~a2 if and only if a�
1 � a�

2 and aþ
1 � aþ

2 ;
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and similarly we may have ~a1 ¹ ~a2 and ~a1 ¼ ~a2. To say ~a1 � ~a2 (resp. ~a1 � ~a2) we

mean ~a1 º ~a2 and ~a1 6¼ ~a2 (resp. ~a1 ¹ ~a2 and ~a1 6¼ ~a2). Let ~ai 2 ½½0; 1�� where i 2 �.

We de¯ne

rinf
i2�

~ai ¼ inf
i2�

a�
i ; inf

i2�
aþ
i

� �
and rsup

i2�
~ai ¼ sup

i2�
a�
i ; sup

i2�
aþ
i

� �
:

For any ~a 2 ½½0; 1��; its complement, denoted by ~a c; is de¯ned be the interval number

~a c ¼ ½1� aþ; 1� a��:
Let X be a nonempty set. A function A : X ! ½½0; 1�� is called an interval-valued

fuzzy set (brie°y, an IVF set) in X. Let IVF ðXÞ stand for the set of all IVF sets in X:

For every A 2 IVF ðXÞ and x 2 X; AðxÞ ¼ ½A�ðxÞ;AþðxÞ� is called the degree of

membership of an element x to A, where A� : X ! I and Aþ : X ! I are fuzzy sets

in X which are called a lower fuzzy set and an upper fuzzy set in X; respectively. For

simplicity, we denote A ¼ ½A�;Aþ�. For every A;B 2 IVF ðXÞ; we de¯ne

A � B , AðxÞ¹BðxÞ for all x 2 X;

and

A ¼ B , AðxÞ ¼ BðxÞ for all x 2 X:

The complement Ac of A 2 IVF ðXÞ is de¯ned as follows: AcðxÞ ¼ AðxÞc for all

x 2 X, that is,

AcðxÞ ¼ ½1�AþðxÞ; 1� A�ðxÞ� for all x 2 X:

For a family fAiji 2 �g of IVF sets in X where � is an index set, the union G ¼
[i2�Ai and the intersection F ¼ Ti2�Ai are de¯ned as follows:

GðxÞ ¼
[

i2�
Ai

 !
ðxÞ ¼ rsup

i2�
AiðxÞ

and

F ðxÞ ¼
\
i2�

Ai

 !
ðxÞ ¼ rinf

i2�
AiðxÞ

for all x 2 X; respectively.

Let X be a non-empty set. A neutrosophic set (NS) in X (see Ref. 6) is a structure

of the form:

� :¼ fhx;�T ðxÞ; �IðxÞ; �F ðxÞijx 2 Xg;
where �T : X ! ½0; 1� is a truth membership function, �I : X ! ½0; 1� is an indeter-

minate membership function, and �F : X ! ½0; 1� is a false membership function.

LetX be a non-empty set. An interval neutrosophic set (INS) inX (see Ref. 8) is a

structure of the form:

A :¼ fhx;AT ðxÞ;AIðxÞ;AF ðxÞijx 2 Xg;
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where AT , AI and AF are interval-valued fuzzy sets inX, which are called an interval

truth membership function, an interval indeterminacy membership function and an

interval falsity membership function, respectively.

3. Neutrosophic Cubic Sets

Jun et al.1 have de¯ned the cubic set as follows:

Let X be a non-empty set. A cubic set in X is a structure of the form:

C ¼ fðx;AðxÞ; �ðxÞÞjx 2 Xg;
where A is an interval-valued fuzzy set in X and � is a fuzzy set in X.

We consider the notion of neutrosophic set sets as an extension of cubic sets.

De¯nition 3.1. LetX be a non-empty set. A neutrosophic cubic set (NCS) inX is a

pair A ¼ ðA;�Þ where A :¼ fhx;AT ðxÞ;AIðxÞ;AF ðxÞijx 2 Xg is an interval

neutrosophic set in X and � :¼ fhx;�T ðxÞ; �IðxÞ; �F ðxÞijx 2 Xg is a neutrosophic

set in X.

Example 3.2. For X ¼ fa; b; cg, the pair A ¼ ðA;�Þ with the tabular representa-

tion in Table 1 is a neutrosophic set in X.

Example 3.3. For a non-empty set X and any INS

A :¼ fhx;AT ðxÞ;AIðxÞ;AF ðxÞijx 2 Xg
in X, we know that C ¼ ðC;�Þ1 :¼ ðA;�1Þ and C ¼ ðC;�Þ0 :¼ ðA;�0Þ are

neutrosophic cubic sets in X where �1 :¼ fhx; 1; 1; 1ijx 2 Xg and �0 :¼ fhx; 0; 0; 0ij
x 2 Xg i n X. I f w e t ak e �T ðxÞ ¼ A�

T ðxÞþAþ
T
ðxÞ

2 , �IðxÞ ¼ A�
I ðxÞþAþ

I
ðxÞ

2 , a nd

�F ðxÞ ¼ A�
F ðxÞþAþ

F
ðxÞ

2 , then A ¼ ðA;�Þ is a neutrosophic cubic set in X

De¯nition 3.4. Let X be a non-empty set. A neutrosophic cubic set A ¼ ðA;�Þ in
X is said to be

. truth-internal (brie°y, T-internal) if the following inequality is valid

ð8x 2 XÞðA�
T ðxÞ � �T ðxÞ � Aþ

T ðxÞÞ; ð3:1Þ
. indeterminacy-internal (brie°y, I-internal) if the following inequality is valid

ð8x 2 XÞðA�
I ðxÞ � �IðxÞ � Aþ

I ðxÞÞ; ð3:2Þ

Table 1. Tabular representation of A ¼ ðA;�Þ.
X AðxÞ �ðxÞ

a ([0.2, 0.3], [0.3, 0.5], [0.3, 0.5]) (0.1, 0.2, 0.3)

b ([0.4, 0.7], [0.1, 0.4], [0.2, 0.4]) (0.3, 0.2, 0.7)

c ([0.6, 0.9], [0.0, 0.2], [0.3, 0.4]) (0.5, 0.2, 0.3)
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. falsity-internal (brie°y, F-internal) if the following inequality is valid

ð8x 2 XÞðA�
F ðxÞ � �F ðxÞ � Aþ

F ðxÞÞ: ð3:3Þ
If a neutrosophic cubic set A ¼ ðA;�Þ in X satis¯es (3.1), (3.2) and (3.3), we say

that A ¼ ðA;�Þ is an internal neutrosophic cubic set in X.

Example 3.5. For X ¼ fa; b; cg, the pair A ¼ ðA;�Þ with the tabular representa-

tion in Table 2 is an internal neutrosophic cubic set in X.

De¯nition 3.6. Let X be a non-empty set. A neutrosophic cubic set A ¼ ðA;�Þ in
X is said to be

. truth-external (brie°y, T-external) if the following inequality is valid

ð8x 2 XÞð�T ðxÞ 62 ðA�
T ðxÞ;Aþ

T ðxÞÞÞ; ð3:4Þ
. indeterminacy-external (brie°y, I-external) if the following inequality is valid

ð8x 2 XÞð�IðxÞ 62 ðA�
I ðxÞ;Aþ

I ðxÞÞÞ; ð3:5Þ
. falsity-external (brie°y, F-external) if the following inequality is valid

ð8x 2 XÞð�F ðxÞ 62 ðA�
F ðxÞ;Aþ

F ðxÞÞÞ: ð3:6Þ

If a neutrosophic cubic set A ¼ ðA;�Þ in X satis¯es (3.4){(3.6), we say that

A ¼ ðA;�Þ is an external neutrosophic cubic in X.

Proposition 3.7. Let A ¼ ðA;�Þ be a neutrosophic cubic set in a non-empty set X

which is not external. Then there exists x 2 X such that �T ðxÞ 2 ðA�
T ðxÞ;Aþ

T ðxÞÞ,
�IðxÞ 2 ðA�

I ðxÞ;Aþ
I ðxÞÞ, or �F ðxÞ 2 ðA�

F ðxÞ;Aþ
F ðxÞÞ.

Proof. Straightforward.

Proposition 3.8. Let A ¼ ðA;�Þ be a neutrosophic cubic set in a non-empty set X.

If A ¼ ðA;�Þ is both T-internal and T-external, then

ð8x 2 XÞð�T ðxÞ 2 fA�
T ðxÞjx 2 Xg [ fAþ

T ðxÞjx 2 XgÞ: ð3:7Þ
Proof. Two conditions (3.1) and (3.4) imply that A�

T ðxÞ � �T ðxÞ � Aþ
T ðxÞ and �T

ðxÞ 62 ðA�
T ðxÞ;Aþ

T ðxÞÞ f o r a l l x 2 X. I t fo l l ows that �T ðxÞ ¼ A�
T ðxÞ or

�T ðxÞ ¼ Aþ
T ðxÞ, and so that �T ðxÞ 2 fA�

T ðxÞjx 2 Xg [ fAþ
T ðxÞjx 2 Xg.

Similarly, we have the following propositions.

Table 2. Tabular representation of A ¼ ðA;�Þ.
X AðxÞ �ðxÞ

a ð½0:2; 0:3�; ½0:3; 0:5�; ½0:3; 0:5�Þ ð0:25; 0:35; 0:40Þ
b ð½0:4; 0:7�; ½0:1; 0:4�; ½0:2; 0:4�Þ ð0:50; 0:30; 0:30Þ
c ð½0:6; 0:9�; ½0:0; 0:2�; ½0:3; 0:4�Þ ð0:70; 0:10; 0:35Þ
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Proposition 3.9. Let A ¼ ðA;�Þ be a neutrosophic cubic set in a non-empty set X.

If A ¼ ðA;�Þ is both I-internal and I-external, then

ð8x 2 XÞð�IðxÞ 2 fA�
I ðxÞjx 2 Xg [ fAþ

I ðxÞjx 2 XgÞ: ð3:8Þ
Proposition 3.10. Let A ¼ ðA;�Þ be a neutrosophic cubic set in a non-empty set

X. If A ¼ ðA;�Þ is both F-internal and F-external, then

ð8x 2 XÞð�F ðxÞ 2 fA�
F ðxÞjx 2 Xg [ fAþ

F ðxÞjx 2 XgÞ: ð3:9Þ
De¯nition 3.11. Let A ¼ ðA;�Þ and B ¼ ðB;�Þ be neutrosophic sets in a non-

empty set X where

A :¼fhx;AT ðxÞ;AIðxÞ;AF ðxÞijx 2 Xg;
� :¼fhx;�T ðxÞ; �IðxÞ; �F ðxÞijx 2 Xg;
B :¼fhx;BT ðxÞ;BIðxÞ;BF ðxÞijx 2 Xg;
� :¼fhx; T ðxÞ;  IðxÞ;  F ðxÞijx 2 Xg:

Then we de¯ne the equality, P-order and R-order as follows:

(a) (Equality) A ¼ B , A ¼ B and � ¼ �.

(b) (P-order) A �P B , A � B and � � �.

(b) (R-order) A �R B , A � B and � � �.

We now de¯ne the P-union, P-intersection, R-union and R-intersection of neu-

trosophic cubic sets as follows:

De¯nition 3.12. For any neutrosophic cubic sets A i ¼ ðAi;�iÞ in a non-empty set

X where

Ai :¼fhx;AiT ðxÞ;AiIðxÞ;AiF ðxÞijx 2 Xg;
�i :¼fhx;�iT ðxÞ; �iIðxÞ; �iF ðxÞijx 2 Xg

for i 2 J and J is any index set, we de¯ne

(a) [P
i2J

A i ¼ [
i2J

Ai; _
i2J

�i

� �
, (P-union)

(b)
T

P
i2J

A i ¼
T
i2J

Ai; ^
i2J

�i

� �
, (P-intersection)

(c) [R
i2J

A i ¼ [
i2J

Ai; ^
i2J

�i

� �
, (R-union)

(d)
T

R
i2J

A i ¼
T
i2J

Ai; _
i2J

�i

� �
, (R-intersection)

where

[

i2J
Ai ¼ x;

[

i2J
AiT

 !
ðxÞ;

[

i2J
AiI

 !
ðxÞ;

[

i2J
AiF

 !
ðxÞ

* +					x 2 X

( )
;
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W
i2J

�i ¼ x;
W
i2J

�iT

� �
ðxÞ; W

i2J
�iI

� �
ðxÞ; W

i2J
�iF

� �
ðxÞ


 � 				x 2 X

� 
;

\
i2J

Ai ¼ x;
\
i2J

AiT

 !
ðxÞ;

\
i2J

AiI

 !
ðxÞ;

\
i2J

AiF

 !
ðxÞ

* +					x 2 X

( )
;

V
i2J

�i ¼ x;
V
i2J

�iT

� �
ðxÞ; V

i2J
�iI

� �
ðxÞ; V

i2J
�iF

� �
ðxÞ


 � 				x 2 X

� 
:

The complement of A ¼ ðA;�Þ is de¯ned to be the neutrosophic cubic set A c ¼
ðAc;�cÞ where Ac :¼ fhx;Ac

T ðxÞ;Ac
IðxÞ;Ac

F ðxÞijx 2 Xg is an interval neutroso-

phic cubic inX and �c :¼ fhx;� c
T ðxÞ; � c

IðxÞ; � c
F ðxÞijx 2 Xg is a neutrosophic set inX.

Obviously, ðA cÞc ¼A , [P
i2J

A i

� �
c

¼TP
i2J

A c
i ,

T
P

i2J
A i

� �
c

¼[P
i2J

A c
i , [R

i2J
A i

� �
c

¼
T

R
i2J

A c
i , and

T
R

i2J
A i

� �
c

¼[R
i2J

A c
i .

The following proposition is clear.

Proposition 3.13. For any neutrosophic cubic sets A ¼ ðA;�Þ; B ¼ ðB;�Þ; C ¼
ðC;�Þ; and D ¼ ðD;�Þ in a non-empty set X, we have

(1) if A �P B and B�P C then A �P C :

(2) if A �P B then B c �P A c:

(3) if A �P B and A �P C then A �P B \P C :

(4) if A �P B and C �P B then A [P C �P B:

(5) if A �P B and C �P D then A [P C �P B [P D and A \P C �P B \P D

(6) if A �R B and B �R C then A �R C :

(7) if A �R B then B c �R A c:

(8) if A �R B and A �R C then A �R B \R C :

(9) if A �R B and C �R B then A [R C �R B.

(10) if A �R B and C �R D then A [R C �R B [R D and A \R C �R B \R D :

Theorem 3.14. LetA ¼ ðA;�Þ be a neutrosophic cubic set in a non-empty setX. If

A ¼ ðA;�Þ is I-internal (resp. I-external), then the complement A c ¼ ðAc;�cÞ of

A ¼ ðA;�Þ is an I-internal (resp. I-external) neutrosophic cubic set in X.

Proof. If A ¼ ðA;�Þ is an I-internal (resp. I-external) neutrosophic cubic set in a

non-empty set X, then A�
I ðxÞ � �IðxÞ � Aþ

I ðxÞ (resp., �IðxÞ 62 ðA�
I ðxÞ;Aþ

I ðxÞÞ) for
all x 2 X. It follows that 1� Aþ

I ðxÞ � 1� �IðxÞ � 1� A�
I ðxÞ (resp., 1� �IðxÞ 62

ð1� Aþ
I ðxÞ; 1� A�

I ðxÞÞ). Therefore, A c ¼ ðAc;�cÞ is an I-internal (resp. I-external)

neutrosophic cubic set in X.

Similarly, we have the following theorems.

Theorem 3.15. LetA ¼ ðA;�Þ be a neutrosophic cubic set in a non-empty setX. If

A ¼ ðA;�Þ is T-internal (resp. T-external), then the complement A c ¼ ðAc;�cÞ of
A ¼ ðA;�Þ is a T-internal (resp. T-external) neutrosophic cubic set in X.
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Theorem 3.16. LetA ¼ ðA;�Þ be a neutrosophic cubic set in a non-empty setX. If

A ¼ ðA;�Þ is F-internal (resp. F-external), then the complement A c ¼ ðAc;�cÞ of
A ¼ ðA;�Þ is an F-internal (resp. F-external) neutrosophic cubic set in X.

Corollary 3.17. Let A ¼ ðA;�Þ be a neutrosophic cubic set in a non-empty set X.

If A ¼ ðA;�Þ is internal (resp. external), then the complement A c ¼ ðAc;�cÞ of

A ¼ ðA;�Þ is an internal (resp. external) neutrosophic cubic set in X.

Theorem 3.18. If fA i ¼ ðAi;�iÞji 2 Jg is a family of F-internal neutrosophic

cubic sets in a non-empty set X, then the P-union and the P-intersection of fA i ¼
ðAi;�iÞji 2 Jg are F-internal neutrosophic cubic sets in X.

Proof. Since A i ¼ ðAi;�iÞ is an F-internal neutrosophic cubic set in a non-empty

set X, we have A�
iF ðxÞ � �iF ðxÞ � Aþ

iF ðxÞ for i 2 J. It follows that

[

i2J
AiF

 !�
ðxÞ � W

i2J
�iF

� �
ðxÞ �

[

i2J
AiF

 !þ
ðxÞ

and

\
i2J

AiF

!�
ðxÞ � V

i2J
�iF

� �
ðxÞ �

\
i2J

AiF

!þ
ðxÞ:

Therefore, [P
i2J

A i ¼ [
i2J

Ai; _
i2J

�i

� �
and

T
P

i2J
A i ¼

T
i2J

Ai; ^
i2J

�i

� �
are F-internal

neutrosophic cubic sets in X.

Similarly, we have the following theorems.

Theorem 3.19. If fA i ¼ ðAi;�iÞji 2 Jg is a family of T-internal neutrosophic

cubic sets in a non-empty set X, then the P-union and the P-intersection of fA i ¼
ðAi;�iÞji 2 Jg are T-internal neutrosophic cubic sets in X.

Theorem 3.20. If fA i ¼ ðAi;�iÞji 2 Jg is a family of I-internal neutrosophic cubic

sets in a non-empty set X, then the P-union and the P-intersection of fA i ¼
ðAi;�iÞji 2 Jg are I-internal neutrosophic cubic sets in X.

Corollary 3.21. If fA i ¼ ðAi;�iÞji 2 Jg is a family of internal neutrosophic cubic

sets in a non-empty set X, then the P-union and the P-intersection of fA i ¼
ðAi;�iÞji 2 Jg are internal neutrosophic cubic sets in X.

The following example shows that P-union and P-intersection of F-external (resp.

I-external and T-external) neutrosophic cubic sets may not be F-external (resp. I-

external and T-external) neutrosophic cubic sets.

Example 3.22. LetA ¼ ðA;�Þ; andB ¼ ðB;�Þ be neutrosophic cubic sets in ½0; 1�
where

A ¼fhx; ½0:2; 0:5�; ½0:5; 0:7�; ½0:3; 0:5�ijx 2 ½0; 1�g;
� ¼fhx; 0:3; 0:4; 0:8ijx 2 ½0; 1�g;
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B ¼fhx; ½0:6; 0:8�; ½0:4; 0:7�; ½0:7; 0:9�ijx 2 ½0; 1�g;
� ¼fhx; 0:7; 0:3; 0:4ijx 2 ½0; 1�g:

Then A ¼ ðA;�Þ; and B ¼ ðB;�Þ are F-external neutrosophic cubic sets in ½0; 1�,
and A [P B ¼ ðA [B;� _�Þ with

A [B ¼fhx; ½0:6; 0:8�; ½0:5; 0:7�; ½0:7; 0:9�ijx 2 ½0; 1�g;
� _� ¼fhx; 0:7; 0:4; 0:8ijx 2 ½0; 1�g

is not an F-external neutrosophic cubic set in ½0; 1� since
ð�F _  F ÞðxÞ ¼ 0:8 2 ð0:7; 0:9Þ ¼ ððAF [ BF Þ�ðxÞ; ðAF [ BF ÞþðxÞÞ:

Also A \P B ¼ ðA \B;� ^�Þ with
A \B ¼fhx; ½0:2; 0:5�; ½0:4; 0:7�; ½0:3; 0:5�ijx 2 ½0; 1�g;
� ^� ¼fhx; 0:3; 0:3; 0:4ijx 2 ½0; 1�g

is not an F-external neutrosophic cubic set in ½0; 1� since
ð�F ^ F ÞðxÞ ¼ 0:4 2 ð0:3; 0:5Þ ¼ ððAF \ BF Þ�ðxÞ; ðAF \ BF ÞþðxÞÞ:

Example 3.23. For X ¼ fa; b; cg, let A ¼ ðA;�Þ; and B ¼ ðB;�Þ be neutrosophic
cubic sets in X with the tabular representations in Tables 3 and 4, respectively.

ThenA ¼ ðA;�Þ; andB ¼ ðB;�Þ are bothT-external and I-external neutrosophic
cubic sets in X. Note that the tabular representation of A [P B ¼ ðA [B;� _�Þ
and A \P B ¼ ðA \B;� ^�Þ are given by Tables 5 and 6, respectively.

Table 5. Tabular representation of A [P B ¼ ðA [B;� _�Þ.
X ðA [BÞðxÞ ð� _�ÞðxÞ

a ([0.3, 0.7], [0.3, 0.5], [0.3, 0.5]) (0.35, 0.25, 0.60)

b ([0.5, 0.8], [0.5, 0.6], [0.2, 0.5]) (0.45, 0.50, 0.30)

c ([0.6, 0.9], [0.4, 0.7], [0.3, 0.5]) (0.50, 0.60, 0.55)

Table 3. Tabular representation of A ¼ ðA;�Þ.
X AðxÞ �ðxÞ

a ([0.2, 0.3], [0.3, 0.5], [0.3, 0.5]) (0.35, 0.25, 0.40)
b ([0.4, 0.7], [0.1, 0.4], [0.2, 0.4]) (0.35, 0.50, 0.30)

c ([0.6, 0.9], [0.0, 0.2], [0.3, 0.4]) (0.50, 0.60, 0.55)

Table 4. Tabular representation of B ¼ ðB;�Þ.
X BðxÞ �ðxÞ

a ([0.3, 0.7], [0.3, 0.5], [0.1, 0.5]) (0.25, 0.25, 0.60)
b ([0.5, 0.8], [0.5, 0.6], [0.2, 0.5]) (0.45, 0.30, 0.30)

c ([0.4, 0.9], [0.4, 0.7], [0.3, 0.5]) (0.35, 0.10, 0.45)
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Then A [P B ¼ ðA [B;� _�Þ is neither an I-external neutrosophic cubic set

nor a T-external neutrosophic cubic set in X since

ð�I _  IÞðcÞ ¼ 0:60 2 ð0:4; 0:7Þ ¼ ððAI [ BIÞ�ðcÞ; ðAI [ BIÞþðcÞÞ
and

ð�T _  T ÞðaÞ ¼ 0:35 2 ð0:3; 0:7Þ ¼ ððAT [BT Þ�ðaÞ; ðAT [ BT ÞþðaÞÞ:
Also A \P B ¼ ðA \B;� ^�Þ is neither an I-external neutrosophic cubic set nor a

T-external neutrosophic cubic set in X since

ð�I ^ IÞðbÞ ¼ 0:30 2 ð0:1; 0:4Þ ¼ ððAI \ BIÞ�ðbÞ; ðAI \ BIÞþðbÞÞ
and

ð�T ^  T ÞðaÞ ¼ 0:25 2 ð0:2; 0:3Þ ¼ ððAT \BT Þ�ðaÞ; ðAT \ BT ÞþðaÞÞ:
We know that R-union and R-intersection of T-internal (resp. I-internal and

F-internal) neutrosophic cubic sets may not be T-internal (resp. I-internal and

F-internal) neutrosophic cubic sets as seen in the following examples.

Example 3.24. Let A ¼ ðA;�Þ and B ¼ ðB;�Þ be neutrosophic cubic sets in [0,1]

where

A ¼fhx; ½0:3; 0:5�; ½0:5; 0:7�; ½0:3; 0:5�ijx 2 ½0; 1�g;
� ¼fhx; 0:4; 0:4; 0:8ijx 2 ½0; 1�g;
B ¼fhx; ½0:7; 0:9�; ½0:4; 0:7�; ½0:7; 0:9�ijx 2 ½0; 1�g;
� ¼fhx; 0:8; 0:3; 0:8ijx 2 ½0; 1�g:

Then A ¼ ðA;�Þ and B ¼ ðB;�Þ are T-internal neutrosophic cubic sets in ½0; 1�.
The R-union A [R B ¼ ðA [B;� ^�Þ of A ¼ ðA;�Þ and B ¼ ðB;�Þ is given as

follows:

A [B ¼fhx; ½0:7; 0:9�; ½0:5; 0:7�; ½0:7; 0:9�ijx 2 ½0; 1�g;
� ^� ¼fhx; 0:4; 0:3; 0:8ijx 2 ½0; 1�g:

Note that ð�T ^  T ÞðxÞ ¼ 0:4 < 0:7= ðAT [BT Þ�ðxÞ and ð�I ^  IÞðxÞ ¼ 0:3 <

0:5= ðAI [BIÞ�ðxÞ. Hence, A [R B ¼ ðA [B;� ^�Þ is neither a T-internal

neutrosophic cubic set nor an I-internal neutrosophic cubic set in ½0; 1�. But, we
know that A [R B ¼ ðA [B;� ^�Þ is an F-internal neutrosophic cubic set in ½0; 1�.
Also, the R-intersectionA \R B ¼ ðA \B;� _�Þ ofA ¼ ðA;�Þ andB ¼ ðB;�Þ is

Table 6. Tabular representation of A \P B ¼ ðA \B;� ^�Þ.
X ðA \BÞðxÞ ð� ^�ÞðxÞ

a ([0.2, 0.3], [0.3, 0.5], [0.1, 0.5]) (0.25, 0.25, 0.40)

b ([0.4, 0.7], [0.1, 0.4], [0.2, 0.4]) (0.35, 0.30, 0.30)

c ([0.4, 0.9], [0.0, 0.2], [0.3, 0.4]) (0.35, 0.10, 0.45)
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given as follows:

A \B ¼fhx; ½0:3; 0:5�; ½0:4; 0:7�; ½0:3; 0:5�ijx 2 ½0; 1�g;
� _� ¼fhx; 0:8; 0:4; 0:8ijx 2 ½0; 1�g:

Since

ðAI \ BIÞ�ðxÞ � ð�I _ IÞðxÞ � ðAI \ BIÞþðxÞ
for all x 2 ½0; 1�, A \R B ¼ ðA \B;� _�Þ is an I-internal neutrosophic cubic set in

½0; 1�. But it is neither a T-internal neutrosophic cubic set nor an F-internal

neutrosophic cubic set in [0,1].

Example 3.25. Let A ¼ ðA;�Þ and B ¼ ðB;�Þ be neutrosophic cubic sets in [0,1]

where

A ¼fhx; ½0:1; 0:3�; ½0:5; 0:7�; ½0:3; 0:5�ijx 2 ½0; 1�g;
� ¼fhx; 0:4; 0:6; 0:8ijx 2 ½0; 1�g;
B ¼fhx; ½0:7; 0:9�; ½0:4; 0:5�; ½0:7; 0:9�ijx 2 ½0; 1�g;
� ¼fhx; 0:5; 0:45; 0:2ijx 2 ½0; 1�g:

ThenA ¼ ðA;�Þ andB ¼ ðB;�Þ are I-internal neutrosophic cubic sets in ½0; 1�. The
R-union A [R B ¼ ðA [B;� ^�Þ of A ¼ ðA;�Þ and B ¼ ðB;�Þ is given as

follows:

A [B ¼fhx; ½0:7; 0:9�; ½0:5; 0:7�; ½0:7; 0:9�ijx 2 ½0; 1�g;
� ^� ¼fhx; 0:4; 0:45; 0:2ijx 2 ½0; 1�g:

Since ð�I ^  IÞðxÞ ¼ 0:45 < 0:5 ¼ ðAI [BIÞ�ðxÞ, we know that A [R B is not an I-

internal neutrosophic cubic set in ½0; 1�. Also, the R-intersection A \R B ¼
ðA \B;� _�Þ of A ¼ ðA;�Þ and B ¼ ðB;�Þ is given as follows:

A \B ¼fhx; ½0:1; 0:3�; ½0:4; 0:5�; ½0:3; 0:5�ijx 2 ½0; 1�g;
� _� ¼fhx; 0:5; 0:6; 0:8ijx 2 ½0; 1�g;

and it is not an I-internal neutrosophic cubic set in [0,1].

Example 3.26. Let A ¼ ðA;�Þ and B ¼ ðB;�Þ be neutrosophic cubic sets in [0,1]

where

A ¼fhx; ½0:1; 0:3�; ½0:5; 0:7�; ½0:3; 0:8�ijx 2 ½0; 1�g;
� ¼fhx; 0:4; 0:6; 0:4ijx 2 ½0; 1�g;
B ¼fhx; ½0:4; 0:7�; ½0:4; 0:7�; ½0:5; 0:8�ijx 2 ½0; 1�g;
� ¼fhx; 0:5; 0:3; 0:6ijx 2 ½0; 1�g:

Then A ¼ ðA;�Þ and B ¼ ðB;�Þ are F-internal neutrosophic cubic sets in

½0; 1�. The R-union A [R B ¼ ðA [B;� ^�Þ of A ¼ ðA;�Þ and B ¼ ðB;�Þ is
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given as follows:

A [B ¼fhx; ½0:4; 0:7�; ½0:5; 0:7�; ½0:5; 0:8�ijx 2 ½0; 1�g;
� ^� ¼fhx; 0:4; 0:3; 0:4ijx 2 ½0; 1�g;

which is not an F-internal neutrosophic cubic set in ½0; 1�. If A ¼ ðA;�Þ and B ¼
ðB;�Þ are neutrosophic cubic sets in R with

A ¼fhx; ½0:2; 0:6�; ½0:3; 0:7�; ½0:7; 0:8�ijx 2 Rg;
� ¼fhx; 0:7; 0:6; 0:75ijx 2 Rg;
B ¼fhx; ½0:3; 0:7�; ½0:6; 0:7�; ½0:2; 0:6�ijx 2 Rg;
� ¼fhx; 0:5; 0:3; 0:5ijx 2 Rg;

thenA ¼ ðA;�Þ andB ¼ ðB;�Þ are F-internal neutrosophic cubic sets inR and the

R-intersection A \R B ¼ ðA \B;� _�Þ of A ¼ ðA;�Þ and B ¼ ðB;�Þ which is

given as follows:

A \B ¼fhx; ½0:2; 0:6�; ½0:3; 0:7�; ½0:2; 0:6�ijx 2 Rg;
� _� ¼fhx; 0:7; 0:6; 0:75ijx 2 Rg;

is not an F-internal neutrosophic cubic set in ½0; 1�.
We provide conditions for the R-union of two T-internal (resp. I-internal and F-

internal) neutrosophic cubic sets to be a T-internal (resp. I-internal and F-internal)

neutrosophic cubic set.

Theorem 3.27. Let A ¼ ðA;�Þ and B ¼ ðB;�Þ be T-internal neutrosophic cubic

sets in a non-empty set X such that

ð8x 2 XÞ maxfA�
T ðxÞ;B�

T ðxÞg � ð�T ^ T ÞðxÞð Þ: ð3:10Þ

Then the R-union of A ¼ ðA;�Þ and B ¼ ðB;�Þ is a T-internal neutrosophic cubic

set in X.

Proof. Let A ¼ ðA;�Þ and B ¼ ðB;�Þ be T-internal neutrosophic cubic sets in a

non-empty set X which satisfy the condition (3.10). Then

A�
T ðxÞ � �T ðxÞ � Aþ

T ðxÞ and B�
T ðxÞ � T ðxÞ � Bþ

T ðxÞ;

and so ð�T ^ T ÞðxÞ � ðAT [ BT ÞþðxÞ. It follows from (3.10) that

ðAT [ BT Þ�ðxÞ ¼ maxfA�
T ðxÞ;B�

T ðxÞg � ð�T ^ T ÞðxÞ � ðAT [BT ÞþðxÞ:

Hence, A [R B ¼ ðA [B;� ^�Þ is a T-internal neutrosophic cubic set in X.

Similarly, we have the following theorems.
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Theorem 3.28. Let A ¼ ðA;�Þ and B ¼ ðB;�Þ be I-internal neutrosophic cubic

sets in a non-empty set X such that

ð8x 2 XÞðmaxfA�
I ðxÞ;B�

I ðxÞg � ð�I ^ IÞðxÞÞ: ð3:11Þ
Then the R-union of A ¼ ðA;�Þ and B ¼ ðB;�Þ is an I-internal neutrosophic cubic

set in X.

Theorem 3.29. Let A ¼ ðA;�Þ and B ¼ ðB;�Þ be F-internal neutrosophic cubic

sets in a non-empty set X such that

ð8x 2 XÞðmaxfA�
F ðxÞ;B�

F ðxÞg � ð�F ^ F ÞðxÞÞ: ð3:12Þ
Then the R-union of A ¼ ðA;�Þ andB ¼ ðB;�Þ is an F-internal neutrosophic cubic

set in X.

Corollary 3.30. If two internal neutrosophic cubic setsA ¼ ðA;�Þ andB ¼ ðB;�Þ
satisfy conditions (3.10){(3.12), then the R-union of A ¼ ðA;�Þ and B ¼ ðB;�Þ is
an internal neutrosophic cubic set in X.

We provide conditions for the R-intersection of two T-internal (resp. I-internal

and F-internal) neutrosophic cubic sets to be a T-internal (resp. I-internal and

F-internal) neutrosophic cubic set.

Theorem 3.31. Let A ¼ ðA;�Þ and B ¼ ðB;�Þ be I-internal neutrosophic cubic

sets in a non-empty set X such that

ð8x 2 XÞðð�I _ IÞðxÞ � minfAþ
I ðxÞ;Bþ

I ðxÞgÞ: ð3:13Þ
Then the R-intersection of A ¼ ðA;�Þ and B ¼ ðB;�Þ is an I-internal neutrosophic

cubic set in X.

Proof. Assume that the condition (3.13) is valid. Then

A�
I ðxÞ � �IðxÞ � Aþ

I ðxÞ and B�
I ðxÞ � IðxÞ � Bþ

I ðxÞ
for all x 2 X. It follows from (3.13) that

ðAI \ BIÞ�ðxÞ � ð�I _  IÞðxÞ � minfAþ
I ðxÞ;Bþ

I ðxÞg ¼ ðAI \BIÞþðxÞ
for all x 2 X. Therefore, A \R B ¼ ðA \B;� _�Þ is an I-internal neutrosophic

cubic set in X.

Similarly, we have the following theorems.

Theorem 3.32. Let A ¼ ðA;�Þ and B ¼ ðB;�Þ be T-internal neutrosophic cubic

sets in a non-empty set X such that

ð8x 2 XÞðð�T _  T ÞðxÞ � minfAþ
T ðxÞ;Bþ

T ðxÞgÞ: ð3:14Þ
Then the R-intersection of A ¼ ðA;�Þ and B ¼ ðB;�Þ is a T-internal neutrosophic

cubic set in X.
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Theorem 3.33. Let A ¼ ðA;�Þ and B ¼ ðB;�Þ be F-internal neutrosophic cubic

sets in a non-empty set X such that

ð8x 2 XÞðð�F _ F ÞðxÞ � minfAþ
F ðxÞ;Bþ

F ðxÞgÞ: ð3:15Þ
Then the R-intersection ofA ¼ ðA;�Þ andB ¼ ðB;�Þ is an F-internal neutrosophic

cubic set in X.

Corollary 3.34. If two internal neutrosophic cubic setsA ¼ ðA;�Þ andB ¼ ðB;�Þ
satisfy conditions (3.13){(3.15), then the R-intersection of A ¼ ðA;�Þ and B ¼
ðB;�Þ is an internal neutrosophic cubic set in X.
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Abstract: Smarandache presented neutrosophic theory as a tool for handling undetermined information, and together with 
Wang et al. introduced single valued neutrosophic sets that is a special neutrosophic set and can be used expediently to 
deal with real-world problems, especially in decision support. In this paper, we propose linear programming problems 
based on neutrosophic environment. Neutrosophic sets characterized by three independent parameters, namely truth-
membership degree (T), indeterminacy-membership degree (I) and falsity-membership degree (F), which is more capable 
to handle imprecise parameters. We also transform the neutrosophic linear programming problem into a crisp 
programming model by using neutrosophic set parameters. To measure the efficiency of our proposed model we solved 
several numerical examples. 

Keywords: linear programming problem; neutrosophic; neutrosophic sets. 

1 Introduction 

 Linear programming is a method for achieving the best 
outcome (such as maximum profit or minimum cost) in a 
mathematical model represented by linear relationships. 
Decision making is a process of solving the problem and 
achieving goals under asset of constraints, and it is very 
difficult in some cases due to incomplete and imprecise 
information. And in Linear programming problems the 
decision maker may not be able to specify the objective 
function and/or constraints functions precisely. In 1995, 
Smarandache [5-7] introduce neutrosophy which is the 
study of neutralities as an extension of dialectics. 
Neutrosophic is the derivative of neutrosophy and it 
includes neutrosophic set, neutrosophic probability, 
neutrosophic statistics and neutrosophic logic. 
Neutrosophic theory means neutrosophy applied in many 
fields of sciences, in order to solve problems related to 
indeterminacy. Although intuitionistic fuzzy sets can only 
handle incomplete information not indeterminate, the 
neutrosophic set  can handle both  incomplete and 
indeterminate information.[2,5-7] Neutrosophic sets 
characterized by three independent degrees namely truth-
membership degree (T), indeterminacy-membership 
degree(I),  and falsity-membership degree (F), where T,I,F 
are standard or non-standard subsets of ]-0, 1+[. The 
decision makers in neutrosophic set want to increase the 
degree of truth-membership and decrease the degree of 
indeterminacy and falsity membership. 

The structure of the paper is as follows: the next section is 
a preliminary discussion; the third section describes the 
formulation of linear programing problem using the 
proposed model; the fourth section presents some 
illustrative examples to put on view how the approach can 
be applied; The last section summarizes the conclusions 
and gives an outlook for future research. 

2 Some Preliminaries 

2.1 Neutrosophic Set [2] 
Let 𝑋 be a space of points (objects) and 𝑥∈𝑋. A 
neutrosophic set 𝐴 in 𝑋 is defined by a truth-membership 
function (𝑥), an indeterminacy-membership function (𝑥) 
and a falsity-membership function (𝑥).  𝑇(𝑥), 𝐼𝐴(𝑥) and 
𝐹𝐴(𝑥) are real standard or real nonstandard subsets 
of ]0−,1+[.That is 𝑇𝐴(𝑥):𝑋→]0−,1+[, 
I𝐴(𝑥):𝑋→]0−,1+[ and F𝐴(𝑥):𝑋→]0−,1+[.  There is no 
restriction on the sum of (𝑥), (𝑥) and (𝑥), so 

 0−≤ sup(T𝐴(x) + sup𝐼𝐴(𝑥) + sup𝐹𝐴(𝑥) ≤3+. 

In the following, we adopt the notations μ(𝑥), σ𝐴(𝑥) and 
𝑣𝐴(𝑥) instead of 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) and 𝐹𝐴(𝑥), respectively. Also 
we write SVN numbers instead of single valued 
neutrosophic numbers. 
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2.2 Single Valued Neutrosophic Sets (SVNS)[2,7] 
Let 𝑋 be a universe of discourse. A single valued 
neutrosophic  set 𝐴 over 𝑋 is an object having the form  

𝐴={〈𝑥, μ𝐴(𝑥), σ𝐴(𝑥),𝑣𝐴(𝑥)〉:𝑥∈𝑋} 

where μ𝐴(𝑥):𝑋→[0,1], σ𝐴(𝑥):𝑋→[0,1] and 𝑣𝐴(𝑥):𝑋→[0,1] 
with 0≤μ𝐴(𝑥)+ σ𝐴(𝑥)+𝑣𝐴(𝑥)≤3 for all 𝑥∈𝑋. The intervals 
μ(𝑥), σ𝐴(𝑥) and 𝑣𝐴(𝑥) denote the truth-membership degree, 
the indeterminacy-membership degree and the falsity 
membership degree of 𝑥 to 𝐴, respectively.  

For convenience, a SVN number is denoted by 𝐴= (𝑎,,), 
where 𝑎,𝑏,𝑐∈[0,1] and 𝑎+𝑏+𝑐≤3. 

2.3 Complement [3] 
The complement of a single valued neutrosophic set 𝐴 is 
denoted by C(𝐴) and is defined by 

𝑇𝑐(𝐴)(𝑥) = 𝐹(𝐴)(𝑥) ,
𝐼𝑐(𝐴)(𝑥)  = 1 − 𝐼(𝐴)(𝑥) ,
𝐹𝑐(𝐴)(𝑥) = 𝑇(𝐴)(𝑥),

for all 𝑥 in 𝑋 

2.4 Union [3] 
The union of two single valued neutrosophic sets A and B 
is a single valued neutrosophic set C, written as C = AUB, 
whose truth-membership, indeterminacy membership and 
falsity-membership functions are given by 
    𝑇(𝐶)(𝑥) = 𝑚𝑎𝑥 ( 𝑇(𝐴)(𝑥) , 𝑇(𝐵)(𝑥) ) , 

  𝐼(𝐶)(𝑥) = 𝑚𝑎𝑥 ( 𝐼(𝐴)(𝑥) , 𝐼(𝐵)(𝑥) ) , 
 𝐹(𝐶)(𝑥) =  𝑚𝑖𝑛( (𝐴)(𝑥) , 𝐹(𝐵)(𝑥) ),   

    for all 𝑥 in 𝑋.          

2.5 Intersection [3] 
The intersection of two single valued neutrosophic sets A 
and B is a single valued neutrosophic set C, written as C = 
A∩B, whose truth-membership, indeterminacy membership 
and falsity-membership functions are given by 

   𝑇(𝐶)(𝑥) = 𝑚𝑖𝑛 ( 𝑇(𝐴)(𝑥) , 𝑇(𝐵)(𝑥) ) , 

  𝐼(𝐶)(𝑥) = 𝑚𝑖𝑛 ( 𝐼(𝐴)(𝑥) , 𝐼(𝐵)(𝑥) ) , 

 𝐹(𝐶)(𝑥) =  𝑚𝑎𝑥( (𝐴)(𝑥) , 𝐹(𝐵)(𝑥) )  for all 𝑥 in 𝑋. 

3 Neutrosophic Linear Programming Problem 
Linear programming problem with neutrosophic 

coefficients (NLPP) is defined as the following: 

Maximize Z= ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1

Subject to 

 ∑ aij
~n𝑥𝑗

n
j=1 ≤ 𝑏i     1 ≤ 𝑖 ≤ 𝑚         (1) 

 𝑥𝑗 ≥ 0,  1 ≤ 𝑗 ≤ 𝑛 

where 𝑎𝑖𝑗𝑛  is a neutrosophic number. 

The single valued neutrosophic number (𝑎𝑖𝑗𝑛 ) is given by
A=(a,b,c) where a,b,c ∈[0,1] and a+b+c ≤ 3  
The truth- membership function of  neutrosophic number 

𝑎𝑖𝑗
𝑛  is defined as: 

T 𝑎𝑖𝑗𝑛 (x)={

𝑥−𝑎1 

𝑎2−𝑎1
 𝑎1 ≤ 𝑥 ≤ 𝑎2

𝑎2−𝑥

𝑎3−𝑎2
 𝑎2 ≤ 𝑥 ≤ 𝑎3  

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

(2) 

The indeterminacy- membership function of  

neutrosophic number 𝑎𝑖𝑗𝑛 is defined as:

I 𝑎𝑖𝑗𝑛 (x)=

{
 

 
𝑥−𝑏1 

𝑏2−𝑏1
 𝑏1 ≤ 𝑥 ≤ 𝑏2

𝑏2−𝑥

𝑏3−𝑏2
 𝑏2 ≤ 𝑥 ≤ 𝑏3

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        

   (3) 

And its falsity- membership function of  neutrosophic 
number 𝑎𝑖𝑗~𝑛 is defined as:

F 𝑎𝑖𝑗𝑛 (x)=

{
 

 
𝑥−𝐶1 

𝐶2−𝐶1
 𝐶1 ≤ 𝑥 ≤ 𝐶2 

𝑐2−𝑥

𝑐3−𝑐2
 𝐶2 ≤ 𝑥 ≤ 𝐶3 

1  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

      (4) 

Then we find the upper and lower bounds of the objective 
function for truth-membership, indeterminacy and falsity 
membership as follows: 

𝑧𝑈
𝑇 = max{𝑧(𝑥𝑖

∗ )} and 𝑧𝑙𝑇 =min{𝑧(𝑥𝑖∗ )} where 1≤ 𝑖 ≤ 𝑘

𝑧𝐿=
𝐹 𝑧𝐿

𝑇 and  𝑧𝑢=𝐹 𝑧𝑢𝑇 − 𝑅(𝑧𝑢𝑇 − 𝑧𝐿𝑇)

𝑧𝑈=
𝐼 𝑧𝑈

𝐼  𝑎𝑛𝑑 𝑧𝑙=
𝐼 𝑧𝑙=

𝐼 − 𝑆(𝑧𝑢
𝑇 − 𝑧𝐿

𝑇)

Where R ,S are predetermined real number in (0,1) 

The truth membership, indeterminacy membership, falsity 
membership of objective function as follows: 

𝑇𝑂
(𝑍) =

{
 

 
1 𝑖𝑓  𝑧 ≥ 𝑧𝑢

𝑇

𝑧−𝑧𝐿
𝑇

𝑧𝑢
𝑇−𝑧𝐿

𝑇 𝑖𝑓   𝑧𝐿
𝑇 ≤ 𝑧 ≤ 𝑧𝑢 

𝑇

0 𝑖𝑓 𝑧 < 𝑧𝐿
𝑇

     (5) 

𝐼𝑂
(𝑍)
=

{
 

 
1 𝑖𝑓 𝑧 ≥ 𝑧𝑢

𝑇

𝑧−𝑧𝐿
𝐼

𝑧𝑢
𝐼−𝑧𝐿

𝐼 𝑖𝑓   𝑧𝐿
𝑇 ≤ 𝑧 ≤ 𝑧𝑢

𝑇

0 𝑖𝑓 𝑧 < 𝑧𝐿
𝑇

(6) 

𝐹𝑂
(𝑍)
= {

1 𝑖𝑓 𝑧 ≥ 𝑧𝑢
𝑇

𝑧𝑢
𝐹−𝑍

𝑧𝑢
𝐹−𝑧𝐿

𝐹 𝑖𝑓   𝑧𝐿
𝑇 ≤ 𝑧 ≤ 𝑧𝑢

𝑇

 0 𝑖𝑓 𝑧 < 𝑧𝐿
𝑇

  (7) 

The neutrosophic set of the 𝑖𝑡ℎ   constraint 𝑐𝑖 is
defined as: 
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𝑇𝑐𝑖
(𝑥)
=

{
 
 

 
 
 1   𝑖𝑓     𝑏𝑖 ≥ ∑ (𝑎𝑖𝑗

n
j=1 + 𝑑𝑖𝑗  )𝑥𝑗  

𝑏𝑖−∑ 𝑎𝑖𝑗 𝑥𝑗
n
j=1

∑ 𝑑𝑖𝑗 𝑥𝑗
n
j=1

 𝑖𝑓   ∑ 𝑎𝑖𝑗 𝑥𝑗
n
j=1 ≤ 𝑏𝑖 < ∑ (𝑎𝑖𝑗

n
j=1 + 𝑑𝑖𝑗 )𝑥𝑗    (8) 

0 𝑖𝑓   𝑏𝑖  < ∑ 𝑎𝑖𝑗 𝑥𝑗
n
j=1       

           

𝐹𝑐𝑖
(𝑥)

=

{
 
 
 
 

 
 
 
 1 𝑖𝑓     𝑏𝑖 <∑𝑎𝑖𝑗 𝑥𝑗

n

j=1

1 − 𝑇𝑐𝑖
(𝑥) 𝑖𝑓   ∑𝑎𝑖𝑗 𝑥𝑗

n

j=1

≤ 𝑏𝑖 <∑(𝑎𝑖𝑗

n

j=1

+ 𝑑𝑖𝑗  )𝑥𝑗     (9) 

0  𝑖𝑓 𝑏𝑖 ≥∑(𝑎𝑖𝑗

n

j=1

+ 𝑑𝑖𝑗  )𝑥𝑗  

𝐼𝑐𝑖
(𝑥)

=

{
 
 
 
 

 
 
 
 0   𝑖𝑓     𝑏𝑖 <∑𝑎𝑖𝑗 𝑥𝑗

n

j=1

 (10) 

𝑏𝑖 − ∑ 𝑑𝑖𝑗 𝑥𝑗
n
j=1

∑ 𝑎𝑖𝑗 𝑥𝑗
n
j=1

𝐼𝑓   ∑𝑎𝑖𝑗 𝑥𝑗

n

j=1

≤ 𝑏𝑖 <∑(𝑎𝑖𝑗

n

j=1

+ 𝑑𝑖𝑗  )𝑥𝑗

0 𝑖𝑓 𝑏𝑖 ≥∑(𝑎𝑖𝑗

n

j=1

+ 𝑑𝑖𝑗  )𝑥𝑗  

4 Neutrosophic Optimization Model 
In our neutrosophic model we want to maximize the degree 
of acceptance and minimize the degree of rejection and 
indeterminacy of the neutrosophic objective function and 
constraints. Neutrosophic optimization model can be 
defined as: 

𝑚𝑎𝑥𝑇(𝑥)

𝑚𝑖𝑛𝐹(𝑥)

𝑚𝑖𝑛𝐼(𝑥)

  Subject to 
 𝑇(𝑋) ≥ 𝐹(𝑥)

 𝑇(𝑋) ≥ 𝐼(𝑥)

0 ≤ 𝑇(𝑋) + 𝐼(𝑥) + 𝐹(𝑥) ≤ 3           (11)
 𝑇(𝑋),     𝐼(𝑋) ,    𝐹(𝑋) ≥ 0

𝑥 ≥ 0 
Where 𝑇(𝑥). 𝐹(𝑥), 𝐼(𝑥)denotes the degree of acceptance,
rejection and indeterminacy of 𝑥 respectively. 
The above problem is equivalent to the following: 

𝑚𝑎𝑥 𝛼,  𝑚𝑖𝑛 𝛽 , 𝑚𝑖𝑛 𝜃 
Subject to     

𝛼 ≤ T(x) 
𝛽 ≤ F(x) 
𝜃 ≤ I(x) 
𝛼 ≥ 𝛽 
𝛼 ≥ 𝜃 

0≤  𝛼 +  𝛽 +  𝜃 ≤ 3  (12) 
X ≥ 0 

Where  𝛼 denotes the minimal acceptable degree, 𝛽 denote 
the maximal degree of rejection and 𝜃 denote maximal 
degree of indeterminacy. 

The neutrosophic optimization model can be changed into 
the following optimization model: 

𝑚𝑎𝑥(𝛼 −  𝛽 −  𝜃) 

Subject to 
𝛼 ≤ T(x)  (13) 

𝛽 ≥ F(x) 
𝜃 ≥ I(x) 
𝛼 ≥ 𝛽 
𝛼 ≥ 𝜃 

0≤  𝛼 +  𝛽 +  𝜃 ≤ 3 
𝛼, 𝛽, 𝜃 ≥ 0 
𝑥 ≥ 0 

The previous model can be written as: 
𝑚𝑖𝑛 (1-  𝛼)𝛽𝜃 
Subject to 

𝛼 ≤ T(x) 
𝛽 ≥ F(x) 
𝜃 ≥ I(x) 
𝛼 ≥ 𝛽 
𝛼 ≥ 𝜃 

0≤  𝛼 +  𝛽 +  𝜃 ≤ 3  (14) 
𝑥 ≥ 0 

5 The Algorithm for Solving Neutrosophic 
Linear Programming Problem (NLPP) 

Step 1: Solve the objective function subject to the 
constraints. 

Step 2: Create the decision set which include the highest 
degree of truth-membership and the least degree of falsity 
and indeterminacy memberships. 

Step 3:  Declare goals and tolerance. 

Step 4:  Construct membership functions. 

Step 5: Set 𝛼, 𝛽, 𝜃  in the interval]-0, 1+[ for each 
neutrosophic number . 

Step 6: Find the upper and lower bound of objective 
function as we illustrated previously in section 3. 

Step 7: Construct neutrosophic optimization model as in 
equation (13). 

6 Numerical Examples 
To measure the efficiency of our proposed model we solved 
four numerical examples.    
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  (15) 

where 

c1=
~
5 ={(4,5,6),(0.5,0.8,0.3)}; 

c2= 
~
3 = {(2.5,3,3.2),(0.6,0.4,0)}; 

a11=
~
4 = {(3.5,4,4.1),( 0.75,0.5,0.25)}  ; 

a12=
~
3 ={(2.5,3,3.2),( 0.2,0.8,0.4)}; 

a21= 
~
1= {(0,1,2),(0.15,0.5,0)}; 

a22=
~
3 = {(2.8,3,3.2),( 0.75,0.5,0.25)} ; 

b1=
~

12 ={(11,12,13),(0.2,0.6,0.5)}; 

b2=
~
6 = {(5.5,6,7.5),( 0.8,0.6,0.4)}. 

The equivalent crisp formulation is: 

𝑚𝑎𝑥 1.3125𝑥1 +0.0158𝑥2
s.t. 

2.5375𝑥1+0.54375𝑥2≤2.475

0.3093𝑥1+1.125𝑥2 ≤ 2.1375

x1, x1≥0 

The optimal solution is x1 = 0.9754; x2 = 0; with optimal 
objective value 1.2802 

6.2 Illustrative Example#2 
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    (16) 
where 

c1=
~

25 ={(19,25,33),(0.8,0.1,0.4)} ; 

c2= 
~

48 = {(44,48,54),(0.75,0.25,0)}. 
The corresponding crisp linear programs given as follows: 

𝑚𝑎𝑥 11.069𝑥1 +22.8125𝑥2
s.t. 

15𝑥1+30𝑥2≤45000
24𝑥1+6𝑥2 ≤ 24000

x1, x1≥0 

The optimal solution is x1 = 0; x2 = 1500; with optimal 
objective value 34218.75 

6.3 Illustrative Example#3 
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where  (17) 

a11= 
~

15 ={(14,15,17),( 0.75,0.5,0.25)}; 

a12= 
~

30 ={(25,30,34),(0.25,0.7,0.4)}; 

a21= 
~

24 ={(21,24,26),(0.4,0.6, 0)}; 

a22= 
~
6 ={(4,6,8),( 0.75,0.5,0.25)}; 

a31=
~

21={(17,21, 22),(1,0.25,0)} ; 

a32=
~

14 ={(12,14,19),(0.6,0.4,0)}; 

b1= 
~

45000 ={(44980,45000,45030),(0.3,0.4,0.8); 

b2=
~

24000 ={(23980,24000,24050),(0.4,0.25,0.5)}; 

b3= 
~

28000 ={(27990,28000,28030),(0.9,0.2, 0)} . 

The associated crisp linear programs model will be: 

𝑚𝑎𝑥 25𝑥1 +48𝑥2
s.t. 

5.75𝑥1+6.397𝑥2≤9282

10.312𝑥1+6. 187𝑥2 ≤ 14178.37

x1, x1≥0 

The optimal solution is x1 = 0; x2 =1450.993; with optimal 
objective value 69647.65 

6.1 Illustrative Example#1 
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6.4 Illustrative Example#4 
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    (18) 

where

a11=
~
1={(0.5,1,2),(0.2, 0.6,0.3)}; 

a12= 
~
2 = {(2.5,3,3.2),(0.6,0.4,0.1)}; 

a21=
~
4 = {(3.5,4,4.1),( 0.5,0.25,0.25)}  ; 

a22=
~
3 ={(2.5,3,3.2),( 0.75,0.25,0)}; 

The associated crisp linear programs model will be: 

𝑚𝑎𝑥 7𝑥1 +5𝑥2
s.t. 

0.284𝑥1+1.142𝑥2≤6

1.45𝑥1+1.36𝑥2 ≤ 12

x1, x1≥0 

The optimal solution is x1 = 4.3665; x2 =4.168; with 
optimal objective value 63.91 

The result of our NLP model in this example is better than 
the results obtained by intuitionistic fuzzy set [4]. 

7 Conclusion and Future Work 
Neutrosophic sets and fuzzy sets are two hot research 
topics. In this paper, we propose linear programming model 
based on neutrosophic environment, simultaneously 
considering the degrees of acceptance, indeterminacy and 
rejection of objectives, by proposed model for solving 
neutrosophic linear programming problems (NlPP). In the 
proposed model, we maximize the degrees of acceptance 
and minimize indeterminacy and rejection of objectives. 
NlPP was transformed into a crisp programming model 
using truth membership, indeterminacy membership, and 
falsity membership functions.  We also give a numerical 
examples to show the efficiency of the proposed method. 
As far as future directions are concerned, these will include 
studying the duality theory of linear programming problems 
based on neutrosophic environment. 
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Abstract— A single valued neutrosophic graph is a generalized 
structure of fuzzy graph, intuitionistic fuzzy graph that gives 
more precision, flexibility and compatibility to a system when 
compared with systems that are designed using fuzzy graphs 
and intuitionistic fuzzy graphs. This paper addresses for the first 
time, the shortest path in an acyclic neutrosophic directed graph 
using ranking function. Here each edge length is assigned to 
single valued neutrosophic numbers instead of a real number. 
The neutrosophic number is able to represent the indeterminacy 
in the edge (arc) costs of neutrosophic graph. A proposed 
algorithm gives the shortest path and shortest path length from 
source node to destination node. Finally an illustrative example 
also included to demonstrate the proposed method in solving 
path problems with single valued neutrosophic arcs. 

Keywords— Single valued neutrosophic sets; Single valued 
neutrosophic graph; Shortest path problem. 

I. Introduction 
The concept of neutrosophic set (NS for short) proposed by 
Smarandache [8, 9] is a powerful tool to deal with incomplete, 
indeterminate and inconsistent information in real world. It is a 
generalization of the theory of fuzzy set [26], intuitionistic 
fuzzy sets [22, 23], interval-valued fuzzy sets [18] and interval-
valued intuitionistic fuzzy sets [25], then the neutrosophic set is 
characterized by a truth-membership degree (t), an 
indeterminacy-membership degree (i) and a falsity-
membership degree (f) independently, which are within the real 
standard or nonstandard unit interval ]−0, 1+[. Therefore, if their 
range is restrained within the real standard unit interval [0, 1], 
Nevertheless, NSs are hard to be apply in practical problems 
since the values of the functions of truth, indeterminacy and 
falsity lie in]−0, 1+[.The single valued neutrosophic set was 
introduced for the first time by Smarandache in his 1998 book. 
The single valued neutrosophic sets as subclass of neutrosophic 

sets in which the value of truth-membership, indeterminacy-
membership and falsity-membership degrees are intervals of 
numbers instead of the real numbers. Later on ,Wang et al.[12] 
studied some properties related to single valued neutrosophic 
sets. The concept of neutrosophic sets and its extensions such 
as single valued neutrosophic sets, interval neutrosophic sets, 
simplified neutrosophic sets and so on have been applied in a 
wide variety of fields including computer science, engineering, 
mathematics, medicine and economic [1,4-11, 15-17, 20-21, 
25, 27-31,32-38, 40]. The shortest path problem (SPP) is one of 
the most fundamental and well-known combinatorial problems 
that appear in various fields of science and engineering, 
e.g.,road networks application, transportation, routing in
communication channels and scheduling problems. The 
shortest path problems concentrate on finding the path of 
minimum length between any pair of vertices. The arc (edge) 
length of the network may represent the real life quantities such 
as, time, cost, etc. In a classical shortest path problem, the 
distance of the arc between different nodes of a network are 
assumed to be certain. In some uncertain situation, the distance 
will be computed as a fuzzy number depending on the number 
of parameters is considered. 

In the recent past, There are many shortest path problems that 
have been studied with different types of input data, including 
fuzzy set, intuitionistic fuzzy sets , vague sets [2, 3, 30,39]. 
many new algorithm have been developed so far. To the best of 
our knowledge, determining the shortest path in the networks 
in terms of indeterminacy and inconsistency has been not 
studied yet. 
The shortest path problem involves addition and comparison 
of the edge lengths. Since, the addition and comparison 
between two single valued neutrosophic numbers are not alike 
those between two precise real numbers, we have used the 
ranking method proposed by Ye [20]. 
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Therefore, in this study we extend the proposed method for 
solving fuzzy shortest path proposed by [2] to SVN-numbers 
for solving neutrosophic shortest path  problems in which the 
arc lengths of a network are assigned by SVN-numbers 

The remainder of this paper is organized as follows. In 
Section 2, we review some basic concepts about neutrosophic 
sets, single valued neutrosophic sets, single valued 
neutrosophic graph and complete single valued neutrosophic 
graph. In Section 3, an algorithm is proposed for finding the 
shortest path and shortest distance in single valued neutrosophic 
graph.  In section 4 an illustrative example is provided to find 
the shortest path and shortest distance between the source node 
and destination node. Finally, Section 5outlines the conclusion 
of this paper and suggests several directions for future research. 

II. Preliminaries
In this section, we mainly recall some notions related to 

neutrosophic sets, single valued neutrosophic sets, single valued 
neutrosophic graphs, relevant to the present work. See especially 
[8, 12, 32, 37, 41] for further details and background. 

Definition 2.1 [8]. Let X  be a space of points (objects) with 
generic elements in X denoted by x;  then the neutrosophic set 
A (NS A) is an object having the form A = {< x: ( )AT x , 

( )AI x , ( )AF x >, x ∈  X}, where the functions T, I, F:
X→]−0,1+[define respectively the truth-membership function, 
indeterminacy-membership function, and falsity-membership 
function of the element x ∈∈  X to the set A with the condition:

−0 ≤ ( )AT x + ( )AI x + ( )AF x ≤ 3+.     (1)      

The functions ( )AT x , ( )AI x  and ( )AF x  are real standard or 
nonstandard subsets of ]−0,1+[. 
Since it is difficult to apply NSs to practical problems, 
Smarandache [1998] introduced the concept of a SVNS, which 
is an instance of a NS and can be used in real scientific and 
engineering applications. 

Definition 2.2 [12]. Let X  be a space of points (objects) with 
generic elements in X denoted by x. A single valued 
neutrosophic set A (SVNS A) is characterized by truth-
membership function ( )AT x , an indeterminacy-membership 

function ( )AI x , and a falsity-membership function ( )AF x . 

For each point x in X, ( )AT x , ( )AI x , ( )AF x ∈	[0, 1]. A 
SVNS A can be written as 
    A={< x: ( )AT x , ( )AI x , ( )AF x >, x 	∈X}   (2)

Definition 2.3 [20].Let 1 1 1 1( , I , F )A T= and 2 2 2 2( , I ,F )A T=

be two single valued neutrosophic number. Then, the operations 
for NNs are defined as below; 

(i) 1 2 1 2 1 2 1 2 1 2( , I I , F F )A A T T T T⊕ = + − 
                  (3)

(ii) 1 2 1 2 1 2 1 2 1 2 1 2( , I I I I , F F F F )A A T T⊗ = + − + − 
      (4)

(iii) 1 1 1(1 (1 ) ), I , )A T Fλ λ λλ = − −
                          (5)

(iv) 1 1 1 1( ,1 (1 ) ,1 (1 ) )A T I Fλ λ λ λ= − − − − where 0λ >   (6)

Definition 2.4 [20].Let 1 1 1 1( , I , F )A T=  be a single valued

neutrosophic number. Then, the score function 1( )s A , accuracy 

function 1( )a A and certainty function 1( )c A of an SVNN are
defined as follows: 

(i) 1 1 1
1

2
( )

3
T I F

s A
+ − −

= (7)   

(ii) 1 1 1( )a A T F= −
   (8)    

(iii) 1 1( )a A T=
  (9)    

Comparison of single valued neutrosophic numbers 
Let 1 1 1 1( , I , F )A T=  and 2 2 2 2( , I ,F )A T= be two single valued
neutrosophic numbers then 
(i) 1 2A A  if 1 2( ) ( )s A s A   (10)    

(ii) 1 2A A  if 1 2( ) ( )s A s A       (11)    

(iii) 1 2A A=  if 1 2( ) ( )s A s A= 
   (12)  

Definition 2.5 [41]. 0n may be defined as four types: 

1(0 ) Type 1. 0 { x, (0,0,1) : x X}n = < > ∈  

2(0 ) Type 2. 0 { x, (0,1,1) : x X}n = < > ∈  

3(0 ) Type 3. 0 { x, (0,1,0) : x X}n = < > ∈  

4(0 ) Type 4. 0 { x,(0,0,0) : x X}n = < > ∈  
1n may be defined as four types: 

1(1 ) Type 1.1 { x,(1,0,0) : x X}n = < > ∈  

2(1 ) Type 2.1 { x, (1,0,1) : x X}n = < > ∈  

3(1 ) Type 3.1 { x, (1,1,0) : x X}n = < > ∈  

4(1 ) Type 4.1 { x,(1,1,1) : x X}n = < > ∈  

Definition 2.6 [32, 37].A single valued neutrosophic graph 
(SVN-graph) with underlying set V is defined to be a pair G= 
(A, B) where  
1.The functions AT :V → [0, 1], AI :V→→ [0, 1] and AF :V→
→ [0, 1] denote the degree of truth-membership, degree of 
indeterminacy-membership and falsity-membership of the 
element iv ∈V, respectively,  and 

0 ≤ ( )A iT v  + ( )A iI v  + ( )A iF v ≤ 3 for all  iv ∈  V. (13)    

2. The Functions BT : E ⊆  V x V → [0, 1], BI :E ⊆  V x V 

→ [0, 1] and BI : E ⊆  V x V → [0, 1] are defined by 

( , )B i jT v v ≤ min [ ( )A iT v , ( )A jT v ],          (14) 

( , )B i jI v v ≥ max [ ( )A iI v , ( )A jI v ] and          (15) 

Florentin Smarandache (ed.) Collected Papers, VII

168



(0.4,0.6, 0.7)

(0.5,0.3, 0.1)

( , )B i jF v v ≥ max [ ( )A iF v ,] ( )A iF v ]                (16)    
denotes  the degree of truth-membership, indeterminacy-
membership and falsity-membership of the edge ( , )i jv v ∈  E
respectively, where 
  0 ≤ ( , )B i jT v v + ( , )B i jI v v + ≤ ( , )B i jF v v ≤  3 for all   

( , )i jv v ∈ E  (i, j = 1, 2,…, n)     (17)   
A  is the single valued neutrosophic vertex set of V, B is the 
single valued neutrosophic edge set of E, respectively. 

Fig.1. Single valued neutrosophic graph 

III. An Algorithm for Neutrosophic
Shortest Path in a Network

      In this section an algorithm is proposed to find the shortest 
path and shortest distance of each node from source node. The 
algorithm is a labeling technique . Since the algorithm is direct 
extension of existing algorithm [30, 39, 41] with slightly 
modification. So it is very easy to understand and apply for 
solving shortest path problems occurring in real life problems. 
Remark: In this paper, we are only interested in neutrosophic 
zero, given by: 

0 (0,1,1)n =  

Step 1 :Assume 1 (0,1,1)d =  and label the source node (say
node1) as [ (0,1,1) ,-]. 

Step 2:Find jd = minimum{ i ijd d⊕  };j=2,3,…,n.
Step 3 : If minimum occurs corresponding to unique value of I 
i.e., i= r then label node j as [ jd ,r]. If minimum occurs
corresponding to more than one values of i then it represents 
that there are more than one neutrosophic path between source 
node and node j but neutrosophic distance along path is jd , so
choose any value of i. 
Step 4 : Let the destination node (node n) be labeled as [ nd ,l],
then the neutrosophic shortest distance between source node is 

nd .

Step 5 :Since destination node is labeled as [ nd ,l], so, to find
the neutrosophic shortest path between source node and 

destination node, check the label of node l. Let it be [ ld ,p], now 
check the label of node p and so on. Repeat the same procedure 
until node 1 is obtained. 
Step 6 : Now the neutrosophic shortest path can be obtained by 
combining all the nodes obtained by the step 5. 

Remark 1. Let iA ; i =1, 2,…, n be a set of neutrosophic 

numbers, if S( kA ) < S( iA ), for all i, the neutrosophic number

is the minimum of kA

Remark 2 : A node i is said to be predecessor node of node j if 
(i) Node i is directly connected to node j. 
(ii) The direction of path connecting node i and j from i to j. 

In Fig 3, we present the flow diagram representing the 
neutrosophic shortest path algorithm 

IV.ILLUSTRATIVE EXAMPLE 

Let us consider a single valued neutrosophic graph given in 
figure 1, where the distance between a pair of vertices is a single 
valued neutrosophic number. The problem is to find the shortest 
distance and shortest path between source node and destination 
node on the network. 

 

 

Fig.2 Network with neutrosophic shortest distance 

Edges  Single valued Neutrosophic 
distance 

1-2 (0.4, 0.6, 0.7)
1-3 (0.2, 0.3, 0.4)
2-3 (0.1, 0.4, 0.6)
2-5 (0.7, 0.6, 0.8)
3-4 (0.5, 0.3, 0.1)
3-5 (0.3, 0.4, 0.7)
4-6 (0.3, 0.2, 0.6)
5-6 (0.6, 0.5, 0.3)

      Table 1.Weights of the  graphs 
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    NO 

     YES 

    
 
 

  

Fig 3. Flow diagram representing the neutrosophic shortest 
path algorithm. 

Using the algorithm described in section 3, the following 
computational results are obtained 
Since node 6 is the destination node, so n= 6. 
assume 1 (0,1,1)d = and label the source node ( say node 1) as [

(0,1,1) ,-], the value of jd ; j= 2, 3, 4, 5 ,6 can be obtained as
follows: 

Iteration 1 :Since only node 1 is the predecessor node of node 
2, so putting i=1 and j= 2  in step2 of the proposed algorithm, 
the value of 2d  is

2d = minimum{ 1 12d d⊕  }=minimum{(0, 1, 1) ⊕  (0.4, 0.6,
0.7)= (0.4, 0.6, 0.7) 
Since minimum occurs corresponding to i=1, so label node 2 
as [ (0.4,0.6,0.7) ,1] 
Iteration 2 : The predecessor node of node 3 are node 1 and 
node 2, so putting i= 1, 2 and j= 3 in step 2 of the proposed 
algorithm, the value of 3d  is 3d =minimum{ 1 13 2 23,d d d d⊕ ⊕   

}=minimum{(0, 1, 1) ⊕  (0.2, 0.3, 0.4), (0.4, 0.6, 0.7) ⊕  (0.1, 
0.4, 0.6)}= minimum{(0.2, 0.3, 0.4), (0.46, 0.24, 0.42)} 

S (0.2, 0.3, 0.4) = 2
3

T I F+ − − = 2 0.2 0.3 0.4
3

+ − − =1.5

S (0.46, 0.24, 0.42) = 2
3

T I F+ − − = 2 0.46 0.24 0.42
3

+ − −

=1.8 
Since S (0.2, 0.3, 0.4) <  S (0.46, 0.24, 0.42) 
So minimum{(0.2, 0.3, 0.4) ⊕  (0.46, 0.24, 0.42)}= (0.2, 0.3, 
0.4)  

Since minimum occurs corresponding to i=1, so label node 3 
as [ (0.2,0.3,0.4) ,1] 

Iteration 3. The predecessor node of node 4 is node 3, so 
putting i= 3 and j= 4 in step 2 of the proposed algorithm, the 
value of 4d  is 4d =minimum{ 3 34d d⊕  }=minimum{(0.2,
0.3,0.4) ⊕  (0.5, 0.3, 0.1)}={0.6, 0.09, 0.04)} 
Since minimum occurs corresponding to i=3, so label node 4 
as [ (0.6,0.09, 0.04) ,3] 

Iteration 4 The predecessor node of node 5 are node 2 and 
node 3, so putting i= 2, 3and j= 5 in step 2 of the proposed 
algorithm, the value of 5d  is 5d =minimum{

2 25 3 35,d d d d⊕ ⊕    }=minimum{(0.4, 0.6, 0.7) ⊕  (0.7, 0.6,
0.8), (0.2, 0.3, 0.4) ⊕  (0.3, 0.4, 0.7)}= minimum{(0.82, 0.36, 
0.56), (0.44, 0.12, 0.28)} 

S (0.82, 0.36, 0.56) = 2
3

T I F+ − − =1.9

Find },min{ 2211 jj dddd ⊕⊕ for 

i=1,2 and j=3. Use score function to find its 
minimum values and label it in Vj, j=3 

Compute jd = minimum{ i ijd d⊕  }; j
= 2,3,…,n and i=1 

Set jd  as minimum value for i=1 

in node Vj and label it in Vj 

Choose the next node for j=3 say as Vj 
for preceeding nodes V1 or V2 or both 

V1 and V2 for i=1,2 

If Vj succeeds 
both V1 and V2 

Set i=1, label initial node as V1 Set 1d = <0,1,1>
as neutrosophic number  for vertex V1 

Identify the initial and destination 
nodes as Vi and Vn 

Identify the neighbor node Vj choosing Vj 
to be only successor of V1 possibly or any 

of the neighbor nodes of it 

Start 

Identify the next neighbour node preceding Vj 
and repeat the process until the destination 

node Vn reaching the minimum value 

Stop 
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S (0.44, 0.12, 0.28) = 2
3

T I F+ − − =2.04

Since S (0.82, 0.36, 0.56) <  S (0.44, 0.12, 0.28) 
minimum{(0.82, 0.36, 0.56), (0.44, 0.12, 0.28)}= (0.82, 0.36, 
0.5)  

5d =(0.82, 0.36, 0.56)
Since minimum occurs corresponding to i=2, so label node 5 
as [ (0.82,0.36,0.56) ,2] 
Iteration 5 The predecessor node of node 6 are node 4 and 
node 5, so putting i= 4, 5and j= 6 in step 2 of the proposed 
algorithm, the value of 6d  is 6d =minimum{

4 46 5 56,d d d d⊕ ⊕    }=minimum{(0.6, 0.09, 0.04) ⊕  (0.7, 0.6,
0.8), (0.82, 0.36, 0.56) ⊕  (0.6, 0.5, 0.3)}= minimum{(0.88, 
0.054, 0.32), (0.93, 0.18, 0.17)} 
Using scoring function we have the values to be 2.5 and 2.58 
Since S (0.88, 0.054, 0.32) <  S (0.93, 0.18, 0.17) 
So minimum{(0.88, 0.054, 0.32), (0.93, 0.18, 0.17)} 
= (0.88, 0.054, 0.32)  

6d =(0.88, 0.054, 0.32)
Since minimum occurs corresponding to i=4, so label node 6 as 
[ (0.88,0.054,0.32) , 4] 
Since node 6 is the destination node of the given network, so 
the neutrosophic shortest distance between node 1 and node 6 
is (0.88,0.054,0.32) . 
Now the neutrosophic shortest path between node 1 and node 6 
can be obtained by using the following procedure: 
Since node 6 is labeled by [ (0.88,0.054,0.32) , 4], which 
represents that we are coming from node 4. Node 4 is labeled 
by [ (0.6,0.09, 0.04) ,3]which represents that we are coming 
from node 3. Node 3 is labeled by [ (0.2,0.3,0.4) ,1], which 
represents that we are coming from node 1. Now the 
neutrosophic shortest path between node 1 and node 6 is 
obtaining by joining all the obtained nodes. Hence the 
neutrosophic shortest path is 1 3 4 6→ → → with the 
neutrosophic value (0.88,0.054,0.32) . In figure 4, the dashed 
lines indicate the shortest path from the source node to the 
destination node. 
The neutrosophic shortest distance and the neutrosophic 
shortest path of all nodes from node 1 is shown in the table 2 
and the labeling of each node is shown in figure 4 

Node 
No.(j) id Neutrosophic shortest path 

between jth and 1st node 
2 (0.4,0.6,0.7)  1 2→  
3 (0.2,0.3,0.4) 1 3→  
4 (0.6,0.09, 0.04) 1 3 4→ →  
5 (0.82,0.36,0.56) 1 2 5→ →  
6 (0.88,0.054,0.32) 1 3 4 6→ → →

Table 2. Tabular representation of different neutrosophic 
shortest paths 

 

 

Fig.4. Network with neutrosophic shortest distance of each 
node from node 1 

Since there is no other work on shortest path problem using 
single valued neutrosophic parameters for the edges (arcs), 
numerical comparison of this work with others work could not 
be done. 

In this paper we find the shortest path from any source 
node to destination node using the Neutrosophic shortest path 
algorithm. The idea of this algorithm is to carry the distance 
function which works as a tool to identify the successor node 
from the source at the beginning till it reaches the destination 
node with a shortest path. Hence our neutrosophic shortest path 
algorithm is much efficient providing the fuzziness between the 
intervals classified with true, indeterministic and false 
membership values. This concept is ultimately differing with 
intuitionistic membership values as the case of intuitionistic 
considers only the true and the false membership values. Hence 
in neutrosophy all the cases of fuzziness is discussed and so the 
algorithm is effective in finding the shortest path.  

V. CONCLUSION 

In this paper we proposed an algorithm for finding shortest path 
and shortest path length from source node to destination node 
on a network where the edges weights are assigned by single 
valued neutrosophic number. The procedure of finding shortest 
path has been well explained and suitably discussed. Further, 
the implementation of the proposed algorithm is successfully 
illustrated with the help of an example. The algorithm is easy 
to understand and can be used for all types of shortest path 
problems with arc length as triangular neutrosophic, trapezoidal 
neutrosophic and interval neutrosophic numbers. 
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Abstract. During the process of adaptation of a being (plant, animal, or human), to a new 
environment or conditions, the being partially evolves, partially devolves (degenerates), 
and partially is indeterminate {i.e. neither evolving nor devolving, therefore unchanged 
(neutral), or the change is unclear, ambiguous, vague}, as in neutrosophic logic. Thank to 
adaptation, one therefore has: evolution, involution, and indeterminacy (or neutrality), 
each one of these three neutrosophic components in some degree. 

The degrees of evolution / indeterminacy / involution are referred to both: the 
structure of the being (its body parts), and functionality of the being (functionality of 
each part, or inter-functionality of the parts among each other, or functionality of the 
being as a whole).  

We therefore introduce now for the first time the Neutrosophic Theory of 
Evolution, Involution, and Indeterminacy (or Neutrality).  

Keywords: neutrosophic logic, evolution, involution, indeterminacy 

1. Introduction
During the 2016-2017 winter, in December-January, I went to a cultural and scientific 
trip to Galápagos Archipelago, Ecuador, in the Pacific Ocean, and visited seven islands 
and islets:  Mosquera, Isabela, Fernandina, Santiago, Sombrero Chino, Santa Cruz, and 
Rabida, in a cruise with Golondrina Ship. I had extensive discussions with our likeable 
guide, señor Milton Ulloa, about natural habitats and their transformations. 

After seeing many animals and plants, that evolved differently from their 
ancestors that came from the continental land, I consulted, returning back to my 
University of New Mexico, various scientific literature about the life of animals and 
plants, their reproductions, and about multiple theories of evolutions. I used the online 
scientific databases that UNM Library (http://library.unm.edu/) has subscribed to, such 
as: MathSciNet, Web of Science, EBSCO, Thomson Gale (Cengage), ProQuest, 
IEEE/IET Electronic Library, IEEE Xplore Digital Library etc., and DOAJ, Amazon 
Kindle, Google Play Books as well, doing searches for keywords related to origins of life, 
species, evolution, controversial ideas about evolution, adaptation and in adaptation, life 
curiosities, mutations, genetics, embryology, and so on. 

My general conclusion was that each evolution theory had some degree of truth, 
some degree of indeterminacy, and some degree of untruth (as in neutrosophic logic), 
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depending on the types of species, environment, timespan, and other hidden parameters 
that may exist. 

And all these degrees are different from a species to another species, from an 
environment to another environment, from a timespan to another timespan, and in general 
from a parameter to another parameter. 

By environment, one understands: geography, climate, prays and predators of 
that species, i.e. the whole ecosystem. 

I have observed that the animals and plants (and even human beings) not 
onlyevolve, but alsodevolve (i.e. involve back, decline, atrophy, pass down, regress, 
degenerate). Some treats increase, other treats decrease, while others remains unchanged 
(neutrality). 

One also sees: adaptation by physical or functional evolution of a body part, and 
physical or functional involution of another body part, while other body parts and 
functions remain unchanged. After evolution, a new process start, re-evaluation, and so 
on.  

In the society it looks that the most opportunistic (which is the fittest!) succeeds, 
not the smartest. And professional deformation signifies evolution (specialization in a 
narrow field), and involution (incapability of doing things in another field). 

The paper is organized as follows: some information on taxonomy, species, a 
short list of theories of origin of life, another list of theories and ideas about evolution. 
Afterwards the main contribution of this paper, the theory of neutrosophic evolution, the 
dynamicity of species, several examples of evolution, involution, and indeterminacy 
(neutrality), neutrosophic selection, refined neutrosophic theory of evolution, and the 
paper ends with open questions on evolution / neutrality / involution. 

2. Taxonomy
Let's recall several notions from classical biology. 

The taxonomy is a classification, from a scientifically point of view, of the living 
things, and it classifies them into three categories: species, genus, and family . 

3. Species
A species means a group of organisms, living in a specific area, sharing many 
characteristics, and able to reproduce with each other. 

In some cases, the distinction between a population subgroup to be a different 
species, or not, is unclear, as in the Sorites Paradoxes in the frame of neutrosophy: the 
frontier between ˂A˃ (where ˂ A˃ can be a species, a genus, or a family), and ˂non A˃  
(which means that is not ˂A˃) is vague, incomplete, ambiguous. Similarly, for the 
distinction between a series and its subseries. 

4. Theories of origin of life
Louis Pasteur (1822-1895) developed in 1860 the theory of precellular (prebiotic) 
evolution, which says that life evolved from non-living chemical combinations that, over 
long time, arose spontaneously. 

In the late 19th century a theory, called abiogenesis, promulgated that the living 
organisms originated from lifeless matter spontaneously, without any living parents’ 
action. 
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Carl R. Woese (b. 1928) has proposed in 1970’s that the progenotes were the 
very first living cells, but their biological specificity was small. The genes were 
considered probable (rather than identical) proteins. 

John Burdon Sanderson Haldane (1872-1964) proposed in 1929 the theory that 
the viruses were precursors to the living cells [1]. 

John Bernal and A. G. Cairns-Smith stated in 1966 the mineral theory: that life 
evolved from inorganic crystals found in the clay, by natural selection [2]. 

According to the little bags theory of evolution, the life is considered as having 
evolved from organic chemicals that happened to get trapped in some tiny vesicles. 

Eigen and Schuster, adepts of the hypercycle theory, asserted in 1977 that the 
precursors of single cells were these little bags, and their chemical reactions cycles were 
equivalent to the life’s functionality [3]. 

Other theories about the origin of life have been proposed in the biology 
literature, such as: primordial soup, dynamic state theory, and phenotype theory, but they 
were later dismissed by experiments. 

5. Theories and ideas about evolution
The theory of fixism says that species are fixed, they do not evolve or devolve, and 
therefore the today’s species are identical to the past species. 

Of course, the creationism is a fixism theory, from a religious point of view. 
Opposed to the fixism is the theory of transformism, antecedent to the evolutionary 
doctrine, in the pre-Darwinian period, which asserts that plants and animals are modified 
and transformed gradually from one species into another through many generations [22]. 

Jean Baptiste Pierre Antoine de Monet Lamarck (1749-1829), in 1801, ahead of 
Charles Darwin, is associated with the theory of inheritance of acquired characteristics 
(or use-inheritance), and even of acquired habits. Which is called Lamarckism or 
Lamarckian Evolution. 

If an animal repeatedly stresses in the environment, its body part under stress will 
modify in order to overcome the environmental stress, and the modification will be 
transmitted to its offspring. 

For example: the giraffe having a long neck in order to catch the tree leaves [4]. 
Herbert Spencer (1820-1903) used for the first time the term evolution in biology, 

showing that a population’s gene pool changes from a generation to another generation, 
producing new species after a time [5].  

Charles Darwin (1809-1882) introduced the natural selection, meaning that 
individuals that are more endowed with characteristics for reproduction and survival will 
prevail (“selection of the fittest”), while those less endowed would perish [6]. 

Darwin had also explained the structure similarities of leaving things in genera 
and families, due to the common descent of related species [7]. 

In his gradualism (or phyletic gradualism), Darwin said that species evolve 
slowly, rather than suddenly. 

The adaptation of an organism means nervous response change, after being 
exposed to a permanent stimulus. 

In the modern gradualism, from the genetic point of view, the beneficial genes of 
the individuals best adapted to the environment, will have a higher frequency into the 
population over a period of time, giving birth to a new species [8]. 
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Herbert Spencer also coined the phrase survival of the fittest in 1864, that those 
individuals the best adapted to the environment are the most likely to survive and 
reproduce. 

Alfred Russel Wallace (1823-1913) coined in 1828 the terms Darwinism 
(individuals the most adapted to environment pass their characteristics to their offspring), 
and Darwinian fitness (the better adapted, the better surviving chance) [9]. 

One has upward evolution {anagenesis, coined by Alpheus Hyatt (1838-1902) in 
1889}, as the progressive evolution of the species into another [10], and a branching 
evolution {cladogenesis, coined by Sir Julian Sorell Huxley (1887-1975) in 1953}, when 
the population diverges and new species evolve [11]. 

George John Romanes (1848-1894) coined the word neo-Darwinism, related to 
natural selection and the theory of genetics that explains the synthetic theory of evolution. 
What counts for the natural selection is the gene frequency in the population [12]. The 
Darwinism is put together with the paleontology, systematics, embryology, molecular 
biology, and genetics. 

In the 19th century Gregor Johann Mendel (1822-1884) set the base of genetics, 
together with other scientists, among them Thomas Hunt Morgan (1866-1945). 

The Mendelism is the study of heredity according to the chromosome theory: the 
living thing reproductive cells contain factors which transmit to their offspring particular 
characteristics [13]. 

August Weismann (1834-1914) in year 1892 enounced the germ plasm theory, 
saying that the offspring do not inherit the acquired characteristics of the parents [14]. 

Hugo de Vries (1848-1935) published a book in 1901/1903 on mutation theory, 
considering that randomly genetic mutations may produce new forms of living things. 
Therefore, new species may occur suddenly [15]. 

Louis Antoine Marie Joseph Dollo (1857-1931) enunciated the Dollo’s principle 
(law or rule) that evolution is irreversible, i.e. the lost functions and structures in species 
are not regained by future evolving species. 

In the present, the synergetic theory of evolutionconsiders that one has a natural 
or artificial multipolar selection, which occurs at all life levels, from the molecule to the 
ecosystem – not only at the population level. 

But nowadays it has been discovered organisms that have re-evolved structured 
similar to those lost by their ancestors [16].  

!Life is… complicated! 
The genetic assimilation {for Baldwin Effect, after James Mark Baldwin (1861-

1934)} considered that an advantageous trait (or phenotype) may appear in several 
individuals of a population in response to the environmental cues, which would 
determine the gene responsible for the trait to spread through this population [17]. 

The British geneticist Sir Ronald A. Fisher (1890-1962) elaborated in 1930 the 
evolutionary or directional determinism, when a trait of individuals is preferred for the 
new generations (for example the largest grains to replant, chosen by farmers) [18]. 

The theory of speciation was associated with Ernst Mayr (b. 1904) and asserts 
that because of geographic isolation new species arise, that diverge genetically from the 
larger original population of sexually reproducing organisms. A subgroup becomes new 
species if its distinct characteristics allow it to survive and its genes do not mix with other 
species [19]. 
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In the 20th century, Trofim Denisovitch Lysenko (1898-1976) revived the 
Lamarckism to the Lysenkoism school of genetics, proclaiming that the new 
characteristics acquired by parents will be passed on to the offspring [20]. 

Richard Goldschmidt (1878-1958) in 1940 has coined the terms of 
macroevolution, which means evolution from a long time span (geological) perspective, 
and microevolution, which means evolution from a small timespan (a few generations) 
perspective with observable changes [1]. 

Sewall Wright (1889-1988), in the mid-20th century, developed the founders 
effect of principle, that in isolated places population arrived from the continent or from 
another island, becomes little by little distinct from its original place population. This is 
explained because the founders are few in number and therefore the genetic pool is 
smaller in diversity, whence their offspring are more similar in comparison to the 
offspring of the original place population.  

The founders effect or principle is regarded as a particular case of the genetic 
drift (by the same biologist, Sewall Wright), which tells that the change in gene occurs by 
chance [21]. 

The mathematician John Maynard Smith has applied the game theory to animal 
behavior and in 1976 he stated the evolutionary stable strategy in a population. It means 
that, unless the environment changes, the best strategy will evolve, and persist for solving 
problems. 

Other theories related to evolution such as: punctuated equilibrium 
(instantaneous evolution), hopeful monsters, and saltation (quantum) speciation (that new 
species suddenly occur; by Ernst Mayr) have been criticized by the majority of biologists. 

6. Open research
By genetic engineering it is possible to make another combination of genes, within the 
same number of chromosomes. Thus, it is possible to mating a species with another 
closer species, but their offspring is sterile (the offspring cannot reproduce). 

Despite the tremendousgenetic engineering development in the last decades, there 
has not been possible to prove by experiments in the laboratory that: from an inorganic 
matter one can make organic matter that may reproduce and assimilate energy; nor was 
possible in the laboratory to transform a species into a new species that has a number of 
chromosomes different from the existent species. 

7. Involution
According to several online dictionaries, involution  means: 

— Decay, retrogression or shrinkage in size; or return to a former state [Collins 
Dictionary of Medicine, Robert M. Youngson, 2005]; 

— Returning of an enlarged organ to normal size; or turning inward of the edges 
of a part; mental decline associated with advanced age (psychiatry) [Medical Dictionary 
for the Health Professions and Nursing, Farlex, 2012]; 

— Having rolled-up margins (for the plant organs) [Collins Dictionary of 
Biology, 3rd edition, W.G. Hale,V.A. Saunders, J.P. Margham, 2005]; 

— A retrograde change of the body or of an organ [Dorland's Medical Dictionary 
for Health Consumers, Saunders, an imprint of Elsevier, Inc., 2007]; 
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— A progressive decline or degeneration of normal physiological functioning 
[The American Heritage, Houghton Mifflin Company, 2007]. 

8. Theory of neutrosophic evolution
During the process of adaptation of a being (plant, animal, or human) B, to a new 
environment η, 

— B partially evolves; 
— B partially devolves (involves, regresses, degenerates); 
— and B partially remains indeterminate {which means neutral(unchanged), or 

ambiguous – i.e. not sure if it is evolution or involution}. 
Any action has a reaction. We see, thank to adaptation: evolution, involution, and 

neutrality (indeterminacy), each one of these three neutrosophic components in some 
degree. 

The degrees of evolution / indeterminacy / involution are referred to both: the 
structure of B (its body parts), and functionality  of B (functionality of each part, or 
inter-functionality of the parts among each other, or functionality of B as a whole). 

Adaptation to new environment conditions means de-adaptationfrom the old 
environment conditions. 

Evolution in one direction means involution in the opposite direction. 
Loosing in one direction, one has to gain in another direction in order to survive 

(for equilibrium). And reciprocally.  
A species, with respect to an environment, can be: 
— in equilibrium, disequilibrium, or indetermination; 
— stable, unstable, or indeterminate (ambiguous state); 
— optimal, suboptimal, or indeterminate. 
One therefore has a Neutrosophic Theory of Evolution, Involution, and 

Indeterminacy (neutrality, or fluctuation between Evolution and Involution).The 
evolution, the involution, and the indeterminate-evolution depend not only on natural 
selection, but also on many other factors such as: artificial selection, friends and enemies, 
bad luck or good luck, weather change, environment juncture etc. 

9. Dynamicity of the species
If the species is in indeterminate (unclear, vague, ambiguous) state with respect to its 
environment, it tends to converge towards one extreme:  

either to equilibrium / stability / optimality, or to disequilibrium / instability / 
suboptimality with respect to an environment; 

therefore the species either rises up gradually or suddenly by mutation towards 
equilibrium / stability / optimality; 

or the species deeps down gradually or suddenly by mutation to disequilibrium / 
instability / suboptimality and perish. 

The attraction point  in this neutrosophic dynamic system is, of course, the state 
of equilibrium / stability / optimality. But even in this state, the species is not fixed, it 
may get, due to new conditions or accidents, to a degree of disequilibrium / instability / 
suboptimality, and from this new state again the struggle on the long way back of the 
species to its attraction point. 
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10. Several examples of evolution, involution, and indeterminacy (neutrality)
10.1.Cormorants example 
Let's take the flightless cormorants (Nannopterumharrisi) in Galápagos Islands, their 
wings and tail have atrophied (hence devolved) due to their no need to fly (for they 
having no predators on the land), and because their permanent need to dive on near-shore 
bottom after fish, octopi, eels etc. 

Their avian breastbone vanished (involution ), since no flying muscles to support 
were needed. 

But their neck got longer, their legs stronger, and their feet got huge webbed is 
order to catch fish underwater (evolution). 

Yet, the flightless cormorants kept several of their ancestors' habits (functionality 
as a whole): make nests, hatch the eggs etc. (hence neutrality ). 

10.2.Cosmos example 
The astronauts, in space, for extended period of time get accustomed to low or no gravity 
(evolution), but they lose bone density (involution ). Yet other body parts do not change, 
or it has not been find out so far (neutrality / indeterminacy). 

10.3.Example of evolution and involution 
The whalesevolved with respectto their teeth from pig-like teeth to cusped teeth. 
Afterwards, the whales devolvedfrom cusped teeth back to conical teeth without cusps. 

10.4.Penguin example 
The Galápagos Penguin (Spheniscusmendiculus) evolved from the Humboldt Penguin 
byshrinking its size at 35 cm high (adaptation by involution ) in order to be able to stay 
cool in the equatorial sun. 

10.5.Frigate birds example 
The Galápagos Frigate birds are birds that lost their ability to dive for food, since their 
feathers are not waterproof (involution ), but they became masters of faster-and-
maneuverable flying by stealing food from other birds, called kleptoparasite feeding 
(evolution). 

10.6.Example of Darwin's finches 
The 13 Galápagos species of Darwin's Finches manifest various degrees of evolution 
upon their beak, having different shapes and sizes for each species in order to gobble 
different types of foods (hence evolution): 

— for cracking hard seeds, a thick beak (ground finch); 
— for insects, flowers and cacti, a long and slim beak (another finch species). 
Besides their beaks, the finches look similar, proving they came from a common 

ancestor (hence neutrality ). 
If one experiments, let's suppose one moves the thick-beak ground finches back 

to an environment with soft seeds, where it is not needed a thick beak, then the thick beak 
will atrophy and, in time, since it becomes hard for the finches to use the heavy beak, the 
thin-beak finches will prevail (hence involution ). 
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10.7. El Niño example 
Professor of ecology, ethology, and evolution Martin Wikelski, from the University of 
Illinois at Urbana – Champaign, has published in the journal "Nature" a curious report, 
regarding data he and his team collected about marine iguanas since 1987. During the 
1997 – 1998 El Niño, the marine algae died, and because the lack of food, on one of the 
Galápagos islands some marine iguanas shrank a quarter of their length and lost half of 
their weight (adaptation by involution ). 

After plentiful of food became available again, the marine iguanas grew back to 
their original length and weight (re-adaptation by evolution). 

[J. Smith, J. Brown, The Incredible Shrinking Iguanas, in Ecuador & The 
Galápagos Islands, Moon Handbook, Avalon Travel, p. 325.] 

10.8. Bat example 
The bats are the only mammals capable of naturally flying, due to the fact that the 
irforelimbs have developed into web bed wings (evolution by transformation). But 
navigating and foraging in the darkness, have caused their eyes’ functionality to diminish 
(involution ), yet the bats “see” with their ears (evolution by transformation) using the 
echolocation (or the bio sonar) in the following way: the bats emit sounds by mouth (one 
emitter), and their ears receive echoes (two receivers); the time delay (between emission 
and reception of the sound) and the relative intensity of the received sound give to the 
bats information about the distance, direction, size and type of animal in its environment. 

10.9. Mole example 
For the moles, mammals that live underground, the ireyes and ears have degenerated and 
become minuscule since their functions are not much needed (hence adaptation by 
involution ), yet therefore limbs became more power ful and their paws larger for better 
digging (adaptation by evolution). 

11. Neutrosophic selection with respect toa population of a species means that over a
specific time span a percentage of its individuals evolve, another percentage of 
individuals devolve, and a third category of individuals do not change or their change is 
indeterminate (not knowing if it is evolution or involution). We may have a natural or 
artificial neutrosophic selection. 

12. Refined neutrosophic theory of evolution is an extension of the neutrosophic theory
of evolution, when the degrees of evolution / indeterminacy / involution are considered 
separately with respect to each body part, and with respect to each body part functionality, 
and with respect to the whole organism functionality. 

13.Open questions on evolution / neutrality / involution 
13.1. How to measure the degree of evolution, degree of involution, and degree of 
indeterminacy (neutrality) of a species in a given environment and a specific timespan? 

13.2. How to compute the degree of similarity to ancestors, degree of dissimilarity to 
ancestors, and degree of indeterminate similarity-dissimilarity to ancestors? 
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13.3. Experimental Question. Let's suppose that a partial population of species S1 moves 
from environment η1 to a different environment η2; after a while, a new species S2 
emerges by adaptation to η2; then a partial population S2 moves back from η2 toη1; will S2 
evolve back (actually devolveto S1)? 

13.4. Are all species needed by nature, or they arrived by accident? 

14. Conclusion
We haveintroduced for the first time the concept of Neutrosophic Theory of Evolution, 
Indeterminacy (or Neutrality), and Involution.  
For eachbeing, during a long time span, there is a process of partial evolution, partial 
indeterminacy or neutrality, and partial involution with respect to the being body parts 
and functionalities.  
The function creates the organ. The lack of organ functioning, brings atrophy to the organ. 
In order to survive, the being has to adapt. One has adaptation by evolution, or adaptation 
by involution – as many examples have been provided in this paper. The being partially 
evolves, partially devolves, and partially remains unchanged (fixed) or its process of 
evolution–involution is indeterminate. There are species partially adapted and partially 
struggling to adapt. 
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Abstract: Every organization seeks to set strategies for its development and growth and to do
this, it must take into account the factors that affect its success or failure. The most widely used
technique in strategic planning is SWOT analysis. SWOT examines strengths (S), weaknesses (W),
opportunities (O) and threats (T), to select and implement the best strategy to achieve organizational
goals. The chosen strategy should harness the advantages of strengths and opportunities, handle
weaknesses, and avoid or mitigate threats. SWOT analysis does not quantify factors (i.e., strengths,
weaknesses, opportunities and threats) and it fails to rank available alternatives. To overcome this
drawback, we integrated it with the analytic hierarchy process (AHP). The AHP is able to determine
both quantitative and the qualitative elements by weighting and ranking them via comparison
matrices. Due to the vague and inconsistent information that exists in the real world, we applied
the proposed model in a neutrosophic environment. A real case study of Starbucks Company was
presented to validate our model.

Keywords: analytic hierarchy process (AHP); SWOT analysis; multi-criteria decision-making
(MCDM) techniques; neutrosophic set theory

1. Introduction

To achieve an organization’s goals, the strategic factors affecting its performance should be considered.
These strategic factors are classified as internal factors, that are under its control, and external factors, that
are not under its control.

The most popular technique for analyzing strategic cases is SWOT analysis. SWOT is considered
a decision-making tool. The SWOT acronym stands for Strengths, Weaknesses, Opportunities and
Threats [1]. Strengths and weaknesses are internal factors, while opportunities and threats are external
factors. The successful strategic plan of an organization should focus on strengths and opportunities,
try to handle weaknesses, and avoid or mitigate threats.

By using SWOT analysis, an organization can choose one of four strategic plans as follows:

• SO: The good use of opportunities through existing strengths.
• ST: The good use of strengths to eliminate or reduce the impact of threats.
• WO: Taking into account weaknesses to obtain the benefits of opportunities.
• WT: Seeking to reduce the impact of threats by considering weaknesses.

SWOT analysis can be used to build successful company strategies, but it fails to provide
evaluations and measures. Therefore, in the present research, we integrated it with the neutrosophic
analytic hierarchy process (AHP).
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The analytic hierarchy process (AHP) is a multi-criterion decision-making technique (MCDM)
used for solving and analyzing complex problems. MCDM is an important branch in operations
research, when seeking to construct mathematical and programming tools to select the superior
alternative between various choices, according to particular criteria.

The AHP consists of several steps. The first step is structuring the hierarchy of the problem to
understand it more clearly. The hierarchy of the AHP consists of a goal (objective), decision criteria,
sub-criteria, and, finally, all available alternatives.

After structuring the AHP hierarchy, pair-wise comparison matrices are constructed by decision
makers to weight criteria using Saaty’s scale [2].

Finally, the final weight of alternatives are determined and ranked.
Then, the AHP is able to estimate both qualitative and the quantitative elements. For this reason,

it is one of the most practical multi-criteria decision-making techniques [3].
In real life applications, decision criteria are often vague, complex and inconsistent in nature.

In addition, using crisp values in a comparison matrix is not always accurate due to uncertainty and
the indeterminate information available to decision makers. Many researchers have begun to use
fuzzy set theory [4]. However, fuzzy set theory considers only a truth-membership degree. Atanassov
introduced intuitionistic fuzzy set theory [5], which considers both truth and falsity degrees, but it
fails to consider indeterminacy. To deal with the previous drawbacks of fuzzy and intuitionistic fuzzy
sets, Smarandache introduced neutrosophic sets [6], which consider truth, indeterminacy and falsity
degrees altogether to represent uncertain and inconsistent information. Therefore, neutrosophic sets
are a better representation of reality. For this reason, in our research, we employed the AHP under a
neutrosophic environment.

This research represents the first attempt at combining SWOT analysis with a neutrosophic
analytic hierarchy process.

The structure of this paper is as follows: a literature review of SWOT analysis and the AHP
is presented in Section 2; the basic definitions of neutrosophic sets are introduced in Section 3;
the proposed model is discussed in Section 4; a real case study illustrates the applicability of the
model proposed in Section 5; and, finally, Section 6 concludes the paper, envisaging future work.

2. Literature Review

In this section, we present an overview of the AHP technique and SWOT analysis, which are used
across various domains.

SWOT analysis [7] is a practical methodology pursued by managers to construct successful
strategies by analyzing strengths, weaknesses, opportunities and threats. SWOT analysis is a powerful
methodology for making accurate decisions [8]. Organization’s construct strategies to enhance their
strengths, remove weaknesses, seize opportunities, and avoid threats.

Kotler et al. used SWOT analysis to attain an orderly approach to decision-making [9–11]. Many
researchers in different fields [4] apply SWOT analysis. An overview of the applications of SWOT
analysis is given by Helms and Nixon [8]. SWOT analysis has been applied in the education domain
by Dyson [12]. It has also been applied to healthcare, government and not-for-profit organizations,
to handle country-level issues [13] and for sustainable investment-related decisions [14]. It has been
recommended for use when studying the relationships among countries [15]. SWOT analysis is mainly
qualitative. This is the main disadvantage of SWOT, because it cannot assign strategic factor weights
to alternatives. In order to overcome this drawback, many researchers have integrated it with the
analytic hierarchy process (AHP).

Since the AHP is convenient and easy to understand, some managers find it a very useful
decision-making technique. Vaidya and Kumar reviewed 150 publications, published in international
journals between 1983 and 2003, and concluded that the AHP technique was useful for solving,
selecting, evaluating and making decisions [16]. Achieving a consensus decision despite the large
number of decision makers is another advantage of the AHP [17].
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Several researchers have combined SWOT analysis methodology with the analytic hierarchy
process (AHP). Leskinen et al. integrated SWOT with the AHP in an environmental domain [18–20],
Kajanus used SWOT–AHP in tourism [21], and Setwart used SWOT–AHP in project management [22].
Competitive strength, environment and company strategy, were integrated by Chan and Heide [23].
Because the classical version of the AHP fails to handle uncertainty, many researchers have integrated
SWOT analysis with the fuzzy AHP (FAHP). Demirtas et al. used SWOT with the fuzzy AHP for
project management methodology selection [24]. Lumaksono used SWOT-FAHP to define the best
strategy of expansion for a traditional shipyard [25]. Tavana et al. integrated SWOT analysis with
intuitionistic fuzzy AHP to outsource reverse logistics [26].

Fuzzy sets focus only on the membership function (truth degree) and do not take into account the
non-membership (falsity degree) and the indeterminacy degrees, so fail to represent uncertainty and
indeterminacy. To overcome these drawbacks of the fuzzy set, we integrated SWOT analysis with the
analytic hierarchy process in a neutrosophic environment.

A neutrosophic set is an extension of a classical set, fuzzy set, and intuitionistic fuzzy set,
and it effectively represents real world problems by considering all facets of a decision situation,
(i.e., truthiness, indeterminacy and falsity) [27–48]. This research attempted, for the first time, to present
the mathematical representation of SWOT analysis with an AHP in a neutrosophic environment.
The neutrosophic set acted as a symmetric tool in the proposed method, since membership was the
symmetric equivalent of non-membership, with respect to indeterminacy.

3. Definition of a Neutrosophic Set

In this section, some important definitions of neutrosophic sets are introduced.

Definition 1. [33,34] The neutrosophic set N is characterized by three membership functions, which are
the truth-membership function TNe(x), indeterminacy-membership function INe(x) and falsity-membership
function FNe(x), where x ∈ X and X are a space of points. Also, TNe(x):X→[−0, 1+], INe(x):X→[−0, 1+] and
FNe(x):X→[−0, 1+]. There is no restriction on the sum of TNe(x), INe(x) and FNe(x), so 0− ≤ sup TNe(x) +
sup INe(x) + sup FNe(x) ≤ 3+.

Definition 2. [33,35] A single valued neutrosophic set Ne over X takes the following form: A = {〈x, TNe(x),
INe(x), FNe(x)〉: x ∈ X}, where TNe(x):X→[0,1], INe(x):X→[0,1] and FNe(x):X→[0,1], with 0 ≤ TNe(x):
+ INe(x) + FNe(x) ≤ 3 for all x ∈ X. The single valued neutrosophic (SVN) number is symbolized by
Ne = (d, e, f ), where d, e, f ∈ [0,1] and d + e + f ≤ 3.

Definition 3. [36,37] The single valued triangular neutrosophic number, ã = 〈(a1, a2, a3); αã, θã, β ã〉, is
a neutrosophic set on the real line set R, whose truth, indeterminacy and falsity membership functions are
as follows:

Tã(x) =



αã

(
x−a1
a2−a1

)
(a1 ≤ x ≤ a2 )

αã (x = a2 )

αã

(
a3−x
a3−a2

)
(a2 < x ≤ a3)

0 otherwise

(1)

Iã(x) =



(a2−x+θã(x−a1))
(a2−a1)

(a1 ≤ x ≤ a2 )

θã x = a2
(x−a2+θã(a3−x))

(a3−a2)
(a2 < x ≤ a3)

1 otherwise

(2)
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F̃a(x) =



(a2−x+β ã(x−a1))
(a2−a1)

(a1 ≤ x ≤ a2)

β ã (x = a2)
(x−a2+β ã (a3−x))

(a3−a2)
(a2 < x ≤ a3)

1 otherwise

(3)

where αã, θã, β ã ∈ [0, 1] and a1, a2, a3 ∈ R, a1 ≤ a2 ≤ a3.

Definition 4. [34,36] Let ã = 〈(a1, a2, a3); αã, θã, β ã〉 and b̃ = 〈(b1, b2, b3); αã, θã, β ã〉 be two single-valued
triangular neutrosophic numbers and γ 6= 0 be any real number. Then:

1. Addition of two triangular neutrosophic numbers

ã + b̃ = 〈(a1 + b1, a2 + b2, a3 + b3); αã ∧ αb̃, θã ∨ θb̃, β ã ∨ βb̃〉

2. Subtraction of two triangular neutrosophic numbers

ã− b̃ =〈(a1 − b3, a2 − b2 , a3 − b1); αã ∧ αb̃, θã ∨ θb̃, β ã ∨ βb̃〉

3. Inverse of a triangular neutrosophic number

ã−1 = 〈
(

1
a3

,
1
a2

,
1
a1

)
; αã, θã, β ã〉, where (ã 6= 0)

4. Multiplication of a triangular neutrosophic number by a constant value

γã =

{
〈(γa1, γa2, γa3); αã, θã, β ã〉 i f (γ > 0)
〈(γa3, γa2, γa1); αã, θã, β ã〉 i f (γ < 0)

5. Division of a triangular neutrosophic number by a constant value

ã
γ
=

 〈
(

a1
γ , a2

γ , a3
γ

)
; αã, θã, β ã〉 i f (γ > 0)

〈
(

a3
γ , a2

γ , a1
γ

)
; αã, θã, β ã〉 i f (γ < 0)

6. Division of two triangular neutrosophic numbers

ã
b̃
=


〈
(

a1
b3

, a2
b2

, a3
b1

)
; αã ∧ αb̃, θã ∨ θb̃, β ã ∨ βb̃〉 i f (a3 > 0, b3 > 0)

〈
(

a3
b3

, a2
b2

, a1
b1

)
; αã ∧ αb̃, θã ∨ θb̃, β ã ∨ βb̃〉 i f (a3 < 0, b3 > 0)

〈
(

a3
b1

, a2
b2

, a1
b3

)
; αã ∧ αb̃, θã ∨ θb̃, β ã ∨ βb̃〉 i f (a3 < 0, b3 < 0)

7. Multiplication of two triangular neutrosophic numbers

ãb̃ =


〈(a1b1, a2b2, a3b3); αã ∧ αb̃, θã ∨ θb̃, β ã ∨ βb̃〉 i f (a3 > 0, b3 > 0)
〈(a1b3, a2b2, a3b1); αã ∧ αb̃, θã ∨ θb̃, β ã ∨ βb̃〉 i f (a3 < 0, b3 > 0)
〈(a3b3, a2b2, a1b1); αã ∧ αb̃, θã ∨ θb̃, β ã ∨ βb̃〉 i f (a3 < 0, b3 < 0)
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4. Neutrosophic AHP (N-AHP) in SWOT Analysis

This section describes the proposed model of integrating SWOT analysis with the neutrosophic
AHP. A step-by-step procedure for the model described is provided in this section.

Step 1 Select a group of experts at performing SWOT analysis.

In this step, experts identify the internal and the external factors of the SWOT analysis by
employing questionnaires/interviews.

Figure 1 presents the SWOT analysis diagram:

Figure 1. Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis diagram.

To transform a complex problem to a simple and easy to understand problem, the following step
is applied:

Step 2 Structure the hierarchy of the problem.

The hierarchy of the problem has four levels:

• The first level is the goal the organization wants to achieve.
• The second level consists of the four strategic criteria that are defined by the SWOT analysis

(i.e., criteria).
• The third level are the factors that are included in each strategic factor of the previous level

(i.e., sub-criteria).
• The final level includes the strategies that should be evaluated and compared.

The general hierarchy is presented in Figure 2.

Figure 2. The hierarchy of a problem.
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The next step is applied for weighting factors (criteria), sub-factors (sub-criteria) and strategies
(alternatives), according to experts’ opinions.

Step 3 Structure the neutrosophic pair-wise comparison matrix of factors, sub-factors and strategies,
through the linguistic terms which are shown in Table 1.

Table 1. Linguistic terms and the identical triangular neutrosophic numbers.

Saaty Scale Explanation Neutrosophic Triangular Scale

1 Equally influential 1̃ = 〈(1, 1, 1); 0.50, 0.50, 0.50〉

3 Slightly influential 3̃ = 〈(2, 3, 4); 0.30, 0.75, 0.70〉

5 Strongly influential 5̃ = 〈(4, 5, 6); 0.80, 0.15, 0.20〉

7 Very strongly influential 7̃ = 〈(6, 7, 8); 0.90, 0.10, 0.10〉

9 Absolutely influential 9̃ = 〈(9, 9, 9); 1.00, 0.00, 0.00〉

2

Sporadic values between two close scales

2̃ = 〈(1, 2, 3); 0.40, 0.65, 0.60〉
4 4̃ = 〈(3, 4, 5); 0.60, 0.35, 0.40〉
6 6̃ = 〈(5, 6, 7); 0.70, 0.25, 0.30〉
8 8̃ = 〈(7, 8, 9); 0.85, 0.10, 0.15〉

The neutrosophic scale is attained according to expert opinion.
The neutrosophic pair-wise comparison matrix of factors, sub-factors and strategies are as follows:

Ã =

 1̃ ã12 · · · ã1n
...

. . .
...

ãn1 ãn2 · · · 1̃

 (4)

where ãji = ãij
−1, and is the triangular neutrosophic number that measures the decision

makers vagueness.

Step 4 Check the consistency of experts’ judgments.

If the pair-wise comparison matrix has a transitive relation, i.e., aik = aijajk for all i, j and k, then
the comparison matrix is consistent [38], focusing only on the lower, median and upper values of the
triangular neutrosophic number of the comparison matrix.

Step 5 Calculate the weight of the factors (S, W, O, T), sub-factors {(S1, . . . , Sn),
(W1, . . . , Wn), (O1, . . . , On), (T1, . . . , Tn)} and strategies/alternatives (Alt1, . . . ,Altn) from the
neutrosophic pair-wise comparison matrix, by transforming it to a deterministic matrix using
the following equations.

Let ãij = 〈(a1, b1, c1), αã, θã, β ã〉 be a single valued triangular neutrosophic number; then,

S
(
ãij
)
=

1
8
[a1 + b1 + c1]× (2 + αã − θã − β ã) (5)

and
A
(
ãij
)
=

1
8
[a1 + b1 + c1]× (2+αã − θã + β ã) (6)

which are the score and accuracy degrees of ãij respectively.
To get the score and the accuracy degree of ãji, we use the following equations:

S
(
ãji
)
= 1/ S

(
ãij
)

(7)
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A
(
ãji
)
= 1/A

(
ãij
)

(8)

With compensation by score value of each triangular neutrosophic number in the neutrosophic
pair-wise comparison matrix, we derive the following deterministic matrix:

A =

 1 a12 · · · a1n
...

. . .
...

an1 an2 · · · 1

 (9)

Determine the ranking of priorities, namely the Eigen Vector X, from the previous matrix
as follows:

1. Normalize the column entries by dividing each entry by the sum of the column.
2. Take the total of the row averages.

Step 6 Calculate the total priority of each strategy (alternative) for the final ranking of all strategies
using Equation (10).

The total weight value of the alternative j (j = 1, . . . , n) can be written as follows:

TwAltj =wS ∗
n

∑
i=1

wSi ∗ wAltj + wW ∗
n

∑
i=1

wWi ∗ wAltj + wO ∗
n

∑
i=1

wOi ∗ wAltj + wT ∗
n

∑
i=1

wTi ∗ wAltj (10)

where (i = 1, . . . , n) and (wS, wW , wO, wT) are the weights of Strengths, Weaknesses, Opportunities
and Threats; (wSi , wWi , wOi , wTi ) are the sub-factor weights; and wAltj is the weight of the alternative j,
corresponding to its sub-factor.

From previous steps, we obtain the phases of integrating SWOT analysis with neutrosophic
analytic hierarchy processes, as shown in Figure 3.

Figure 3. SWOT-neutrosophic analytic hierarchy process (N-AHP) diagram.
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Step 3 Structure the neutrosophic pair-wise comparison matrix of factors, sub-factors and strategies,
through the linguistic terms which are shown in Table 1. The values in Table 2 pertain to the
experts’ opinions.

The pair-wise comparison matrix of SWOT factors is presented in Table 2.

Table 2. The neutrosophic comparison matrix of factors.

Factors Strengths Weaknesses Opportunities Threats

Strengths 〈(1, 1, 1); 0.50, 0.50, 0.50〉 〈(1, 1, 1); 0.50, 0.50, 0.50〉 〈(4, 5, 6); 0.80, 0.15, 0.20〉 〈(6, 7, 8); 0.90, 0.10, 0.10〉
Weaknesses 〈(1, 1, 1); 0.50, 0.50, 0.50〉 〈(1, 1, 1); 0.50, 0.50, 0.50〉 〈(4, 5, 6); 0.80, 0.15, 0.20〉 〈(6, 7, 8); 0.90, 0.10, 0.10〉

Opportunities 〈( 1
6 , 1

5 , 1
4 ); 0.80, 0.15, 0.20〉 〈( 1

6 , 1
5 , 1

4 ); 0.80, 0.15, 0.20〉 〈(1, 1, 1); 0.50, 0.50, 0.50〉 〈( 1
4 , 1

3 , 1
2 ); 0.30, 0.75, 0.70〉

Threats 〈( 1
8 , 1

7 , 1
6 ); 0.90, 0.10, 0.10〉 〈( 1

8 , 1
7 , 1

6 ); 0.90, 0.10, 0.10〉 〈(2, 3, 4); 0.30, 0.75, 0.70〉 〈(1, 1, 1); 0.50, 0.50, 0.50〉

Step 4 Check the consistency of experts’ judgments.

The previous comparison matrix was consistent when applying the method proposed in [38].

Step 5 Calculate the weight of the factors, sub-factors and strategies.

To calculate weight, we first transformed the neutrosophic comparison matrix to its crisp form by
using Equation (5). The crisp matrix is presented in Table 3.

Table 3. The crisp comparison matrix of factors.

Factors Strengths Weaknesses Opportunities Threats

Strengths 1 1 4 7
Weaknesses 1 1 4 7

Opportunities 1
4

1
4 1 1

Threats 1
7

1
7 1 1

Then, we determined the ranking of the factors, namely the Eigen Vector X, from the previous
matrix, as illustrated previously in the detailed steps of the proposed model.

The normalized comparison matrix of factors is presented in Table 4.

Table 4. The normalized comparison matrix of factors.

Factors Strengths Weaknesses Opportunities Threats

Strengths 0.4 0.4 0.4 0.44
Weaknesses 0.4 0.4 0.4 0.44

Opportunities 0.1 0.1 0.1 0.06
Threats 0.06 0.06 0.1 0.06

By taking the total of the row averages:

X =


0.41
0.41
0.1
0.1


The neutrosophic comparison matrix of strengths is presented in Table 5.
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Table 5. The neutrosophic comparison matrix of strengths.

Strengths S1 S2 S3 S4

S1 〈(1, 1, 1); 0.50, 0.50, 0.50〉 〈(4, 5, 6); 0.80, 0.15, 0.20〉 〈(2, 3, 4); 0.30, 0.75, 0.70〉 〈(2, 3, 4); 0.30, 0.75, 0.70〉
S2 〈( 1

6 , 1
5 , 1

4 ); 0.80, 0.15, 0.20〉 〈(1, 1, 1); 0.50, 0.50, 0.50〉 〈( 1
6 , 1

5 , 1
4 ); 0.80, 0.15, 0.20〉 〈(2, 3, 4); 0.30, 0.75, 0.70〉

S3 〈( 1
4 , 1

3 , 1
2 ); 0.30, 0.75, 0.70〉 〈(4, 5, 6); 0.80, 0.15, 0.20〉 〈(1, 1, 1); 0.50, 0.50, 0.50〉 〈(2, 3, 4); 0.30, 0.75, 0.70〉

S4 〈( 1
4 , 1

3 , 1
2 ); 0.30, 0.75, 0.70〉 〈( 1

4 , 1
3 , 1

2 ); 0.30, 0.75, 0.70〉 〈( 1
4 , 1

3 , 1
2 ); 0.30, 0.75, 0.70〉 〈(1, 1, 1); 0.50, 0.50, 0.50〉

The crisp pair-wise comparison matrix of strengths is presented in Table 6 and the normalized
comparison matrix of strengths is presented in Table 7.

Table 6. The crisp comparison matrix of strengths.

Strengths S1 S2 S3 S4

S1 1 3 1 1
S2

1
3 1 1

4 1
S3 1 4 1 1
S4 1 1 1 1

Table 7. The normalized comparison matrix of strengths.

Strengths S1 S2 S3 S4

S1 0.3 0.3 0.3 0.25
S2 0.1 0.1 0.1 0.25
S3 0.3 0.4 0.3 0.25
S4 0.3 0.1 0.3 0.25

By taking the total of the row averages:

X =


0.29
0.14
0.31
0.24


The neutrosophic comparison matrix of weaknesses is presented in Table 8.

Table 8. The neutrosophic comparison matrix of weaknesses.

Weaknesses W1 W2 W3

W1 〈(1, 1, 1); 0.50, 0.50, 0.50〉 〈( 1
6 , 1

5 , 1
4 ); 0.80, 0.15, 0.20〉 〈( 1

4 , 1
3 , 1

2 ); 0.30, 0.75, 0.70〉
W2 〈(4, 5, 6); 0.80, 0.15, 0.20〉 〈(1, 1, 1); 0.50, 0.50, 0.50〉 〈(4, 5, 6); 0.80, 0.15, 0.20〉
W3 〈(2, 3, 4); 0.30, 0.75, 0.70〉 〈( 1

6 , 1
5 , 1

4 ); 0.80, 0.15, 0.20〉 〈(1, 1, 1); 0.50, 0.50, 0.50〉

The crisp comparison matrix of weaknesses is presented in Table 9.

Table 9. The crisp comparison matrix of weaknesses.

Weaknesses W1 W2 W3

W1 1 1
4 1

W2 4 1 4
W3 1 1

4 1

The normalized comparison matrix of weaknesses is presented in Table 10.
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Table 10. The normalized comparison matrix of weaknesses.

Weaknesses W1 W2 W3

W1 0.2 0.2 0.2
W2 0.7 0.7 0.7
W3 0.2 0.2 0.2

By taking the total of the row averages:

X =

 0.2
0.35
0.2


The neutrosophic comparison matrix of opportunities is presented in Table 11.

Table 11. The neutrosophic comparison matrix of opportunities.

Opportunities O1 O2 O3

O1 〈(1, 1, 1); 0.50, 0.50, 0.50〉 〈( 1
4 , 1

3 , 1
2 ); 0.30, 0.75, 0.70〉 〈( 1

6 , 1
5 , 1

4 ); 0.80, 0.15, 0.20〉
O2 〈(2, 3, 4); 0.30, 0.75, 0.70〉 〈(1, 1, 1); 0.50, 0.50, 0.50〉 〈( 1

4 , 1
3 , 1

2 ); 0.30, 0.75, 0.70〉
O3 〈(4, 5, 6); 0.80, 0.15, 0.20〉 〈(2, 3, 4); 0.30, 0.75, 0.70〉 〈(1, 1, 1); 0.50, 0.50, 0.50〉

The crisp comparison matrix of opportunities is presented in Table 12.

Table 12. The crisp comparison matrix of opportunities.

Opportunities O1 O2 O3

O1 1 1 1
4

O2 1 1 1
O3 4 1 1

The normalized comparison matrix of opportunities is presented in Table 13.

Table 13. The normalized comparison matrix of opportunities.

Opportunities O1 O2 O3

O1 0.2 0.3 0.1
O2 0.2 0.3 0.4
O3 0.7 0.3 0.4

By taking the total of the row averages:

X =

 0.2
0.3
0.5


The neutrosophic comparison matrix of threats is presented in Table 14.
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Table 14. The neutrosophic comparison matrix of threats.

Threats T1 T2 T3

T1 〈(1, 1, 1); 0.50, 0.50, 0.50〉 〈(2, 3, 4); 0.30, 0.75, 0.70〉 〈(4, 5, 6); 0.80, 0.15, 0.20〉
T2 〈( 1

4 , 1
3 , 1

2 ); 0.30, 0.75, 0.70〉 〈(1, 1, 1); 0.50, 0.50, 0.50〉 〈( 1
4 , 1

3 , 1
2 ); 0.30, 0.75, 0.70〉

T3 〈( 1
6 , 1

5 , 1
4 ); 0.80, 0.15, 0.20〉 〈(2, 3, 4); 0.30, 0.75, 0.70〉 〈(1, 1, 1); 0.50, 0.50, 0.50〉

The crisp comparison matrix of threats is presented in Table 15.

Table 15. The crisp comparison matrix of threats.

Threats T1 T2 T3

T1 1 1 4
T2 1 1 1
T3 4 1 1

The normalized comparison matrix of threats is presented in Table 16.

Table 16. The normalized comparison matrix of threats.

Opportunities T1 T2 T3

T1 0.2 0.3 0.7
T2 0.2 0.3 0.2
T3 0.7 0.3 0.2

By taking the total of the row averages:

X =

 0.4
0.2
0.4


Similar to the factors and sub-factors calculation methodology, the weights of alternatives

(strategies), with respect to sub-factors, were as follows:

The Eigen Vector X of strategies with respect to S1 =


0.4
0.1
0.3
0.2



The Eigen Vector X of strategies with respect to S2 =


0.4
0.3
0.2
0.1



The Eigen Vector X of strategies with respect to S3 =


0.5
0.3
0.1
0.1



The Eigen Vector X of strategies with respect to S4 =


0.3
0.2
0.4
0.1
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The Eigen Vector X of strategies with respect to W1 =


0.2
0.2
0.3
0.3



The Eigen Vector X of strategies with respect to W2 =


0.4
0.1
0.3
0.2



The Eigen Vector X of strategies with respect to W3 =


0.6
0.1
0.2
0.1



The Eigen Vector X of strategies with respect to O1 =


0.1
0.4
0.2
0.3



The Eigen Vector X of strategies with respect to O2 =


0.1
0.4
0.2
0.3



The Eigen Vector X of strategies with respect to O3 =


0.3
0.2
0.3
0.2



The Eigen Vector X of strategies with respect to T1 =


0.1
0.4
0.2
0.3



The Eigen Vector X of strategies with respect to T2 =


0.6
0.2
0.1
0.1



The Eigen Vector X of strategies with respect to T3 =


0.5
0.1
0.2
0.2


Step 6 Determine the total priority of each strategy (alternative) and define the final ranking of all

strategies using Equation (10).

The weights of SWOT factors, sub-factors and alternative strategies are presented in Table 17.
According to our analysis of Starbucks Company using SWOT–N-AHP, the strategies were ranked

as follows: SO, WO, ST and WT, as presented in detail in Table 17 and in Figure 7. In conclusion, SO
was the best strategy for achieving Starbuck’s goals since it had the greatest weight value.
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Table 17. The weights of SWOT factors, sub-factors, alternatives strategies and their ranking.

Factors/Sub-Factors Weight Alternatives (Strategies)

SO ST WO WT

Strengths 0.41
S1 0.29 0.4 0.1 0.3 0.2
S2 0.14 0.4 0.3 0.2 0.1
S3 0.31 0.5 0.3 0.1 0.1
S4 0.24 0.3 0.2 0.4 0.1

Weaknesses 0.41
W1 0.2 0.2 0.2 0.3 0.3
W2 0.35 0.4 0.1 0.3 0.2
W3 0.2 0.6 0.1 0.2 0.1

Opportunities 0.1
O1 0.2 0.1 0.4 0.2 0.3
O2 0.3 0.1 0.4 0.2 0.3
O3 0.5 0.3 0.2 0.3 0.2

Threats 0.1
T1 0.4 0.1 0.4 0.2 0.3
T2 0.2 0.6 0.2 0.1 0.1
T3 0.4 0.5 0.1 0.2 0.2

Total 0.34 0.2 0.22 0.15
Rank of strategies 1 3 2 4

Figure 7. The final ranking of strategies.

To evaluate the quality of the proposed model, we compared it with other existing methods:

• The authors in [18–21] combined the AHP with SWOT analysis to solve the drawbacks of SWOT
analysis, as illustrated in the introduction section, but in the comparison matrices of the AHP
they used crisp values, which were not accurate due to the vague and uncertain information of
decision makers.

• In order to solve the drawbacks of classical AHP, several researchers combined SWOT analysis
with the fuzzy AHP [24–26]. Since fuzzy sets consider only the truth degree and fail to deal with
the indeterminacy and falsity degrees, it also does not offer the best representation of vague and
uncertain information.

• Since neutrosophic sets consider truth, indeterminacy and falsity degrees altogether, it is the best
representation for the vague and uncertain information that exists in the real world. We were the
first to integrate the neutrosophic AHP with SWOT analysis. In addition, our model considered
all aspects of vague and uncertain information by creating a triangular neutrosophic scale for
comparing factors and strategies. Due to its versatility, this method can be applied to various
problems across different fields.
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6. Conclusions and Future Works

SWOT analysis is an important tool for successful planning, but it has some drawbacks because
it fails to provide measurements and evaluations of factors (criteria) and strategies (alternatives).
In order to deal with SWOT analysis drawbacks, this research integrated the neutrosophic AHP
(N-AHP) approach. Using the N-AHP in SWOT analysis produced both quantitative and qualitative
measurements of factors. The reasons for applying an AHP in a neutrosophic environment are as
follows: due to vague, uncertain and inconsistent information, which usually exists in real world
applications, the crisp values in the classical AHP are not accurate; in the fuzzy AHP, only the
truth degree is considered, which makes it incompatible with real world applications; and the
intuitionistic AHP holds only truth and falsity degrees, therefore failing to deal with indeterminacy.
The neutrosophic AHP is useful to interpret vague, inconsistent and incomplete information by
deeming the truth, indeterminacy and falsity degrees altogether. Therefore, by integrating the N-AHP
with SWOT analysis we were able to effectively and efficiently deal with vague information better
than fuzzy and intuitionistic fuzzy set theories. The parameters of the N-AHP comparison matrices
were triangular neutrosophic numbers and a score function was used to transform the neutrosophic
AHP parameters to deterministic values. By applying our proposed model to Starbucks Company,
the evaluation process of its performance was effective, and the selection between the different
strategies became simpler and more valuable.

In the future, this research should be extended by employing different multi-criteria
decision-making (MCDM) techniques and studying their effect on SWOT analysis. In particular,
it would be useful to integrate SWOT analysis with the neutrosophic network process (ANP) to
effectively deal with interdependencies between decision criteria and handle the vague, uncertain and
inconsistent information that exists in real world applications.

Appendix A

Four experts were selected to perform the SWOT analysis to determine the four strategic factors of
Starbucks Company. The experts were specialized in manufacturing, sales and quality. To implement
the SWOT analysis, we prepared the following questionnaire and sent it out online to the experts:

1. What is your specialty?
2. How many years of experience in coffee industry you have?
3. What are in your opinion the strengths of the Starbucks Company?
4. What are in your opinion the weaknesses of the Starbucks Company?
5. What are in your opinion the opportunities of the Starbucks Company?
6. What are in your opinion the threats of the Starbucks Company?
7. Please use the triangular neutrosophic scale introduced in Table 1 to compare all factors and

present your answers in a table format.
8. Please use the triangular neutrosophic scale introduced in Table 1 to compare all strategies and

present your answers in a table format.
9. In your opinion, which strategy from below will achieve the Starbucks goals:

◦ SO, A strategic plan involving a good use of opportunities through existing strengths.
◦ ST, A good use of strengths to remove or reduce the impact of threats.

◦
◦

WO, Taking into accounts weaknesses to gain benefit from opportunities.
WT, Reducing threats by becoming aware of weaknesses.
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Abstract: Fuzzy graph theory plays an important role in the study of the symmetry and asymmetry 

properties of fuzzy graphs. With this in mind, in this paper, we introduce new neutrosophic graphs 

called complex neutrosophic graphs of type 1 (abbr. CNG1). We then present a matrix representation 

for it and study some properties of this new concept. The concept of CNG1 is an extension of the 

generalized fuzzy graphs of type 1 (GFG1) and generalized single-valued neutrosophic graphs of type 1 

(GSVNG1). The utility of the CNG1 introduced here are applied to a multi-attribute decision making 

problem related to Internet server selection. 

Keywords: complex neutrosophic set; complex neutrosophic graph; fuzzy graph; matrix representation 

1. Introduction

Smarandache [1] introduced a new theory called neutrosophic theory, which is basically a branch 

of philosophy that focuses on the origin, nature, and scope of neutralities and their interactions with 

different ideational spectra. On the basis of neutrosophy, Smarandache defined the concept of a 

neutrosophic set (NS) which is characterized by a degree of truth membership T, a degree of 

indeterminacy membership I, and a degree of falsity membership F. The concept of neutrosophic set 

theory generalizes the concept of classical sets, fuzzy sets by Zadeh [2], intuitionistic fuzzy sets by 

Atanassov [3], and interval-valued fuzzy sets by Turksen [4]. In fact, this mathematical tool is apt for 

handling problems related to imprecision, indeterminacy, and inconsistency of data. The 

indeterminacy component present in NSs is independent of the truth and falsity membership values. 

To make it more convenient to apply NSs to real-life scientific and engineering problems, 

Smarandache [1] proposed the single-valued neutrosophic set (SVNS) as a subclass of neutrosophic 

sets. Later on, Wang et al. [5] presented the set-theoretic operators and studied some of the properties 

of SVNSs. The NS model and its generalizations have been successfully applied in many diverse 

areas, and these can be found in [6]. 

Graphs are among the most powerful and convenient tools to represent information involving 

the relationship between objects and concepts. In crisp graphs, two vertices are either related or not 

related to one another so, mathematically, the degree of relationship is either 0 or 1. In fuzzy graphs 

on the other hand, the degree of relationship takes on values from the interval [0, 1]. Subsequently, 
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Shannon and Atanassov [7] defined the concept of intuitionistic fuzzy graphs (IFGs) using five types 

of Cartesian products. The concept fuzzy graphs and their extensions have a common property that 

each edge must have a membership value of less than, or equal to, the minimum membership of the 

nodes it connects. 

In the event that the description of the object or their relations or both is indeterminate and 

inconsistent, it cannot be handled by fuzzy, intuitionistic fuzzy, bipolar fuzzy, vague, or interval-

valued fuzzy graphs. For this reason, Smarandache [8] proposed the concept of neutrosophic graphs 

based on the indeterminacy (I) membership values to deal with such situations. Smarandache [9,10] 

then gave another definition for neutrosophic graph theory using the neutrosophic truth-values (T, I, 

F) and constructed three structures of neutrosophic graphs: neutrosophic edge graphs, neutrosophic

vertex graphs and neutrosophic vertex-edge graphs. Subsequently, Smarandache [11] proposed new 

versions of these neutrosophic graphs, such as the neutrosophic off graph, neutrosophic bipolar graph, 

neutrosophic tripolar graph, and neutrosophic multipolar graph. Presently, works on neutrosophic 

vertex-edge graphs and neutrosophic edge graphs are progressing rapidly. Broumi et al. [12] 

combined the SVNS model and graph theory to introduce certain types of SVNS graphs (SVNG), 

such as strong SVNG, constant SVNG, and complete SVNG, and proceeded to investigate some of 

the properties of these graphs with proofs and examples. Broumi et al. [13] then introduced the 

concept of neighborhood degree of a vertex and closed neighborhood degree of a vertex in SVNG as 

a generalization of the neighborhood degree of a vertex and closed neighborhood degree of a vertex 

found in fuzzy graphs and intuitionistic fuzzy graphs. In addition, Broumi et al. [14] proved a 

necessary and sufficient condition for a SVNG to be an isolated SVNG. 

Recently, Smarandache [15] initiated the idea of the removal of the edge degree restriction for 

fuzzy graphs, intuitionistic fuzzy graphs and SVNGs. Samanta et al. [16] proposed a new concept 

called generalized fuzzy graphs (GFG) and defined two types of GFG. Here the authors also studied 

some of the major properties of GFGs, such as the completeness and regularity of GFGs, and verified 

the results. In [16], the authors claim that fuzzy graphs and their extensions are limited to the 

representations of only certain systems, such as social networks. Broumi et al. [17] then discussed the 

removal of the edge degree restriction of SVNGs and presented a new class of SVNG, called generalized 

SVNG of type 1, which is an extension of generalized fuzzy graphs of type 1 proposed in [16]. Since the 

introduction of complex fuzzy sets (CFSs) by Ramot et al. in [18], several new extensions of CFSs have 

been proposed in literature [19–25]. The latest model related to CFS is the complex neutrosophic set 

(CNS) model which is a combination of CFSs [18] and complex intuitionistic fuzzy sets [21] proposed 

by Ali and Smarandache [26]. The CNS model is defined by three complex-valued membership 

functions which represent the truth, indeterminate, and falsity components. Therefore, a complex-

valued truth membership function is a combination of the traditional truth membership function 

with the addition of the phase term. Similar to fuzzy graphs, complex fuzzy graphs (CFG) introduced 

by Thirunavukarasu et al. [27] have a common property that each edge must have a membership 

value of less than or equal to the minimum membership of the nodes it connects. 

In this paper, we extend the research works mentioned above, and introduce the novel concept 

of type 1 complex neutrosophic graphs (CNG1) and a matrix representation of CNG1. To the best of 

our knowledge, there is no research on CNGs in the literature at present. We also present an 

investigation pertaining to the symmetric properties of CNG1 in this paper. In the study of fuzzy 

graphs, a symmetric fuzzy graph refers to a graph structure with one edge (i.e., two arrows on 

opposite directions) or no edges, whereas an asymmetric fuzzy graph refers to a graph structure with 

no arcs or only one arc present between any two vertices. Motivated by this, we have dedicated an 

entire section in this paper (Section 7) to study the symmetric properties of our proposed CNG1. 

The remainder of this paper is organized as follows: in Section 2, we review some basic concepts 

about NSs, SVNSs, CNSs, and generalized SVNGs of type 1; in Section 3, the formal definition of CNG1 

is introduced and supported with illustrative examples; in Section 4 a representation matrix of CNG1 

is introduced; some advanced theoretical results pertaining to our CNG1 is presented in Section 5, 

followed by an investigation on the shortest CNG1 in Section 6; the symmetric properties of ordinary 
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simple CNG1 is presented in Section 7; and Section 8 outlines the conclusion of this paper and suggests 

directions for future research. This is followed by the acknowledgments and the list of references. 

2. Preliminaries

In this section, we present brief overviews of NSs, SVNSs, SVNGs, and generalize fuzzy graphs 

that are relevant to the present work. We refer the readers to [1,5,17,18,27] for further information 

related to these concepts. 

The key feature that distinguishes the NS from the fuzzy and intuitionistic fuzzy set (IFS) models 

is the presence of the indeterminacy membership function. In the NS model the indeterminacy 

membership function is independent from the truth and falsity membership functions, and we are 

able to tell the exact value of the indeterminacy function. In the fuzzy set model this indeterminacy 

function is non-existent, whereas in the IFS model, the value of the indeterminacy membership 

function is dependent on the values of the truth and falsity membership functions. This is evident 

from the structure of the NS model in which 𝑇 + 𝐼 + 𝐹 ≤ 3, whereas it is 𝑇 + 𝐹 ≤ 1 and 𝐼 = 1 − 𝑇 −

𝐹 in the IFS model. This structure is reflective of many real-life situations, such as in sports (wining, 

losing, draw), voting (for, against, abstain from voting), and decision-making (affirmative, negative, 

undecided), in which the proportions of one outcome is independent of the others. The NS model is 

able to model these situations more accurately compared to fuzzy sets and IFSs as it is able to 

determine the degree of indeterminacy from the truth and falsity membership function more 

accurately, whereas this distinction cannot be done when modelling information using the fuzzy sets 

and IFSs. Moreover, the NS model has special structures called neutrosophic oversets and 

neutrosophic undersets that were introduced by Smarandache in [11], in which the values of the 

membership functions can exceed 1 or be below 0, in order to cater to special situations. This makes 

the NS more flexible compared to fuzzy sets and IFSs, and gives it the ability to cater to a wider range 

of applications. The flexibility of this model and its ability to clearly distinguish between the truth, 

falsity, and indeterminacy membership functions served as the main motivation to study a branch of 

graph theory of NSs in this paper. We refer the readers to [28,29] for more information on the degree 

of dependence and independence of neutrosophic sets, and [11] for further information on the 

concepts of neutrosophic oversets and undersets. 

Definition 1 [1]. Let 𝑋 be a space of points and let 𝑥 ∈ 𝑋. A neutrosophic set 𝐴 ∈ 𝑋 is characterized by a 

truth membership function 𝑇, an indeterminacy membership function 𝐼, and a falsity membership function 

𝐹. The values of 𝑇, 𝐼, 𝐹  are real standard or nonstandard subsets of ]−0, 1+[, and 𝑇, 𝐼, 𝐹: 𝑋 →]−0, 1+[. A 

neutrosophic set can therefore be represented as: 

𝐴 = {(𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)): 𝑥 ∈ 𝑋} (1) 

Since 𝑇, 𝐼, 𝐹 ∈ [0, 1], the only restriction on the sum of 𝑇, 𝐼, 𝐹 is as given below: 

−0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3
+ (2) 

Although theoretically the NS model is able to handle values from the real standard or non-

standard subsets of ]−0, 1+[, it is often unnecessary or computationally impractical to use values from 

this non-standard range when dealing with real-life applications. Most problems in engineering, and 

computer science deal with values from the interval [0, 1] instead of the interval ]−0, 1+[, and this led 

to the introduction of the single-valued neutrosophic set (SVNS) model in [5]. The SVNS model is a 

special case of the general NS model in which the range of admissible values are from the standard 

interval of [0, 1], thereby making it more practical to be used to deal with most real-life problems. 

The formal definition of the SVNS model is given in Definition 2. 

Definition 2 [5]. Let 𝑋 be a space of points (objects) with generic elements in 𝑋 denoted by 𝑥. A single-

valued neutrosophic set 𝐴  (SVNS A) is characterized by a truth-membership function 𝑇𝐴(𝑥),  an 

indeterminacy-membership function 𝐼𝐴(𝑥), and a falsity-membership function 𝐹𝐴(𝑥). For each point 𝑥 ∈ 𝑋, 

𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈ [0, 1]. The SVNS 𝐴 can therefore be written as: 

Florentin Smarandache (ed.) Collected Papers, VII

201



𝐴 = {(𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)): 𝑥 ∈ 𝑋} (3) 

Definition 3 [26]. Denote 𝒾 = √−1. A complex neutrosophic set 𝐴 defined on a universe of discourse 𝑋, 

which is characterized by a truth membership function 𝑇𝐴(𝑥), an indeterminacy-membership function 𝐼𝐴(𝑥), 

and a falsity-membership function 𝐹𝐴(𝑥)  that assigns a complex-valued membership grade to 

𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) for any 𝑥 ∈ 𝑋. The values of 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) and their sum may be any values within 

a unit circle in the complex plane and is therefore of the form 𝑇𝐴(𝑥) = 𝑝𝐴(𝑥)𝑒
𝒾𝜇𝐴(𝑥), 𝐼𝐴(𝑥) = 𝑞𝐴(𝑥)𝑒

𝒾𝜈𝐴(𝑥),

and 𝐹𝐴(𝑥) = 𝑟𝐴(𝑥)𝑒
𝒾𝜔𝐴(𝑥).  All the amplitude and phase terms are real-valued and 𝑝𝐴(𝑥), 𝑞𝐴(𝑥), 𝑟𝐴(𝑥) ∈

[0, 1], whereas 𝜇𝐴(𝑥), 𝜈𝐴(𝑥), 𝜔𝐴(𝑥) ∈ (0, 2𝜋], such that the condition: 

0 ≤ 𝑝𝐴(𝑥) + 𝑞𝐴(𝑥) + 𝑟𝐴(𝑥) ≤ 3 (4) 

is satisfied. A complex neutrosophic set 𝐴 can thus be represented in set form as: 

𝐴 = {〈𝑥, 𝑇𝐴(𝑥) = 𝑎𝑇 , 𝐼𝐴(𝑥) = 𝑎𝐼 , 𝐹𝐴(𝑥) = 𝑎𝐹〉: 𝑥 ∈ 𝑋}, (5) 

where 𝑇𝐴: 𝑋 → {𝑎𝑇: 𝑎𝑇 ∈ 𝐶, |𝑎𝑇| ≤ 1},  𝐼𝐴: 𝑋 → {𝑎𝐼: 𝑎𝐼 ∈ 𝐶, |𝑎𝐼| ≤ 1},  𝐹𝐴: 𝑋 → {𝑎𝐹: 𝑎𝐹 ∈ 𝐶, |𝑎𝐹| ≤ 1},  and 

also: 

|𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥)| ≤ 3. (6) 

Definition 4 [26]. Let 𝐴 = {(𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)): 𝑥 ∈ 𝑋} and 𝐵 = {(𝑥, 𝑇𝐵(𝑥), 𝐼𝐵(𝑥), 𝐹𝐵(𝑥)): 𝑥 ∈ 𝑋} be 

two CNSs in 𝑋. The union and intersection of 𝐴 and 𝐵 are as defined below. 

(i) The union of 𝐴 and 𝐵, denoted as 𝐴 ∪𝑁 𝐵, is defined as: 

𝐴 ∪𝑁 𝐵 = {(𝑥, 𝑇𝐴∪𝐵(𝑥), 𝐼𝐴∪𝐵(𝑥), 𝐹𝐴∪𝐵(𝑥)): 𝑥 ∈ 𝑋}, (7) 

where 𝑇𝐴∪𝐵(𝑥), 𝐼𝐴∪𝐵(𝑥), 𝐹𝐴∪𝐵(𝑥) are given by: 

𝑇𝐴∪𝐵(𝑥) = max(𝑝𝐴(𝑥), 𝑝𝐵(𝑥)) . 𝑒
𝒾𝜇𝐴∪𝐵(𝑥),

𝐼𝐴∪𝐵(𝑥) = min(𝑞𝐴(𝑥), 𝑞𝐵(𝑥)) . 𝑒
𝒾𝜈𝐴∪𝐵(𝑥),

𝐹𝐴∪𝐵(𝑥) = min(𝑟𝐴(𝑥), 𝑟𝐵(𝑥)) . 𝑒
𝒾𝜔𝐴∪𝐵(𝑥) .

(ii) The intersection of 𝐴 and 𝐵, denoted as 𝐴 ∩𝑁 𝐵, is defined as: 

𝐴 ∩𝑁 𝐵 = {(𝑥, 𝑇𝐴∩𝐵(𝑥), 𝐼𝐴∩𝐵(𝑥), 𝐹𝐴∩𝐵(𝑥)): 𝑥 ∈ 𝑋}, (8) 

where 𝑇𝐴∩𝐵(𝑥), 𝐼𝐴∩𝐵(𝑥), 𝐹𝐴∩𝐵(𝑥) are given by: 

𝑇𝐴∩𝐵(𝑥) = min(𝑝𝐴(𝑥), 𝑝𝐵(𝑥)) . 𝑒
𝒾𝜇𝐴∩𝐵(𝑥),

𝐼𝐴∩𝐵(𝑥) = max(𝑞𝐴(𝑥), 𝑞𝐵(𝑥)) . 𝑒
𝒾𝜈𝐴∩𝐵(𝑥),

𝐹𝐴∩𝐵(𝑥) = max(𝑟𝐴(𝑥), 𝑟𝐵(𝑥)) . 𝑒
𝒾𝜔𝐴∩𝐵(𝑥).

The union and the intersection of the phase terms of the complex truth, falsity and indeterminacy 

membership functions can be calculated from, but not limited to, any one of the following operations: 

(a) Sum: 

𝜇𝐴∪𝐵(𝑥) = 𝜇𝐴(𝑥) + 𝜇𝐵(𝑥), 

𝜈𝐴∪𝐵(𝑥) = 𝜈𝐴(𝑥) + 𝜈𝐵(𝑥), 

𝜔𝐴∪𝐵(𝑥) = 𝜔𝐴(𝑥) + 𝜔𝐵(𝑥). 

(b) Max: 

𝜇𝐴∪𝐵(𝑥) = max(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)), 

𝜈𝐴∪𝐵(𝑥) = max(𝜈𝐴(𝑥), 𝜈𝐵(𝑥)), 

𝜔𝐴∪𝐵(𝑥) = max(𝜔𝐴(𝑥), 𝜔𝐵(𝑥)). 

(c) Min: 

𝜇𝐴∪𝐵(𝑥) = min(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)), 

𝜈𝐴∪𝐵(𝑥) = min(𝜈𝐴(𝑥), 𝜈𝐵(𝑥)), 

𝜔𝐴∪𝐵(𝑥) = min(𝜔𝐴(𝑥), 𝜔𝐵(𝑥)). 

(d) “The game of winner, neutral, and loser”: 
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Definition 5 [17]. Let the following statements hold: 

(a) 𝑉 is a non-void set. 

(b) �̆�𝑇, �̆�𝐼, �̆�𝐹 are three functions, each from 𝑉 to [0, 1]. 

(c) �̆�𝑇, �̆�𝐼 , �̆�𝐹 are three functions, each from 𝑉 × 𝑉 to [0, 1]. 

(d) �̆� = (�̆�𝑇 , �̆�𝐼 , �̆�𝐹) and �̆� = (�̆�𝑇 , �̆�𝐼 , �̆�𝐹). 

Then the structure 𝜉 = 〈𝑉, �̆�, �̆�〉 is said to be a generalized single valued neutrosophic graph of type 1

(GSVNG1). 

Remark 1. (i) �̆�  depends on �̆�𝑇 , �̆�𝐼 , �̆�𝐹  and �̆�  depends on �̆�𝑇 ,�̆�𝐼 ,�̆�𝐹 .  Hence there are seven mutually 

independent parameters in total that make up a CNG1: 𝑉, �̆�𝑇 , �̆�𝐼 , �̆�𝐹 , �̆�𝑇,�̆�𝐼,�̆�𝐹. 

(i) For each 𝑥 ∈ 𝑉, 𝑥 is said to be a vertex of 𝜉. The entire set 𝑉 is thus called the vertex set of 𝜉.

(ii) For each 𝑢, 𝑣 ∈ 𝑉, (𝑢, 𝑣) is said to be a directed edge of 𝜉. In particular, (𝑣, 𝑣) is said to be a loop of 𝜉.

(iii) For each vertex: �̆�𝑇(𝑣), �̆�𝐼(𝑣), �̆�𝐹(𝑣) are called the truth-membership value, indeterminate membership 

value, and false-membership value, respectively, of that vertex 𝑣.  Moreover, if �̆�𝑇(𝑣) = �̆�𝐼(𝑣) =

�̆�𝐹(𝑣) = 0, then 𝑣 is said to be a void vertex. 

(iv) Likewise, for each edge (𝑢, 𝑣): �̆�𝑇(𝑢, 𝑣), �̆�𝐼(𝑢, 𝑣),  �̆�𝐹(𝑢, 𝑣)  are called the truth-membership value, 

indeterminate-membership value, and false-membership value, respectively of that directed edge (𝑢, 𝑣). 

Moreover, if �̆�𝑇(𝑢, 𝑣) = �̆�𝐼(𝑢, 𝑣) = �̆�𝐹(𝑢, 𝑣) = 0, then (𝑢, 𝑣) is said to be a void directed edge. 

Here we shall restate the concept of complex fuzzy graph of type 1. Moreover, for all the 

remaining parts of this paper, we shall denote the set {𝑧 ∈ ℂ: |𝑧| ≤ 1} as 𝑂1. 

Definition 6 [27]. Let the following statements hold: 

(a) 𝑉 is a non-void set. 

(b) �̇� is a function from 𝑉 to 𝑂1. 

(c) �̇� is a function from 𝑉 × 𝑉 to 𝑂1. 

Then: 

(i) the structure 𝜉̇ = 〈𝑉, �̇�, �̇�〉 is said to be a complex fuzzy graph of type 1 (abbr. CFG1). 

(ii) For each 𝑥 ∈ 𝑉, 𝑥 is said to be a vertex of 𝜉̇. The entire set 𝑉 is thus called the vertex set of 𝜉̇.

(iii) For each 𝑢, 𝑣 ∈ 𝑉, (𝑢, 𝑣) is said to be a directed edge of 𝜉̇. In particular, (𝑣, 𝑣) is said to be a loop of 𝜉̇.

3. Complex Neutrosophic Graphs of Type 1

By using the concept of complex neutrosophic sets [26], the concept of complex fuzzy graph of 

type 1 [27], and the concept of generalized single valued neutrosophic graph of type 1 [17], we define 

the concept of complex neutrosophic graph of type 1 as follows: 

Definition 7. Let the following statements hold: 

(a) 𝑉 is a non-void set. 

(b) 𝜌𝑇, 𝜌𝐼, 𝜌𝐹 are three functions, each from 𝑉 to 𝑂1. 

(c) 𝜔𝑇, 𝜔𝐼 , 𝜔𝐹 are three functions, each from 𝑉 × 𝑉 to 𝑂1. 
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(d) 𝜌 = (𝜌𝑇 , 𝜌𝐼 , 𝜌𝐹) and 𝜔 = (𝜔𝑇 , 𝜔𝐼 , 𝜔𝐹). 

Then the structure 𝜉 = 〈𝑉, 𝜌, 𝜔〉 is said to be a complex neutrosophic graph of type 1 (abbr. CNG1). 

Remark 2. 𝜌  depends on 𝜌𝑇 , 𝜌𝐼 , 𝜌𝐹 , and 𝜔  depends on  𝜔𝑇 , 𝜔𝐼 , 𝜔𝐹 . Hence there are seven mutually 

independent parameters in total that make up a CNG1: V, 𝜌𝑇, 𝜌𝐼, 𝜌𝐹, 𝜔𝑇, 𝜔𝐼 , 𝜔𝐹. Furthermore, in analogy 

to a GSVNG1: 

(i) For each 𝑥 ∈ 𝑉, 𝑥 is said to be a vertex of 𝜉. The entire set 𝑉 is thus called the vertex set of 𝜉. 

(ii) For each 𝑢, 𝑣 ∈ 𝑉, (𝑢, 𝑣) is said to be a directed edge of 𝜉. In particular, (𝑣, 𝑣) is said to be a loop of 𝜉. 

(iii) For each vertex: 𝜌𝑇(𝑣) , 𝜌𝐼(𝑣) , 𝜌𝐹(𝑣)  are called the complex truth, indeterminate, and falsity 

membership values, respectively, of the vertex 𝑣. Moreover, if 𝜌𝑇(𝑣) = 𝜌𝐼(𝑣) = 𝜌𝐹(𝑣) = 0, then 𝑣 is 

said to be a void vertex. 

(iv) Likewise, for each directed edge (𝑢, 𝑣):  𝜔𝑇(𝑢, 𝑣),  𝜔𝐼(𝑢, 𝑣),  𝜔𝐹(𝑢, 𝑣)  are called the complex truth, 

indeterminate and falsity membership value, of the directed edge (𝑢, 𝑣) . Moreover, if 𝜔𝑇(𝑢, 𝑣) =

𝜔𝐼(𝑢, 𝑣) = 𝜔𝐹(𝑢, 𝑣) = 0, then (𝑢, 𝑣) is said to be a void directed edge. 

For the sake of brevity, we shall denote 𝜔(𝑢, 𝑣) = (𝜔𝑇(𝑢, 𝑣), 𝜔𝐼(𝑢, 𝑣), 𝜔𝐹(𝑢, 𝑣))  and 𝜌(𝑣) =

(𝜌𝑇(𝑣), 𝜌𝐼(𝑣), 𝜌𝐹(𝑣)) for all the remaining parts of this paper. 

As mentioned, CNG1 is generalized from both GSVNG1 and CFG1. As a result, we have 𝜔𝑇, 𝜔𝐼  

and 𝜔𝑇 being functions themselves. This further implies that 𝜔𝑇(𝑢, 𝑣), 𝜔𝐼(𝑢, 𝑣) and 𝜔𝑇(𝑢, 𝑣) can only 

be single values from O1. In particular, 𝜔𝑇(𝑣, 𝑣), 𝜔𝐼(𝑣, 𝑣), and 𝜔𝑇(𝑣, 𝑣) can only be single values. 

As a result, each vertex 𝑣 in a CNG1 possess a single, undirected loop, whether void or not. 

And each of the two distinct vertices 𝑢, 𝑣 in a CNG1 possess two directed edges, resulting from (𝑢, 𝑣) 

and (𝑣, 𝑢), whether void or not. 

Recall that in classical graph theory, we often deal with ordinary (or undirected) graphs, and 

also simple graphs. To further relate our CNG1 with it, we now proceed with the following definition. 

Definition 8. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be a CNG1. 

(a) If 𝜔(𝑎, 𝑏) = 𝜔(𝑏, 𝑎), then {𝑎, 𝑏} = {(𝑎, 𝑏), (𝑏, 𝑎)} is said to be an (ordinary) edge of 𝜉. Moreover, {𝑎, 𝑏} 

is said to be a void (ordinary) edge if both (𝑎, 𝑏) and (𝑏, 𝑎) are void. 

(b) If 𝜔(𝑢, 𝑣) = 𝜔(𝑣, 𝑢) holds for all 𝑢, 𝑣 ∈ 𝑉, then 𝜉 is said to be ordinary (or undirected), otherwise it is 

said to be directed. 

(c) If all the loops of 𝜉 are void, then 𝜉 is said to be simple. 

Definition 9. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary CNG1. If for all 𝑢, 𝑣 ∈ 𝑉 with 𝑢 ≠ 𝑣, there exist non-void 

edges {𝑢 = 𝑤1, 𝑤2}, {𝑤2, 𝑤3}, …, {𝑤𝑛−1, 𝑤𝑛 = 𝑣} for some 𝑛 ≥ 2, then 𝜉 is said to be connected. 

Definition 10. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary CNG1. Let 𝑢, 𝑣 ∈ 𝑉. Then: 

(a) {𝑢, 𝑣} is said to be adjacent to 𝑢 (and to 𝑣). 

(b) 𝑢 (and 𝑣 as well) is said to be an end-point of {𝑢, 𝑣}. 

We now discuss a real life scenario that can only be represented by a CNG1. 

The Scenario 

Note: All the locations mentioned are fictional 

Suppose there is a residential area in Malaysia with four families: 𝑎, 𝑏, 𝑐, 𝑑. All of them have 

Internet access. In other words, they are Internet clients, which will access the Internet servers from 

around the world (including those servers located within Malaysia) depending on which website 

they are visiting. 

If they access the internet on their own, the outcomes can be summarized as given in the Table 1 and 

Figure 1. 
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Table 1. The outcomes of individuals, for Scenario 3.1. 

Activities 𝒂 𝒃 𝒄 𝒅 

Some members 

will seek 

excitement 

(e.g., playing 

online games) 

Happens on 80% of the 

day, and those will be 

connecting towards 0° 

(because that server is 

located in China ⋇) 

Happens on 70% 

of the day, and 

those will be 

connecting 

towards 30° 

Happens on 90% 

of the day, and 

those will be 

connecting 

towards 120° 

Happens on 80% 

of the day, and 

those will be 

connecting 

towards 250° 

Some members 

will want to surf 

around  

(e.g., online 

shopping) 

Happens on 50% of the 

day, and those will be 

connecting towards 

130° (because that server 

is located in Australia ⋇) 

Happens on 60% 

of the day, and 

those will be 

connecting 

towards 180° 

Happens on 20% 

of the day, and 

those will be 

connecting 

towards 340° 

Happens on 40% 

of the day, and 

those will be 

connecting 

towards 200° 

Some members 

will need to 

relax 

(e.g., listening to 

music) 

Happens on 20% of the 

day, and those will be 

connecting towards 

220° (because that 

server is located in 

Sumatra ⋇, Indonesia) 

Happens on 30% 

of the day, and 

those will be 

connecting 

towards 200° 

Happens on 50% 

of the day, and 

those will be 

connecting 

towards 40° 

Happens on 10% 

of the day, and 

those will be 

connecting 

towards 110° 

(⋇) as illustrated in Figure 1. 

Figure 1. The illustration of the servers’ relative positions using a public domain map, for Scenario 3.1. 

Moreover, the following (unordered) pairs of the four families are close friends or relatives: 

{𝑎, 𝑏}, {𝑎, 𝑐}, {𝑎, 𝑑}, {𝑏, 𝑑}. 

Thus, each pair of family mentioned (e.g., {𝑎, 𝑏}) may invite one another for a visit, accessing the 

Internet as one team. In particular: 

(i) When {𝑎, 𝑏}  or {𝑎, 𝑑}  access the internet together, they will simply search for “a place of 

common interest”. This is regardless of who initiates the invitation. 

(ii) 𝑎 and 𝑐 rarely meet. Thus, each time they do, everyone (especially the children) will be so 

excited that they would like to try something fresh, so all will seek excitement and connect 

towards to a local broadcasting server at 240° to watch soccer matches (that server will take care 
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of which country to connect to) for the entire day. This is also regardless of who initiates the 

visitation. 

(iii) The size and the wealth of 𝑑 far surpasses 𝑏. Thus, it would always be 𝑑 who invites 𝑏 to 

their house, never the other way, and during the entire visit, members of 𝑏 will completely 

behave like members of 𝑑 and, therefore, will visit the same websites as 𝑑. 

Denote the first term of the ordered pair (𝑢, 𝑣) as the family who initiates the invitation, and 

the second term as family who receives the invitation and visit the other family. The outcomes of the 

seven possible teams (𝑎, 𝑏) , (𝑎, 𝑐) , (𝑎, 𝑑) , (𝑏, 𝑎) , (𝑐, 𝑎) , (𝑑, 𝑎) , (𝑑, 𝑏)  are, thus, summarized by 

Table 2. 

Table 2. The outcomes of teams in pairs, for the scenario. 

Activities (𝒂, 𝒃),(𝒃, 𝒂) (𝒂, 𝒄),(𝒄, 𝒂) (𝒂, 𝒅),(𝒅, 𝒂) (𝒅, 𝒃) 

Some members 

will seek 

excitement 

Happens on 80% of 

the day, and those 

will be connecting 

towards 15°  

Happens on the 

entire day, all will 

be connecting 

towards 240° 

Happens on 80% of 

the day, and those 

will be connecting 

towards 305° 

Happens on 80% of 

the day, and those 

will be connecting 

towards 250° 

Some members 

will want to surf 

around 

Happens on 60% of 

the day, and those 

will be connecting 

towards 155° 

Does not happen

Happens on 50% of 

the day, and those 

will be connecting 

towards 165o 

Happens on 40% of 

the day, and those 

will be connecting 

towards 200° 

Some members 

will need to 

relax 

Happens on 30% of 

the day, and those 

will be connecting 

towards 210° 

Does not happen 

Happens on 50% of 

the day, and those 

will be connecting 

towards 40° 

Happens on 10% of 

the day, and those 

will be connecting 

towards 110° 

On the other hand, {𝑐, 𝑏} and {𝑑, 𝑐} are mutual strangers. So 𝑐 and 𝑏 will visit each other. The 

same goes to 𝑑 and 𝑐. 

3.2. Representation of the Scenario with CNG1 

We now follow all the steps from (a) to (e) in Definition 7, to represent the scenario with a 

particular CNG1. 

(a) Take V0 = {𝑎, 𝑏, 𝑐, 𝑑}. 

(b) In accordance with the scenario, define the three functions on V0 : 𝜌𝑇, 𝜌𝐼, 𝜌𝐹, as illustrated in 

Table 3. 

Table 3. 𝑘(𝑣), where k represents any of the 3 functions on V0 𝜌𝑇 , 𝜌𝐼 , 𝜌𝐹 , for the scenario. Also 

mentioned in Section 4.2. 

v 

k 
𝒂 𝒃 𝒄 𝒅 

𝜌𝑇 0.8e𝒾2𝜋 0.7e𝒾
𝜋

6 0.9e𝒾
2𝜋

3 0.8e𝒾
25𝜋

18

𝜌𝐼 0.5e𝒾
13𝜋

18 0.6e𝒾𝜋 0.2e𝒾
17𝜋

9 0.4e𝒾
10𝜋

9

𝜌𝐹  0.2e𝒾
11𝜋

9 0.3e𝒾
10𝜋

9 0.5e𝒾
2𝜋

9 0.1e𝒾
11𝜋

18

(c) In accordance with the scenario, define the three functions 𝜔𝑇, 𝜔𝐼 , 𝜔𝐹, as illustrated in Tables 4–

6.
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Table 4. The outcomes of 𝜔𝑇(𝑢, 𝑣), for the scenario. Also mentioned in Section 4.2. 

v 

u 
𝒂 𝒃 𝒄 𝒅 

𝑎 0 0.8e𝒾
𝜋
12 1e𝒾

4𝜋
3 0.8e𝒾

61𝜋
36

𝑏 0.8e𝒾
𝜋
12 0 0 0 

𝑐 1e𝒾
4𝜋
3 0 0 0 

𝑑 0.8e𝒾
61𝜋
36 0.8e𝒾

25𝜋
18 0 0 

Table 5. The outcomes of 𝜔𝐼(𝑢, 𝑣), for the scenario. Also mentioned in Section 4.2. 

v 

u 
𝒂 𝒃 𝒄 𝒅 

𝑎 0 0.6e𝒾
31𝜋
36 0 0.5e𝒾

33𝜋
36

𝑏 0.6e𝒾
31𝜋
36 0 0 0 

𝑐 0 0 0 0 

𝑑 0.5e𝒾
33𝜋
36 0.4e𝒾

10𝜋
9 0 0 

Table 6. The outcomes of 𝜔𝐹(𝑢, 𝑣), for the scenario. Also mentioned in Section 4.2. 

v 

u 
𝒂 𝒃 𝒄 𝒅 

𝑎 0 0.3e𝒾
7𝜋
6 0 0.5e𝒾

2𝜋
9

𝑏 0.3e𝒾
7𝜋
6 0 0 0 

𝑐 0 0 0 0 

𝑑 0.5e𝒾
2𝜋
9 0.1e𝒾

11𝜋
18 0 0 

(d) By statement (d) from Definition 7, let 𝜌0 = (𝜌𝑇, 𝜌𝐼, 𝜌𝐹), and 𝜔0 = (𝜔𝑇, 𝜔𝐼 , 𝜔𝐹). We have now 

formed a CNG1 〈𝑉0, 𝜌0, 𝜔0〉. 

One of the way of representing the entire 〈𝑉0, 𝜌0, 𝜔0〉 is by using a diagram that is analogous 

with graphs as in classical graph theory, as shown in the Figure 2. 

Figure 2. A diagram representing 〈𝑉0, 𝜌0, 𝜔0〉, for the scenario. 

In other words, only the non-void edges (whether directed or ordinary) and vertices are to be 

drawn in such a diagram. 
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Hence, we have shown how a CGN1 can be constructed from a data set with four homes. The 

same concept mentioned can certainly be used on a larger dataset, such as one with thousands of 

locations and thousands of homes, which will result in a more complicated diagram being generated. 

However, one will definitely require computer algebraic systems, such as SAGE, to process the data 

and to display the data in diagram form. 

Additionally, recall that, in classical graph theory, a graph can be represented by an adjacency 

matrix, for which the entries are either a positive integer (connected) or 0 (not connected). 

This motivates us to represent CNG1 using a matrix as well, in a similar manner. Nonetheless, 

instead of a single value that is either 0 or 1, we have three values to deal with: 𝜔𝑇, 𝜔𝐼 , 𝜔𝐹, with each 

of them capable of being anywhere in 𝑂1. Moreover, each of the vertices themselves also contain 𝜌𝑇, 

𝜌𝐼, 𝜌𝐹, which must be taken into account as well. 

4. Representation of a CNG1 by an Adjacency Matrix

4.1. Two Methods of Representation 

In this section, we discuss the representation of CNG1 in two ways, which are both analogous 

to the one encountered in classical literature. 

Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be a CNG1 where vertex set 𝑉 = {𝑣1,𝑣2,…,𝑣𝑛} (i.e., CNG1 has finite vertices). 

We first form an n × n matrix as shown: 

𝐌 = [𝐚𝑖,𝑗]𝑛 = (

𝐚1,1 𝐚1,2
𝐚2,1 𝐚2,2

⋯
𝐚1,𝑛
𝐚2,𝑛

⋮ ⋱ ⋮
𝐚𝑛,1 𝐚𝑛,2 ⋯ 𝐚𝑛,𝑛

), 

where 𝐚𝑖,𝑗 = 𝜔(𝑣𝑖 , 𝑣𝑗) for all i, j. 

In other words, each element of the matrix M is itself an ordered set of three elements, instead 

of just a number of either 0 or 1 in the classical literature. 

Remark 3. Since 𝜉 can only possess undirected loops, we decided not to multiply the main diagonal elements 

of 𝐌 by 2, as seen in adjacency matrices for graphs classical literature (2 for undirected, 1 for directed, 0 for 

void). 

Meanwhile, also recall that each of the vertices in 𝜉 contains 𝜌𝑇, 𝜌𝐼, 𝜌𝐹, which must be taken 

into account as well. 

Thus, we form another matrix 𝐊 as shown: 

𝐊 = [𝐤𝑖]𝑛,1 = (

𝐤1
𝐤2
⋮
𝐤𝑛

), where 𝐤𝑖 = 𝜌(𝑣𝑖) for all 𝑖.

To accomplish one of our methods of representing the entire ξ we, therefore, augment the 

matrix 𝐊 with M, forming the adjacency matrix of CNG1, [K|M], as shown: 

[𝐊|𝐌] = (

𝐤1 𝐚1,1 𝐚1,2
𝐤2 𝐚2,1 𝐚2,2

⋯
𝐚1,𝑛
𝐚2,𝑛

⋮ ⋱ ⋮
𝐤𝑛 𝐚𝑛,1 𝐚𝑛,2 ⋯ 𝐚𝑛,𝑛

), 

where 𝐚𝑖,𝑗 = 𝜔(𝑣𝑖 , 𝑣𝑗), and 𝐤𝑖 = 𝜌(𝑣𝑖), for all 𝑖, 𝑗. 

Although [K|M] is an n × (n + 1) matrix and therefore not a square, this representation will save 

us another separate ordered set to represent the 𝜌𝑇, 𝜌𝐼, 𝜌𝐹 values of the vertices themselves. 

Sometimes it is more convenient to separately deal with each of the three kinds of membership 

values for both edges and vertices. As a result, here we provide another method of representing the 

entire 𝜉: using three n × (n + 1) matrices, [𝐊|𝐌]𝑇, [𝐊|𝐌]𝐼, and [𝐊|𝐌]𝐹, each derived from [𝐊|𝐌] by 

taking only one kind of the membership values from its elements: 

[𝐊|𝐌]𝑇 = [𝐊𝑇|𝐌𝑇] = (

𝜌𝑇(𝑣1) 𝜔𝑇(𝑣1, 𝑣1) 𝜔𝑇(𝑣1, 𝑣2)
𝜌𝑇(𝑣2) 𝜔𝑇(𝑣2, 𝑣1) 𝜔𝑇(𝑣2, 𝑣2)

⋯
𝜔𝑇(𝑣1, 𝑣𝑛)
𝜔𝑇(𝑣2, 𝑣𝑛)

⋮ ⋱ ⋮
𝜌𝑇(𝑣𝑛) 𝜔𝑇(𝑣𝑛 , 𝑣1) 𝜔𝑇(𝑣𝑛 , 𝑣2) ⋯ 𝜔𝑇(𝑣𝑛 , 𝑣𝑛)

), 
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[𝐊|𝐌]𝐼 = [𝐊𝐼|𝐌𝐼] = (

𝜌𝐼(𝑣1) 𝜔𝐼(𝑣1, 𝑣1) 𝜔𝐼(𝑣1, 𝑣2)
𝜌𝐼(𝑣2) 𝜔𝐼(𝑣2, 𝑣1) 𝜔𝐼(𝑣2, 𝑣2)

⋯
𝜔𝐼(𝑣1, 𝑣𝑛)
𝜔𝐼(𝑣2, 𝑣𝑛)

⋮ ⋱ ⋮
𝜌𝐼(𝑣𝑛) 𝜔𝐼(𝑣𝑛 , 𝑣1) 𝜔𝐼(𝑣𝑛 , 𝑣2) ⋯ 𝜔𝐼(𝑣𝑛, 𝑣𝑛)

), 

[𝐊|𝐌]𝐹 = [𝐊𝐹|𝐌𝐹] = (

𝜌𝐹(𝑣1) 𝜔𝐹(𝑣1, 𝑣1) 𝜔𝐹(𝑣1, 𝑣2)
𝜌𝐹(𝑣2) 𝜔𝐹(𝑣2, 𝑣1) 𝜔𝐹(𝑣2, 𝑣2)

⋯
𝜔𝐹(𝑣1, 𝑣𝑛)
𝜔𝐹(𝑣2, 𝑣𝑛)

⋮ ⋱ ⋮
𝜌𝐹(𝑣𝑛) 𝜔𝐹(𝑣𝑛 , 𝑣1) 𝜔𝐹(𝑣𝑛, 𝑣2) ⋯ 𝜔𝐹(𝑣𝑛 , 𝑣𝑛)

). 

[𝐊|𝐌]𝑇, [𝐊|𝐌]𝐼, and [𝐊|𝐌]𝐹 shall, thus, be called, respectively, the truth-adjacency matrix, the 

indeterminate-adjacency matrix, and the false-adjacency matrix of 𝜉. 

Remark 4. If [𝐊|𝐌]𝐼  = [𝐊|𝐌]𝐹 = [0]𝑛,𝑛+1, 𝐊𝑇 = [1]𝑛,1, all the entries of 𝐌𝑇  are either 1 or 0, then 𝜉 is 

reduced to a graph in classical literature. Furthermore, if that 𝐌𝑇 is symmetrical and with main diagonal 

elements being zero, then 𝜉 is further reduced to a simple ordinary graph in the classical literature. 

Remark 5. If [𝐊|𝐌]𝐼  = [𝐊|𝐌]𝐹 = [0]𝑛,𝑛+1, and all the entries of [𝐊|𝐌]𝑇 are real values from the interval 

[0,1], then 𝜉 is reduced to a generalized fuzzy graph type 1 (GFG1). 

Remark 6. If all the entries of [𝐊|𝐌]𝑇, [𝐊|𝐌]𝐼 , and [𝐊|𝐌]𝐹 are real values from the interval [0, 1], then 𝜉 

is reduced to a generalized single valued neutrosophic graphs of type 1 (GSVNG1). 

Remark 7. If 𝐌𝑇 , 𝐌𝐼 , and 𝐌𝐹  are symmetric matrices, then 𝜉 is ordinary. 

4.2. Illustrative Example 

For the sake of brevity, we now give representation for our example for the scenario in 3.1 by 

the latter method using three matrices: [𝐊|𝐌]𝑇, [𝐊|𝐌]𝐼 , and [𝐊|𝐌]𝐹: 

[𝐊|𝐌]𝑇 =

(

  
 

0.8e𝑖2𝜋 0 0.8e𝑖
π
12

0.7e𝑖
π
6 0.8e𝑖

π
12 0

1e𝑖
4π
3 0.8e𝑖

61π
36

0 0

0.9e𝑖
2π
3 1e𝑖

4π
3 0

0.8e𝑖
25π
18 0.8e𝑖

61π
36 0.8e𝑖

25π
18

0 0
0 0

)

  
 

[𝐊|𝐌]𝐼 =

(

  
 
0.5e𝑖

13π
18 0 0.6e𝑖

31π
36 0 0.5e𝑖

33π
36

0.6e𝑖𝜋 0.6e𝑖
31π
36 0 0 0

0.2e𝑖
17π
9 0 0 0 0

0.4e𝑖
10π
9 0.5e𝑖

33π
36 0.4e𝑖

10π
9 0 0 )

  
 

[𝐊|𝐌]𝐹 =

(

  
 
0.2e𝑖

11π
9 0 0.3e𝑖

7π
6 0 0.5e𝑖

2π
9

0.3e𝑖
10π
9 0.3e𝑖

7π
6 0 0 0

0.5e𝑖
2π
9 0 0 0 0

0.1e𝑖
11π
18 0.5e𝑖

2π
9 0.1e𝑖

11π
18 0 0 )

  
 

As in Section 3, we have shown how a matrix representation of a CNG1 with |𝑉| = 4 can be 

constructed. Likewise, the same concept mentioned can certainly be used on a larger CNG1 but, 

again, one will definitely require computer algebraic systems, such as SAGE to process the data and 

to display such a matrix representation. 

5. Some Theoretical Results on Ordinary CNG1

We now discuss some theoretical results that follows from the definition of ordinary CNG1, as 

well as its representation with adjacency matrix. Since we are concerned about ordinary CNG1, all 

the edges that we will be referring to are ordinary edges. 
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Definition 11. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary CNG1. Let 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} be the vertex set of 𝜉. Then, 

for each 𝑖, the resultant degree of 𝑣𝑖, denoted as 𝐷(𝑣𝑖), is defined to be the ordered set (𝐷𝑇(𝑣𝑖), 𝐷𝐼(𝑣𝑖), 𝐷𝐹(𝑣𝑖)), 

for which: 

(a) 𝐷𝑇(𝑣𝑖) = ∑ 𝜔𝑇(𝑣𝑖 , 𝑣𝑟)
𝑛
𝑟=1  + 𝜔𝑇(𝑣𝑖 , 𝑣𝑖), 

(b) 𝐷𝐼(𝑣𝑖) = ∑ 𝜔𝐼(𝑣𝑖 , 𝑣𝑟)
𝑛
𝑟=1  + 𝜔𝐼(𝑣𝑖 , 𝑣𝑖), 

(c) 𝐷𝐹(𝑣𝑖) = ∑ 𝜔𝐹(𝑣𝑖 , 𝑣𝑟)
𝑛
𝑟=1  + 𝜔𝐹(𝑣𝑖 , 𝑣𝑖). 

Remark 8. In analogy to classical graph theory, each undirected loop has both its ends connected to the same 

vertex, so is counted twice. 

Remark 9. Each of the values of 𝐷𝑇(𝑣𝑖), 𝐷𝐼(𝑣𝑖), and 𝐷𝐹(𝑣𝑖) need not be an integer as in a classical graph. 

Definition 12. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary CNG1. Let 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} be the vertex set of 𝜉. Then, 

the resultant amount of edges of 𝜉, denoted as 𝐸𝜉 , is defined to be the ordered set (𝐸𝑇 , 𝐸𝐼 , 𝐸𝐹) for which: 

(a) 𝐸𝑇 = ∑ 𝜔𝑇(𝑣𝑟 , 𝑣𝑠){𝑟,𝑠}⊆{1,2,…,𝑛} , 

(b) 𝐸𝐼  = ∑ 𝜔𝐼(𝑣𝑟 , 𝑣𝑠){𝑟,𝑠}⊆{1,2,…,𝑛} , 

(c) 𝐸𝐹  = ∑ 𝜔𝐹(𝑣𝑟 , 𝑣𝑠){𝑟,𝑠}⊆{1,2,…,𝑛} . 

Remark 10. As in classical graph theory, each edge is counted only once, as shown by {𝑟, 𝑠} ⊆ {1,2, … , 𝑛} in 

the expression. For example, if 𝜔𝑇(𝑣𝑎 , 𝑣𝑏) is added, we will not add 𝜔𝑇(𝑣𝑏 , 𝑣𝑎) again since {𝑎, 𝑏} = {𝑏, 𝑎}. 

Remark 11. Each of the values of 𝐸𝑇, 𝐸𝐼  and 𝐸𝐹  need not be an integer as in a classical graph. As a result, 

we call it the “amount” of edges, instead of the “number” of edges as in the classical literature. 

For each vertex 𝑣𝑖, just because 𝐷(𝑣𝑖) equals 0, that does not mean that all the edges connect to 𝑣𝑖 

are void. It could be two distinct edges {𝑣𝑖 , 𝑣1} and {𝑣𝑖 , 𝑣2} with 𝜔𝑇(𝑣𝑖 , 𝑣1) = −𝜔𝑇(𝑣𝑖 , 𝑣2), 𝜔𝐼(𝑣𝑖 , 𝑣1) =

−𝜔𝐼(𝑣𝑖 , 𝑣2) and 𝜔𝐹(𝑣𝑖 , 𝑣1) = −𝜔𝐹(𝑣𝑖 , 𝑣2) (i.e., equal in magnitude, but opposite in phase). The same 

goes to the value of 𝐸ξ. This differs from the classical theory of graphs and, therefore, it motivates us to 

look at a CNG1 in yet another approach. We, thus, further define the following: 

Definition 13. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary CNG1. Let 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} be the vertex set of 𝜉. Then, 

for each i, the absolute degree of 𝑣𝑖 , denoted as |𝐷|(𝑣𝑖) , is defined to be the ordered set 

(|𝐷|𝑇(𝑣𝑖), |𝐷|𝐼(𝑣𝑖), |𝐷|𝐹(𝑣𝑖)), for which: 

(a) |𝐷|𝑇(𝑣𝑖) = ∑ |𝜔𝑇(𝑣𝑖 , 𝑣𝑟)|
𝑛
𝑟=1  + |𝜔𝑇(𝑣𝑖 , 𝑣𝑖)|, 

(b) |𝐷|𝐼(𝑣𝑖) = ∑ |𝜔𝐼(𝑣𝑖 , 𝑣𝑟)|
𝑛
𝑟=1  + |𝜔𝐼(𝑣𝑖 , 𝑣𝑖)|, 

(c) |𝐷|𝐹(𝑣𝑖) = ∑ |𝜔𝐹(𝑣𝑖 , 𝑣𝑟)|
𝑛
𝑟=1  + |𝜔𝐹(𝑣𝑖 , 𝑣𝑖)|. 

Definition 14. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary CNG1. Let 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} be the vertex set of 𝜉. Then, 

the absolute amount of edges of 𝜉, denoted as |𝐸|𝜉 , is defined to be the ordered set (|𝐸|𝑇 , |𝐸|𝐼 , |𝐸|𝐹) for which: 

(a) |𝐸|𝑇 = ∑ |𝜔𝑇(𝑣𝑟 , 𝑣𝑠)|{𝑟,𝑠}⊆{1,2,…,𝑛} , 

(b) |𝐸|𝐼 = ∑ |𝜔𝐼(𝑣𝑟 , 𝑣𝑠)|{𝑟,𝑠}⊆{1,2,…,𝑛} , 

(c) |𝐸|𝐹 = ∑ |𝜔𝐹(𝑣𝑟 , 𝑣𝑠)|{𝑟,𝑠}⊆{1,2,…,𝑛} . 

On the other hand, sometimes we are particularly concerned about the number of non-void 

edges in an ordinary CNG1. In other words, we just want to know how many edges {𝑣𝑖 , 𝑣𝑗} with: 

𝜔(𝑣𝑖 , 𝑣𝑗) ≠ (0,0,0). 

Instead of a mere visual interpretation, we must however form a precise definition as follows: 

Definition 15. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary CNG1. Let 𝑉 = {𝑣1,𝑣2,…,𝑣𝑛} to be the vertex set of 𝜉. Then, 

the number of non-void edges of 𝜉, denoted as 𝑀𝜉 , is defined to be the cardinality of the set: 
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{ {𝑣𝑖 , 𝑣𝑗} ⊆ 𝑉 | 𝜔(𝑣𝑖 , 𝑣𝑗) ≠ (0,0,0) }. 

Definition 16. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary CNG1. Let 𝑉 = {𝑣1,𝑣2,…,𝑣𝑛} to be the vertex set of 𝜉. Then, 

the number of vertices of 𝜉, denoted as 𝑁𝜉 , is defined to be the cardinality of the set 𝑉 itself. 

Remark 12. In this paper, we often deal with both 𝑀𝜉  and 𝑁𝜉  at the same time. Thus, we will not denote 𝑁𝜉  

as |𝑉|. 

Remark 13. By Definition 7, 𝑉 is non-void, so 𝑁𝜉 ≥ 1 follows. 

Lemma 1. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary CNG1. Let 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} be the vertex set of 𝜉. Then, for 

each i: 

(a) 𝐷𝑇(𝑣𝑖) = ∑ 𝜔𝑇(𝑣𝑟 , 𝑣𝑖)
𝑛
𝑟=1  + 𝜔𝑇(𝑣𝑖 , 𝑣𝑖), 

(b) 𝐷𝐼(𝑣𝑖) = ∑ 𝜔𝐼(𝑣𝑟 , 𝑣𝑖)
𝑛
𝑟=1  + 𝜔𝐼(𝑣𝑖 , 𝑣𝑖), 

(c) 𝐷𝐹(𝑣𝑖) = ∑ 𝜔𝐹(𝑣𝑟 , 𝑣𝑖)
𝑛
𝑟=1  + 𝜔𝐹(𝑣𝑖 , 𝑣𝑖). 

Proof. Since ξ is ordinary, 𝜔(𝑣𝑟 , 𝑣𝑖) = 𝜔(𝑣𝑖 , 𝑣𝑟) for all i and r. The lemma thus follows. □ 

Lemma 2. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 to be an ordinary CNG1. If 𝜉 is simple. then, for each i: 

(a) 𝐷𝑇(𝑣𝑖) = ∑ 𝜔𝑇(𝑣𝑖 , 𝑣𝑟)𝑟∈{1,2,…,𝑛}−{𝑖} , 

(b) 𝐷𝐼(𝑣𝑖) = ∑ 𝜔𝐼(𝑣𝑖 , 𝑣𝑟)𝑟∈{1,2,…,𝑛}−{𝑖} , 

(c) 𝐷𝐹(𝑣𝑖) = ∑ 𝜔𝐹(𝑣𝑖 , 𝑣𝑟)𝑟∈{1,2,…,𝑛}−{𝑖} . 

Proof. Since ξ is simple, 𝜔(𝑣𝑖 , 𝑣𝑖) = (0,0,0) for all i. The lemma thus follows. □ 

Lemma 3. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary CNG1. Let 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} be the vertex set of 𝜉. Then, for 

each i: 

(a) |𝐷|𝑇(𝑣𝑖) = ∑ |𝜔𝑇(𝑣𝑟 , 𝑣𝑖)|
𝑛
𝑟=1  + |𝜔𝑇(𝑣𝑖 , 𝑣𝑖)|, 

(b) |𝐷|𝐼(𝑣𝑖) = ∑ |𝜔𝐼(𝑣𝑟 , 𝑣𝑖)|
𝑛
𝑟=1  + |𝜔𝐼(𝑣𝑖 , 𝑣𝑖)|, 

(c) |𝐷|𝐹(𝑣𝑖) = ∑ |𝜔𝐹(𝑣𝑟 , 𝑣𝑖)|
𝑛
𝑟=1  + |𝜔𝐹(𝑣𝑖 , 𝑣𝑖)|. 

Proof. The arguments are similar to Lemma 1. □ 

Lemma 4. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary CNG1. If 𝜉 is simple. then, for each i: 

(a) |𝐷|𝑇(𝑣𝑖) = ∑ |𝜔𝑇(𝑣𝑖 , 𝑣𝑟)|𝑟∈{1,2,…,𝑛}−{𝑖} , 

(b) |𝐷|𝐼(𝑣𝑖) = ∑ |𝜔𝐼(𝑣𝑖 , 𝑣𝑟)|𝑟∈{1,2,…,𝑛}−{𝑖} , 

(c) |𝐷|𝐹(𝑣𝑖) = ∑ |𝜔𝐹(𝑣𝑖 , 𝑣𝑟)|𝑟∈{1,2,…,𝑛}−{𝑖} . 

Proof. The arguments are similar to Lemma 2. □ 

Lemma 5. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary CNG1. Then ∑ |𝐷|(𝑣𝑟)
𝑛
𝑟=1  = (0,0,0) if and only if |𝐷|(𝑣𝑖) = 

(0,0,0) for all 𝑖. 

Proof. Without loss of generality, since |𝐷|𝑇(𝑣𝑖) = ∑ |𝜔𝑇(𝑣𝑖 , 𝑣𝑟)|
𝑛
𝑟=1  + |𝜔𝑇(𝑣𝑖 , 𝑣𝑖)| by Definition 13, it 

is always a non-negative real number. Thus, in order that ∑ |𝐷|𝑇(𝑣𝑟)
𝑛
𝑟=1  = 0, there can be only one 

possibility: all |𝐷|𝑇(𝑣𝑖) must be zero. □ 

Remark 14. A similar statement does not hold for the resultant degree. 

We now proceed with two of our theorems which both serve as generalizations of the well-

known theorem in classical literature: 
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“For an ordinary graph, the sum of the degree of all its vertices is always twice the number of 

its edges.” 

Theorem 1. Let 𝜉 = 〈𝑉, 𝜌,𝜔〉 be an ordinary CNG1. Then ∑ 𝐷(𝑣𝑟)
𝑛
𝑟=1  =  2𝐸𝜉. 

Proof. As 𝐷(𝑣𝑖) =(𝐷𝑇(𝑣𝑖), 𝐷𝐼(𝑣𝑖), 𝐷𝐹(𝑣𝑖)) for all i, and 𝐸ξ = (𝐸𝑇 , 𝐸𝐼 , 𝐸𝐹). Without loss of generality, it 

suffices to prove that 2𝐸𝑇 = ∑ 𝐷𝑇(𝑣𝑟)
𝑛
𝑟=1 : 

𝐸𝑇 = ∑ 𝜔𝑇(𝑣𝑟 , 𝑣𝑠){𝑟,𝑠}⊆{1,2,…,𝑛}  = ∑ 𝜔𝑇(𝑣𝑟 , 𝑣𝑠){𝑟,𝑠}⊆{1,2,…,𝑛}
𝑟≠𝑠

 + ∑ 𝜔𝑇(𝑣𝑟 , 𝑣𝑟)
𝑛
𝑟=1 . 

Since {𝑟, 𝑠} = {𝑠, 𝑟} for all 𝑠 and 𝑟, it follows that: 

2𝐸𝑇 = 2 ∑ 𝜔𝑇(𝑣𝑟 , 𝑣𝑠){𝑟,𝑠}⊆{1,2,…,𝑛}
𝑟≠𝑠

 + 2 ∑ 𝜔𝑇(𝑣𝑟 , 𝑣𝑟)
𝑛
𝑟=1  

= ∑ 𝜔𝑇(𝑣𝑟 , 𝑣𝑠)𝑟∈{1,2,…,𝑛}

𝑠∈{1,2,…,𝑛}
𝑟≠𝑠

 + 2 ∑ 𝜔𝑇(𝑣𝑟 , 𝑣𝑟)
𝑛
𝑟=1  

= ∑ 𝜔𝑇(𝑣𝑟 , 𝑣𝑠)𝑟∈{1,2,…,𝑛}

𝑠∈{1,2,…,𝑛}

 + ∑ 𝜔𝑇(𝑣𝑟 , 𝑣𝑟)
𝑛
𝑟=1  

= ∑ ∑ 𝜔𝑇(𝑣𝑟 , 𝑣𝑠)
𝑛
𝑠=1

𝑛
𝑟=1  + ∑ 𝜔𝑇(𝑣𝑟 , 𝑣𝑟)

𝑛
𝑟=1  

= ∑ ( ∑ 𝜔𝑇(𝑣𝑟 , 𝑣𝑠)
𝑛
𝑠=1

𝑛
𝑟=1  + 𝜔𝑇(𝑣𝑟 , 𝑣𝑟) ) 

      = ∑ 𝐷𝑇(𝑣𝑟)
𝑛
𝑟=1 . 

This completes the proof. □ 

Theorem 2. Let 𝜉 = 〈𝑉, 𝜌,𝜔〉 be an ordinary CNG1. Then ∑ |𝐷|(𝑣𝑟)
𝑛
𝑟=1 = 2|𝐸|𝜉. 

Proof. The arguments are similar to Theorem 1 and can be easily proven by replacing all the terms 

𝜔𝑇(𝑣𝑖 , 𝑣𝑗) with |𝜔𝑇(𝑣𝑖 , 𝑣𝑗)|. □ 

Lemma 6. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary CNG1, with ∑ 𝐷(𝑣𝑟)
𝑛
𝑟=1  = (0,0,0). If 𝑀𝜉 > 0, then 𝑀𝜉 ≥ 2. 

Proof. By Theorem 1, ∑ 𝐷(𝑣𝑟)
𝑛
𝑟=1  =  2𝐸𝜉 , so 𝐸𝜉  = (0,0,0) as well. 

If only one edge is non-void, then 𝜔(𝑣𝑟0 , 𝑣𝑠0) ≠ (0,0,0) only for one particular set {𝑟0, 𝑠0}. This 

implies that: 

𝐸𝑇 = ∑ 𝜔𝑇(𝑣𝑟 , 𝑣𝑠){𝑟,𝑠}⊆{1,2,…,𝑛}  = 𝜔𝑇(𝑣𝑟0 , 𝑣𝑠0),

𝐸𝐼  = ∑ 𝜔𝐼(𝑣𝑟 , 𝑣𝑠){𝑟,𝑠}⊆{1,2,…,𝑛}  = 𝜔𝐼(𝑣𝑟0 , 𝑣𝑠0),

𝐸𝐹  = ∑ 𝜔𝐹(𝑣𝑟 , 𝑣𝑠){𝑟,𝑠}⊆{1,2,…,𝑛}  = 𝜔𝐹(𝑣𝑟0 , 𝑣𝑠0),

which contradicts the statement that 𝐸𝜉  = (0,0,0). □ 

Since 𝑀𝜉 ≥ 2, one may have thought either 𝑀𝜉  or 𝑁𝜉  must be even. However, this is proven to 

be false, even by letting 𝜉  to be simple and by letting 𝐷(𝑣) = (0,0,0) for all i, as shown by the 

following counter-example (Figure 3): 

Figure 3. A counterexample, showing that 𝑀𝜉 or 𝑁𝜉  need not be even. 𝐚 = (
1

5
e𝒾2𝜋,

1

5
e𝒾
4

3
𝜋,
1

5
e𝒾
2

3
𝜋), 𝐛 =

(
1

5
e𝒾
4

3
𝜋,
1

5
e𝒾
2

3
𝜋,
1

5
e𝒾2𝜋), 𝐜 = (

1

5
e𝒾
2

3
𝜋,
1

5
e𝒾2𝜋,

1

5
e𝒾
4

3
𝜋). 
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for which 𝑀𝜉 = 7, 𝑁𝜉 = 5, and with all vertices being end-points of some edges. Moreover, such a 

result is not related to the value of 𝜌(𝑣) for any of the vertex 𝑣. 

This motivates to consider what is the least possible values of 𝑀𝜉  and 𝑁𝜉 , for the special case of 

an ordinary 𝜉 being simple, with 𝐷(𝑣) = (0,0,0) and 𝜌(𝑣) = (1,0,0) for all of its vertices 𝑣. 

6. The Shortest CNG1 of Certain Conditions

We now proceed with the following definitions. 

Definition 17. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary CNG1. 𝜉 is said to be net if all of the following are satisfied: 

(a) 𝜉 is simple. 

(b) 𝜉 is connected. 

(c) for all 𝑣 ∈ 𝑉, 𝐷(𝑣) = (0,0,0) and 𝜌(𝑣) = (1,0,0). 

Furthermore, 𝜉 is said to be trivial if the entire 𝜉 consist of one single vertex 𝑣 with 𝜌(𝑣) = 

(1,0,0). 

On the other hand, 𝜉 is said to be gross if it is not net. 

Lemma 7. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be a non-trivial net CNG1. Then each vertex must have least two non-void edges 

adjacent to it. 

Proof. Let 𝑣 ∈ 𝑉. Since 𝑁ξ ≥ 2 and 𝜉 is connected, there must exist a non-void edge {𝑣, 𝑢} for some 

𝑢 ∈ 𝑉 − {𝑣}. 

If {𝑣, 𝑢}  is the only non-void edge adjacent to 𝑣 , then 𝐷(𝑣)  = 𝜔(𝑣, 𝑢)  ≠  (0,0,0) . This a 

contradiction. □ 

Theorem 3. Let 𝜉 = 〈𝑉, 𝜌,𝜔〉 be a non-trivial net CNG1. Then 𝑀𝜉 ≥ 4. Moreover, two of those non-void 

edges must be {𝑎, 𝑏} and {𝑎, 𝑐}, for some mutually distinct vertices 𝑎, 𝑏, 𝑐. 

Proof. Since 𝑁𝜉 ≥ 2 and 𝜉 is connected, non-void edge(s) must exist, so 𝑀𝜉 > 0. Furthermore, D(v) 

= (0,0,0) for all 𝑣 ∈ 𝑉 would imply ∑ 𝐷(𝑣)𝑣∈𝑉  = (0,0,0). 𝑀𝜉 ≥ 2 now follows by Lemma 6.  

Let 𝑎 be an end-point of some of those non-void edges. From Lemma 7, we conclude that at 

least two non-void edges must be adjacent to 𝑎. 

Since 𝜉 is simple, it now follows that those 2 non-void edges must be {𝑎, 𝑏} and {𝑎, 𝑐}, with 𝑎, 

𝑏, 𝑐 being 3 mutually distinct vertices of 𝜉. 

If 𝑀𝜉 = 2: 

{𝑎, 𝑏} and {𝑎, 𝑐} are therefore the only two non-void edges. By Lemma 7, both {𝑎, 𝑏} and {𝑎, 𝑐} 

must be adjacent to 𝑏. This is a contradiction. 

If 𝑀𝜉 = 3: 

There can only be one more non-void edges besides {𝑎, 𝑏} and {𝑎, 𝑐}. 

By Lemma 7: 𝑏 must be an end-point of another non-void edge besides {𝑎, 𝑏}; and c must also 

be an end-point of another non-void edge besides {𝑎, 𝑐}. 

We now deduce that the third non-void edge must therefore be adjacent to both 𝑏 and 𝑐. This 

yields Figure 4: 

Since {𝑎, 𝑏} and {𝑐, 𝑎} are non void, 𝜔(𝑎, 𝑏) = 𝐤 = −𝜔(𝑐, 𝑎) for some 𝐤 ≠ (0,0,0). 

Since {𝑏, 𝑐} is adjacent to both 𝑏 and 𝑐, 𝜔(𝑏, 𝑐) = 𝐤 = −𝐤. This is again a contradiction. 

𝑀𝜉 ≥ 4 now follows. □ 

Theorem 4. Let 𝜉 = 〈𝑉, 𝜌,𝜔〉 be a non-trivial net CNG1. Then 𝑀𝜉 ≥ 4 and 𝑁𝜉 ≥ 4. 
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Proof. By Theorem 3, 𝑀𝜉 ≥ 4, and two of those non-void edges must be {𝑎, 𝑏} and {𝑎, 𝑐}, for some 

mutually distinct vertices 𝑎, 𝑏, 𝑐. 

Suppose 𝑁𝜉 < 4. Since ξ is simple, the maximum possible number of edges (whether it is void 

or not) is 3 +
3

2
(3 − 3) = 3 < 4, which is a contradiction. 𝑁𝜉 ≥ 4 now follows. □

Figure 4. The triangle formed when {𝑎, 𝑏}, {𝑎, 𝑐} and {𝑏, 𝑐} are all non-void. Mentioned in Theorem 

3, 6. 

Theorem 5. The smallest non-trivial net CNG1 must be of the structure in Figure 5: 

Figure 5. The smallest non-trivial net CNG1. Mentioned in Theorem 5 and Example 4. 𝐤 ≠ (0,0,0). 

Proof. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be a non-trivial net CNG1. By Theorem 4, 𝑀𝜉 ≥ 4 and 𝑁𝜉 ≥ 4. By Theorem 

3, two of those non-void edges must be {𝑎, 𝑏} and {𝑎, 𝑐}, with 𝑎, 𝑏, 𝑐 being three mutually distinct 

vertices of 𝜉. 

Consider the scenario where 𝑀𝜉 = 4 and 𝑁𝜉 = 4 (i.e., the least possible number). 

If the edge {𝑏, 𝑐} is non-void, then we would have formed Figure 4, as mentioned in the proof 

of Theorem 3 

That leaves us with only one vertex 𝑑 and only one extra non-void edge being adjacent to 𝑑. 

This is a contradiction. 

There is now only one choice left: both the edges {𝑑, 𝑏} and {𝑑, 𝑐} must be non-void. This gives 

rise to the following structure in Figure 6: 

Without loss of generality, let 𝜔(𝑎, 𝑏) = 𝐤. Then both 𝜔(𝑏, 𝑑) = −𝐤 and 𝜔(𝑎, 𝑐) = −𝐤 must 

follow, leaving us with 𝜔(𝑐, 𝑑) = 𝐤 as the only valid option. 

We are therefore left with the only way of assigning 𝜔 as shown by the theorem. □ 

Lemma 8. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be a non-trivial net CNG1. Then 𝑀𝜉 ≥ 𝑁𝜉 . 

Proof. Every single non-void edge is connected to two vertices. Thus, if we count the total number of 

adjacent non-void edges for each vertex, and then summing the results for all the vertices together, 

the result will be 2𝑀𝜉  (note: this paragraph is analogous to classical graph theory).  

By Lemma 7, each vertex must have at least two non-void edges connect to it. We now have 

2𝑀𝜉 ≥ 2𝑁𝜉, so 𝑀𝜉 ≥ 𝑁𝜉  follows. □ 
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Theorem 6. Let 𝜉 = 〈𝑉, 𝜌,𝜔〉 be a non-trivial net CNG1 with both 𝑀𝜉  and 𝑁𝜉  being odd numbers. Then 

𝑀𝜉 ≥ 7 and 𝑁𝜉 ≥ 5. 

Proof. Let ξ = 〈𝑉, 𝜌, 𝜔〉 be a non-trivial net CNG1. By Theorem 4, 𝑀𝜉 ≥ 4 and 𝑁𝜉 ≥ 4. By Theorem 

3, two of those non-void edges must be {𝑎, 𝑏} and {𝑎, 𝑐}, for some 𝑎, 𝑏 and 𝑐 being three mutually 

distinct vertices of 𝜉. 

Since both 𝑀𝜉  and 𝑁𝜉  are odd, it follows that 𝑀𝜉 ≥ 5 and 𝑁𝜉 ≥ 5. So in addition to 𝑎, 𝑏, 𝑐, 

there exist another 2 vertices 𝑑, 𝑒. 

Consider the scenario where 𝑀𝜉 = 5 and 𝑁𝜉 = 5 (i.e., the least possible number). 

Figure 6. The only choices left because eace vertex must have at least 2 adjacent non void edges. 

Mentioned in Theorem 5, 6. 

Case 1. Suppose the edge {𝑏, 𝑐}  is non-void. Then we would have formed Figure 4, as 

mentioned in the proof of Theorem 3. 

That leaves us with two vertices 𝑑 and 𝑒, and two extra non-void edge, which both of them 

must be adjacent to 𝑑 . Even if {𝑑, 𝑒} is non-void, the other non-void edge adjacent to 𝑑  cannot 

possibly be {𝑑, 𝑒} itself. Therefore, we have, at most, one non-void edge being adjacent to 𝑒. This is 

a contradiction. 

Case 2. Without loss of generality, suppose the edges {𝑏, 𝑑} and {𝑐, 𝑑} are non-void. Then we 

would have formed Figure 6, as mentioned in the proof of Theorem 5. 

That leaves us with only one vertex 𝑒 and only one extra edge being adjacent to 𝑒, which is, 

again, a contradiction. 

Case 3. Without loss of generality, suppose the edges {𝑏, 𝑑} and {𝑐, 𝑒} are non-void. Then, 

besides {𝑏, 𝑑}, another edge must be adjacent to 𝑑. Likewise, besides {𝑐, 𝑒}, another edge must be 

adjacent to 𝑒. Since we are left with one edge, it must, therefore, be {𝑑, 𝑒}. This gives rise to the 

following structure in Figure 7: 

Figure 7. The only choice left for the case of 5 non-void edges connecting to 5 vertices. Mentioned in 

Theorem 6. 
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Without loss of generality, let 𝜔(𝑎, 𝑏) = 𝐤. Then both 𝜔(𝑏, 𝑑) = −𝐤 and 𝜔(𝑎, 𝑐) = −𝐤 must 

follow, leaving us with both 𝜔(𝑐, 𝑒) = 𝐤 and 𝜔(𝑑, 𝑒) = 𝐤. 

We have, thus, arrived at 𝐷(𝑒) = 2𝐤 ≠ (0,0,0), again a contradiction. 

Hence, it is either 𝑀𝜉 > 5 or 𝑁𝜉 > 5. 

Since both 𝑀𝜉  and 𝑁𝜉  are odd, either one of the following must hold: 

(a) 𝑀𝜉 ≥ 7 and 𝑁𝜉 ≥ 7. 

(b) 𝑀𝜉 = 7 and 𝑁𝜉 = 5. 

(c) 𝑀𝜉 = 5 and 𝑁𝜉 = 7. 

Furthermore, by Lemma 8, 𝑀𝜉 ≥ 𝑁𝜉 . Hence (c) will not occur, which implies that 𝑀𝜉 ≥ 7 and 

𝑁ξ ≥ 5. This completes the proof. □ 

Theorem 7. The smallest non-trivial net CNG1 𝜉, with both 𝑀𝜉  and 𝑁𝜉  being odd numbers, must be of the 

structure as shown in Figure 8: 

Figure 8. The smallest non-trivial net CNG1, with both Mξ and Nξ being odd numbers. . Mentioned 

in Theorem 7 and Example 5. 𝐩 + 𝐪 + 𝐫 = (0,0,0); |𝐩 + 𝐫|, |𝐪 + 𝐫| ≤ 1. 

Proof. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be a non-trivial net CNG1 with both 𝑀𝜉  and 𝑁𝜉  being odd numbers. Then 

𝑀𝜉 ≥ 7 and 𝑁𝜉 ≥ 5. 

Consider the scenario where 𝑀𝜉 = 7 and 𝑁𝜉 = 5 (i.e., the least possible number). 

Since ξ is an ordinary CNG1, each vertex must have 5 edges adjacent to it (whether void or not). 

Since ξ is simple, one of the five edges for each vertex, which is a loop, must be void. As a result, we 

now conclude that each vertex must have at most 4 non-void edges adjacent to it. 

On the other hand, by Lemma 7, each vertex must have at least two non-void edges adjacent to it. 

Since every single non-void edge is adjacent to two vertices. Thus, if we count the total number 

of adjacent non-void edges for each vertex, and then summing the results for all the vertices together, 

the result will be 7 × 2 = 14 (note: this paragraph is analogous to classical graph theory). 

Hence, the set representing the number of non-void edges adjacent to each of the five vertices, 

must be one of the following: 

(a) {2,3,3,3,3} (most “widely spread” possibility) 

(b) {2,2,3,3,4} 
(c) {2,2,2,4,4} (most “concentrated” possibility) 

We now consider each the three cases: 

Case 1. {2,3,3,3,3} 

Without loss of generality: 

Let 𝑎 be that one vertex which is an end-point to only 2 non-void edges {𝑎, 𝑏} and 

{𝑎, 𝑐}. (i.e., {𝑎, 𝑑}, {𝑎, 𝑒} are void) (Figure 9) 
(9) 

Then, each one among 𝑏, 𝑐, 𝑑, 𝑒 must be an end-point of three non-void edges. 

Besides {𝑑, 𝑎} and {𝑑, 𝑑}, which are both void, there are three more edges adjacent to 𝑑: {𝑑, 𝑏}, 

{𝑑, 𝑐}, {𝑑, 𝑒}. 
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Figure 9. The 2 non-void edges {𝑎, 𝑏} and {𝑎, 𝑐}, for all the 3 cases of Theorem 7. 

Since d is an end-point of exactly three non-void edges, we conclude that: 

{𝑑, 𝑏}, {𝑑, 𝑐}, {𝑑, 𝑒} are all non-void (10) 

Similarly, besides {𝑒, 𝑎} and {𝑒, 𝑒}, which are both void, there are three more edges adjacent to 

𝑒: {𝑒, 𝑏}, {𝑒, 𝑐}, {𝑒, 𝑑}. 

Since e is also an end-point of exactly three non-void edges, we conclude that: 

{𝑒, 𝑏}, {𝑒, 𝑐}, {𝑒, 𝑑} are all non-void. (11) 

From (10) and (11), we conclude that: 

{𝑑, 𝑏}, {𝑑, 𝑐}, {𝑒, 𝑏}, {𝑒, 𝑐}, {𝑑, 𝑒} = {𝑒, 𝑑} are all non void. (12) 

From (9) and (12), we have obtained all the seven non-void edges: 

{𝑑, 𝑏}, {𝑑, 𝑐}, {𝑒, 𝑏}, {𝑒, 𝑐}, {𝑑, 𝑒}, {𝑎, 𝑏}, {𝑎, 𝑐}. 

Hence, {𝑏, 𝑐}, {𝑎, 𝑑}, {𝑎, 𝑒} must be all void. We, thus, obtain the following structure (Figure 10): 

Figure 10. The only possible way of connection for {2,3,3,3,3}. 

Let 𝜔(𝑎, 𝑏) = p, 𝜔(𝑏, 𝑑) = q, 𝜔(𝑏, 𝑒) = r, 𝜔(𝑐, 𝑑) = s, 𝜔(𝑐, 𝑒) = t, 𝜔(𝑑, 𝑒) = u. 

Since {𝑎, 𝑏} and {𝑎, 𝑐} are the only two non-void edges adjacent to 𝑎, we now have 𝜔(𝑎, 𝑐) = 

−𝐩 (Figure 11). 

Figure 11. The labeling of the non-void edges for {2,3,3,3,3}. 
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We how have: 𝐫 + 𝐪 + 𝐩 = 𝐬 + 𝐭 − 𝐩 = 𝐬 + 𝐪 + 𝐮 = 𝐫 + 𝐭 + 𝐮 = (0,0,0). 

This further implies that: 𝐫 + 𝐪 + 𝐩 + 𝐬 + 𝐭 − 𝐩 = 𝐬 + 𝐪 + 𝐮 + 𝐫 + 𝐭 + 𝐮 = (0,0,0). 

Therefore, 𝐪 + 𝐫 + 𝐬 + 𝐭 = 𝐪 + 𝐫 + 𝐬 + 𝐭 + 2𝐮 , which implies that 𝐮 = (0,0,0) . This is a 

contradiction. 

Case 2. {2,2,3,3,4} 

Without loss of generality: 

Let 𝑎 be a vertex which is an end-point to only two non-void edges {𝑎, 𝑏} and {𝑎, 𝑐}. 

(i.e., {𝑎, 𝑑}, {𝑎, 𝑒} are void) 
(13) 

as shown in Figure 9. 

Since {𝑎, 𝑑}, {𝑎, 𝑒} are void, both 𝑑 and 𝑒 cannot be that vertex which is an end-point to four 

non-void edges. 

By symmetry, fix 𝑏 to be that vertex which is an end-point to four non-void edges. Then: 

{𝑏, 𝑎}, {𝑏, 𝑐}, {𝑏, 𝑑}, {𝑏, 𝑒} are all non-void. (14) 

From (13) and (14), we have now arrived at the following structure (Figure 12): 

Figure 12. The first 5 non-void edges for {2,2,3,3,4}. 

Suppose {𝑑, 𝑒} is void. Then exactly one out of {𝑑, 𝑐} and {𝑑, 𝑎} must be non-void. Similarly, 

exactly one out of {𝑒, 𝑐}  and {𝑒, 𝑎}  must be non-void. By symmetry and the rules of graph 

isomorphism, fix {𝑑, 𝑎} to be non-void, then 𝑎 would have been an end-point of three non-void 

edges: {𝑑, 𝑎}, {𝑏, 𝑎}, {𝑐, 𝑎}. So {𝑒, 𝑎} must be void and, therefore, {𝑒, 𝑐} is non-void. We, thus, obtain 

the following structure (Figure 13): 

Figure 13. The only possible way of connection for {2,2,3,3,4}, if {𝑑, 𝑒} is void. 

Suppose {𝑑, 𝑒} is non-void. Then we now arrived at the following structure (Figure 14): 

Figure 14. The first 6 non-void edges for {2,2,3,3,4}, for the case of non-void {𝑑, 𝑒}. 
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By symmetry, fix 𝑎 to be a vertex which is an end-point of three non-void edges. Then exactly 

one edge out of {𝑎, 𝑑} and {𝑎, 𝑒} must be non-void. By the rules of graph isomorphism, we can fix 

{𝑎, 𝑑} to be non-void. Again we obtain the following structure (Figure 15): 

Figure 15. The only possible way of connection for {2,2,3,3,4}, if {𝑑, 𝑒} is non-void. 

Let 𝜔(𝑎, 𝑏) = g, 𝜔(𝑐, 𝑏) = h, 𝜔(𝑎, 𝑐) = k, 𝜔(𝑏, 𝑑) = p, 𝜔(𝑏, 𝑒) = q. 

Since {𝑎, 𝑑} and {𝑏, 𝑑} are the only two non-void edges adjacent to 𝑑, we now have 𝜔(𝑎, 𝑑) = 

−𝐩. 

Likewise, since {𝑐, 𝑒} and {𝑏, 𝑒} are the only two non-void edges adjacent to 𝑒, we now have 

𝜔(𝑐, 𝑒) = −𝐪 (Figure 16). 

Figure 16. The labeling of the non-void edges for {2,2,3,3,4}. 

We how have: 𝐩 + 𝐪 + 𝐠 + 𝐡 = 𝐠 + 𝐤 − 𝐩 = 𝐡 + 𝐤 − 𝐪 = (0,0,0). 

Therefore, 𝐠 = 𝐩 − 𝐤, 𝐡 = 𝐪 − 𝐤 . As a result: 𝐩 + 𝐪 + 𝐩 − 𝐤 + 𝐪 − 𝐤 = 2𝐩 + 2𝐪 − 2𝐤 = (0,0,0), 

which implies 𝐩 + 𝐪 − 𝐤 = (0,0,0). 

Denote −𝐤 = 𝐫 . Then 𝐠 = 𝐩 + 𝐫 , 𝐡 = 𝐪 + 𝐫, and 𝐩 + 𝐪 + 𝐫 = (0,0,0) follows. We have, thus, 

formed the structure as mentioned in this theorem. 

Case 3. {2,2,2,4,4} 

Without loss of generality: 

Let 𝑎 be one of that two vertices which is an end-point to four non-void edges. Then: 

{𝑎, 𝑏}, {𝑎, 𝑐}, {𝑎, 𝑑}, {𝑎, 𝑒} are non-void. (15) 

Let 𝑏 be the other one vertices which is also an end-point to four non-void edges. Then: 

{𝑏, 𝑎}, {𝑏, 𝑐}, {𝑏, 𝑑}, {𝑏, 𝑒} are non-void. (16) 

From (15) and (16), we have obtained the seven non-void edges: 

{𝑎, 𝑐}, {𝑎, 𝑑}, {𝑎, 𝑒}, {𝑏, 𝑐}, {𝑏, 𝑑}, {𝑏, 𝑒}, {𝑎, 𝑏}. 

Hence, {𝑐, 𝑑}, {𝑐, 𝑒}, {𝑑, 𝑒} are all void. We, thus, obtain the following structure (Figure 17): 
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Figure 17. The only possible way of connection for {2,2,2,4,4}. 

Let 𝜔(𝑏, 𝑑) = p, 𝜔(𝑏, 𝑒) = q, 𝜔(𝑏, 𝑐) = r, 𝜔(𝑏, 𝑎) = s, 

Since {𝑎, 𝑑} and {𝑏, 𝑑} are the only two non-void edges adjacent to 𝑑, we now have 𝜔(𝑎, 𝑑) = 

−𝐩. 

Since {𝑎, 𝑒} and {𝑏, 𝑒} are the only two non-void edges adjacent to 𝑒, we now have 𝜔(𝑎, 𝑒) = 

−𝐪. 

Since {𝑎, 𝑐} and {𝑏, 𝑐} are the only two non-void edges adjacent to 𝑐, we now have 𝜔(𝑎, 𝑐) = 

−𝐫 (Figure 18). 

Figure 18. The labeling of the non-void edges for {2,2,2,4,4}. 

We how have: 𝐬 + 𝐩 + 𝐪 + 𝐫 = 𝐬 − 𝐩 − 𝐪 − 𝐫 = (0,0,0). 

This further implies that: 𝐬 + 𝐩 + 𝐪 + 𝐫 + 𝐬 − 𝐩 − 𝐪 − 𝐫 = (0,0,0). 

We now have 2𝐬 = (0,0,0), which implies that 𝐬 = (0,0,0). This is a contradiction. 

Our proof is now complete. □ 

Note that both 5 and 7 are not divisible even by 3, the next prime number after 2. This yields the 

following corollary: 

Corollary 1. The smallest non-trivial net CNG1 𝜉, with both 𝑀𝜉  and 𝑁𝜉  not divisible by 2 or 3, must also be 

of the structure as shown in Figure: 

7. Symmetric Properties of Ordinary Simple CNG1

Definition 18. Let 𝑉  and 𝑊 be two non-void sets. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 and 𝜁 = 〈𝑊, 𝜍, 𝜓〉 be two ordinary 

CNG1s. If 𝑉 = 𝑊, 𝜌 = 𝜍 and 𝜔 = 𝜓, then 𝜉 and 𝜁 are said to be equal, and shall be denoted by 𝜉 ≡ 𝜁. 

Definition 19. Let 𝑉  and 𝑊  be a non-void set. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉  and 𝜁 = 〈𝑊, 𝜍, 𝜓〉  be two ordinary 

CNG1s. If there exist a bijection 𝒻: 𝑉 → 𝑊 such that: 

(a) 𝜌(𝑢) = 𝜍(𝒻(𝑢)) for all 𝑢 ∈ 𝑉. 

(b) 𝜔(𝑢, 𝑣) = 𝜓(𝒻(𝑢), 𝒻(𝑣)) for all 𝑢, 𝑣 ∈ 𝑉. 

Then: 

(i) Such 𝒻 is said to be an isomorphism from 𝜉 to 𝜁, and we shall denote such case by 𝒻[𝜉] ≡ 𝜁. 

(ii) 𝜉 and 𝜁 are said to be isomorphic, and shall be denoted by 𝜉 ≅ 𝜁. 
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Remark 15. As both 𝜉 and 𝜁 are ordinary, 𝜔(𝑢, 𝑣) = 𝜔(𝑣, 𝑢) and 𝜓(𝒻(𝑢), 𝒻(𝑣)) = 𝜓(𝒻(𝑣), 𝒻(𝑢)) follow 

for all 𝑢, 𝑣 ∈ 𝑉. 

Example 1. Consider 𝜉0 = 〈𝑉0, 𝜌0, 𝜔0〉 and 𝜁0 = 〈𝑊0, 𝜍0, 𝜓0〉 as follows: 

𝑉0 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6}. 𝑊0 = {𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6}. 

𝜌0(𝑣1) = 𝐩, 𝜌0(𝑣2) = 𝐪, 𝜌0(𝑣3) = 𝐭,  𝜍0(𝑤1) = 𝐭, 𝜍0(𝑤3) = 𝐩, 𝜍0(𝑤4) = 𝐬, 

𝜌0(𝑣4) = 𝜌0(𝑣6) = 𝐫, 𝜌0(𝑣5) = 𝐬.  𝜍0(𝑤2) = 𝜍0(𝑤4) = 𝐫, 𝜍0(𝑤6) = 𝐪. 

𝜔0(𝑣1, 𝑣2) = 𝜔0(𝑣2, 𝑣1) = 𝜔0(𝑣2, 𝑣2) = 𝐚, 𝜓0(𝑤1 , 𝑤2) = 𝜓0(𝑤2, 𝑤1) = 𝐝, 

𝜔0(𝑣1, 𝑣3) = 𝜔0(𝑣3, 𝑣1) = 𝐜,  𝜓0(𝑤1 , 𝑤3) = 𝜓0(𝑤3, 𝑤1) = 𝐜, 

𝜔0(𝑣2, 𝑣3) = 𝜔0(𝑣3, 𝑣2) = 𝐛, 𝜓0(𝑤1 , 𝑤4) = 𝜓0(𝑤4, 𝑤1) = 𝐞, 

𝜔0(𝑣3, 𝑣4) = 𝜔0(𝑣4, 𝑣3) = 𝐝, 𝜓0(𝑤4, 𝑤5) = 𝜓0(𝑤5, 𝑤4) = 𝐟, 

𝜔0(𝑣3, 𝑣5) = 𝜔0(𝑣5, 𝑣3) = 𝐞, 𝜓0(𝑤1 , 𝑤6) = 𝜓0(𝑤6, 𝑤1) = 𝐛, 

𝜔0(𝑣5, 𝑣6) = 𝜔0(𝑣6, 𝑣5) = 𝐟, 𝜓0(𝑤3, 𝑤6) = 𝜓0(𝑤6, 𝑤3) = 𝜓0(𝑤6, 𝑤6) = 𝐚, 

otherwise, 𝜔0(𝑢, 𝑣) = (0,0,0).  otherwise, 𝜓0(𝑤, 𝜈) = (0,0,0). 

Moreover, |{𝐩, 𝐪, 𝐫, 𝐬, 𝐭}| = 5 and |{𝐚, 𝐛, 𝐜, 𝐝, 𝐞, 𝐟}| = 6 (Figure 19). 

Figure 19. Two isomorphic CNG1’s, as mentioned in Example 1. 

Thus, we define the bijection 𝒻0: 𝑉 → 𝑊 as: 

𝒻0(𝑣1) = 𝑣3, 𝒻0(𝑣2) = 𝑣6, 𝒻0(𝑣3) = 𝑣1, 𝒻0(𝑣4) = 𝑣2, 𝒻0(𝑣5) = 𝑣4, 𝒻0(𝑣6) = 𝑣5. 

It now follows that 𝒻0 is an isomorphism from 𝜉0 to 𝜁0, so 𝜉0 ≅ 𝜁0. Still, 𝜉0 ≢ 𝜁0 in accordance with 

Definition 18. 

In all the following passages of this paper, let ℐ: 𝑉 → 𝑉 be the identity mapping from 𝑉 to itself. 

Like classical graph theory, whenever 𝜁 ≡ 𝜉 , ℐ  is an isomorphism from 𝜉  to 𝜉  itself in 

accordance with Definition 19. It is, therefore, motivational to investigate if there are other non-

identity bijections from 𝑉 to itself, which is also an isomorphism from 𝜉 to 𝜉 itself. Additionally, 

recall that, in classical graph theory, an isomorphism from a graph to itself will be called an 

automorphism on that graph. Thus, we proceed with the following definition: 

Definition 20. Let 𝑉 be a non-void set. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary CNG1’s. Let 𝒻: 𝑉 → 𝑉 be a bijection 

such that: 

(a) 𝜌(𝑢) = 𝜌(𝒻(𝑢)) for all 𝑢 ∈ 𝑉. 

(b) 𝜔(𝑢, 𝑣) = 𝜔(𝒻(𝑢), 𝒻(𝑣)) for all 𝑢, 𝑣 ∈ 𝑉. 

Then 𝒻 is said to be an automorphism of 𝜉. 

Remark 16. As 𝜉 is ordinary, 𝜔(𝑢, 𝑣) = 𝜔(𝑣, 𝑢) follows for all 𝑢, 𝑣 ∈ 𝑉. 
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Remark 17. Just because 𝜌(𝑢) = 𝜌(𝒻(𝑢)) and 𝜔(𝑢, 𝑣) = 𝜔(𝒻(𝑢), 𝒻(𝑣)), does not mean that 𝑢 = 𝒻(𝑢) or 

𝑣 = 𝒻(𝑣). 

Remark 18. ℐ is thus called the trivial automorphism of 𝜉. 

Example 2. Consider 𝜉1 = 〈𝑉1, 𝜌1, 𝜔1〉 as shown in Figure 20: 

𝑉1 = {𝑎, 𝑏, 𝑐, 𝑑}. 𝜌1(𝑎) = 𝜌1(𝑏) = 𝜌1(𝑑) = 𝐩, 𝜌1(𝑐) = 𝐪. 

𝜔1(𝑎, 𝑐) = 𝜔1(𝑐, 𝑎) = 𝐡, 𝜔1(𝑏, 𝑐) = 𝜔1(𝑐, 𝑏) = 𝜔1(𝑑, 𝑐) = 𝜔1(𝑐, 𝑑) = 𝐠, otherwise, 𝜔1(𝑢, 𝑣) = (0,0,0). 

|{𝐩, 𝐪}| = |{𝐠, 𝐡}| = 2. 

Figure 20. 𝜉1 as mentioned in Example 2. 

Let 𝒻1, 𝒷1 , 𝒽1: 𝑉1 → 𝑉1 be three bijections defined as follows: 

(a) 𝒻1(𝑐) = 𝑎, 𝒻1(𝑎) = 𝑑, 𝒻1(𝑑) = 𝑐, 𝒻1(𝑏) = 𝑏. 

(b) 𝒷1(𝑏) = 𝑎,𝒷1(𝑑) = 𝑑,𝒷1(𝑐) = 𝑐, 𝒷1(𝑎) = 𝑏. 

(c) 𝒽1(𝑏) = 𝑑,𝒽1(𝑎) = 𝑎,𝒽1(𝑐) = 𝑐, 𝒽1(𝑑) = 𝑏. 

Then: 

(i) 𝒻1 is an isomorphism from 𝑉1 to the following ordinary CNG1 (Figure 21). 

Figure 21. This is not an automorphism of 𝜉1 as mentioned in Example 2. 
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which is not equal to 𝜉1 in accordance with Definition 18. 𝒻1 is therefore not an automorphism of 𝜉1. 

(ii) 𝒷1 is an isomorphism from 𝑉1 to the following ordinary CNG1 (Figure 22). 

Figure 22. This is not an automorphism of 𝜉1 as mentioned in Example 2. 

which is also not equal to 𝜉1 in accordance with Definition 18. Likewise 𝒷1 is, therefore, not an automorphism 

of 𝜉1. 

(iii) 𝒽1 is an isomorphism from 𝑉1 to itself and, therefore, it is an automorphism of 𝜉1. Note that, even if 

𝒽1(𝑏) = 𝑑 and 𝒽1(𝑑) = 𝑏, as 𝜌1(𝑏) = 𝜌1(𝑑) = 𝐩 and 𝜔1(𝑏, 𝑐) = 𝜔1(𝑑, 𝑐) = 𝐠, so 𝒽1[𝜉1] ≡ 𝜉1 still 

holds. 

Definition 21. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary simple CNG1. 𝜉 is said to be total symmetric if, for all 

{𝑢1, 𝑣1}, {𝑢2, 𝑣2} ⊆ 𝑉 , with |{𝑢1, 𝑣1}| = |{𝑢2, 𝑣2}| , there exist an automorphism of 𝜉 , 𝒻 , such that 𝑢2 =

𝒻(𝑢1), 𝑣2 = 𝒻(𝑣1). 

Remark 19. In other words, {𝑢1, 𝑣1}, {𝑢2, 𝑣2} can either be two edges, or two vertices as when 𝑢1 = 𝑣1 and 

𝑢2 = 𝑣2. 

Example 3. With this definition, the following CNG1 (Figure 23) is, thus, totally-symmetric. 

Figure 23. A totally-symmetric CNG1, as mentioned in Example 3. 
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However, unlike symmetry of classical graphs, the concept of total symmetry takes all the edges into 

account, whether void or not. As a result, the following graph (Figure 24), though looks familiar to the classical 

literature, is not totally-symmetric. 

Figure 24. This graph is not totally-symmetric. Mentioned in Example 3. 

As a result, the concept of total-symmetry in ordinary simple CNG1 proves even more stringent 

than the concept of symmetry in classical ordinary simple graphs. Additionally, recall that edges and 

vertices in CNG1 have three membership values instead of only 0 (disconnected, void) and 1 

(connected). To give more characterization of symmetry among ordinary simple CNG1, we now 

proceed with the following definitions. 

Definition 22. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary simple CNG1. 𝜉 is said to be strong edge-wise symmetric 

(abbr. SES) if: For all {𝑢1, 𝑣1}, {𝑢2, 𝑣2} ⊆ 𝑉  with both 𝜔(𝑢1, 𝑣1) and 𝜔(𝑢2, 𝑣2) non-void, there exist an 

automorphism 𝒻 of 𝜉, such that 𝑢2 = 𝒻(𝑢1), 𝑣2 = 𝒻(𝑣1). 

Remark 20. As 𝜉 is simple, it follows that |{𝑢1, 𝑣1}| = |{𝑢2, 𝑣2}| = 2. 

Remark 21. An ordinary simple CNG1 with all edges being void is classified as strong edge-wise symmetric 

as well. 

Definition 23. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary simple CNG1. 𝜉 is said to be strong point-wise(or vertex-

wise) symmetric (abbr. SPS) if: For all 𝑢1, 𝑢2 ∈ 𝑉  with both 𝜌(𝑢1) and 𝜌(𝑢2) non-void, there exists an 

automorphism 𝒻 of 𝜉, such that 𝑢2 = 𝒻(𝑢1). 

Remark 22. An ordinary simple CNG1 with all vertices being void is classified as strong point-wise symmetric 

as well. 

Definition 24. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary simple CNG1. 𝜉 is said to be strong symmetric (abbr. SS) if 

it is both strong edge-wise symmetric and strong point-wise symmetric. 

Definition 25. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary simple CNG1. 𝜉 is said to be weak edge-wise symmetric 

(abbr. wES) if: For all {𝑢1, 𝑣1}, {𝑢2, 𝑣2} ⊆ 𝑉  with 𝜔(𝑢1, 𝑣1) = 𝜔(𝑢2, 𝑣2) ≠ (0,0,0) , there exists an 

automorphism 𝒻 of 𝜉, such that 𝑢2 = 𝒻(𝑢1), 𝑣2 = 𝒻(𝑣1). Otherwise, 𝜉 is said to be edge-wise asymmetric 

(abbr. EA). 

Remark 23. Again, as 𝜉 is simple, it follows that |{𝑢1, 𝑣1}| = |{𝑢2, 𝑣2}| = 2. 

Remark 24. An ordinary simple CNG1 with all non-void edges having different membership value is classified 

as weak edge-wise symmetric as well. 
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Definition 26. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary simple CNG1. 𝜉 is said to be weak point-wise (or vertex-

wise) symmetric (abbr. wPS) if: For all 𝑢1, 𝑢2 ∈ 𝑉  with 𝜌(𝑢1) = 𝜌(𝑢2) ≠ (0,0,0) , there exists an 

automorphism 𝒻 of 𝜉, such that 𝑢2 = 𝒻(𝑢1). Otherwise, 𝜉 is said to be point-wise asymmetric (abbr. PA). 

Remark 25. An ordinary simple CNG1 with all non-void vertices having different membership value is 

classified as weak point-wise symmetric as well. 

Definition 27. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary simple CNG1. 𝜉 is said to be asymmetric if it is both edge-

wise asymmetric and point-wise asymmetric. 

Based on the definition, we now state such symmetric properties on the smallest non-trivial net 

CNG1, as mentioned in Theorem 5, as well as the smallest non-trivial net CNG1 with both 𝑀ξ and 

𝑁ξ being odd numbers, as mentioned in Theorem 7. 

Example 4. With regards to the structure of Figure 5, as mentioned in Theorem 5, with 𝜌(𝑎) = 𝜌(𝑏) =

𝜌(𝑐) = 𝜌(𝑑) = (1,0,0). 

Consider the following three automorphisms 𝒻,𝒷, 𝒽 of 𝜉4,4: 

(a) 𝒻(𝑎) = 𝑏, 𝒻(𝑏) = 𝑎, 𝒻(𝑐) = 𝑑, 𝒻(𝑑) = 𝑐, 
(b) 𝒷(𝑎) = 𝑐, 𝒷(𝑏) = 𝑑,𝒷(𝑐) = 𝑎,𝒷(𝑑) = 𝑏, 

(c) 𝒽(𝑎) = 𝑑,𝒽(𝑏) = 𝑐, 𝒽(𝑐) = 𝑏, 𝒽(𝑑) = 𝑎, 

together with ℐ, the trivial automorphism of 𝜉. 

As a result, 𝜉4,4 is thus strong point-wise symmetric (SPS) and weak edge-wise symmetric (wES). 

Example 5. With regards to the structure of Figure 8, as mentioned in Theorem in Theorem 7, with 𝐩 + 𝐪 +

𝐫 = (0,0,0); |𝐩 + 𝐫|, |𝐪 + 𝐫| ≤ 1; and 𝜌(𝑎) = 𝜌(𝑏) = 𝜌(𝑐) = 𝜌(𝑑) = 𝜌(𝑒) = (1,0,0). 

In this case, as non-void vertices having different membership values, only one automorphism of 𝜉5,7, 

which is the identity mapping ℐ: 𝑉 → 𝑉 where ℐ(𝑣) = 𝑣 for all 𝑣 ∈ 𝑉. As ℐ(𝑎) ≠ 𝑏, 𝜉5,7 is, thus, point-wise 

asymmetric (PA). It is, nonetheless, weak edge-wise symmetric (wES). 

We now give an example of CNG1 which is asymmetric (i.e., both edge-wise and point-wise). 

Example 6. 𝜉 = 〈𝑉, 𝜌, 𝜔〉 has the structure as shown in Figure 25:

Figure 25. A 𝜉 which is both point-wise asymmetric and edge asymmetric, as mentioned in Example 6.

with |{𝐩, 𝐪, 𝐫}| = 3, |{𝐚, 𝐛}| = 2. 

Only the trivial automorphism ℐ can be formed. As ℐ(𝑎) ≠ 𝑑, 𝜉 is point-wise asymmetric. Moreover, as

ℐ(𝑎) ≠ 𝑏, 𝜉 is edge asymmetric.

We end this section by giving a conjecture, which shall be dealt with in our future work: 

Conjecture 1. The smallest non-trivial net CNG1 𝜉, with both 𝑀𝜉  and 𝑁𝜉  being odd numbers, and is both 

SPS and wES, must be of the structure as shown in Figure 26: 
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Figure 26. 𝜉 for conjecture 1. 𝐩 + 𝐪 + 𝐫 = (0,0,0). 

8. Conclusions

In this article, we presented a new concept of the neutrosophic graph called complex neutrosophic 

graphs of type 1 (CNG1), and also proceeded to present a matrix representation of it. 

The strength of CNG1 lies in the presence of both magnitude and direction for the parameters 

involved, as has been illustrated in Section 3. As the parameters have directions, even when the 

resultant degree of a vertex is zero, the edges to that vertex need not necessarily be void. Thus the 

concept of CNG1 may also be used in engineering, such as in metal frameworks, for example in the 

construction of power lines, so that even when the beams are under tension, the resultant force at a 

point (possibly being a cornerstone) joining all those beams are zero. 

The concept of CNG1 can also be applied to the case of bipolar complex neutrosophic graphs 

(BCNG1). We have plans to expand on this interesting concept in the near future, and plan to study 

the concept of completeness, regularity, and CNGs of type 2. 

As we can see in Section 6, when the choices of 𝑀𝜉  and 𝑁𝜉  becomes more restrictive, the 

smallest non-trivial net CNG1 𝜉 increases in complexity. This makes us wonder what will be the 

smallest non-trivial net CNG1 𝜉 in the case when both 𝑀𝜉  and 𝑁𝜉  are not divisible by all primes up 

to 5 (7, 11, etc.), as well as whether their symmetric properties, as outlined in Section 7. However, the 

proof of such cases will become much more tedious and, therefore, we would have to utilize 

computer programs, such as MATLAB and SAGE, in order to find those non-trivial net CNG1 𝜉. 

Therefore our future research in this area involves plans to deal with those non-trivial net CNG1 𝜉. 

We are motivated by the interest to know if there exist some general patterns or general theorems 

governing such smallest non-trivial net CNG1 as 𝑀𝜉  and 𝑁𝜉  become more restrictive. 

We are currently working on developing a more in-depth theoretical framework concerning the 

symmetric properties of CNG1, and have plans to extend this to other types of fuzzy graphs in the 

future. We are also motivated by the works presented in [30–32], and look forward to extending our 

work to other generalizations of neutrosophic sets, such as interval complex neutrosophic sets, and 

apply the work in medical imaging problems and recommender systems.  

Funding: This research was funded by the Ministry of Education, Malaysia under grant no. FRGS/1/2017/ 

STG06/UCSI/03/1 and UCSI University, Malaysia under grant no. Proj-In-FOBIS-014. 
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Abstract: Neutrosophic cubic sets are the more generalized tool by which one can handle imprecise
information in a more effective way as compared to fuzzy sets and all other versions of fuzzy
sets. Neutrosophic cubic sets have the more flexibility, precision and compatibility to the system as
compared to previous existing fuzzy models. On the other hand the graphs represent a problem
physically in the form of diagrams, matrices etc. which is very easy to understand and handle. So the
authors applied the Neutrosophic cubic sets to graph theory in order to develop a more general
approach where they can model imprecise information through graphs. We develop this model by
introducing the idea of neutrosophic cubic graphs and introduce many fundamental binary operations
like cartesian product, composition, union, join of neutrosophic cubic graphs, degree and order of
neutrosophic cubic graphs and some results related with neutrosophic cubic graphs. One of very
important futures of two neutrosophic cubic sets is the R−union that R−union of two neutrosophic
cubic sets is again a neutrosophic cubic set, but here in our case we observe that R−union of two
neutrosophic cubic graphs need not be a neutrosophic cubic graph. Since the purpose of this new
model is to capture the uncertainty, so we provide applications in industries to test the applicability
of our defined model based on present time and future prediction which is the main advantage of
neutrosophic cubic sets.

Keywords: neutrosophic cubic set; neutrosophic cubic graphs; applications of neutrosophic
cubic graphs

1. Introduction

In 1965, Zadeh [1] published his seminal paper “Fuzzy Sets” which described fuzzy set theory and
consequently fuzzy logic. The purpose of Zadeh’s paper was to develop a theory which could deal with
ambiguity and imprecision of certain classes or sets in human thinking, particularly in the domains of
pattern recognition, communication of information and abstraction. This theory proposed making the
grade of membership of an element in a subset of a universal set a value in the closed interval [0, 1]
of real numbers. Zadeh’s ideas have found applications in computer sciences, artificial intelligence,
decision analysis, information sciences, system sciences, control engineering, expert systems, pattern
recognition, management sciences, operations research and robotics. Theoretical mathematics has
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also been touched by fuzzy set theory. The ideas of fuzzy set theory have been introduced into
topology, abstract algebra, geometry, graph theory and analysis. Further, he made the extension of
fuzzy set to interval-valued fuzzy sets in 1975, where one is not bound to give a specific membership
to a certain element. In 1975, Rosenfeld [2] discussed the concept of fuzzy graphs whose basic idea was
introduced by Kauffmann [3] in 1973. The fuzzy relations between fuzzy sets were also considered
by Rosenfeld and he developed the structure of fuzzy graphs obtaining analogs of several graph
theoretical concepts [4]. Bhattacharya provided further studies on fuzzy graphs [5]. Akram and
Dudek gave the idea of interval valued fuzzy graphs in 2011 where they used interval membership for
an element in the vertex set [6]. Akram further extended the idea of interval valued fuzzy graphs to
Interval-valued fuzzy line graphs in 2012. More detail of fuzzy graphs, we refer the reader to [7–12].
In 1986, Atanassov [13] use the notion of membership and non-membership of an element in a set X
and gave the idea of intuitionistic fuzzy sets. He extended this idea to intuitionistic fuzzy graphs and
for more detail in this direction, we refer the reader to [14–20]. Akram and Davvaz [21] introduced the
notion of strong intuitionistic fuzzy graphs and investigated some of their properties. They discussed
some propositions of self complementary and self weak complementary strong intuitionistic fuzzy
graphs. In 1994, Zhang [22] started the theory of bipolar fuzzy sets as a generality of fuzzy sets. Bipolar
fuzzy sets are postponement of fuzzy sets whose membership degree range is [−1, 1]. Akram [23,24]
introduced the concepts of bipolar fuzzy graphs, where he introduced the notion of bipolar fuzzy
graphs, described various methods of their construction, discussed the concept of isomorphisms of
these graphs and investigated some of their important properties. He then introduced the notion of
strong bipolar fuzzy graphs and studied some of their properties. He also discussed some propositions
of self complementary and self weak complementary strong bipolar fuzzy graphs and applications,
for example see [25]. Smarandache [26–28] extended the concept of Atanassov and gave the idea of
neutrosophic sets. He proposed the term “neutrosophic” because “neutrosophic” etymologically comes
from “neutrosophy” This comes from the French neutre < Latin neuter, neutral, and Greek sophia,
skill/wisdom, which means knowledge of neutral thought, and this third/neutral represents the main
distinction between “fuzzy” and “intuitionistic fuzzy” logic/set, i.e., the included middle component
(Lupasco-Nicolescu’s logic in philosophy), i.e., the neutral/indeterminate/unknown part (besides
the “truth”/“membership” and “falsehood”/“non-membership” components that both appear in
fuzzy logic/set). See the Proceedings of the First International Conference on Neutrosophic Logic,
The University of New Mexico, Gallup Campus, 1–3 December 2001, at http://www.gallup.unm.edu/
~smarandache/FirstNeutConf.htm.

After that, many researchers used the idea of neutrosophic sets in different directions. The idea
of neutrosophic graphs is provided by Kandasamy et al. in the book title as Neutrosophic graphs,
where they introduce idea of neutrosophic graphs [29]. This study reveals that these neutrosophic
graphs give a new dimension to graph theory. An important feature of this book is that it contains
over 200 neutrosophic graphs to provide better understandings of these concepts. Akram and others
discussed different aspects of neutrosophic graphs [30–33]. Further Jun et al. [34] gave the idea of cubic
set and it was characterized by interval valued fuzzy set and fuzzy set, which is more general tool to
capture uncertainty and vagueness, while fuzzy set deals with single value membership and interval
valued fuzzy set ranges the membership in the form of interval. The hybrid platform provided by
the cubic set is the main advantage, in that it contains more information then a fuzzy set and interval
valued fuzzy set. By using this concept, we can solve different problems arising in several areas and
can pick finest choice by means of cubic sets in various decision making problems. This hybrid nature
of the cubic set attracted these researchers to work in this field. For more detail about cubic sets and
their applications in different research areas, we refer the reader to [35–37]. Recently, Rashid et al. [38]
introduced the notion of cubic graphs where they introduced many new types of graphs and provided
their application. More recently Jun et al. [39,40] combined neutrosophic set with cubic sets and gave
the idea of Neutrosophic cubic set and defined different operations.
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Therefore, the need was felt to develop a model for neutrosophic cubic graphs which is a more
generalized tool to handle uncertainty. In this paper, we introduce the idea of neutrosophic cubic
graphs and introduce the fundamental binary operations, such as the cartesian product, composition,
union, join of neutrosophic cubic graphs, degree, order of neutrosophic cubic graphs and some results
related to neutrosophic cubic graphs. We observe that R-union of two neutrosophic cubic graphs
need not to be a neutrosophic cubic graph. At the end, we provide applications of neutrosophic cubic
graphs in industries to test the applicability of our presented model.

2. Preliminaries

We recall some basic definitions related to graphs, fuzzy graphs and neutrosophic cubic sets.

Definition 1. A graph is an ordered pair G∗ = (V, E), where V is the set of vertices of G∗ and E is the set of
edges of G∗.

Definition 2. A fuzzy graph [2–4] with an underlying set V is defined to be a pair G = (µ, ν) where µ is
a fuzzy function in V and ν is a fuzzy function in E ⊆ V × V such that ν({x, y}) ≤ min(µ(x), µ(y)) for all
{x, y} ∈ E.

We call µ the fuzzy vertex function of V, ν the fuzzy edge function of E, respectively. Please note
that ν is a symmetric fuzzy relation on µ. We use the notation xy for an element {x, y} of E. Thus,
G = (µ, ν) is a fuzzy graph of G∗ = (V, E) if ν(xy) ≤ min(µ(x), µ(y)) for all xy ∈ E.

Definition 3. Let G = (µ, ν) be a fuzzy graph. The order of a fuzzy graph [2–4] is defined by O(G) =

∑x∈V µ(x). The degree of a vertex x in G is defined by deg(x) = ∑xy∈E ν(xy).

Definition 4. Let µ1 and µ2 be two fuzzy functions of V1 and V2 and let ν1 and ν2 be fuzzy functions of E1

and E2, respectively. The Cartesian product of two fuzzy graphs G1 and G2 [2–4] of the graphs G∗1 and G∗2 is
denoted by G1 × G2 = (µ1 × µ2, ν1 × ν2) and is defined as follows:

(i) (µ1 × µ2)(x1, x2) = min(µ1(x1), µ2(x2)), for all (x1, x2) ∈ V.
(ii) (ν1 × ν2)((x, x2)(x, y2)) = min(µ1(x), ν2(x2y2)), for all x ∈ V1, for all x2y2 ∈ E2.
(iii) (ν1 × ν2)((x1, z)(y1, z)) = min(ν1(x1y1), µ2(z)), for all z ∈ V2, for all x1y1 ∈ E1.

Definition 5. Let µ1 and µ2 be fuzzy functions of V1 and V2 and let ν1 and ν2 be fuzzy functions of E1 and
E2, respectively. The composition of two fuzzy graphs G1 and G2 of the graphs G∗1 and G∗2 [2–4] is denoted by
G1[G2] = (µ1 ◦ µ2, ν1 ◦ ν2) and is defined as follows:

(i) (µ1 ◦ µ2)(x1, x2) = min(µ1(x1), µ2(x2)), for all (x1, x2) ∈ V.
(ii) (ν1 ◦ ν2)((x, x2)(x, y2)) = min(µ1(x), ν2(x2y2)), for all x ∈ V1, for all x2y2 ∈ E2.
(iii) (ν1 ◦ ν2)((x1, z)(y1, z)) = min(ν1(x1y1), µ2(z)), for all z ∈ V2, for all x1y1 ∈ E1.
(iv) (ν1 ◦ ν2)((x1, x2)(y1, y2)) = min(µ2(x2), µ2(y2), ν1(x1y1)), for all z ∈ V2, for all(x1, x2)(y1, y2) ∈ E0−E.

Definition 6. Let µ1 and µ2 be fuzzy functions of V1 and V2 and let ν1 and ν2 be fuzzy functions of E1 and
E2, respectively. Then union of two fuzzy graphs G1 and G2 of the graphs G∗1 and G∗2 [2–4] is denoted by
G1 ∪ G2 = (µ1 ∪ µ2, ν1 ∪ ν2) and is defined as follows:

(i) (µ1 ∪ µ2)(x) = µ1(x) if x ∈ V1 ∩V2,
(ii) (µ1 ∪ µ2)(x) = µ2(x) if x ∈ V2 ∩V1,
(iii) (µ1 ∪ µ2)(x) = max(µ1(x), µ2(x)) if x ∈ V1 ∩V2,
(iv) (ν1 ∪ ν2)(xy) = ν1(xy) if xy ∈ E1 ∩ E2,
(v) (ν1 ∪ ν2)(xy) = ν2(xy) if xy ∈ E2 ∩ E1,
(vi) ( ν1 ∪ ν2)(xy) = max( ν1(xy), ν2(xy)) if xy ∈ E1 ∩ E2.
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Definition 7. Let µ1 and µ2 be fuzzy functions of V1 and V2 and let ν1 and ν2 be fuzzy functions of E1

and E2, respectively. Then join of two fuzzy graphs G1 and G2 of the graphs G∗1 and G∗2 [2–4] is denoted by
G1 + G2 = (µ1 + µ2, ν1 + ν2) and is defined as follows:

(i) (µ1 + µ2)(x) = (µ1 ∪ µ2)(x) if x ∈ V1 ∪V2,
(ii) (ν1 + ν2)(xy) = (ν1 ∪ ν2)(xy) = ν1(xy) if xy ∈ E1 ∪ E2,
(iii) (ν1 + ν2)(xy) = min(µ1(x), µ2(y)) if xy ∈ E′.

Definition 8. Let X be a non-empty set. A neutrosophic cubic set (NCS) in X [39] is a pair
A = (A, Λ) where A = { 〈x, AT(x), AI(x), AF(x)〉 |x ∈ X} is an interval neutrosophic set in X and
Λ = { 〈x, λT(x), λI(x), λF(x)〉 |x ∈ X} is a neutrosophic set in X.

3. Neutrosophic Cubic Graphs

The motivation behind this section is to combine the concept of neutrosophic cubic sets
with graphs theory. We introduce the concept of neutrosophic cubic graphs, order and degree
of neutrosophic cubic graph and different fundamental operations on neutrosophic cubic graphs
with examples.

Definition 9. Let G∗ = (V, E) be a graph. By neutrosophic cubic graph of G∗, we mean a pair G = (M, N)

where M = (A, B) = ((T̃A, TB), ( ĨA, IB), (F̃A, FB)) is the neutrosophic cubic set representation of vertex set V
and N = (C, D) = ((T̃C, TD), ( ĨC, ID), (F̃C, FD)) is the neutrosophic cubic set representation of edges set E
such that;

(i)
(

T̃C(uivi) � rmin{T̃A(ui), T̃A(vi)}, TD(uivi) ≤ max{TB(ui), TB(vi)}
)

,

(ii)
(

ĨC(uivi) � rmin{ ĨA(ui), ĨA(vi)}, ID(uivi) ≤ max{IB(ui), IB(vi)}
)

,

(iii)
(

F̃C(uivi) � rmax{F̃A(ui), F̃A(vi)}, FD(uivi) ≤ min{FB(ui), FB(vi)}
)

.

Example 1. Let G∗ = (V, E) be a graph where V = {a, b, c, d} and E = {ab, bc, ac, ad, cd}, where

M =

〈 {a, ([0.2, 0.3], 0.5), ([0.1, 0.4], 0.6), ([0.5, 0.6], 0.3)},
{b, ([0.1, 0.2], 0.4), ([0.4, 0.5], 0.6), ([0.7, 0.8], 0.4)},
{c, ([0.4, 0.7], 0.1), ([0.7, 0.8], 0.9), ([0.3, 0.4]), 0.5)},
{d, ([0.3, 0.5], 0.2), ([0.9, 1], 0.5), ([0.2, 0.4], 0.1)}

〉

N =

〈 {ab, ([0.1, 0.2], 0.5), ([0.1, 0.4], 0.6), ([0.7, 0.8], 0.3)},
{ac, ([0.2, 0.3], 0.5), ([0.1, 0.4], 0.9), ([0.5, 0.6], 0.3)},
{ad, ([0.2, 0.3], 0.5), ([0.1, 0.4], 0.6), ([0.5, 0.6]), 0.1)},
{bc, ([0.1, 0.2], 0.4), ([0.4, 0.5], 0.9), ([0.7, 0.8], 0.4)},
{bd, ([0.1, 0.2], 0.4), ([0.4, 0.5], 0.6), ([0.7, 0.8], 0.1)},
{cd, ([0.3, 0.5], 0.2), ([0.7, 0.8], 0.9), ([0.3, 0.4], 0.1)}

〉

Then clearly G = (M, N) is a neutrosophic cubic graph of G∗ = (V, E) as showin in Figure 1.

Remark 1.

1. If n ≥ 3 in the vertex set and n ≥ 3 in the set of edges then the graphs is a neutrosophic cubic polygon
only when we join each vertex to the corresponding vertex through an edge.

2. If we have infinite elements in the vertex set and by joining the each and every edge with each other we get
a neutrosophic cubic curve.

Definition 10. Let G = (M, N) be a neutrosophic cubic graph. The order of neutrosophic cubic graph is
defined by O(G) = ΣxεV{(T̃A, TB)(x), ( ĨA, IB)(x), (F̃A, FB)(x)} and degree of a vertex x in G is defined by
deg(x) = ΣxyεE{(T̃C, TD)(xy), ( ĨC, ID)(xy), (F̃C, FD)(xy))}.
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Then clearly G = (M;N) is a neutrosophic cubic graph of G� = (V;E):

Remark: 1.If n � 3 in the vertex set and n � 3 in the set of edges then the graphs is a neutrosophic cubic
polygon only when we join each vertex to the corresponding vertex through an edge.

2. If we have in�nite elements in the vertex set and by joining the each and every edge with each other we

get a neutrosophic cubic cure.

De�nition 3.2 Let G = (M;N) be a neutrosophic cubic graph. The order of neutrosophic cubic graph is

de�ned by O(G) = �x�V f( eTA; TB)(x); (eIA; IB)(x); ( eFA; FB)(x)g and degree of a vertex x in G is de�ned by

deg(x) = �xy�Ef( eTC ; TD)(xy); (eIC ; ID)(xy); ( eFC ; FD)(xy))g.
Example 3.3 In Example 3.2, Order of a neutrosophic cubic graph is

O(G) = f([1:0; 1:7]; 1:2); ([2:1; 1:8]; 2:6); ([1:7; 2:2]; 1:3)g

and degree of each vertex in G is

deg(a) = f([0:5; 0:8]; 1:5); ([0:3; 1:2]; 2:1); ([1:7; 2:0]; 0:7)g
deg(b) = f([0:3; 0:6]; 1:3); ([0:9; 1:4]; 2:1); ([2:1; 2:4]; 0:8)g
deg(c) = f([0:6; 1:0]; 1:1); ([1:2; 1:7]; 2:7); ([1:5; 1:8]; 0:8)g
deg(d) = f([0:6; 1:0]; 1:1); ([1:2; 1:7]; 2:1); ([1:5; 1:8]; 0:3)g

De�nition 3.3 Let G1 = (M1; N1) be a neutrosophic cubic graph of G�1 = (V1; E1);and G2 = (M2; N2) be a

neutrosophic cubic graph of G�2 = (V2; E2). Then Cartesian product of G1 and G2 is denoted by

G1 �G2 = (M1 �M2; N1 �N2) = ((A1; B1)� (A2; B2); (C1; D1)� (C2; D2))

= ((A1 �A2; B1 �B2); (C1 � C2; D1 �D2))

=

*
(( eTA1�A2 ; TB1�B2); (

eIA1�A2 ; IB1�B2); (
eFA1�A2 ; FB1�B2));

(( eTC1�C2 ; TD1�D2
); (eIC1�C2 ; ID1�D2

); ( eFC1�C2 ; FD1�D2
))

+

6

Figure 1. Neutrosophic Cubic Graph.

Example 2. In Example 1, Order of a neutrosophic cubic graph is

O(G) = {([1.0, 1.7], 1.2), ([2.1, 1.8], 2.6), ([1.7, 2.2], 1.3)}

and degree of each vertex in G is

deg(a) = {([0.5, 0.8], 1.5), ([0.3, 1.2], 2.1), ([1.7, 2.0], 0.7)}
deg(b) = {([0.3, 0.6], 1.3), ([0.9, 1.4], 2.1), ([2.1, 2.4], 0.8)}
deg(c) = {([0.6, 1.0], 1.1), ([1.2, 1.7], 2.7), ([1.5, 1.8], 0.8)}
deg(d) = {([0.6, 1.0], 1.1), ([1.2, 1.7], 2.1), ([1.5, 1.8], 0.3)}

Definition 11. Let G1 = (M1, N1) be a neutrosophic cubic graph of G∗1 = (V1, E1), and G2 = (M2, N2) be
a neutrosophic cubic graph of G∗2 = (V2, E2). Then Cartesian product of G1 and G2 is denoted by

G1 × G2 = (M1 ×M2, N1 × N2) = ((A1, B1)× (A2, B2), (C1, D1)× (C2, D2))

= ((A1 × A2, B1 × B2), (C1 × C2, D1 × D2))

=

〈
((T̃A1×A2 , TB1×B2), ( ĨA1×A2 , IB1×B2), (F̃A1×A2 , FB1×B2)),
((T̃C1×C2 , TD1×D2), ( ĨC1×C2 , ID1×D2), (F̃C1×C2 , FD1×D2))

〉

and is defined as follow

(i)
(

T̃A1×A2(x, y) = rmin(T̃A1(x), T̃A2(y)), TB1×B2(x, y) = max(TB1(x), TB2(y))
)

,

(ii)
(

ĨA1×A2(x, y) = rmin( ĨA1(x), ĨA2(y)), IB1×B2(x, y) = max(IB1(x), IB2(y))
)

,

(iii)
(

F̃A1×A2(x, y) = rmax(F̃A1(x), F̃A2(y)), FB1×B2(x, y) = min(FB1(x), FB2(y))
)

,

(iv)

(
T̃C1×C2((x, y1)(x, y2)) = rmin(T̃A1(x), T̃C2(y1y2)),
TD1×D2((x, y1)(x, y2)) = max(TB1(x), TD2(y1y2))

)
,

(v)

(
ĨC1×C2((x, y1)(x, y2)) = rmin( ĨA1(x), ĨC2(y1y2)),
ID1×D2((x, y1)(x, y2)) = max(IB1(x), ID2(y1y2))

)
,
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(vi)

(
F̃C1×C2((x, y1)(x, y2)) = rmax(F̃A1(x), F̃C2(y1y2)),
FD1×D2((x, y1)(x, y2)) = min(FB1(x), FD2(y1y2))

)
,

(vii)

(
T̃C1×C2((x1, y)(x2, y)) = rmin(T̃C1(x1x2), T̃A2(y)),
TD1×D2((x1, y)(x2, y)) = max(TD1(x1x2), TB2(y))

)
,

(viii)

(
ĨC1×C2((x1, y)(x2, y)) = rmin( ĨC1(x1x2), ĨA2(y)),
ID1×D2((x1, y)(x2, y)) = max(ID1(x1x2), IB2(y))

)
,

(ix)

(
F̃C1×C2((x1, y)(x2, y)) = rmax(F̃C1(x1x2), F̃A2(y)),
FD1×D2((x1, y)(x2, y)) = min(FD1(x1x2), FB2(y))

)
, ∀ (x, y) ∈ (V1, V2) = V for (i) −

(iii), ∀x ∈ V1 and y1y2 ∈ E2 for (iv)− (vi), ∀y ∈ V2 and x1x2 ∈ E1 for (vi)− (ix).

Example 3. Let G1 = (M1, N1) be a neutrosophic cubic graph of G∗1 = (V1, E1) as showin in Figure 2, where
V1 = {a, b, c}, E1 = {ab, bc, ac}

M1 =

〈 {a, ([0.1, 0.2], 0.5), ([0.4, 0.5], 0.3), ([0.6, 0.7], 0.2)},
{b, ([0.2, 0.4], 0.1), ([0.5, 0.6], 0.4), ([0.1, 0.2], 0.3)},
{c, ([0.3, 0.4], 0.2), ([0.1, 0.3], 0.7), ([0.4, 0.6], 0.3)}

〉

N1 =

〈 {ab, ([0.1, 0.2], 0.5), ([0.4, 0.5], 0.4), ([0.6, 0.7], 0.2)},
{bc, ([0.2, 0.4], 0.2), ([0.1, 0.3], 0.7), ([0.4, 0.6]), 0.3)},
{ac, ([0.1, 0.2], 0.5), ([0.1, 0.3], 0.7), ([0.6, 0.7], 0.2)}

〉

and G2 = (M2, N2) be a neutrosophic cubic graph of G∗2 = (V2, E2) as showin in Figure 3, where V2 = {x, y, z}
and E2 = {xy, yz, xz}

M2 =

〈 {x, ([0.7, 0.8], 0.6), ([0.2, 0.4], 0.5), ([0.3, 0.4], 0.7)},
{y, ([0.2, 0.3], 0.4), ([0.6, 0.7], 0.3), ([0.9, 1.0], 0.5)},
{z, ([0.4, 0.5], 0.2), ([0.3, 0.4], 0.1), ([0.6, 0.7], 0.4)}

〉

N2 =

〈 {xy, ([0.2, 0.3], 0.6), ([0.2, 0.4], 0.5), ([0, 9, 1.0], 0.5)},
{yz, ([0.2, 0.3], 0.4), ([0.3, 0.4], 0.3), ([0.9, 1.0], 0.4)},
{xz, ([0.4, 0.5], 0.6), ([0.2, 0.4], 0.5), ([0.6, 0.7], 0.4)}

〉

then G1 × G2 is a neutrosophic cubic graph of G∗1 × G∗2 , as showin in Figure 4, where V1 × V2 =

{(a, x), (a, y), (a, z), (b, x), (b, y), (b, z), (c, x), (c, y), (c, z)} and

M1 ×M2 =

〈
{(a, x), ([0.1, 0.2], 0.6), ([0.2, 0.4], 0.5), ([0.6, 0.7], 0.2)},
{(a, y), ([0.1, 0.2], 0.5), ([0.4, 0.5], 0.3), ([0.9, 1.0], 0.2)},
{(a, z), ([0.1, 0.2], 0.5), ([0.3, 0.4], 0.3), ([0.6, 0.7], 0.2)},
{(b, x), ([0.2, 0.4], 0.6), ([0.2, 0.4], 0.5), ([0.3, 0.4], 0.3)},
{(b, y), ([0.2, 0.3], 0.4), ([0.5, 0.6], 0.4), ([0.9, 1.0], 0.3)},
{(b, z), ([0.2, 0.4], 0.2), ([0.3, 0.4], 0.4), ([0.6, 0.7], 0.3)},
{(c, x), ([0.3, 0.4], 0.6), ([0.1, 0.3], 0.7), ([0.4, 0.6]), 0.3)},
{(c, y), ([0.2, 0.3], 0.4), ([0.1, 0.3], 0.7), ([0.9, 1.0], 0.3)},
{(c, z), ([0.3, 0.4], 0.2), ([0.1, 0.3], 0.7), ([0.6, 0.7], 0.3)}

〉

N1 × N2 =

〈
{((a, x)(a, y)), ([0.1, 0.2], 0.6), ([0.2, 0.4], 0.5), ([0.9, 1.0], 0.2)},
{((a, y)(a, z)), ([0.1, 0.2], 0.5), ([0.3, 0.4], 0.3), ([0.9, 1.0], 0.2)},
{((a, z)(b, z)), ([0.1, 0.2], 0.5), ([0.3, 0.4], 0.4), ([0.6, 0.7], 0.2)},
{((b, x)(b, z)), ([0.2, 0.4], 0.6), ([0.2, 0.4], 0.5), ([0.6, 0.7], 0.3)},
{((b, x)(b, y)), ([0.2, 0.3], 0.6), ([0.2, 0.4], 0.5), ([0.9, 1.0], 0.3)},
{((b, y)(c, y)), ([0.2, 0.3], 0.4), ([0.1, 0.3], 0.7), ([0.9, 1.0], 0.3)},
{((c, y)(c, z)), ([0.2, 0.3], 0.4), ([0.1, 0.3], 0.7), ([0.9, 1.0], 0.3)},
{((c, x)(c, z)), ([0.3, 0.4], 0.6), ([0.1, 0.3], 0.7), ([0.6, 0.7], 0.3)},
{((a, x)(c, x)), ([0.1, 0.2], 0.6), ([0.1, 0.3], 0.7), ([0.6, 0.7], 0.2)}

〉
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and G2 = (M2; N2) be a neutrosophic cubic graph of G�2 = (V2; E2); where V2 = fx; y; zg and E2 =
fxy; yz; xzg

M2 =

* fx; ([0:7; 0:8]; 0:6); ([0:2; 0:4]; 0:5); ([0:3; 0:4]; 0:7)g;
fy; ([0:2; 0:3]; 0:4); ([0:6; 0:7]; 0:3); ([0:9; 1:0]; 0:5)g;
fz; ([0:4; 0:5]; 0:2); ([0:3; 0:4]; 0:1); ([0:6; 0:7]; 0:4)g

+

N2 =

* fxy; ([0:2; 0:3]; 0:6); ([0:2; 0:4]; 0:5); ([0; 9; 1:0]; 0:5)g;
fyz; ([0:2; 0:3]; 0:4); ([0:3; 0:4]; 0:3); ([0:9; 1:0]; 0:4)g;
fxz; ([0:4; 0:5]; 0:6); ([0:2; 0:4]; 0:5); ([0:6; 0:7]; 0:4)g

+

8

Figure 2. Neutrosophic Cubic Graph G1.

then G1 �G2 is a neutrosophic cubic graph of G�1 �G�2 where

V1 � V2 = f(a; x); (a; y); (a; z); (b; x); (b; y); (b; z); (c; x); (c; y); (c; z)g and

M1 �M2 =

*
f(a; x); ([0:1; 0:2]; 0:6); ([0:2; 0:4]; 0:5); ([0:6; 0:7]; 0:2)g;
f(a; y); ([0:1; 0:2]; 0:5); ([0:4; 0:5]; 0:3); ([0:9; 1:0]; 0:2)g;
f(a; z); ([0:1; 0:2]; 0:5); ([0:3; 0:4]; 0:3); ([0:6; 0:7]; 0:2)g;
f(b; x); ([0:2; 0:4]; 0:6); ([0:2; 0:4]; 0:5); ([0:3; 0:4]; 0:3)g;
f(b; y); ([0:2; 0:3]; 0:4); ([0:5; 0:6]; 0:4); ([0:9; 1:0]; 0:3)g;
f(b; z); ([0:2; 0:4]; 0:2); ([0:3; 0:4]; 0:4); ([0:6; 0:7]; 0:3)g;
f(c; x); ([0:3; 0:4]; 0:6); ([0:1; 0:3]; 0:7); ([0:4; 0:6]); 0:3)g;
f(c; y); ([0:2; 0:3]; 0:4); ([0:1; 0:3]; 0:7); ([0:9; 1:0]; 0:3)g;
f(c; z); ([0:3; 0:4]; 0:2); ([0:1; 0:3]; 0:7); ([0:6; 0:7]; 0:3)g

+

N1 �N2 =

*
f((a; x)(a; y)); ([0:1; 0:2]; 0:6); ([0:2; 0:4]; 0:5); ([0:9; 1:0]; 0:2)g;
f((a; y)(a; z)); ([0:1; 0:2]; 0:5); ([0:3; 0:4]; 0:3); ([0:9; 1:0]; 0:2)g;
f((a; z)(b; z)); ([0:1; 0:2]; 0:5); ([0:3; 0:4]; 0:4); ([0:6; 0:7]; 0:2)g;
f((b; x)(b; z)); ([0:2; 0:4]; 0:6); ([0:2; 0:4]; 0:5); ([0:6; 0:7]; 0:3)g;
f((b; x)(b; y)); ([0:2; 0:3]; 0:6); ([0:2; 0:4]; 0:5); ([0:9; 1:0]; 0:3)g;
f((b; y)(c; y)); ([0:2; 0:3]; 0:4); ([0:1; 0:3]; 0:7); ([0:9; 1:0]; 0:3)g;
f((c; y)(c; z)); ([0:2; 0:3]; 0:4); ([0:1; 0:3]; 0:7); ([0:9; 1:0]; 0:3)g;
f((c; x)(c; z)); ([0:3; 0:4]; 0:6); ([0:1; 0:3]; 0:7); ([0:6; 0:7]; 0:3)g;
f((a; x)(c; x)); ([0:1; 0:2]; 0:6); ([0:1; 0:3]; 0:7); ([0:6; 0:7]; 0:2)g

+
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Figure 3. Neutrosophic Cubic Graph G2.

Proposition 3.4 The cartesian product of two neutrosophic cubic graphs is again a neutrosophic cubic

graph.

Proof. Condition is obvious forM1�M2. Therefore we verify conditions only for N1�N2; where N1�N2 =
f(( eTC1�C2 ; TD1�D2

); (eIC1�C2 ; ID1�D2
); ( eFC1�C2 ; FD1�D2

))g: Let x 2 V1 and x2y2 2 E2. Then

eTC1�C2((x; x2)(x; y2)) = rminf(eTA1
(x); eTC2(x2y2))g

� rminf( eTA1(x); rmin((
eTA2(x2); (

eTA2(y2))g

= rminfrmin(( eTA1
(x); ( eTA2

(x2)); rmin(( eTA1
(x); ( eTA2

(y2))g

= rminf( eTA1 � eTA2)(x; x2); ((
eTA1 � eTA2)(x; y2)g

TD1�D2
((x; x2)(x; y2)) = maxf(TB1

(x); TD2
(x2y2))g

� maxf(TB1
(x);max((TB2

(x2); (TB2
(y2))g

= maxfmax((TB1(x); (TB2(x2));max((TB1(x); (TB2(y2))g

= maxf(TB1
� TB2

)(x; x2); ((TB1
� TB2

)(x; y2)g

10

Figure 4. Cartesian Product of G1 and G2.
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Proposition 1. The cartesian product of two neutrosophic cubic graphs is again a neutrosophic cubic graph.

Proof. Condition is obvious for M1 × M2. Therefore we verify conditions only for N1 × N2,
where N1 × N2 = {((T̃C1×C2 , TD1×D2), ( ĨC1×C2 , ID1×D2), (F̃C1×C2 , FD1×D2))}. Let x ∈ V1 and
x2y2 ∈ E2. Then

T̃C1×C2((x, x2)(x, y2)) = rmin{(T̃A1(x), T̃C2(x2y2))}
� rmin{(T̃A1(x), rmin((T̃A2(x2), (T̃A2(y2))}
= rmin{rmin((T̃A1(x), (T̃A2(x2)), rmin((T̃A1(x), (T̃A2(y2))}
= rmin{(T̃A1 × T̃A2)(x, x2), ((T̃A1 × T̃A2)(x, y2)}

TD1×D2((x, x2)(x, y2)) = max{(TB1(x), TD2(x2y2))}
≤ max{(TB1(x), max((TB2(x2), (TB2(y2))}
= max{max((TB1(x), (TB2(x2)), max((TB1(x), (TB2(y2))}
= max{(TB1 × TB2)(x, x2), ((TB1 × TB2)(x, y2)}

ĨC1×C2((x, x2)(x, y2)) = rmin{( ĨA1(x), ĨC2(x2y2))}
� rmin{( ĨA1(x), rmin(( ĨA2(x2), ( ĨA2(y2))}
= rmin{rmin(( ĨA1(x), ( ĨA2(x2)), rmin(( ĨA1(x), ( ĨA2(y2))}
= rmin{( ĨA1 × ĨA2)(x, x2), (( ĨA1 × ĨA2)(x, y2)}

ID1×D2((x, x2)(x, y2)) = max{(IB1(x), ID2(x2y2))}
≤ max{(IB1(x), max((IB2(x2), (IB2(y2))}
= max{max((IB1(x), (IB2(x2)), max((IB1(x), (IB2(y2))}
= max{(IB1 × IB2)(x, x2), ((IB1 × IB2)(x, y2)}

F̃C1×C2((x, x2)(x, y2)) = rmax{(F̃A1(x), F̃C2(x2y2))}
� rmax{(F̃A1(x), rmax((F̃A2(x2), (F̃A2(y2))}
= rmax{rmax((F̃A1(x), (F̃A2(x2)), rmax((F̃A1(x), (F̃A2(y2))}
= rmax{(F̃A1 × F̃A2)(x, x2), ((F̃A1 × F̃A2)(x, y2)}

FD1×D2((x, x2)(x, y2)) = min{(FB1(x), FD2(x2y2))}
≤ min{(FB1(x), min((FB2(x2), (FB2(y2))}
= min{min((FB1(x), (FB2(x2)), min((FB1(x), (FB2(y2))}
= min{(FB1 × FB2)(x, x2), (FB1 × FB2)(x, y2)}

similarly we can prove it for z ∈ V2 and x1y1 ∈ E1.

Definition 12. Let G1 = (M1, N1) and G2 = (M2, N2) be two neutrosophic cubic graphs. The degree of
a vertex in G1 × G2 can be defined as follows, for any (x1, x2) ∈ V1 ×V2

deg(T̃A1 × T̃A2)(x1, x2) = Σ(x1,x2)(y1,y2)∈E2
rmax(T̃C1 × T̃C2)((x1, x2)(y1, y2))

= Σx1=y1=x,x2y2∈E2 rmax(T̃A1(x), T̃C2(x2y2))

+Σx2=y2=z,x1y1∈Ermax(T̃A2(z), T̃C1(x1y1))

+Σx1y1∈E1,x2y2∈E2 rmax(T̃C1(x1y1), T̃C2(x2y2))
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deg(TB1 × TB2)(x1, x2) = Σ(x1,x2)(y1,y2)∈E2
min(TD1 × TD2)((x1, x2)(y1, y2))

= Σx1=y1=x,x2y2∈E2 min(TB1(x), TD2(x2y2))

+Σx2=y2=z,x1y1∈E min(TB2(z), TD1(x1y1))

+Σx1y1∈E1,x2y2∈E2 min(TD1(x1y1), TD2(x2y2))

deg( ĨA1 × ĨA2)(x1, x2) = Σ(x1,x2)(y1,y2)∈E2
rmax( ĨC1 × ĨC2)((x1, x2)(y1, y2))

= Σx1=y1=x,x2y2∈E2 rmax( ĨA1(x), ĨC2(x2y2))

+Σx2=y2=z,x1y1∈Ermax( ĨA2(z), ĨC1(x1y1))

+Σx1y1∈E1,x2y2∈E2 rmax( ĨC1(x1y1), ĨC2(x2y2))

deg(IB1 × IB2)(x1, x2) = Σ(x1,x2)(y1,y2)∈E2
min(ID1 × ID2)((x1, x2)(y1, y2))

= Σx1=y1=x,x2y2∈E2 min(IB1(x), ID2(x2y2))

+Σx2=y2=z,x1y1∈E min(IB2(z), ID1(x1y1))

+Σx1y1∈E1,x2y2∈E2 min(ID1(x1y1), ID2(x2y2))

deg(F̃A1 × F̃A2)(x1, x2) = Σ(x1,x2)(y1,y2)∈E2
rmin(F̃C1 × F̃C2)((x1, x2)(y1, y2))

= Σx1=y1=x,x2y2∈E2 rmin(FB1(x), FD2(x2y2))

+Σx2=y2=z,x1y1∈Ermin(FB2(z), FD1(x1y1))

+Σx1y1∈E1,x2y2∈E2 rmin(FD1(x1y1), FD2(x2y2))

deg(FB1 × FB2)(x1, x2) = Σ(x1,x2)(y1,y2)∈E2
max(FD1 × FD2)((x1, x2)(y1, y2))

= Σx1=y1=x,x2y2∈E2 max(FB1(x), FD2(x2y2))

+Σx2=y2=z,x1y1∈E max(FB2(z), FD1(x1y1))

+Σx1y1∈E1,x2y2∈E2 max(FD1(x1y1), FD2(x2y2))

Example 4. In Example 3

dG1×G2 (a, x) = {([0.9, 1.1], 1.0), ([0.6, 0.9], 0.8), ([0.9, 1.1], 1.2)}
dG1×G2 (a, y) = {([0.4, 0.6], 0.9), ([0.8, 1.0], 0.6), ([1.2, 1.4], 0.9)}
dG1×G2 (a, z) = {([0.6, 0.8], 0.6), ([0.8, 1.0], 0.4), ([1.2, 1.4], 0.8)}
dG1×G2 (b, z) = {([0.8, 1.0], 0.3), ([0.9, 1.1], 0.5), ([0.7, 0.9], 1.1)}
dG1×G2 (b, x) = {([0.6, 0.9], 0.6), ([1.0, 1.2], 0.7), ([0.2, 0.4], 1.2)}
dG1×G2 (b, y) = {([0.4, 0.8], 0.7), ([1.1, 1.3], 0.6), ([0.5, 0.8], 1.0)}
dG1×G2 (c, y) = {([0.5, 0.8], 0.4), ([0.9, 1.1], 0.6), ([0.8, 1.2], 0.9)}
dG1×G2 (c, z) = {([0.7, 0.9], 0.4), ([0.5, 0.8], 0.8), ([0.8, 1.2], 1.1)}
dG1×G2 (c, x) = {([1.1, 1.3], 0.7), ([0.4, 0.8], 1.0), ([0.7, 1.0], 1.4)}

Definition 13. Let G1 = (M1, N1) be a neutrosophic cubic graph of G∗1 = (V1, E1) and G2 = (M2, N2) be
a neutrosophic cubic graph of G∗2 = (V2, E2). Then composition of G1 and G2 is denoted by G1[G2] and defined
as follow

G1[G2] = (M1, N1)[(M2, N2)] = {M1[M2], N1[N2]} = {(A1, B1)[(A2, B2)], (C1, D1)[(C2, D2)]}
= {(A1[A2], B1[B2]), (C1[C2], D1[D2])}

=

{ 〈
((T̃A1 ◦ T̃A2), (TB1 ◦ TB2)), (( ĨA1 ◦ ĨA2), (IB1 ◦ IB2)), ((F̃A1 ◦ F̃A2), (FB1 ◦ FB2))

〉
,〈

((T̃C1 ◦ T̃C2), (TD1 ◦ TD2)), (( ĨC1 ◦ ĨC2), (ID1 ◦ ID2)), (F̃C1 ◦ F̃C2)), (FD1 ◦ FD2))
〉 }

where
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(i) ∀(x, y) ∈ (V1, V2) = V,

(T̃A1 ◦ T̃A2)(x, y) = rmin(T̃A1(x), T̃A2(y)), (TB1 ◦ TB2)(x, y) = max(TB1(x), TB2(y))

( ĨA1 ◦ ĨA2)(x, y) = rmin( ĨA1(x), ĨA2(y)), (IB1 ◦ IB2)(x, y) = max(IB1(x), IB2(y))

(F̃A1 ◦ F̃A2)(x, y) = rmax(F̃A1(x), F̃A2(y)), (FB1 ◦ FB2)(x, y) = min(FB1(x), FBF2
(y))

(ii) ∀x ∈ V1 and y1y2 ∈ E

(T̃C1 ◦ T̃C2)((x, y1)(x, y2)) = rmin(T̃A1(x), T̃C2(y1y2)), (TD1 ◦ TD2)((x, y1)(x, y2)) = max(TB1(x), TD2(y1y2))

( ĨC1 ◦ ĨC2)((x, y1)(x, y2)) = rmin( ĨA1(x), ĨC2(y1y2)), (ID1 ◦ ID2)((x, y1)(x, y2)) = max(IB1(x), ID2(y1y2))

(F̃C1 ◦ F̃C2)((x, y1)(x, y2)) = rmax(F̃A1(x), F̃C2(y1y2)), (FD1 ◦ FD2)((x, y1)(x, y2)) = min(FB1(x), FD2(y1y2))

(iii) ∀y ∈ V2 and x1x2 ∈ E1

(T̃C1 ◦ T̃C2)((x1, y)(x2, y)) = rmin(T̃C1(x1x2), T̃A2(y)), (TD1 ◦ TD2)((x1, y)(x2, y)) = max(TD1(x1x2), TB2(y))

( ĨC1 ◦ ĨC2)((x1, y)(x2, y)) = rmin( ĨC1(x1x2), ĨA2(y)), (ID1 ◦ ID2)((x1, y)(x2, y)) = max(ID1(x1x2), IB2(y))

(F̃C1 ◦ F̃C2)((x1, y)(x2, y)) = rmax(F̃C1(x1x2), F̃A2(y)), (FD1 ◦ FD2)((x1, y)(x2, y)) = min(FD1(x1x2), FB2(y))

(iv) ∀(x1, y1)(x2, y2) ∈ E0 − E

(T̃C1 ◦ T̃C2)((x1, y1)(x2, y2)) = rmin(T̃A2(y1), T̃A2(y2), T̃C1(x1x2)), (TD1 ◦ TD2)((x1, y1)(x2, y2))

= max(TB2(y1), TB2(y2), TD1(x1x2))

( ĨC1 ◦ ĨC2)((x1, y1)(x2, y2)) = rmin( ĨA2(y1), ĨA2(y2), ĨC1(x1x2)), (ID1 ◦ ID2)((x1, y1)(x2, y2))

= max(IB2(y1), IB2(y2), ID1(x1x2))

(F̃C1 ◦ F̃C2)((x1, y1)(x2, y2)) = rmax(F̃A2(y1), F̃A2(y2), F̃C1(x1x2)), (FD1 ◦ FD2)((x1, y1)(x2, y2))

= min(FB2(y1), FB2(y2), FD1(x1x2))

Example 5. Let G∗1 = (V1, E1) and G∗1 = (V2, E2) be two graphs as showin in Figure 5, where V1 = (a, b)
and V2 = (c, d). Suppose M1 and M2 be the neutrosophic cubic set representations of V1 and V2. Also N1 and
N2 be the neutrosophic cubic set representations of E1 and E2 defined as

M1 =

〈
{a, ([0.5, 0.6], 0.1), ([0.1, 0.2], 0.5), ([0.8, 0.9], 0.3)},
{b, ([0.4, 0.5], 0.3), ([0.2, 0.3], 0.2), ([0.5, 0.6], 0.6)}

〉
N1 =

〈
{ab, ([0.4, 0.5], 0.3), ([0.1, 0.2], 0.5), ([0.8, 0.9], 0.3)}

〉
and

M2 =

〈
{c, ([0.6, 0.7], 0.4), ([0.8, 0.9], 0.8), ([0.1, 0.2], 0.6)},
{d, ([0.3, 0.4], 0.7), ([0.6, 0.7], 0.5), ([0.9, 1.0], 0.9)}

〉
N2 =

〈
{cd, ([0.3, 0.4], 0.7), ([0.6, 0.7], 0.8), ([0.9, 1.0], 0.6)}

〉
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Clearly G1 = (M1; N1) and G2 = (M2; N2) are neutrosophic cubic graphs. So

M1 [M2] =

* f(a; c); ([0:5; 0:6]; 0:4); ([0:1; 0:2]; 0:8); ([0:8; 0:9]; 0:3)g;
f(a; d); ([0:3; 0:4]; 0:7); ([0:1; 0:2]; 0:5); ([0:9; 1:0]; 0:3)g;
f(b; c); ([0:4; 0:5]; 0:4); ([0:2; 0:3]; 0:8); [0:5; 0:6]; 0:6)g;
f(b; d); ([0:3; 0:4]; 0:7); ([0:2; 0:3]; 0:5); ([0:9; 1:0]; 0:6)g

+

N1 [N2] =

*
f((a; c)(a; d)); ([0:3; 0:4]; 0:7); ([0:1; 0:2]; 0:8); ([0:9; 1:0]; 0:3)g;
f((a; d)(b; d)); ([0:3; 0:4]; 0:7); ([0:1; 0:2]; 0:5); [0:9; 1:0]; 0:3)g;
f((b; d)(b; c)); ([0:3; 0:4]; 0:7); ([0:2; 0:3]; 0:8); ([0:9; 1:0]; 0:6)g;
f((b; c)(a; c)); ([0:4; 0:5]; 0:4); ([0:1; 0:2]; 0:8); ([0:8; 0:9]; 0:3)g;
f((a; c)(b; d)); ([0:3; 0:4]; 0:7); ([0:1; 0:2]; 0:8); ([0:9; 1:0]; 0:3)g;
f((a; d)(b; c)); ([0:3; 0:4]; 0:7); ([0:1; 0:2]; 0:8); ([0:9; 1:0]; 0:3)g

+
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Figure 5. Neutrosophic Cubic Graph G1 and G2.

Clearly G1 = (M1, N1) and G2 = (M2, N2) are neutrosophic cubic graphs. So, the composition of two
neutrosophic cubic graphs G− 1 and G− 2 is again a neutrosophic cubic graph as shown in Figure 6, where

M1 [M2] =

〈 {(a, c), ([0.5, 0.6], 0.4), ([0.1, 0.2], 0.8), ([0.8, 0.9], 0.3)},
{(a, d), ([0.3, 0.4], 0.7), ([0.1, 0.2], 0.5), ([0.9, 1.0], 0.3)},
{(b, c), ([0.4, 0.5], 0.4), ([0.2, 0.3], 0.8), [0.5, 0.6], 0.6)},
{(b, d), ([0.3, 0.4], 0.7), ([0.2, 0.3], 0.5), ([0.9, 1.0], 0.6)}

〉

N1 [N2] =

〈 {((a, c)(a, d)), ([0.3, 0.4], 0.7), ([0.1, 0.2], 0.8), ([0.9, 1.0], 0.3)},
{((a, d)(b, d)), ([0.3, 0.4], 0.7), ([0.1, 0.2], 0.5), [0.9, 1.0], 0.3)},
{((b, d)(b, c)), ([0.3, 0.4], 0.7), ([0.2, 0.3], 0.8), ([0.9, 1.0], 0.6)},
{((b, c)(a, c)), ([0.4, 0.5], 0.4), ([0.1, 0.2], 0.8), ([0.8, 0.9], 0.3)},
{((a, c)(b, d)), ([0.3, 0.4], 0.7), ([0.1, 0.2], 0.8), ([0.9, 1.0], 0.3)},
{((a, d)(b, c)), ([0.3, 0.4], 0.7), ([0.1, 0.2], 0.8), ([0.9, 1.0], 0.3)}

〉

Proposition 3.7 The composition of two neutrosophic cubic graphs is again a neutrosophic cubic graph.

De�nition 3.8 Let G1 = (M1; N1) and G2 = (M2; N2) be two neutrosophic cubic graphs of the graphs G�1
and G�2 respectively. Then P-union is denoted by G1 [P G2 and is de�ned as

G1 [P G2 = f(M1; N1) [P (M2; N2)g = fM1 [P M2; N1 [P N2g

= f
D
(( ~TA1

[p ~TA2
); (TB1

[p TB2
)); ((~IA1

[p ~IA2
); (IB1

[p IB2
)); (( ~FA1

[p ~FA2
); (FB1

[p FB2
))
E
;D

(( ~TC1 [p ~TC2); (TD1
[p TD2

)); ((~IC1 [p ~IC2); (ID1
[p ID2

)); (( ~FC1 [p ~FC2); (FD1
[p FD2

))
E
g
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Figure 6. Composition of G1 and G2.
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Proposition 2. The composition of two neutrosophic cubic graphs is again a neutrosophic cubic graph.

Definition 14. Let G1 = (M1, N1) and G2 = (M2, N2) be two neutrosophic cubic graphs of the graphs G∗1
and G∗2 respectively. Then P-union is denoted by G1 ∪P G2 and is defined as

G1 ∪P G2 = {(M1, N1) ∪P (M2, N2)} = {M1 ∪P M2, N1 ∪P N2}
= {

〈
((T̃A1 ∪p T̃A2 ), (TB1 ∪p TB2 )), (( ĨA1 ∪p ĨA2 ), (IB1 ∪p IB2 )), ((F̃A1 ∪p F̃A2 ), (FB1 ∪p FB2 ))

〉
,〈

((T̃C1 ∪p T̃C2 ), (TD1 ∪p TD2 )), (( ĨC1 ∪p ĨC2 ), (ID1 ∪p ID2 )), ((F̃C1 ∪p F̃C2 ), (FD1 ∪p FD2 ))
〉
}

where

(T̃A1 ∪p T̃A2)(x) =


T̃A1(x) if x ∈ V1 −V2

T̃A2(x) if x ∈ V2 −V1

rmax{T̃A1(x), T̃A2(x)} if x ∈ V1 ∩V2

(TB1 ∪p TB2)(x) =


TB1(x) if x ∈ V1 −V2

TB2(x) if x ∈ V2 −V1

max{TB1(x), TB2(x)} if x ∈ V1 ∩V2

( ĨA1 ∪p ĨA2)(x) =


ĨA1(x) if x ∈ V1 −V2

ĨA2(x) if x ∈ V2 −V1

rmax{ ĨA1(x), ĨA2(x)} if x ∈ V1 ∩V2

(IB1 ∪p IB2)(x) =


IB1(x) if x ∈ V1 −V2

IB2(x) if x ∈ V2 −V1

max{IB1(x), IB2(x)} if x ∈ V1 ∩V2

(F̃A1 ∪p F̃A2)(x) =


F̃A1(x) if x ∈ V1 −V2

F̃A2(x) if x ∈ V2 −V1

rmax{F̃A1(x), F̃A2(x)} if x ∈ V1 ∩V2

(FB1 ∪p FB2)(x) =


FB1(x) if x ∈ V1 −V2

FB2(x) if x ∈ V2 −V1

max{FB1(x), FB2(x)} if x ∈ V1 ∩V2

(T̃C1 ∪p T̃C2)(x2y2) =


T̃C1(x2y2) if x2y2 ∈ V1 −V2

T̃C2(x2y2) if x2y2 ∈ V2 −V1

rmax{T̃C1(x2y2), T̃C2(x2y2)} if x2y2 ∈ E1 ∩ E2

(TD1 ∪p TD2)(x2y2) =


TD1(x2y2) if x2y2 ∈ V1 −V2

TD2(x2y2) if x2y2 ∈ V2 −V1

max{TD1(x2y2), TD2(x2y2)} if x2y2 ∈ E1 ∩ E2

( ĨC1 ∪p ĨC2)(x2y2) =


ĨC1(x2y2) if x2y2 ∈ V1 −V2

ĨC2(x2y2) if x2y2 ∈ V2 −V1

rmax{ ĨC1(x2y2), ĨC2(x2y2)} if x2y2 ∈ E1 ∩ E2

(ID1 ∪p ID2)(x2y2) =


ID1(x2y2) if x2y2 ∈ V1 −V2

ID2(x2y2) if x2y2 ∈ V2 −V1

max{ID1(x2y2), ID2(x2y2)} if x2y2 ∈ E1 ∩ E2
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(F̃C1 ∪p F̃C2)(x2y2) =


F̃C1(x2y2) if x2y2 ∈ V1 −V2

F̃C2(x2y2) if x2y2 ∈ V2 −V1

rmax{F̃C1(x2y2), F̃C2(x2y2)} if x2y2 ∈ E1 ∩ E2

(FD1 ∪p FD2)(x2y2) =


FD1(x2y2) if x2y2 ∈ V1 −V2

FD2(x2y2) if x2y2 ∈ V2 −V1

max{FD1(x2y2), FD2(x2y2)} if x2y2 ∈ E1 ∩ E2

and R-union is denoted by G1 ∪R G2 and is defined by

G1 ∪R G2 = {(M1, N1) ∪R (M2, N2)} = {M1 ∪R M2, N1 ∪R N2}
= {

〈
((T̃A1 ∪R T̃A2 ), (TB1 ∪R TB2 )), (( ĨA1 ∪R ĨA2 ), (IB1 ∪R IB2 )), ((F̃A1 ∪R F̃A2 ), (FB1 ∪R FB2 ))

〉
,〈

((T̃C1 ∪R T̃C2 ), (TD1 ∪R TD2 )), (( ĨC1 ∪R ĨC2 ), (ID1 ∪R ID2 )), ((F̃C1 ∪R F̃C2 ), (FD1 ∪R FD2 ))
〉
}

where

(T̃A1 ∪R T̃A2)(x) =


T̃A1(x) if x ∈ V1 −V2

T̃A2(x) if x ∈ V2 −V1

rmax{T̃A1(x), T̃A2(x)} if x ∈ V1 ∩V2

(TB1 ∪R TB2)(x) =


TB1(x) if x ∈ V1 −V2

TB2(x) if x ∈ V2 −V1

min{TB1(x), TB2(x)} if x ∈ V1 ∩V2

( ĨA1 ∪R ĨA2)(x) =


ĨA1(x) if x ∈ V1 −V2

ĨA2(x) if x ∈ V2 −V1

rmax{ ĨA1(x), ĨA2(x)} if x ∈ V1 ∩V2

(IB1 ∪R IB2)(x) =


IB1(x) if x ∈ V1 −V2

IB2(x) if x ∈ V2 −V1

min{IB1(x), IB2(x)} if x ∈ V1 ∩V2

(F̃A1 ∪R MTF2
)(x) =


F̃A1(x) if x ∈ V1 −V2

F̃A2(x) if x ∈ V2 −V1

rmax{F̃A1(x), F̃A2(x)} if x ∈ V1 ∩V2

(FB1 ∪R FB2)(x) =


FB1(x) if x ∈ V1 −V2

FB2(x) if x ∈ V2 −V1

min{FB1(x), FB2(x)} if x ∈ V1 ∩V2

(T̃C1 ∪R T̃C2)(x2y2) =


T̃C1(x2y2) if x2y2 ∈ V1 −V2

T̃C2(x2y2) if x2y2 ∈ V2 −V1

rmax{T̃C1(x2y2), T̃C2(x2y2)} if x2y2 ∈ E1 ∩ E2

(TD1 ∪R ND2
)(x2y2) =


TD1(x2y2) if x2y2 ∈ V1 −V2

TD2(x2y2) if x2y2 ∈ V2 −V1

min{TD1(x2y2), TD2(x2y2)} if x2y2 ∈ E1 ∩ E2
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(F̃C1 ∪R F̃C2)(x2y2) =


F̃C1(x2y2) if x2y2 ∈ V1 −V2

F̃C2(x2y2) if x2y2 ∈ V2 −V1

rmax{F̃C1(x2y2), F̃C2(x2y2)} if x2y2 ∈ E1 ∩ E2

(FD1 ∪R FD2)(x2y2) =


FD1(x2y2) if x2y2 ∈ V1 −V2

FD2(x2y2) if x2y2 ∈ V2 −V1

min{FD1(x2y2), FD2(x2y2)} if x2y2 ∈ E1 ∩ E2

Example 6. Let G1 and G2 be two neutrosophic cubic graphs as represented by Figures 7 and 8, where

M1 =

〈 {a, ([0.2, 0.3], 0.5), ([0.4, 0.5], 0.9), ([0.1, 0.3], 0.2)} ,
{b, ([0.3, 0.4], 0.2), [0.1, 0.2], 0.1), [0.4, 0.6], 0.5)},
{c, ([0.2, 0.4], 0.6), ([0.7, 0.8], 0.8), ([0.3, 0.5], 0.7)}

〉

N1 =

〈 {ab, ([0.2, 0.3], 0.5), ([0.1, 0.2], 0.9), ([0.4, 0.6], 0.2)} ,
{bc, ([0.2, 0.4], 0.6), ([0.1, 0.2], 0.8), ([0.4, 0.6], 0.5)} ,
{ac, ([0.2, 0.3], 0.6), ([0.4, 0.5], 0.9), ([0.3, 0.5], 0.2)}

〉

and

M2 =

〈 {a, ([0.5, 0.6], 0.3), ([0.1, 0.2], 0.6), ([0.3, 0.4], 0.5)} ,
{b, ([0.6, 0.7], 0.6), ([0.7, 0.8], 0.4), ([0.1, 0.2], 0.5)} ,
{c, ([0.4, 0.5], 0.1), ([0.2, 0.5], 0.5), ([0.5, 0.6], 0.3)}

〉

N2 =

〈 {ab, ([0.5, 0.6], 0.6), ([0.1, 0.2], 0.6), ([0.3, 0.4], 0.5)} ,
{bc, ([0.4, 0.5], 0.6), ([0.2, 0.5], 0.5), ([0.5, 0.6], 0.3)} ,
{ac, ([0.4, 0.5], 0.3), ([0.1, 0.2], 0.6), ([0.5, 0.6], 0.3)}

〉

then G1 ∪p G2 will be a neutrosophic cubic graph as shown in Figure 9, where

M1 ∪p M2 =

〈 {a, ([0.5, 0.6], 0.5), ([0.4, 0.5], 0.9), ([0.3, 0.4], 0.5)} ,
{b, ([0.6, 0.7], 0.6), ([0.7, 0.8], 0.4), ([0.4, 0.6], 0.5)} ,
{c, ([0.4, 0.5], 0.6), ([0.7, 0.8], 0.8), ([0.5, 0.6], 0.7)}

〉

N1 ∪P N2 =

〈 {ab, ([0.5, 0.6], 0.6), ([0.1, 0.2], 0.9), ([0.4, 0.6], 0.5)} ,
{bc, ([0.4, 0.5], 0.6), ([0.2, 0.5], 0.8), [0.5, 0.6], 0.5)} ,
{ac, ([0.4, 0.5], 0.6), ([0.4, 0.5], 0.9), ([0.5, 0.6], 0.3)}

〉

and G1 ∪R G2 will be a neutrosophic cubic graph as shown in Figure 10, where

M1 ∪R M2 =
{a, ([0.5, 0.6], 0.3), ([0.4, 0.5], 0.6), ([0.3, 0.4], 0.2)} ,
{b, ([0.6, 0.7], 0.2), ([0.7, 0.8], 0.1), [0.4, 0.6], 0.5)} ,
{c, ([0.4, 0.5], 0.1), ([0.7, 0.8], 0.5), ([0.5, 0.6], 0.3)}

N1 ∪R N2 =
{ab, ([0.5, 0.6], 0.5), ([0.1, 0.2], 0.6), ([0.4, 0.6], 0.2)} ,
{bc, ([0.4, 0.5], 0.6), ([0.2, 0.5], 0.5), ([0.5, 0.6], 0.3)} ,
{ac, ([0.4, 0.5], 0.3), ([0.4, 0.5], 0.6), ([0.5, 0.6], 0.2)}

Proposition 3. The P-union of two neutrosophic cubic graphs is again a neutrosophic cubic graph.

Remark 2. The R-union of two neutrosophic cubic graphs may or may not be a neutrosophic cubic graph as in
the Example 6 we see that

TD1∪RD2(ab) = 0.5 
 max{0.3, 0.2} = 0.3 = max{TD1∪RD2(a), TD1∪RD2(b)}
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( ~FC1 [R ~FC2)(x2y2) =

8>><>>:
~FC1(x2y2) if x2y2 2 V1 � V2
~FC2(x2y2) if x2y2 2 V2 � V1
rmaxf ~FC1(x2y2); ~FC2(x2y2)g if x2y2 2 E1 \ E2

(FD1
[R FD2

)(x2y2) =

8>><>>:
FD1

(x2y2) if x2y2 2 V1 � V2
FD2(x2y2) if x2y2 2 V2 � V1
minfFD1

(x2y2); FD2
(x2y2)g if x2y2 2 E1 \ E2

Example 3.7 Let G1and G2 be two neutrosophic cubic graphs where

M1 =

* fa; ([0:2; 0:3]; 0:5); ([0:4; 0:5]; 0:9); ([0:1; 0:3]; 0:2)g ;
fb; ([0:3; 0:4]; 0:2); [0:1; 0:2]; 0:1); [0:4; 0:6]; 0:5)g;
fc; ([0:2; 0:4]; 0:6); ([0:7; 0:8]; 0:8); ([0:3; 0:5]; 0:7)g

+

N1 =

* fab; ([0:2; 0:3]; 0:5); ([0:1; 0:2]; 0:9); ([0:4; 0:6]; 0:2)g ;
fbc; ([0:2; 0:4]; 0:6); ([0:1; 0:2]; 0:8); ([0:4; 0:6]; 0:5)g ;
fac; ([0:2; 0:3]; 0:6); ([0:4; 0:5]; 0:9); ([0:3; 0:5]; 0:2)g

+

18

Figure 7. Neutrosophic Cubic Graph G1.

and

M2 =

* fa; ([0:5; 0:6]; 0:3); ([0:1; 0:2]; 0:6); ([0:3; 0:4]; 0:5)g ;
fb; ([0:6; 0:7]; 0:6); ([0:7; 0:8]; 0:4); ([0:1; 0:2]; 0:5)g ;
fc; ([0:4; 0:5]; 0:1); ([0:2; 0:5]; 0:5); ([0:5; 0:6]; 0:3)g

+

N2 =

* fab; ([0:5; 0:6]; 0:6); ([0:1; 0:2]; 0:6); ([0:3; 0:4]; 0:5)g ;
fbc; ([0:4; 0:5]; 0:6); ([0:2; 0:5]; 0:5); ([0:5; 0:6]; 0:3)g ;
fac; ([0:4; 0:5]; 0:3); ([0:1; 0:2]; 0:6); ([0:5; 0:6]; 0:3)g

+

then G1 [p G2 will be

M1 [pM2 =

* fa; ([0:5; 0:6]; 0:5); ([0:4; 0:5]; 0:9); ([0:3; 0:4]; 0:5)g ;
fb; ([0:6; 0:7]; 0:6); ([0:7; 0:8]; 0:4); ([0:4; 0:6]; 0:5)g ;
fc; ([0:4; 0:5]; 0:6); ([0:7; 0:8]; 0:8); ([0:5; 0:6]; 0:7)g

+

N1 [P N2 =

* fab; ([0:5; 0:6]; 0:6); ([0:1; 0:2]; 0:9); ([0:4; 0:6]; 0:5)g ;
fbc; ([0:4; 0:5]; 0:6); ([0:2; 0:5]; 0:8); [0:5; 0:6]; 0:5)g ;
fac; ([0:4; 0:5]; 0:6); ([0:4; 0:5]; 0:9); ([0:5; 0:6]; 0:3)g

+

19

Figure 8. Neutrosophic Cubic Graph G2.

and G1 [R G2 will be

M1 [RM2 =

fa; ([0:5; 0:6]; 0:3); ([0:4; 0:5]; 0:6); ([0:3; 0:4]; 0:2)g ;
fb; ([0:6; 0:7]; 0:2); ([0:7; 0:8]; 0:1); [0:4; 0:6]; 0:5)g ;
fc; ([0:4; 0:5]; 0:1); ([0:7; 0:8]; 0:5); ([0:5; 0:6]; 0:3)g

N1 [R N2 =

fab; ([0:5; 0:6]; 0:5); ([0:1; 0:2]; 0:6); ([0:4; 0:6]; 0:2)g ;
fbc; ([0:4; 0:5]; 0:6); ([0:2; 0:5]; 0:5); ([0:5; 0:6]; 0:3)g ;
fac; ([0:4; 0:5]; 0:3); ([0:4; 0:5]; 0:6); ([0:5; 0:6]; 0:2)g

20

Figure 9. P-Union of G1 and G2.
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Proposition 3.9 The P-union of two neutrosophic cubic graphs is again a neutrosophic cubic graph.

Remark 3.10 The R-union of two neutrosophic cubic graphs may or may not be a neutrosophic cubic graph

as in the Example 3.7 we see that

TD1[RD2(ab) = 0:5 
 maxf0:3; 0:2g = 0:3 = maxfTD1[RD2(a); TD1[RD2(b)g

De�nition 3.11 Let G1 = (M1; N1) and G2 = (M2; N2) be two neutrosophic cubic graphs of the graphs G�1
and G�2 respectively then P-join is denoted by G1 +P G2 and is de�ned by

G1 +P G2 = (M1; N1) +P (M2; N2) = (M1 +P M2; N1 +P N2)

= f
D
(( ~TA1 +P

~TA2); (TB1 +P TB2)); ((
~IA1 +P

~IA2); (IB1 +P IB2)); ((
~FA1 +P

~FA2); (FB1 +P FB2))
E
;D

(( ~TC1 +P
~TC2); (TD1 +P TD2)); ((

~IC1 +P
~IC2); (ID1 +P ID2)); ((

~FC1 +P
~FC2); (FD1 +P FD2))

E
g

where (i) if x 2 V1 [ V2

( ~TA1 +P
~TA2)(x) = ( ~TA1 [P ~TA2)(x); (TB1 +P TB2)(x) = (TB1 [P TB2)(x)

(~IA1
+P ~IA2

)(x) = (~IA1
[P ~IA2

)(x); (IB1
+P IB2

)(x) = (IB1
[P IB2

)(x)

( ~FA1
+P ~FA2

)(x) = ( ~FA1
[P ~FA2

)(x); (FB1
+P FB2

)(x) = (FB1
[P FB2

)(x)

21

Figure 10. R-Union of G1 and G2.

Definition 15. Let G1 = (M1, N1) and G2 = (M2, N2) be two neutrosophic cubic graphs of the graphs G∗1
and G∗2 respectively then P-join is denoted by G1 +P G2 and is defined by

G1 +P G2 = (M1, N1) +P (M2, N2) = (M1 +P M2, N1 +P N2)

= {
〈
((T̃A1 +P T̃A2 ), (TB1 +P TB2 )), (( ĨA1 +P ĨA2 ), (IB1 +P IB2 )), ((F̃A1 +P F̃A2 ), (FB1 +P FB2 ))

〉
,〈

((T̃C1 +P T̃C2 ), (TD1 +P TD2 )), (( ĨC1 +P ĨC2 ), (ID1 +P ID2 )), ((F̃C1 +P F̃C2 ), (FD1 +P FD2 ))
〉
}

where

(i) if x ∈ V1 ∪V2

(T̃A1 +P T̃A2)(x) = (T̃A1 ∪P T̃A2)(x), (TB1 +P TB2)(x) = (TB1 ∪P TB2)(x)

( ĨA1 +P ĨA2)(x) = ( ĨA1 ∪P ĨA2)(x), (IB1 +P IB2)(x) = (IB1 ∪P IB2)(x)

(F̃A1 +P F̃A2)(x) = (F̃A1 ∪P F̃A2)(x), (FB1 +P FB2)(x) = (FB1 ∪P FB2)(x)

(ii) if xy ∈ E1 ∪ E2

(T̃C1 +P T̃C2)(xy) = (T̃C1 ∪P T̃C2)(xy), (TD1 +P TD2)(xy) = (TD1 ∪P TD2)(xy)

( ĨC1 +P ĨC2)(xy) = ( ĨC1 ∪P ĨC2)(xy), (ID1 +P ID2)(xy) = (ID1 ∪P ID2)(xy)

(F̃C1 +P F̃C2)(xy) = (F̃C1 ∪P F̃C2)(xy), (FD1 +P FD2)(xy) = (FD1 ∪P FD2)(xy)

(iii) if xy ∈ E∗, where E∗ is the set of all edges joining the vertices of V1 and V2

(T̃C1 +P T̃C2)(xy) = rmin{T̃A1(x), T̃A2(y)}, (TD1 +P TD2)(xy) = min{TB1(x), TB2(y)}
( ĨC1 +P ĨC2)(xy) = rmin{ ĨA1(x), ĨA2(y)}, (ID1 +P ID2)(xy) = min{IB1(x), IB2(y)}
(F̃C1 +P F̃C2)(xy) = rmin{F̃A1(x), F̃A2(y)}, (FD1 +P FD2)(xy) = min{FB1(x), FB2(y)}

Definition 16. Let G1 = (M1, N1) and G2 = (M2, N2) be two neutrosophic cubic graphs of the graphs G∗1
and G∗2 respectively then R-join is denoted by G1 +R G2 and is defined by

G1 +R G2 = (M1, N1) +R (M2, N2) = (M1 +R M2, N1 +R N2)

= {
〈
((T̃A1 +R T̃A2 ), (TB1 +R TB2 )), (( ĨA1 +R ĨA2 ), (IB1 +R IB2 )), ((F̃A1 +R F̃A2 ), (FB1 +R FB2 ))

〉
,〈

((T̃C1 +R T̃C2 ), (TD1 +R TD2 )), (( ĨC1 +R ĨC2 ), (ID1 +R ID2 )), ((F̃C1 +R F̃C2 ), (FD1 +R FD2 ))
〉
}

where
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(i) if x ∈ V1 ∪V2

(T̃A1 +R T̃A2)(x) = (T̃A1 ∪R T̃A2)(x), (TB1 +R TB2)(x) = (TB1 ∪R TB2)(x)

( ĨA1 +R ĨA2)(x) = ( ĨA1 ∪R ĨA2)(x), (IB1 +R IB2)(x) = (IB1 ∪R IB2)(x)

(F̃A1 +R F̃A2)(x) = (F̃A1 ∪R F̃A2)(x), (FB1 +R FB2)(x) = (FB1 ∪R FB2)(x)

(ii) if xy ∈ E1 ∪ E2

2a.
{
(T̃C1 +R T̃C2)(xy) = (T̃C1 ∪R T̃C2)(xy), (TD1 +R TD2)(xy) = (TD1 ∪R TD2)(xy)

2b.
{
( ĨC1 +R ĨC2)(xy) = ( ĨC1 ∪R ĨC2)(xy), (ID1 +R ID2)(xy) = (ID1 ∪R ID2)(xy)

2c.
{
(F̃C1 +R F̃C2)(xy) = (F̃C1 ∪R F̃C2)(xy), (FD1 +R FD2)(xy) = (FD1 ∪R FD2)(xy)

(iii) if xy ∈ E∗, where E∗ is the set of all edges joining the vertices of V1 and V2

3a.

{
(T̃C1 +R T̃C2)(xy) = rmin{T̃A1(x), T̃A2(y)},
(TD1 +R TD2)(xy) = max{TB1(x), TB2(y)}

3b.

{
( ĨC1 +R ĨC2)(xy) = rmin{ ĨA1(x), ĨA2(y)},
(ID1 +R ID2)(xy) = max{IB1(x), IB2(y)}

3c.

{
(F̃C1 +R F̃C2)(xy) = rmin{F̃A1(x), F̃A2(y)},
(FD1 +R FD2)(xy) = max{FB1(x), FB2(y)}

Proposition 4. The P-join and R-join of two neutrosophic cubic graphs is again a neutrosophic cubic graph.

4. Applications

Fuzzy graph theory is an effective field having a vast range of applications in Mathematics.
Neutrosophic cubic graphs are more general and effective approach used in daily life very effectively.

Here in this section we test the applicability of our proposed model by providing applications
in industries.

Example 7. Let us suppose a set of three industries representing a vertex set V = {A, B, C} and let the
truth-membership of each vertex in V denotes “win win” situation of industry, where they do not harm each
other and do not capture other’s customers. Indetermined-membership of members of vertex set represents
the situation in which industry works in a diplomatic and social way, that is, they are ally being social and
competitive being industry. Falsity-membership shows a brutal competition where price war starts among
industries. We want to observe the effect of one industry on other industry with respect to their business power
and strategies. Let we have a neutrosophic cubic graph for industries having the following data with respect to
business strategies

M =

〈 {A, ([0.3, 0.4], 0.3), ([0.5, 0.7], 0.6), ([0.4, 0.5], 0.2)},
{B, ([0.4, 0.5], 0.4), ([0.7, 0.8], 0.5), ([0.2, 0.3], 0.3)},
{C, ([0.6, 0.8], 0.8), ([0.4, 0.5], 0.3), ([0.1, 0.2], 0.1)}

〉

where interval memberships indicate the business strength and strategies of industries for the present time
while fixed membership indicates the business strength and strategies of industries for future based on given
information. So on the basis of M we get a set of edges defined as

N =

〈 {AB, ([0.3, 0.4], 0.4), ([0.5, 0.7], 0.6), ([0.4, 0.5], 0.2)},
{BC, ([0.4, 0.5], 0.8), ([0.4, 0.5], 0.5), ([0.2, 0.3], 0.1)},
{AC, ([0.3, 0.4], 0.8), ([0.4, 0.5], 0.6), ([0.4, 0.5], 0.1)}

〉
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where interval memberships indicate the business strength and strategies of industries for the present time while
fixed membership indicate the business strength and strategies of industries for future when it will be the time of
more competition. It is represented in Figure 11.

Finally we see that the business strategies of one industry strongly affect its business with other industries. Here

order(G) = {([1.3, 1.7], 1.5), ([1.6, 2.0], 1.4), ([0.7, 1.0], 0.6)}

and

deg(A) = {([0.6, 0.8], 1.2), ([0.9, 1.2], 1.2), ([0.8, 1.0], 0.3)}
deg(B) = {([0.7, 0.9], 1.2), ([0.9, 1.2], 1.1), ([0.6, 0.8], 0.3)}
deg(C) = {([0.7, 0.9], 1.6), ([0.8, 1.0], 1.1), ([0.6, 0.8], 0.2)}

Order of G represents the overall effect on market of above given industries A, B and C. Degree of A
represents the effect of other industries on A link through an edge with the industry A. The minimum degree of
A is 0 when it has no link with any other.the time of more competition.

Finally we see that the business strategies of one industry strongly a¤ect its business with other industries.

Here

order(G) = f([1:3; 1:7]; 1:5); ([1:6; 2:0]; 1:4); ([0:7; 1:0]; 0:6)g

and

deg(A) = f([0:6; 0:8]; 1:2); ([0:9; 1:2]; 1:2); ([0:8; 1:0]; 0:3)g

deg(B) = f([0:7; 0:9]; 1:2); ([0:9; 1:2]; 1:1); ([0:6; 0:8]; 0:3)g

deg(C) = f([0:7; 0:9]; 1:6); ([0:8; 1:0]; 1:1); ([0:6; 0:8]; 0:2)g

Order of G represents the overall e¤ect on market of above given industries A; B and C. Degree of A

represents the e¤ect of other industries on A link through an edge with the industry A. The minimum

degree of A is 0 when it has no link with any other.

Example 5.2. Let we have an industry and we want to evaluate its overall performance. There are a

lot of factors a¤ecting it. But some of the important factors in�uencing industrial productivity are with

neutrosophic cubic set as under, where the data is provided in the form of interval based on future prediction

and data given in the form of a number from the unit interval [0; 1] is dependent on the present time after

a careful testing of di¤erent models as a sample in each case,
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Figure 11. Neutrosophic Cubic Graph.

Example 8. Let us take an industry and we want to evaluate its overall performance. There are a lot of factors
affecting it. However, some of the important factors influencing industrial productivity are with neutrosophic
cubic sets as under, where the data is provided in the form of interval based on future prediction and data given
in the form of a number from the unit interval [0, 1] is dependent on the present time after a careful testing of
different models as a sample in each case,

1. Technological Development A = ((T̃A, TA), ( ĨA, IA), (F̃A, FA)) = ((degree of mechanization), (technical
know-how), (product design)) = {A, ([0.3, 0.4], 0.3), ([0.5, 0.7], 0.6), ([0.4, 0.5], 0.2)},

2. Quality of Human Resources B = ((T̃B, TB), ( ĨB, IB), (F̃B, FB)) = ((ability of the
worker), (willingness of the worker), (the environment under which he has to work)) =

{B, ([0.4, 0.5], 0.4), ([0.7, 0.8], 0.5), ([0.2, 0.3], 0.3)},
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3. Availability of Finance C = ((T̃C, TC), ( ĨC, IC), (F̃C, FC)) = ((advertisement campaign),
(better working conditions to the workers), (up-keep of plant and machinery)) =

{C, ([0.6, 0.8], 0.8), ([0.4, 0.5], 0.3), ([0.1, 0.2], 0.1)},
4. Managerial Talent D = ((T̃D, TD), ( ĨD, ID), (F̃D, FD)) = ((devoted towards their profession),

(Links with workers, customers and suppliers), (conceptual, human relations and technical skills))
= {D, ([0.3, 0.6], 0.4), ([0.2, 0.7], 0.9), ([0.3, 0.5], 0.6)},

5. Government Policy= E = ((T̃E, TE), ( ĨE, IE), (F̃E, FE)) =Government Policy= ((favorable
conditions for saving), (investment), (flow of capital from one industrial sector to another)) =

{E, ([0.2, 0.4], 0.5), ([0.5, 0.6], 0.1), ([0.4, 0.5], 0.2)},
6. Natural Factors= F = ((T̃F, TF), ( ĨF, IF), (F̃F, FF)) = ((physical), (geographical), (climatic exercise)) =
{F, ([0.1, 0.4], 0.8), ([0.5, 0.7], 0.2), ([0.4, 0.5], 0.2)}. As these factors affecting industrial productivity are
inter-related and inter-dependent, it is a difficult task to evaluate the influence of each individual factor on
the overall productivity of industrial units. The use of neutrosophic cubic graphs give us a more reliable
information as under. Let X = {A, B, C, D, F, E} we have a neutrosophic cubic set for the vertex set
as under

M =

〈 {A, ([0.3, 0.4], 0.3), ([0.5, 0.7], 0.6), ([0.4, 0.5], 0.2)},
{B, ([0.4, 0.5], 0.4), ([0.7, 0.8], 0.5), ([0.2, 0.3], 0.3)},
{C, ([0.6, 0.8], 0.8), ([0.4, 0.5], 0.3), ([0.1, 0.2], 0.1)},
{D, ([0.3, 0.6], 0.4), ([0.2, 0.7], 0.9), ([0.3, 0.5], 0.6)},
{E, ([0.2, 0.4], 0.5), ([0.5, 0.6], 0.1), ([0.4, 0.5], 0.2)},
{F, ([0.1, 0.4], 0.8), ([0.5, 0.7], 0.2), ([0.4, 0.5], 0.2)}

〉

Now, in order to find the combined effect of all these factors we need to use neutrosophic cubic sets for edges
as under

N =

〈

{AB, ([0.3, 0.4], 0.4), ([0.5, 0.7], 0.6), ([0.4, 0.5], 0.2)},
{AC, ([0.3, 0.4], 0.8), ([0.4, 0.5], 0.6), ([0.4, 0.5], 0.1)},
{AD, ([0.3, 0.4], 0.4), ([0.2, 0.7], 0.9), ([0.4, 0.5], 0.2)},
{AE, ([0.2, 0.4], 0.5), ([0.5, 0.6], 0.6), ([0.4, 0.5], 0.2)},
{AF, ([0.1, 0.4], 0.8), ([0.5, 0.7], 0.6), ([0.4, 0.5], 0.2)},
{BC, ([0.4, 0.5], 0.8), ([0.4, 0.5], 0.5), ([0.2, 0.3], 0.1)},
{BD, ([0.3, 0.5], 0.4), ([0.2, 0.7], 0.9), ([0.3, 0.5], 0.3)},
{BE, ([0.2, 0.4], 0.5), ([0.5, 0.6], 0.5), ([0.4, 0.5], 0.2)},
{BF, ([0.1, 0.4], 0.8), ([0.5, 0.7], 0.5), ([0.4, 0.5], 0.2)},
{CD, ([0.3, 0.6], 0.8), ([0.2, 0.5], 0.9), ([0.3, 0.5], 0.1)},
{CE, ([0.2, 0.4], 0.8), ([0.4, 0.5], 0.3), ([0.4, 0.5], 0.1)},
{CF, ([0.1, 0.4], 0.8), ([0.4, 0.5], 0.3), ([0.4, 0.5], 0.1)},
{DE, ([0.2, 0.4], 0.5), ([0.2, 0.6], 0.9), ([0.4, 0.5], 0.2)},
{DF, ([0.1, 0.4], 0.8), ([0.2, 0.7], 0.9), ([0.4, 0.5], 0.2)},
{EF, ([0.1, 0.4], 0.8), ([0.5, 0.6], 0.2), ([0.4, 0.5], 0.2)}

〉

where the edge {AB, ([0.3, 0.4], 0.4), ([0.5, 0.7], 0.6), ([0.4, 0.5], 0.2)} denotes the combined effect of
technological development and quality of human resources on the productivity of the industry. Now, if we are
interested to find which factors are more effective to the productivity of the industry, we may use the score and
accuracy of the neutrosophic cubic sets, which will give us a closer view of the factors. It is represented in
Figure 12.

Remark. We used degree and order of the neutrosophic cubic graphs in an application see Example 7 and if
we have two different sets of industries having finite number of elements, we can easily find the applications of
cartesian product, composition, union, join, order and degree of neutrosophic cubic graphs.
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as under

N =

*

fAB; ([0:3; 0:4]; 0:4); ([0:5; 0:7]; 0:6); ([0:4; 0:5]; 0:2)g;
fAC; ([0:3; 0:4]; 0:8); ([0:4; 0:5]; 0:6); ([0:4; 0:5]; 0:1)g;
fAD; ([0:3; 0:4]; 0:4); ([0:2; 0:7]; 0:9); ([0:4; 0:5]; 0:2)g;
fAE; ([0:2; 0:4]; 0:5); ([0:5; 0:6]; 0:6); ([0:4; 0:5]; 0:2)g;
fAF; ([0:1; 0:4]; 0:8); ([0:5; 0:7]; 0:6); ([0:4; 0:5]; 0:2)g;
fBC; ([0:4; 0:5]; 0:8); ([0:4; 0:5]; 0:5); ([0:2; 0:3]; 0:1)g;
fBD; ([0:3; 0:5]; 0:4); ([0:2; 0:7]; 0:9); ([0:3; 0:5]; 0:3)g;
fBE; ([0:2; 0:4]; 0:5); ([0:5; 0:6]; 0:5); ([0:4; 0:5]; 0:2)g;
fBF; ([0:1; 0:4]; 0:8); ([0:5; 0:7]; 0:5); ([0:4; 0:5]; 0:2)g;
fCD; ([0:3; 0:6]; 0:8); ([0:2; 0:5]; 0:9); ([0:3; 0:5]; 0:1)g;
fCE; ([0:2; 0:4]; 0:8); ([0:4; 0:5]; 0:3); ([0:4; 0:5]; 0:1)g;
fCF; ([0:1; 0:4]; 0:8); ([0:4; 0:5]; 0:3); ([0:4; 0:5]; 0:1)g;
fDE; ([0:2; 0:4]; 0:5); ([0:2; 0:6]; 0:9); ([0:4; 0:5]; 0:2)g;

+

Re 5. Comparison Analysis

The idea of neutrosophic graphs provided by Kandasamy et al. in the book [29]. [38] Recently
Rashid et al., introduced the notion of cubic graphs. In this paper, we introduced the study of
neutrosophic cubic graphs. We claim that our model is more generalized from the previous models,
as if we both indeterminacy and falsity part of neutrosophic cubic graphs G = (M, N) where
M = (A, B) = ((T̃A, TB), ( ĨA, IB), (F̃A, FB)) is the neutrosophic cubic set representation of vertex set V
and N = (C, D) = ((T̃C, TD), ( ĨC, ID), (F̃C, FD)) is the neutrosophic cubic set representation of edges
set E vanishes we get a cubic graph provided by Rashid et al., in [38]. Similarly, by imposing certain
conditions on cubic graphs, we may obtain intuitionistic fuzzy graphs provided by Atanassov in 1995
and after that fuzzy graphs provided by Rosenfeld in 1975. So our proposed model is a generalized
model and it has the ability to capture the uncertainty in a better way.

6. Conclusions

A generalization of the old concepts is the main motive of research. So in this paper, we proposed
a generalized model of neutrosophic cubic graphs with different binary operations. We also provided
applications of neutrosophic cubic graphs in industries. We also discussed conditions under which our
model reduces to the previous models. In future, we will try to discuss different types of neutrosophic
cubic graphs such as internal neutrosophic cubic graphs, external neutrosophic cubic graphs and many
more with applications.

References

1. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353.
2. Rosenfeld, A. Fuzzy Graphs, Fuzzy Sets and Their Applications; Academic Press: New York, NY, USA,

1975; pp. 77–95.

Florentin Smarandache (ed.) Collected Papers, VII

248



3. Kauffman, A. Introduction a la Theorie des Sous-Emsembles Flous; Masson: Issy-les-Moulineaux, French, 1973;
Volume 1.

4. Bhattacharya, P. Some remarks on fuzzy graphs. Pattern Recognit. Lett. 1987, 6, 297–302.
5. Akram, M.; Dudek, W.A. Interval-valued fuzzy graphs. Comput. Math. Appl. 2011, 61, 289–299.
6. Akram, M. Interval-valued fuzzy line graphs. Neural Comput. Appl. 2012, 21, 145–150.
7. Mordeson, J.N.; Nair, P.S. Fuzzy Graphs and Fuzzy Hypergraphs; Springer: Berlin/Heidelberg, Germany, 2001.
8. Sunitha, M.S.; Sameena, K. Characterization of g-self centered fuzzy graphs. J. Fuzzy Math. 2008, 16, 787–791.
9. Borzooei, R.A.; Rashmanlou, H. Cayley interval-valued fuzzy threshold graphs, U.P.B. Sci. Bull. Ser. A 2016,

78, 83–94.
10. Pal, M.; Samanta, S.; Rashmanlou, H. Some results on interval-valued fuzzy graphs. Int. J. Comput. Sci.

Electron. Eng. 2015, 3, 2320–4028.
11. Pramanik, T.; Pal, M.; Mondal, S. Inteval-valued fuzzy threshold graph. Pac. Sci. Rev. A Nat. Sci. Eng. 2016,

18, 66–71.
12. Pramanik, T.; Samanta, S.; Pal, M. Interval-valued fuzzy planar graphs. Int. J. Mach. Learn. Cybern. 2016,

7, 653–664.
13. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96.
14. Atanassov, K.T. On Intuitionistic Fuzzy Graphs and Intuitionistic Fuzzy Relations. In Proceedings of the VI

IFSA World Congress, Sao Paulo, Brazil, 22–28 July 1995; Volume 1, pp. 551–554.
15. Atanassov, K.T.; Shannon, A. On a generalization of intuitionistic fuzzy graphs. Notes Intuit. Fuzzy Sets 2006,

12, 24–29.
16. Karunambigai, M.G.; Parvathi, R. Intuitionistic Fuzzy Graphs. In Computational Intelligence, Theory and

Applications; Springer: Berlin/Heidelberg, Germany, 2006; Volume 20, pp. 139–150.
17. Shannon, A.; Atanassov, K.T. A first step to a theory of the intutionistic fuzzy graphs. In Proceedings of the

1st Workshop on Fuzzy Based Expert Systems, Sofia, Bulgaria, 26–29 June 1994; pp. 59–61.
18. Mishra, S.N.; Rashmanlou, H.; Pal, A. Coherent category of interval-valued intuitionistic fuzzy graphs.

J. Mult. Val. Log. Soft Comput. 2017, 29, 355–372.
19. Parvathi, R.; Karunambigai, M.G.; Atanassov, K. Operations on Intuitionistic Fuzzy Graphs. In Proceedings

of the IEEE International Conference on Fuzzy Systems, Jeju Island, Korea, 20–24 August 2009; pp. 1396–1401.
20. Sahoo, S.; Pal, M. Product of intiutionistic fuzzy graphs and degree. J. Intell. Fuzzy Syst. 2017, 32, 1059–1067.
21. Akram, M.; Davvaz, B. Strong intuitionistic fuzzy graphs. Filomat 2012, 26, 177–196.
22. Zhang, W.R. Bipolar Fuzzy Sets and Relations: A Computational Framework for Coginitive Modeling

and Multiagent Decision Analysis. In Proceedings of the IEEE Industrial Fuzzy Control and Intelligent
Systems Conference, and the NASA Joint Technology Workshop on Neural Networks and Fuzzy Logic,
Fuzzy Information Processing Society Biannual Conference, San Antonio, TX, USA, 18–21 December 1994;
pp. 305–309.

23. Akram, M. Bipolar fuzzy graphs. Inf. Sci. 2011, 181, 5548–5564.
24. Akram, M. Bipolar fuzzy graphs with applications. Knowl. Based Syst. 2013, 39, 1–8.
25. Akram, M.; Karunambigai, M.G. Metric in bipolar fuzzy graphs. World Appl. Sci. J. 2012, 14, 1920–1927.
26. Smarandache, F. A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic

Probability; American Research Press: Rehoboth, NM, USA, 1999.
27. Smarandache, F. Neutrosophic set-a generalization of the intuitionistic fuzzy set. Int. J. Pure Appl. Math.

2005, 24, 287–297.
28. Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Interval Neutrosophic Sets and Logic: Theory nd

Applications in Computing; Hexis: phoenix, AZ, USA, 2005.
29. Kandasamy, W.B.V.; Ilanthenral, K.; Smarandache, F. Neutrosophic Graphs: A New Dimension to Graph Theory;

EuropaNova ASBL: Bruxelles, Belgium, 2015.
30. Akram, M.; Rafique, S.; Davvaz, B. New concepts in neutrosophic graphs with application. J. Appl.

Math. Comput. 2018, 57, 279–302.
31. Akram, M.; Nasir, M. Concepts of Interval-Valued Neutrosophic Graphs. Int. J. Algebra Stat. 2017, 6, 22–41.
32. Akram, M. Single-valued neutrosophic planar graphs. Int. J. Algebra Stat. 2016, 5, 157–167.
33. Akram, M.; Shahzadi, S. Neutrosophic soft graphs with application. J. Intell. Fuzzy Syst. 2017, 32, 841–858.
34. Jun, Y.B.; Kim, C.S.; Yang, K.O. Cubic Sets. Ann. Fuzzy Math. Inf. 2012, 4, 83–98.

Florentin Smarandache (ed.) Collected Papers, VII

249



35. Jun, Y.B.; Kim, C.S.; Kang, M.S. Cubic subalgebras and ideals of BCK/BCI-algebras. Far East J. Math. Sci.
2010, 44, 239–250.

36. Jun, Y.B.; Lee, K.J.; Kang, M.S. Cubic structures applied to ideals of BCI-algebras. Comput. Math. Appl. 2011,
62, 3334–3342.

37. Kang, J.G.; Kim, C.S. Mappings of cubic sets. Commun. Korean Math. Soc. 2016, 31, 423–431.
38. Rashid, S.; Yaqoob, N.; Akram, M.; Gulistan, M. Cubic Graphs with Application. Int. J. Anal. Appl. 2018,

in press.
39. Jun, Y.B.; Smarandache, F.; Kim, C.S. Neutrosophic cubic sets. New Math. Nat. Comput. 2017, 13, 41–54.
40. Jun, Y.B.; Smarandache, F.; Kim, C.S. P-union and P-intersection of neutrosophic cubic sets. Anal. Univ. Ovid.

Constant. Seria Mat. 2017, 25, 99–115.

Florentin Smarandache (ed.) Collected Papers, VII

250

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.


Abstract: The concept of interval neutrosophic sets has been studied and the introduction of a new
kind of set in topological spaces called the interval valued neutrosophic support soft set has been
suggested. We study some of its basic properties. The main purpose of this paper is to give the
optimum solution to decision-making in real life problems the using interval valued neutrosophic
support soft set.

Keywords: soft sets; support soft sets; interval valued neutrosophic support soft sets

1. Introduction

To deal with uncertainties, many theories have been recently developed, including the theory
of probability, the theory of fuzzy sets, the theory of rough sets, and so on. However, difficulties are
still arising due to the inadequacy of parameters. The concept of fuzzy sets, which deals with the
nonprobabilistic uncertainty, was introduced by Zadeh [1] in 1965. Since then, many researchers have
defined the concept of fuzzy topology that has been widely used in the fields of neural networks,
artificial intelligence, transportation, etc.The intuitionistic fuzzy set (IFS for short) on a universe X was
introduced by K. Atanaasov [2] in 1983 as a generalization of the fuzzy set in addition to the degree of
membership and the degree of nonmembership of each element.

In 1999, Molodtsov [3] successfully proposed a completely new theory called soft set theory using
classical sets. This theory is a relatively new mathematical model for dealing with uncertainty from a
parametrization point of view. After Molodtsov, many researchers have shown interest in soft sets
and their applications. Maji [4,5] introduced neutrosophic soft sets with operators, which are free
from difficulties since neutrosophic sets [6–9] can handle indeterminate information. However, the
neutrosophic sets and operators are hard to apply in real life applications. Therefore, Smarandache [10]
proposed the concept of interval valued neutrosophic sets which can represent uncertain, imprecise,
incomplete, and inconsistent information.

Nguyen [11] introduced the new concept in a type of soft computing, called the
support-neutrosophic set. Deli [12] defined a generalized concept of the interval-valued neutrosophic
soft set. In this paper, we combine interval-valued neutrosophic soft sets and support sets to yield the
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interval-valued neutrosophic support soft set, and we study some of its basic operations. Our main aim
of this paper is to make decisions using interval-valued neutrosophic support soft topological spaces.

2. Preliminaries

In this paper, we provide the basic definitions of neutrosophic and soft sets. These are very useful
for what follows.

Definition 1. ([13]) Let X be a non-empty set. A neutrosophic set, A, in X is of the form
A = {〈x, µA(x), σA(x), ωA(x), γA(x); x ∈ X〉}, where µA : X → [0, 1], σA : X → [0, 1] and

γA : X → [0, 1] represent the degree of membership function, degree of indeterminacy, and degree of
non-membership function, respectively and 0 ≤ sup µA(x) + sup σA(x) + sup γA(x) ≤ 3, ∀x ∈ X.

Definition 2. ([5]) Let X be a non-empty set , let P(X) be the power set of X, and let E be a set of parameters,
and A ⊆ E. The soft set function, fX , is defined by

fX : A→ P(X) such that fX(x) = ∅ i f x /∈ X.

The function fX may be arbitrary. Some of them may be empty and may have non-empty intersections. A
soft set over X can be represented as the set of order pairs FX = {(x, fX(x)) : x ∈ X, fX(x) ∈ P(X)}.

Example 1. Consider the soft set 〈F, A〉, where X is a set of six mobile phone models under consideration
to be purchased by decision makers, which is denoted by X = {x1, x2, x3, x4, x5, x6}, and A is the parameter
set, where A = {y1, y2, y3, y4, y5} = {price, look, camera, e f f iciency, processsor}. A soft set, FX, can
be constructed such that fX(y1) = {x1, x2}, fX(y2) = {x1, x4, x5, x6}, fX(y3) = ∅, fX(y4) = X, and
fX(y5) = {x1, x2, x3, x4, x5}. Then,

FX = {(y1, x1, x2), (y2, x1, x4, x5, x6), (y3, ∅), (y4, X), (y5, x1, x2, x3, x4, x5)}.

X x1 x2 x3 x4 x5 x6

y1 1 1 0 0 0 0
y2 1 0 0 1 1 1
y3 0 0 0 0 0 0
y4 1 1 1 1 1 1
y5 1 1 1 1 1 0

Definition 3. ([4]) Let X be a non-empty set, and A = {y1, y2, y3, ........., yn}, the subset of X and FX is a soft
set over X. For any yi ∈ A, fX(yi) is a subset of X. Then, the choice value of an object, xi ∈ X, is CVi = ∑j xij,
where xij are the entries in the table of FX :

xij =

{
1, if xi ∈ fX(yj)

0, if xi 6∈ fX(yj).

Example 2. Consider Example 2. Clearly, CV1 = ∑5
j=1 x1j = 4, CV3 = CV6 = ∑5

j=1 x3j = ∑5
j=1 x6j = 2,

CV2 = CV4 = CV5 = ∑5
j=1 x2j = ∑5

j=1 x4j = ∑5
j=1 x5j = 3.

Definition 4. ([13]) Let FX and FY be two soft sets over X and Y. Then,

(1) The complement of FX is defined by FXc(x) = X \ fX(x) for allx ∈ A;
(2) The union of two soft sets is defined by fX∪Y(x) = fX(x) ∪ fY(x) for all x ∈ A;
(3) The intersection of two soft sets is defined by fX∩Y(x) = fX(x) ∩ fY(x) for all x ∈ A.
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3. Interval Valued Neutrosophic Support Soft Set

In this paper, we provide the definition of a interval-valued neutrosophic support soft set and
perform some operations along with an example.

Definition 5. Let X be a non-empty fixed set with a generic element in X denoted by a. An interval-valued
neutrosophic support set, A, in X is of the form

A = {〈x, µA(x), σA(x), ωA(x), γA(x)〉/a; a ∈ X}.

For each point, a ∈ X, x, µA(x), σA(x), ωA(x), and γA(x) ∈ [0, 1].

Example 3. Let X = {a, b} be a non-empty set, where a, b ⊆ [0, 1]. An interval valued neutrosophic support
set, A ⊆ X, constructed according to the degree of membership function, (µA(x)), indeterminacy (σA(x)),
support function (ωA(x)), and non-membership function (γA(x)) is as follows:
A = {〈(0.2, 1.0), (0.2, 0.4), (0.1, 0.7), (0.5, 0.7)〉/a, 〈(0.6, 0.8), (0.8, 1.0), (0.4, 0.6), (0.4, 0.6)〉/b}.

Definition 6. Let X be a non-empty set; the interval-valued neutrosophic support set A in X is of the form
A = {〈x, µA(x), σA(x), ωA(x), γA(x); x ∈ X〉}.

(i) An empty set A, denoted by A = ∅, is defined by
∅ = {〈(0, 0), (1, 1), (0, 0), (1, 1)〉/x : x ∈ X}.

(ii) The universal set is defined by
U = {〈(1, 1), (0, 0), (1, 1), (0, 0)〉/x : x ∈ X}.

(iii) The complement of A is defined by
Ac = {〈(inf γA(x), sup γA(x)), (1− sup σA(x), 1− inf σA(x)), (1− sup ωA(x), 1− inf ωA(x)),
(inf µA(x), sup µA(x))〉/x : x ∈ X}.

(iv) A and B are two interval-valued neutrosophic support sets of X. A is a subset of B if
µA(x) ≤ µB(x), σA(x) ≥ σB(x), ωA(x) ≤ ωB(x), γA(x) ≥ γB(x).

(v) Two interval-valued neutrosophic support sets A and B in X are said to be equal if A ⊆ B and B ⊆ A.

Definition 7. Let A and B be two interval-valued neutrosophic support sets. Then, for every x ∈ X

(i) The intersection of A and B is defined by
A ∩ B = {〈(min[inf µA(x), inf µB(x)], min[sup µA, sup µB(x)]), (max[inf σA(x), inf σB(x)],
max[sup σA(x), sup σB(x)]), (min[inf ωA(x), inf ωB(x)], min[sup ωA(x), sup ωB(x)]),
(max[inf γA(x), inf γB(x)], max[sup
γA(x), sup γB(x)])〉/x : x ∈ X}.

(ii) The union of A and B is defined by
A ∪ B = {〈(max[inf µA(x), inf µB(x)], max[sup µA(x), sup µB(x)]), (min[inf σA(x),
inf σB(x)], min[sup σA(x), σB(x)]), (max[inf ωA(x), inf ωB(x)], max[sup ωA(x),
sup ωB(x)]), (min[inf γA(x), inf γB(x)], min[sup γA(x), sup γB(x)])〉/x : x ∈ X}.

(iii) A difference, B, is defined by
A \ B={〈(min[inf µA(x), inf γB(x)], min[sup µA(x), sup γB(x)]), (max[inf σA(x), 1− sup σB(x)],
max[sup σA(x), 1− inf σB(x)]), (min[inf ωA(x), 1− sup ωB(x)], min[sup ωA(x), 1− inf ωB(x)]),
(max[inf γA(x), inf µB(x)], max[sup γB(x), sup µB(x)])〉/x : x ∈ X}.

(iv) Scalar multiplication of A is defined by
A.a = {〈(min[inf µA(x).a, 1], min[sup µA(x).a, 1]), (min[inf σA(x).a, 1], min[sup σA(x).a, 1]),
(min[inf ωA(x).a, 1], min[sup ωA(x).a, 1]), (min[inf γA(x).a, 1], min[sup γA(x).a, 1])〉/x : x ∈ X}.

(v) Scalar division of A is defined by
A/a = {〈(min[inf µA(x)/a, 1], min[sup µA(x)/a, 1]), (min[inf σA(x)/a, 1], min[sup σA(x)/a, 1]),
(min[inf ωA(x)/a, 1], min[sup ωA(x)/a, 1]), (min[inf γA(x)/a, 1], min[sup γA(x)/a, 1])〉/x : x ∈ X}.
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Definition 8. Let X be a non-empty set; IVNSS(X) denotes the set of all interval-valued neutrosophic support
soft sets of X and a subset, A, of X . The soft set function is

gi : A→ IVNSS(x).

The interval valued neutrosophic support soft setover X can be represented by

Gi = {(y, gi(y)) : y ∈ A}, such that gi(y) = ∅ i f x /∈ X.

Example 4. Consider the interval-valued neutrosophic support soft set, 〈Gi, A〉, where X is a set of two brands
of mobile phones being considered by a decision maker to purchase, which is denoted by X = {a, b}, and A
is a parameter set, where A = {y1 = price, y2 = camera speci f ication, y3 = E f f icency, and y4 = size,
y5 = processsor}. In this case, we define a set Gi over X as follows:

Gi a b
y1 [0.6,0.8],[0.8,0.9][0.5,0.6][0.1,0.5] [0.6,0.8][0.1,0.8][0.3,0.7][0.1,0.7]
y2 [0.2,0.4][0.5,0.8][0.4,0.3][0.3,0.8] [0.2,0.8][0.6,0.9][0.5,0.8][0.2,0.3]
y3 [0.1,0.9][0.2,0.5][0.5,0.7][0.6,0.8] [0.4,0.9][0.2,0.6][0.5,0.6][0.5,0.7]
y4 [0.6,0.8][0.8,0.9][0.1,0.9][0.8,0.9] [0.5,0.7][0.6,0.8][0.7,0.9][0.1,0.8]
y5 [0.0,0.9][1.0,0.1][1.0,0.9][1.0,1.0] [0.0,0.9][0.8,1.0][0.3,0.5][0.2,0.5]

Clearly, we can see that the exact evaluation of each object on each parameter is unknown, while the lower
limit and upper limit of such an evaluation are given. For instance, we cannot give the exact membership degree,
support, indeterminacy and nonmembership degree of price ’a’; however, the price of model ’a’ is at least on the
membership degree of 0.6 and at most on the membership degree of 0.8.

Definition 9. Let Gi be a interval valued neutrosophic support soft set of X. Then, Gi is known as an empty
interval valued neutrosophic support soft set, if gi(y) = ∅.

Definition 10. Let Gi be a interval valued neutrosophic support soft set of X. Then, Gi is known as the
universal interval valued neutrosophic support soft set, if gi(y) = X.

Definition 11. Let Gi ,Gj be two interval valued neutrosophic support soft set of X. Then, Gi is said to be
subset of Gj, if gi(y) ⊆ gj(y).

Example 5. Two interval-valued neutrosophic support soft sets, Gi and Gj, are constructed as follows:

Gi a b
y1 [0.6,0.8],[0.8,0.9][0.5,0.6][0.1,0.5] [0.6,0.8][0.1,0.8][0.3,0.7][0.1,0.7]
y2 [0.2,0.4][0.5,0.8][0.4,0.3][0.3,0.8] [0.2,0.8][0.6,0.9][0.5,0.8][0.2,0.3]
y3 [0.1,0.9][0.2,0.5][0.5,0.7][0.6,0.8] [0.4,0.9][0.2,0.6][0.5,0.6][0.5,0.7]
y4 [0.6,0.8][0.8,0.9][0.1,0.9][0.8,0.9] [0.5,0.7][0.6,0.8][0.7,0.9][0.1,0.8]
y5 [0.0,0.9][1.0,0.1][1.0,0.9][1.0,1.0] [0.0,0.9][0.8,1.0][0.3,0.5][0.2,0.5]

Gj a b
y1 [0.7,0.8],[0.7,0.9][0.6,0.6][0.1,0.5] [0.7,0.9][0.0,0.8][0.4,0.8][0.1,0.6]
y2 [0.3,0.6][0.5,0.5][0.5,0.3][0.2,0.6] [0.4,0.8][0.6,0.9][0.5,0.8][0.1,0.2]
y3 [0.2,1.0][0.2,0.5][0.5,0.7][0.5,0.7] [0.5,0.9][0.2,0.6][0.6,0.6][0.5,0.5]
y4 [0.6,0.8][0.8,0.9][0.1,0.7][0.8,0.9] [0.6,0.8][0.6,0.8][0.9,0.9][0.1,0.4]
y5 [0.1,1.0][0.9,0.1][1.0,1.0][0.9,0.8] [0.2,0.9][0.7,0.9][0.3,0.5][0.2,0.5]

Following Definition 11, Gi is a subset of Gj.
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Definition 12. The two interval valued neutrosophic support soft sets, Gi, Gj, such that Gi ⊆ Gj, is said to be
classical subset of X where every element of Gi does not need to be an element of Gj

Proposition 1. Let Gi, Gj, Gk be an interval valued neutrosophic support soft set of X. Then,

(1) Each Gn is a subset of GX , where n= i,j,k;
(2) Each Gn is a superset of G∅, where n= i,j,k;
(3) If Gi is a subset of Gj and Gj is a subset of Gk, then, Gi is a subset of Gk.

Proof. The proof of this proposition is obvious.

Definition 13. The two interval valued neutrosophic support soft sets of X are said to be equal, if and only if
gi = gj, for all i, j ∈ X

Proposition 2. Let X be a non-empty set and Gi, Gj be an interval valued neutrosophic support soft set of X.
Gi is a subset of Gj, and Gj is a subset of Gi, if and only if Gi is equal to Gj

Definition 14. The complement of the interval valued neutrosophic support soft set, Gi, of X is denoted by Gic ,
for all i ∈ A

(i) The complement of the empty interval valued neutrosophic support soft set of X is the universal interval
valued neutrosophic support soft setof X.

(ii) The complement of the universal interval valued neutrosophic support soft set of X is the empty interval
valued neutrosophic support soft set of X.

Theorem 1. Let Gi, Gj be an interval valued neutrosophic support soft set of X. Then, Gi is a subset of Gj and
the complement of Gj is a subset of the complement of Gi.

Proof. Let Gi, and Gj be an interval valued neutrosophic support soft set of X. By definition, 3.7 Gi
is a subset of Gj if gi(y) ⊆ gj(y). Then, the complement of gi(y) ⊆ gj(y) is gc

i (y) ⊇ gc
j (y). Hence, the

complement of Gj is a subset of the complement of Gi.

Example 6. From Example 4, the complement of Gi is constructed as follows:

Gic a b
y1 [0.1,0.5],[0.1,0.2][0.4,0.5][0.6,0.8] [0.1,0.7][0.2,0.9][0.3,0.7][0.6,0.8]
y2 [0.3,0.8][0.2,0.5][0.6,0.7][0.2,0.4] [0.2,0.3][0.1,0.4][0.2,0.5][0.2,0.8]
y3 [0.6,0.8][0.5,0.8][0.3,0.5][0.1,0.9] [0.5,0.7][0.4,0.8][0.4,0.5][0.4,0.9]
y4 [0.8,0.9][0.1,0.2][0.3,0.9][0.6,0.8] [0.1,0.8][0.2,0.4][0.1,0.3][0.5,0.7]
y5 [1.0,1.0]0.0,0.9][0.0,0.1][0.0,0.9] [0.2,0.5][0.0,0.2][0.5,0.7][0.0,0.8]

Definition 15. The union of the interval valued neutrosophic support soft set of X is denoted by Gi ∪ Gj and is
defined by gi(y) ∪ gj(y) = gj(y) ∪ gi(y) for all y ∈ A.

Proposition 3. Let Gi,Gj,Gk be an interval valued neutrosophic support soft set of X. Then,

(i) Gi ∪ G∅ = Gi.
(ii) Gi ∪ GX = GX .

(iii) Gi ∪ Gj = Gj ∪ Gi.
(iv) (Gi ∪ Gj) ∪ Gk = Gi ∪ (Gj ∪ Gk).

Example 7. From Example 4, the union of two sets is represented as follows:

Florentin Smarandache (ed.) Collected Papers, VII

255



Gi ∪ Gj a b
y1 [0.7,0.8],[0.7,0.9][0.6,0.6][0.1,0.5] [0.7,0.9][0.0,0.8][0.4,0.8][0.1,0.6]
y2 [0.3,0.6][0.5,0.5][0.5,0.3][0.2,0.6] [0.4,0.8][0.6,0.9][0.5,0.8][0.1,0.2]
y3 [0.2,1.0][0.2,0.5][0.5,0.7][0.5,0.7] [0.5,0.9][0.2,0.6][0.6,0.6][0.5,0.5]
y4 [0.6,0.8][0.8,0.9][0.1,0.7][0.8,0.9] [0.6,0.8][0.6,0.8][0.9,0.9][0.1,0.4]
y5 [0.1,1.0]0.1,0.9][1.0,1.0][0.8,0.9] [0.2,0.9][0.7,0.9][0.3,0.5][0.2,0.5]

Definition 16. Let Gi,Gj be an interval valued neutrosophic support soft set of X. Then, the intersection of two
sets denoted by Gi ∩ Gj is defined as gi(y) ∩ gj(y) = gj(y) ∩ gi(y) for all y ∈ A.

Proposition 4. Let Gi,Gj,Gk be an interval valued neutrosophic support soft set of X. Then,

(i) Gi ∩ G∅ = G∅.
(ii) Gi ∩ GX = Gi.

(iii) Gi ∩ Gj = Gj ∩ Gi.
(iv) (Gi ∩ Gj) ∩ Gk = Gi ∩ (Gj ∩ Gk).

Proof. The proof is obvious.

Example 8. In accordance with Example 4, the intersection operation is performed as follows:

Gi ∩ Gj a b
y1 [0.6,0.8],[0.8,0.9][0.5,0.6][0.1,0.5] [0.6,0.8][0.1,0.8][0.3,0.7][0.1,0.7]
y2 [0.2,0.4][0.5,0.8][0.3,0.4][0.3,0.8] [0.2,0.8][0.6,0.9][0.5,0.8][0.2,0.3]
y3 [0.1,0.9][0.2,0.5][0.5,0.7][0.6,0.8] [0.4,0.9][0.2,0.6][0.5,0.6][0.5,0.7]
y4 [0.6,0.8][0.8,0.9][0.1,0.7][0.8,0.9] [0.5,0.7][0.6,0.8][0.7,0.9][0.1,0.8]
y5 [0.0,0.9]0.1,0.9][0.9,1.0][1.0,1.0] [0.0,0.8][0.8,1.0][0.3,0.5][0.2,0.5]

Definition 17. Let Gi be an interval valued neutrosophic support soft set of X. Then, the union of interval
valued neutrosophic support soft setand its complement is not a universal set and it is not mutually disjoint.

Proposition 5. Let Gi, Gj be an interval valued neutrosophic support soft set of X. Then, the D’Margan
Laws hold.

(i) (Gi ∪ Gj)
c = Gc

i ∩ Gc
j .

(ii) (Gi ∩ Gj)
c = Gc

i ∪ Gc
j .

Proposition 6. Let Gi,Gj, Gk be an interval valued neutrosophic support soft set of X. Then, the following hold.

(i) Gi ∪ (Gj ∩ Gk) = (Gi ∪ Gj) ∩ (Gi ∩ Gk).
(ii) Gi ∩ (Gi ∪ Gj) = (Gi ∩ Gj) ∪ (Gi ∩ Gk)

Definition 18. Let Gi, Gj be an interval valued neutrosophic support soft set of X. Then, the difference between
two sets is denoted by Gi/Gj and is defined by

gi/j(y) = gi(y)/gj(y)

for all y ∈ A.

Definition 19. Let Gi, Gj be an interval valued neutrosophic support soft set of X. Then the addition of two
sets are denoted by Gi + Gj and is defined by

gi+j(y) = gi(y) + gj(y)

for all y ∈ A.
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Definition 20. Let Gi be an interval valued neutrosophic support soft set of X. Then, the scalar division of GI
is denoted by Gi/a and is defined by

gi/a(y) = gi(y)/a

for all y ∈ A.

4. Decision-Making

In this paper, we provide the definition of relationship between the interval valued neutrosophic
support soft set, the average interval valued neutrosophic support soft setand the algorithm to get the
optimum decision.

Definition 21. Let Gi be an interval valued neutrosophic support soft set of X. Then, the relationship, R, for Gi
is defined by

RGi = {rGi (y, a) : rGi (y, a) ∈ interval valued neutrosophic support set. y ∈ A, a ∈ X}

where rGi : A \ X ⇒ interval valued neutrosophic support so f t set (X) and rGi (y, a) = gi(y)(a) for all
y ∈ A and a ∈ X

Example 9. From Example 4, the relationship for the interval valued neutrosophic support soft set of X is given
below.
gi(y1)

(a) = 〈[0.6, 0.8], [0.8, 0.9], [0.5, 0.6], [0.1, 0.5]〉,
gi(y1)

(b) = 〈[0.6, 0.8], [0.1, 0.8], [0.3, 0.7], [0.1, 0.7]〉,
gi(y2)

(a) = 〈[0.2, 0.4], [0.5, 0.8], [0.4, 0.3], [0.3, 0.8]〉,
gi(y2)

(b) = 〈[0.2, 0.8], [0.6, 0.9], [0.5, 0.8], [0.4, 0.3]〉,
gi(y3)

(a) = 〈[0.1, 0.9], [0.2, 0.5], [0.5, 0.7], [0.6, 0.8]〉,
gi(y3)

(b) = 〈[0.4, 0.9], [0.2, 0.6], [0.5, 0.6], [0.5, 0.7]〉,
gi(y4)

(a) = 〈[0.6, 0.8], [0.8, 0.9], [0.1, 0.7], [0.8, 0.9]〉,
gi(y4)

(b) = 〈[0.5, 0.7], [0.6, 0.8], [0.7, 0.9], [0.1, 0.8]〉,
gi(y5)

(a) = 〈[0.0, 0.9], [1.0, 0.1], [1.0, 0.9], [1.0, 1.0]〉,
gi(y5)

(b) = 〈[0.0, 0.8], [0.8, 1.0], [0.3, 0.5], [0.2, 0.5]〉.

Definition 22. Let Gi be an interval valued neutrosophic support soft set of X. For µ, σ, ω, γ ⊆ [0, 1],
the (µ, σ, ω, γ)-level support soft set of Gi defined by 〈Gi; (µ, σ, ω, γ)〉 = {(yi,{aij:aij ∈ X, µ(aij) =

1}):y ∈ A}, where

µ(aij) =

{
1, if (µ, σ, ω, γ) ≤ gi(yi)(aj)

0, if otherwise
. For all aj ∈ X.

Definition 23. Let Gi be an interval valued neutrosophic support soft set of X. The average interval valued
neutrosophic support soft set is defined by 〈µ, σ, ω, γ〉AvgGi(yi) = ∑

a∈X
gi(yi)

(a)/|X| for all y ∈ A

Example 10. Considering Example 4, the average interval valued neutrosophic support soft set is calculated
as follows:

〈µ, σ, ω, γ〉AvgGi(y1) =
2

∑
i=1

gi(y1)
(a)/|X| = 〈[0.6, 0.8], [0.45, 0.85], [0.4, 0.65], [0.1, 0.6]〉

〈µ, σ, ω, γ〉AvgGi(y2) =
2

∑
i=1

gi(y2)
(a)/|X| = 〈[0.2, 0.6], [0.55, 0.85], [0.45, 0.55], [0.25, 0.55]〉
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1. The average interval valued neutrosophic support soft set is determined as follows:

〈µ, σ, ω, γ〉AvgGi = {〈(0.375, 0.65), (0.55, 0.85), (0.325, 0.775), (0.25, 0.6), 〉/y1, 〈(0.125, 0.575),

(0.675, 0.825), (0.2, 0.5), (0.3, 0.65)〉/y2, 〈(0.225, 0.675), (0.35, 0.575), (0.225, 0.675), (0.65, 0.8)〉

/y3, 〈(0.4, 0.775), (0.625, 0.875), (0.4, 0.825), (0.4, 0.85)〉/y4, 〈(0.0, 0.525), (0.825, 1.0),

(0.575, 0.625), (0.6, 0.85)〉/y5};

2. {Gi; 〈µ, σ, ω, γ〉AvgGi} = {(y2, b), (y3, b), (y4, a), (y5, b)};
3. The average-level support soft set, {Gi; 〈µ, σ, ω, γ〉AvgGi} is represented in tabular form.

X a b c d
y1 0 0 0 0
y2 0 1 0 0
y3 0 1 0 0
y4 1 0 0 0
y5 0 1 0 0

4. Compute the choice value, Cvi , of ai for all ai ∈ X as

Cv3 = Cv4 =
4

∑
j=1

a3j =
4

∑
j=1

a4j = 0, Cv1 =
4

∑
j=1

a1j = 1, Cv2 =
4

∑
j=1

a2j = 3;

5. Cv2 gives the maximum value. Therefore b is the optimum choice.

Now, we conclude that there are a few ways to get rid of cancer, but surgery chemotherapy is preferred by
most of the physicians with respect to the cost of treatment and extending the life of the patient with the
least side effects. Moreover, side effects will be reduced or vanish completely after finished chemotherapy,
and the cancer and its growth will be controlled.

Gi a b
y1 [0.4,0.7][0.8,0.8][0.4,0.8][0.3,0.5] [0.3,0.6][0.3,0.8][0.3,0.7][0.3,0.8]
y2 [0.1,0.3][0.6,0.7][0.2,0.3][0.3,0.8] [0.2,0.7][0.7,0.9][0.3,0.6][0.3,0.4]
y3 [0.2,0.6][0.4,0.5][0.1,0.5][0.7,0.8] [0.4,0.9][0.1,0.6][0.3,0.8][0.5,0.7]
y4 [0.6,0.9][0.6,0.9][0.6,0.9][0.6,0.9] [0.5,0.9][0.6,0.8][0.2,0.8][0.1,0.7]
y5 [0.0,0.9]1.0,1.0][1.0,1.0][1.0,1.0] [0.0,0.9][0.8,1.0][0.1,0.4][0.2,0.5]

Gi c d
y1 [0.5,0.7][0.8,0.9][0.4,0.8][0.2,0.5] [0.3,0.6][0.3,0.9][0.2,0.8][0.2,0.8]
y2 [0.0,0.3][0.6,0.8][0.1,0.4][0.3,0.9] [0.1,0.8][0.8,0.9][0.2,0.9][0.3,0.5]
y3 [0.1,0.7][0.4,0.5][0.2,0.8][0.8,0.9] [0.2,0.5][0.5,07][0.3,0.6][0.6,0.8]
y4 [0.2,0.4][0.7,0.9][0.6,0.8][0.6,0.9] [0.3,0.9][0.6,0.9][0.2,0.8][0.3,0.9]
y5 [0.0,0.2][1.0,1.0][1.0,1.0][1.0,1.0] [0.0,0.1][0.9,1.0][0.2,0.2][0.2,0.9]
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5. Conclusions and Future Work

Fuzzy sets are inadequate for representing some parameters. Therefore, intuitionistic fuzzy
sets were introduced to overcome this inadequacy. Further, neutrosophic sets were introduced to
represent the indeterminacy. In order to make decisions efficiently, we offer this new research work
which does not violate the basic definitions of neutrosophic sets and their properties. In this paper,
we add one more function called the support function in interval-valued neutrosophic soft set, and we
also provide the basic definition of interval valued neutrosophic support soft set and some of its
properties. Further, we framed an algorithm for making decisions in medical science with a real-life
problem. Here, we found the best treatment for cancer under some constraints using interval valued
neutrosophic support soft set. In the future, motivated by the interval valued neutrosophic support
soft set, we aim to develop interval valued neutrosophic support soft set in ideal topological spaces.
In addition, weaker forms of open sets, different types of functions and theorems can be developed
using interval valued neutrosophic support soft set to allow continuous function. This concept may be
applied in operations research, data analytics, medical sciences, etc. Industry may adopt this technique
to minimize the cost of investment and maximize the profit.

Florentin Smarandache (ed.) Collected Papers, VII

259

http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/S0165-0114(86)80034-3
http://dx.doi.org/10.1016/S0898-1221(99)00056-5
http://dx.doi.org/10.1016/S0898-1221(02)00216-X
http://dx.doi.org/10.3390/info9050103
http://dx.doi.org/10.1007/s13042-015-0461-3
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.


Abstract: One of the most significant competitive strategies for organizations is sustainable supply 

chain management (SSCM). The vital part in the administration of a sustainable supply chain is the 

sustainable supplier selection, which is a multi-criteria decision-making issue, including many 

conflicting criteria. The valuation and selection of sustainable suppliers are difficult problems due 

to vague, inconsistent and imprecise knowledge of decision makers. In the literature on supply 

chain management for measuring green performance, the requirement for methodological analysis 

of how sustainable variables affect each other, and how to consider vague, imprecise and 

inconsistent knowledge, is still unresolved. This research provides an incorporated multi-criteria 

decision-making procedure for sustainable supplier selection problems (SSSPs). An integrated 

framework is presented via interval-valued neutrosophic sets to deal with vague, imprecise and 

inconsistent information that exists usually in real world. The analytic network process (ANP) is 

employed to calculate weights of selected criteria by considering their interdependencies. For 

ranking alternatives and avoiding additional comparisons of analytic network processes, the 

technique for order preference by similarity to ideal solution (TOPSIS) is used. The proposed 

framework is turned to account for analyzing and selecting the optimal supplier. An actual case 

study of a dairy company in Egypt is examined within the proposed framework. Comparison with 

other existing methods is implemented to confirm the effectiveness and efficiency of the proposed 

approach. 

Keywords: sustainable supplier selection problems (SSSPs); analytic network process; 

interdependency of criteria; TOPSIS; neutrosophic set 

1. Introduction

The major priority for decision makers and managers in many fields such as agriculture, 

tourism, business development or manufacturing is the management of environmental and social 

issues, and the emergency to address them with the economic factors [1]. The sustainability is the 

synthesis of social, environmental and economic development [2]. The sustainability applies to all 

pertinent supply chain sides in supply chain management [3]. In sustainable supply chain 

management, managers seek to enhance the economic realization of their organization not only to 

survive, but also to succeed in close and distant future. The social and environmental activities that 

can enhance economic goals of organizations should be undertaken by managers in sustainable 

supply chain management [4]. Selecting the sustainable suppliers is very significant when designing 

new strategies and models in the case of lack of available knowledge and resources. Thus, the most 

important part in sustainable supply chain management is to construct and implement an effective 

and efficient supplier section process [5]. The supplier selection problems, combining social and 
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environmental factors for estimating and ranking suppliers to select the best, can be regarded as a 

sustainable supplier selection problems (SSSPs). The selection process of sustainable suppliers 

involves several conflicting criteria. The evaluation and selection of suppliers is very difficult due to 

vague, inconsistent and imprecise knowledge of decision makers. In order to deal with vague 

information, Zadeh introduced the theory of fuzzy sets in 1965 [6]. It is difficult to identify the truth-

membership degree of a fuzzy set to a specific value. Therefore, Turksen introduced interval-valued 

fuzzy sets in 1986 [7]. Because fuzzy set only considers the truth-membership (membership) degree 

and fails to consider falsity-membership (non-membership) degree, Atanassov introduced 

intuitionistic fuzzy sets [8]. Moreover, intuitionistic fuzzy sets were expanded to interval-valued 

intuitionistic fuzzy sets [9]. The intuitionistic fuzzy sets have been exercised to disband multi-criteria 

decision-making problems [10–12]. The fuzzy and intuitionistic fuzzy sets fail to treat all types of 

uncertainties such as indeterminacy and inconsistency that exist usually in natural decision-making 

processes. For instance, when a decision maker gives his/her judgment toward anything, he/she may 

say that: this statement is 50% correct, 60% false and 20% I am not sure [13]. From this concept, 

Smarandache suggested the neutrosophic logic, probability and sets [14–16]. In neutrosophy, the 

indeterminacy degree is independent of truth and falsity degrees [17]. To facilitate the practical side 

of neutrosophic sets, a single-valued neutrosophic set (SVNS) was presented [13,18]. In real life 

problems, the statement could not be accurately defined by a certain degree of truth, indeterminacy 

and falsity, but indicated by various interval values. Therefore, interval neutrosophic set (INS) was 

conceptualized. The interval neutrosophic set (INS) was introduced by Wang et al. [19]. The authors 

in [17] used interval-valued neutrosophic set to present multi-criteria decision-making (MCDM) 

problems using aggregation operators. The neutrosophic linguistic environment was used by Broumi 

and Smarandache [20] to deal with multi-criteria decision-making problems. Zhang et al. [21] 

introduced an outranking technique to solve MCDM problems by using an interval-valued 

neutrosophic set. However, the current literature did not advance the integration of ANP and TOPSIS 

using INS for solving sustainable supplier selection problems. Consequently, we are the first to use 

an interval-valued neutrosophic set for representing a group ANP-TOPSIS framework for sustainable 

supplier selection. 

1.1. Research Contribution 

Our contribution can be summed up as follows: 

• The sustainable supplier selection is a multi-criteria decision-making issue including many

conflicting criteria. The valuation and selection of sustainable suppliers is a difficult problem

due to vague, inconsistent and imprecise knowledge of decision makers. The literature on

supply chain management for measuring green performance, the requirement for

methodological analysis of how sustainable variables affect each other and of how to consider

vague, imprecise and inconsistent knowledge is somehow inconclusive, but these drawbacks

have been treated in our research.

• In most cases, the truth, falsity and indeterminacy degrees cannot be defined precisely in the

real selection of sustainable suppliers, but denoted by several possible interval values. Therefore,

we presented ANP TOPSIS, and combined them with interval-valued neutrosophic sets to select

sustainable suppliers for the first time.

• The integrated framework leads to accurate decisions due to the way it treats uncertainty. The

sustainable criteria for selecting suppliers are determined from the cited literature and the

features of organizations under analysis. Then, the decision makers gather data and information.

• We select ANP and TOPSIS for solving sustainable supplier selection problems for the following

reasons:

- Since the independent concept of criteria is not constantly right and in actual life, there exist 

criteria dependent on each other, and we used ANP for precise weighting of criteria. 
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- The ANP needs many pairwise comparison matrices based on numerals and 

interdependence of criteria and alternatives, and, to escape this drawback, the TOPSIS was 

used to rank alternatives.  

- The main problem of sustainable supplier selection problems is how to design and 

implement a flexible model for evaluating all available suppliers; since it considers the 

uncertainty that usually exists in real life, our model is the best. 

- The proposed framework is used to study the case of a dairy and foodstuff company in 

Egypt, and can be employed to solve any sustainable supplier selection problem of any 

other company. 

- Comparison with other existing methods, which are popular and attractive, was presented 

to validate our model. 

The plan of this research is as follows: a literature review on the multi-criteria decision-making 

techniques to disband sustainable supplier selection problems is presented in Section 2. The basic 

concepts and definitions of interval-valued neutrosophic sets and its operations are discussed in 

Section 3. The ANP and TOPSIS methods are described in Section 4. The proposed framework for 

selecting optimal suppliers is presented in Section 5. An actual case study of a dairy and foodstuff 

company in Egypt is examined in Section 6. The conclusion and future directions are presented in 

Section 7. 

2. Literature Review

Many research works intensify a supplier selection problem using various MCDM methods. For 

listing the optimal supplier under environmental factors, Govindan et al. [22] proposed a fuzzy 

TOPSIS framework. For evaluating sustainable suppliers’ performance in a supply chain, Erol et al. 

[23] validated a multi-criteria setting based on fuzzy multi-attribute utility. The fuzzy inference 

system, the fuzzy logic and ranking method are used to address the subjectivity of DM estimation.  

To handle sustainable supplier selection in a group decision environment, Wen et al. [24] 

proposed a fuzzy intuitionistic TOPSIS model. To analyze sustainability criteria and select the 

optimal sustainable supplier, Orji and Wei [25] used fuzzy logic, decision-making trial and evaluation 

laboratory (DEMATEL) and TOPSIS. 

To bridge the gap between numerous existing research works on supplier selection and others 

who depend on environmental issues, Shaw et al. [26] were the first to employ AHP in fuzzy 

environment for green supplier selection. The fuzzy ANP and multi-person decision-making schema 

through imperfect preference relations are used by Buyukozkan and Cifci [27]. 

The requirements of company stakeholders are translated into multiple criteria for supplier 

selection by Ho et al. [28] by using a QFD approach. A family group decision-making model was 

developed by Dursun and Karsak [29] by using a QFD method to determine the characteristics that 

a product must hold to achieve customer needs and construct the assessment criteria for suppliers. A 

two-stage structure including data envelopment analysis (DEA) and rough set theory was proposed 

by Bai and Sarkis [30] to determine and evaluate relative performance of suppliers. 

To rank sustainable suppliers, Kumar et al. [31] proposed a unified green DEA model. A fuzzy 

DEA model was used by Azadi et al. [32] to measure the efficiency, effectiveness and productivity of 

sustainable suppliers. To optimize supplier selection processes, numerous models have been 

integrated. The integrated analytic frameworks were combined through the recent research: ANP 

and/or AHP integrated with QFD by many researchers [33–38]. The DEMATEL was integrated with 

fuzzy ANP and TOPSIS as in [39]. Kumaraswamy et al. [40] integrated QFD with TOPSIS. 

The integration of a fuzzy Delphi approach, ANP and TOPSIS were proposed by Chung et al. 

[41] for supplier selection. A review of multi-attribute decision-making techniques for evaluating and 

selecting suppliers in fuzzy environment is presented in [42]. In addition, the ANP was integrated 

with intuitionistic fuzzy TOPSIS by Rouyendegh [43] for selecting an optimal supplier. Tavana et al. 

[44] integrated ANP with QFD for sustainable supplier selection.  

A neutrosophic group decision-making technique based on TOPSIS was proposed by Şahin and 

Yiğider for a supplier selection problem [45]. A hybrid multi-criteria group decision-making 
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technique based on interval-valued neutrosophic sets was proposed by Reddy et al. [46] for lean 

supplier selection. An extended version of EDAS using an interval valued neutrosophic set for a 

supplier selection problem is presented in [47]. A quality function deployment technique for supplier 

selection and evaluation based on an interval neutrosophic set is presented in [48]. To develop 

supplier selection criteria, the DEMATEL technique is presented in neutrosophic environment, as in 

[49].  

The main criteria for supplier selection problems have been identified in many studies. The 

economic factors, which were considered in traditional supplier selection methods, are as follows: 

• Cost,

• Quality,

• Flexibility,

• Technology capability.

There exist environmental factors for sustainable supplier selection as follows:

• Defilement production,

• Resource exhaustion,

• Eco-design and environmental administration.

The critical aspects of selecting green sustainable factors of supply chain design were provided

by Dey and Ho [38] in a review of the recent research development. 

3. Preliminaries

The significant definitions of interval-valued neutrosophic sets and its operations are presented 

in this section. 

3.1. Interval-Valued Neutrosophic Sets (INS) 

The interval-valued neutrosophic set 𝑉 in X is described by truth 𝑇𝑉(𝑥), indeterminacy 𝐼𝑉(𝑥) 

and falsity 𝐹𝑉(𝑥)  membership degrees for each 𝑥 ∈ 𝑋 . Here, 𝑇𝑉(𝑥) = [𝑇𝑉
𝐿(𝑥), 𝑇𝑉

𝑈(𝑥) ⊆ [0, 1]] ,

𝐼𝑉(𝑥)=[𝐼𝑉
𝐿(𝑥), 𝐼𝑉

𝑈(𝑥) ⊆ [0, 1]] and 𝐹𝑉(𝑥)=[𝐹𝑉
𝐿(𝑥), 𝐹𝑉

𝑈(𝑥) ⊆ [0, 1]]. Then, we can write interval-valued

neutrosophic set as 𝑉 =< [𝑇𝑉
𝐿(𝑥), 𝑇𝑉

𝑈(𝑥)], [𝐼𝑉
𝐿(𝑥), 𝐼𝑉

𝑈(𝑥)], [𝐹𝑉
𝐿(𝑥), 𝐹𝑉

𝑈(𝑥)] >.

The INS is a neutrosophic set. 

3.2. The Related Operations of Interval-Valued Neutrosophic Sets 

• Addition

Let 𝐴1, 𝐴2 be two INSs, where

𝐴1 =< [𝑇𝐴1
𝐿 , 𝑇𝐴1

𝑈 ], [𝐼𝐴1
𝐿 , 𝐼𝐴1

𝑈 ], [𝐹𝐴1
𝐿 , 𝐹𝐴1

𝑈 ] > , 𝐴2 =< [𝑇𝐴2
𝐿 , 𝑇𝐴2

𝑈 ], [𝐼𝐴2
𝐿 , 𝐼𝐴1

𝑈 ], [𝐹𝐴2
𝐿 , 𝐹𝐴2

𝑈 ] >  then 𝐴1 + 𝐴2 =<

[𝑇𝐴1
𝐿 + 𝑇𝐴2

𝐿 − 𝑇𝐴1
𝐿 𝑇𝐴2

𝐿 , 𝑇𝐴1
𝑈 + 𝑇𝐴2

𝑈 − 𝑇𝐴1
𝑈 𝑇𝐴2

𝑈 ], [𝐼𝐴1
𝐿 𝐼𝐴2

𝐿 , 𝐼𝐴1
𝑈 𝐼𝐴2

𝑈 ], [𝐹𝐴1
𝐿 𝐹𝐴2

𝐿 , 𝐹𝐴1
𝑈 𝐹𝐴2

𝑈 ] >.

• Subset

𝐴1 ⊆ 𝐴2 if and only if 𝑇𝐴1
𝐿 ≤ 𝑇𝐴2

𝐿 ,𝑇𝐴1
𝑈 ≤ 𝑇𝐴2

𝑈 ; 𝐼𝐴1
𝐿 ≥ 𝐼𝐴2

𝐿 , 𝐼𝐴1
𝑈 ≥ 𝐼𝐴2

𝑈 ;𝐹𝐴1
𝐿 ≥ 𝐹𝐴2

𝐿 , 𝐹𝐴1
𝑈 ≥ 𝐹𝐴2

𝑈 . 

• Equality

𝐴1 = 𝐴2 if and only if 𝐴1 ⊆ 𝐴2 and 𝐴2 ⊆ 𝐴1.

• Complement

Let 𝑉 =< [𝑇𝑉
𝐿(𝑥), 𝑇𝑉

𝑈(𝑥)], [𝐼𝑉
𝐿(𝑥), 𝐼𝑉

𝑈(𝑥)], [𝐹𝑉
𝐿(𝑥), 𝐹𝑉

𝑈(𝑥)] >, then

𝑉𝑐 = < [𝐹𝑉
𝐿(𝑥), 𝐹𝑉

𝑈(𝑥)], [1 − 𝐼𝑉
𝑈(𝑥),1 − 𝐼𝑉

𝐿(𝑥)], [𝑇𝑉
𝐿(𝑥), 𝑇𝑉

𝑈(𝑥)] >.

• Multiplication

𝐴1 × 𝐴2 =< [𝑇𝐴1
𝐿 𝑇𝐴2

𝐿 , 𝑇𝐴1
𝑈 𝑇𝐴2

𝑈 ], [𝐼𝐴1
𝐿 + 𝐼𝐴2

𝐿 − 𝐼𝐴1
𝐿 𝐼𝐴2

𝐿 , 𝐼𝐴1
𝑈 + 𝐼𝐴2

𝑈 − 𝐼𝐴1
𝑈 𝐼𝐴2

𝑈 ],

[𝐹𝐴1
𝐿 + 𝐹𝐴2

𝐿 − 𝐹𝐴1
𝐿 𝐹𝐴2

𝐿 , 𝐹𝐴1
𝑈 + 𝐹𝐴2

𝑈 − 𝐹𝐴1
𝑈 𝐹𝐴2

𝑈 ] >.
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• Subtraction

𝐴1 − 𝐴2 =< [𝑇𝐴1
𝐿 − 𝐹𝐴2

𝑈 , 𝑇𝐴1
𝑈 − 𝐹𝐴2

𝐿 ], [max(𝐼𝐴1
𝐿 , 𝐼𝐴2

𝑙 ) ,max(𝐼𝐴1
𝑈 , 𝐼𝐴2

𝑈 )], [𝐹𝐴1
𝐿 − 𝑇𝐴2

𝑈 , 𝐹𝐴1
𝑈 − 𝑇𝐴2

𝐿 ] >.

• Multiplication by a constant value

λ𝐴1 =< [1 − (1 − 𝑇𝐴1
𝐿 )

λ
, 1 − (1 − 𝑇𝐴1

𝑈 )
λ
] , [(𝐼𝐴1

𝐿 )
λ
, (𝐼𝐴1

𝑈 )
λ
] , [(𝐹𝐴1

𝐿 )
λ
, (𝐹𝐴1

𝑈 )
λ
] >,

where λ >0.

• Addition

Let 𝐴1, 𝐴2two INSs where

𝐴1 =< [𝑇𝐴1
𝐿 , 𝑇𝐴1

𝑈 ], [𝐼𝐴1
𝐿 , 𝐼𝐴1

𝑈 ], [𝐹𝐴1
𝐿 , 𝐹𝐴1

𝑈 ] > , 𝐴2 =< [𝑇𝐴2
𝐿 , 𝑇𝐴2

𝑈 ], [𝐼𝐴2
𝐿 , 𝐼𝐴1

𝑈 ], [𝐹𝐴2
𝐿 , 𝐹𝐴2

𝑈 ] >  then 𝐴1 + 𝐴2 =<

[𝑇𝐴1
𝐿 + 𝑇𝐴2

𝐿 − 𝑇𝐴1
𝐿 𝑇𝐴2

𝐿 , 𝑇𝐴1
𝑈 + 𝑇𝐴2

𝑈 − 𝑇𝐴1
𝑈 𝑇𝐴2

𝑈 ], [𝐼𝐴1
𝐿 𝐼𝐴2

𝐿 , 𝐼𝐴1
𝑈 𝐼𝐴2

𝑈 ], [𝐹𝐴1
𝐿 𝐹𝐴2

𝐿 , 𝐹𝐴1
𝑈 𝐹𝐴2

𝑈 ] >.

• Subset

𝐴1 ⊆ 𝐴2 if and only if 𝑇𝐴1
𝐿 ≤ 𝑇𝐴2

𝐿 ,𝑇𝐴1
𝑈 ≤ 𝑇𝐴2

𝑈 ; 𝐼𝐴1
𝐿 ≥ 𝐼𝐴2

𝐿 , 𝐼𝐴1
𝑈 ≥ 𝐼𝐴2

𝑈 ;𝐹𝐴1
𝐿 ≥ 𝐹𝐴2

𝐿 , 𝐹𝐴1
𝑈 ≥ 𝐹𝐴2

𝑈 . 

• Equality

𝐴1 = 𝐴2 if and only if 𝐴1 ⊆ 𝐴2 and 𝐴2 ⊆ 𝐴1.

• Complement

Let 𝑉 =< [𝑇𝑉
𝐿(𝑥), 𝑇𝑉

𝑈(𝑥)], [𝐼𝑉
𝐿(𝑥), 𝐼𝑉

𝑈(𝑥)], [𝐹𝑉
𝐿(𝑥), 𝐹𝑉

𝑈(𝑥)] >,

then 𝑉𝑐 = < [𝐹𝑉
𝐿(𝑥), 𝐹𝑉

𝑈(𝑥)], [1 − 𝐼𝑉
𝑈(𝑥),1 − 𝐼𝑉

𝐿(𝑥)], [𝑇𝑉
𝐿(𝑥), 𝑇𝑉

𝑈(𝑥)] >.

• Multiplication

𝐴1 × 𝐴2 =< [𝑇𝐴1
𝐿 𝑇𝐴2

𝐿 , 𝑇𝐴1
𝑈 𝑇𝐴2

𝑈 ], [𝐼𝐴1
𝐿 + 𝐼𝐴2

𝐿 − 𝐼𝐴1
𝐿 𝐼𝐴2

𝐿 , 𝐼𝐴1
𝑈 + 𝐼𝐴2

𝑈 − 𝐼𝐴1
𝑈 𝐼𝐴2

𝑈 ], [𝐹𝐴1
𝐿 + 𝐹𝐴2

𝐿 − 𝐹𝐴1
𝐿 𝐹𝐴2

𝐿 , 𝐹𝐴1
𝑈 + 𝐹𝐴2

𝑈 −

𝐹𝐴1
𝑈 𝐹𝐴2

𝑈 ] >.

• Subtraction

𝐴1 − 𝐴2 =< [𝑇𝐴1
𝐿 − 𝐹𝐴2

𝑈 , 𝑇𝐴1
𝑈 − 𝐹𝐴2

𝐿 ], [max(𝐼𝐴1
𝐿 , 𝐼𝐴2

𝑙 ) ,max(𝐼𝐴1
𝑈 , 𝐼𝐴2

𝑈 )], [𝐹𝐴1
𝐿 − 𝑇𝐴2

𝑈 , 𝐹𝐴1
𝑈 − 𝑇𝐴2

𝐿 ] >.

• Multiplication by a constant value

λ𝐴1 =< [1 − (1 − 𝑇𝐴1
𝐿 )

λ
, 1 − (1 − 𝑇𝐴1

𝑈 )
λ
] , [(𝐼𝐴1

𝐿 )
λ
, (𝐼𝐴1

𝑈 )
λ
] , [(𝐹𝐴1

𝐿 )
λ
, (𝐹𝐴1

𝑈 )
λ
] >, where λ >0.

3.3. Weighted Average for Interval-Valued Neutrosophic Numbers (INN) 

Let 𝑦𝑗 =< [𝑇𝑗
𝐿 , 𝑇𝑗

𝑈], [𝐼𝑗
𝐿 , 𝐼𝑗

𝑈], [𝐹𝑗
𝐿 , 𝐹𝑗

𝑈] > be a group of interval-valued neutrosophic numbers, 𝑗 =

1, 2… , 𝑛  is the number of decision makers. The weighted arithmetic average of interval-valued 

neutrosophic number  

INNWAA(𝑦1, 𝑦2, … , 𝑦𝑛) = ∑ 𝑤𝑘𝑦𝑗

𝑛

𝑘=1

=

< [1 − ∏
𝑘=1

𝑛

(1 − 𝑇𝑗
𝐿)

𝑤𝑘
, 1

− ∏
𝑘=1

𝑛

(1

− 𝑇𝑗
𝑈)

𝑤𝑘
] , [∏

𝑘=1

𝑛

(𝐼𝑗
𝐿)

𝑤𝑘
,∏

𝑘=1

𝑛

(𝐼𝑗
𝑈)

𝑤𝑘
] , [∏𝑘=1

𝑛 (𝐹𝑗
𝐿)𝑤𝑘 , ∏𝑘=1

𝑛 (𝐹𝑗
𝑈)𝑤𝑘] >,

(1) 

where 𝑤𝑘 is the decision maker’s weight vector. 
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< [1 − ∏
𝑘=1

𝑛
(1 − 𝑇𝑗

𝐿)
𝑤𝑘 , 1 − ∏

𝑘=1

𝑛
(1 −

𝑇𝑗
𝑈)

𝑤𝑘], [∏
𝑘=1

𝑛
(𝐼𝑗

𝐿)
𝑤𝑘

,∏
𝑘=1

𝑛
(𝐼𝑗

𝑈)
𝑤𝑘], [∏

𝑘=1

𝑛
(𝐹𝑗

𝐿)
𝑤𝑘

,∏
𝑘=1

𝑛
(𝐹𝑗

𝑈)
𝑤𝑘] >  (1)  , where 𝑤𝑘  is

the decision maker's weight vector. 

3.4. INS Deneutrosophication Function 

The deneutrosophication function converts each interval-valued neutrosophic number into crisp 

number. Let 𝐴 =< [𝑇𝐴
𝐿 , 𝑇𝐴

𝑈], [𝐼𝐴
𝐿 , 𝐼𝐴

𝑈], [𝐹𝐴
𝐿 , 𝐹𝐴

𝑈] > be an interval-valued neutrosophic number, then the

deneutrosophication function 𝐷(𝐴) will be defined by 

𝐷(𝐴) = 10(
2+(𝑇𝐴

𝐿+𝑇𝐴
𝑈)−2(𝐼𝐴

𝐿+𝐼𝐴
𝑈)−(𝐹𝐴

𝐿 ,𝐹𝐴
𝑈)

4
). (2) 

1.2 Ranking Method for Interval-Valued Neutrosophic Numbers 

Let 𝐴1, 𝐴2 be interval-valued neutrosophic numbers, then, 

• if 𝐷(𝐴1) greater than𝐷(𝐴2), then 𝐴1 > 𝐴2;

• if 𝐷(𝐴1) less than 𝐷(𝐴2), then 𝐴1 < 𝐴2;

• if 𝐷(𝐴1) equals 𝐷(𝐴2), then𝐴1 = 𝐴2.

4. The ANP and TOPSIS Methods

In this section, we present an overview of the two techniques used in our proposed research. 

4.1. The Analytic Network Process (ANP) 

The ANP is a development of analytic hierarchy process (AHP), and it was advanced by Saaty 

in 1996 for considering dependency and feedback among decision-making problem’s elements. The 

ANP structures the problem as a network, not as hierarchies as with the AHP. In the analytic 

hierarchy process, it is assumed that the alternatives depend on criteria and criteria depend on goal. 

Therefore, in AHP, the criteria do not depend on alternatives, criteria do not affect (depend on) each 

other, and alternatives do not depend on each other. Nevertheless, in the analytic network process, 

the dependencies between decision-making elements are allowed. The differences between ANP and 

AHP are presented with the structural graph in Figure 1. The upper side of Figure 1 shows the 

hierarchy of AHP in which elements from the lower level have an influence on the higher level or, in 

other words, the upper level depends on the lower level. However, in the lower side of Figure 1, 

which shows the network model of ANP, we have a cluster network, and there exists some 

dependencies between them. The dependencies may be inner-dependencies when the cluster 

influence itself or may be outer-dependencies when cluster depends on another one. The complex 

decision-making problem in real life may contain dependencies between problem’s elements, but 

AHP does not consider them, so it may lead to less optimal decisions, and ANP is more appropriate. 

The general steps of ANP [50]: 

1. The decision-making problem should be structured as a network that consists of a main

objective, criteria for achieving this objective and can be divided to sub-criteria, and finally all

available alternatives. The feedback among network elements should be considered here.

2. To calculate criteria’s and alternatives’ weights, the comparisons matrices should be constructed

utilizing the 1–9 scale of Saaty. After then, we should check the consistency ratio of these

matrices, and it must be ≤ 0.1  for each comparison matrix. The comparison matrix’s

eigenvector should be calculated after that by summing up the columns of comparison matrix.

A new matrix is constructed by dividing each value in a column by the summation of that

column, and then taking the average of new matrix rows. For more information, see [51]. The

ANP comparison matrices may be constructed for comparing:
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• Criteria with respect to goal,

• Sub-criteria with respect to criterion from the same cluster,

• Alternatives with respect to each criterion,

• Criteria that belong to the same cluster with respect to each alternative.

3. Use the eigenvectors calculated in the previous step for constructing the super-matrix columns.

For obtaining a weighted super-matrix, a normalization process must be established. Then, raise

the weighted matrix to a larger power until the raw values will be equal to each column values

of super-matrix for obtaining the limiting matrix.

4 Finally, choose the best alternative by depending on weight values.

Figure 1. The structural difference between hierarchy and network model. 

4.2. The TOPSIS Technique 

The technique for order preference by similarity to ideal solution (TOPSIS) is proposed by 

Hwang and Yoon for aiding decision makers in determining positive (𝐴+) and negative (𝐴−) ideal 

solutions [52]. The chosen alternative is the one with the least distance from the positive ideal solution 

and the greatest distance from the negative ideal solution. The TOPSIS steps summarized as follows: 

1. The decision makers should construct the evaluation matrix that consists of 𝑚 alternatives and

𝑛 criteria. The intersection of each alternative and criterion is denoted as 𝑥𝑖𝑗 , and then we have

(𝑥𝑖𝑗)𝑚∗𝑛 matrix.

2. Use the following equation for obtaining the normalized evaluation matrix:

rij =
xij

√∑ xij
2m

i=1

; i = 1, 2, … ,m; j = 1, 2, … , n. 
(3) 

3. Structure the weighted matrix through multiplying criteria’s weights wj, by the normalized

decision matrix rij as follows:

Florentin Smarandache (ed.) Collected Papers, VII

266



vij =  wj × rij. (4) 

4. Calculate the positive 𝐴+ and negative ideal solution 𝐴− using the following:

𝐴+ = {< max(𝑣𝑖𝑗|𝑖 = 1, 2, … ,𝑚) |𝑗 ∈ 𝐽+ >,< min(𝑣𝑖𝑗|𝑖 = 1, 2, … ,𝑚) |𝑗 ∈ 𝐽−}, (5) 

𝐴− = {< min(𝑣𝑖𝑗|𝑖 = 1, 2, … ,𝑚) |𝑗 ∈ 𝐽+ >,< max(𝑣𝑖𝑗|𝑖 = 1, 2, … ,𝑚) |𝑗 ∈ 𝐽−}, (6) 

where 𝐽+ associated with the criteria that have a beneficial influence and 𝐽− associated with the 

criteria that have a non-beneficial influence. 

5. Calculate the Euclidean distance among positive (𝑑𝑖
+) and negative ideal solution (𝑑𝑖

−) as follows:

𝑑𝑖
+ = √∑(𝑣𝑖𝑗 − 𝑣𝑗

+)2

𝑛

𝑗=1

𝑖 = 1, 2, … ,𝑚, (7) 

𝑑𝑖
− = √∑(𝑣𝑖𝑗 − 𝑣𝑗

−)2

𝑛

𝑗=1

𝑖 = 1, 2,… ,𝑚. (8) 

6. Calculate the relative closeness to the ideal solution and make the final ranking of alternatives

𝑐𝑖 =
𝑑𝑖

−

𝑑𝑖
++𝑑𝑖

− for 𝑖 = 1, 2, … ,𝑚, and based on the largest ci value, begin to rank alternatives. (9) 

7. According to your rank of alternatives, take your final decision.

5. The Proposed Framework

The steps of the proposed interval-valued neutrosophic ANP-TOPSIS framework are presented 

with details in this section. 

The proposed framework consists of four phases, which contains a number of steps as follows: 

Phase 1: For better understanding of a complex problem, we must firstly breakdown it. 

Step 1.1. Select a group of experts to share in making decisions. If we select 𝑛 experts, then we have 

the panel = [𝑒1, 𝑒2,…, 𝑒𝑛]. 

Step 1.2. Use the literature review to determine problem’s criteria and ask experts for confirming 

these criteria. 

Step 1.3. Determine the alternatives of the problem. 

Step 1.4. Begin to structure the hierarchy of the problem. 

In an analytic hierarchy process, it is assumed that the alternatives depend on criteria, criteria 

affects goal, and in real complex problems, there likely is a dependency between a problem’s 

elements. In order to overcome this drawback of AHP, we utilized ANP for solving the problem. 

Figure 2 presents a sample of an ANP network. 

Phase 2: Calculate the weight of problem’s elements as follows: 

Step 2.1. The interval-valued comparison matrices should be constructed according to each expert 

and then aggregate experts’ matrices by using Equation (1). 

In this step, we compare criteria according to overall goals, sub-criteria according to criteria, and 

alternatives according to criteria. In addition, the interdependencies among problem’s elements must 

be pair-wisely compared. The 9-point scale of Saaty [53] was used to represent comparisons in 

traditional ANP. 

In our research, we used the interval-valued neutrosophic numbers for clarifying pair-wise 

comparisons as presented in Table 1, and these values returned to authors’ opinions. When 

comparing alternative 1 with alternative 2, and the first alternative was “Very strongly significant” 

than second one, then the truth degree is high and indeterminacy degree is very small because the 

term “Very strongly important” means that the decision makers are very confident of comparison 
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results in a large percentage. Therefore, we represented this linguistic term using interval-

neutrosophic number equals ([0.8, 0.9], [0.0, 0.1], [0.0, 0.1]), as it appears in Table 1. All other values 

in Table 1 were scaled with the same approach. 

Step 2.2. Use the de-neutrosophication function for transforming the interval-valued neutrosophic 

numbers to crisp numbers as in Equation (2). 

Step 2.3. Use super decision software, which is available here (http://www.superdecisions.com/ 

downloads/) to check the consistency of comparison matrices. 

Step 2.4. Calculate the eigenvectors for determining weight that will be used in building a super-

matrix. 

Step 2.5. The super-matrix of interdependencies should be constructed after then. 

Step 2.6. Multiply the local weight, which was obtained from experts’ comparison matrices of criteria 

according to goal, by the weight of interdependence matrix of criteria for calculating global 

weight of criteria. In addition, calculate the global weights of sub-criteria by multiplying its 

local weight by the inner interdependent weight of the criterion to which it belongs. 

Table 1. The interval-valued neutrosophic scale for comparison matrix. 

Linguistic Variables Interval-Valued Neutrosophic Numbers for Relative Importance <T,I,F> 

Evenly significant ([0.5,0.5], [0.5,0.5], [0.5,0.5]) 

Low significant ([0.4,0.5], [0.1,0.2], [0.2,0.3]) 

Basically important ([0.6,0.7], [0.0,0.1], [0.0,0.1]) 

Very strongly significant ([0.8,0.9], [0.0,0.1], [0.0,0.1]) 

Absolutely significant ([1,1], [0.0,0.1], [0.0,0.0]) 

Intermediate values 

([0.3,0.4], [0.1,0.2], [0.6,0.7]), 

([0.6,0.7], [0.1,0.2], [0.0,0.1]), 

([0.7,0.8], [0.0,0.1], [0.0,0.1]), 

([0.9,1], [0.0,0.1], [0.0,0.1]). 

Figure 2. An example of ANP interdependencies. 

Phase 3: Rank alternatives of problems. 

Step 3.1. Make the evaluation matrix, and then a normalization process must be performed for 

obtaining the normalized evaluation matrix using Equation (3). 

Step 3.2. Multiply criteria’s weights, which was obtained from ANP by the normalized evaluation 

matrix as in Equation (4) to construct the weighted matrix. 

Step 3.4. Determine positive and negative ideal solutions using Equations (5) and (6). 

Step 3.5. Calculate the Euclidean distance between positive solution (𝑑𝑖
+) and negative ideal solution

(𝑑𝑖
−) using Equations (7) and (8).

Step 3.6. Make the final ranking of alternatives based on closeness coefficient. 
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Phase 4: Compare the proposed method with other existing methods for validating it. The framework 

of the suggested method is presented in Figure 3. 

Figure 3. The framework’s proposed phases. 

6. The Case Study: Results and Analysis

The proposed framework has been applied to a real sustainable supplier selection problem, and 

the results are analyzed in this section. 

An Egyptian dairy and foodstuff corporation was founded in 1999 and is based in 10th of 

Ramadan City, Egypt. The corporation products include cream and skimmed milk, flavored milk, 

juice nectars, junior milk and juices, and tomato paste. The procurement department of the 

corporation is responsible for providing the required raw materials with the lowest possible cost, and 

purchasing corporation’s required equipment. The types of equipment are material-handling, 

laboratory, technical parts and machinery. The procurement department supplies packaging pure 

materials, pure materials and manufacturing technology. The dairy and foodstuff corporation must 

evaluate available suppliers and their sustainability to improve their productivity and be more 

competitive. Therefore, improving a system to assess and identify the superior suppliers is a 

significant component of this corporation’s objectives. The corporation consulted the executive 

manager and asked three experts to help in gathering required information for this study. The experts 

are in marketing, manufacturing and strategy with more than five years of experience. There are four 

suppliers, denoted in this study by 𝐴1…𝐴4. 

Phase 1: Breakdown the complex problem for understanding it better. 
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The criteria and available suppliers which are relevant to our case study are identified from the 

literature review. The experts vote to confirm the information. The criteria, sub-criteria and available 

suppliers are presented in Figure 4. In order to determine how criteria and sub-criteria influence each 

other and correlate, for being able to apply the ANP and weighting them, we interviewed the experts. 

Phase 2: Calculate the weights of problem elements. 

The verdicts of experts were applied through using the interval-valued neutrosophic numbers 

in Table 1. We used interval-valued neutrosophic numbers because they are more realistic and 

accurate than crisp values, and can deal efficiently and effectively with vague and inconsistent 

information. 

Let experts express their judgments by constructing the pairwise comparison matrices using the 

presented scale in Table 1—after that, aggregate comparison matrices using Equation (1). The 

aggregated comparison matrices of experts are presented in Tables 2–11. 

Figure 4. Hierarchy for dairy and foodstuff corporation to select the optimal supplier. 
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Table 2. The pairwise comparison matrix of criteria with respect to goal. 

Goal 𝑪𝟏 𝑪𝟐 𝑪𝟑 

𝑪𝟏 [0.5,0.5], [0.5,0.5], [0.5,0.5] [0.3,0.4], [0.1,0.2], [0.6,0.7] [0.7,0.8], [0.0,0.1], [0.0,0.1] 

𝑪𝟐 [0.5,0.5], [0.5,0.5], [0.5,0.5] [0.6,0.7], [0.1,0.2], [0.0,0.1] 

𝑪𝟑 [0.5,0.5], [0.5,0.5], [0.5,0.5] 

By using the deneutrosophication function through Equation (2), we will obtain the crisp matrix 

of comparison as in Table 3. 

Table 3. The equivalent crisp matrix of criteria with respect to goal. 

Goal 𝑪𝟏 𝑪𝟐 𝑪𝟑 Weights 

𝑪𝟏 1 2 6 0.59 

𝑪𝟐 0.5 1 4 0.32 

𝑪𝟑 0.17 0.25 1 0.09 

By checking consistency of the previous matrix using super decision software, we noted that the 

matrix is consistent with consistency ratio (CR) = 1%. 

The inner interdependency of main criteria according to 𝐶1 is presented in Table 4. 

Table 4. Internal interdependencies of criteria with respect to 𝐶1. 

𝑪𝟏 𝑪𝟐 𝑪𝟑 

𝑪𝟐 [0.5,0.5], [0.5,0.5], [0.5,0.5] [0.7,0.8], [0.0,0.1], [0.0,0.1] 

𝑪𝟑  [0.5,0.5], [0.5,0.5], [0.5,0.5] 

Table 5. The crisp interdependencies values of factors with respect to 𝐶1. 

𝑪𝟏 𝑪𝟐 𝑪𝟑 Weights 

𝑪𝟐 1 6 0.86 

𝑪𝟑 0.17 1 0.14 

Table 6. Internal interdependencies of criteria with respect to𝐶2. 

𝑪𝟐 𝑪𝟏 𝑪𝟑 

𝑪𝟏 [0.5,0.5], [0.5,0.5], [0.5,0.5] [0.6,0.7], [0.1,0.2], [0.0,0.1] 

𝑪𝟑  [0.5,0.5], [0.5,0.5], [0.5,0.5] 

Table 7. The crisp interdependencies values of factors with respect to𝐶2. 

𝑪𝟐 𝑪𝟏 𝑪𝟑 Weights 

𝑪𝟏 1 4 0.8 

𝑪𝟑 0.25 1 0.2 

Table 8. Internal interdependencies of criteria with respect to𝐶3. 

𝑪𝟑 𝑪𝟏 𝑪𝟐 

𝑪𝟏 [0.5,0.5], [0.5,0.5], [0.5,0.5] [1,1], [0.0,0.1], [0.0,0.0] 

𝑪𝟐 [0.5,0.5], [0.5,0.5], [0.5,0.5] 

Table 9. The crisp interdependencies values of factors with respect to𝐶3. 

𝑪𝟑 𝑪𝟏 𝑪𝟐 Weights 

𝑪𝟏 1 9 0.9 

𝑪𝟐 0.11 1 0.1 
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Table 10. The relative impact of decision criteria. 

𝑪𝟏 𝑪𝟐 𝑪𝟑 

𝑪𝟏 1 0.8 0.9 

𝑪𝟐 0.86 1 0.1 

𝑪𝟑 0.14 0.2 1 

Table 11. The normalized relative impact of decision criteria. 

𝑪𝟏 𝑪𝟐 𝑪𝟑 

𝑪𝟏 0.5 0.4 0.45 

𝑪𝟐 0.43 0.5 0.05 

𝑪𝟑 0.07 0.1 0.5 

Then, the weights of decision criteria based on their inner interdependencies are as follows: 

𝑤𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 = [
𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐𝑎𝑙

𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙
𝑠𝑜𝑐𝑖𝑎𝑙

] = [
0.5 0.4 0.45
0.43 0.5 0.05
0.07 0.1 0.5

] × [
0.59
0.32
0.09

] = [
0.46
0.42
0.12

]. 

It is obvious that the economic factors are the most significant factors when evaluating suppliers, 

followed by environmental and social factors, according to experts’ opinions. 

We should also note the influence of inner interdependencies of criteria on its weights. It 

changed the weights of main criteria from (0.59, 0.32, 0.09) to (0.46, 0.42, 0.12). 

The comparison matrices and local weights of sub-criteria relevant to their clusters are expressed 

in Tables 12–17. 

Table 12. The comparison matrix and local weight of 𝐶1indicators. 

𝑪𝟏 𝑪𝟏𝟏 𝑪𝟏𝟐 𝑪𝟏𝟑 𝑪𝟏𝟒 

𝑪𝟏𝟏 [0.5,0.5], [0.5,0.5], [0.5,0.5] [0.4,0.5], [0.1,0.2], [0.2,0.3] [0.6,0.7], [0.1,0.2], [0.0,0.1] [0.6,0.7], [0.0,0.1], [0.0,0.1] 

𝑪𝟏𝟐 [0.5,0.5], [0.5,0.5], [0.5,0.5] [0.3,0.4], [0.1,0.2], [0.6,0.7] [0.6,0.7], [0.1,0.2], [0.0,0.1] 

𝑪𝟏𝟑 [0.5,0.5], [0.5,0.5], [0.5,0.5] [0.3,0.4], [0.1,0.2], [0.6,0.7] 

𝑪𝟏𝟒 [0.5,0.5], [0.5,0.5], [0.5,0.5] 

Table 13. The crisp comparison matrix and local weight of 𝐶1 indicators. 

𝑪𝟏 𝑪𝟏𝟏 𝑪𝟏𝟐 𝑪𝟏𝟑 𝑪𝟏𝟒 Weights  

𝑪𝟏𝟏 1 3 4 5 0.54 

𝑪𝟏𝟐 0.33 1 2 4 0.23 

𝑪𝟏𝟑 0.25 0.50 1 2 0.13 

𝑪𝟏𝟒 0.20 0.25 0.5 1 0.08 

The consistency ratio (CR) of previous matrix = 0.03. 

Table 14. The comparison matrix and local weight of 𝐶2 indicators. 

𝑪𝟐 𝑪𝟐𝟏 𝑪𝟐𝟐 𝑪𝟐𝟑 𝑪𝟐𝟒 

𝑪𝟐𝟏 [0.5,0.5], [0.5,0.5], [0.5,0.5] [0.4,0.5], [0.1,0.2], [0.2,0.3] [0.8,0.9], [0.0,0.1], [0.0,0.1] [1,1], [0.0,0.1], [0.0,0.0] 

𝑪𝟐𝟐 [0.5,0.5], [0.5,0.5], [0.5,0.5] [0.6,0.7], [0.0,0.1], [0.0,0.1] [0.8,0.9], [0.0,0.1], [0.0,0.1] 

𝑪𝟐𝟑 [0.5,0.5], [0.5,0.5], [0.5,0.5] [0.3,0.4], [0.1,0.2], [0.6,0.7] 

𝑪𝟐𝟒 [0.5,0.5], [0.5,0.5], [0.5,0.5] 

Table 15. The crisp comparison matrix and local weight of 𝐶2 indicators. 

𝑪𝟐 𝑪𝟐𝟏 𝑪𝟐𝟐 𝑪𝟐𝟑 𝑪𝟐𝟒 Weights  

𝑪𝟐𝟏 1 3 7 9 0.59 

𝑪𝟐𝟐 0.33 1 5 7 0.29 

𝑪𝟐𝟑 0.14 0.20 1 2 0.08 

𝑪𝟐𝟒 0.11 0.14 0.50 1 0.05 
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The consistency ratio (CR) of previous matrix = 0.04. 

Table 16. The comparison matrix and local weight of 𝐶3 indicators. 

𝑪𝟑 𝑪𝟑𝟏 𝑪𝟑𝟐 𝑪𝟑𝟑 𝑪𝟑𝟒 

𝑪𝟑𝟏 [0.5,0.5], [0.5,0.5], [0.5,0.5] [0.3,0.4], [0.1,0.2], [0.6,0.7] [0.4,0.5], [0.1,0.2], [0.2,0.3] [1,1], [0.0,0.1], [0.0,0.0] 

𝑪𝟑𝟐 [0.5,0.5], [0.5,0.5], [0.5,0.5] [0.3,0.4], [0.1,0.2], [0.6,0.7] [0.7,0.8], [0.0,0.1], [0.0,0.1] 

𝑪𝟑𝟑 [0.5,0.5], [0.5,0.5], [0.5,0.5] [0.4,0.5], [0.1,0.2], [0.2,0.3] 

𝑪𝟑𝟒 [0.5,0.5], [0.5,0.5], [0.5,0.5] 

Table 17. The crisp comparison matrix and local weight of 𝐶3 indicators. 

𝑪𝟑 𝑪𝟑𝟏 𝑪𝟑𝟐 𝑪𝟑𝟑 𝑪𝟑𝟒 Weights  

𝑪𝟑𝟏 1 2 3 9 0.50 

𝑪𝟑𝟐 0.50 1 2 6 0.29 

𝑪𝟑𝟑 0.33 0.50 1 3 0.15 

𝑪𝟑𝟒 0.11 0.17 0.33 1 0.05 

The consistency ratio (CR) of previous matrix = 0.004. 

Each sub-criteria global weight is calculated via multiplying its local weight by the inner 

interdependent weight of the criterion to which it belongs as in Table 18. 

Table 18. The sub-criteria global weights. 

Criteria Local Weight Sub-Criteria Local Weight Global Weight 

Economic factors (0.46) 

𝐶11 0.54 0.25 

𝐶12 0.23 0.11 

𝐶13 0.13 0.06 

𝐶14 0.08 0.04 

Environmental factors (0.42) 

𝐶21 0.59 0.25 

𝐶22 0.29 0.12 

𝐶23 0.08 0.03 

𝐶24 0.05 0.02 

Social factors (0.12) 

𝐶31 0.50 0.06 

𝐶32 0.29 0.03 

𝐶33 0.15 0.02 

𝐶34 0.05 0.006 

Phase 3: Rank alternatives of problems. 

Let each expert build the evaluation matrix via comparing the four alternatives relative to each 

criterion, by utilizing the interval-valued scale, which is presented in Table 1. After that, use Equation 

(1) to aggregate the evaluation matrices and obtain the final evaluation matrix relevant to experts’ 

committee. Proceed to deneutrosophication function to convert the interval-valued neutrosophic 

evaluation matrix to its crisp form using Equation (2). Then, make a normalization process to obtain 

the normalized evaluation matrix using Equation (3), as observed in Table 19. 

Table 19. The normalized evaluation matrix. 

𝑪𝟏𝟏 𝑪𝟏𝟐 𝑪𝟏𝟑 𝑪𝟏𝟒 𝑪𝟐𝟏 𝑪𝟐𝟐 𝑪𝟐𝟑 𝑪𝟐𝟒 𝑪𝟑𝟏 𝑪𝟑𝟐 𝑪𝟑𝟑 𝑪𝟑𝟒 

𝑨𝟏 0.53 0.46 0.46 0.43 0.52 0.54 0.45 0.58 0.48 0.59 0.59 0.51 

𝑨𝟐 0.46 0.58 0.53 0.48 0.43 0.58 0.59 0.52 0.54 0.54 0.46 0.64 

𝑨𝟑 0.44 0.43 0.56 0.53 0.49 0.45 0.36 0.46 0.49 0.38 0.47 0.47 

𝑨𝟒 0.56 0.52 0.43 0.55 0.54 0.41 0.56 0.43 0.48 0.45 0.46 0.32 

Then, build the weighted matrix by multiplying the weights of criteria, obtained from ANP by 

the normalized evaluation matrix using Equation (4), as in Table 20. 
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Table 20. The weighted evaluation matrix. 

𝑪𝟏𝟏 𝑪𝟏𝟐 𝑪𝟏𝟑 𝑪𝟏𝟒 𝑪𝟐𝟏 𝑪𝟐𝟐 𝑪𝟐𝟑 𝑪𝟐𝟒 𝑪𝟑𝟏 𝑪𝟑𝟐 𝑪𝟑𝟑 𝑪𝟑𝟒 

𝑨𝟏 0.13 0.05 0.03 0.02 0.13 0.06 0.01 0.01 0.03 0.02 0.01 0.003 

𝑨𝟐 0.11 0.06 0.03 0.02 0.11 0.07 0.02 0.01 0.03 0.02 0.01 0.004 

𝑨𝟑 0.11 0.05 0.03 0.02 0.12 0.05 0.01 0.01 0.03 0.01 0.01 0.003 

𝑨𝟒 0.14 0.06 0.03 0.02 0.13 0.05 0.02 0.01 0.03 0.01 0.01 0.002 

Determine the ideal solutions using Equations (5) and (6) as follows: 

𝐴+ = {0.14,0.06,0.03,0,02,0.13,0.07,0.02,0.01,0.03,0.02,0.01,0.004}, 

𝐴− = {0.11,0.05,0.03,0.02,0.11,0.05,0.01,0.01,0.03,0.01,0.01,0.002}. 

After that, measure the Euclidean distance between positive solution (𝑑𝑖
+) and negative ideal

solution (𝑑𝑖
−) using Equations (7) and (8) as follows:

𝑑1
+ = {0.020}, 𝑑2

+ = {0.036}, 𝑑3
+ = {0.041}, 𝑑4

+ = {0.022},

𝑑1
− = {0.032}, 𝑑2

− = {0.026}, 𝑑3
− = {0.010}, 𝑑4

− = {0.040}.

Step 3.7. Calculate the closeness coefficient using Equation (9), and make the final ranking of 

alternatives as in Table 21. 

Table 21. TOPSIS results and ranking of alternatives. 

𝒅𝒊
+ 𝒅𝒊

− 𝒄𝒊 Rank 

𝑨𝟏 0.020 0.032 0.615 2 

𝑨𝟐 0.036 0.026 0.419 3 

𝑨𝟑 0.041 0.010 0.196 4 

𝑨𝟒 0.022 0.040 0.645 1 

The ranking for the optimal sustainable suppliers of dairy and foodstuff corporation is 

Alternative 4, Alternative 1, Alternative 2 and Alternative 3, as shown in Figure 5. 

Figure 5. The ranking for the optimal alternatives of dairy and foodstuff corporation. 

Phase 4: Validate the model and make comparisons with other existing methods. 

In this phase, the obtained ranking of optimal suppliers by the proposed framework is compared 

with the obtained results by the analytic hierarchy process, the analytic network process, MOORA 

and MOOSRA techniques. 

The obtained ranking of suppliers by using an AHP technique is as follows: 
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Since AHP does not consider inner interdependency between problem’s elements, then weights 

of sub-criteria are as follows: 

[

0.32
0.14
0.08
0.47
0.19
0.09
0.03
0.02
0.04
0.03
0.01
0.00]

 
 
 
 
 
 
 
 
 
 
 

. 

The comparison matrix of alternatives relevant to each sub-criterion is as follows: 

[

0.53 0.46 0.46 0.43 0.52 0.54 0.45 0.58 0.48 0.59 0.59 0.51
0.46 0.58 0.53 0.48 0.43 0.58 0.59 0.52 0.54 0.54 0.46 0.64
0.44 0.43 0.56 0.53 0.49 0.45 0.36 0.46 0.49 0.38 0.47 0.47
0.56 0.52 0.43 0.55 0.54 0.41 0.56 0.43 0.48 0.45 0.46 0.32

]. 

The final weights of alternatives after multiplying two previous matrices and making 

normalization of results are as in Table 22. 

Table 22. Ranking alternatives relevant to AHP. 

Alternatives Weights Rank 

𝑨𝟏 0.245 3 

𝑨𝟐 0.250 2 

𝑨𝟑 0.244 4 

𝑨𝟒 0.267 1 

Our proposed framework and the analytic hierarchy process agreed that the Alternative 3 is the 

worst alternative for the company. The two methods are different in ranking the optimal alternative 

due to the inner interdependencies between the problem’s criteria effect on the global weight of 

alternatives, and, in our case study, it reduced weights of main criteria from (0.59, 0.32, 0.09) to (0.46, 

0.42, 0.12), and this surely regarded the global weight of sub-criteria and also ranking of alternatives. 

The weights of sub-criteria when we applied the analytic network process are as follows (see 

also Table 18): 

[

0.25
0.11
0.06
0.04
0.25
0.12
0.03
0.02
0.06
0.03
0.02
0.006]

 
 
 
 
 
 
 
 
 
 
 

. 

In addition, the comparison matrix of alternatives relevant to each sub-criterion is as follows: 

[

0.53 0.46 0.46 0.43 0.52 0.54 0.45 0.58 0.48 0.59 0.59 0.51
0.46 0.58 0.53 0.48 0.43 0.58 0.59 0.52 0.54 0.54 0.46 0.64
0.44 0.43 0.56 0.53 0.49 0.45 0.36 0.46 0.49 0.38 0.47 0.47
0.56 0.52 0.43 0.55 0.54 0.41 0.56 0.43 0.48 0.45 0.46 0.32

]. 
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After proceeding to the normalization process, the ranking of alternatives relevant to the ANP 

technique is presented in Table 23. 

Table 23. Ranking alternatives relevant to ANP. 

Alternatives Weights Rank 

𝑨𝟏 0.26 1 

𝑨𝟐 0.25 2 

𝑨𝟑 0.23 3 

𝑨𝟒 0.26 1 

By using the ANP technique for solving the same case study, we noted that Alternative 1 and 

Alternative 4 have the same rank and are the best alternatives, followed by Alternative 2 and finally 

Alternative 3. The proposed framework and the ANP agreed that Alternative 3 is the worst 

alternative. 

We not only used the AHP and ANP techniques for solving the case study of a dairy and 

foodstuff corporation, but also two other multi-objective decision-making techniques. 

The first technique is the multi-objective optimization based on simple ratio analysis (MOORA), 

proposed by Brauers and Zavadskas [54]. There are two approaches under the MOORA: the ratio 

system and the reference point approaches [53]. Here, we used the ratio system method of the 

MOORA to validate our proposed framework. 

The normalized weighted matrix and ranking of alternatives using the MOORA technique are 

presented in Tables 24 and 25. The equations that we used in our calculation of MOORA normalized 

weighted matrix, and the equations that we employed in the ranking process are available with 

details in [53]. 

Table 24. The weighted normalized matrix under the MOORA technique. 

𝑪𝟏𝟏 𝑪𝟏𝟐 𝑪𝟏𝟑 𝑪𝟏𝟒 𝑪𝟐𝟏 𝑪𝟐𝟐 𝑪𝟐𝟑 𝑪𝟐𝟒 𝑪𝟑𝟏 𝑪𝟑𝟐 𝑪𝟑𝟑 𝑪𝟑𝟒 

𝑨𝟏 0.13 0.05 0.03 0.02 0.13 0.06 0.01 0.01 0.03 0.02 0.01 0.003 

𝑨𝟐 0.11 0.06 0.03 0.02 0.11 0.07 0.02 0.01 0.03 0.02 0.01 0.004 

𝑨𝟑 0.11 0.05 0.03 0.02 0.12 0.05 0.01 0.01 0.03 0.01 0.01 0.003 

𝑨𝟒 0.14 0.06 0.03 0.02 0.13 0.05 0.02 0.01 0.03 0.01 0.01 0.002 

Table 25. The ranking of alternatives using the MOORA technique. 

∑ 𝒙𝒊𝒋∗
𝒈

𝒋=𝟏
 ∑ 𝒙𝒊𝒋∗

𝒏

𝒋=𝒈+𝟏
 𝒑𝒊

∗ Ranking 

𝑨𝟏 0.43 0.073 0.357 2 

𝑨𝟐 0.41 0.084 0.326 4 

𝑨𝟑 0.39 0.063 0.327 3 

𝑨𝟒 0.44 0.072 0.368 1 

The fourth column in Table 25 is the index of the total performance 𝑝𝑖
∗ and equals the difference

between beneficial criteria summation and non-beneficial criteria summation. The beneficial and 

non-beneficial criteria were determined according to experts’ weights of criteria. In other words, the 

total performance 𝑝𝑖
∗ is the difference between the second column and third column values in Table

25. 

The other technique we applied to the same case study for validating our proposed framework 

is MOOSRA. The MOOSRA technique determines the simple ratio of beneficial and non-beneficial 

criteria. The MOOSRA is a multi-objective optimization technique. The steps of the MOOSRA 

technique are similar to the MOORA technique, except in calculating total performance index 𝑝𝑖
∗. For

more details, see [53]. The ranking of alternatives using MOOSRA technique is presented in Table 26. 

Florentin Smarandache (ed.) Collected Papers, VII

276



Table 26. The ranking of alternatives using the MOOSRA technique. 

∑ 𝒙𝒊𝒋∗
𝒈

𝒋=𝟏
 ∑ 𝒙𝒊𝒋∗

𝒏

𝒋=𝒈+𝟏
 𝒑𝒊

∗ Ranking

𝑨𝟏 0.43 0.073 5.89 3 

𝑨𝟐 0.41 0.084 4.88 4 

𝑨𝟑 0.39 0.063 6.19 1 

𝑨𝟒 0.44 0.072 6.11 2 

The ranking of suppliers using the proposed framework and the other four techniques are 

aggregated in Table 27. The correlation coefficient between the proposed framework and other 

techniques is presented in Table 28; we calculated it using Microsoft Excel (version, Manufacturer, 

City, US State abbrev. if applicable, Country) by using the CORREL() function. 

Table 27. The ranking of alternatives relevant to various applied techniques. 

Suppliers Proposed Technique (1) AHP (2) ANP (3) MOORA (4) MOOSRA (5) 

𝑨𝟏 2 3 1 2 3 

𝑨𝟐 3 2 2 4 4 

𝑨𝟑 4 4 3 3 1 

𝑨𝟒 1 1 1 1 2 

Table 28. The correlation coefficients between the proposed model and other applied techniques. 

Correlation (1, 2) Correlation (1, 3) Correlation (1, 4) Correlation (1, 5) 

0.8 0.9 0.8 0.2 

The proposed framework and the first three applied techniques (i.e., AHP, ANP, MOORA) 

agreed that Alternative 4 is the best alternative. The correlation coefficients help to measure the 

efficiency of various MCDM techniques. The correlation coefficients between our proposed 

framework and AHP, ANP, MOORA are very high, as shown in Table 28. The high value of 

Spearman correlation coefficients reflects the high consistency and validity of the proposed 

framework. However, the correlation coefficient between our proposed model and MOOSRA is low. 

Our framework is valid and consistent because the proposed framework and the first three applied 

techniques agreed that Alternative 4 is the optimal supplier for the dairy and foodstuff corporation. 

7. Conclusions and Future Directions

For solving the sustainable supplier selection problem, many steps must be performed: the 

sustainability criteria must be determined; the interdependencies between these criteria must be 

identified—ranking and evaluating supplier performance. For more accuracy, we have suggested a 

framework consisting of four phases, by integrating ANP with TOPSIS using the interval-valued 

neutrosophic numbers. The ANP is used to weight problem criteria and sub-criteria because of its 

capability to consider interdependencies between problem’s elements. The TOPSIS is used to rank 

available suppliers for avoiding additional comparisons of analytic network process. The suggested 

method provides a reliable and easy to implement procedure, which is suitable for a broad range of 

real life applications. A case study of a dairy and foodstuff corporation has been solved employing 

the proposed framework. The dairy corporation trying to earn an important market share and 

competitive benefits faces competition from other corporations. The objectives of food corporation 

are to improve the green food process, to get the standard certificate. Many customers consider the 

ISO standard as a priority for them. Suppliers are a great part of the production process; 

consequently, they must be sorted and analyzed carefully using efficient framework. The selection 

process of experts is not an easy matter. Therefore, the provided data and information from experts 

must be more accurate; otherwise, it will affect the selection process of optimal suppliers. Because 

real life has a great amount of vague and inconsistent information and surely affects experts’ 
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judgment, we presented our suggested framework using interval-valued neutrosophic numbers. 

Neutrosophic sets make a simulation of natural decision-making process, since it considers all aspects 

of making a decision (i.e., agree, not sure and falsity). In the future, we plan to solve the sustainable 

supplier selection problem with more difficult and complex dependencies between criteria using 

different multi-criteria decision-making techniques and presenting them in a neutrosophic 

environment using the alpha cut method. 
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Abstract: A single-valued neutrosophic set (SVNS) is a special case of a neutrosophic set which is
characterized by a truth, indeterminacy, and falsity membership function, each of which lies in the
standard interval of [0, 1]. This paper presents a modified Technique for Order Preference by Similarity
to an Ideal Solution (TOPSIS) with maximizing deviation method based on the single-valued
neutrosophic set (SVNS) model. An integrated weight measure approach that takes into consideration
both the objective and subjective weights of the attributes is used. The maximizing deviation
method is used to compute the objective weight of the attributes, and the non-linear weighted
comprehensive method is used to determine the combined weights for each attributes. The use
of the maximizing deviation method allows our proposed method to handle situations in which
information pertaining to the weight coefficients of the attributes are completely unknown or only
partially known. The proposed method is then applied to a multi-attribute decision-making (MADM)
problem. Lastly, a comprehensive comparative studies is presented, in which the performance of our
proposed algorithm is compared and contrasted with other recent approaches involving SVNSs
in literature.

Keywords: 2ingle-valued neutrosophic set; Technique for Order Preference by Similarity to an
Ideal Solution (TOPSIS); integrated weight; maximizing deviation; multi-attribute decision-making
(MADM)

1. Introduction

The study of fuzzy set theory proposed by Zadeh [1] was an important milestone in the study
of uncertainty and vagueness. The widespread success of this theory has led to the introduction
of many extensions of fuzzy sets such as the intuitionistic fuzzy set (IFS) [2], interval-valued fuzzy set
(IV-FS) [3], vague set [4], and hesitant fuzzy set [5]. The most widely used among these models is the
IFS model which has also spawned other extensions such as the interval-valued intuitionistic fuzzy
set [6] and bipolar intuitionistic fuzzy set [7]. Smarandache [8] then introduced an improvement to
IFS theory called neutrosophic set theory which loosely refers to neutral knowledge. The study of the
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neutrality aspect of knowledge is the main distinguishing criteria between the theory of fuzzy sets,
IFSs, and neutrosophic sets. The classical neutrosophic set (NS) is characterized by three membership
functions which describe the degree of truth (T), the degree of indeterminacy (I), and the degree
of falsity (F), whereby all of these functions assume values in the non-standard interval of ]0−,
1+[. The truth and falsity membership functions in a NS are analogous to the membership and
non-membership functions in an IFS, and expresses the degree of belongingness and non-belongingness
of the elements, whereas the indeterminacy membership function expresses the degree of neutrality in
the information. This additional indeterminacy membership function gives NSs the ability to handle
the neutrality aspects of the information, which fuzzy sets and its extensions are unable to handle.
Another distinguishing factor between NSs and other fuzzy-based models is the fact that all the three
membership functions in a NS are entirely independent of one another, unlike the membership and
non-membership functions in an IFS or other fuzzy-based models in which values of the membership
and non-membership functions are dependent on one another. This gives NSs the ability to handle
uncertain, imprecise, inconsistent, and indeterminate information, particularly in situations whereby
the factors affecting these aspects of the information are independent of one another. This also makes
the NS more versatile compared to IFSs and other fuzzy- or IF-based models in literature.

Smarandache [8] and Wang et al. [9] pointed out that the non-standard interval of ]0−, 1+[ in which
the NS is defined in, makes it impractical to be used in real-life problems. Furthermore, values in this
non-standard interval are less intuitive and the significance of values in this interval can be difficult
to be interpreted. This led to the conceptualization of the single-valued neutrosophic set (SVNS).
The SVNS is a straightforward extension of NS which is defined in the standard unit interval of [0, 1].
As values in [0, 1] are compatible with the range of acceptable values in conventional fuzzy set theory
and IFS theory, it is better able to capture the intuitiveness of the process of assigning membership
values. This makes the SVNS model easier to be applied in modelling real-life problems as the results
obtained are a lot easier to be interpreted compared to values in the interval ]0−, 1+[.

The SVNS model has garnered a lot of attention since its introduction in [9], and has been actively
applied in various multi-attribute decision-making (MADM) problems using a myriad of different
approaches. Wang et al. [9] introduced some set theoretic operators for SVNSs, and studied some
additional properties of the SVNS model. Ye [10,11] introduced a decision-making algorithm based on
the correlation coefficients for SVNSs, and applied this algorithm in solving some MADM problems.
Ye [12,13] introduced a clustering method and also some decision-making methods that are based on
the similarity measures of SVNSs, whereas Huang [14] introduced a new decision-making method for
SVNSs and applied this method in clustering analysis and MADM problems. Peng and Liu [15] on the
other hand proposed three decision-making methods based on a new similarity measure, the EDAS
method and level soft sets for neutrosophic soft sets, and applied this new measure to MADM
problems set in a neutrosophic environment. The relations between SVNSs and its properties were first
studied by Yang et al. [16], whereas the graph theory of SVNSs and bipolar SVNSs were introduced by
Broumi et al. in [17–19] and [20–22], respectively. The aggregation operators of simplified neutrosophic
sets (SNSs) were studied by Tian et al. [23] and Wu et al. [24]. Tian et al. [23] introduced a generalized
prioritized aggregation operator for SNSs and applied this operator in a MADM problem set in an
uncertain linguistic environment, whereas Wu et al. [24] introduced a cross-entropy measure and
a prioritized aggregation operator for SNSs and applied these in a MADM problem. Sahin and
Kucuk [25] proposed a subsethood measure for SVNSs and applied these to MADM problems.

The fuzzy Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method
for SVNSs were studied by Ye [26] and Biswas et al. [27]. Ye [26] introduced the TOPSIS method for
group decision-making (MAGDM) that is based on single-valued neutrosophic linguistic numbers,
to deal with linguistic decision-making. This TOPSIS method uses subjective weighting method
whereby attribute weights are randomly assigned by the users. Maximizing deviation method or any
other objective weighting methods are not used. Biswas et al. [27] proposed a TOPSIS method for
group decision-making (MAGDM) based on the SVNS model. This TOPSIS method is based on the
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original fuzzy TOPSIS method and does not use the maximizing deviation method to calculate the
objective weights for each attribute. The subjective weight of each attribute is determined by using
the single-valued neutrosophic weighted averaging aggregation operator to calculate the aggregated
weights of the attributes using the subjective weights that are assigned by each decision maker.

The process of assigning weights to the attributes is an important phase of decision making.
Most research in this area usually use either objective or subjective weights. However, considering the
fact that different values for the weights of the attributes has a significant influence on the ranking
of the alternatives, it is imperative that both the objective and subjective weights of the attributes
are taken into account in the decision-making process. In view of this, we consider the attributes’
subjective weights which are assigned by the decision makers, and the objective weights which are
computed using the maximizing deviation method. These weights are then combined using the
non-linear weighted comprehensive method to obtain the integrated weight of the attributes.

The advantages and drawbacks of the methods that were introduced in the works described above
served as the main motivation for the work proposed in this paper, as we seek to introduce an effective
SVNS-based decision-making method that is free of all the problems that are inherent in the other
existing methods in literature. In addition to these advantages and drawbacks, the works described
above have the added disadvantage of not being able to function (i.e., provide reasonable solutions)
under all circumstances. In view of this, the objective of this paper is to introduce a novel TOPSIS
with maximizing deviation method for SVNSs that is able to provide effective solutions under any
circumstances. Our proposed TOPSIS method is designed to handle MADM problems, and uses the
maximizing deviation method to calculate the objective weights of attributes, utilizing an integrated
weight measure that takes into consideration both the subjective and objective weights of the attributes.
The robustness of our TOPSIS method is verified through a comprehensive series of tests which proves
that our proposed method is the only method that shows compliance to all the tests, and is able to
provide effective solutions under all different types of situations, thus out-performing all of the other
considered methods.

The remainder of this paper is organized as follows. In Section 2, we recapitulate some
of the fundamental concepts related to neutrosophic sets and SVNSs. In Section 3, we define an
SVNS-based TOPSIS and maximizing deviation methods and an accompanying decision-making
algorithm. The proposed decision-making method is applied to a supplier selection problem in
Section 4. In Section 5, a comprehensive comparative analysis of the results obtained via our proposed
method and other recent approaches is presented. The similarities and differences in the performance
of the existing algorithms and our algorithm is discussed, and it is proved that our algorithm is
effective and provides reliable results in every type of situation. Concluding remarks are given in
Section 6, followed by the acknowledgements and list of references.

2. Preliminaries

In this section, we recapitulate some important concepts pertaining to the theory of neutrosophic
sets and SVNSs. We refer the readers to [8,9] for further details pertaining to these models.

The neutrosophic set model [8] is a relatively new tool for representing and measuring uncertainty
and vagueness of information. It is fast becoming a preferred general framework for the analysis
of uncertainty in data sets due to its capability in the handling big data sets, as well as its ability
in representing all the different types of uncertainties that exists in data, in an effective and concise
manner via a triple membership structure. This triple membership structure captures not only the
degree of belongingness and non-belongingness of the objects in a data set, but also the degree of
neutrality and indeterminacy that exists in the data set, thereby making it superior to ordinary fuzzy
sets [1] and its extensions such as IFSs [2], vague sets [4], and interval-valued fuzzy sets [3]. The formal
definition of a neutrosophic set is as given below.

Let U be a universe of discourse, with a class of elements in U denoted by x.
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Definition 1. [8] A neutrosophic set A is an object having the form A = {x, TA(x), IA(x), FA(x) : x ∈ U},
where the functions T, I, F : U →]−0, 1+[ denote the truth, indeterminacy, and falsity membership functions,
respectively, of the element x ∈ U with respect to A. The membership functions must satisfy the condition
−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

Definition 2. [8] A neutrosophic set A is contained in another neutrosophic set B, if TA(x) ≤ TB(x), IA(x) ≥
IB(x), and FA(x) ≥ FB(x), for all x ∈ U. This relationship is denoted as A ⊆ B.

Wang et al. [9] then introduced a special case of the NS model called the single-valued
neutrosophic set (SVNS) model, which is as defined below. This SVNS model is better suited to
applied in real-life problems compared to NSs due to the structure of its membership functions which
are defined in the standard unit interval of [0, 1].

Definition 3. [9] A SVNS A is a neutrosophic set that is characterized by a truth-membership
function TA(x), an indeterminacy-membership function IA(x), and a falsity-membership function FA(x),
where TA(x), IA(x), FA(x) ∈ [0, 1]. This set A can thus be written as

A = {〈 x, TA(x), IA(x), FA(x)〉 : x ∈ U} . (1)

The sum of TA(x), IA(x) and FA(x) must fulfill the condition 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.
For a SVNS A in U, the triplet (TA(x), IA(x), FA(x)) is called a single-valued neutrosophic number
(SVNN). For the sake of convenience, we simply let x = (Tx, Ix, Fx) to represent a SVNN as an element
in the SVNS A.

Next, we present some important results pertaining to the concepts and operations of SVNSs.
The subset, equality, complement, union, and intersection of SVNSs, and some additional operations
between SVNSs were all defined by Wang et al. [9], and these are presented in Definitions 4 and
5, respectively.

Definition 4. [9] Let A and B be two SVNSs over a universe U.

(i) A is contained in B, if TA(x) ≤ TB(x), IA(x) ≥ IB(x), and FA(x) ≥ FB(x), for all x ∈ U.
This relationship is denoted as A ⊆ B.

(ii) A and B are said to be equal if A ⊆ B and B ⊆ A.
(iii) Ac = (x, (FA(x), 1− IA(x), TA(x))), for all x ∈ U.
(iv) A ∪ B = (x, (max(TA, TB), min(IA, IB), min(FA, FB))), for all x ∈ U.
(v) A ∩ B = (x, (min(TA, TB), max(IA, IB), max(FA, FB))), for all x ∈ U.

Definition 5. [9] Let x = (Tx, Ix, Fx) and y =
(
Ty, Iy, Fy

)
be two SVNNs. The operations for SVNNs can

be defined as follows:

(i) x
⊕

y =
(
Tx + Ty − Tx ∗ Ty, Ix ∗ Iy, Fx ∗ Fy

)
(ii) x

⊗
y =

(
Tx ∗ Ty, Ix + Iy − Ix ∗ Iy, Fx + Fy − Fx ∗ Fy

)
(iii) λx =

(
1− (1− Tx)

λ, (Ix)
λ, (Fx)

λ
)

, where λ > 0

(iv) xλ =
(
(Tx)

λ, 1− (1− Ix)
λ, 1− (1− Fx)

λ
)

, where λ > 0.

Majumdar and Samanta [28] introduced the information measures of distance, similarity,
and entropy for SVNSs. Here we only present the definition of the distance measures between
SVNSs as it is the only component that is relevant to this paper.

Definition 6. [28] Let A and B be two SVNSs over a finite universe U = {x1, x2, . . . , xn}. Then the various
distance measures between A and B are defined as follows:
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(i) The Hamming distance between A and B are defined as:

dH(A, B) =
n

∑
i=1
{|TA(xi)− TB(xi)|+ |IA(xi)− IB(xi)|+ |FA(xi)− FB(xi)|} (2)

(ii) The normalized Hamming distance between A and B are defined as:

dN
H(A, B) =

1
3n

n

∑
i=1
{|TA(xi)− TB(xi)|+ |IA(xi)− IB(xi)|+ |FA(xi)− FB(xi)|} (3)

(ii) The Euclidean distance between A and B are defined as:

dE(A, B) =

√
n

∑
i=1

{
(TA(xi)− TB(xi))

2 + (IA(xi)− IB(xi))
2 + (FA(xi)− FB(xi))

2
}

(4)

(iv) The normalized Euclidean distance between A and B are defined as:

dN
E (A, B) =

√
1

3n

n

∑
i=1

{
(TA(xi)− TB(xi))

2 + (IA(xi)− IB(xi))
2 + (FA(xi)− FB(xi))

2
}

(5)

3. A TOPSIS Method for Single-Valued Neutrosophic Sets

In this section, we present the description of the problem that is being studied followed by our
proposed TOPSIS method for SVNSs. The accompanying decision-making algorithm which is based
on the proposed TOPSIS method is presented. This algorithm uses the maximizing deviation method
to systematically determine the objective weight coefficients for the attributes.

3.1. Description of Problem

Let U = {u1, u2, . . . , um} denote a finite set of m alternatives, A = {e1, e2, . . . , en} be a set of n
parameters, with the weight parameter wj of each ej completely unknown or only partially known,

wj ∈ [0, 1], and
n
∑

j=1
wj = 1.

Let A be an SVNS in which xij =
(
Tij, Iij, Fij

)
represents the SVNN that represents the information

pertaining to the ith alternative xi that satisfies the corresponding jth parameter ej. The tabular
representation of A is as given in Table 1.

Table 1. Tabular representation of the Single Valued Neutrosophic Set (SVNS) A.

U e1 e2 . . . en

x1 (T11, I11, F11) (T12, I12, F12) . . . (T1n, I1n, F1n)
x2 (T21, I21, F21) (T22, I22, F22) . . . (T2n, I2n, F2n)
...

...
...

. . .
...

xm. (Tm1, Im1, Fm1) (Tm2, Im2, Fm2) . . . (Tmn, Imn, Fmn)

3.2. The Maximizing Deviation Method for Computing Incomplete or Completely Unknown Attribute Weights

The maximizing deviation method was proposed by Wang [29] with the aim of applying it in
MADM problems in which the weights of the attributes are completely unknown or only partially
known. This method uses the law of input arguments i.e., it takes into account the magnitude of
the membership functions of each alternative for each attribute, and uses this information to obtain
exact and reliable evaluation results pertaining to the weight coefficients for each attribute. As such,
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this method is able to compute the weight coefficients of the attributes without any subjectivity, in a
fair and objective manner.

The maximizing deviation method used in this paper is a modification of the original version
introduced in Wang [29] that has been made compatible with the structure of the SVNS model.
The definitions of the important concepts involved in this method are as given below.

Definition 7. For the parameter ej ∈ A, the deviation of the alternative xi to all the other alternatives is
defined as:

Dij
(
wj
)
=

m

∑
k=1

wj d
(

xij, xkj

)
, (6)

where xij, xkj are the elements of the SVNS A, i = 1, 2, . . . , m, j = 1, 2, . . . , n and d
(

xij, xkj

)
denotes the

distance between elements xij and xkj.

The other deviation values include the deviation value of all alternatives to other alternatives,
and the total deviation value of all parameters to all alternatives, both of which are as defined below:

(i) The deviation value of all alternatives to other alternatives for the parameter ej ∈ A, denoted by
Dj
(
wj
)
, is defined as:

Dj
(
wj
)
=

m

∑
i=1

Dij
(
wj
)
=

m

∑
i=1

m

∑
k=1

wj d
(

xij, xkj

)
, (7)

where j = 1, 2, . . . , n.
(ii) The total deviation value of all parameters to all alternatives, denoted by D

(
wj
)
, is defined as:

(
wj
)
=

n

∑
j=1

Dj
(
wj
)
=

n

∑
j=1

m

∑
i=1

m

∑
k=1

wj d
(

xij, xkj

)
, (8)

where wj represents the weight of the parameter ej ∈ A.

(iii) The individual objective weight of each parameter ej ∈ A, denoted by θj, is defined as:

θj =
∑m

i=1 ∑m
k=1 d

(
xij, xkj

)
∑n

j=1 ∑m
i=1 ∑m

k=1 d
(

xij, xkj

) (9)

It should be noted that any valid distance measure between SVNSs can be used in Equations (6)–(9).
However, to improve the effective resolution of the decision-making process, in this paper, we use the
normalized Euclidean distance measure given in Equation (5) in the computation of Equations (6)–(9).

3.3. TOPSIS Method for MADM Problems with Incomplete Weight Information

The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) was originally
introduced by Hwang and Yoon [30], and has since been extended to fuzzy sets, IFSs, and other
fuzzy-based models. The TOPSIS method works by ranking the alternatives based on their distance
from the positive ideal solution and the negative ideal solution. The basic guiding principle is that
the most preferred alternative should have the shortest distance from the positive ideal solution and
the farthest distance from the negative ideal solution (Hwang and Yoon [30], Chen and Tzeng [31]).
In this section, we present a decision-making algorithm for solving MADM problems in single-valued
neutrosophic environments, with incomplete or completely unknown weight information.
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3.3.1. The Proposed TOPSIS Method for SVNSs

After obtaining information pertaining to the weight values for each parameter based on the
maximizing deviation method, we develop a modified TOPSIS method for the SVNS model. To achieve
our goal, we introduce several definitions that are the important components of our proposed
TOPSIS method.

Let the relative neutrosophic positive ideal solution (RNPIS) and relative neutrosophic negative
ideal solution (RNNIS) be denoted by b+ and b−, respectively, where these solutions are as
defined below:

b+ =

{(
max

i
Tij, min

i
Iij, min

i
Fij

)∣∣∣∣ j = 1, 2, . . . , n
}

, (10)

and

b− =

{(
min

i
Tij, max

i
Iij, max

i
Fij

)∣∣∣∣ j = 1, 2, . . . , n
}

(11)

The difference between each object and the RNPIS, denoted by D+
i , and the difference between

each object and the RNNIS, denoted by D−i , can then be calculated using the normalized Euclidean
distance given in Equation (5) and by the formula given in Equations (12) and (13).

D+
i =

n

∑
j=1

wj dNE

(
bij, b+j

)
, i = 1, 2, . . . , m (12)

and

D−i =
n

∑
j=1

wj dNE

(
bij, b−j

)
, i = 1, 2, . . . , m (13)

Here, wj denotes the integrated weight for each of the attributes.
The optimal alternative can then be found using the measure of the relative closeness coefficient

of each alternative, denoted by Ci, which is as defined below:

Ci =
D−i

max
j

D−j
−

D+
i

min
j

D+
j

, i, j = 1, 2, . . . , m (14)

From the structure of the closeness coefficient in Equation (14), it is obvious that the larger
the difference between an alternative and the fuzzy negative ideal object, the larger the value of
the closeness coefficient of the said alternative. Therefore, by the principal of maximum similarity
between an alternative and the fuzzy positive ideal object, the objective of the algorithm is to determine
the alternative with the maximum closeness coefficient. This alternative would then be chosen as
the optimal alternative.

3.3.2. Attribute Weight Determination Method: An Integrated WEIGHT MEASure

In any decision-making process, there are two main types of weight coefficients, namely the
subjective and objective weights that need to be taken into consideration. Subjective weight refers to
the values assigned to each attribute by the decision makers based on their individual preferences
and experience, and is very much dependent on the risk attitude of the decision makers. Objective
weight refers to the weights of the attributes that are computed mathematically using any appropriate
computation method. Objective weighting methods uses the law of input arguments (i.e., the input
values of the data) as it determines the attribute weights based on the magnitude of the membership
functions that are assigned to each alternative for each attribute.

Therefore, using only subjective weighting in the decision-making process would be inaccurate as
it only reflects the opinions of the decision makers while ignoring the importance of each attribute that
are reflected by the input values. Using only objective weighting would also be inaccurate as it only
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reflects the relative importance of the attributes based on the law of input arguments, but fails to take
into consideration the preferences and risk attitude of the decision makers.

To overcome this drawback and improve the accuracy and reliability of the decision-making
process, we use an integrated weight measure which combines the subjective and objective weights
of the attributes. This factor makes our decision-making algorithm more accurate compared to most
of the other existing methods in literature that only take into consideration either the objective or
subjective weights.

Based on the formula and weighting method given above, we develop a practical and effective
decision-making algorithm based on the TOPSIS approach for the SVNS model with incomplete weight
information. The proposed Algorithm 1 is as given below.

Algorithm 1. (based on a modified TOPSIS approach).

Step 1. Input the SVNS A which represents the information pertaining to the problem.
Step 2. Input the subjective weight hj for each of the attributes ej ∈ A as given by the decision makers.
Step 3. Compute the objective weight θj for each of the attributes ej ∈ A, using Equation (9).
Step 4. The integrated weight coefficient wj for each of the attributes ej ∈ A, is computed using Equation
as follow:

wj =
hj θj

∑n
j=1 hj θj

Step 5. The values of RNPIS b+ and RNNIS b− are computed using Equations (10) and (11).
Step 6. The difference between each alternative and the RNPIS, D+ and the RNNIS D− are computed using
Equations (12) and (13), respectively.
Step 7. The relative closeness coefficient Ci for each alternative is calculated using Equation (14).
Step 8. Choose the optimal alternative based on the principal of maximum closeness coefficient.

4. Application of the Topsis Method in a Made Problem

The implementation process and utility of our proposed decision-making algorithm is illustrated
via an example related to a supplier selection problem.

4.1. Illustrative Example

In today’s extremely competitive business environment, firms must be able to produce good
quality products at reasonable prices in order to be successful. Since the quality of the products is
directly dependent on the effectiveness and performance of its suppliers, the importance of supplier
selection has become increasingly recognized. In recent years, this problem has been handled using
various mathematical tools. Some of the recent research in this area can be found in [32–38].

Example 1. A manufacturing company is looking to select a supplier for one of the products manufactured by
the company. The company has shortlisted ten suppliers from an initial list of suppliers. These ten suppliers
form the set of alternatives U that are under consideration,

U = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}.

The procurement manager and his team of buyers evaluate the suppliers based on a set of
evaluation attributes E which is defined as:

E = {e1 = service quality, e2 = pricing and cos t structure, e3 = financial stability,
e4 = environmental regulation compliance, e5 = reliability,

e6 = relevant experience}.

The firm then evaluates each of the alternatives xi (i = 1, 2, . . . , 10), with respect to the attributes
ej (j = 1, 2, . . . , 6). The evaluation done by the procurement team is expressed in the form of SVNNs
in a SVNS A.
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Now suppose that the company would like to select one of the five shortlisted suppliers to be
their supplier. We apply the proposed Algorithm 1 outlined in Section 3.3 to this problem with the aim
of selecting a supplier that best satisfies the specific needs and requirements of the company. The steps
involved in the implementation process of this algorithm are outlined below (Algorithm 2).

Algorithm 2. (based on the modified TOPSIS approach).

Step 1. The SVNS A constructed for this problem is given in tabular form in Table 2
Step 2. The subjective weight hj for each attribute ej ∈ A as given by the procurement team (the decision
makers) are h = {h1 = 0.15, h2 = 0.15, h3 = 0.22, h4 = 0.25, h5 = 0.14, h6 = 0.09}.
Step 3. The objective weight θj for each attribute ej ∈ A is computed using Equation (9) are as given below:
θ = {θ1 = 0.139072, θ2 = 0.170256, θ3 = 0.198570, θ4 = 0.169934 , θ5 = 0.142685,

θ6 = 0.179484}.
Step 4. The integrated weight wj for each attribute ej ∈ A is computed using Equation (15). The integrated
weight coefficent obtained for each attribute is:
w = {w1 = 0.123658, w2 = 0.151386, w3 = 0.258957, w4 = 0.251833, w5 = 0.118412,

w6 = 0.0957547}.
Step 5. Use Equations (10) and (11) to compute the values of b+ and b− from the neutrosophic numbers given
in Table 2. The values are as given below:
b+ =

{
b+1 = [0.7, 0.2, 0.1], b+2 = [0.9, 0, 0.1], b+3 = [0.8, 0, 0], b+4 = [0.9, 0.3, 0],

b+5 = [0.7, 0.2, 0.2], b+6 = [0.8, 0.2 0.1
}

and
b− =

{
b−1 = [0.5, 0.8, 0.5], b−2 = [0.6, 0.8, 0.5], b−3 = [0.1, 0.7, 0.5], b−4 = [0.3, 0.8, 0.7],

b−5 = [0.5, 0.8, 0.7], b−6 = [0.5, 0.8, 0.9]
}

.
Step 6. Use Equations (12) and (13) to compute the difference between each alternative and the RNPIS and the
RNNIS, respectively. The values of D+ and D− are as given below:
D+ =

{
D+

1 = 0.262072, D+
2 = 0.306496, D+

3 = 0.340921, D+
4 = 0.276215, D+

5 = 0.292443,
D+

6 = 0.345226, D+
7 = 0.303001, D+

8 = 0.346428, D+
9 = 0.271012, D+

10 = 0.339093
}

.
and
D− =

{
D−1 = 0.374468, D−2 = 0.307641, D−3 = 0.294889, D−4 = 0.355857, D−5 = 0.323740

D−6 = 0.348903, D−7 = 0.360103, D−8 = 0.338725, D−9 = 0.379516, D−10 = 0.349703
}

.
Step 7. Using Equation (14), the closeness coefficient Ci for each alternative is:
C1 = −0.0133, C2 = −0.3589, C3 = −0.5239, C4 = −0.1163, C5 = −0.2629,
C6 = −0.3980, C7 = −0.2073, C8 = −0.4294, C9 = −0.0341, C10 = −0.3725.
Step 8. The ranking of the alternatives obtained from the closeness coefficient is as given below:

x1 > x9 > x4 > x7 > x5 > x2 > x10 > x6 > x8 > x3.

Therefore the optimal decision is to select supplier x1.

Table 2. Tabular representation of SVNS A.

U e1 e2 e3

x1 (0.7, 0.5, 0.1) (0.7, 0.5, 0.3) (0.8, 0.6, 0.2)
x2 (0.6, 0.5, 0.2) (0.7, 0.5, 0.1) (0.6, 0.3, 0.5)
x3 (0.6, 0.2, 0.3) (0.6, 0.6, 0.4) (0.7, 0.7, 0.2)
x4 (0.5, 0.5, 0.4) (0.6, 0.4, 0.4) (0.7, 0.7, 0.3)
x5 (0.7, 0.5, 0.5) (0.8, 0.3, 0.1) (0.7, 0.6, 0.2)

U e1 e2 e3

x6 (0.5, 0.5, 0.5) (0.7, 0.8, 0.1) (0.7, 0.3, 0.5)
x7 (0.6, 0.8, 0.1) (0.7, 0.2, 0.1) (0.6, 0.3, 0.4)
x8 (0.7, 0.8, 0.3) (0.6, 0.6, 0.5) (0.8, 0, 0.5)
x9 (0.6, 0.7, 0.1) (0.7, 0, 0.1) (0.6, 0.7, 0)
x10 (0.5, 0.7, 0.4) (0.9, 0, 0.3) (1, 0, 0)
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Table 2. Cont.

U e4 e5 e6

x1 (0.9, 0.4, 0.2) (0.6, 0.4, 0.7) (0.6, 0.5, 0.4)
x2 (0.6, 0.4, 0.3) (0.7, 0.5, 0.4) (0.7, 0.8, 0.9)
x3 (0.5, 0.5, 0.3) (0.6, 0.8, 0.6) (0.7, 0.2, 0.5)
x4 (0.9, 0.4, 0.2) (0.7, 0.3, 0.5) (0.6, 0.4, 0.4)
x5 (0.7, 0.5, 0.2) (0.7, 0.5, 0.6) (0.6, 0.7, 0.8)

U e4 e5 e6

x6 (0.4, 0.8, 0) (0.7, 0.4, 0.2) (0.5, 0.6, 0.3)
x7 (0.3, 0.5, 0.1) (0.6, 0.3, 0.6) (0.5, 0.2, 0.6)
x8 (0.7, 0.3, 0.6) (0.6, 0.8, 0.5) (0.6, 0.2, 0.4)
x9 (0.7, 0.4, 0.3) (0.6, 0.6, 0.7) (0.7, 0.3, 0.2)
x10 (0.5, 0.6, 0.7) (0.5, 0.2, 0.7) (0.8, 0.4, 0.1)

4.2. Adaptation of the Algorithm to Non-Integrated Weight Measure

In this section, we present an adaptation of our algorithm introduced in Section 4.1 to cases
where only the objective weights or subjective weights of the attributes are taken into consideration.
The results obtained via these two new variants are then compared to the results obtained via the
original algorithm in Section 4.1. Further, we also compare the results obtained via these two new
variants of the algorithm to the results obtained via the other methods in literature that are compared
in Section 5.

To adapt our proposed algorithm in Section 3 for these special cases, we hereby represent
the objective-only and subjective-only adaptations of the algorithm. This is done by taking only
the objective (subjective) weight is to be used, then simply take wj = θj (wj = hj). The two adaptations
of the algorithm are once again applied to the dataset for SVNS A given in Table 2.

4.2.1. Objective-Only Adaptation of Our Algorithm

All the steps remain the same as the original algorithm; however, only the objective weights of the
attributes are used, i.e., we take wj = θj.

The results of applying this variant of the algorithm produces the ranking given below:

x9 > x1 > x4 > x10 > x7 > x6 > x5 > x8 > x3 > x2.

Therefore, if only the objective weight is to be considered, then the optimal decision is to select
supplier x9.

4.2.2. Subjective-Only Adaptation of Our Algorithm

All the steps remain the same as the original algorithm; however, only the subjective weights
of the attributes are used, i.e., we take wj = hj.

The results of applying this variant of the algorithm produces the ranking given below:

x1 > x9 > x4 > x7 > x5 > x2 > x6 > x10 > x8 > x3

Therefore, if only the objective weight is to be considered, then the optimal decision is to select
supplier x1.

From the results obtained above, it can be observed that the ranking of the alternatives are clearly
affected by the decision of the decision maker to use only the objective weights, only the subjective
weights of the attributes, or an integrated weight measure that takes into consideration both the
objective and subjective weights of the attributes.
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5. Comparatives Studies

In this section, we present a brief comparative analysis of some of the recent works in this area
and our proposed method. These recent approaches are applied to our Example 1, and the limitations
that exist in these methods are elaborated, and the advantages of our proposed method are discussed
and analyzed. The results obtained are summarized in Table 3.

5.1. Comparison of Results Obtained Through Different Methods

Table 3. The results obtained using different methods for Example 1.

Method The Final Ranking The Best Alternative

Ye [39]
(i) WAAO *

(ii) WGAO **

x1 > x4 > x9 > x5 > x7 > x2 > x10 > x8 > x3 > x6
x10 > x9 > x8 > x1 > x5 > x7 > x4 > x2 > x6 > x3

x1
x10

Ye [10]
(i) Weighted correlation coefficient

(ii) Weighted cosine similarity measure

x1 > x4 > x5 > x9 > x2 > x8 > x7 > x3 > x6 > x10
x1 > x9 > x4 > x5 > x2 > x10 > x8 > x3 > x7 > x6

x1
x1

Ye [11] x1 > x9 > x4 > x7 > x5 > x2 > x8 > x6 > x3 > x10 x1

Huang [14] x1 > x9 > x4 > x5 > x2 > x7 > x8 > x6 > x3 > x10 x1

Peng et al. [40]
(i) GSNNWA ***

(ii) GSNNWG ****

x9 > x10 > x8 > x6 > x1 > x7 > x4 > x5 > x2 > x3
x1 > x9 > x4 > x5 > x7 > x2 > x8 > x3 > x6 > x10

x9
x1

Peng & Liu [15]
(i) EDAS

(ii) Similarity measure

x1 > x4 > x6 > x9 > x10 > x3 > x2 > x7 > x5 > x8
x10 > x8 > x7 > x4 > x1 > x2 > x5 > x9 > x3 > x6

x1
x10

Maji [41] x5 > x1 > x9 > x6 > x2 > x4 > x3 > x8 > x7 > x10 x5

Karaaslan [42] x1 > x9 > x4 > x5 > x7 > x2 > x8 > x3 > x6 > x10 x1

Ye [43] x1 > x9 > x4 > x5 > x7 > x2 > x8 > x3 > x6 > x10 x1

Biswas et al. [44] x10 > x9 > x7 > x1 > x4 > x6 > x5 > x8 > x2 > x3 x10

Ye [45] x9 > x7 > x1 > x4 > x2 > x10 > x5 > x8 > x3 > x6 x9

Adaptation of our algorithm (objective
weights only) x9 > x1 > x4 > x10 > x7 > x6 > x5 > x8 > x3 > x2 x9

Adaptation of our algorithm (subjective
weights only) x1 > x9 > x4 > x7 > x5 > x2 > x6 > x10 > x8 > x3 x1

Our proposed method (using integrated
weight measure) x1 > x9 > x4 > x7 > x5 > x2 > x10 > x6 > x8 > x3 x1

* WAAO = weighted arithmetic average operator; ** WGAO = weighted geometric average operator; *** GSNNWA =
generalized simplified neutrosophic number weighted averaging operator; **** GSNNWG = generalized simplified
neutrosophic number weighted geometric operator.

5.2. Discussion of Results

From the results obtained in Table 3, it can be observed that different rankings and optimal
alternatives were obtained from the different methods that were compared. This difference is due to a
number of reasons. These are summarized briefly below:

(i) The method proposed in this paper uses an integrated weight measure which considers both the
subjective and objective weights of the attributes, as opposed to some of the methods that only
consider the subjective weights or objective weights.

(ii) Different operators emphasizes different aspects of the information which ultimately leads
to different rankings. For example, in [40], the GSNNWA operator used is based on an
arithmetic average which emphasizes the characteristics of the group (i.e., the whole information),
whereas the GSNNWG operator is based on a geometric operator which emphasizes the
characteristics of each individual alternative and attribute. As our method places more importance
on the characteristics of the individual alternatives and attributes, instead of the entire information
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as a whole, our method produces the same ranking as the GSNNWG operator but different results
from the GSNNWA operator.

5.3. Analysis of the Performance and Reliability of Different Methods

The performance of these methods and the reliability of the results obtained via these methods
are further investigated in this section.

Analysis

In all of the 11 papers that were compared in this section, the different authors used different
types of measurements and parameters to determine the performance of their respective algorithms.
However, all of these inputs always contain a tensor with at least three degrees. This tensor can refer to
different types of neutrosophic sets depending on the context discussed in the respective papers, e.g.,
simplified neutrosophic sets, single-valued neutrosophic sets, neutrosophic sets, or INSs. For the sake
of simplicity, we shall denote them simply as S.

Furthermore, all of these methods consider a weighted approach i.e., the weight of each attribute
is taken into account in the decision-making process. The decision-making algorithms proposed
in [10,11,14,39,40,43,45] use the subjective weighting method, the algorithms proposed in [42,44] use
the objective weighting method, whereas only the decision-making methods proposed in [15] use
an integrated weighting method which considers both the subjective and objective weights of the
attributes. The method proposed by Maji [41] did not take the attribute weights into consideration in
the decision-making process.

In this section, we first apply the inputs of those papers into our own algorithm. We then compare
the results obtained via our proposed algorithm with their results, with the aim of justifying the
effectiveness of our algorithm. The different methods and their algorithms are analyzed below:

(i) The algorithms in [10,11,39] all use the data given below as inputs

S =


[0.4, 0.2, 0.3], [0.4, 0.2, 0.3], [0.2, 0.2, 05]
[0.6, 0.1, 0.2], [0.6, 0.1, 0.2], [0.5, 0.2, 0.2]
[0.3, 0.2, 0.3], [0.5, 0.2, 0.3], [0.5, 0.3, 0.2]
[0.7, 0.0, 0.1], [0.6, 0.1, 0.2], [0.4, 0.3, 0.2]


The subjective weights wj of the attributes are given by w1 = 0.35, w2 = 0.25, w3 = 0.40. All the
five algorithms from papers [10,11,39] yields either one of the following rankings:

A4 > A2 > A3 > A1 or A2 > A4 > A3 > A1

Our algorithm yields the ranking A4 > A2 > A3 > A1 which is consistent with the results
obtained through the methods given above.

(ii) The method proposed in [44] also uses the data given in S above as inputs but ignores the opinions
of the decision makers as it does not take into account the subjective weights of the attributes.
The algorithm from this paper yields the ranking of A4 > A2 > A3 > A1. To fit this data into our
algorithm, we randomly assigned the subjective weights of the attributes as wj =

1
3 for j = 1, 2, 3.

A ranking of A4 > A2 > A3 > A1 was nonetheless obtained from our algorithm.
(iii) The methods introduced in [14,43,45] all use the data given below as input values:

S =


[0.5, 0.1, 0.3], [0.5, 0.1, 0.4], [0.7, 0.1, 02], [0.3, 0.2, 0.1]
[0.4, 0.2, 0.3], [0.3, 0.2, 0.4], [0.9, 0.0, 0.1], [0.5, 0.3, 0.2]
[0.4, 0.3, 0.1], [0.5, 0.1, 0.3], [0.5, 0.0, 0.4], [0.6, 0.2, 0.2]
[0.6, 0.1, 0.2], [0.2, 0.2, 0.5], [0.4, 0.3, 0.2], [0.7, 0.2, 0.1]
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The subjective weights wj of the attributes are given by w1 = 0.30, w2 = 0.25, w3 = 0.25 and
w4 = 0.20.

In this case, all of the three algorithms produces a ranking of A1 > A3 > A2 > A4.
This result is however not very reliable as all of these methods only considered the subjective

weights of the attributes and ignored the objective weight which is a vital measurement of the
relative importance of an attribute ej relative to the other attributes in an objective manner i.e.,
without “prejudice”.

When we calculated the objective weights using our own algorithm we have the following
objective weights:

aj = [0.203909, 0.213627, 0.357796, 0.224667]

In fact, it is indeed <0.9, 0.0, 0.1> that mainly contributes to the largeness of the objective weight
of attribute e3 compared to the other values of ej. Hence, when we calculate the integrated weight,
the weight of attribute e3 is still the largest.

Since [0.9, 0.0, 0.1] is in the second row, our algorithm yields a ranking of A2 > A1 > A3 > A4

as a result.
We therefore conclude that our algorithm is more effective and the results obtained via our

algorithm is more reliable than the ones obtained in [14,43,45], as we consider both the objective and
subjective weights.

(iv) It can be observed that for the methods introduced in [10,11,39,44], we have 0.8 ≤ Tij + Iij + Fij ≤ 1
for all the entries. A similar trend can be observed in [14,43,45], where 0.6 ≤ Tij + Iij + Fij ≤ 1
for all the entries. Therefore, we are not certain about the results obtained through the decision
making algorithms in these papers when the value of Tij + Iij + Fij deviates very far from 1.

Another aspect to be considered is the weighting method that is used in the decision making
process. As mentioned above, most of the current decision making methods involving SVNSs use
subjective weighting, a few use objective weighting and only two methods introduced in [15] uses an
integrated weighting method to arrive at the final decision. In view of this, we proceeded to investigate
if all of the algorithms that were compared in this section are able to produce reliable results when
both the subjective and objective weights are taken into consideration. Specifically, we investigate
if these algorithms are able to perform effectively in situations where the subjective weights clearly
prioritize over the objective weights, and vice-versa. To achieve this, we tested all of the algorithms
with three sets of inputs as given below:

Test 1: A scenario containing a very small value of Tij + Iij + Fij.

S1 =


A1 = ([0.5, 0.5, 0.5], [0.9999, 0.0001, 0.000])

A2 = ([0.5, 0.5, 0.5], [0.9999, 0.0001, 0.0001])
A3 = ([0.5, 0.5, 0.5], [0.9999, 0.0000, 0.0001])
A4 = ([0.5, 0.5, 0.5], [0.0001, 0.0000, 0.000])


The subjective weight in this case is assigned as: aj = [0.5, 0.5].
By observation alone, it is possible to tell that an effective algorithm should produce A4 as the

least favoured alternative, and A2 should be second least-favoured alternative.
Test 2: A scenario where subjective weights prioritize over objective weight.

S2 =

{
A1 = ([0.80, 0.10, 0.10], [0.19, 0.50, 0.50])
A2 = ([0.20, 0.50, 0.50], [0.81, 0.10, 0.10])

}

The subjective weight in this case is assigned as: aj = [0.99, 0.01].
By observation alone, we can tell that an effective algorithm should produce a ranking of A1 > A2.
Test 3: This test is based on a real-life situation.
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Suppose a procurement committee is looking to select the best supplier to supply two raw
materials e1 and e2. In this context, the triplet [T, I, F] represents the following:

T : the track record of the suppliers that is approved by the committee
I : the track record of the suppliers that the committee feels is questionable
F : the track record of the suppliers that is rejected by the committee

Based on their experience, the committee is of the opinion that raw material e1 is slightly more
important than raw material e2, and assigned subjective weights of wsub

1 = 0.5001 and wsub
2 = 0.4999.

After an intensive search around the country, the committee shortlisted 20 candidates (A1 to
A20). After checking all of the candidates’ track records and analyzing their past performances, the
committee assigned the following values for each of the suppliers.

S3 =



A1 = ([0.90, 0.00, 0.10], [0.80, 0.00, 0.10]), A2 = ([0.80, 0.00, 0.10], [0.90, 0.00, 0.10])
A3 = ([0.50, 0.50, 0.50], [0.00, 0.90, 0.90]), A4 = ([0.50, 0.50, 0.50], [0.10, 0.90, 0.80])
A5 = ([0.50, 0.50, 0.50], [0.20, 0.90, 0.70]), A6 = ([0.50, 0.50, 0.50], [0.30, 0.90, 0.60])
A7 = ([0.50, 0.50, 0.50], [0.40, 0.90, 0.50]), A8 = ([0.50, 0.50, 0.50], [0.50, 0.90, 0.40])
A9 = ([0.50, 0.50, 0.50], [0.60, 0.90, 0.30]), A10 = ([0.50, 0.50, 0.50], [0.70, 0.30, 0.90])

A11 = ([0.50, 0.50, 0.50], [0.70, 0.90, 0.30]), A12 = ([0.50, 0.50, 0.50], [0.00, 0.30, 0.30])
A13 = ([0.50, 0.50, 0.50], [0.70, 0.90, 0.90]), A14 = ([0.50, 0.50, 0.50], [0.70, 0.30, 0.30])
A15 = ([0.50, 0.50, 0.50], [0.60, 0.40, 0.30]), A16 = ([0.50, 0.50, 0.50], [0.50, 0.50, 0.30])
A17 = ([0.50, 0.50, 0.50], [0.40, 0.60, 0.30]), A18 = ([0.50, 0.50, 0.50], [0.30, 0.70, 0.30])
A19 = ([0.50, 0.50, 0.50], [0.20, 0.80, 0.30]), A20 = ([0.50, 0.50, 0.50], [0.10, 0.90, 0.30])


The objective weights for this scenario was calculated based on our algorithm and the values are

wobj
1 = 0.1793 and wobj

2 = 0.8207.
Now it can be observed that suppliers A1 and A2 are the ones that received the best evaluation

scores from the committee. Supplier A1 received better evaluation scores from the committee compared
to supplier A2 for attribute e1. Attribute e1 was deemed to be more important than attribute e2 by
the committee, and hence had a higher subjective weight. However, the objective weight of attribute
e2 is much higher than e1. This resulted in supplier A2 ultimately being chosen as the best supplier.
This is an example of a scenario where the objective weights are prioritized over the subjective weights,
and has a greater influence on the decision-making process.

Therefore, in the scenario described above, an effective algorithm should select A2 as the optimal
supplier, followed by A1. All of the remaining choices have values of T < 0.8, I > 0.0 and F > 0.1.
As such, an effective algorithm should rank all of these remaining 18 choices behind A1.

We applied the three tests mentioned above and the data set for S3 given above to the
decision-making methods introduced in the 11 papers that were compared in the previous section.
The results obtained are given in Table 4.

Thus it can be concluded that our proposed algorithm is the most effective algorithm and the
one that yields the most reliable results in all the different types of scenario. Hence, our proposed
algorithm provides a robust framework that can be used to handle any type of situation and data, and
produce accurate and reliable results for any type of situation and data.

Finally, we look at the context of the scenario described in Example 1. The structure of our data
(given in Table 2) is more generalized, by theory, having 0 ≤ Tij + Iij + Fij ≤ 1 and 0 ≤ Tij + Iij + Fij ≤ 3,
and is similar to the structure of the data used in [15,40–42]. Hence, our choice of input data serves as
a more faithful indicator of how each algorithm works under all sorts of possible conditions.
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Table 4. Compliance to Tests 1, 2, and 3.

Paper Test 1
Compliance

Test 2
Compliance

Test 3
Compliance

Ye [39]
WAAO * Y Y N
WGAO * N Y N

Ye [10]
Weighted correlation coefficient Y Y N
Weighted cosine similarity measure N Y N

Ye [11] Y Y N
Huang [14] Y Y N

Peng et al. [40] GSNNWA ** Y Y N
GSNNWG ** Y Y N

Peng & Liu [15] EDAS Y Y N
Similarity measure N Y Y

Maji [41] N N N
Karaaslan [42] Y Y N
Ye [43] Y Y N
Biswas et al. [44] Y N Y
Ye [45] Y Y N
Adaptation of our proposed algorithm (objective weights only) Y N Y
Adaptation of our proposed algorithm (subjective weights only) Y Y N
Our proposed algorithm Y Y Y

Remarks: Y = Yes (which indicates compliance to Test); N = No (which indicates non-compliance to Test); * WAAO =
weighted arithmetic average operator; * WGAO = weighted geometric average operator; ** GSNNWA = generalized
simplified neutrosophic number weighted averaging operator; ** GSNNWG = generalized simplified neutrosophic
number weighted geometric operator.

6. Conclusions

The concluding remarks and the significant contributions that were made in this paper are
expounded below.

(i) A novel TOPSIS method for the SVNS model is introduced, with the maximizing deviation
method used to determine the objective weight of the attributes. Through thorough analysis,
we have proven that our algorithm is compliant with all of the three tests that were discussed in
Section 5.3. This clearly indicates that our proposed decision-making algorithm is not only an
effective algorithm but one that produces the most reliable and accurate results in all the different
types of situation and data inputs.

(ii) Unlike other methods in the existing literature which reduces the elements from single-valued
neutrosophic numbers (SVNNs) to fuzzy numbers, or interval neutrosophic numbers (INNs)
to neutrosophic numbers or fuzzy numbers, in our version of the TOPSIS method the input
data is in the form of SVNNs and this form is maintained throughout the decision-making
process. This prevents information loss and enables the original information to be retained,
thereby ensuring a higher level of accuracy for the results that are obtained.

(iii) The objective weighting method (e.g., the ones used in [10,11,14,39,40,43,45]) only takes into
consideration the values of the membership functions while ignoring the preferences of the
decision makers. Through the subjective weighting method (e.g., the ones used in [42,44]),
the attribute weights are given by the decision makers based on their individual preferences and
experiences. Very few approaches in the existing literature (e.g., [15]) consider both the objective
and subjective weighting methods. Our proposed method uses an integrated weighting model
that considers both the objective and subjective weights of the attributes, and this accurately
reflects the input values of the alternatives as well as the preferences and risk attitude of the
decision makers.
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Abstract: It is an interesting direction to study rough sets from a multi-granularity perspective.
In rough set theory, the multi-particle structure was represented by a binary relation. This paper
considers a new neutrosophic rough set model, multi-granulation neutrosophic rough set
(MGNRS). First, the concept of MGNRS on a single domain and dual domains was proposed.
Then, their properties and operators were considered. We obtained that MGNRS on dual domains
will degenerate into MGNRS on a single domain when the two domains are the same. Finally, a kind
of special multi-criteria group decision making (MCGDM) problem was solved based on MGNRS on
dual domains, and an example was given to show its feasibility.

Keywords: neutrosophic rough set; MGNRS; dual domains; inclusion relation; decision-making

1. Introduction

As we all know, Pawlak first proposed a rough set in 1982, which was a useful tool of granular
computing. The relation is an equivalent in Pawlak’s rough set. After that, many researchers proposed
other types of rough set theory (see the work by the following authors [1–8]).

In 1965, Zadeh presented a new concept of the fuzzy set. After that, a lot of scholars studied it
and made extensions. For example, Atanassov introduced an intuitionistic fuzzy set, which gives two
degrees of membership of an element; it is a generalization of the fuzzy set. Smarandache introduced
a neutrosophic set in 1998 [9,10], which was an extension of the intuitionistic fuzzy set. It gives three
degrees of membership of an element (T.I.F). Smarandache and Wang [11] proposed the definition of
a single valued neutrosophic set and studied its operators. Ye [12] proposed the definition of simplified
neutrosophic sets and studied their operators. Zhang et al. [13] introduced a new inclusion relation
of the neutrosophic set and told us when it was used by an example, and its lattice structure was
studied. Garg and Nancy proposed neutrosophic operators and applied them to decision-making
problems [14–16]. Now, some researchers have combined the fuzzy set and rough set and have
achieved many running results, such as the fuzzy rough set [17] and rough fuzzy set. Broumi and
Smarandache [18] proposed the definition of a rough neutrosophic set and studied their operators and
properties. In 2016, Yang et al. [19] proposed the definition of single valued neutrosophic rough sets
and studied their operators and properties.

Under the perspective of granular computing [20], the concept of a rough set is shown by the
upper and lower approximations of granularity. In other words, the concept is represented by the
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known knowledge, which is defined by a single relationship. In fact, to meet the user’s needs or achieve
the goal of solving the problem, it is sometimes necessary to use multiple relational representation
concepts on the domain, such as illustrated by the authors of [21]. In a grain calculation, an equivalence
relation in the domain is a granularity, and a partition is considered as a granularity space [22].
The approximation that is defined by multiple equivalence relationships is a multi-granularity
approximation and multiple partitions are considered as multi-granularity spaces; the resulting
rough set is named a multi-granularity rough set, which has been proposed by Qian and Liang [23].
Recently, many scholars [24,25] have studied it and made extensions. Huang et al. [26] proposed the
notion of intuitionistic fuzzy multi-granulation rough sets and studied their operators. Zhang et al. [27]
introduced two new multi-granulation rough set models and investigated their operators. Yao et al. [28]
made a summary about the rough set models on the multi-granulation spaces.

Although there have been many studies regarding multi-granulation rough set theory, there have
been fewer studies about the multi-granulation rough set model on dual domains. Moreover,
a multi-granulation rough set on dual domains is more convenient, for example, medical diagnosis
in clinics [22,29]. The symptoms are the uncertainty index sets and the diseases are the decision
sets. They are associated with each other, but they belong to two different domains. Therefore,
it is necessary to use two different domains when solving the MCGDM problems. Sun et al. [29]
discussed the multi-granulation rough set models based on dual domains; their properties were
also obtained.

Although neutrosophic sets and multi-granulation rough sets are both useful tools to solve
uncertainty problems, there are few research regarding their combination. In this paper, we proposed
the definition of MGNRS as a rough set generated by multi-neutrosophic relations. It is useful to solve
a kind of special group decision-making problem. We studied their properties and operations and then
built a way to solve MCGDM problems based on the MGNRS theory on dual domains.

The structure of the article is as follows. In Section 2, some basic notions and operations are
introduced. In Section 3, the notion of MGNRS is proposed and their properties are studied. In Section 4,
the model of MGNRS on dual domains is proposed and their properties are obtained. Also, we obtained
that MGNRS on dual domains will degenerate into MGNRS on a single domain when the two domains
are same. In Section 5, an application of the MGNRS to solve a MCGDM problem was proposed.
Finally, Section 6 concludes this paper and provides an outlook.

2. Preliminary

In this section, we review several basic concepts and operations of the neutrosophic set and
multi-granulation rough set.

Definition 1 ([11]). A single valued neutrosophic set B is denoted by ∀ y ε Y, as follows:

B(y) = (TB(y), IB(y), FB(y))

TB(y), IB(y), FB(y) ε [0,1] and satisfies 0 ≤ TB(y) + IB(y) + FB(y) ≤ 3.

As a matter of convenience, ‘single valued neutrosophic set’ is abbreviated to ‘neutrosophic set’
later. In this paper, NS(Y) denotes the set of all single valued neutrosophic sets in Y, and NR(Y × Z)
denotes the set of all of the neutrosophic relations in Y × Z.

Definition 2 ([11]). If A and C are two neutrosophic sets, then the inclusion relation, union, intersection, and
complement operations are defined as follows:

(1) A ⊆ C iff ∀ y ε Y, TA(y) ≤ TC(y), IA(y) ≥ IC(y) and FA(y) ≥ FC(y)
(2) Ac = {(y, FA(y), 1 − IA(y), TA(y)) | y ε Y}
(3) A ∩ C = {(y, TA(y) ∧ TC(y), IA(y) ∨ IC(y), FA(y) ∨ FC(y)) | y ε Y}
(4) A ∪ C = {(y, TA(y) ∨ TC(y), IA(y) ∧ IC(y), FA(y) ∧ FC(y)) | y ε Y}
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Definition 3 ([19]). If (U, R) is a single valued neutrosophic approximation space. Then ∀ B ε SVNS(U),
the lower approximation N(B) and upper approximation N(B) of B are defined as follows:

TN(B)(y) = min
z∈U

[max(FR(y, z), TB(z))], IN(B)(y) = max
z∈U

[min((1− IR(y, z)), IB(z))],

FN(B)(y) = max
z∈U

[min(TR(y, z), FB(z))]

TN(B)(y) = max
z∈U

[min(TR(y, z), TB(z))], IN(B)(y) = min
z∈U

[max(IR(y, z), IB(z))],

FN(B)(y) = min
z∈U

[max(FR(y, z), FB(z))]

The pair
(

N(B), N(B)
)

is called the single valued neutrosophic rough set of B, with respect
to (U, R).

According to the operation of neutrosophic number in [16], the sum of two neutrosophic sets in U
is defined as follows.

Definition 4. If C and D are two neutrosophic sets in U, then the sum of C and D is defined as follows:

C + D = {<y, C(y) ⊕ D(y)> | y ε U}.

Definition 5 ([30]). If b = (Tb, Ib, Fb) is a neutrosophic number, n* = (Tb*, Ib*, Fb*) = (1, 0, 0) is an ideal
neutrosophic number. Then, the cosine similarity measure is defined as follows:

S(b, b∗) =
Tb · Tb∗ + Ib · Ib∗ + Fb · Fb∗√

Tb
2 + Ib

2 + Fb
2 ·
√
(Tb∗)

2 + (Ib∗)
2 + (Fb∗)

2

3. Multi-Granulation Neutrosophic Rough Sets

In this part, we propose the concept of MGNRS and study their characterizations. MGNRS is
a rough set generated by multi-neutrosophic relations, and when all neutrosophic relations are same,
MGNRS will degenerated to neutrosophic rough set.

Definition 6. Assume U is a non-empty finite domain, and Ri (1 ≤ i ≤ n) is the binary neutrosophic relation
on U. Then, (U, Ri) is called the multi-granulation neutrosophic approximation space (MGNAS).

Next, we present the multi-granulation rough approximation of a neutrosophic concept in an
approximation space.

Definition 7. Let the tuple ordered set (U, Ri) (1 ≤ i ≤ n) be a MGNAS. For any B ε NS (U), the three
memberships of the optimistic lower approximation Mo(B)and optimistic upper approximationMo

(B) in (U, Ri)
are defined, respectively, as follows:

TMo(B)(y) =
n

max
i=1

min
z∈U

(
max

(
FRi (y, z), TB(z)

))
IMo(B)(y) =

n
min
i=1

max
z∈U

(
min

((
1− IRi (y, z)

)
, IB(z)

))
,

FMo(B)(y) =
n

min
i=1

max
z∈U

(
min

(
TRi (y, z), FB(z)

))
, TMo

(B)(y) =
n

min
i=1

max
z∈U

(
min

(
TRi (y, z), TB(z)

))
,

IMo
(B)(y) =

n
max
i=1

min
z∈U

(
max

(
IRi (y, z), IB(z)

))
, FMo

(B)(y) =
n

max
i=1

min
z∈U

(
max

(
FRi (y, z), FB(z)

))
.

Then, Mo(B), Mo
(B) ε NS(U). In addition, B is called a definable neutrosophic set on (U, Ri) when

Mo(B) = Mo
(B). Otherwise, the pair

(
Mo(B), Mo

(B)
)

is called an optimistic MGNRS.
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Definition 8. Let the tuple ordered set (U, Ri) (1 ≤ i ≤ n) be a MGNAS. For any B ε NS(U), the three
memberships of pessimistic lower approximation Mp(B) and pessimistic upper approximation Mp

(B) in (U, Ri)
are defined, respectively, as follows:

TMp(B)(y) =
n

min
i=1

min
z∈U

(
max

(
FRi (y, z), TB(z)

))
, IMp(B)(y) =

n
max
i=1

max
z∈U

(
min

((
1− IRi (y, z)

)
, IB(z)

))
,

FMp(B)(y) =
n

max
i=1

max
z∈U

(
min

(
TRi (y, z), FB(z)

))
, TMp

(B)(y) =
n

max
i=1

max
z∈U

(
min

(
TRi (y, z), TB(z)

))
,

IMp
(B)(y) =

n
min
i=1

min
z∈U

(
max

(
IRi (y, z), IB(z)

))
, FMp

(B)(y) =
n

min
i=1

min
z∈U

(
max

(
FRi (y, z), FB(z)

))
.

Similarly, B is called a definable neutrosophic set on (U, Ri) when Mp(B) = Mp
(B). Otherwise, the pair(

Mp(B), Mp
(B)
)

is called a pessimistic MGNRS.

Example 1. Define MGNAS (U, Ri), where U = {z1, z2, z3} and Ri (1 ≤ i ≤ 3) are given in Tables 1–3

Table 1. Neutrosophic relation R1.

R1 z1 z2 z3

z1 (0.4, 0.5, 0.4) (0.5, 0.7, 0.1) (1, 0.8, 0.8)
z2 (0.5, 0.6, 1) (0.2, 0.6, 0.4) (0.9, 0.2, 0.4)
z3 (1, 0.2, 0) (0.8, 0.9, 1) (0.6, 1, 0)

Table 2. Neutrosophic relation R2.

R2 z1 z2 z3

z1 (0.9, 0.2, 0.4) (0.3, 0.9, 0.1) (0.1, 0.7, 0)
z2 (0.4, 0.5, 0.1) (0, 0.1, 0.7) (1, 0.8, 0.8)
z3 (1, 0.5, 0) (0.4, 0.4, 0.2) (0.1, 0.5, 0.4)

Table 3. Neutrosophic relation R3.

R3 z1 z2 z3

z1 (0.7, 0.7, 0) (0.4, 0.8, 0.9) (1, 0.4, 0.5)
z2 (0.8, 0.2, 0.1) (1, 0.1, 0.8) (0.1, 0.3, 0.5)
z3 (0, 0.8, 1) (1, 0, 1) (1, 1, 0)

Suppose a neutrosophic set on U is as follows: C(z1) = (0.2, 0.6, 0.4), C(z2) = (0.5, 0.4, 1),
C(z3) = (0.7, 0.1, 0.5); by Definitions 7 and 8, we can get the following:

Mo(C)(z1) = (0.4, 0.3, 0.4), Mo(C)(z2) = (0.5, 0.4, 0.5), Mo(C)(z3) = (0.7, 0.4, 0.4)
Mo

(C)(z1) = (0.3, 0.6, 0.4), Mo
(C)(z2) = (0.5, 0.4, 0.5), Mo

(C)(z3) = (0.4, 0.6, 0.5)
Mp(C)(z1) = (0.2, 0.6, 0.5), Mp(C)(z2) = (0.2, 0.6, 0.1), Mp(C)(z3) = (0.2, 0.6, 0.1)
Mp

(C)(z1) = (0.7, 0.4, 0.4), Mp
(C)(z2) = (0.7, 0.2, 0.4), Mp

(C)(z3) = (0.7, 0.4, 0.4)

Proposition 1. Assume (U, Ri) is MGNAS, Ri (1 ≤ i ≤ n) is the neutrosophic relations. ∀ C ε NS(U), Mo(C)
and Mo

(C) are the optimistic lower and upper approximation of C. Then,

Mo(C) =
n
∪

i=1
N(C)Mo

(C) =
n
∩

i=1
N(C)

where
N(C)(y) = ∩

z∈U
(Ri

c(y, z) ∪ C(z)),N(C)(y) = ∪
z∈U

(Ri(y, z) ∩ C(z))

Proof. They can be proved by Definitions 7.
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Proposition 2. Assume (U, Ri) be MGNAS, Ri (1 ≤ i ≤ n) be neutrosophic relations. ∀ C ε NS(U), Mp(C)
and Mp

(C) are the pessimistic lower and upper approximation of C. Then

Mp(C) =
n
∩

i=1
N(C)Mp

(C) =
n
∪

i=1
N(C)

where
N(C)(y) = ∩

z∈U
(Ri

c(y, z) ∪ C(z)), N(C)(y) = ∪
z∈U

(Ri(y, z) ∩ C(z))

Proof. Proposition 2 can be proven by Definition 8.

Proposition 3. Assume (U, Ri) is MGNAS, Ri (1 ≤ i ≤ n) is the neutrosophic relations. ∀ C, D ε NS(U),
we have the following:

(1) Mo(C) =∼ Mo
(∼ C), Mp(C) =∼ Mp

(∼ C);

(2) Mo
(C) =∼ Mo(∼ C), Mp

(C) =∼ Mp(∼ C);
(3) Mo(C ∩ D) = Mo(C) ∩Mo(D), Mp(C ∩ D) = Mp(C) ∩Mp(D);

(4) Mo
(C ∪ D) = Mo

(C) ∪Mo
(D), Mp

(C ∪ D) = Mp
(C) ∪Mp

(D);
(5) C ⊆ D ⇒ Mo(C) ⊆ Mo(D), Mp(C) ⊆ Mp(D) ;

(6) C ⊆ D ⇒ Mo
(C) ⊆ Mo

(D), Mp
(C) ⊆ Mp

(D) ;
(7) Mo(C ∪ D) ⊇ Mo(C) ∪Mo(D), Mp(C ∪ D) ⊇ Mp(C) ∪Mp(D);

(8) Mo
(C ∩ D) ⊆ Mo

(C) ∩Mo
(D), Mp

(C ∩ D) ⊆ Mp
(C) ∩Mp

(D).

Proof. (1), (2), (5), and (6) can be taken directly from Definitions 7 and 8. We only show (3), (4), (7),
and (8).

(3) From Proposition 1, we have the following:

Mo(C ∩ D)(y) =
n
∪

i=1

(
∩

z∈U
(Ri

c(y, z) ∪ (C ∩ D)(z))
)

=
n
∪

i=1

(
∩

z∈U
((Ri

c(y, z) ∪ C(z)) ∩ (Ri
c(y, z) ∪ D(z)))

)
=

(
n
∪

i=1

(
∩

z∈U
(Ri

c(y, z) ∪ C(z))
))
∩
(

n
∪

i=1

(
∩

z∈U
(Ri

c(y, z) ∪ D(z))
))

= MoC(y) ∩MoD(y).

Similarly, from Proposition 2, we can get the following:

Mp(C ∩ D)(y) = MpC(y) ∩MpD(y).

(4) According to Propositions 1 and 2, in the same way as (3), we can get the proof.
(7) From Definition 7, we have the following:

TMo(C∪D)(y) =
n

max
i=1

min
z∈U

{
max

[
FRi (y, z), (max(TC(z), TD(z)))

]}
=

n
max
i=1

min
z∈U

{
max

[(
max

(
FRi (y, z), TC(z)

))
,
(
max

(
FRi (y, z), TD(z)

))]}
≥ max

{[
n

max
i=1

min
z∈U

(
max

(
FRi (y, z), TC(z)

))]
,
[

n
max
i=1

min
z∈U

(
max

(
FRi (y, z), TD(z)

))]}
= max

(
TMo(C)(y), TMo(D)(y)

)
.
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IMo(C∪D)(y) =
n

min
i=1

max
z∈U

{
min

[(
1− IRi (y, z)

)
, (min(IC(z), ID(z)))

]}
=

n
min
i=1

max
z∈U

{
min

[(
min

((
1− IRi (y, z)

)
, IC(z)

))
,
(
min

((
1− IRi (y, z)

)
, ID(z)

))]}
≤ min

{[
n

min
i=1

max
z∈U

(
min

((
1− IRi (y, z)

)
, IC(z)

))]
,
[

n
min
i=1

max
z∈U

(
min

((
1− IRi (y, z)

)
, ID(z)

))]}
= min

(
IMo(C)(y), IMo(D)(y)

)
.

FMo(C∪D)(y) =
n

min
i=1

max
z∈U

{
min

[
TRi (y, z), (min(FC(z), FD(z)))

]}
=

n
min
i=1

max
z∈U

{
min

[
min

(
TRi (y, z), FC(z)

)]
,
[
min

(
TRi (y, z), FD(z)

)]}
≤ min

{[
n

min
i=1

max
z∈U

(
min

(
TRi (y, z), FC(z)

))]
,
[

n
min
i=1

max
z∈U

(
min

(
TRi (y, z), FD(z)

))]}
= min

(
FMo(C)(y), FMo(D)(y)

)
.

Hence, Mo(C ∪ D) ⊇ Mo(C) ∪Mo(D).
Also, according to Definition 8, we can get Mp(C ∪ D) ⊇ Mp(C) ∪Mp(D).
(8) From Definition 7, we have the following:

TMo
(C∩D)(y) =

n
min
i=1

max
z∈U

{
min

[
TRi (y, z), (min(TC(z), TD(z)))

]}
=

n
min
i=1

max
z∈U

{
min

[(
min

(
TRi (y, z), TC(z)

))
,
(
min

(
TRi (y, z), TD(z)

))]}
≤ min

{[
n

min
i=1

max
z∈U

(
min

(
TRi (y, z), TC(z)

))]
,
[

n
min
i=1

max
z∈U

(
min

(
TRi (y, z), TD(z)

))]}
= min

(
TMo

(C)(y), TMo
(D)(y)

)
.

IMo
(C∩D)(y) =

n
max
i=1

min
z∈U

{
max

[
IRi (y, z), (max(IC(z), ID(z)))

]}
=

n
max
i=1

min
z∈U

{
max

[(
max

(
IRi (y, z), IC(z)

))
,
(
max

(
IRi (y, z), ID(z)

))]}
≤ min

{[
n

max
i=1

min
z∈U

(
max

(
IRi (y, z), IC(z)

))]
,
[

n
max
i=1

min
z∈U

(
max

(
IRi (y, z), ID(z)

))]}
= min

(
IMo

(C)(y), IMo
(D)(y)

)
.

FMo
(C∩D)(y) =

n
max
i=1

min
z∈U

[
FRi (y, z) ∨ (FC(z) ∨ FD(z))

]
=

n
max
i=1

min
z∈U

[(
FRi (y, z) ∨ FC(z)

)
∨
(

FRi (y, z) ∨ FD(z)
)]

≥
[

n
max
i=1

min
z∈U

(
FRi (y, z) ∨ FC(z)

)]
∨
[

n
max
i=1

min
z∈U

(
FRi (y, z) ∨ FD(z)

)]
= max

(
FMo

(C)(y), FMo
(D)(y)

)
.

Hence, Mo
(C ∩ D) ⊆ Mo

(C) ∩Mo
(D).

Similarly, according Definition 8, we can get Mp
(C ∩ D) ⊆ Mp

(C) ∩Mp
(D).

Next, we will give an example to show that maybe Mo(C ∪ D) 6= Mo(C) ∪Mo(D).

Example 2. Define MGNAS (U, Ri), where U = {z1, z2, z3} and Ri (1 ≤ i ≤ 3) are given in Example 1.
Suppose there are two neutrosophic sets on universe U, as follows: C(z1) = (0.5, 0.1, 0.2), C(z2) = (0.5,

0.3, 0.2), C(z3) = (0.6, 0.2, 0.1), D(z1) = (0.7, 0.2, 0.1), D(z2) = (0.4, 0.2, 0.1), D(z3) = (0.2, 0.2, 0.5), we have
(C ∪ D)(z1) = (0.7, 0.1, 0.1), (C ∪ D)(z2) = (0.5, 0.2, 0.1), (C ∪ D)(z3) = (0.6, 0.2, 0.1), (C ∩ D)(z1) = (0.5, 0.1,
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0.2), (C ∩ D)(z2) = (0.4, 0.2, 0.2), (C ∩ D)(z3) = (0.2, 0.2, 0.5). Then, from Definitions 7 and 8, we can get
the following:

Mo(C)(z1) = (0.5, 0, 0.2), Mo(C)(z2) = (0.5, 0.1, 0.2), Mo(C)(z3) = (0.5, 0.1, 0.2);
Mo(D)(z1) = (0.4, 0, 0.1), Mo(D)(z2) = (0.2, 0.1, 0.2), Mo(D)(z3) = (0.4, 0.1, 0.2);

Mo(C ∪ D)(z1) = (0.5, 0, 0.1), Mo(C ∪ D)(z2) = (0.5, 0.1, 0.1), Mo(C ∪ D)(z3) = (0.5, 0.1, 0.1)
(Mo(C) ∪Mo(D))(z1) = (0.5, 0, 0.1),(Mo(C) ∪Mo(D))(z2) = (0.5, 0.1, 0.2),

(Mo(C) ∪Mo(D))(z3) = (0.5, 0.1, 0.2)

So, Mo(C ∪ D) 6= Mo(C) ∪Mo(D).
Also, there are examples to show that maybe Mp(C ∪ D) 6= Mp(C) ∪Mp(D),
Mo

(C ∩ D) 6= Mo
(C) ∩Mo

(D), Mp
(C ∩ D) 6= Mp

(C) ∩Mp
(D). We do not say anymore here.

4. Multi-Granulation Neutrosophic Rough Sets on Dual Domains

In this section, we propose the concept of MGNRS on dual domains and study their
characterizations. Also, we obtain that the MGNRS on dual domains will degenerate into MGNRS,
defined in Section 3, when the two domains are same.

Definition 9. Assume that U and V are two domains, and Ri ε NS(U × V) (1 ≤ i ≤ n) is the binary
neutrosophic relations. The triple ordered set (U, V, Ri) is called the (two-domain) MGNAS.

Next, we present the multi-granulation rough approximation of a neutrosophic concept in
an approximation space on dual domains.

Definition 10. Let (U, V, Ri) (1 ≤ i ≤ n) be (two-domain) MGNAS. ∀ B ε NS(V) and y ε U, the three
memberships of the optimistic lower and upper approximation Mo(B), Mo

(B) in (U, V, Ri) are defined,
respectively, as follows:

TMo(B)(y) =
n

max
i=1

min
z∈V

[
max

(
FRi (y, z), TB(z)

)]
IMo(B)(y) =

n
min
i=1

max
z∈V

[
min

((
1− IRi (y, z)

)
, IB(z)

)]
FMo(B)(y) =

n
min
i=1

max
z∈V

[
min

(
TRi (y, z), FB(z)

)]
TMo

(B)(y) =
n

min
i=1

max
z∈V

[
min

(
TRi (y, z), TB(z)

)]
I n

∑
i=1

Ri

o

(B)
(y) =

n
max
i=1

min
z∈V

[
max

(
IRi (y, z), IB(z)

)]
FMo

(B)(y) =
n

max
i=1

min
z∈V

[
max

(
FRi (y, z), FB(z)

)]

Then Mo(B), Mo
(B) ε NS(U). In addition, B is called a definable neutrosophic set on (U, V, Ri)

on dual domains when Mo(B) = Mo
(B). Otherwise, the pair

(
Mo(B), Mo

(B)
)

is called an optimistic
MGNRS on dual domains.

Definition 11. Assume (U, V, Ri) (1 ≤ i ≤ n) is (two-domain) MGNAS. ∀ B ε NS(V) and y ε U, the three
memberships of the pessimistic lower and upper approximation Mp(B), Mp

(B) in (U, V, Ri) are defined,
respectively, as follows:

TMp(B)(y) =
n

min
i=1

min
z∈V

[
max

(
FRi (y, z), TB(z)

)]
, IMp(B)(y) =

n
max
i=1

max
z∈V

[
min

((
1− IRi (y, z)

)
, IB(z)

)]
,

FMp(B)(y) =
n

max
i=1

max
z∈V

[
min

(
TRi (y, z), FB(z)

)]
, TMp

(B)(y) =
n

max
i=1

max
z∈V

[
min

(
TRi (y, z), TB(z)

)]
,

IMp
(B)(y) =

n
min
i=1

min
z∈V

[
max

(
IRi (y, z), IB(z)

)]
, FMp

(B)(y) =
n

min
i=1

min
z∈V

[
max

(
FRi (y, z), FB(z)

)]
.
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Then, B is called a definable neutrosophic set on (U, V, Ri) when Mp(B) = Mp
(B). Otherwise,

the pair
(

Mp(B), Mp
(B)
)

is called a pessimistic MGNRS on dual domains.

Remark 1. Note that if U = V, then the optimistic and pessimistic MGNRS on the dual domains will be the
same with the optimistic and pessimistic MGNRS on a single domain, which is defined in Section 3

Proposition 4. Assume (U, V, Ri) (1 ≤ i ≤ n) is (two-domain) MGNAS, Ri (1 ≤ i ≤ n) is the neutrosophic
relations. ∀ C, D ε NS(U), we have the following:

(1) Mo(C) =∼ Mo
(∼ C), Mp(C) =∼ Mp

(∼ C);

(2) Mo
(C) =∼ Mo(∼ C), Mp

(C) =∼ Mp(∼ C);
(3) Mo(C ∩ D) = Mo(C) ∩Mo(D), Mp(C ∩ D) = Mp(C) ∩Mp(D);

(4) Mo
(C ∪ D) = Mo

(C) ∪Mo
(D), Mp

(C ∪ D) = Mp
(C) ∪Mp

(D);
(5) C ⊆ D ⇒ Mo(C) ⊆ Mo(D), Mp(C) ⊆ Mp(D) ;

(6) C ⊆ D ⇒ Mo
(C) ⊆ Mo

(D), Mp
(C) ⊆ Mp

(D) ;
(7) Mo(C ∪ D) ⊇ Mo(C) ∪Mo(D), Mp(C ∪ D) ⊇ Mp(C) ∪Mp(D);

(8) Mo
(C ∩ D) ⊆ Mo

(C) ∩Mo
(D), Mp

(C ∩ D) ⊆ Mp
(C) ∩Mp

(D).

Proof. These propositions can be directly proven from Definitions 10 and 11.

5. An Application of Multi-Granulation Neutrosophic Rough Set on Dual Domains

Group decision making [31] is a useful way to solve uncertainty problems. It has developed
rapidly since it was first proposed. Its essence is that in the decision-making process, multiple
decision makers (experts) are required to participate and negotiate in order to settle the corresponding
decision-making problems. However, with the complexity of the group decision-making problems,
what we need to deal with is the multi-criteria problems, that is, multi-criteria group decision making
(MCGDM). The MCGDM problem is to select or rank all of the feasible alternatives in multiple,
interactive, and conflicting standards.

In this section, we build a neo-way to solve a kind of special MCGDM problem using the MGNRS
theory. We generated the rough set according the multi-neutrosophic relations and then used it to
solve the decision-making problems. We show the course and methodology of it.

5.1. Problem Description

Firstly, we describe the considered problem and we show it using a MCGDM example of
houses selecting.

Let U = {x1, x2, . . . , xm} be the decision set, where x1 represents very good, x2 represents good,
x3 represents less good, . . . , and xm represents not good. Let V = {y1, y2, . . . , yn} be the criteria set to
describe the given house, where y1 represents texture, y2 represents geographic location, y3 represents
price, . . . , and yn represents solidity. Suppose there are k evaluation experts and all of the experts give
their own evaluation for criteria set yj (yj ε V) (j = 1, 2, . . . , n), regarding the decision set elements
xi (xi ε U) (i = 1, 2, . . . , m). In this paper, let the evaluation relation R1, R2, . . . , Rk between V and U
given by the experts, be the neutrosophic relation, R1, R2, . . . , Rk ε SNS (U × V). That is, Rl (xi, yj)
(l = 1, 2, . . . , k) represents the relation of the criteria set yj and the decision set element xi, which is
given by expert l, based on their own specialized knowledge and experience. For a given customer, the
criterion of the customer is shown using a neutrosophic set, C, in V, according to an expert’s opinion.
Then, the result of this problem is to get the opinion of the given house for the customer.

Then, we show the method to solve the above problem according to the theory of optimistic and
pessimistic MGNRS on dual domains.
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5.2. New Method

In the first step, we propose the multi-granulation neutrosophic decision information system
based on dual domains for the above problem.

According to Section 5.1′s description, we can get the evaluation of each expert as a neutrosophic
relation. Then, all of the binary neutrosophic relations Rl given by all of the experts construct a relation
set R (i.e., Rl ε R). Then, we get the multi-granulation neutrosophic decision information systems
based on dual domains, denoted by (U, V,R).

Secondly, we compute Mo(C), Mo
(C), Mp(C), Mp

(C) for the given customer, regarding (U, V,R).
Thirdly, according to Definition 4, we computed the sum of the optimistic and pessimistic

multi-granulation neutrosophic lower and upper approximation.
Next, according Definition 5, we computed the cosine similarity measure. Define the choice x∗

with the idea characteristics value α ∗ = (1, 0, 0) as the ideal choice. The bigger the value of S(αxi , α∗)
is, the closer the choice xi with the ideal alternative x ∗, so the better choice xi is.

Finally, we compared S(αxi , α∗) and ranked all of the choices that the given customer can choose
from and we obtained the optimal choice.

5.3. Algorithm and Pseudo-Code

In this section, we provide the algorithm and pseudo-code given in table Algorithm 1.

Algorithm 1. Multi-granulation neutrosophic decision algorithm.

Input Multi-granulation neutrosophic decision information systems (U, V,R).
Output The optimal choice for the client.
Step 1 Computing Mo(C), Mo

(C), Mp(C), Mp
(C) of neutrosophic set C about (U, V,R);

Step 2 From Definition 4., we get Mo(C) + Mo
(C) and Mp(A) + Mp

(A);
Step 3 From Definition 5., we computer So(αxi , α∗) and Sp(αxi , α∗) (i = 1, 2, . . . , m);
Step 4 The optimal decision-making is to choose xh if

S(αxh , α∗) = maxi∈{1,2,··· ,m}(S(αxi , α∗)).
pseudo-code
Begin
Input (U, V,R), where U is the decision set, V is the criteria set, andR denotes the binary neutrosophic

relation between criteria set and decision set.
Calculate Mo(C), Mo

(C), Mp(C), Mp
(C). Where Mo(C), Mo

(C), Mp(C), Mp
(C) , which represents the

optimistic and pessimistic multi-granulation lower and upper approximation of C, which is defined in
Section 4.

Calculate Mo(C) + Mo
(C) and Mp(C) + Mp

(C), which is defined in Definition 4.

Calculate So
(

Mo(C) + Mo
(C), α∗

)
and Sp

(
Mp(C) + Mp

(C), α∗
)

, which is defined in Definition 5.

For i = 1, 2, . . . , m; j = 1, 2, . . . , n; l = 1, 2, . . . , k;

If So(αxi , α∗) < So
(

αxj , α∗
)

, then So
(

αxj , α∗
)
→Max,

else So(αxi , α∗)→Max,
If So(αxl , α∗) > Max, then So(αxl , α∗)→Max;

Print Max;
End

5.4. An Example

In this section, we used Section 5.2’s way of solving a MCGDM problem, using the example of
buying houses.

Let V = {y1, y2, y3, y4} be the criteria set, where y1 represents the texture, y2 represents the
geographic location, y3 represents the price, and y4 represents the solidity. Let U = {z1, z2, z3, z4} be
a decision set, where z1 represents very good, z2 represents good, z3 represents less good, and z4

represents not good.
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Assume that there are three experts. They provide their opinions about all of the criteria sets yj
(yj ε V) (j = 1, 2, 3, 4) regarding the decision set elements zi (xi ε U) (i = 1, 2, 3, 4). Like the discussion
in Section 5.1, the experts give three evaluation relations, R1, R2, and R3, which are neutrosophic
relations between V and U, that is, R1, R2, R3 ε NR(U × V). TRk(zi, yj) shows the expert, k, give the
truth membership of yj to zi; IRk(zi, yj) shows the expert, k, give the indeterminacy membership of yj to
zi; FRk(zi, yj) shows the expert, k, give the falsity membership of yj to zi. For example, the first value
(0.2, 0.3, 0.4) in Table 4, of 0.2 shows that the truth membership of the texture for the given house is
very good, 0.3 shows that the indeterminacy membership of the texture for the given house is very
good, and 0.4 shows that the falsity membership of the texture for the given house is very good.

Table 4. Neutrosophic relation R1.

R1 y1 y2 y3 y4

z1 (0.2, 0.3, 0.4) (0.3, 0.5, 0.4) (0.4, 0.6, 0.2) (0.1, 0.3, 0.5)
z2 (0.8, 0.7, 0.1) (0.2, 0.5, 0.6) (0.6, 0.6, 0.7) (0.4, 0.6, 0.3)
z3 (0.5, 0.7, 0.2) (0.6, 0.2, 0.1) (1, 0.9, 0.4) (0.5, 0.4, 0.3)
z4 (0.4, 0.6, 0.3) (0.5, 0.5, 0.4) (0.3, 0.8, 0.4) (0.2, 0.9, 0.8)

So, we build the multi-granulation neutrosophic decision information system (U, V, R) for
the example.

Assume that the three experts give three evaluation relations, the results are given in Tables 4–6.

Table 5. Neutrosophic relation R2.

R2 y1 y2 y3 y4

z1 (0.3, 0.4, 0.5) (0.6, 0.7, 0.2) (0.1, 0.8, 0.3) (0.5, 0.3, 0.4)
z2 (0.5, 0.5, 0.4) (1, 0, 1) (0.8, 0.1, 0.8) (0.7, 0.8, 0.5)
z3 (0.7, 0.2, 0.1) (0.3, 0.5, 0.4) (0.6, 0.1, 0.4) (1, 0, 0)
z4 (1, 0.2, 0) (0.8, 0.1, 0.5) (0.1, 0.2, 0.7) (0.2, 0.2, 0.8)

Table 6. Neutrosophic relation R3.

R3 y1 y2 y3 y4

z1 (0.6, 0.2, 0.2) (0.3, 0.1, 0.7) (0, 0.2, 0.9) (0.8, 0.3, 0.2)
z2 (0.1, 0.1, 0.7) (0.2, 0.3, 0.8) (0.7, 0.1, 0.2) (0, 0, 1)
z3 (0.8, 0.4, 0.1) (0.9, 0.5, 0.3) (0.2, 0.1, 0.6) (0.7, 0.2, 0.3)
z4 (0.6, 0.2, 0.2) (0.2, 0.2, 0.8) (1, 1, 0) (0.5, 0.3, 0.1)

Assume C is the customer’s evaluation for each criterion in V, and is given by the following:

C(y1) = (0.6, 0.5, 0.5), C(y2) = (0.7, 0.3, 0.2), C(y3) = (0.4, 0.5, 0.9), C(y4) = (0.3, 0.2, 0.6).

From Definitions 10 and 11, we can compute the following:

Mo(C)(z1) = (0.4, 0.5, 0.4), Mo(C)(z2) = (0.5, 0.4, 0.6), Mo(C)(z3) = (0.3, 0.3, 0.6),
Mo(C)(z4) = (0.6, 0.4, 0.4)

Mo
(C)(z1) = (0.4, 0.3, 0.5), Mo

(C)(z2) = (0.4, 0.5, 0.7), Mo
(C)(z3) = (0.6, 0.3, 0.4),

Mo
(C)(z4) = (0.5, 0.5, 0.5)

Mp(C)(z1) = (0.3, 0.5, 0.6), Mp(C)(z2) = (0.3, 0.5, 0.8), Mp(C)(z3) = (0.3, 0.5, 0.9),
Mp(C)(z4) = (0.3, 0.5, 0.9)

Mo
(C)(z1) = (0.6, 0.3, 0.2), Mo

(C)(z2) = (0.7, 0.2, 0.5), Mo
(C)(z3) = (0.7, 0.2, 0.2),

Mo
(C)(z4) = (0.7, 0.2, 0.4)
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According Definition 4, we have the following:(
Mo(C) + Mo

(C)
)
(z1) = (0.64, 0.15, 0.2),

(
Mo(C) + Mo

(C)
)
(z2) = (0.7, 0.2, 0.42),(

Mo(C) + Mo
(C)
)
(z3) = (0.72, 0.09, 0.24),

(
Mo(C) + Mo

(C)
)
(z4) = (0.8, 0.2, 0.2)

(
Mp(C) + Mp

(C)
)
(z1) = (0.72, 0.15, 0.12),

(
Mp(C) + Mp

(C)
)
(z2) = (0.79, 0.1, 0.4),(

Mp(C) + Mp
(C)
)
(z3) = (0.79, 0.1, 0.18),

(
Mp(C) + Mp

(C)
)
(z4) = (0.79, 0.1, 0.36)

Then, according Definition 5, we have the following:

So(αz1 , α∗) = 0.9315, So(αz2 , α∗) = 0.8329, So(αz3 , α∗) = 0.8588, So(αz4 , α∗) = 0.9428. (1)

Sp(αz1 , α∗) = 0.9662, Sp(αz2 , α∗) = 0.8865, Sp(αz3 , α∗) = 9677, Sp(αz4 , α∗) = 0.9040. (2)

Then, we have the following:

So(αz4 , α∗) > So(αz1 , α∗) > So(αz3 , α∗) > So(αz2 , α∗). (3)

Sp(αz3 , α∗) > Sp(αz1 , α∗) > Sp(αz4 , α∗) = Sp(αz2 , α∗). (4)

So, the optimistic optimal choice is to choose x4, that is, this given house is “not good” for the
customer; the pessimistic optimal choice is to choose x3, that is, this given house is “less good” for
the customer.

6. Conclusions

In this paper, we propose the concept of MGNRS on a single domain and dual domains, and
obtain their properties. I addition, we obtain that MGNRS on dual domains will be the same as the
MGNRS on a single domain when the two domains are same. Then, we solve a kind of special group
decision-making problem (based on neutrosophic relation) using MGNRS on dual domains, and we
show the algorithm and give an example to show its feasibility.

In terms of the future direction, we will study other types of combinations of multi-granulation
rough sets and neutrosophic sets and obtain their properties. At the same time, exploring the
application of MGNRS in totally dependent-neutrosophic sets (see [32]) and related algebraic systems
(see [33–35]), and a new aggregation operator, similarity measure, and distance measure (see [36–39]),
are also meaningful research directions for the future.
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Abstract: In this paper, we combined entropy with linguisti neutrosophic cubic numbers and used it
in daily life problems related to a corporation that is going to choose an area supervisor, which is the
main target of our proposed model. For this, we first develop the theory of linguistic neutrosophic
cubic numbers, which explains the indeterminate and incomplete information by truth, indeterminacy
and falsity linguistic variables (LVs) for the past, present, as well as for the future time very effectively.
After giving the definitions, we initiate some basic operations and properties of linguistic neutrosophic
cubic numbers. We also define the linguistic neutrosophic cubic Hamy mean operator and weighted
linguistic neutrosophic cubic Hamy mean (WLNCHM) operator with some properties, which can
handle multi-input agents with respect to the different time frame. Finally, as an application, we give
a numerical example in order to test the applicability of our proposed model.

Keywords: neutrosophic set; neutrosophic cubic set; linguistic neutrosophic cubic numbers;
linguistic neutrosophic cubic weighted averaging operator; entropy of linguistic neutrosophic
cubic numbers; application; multiple attribute decision making problem

1. Introduction

In 1965, Zadeh [1] introduced the notion of fuzzy sets, which became a significant tool of studying
many vague and uncertain concepts. It has a large number of applications in social, medicine and
computer sciences. Atanassov [2] generalized the theme of a fuzzy set (FS) by initiating the idea of
intuitionistic fuzzy sets (IFS) by introducing the idea of non membership of an element in a certain set.
Jun et al. [3] initiated the idea of cubic sets, in which there are two representations: one is used for
the membership/certain value and the other one is used for the non membership/uncertain value.
The membership function is handled in the form of an interval, and the non membership is handled
by the ordinary fuzzy set. Cubic sets have been considered by many authors in other areas of
mathematics, for instance KU subalgebras [4,5], graph theory [6], left almost Γ-semihypergroups [7],
LA-semihypergroups [8–11], semigroups [12,13] and Hv-LA-semigroups [14,15]. Smarandache [16,17]
presented the new idea of the neutrosophic set (NS) and neutrosophic logic, which the generalized
fuzzy set and intuitionistic fuzzy set. The neutrosophic set (NS) is defined by truth, indeterminacy
and falsity membership degrees. For applications in physical, technical and different engineering
regions, Wang et al. [18] suggested the concept of a single-valued neutrosophic set (SVNS) in
2010. After this, many researchers used neutrosophic sets in different research directions such
as De and Beg [19] and Gulistan et al. [20]. Jun et al. [21,22] extended the idea of cubic sets to
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neutrosophic cubic sets and defined different properties of external and internal neutrosophic cubic sets.
Recently, Gulistan et al. [23] combined neutrosophic cubic sets with graphs. In multi-criteria decision
making problems, the application of neutrosophic cubic sets was proposed by Zhan et al. [24]. In [25],
Hashim et al. used neutrosophic bipolar fuzzy sets in the HOPE foundation with different types of
similarity measures. For the aspects of real-life objectives, the human desire of judgment can be
used for linguistic expression rather than numerical expression to better suit the thinking of people.
Therefore, Zadeh [26] introduced the concept of linguistic variable and applied it to fuzzy reasoning.
The idea of aggregation operators was presented by many researchers in decision making problems; see
for example [27–29]. The concept of linguistic intuitionistic fuzzy numbers (LIFN) was introduced by
Chen et al. [30]. After that, some researchers also gave the idea of linguistic intuitionistic multi-criteria
group decision-making problems [31]. The theme of LNNS was initiated by Fang et al. [32]. Besides, a
multi-criteria decision making problem like the linguistic intuitionistic multi-criteria decision-making
problem was also introduced [33]. Ye in 2016 presented the concept of an LNNS and also gave the
idea of different aggregation operators in multiple attribute group decision making problems [34].
Then, the concept of a linguistic neutrosophic number was proposed to solve multiple attribute group
decision making problems by Li et al. in [35]. In [36], Hara et al. proposed some inequalities for certain
bivariate means. A useful tool known as entropy is used to determine the uncertainty in sets, like
the fuzzy set (FS) and intuitionistic fuzzy set (IFS), where LNCSis defined by managing uncertain
information about truth, indeterminacy and falsity membership functions. In 1965, Zadeh [37] first
defined the entropy of FS to determine the ambiguity in a quantitative manner. In the same way, the
non-probabilistic entropy was axiomatized by De Luca-Termini [38]. He also analyzed mathematical
properties of this functional and gave the considerations of and applicability to pattern analysis.
A distance entropy measure was proposed by Kaufmann [39]. A new non-probabilistic entropy
measure was introduced by Kosko [40]. In [41], Majumdar and Samanta introduced the notion of
two single-valued neutrosophic sets, their properties and also defined the distance between these
two sets. They also investigated the measure of entropy of a single-valued neutrosophic set. The
entropy of IFSs was introduced by Szmidt and Kacprzyk [42]. This entropy measure was consistent
with the considerations of fuzzy sets. Afterward, the measurement of fuzziness in terms of distance
between the fuzzy set and its compliment was put forward by Yager [43]; see also [37,44] for more
details. The entropy in terms of neutrosophic sets was discussed by Patrascu in [45]. The of linguistic
neutrosophic numbers (LNNs) and the linguistic neutrosophic Hamy mean (HM) (LNHM) operator
was investigated by Liu et al., in [46]. Ye discussed linguistic neutrosophic cubic numbers and their
multiple attribute decision making method in [47].

The present study proposes a new notion of linguistic neutrosophic cubic numbers (LNCNs),
where the undetermined LNNS agrees with the truth, indeterminacy and falsity membership. Besides
that, we define the different operations on LNCNs, the linguistic neutrosophic cubic Hamy mean
operator and the weighted linguistic neutrosophic cubic Hamy mean (WLNCHM) operator with some
properties that can handle multi-input agents with respect to the different time frames. We define
score, accuracy and certain functions of LNCNs. At the end, we use the developed approach in a
decision making problem related to a corporation choosing an area supervisor.

2. Preliminaries

In this section, we give some helpful material from the existing literature.

Definition 1. [35] LNNS (linguistic neutrosophic numbers): Let U be a universal set and p̊ = ( p̊0, p̊1, . . . , p̊t)

be a linguistic term set (LTS). An LNSĂ in U is specified by the truth, indeterminacy and falsity membership
functions α̊Å, β̊Å and γ̊Å, where α̊Å, β̊Å, γ̊Å : U → [0, t], and ∀ u ∈ U, g̊ = ( p̊α̊A(u), p̊β̊A(u)

, p̊γ̊A(u)) ∈ Å is

called an LNN of Å.
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Remark 1. [35] Let Å be the set of LNNS, then its complement is represented by ÅC, which is denoted as
α̊Å = γ̊Å; β̊Å = t− β̊Å; γ̊Å = α̊Å.

Definition 2. [35] Let g̊ = ( p̊α̊, p̊β̊, p̊γ̊), g̊1 = ( p̊α̊1 , p̊β̊1
, p̊γ̊1), g̊2 = ( p̊α̊2 , p̊β̊2

, p̊γ̊2) be any LNNS and λ > 0.
Then (i):

g̊1 ⊕ g̊2 = ( p̊α̊1 , p̊β̊1
, p̊γ̊1)⊕ ( p̊α̊2 , p̊β̊2

, p̊γ̊2) =

(
p̊

α̊1+α̊2−
α̊1 α̊2

t
, p̊ β̊1 β̊2

t
, p̊ γ̊1 γ̊2

t

)
(1)

(ii):

g̊1 ⊗ g̊2 = ( p̊α̊1 , p̊β̊1
, p̊γ̊1)⊗ ( p̊α̊2 , p̊β̊2

, p̊γ̊2) =

(
p̊ α̊1 α̊2

t
, p̊

β̊1+β̊− β̊1 β̊2
t

, p̊
γ̊1+γ̊2−

γ̊1 γ̊2
t

)
(2)

(iii):

λg̊ = λ( p̊α̊, p̊β̊, p̊γ̊) =

(
p̊t−t(1− α̊

t )
λ , p̊

t( β̊
t )

λ
, p̊t( γ̊

t )
λ

)
; (3)

(iv)

g̊λ = ( p̊α̊, p̊β̊, p̊γ̊)
λ =

(
p̊t( α̊

t )
λ , p̊

t−t(1− β̊
t )

λ
, p̊t−t(1− γ̊

t )
λ

)
. (4)

Definition 3. [35] Let g̊ = ( p̊α̊, p̊β̊, p̊γ̊) be an LNN. The following are the score and accuracy function of LNN,

Ŝ(g̊) =
2t + α̊− β̊− γ̊

3t
, (5)

Ĥ(g̊) =
α̊− γ̊

t
. (6)

Definition 4. [35] Let g̊1 = ( p̊α̊1 , p̊β̊1
, p̊γ̊1), g̊2 = ( p̊α̊2 , p̊β̊2

, p̊γ̊2) be LNNs. Then: (1) If Ŝ(g̊1) < Ŝ(g̊2),

then g̊1 ≺ g̊2. (2) If Ŝ(g̊1) = Ŝ(g̊2), (a) and Ĥ(g̊1) < Ĥ(g̊2), then g̊1 ≺ g̊2, (b) and Ĥ(g̊1) = Ĥ(g̊2),
then g̊1 ≈ g̊2.

Definition 5. [36] Suppose uı̂(ı̂ = 1, 2, . . . , n) is an assortment of non-negative real numbers and parameter
k̊ = 1, 2, . . . , n. The Hamy mean (HM) is defined as:

HMk̊(x1, x2, . . . , xn) =

∑
1≤ı̂1<...ı̂k̊≤n

(
k̊

∏
j=1

uı̂j

) 1
k̊

(n
k̊)

(7)

where
(
ı̂1, ı̂2, . . . , ı̂k̊

)
navigate all the k-tuple arrangements of (1, 2, . . . , n), (n

k̊) is the
binomial coefficient and (n

k̊) = n!
k̊!(n−k̊)!

. The following are some properties of HM:

(1) HM(k̊)(0, 0, . . . , 0) = 0, HM(k̊)(u, u, . . . , u) = u, (2) HM(k̊)(u1, u2, . . . , un) ≤ HM(k̊)(v1, v2, . . . , vn),
if uı̂ ≤ vı̂ for all ı̂, (3) min{uı̂} ≤ HM(k̊)(u1, u2, . . . , un) ≤ max{uı̂}.

Definition 6. [17] (Neutrosophic set) Let U be a non-empty set. A neutrosophic set in U is a structure of the
form A := {u; ATru(u), Aı̂nd(u), AFal(u)|u ∈ U}, is characterized by a truth membership Tru, indeterminacy
membership ı̂nd and falsity membership Fal, where ATru, Aı̂nd, AFal : U → [0, 1].

Definition 7. [21] (Neutrosophic cubic set) Let Xbe a non-empty set; an NCSin U is defined in the form of
a pair Ω = (Å, Λ) where Å = {(x; ÅT̃ru(u), Å Ĩnd(u), ÅF̃al(u)) | u ∈ U} is an interval neutrosophic set in U
and Λ = {(u; ΛTru(u), Λı̂nd(u), ΛFal(u)) | u ∈ U)} is a neutrosophic set in U.
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3. Linguistic Neutrosophic Cubic Numbers and Operators

In this section, we define the linguistic neutrosophic cubic numbers and also discuss different
operations and properties related to linguistic neutrosophic cubic numbers. We define the cubic Hamy
mean operator, LNCHM operator and WLNCHM operator and discuss their properties.

Definition 8. LNCNs (linguistic neutrosophic cubic numbers): Let U be a universal set and
p̊ = ( p̊0, p̊1, . . . , p̊t) be a LTS. An LNCN Å in U is determined by truth membership function (α̃Å, α̊Å),
an indeterminacy membership function (β̃Å, β̊Å) and a falsity membership function (γ̃Å, γ̊Å), where α̃Å, β̃Å,
γ̃Å : U → D[0, t] and α̊Å, β̊Å, γ̊A : U → [0, t], ∀ u ∈ U, and it is denoted by g̊ =

( p̊(α̃Å ,α̊A)(u), p̊(β̃Å ,β̊A)(u)
, p̊(γ̃Å ,γ̊A)(u)) ∈ Å.

Remark 2. Suppose A is a set of LNCNs, then its complement is represented by Ac and defined as {(α̃Å, α̊Å)
c =

(γ̃Å, γ̊Å), (β̃Å, β̊Å)
c = (t− β̃Å, t− β̊Å), (γ̃Å, γ̊Å)

c = (α̃Å, α̊Å)}.

Definition 9. Let g̊ =
(

p̊(α̃,α̊), p̊(β̃,β̊), p̊(γ̃,γ̊)

)
, g̊1 =

(
p̊(α̃1,α̊1)

, p̊(β̃1,β̊1)
, p̊(γ̃1,γ̊1)

)
,

g̊2 =
(

p̊(α̃2,α̊2), p̊(β̃2,β̊2), p̊(γ̃2,γ̊2)

)
be any LNCNs and λ > 0. Then, we define:

(i):

g̊1 ⊕ g̊2 =
(

p̊(α̃1,α̊1)
, p̊(β̃1,β̊1)

, p̊(γ̃1,γ̊1)

)
⊕
(

p̊(α̃2,α̊2), p̊(β̃2,β̊2), p̊(γ̃2,γ̊2)

)
(8)

=

 p̊
(α̃1+α̃2,α̊1+α̊2)−

(
α̃1.α̃2

t , α̊1.α̊2
t

), p̊(
β̃1.β̃2

t , β̊1.β̊2
t

), p̊( γ̃1.γ̃2
t , γ̊1.γ̊2

t

)
 ;

(ii):

g̊1 ⊗ g̊2 =
(

p̊(α̃1,α̊1)
, p̊(β̃1,β̊1)

, p̊(γ̃1,γ̊1)

)
⊗
(

p̊(α̃2,α̊2), p̊(β̃2,β̊2), p̊(γ̃2,γ̊2)

)
(9)

=

 p̊( α̃1.α̃2
t , α̊1.α̊2

t

), p̊
(β̃1+β̃2,β̊1+β̊2)−

(
β̃1.β̃2

t , β̊1.β̊2
t

), p̊
(γ̃1+γ̃2,γ̊1+γ̊2)−

(
γ̃1.γ̃2

t , γ̊1.γ̊2
t

)
 ;

(iii):

λg̊ = λ
((

p̊(α̃1,α̊1)
, p̊(β̃1,β̊1)

, p̊(γ̃1,γ̊1)

)
⊕
(

p̊(α̃2,α̊2), p̊(β̃2,β̊2), p̊(γ̃2,γ̊2)

))
(10)

=

 p̊
t−t(1− α̃

t ,1− α̊
t )

λ , p̊
t
(

β̃
t , β̊

t

)λ , p̊
t
(

γ̃
t , γ̊

t

)λ


(iv):

g̊λ =
((

p̊(α̃1,α̊1)
, p̊(β̃1,β̊1)

, p̊(γ̃1,γ̊1)

)
⊕
(

p̊(α̃2,α̊2), p̊(β̃2,β̊2), p̊(γ̃2,γ̊2)

))λ
(11)

=

 p̊
t( α̃

t , α̊
t )

λ , p̊
t−t
(

1− β̃
t ,1− β̊

t

)λ , p̊
t−t
(

1− γ̃
t ,1− γ̊

t

)λ


It is clear that these operational result are still LNCNs.

Definition 10. Let g̊ =
(

p̊(α̃,α̊), p̊(β̃,β̊), p̊(γ̃,γ̊)

)
, be an LNCN that depends on LTS, p̊. Then, the score function,

accuracy function and certain function of the LNCN, g̊, are defined as follows:
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(i):

ϕ(g̊) = ϕ
(

p̊(α̃,α̊), p̊(β̃,β̊), p̊(γ̃,γ̊)

)
=

1
9t
[
(

4t + p̊α̃ − p̊β̃ − p̊γ̃

)
+
(

2t + p̊α̊ − p̊β̊ − p̊γ̊

)
], for ϕ(g̊) ∈ [0, 1] (12)

(ii):

Φ(g̊) =
1
3t
[( p̊α̃ − p̊γ̃) +

(
p̊α̊ − p̊γ̊

)
], for Φ(g̊) ∈ [−1, 1] (13)

(iii):

Ψ(g̊) =
p̊α̃ + p̊α̊

3t
for Ψ(g̊) ∈ [0, 1]. (14)

Now, with the help of the above-defined function, we introduce a ranking method for these
function.

Definition 11. Let two LNCNs be g̊1 =
(

p̊(α̃1,α̊1)
, p̊(β̃1,β̊1)

, p̊(γ̃1,γ̊1)

)
and

g̊2 =
(

p̊(α̃2,α̊2), p̊(β̃2,β̊2), p̊(γ̃2,γ̊2)

)
. Then, their ranking method is defined as:

1. If ϕ(g̊1) > ϕ(g̊2), then g̊1 � g̊2,
2. If ϕ(g̊1) = ϕ(g̊2) and Φ(g̊1) > Φ(g̊2), then g̊1 � g̊2,
3. If ϕ(g̊1) = ϕ(g̊2), Φ(g̊1) = Φ(g̊2) and Ψ(g̊1) > Ψ(g̊2), then g̊1 � g̊2,
4. If ϕ(g̊1) = ϕ(g̊2), Φ(g̊1) = Φ(g̊2) and Ψ(g̊1) = Ψ(g̊2), then g̊1 ∼ g̊2.

Example 1. Let g̊1 =
(

p̊(α̃1,α̊1)
, p̊(β̃1,β̊1)

, p̊(γ̃1,γ̊1)

)
, g̊2 =

(
p̊(α̊2,α̊2), p̊(β̊2,β̊2), p̊(γ̊2,γ̊2)

)
and g̊3 =(

p̊(α̃3,α̊3), p̊(β̃3,β̊3), p̊(γ̃3,γ̊3)

)
be three LNCNs in the linguistic term set ϕ = {ϕg̊ | g̊ ∈ [0, 8]} where

g̊1 = ([0.2, 0.3] , [0.4, 0.5] , [0.3, 0.5] , (0.1, 0.2, 0.3)) , g̊2 = ([0.3, 0.4] , [0.4, 0.5] , [0.5, 0.6] , (0.2, 0.4, 0.6)) ,
g̊3 = ([0.4, 0.5] , [0.4, 0.6] , [0.5, 0.7] , (0.2, 0.3, 0.5)) , then we will find the values of their score, accuracy
and certain function as follows:

(i) Score functions:

ϕ(g̊) =
1
9t
[
(

4t + p̊α̃ − p̊β̃ − p̊γ̃

)
+
(

2t + p̊α̊ − p̊β̊ − p̊γ̊

)
], for ϕ(g̊) ∈ [0, 1]

ϕ(g̊1) =
[32 + 0.2 + 0.3− (0.4 + 0.5 + 0.3 + 0.5) + 16 + 0.1− (0.2 + 0.3)]

72
= 0.644

ϕ(g̊2) =
[32 + 0.3 + 0.4− (0.4 + 0.5 + 0.5 + 0.6) + 16 + 0.2− (0.4 + 0.6)]

72
= 0.6375

ϕ(g̊3) =
[32 + 0.4 + 0.5− (0.4 + 0.6 + 0.5 + 0.7) + 16 + 0.2− (0.3 + 0.5)]

72
= 0.638
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(ii) Accuracy functions:

Φ(g̊) =
1
3t
[( p̊α̃ − p̊γ̃) +

(
p̊α̊ − p̊γ̊

)
], for Φ(g̊) ∈ [−1, 1]

Φ(g̊1) =
[0.2 + 0.3− (0.3 + 0.5) + 0.1− 0.3]

24
= −0.0208

Φ(g̊2) =
[0.3 + 0.4− (0.5 + 0.6) + 0.2− 0.6]

24
= −0.0333

Φ(g̊3) =
[0.4 + 0.5− (0.6 + 0.7) + 0.3− 0.5]

24
= −0.0292

(iii) Certain functions:

Ψ(g̊) =
p̊α̃ + p̊α̊

3t
for Ψ(g̊) ∈ [0, 1]

Ψ(g̊1) =
[0.2 + 0.3 + 0.1]

24
= 0.025

Ψ(g̊2) =
[0.3 + 0.4 + 0.2]

24
= 0.0375

Ψ(g̊3) =
[0.4 + 0.5 + 0.2]

24
= 0.0416

Definition 12. Suppose (ũı̂, uı̂) where ı̂ = 1, 2, . . . , n is an assortment of non-negative real numbers and
parameter k̊ = 1, 2, . . . , n. Then, the cubic Hamy mean (CHM) is defined as follows:

CHMk̊(ũı̂, uı̂) =

∑
1≤ı̂1<...ı̂k̊≤n

(
k̊

∏
j=1

ũı̂j ,
k̊

∏
j=1

uı̂j

) 1
k̊

(n
k̊)

(15)

where
(
ı̂1, ı̂2, . . . , ı̂k̊

)
navigate all the k-tuple arrangements of (1, 2, . . . , n.), (n

k̊) is the binomial coefficient and
(n

k̊) =
n!

k̊!(n−k̊)!
.

Example 2. Let (ũı̂, uı̂) = ((ũ1, u1), (ũ2, u2)) i = 1, 2 and k = 1, where u1 = ([0.2, 0.4] , (0.6)) , u2 =

([0.3, 0.5] , (0.7)) .
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CHM1 ((ũ1, u1), (ũ2, u2))

=
∑ (((ũ11, u11)(ũ22, u22)))

1

(2
1)

=
(((ũ11, u11)(ũ22, u22)))

1 + (((ũ11, u11)(ũ22, u22)))
1

(2
1)

=

∑
(

(([0.2, 0.4] , (0.6)) ([0.2, 0.4] , (0.6)))
(([0.3, 0.5] , (0.7)) ([0.3, 0.5] , (0.7)))

)1

(2
1)

=

(
(([0.2, 0.4] , (0.6)) ([0.2, 0.4] , (0.6)))
(([0.3, 0.5] , (0.7)) ([0.3, 0.5] , (0.7)))

)1

+

(
(([0.2, 0.4] , (0.6)) ([0.2, 0.4] , (0.6)))
(([0.3, 0.5] , (0.7)) ([0.3, 0.5] , (0.7)))

)1

(2
1)

=

(([0.04, 0.16] , (0.84)) ([0.09, 0.25] , (0.91)))
+ (([0.04, 0.16] , (0.84)) ([0.09, 0.25] , (0.91)))

(2
1)

=

(
([0.004, 0.04] , (0.98))
+ ([0.004, 0.04] , (0.98))

)
(2

1)

=
([0.008, 0.08] , (0.96))

(2
1)

= ([0.004, 0.04] , (0.48))

Definition 13. Suppose (g̃ı̂, g̊ı̂) where ı̂ = 1, 2, . . . , n. is an assortment of linguistic neutrosophic cubic
numbers and parameter k̊ = 1, 2, . . . , n. Then, the LNCHM operator is defined as follows:

LNCHMk̊(g̃ı̂, g̊ı̂) =

∑
1≤ı̂1<...ı̂k̊≤n

(
k̊

∏
j=1

g̊ı̂j ,
k̊

∏
j=1

g̊ı̂j

) 1
k̊

(n
k̊)

(16)

where
(
ı̂1, ı̂2, . . . , ı̂k̊

)
navigate all the k-tuple arrangements of (1, 2, . . . , n.), (n

k̊) is the binomial coefficient and
(n

k̊) =
n!

k̊!(n−k̊)!
.

Example 3. Let (g̃ı̂, g̊ı̂) = ((g̃1, g̊2), (g̃2, g̊2)) i = 1, 2 and k = 1, where g̃1 =

([0.2, 0.4] , [0.3, 0.4] , [0.4, 0.6] , (0.6, 0.5, 0.8)) , g̃2 = ([0.3, 0.5] , [0.4, 0.7] , [0.2, 0.4] , (0.7, 0.8, 0.6)) ,
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LNCHM1 ((g̃1, g̊2), (g̃2, g̊2))

=
∑ (((g̃11, g̊11), (g̃22, g̊22)))

1

(2
1)

=
(((g̃11, g̊11)(g̃22, g̊22)))

1 + (((g̃11, g̊11)(g̃22, g̊22)))
1

(2
1)

=

∑


(

([0.2, 0.4] , [0.3, 0.4] , [0.4, 0.6] , (0.6, 0.5, 0.8))
([0.2, 0.4] , [0.3, 0.4] , [0.4, 0.6] , (0.6, 0.5, 0.8))

)
(

([0.3, 0.5] , [0.4, 0.7] , [0.2, 0.4] , (0.7, 0.8, 0.6))
([0.3, 0.5] , [0.4, 0.7] , [0.2, 0.4] , (0.7, 0.8, 0.6))

)


1

(2
1)

=


(

([0.2, 0.4] , [0.3, 0.4] , [0.4, 0.6] , (0.6, 0.5, 0.8))
([0.2, 0.4] , [0.3, 0.4] , [0.4, 0.6] , (0.6, 0.5, 0.8))

)
(

([0.3, 0.5] , [0.4, 0.7] , [0.2, 0.4] , (0.7, 0.8, 0.6))
([0.3, 0.5] , [0.4, 0.7] , [0.2, 0.4] , (0.7, 0.8, 0.6))

)


1

+


(

([0.2, 0.4] , [0.3, 0.4] , [0.4, 0.6] , (0.6, 0.5, 0.8))
([0.2, 0.4] , [0.3, 0.4] , [0.4, 0.6] , (0.6, 0.5, 0.8))

)
(

([0.3, 0.5] , [0.4, 0.7] , [0.2, 0.4] , (0.7, 0.8, 0.6))
([0.3, 0.5] , [0.4, 0.7] , [0.2, 0.4] , (0.7, 0.8, 0.6))

)


1

(2
1)

=

(
([0.04, 0.16] , [0.09, 0.16] , [0.16, 0.36] , (0.84, 0.75, 0.96))
([0.09, 0.25] , [0.16, 0.49] , [0.04, 0.16] , (0.91, 0.96, 0.84))

)

+

(
([0.04, 0.16] , [0.09, 0.16] , [0.16, 0.36] , (0.84, 0.75, 0.96))
([0.09, 0.25] , [0.16, 0.49] , [0.04, 0.16] , (0.91, 0.96, 0.84))

)
(2

1)

=

(
([0.004, 0.04] , [0.014, 0.08] , [0.006, 0.06] , (0.98, 0.99, 0.99))
+ ([0.004, 0.04] , [0.014, 0.08] , [0.006, 0.06] , (0.98, 0.99, 0.99))

)
(2

1)

=
([0.008, 0.08] , [0.03, 0.2] , [0.012, 0.12] , (0.96, 0.98, 0.98))

(2
1)

= ([0.004, 0.04] , [0.02, 0.1] , [0.006, 0.06] , (0.48, 0.49, 0.49))

Theorem 1. Let (g̃ı̂, g̊ı̂) =
(

p̊(α̃ı̂ ,α̊ı̂), p̊(β̃ ı̂ ,β̊ ı̂), p̊(γ̃ı̂ ,γ̊ı̂)

)
(ı̂ = 1, 2, . . . , n) be an arrangement of LNCNs, then

the accumulated value from Definition 13 is obviously an LNCN, and:

LNCHMk̊(g̃ı̂, g̊ı̂) (17)

=



p̊

t−t


∏

1≤ı̂1<...ı̂k̊≤n


1−



k̊

∏
j=1

α̃ı̂j

tk̊
,

k̊

∏
j=1

α̊ı̂j

tk̊



1
k̊




1
(
n
k̊)

, p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−


k̊

∏
j=1

(
1−

β̃ı̂j
t ,1− β̊ı̂j

t

)
1
k̊





1
(
n
k̊)

,

p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−

γ̃ı̂j
t ,1− γ̊ı̂j

t

)
1
k̊




1
(
n
k̊)
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Proof. According to Equations (1)–(4), we have:

(
k̊

∏
j=1

g̃ı̂j ,
k̊

∏
j=1

g̊ı̂j

)
=


p̊

k̊

∏
j=1

α̊ı̂j

tk̊−1
,

k̊

∏
j=1

α̊ı̂j

tk̊−1

, p̊
t−t

k̊

∏
j=1

(
1−

β̊ı̂j
t ,1−

β̊ı̂j
t

), p̊
t−t

k̊

∏
j=1

(
1−

γ̊j
t ,1−

γ̊ı̂j
t

)



(
k̊

∏
j=1

g̃ı̂j ,
k̊

∏
j=1

g̊ı̂j

) 1
k̊

=


p̊

 k̊

∏
j=1

α̃ı̂j

tk̊
,

k̊

∏
j=1

α̊ı̂j

tk̊



1
k̊

, p̊

t−t

 k̊

∏
j=1

(
1−

β̃ı̂j
t ,1−

β̊ı̂j
t

)
1
k̊

, p̊

t−t

 k̊

∏
j=1

(
1−

γ̃ı̂j
t ,1−

γ̊ı̂j
t

)
1
k̊



∑
1≤ı̂1<...ı̂k̊≤n

(
k̊

∏
j=1

g̃ı̂j ,
k̊

∏
j=1

g̊ı̂j

) 1
k̊

=



p̊

t−t ∏
1≤ı̂1<...ı̂k̊≤n


1−



k̊

∏
j=1

α̃ı̂j

tk̊
,

k̊

∏
j=1

α̊ı̂j

tk̊



1
k̊



, p̊

t ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−

β̃ı̂j
t ,1−

β̊ı̂j
t

)
1
k̊


,

p̊

t ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−

γ̃ı̂j
t ,1−

γ̊ı̂j
t

)
1
k̊




Then, we obtain:

1
(n

k̊)
∑

1≤ı̂1<...ı̂k̊≤n

(
k̊

∏
j=1

g̃ı̂j ,
k̊

∏
j=1

g̊ı̂j

) 1
k̊

=



p̊

t−t


∏

1≤ı̂1<...ı̂k̊≤n


1−



k̊

∏
j=1

α̃ı̂j

tk̊
,

k̊

∏
j=1

α̊ı̂j

tk̊



1
k̊





1
(
n
k̊)

, p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−

β̃ı̂j
t ,1− β̊ı̂j

t

)
1
k̊




1
(
n
k̊)

,

p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−

γ̃ı̂j
t ,1− γ̊ı̂j

t

)
1
k̊




1
(
n
k̊)
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Therefore,

LNCHMk̊(g̊ı̂, g̊ı̂)

=



p̊

t−t


∏

1≤ı̂1<...ı̂k̊≤n


1−



k̊

∏
j=1

α̃ı̂j

tk̊
,

k̊

∏
j=1

α̊ı̂j

tk̊



1
k̊





1
(
n
k̊)

, p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−

β̃ı̂j
t ,1−

β̊ı̂j
t

)
1
k̊




1
(
n
k̊)

,

p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−

γ̃ı̂j
t ,1−

γ̊ı̂j
t

)
1
k̊




1
(
n
k̊)


In addition, since:

0 ≤ t− t

 ∏
1≤ı̂1<...ı̂k̊≤n


1−


k̊

∏
j=1

α̃ı̂j

tk̊
,

k̊

∏
j=1

α̊ı̂j

tk̊



1
k̊





1
(
n
k̊)

≤ t,

0 ≤ t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−
(

k̊

∏
j=1

(
1−

β̃ ı̂j

t
, 1−

β̊ ı̂j

t

)) 1
k̊




1
(
n
k̊)

≤ t,

0 ≤ t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−
(

k̊

∏
j=1

(
1−

γ̃ı̂j

t
, 1−

γ̊ı̂j

t

)) 1
k̊




1
(
n
k̊)

≤ t,

Therefore, 

p̊

t−t


∏

1≤ı̂1<...ı̂k̊≤n


1−



k̊

∏
j=1

α̃ı̂j

tk̊
,

k̊

∏
j=1

α̊ı̂j

tk̊



1
k̊





1
(
n
k̊)

,

p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−

β̃ı̂j
t ,1−

β̊ı̂j
t

)
1
k̊




1
(
n
k̊)

,

p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−

γ̃ı̂j
t ,1−

γ̊ı̂j
t

)
1
k̊




1
(
n
k̊)


is also an LNCN.

Example 4. Let p̊ = { p̊0, p̊1, p̊2, p̊3, p̊4} be an LTS with odd cardinality t + 1 and g̊1 = ( p̊3, p̊2, p̊1), g̊2 =

( p̊4, p̊3, p̊1, ), be two LNCNsbased on p̊. Then, we can use the suggested LNCHM operator to aggregate these
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two LNCNs (suppose k̊ = 2) and to produce an inclusive value LNCHM(k̊)(g̊1, g̊2) =
(

p̊(α̃,α̊), p̊(β̃,β̊), p̊(γ̃,γ̊)

)
described as follows; where:

(g̊1, g̊2) =

(
([0.2, 0.3], [0.2, 0.5], [0.2, 0.5], (0.9, 0.7, 0.9)) ,
([0.4, 0.5], [0.3, 0.5], [0.3, 0.5], (0.8, 0.8, 0.6))

)
(i):

1
(n

k̊)
=

k̊!(n− k̊)!
n!

=
2!(2− 2)!

2!
= 1

(ii):

t− t

 ∏
1≤ı̂1<...ı̂k̊≤n


1−


k̊

∏
j=1

α̃ı̂j

tk̊
,

k̊

∏
j=1

α̊ı̂j

tk̊



1
k̊





1
(
n
k̊)

= ([0.28, 0.39], 0.17)

(iii):

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−
(

k̊

∏
j=1

(
1−

β̃ ı̂j

t
, 1−

β̊ ı̂j

t

)) 1
k̊



1
(
n
k̊)

= ([0.3, 0.5] , 0.75)

(iv):

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−
(

k̊

∏
j=1

(
1−

γ̃ı̂j

t
, 1−

γ̊ı̂j

t

)) 1
k̊




1(
n
k̊

)

= ([0.3, 0.5] , 0.74)

Therefore, we get:

LNCM2(g̃1, g̊2) =
(

p̊(α̃,α̊), p̊(β̃,β̊), p̊(γ̃,γ̊)

)
= ([0.28, 0.39], [0.3, 0.5] , [0.3, 0.5] , (0.17, 0.75, 0.74)).

Now, we will study some of the ideal properties of LNCNs.

Property 1. (Idempotency) If (g̃ı̂, g̊ı̂) = (g̃, g̊) =
(

p̊(α̃,α̊), p̊(β̃,β̊), p̊(γ̃,γ̊)

)
∀ (ı̂ = 1, 2, . . . , n), then:

LNCHMk̊(g̃, g̊) =
(

p̊(α̃,α̊), p̊(β̃,β̊), p̊(γ̃,γ̊)

)
(18)
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Proof. Since (g̃, g̊) =
(

p̊(α̃,α̊), p̊(β̃,β̊), p̊(γ̃,γ̊)

)
, based on Theorem 1, we have:

LNCHMk̊(g̃, g̊)

=



p̊

t−t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−
(

α̃k̊

tk̊
, α̊k̊

tk̊

) 1
k̊




1
(
n
k̊)

, p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−
((

1− β̃
t ,1− β̊

t

)k̊
) 1

k̊




1
(
n
k̊)

,

p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−
((

1− γ̃
t ,1− γ̊

t

)k̊
) 1

k̊




1
(
n
k̊)



=

 p̊
t−t
(
(1−( α̃

t , α̊
t ))

(
n
k̊)
) 1

(
n
k̊)

, p̊

t

(1−
(

1− β̃
t ,1− β̊

t

))(
n
k̊)
 1

(
n
k̊)

, p̊
t

((
1−
(

1− γ̃
t ,1− γ̊

t

))(nk̊)) 1
(
n
k̊)


=

 p̊t−t(1−( α̃
t , α̊

t ))
, p̊

t
(

1−
(

1− β̃
t ,1− β̊

t

)), p̊
t
(

1−
(

1− γ̃
t ,1− γ̊

t

))


=
(

p̊(α̃,α̊), p̊(β̃,β̊), p̊(γ̃,γ̊)

)
= (g̃, g̊)

Property 2. (Commutativity) Let (g̃ı̂, g̊ı̂) for all (ı̂ = 1, 2, . . . , n) be an assortment of LNCNs and (g̃′ı̂ , g̊′ı̂) be
any permutation of (g̃ı̂, g̊ı̂), then:

LNCHMk̊(g̃′ı̂ , g̊′ı̂) = LNCHMk̊(g̃ı̂, g̊ı̂) (19)

Proof. The conclusion is obvious, because Property 2 depends on Definition 13.

LNCHMk̊(g̃′ı̂ , g̊′ı̂) =

∑
1≤ı̂1<...ı̂k̊≤n

 k̊

∏
j=1ı̂j

g̃ı̂j ,
k̊

∏
j=1

g̊′ı̂j

 1
k̊

(n
k̊)

=

∑
1≤ı̂1<...ı̂k̊≤n

(
k̊

∏
j=1

g̃ı̂j ,
k̊

∏
j=1

g̊ı̂j

) 1
k̊

(n
k̊)

= LNCHMk̊(g̃ı̂, g̊ı̂)

Property 3. (Monotonicity) Let
(g̃ı̂, g̊ı̂) =

(
p̊(α̊ı̂ ,α̊ı̂), p̊(β̊ ı̂ ,β̊ ı̂), p̊(γ̊ı̂ ,γ̊ı̂)

)
,
(

f̃ ı̂, f ı̂
)

=
(

p̊(q̃ı̂ ,qı̂), p̊(r̃ı̂ ,rı̂), p̊(s̃ı̂ ,sı̂)

)
(ı̂ = 1, 2, . . . , n) be two

collections of LNCNs; if (α̃ı̂, α̊ı̂) ≤ (q̃ı̂, qı̂), (β̃ ı̂, β̊ ı̂) ≤ (r̃ı̂, rı̂), (γ̃ı̂, γ̊ı̂) ≤ (s̃ı̂, sı̂) for all ı̂, then:

LNCHMk̊(g̊ı̂, g̊ı̂) ≤ LNCHMk̊ ( f̃ ı̂, f ı̂
)

(20)

Proof. Since 0 ≤ (α̃ı̂, α̊ı̂) ≤ (q̃ı̂, qı̂), (β̃ ı̂, β̊ ı̂) ≥ (r̃ı̂, rı̂) ≥ 0, (γ̃ı̂, γ̊ı̂) ≥ (s̃ı̂, sı̂) ≥ 0, t ≥ 0 and according to
Theorem 1, we get:
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t− t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−


k̊

∏
j=1

α̃ı̂j

tk̊
,

k̊

∏
j=1

α̊ı̂j

tk̊



1
k̊




1
(
n
k̊)

≤ t− t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−


k̊

∏
j=1

q̃ı̂j

tk̊
,

k̊

∏
j=1

qı̂j

tk̊



1
k̊




1
(
n
k̊)

,

− t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

1−
β̃ ı̂j

t
, 1−

β̊ ı̂j

t

 1
k̊



1
(
n
k̊)

≤ −t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−
(

k̊

∏
j=1

(
1−

r̃ı̂j

t
, 1−

rı̂j

t

)) 1
k̊




1
(
n
k̊)

,

− t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−
(

k̊

∏
j=1

(
1−

γ̃ı̂j

t
, 1−

γ̊ı̂j

t

)) 1
k̊




1
(
n
k̊)

≤ −t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−
(

k̊

∏
j=1

(
1−

s̃ı̂j

t
, 1−

sı̂j

t

)) 1
k̊




1
(
n
k̊)

.

Let (g̃, g̊) = LNCHMk̊(g̃ı̂, g̊ı̂),
(

f̃, f
)
= LNCHMk̊ ( f̃ ı̂, f ı̂

)
and ψ(g̊) and Ψ( f ) be the score functions

of g̊ and f . According to the score value in Definition 11 and the above inequality, we can simply have
ψ(g̊) ≤ Ψ( f ). Then, in the following, we argue some cases:

1. If ψ(g̊) ≤ Ψ( f ), we can obtain LNCHMk̊(g̃ı̂, g̊ı̂) ≤ LNCHMk̊ ( f̃ ı̂, f ı̂
)

;
2. if ψ(g̊) = Ψ( f ), then:

2t + t− t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−


k̊

∏
j=1

α̃ı̂j

tk̊
,

k̊

∏
j=1

α̊ı̂j

tk̊



1
k̊




1
(
n
k̊)

−t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−
(

k̊

∏
j=1

(
1−

β̃ ı̂j
t , 1−

β̊ ı̂j
t

)) 1
k̊




1
(
n
k̊)

−t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−
(

k̊

∏
j=1

(
1−

γ̃ı̂j
t , 1−

γ̊ı̂j
t

)) 1
k̊




1
(
n
k̊)

3t

=

2t + t− t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−


k̊

∏
j=1

q̃ı̂j

tk̊
,

k̊

∏
j=1

qı̂j

tk̊



1
k̊




1
(
n
k̊)

−t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−
(

k̊

∏
j=1

(
1−

r̃ı̂j
t , 1−

rı̂j
t

)) 1
k̊




1
(
n
k̊)

−t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−
(

k̊

∏
j=1

(
1−

s̃ı̂j
t , 1−

sı̂j
t

)) 1
k̊




1
(
n
k̊)

3t
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Since 0 ≤ (α̊ı̂, α̊ı̂) ≤ (q̃ı̂, qı̂), (β̊ ı̂, β̊ ı̂) ≥ (r̃ı̂, rı̂) ≥ 0, (γ̊ı̂, γ̊ı̂) ≥ (s̃ı̂, sı̂) ≥ 0, t ≥ 0, we can assume that:

t− t

 ∏
1≤ı̂1<...ı̂k̊≤n


1−


k̊

∏
j=1

α̃ı̂j

tk̊
,

k̊

∏
j=1

α̊ı̂j

tk̊



1
k̊





1
(
n
k̊)

= t− t

 ∏
1≤ı̂1<...ı̂k̊≤n


1−


k̊

∏
j=1

q̃ı̂j

tk̊
,

k̊

∏
j=1

qı̂j

tk̊



1
k̊





1
(
n
k̊)
′

− t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−
(

k̊

∏
j=1

(
1−

γ̃ı̂j

t
, 1−

γ̊ı̂j

t

)) 1
k̊




1
(
n
k̊)

= −t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−
(

k̊

∏
j=1

(
1−

s̃ı̂j

t
, 1−

sı̂j

t

)) 1
k̊




1
(
n
k̊)

,

and based on the accuracy value in Definition 11, then Φ(g̊) = Φ( f ). Finally, we get:

LNCHMk̊(g̃ı̂, g̊ı̂) ≤ LNCHMk̊ ( f̃ ı̂, f ı̂
)

Property 4. (Boundedness) Let (g̃ı̂, g̊ı̂) = ( p̊α̃′ı̂
, p̊β̃′ı̂

, p̊γ̃′ı̂
, p̊α̊ı̂ , p̊β̊ ı̂

, p̊γ̊ı̂)(ı̂ = 1, 2, . . . , n) be the collection of
LNCNs and:

g̊+ = max( p̊max(α̃ı̂)
, p̊min(β̃ ı̂)

, p̊min(γ̃ı̂)
, p̊max(α̊ı̂)

, p̊min(β̊ ı̂)
, p̊min(γ̊ı̂)

),

g̊− = min(g̃ı̂, g̊ı̂) = ( p̊min(α̃ı̂)
, p̊max(β̃ ı̂)

, p̊max(γ̃ı̂)
,

p̊min(α̊ı̂)
, p̊max(β̊ ı̂)

, p̊max(γ̊ı̂)
),

then
g̊− ≤ LNCHMk̊(g̃ı̂, g̊ı̂) ≤ g̊+ (21)

Proof. Based on Properties 1 and 3, we have:

LNCHMk̊(g̃ı̂, g̊ı̂) ≥ LNCHMk̊(g̃−ı̂ , g̊−ı̂ ) = g̊−

LNCHMk̊(g̃ı̂, g̊ı̂) ≤ LNCHMk̊(g̃+ı̂ , g̊+ı̂ ) = g̊+.

The proof is completed.

In addition, we will deliberate about some desirable cases of the LNCHM operator for the
parameter k̊.
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1. When k̊ = 1, the LNCHM operator in (16) will be reduced to the LNCHA (linguistic neutrosophic
cubic Hamy averaging) operator:

LNCHM1(g̃ı̂, g̊ı̂) =

∑
1≤ı̂1≤n

(
1

∏
j=1

g̃ı̂j ,
1

∏
j=1

g̊ı̂j

) 1
1

(n
1)

=



p̊

t−t

 ∏
1≤ı̂1≤n

1−

 1

∏
j=1

α̃ı̂j ,
1

∏
j=1

α̊ı̂j


1
1



1
(n1)

, p̊

t

 ∏
1≤ı̂1≤n

1−

 1

∏
j=1

(
1−

β̃ı̂j
t ,1−

β̊ı̂j
t

)
1
1



1
(n1)

,

p̊

t

 ∏
1≤ı̂1≤n

1−

 1

∏
j=1

(
1−

γ̃ı̂j
t ,1−

γ̊ı̂j
t

)
1
1



1
(n1)


(22)

=

 p̊

t−t

 1

∏
j=1

(1−α̃ı̂ ,1−α̊ı̂)


1
n

, p̊

t

 1

∏
j=1

(
β̃ı̂
t , β̊ı̂

t

)
1
n

, p̊

t

 1

∏
j=1

(
γ̃ı̂
t , γ̊ı̂

t

)
1
n


(let ı̂1 = ı̂) =

1
n

n

∑̂
ı=1

g̊ı̂ = LNCA(g̃ı̂, g̊ı̂)

2. When k̊ = n, the LNCHM operator in (16) will reduce to the LNCHA (linguistic neutrosophic
cubic Hamy averaging) operator:

LNCMn(g̃ı̂, g̊ı̂) =

∑
1≤ı̂1<...ı̂k̊≤n

(
n

∏
j=1

g̃ı̂j,
n

∏
j=1

g̊ı̂j

) 1
n

(n
n)

=



p̊

t−t


∏

1≤ı̂1<...ı̂k̊≤n


1−



n

∏
j=1

α̃ı̂j

tn ,

n

∏
j=1

α̊ı̂j

tn



1
n




1
(nn)

,

p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 n

∏
j=1

(
1−

β̃ı̂j
t ,1− β̊ı̂j

t

)
1
n



1
(nn)

,

p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 n

∏
j=1

(
1−

γ̃ı̂j
t ,1−

γ̊ı̂j
t

)
1
n



1
(nn)



(23)
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=



p̊

t−t


1−



n

∏
j=1

α̃ı̂j

tn ,

n

∏
j=1

α̊ı̂j

tn



1
n


, p̊

t

1−

 n

∏
j=1

(
1−

β̃ı̂j
t ,1− β̊ı̂j

t

)
1
n


,

p̊

t

1−

 n

∏
j=1

(
1−

γ̃ı̂j
t ,1−

γ̊ı̂j
t

)
1
n




=


p̊

t



n

∏
j=1

α̃ı̂j

tn ,

n

∏
j=1

α̊ı̂j

tn



1
n

, p̊

t−t

 n

∏
j=1

(
1−

β̃ı̂j
t ,1− β̊ı̂j

t

)
1
n

, p̊

t−t

 n

∏
j=1

(
1−

γ̃ı̂j
t ,1−

γ̊ı̂j
t

)
1
n


let
(
ı̂j = ı̂

)
=

n

∏̂
ı=1

g̊
1
n
ı̂ = LNG(g̃ı̂, g̊ı̂)

Definition 14. Suppose (g̊ı̂, g̊ı̂) where ı̂ = 1, 2, . . . , n. is an assortment of linguistic neutrosophic cubic
numbers and parameter k̊ = 1, 2, . . . , n. and ẘ = (ẘ1, ẘ2 . . . , ẘn)T the weight vector of ı̂ı̂ with ẘı̂ ∈ [0, 1] and

n

∑̂
ı=1

ẘı̂ = 1, then the WLNCHM operator is defined as:

WLNCHMk̊(g̃ı̂, g̊ı̂) =

∑
1≤ı̂1<...ı̂k̊≤n

(
k̊

∏
j=1

ẘı̂j g̃ı̂j,
k̊

∏
j=1

ẘı̂j g̊ı̂j

) 1
k̊

(n
k̊)

(24)

where
(
ı̂1, ı̂2, . . . , ı̂k̊

)
navigate all the k-tuple arrangements of (1, 2, . . . , n̊), (n

k̊) is the binomial coefficient and
(n

k̊) =
n!

k̊!(n−k̊)!
.

Example 5. Let (g̃ı̂, g̊ı̂) = ((g̃1, g̊1), (g̃2, g̊2)) i = 1, 2 and k = 1, where g̃1 =

([0.2, 0.4] , [0.3, 0.4] , [0.4, 0.6] , (0.6, 0.5, 0.8)) , g̃2 = ([0.3, 0.5] , [0.4, 0.7] , [0.2, 0.4] , (0.7, 0.8, 0.6)) and ẘ =

(0.5, 0.5):
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WLNCHM1 ((g̃1, g̊2), (g̃2, g̊2))

=
∑ (((ẘ11 g̃11, ẘ11 g̊11)(ẘ22 g̃22, ẘ22 g̊22)))

1

(2
1)

=
(((ẘ11 g̃11, ẘ11 g̊11), (ẘ22 g̃22, ẘ22 g̊22)))

1 + (((ẘ11 g̃11, ẘ11 g̊11), (ẘ22 g̃22, ẘ22 g̊22)))
1

(2
1)

=

∑


(0.5) (0.5)

(
([0.2, 0.4] , [0.3, 0.4] , [0.4, 0.6] , (0.6, 0.5, 0.8))
([0.2, 0.4] , [0.3, 0.4] , [0.4, 0.6] , (0.6, 0.5, 0.8))

)

(0.5) (0.5)

(
([0.3, 0.5] , [0.4, 0.7] , [0.2, 0.4] , (0.7, 0.8, 0.6))
([0.3, 0.5] , [0.4, 0.7] , [0.2, 0.4] , (0.7, 0.8, 0.6))

)


1

(2
1)

=


(0.5) (0.5)

(
([0.2, 0.4] , [0.3, 0.4] , [0.4, 0.6] , (0.6, 0.5, 0.8))
([0.2, 0.4] , [0.3, 0.4] , [0.4, 0.6] , (0.6, 0.5, 0.8))

)

(0.5) (0.5)

(
([0.3, 0.5] , [0.4, 0.7] , [0.2, 0.4] , (0.7, 0.8, 0.6))
([0.3, 0.5] , [0.4, 0.7] , [0.2, 0.4] , (0.7, 0.8, 0.6))

)


1

+


(0.5) (0.5)

(
([0.2, 0.4] , [0.3, 0.4] , [0.4, 0.6] , (0.6, 0.5, 0.8))
([0.2, 0.4] , [0.3, 0.4] , [0.4, 0.6] , (0.6, 0.5, 0.8))

)

(0.5) (0.5)

(
([0.3, 0.5] , [0.4, 0.7] , [0.2, 0.4] , (0.7, 0.8, 0.6))
([0.3, 0.5] , [0.4, 0.7] , [0.2, 0.4] , (0.7, 0.8, 0.6))

)


1

(2
1)

=

(
([0.003, 0.01] , [0.006, 0.01] , [0.01, 0.023] , (0.3, 0.23, 0.2))
([0.006, 0.02] , [0.01, 0.034] , [0.03, 0.01] , (0.32, 0.2, 0.3))

)

+

(
([0.003, 0.01] , [0.006, 0.01] , [0.01, 0.023] , (0.3, 0.23, 0.2))
([0.006, 0.02] , [0.01, 0.034] , [0.03, 0.01] , (0.32, 0.2, 0.3))

)
(2

1)

=

(
([0.00002, 0.0002] , [0.00006, 0.00034] , [0.0003, 0.0023] , (0.52, 0.4, 0.44))
+ ([0.00002, 0.0002] , [0.00006, 0.00034] , [0.0003, 0.0023] , (0.52, 0.4, 0.44))

)
(2

1)

=
([0.00004, 0.0004] , [0.00012, 0.0007] , [0.0006, 0.005] , (0.3, 0.2, 0.23))

(2
1)

= ([0.00002, 0.0002] , [0.00006, 0.0004] , [0.0003, 0.003] , (0.2, 0.1, 0.12))

Depending on the operations of LNCNs that were given in the above Equations (1)–(4), with the help of
Equation (24), we can formulate the following theorem.

Theorem 2. Let (g̃ı̂, g̊ı̂) = ( p̊(α̃,α̊), p̊(β̃,β̊), p̊(γ̃,γ̊))(ı̂ = 1, 2, . . . , n) be the collection of LNCNs, ẘ =

(ẘ1, ẘ2 . . . , ẘn)T be the weight vector of ı̂ı̂ with ẘı̂ ∈ [0, 1], ı̂ = 1, 2, . . . , n and
n

∑̂
ı=1

ẘı̂ = 1. Then, the

accumulated value acquired from the WLNCM operator in Equation (24) is obviously an LNCN, and:
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WLNCM(g̃ı̂, g̊ı̂) (25)

=



p̊

t−t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−
(

1−
α̃ı̂j
t ,1−

α̊ı̂j
t

)ẘı̂j
)

1
k̊




1
(
n
k̊)

,

p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−
(

β̃ı̂j
t , β̊ı̂j

t

)ẘı̂j
)

1
k̊




1
(
n
k̊)

,

p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−
(

γ̃ı̂j
t , γ̊ı̂j

t

)ẘı̂j
)

1
k̊




1
(
n
k̊)


Proof. According to the operational law of LNCNs, we have:

ẘı̂j g̊ı̂j =

 p̊
t−t
(

1−
α̃ı̂j
t ,1−

α̊ı̂j
t

)ẘı̂j , p̊
t
(

β̃ı̂j
t , β̊ı̂j

t

)ẘı̂j , p̊
t
(

γ̃ı̂j
t , γ̊ı̂j

t

)ẘı̂j

 ,

k̊

∏
j=1

ẘı̂j g̊ı̂j

=

 p̊
t

k̊

∏
j=1

(
1−
(

1−
α̃ı̂j
t ,1−

α̊ı̂j
t

)ẘı̂j
), p̊

t−t
k̊

∏
j=1

(
1−
(

β̃ı̂j
t , β̊ı̂j

t

)ẘı̂j
), p̊

t−t
k̊

∏
j=1

(
1−
(

γ̃ı̂j
t , γ̊ı̂j

t

)ẘı̂j
)


and: (
k̊

∏
j=1

ẘı̂j g̊ı̂j

) 1
k̊

=

 p̊

t

 k̊

∏
j=1

(
1−
(

1−
α̊ı̂j
t ,1−

α̊ı̂j
t

)ẘı̂j
)

1
k̊

, p̊

t−t

 k̊

∏
j=1

(
1−
(

β̊ı̂j
t , β̊ı̂j

t

)ẘı̂j
)

1
k̊

, p̊

t−t

 k̊

∏
j=1

(
1−
(

γ̊ı̂j
t , γ̊ı̂j

t

)ẘı̂j
)

1
k̊


then:

∑
1≤ı̂1<...ı̂k̊≤n

(
k̊

∏
j=1

g̊ı̂j

) 1
k̊

=



p̊

t−t ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−
(

1−
α̃ı̂j
t ,1−

α̊ı̂j
t

)ẘı̂j
)

1
k̊


, p̊

t ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−
(

β̃ı̂j
t , β̊ı̂j

t

)ẘı̂j
)

1
k̊


,

p̊

t ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−
(

γ̃ı̂j
t , γ̊ı̂j

t

)ẘı̂j
)

1
k̊
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1
(n

k̊)
∑

1≤ı̂1<...ı̂k̊≤n

(
k̊

∏
j=1

g̊ı̂j

) 1
k̊

=



p̊

t−t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−
(

1−
α̃ı̂j
t ,1−

α̊ı̂j
t

)ẘı̂j
)

1
k̊




1
(
n
k̊)

,

p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−
(

β̃ı̂j
t , β̊ı̂j

t

)ẘı̂j
)

1
k̊




1
(
n
k̊)

,

p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−
(

γ̃ı̂j
t , γ̊ı̂j

t

)ẘı̂j
)

1
k̊




1
(
n
k̊)


Therefore,

WLNCHM(g̃ı̂, g̊ı̂)

=



p̊

t−t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−
(

1−
α̃ı̂j
t ,1−

α̊ı̂j
t

)ẘı̂j
)

1
k̊




1
(
n
k̊)

,

p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−
(

β̃ı̂j
t , β̊ı̂j

t

)ẘı̂j
)

1
k̊




1
(
n
k̊)

,

p̊

t

 ∏
1≤ı̂1<...ı̂k̊≤n

1−

 k̊

∏
j=1

(
1−
(

γ̃ı̂j
t , γ̊ı̂j

t

)ẘı̂j
)

1
k̊




1
(
n
k̊)


which proves Theorem.

According to the operating rules of the LNCNs, the WLNCHM operators also have the same
properties in the following:

Property 5. (Commutativity) Let (g̊ı̂, g̊ı̂) for all (ı̂ = 1, 2, . . . , n) , be an assortment of LNCNs and (g̃′ı̂ , g̊′ı̂) be
any permutation of (g̃ı̂, g̊ı̂), then:

WLNCHMk̊(g̃′ı̂ , g̊′ı̂) = LNCHMk̊(g̃ı̂, g̊ı̂) (26)

Based on Definition (13), the conclusion is obvious,

WLNCHMk̊(ẘı̂j g̃′ı̂ , ẘı̂j g̊′ı̂)

=

∑
1≤ı̂1<...ı̂k̊≤n

(
k̊

∏
j=1

ẘı̂j g̃′ı̂j,
k̊

∏
j=1

ẘı̂j g̊′ı̂j

) 1
k̊

(n
k̊)

=

∑
1≤ı̂1<...ı̂k̊≤n

(
k̊

∏
j=1

ẘı̂j g̃ı̂j,
k̊

∏
j=1

ẘı̂j g̊ı̂j

) 1
k̊

(n
k̊)

= WLNCHMk̊(g̃ı̂, g̊ı̂)
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Property 6. (Monotonicity) Let (g̃ı̂, g̊ı̂) = ( p̊(α̃,α̊), p̊(β̃,β̊), p̊(γ̃,γ̊)),
(

f̃ ı̂, f ı̂
)

=
(

p̊( p̃ı̂ ,pı̂), p̊(q̃ı̂ ,qı̂), p̊(r̃ı̂ ,rı̂)

)
(ı̂ = 1, 2, . . . , n) be two collections of LNCNs; if α̃ı̂ ≤ p̃ı̂, β̃ ı̂ ≤ q̃ı̂, γ̃ı̂ ≤ r̃ı̂, and α̊ı̂ ≤ p̊ı̂, β̊ ı̂ ≤ qı̂, γ̊ı̂ ≤ rı̂ for all
ı̂, then:

WLNCHMk̊(g̃ı̂, g̊ı̂) ≤WLNCHMk̊ ( f̃ ı̂, f ı̂
)

(27)

Property 7. (Idempotency) If (g̃ı̂, g̊ı̂) = (g̃, g̊) = ( p̊(α̃,α̊), p̊(β̃,β̊), p̊(γ̃,γ̊)) for all (ı̂ = 1, 2, . . . , n), then:

WLNCHMk̊(g̊, g̊) = ( p̊(α̃,α̊), p̊(β̃,β̊), p̊(γ̃,γ̊)) (28)

Property 8. (Boundedness) Let (g̃ı̂, g̊ı̂)(ı̂ = 1, 2, . . . , n) be an assortment of LNCNs and g̊+ =

max(g̃ı̂, g̊ı̂), g̊− = min(g̃ı̂, g̊ı̂), then:

g̊− ≤WLNCHMk̊(g̃ı̂, g̊ı̂) ≤ g̊+ (29)

Based on Properties 5 and 6, we have,

WLNCHMk̊(g̃ı̂, g̊ı̂) ≥WLNCHMk̊(g̃−ı̂ , g̊−ı̂ ) = g̊−

WLNCHMk̊(g̃ı̂, g̊ı̂) ≤WLNCHMk̊(g̃+ı̂ , g̊+ı̂ ) = g̊+.

4. Entropy of LNCSs

Entropy is used to control the unpredictability in different sets like the fuzzy set (FS), intuitionistic
fuzzy set (IFS), etc. In 1965, Zadeh [37] first defined the entropy of FS to determine the ambiguity in a
quantitative manner. This notion of fuzziness plays a significant role in system optimization, pattern
classification, control and some other areas. He also gave some points of its effects in system theory.
Recently, the non-probabilistic entropy was axiomatized by Luca et al. [38]. The intuitionistic fuzzy
sets are intuitive and have been widely used in the fuzzy literature. The entropy G of a fuzzy set H
satisfies the following conditions,

1. G(H) = 0 if and only if H ∈ 2x;
2. G(H) = 1 if and only if µA(x) = 0.5, ∀x ∈ X;
3. G(H) ≤ G(ı̂) if and only if H is less fuzzy than ı̂, i.e., if µH(x) ≤ µı̂(x) ≤ 0.5, ∀x ∈ X or if

µH(x) ≥ µı̂(x) ≥ 0.5, ∀x ∈ X;
4. G(HC) = G(H).

Axioms 1–4 were expressed for fuzzy sets (known only by their membership functions), and
they are stated for the intuitionistic fuzzy sets as follows:

1. G(H) = 0 if and only if H ∈ 2x; (H non-fuzzy)
2. G(H) = 1 if and only if µH(x) = νH(x), ∀x ∈ X;
3. G(H) ≤ G(ı̂) if and only if H is less than ı̂, i.e., if µH(x) ≤ µı̂(x) and νH(x) ≥ νi(x) for µı̂(x) ≤

νi(x) or if µH(x) ≥ µı̂(x) and νH(x) ≤ νi(x) for µı̂(x) ≥ νi(x),
4. G(HC) = G(H).

Differences occur in Axiom 2 and 3.
Kaufmann [39] suggested a distance measure of soft entropy. A new non-probabilistic entropy

measure was introduced by Kosko [40]. In [41] Majumdar and Samanta introduced the notion of two
single-valued neutrosophic sets, their properties and also defined the distance between these two sets.
They also investigated the measure of entropy of a single-valued neutrosophic set. The entropy of IFSs
was introduced by Szmidt and Kacprzyk [42]. The fuzziness measure in terms of distance between the
fuzzy set and its compliment was put forward by Yager [43].
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The LNCS was examined by managing undetermined data with the truth, indeterminacy and
falsity membership function. For the neutrosophic entropy, we will trace the Kosko idea for fuzziness
calculation [40]. Kosko proposed to measure this information feature by a similarity function between
the distance to the nearest crisp element and the distance to the farthest crisp element. For neutrosophic
information, we refer the work by Patrascu [45] where he has given the following definition including
from Equation (30) to (33). It states that: the two crisp elements are (1, 0, 0) and (0, 0, 1). We consider
the following vector: B = (µ− ν, µ + ν− 1, w) . For (1, 0, 0) and (0, 0, 1), it results in BTru = (1, 0, 0)
and BFal = (−1, 0, 0) . We will now compute the distances as follows:

D (B, BTru) = |µ− ν− 1|+ |µ + ν− 1|+ w (30)

D (B, BFal) = |µ− ν + 1|+ |µ + ν− 1|+ w (31)

The neutrosophic entropy will be defined by the similarity between these two distances.
The similarity Ec and neutrosophic entropy Vc are defined as follows:

Ec = 1− |D (B, BTru)− D (B, BFal) |
D (B, BTru) + D (B, BFal)

(32)

Vc = 1− |µ− ν|
1|+ |µ + ν− 1|+ w

(33)

Definition 15. Suppose that H =
{(

xı̂, p̊(α̃H,α̊H)(xı̂), p̊(β̃H,β̊H)(xı̂)
, p̊(γ̃H,γ̊H)(xı̂)

)
| xı̂ ∈ X

}
is an LNCS;

we define the entropy of LNCS as a function Gk̊ : k̊(X) → [0, t], where t is an odd cardinality with t + 1.
The following are some conditions.

1. Gk̊(H) = 0 îf H is a crisp set;

2. Gk̊(H) = [1, 1] if and only if
˜̊αH(x)

t =
˜̊βH(x)

t =
˜̊γH(x)

t = [0.5, 0.5] and Gk̊(H) = 1 if and only if
α̊H(x)

t = β̊H(x)
t = γ̊H(x)

t = 0.5, ∀x ∈ X ;

3. Gk̊(H) ≤ Gk̊(ı̂) if and only if H is less indeterminable than ı̂, i.e., if
˜̊αH(x)

t +
˜̊γH(x)

t ≥ ˜̊αı̂(x)
t +˜̊γı̂(x)

t , α̊H(x)
t + γ̊H(x)

t ≥ α̊ı̂(x)
t + γ̊ı̂(x)

t and
∣∣∣∣ ˜̊βH(x)

t −
˜̊βHC (x)

t

∣∣∣∣ ≥ ∣∣∣∣ ˜̊βı̂(x)
t −

˜̊βı̂C (x)
t

∣∣∣∣ , ∣∣∣∣ β̊H(x)
t − β̊HC (x)

t

∣∣∣∣ ≥∣∣∣∣ β̊ ı̂(x)
t −

β̊ ı̂C (x)
t

∣∣∣∣ ;

4. Gk̊(HC) = Gk̊(H).

We need to consider three factors for the uncertain measure of LNCS; one is the truth membership
and false membership, and the other is the indeterminacy term. We define the entropy measure of Gk̊
of an LNCS H, which depends on the following terms:

Gk̊(H) = 1− 1
n ∑

x∈X

(˜̊αH(x)
t

+
˜̊γH(x)

t

)
.

∣∣∣∣∣ ˜̊βH(x)
t
−
˜̊βHC (x)

t

∣∣∣∣∣ (34)

Then, we prove that Equation (34) can meet the condition of Definition 15.

Proof. 1. For a crisp set H, there is no indeterminacy function for any LNCN of H. Hence, Gk̊(H) =

0 is satisfied.

2. If H is such that
˜̊αH(x)

t =
˜̊βH(x)

t =
˜̊γH(x)

t = [0.5, 0.5], α̊H(x)
t , β̊H(x)

t , γ̊H(x)
t = 0.5, ∀x ∈ X, then˜̊αH(x)

t +
˜̊γH(x)

t = [1, 1], α̊H(x)
t + γ̊H(x)

t = 1 and
˜̊βH(x)

t −
˜̊βHC (x)

t = [0.5, 0.5]− [0.5, 0.5] = 0, β̊H(x)
t −

β̊HC (x)
t = 0.5− 0.5 = 0, ∀x ∈ X⇒ Gk̊(H) = 1.
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3. H is less uncertain than I; we assume
˜̊αH(x)

t +
˜̊γH(x)

t ≥ ˜̊αı̂(x)
t +

˜̊γı̂(x)
t , α̊H(x)

t + γ̊H(x)
t ≥ α̊ı̂(x)

t + γ̊ı̂(x)
t

and
∣∣∣∣ ˜̊βH(x)

t −
˜̊βHC (x)

t

∣∣∣∣ ≥ ∣∣∣∣ ˜̊βı̂(x)
t −

˜̊βı̂C (x)
t

∣∣∣∣ , ∣∣∣∣ β̊H(x)
t − β̊HC (x)

t

∣∣∣∣ ≥ ∣∣∣∣ β̊ ı̂(x)
t −

β̊ ı̂C (x)
t

∣∣∣∣ . Depending on the

entropy value in Equation (34), we can obtain Gk̊(H) ≤ Gk̊(ı̂).

4. HC =
{(

xı̂, p̊γ̃H(xı̂)
, p̊t−β̃H(xı̂)

, p̊α̃H(xı̂)
, p̊γ̊H(xı̂)

, p̊t−β̊H(xı̂)
, p̊α̊H(xı̂)

)
| xı̂ ∈ X

}
,

Gk̊(HC) = 1− 1
n ∑x∈X

( ˜̊γH(x)
t +

˜̊αH(x)
t

)
.
∣∣∣∣ ˜̊βHC (x)

t −
˜̊βH(x)

t

∣∣∣∣ = Gk̊(H).

Example 6. Let p̊ = { p̊0, p̊1, p̊2, p̊3, p̊4} be a linguistic term set with cardinality t+ 1, g̊1 = ( p̊3, p̊2, p̊1), g̊2 =

( p̊4, p̊3, p̊1, ), be two LNCNs based on p̊ and U be the universal set where:

H =

{
([0.1, 0.3], [0.4, 0.5], [0.4, 0.6], (0.4, 0.6, 0.7)) ,
([0.1, 0.2], [0.2, 0.5], [0.1, 0.4], (0.4, 0.6, 0.5))

}

is an LNCS in U. Then, the entropy of U will be:

Gk̊(H) = 1− 1
2

 (
[0.1,0.3]

5 + [0.4,0.6]
5

)
.
∣∣∣ [0.4,0.5]

5 − 5−[0.4,0.5]
5

∣∣∣
+
(
[0.1,0.2]

5 + [0.1,0.4]
5

)
.
∣∣∣ [0.1,0.4]

5 − 5−[0.1,0.4]
5

∣∣∣


= [0.89, 0.93]

5. The Method for MAGDM Based on the WLNCHM Operator

In this section, we discuss MAGDM, based on the WLNCHM operator with LNCN.
Let U = {U1, U2, . . . , Um} be the set of alternatives, V = {V1, V2, . . . , Vn} be the set of attributes

and ẘ = (ẘ1, ẘ2, . . . , ẘn)
T be the weight vector. Then, by LNCNs and from the predefined linguistic

term set ϕ = {ϕj | j ∈ [0, t]} (where t + 1 is an odd cardinality), the decision makers are invited
to evaluate the alternatives Uı̂(ı̂ = 1, 2, . . . , m) over the attributes Vj(j = 1, 2, . . . , n). The DMs can
assign the uncertain LTS to the truth, indeterminacy and falsity linguistic terms and the certain
LTS to the truth, indeterminacy and falsity linguistic terms in each LNCNs, which is based on the
LTS in the evaluation process of the linguistic evaluation of each attribute Vj(j = 1, 2, . . . , n) on

each alternative Uı̂(ı̂ = 1, 2, . . . , m). Thus, we obtain the decision matrix S = (sı̂j)m× n,
(

g̊ı̂j , g̊ı̂j

)
=

( p̊α̊ı̂j
, p̊β̊ ı̂j

, p̊γ̊ı̂j
, p̊α̊ı̂j

, p̊β̊ ı̂j
, p̊γ̊ı̂j

) (ı̂ = 1, 2, . . . , m; j = 1, 2, . . . , n) as an LNCN.

Based on the above information, the MAGDM on the WLNCM operator is described as follows:
Step 1: Regulate the decision making problem.
Step 2: Calculate g̊ı̂j = WLNCM(sı̂1, sı̂2, . . . , sı̂n) to obtain the collective approximation value for

alternatives Uı̂ with respect to attribute Vj.
Step 3: In this step, we operate the entropy of LNCSs to find out the weight of the elements.

g̊j = ( p̊(α̃j ,α̊j)
, p̊(β̃ j ,β̊ j)

, p̊(γ̃j ,γ̊j)
)

Gk̊(g̊j) = 1− 1
m ∑

x∈X

˜̊αRj(x)

t
+
˜̊γRj

(x)

t

 .

∣∣∣∣∣∣∣
˜̊βRj

(x)

t
−
˜̊βRC

J
(x)

t

∣∣∣∣∣∣∣
v = Gk̊(g̊j)/

n

∑
j=1

Gk̊(g̊j) (35)

Step 4: In this step, we calculate the values of the score function ϕ(S), accuracy function Φ(S)
and certain function Ψ(S) based on Equations (12)–(14).
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Step 5: In this step, we find out the sequence of the alternatives Uı̂(ı̂ = 1, 2, . . . , m) . According to
the ranking order of Definition 8, with a greater score function ϕ(S), the ranking order of alternatives
Uı̂ is the best. If the score functions are the same, then the accuracy function of alternatives Uı̂ is larger,
and then, the ranking order of alternatives Ui is better. Furthermore, if the score and accuracy function
both are the same, then the certain function of alternatives Uı̂ is larger, and then, the ranking order of
alternatives Uı̂ is best.

Step 6: End.

6. Numerical Applications

A corporation intends to choose one person to be the area supervisor from five candidates
(U1 −U4), to be further evaluated according to the three attributes, which are shown as follows:
ideological and moral quality (V1), professional ability (V2) and creative ability (V3). The weights of
the indicators are ẘ = (0.5, 0.3, 0.2).

6.1. Procedure

Case 1: If the weights of the element are absolutely unidentified, then we use the suggested
technique to solve the above problem in which the decision making steps are as follows:

Step 1: Let U = {U1, U2, . . . , U4} be a set of alternatives and V = {V1, V2, V3} be a set of attributes.
Let S = (sı̂j)4×3 be a set of decision matrices. A decision matrix evaluates each alternative based on
the given attributes;

S1 =

V1 V2 V3

U1


([0.4, 0.5],
[0.1, 0.2],
[0.3, 0.6],

(0.6, 0.3, 0.7))




([0.3, 0.5],
[0.6, 0.7],
[0.4, 0.6],

(0.6, 0.8, 0.7))




([0.2, 0.5],
[0.4, 0.7],
[0.7, 0.8],

(0.6, 0.8, 0.9))


U2


([0.4, 0.7],
[0.7, 0.8],
[0.4, 0.8],

(0.8, 0.9, 0.9))




([0.4, 0.7],
[0.7, 0.8],
[0.1, 0.5],

(0.8, 0.9, 0.7))




([0.1, 0.4],
[0.1, 0.7],
[0.7, 0.9],

(0.5, 0.8, 1.0))


U3


([0.2, 0.7],
[0.5, 0.7],
[0.1, 0.8],

(0.8, 0.8, 0.9))




([0.5, 0.5],
[0.4, 0.6],
[0.3, 0.8],

(0.6, 0.7, 0.9))




([0.1, 0.5],
[0.4, 0.9],
[0.2, 0.8],

(0.6, 1.0, 0.9))


U4


([0.4, 0.9],
[0.3, 0.7],
[0.4, 0.9],

(1.0, 0.8, 1.1))




([0.1, 0.3],
[0.2, 0.7],
[0.7, 0.7],

(0.4, 0.8, 0.9))




([0.2, 0.6],
[0.2, 0.7],
[0.1, 0.8],

(0.7, 0.8, 0.9))
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S2 =

V1 V2 V3

U1


([0.4, 0.6],
[0.1, 0.3],
[0.3, 0.5],

(0.7, 0.4, 0.6))




([0.3, 0.4],
[0.6, 0.7],
[0.5, 0.6],

(0.5, 0.8, 0.7))




([0.2, 0.3],
[0.4, 0.5],
[0.7, 0.8],

(0.4, 0.6, 0.9))


U2


([0.3, 0.7],
[0.7, 0.8],
[0.6, 0.8],

(0.8, 0.9, 1.0))




([0.4, 0.5],
[0.7, 0.9],
[0.1, 0.4],

(0.6, 1.0, 0.8))




([0.3, 0.4],
[0.1, 0.8],
[0.6, 0.9],

(0.5, 0.9, 1.0))


U3


([0.2, 0.4],
[0.5, 0.6],
[0.1, 0.3],

(0.5, 0.7, 0.7))




([0.5, 0.6],
[0.3, 0.6],
[0.3, 0.7],

(0.7, 0.8, 0.9))




([0.1, 0.3],
[0.4, 0.6],
[0.2, 0.5],

(0.4, 0.7, 0.6))


U4


([0.4, 0.7],
[0.3, 0.5],
[0.4, 0.6],

(0.8, 0.6, 0.7))




([0.1, 0.4],
[0.2, 0.6],
[0.6, 0.7],

(0.5, 0.7, 0.8))




([0.2, 0.7],
[0.2, 0.8],
[0.1, 0.5],

(0.8, 0.9, 0.7))



S3 =

V1 V2 V3

U1


([0.4, 0.5],
[0.1, 0.2],
[0.3, 0.6],

(0.6, 0.3, 0.7))




([0.3, 0.4],
[0.5, 0.7],
[0.4, 0.5],

(0.5, 0.8, 0.6))




([0.2, 0.4],
[0.4, 0.6],
[0.7, 0.9],

(0.5, 0.7, 1.0))


U2


([0.4, 0.5],
[0.7, 0.9],
[0.4, 0.9],

(0.6, 1.0, 1.1))




([0.4, 0.6],
[0.7, 0.9],
[0.1, 0.4],

(0.7, 1.0, 0.5))




([0.1, 0.4],
[0.1, 0.7],
[0.7, 0.8],

(0.5, 0.8, 0.9))


U3


([0.2, 0.6],
[0.5, 0.8],
[0.1, 0.7],

(0.7, 0.9, 0.8))




([0.5, 0.6],
[0.4, 0.6],
[0.6, 0.8],

(0.7, 0.8, 0.9))




([0.1, 0.4],
[0.4, 0.8],
[0.6, 0.8],

(0.5, 0.9, 1.0))


U4


([0.3, 0.9],
[0.4, 0.7],
[0.5, 0.9],

(1.1, 0.8, 1.0))




([0.1, 0.2],
[0.2, 0.5],
[0.6, 0.7],

(0.3, 0.6, 0.8))




([0.2, 0.5],
[0.2, 0.4],
[0.1, 0.9],

(0.7, 0.8, 1.0))
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Step 2: Calculate sı̂j = WLNCHM(sı̂1, sı̂2, . . . , sı̂n) to obtain the overall assessment value for
alternatives Uı̂ with respect to attribute Vj.

V1 V2 V3

U1



([0.110, 0.127],
[0.055, 0.084],
[0.095, 0.131],
(0.139, 0.101,

0.142))





([0.101, 0.119],
[0.115, 0.127],
[0.110, 0.135],
(0.127, 0.156,

0.142))





([0.078, 0.110],
[0.110, 0.135],
[0.146, 0.159],
(0.123, 0.110,

0.169))


U2



([0.105, 0.139],
[0.146, 0.159],
[0.119, 0.159],
(0.149, 0.169,

0.175))





([0.110, 0.135],
[0.146, 0.162],
[0.055, 0.115],
(0.146, 0.172,

0.142))





([0.071, 0.110],
[0.055, 0.149],
[0.142, 0.162],
(0.123, 0.159,

0.172))


U3



([0.078, 0.131],
[0.123, 0.146],
[0.055, 0.135],
(0.142, 0.156,

0.156))





([0.123, 0.131],
[0.105, 0.135],
[0.123, 0.153],
(0.142, 0.153,

0.165))





([0.055, 0.110],
[0.110, 0.153],
[0.101, 0.110],
(0.123, 0.162,

0.159))


U4



([0.105, 0.159],
[0.101, 0.139],
[0.115, 0.156],
(0.172, 0.149,

0.169))





([0.055, 0.095],
[0.078, 0.135],
[0.139, 0.146],
(0.110, 0.146,

0.159))





([0.078, 0.135],
[0.078, 0.139],
[0.055, 0.149],
(0.149, 0.159,

0.165))


Step 3: We utilize the entropy of LNCSs to calculate the weight of the attributes, i.e., let

sj = ( p̊(α̃j ,α̊j)
, p̊(β̃ j ,β̊ j)

, p̊(γ̃j ,γ̊j)
) be the LNCN and Gk̊(sj) be the weight of attributes, i.e.,
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Gk̊(sj) = 1− 1
m ∑

x∈X

˜̊αSj(x)

t
+
˜̊γSj

(x)

t

 .

∣∣∣∣∣∣∣
˜̊βSj

(x)

t
−
˜̊βSC

J
(x)

t

∣∣∣∣∣∣∣

Gk̊(s1) = 1− 1
4



(
[0.110,0.127]

7 + [0.095,0.131]
7

)
.
∣∣∣ [0.055,0.084]

7 − 7−[0.055,0.084]
7

∣∣∣
+
(
[0.105,0.139]

7 + [0.119,0.159]
7

)
.
∣∣∣ [0.146,0.159]

7 − 7−[0.146,0.159]
7

∣∣∣
+
(
[0.078,0.131]

7 + [0.055,0.135]
7

)
.
∣∣∣ [0.123,0.146]

7 − 7−[0.123,0.146]
7

∣∣∣
+
(
[0.105,0.159]

7 + [0.115,0.156]
7

)
.
∣∣∣ [0.101,0.139]

7 − 7−[0.101,0.139]
7

∣∣∣


= [0.975, 0.976]

Gk̊(s2) = 1− 1
4



(
[0.101,0.119]

7 + [0.110,0.135]
7

)
.
∣∣∣ [0.115,0.127]

7 − 7−[0.115,0.127]
7

∣∣∣
+
(
[0.110,0.135]

7 + [0.055,0.115]
7

)
.
∣∣∣ [0.146,0.162]

7 − 7−[0.146,0.162]
7

∣∣∣
+
(
[0.123,0.131]

7 + [0.123,0.153]
7

)
.
∣∣∣ [0.105,0.135]

7 − 7−[0.105,0.135]
7

∣∣∣
+
(
[0.055,0.095]

7 + [0.139,0.146]
7

)
.
∣∣∣ [0.078,0.135]

7 − 7−[0.078,0.135]
7

∣∣∣


= [0.975, 0.994]

Gk̊(s3) = 1− 1
4



(
[0.078,0.110]

7 + [0.146,0.159]
7

)
.
∣∣∣ [0.110,0.135]

7 − 7−[0.110,0.135]
7

∣∣∣
+
(
[0.071,0.110]

7 + [0.142,0.162]
7

)
.
∣∣∣ [0.055,0.149]

7 − 7−[0.055,0.149]
7

∣∣∣
+
(
[0.055,0.110]

7 + [0.101,0.110]
7

)
.
∣∣∣ [0.110,0.153]

7 − 7−[0.110,0.153]
7

∣∣∣
+
(
[0.078,0.135]

7 + [0.055,0.149]
7

)
.
∣∣∣ [0.078,0.139]

7 − 7−[0.078,0.139]
7

∣∣∣


= [0.935, 0.982]

v = Gk̊(sj)/
n

∑
j=1

Gk̊(sj)

v1 =
[0.957, 0.976]
[2.883, 2.952]

= [0.338.0.330]

v2 =
[0.973, 0.994]
[2.883, 2.952]

= [0.337, 0.336]

v3 =
[0.935, 0.982]
[2.883, 2.952]

= [0.324, 0.332]

Step 4: By the WLNCHM operator, we calculate the comprehensive evaluation value of each
alternative as:

U1 = ([0.132, 0.182], [0.140, 0.174], [0.127, 0.192], (0.199, 0.189, 0.212))

U2 = ([0.128, 0.186], [0.147, 0.184], [0.141, 0.187], (0.174, 0.207, 0.199))

U3 = ([0.093, 0.153], [0.117, 0.190], [0.147, 0.191], (0.200, 0.195, 0.205))

U4 = ([0.103, 0.121], [0.133, 0.162], [0.152, 0.171], (0.160, 0.181, 0.175))

Florentin Smarandache (ed.) Collected Papers, VII

336



Step 5: We find the values of score function ϕ(S) as:

ϕ(S) =
1
9t
[
(

4t + α̊− β̊− γ̊
)
+
(

2t + α̊− β̊− γ̊
)
], for ϕ(S) ∈ [0, 1]

ϕ(S1) =
1

45
[20 + 0.13 + 0.2− (0.14 + 0.2 + 0.13 + 0.2)

+ 10 + 0.2− (0.2 + 0.21)]

= 654

ϕ(S2) =
1
45

[20 + 0.2 + 0.2− (0.15 + 0.2 + 0.14 + 0.2)

+ 10 + 0.2− (0.2 + 0.2)]

= 0.656

ϕ(S3) =
1
45

[20 + 0.1 + 0.2− (0.12 + 0.2 + 0.15 + 0.2)

+ 10 + 0.2− (0.2 + 0.21)]

= 0.653

ϕ(S4) =
1

45
[20 + 0.1 + 0.1− (0.1 + 0.2 + 0.2 + 0.2)

+ 10 + 0.2− (0.2 + 0.2)]

= 0.657

Step 6: According to the value of the score function, the ranking of the candidates can be confirmed,
i.e., S4 � S2 � S1 � S3., so S4 is the best alternatives.

Case 2: If the DM gives the information about the attributes and weight and the weight vector
is ẘ = (0.1, 0.5, 0.4), then the score function ϕ(Sı̂)(ı̂ = 1, 2, 3, 4) of Case 2 can be obtained as follows;
ϕ(S1) = 0.451, ϕ(S2) = 0.435, ϕ(S3) = 0.504, ϕ(S4) = 0.492. The ranking of these score functions is
S3 � S4 � S1 � S2. Thu,s due to the diverse weights of attributes, the ranking of Case 2 is different
from that of Case 1.

In the MADM method, the attribute weights can return relative values in the decision method.
However, due to the issues such as data loss, time pressure and incomplete field knowledge of the DMs,
the information about attribute weights is not fully known or completely unknown. Through some
methods, we should derive the weight vector of attributes to get possible alternatives. In Case 2, the
attribute weights are usually determined based on DMs’ opinions or preferences, while Case 1 uses
the entropy concepts to determine weight values of attributes to successfully balance the manipulation
of subjective factors. Therefore, the entropy of LNCS is applied in the decision process to give each
attribute a more objective and reasonable weight.

6.2. Comparison Analysis

From the comparison analysis, one can see that the advanced method is more appropriate
for articulating and handling the indeterminate and inconsistent information in linguistic decision
making problems to overcome the insufficiency of several linguistic decision making methods in the
existing work. In fact, most of the decision making problems based on different linguistic variables
in the literature not only express inconsistent and indeterminate linguistic results, but the linguistic
method suggested in the study is a generalization of existing linguistic methods and can handle
and represent linguistic decision making problems with LNN information. We also see that the
advanced method has much more information than the existing method in [26,32,44]. In addition,
the literature [26,32,44] is the same as the best and worst and different from our methods. The reason
for the difference between the given literature and our method may be the decision thought process.
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Some initial information may be missing during the aggregation process. Moreover, the conclusions
are different. Different aggregation operators may appear [32], and our methods are consistent with
the aggregation operator and receive a different order. However, [32] may have some limitations
because of the attributes. The weight vector is given directly, and the positive and negative ideal
solutions are absolute. Other than this, the ranking in the literature [26,32,44] is different from the
proposed method. The reason for the difference may be uncertainty in LNN membership since the
information is inevitably distorted in LIFN. Our method develops the neutrosophic cubic theory and
decision making method under a linguistic environment and provides a new way for solving linguistic
MAGDM problems with indeterminate and inconsistent information.

7. Conclusions

In this paper, we work out the idea of LNCNs, their operational laws and also some properties
and define the score, accuracy and certain functions of LNCNs for ranking LNCNs. Then, we define
the LNCHM and WLNCHM operators. After that, we demonstrate the entropy of LNCNs and relate
it to determine the weights. Next, we develop MAGDM based on WLNCHM operators to solve
multi-attribute group decision making problems with LNCN information. Finally, we provide an
example of the developed method.
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Abstract. In this article we introduce the concept of complex neutrosophıc subgroups (normal subgroups). We define 
the notion of alpha-cut of complex neutrosophıc set, give examples and study some of its related results. We also 
define the Cartesian product of complex neutrosophic subgroups. Furthermore, we introduce the concept of image 
and preimage of complex neutrosophic set and prove some of its properties.

1. Introduction

[1], In 1965, Zadeh presented the idea of a fuzzy set. [2], Atanassov’s in 1986, initiated the notion of
intuitionistic fuzzy set which is the generalization of a fuzzy set. Neutrosophic set was first proposed by
Smarandache in 1999 [5], which is the generalization of fuzzy set and intuitionistic fuzzy set. Neutrosophic
set is characterized by a truth membership function, an indeterminacy membership function and a falsity
membership function. In 2002, the Ramot et al. [8], generalized the concept of fuzzy set and introduced
the notion of complex fuzzy set. There are many researchers which have worked on complex fuzzy set
for instance, Buckly [6], Nguyen et al. [7] and Zhang et al. [9]. In contrast, Ramot et al. [8] presented an
innovative concept that is totally different from other researchers, in which the author extended the range of
membership function to the unit circle in the complex plane, unlike the others who limited to. Furthermore
to solve enigma they also added an extra term which is called phase term in translating human language
to complex valued functions on physical terms and vice versa. Abd Uazeez et al. in 2012 [10], added the
non-membership term to the idea of complex fuzzy set which is known as complex intuitionistic fuzzy
sets, the range of values are extended to the unit circle in complex plan for both membership and non-
membership functions instead of [0, 1]. In 2016, Mumtaz Ali et al. [12], extended the concept of complex
fuzzy set, complex intuitionistic fuzzy set, and introduced the concept of complex neutrosophic sets which
is a collection of complex-valued truth membership function, complex-valued indeterminacy membership
function and complex-valued falsity membership function. Further in 1971, Rosenfeld [3], applied the
concept of fuzzy set to groups and introduced the concept of fuzzy groups. The author defined fuzzy
subgroups and studied some of its related properties. Vildan and Halis in 2017 [13], extended the concept
of fuzzy subgroups on the base of neutrosophic sets and initiated the notion of neutrosophic subgroups.

Keywords. Complex fuzzy sets; Complex neutrosophic sets; Neutrosophic subgroups; Complex neutrosophic subgroups; Complex
neutrosophic normal subgroups.
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Due to the motivation and inspiration of the above discussion. In this paper we introduce the concept of
a complex neutrosophic subgroups (normal subgroups). We have give examples and study some related
results. We also study the concept of Cartesian product of complex neutrosophic subgroups, image and
preimage of complex neutrosophic set and alpha-cut of complex neutrosophic set with the help of examples
and prove some of its properties.

2. Preliminaries

Here in this part we gathered some basic helping materials.

Definition 2.1. [1] A function f is defined from a universe X to a closed interval [0, 1] is called a fuzzy set,i.e., a
mapping:

f : X −→ [0, 1].

Definition 2.2. [8] A complex fuzzy set (CFS) C over the universe X, is defined an object of the form:

C = {(x, µC(x)) : x ∈ X}

where µC(x) = rC(x) · eiωC(x), here the amplitude term rC(x) and phase term ωC(x), are real valued functions, for every
x ∈ X, the amplitude term µC(x) : X → [0, 1] and phase term ωC(x) lying in the interval [0, 2π].

Definition 2.3. [11] Let C1 and C2 be any two complex Atanassov’s intuitionistic fuzzy sets (CAIFSs) over the
universe X, where

C1 =
{〈

x, rC1 (x) · eiν
C1

(x)
, kC1 (x) · eiω

C1
(x)〉 : x ∈ X

}
and

C2 =
{〈

x, rC2 (x) · eiν
C2

(x)
, kC2 (x) · eiω

C2
(x)〉 : x ∈ X

}
.

Then

1. Containment:

C1 ⊆ C2 ⇔ rC1 (x) ≤ rC2 (x), kC1 (x) ≥ kC2 (x) and ν
C1

(x) ≤ ν
C2

(x), ω
C1

(x) ≥ ω
C2

(x).

2. Equal:

C1 = C2 ⇔ rC1 (x) = rC2 (x), kC1 (x) = kC2 (x) and ν
C1

(x) = ν
C2

(x), ω
C1

(x) = ω
C2

(x).

Definition 2.4. [12] Let X be a universe of discourse, and x ∈ X. A complex neutrosophic set (CNS) C in X is
characterized by a complex truth membership function CT(x) = pC(x) · eiµC(x), a complex indeterminacy membership
function CI(x) = qC(x) · eiνC(x) and a complex falsity membership function CF(x) = rC(x) · eiωC(x). The values
CT(x),CI(x),CF(x) may lies all within the unit circle in the complex plane, where pC(x), qC(x), rC(x) and µC(x),
νC(x) ωC(x) are amplitude terms and phase terms, respectively, and where pC(x), qC(x), rC(x) ∈ [0, 1], such that,
0 ≤ pC(x) + qC(x) + rC(x) ≤ 3 and µC(x), νC(x) ωC(x) ∈ [0, 2π].

The complex neutrosophic set can be represented in the form as:

C =

{〈
x,CT(x) = pC(x) · eiµC(x),CI(x) = qC(x) · eiνC(x),

CF(x) = rC(x) · eiωC(x)

〉
: x ∈ X

}
.

Example 2.5. Let X = {x1, x2, x3} be the universe set and C be a complex neutrosophic set which is given by:

C =


〈
x1, 0.2e0.5πi, 0.3e0.6πi, 0.4e0.8πi

〉
,
〈
x2, 0.4e0.6πi, 0.5e1.3πi, 0.1e0.6πi

〉
,〈

x3, 0.1e0.6πi, 0.3e0.9πi, 0.9e0.7πi
〉  .
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Definition 2.6. [3] Let G be any group with multiplication and F be a fuzzy subset of a group G, then F is called a
fuzzy subgroup (FSG) of G, if the following axioms are hold:

(FSG1): F (x · y) ≥ min{F (x),F (y)}.

(FSG2): F (x−1) ≥ F (x), ∀ x, y ∈ G.

Definition 2.7. [13] Let G be any group with multiplication and N be a neutrosophic set on a group G. Then N is
called a neutrosophic subgroup (NSG) of G, if its satisfy the following conditions:

(NSG1): N(x · y) ≥ N(x) ∧N(y), i.e.,

TN (x · y) ≥ TN (x) ∧ TN (y), IN (x · y) ≥ IN (x) ∧ IN (y) and FN (x · y) ≤ FN (x) ∨ FN (y).

(NSG2): N(x−1) ≥ N(x), i.e.,

TN (x−1) ≥ TN (x), IN (x−1) ≥ IN (x) and FN (x−1) ≤ FN (x), for all x and y in G.

3. Complex Neutrosophic Subgroup

Note: It should be noted that through out in this section we use a capital letter C to denote a complex
neutrosophic set:

C =
{〈

TC = pC · eiµC , IC = qC · eiνC ,FC = rC · eiωC
〉}
.

Definition 3.1. A complex neutrosophic set C =
{〈

TC = pC · eiµC , IC = qC · eiνC ,FC = rC · eiωC
〉}

on a group (G, ·) is
known as a complex neutrosophic subgroup (CNSG) of G, if for all elements x, y ∈ G, the following conditions are
satisfied:

(CNSG1): C(xy) ≥ min
{
C(x),C(y)

}
i.e.,

(i) pC(xy) · eiµC(xy)
≥ min{pC(x) · eiµC(x), pC(y) · eiµC(y)

}

(ii) qC(xy) · eiνC(xy)
≥ min{qC(x) · eiνC(x), qC(y) · eiνC(y)

}

(iii) rC(xy) · eiωC(xy)
≤ max{rC(x) · eiωC(x), rC(y) · eiωC(y)

}

(CNSG2): C(x−1) ≥ C(x) i.e.,

(iv) pC(x−1) · eiµC(x−1)
≥ pC(x) · eiµC(x)

(v) qC(x−1) · eiνC(x−1)
≥ qC(x) · eiνC(x)

(vi) rC(x−1) · eiωC(x−1)
≤ rC(x) · eiωC(x).

Example 3.2. Let G = {1,−1, i,−i} be a group under multiplication, and

C =


〈
1, 0.7e0.6πi, 0.6e0.5πi, 0.5e0.2πi

〉
,
〈
−1, 0.6e0.5πi, 0.5e0.4πi, 0.4e0.2πi

〉
,〈

i, 0.5e0.3πi, 0.4e0.2πi, 0.1e0.2πi
〉
,
〈
−i, 0.5e0.3πi, 0.4e0.2πi, 0.1e0.2πi

〉 
be a complex neutrosophic set on G. Clearly C is a complex neutrosophic subgroup of G.
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3.1. Cartesian Product of Complex Neutrosophic Subgroups

Definition 3.3. Let C1 = 〈C1T(x),C1I(x),C1F(x)〉 and C2 = 〈C2T(x),C2I(x),C2F(x)〉 be any two complex neutro-
sophic subgroups of the groups G1 and G2, respectively. Then the Cartesian product of C1 and C2, represented by
C1 × C2 and define as:

C1 × C2 =

{ 〈
(x, y), (C1 × C2)T(x, y), (C1 × C2)I(x, y), (C1 × C2)F(x, y)

〉
/ ∀ x ∈ G1, y ∈ G2

}
where

(C1 × C2)T(x, y) = min
{
C1T(x),C2T(y)

}
,

(C1 × C2)I(x, y) = min
{
C1I(x),C2I(y)

}
,

(C1 × C2)F(x, y) = max
{
C1F(x),C2F(y)

}
.

Example 3.4. Let G1 = {1,−1, i,−i} and G2 = {1, ω, ω2
} are two groups under multiplication.

Consider,

C1 =


〈
1, 0.7e0.6πi, 0.6e0.5πi, 0.5e0.2πi

〉
,
〈
−1, 0.6e0.5πi, 0.5e0.4πi, 0.4e0.2πi

〉
,〈

i, 0.5e0.3πi, 0.4e0.2πi, 0.1e0.2πi
〉
,
〈
−i, 0.5e0.3πi, 0.4e0.2πi, 0.1e0.2πi

〉 
and

C2 =


〈
1, 0.8e0.6πi, 0.6e0.5πi, 0.3e0.2πi

〉
,
〈
ω, 0.7e0.6πi, 0.5e0.4πi, 0.3e0.2πi

〉
,〈

ω2, 0.7e0.6πi, 0.5e0.4πi, 0.3e0.2πi
〉 

are two complex neutrosophic subgroups of G1 and G2, respectively.

Now let x = 1 and y = ω, then

C1 × C2 = {〈(C1 × C2)T(1, ω), (C1 × C2)I(1, ω), (C1 × C2)F(1, ω)〉 , ...}
= {〈min {C1T(1),C2T(ω)} ,min {C1I(1),C2I(ω)} , max{C1F(1),
C2F(ω)}〉 , ...}

= {
〈
min{0.7e0.6πi, 0.7e0.6πi

},min{0.6e0.5πi, 0.5e0.4πi
} ,max{0.5e0.2πi,

0.3e0.2πi
}

〉
, ...}

= {
〈
0.7e0.6πi, 0.5e0.4πi, 0.5e0.2πi

〉
, ...}.

Theorem 3.5. If C1 and C2 are any two complex neutrosophic subgroups of the groups G1 and G2 respectively, then
C1 × C2 is a complex neutrosophic subgroup of G1 × G2.

Proof: Assume that C1 = 〈C1T,C1I,C1F〉 and C2 = 〈C2T,C2I,C2F〉 be any two complex neutrosophic sub-
groups of the groups G1 and G2, respectively. Let any arbitrary elements x1, x2 ∈ G1 and y1, y2 ∈ G2, then
(x1, y1),(x2, y2) ∈ G1 × G2.

Consider,

(C1 × C2)T((x1, y1), (x2, y2)) = (C1 × C2)T(x1x2, y1y2)
= min{C1T(x1x2),C2T(y1y2)}
≥ C1T(x1) ∧ C1T(x2) ∧ C2T(y1) ∧ C2T(y2)
= C1T(x1) ∧ C2T(y1) ∧ C1T(x2) ∧ C2T(y2)
= (C1 × C2)T(x1, y1) ∧ (C1 × C2)T(x2, y2).
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Similarly,

(C1 × C2)I((x1, y1), (x2, y2)) ≥ (C1 × C2)I(x1, y1) ∧ (C1 × C2)I(x2, y2),

and

(C1 × C2)F((x1, y1), (x2, y2)) = (C1 × C2)F(x1x2, y1y2)
= max{C1F(x1x2),C2F(y1y2)}
≤ C1F(x1) ∨ C1F(x2) ∨ C2F(y1) ∨ C2F(y2)
= C1F(x1) ∨ C2F(y1) ∨ C1F(x2) ∨ C2F(y2)
= (C1 × C2)F(x1, y1) ∨ (C1 × C2)F(x2, y2).

Also,

(C1 × C2)T(x1, y1)−1 = (C1 × C2)T(x−1
1 , y

−1
1 )

= C1T(x−1
1 ) ∧ C2T(y−1

1 )
≥ C1T(x) ∧ C2T(y)
= (C1 × C2)T(x, y).

Similarly,

(C1 × C2)I(x1, y1)−1
≥ (C1 × C2)I(x, y).

And

(C1 × C2)F(x1, y1)−1 = (C1 × C2)F(x−1
1 , y

−1
1 )

= C1F(x−1
1 ) ∨ C2F(y−1

1 )
≤ C1F(x) ∨ C2F(y)
= (C1 × C2)F(x, y).

Hence C1 × C2 is a complex neutrosophic subgroup of G1 × G2. �

Theorem 3.6. Let C be a CNSG of a group G. Then the following properties are satisfied:

(a) C(ê) · eiC(ê)
≥ C(x) · eiC(x)

∀ x ∈ G, where ê is the unit element of G.

(b) C(x−1) · eiC(x−1) = C(x) · eiC(x) for each x ∈ G.

Proof: (a) Let ê be the unit element of G and x ∈ G be arbitrary element, then by (CNSG1), (CNSG2) of
Definition 3.1,

pC(ê) · eiµC(ê) = pC(x · x−1) · eiµC(x·x−1)

≥ pC(x) · eiµC(x)
∧ pC(x−1) · eiµC(x−1)

= pC(x) · eiµC(x)
∧ pC(x) · eiµC(x)

= pC(x) · eiµC(x)

pC(ê) · eiµC(ê)
≥ pC(x) · eiµC(x),

Similarly,

qC(ê) · eiνC(ê)
≥ qC(x) · eiνC(x).
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And

rC(ê) · eiωC(ê) = rC(x · x−1) · eiωC(x·x−1)

≤ rC(x) · eiωC(x)
∨ rC(x−1) · eiωC(x−1)

= rC(x) · eiωC(x)
∨ rC(x) · eiωC(x)

= rC(x) · eiωC(x)

rC(ê) · eiωC(ê)
≤ rC(x) · eiωC(x).

Hence C(ê) · eiC(ê)
≥ C(x) · eiC(x) is satisfied, for all x ∈ G.

(b) Let x ∈ G. Since C is a complex neutrosophic subgroup of G,

so C(x−1) · eiC(x−1)
≥ C(x) · eiC(x) is clear from (CNSG2) of Definition 3.1.

Again by applying (CNSG2) of Definition 3.1, and using group structure ofG, the other side of the inequality
is proved as follows;

pC(x) · eiµC(x) = pC(x−1)−1
· eiµC(x−1)−1

≥ pC(x−1) · eiµC(x−1),

qC(x) · eiνC(x) = qC(x−1)−1
· eiνC(x−1)−1

≥ qC(x−1) · eiνC(x−1),

rC(x) · eiωC(x) = rC(x−1)−1
· eiωC(x−1)−1

≤ rC(x−1) · eiωC(x−1).

Therefore,

C(x) · eiC(x)
≥ C(x−1) · eiC(x−1).

Thus,

C(x−1) · eiC(x−1) = C(x) · eiC(x).

Hence C(x−1) · eiC(x−1) = C(x) · eiC(x) is satisfied, for all x ∈ G. �

Theorem 3.7. Let C be a complex neutrosophic set on a group G. Then C is a CNSG of G if and only if C(x · y−1) ·
eiC(x·y−1)

≥ C(x) · eiC(x)
∧ C(y) · eiC(y) for each x,y ∈ G.

Proof: Let C be a complex neutrosophic subgroup of G and x, y ∈ G, So, it is clear that,

pC(xy−1) · eiµC(xy−1)
≥ pC(x) · eiµC(x)

∧ pC(y−1) · eiµC(y−1)

≥ pC(x) · eiµC(x)
∧ pC(y) · eiµC(y).

Similarly,

qC(xy−1) · eiνC(xy−1)
≥ qC(x) · eiνC(x)

∧ qC(y) · eiνC(y).

And

rC(xy−1) · eiωC(xy−1)
≤ rC(x) · eiωC(x)

∨ rC(y−1) · eiωC(y−1)

≤ rC(x) · eiωC(x)
∨ rC(y) · eiωC(y).
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Hence

C(x · y−1) · eiC(x·y−1) = (pC(xy−1) · eiµC(xy−1), qC(xy−1) · eiνC(xy−1),

rC(xy−1) · eiωC(xy−1))

≥ (pC(x) · eiµC(x)
∧ pC(y) · eiµC(y), qC(x) · eiνC(x)

∧ qC(y) · eiνC(y), rC(x) · eiωC(x)
∨ rC(y) · eiωC(y))

= (pC(x) · eiµC(x), qC(x) · eiνC(x), rC(x) · eiωC(x))

∧ (pC(y) · eiµC(y), qC(y) · eiνC(y), rC(y) · eiωC(y))

= C(x) · eiC(x)
∧ C(y) · eiC(y).

Thus,

C(x · y−1) · eiC(x·y−1)
≥ C(x) · eiC(x)

∧ C(y) · eiC(y).

Conversely, Suppose the condition

C(x · y−1) · eiC(x·y−1)
≥ C(x) · eiC(x)

∧ C(y) · eiC(y)

is hold.

Let ê be the unit of G, since G is a group,

pC(x−1) · eiµC(x−1) = pC(ê · x−1) · eiµC(ê·x−1)

≥ pC(ê) · eiµC(ê)
∧ pC(x) · eiµC(x)

= pC(x · x−1) · eiµC(x·x−1)
∧ pC(x) · eiµC(x)

≥ pC(x) · eiµC(x)
∧ pC(x) · eiµC(x)

∧ pC(x) · eiµC(x)

= pC(x) · eiµC(x)

pC(x−1) · eiµC(x−1)
≥ pC(x) · eiµC(x).

Similarly,

qC(x−1) · eiνC(x−1)
≥ qC(x) · eiνC(x).

And

rC(x−1) · eiωC(x−1) = rC(ê · x−1) · eiωC(ê·x−1)

≤ rC(ê) · eiωC(ê)
∨ rC(x) · eiωC(x)

= rC(x · x−1) · eiωC(x·x−1)
∨ rC(x) · eiωC(x)

≤ rC(x) · eiωC(x)
∨ rC(x) · eiωC(x)

∨ rC(x) · eiωC(x)

= ∨rC(x) · eiωC(x).

So, the condition (CNSG2) of Definition 3.1 is satisfied.

Now let us show the condition (CNSG1) of Definition 3.1,

pC(x · y) · eiµC(x·y) = pC(x · (y−1)−1) · eiµC(x·(y−1)−1)

≥ pC(x) · eiµC(x)
∧ pC(y−1) · eiµC(y−1)

≥ pC(x) · eiµC(x)
∧ pC(y) · eiµC(y).
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Similarly,

qC(x · y) · eiνC(x·y)
≥ qC(x) · eiνC(x)

∧ qC(y) · eiνC(y)

and

rC(x · y) · eiωC(x·y) = rC(x · (y−1)−1) · eiωC(x·(y−1)−1)

≤ rC(x) · eiωC(x)
∨ rC(y−1) · eiωC(y−1)

≤ rC(x) · eiωC(x)
∨ rC(y) · eiωC(y).

Therefore (CNSG1) of Definition 3.1 is also satisfied. Thus C is a complex neutrosophic subgroup of G. �

F Based on Theorem 3.7, we define complex neutrosophic subgroup as follows:

Definition 3.8. Let G be any group with multiplication. A complex neutrosophic set

C =
{〈

TC = pC · eiµC , IC = qC · eiνC ,FC = rC · eiωC
〉}

on group G is known as a complex neutrosophic subgroup (CNSG) of G, if

C(x−1y) ≥ min
{
C(x),C(y)

}
i.e.,

(i) pC(x−1y) · eiµC(x−1 y)
≥ min{pC(x) · eiµC(x), pC(y) · eiµC(y)

}

(ii) qC(x−1y) · eiνC(x−1 y)
≥ min{qC(x) · eiνC(x), qC(y) · eiνC(y)

}

(iii) rC(x−1y) · eiωC(x−1 y)
≤ max{rC(x) · eiωC(x), rC(y) · eiωC(y)

},∀ x, y ∈ G.

Example 3.9. Let G = {1,−1, i,−i} be a group under multiplication, and C = 〈TC, IC,FC〉 be complex neutrosophic
set on G, such that

TC(1) = 0.8e0.6πi,TC(−1) = 0.7e0.5πi,TC(i) = TC(−i) = 0.3e0.2πi

IC(1) = 0.7e0.5πi, IC(−1) = 0.6e0.4πi, IC(i) = IC(−i) = 0.2e0.2πi

FC(1) = 0.5e0.4πi,FC(−1) = 0.1e0.2πi,FC(i) = FC(−i) = 0.1e0.2πi.

Clearly, C is a complex neutrosophic subgroup of G.

Theorem 3.10. If C1 and C2 are two complex neutrosophic subgroups of a group G, then the intersection C1 ∩C2 is
a complex neutrosophic subgroup of G.

Proof: Let x, y ∈ G be any arbitrary elements. By Theorem 3.7, it is enough to show that

(C1 ∩ C2)(x · y−1) ≥ (C1 ∩ C2)(x) ∧ (C1 ∩ C2)(y).

First consider the truth-membership degree of the intersection

pC1∩C2 (x · y−1) · eiµC1∩C2 (x·y−1) = pC1 (x · y−1) · eiµC1 (x·y−1)

∧ pC2 (x · y−1) · eiµC2 (x·y−1)

≥ pC1 (x) · eiµC1 (x)
∧ pC1 (y) · eiµC1 (y)

∧ pC2 (x) · eiµC2 (x)
∧ pC2 (y) · eiµC2 (y)

= (pC1 (x) · eiµC1 (x)
∧ pC2 (x) · eiµC2 (x))

∧ (pC1 (y) · eiµC1 (y)
∧ pC2 (y) · eiµC2 (y))

= pC1∩C2 (x) · eiµC1∩C2 (x)

∧ pC1∩C2 (y) · eiµC1∩C2 (y).
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Similarly,

qC1∩C2 (x · y−1) · eiνC1∩C2 (x·y−1)
≥ qC1∩C2 (x) · eiνC1∩C2 (x)

∧ qC1∩C2 (y) · eiνC1∩C2 (y).

And

rC1∪C2 (x · y−1) · eiωC1∪C2 (x·y−1) = rC1 (x · y−1) · eiωC1 (x·y−1)

∨ rC2 (x · y−1) · eiωC2 (x·y−1)

≤ rC1 (x) · eiωC1 (x)
∨ rC1 (y) · eiωC1 (y)

∨ rC2 (x) · eiωC2 (x)
∨ rC2 (y) · eiωC2 (y)

= rC1 (x) · eiωC1 (x)
∨ rC2 (x) · eiωC2 (x)

∨ rC1 (y) · eiωC1 (y)
∨ rC2 (y) · eiωC2 (y)

= rC1∪C2 (x) · eiωC1∪C2 (x)

∨ rC1∪C2 (y) · eiωC1∪C2 (y).

Hence C1 ∩ C2 is a complex neutrosophic subgroup of G. �

Theorem 3.11. If C1 and C2 are two complex neutrosophic subgroups of a group G, then the union C1 ∪ C2 is a
complex neutrosophic subgroup of G.

Proof: Let x, y ∈ G be any arbitrary elements. By Theorem 3.7, it is enough to show that

(C1 ∪ C2)(x · y−1) ≥ min{(C1 ∪ C2)(x), (C1 ∪ C2)(y)}.

Consider,

pC1∪C2 (x · y−1) · eiµC1∪C2 (x·y−1) = pC1 (x · y−1) · eiµC1 (x·y−1)

∨ pC2 (x · y−1) · eiµC2 (x·y−1)

≥ pC1 (x) · eiµC1 (x)
∧ pC1 (y) · eiµC1 (y)

∨ pC2 (x) · eiµC2 (x)
∧ pC2 (y) · eiµC2 (y)

= (pC1 (x) · eiµC1 (x)
∨ pC2 (x) · eiµC2 (x))

∧ (pC1 (y) · eiµC1 (y)
∨ pC2 (y) · eiµC2 (y))

= min{pC1∪C2 (x) · eiµC1∪C2 (x),

pC1∪C2 (y) · eiµC1∪C2 (y)
}.

And

rC1∩C2 (x · y−1) · eiωC1∩C2 (x·y−1) = rC1 (x · y−1) · eiωC1 (x·y−1)

∧ rC2 (x · y−1) · eiωC2 (x·y−1)

≤ rC1 (x) · eiωC1 (x)
∨ rC1 (y) · eiωC1 (y)

∧ rC2 (x) · eiωC2 (x)
∨ rC2 (y) · eiωC2 (y)

= rC1 (x) · eiωC1 (x)
∧ rC2 (x) · eiωC2 (x)

∨ rC1 (y) · eiωC1 (y)
∧ rC2 (y) · eiωC2 (y)

= max{rC1∩C2 (x) · eiωC1∩C2 (x),

rC1∩C2 (y) · eiωC1∩C2 (y)
}.

Thus, C1 ∪ C2 is a complex neutrosophic subgroup of G. �
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4. Alpha-Cut of Complex Neutrosophic Set

Definition 4.1. Let C =
〈
CT = pCeiµC ,CI = qCeiνC ,CF = rCeiωC

〉
be a complex neutrosophic set onX and α = β · eiγ,

where β ∈ [0, 1], γ ∈ [0, 2π].

Define the α-level set of C as follows:

Cα = {x ∈ X | C(x) ≥ α} i.e.,(
pC(x) · eiµC(x)

)
α

=
{
x ∈ X | pC(x) · eiµC(x)

≥ β · eiγ
}
,(

qC(x) · eiνC(x)
)
α

=
{
x ∈ X | qC(x) · eiνC(x)

≥ β · eiγ
}
,(

rC(x) · eiωC(x)
)α

=
{
x ∈ X | rC(x) · eiωC(x)

≤ β · eiγ
}
.

It is easy to verify that,

(1) If C1 ⊆ C2 and α = β · eiγ, where, β ∈ [0, 1], γ ∈ [0, 2π], then,(
pC1 (x) · eiµC1 (x)

)
α
⊆

(
pC2 (x) · eiµC2 (x)

)
α(

qC1 (x) · eiνC1 (x)
)
α
⊆

(
qC2 (x) · eiνC2 (x)

)
α(

rC1 (x) · eiωC1 (x)
)α
⊇

(
rC2 (x) · eiωC2 (x)

)α
.

(2) α1 ≤ α2 where, α1 = β1 · eiγ1 , α2 = β2 · eiγ2 implies that(
pC1 (x) · eiµC1 (x)

)
α1
⊇

(
pC1 (x) · eiµC1 (x)

)
α2(

qC1 (x) · eiνC1 (x)
)
α1
⊇

(
qC1 (x) · eiνC1 (x)

)
α2(

rC1 (x) · eiωC1 (x)
)α1
⊆

(
rC1 (x) · eiωC1 (x)

)α2
.

Example 4.2. Let

C =


〈
x1, 0.2e0.4πi, 0.3e0.5πi, 0.7e0.1πi

〉
,
〈
x2, 0.7e0.1πi, 0.6e0.5πi, 0.7e0.4πi

〉
,〈

x3, 0.6e0.4πi, 0.4e0.5πi, 0.1e0.4πi
〉 

be a complex neutrosophic set of X, and α = 0.4e0.4πi. Then the α-level set as: Cα = {x3}.

Proposition 4.3. C is a complex neutrosophic subgroup of G if and only if for all α = βeiγ where, β ∈ [0, 1], γ ∈
[0, 2π], α-level sets of C,

(
pC · eiµC

)
α
,
(
qC · eiνC

)
α

and
(
rC · eiωC

)α
are classical subgroups of G.

Proof: Let C be a CNSG of G, α = βeiγ where β ∈ [0, 1], γ ∈ [0, 2π] and x, y ∈
(
pC · eiµC

)
α

(similarly

x, y ∈
(
qC · eiνC

)
α
,
(
rC · eiωC

)α
).

By the assumption,

pC(x · y−1) · eiµC(x·y−1)
≥ pC(x) · eiµC(x)

∧ pC(y) · eiµC(y)

≥ α ∧ α = α.

Similarly,

qC(x · y−1) · eiνC(x·y−1)
≥ α.

And

rC(x · y−1) · eiωC(x·y−1)
≤ rC(x) · eiωC(x)

∨ rC(y) · eiωC(y)

≤ α ∨ α = α.
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Hence x · y−1
∈

(
pC · eiµC

)
α
,
(
qC · eiνC

)
α
,
(
rC · eiωC

)α
for each α.

This means that
(
pC(x) · eiµC(x)

)
α
,
(
qC(x) · eiνC(x)

)
α

and
(
rC(x) · eiωC(x)

)α
is a classical subgroup of G for each α.

Conversely, let
(
pC · eiµC

)
α

be a classical subgroup of G, for each α = βeiγ where β ∈ [0, 1], γ ∈ [0, 2π].

Let x, y ∈ G, α = pC(x) · eiµC(x)
∧ pC(y) · eiµC(y) and δ = pC(x) · eiµC(x). Since

(
pC · eiµC

)
α

and
(
pC · eiµC

)
δ

are classical

subgroup of G, x · y ∈
(
pC · eiµC

)
α

and x−1
∈

(
pC · eiµC

)
δ
. Thus,

pC(x · y) · eiµC(x·y)
≥ α = pC(x) · eiµC(x)

∧ pC(y) · eiµC(y),

and

pC(x−1) · eiµC(x−1)
≥ δ = pC(x) · eiµC(x).

Similarly,

qC(x · y) · eiνC(x·y)
≥ qC(x) · eiνC(x)

∧ qC(y) · eiνC(y),

qC(x−1) · eiνC(x−1)
≥ qC(x) · eiνC(x).

And

rC(x · y) · eiωC(x·y)
≤ rC(x) · eiωC(x)

∨ rC(y) · eiωC(y),

rC(x−1) · eiωC(x−1)
≤ rC(x) · eiωC(x).

So, the conditions of Definition 3.1 are satisfied. Hence G is a complex neutrosophic subgroup. �

5. Image and Preimage of Complex Neutrosophic Set

Definition 5.1. Let f : G1 −→ G2 be a function and C1 and C2 be the complex neutrosophic sets of G1 and G2,
respectively. Then the image of a complex neutrosophic set C1 is a complex neutrosophic set of G2 and it is defined as
follows:

f (C1)(y) =
(
p f (C1)(y) · eiµ f (C1)(y), q f (C1)(y) · eiν f (C1)(y),

r f (C1)(y) · eiω f (C1)(y)
)

=
(

f (pC1 )(y) · ei f (µC1 )(y), f (qC1 )(y) · ei f (νC1 )(y),

f (rC1 )(y) · ei f (ωC1 )(y)
)
, ∀ y ∈ G2

where,

f (pC1 )(y) · ei f (µC1 )(y) =

{ ∨
pC1 (x) · eiµC1 (x), if x ∈ f−1(y)
0 otherwise

f (qC1 )(y) · ei f (νC1 )(y) =

{ ∨
qC1 (x) · eiνC1 (x), if x ∈ f−1(y)
0 otherwise

f (rC1 )(y) · ei f (ωC1 )(y) =

{ ∧
rC1 (x) · eiωC1 (x), if x ∈ f−1(y)
1 · ei2π otherwise .
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And the preimage of a complex neutrosophic set C2 is a complex neutrosophic set of G1 and it is defined as follows: for
all x ∈ G1,

f−1(C2)(x) =
(
p f−1 (C2)(x) · eiµ f−1 (C2)(x), q f−1 (C2)(x) · eiν f−1 (C2)(x),

r f−1 (C2)(x) · eiω f−1 (C2)(x)
)

=
(
pC2 ( f (x)) · eiµC2 ( f (x)), qC2 ( f (x)) · eiνC2 ( f (x)),

rC2 ( f (x)) · eiωC2 ( f (x))
)

= C2( f (x)).

Theorem 5.2. Let G1 and G2 be two groups and f : G1 −→ G2 be a group homomorphism. If C is a complex
neutrosophic subgroup of G1, then the image of C, f (C) is a complex neutrosophic subgroup of G2.

Proof: Let C be a CNSG of G1 and y1, y2 ∈ G2. if f−1(y1) = φ or f−1(y2) = φ, then it is obvious that f (C) is
a CNSG of G2. Let us assume that there exist x1, x2 ∈ G1 such that f (x1) = y1 and f (x2) = y2. Since f is a
group homomorphism,

f (pC(y1 · y−1
2 )) · ei f (µC(y1·y−1

2 )) =
∨

y1·y−1
2 = f (x)

pC(x) · eiµC(x)

≥ pC(x1 · x−1
2 ) · eiµC(x1·x−1

2 ),

f (qC(y1 · y−1
2 )) · ei f (νC(y1·y−1

2 )) =
∨

y1·y−1
2 = f (x)

qC(x) · eiνC(x)

≥ qC(x1 · x−1
2 ) · eiνC(x1·x−1

2 ),

f (rC(y1 · y−1
2 )) · ei f (ωC(y1·y−1

2 )) =
∧

y1·y−1
2 = f (x)

rC(x) · eiωC(x)

≤ rC(x1 · x−1
2 ) · eiωC(x1·x−1

2 ).

By using the above inequalities let us prove that

f (C)(y1 · y−1
2 ) ≥ f (C)(y1) ∧ f (C)(y2).

f (C)(y1 · y−1
2 ) =

(
f (pC(y1 · y−1

2 )) · ei f (µC(y1·y−1
2 )), f (qC(y1 · y−1

2 )) · ei f (νC(y1·y−1
2 )),

f (rC(y1 · y−1
2 )) · ei f (ωC(y1·y−1

2 ))
)

=

 ∨
y1·y−1

2 = f (x)

pC(x) · eiµC(x),
∨

y1·y−1
2 = f (x)

qC(x) · eiνC(x),

∧
y1·y−1

2 = f (x)

rC(x) · eiωC(x)


≥

(
pC(x1 · x−1

2 ) · eiµC(x1·x−1
2 ), qC(x1 · x−1

2 ) · eiνC(x1·x−1
2 ),

rC(x1 · x−1
2 ) · eiωC(x1·x−1

2 )
)

Florentin Smarandache (ed.) Collected Papers, VII

352



≥

(
pC(x1) · eiµC(x1)

∧ pC(x2) · eiµC(x2), qC(x1) · eiνC(x1)

∧qC(x2) · eiνC(x2), rC(x1) · eiωC(x1)
∨ rC(x2) · eiωC(x2)

)
=

(
pC(x1) · eiµC(x1), qC(x1) · eiνC(x1), rC(x1) · eiωC(x1)

∧pC(x2) · eiµC(x2), qC(x2) · eiνC(x2), rC(x2) · eiωC(x2)
)

= f (C)(y1) ∧ f (C)(y2).

This is satisfied for each x1, x2 ∈ G1 with f (x1) = y1 and f (x2) = y2, then it is obvious that

f (C)(y1 · y−1
2 ) ≥

 ∨
y1= f (x1)

pC(x1) · eiµC(x1),
∨

y1= f (x1)

qC(x1) · eiνC(x1),

∧
y1= f (x1)

rC(x1) · eiωC(x1)

 ∧
 ∨

y2= f (x2)

pC(x2) · eiµC(x2),

∨
y2= f (x2)

qC(x2) · eiνC(x2),
∧

y2= f (x2)

rC(x2) · eiωC(x2)


=

(
f (pC(y1)) · ei f (µC(y1)), f (qC(y1)) · ei f (νC(y1)), f (rC(x1)) · ei f (ωC(x1))

)
∧

(
f (pC(y2)) · ei f (µC(y2)), f (qC(y2)) · ei f (νC(y2)), f (rC(x2)) · ei f (ωC(x2))

)
= f (C)(y1) ∧ f (C)(y2).

Hence the image of a CNSG is also a CNSG. �

Theorem 5.3. Let G1 and G2 be the two groups and f : G1 −→ G2 be a group homomorphism. If C2 is a complex
neutrosophic subgroup of G2, then the preimage of f−1(C2) is a complex neutrosophic subgroup of G1.

Proof: LetC2 be a complex neutrosophic subgroup ofG2, and x1, x2 ∈ G1. Since f is a group homomorphism,
the following inequalities is obtained.

f−1(C2)(x1 · x−1
2 ) =

(
pC2 ( f (x1 · x−1

2 )) · eiµC2 ( f (x1·x−1
2 )),

qC2 ( f (x1 · x−1
2 )) · eiνC2 ( f (x1·x−1

2 )),

rC2 ( f (x1 · x−1
2 )) · eiωC2 ( f (x1·x−1

2 ))
)

=
(
pC2 ( f (x1) · f (x2)−1) · eiµC2 ( f (x1)· f (x2)−1),

qC2 ( f (x1) · f (x2)−1) · eiνC2 ( f (x1)· f (x2)−1),

rC2 ( f (x1) · f (x2)−1) · eiωC2 ( f (x1)· f (x2)−1)
)

≥

(
pC2 ( f (x1) ∧ f (x2)) · eiµC2 ( f (x1)∧ f (x2)),

qC2 ( f (x1) ∧ f (x2)) · eiνC2 ( f (x1)∧ f (x2)),

rC2 ( f (x1) ∨ f (x2)) · eiωC2 ( f (x1)∨ f (x2))
)

=
(
pC2 ( f (x1)) · eiµC2 ( f (x1)), qC2 ( f (x1) · eiνC2 ( f (x1)),

rC2 ( f (x1) · eiωC2 ( f (x1))) ∧ (pC2 ( f (x2)) · eiµC2 ( f (x2)),

qC2 ( f (x2) · eiνC2 ( f (x2)), rC2 ( f (x2) · eiωC2 ( f (x2))
)

= f−1(C2)(x1) ∧ f−1(C2)(x2).
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Hence f−1(C2) is a CNSG of G1. �

Theorem 5.4. Let f : G1 −→ G2 be a homomorphism of groups, C is a CNSG of G1 and define C−1 : G1 −→

[0, 1] · ei[0,2π]
× [0, 1] · ei[0,2π]

× [0, 1] · ei[0,2π] as C−1(x) = C(x−1) for arbitrary x ∈ G1. Then the following properties
are valid.

(1) C−1 is a CNSG of G1.

(2)
(

f (C)
)−1 = f (C−1).

Proof: (1) Let C is a complex neutrosophic subgroup of G1.

Since C−1 : G1 −→ [0, 1] · ei[0,2π]
× [0, 1] · ei[0,2π]

× [0, 1] · ei[0,2π].

Let for all x ∈ G1, this implies that, C−1(x) = (xT, xI, xF) where xT ∈ [0, 1] · ei[0,2π], xI ∈ [0, 1] · ei[0,2π] and
xF ∈ [0, 1] · ei[0,2π].

So C−1 is a complex neutrosophic subgroup of G1.

(2) Given that C−1(x) = C(x−1) ∀ x ∈ G1.

Since f : G1 −→ G2 be a homomorphism. As C is a CNSG of G1 this implies that C−1 is a CNSG of G1 by
part (1), so f (C−1) ∈ G2 and f (C) ∈ G2. Now by (1), ( f (C))−1

∈ G2 as G2 is a group homomorphism.

So f (C−1) = ( f (C))−1 by uniqueness of inverse of an element. �

Corollary 5.5. Let f : G1 −→ G2 be an isomorphism on of groups, C is complex neutrosophic subgroup of G1, then
f−1( f (C)) = C.

Corollary 5.6. Let f : G −→ G be an isomorphism on a group G, C is complex neutrosophic subgroup of G, then
f (C) = C if and only if f−1(C) = C.

6. Complex Neutrosophic Normal Subgroup

Definition 6.1. Let C be a complex neutrosophic subgroup of a group G is known as a complex neutrosophic normal
subgroup (CNNSG) of G, if

C(xyx−1) ≥ C(y) i.e.,

(i) pC(xyx−1) · eiµC(xyx−1)
≥ pC(y) · eiµC(y)

(ii) qC(xyx−1) · eiνC(xyx−1)
≥ qC(y) · eiνC(y)

(iii) rC(xyx−1) · eiωC(xyx−1)
≤ rC(y) · eiωC(y), ∀ x,y ∈ G.

Example 6.2. Let G = S3 = {1, a, a2, b, ab, a2b} be a group and C = 〈TC, IC,FC〉 be a complex neutrosophic set of G
such that,

TC(1) = 0.8e0.6πi,TC(a) = TC(a2) = 0.6e0.6πi

TC(b) = TC(ab) = TC(a2b) = 0.5e0.4πi

IC(1) = 0.7e0.5πi, IC(a) = IC(a2) = 0.6e0.5πi

IC(b) = IC(ab) = IC(a2b) = 0.4e0.3πi

FC(1) = 0.5e0.4πi,FC(a) = FC(a2) = 0.3e0.2πi

FC(b) = FC(ab) = FC(a2b) = 0.3e0.2πi.

Then clearly C is a complex neutrosophic normal subgroup of G.
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Theorem 6.3. IfC1 andC2 are any two complex neutrosophic normal subgroups of the groupsG1 andG2 respectively,
then C1 × C2 is also a complex neutrosophic normal subgroup of G1 × G2.

Proof: Similarly to the proof of Theorem 3.5. �

Theorem 6.4. Let G be a group, and C1 and C2 be two CNNSGs of G, then C1 ∩ C2 is also a complex neutrosophic
normal subgroup of G.

Proof: Since C1 and C2 are CNNSGs of G, then

pC1 (x · y · x−1) · eiµC1 (x·y·x−1)
≥ pC1 (y) · eiµC1 (y),

and

pC2 (x · y · x−1) · eiµC2 (x·y·x−1)
≥ pC2 (y) · eiµC2 (y).

So, by the definition of the intersection,

pC1∩C2 (x · y · x−1) · eiµC1∩C2 (x·y·x−1) = pC1 (x · y · x−1) · eiµC1 (x·y·x−1)

∧ pC2 (x · y · x−1) · eiµC2 (x·y·x−1)

≥ pC1 (y) · eiµC1 (y)
∧ pC2 (y) · eiµC2 (y)

= pC1∩C2 (y) · eiµC1∩C2 (y).

By the similar way,

qC1∩C2 (x · y · x−1) · eiνC1∩C2 (x·y·x−1)
≥ qC1∩C2 (y) · eiνC1∩C2 (y).

And

rC1∪C2 (x · y · x−1) · eiωC1∪C2 (x·y·x−1) = rC1 (x · y · x−1) · eiωC1 (x·y·x−1)

∨ rC2 (x · y · x−1) · eiωC2 (x·y·x−1)

≤ rC1 (y) · eiωC1 (y)
∨ rC2 (y) · eiωC2 (y)

= rC1∪C2 (y) · eiωC1∪C2 (y).

Hence the intersection of two CNNSGs is also a CNNSG. �

Theorem 6.5. If C1 and C2 be two CNNSGs of G, then C1 ∪ C2 is a complex neutrosophic normal subgroup of G.

Proof: Similarly to the proof of Theorem 3.11. �

Proposition 6.6. Let C be a complex neutrosophic subgroup of a group G. Then the following are correspondent:

(1) C is a CNNSG of G.
(2) C(x · y · x−1) = C(y), ∀ x, y ∈ G.
(3) C(x · y) = C(y · x), ∀ x, y ∈ G.

Proof: (1)⇒ (2) : Let C be a complex neutrosophic normal subgroup of G. Take x, y ∈ G, then by Definition
6.1,

pC(x · y · x−1) · eiµC(x·y·x−1)
≥ pC(y) · eiµC(y),

qC(x · y · x−1) · eiνC(x·y·x−1)
≥ qC(y) · eiνC(y),

rC(x · y · x−1) · eiωC(x·y·x−1)
≤ rC(y) · eiωC(y).
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 Thus taking arbitrary element x, the following is got for the truth membership of C,

pC(x−1
· y · x) · eiµC(x−1

·y·x) = pC(x−1
· y · (x−1)−1

· eiµC(x−1
·y·(x−1)−1)

≥ pC(y) · eiµC(y).

Therefore,

pC(y) · eiµC(y) = pC(x−1
· (x · y · x−1) · x) · eiµC(x−1

·(x·y·x−1)·x)

≥ pC(x · y · x−1) · eiµC(x·y·x−1).

Thus, pC(x · y · x−1) · eiµC(x·y·x−1) = pC(y) · eiµC(y).

Similarly, qC(x · y · x−1) · eiνC(x·y·x−1) = qC(y) · eiνC(y).

For falsity membership,

rC(x−1
· y · x) · eiωC(x−1

·y·x) = rC(x−1
· y · (x−1)−1) · eiωC(x−1

·y·(x−1)−1)

≤ rC(y) · eiωC(y).

Therefore,

rC(y) · eiωC(y) = rC(x−1
· (x · y · x−1) · x) · eiωC(x−1

·(x·y·x−1)·x)

≤ rC(x · y · x−1) · eiωC(x·y·x−1).

This implies that

rC(x · y · x−1) · eiωC(x·y·x−1) = rC(y) · eiωC(y).

Hence C(x · y · x−1) = C(y) for all x, y ∈ G.

(2)⇒ (3) : Substituting y = y · x in (2), the condition (3) is shown easily.
(3)⇒ (1) : According to C(y · x) = C(x · y), the equality

C(x · y · x−1) = C(y · x · x−1) = C(y) ≥ C(y)

is satisfied. Hence C is a CNNSG of G. �

Theorem 6.7. Let C is a complex neutrosophic subgroup of a group G. Then C is a complex neutrosophic normal
subgroup of G if and only if for arbitrary α = βeiγ where β ∈ [0, 1], γ ∈ [0, 2π], if α-level sets of C are non-empty,
then

(
pC · eiµC

)
α
,
(
qC · eiνC

)
α

and
(
rC · eiωC

)α
are classical subgroups of G.

Proof: Similarly to the proof of Proposition 4.3. �

Theorem 6.8. Let C is a complex neutrosophic normal subgroup of a group G. Let GC = {x ∈ G | C(x)eiC(x) =
C(ê)eiC(ê)

}, where ê is the unit of G. Then the classical subset GC of G is a normal subgroup of G.

Proof: Let C be a CNNSG of G. First it is necessary to show that the classical subset GC is a subgroup of G.
Let us take x, y ∈ GC, then by Theorem 3.7,

C(x · y−1)eiC(x·y−1)
≥ C(x)eiC(x)

∧ C(y)eiC(y)

= C(ê)eiC(ê)
∧ C(ê)eiC(ê)

= C(ê)eiC(ê)
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and always C(ê)eiC(ê)
≥ C(x · y−1)eiC(x·y−1).

Hence x · y−1
∈ GC, i.e., GC is a subgroup of G.

Now we will be shown that GC is normal. Take arbitrary x ∈ GC and y ∈ G. Therefore, C(x)eiC(x) = C(ê)eiC(ê).
Since C ∈CNNSG(G), the following is obtained,

C(y · x · y−1)eiC(y·x·y−1) = C(y−1
· y · x)eiC(y−1

·y·x)

= C(x)eiC(x) = C(ê)eiC(ê).

Hence, y · x · y−1
∈ GC, So GC is a normal subgroup of G.

Theorem 6.9. Let f : G1 −→ G2 be a group homomorphism and C2 is a CNNSG of G2. Then the preimage f−1(C2)
is a CNNSG of G1.

Proof: From the Theorem 5.3, it is known that f−1(C2) is a complex neutrosophic subgroup of G1. Hence it
is sufficient to show that normality property of f−1(C2). For arbitrary x1, x2 ∈ G1, by homomorphism of f
and by the normality of C2,

f−1(C2)(x1 · x2)ei f−1(C2)(x1·x2) = C2( f (x1 · x2))eiC2( f (x1·x2))

= C2( f (x1) · f (x2))eiC2( f (x1)· f (x2))

= C2( f (x2) · f (x1))eiC2( f (x2)· f (x1))

= C2( f (x2 · x1))eiC2( f (x2·x1))

= f−1(C2)(x2 · x1)ei f−1(C2)(x2·x1).

Hence, from the Proposition 6.6, f−1(C2) is a CNNSG of G1. �

Theorem 6.10. Let f : G1 −→ G2 be a surjective homomorphism of groups G1 and G2. if C is a CNNSG of G1, then
f (C) is a CNNSG of G2.

Proof: Since f (C) is a complex neutrosophic subgroup ofG2 is clear from the Theorem 5.2, it is sufficient only
to show that the normality condition by using Proposition 6.6 (3). Take y1, y2 ∈ G2 such that f−1(y1) , φ,
f−1(y2) , φ and f−1(y1 · y−1

2 ) , φ. So it is inferred that

f (pC(y1 · y2 · y−1
1 ))ei f (µC(y1·y2·y−1

1 )) =
∨

l∈ f−1(y1·y2·y−1
1 )

pC(l)eiµC(l)

and

f (pC(y2))ei f (µC(y2)) =
∨

l∈ f−1(y2)

pC(l)eiµC(l).

For all x2 ∈ f−1(y2), x1 ∈ f−1(y1) and x−1
1 ∈ f−1(y−1

1 ), since C is normal,

pC(x1 · x2 · x−1
1 )eiµC(x1·x2·x−1

1 )
≥ pC(x2)eiµC(x2),

qC(x1 · x2 · x−1
1 )eiνC(x1·x2·x−1

1 )
≥ qC(x2)eiνC(x2),

rC(x1 · x2 · x−1
1 )eiωC(x1·x2·x−1

1 )
≤ rC(x2)eiωC(x2)

are obtained.

Since f is a homomorphism , it follows that

f (x1 · x2 · x−1
1 ) = f (x1) · f (x2) · f (x1)−1 = y1 · y2 · y−1

1 .
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So, x1 · x2 · x−1
1 ∈ f−1(y1 · y2 · y−1

1 ). Hence∨
l∈ f−1(y1·y2·y−1

1 )

pC(l)eiµC(l)
≥

∨
x1∈ f−1(y1),x2∈ f−1(y2)

pC(x1 · x2 · x−1
1 )eiµC(x1·x2·x−1

1 )

≥

∨
x2∈ f−1(y2)

pC(x2)eiµC(x2).

This means that,

f (pC(y1 · y2 · y−1
1 ))ei f (µC(y1·y2·y−1

1 ))
≥ f (pC(y2))ei f (µC(y2)).

On the other hand, the following inequalities are obtained in a similar observation.

f (qC(y1 · y2 · y−1
1 ))ei f (νC(y1·y2·y−1

1 ))
≥ f (qC(y2))ei f (νC(y2)),

f (rC(y1 · y2 · y−1
1 ))ei f (ωC(y1·y2·y−1

1 ))
≥ f (rC(y2))ei f (ωC(y2)).

So the desired inequality,

f (C)(y1 · y2 · y−1
1 )ei f (C)(y1·y2·y−1

1 ) =
(

f (pC(y1 · y2 · y−1
1 ))ei f (µC(y1·y2·y−1

1 )),

f (qC(y1 · y2 · y−1
1 ))ei f (νC(y1·y2·y−1

1 )),

f (rC(y1 · y2 · y−1
1 ))ei f (ωC(y1·y2·y−1

1 ))
)

≥

(
f (pC(y2))ei f (µC(y2)), f (qC(y2))ei f (νC(y2)),

f (rC(y2))ei f (ωC(y2))
)

=
(
p f (C)(y2)eiµ f (C)(y2), q f (C)(y2)eiν f (C)(y2),

r f (C)(y2)eiω f (C)(y2)
)

= f (C)(y2)ei f (C)(y2),

is satisfied. �

7. Conclusion

In this paper we presented the concept of complex neutrosophic subgroups (normal subgroups) and
alpha-cut of complex neutrosophic set, and studied some of its motivating results. We have also defined the
Cartesian product of complex neutrosophic subgroups and discussed some its related results. Furthermore,
we have also defined the concept of image and preimage of complex neutrosophic set and studied some of
its properties. In future, we will generalized the study to soft set theory and will initiate the concept of soft
complex neutrosophic subgroups (normal subgroups).
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Abstract: The bipolar neutrosophic set is an important extension of the bipolar fuzzy set. The bipolar
neutrosophic set is a hybridization of the bipolar fuzzy set and neutrosophic set. Every element of
a bipolar neutrosophic set consists of three independent positive membership functions and three
independent negative membership functions. In this paper, we develop cross entropy measures of
bipolar neutrosophic sets and prove their basic properties. We also define cross entropy measures of
interval bipolar neutrosophic sets and prove their basic properties. Thereafter, we develop two novel
multi-attribute decision-making strategies based on the proposed cross entropy measures. In the
decision-making framework, we calculate the weighted cross entropy measures between each
alternative and the ideal alternative to rank the alternatives and choose the best one. We solve
two illustrative examples of multi-attribute decision-making problems and compare the obtained
result with the results of other existing strategies to show the applicability and effectiveness of the
developed strategies. At the end, the main conclusion and future scope of research are summarized.

Keywords: neutrosophic set; bipolar neutrosophic set; interval bipolar neutrosophic set; multi-attribute
decision-making; cross entropy measure

1. Introduction

Shannon and Weaver [1] and Shannon [2] proposed the entropy measure which dealt formally
with communication systems at its inception. According to Shannon and Weaver [1] and Shannon [2],
the entropy measure is an important decision-making apparatus for computing uncertain information.
Shannon [2] introduced the concept of the cross entropy strategy in information theory.

The measure of a quantity of fuzzy information obtained from a fuzzy set or fuzzy system is
termed fuzzy entropy. However, the meaning of fuzzy entropy is quite different from the classical
Shannon entropy because it is defined based on a nonprobabilistic concept [3–5], while Shannon
entropy is defined based on a randomness (probabilistic) concept. In 1968, Zadeh [6] extended
the Shannon entropy to fuzzy entropy on a fuzzy subset with respect to the concerned probability
distribution. In 1972, De Luca and Termini [7] proposed fuzzy entropy based on Shannon’s function
and introduced the axioms with which the fuzzy entropy should comply. Sander [8] presented Shannon
fuzzy entropy and proved that the properties sharpness, valuation, and general additivity have to
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be imposed on fuzzy entropy. Xie and Bedrosian [9] proposed another form of total fuzzy entropy.
To overcome the drawbacks of total entropy [8,9], Pal and Pal [10] introduced hybrid entropy that can
be used as an objective measure for a proper defuzzification of a certain fuzzy set. Hybrid entropy [10]
considers both probabilistic entropies in the absence of fuzziness. In the same study, Pal and Pal [10]
defined higher-order entropy. Kaufmann and Gupta [11] studied the degree of fuzziness of a fuzzy set
by a metric distance between its membership function and the membership function (characteristic
function) of its nearest crisp set. Yager [12,13] introduced a fuzzy entropy card as a fuzziness measure
by observing that the intersection of a fuzzy set and its complement is not the void set. Kosko [14,15]
studied the fuzzy entropy of a fuzzy set based on the fuzzy set geometry and distances between them.
Parkash et al. [16] proposed two new measures of weighted fuzzy entropy.

Burillo and Bustince [17] presented an axiomatic definition of an intuitionistic fuzzy entropy
measure. Szmidt and Kacprzyk [18] developed a new entropy measure based on a geometric
interpretation of the intuitionistic fuzzy set (IFS). Wei et al. [19] proposed an entropy measure for
interval-valued intuitionistic fuzzy sets (IVIFSs) and employed it in pattern recognition and multi
criteria decision-making (MCDM). Li [20] presented a new multi-attribute decision-making (MADM)
strategy combining entropy and technique for order of preference by similarity to ideal solution
(TOPSIS) in the IVIFS environment.

Shang and Jiang [21] developed cross entropy in the fuzzy environment. Vlachos and Sergiadis [22]
presented intuitionistic fuzzy cross entropy by extending fuzzy cross entropy [21]. Ye [23] proposed
a new cross entropy in the IVIFS environment and developed an optimal decision-making strategy.
Xia and Xu [24] defined a new entropy and a cross entropy and presented multi-attribute group
decision-making (MAGDM) strategy in the IFS environment. Tong and Yu [25] defined cross entropy
in the IVIFS environment and employed it to solve MADM problems.

Smarandache [26] introduced the neutrosophic set, which is a generalization of the fuzzy set [27] and
intuitionistic fuzzy set [28]. The single-valued neutrosophic set (SVNS) [29], an instance of the neutrosophic
set, has caught the attention of researchers due to its applicability in decision-making [30–61], conflict
resolution [62], educational problems [63,64], image processing [65–67], cluster analysis [68,69], social
problems [70,71], etc.

Majumdar and Samanta [72] proposed an entropy measure and presented an MCDM strategy
in the SVNS environment. Ye [73] defined cross entropy for SVNS and proposed an MCDM strategy
which bears undefined phenomena. To overcome the undefined phenomena, Ye [74] defined improved
cross entropy measures for SVNSs and interval neutrosophic sets (INSs) [75], which are straightforward
symmetric, and employed them to solve MADM problems. Since MADM strategies [73,74] are suitable for
single-decision-maker-oriented problems, Pramanik et al. [76] defined NS-cross entropy and developed
an MAGDM strategy which is straightforward symmetric and free from undefined phenomena and
suitable for group decision making problem. Şahin [77] proposed two techniques to convert the
interval neutrosophic information to single-valued neutrosophic information and fuzzy information.
In the same study, Şahin [77] defined an interval neutrosophic cross entropy measure by utilizing
two reduction methods and an MCDM strategy. Tian et al. [78] developed a transformation operator
to convert interval neutrosophic numbers to single-valued neutrosophic numbers and defined cross
entropy measures for two SVNSs. In the same study, Tian et al. [78] developed an MCDM strategy
based on cross entropy and TOPSIS [79] where the weight of the criterion is incomplete. Tian et al. [78]
defined a cross entropy for INSs and developed an MCDM strategy based on the cross entropy and
TOPSIS. The MCDM strategies proposed by Sahin [77] and Tian et al. [78] are applicable for a single
decision maker only. Therefore, multiple decision-makers cannot participate in the strategies in [77,78].
To tackle the problem, Dalapati et al. [80] proposed IN-cross entropy and weighted IN-cross entropy
and developed an MAGDM strategy.

Deli et al. [81] proposed bipolar neutrosophic set (BNS) by hybridizing the concept of bipolar fuzzy
sets [82,83] and neutrosophic sets [26]. A BNS has two fully independent parts, which are positive
membership degree T+ Ñ [0, 1], I+ Ñ [0, 1], F+ Ñ [0, 1], and negative membership degree T´Ñ [´1, 0],
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I´ Ñ [´1, 0], F´ Ñ [´1, 0], where the positive membership degrees T+, I+, F+ represent truth
membership degree, indeterminacy membership degree, and false membership degree, respectively,
of an element and the negative membership degrees T´, I´, F´ represent truth membership degree,
indeterminacy membership degree, and false membership degree, respectively, of an element to some
implicit counter property corresponding to a BNS. Deli et al. [81] defined some operations, namely,
score, accuracy, and certainty functions, to compare BNSs and provided some operators in order to
aggregate BNSs. Deli and Subas [84] defined a correlation coefficient similarity measure for dealing
with MCDM problems in a single-valued bipolar neutrosophic setting. Şahin et al. [85] proposed
a Jaccard vector similarity measure for MCDM problems with single-valued neutrosophic information.
Uluçay et al. [86] introduced a Dice similarity measure, weighted Dice similarity measure, hybrid vector
similarity measure, and weighted hybrid vector similarity measure for BNSs and established an MCDM
strategy. Dey et al. [87] investigated a TOPSIS strategy for solving multi-attribute decision-making
(MADM) problems with bipolar neutrosophic information where the weights of the attributes are
completely unknown to the decision-maker. Pramanik et al. [88] defined projection, bidirectional
projection, and hybrid projection measures for BNSs and proved their basic properties. In the same
study, Pramanik et al. [88] developed three new MADM strategies based on the proposed projection,
bidirectional projection, and hybrid projection measures with bipolar neutrosophic information.
Wang et al. [89] defined Frank operations of bipolar neutrosophic numbers (BNNs) and proposed
Frank bipolar neutrosophic Choquet Bonferroni mean operators by combining Choquet integral
operators and Bonferroni mean operators based on Frank operations of BNNs. In the same study,
Wang et al. [89] established an MCDM strategy based on Frank Choquet Bonferroni operators of BNNs
in a bipolar neutrosophic environment. Pramanik et al. [90] developed a Tomada de decisao interativa
e multicritévio (TODIM) strategy for MAGDM in a bipolar neutrosophic environment. An MADM
strategy based on cross entropy for BNSs is yet to appear in the literature.

Mahmood et al. [91] and Deli et al. [92] introduced the hybridized structure called interval bipolar
neutrosophic sets (IBNSs) by combining BNSs and INSs and defined some operations and operators
for IBNSs. An MADM strategy based on cross entropy for IBNSs is yet to appear in the literature.

Research gap:

An MADM strategy based on cross entropy for BNSs and an MADM strategy based on cross
entropy for IBNSs.

This paper answers the following research questions:

i. Is it possible to define a new cross entropy measure for BNSs?
ii. Is it possible to define a new weighted cross entropy measure for BNSs?
iii. Is it possible to develop a new MADM strategy based on the proposed cross entropy measure

in a BNS environment?
iv. Is it possible to develop a new MADM strategy based on the proposed weighted cross entropy

measure in a BNS environment?
v. Is it possible to define a new cross entropy measure for IBNSs?
vi. Is it possible to define a new weighted cross entropy measure for IBNSs?
vii. Is it possible to develop a new MADM strategy based on the proposed cross entropy measure

in an IBNS environment?
viii. Is it possible to develop a new MADM strategy based on the proposed weighted cross entropy

measure in an IBNS environment?

Motivation:

The above-mentioned analysis presents the motivation behind proposing a cross-entropy-based
strategy for tackling MADM in BNS and IBNS environments. This study develops two novel
cross-entropy-based MADM strategies.
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The objectives of the paper are:

1. To define a new cross entropy measure and prove its basic properties.
2. To define a new weighted cross measure and prove its basic properties.
3. To develop a new MADM strategy based on the weighted cross entropy measure in a BNS

environment.
4. To develop a new MADM strategy based on the weighted cross entropy measure in an IBNS

environment.

To fill the research gap, we propose a cross-entropy-based MADM strategy in the BNS
environment and the IBNS environment.

The main contributions of this paper are summarized below:

1. We propose a new cross entropy measure in the BNS environment and prove its basic properties.
2. We propose a new weighted cross entropy measure in the IBNS environment and prove its

basic properties.
3. We develop a new MADM strategy based on weighted cross entropy to solve MADM problems

in a BNS environment.
4. We develop a new MADM strategy based on weighted cross entropy to solve MADM problems

in an IBNS environment.
5. Two illustrative numerical examples are solved and a comparison analysis is provided.

The rest of the paper is organized as follows. In Section 2, we present some concepts regarding
SVNSs, INSs, BNSs, and IBNSs. Section 3 proposes cross entropy and weighted cross entropy measures
for BNSs and investigates their properties. In Section 4, we extend the cross entropy measures for BNSs
to cross entropy measures for IBNSs and discuss their basic properties. Two novel MADM strategies
based on the proposed cross entropy measures in bipolar and interval bipolar neutrosophic settings are
presented in Section 5. In Section 6, two numerical examples are solved and a comparison with other
existing methods is provided. In Section 7, conclusions and the scope of future work are provided.

2. Preliminary

In this section, we provide some basic definitions regarding SVNSs, INSs, BNSs, and IBNSs.

2.1. Single-Valued Neutrosophic Sets

An SVNS [29] S in U is characterized by a truth membership function TSpxq, an indeterminate
membership function ISpxq, and a falsity membership function FSpxq. An SVNS S over U is defined by

S “ tx, xTSpxq, ISpxq, FSpxqy|x P Uu

where, TSpxq, ISpxq, FSpxq: UÑ [0, 1] and 0 ď TSpxq ` ISpxq ` FSpxq ď 3 for each point x P U.

2.2. Interval Neutrosophic Set

An interval neutrosophic set [75] P in U is expressed as given below:

P “ tx, xTPpxq, IPpxq, FPpxqy|x P Uu
“ tx,

“

infTppxq, supTppxq
‰

;
“

infIppxq, supIppxq
‰

;
“

infFppxq supFppxq
‰

|x P Uu

where TPpxq, IPpxq, FPpxq are the truth membership function, indeterminacy membership function, and
falsity membership function, respectively. For each point x in U, TPpxq, IPpxq, FPpxq Ď [0, 1] satisfying
the condition 0 ď sup TPpxq + sup IPpxq + sup FPpxq ď 3.
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2.3. Bipolar Neutrosophic Set

A BNS [81] E in U is presented as given below:

E “ tx,
@

T`E pxq, I`E pxq, F`E pxq, T´E pxq, I´E pxq, F´E pxq
D

|x P Uu

where T`E pxq, I`E pxq, F`E pxq: U Ñ [0, 1] and T´E pxq, I´E pxq, F´E pxq: U Ñ [´1, 0]. Here, T`E pxq, I`E pxq,
F`E pxq denote the truth membership, indeterminate membership, and falsity membership functions
corresponding to BNS E on an element x P U, and T´E pxq, I´E pxq, F´E pxq denote the truth membership,
indeterminate membership, and falsity membership of an element x P U to some implicit counter
property corresponding to E.

Definition 1. Ref. [81]: Let, E1 = {x,
A

T`E1
pxq, I`E1

pxq, F`E1
pxq, T´E1

pxq, I´E1
pxq, F´E1

pxq
E

|x P U} and

E2 = {x,
A

T`E2
pxq, I`E2

pxq, F`E2
pxq, T´E2

pxq, I´E2
pxq, F´E2

pxq
E

|x P X} be any two BNSs. Then

‚ E1 Ď E2 if, and only if,

T`E1
pxq ď T`E2

pxq, I`E1
pxq ď I`E2

pxq, F`E1
pxq ě F`E2

pxq; T´E1
pxq ě T´E2

pxq, I´E1
pxq ě I´E2

pxq, F´E1
pxq ď F´E2

pxq
for all x P U.

‚ E1 = E2 if, and only if,

T`E1
pxq = T`E2

pxq, I`E1
pxq = I`E2

pxq, F`E1
pxq = F`E2

pxq; T´E1
pxq = T´E2

pxq, I´E1
pxq = I´E2

pxq, F´E1
pxq = F´E2

pxq
for all x P U.

‚ The complement of E is Ec = {x,
@

T`Ecpxq, I`Ecpxq, F`Ecpxq, T´Ecpxq, I´Ecpxq, F´Ecpxq
D

|x P U}

where
T`Ecpxq “ F`E pxq, I`Ecpxq “ 1 ´ I`E pxq, F`Ecpxq “ T`E pxq;

T´Ecpxq “ F´E pxq, I´Ecpxq “ ´1´ I´E pxq, F´Ecpxq “ T´E pxq.

‚ The union E1 Y E2 is defined as follows:

E1 Y E2 = {Max (T`E1
pxq, T`E2

pxq), Min (I`E1
pxq, I`E2

pxq), Min (F`E1
pxq, F`E2

pxq), Min (T´E1
pxq, T´E2

pxq),
Max (I´E1

pxq, I´E2
pxq), Max (F´E1

pxq, F´E2
pxq)}, @ x P U.

‚ The intersection E1 X E2 [88] is defined as follows:

E1 X E2 = {Min ( T`E1
pxq, T`E2

pxq), Max (I`E1
pxq, I`E2

pxq), Max (F`E1
pxq, F`E2

pxq), Max (T´E1
pxq, T´E2

pxq),
Min (I´E1

pxq, I´E2
pxq), Min (F´E1

pxq, F´E2
pxq)}, @ x P U.

2.4. Interval Bipolar Neutrosophic Sets

An IBNS [91,92] R = {x, <[infT`R (x), supT`R (x)]; [infI`R (x), supI`R (x)]; [infF`R (x), supF`R (x)];
[infT´R (x), supT´R (x)]; [infI´R (x), supI´R (x)]; [infF´R (x), supF´R (x)]>|x P U} is characterized by
positive and negative truth membership functions T`R (x), T´R (x), respectively; positive and negative
indeterminacy membership functions I`R (x), I´R (x), respectively; and positive and negative falsity
membership functions F`R (x), F´R (x), respectively. Here, for any x P U, T`R (x), I`R (x), F`R (x) Ď [0, 1]
and T´R (x), I´R (x), F´R (x) Ď [´1, 0] with the conditions 0 ď supT`R (x) + supI`R (x) + supF`R (x) ď 3 and
´3 ď supT´R (x) + supI´R (x) + supF´R (x) ď 0.

Definition 2. Ref. [91,92]: Let R = {x, <[inf T`R (x), supT`R (x)]; [inf I`R (x), supI`R (x)]; [inf F`R (x), supF`R (x)];
[inf T´R (x), supT´R (x)]; [inf I´R (x), supI´R (x)]; [inf F´R (x), supF´R (x)]>|x P U} and S = {x, <[inf T`S (x),
supT`S (x)]; [inf I`S (x), supI`S (x)]; [inf F`S (x), supF`S (x)]; [inf T´S (x), supT´S (x)]; [inf I´S (x), supI´S (x)];
[inf F´S (x), supF´S (x)]>|x P U} be two IBNSs in U. Then
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‚ R Ď S if, and only if,

inf T`R (x) ď inf T`S (x), supT`R (x) ď supT`S (x),

inf I`R (x) ě inf I`S (x), supI`R (x) ě supI`S (x),

inf F`R (x) ě inf F`S (x), supF`R (x) ě supF`S (x),

inf T´R (x) ě inf T´S (x), supT´R (x) ě supT´S (x),

inf I´R (x) ď inf I´S (x), supI´R (x) ď supI´S (x),

inf F´R (x) ď inf F´S (x), supF´R (x) ď supF´S (x),

for all x P U.

‚ R = S if, and only if,

inf T`R (x) = inf T`S (x), supT`R (x) = supT`S (x), inf I`R (x) = inf I`S (x), supI`R (x) = supI`S (x),

inf F`R (x) = inf F`S (x), supF`R (x) = supF`S (x), inf T´R (x) = inf T´S (x), supT´R (x) = supT´S (x),

inf I´R (x) = inf I´S (x), supI´R (x) = supI´S (x), inf F´R (x) = inf F´S (x), supF´R (x) = supF´S (x),

for all x P U.

‚ The complement of R is defined as The complement of R is defined as RC = {x, < [inf T`RC (x),
supT`RC (x)]; [infI`RC (x), supI`RC (x)]; [infF`RC (x), supF`RC (x)]; [infT´RC (x), supT´RC (x)]; [infI´RC (x),
supI´RC (x)]; [inf F´RC (x), supF´RC (x)] > | xP U} where

inf T`RC (x) = infF`R (x), supT`RC (x) = supF`R (x)

inf I`RC (x) = 1 ´ supI`R (x), supI`RC (x) = 1 ´ infI`R (x)

infF`RC (x) = infT`R , supF`RC (x) = supT`R

infT´RC (x) = infF´R , supT´RC (x) = supF´R

infI´RC (x) = ´1 ´ supI´R (x), supI´RC (x) = ´1 ´ infI´R (x)

infF´RC (x) = infT´R (x), supF´RC (x) = supT´R (x)

for all xP U.

3. Cross Entropy Measures of Bipolar Neutrosophic Sets

In this section we define a cross entropy measure between two BNSs and establish some of its
basic properties.

Definition 3. For any two BNSs M and N in U, the cross entropy measure can be defined as follows.

CBpM, Nq “
n
ÿ

i“1

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

c

T`M pxiq`T`N pxiq
2 ´

¨

˝

c

T`M pxiq`
b

T`N pxiq

2

˛

‚`

c

I`M pxiq`I`N pxiq
2 ´

¨

˝

c

I`M pxiq`
b

I`N pxiq

2

˛

‚`

c

´

1´I`M pxiq
¯

`
´

1´I`N pxiq
¯

2 ´

¨

˝

c

´

1´I`M pxiq
¯

`

c

´

1´I`N pxiq
¯

2

˛

‚`

c

F`M pxiq`F`N pxiq
2 ´

¨

˝

c

F`M pxiq`
b

F`N pxiq

2

˛

‚`

c

´
´

T´M pxiq`T´N pxiq
¯

2 ´

¨

˝

c

´

´T´M pxiq
¯

`

c

´

´T´N pxiq
¯

2

˛

‚`

c

´
´

I´M pxiq`I´N pxiq
¯

2 ´

¨

˝

c

´

´I´M pxiq
¯

`

c

´

´I´N pxiq
¯

2

˛

‚`

c

´

1`I´M pxiq
¯

`
´

1`I´N pxiq
¯

2 ´

¨

˝

c

1`I´M pxiq`
b

1`I´N pxiq

2

˛

‚`

c

´
´

F´M pxiq`F´N pxiq
¯

2 ´

¨

˝

c

´

´F´M pxiq
¯

`

c

´

´F´N pxiq
¯

2

˛

‚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(1)
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Theorem 1. If M = <T`Mpxiq, I`Mpxiq, F`Mpxiq, T´Mpxiq, I´Mpxiq, F´Mpxiq> and N <T`N pxiq, I`N pxiq, F`N pxiq,
T´N pxiq, I´N pxiq, F´N pxiq> are two BNSs in U, then the cross entropy measure CB(M, N) satisfies the
following properties:

(1) CB(M, N) ě 0;
(2) CB(M, N) = 0 if, and only if, T`Mpxiq = T`N pxiq, I`Mpxiq = I`N pxiq, F`Mpxiq = F`N pxiq, T´Mpxiq = T´N pxiq,

I´Mpxiq = I´N pxiq, F´Mpxiq = F´N pxiq, @ x P U;
(3) CB(M, N) = CB(N, M);
(4) CB(M, N) = CB(MC, NC).

Proof

(1) We have the inequality
´

a`b
2

¯
1
2
ě a

1
2`b

1
2

2 for all positive numbers a and b. From the inequality
we can easily obtain CB(M, N) ě 0.

(2) The inequality
´

a`b
2

¯
1
2
ě a

1
2`b

1
2

2 becomes the equality
´

a`b
2

¯
1
2
“ a

1
2`b

1
2

2 if, and only if, a = b and

therefore CB(M, N) = 0 if, and only if, M = N, i.e., T`Mpxiq = T`N pxiq, I`Mpxiq = I`N pxiq, F`Mpxiq = F`N pxiq,
T´Mpxiq = T´N pxiq, I´Mpxiq = I´N pxiq, F´Mpxiq = F´N pxiq @ x P U.

(3) CB(M, N) =
n
ř

i“1

»

—

—

—

—

—

—

—

—

—

—

–

c

T`M pxiq`T`N pxiq

2 ´

˜

b

T`M pxiq`

b

T`N pxiq

2

¸

`

c

I`M pxiq`I`N pxiq

2 ´

˜

b

I`M pxiq`

b

I`N pxiq

2

¸

`

c

´

1´I`M pxiq
¯

`
´

1´I`N pxiq
¯

2 ´

¨

˝

c

´

1´I`M pxiq
¯

`

c

´

1´I`N pxiq
¯

2

˛

‚`

c

F`M pxiq`F`N pxiq

2 ´

˜

b

F`M pxiq`

b

F`N pxiq

2

¸

`

c

´
´

T´M pxiq`T´N pxiq
¯

2 ´

¨

˝

c

´

´T´M pxiq
¯

`

c

´

´T´N pxiq
¯

2

˛

‚`

c

´
´

I´M pxiq`I´N pxiq
¯

2 ´

¨

˝

c

´

´I´M pxiq
¯

`

c

´

´I´N pxiq
¯

2

˛

‚`

c

´

1`I´M pxiq
¯

`
´

1`I´N pxiq
¯

2 ´

˜

b

1`I´M pxiq`

b

1`I´N pxiq

2

¸

`

c

´
´

F´M pxiq`F´N pxiq
¯

2 ´

¨

˝

c

´

´F´M pxiq
¯

`

c

´

´F´N pxiq
¯

2

˛

‚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

=
n
ř

i“1

»

—

—

—

—

—

—

—

—

—

—

–

d

T`N
`

xi
˘

`T`M
`

xi
˘

2 ´

¨

˚

˚

˝

b

T`N
`

xi
˘

`

c

T`M
`

xi
˘

2

˛

‹

‹

‚

`

d

I`N
`

xi
˘

`I`M
`

xi
˘

2 ´

¨

˚

˚

˝

b

I`N
`

xi
˘

`

c

I`M
`

xi
˘

2

˛

‹

‹

‚̀

d

´

1´I`N
`

xi
˘

¯

`
´

1´I`M
`

xi
˘

¯

2 ´

¨

˚

˚

˝

c

´

1´I`N
`

xi
˘

¯

`

c

´

1´I`M
`

xi
˘

¯

2

˛

‹

‹

‚

`

d

F`N
`

xi
˘

`F`M
`

xi
˘

2 ´

¨

˚

˚

˝

b

F`N
`

xi
˘

`

c

F`M
`

xi
˘

2

˛

‹

‹

‚̀

d

´
´

T´N
`

xi
˘

`T´M
`

xi
˘

¯

2 ´

¨

˚

˚

˝

c

´

´T´N
`

xi
˘

¯

`

c

´

´T´M
`

xi
˘

¯

2

˛

‹

‹

‚

`

d

´
´

I´N
`

xi
˘

`I´M
`

xi
˘

¯

2 ´

¨

˚

˚

˝

c

´

´I´N
`

xi
˘

¯

`

c

´

´I´M
`

xi
˘

¯

2

˛

‹

‹

‚̀

d

´

1`I´N
`

xi
˘

¯

`
´

1`I´M
`

xi
˘

¯

2 ´

¨

˚

˚

˝

b

1`I´N
`

xi
˘

`

c

1`I´M
`

xi
˘

2

˛

‹

‹

‚

`

d

´
´

F´N
`

xi
˘

`F´M
`

xi
˘

¯

2 ´

¨

˚

˚

˝

c

´

´F´N
`

xi
˘

¯

`

c

´

´F´M
`

xi
˘

¯

2

˛

‹

‹

‚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

= CB(N, M).

(4) CB(MC, NC)

=
n
ř

i“1

»

—

—

—

—

—

—

—

—

—

—

–

d

F`M
`

xi
˘

`F`N
`

xi
˘

2 ´

¨

˚

˚

˝

c

F`M
`

xi
˘

`

b

F`N
`

xi
˘

2

˛

‹

‹

‚

`

d

´

1´I`M
`

xi
˘

¯

`
´

1´I`N
`

xi
˘

¯

2 ´

¨

˚

˚

˝

c

´

1´I`M
`

xi
˘

¯

`

b

1´I`N
`

xi
˘

q

2

˛

‹

‹

‚̀

d

1´
´

1´I`M
`

xi
˘

¯

`1´
´

1´I`N
`

xi
˘

¯

2 ´

¨

˚

˚

˝

c

1´
´

1´I`M
`

xi
˘

¯

`

c

1´
´

1´I`N
`

xi
˘

¯

2

˛

‹

‹

‚

`

d

T`M
`

xi
˘

`T`N
`

xi
˘

2 ´

¨

˚

˚

˝

c

T`M
`

xi
˘

`

b

T`N
`

xi
˘

2

˛

‹

‹

‚̀

d

´
´

F´M
`

xi
˘

`F´N
`

xi
˘

¯

2 ´

¨

˚

˚

˝

c

´

´F´M
`

xi
˘

¯

`

c

´

´F´N
`

xi
˘

¯

2

˛

‹

‹

‚

`

d

´
´

´1´I´M
`

xi
˘

¯

´
´

´1´I´N
`

xi
˘

¯

2 ´

¨

˚

˚

˝

c

´
´

´1´I´M
`

xi
˘

¯

`

c

´
´

´1´I´N
`

xi
˘

¯

2

˛

‹

‹

‚̀

d

1`
´

´1´I´M
`

xi
˘

¯

`1`
´

´1´I´N
`

xi
˘

¯

2 ´

¨

˚

˚

˝

c

1`
´

´1´I´M
`

xi
˘

¯

`

c

1`
´

´1´I´N
`

xi
˘

¯

2

˛

‹

‹

‚

`

d

´
´

T´M
`

xi
˘

`T´N
`

xi
˘

¯

2 ´

¨

˚

˚

˝

c

´

´T´M
`

xi
˘

¯

`

c

´

´T´N
`

xi
˘

¯

2

˛

‹

‹

‚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

=
n
ř

i“1

»

—

—

—

—

—
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—

—

—

—
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¨

˚

˚

˝

c

T`M
`

xi
˘

`

b

T`N
`

xi
˘

2

˛

‹

‹

‚

`

d

I`M
`

xi
˘

`I`N
`

xi
˘

2 ´

¨
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‹

‚
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¨
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˚

˝

c

F`M
`

xi
˘

`

b

F`N
`

xi
˘

2

˛

‹

‹
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´
´

T´M
`
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xi
˘

¯
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¨

˚

˚

˝
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´
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`
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´
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˘

¯
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‹

‹

‚

`
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´
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¨
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˘
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˘
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¨
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¨

˚
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‹

‚
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ffi
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fl

= CB(M, N).

The proof is completed. �
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Example 1. Suppose that M = <0.7, 0.3, 0.4, ´0.3, ´0.5, ´0.1> and N = <0.5, 0.2, 0.5, ´0.3, ´0.3, ´0.2> are
two BNSs; then the cross entropy between M and N is calculated as follows:

CBpM, Nq “

»

—

—

—

—

—

–

b

0.7`0.5
2 ´

´?
0.7`

?
0.5

2

¯

`

b

0.3`0.2
2 ´

´?
0.3`

?
0.2

2

¯

`

b

p1´0.3q`p1´0.2q
2 ´

´?
1´0.3`

?
1´0.2

2

¯

`

b

0.4`0.5
2 ´

´?
0.4`

?
0.5

2

¯

`

b

´p´0.3´0.3q
2 ´

ˆ?
´p´0.3q`

?
´p´0.3q

2

˙

`

b

´p´0.5´0.3q
2 ´

ˆ?
´p´0.5q`

?
´p´0.3q

2

˙

`

b

p1´0.5q`p1´0.3q
2 ´

ˆ?
1´0.5`

?
r1´0.3s

2

˙

`

b

´p´0.1´0.2q
2 ´

ˆ?
´p´0.1q`

?
´p´0.2q

2

˙

fi

ffi

ffi

ffi

ffi

ffi

fl

“ 0.01738474.

Definition 4. Suppose that wi is the weight of each element xi, i = 1, 2, ..., n, where wi P [0, 1] and
n
ř

i“1
wi = 1;

then the weighted cross entropy measure between any two BNSs M and N in U can be defined as follows.

CBpM, Nqw “
n
ÿ

i“1
wi

»
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—
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‹

‚

`
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¨

˚
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¯
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‚

`
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˚
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F`N pxiq
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‹
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´
´
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¯
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¨

˚
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´

´T´M pxiq
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´
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¯
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‹

‚

`
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´
´

I´M pxiq`I´N pxiq
¯

2 ´

¨

˚

˝

c

´

´I´M pxiq
¯

`

c

´

´I´N pxiq
¯

2

˛

‹

‚̀

c

´

1`I´M pxiq
¯

`
´

1`I´N pxiq
¯

2 ´

¨

˚

˝

c

1`I´M pxiq`
b

1`I´N pxiq

2

˛

‹

‚

`

c

´
´

F´M pxiq`F´N pxiq
¯

2 ´

¨

˚

˝

c

´

´F´M pxiq
¯

`

c

´

´F´N pxiq
¯

2

˛

‹

‚
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ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2)

Theorem 2. If M = <T`Mpxiq, I`Mpxiq, F`Mpxiq, T´Mpxiq, I´Mpxiq, F´Mpxiq> and N <T`N pxiq, I`N pxiq, F`N pxiq,
T´N pxiq, I´N pxiq, F´N pxiq> are two BNSs in U, then the weighted cross entropy measure CB(M, N)w satisfies the
following properties:

(1) CB(M, N)w ě 0;
(2) CB(M, N)w = 0 if, and only if, T`Mpxiq = T`N pxiq, I`Mpxiq = I`N pxiq, F`Mpxiq = F`N pxiq, T´Mpxiq = T´N pxiq,

I´Mpxiq = I´N pxiq, F´Mpxiq = F´N pxiq, @ x P U;
(3) CB(M, N)w = CB(N, M)w;
(4) CB(MC, NC)w = CB(M, N)w.

Proof is given in Appendix A.

Example 2. Suppose that M = <0.7, 0.3, 0.4, ´0.3, ´0.5, ´0.1> and N = <0.5, 0.2, 0.5, ´0.3, ´0.3, ´0.2> are
two BNSs and w = 0.4; then the weighted cross entropy between M and N is calculated as given below.

CBpM, Nqw “ 0.4 ˆ

»

—

—

—

—

—

—

—

–

b

0.7`0.5
2 ´

ˆ?
0.7`

?
0.5

2

˙

`

b

0.3`0.2
2 ´

ˆ?
0.3`

?
0.2

2

˙

`

c

p1´0.3q`p1´0.2q
2 ´

ˆ?
1´0.3`

?
1´0.2

2

˙

`

b

0.4`0.5
2 ´

ˆ?
0.4`

?
0.5

2

˙

`

c

´p´0.3´0.3q
2 ´

ˆ
a

´p´0.3q`
a

´p´0.3q
2

˙

`

c

´p´0.5´0.3q
2 ´

ˆ
a

´p´0.5q`
a

´p´0.3q
2

˙

`

c

p1´0.5`p1´0.3q
2 ´

ˆ?
1´0.5`

?
1´0.3

2

˙

`

c

´p´0.1´0.2q
2 ´

ˆ
a

´p´0.1q`
a

´p´0.2q
2

˙

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ 0.006953896.

4. Cross Entropy Measure of IBNSs

This section extends the concepts of cross entropy and weighted cross entropy measures of BNSs
to IBNSs.

Definition 5. The cross entropy measure between any two IBNSs R = <[inf T`R pxiq, supT`R pxiq],
[inf I`R pxiq, supI`R pxiq], [inf F`R pxiq, supF`R pxiq], [inf T´R pxiq, supT´R pxiq], [inf I´R pxiq, supI´R pxiq], [inf F´R pxiq,
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supF´R pxiq]> and S = <[inf T`S pxiq, supT`S pxiq], [inf I`S pxiq, supI`S pxiq], [inf F`S pxiq, supF`S pxiq], [inf T´S pxiq,
supT´S pxiq], [inf I´S pxiq, sup I´S pxiq], [inf F´S pxiq, supF´S pxiq]> in U can be defined as follows.

CIBpR, Sq “
1
2

n
ÿ

i“1ă
»
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—

—

—

—

—

—

—

—

—
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—

—
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—
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—
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—
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—

—
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—

—
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˚

˝
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‚

`
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˚

˝
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supT`R pxiq`
c
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‹
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¨

˚

˝

b
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˛

‹

‚

`
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¨

˚

˝

b
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c
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˛

‹
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¯

2 ´

¨

˚

˝

b
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˛

‹

‚

`
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¯
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¨

˚

˝
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1´supI`S pxiq
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˛

‹

‚

`
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˚

˝
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`
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infI´R pxiq`infI´S pxiq
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˚
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‹

‚

`
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¨

˚
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´supI´R pxiq
¯

`
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´
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˛

‹

‚

`
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‚
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´

´supF´R pxiq
¯
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ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

flą (3)

Theorem 3. If R = <[inf T`R pxiq, supT`R pxiq], [inf, supI`R pxiq], [inf F`R pxiq, supF`R pxiq], [inf T´R pxiq,
supT´R pxiq], [inf I´R pxiq, supI´R pxiq], [inf F´R pxiq, supF´R pxiq]> and S = <[inf T`S pxiq, supT`S pxiq],
[inf I`S pxiq, supI`S pxiq], [inf F`S pxiq, supF`S pxiq], [inf T´S pxiq, supT´S pxiq], [inf I´S pxiq, supI´S pxiq], [inf F´S pxiq,
supF´S pxiq]> are two IBNSs in U, then the cross entropy measure CIB(R, S) satisfies the following properties:

(1) CIB(R, S) ě 0;
(2) CIB(R, S) = 0 for R = S i.e., inf T`R pxiq = inf T`S pxiq, supT`R pxiq = supT`S pxiq, inf I`R pxiq = inf I`S pxiq,

supI`R pxiq = supI`S pxiq, inf F`R pxiq = inf F`S pxiq, supF`R pxiq = supF`S pxiq, inf T´R pxiq = inf T´S pxiq,
supT´R pxiq = supT´S pxiq, inf I´R pxiq = inf I´S pxiq, supI´R pxiq = supI´S pxiq, inf F´R pxiq = inf F´S pxiq,
supF´R pxiq = supF´S pxiq @ x P U;

(3) CIB(R, S) = CIB(S, R);
(4) CIB(RC, SC) = CIB(R, S).

Proof

(1) From the inequality stated in Theorem 1, we can easily get CIB(R, S) ě 0.
(2) Since infT`R pxiq = infT`S pxiq, supT`R pxiq = supT`S pxiq, infI`R pxiq = infI`S pxiq, supI`R pxiq = supI`S pxiq,

infF`R pxiq = infF`S pxiq, supF`R pxiq = supF`S pxiq, infT´R pxiq = infT´S pxiq, supT´R pxiq = supT´S pxiq,
infI´R pxiq = infI´S pxiq, supI´R pxiq = supI´S pxiq, infF´R pxiq = infF´S pxiq, supF´R pxiq = supF´S pxiq @

x P U, we have CIB(R, S) = 0.
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(3) CIB(R, S) = 1
2
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¨
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ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

flą
= CIB(R, S). �

Example 3. Suppose that R = <[0.5, 0.8], [0.4, 0.6], [0.2, 0.6], [´0.3, ´0.1], [´0.5, ´0.1], [´0.5, ´0.2]>
and S = <[0.5, 0.9], [0.4, 0.5], [0.1, 0.4], [´0.5, ´0.3], [´0.7, ´0.3], [´0.6, ´0.3]> are two IBNSs; the cross
entropy between R and S is computed as follows:

CIBpR, Sq “
1
2

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

b

0.5`0.5
2 ´

´?
0.5`

?
0.5

2

¯

`

b

0.8`0.9
2 ´

´?
0.8`

?
0.9

2

¯

`

b

0.4`0.4
2 ´

ˆ?
0.4`

?
0.4

2

˙

`

b

0.6`0.5
2 ´

´?
0.6`

?
0.5

2

¯

`

b

r1´0.4s`r1´0.4s
2 ´

ˆ?
1´0.4`

?
r1´0.4s

2

˙

`

b

r1´0.6s`r1´0.5s
2 ´

ˆ?
1´0.6`

?
r1´0.5s

2

˙

`

b

0.2`0.1
2 ´

ˆ?
0.2`

?
0.1

2

˙

`

b

0.6`0.4
2 ´

ˆ?
0.6`

?
0.4

2

˙

`

b

´p´0.3´0.5q
2 ´

ˆ?
´p´0.3q`

?
´p´0.5q

2

˙

`

b

´p´0.1´0.3q
2 ´

ˆ?
´p´0.1q`

?
´p´0.3q

2

˙

`

b

´p´0.5´0.7q
2 ´

ˆ?
´p´0.5q`

?
´p´0.7q

2

˙

`

b

´p´0.1´0.3q
2 ´

ˆ?
´p´0.1q`

?
´p´0.3q

2

˙

`

b

r1´0.5s`r1´0.7s
2 ´

ˆ?
1´0.5`

?
r1´0.7s

2

˙

`

b

r1´0.1s`r1´0.3s
2 ´

ˆ?
1´0.1`

?
r1´0.3s

2

˙

`

b

´p´0.5´0.6q
2 ´

ˆ?
´p´0.5q`

?
´p´0.6q

2

˙

`

b

´p´0.2´0.3q
2 ´

ˆ?
´p´0.2q`

?
´p´0.3q

2

˙

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ 0.02984616.
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Definition 6. Let wi be the weight of each element xi, i = 1, 2, ..., n, and wi P [0, 1] with
n
ř

i“1
wi = 1; then the

weighted cross entropy measure between any two IBNSs R = <[inf T`R pxiq, supT`R pxiq], [inf I`R pxiq, supI`R pxiq],
[inf F`R pxiq, supF`R pxiq], [inf T´R pxiq, supT´R pxiq], [inf I´R pxiq, supI´R pxiq], [inf F´R pxiq, supF´R pxiq]> and
S = <[inf T`S pxiq, supT`S pxiq], [inf I`S pxiq, supI`S pxiq], [inf F`S pxiq, supF`S pxiq], [inf T´S pxiq, supT´S pxiq],
[inf I´S pxiq, supI´S pxiq], [inf F´S pxiq, supF´S pxiq]> in U can be defined as follows.

CIBpR, Sqw “
1
2

n
ÿ

i“1
wiă

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

c

infT`R pxiq`infT`S pxiq
2 ´

¨

˚

˝

b

infT`R pxiq`
c

infT`S pxiq

2

˛

‹

‚

`

c

supT`R pxiq`supT`S pxiq
2 ´

¨

˚

˝

b

supT`R pxiq`
c

supT`S pxiq

2

˛

‹

‚̀

c

infI`R pxiq`infI`S pxiq
2 ´

¨

˚

˝

b

infI`R pxiq`
c

infI`S pxiq

2

˛

‹

‚

`

c

supI`R pxiq`supI`S pxiq
2 ´

¨

˚

˝

b

supI`R pxiq`
c

supI`S pxiq

2

˛

‹

‚̀

c

´

1´infI`R pxiq
¯

`
´

1´infI`S pxiq
¯

2 ´

¨

˚

˝

b

1´infI`R pxiq`
c

1´infI`S pxiq

2

˛

‹

‚

`

c

´

1´supI`R pxiq
¯

`
´

1´supI`S pxiq
¯

2 ´

¨

˚

˝

b

1´supI`R pxiq`
c

´

1´supI`S pxiq
¯

2

˛

‹

‚

`

c

infF`R pxiq`infF`S pxiq
2 ´

¨

˚

˝

b

infF`R pxiq`
c

infF`S pxiq

2

˛

‹

‚̀

c

supF`R pxiq`supF`S pxiq
2 ´

¨

˚

˝

b

supF`R pxiq`
c

supF`S pxiq

2

˛

‹

‚

`

c

´
´

infT´R pxiq`infT´S pxiq
¯

2 ´

¨

˚

˝

c

´

´infT´R pxiq
¯

`

c

´

´infT´S pxiq
¯

2

˛

‹

‚

`

c

´
´

supT´R pxiq`supT´S pxiq
¯

2 ´

¨

˚

˝

c

´

´supT´R pxiq
¯

`

c

´

´supT´S pxiq
¯

2

˛

‹

‚̀

c

´
´

infI´R pxiq`infI´S pxiq
¯

2 ´

¨

˚

˝

c

´

´infI´R pxiq
¯

`

c

´

´infI´S pxiq
¯

2

˛

‹

‚

`

c

´
´

supI´R pxiq`supI´S pxiq
¯

2 ´

¨

˚

˝

c

´

´supI´R pxiq
¯

`

c

´

´supI´S pxiq
¯

2

˛

‹

‚

`

c

´

1`infI´R pxiq
¯

`
´

1`infI´S pxiq
¯

2 ´

¨

˚

˝

b

1`infI´R pxiq`
c

1`infI´S pxiq

2

˛

‹

‚̀

c

´

1`supI´R pxiq
¯

`
´

1`supI´S pxiq
¯

2 ´

¨

˚

˝

b

1`supI´R pxiq`
c

r1`supI´S pxiqs

2

˛

‹

‚

`

c

´
´

infF´R pxiq`infF´S pxiq
¯

2 ´

¨

˚

˝

c

´

´infF´R pxiq
¯

`

c

´

´infF´S pxiq
¯

2

˛

‹

‚

`

c

´
´

supF´R pxiq`supF´S pxiq
¯

2 ´

¨

˚

˝

c

´

´supF´R pxiq
¯

`

c

´

´supF´S pxiq
¯

2

˛

‹

‚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

flą (4)

Theorem 4. For any two IBNSs R = <[inf T`R pxiq, sup T`R pxiq], [inf I`R pxiq, supI`R pxiq], [inf F`R pxiq,
supF`R pxiq], [inf T´R pxiq, supT´R pxiq], [inf I´R pxiq, supI´R pxiq], [inf F´R pxiq, supF´R pxiq]> and S = <[inf T`S pxiq,
supT`S pxiq], [inf I`S pxiq, supI`S pxiq], [inf F`S pxiq, supF`S pxiq], [inf T´S pxiq, supT´S pxiq], [inf I´S pxiq,
supI´S pxiq], [inf F´S pxiq, supF´S pxiq]> in U, the weighted cross entropy measure CIB(R, S)w also satisfies
the following properties:

(1) CIB(R, S)w ě 0;
(2) CIB(R, S)w = 0 if, and only if, R = S i.e., inf T`R pxiq = inf T`S pxiq, supT`R pxiq = supT`S pxiq, inf I`R pxiq

= inf I`S pxiq, supI`R pxiq = supI`S pxiq, inf F`R pxiq = inf F`S pxiq, supF`R pxiq = supF`S pxiq, inf T´R pxiq

= inf T´S pxiq, supT´R pxiq = supT´S pxiq, inf I´R pxiq = inf I´S pxiq, supI´R pxiq = supI´S pxiq, inf F´R pxiq =
inf F´S pxiq, supF´R pxiq = supF´S pxiq @ x P U;

(3) CIB(R, S)w = CIB(S, R)w;
(4) CIB(RC, SC)w = CIB(R, S)w.

The proofs are presented in Appendix B.
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Example 4. Consider the two IBNSs R = <[0.5, 0.8], [0.4, 0.6], [0.2, 0.6], [´0.3, ´0.1], [´0.5, ´0.1],
[´05, ´0.2]> and S = <[0.5, 0.9], [0.4, 0.5], [0.1, 0.4], [´0.5, ´0.3], [´0.7, ´0.3], [´0.6, ´0.3]>, and let
w = 0.3; then the weighted cross entropy between R and S is calculated as follows:

CIBpR, Sq “
1
2
ˆ 0.3 ˆ

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

b

0.5`0.5
2 ´

ˆ?
0.5`

?
0.5

2

˙

`

b

0.8`0.9
2 ´

ˆ?
0.8`

?
0.9

2

˙

`

b

0.4`0.4
2 ´

ˆ?
0.4`

?
0.4

2

˙

`

b

0.6`0.5
2 ´

ˆ?
0.6`

?
0.5

2

˙

`
c

r1´0.4s`r1´0.4s
2 ´

ˆ?
1´0.4`

a

r1´0.4s
2

˙

`

c

r1´0.6s`r1´0.5s
2 ´

ˆ?
1´0.6`

a

r1´0.5s
2

˙

`

b

0.2`0.1
2 ´

ˆ?
0.2`

?
0.1

2

˙

`

b

0.6`0.4
2 ´

ˆ?
0.6`

?
0.4

2

˙

`

c

´p´0.3´0.5q
2 ´

ˆ
a

´p´0.3q`
a

´p´0.5q
2

˙

`

c

´p´0.1´0.3q
2 ´

ˆ
a

´p´0.1q`
a

´p´0.3q
2

˙

`
c

´p´0.5´0.7q
2 ´

ˆ
a

´p´0.5q`
a

´p´0.7q
2

˙

`

c

´p´0.1´0.3q
2 ´

ˆ
a

´p´0.1q`
a

´p´0.3q
2

˙

`

c

r1´0.5s`r1´0.7s
2 ´

ˆ?
1´0.5`

a

r1´0.7s
2

˙

`

c

r1´0.1s`r1´0.3s
2 ´

ˆ?
1´0.1`

a

r1´0.3s
2

˙

`

c

´p´0.5´0.6q
2 ´

ˆ
a

´p´0.5q`
a

´p´0.6q
2

˙

`
c

´p´0.2´0.3q
2 ´

ˆ
a

´p´0.2q`
a

´p´0.3q
2

˙

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ 0.00895385.

5. MADM Strategies Based on Cross Entropy Measures

In this section, we propose two new MADM strategies based on weighted cross entropy measures
in bipolar neutrosophic and interval bipolar neutrosophic environments. Let B = {B1, B2, . . . , Bm}
(m ě 2) be a discrete set of m feasible alternatives which are to be evaluated based on n attributes
C = {C1, C2, . . . , Cn} (n ě 2) and let wj be the weight vector of the attributes such that 0 ď wj ď 1 and

n
ř

j“1
wj = 1.

5.1. MADM Strategy Based on Weighted Cross Entropy Measures of BNS

The procedure for solving MADM problems in a bipolar neutrosophic environment is presented
in the following steps:

Step 1. The rating of the performance value of alternative Bi (i = 1, 2, . . . , m) with respect to the
predefined attribute Cj (j = 1, 2, . . . , n) can be expressed in terms of bipolar neutrosophic information
as follows:

Bi “ tCj, ă T`Bi
pCjq, I`Bi

pCjq, F`Bi
pCjq, T´Bi

pCjq, I´Bi
pCjq, F´Bi

pCjq ą |Cj P Cj, j “ 1, 2, . . . , nu,

where 0 ď T`Bi
pCjq + I`Bi

pCjq + F`Bi
pCjq ď 3 and ´3 ď T´Bi

pCjq + I´Bi
pCjq + F´Bi

pCjq ď 0, i = 1, 2, . . . , m; j = 1,
2, . . . , n.

Assume that rdij = <T`ij , I`ij , F`ij , T´ij , I´ij , F´ij > is the bipolar neutrosophic decision matrix whose
entries are the rating values of the alternatives with respect to the attributes provided by the expert or
decision-maker. The bipolar neutrosophic decision matrix r rdijsmˆn can be expressed as follows:

r rdijsmˆn “

B1

B2

.

.
Bm

C1 C2 . . . Cn
¨

˚

˚

˚

˚

˚

˚

˚

˝

d11 d12 . . . d1n
d21 d22 . . . d2n

. . . . . .

. . . . . .
dm1 dm2 . . . dmn

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

Step 2. The positive ideal solution (PIS) <p* = (d˚1 , d˚2 , ..., d˚n)> of the bipolar neutrosophic
information is obtained as follows:
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p˚j “
A

T˚`j , I˚`j , F˚`j , T˚´j , I˚´j , F˚´j

E

“ă rtMax
i
pT`ij q|j P H1u; tMin

i
pT`ij q|j P H2us,

rtMin
i
pI`ij q|j P H1u; tMax

i
pI`ij q|j P H2us, rtMin

i
pF`ij q|j P H1u; tMax

i
pF`ij q|j P H2us,

rtMin
i
pT´ij q|j P H1u; tMax

i
pT´ij q|j P H2us, rtMax

i
pI´ij q|j P H1u; tMin

i
pI´ij q|j P H2us,

rtMax
i
pF´ij q|j P H1u; tMin

i
pF´ij q|j P H2us ą, j “ 1, 2, . . . , n;

where H1 and H2 represent benefit and cost type attributes, respectively.
Step 3. The weighted cross entropy between an alternative Bi, i = 1, 2, . . . , m, and the ideal

alternative p* is determined by

CBpBi , p˚qw “
n
ÿ

i“1

wi

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

c

T`ij `T˚`j
2 ´

˜

b

T`ij `
b

T˚`j
2

¸

`

c

I`ij `I˚`j
2 ´

˜

b

I`ij `
b

I˚`j
2

¸

`

c

r1´I`ij s`r1´I˚`j s

2 ´

˜

b

1´I`j `
b

r1´I˚`j s

2

¸

`

c

F`ij `F˚`j
2 ´

˜

b

F`ij `
b

F˚`j
2

¸

`

c

´

´

T´ij `T˚´j

¯

2 ´

¨

˝

c

´

´T´ij
¯

`

c

´

´T˚´j

¯

2

˛

‚`

c

´

´

I´ij `I˚´j

¯

2 ´

¨

˝

c

´

´I´ij
¯

`

c

´

´I˚´j

¯

2

˛

‚`

c

r1`I´ij s`r1`I˚´j s

2

´

˜

b

1`I´ij `
b

r1`I˚´j s

2

¸

`

c

´

´

F´ij `F˚´j

¯

2 ´

¨

˝

c

´

´F´ij
¯

`

c

´

´F˚´j

¯

2

˛

‚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (5)

Step 4. A smaller value of CB(Bi, p*)w, i = 1, 2, ..., m represents that an alternative Bi, i = 1, 2, . . . , m
is closer to the PIS p*. Therefore, the alternative with the smallest weighted cross entropy measure is
the best alternative.

5.2. MADM Strategy Based on Weighted Cross Entropy Measures of IBNSs

The steps for solving MADM problems with interval bipolar neutrosophic information are
presented as follows.

Step 1. In an interval bipolar neutrosophic environment, the rating of the performance value
of alternative Bi (i = 1, 2, . . . , m) with respect to the predefined attribute Cj (j = 1, 2, . . . , n) can be
represented as follows:

Bi “ tCj, ă rinfT`Bi
pCjq, supT`Bi

pCjqs, rinfI`Bi
pCjq, supI`Bi

pCjqs, rinfF`Bi
pCjq, supF`Bi

pCjqs,
rinfT´Bi

pCjq, supT´Bi
pCjqs, rinfI´Bi

pCjq, supI´Bi
pCjqs, rinfF´Bi

pCjq, supF´Bi
pCjqs ą |Cj P Cj,

j “ 1, 2, . . . , nu

where 0ď supT`Bi
pCjq + supI`Bi

pCjq + supF`Bi
pCjq ď 3 and´3ď supT´Bi

pCjq + supI´Bi
pCjq + supF´Bi

pCjq ď 0;
j = 1, 2, . . . , n. Let rgij = <[LT`ij , UT`ij ], [L I`ij , U I`ij ], [LF`ij , U F`ij ], [LT´ij , UT´ij ], [L I´ij , U I´ij ], [LF´ij , U F´ij ]>
be the bipolar neutrosophic decision matrix whose entries are the rating values of the alternatives with
respect to the attributes provided by the expert or decision-maker. The interval bipolar neutrosophic
decision matrix rrgijsmˆn can be presented as follows:

rrgijsmˆn “

B1

B2

.

.
Bm

C1 C2 . . . Cn
¨

˚

˚

˚

˚

˚

˚

˚

˝

g11 g12 . . . g1n
g21 g22 . . . g2n

. . . . . .

. . . . . .
gm1 gm2 . . . gmn

˛

‹

‹

‹

‹

‹

‹

‹

‚

.
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Step 2. The PIS <q* = (g˚1 , g˚2 , ..., g˚n )> of the interval bipolar neutrosophic information is obtained
as follows:

q˚j “ă r
LT˚`ij , UT˚`ij s, r

L I˚`ij , U I˚`ij s, r
LF˚`ij , U F˚`ij s, r

LT˚´ij , UT˚´ij s, r
L I˚´ij , U I˚´ij s, r

LF˚´ij , U F˚´ij s ą,
“ă rtMax

i
pLT`ij q|j P H1u; tMin

i
pLT`ij q|j P H2u, tMax

i
pUT`ij q|j P H1u; tMin

i
pUT`ij q|j P H2us,
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where H1 and H2 stand for benefit and cost type attributes, respectively.
Step 3. The weighted cross entropy between an alternative Bi, i = 1, 2, . . . , m, and the ideal

alternative q* under an interval bipolar neutrosophic setting is computed as follows:
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. (6)

Step 4. A smaller value of CIB(Bi, p*)w, i = 1, 2, ..., m indicates that an alternative Bi, i = 1, 2, . . . , m
is closer to the PIS q*. Hence, the alternative with the smallest weighted cross entropy measure will be
identified as the best alternative.

A conceptual model of the proposed strategy is shown in Figure 1.

Figure 1. Conceptual model of the proposed strategy.
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6. Illustrative Example

In this section we solve two numerical MADM problems and a comparison with other existing
strategies is presented to verify the applicability and effectiveness of the proposed strategies in bipolar
neutrosophic and interval bipolar neutrosophic environments.

6.1. Car Selection Problem with Bipolar Neutrosophic Information

Consider the problem discussed in [81,86–88] where a buyer wants to purchase a car based on
some predefined attributes. Suppose that four types of cars (alternatives) Bi, (i = 1, 2, 3, 4) are available
in the market. Four attributes are taken into consideration in the decision-making environment, namely,
Fuel economy (C1), Aerod (C2), Comfort (C3), Safety (C4), to select the most desirable car. Assume that
the weight vector for the four attributes is known and given by w = (w1, w2, w3, w4) = (0.5, 0.25, 0.125,
0.125). Therefore, the bipolar neutrosophic decision matrix

@

dij
D

4ˆ4 can be obtained as given below.

The bipolar neutrosophic decision matrix r rdijs4ˆ4 =

C1 C2 C3 C4

B1 <0.5, 0.7, 0.2, ´0.7, ´0.3, ´0.6> <0.4, 0.4, 0.5, ´0.7, ´0.8, ´0.4> <0.7, 0.7, 0.5, ´0.8, ´0.7, ´0.6> <0.1, 0.5, 0.7, ´0.5, ´0.2, ´0.8>
B2 <0.9, 0.7, 0.5, ´0.7, ´0.7, ´0.1> <0.7, 0.6, 0.8, ´0.7, ´0.5, ´0.1> <0.9, 0.4, 0.6, ´0.1, ´0.7, ´0.5> <0.5, 0.2, 0.7, ´0.5, ´0.1, ´0.9>
B3 <0.3, 0.4, 0.2, ´0.6, ´0.3, ´0.7> <0.2, 0.2, 0.2, ´0.4, ´0.7, ´0.4> <0.9, 0.5, 0.5, ´0.6, ´0.5, ´0.2> <0.7, 0.5, 0.3, ´0.4, ´0.2, ´0.2>
B4 <0.9, 0.7, 0.2, ´0.8, ´0.6, ´0.1> <0.3, 0.5, 0.2, ´0.5, ´0.5, ´0.2> <0.5, 0.4, 0.5, ´0.1, ´0.7, ´0.2> <0.2, 0.4, 0.8, ´0.5, ´0.5, ´0.6>

The positive ideal bipolar neutrosophic solutions are computed from r rdijs4ˆ4 as follows:

p* = [<0.9, 0.4, 0.2, ´0.8, ´0.3, ´0.1>, <0.7, 0.2, 0.2, ´0.7, ´0.5, ´0.1>,
<0.9, 0.4, 0.5, ´0.8, ´0.5, ´0.2>, <0.7, 0.2, 0.3, ´0.5, ´0.1, ´0.2>].

Using Equation (5), the weighted cross entropy measure CB(Bi, p*)w is obtained as follows:

CB(B1, p*)w = 0.0734, CB(B2, p*)w = 0.0688, CB(B3, p*)w = 0.0642, CB(B4, p*)w = 0.0516. (7)

According to the weighted cross entropy measure CB(Bi, p*)w, the order of the four alternatives is
B4 ă B3 ă B2 ă B1; therefore, B4 is the best car.

We compare our obtained result with the results of other existing strategies (see Table 1), where
the known weight of the attributes is given by w = (w1, w2, w3, w4) = (0.5, 0.25, 0.125, 0.125). It is to be
noted that the ranking results obtained from the other existing strategies are different from the result
of the proposed strategies in some cases. The reason is that the different authors adopted different
decision-making strategies and thereby obtained different ranking results. However, the proposed
strategies are simple and straightforward and can effectively solve decision-making problems with
bipolar neutrosophic information.

Table 1. The results of the car selection problem obtained from different methods.

Methods Ranking Results Best Option

The proposed weighted cross entropy measure B4 ă B3 ă B2 ă B1 B4
Dey et al.’s TOPSIS strategy [87] B1 ă B3 ă B2 ă B4 B4

Deli et al.’s strategy [81] B1 ă B2 ă B4 ă B3 B3
Projection measure [88] B3 ă B4 ă B1 ă B2 B2

Bidirectional projection measure [88] B2 ă B1 ă B4 ă B3 B3
Hybrid projection measure [88] with ρ = 0.25 B2 ă B1 ă B3 ă B4 B4
Hybrid projection measure [88] with ρ = 0.50 B3 ă B2 ă B1 ă B4 B4
Hybrid projection measure [88] with ρ = 0.75 B1 ă B3 ă B4 ă B2 B2
Hybrid projection measure [88] with ρ = 0.90 B3 ă B4 ă B2 ă B1 B1
Hybrid similarity measure [88] with ρ = 0.25 B2 ă B4 ă B1 ă B3 B3
Hybrid similarity measure [88] with ρ = 0.30 B2 ă B4 ă B1 ă B3 B3
Hybrid similarity measure [88] with ρ = 0.60 B2 ă B4 ă B1 ă B3 B3
Hybrid similarity measure [88] with ρ = 0.90 B2 ă B4 ă B3 ă B1 B1
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6.2. Interval Bipolar Neutrosophic MADM Investment Problem

Consider an interval bipolar neutrosophic MADM problem studied in [91] with four possible
alternatives with the aim to invest a sum of money in the best choice. The four alternatives are:

> a food company (B1),
> a car company (B2),
> an arms company (B3), and
> a computer company (B4).

The investment company selects the best option based on three predefined attributes, namely,
growth analysis (C1), risk analysis (C2), and environment analysis (C3). We consider C1 and C2 to be
benefit type attributes and C3 to be a cost type attribute based on Ye [93]. Assume that the weight
vector [91] of C1, C2, and C3 is given by w = (w1, w2, w3) = (0.35, 0.25, 0.4). The interval bipolar
neutrosophic decision matrix rrgijs4ˆ3 presented by the decision-maker or expert is as follows.

Interval bipolar neutrosophic decision matrix rrgijs4ˆ3 =

C1

¨

˚

˚

˚

˝

B1 rr0.4, 0.5s, r0.2, 0.3s, r0.3, 0.4s, r´0.3, ´0.2s, r´0.4, ´0.3s, r´0.5,´ 0.4ss
B2 rr0.6, 0.7s, r0.1, 0.2s, r0.2, 0.3s, r´0.2, ´0.1s, r´0.3, ´0.2s, r´0.7,´ 0.6ss
B3 rr0.3, 0.6s, r0.2, 0.3s, r0.3, 0.4s, r´0.3, ´0.2s, r´0.4, ´0.3s, r´0.6,´ 0.3ss
B4 rr0.7, 0.8s, r0.0, 0.1s, r0.1, 0.2s, r´0.1, ´0.0s, r´0.2, ´0.1s, r´0.8,´ 0.7ss

˛

‹

‹

‹

‚

C2
¨

˚

˚

˚

˝

B1 rr0.4, 0.6s, r0.1, 0.3s, r0.2, 0.4s, r´0.3, ´0.1s, r´0.4, ´0.2s, r´0.6,´ 0.4ss
B2 rr0.6, 0.7s, r0.1, 0.2s, r0.2, 0.3s, r´0.2, ´0.1s, r´0.3, ´0.2s, r´0.7,´ 0.6ss
B3 rr0.5, 0.6s, r0.2, 0.3s, r0.3, 0.4s, r´0.3, ´0.2s, r´0.4, ´0.3s, r´0.6,´ 0.5ss
B4 rr0.6, 0.7s, r0.1, 0.2s, r0.1, 0.3s, r´0.2 ´ 0.1s, r´0.3, ´0.1s, r´0.7,´ 0.6ss

˛

‹

‹

‹

‚

C3
¨

˚

˚

˚

˝

B1 rr0.7, 0.9s, r0.2, 0.3s, r0.4, 0.5s, r´0.3, ´0.2s, r´0.5, ´0.4s, r´0.9,´ 0.7ss
B2 rr0.3, 0.6s, r0.3, 0.5s, r0.8, 0.9s, r´0.5, ´0.3s, r´0.9, ´0.8s, r´0.6,´ 0.3ss
B3 rr0.4, 0.5s, r0.2, 0.4s, r0.7, 0.9s, r´0.4, ´0.2s, r´0.9, ´0.7s, r´0.5,´ 0.4ss
B4 rr0.6, 0.7s, r0.3, 0.4s, r0.8, 0.9s, r´0.4, ´0.3s, r´0.9, ´0.8s, r´0.7,´ 0.6ss

˛

‹

‹

‹

‚

From the matrix rrgijs4ˆ3, we determine the positive ideal interval bipolar neutrosophic solution
(q*) by using Equation (6) as follows:

q* = <[0.7, 0.8], [0.0, 0.1], [0.1, 0.2], [´0.3, ´0.2], [´0.2, ´0.1], [´0.5, ´0.3]>;
<[0.6, 0.7], [0.1, 0.2], [0.1, 0.3], [´0.3, ´0.2], [´0.3, ´0.1], [´0.6, ´0.4]>;
<[0.3, 0.5], [0.3, 0.5], [0.8, 0.9], [´0.3, ´0.2], [´0.9, ´0.8], [´0.9, ´0.7]>.

The weighted cross entropy between an alternative Bi, i = 1, 2, . . . , m, and the ideal alternative q*
can be obtained as given below:

CIB(B1, q*)w = 0.0606, CIB(B2, q*)w = 0.0286, CIB(B3, q*)w = 0.0426, CIB(B4, q*)w = 0.0423.

On the basis of the weighted cross entropy measure CIB(Bi, q*)w, the order of the four alternatives
is B2 ă B4 ă B3 ă B1; therefore, B2 is the best choice.

Next, the comparison of the results obtained from different methods is presented in Table 2 where
the weight vector of the attribute is given by w = (w1, w2, w3) = (0.35, 0.25, 0.4). We observe that B2 is the
best option obtained using the proposed method and B4 is the best option obtained using the method
of Mahmood et al. [91]. The reason for this may be that we use the interval bipolar neutrosophic
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cross entropy method whereas Mahmood et al. [91] derived the most desirable alternative based on a
weighted arithmetic average operator in an interval bipolar neutrosophic setting.

Table 2. The results of the investment problem obtained from different methods.

Methods Ranking Results Best Option

The proposed weighted cross entropy measure B2 ă B4 ă B3 ă B1 B2
Mahmood et al.’s strategy [91] B2 ă B3 ă B1 ă B4 B4

7. Conclusions

In this paper we defined cross entropy and weighted cross entropy measures for bipolar
neutrosophic sets and proved their basic properties. We also extended the proposed concept to
the interval bipolar neutrosophic environment and proved its basic properties. The proposed cross
entropy measures were then employed to develop two new multi-attribute decision-making strategies.
Two illustrative numerical examples were solved and comparisons with existing strategies were
provided to demonstrate the feasibility, applicability, and efficiency of the proposed strategies. We hope
that the proposed cross entropy measures can be effective in dealing with group decision-making,
data analysis, medical diagnosis, selection of a suitable company to build power plants [94], teacher
selection [95], quality brick selection [96], weaver selection [97,98], etc. In future, the cross entropy
measures can be extended to other neutrosophic hybrid environments, such as bipolar neutrosophic
soft expert sets, bipolar neutrosophic refined sets, etc.
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Appendix A

Proof of Theorem 2

(1) From the inequality stated in Theorem 1, we can easily obtain CB(M, N)w ě 0.
(2) CB(M, N)w = 0 if, and only if, M = N, i.e., T`Mpxiq = T`N pxiq, I`Mpxiq = I`N pxiq, F`Mpxiq = F`N pxiq,
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(3) CB(M, N)w =
n
ř

i“1
wi i

»

—

—

—

—

—

—

—

—

—

—

–

d

T`M
`

xi
˘

`T`N
`

xi
˘

2 ´

¨

˚

˚

˝

c

T`M
`

xi
˘

`

b

T`N
`

xi
˘

2

˛

‹

‹

‚

`

d

I`M
`

xi
˘

`I`N
`

xi
˘

2 ´

¨

˚

˚

˝

c

I`M
`

xi
˘

`

b

I`N
`

xi
˘

2

˛

‹

‹

‚̀

d

´

1´I`M
`

xi
˘

¯

`
´

1´I`N
`

xi
˘

¯

2 ´

¨

˚

˚

˝

c

1´I`M
`

xi
˘

`

b

1´I`N
`

xi
˘

2

˛

‹

‹

‚

`

d

F`M
`

xi
˘

`F`N
`

xi
˘

2 ´

¨

˚

˚

˝

c

F`M
`

xi
˘

`

b

F`N
`

xi
˘

2

˛

‹

‹

‚̀

d

´
´

T´M
`

xi
˘

`T´N
`

xi
˘

¯

2 ´

¨

˚

˚

˝

c

´

´T´M
`

xi
˘

¯

`

c

´

´T´N
`

xi
˘

¯

2

˛

‹

‹

‚

`

d

´
´

I´M
`

xi
˘

`I´N
`

xi
˘

¯

2 ´

¨

˚

˚

˝

c

´

´I´M
`

xi
˘

¯

`

c

´

´I´N
`

xi
˘

¯

2

˛

‹

‹

‚̀

d

´

1`I´M
`

xi
˘

¯

`
´

1`I´N
`

xi
˘

¯

2 ´

¨

˚

˚

˝

c

1`I´M
`

xi
˘

`

b

1`I´N
`

xi
˘

2

˛

‹

‹

‚

`

d

´
´

F´M
`

xi
˘

`F´N
`

xi
˘

¯

2 ´

¨

˚

˚

˝

c

´

´F´M
`

xi
˘

¯

`

c

´

´F´N
`

xi
˘

¯

2

˛

‹

‹

‚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

=
n
ř

i“1
wi

»

—

—

—

—

—

—

—

—

—

—

–

c

T`N pxiq`T`M pxiq
2 ´

¨

˝

b

T`N pxiq`
c

T`M pxiq

2

˛

‚`

c

I`N pxiq`I`M pxiq
2 ´

¨

˝

b

I`N pxiq`
c

I`M pxiq

2

˛

‚`

c

´

1´I`N pxiq
¯

`
´

1´I`M pxiq
¯

2 ´

¨

˝

b

1´I`N pxiq`
c

1´I`M pxiq

2

˛

‚`

c

F`N pxiq`F`M pxiq
2 ´

¨

˝

b

F`N pxiq`
c

F`M pxiq

2

˛

‚`

c

´
´

T´N pxiq`T´M pxiq
¯

2 ´

¨

˝

c

´

´T´N pxiq
¯

`

c

´

´T´M pxiq
¯

2

˛

‚`

c

´
´

I´N pxiq`I´M pxiq
¯

2 ´

¨

˝

c

´

´I´N pxiq
¯

`

c

´

´I´M pxiq
¯

2

˛

‚`

c

´

1`I´N pxiq
¯

`
´

1`I´M pxiq
¯

2 ´

¨

˝

b

1`I´N pxiq`
c

1`I´M pxiq

2

˛

‚`

c

´
´

F´N pxiq`F´M pxiq
¯

2 ´

¨

˝

c

´

´F´N pxiq
¯

`

c

´

´F´M pxiq
¯

2

˛

‚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

= CB(N, M)w.

Florentin Smarandache (ed.) Collected Papers, VII

377



(4) CB(MC, NC)w =

n
ř

i“1

»

—

—

—

—

—

—

—

—

—

—

–

d

F`M
`

xi
˘

`F`N
`

xi
˘

2 ´

¨

˚

˚

˝

c

F`M
`

xi
˘

`

b

F`N
`

xi
˘

2

˛

‹

‹

‚

`

d

´

1´I`M
`

xi
˘

¯

`
´

1´I`N
`

xi
˘

¯

2 ´

¨

˚

˚

˝

c

´

1´I`M
`

xi
˘

¯

`

b

1´I`N
`

xi
˘

q

2

˛

‹

‹

‚̀

d

1´
´

1´I`M
`

xi
˘

¯

`1´
´

1´I`N
`

xi
˘

¯

2 ´

¨

˚

˚

˝

c

1´
´

1´I`M
`

xi
˘

¯

`

c

1´
´

1´I`N
`

xi
˘

¯

2

˛

‹

‹

‚

`

d

T`M
`

xi
˘

`T`N
`

xi
˘

2 ´

¨

˚

˚

˝

c

T`M
`

xi
˘

`

b

T`N
`

xi
˘

2

˛

‹

‹

‚̀

d

´
´

F´M
`

xi
˘

`F´N
`

xi
˘

¯

2 ´

¨

˚

˚

˝

c

´

´F´M
`

xi
˘

¯

`

c

´

´F´N
`

xi
˘

¯

2

˛

‹

‹

‚

`

d

´
´

´1´I´M
`

xi
˘

¯

´
´

´1´I´N
`

xi
˘

¯

2 ´

¨

˚

˚

˝

c

´
´

´1´I´M
`

xi
˘

¯

`

c

´
´

´1´I´N
`

xi
˘

¯

2

˛

‹

‹

‚̀

d

1`
´

´1´I´M
`

xi
˘

¯

`1`
´

´1´I´N
`

xi
˘

¯

2 ´

¨

˚

˚

˝

c

1`
´

´1´I´M
`

xi
˘

¯

`

c

1`
´

´1´I´N
`

xi
˘

¯

2

˛

‹

‹

‚

`

d

´
´

T´M
`

xi
˘

`T´N
`

xi
˘

¯

2 ´

¨

˚

˚

˝

c

´

´T´M
`

xi
˘

¯

`

c

´

´T´N
`

xi
˘

¯

2

˛

‹

‹

‚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

=
n
ř

i“1
wi i

»

—

—

—

—

—

—

—

—

–

c

T`M pxiq`T`N pxiq
2 ´

˜
b

T`M pxiq`

b

T`N pxiq

2

¸

`

c

I`M pxiq`I`N pxiq
2 ´

˜
b

I`M pxiq`

b

I`N pxiq

2

¸

`

c

´

1´I`M pxiq
¯

`
´

1´I`N pxiq
¯

2 ´

˜
b

1´I`M pxiq`

b

1´I`N pxiq

2

¸

`

c

F`M pxiq`F`N pxiq
2 ´

˜
b

F`M pxiq`

b

F`N pxiq

2

¸

`

c

´
´

T´M pxiq`T´N pxiq
¯

2 ´

¨

˚

˝

c

´

´T´M pxiq
¯

`

c

´

´T´N pxiq
¯

2

˛

‹

‚

`

c

´
´

I´M pxiq`I´N pxiq
¯

2 ´

¨

˚

˝

c

´

´I´M pxiq
¯

`

c

´

´I´N pxiq
¯

2

˛

‹

‚̀

c

´

1`I´M pxiq
¯

`
´

1`I´N pxiq
¯

2 ´

˜
b

1`I´M pxiq`

b

1`I´N pxiq

2

¸

`

c

´
´

F´M pxiq`F´N pxiq
¯

2 ´

¨

˚

˝

c

´

´F´M pxiq
¯

`

c

´

´F´N pxiq
¯

2

˛

‹

‚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

= CB(MC, NC)w. �

Appendix B

Proof of Theorem 4

(1) Obviously, we can easily get CIB(R, S)w ě 0.
(2) If CIB(R, S)w = 0 then R = S, and if infT`R pxiq = infT`S pxiq, supT`R pxiq = supT`S pxiq, infI`R pxiq

= infI`S pxiq, supI`R pxiq = supI`S pxiq, infF`R pxiq = infF`S pxiq, supF`R pxiq = supF`S pxiq, infT´R pxiq

= infT´S pxiq, supT´R pxiq = supT´S pxiq, infI´R pxiq = infI´S pxiq, supI´R pxiq = supI´S pxiq, infF´R pxiq =
infF´S pxiq, supF´R pxiq = supF´S pxiq @ x P U, then we obtain CIB(R, S)w = 0.
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Abstract: Rough set theory and neutrosophic set theory are mathematical models to deal with
incomplete and vague information. These two theories can be combined into a framework for
modeling and processing incomplete information in information systems. Thus, the neutrosophic
rough set hybrid model gives more precision, flexibility and compatibility to the system as compared
to the classic and fuzzy models. In this research study, we develop neutrosophic rough digraphs based
on the neutrosophic rough hybrid model. Moreover, we discuss regular neutrosophic rough digraphs,
and we solve decision-making problems by using our proposed hybrid model. Finally, we give
a comparison analysis of two hybrid models, namely, neutrosophic rough digraphs and rough
neutrosophic digraphs.

Keywords: neutrosophic rough hybrid model; regular neutrosophic rough digraphs;
decision-making method

1. Introduction

The concept of a neutrosophic set, which generalizes fuzzy sets [1] and intuitionistic fuzzy
sets [2], was proposed by Smarandache [3] in 1998, and it is defined as a set about the degree
of truth, indeterminacy, and falsity. A neutrosophic set A in a universal set X is characterized
independently by a truth-membership function (TA(x)), an indeterminacy-membership function
(IA(x)), and a falsity-membership function (FA(x)). To apply neutrosophic sets in real-life problems
more conveniently, Smarandache [3] and Wang et al., [4] defined single-valued neutrosophic sets
which take the value from the subset of [0, 1].

Rough set theory was proposed by Pawlak [5] in 1982. Rough set theory is useful to study
the intelligence systems containing incomplete, uncertain or inexact information. The lower and
upper approximation operators of rough sets are used for managing hidden information in a system.
Therefore, many hybrid models have been built such as soft rough sets, rough fuzzy sets, fuzzy rough
sets, soft fuzzy rough sets, neutrosophic rough sets and rough neutrosophic sets for handling
uncertainty and incomplete information effectively. Dubois and Prade [6] introduced the notions
of rough fuzzy sets and fuzzy rough sets. Liu and Chen [7] have studied different decision-making
methods. Mordeson and Peng [8] presented operations on fuzzy graphs. Akram et al., [9–12]
considered several new concepts of neutrosophic graphs with applications. Rough fuzzy digraphs
with applications are presented in [13,14]. To get the extended notion of neutrosophic sets and
rough sets, many attempts have been made. Broumi et al., [15] introduced the concept of rough
neutrosophic sets. Yang et al., [16] proposed single valued neutrosophic rough sets by combining
single valued neutrosophic sets and rough sets, and established an algorithm for the decision-making
problem based on single valued neutrosophic rough sets on two universes. Nabeela et al., [17]
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and Sayed et al., [18] introduced rough neutrosophic digraphs, in which they have approximated
neutrosophic set under the influence of a crisp equivalence relation. In this research article, we apply
another hybrid set model, neutrosophic rough, to graph theory. We deal with regular neutrosophic
rough digraphs and then solve the decision-making problem by using our proposed hybrid model.

Our paper is organized as follows: Firstly, we develop the notion of neutrosophic rough digraphs
and present some numerical examples. Secondly, we explore basic properties of neutrosophic rough
digraphs. In particular, we investigate the regularity of neutrosophic rough digraphs. We describe
novel applications of our proposed hybrid decision-making method. To compare the two notions,
rough neutrosophic digraphs and neutrosophic rough digraphs, we give a comparison analysis.
Finally, we end the paper by concluding remarks.

2. Neutrosophic Rough Information

Definition 1. [4] Let Z be a nonempty universe. A neutrosophic set N on Z is defined as follows:

N = {< x : TN(x), IN(x), FN(x) >: x ∈ Z},

where the functions T, I, F:Z→ [0, 1] represent the degree of membership, the degree of indeterminacy and the
degree of falsity.

Definition 2. [5] Let Z be a nonempty universe and R an equivalence relation on Z. A pair (Z, R) is called
an approximation space. Let N∗ be a subset of Z and the lower and upper approximations of N∗ in the
approximation space (Z, R) denoted by RN∗ and RN∗ are defined as follows:

RN∗ = {x ∈ Z|[x]R ⊆ N∗},
RN∗ = {x ∈ Z|[x]R ∩ N∗ 6= φ},

where [x]R denotes the equivalence class of R containing x. A pair (RN∗, RN∗) is called a rough set.

For other notations and applications, readers are referred to [19–32].

Definition 3. [16] Let X∗ be a nonempty universe and R a neutrosophic relation on X∗. Let X be a neutrosophic
set on X∗, defined as

X = {< x, TX(x), IX(x), FX(x) >: x ∈ X∗}.

Then the lower and upper approximations of X represented by RX and RX, respectively, are characterized
as neutrosophic sets in X∗ such that, ∀x ∈ X∗

RX = {< x, TR(X)(x), IR(X)(x), FR(X)(x) >: y ∈ X∗},
RX = {< x, TR(X)(x), IR(X)(x), FR(X)(x) >: y ∈ X∗},

where

TRX(x) =
∧

y∈X

(
FR(x, y) ∨ TX(y)

)
,

IRX(x) =
∨

y∈X

(
1− IR(x, y) ∧ IX(y)

)
,

FRX(x) =
∨

y∈X

(
TR(x, y) ∧ FX(y)

)
,
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and

TRX(x) =
∨

y∈X

(
TR(x, y) ∧ TX(y)

)
,

IRX(x) =
∧

y∈X

(
IR(x, y) ∨ IX(y)

)
,

FRX(x) =
∧

y∈X

(
FR(x, y) ∨ FX(y)

)
.

A pair (RX, RX) ia called a neutrosophic rough set.

Definition 4. Let X∗ be a nonempty set and R a neutrosophic tolerance relation on X∗. Let X be a neutrosophic
set on X∗ defined as:

X = {< x, TX(x), IX(x), FX(x) >: x ∈ X∗}.
Then the lower and upper approximations of X represented by RX and RX, respectively, are characterized

as neutrosophic sets in X∗ such that, ∀ x ∈ X∗

RX = {< x, TRX(x), IRX(x), FRX(x) >: y ∈ X∗},
RX = {< x, TRX(x), IRX(x), FRX(x) >: y ∈ X∗},

where

TRX(x) =
∧

y∈X∗

(
FR(x, y) ∨ TX(y)

)
,

IRX(x) =
∧

y∈X∗

(
1− IR(x, y) ∨ IX(y)

)
,

FRX(x) =
∨

y∈X∗

(
TR(x, y) ∧ FX(y)

)
,

and

TRX(x) =
∨

y∈X∗

(
TR(x, y) ∧ TX(y)

)
,

IRX(x) =
∨

y∈X∗

(
IR(x, y) ∧ IX(y)

)
,

FRX(x) =
∧

y∈X∗

(
FR(x, y) ∨ FX(y)

)
.

Let Y∗ ⊆ X∗ × X∗ and S a neutrosophic tolerance relation on Y∗ such that

TS((x1, x2)(y1, y2)) =min{TR(x1, y1), TR(x2, y2)},
IS((x1, x2)(y1, y2) =min{IR(x1, y1), IR(x2, y2)},

FS((x1, x2)(y1, y2)) =max{FR(x1, y1), FR(x2, y2)}.

Let Y be a neutrosophic set on Y∗ defined as:

Y = {< xy, TY(xy), IY(xy), FY(xy) >: xy ∈ Y∗},
such that

TY(xy) ≤min{TRX(x), TRX(y)},
IY(xy) ≤min{IRX(x), IRX(y)},
FY(xy) ≤max{FRX(x), FRX(y)} ∀ x, y ∈ X∗.
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Then the lower and the upper approximations of Y represented by SY and SY, are defined as follows:

SY = {< xy, TSY(xy), ISY(xy), FSY(xy) >: xy ∈ Y∗},
SY = {< xy, TSY(xy), ISY(xy), FSY(xy) >: xy ∈ Y∗},

where

TSY(xy) =
∧

wz∈Y∗

(
FS((xy), (wz)) ∨ TY(wz)

)
,

ISY(xy) =
∧

wz∈Y∗

(
(1− IS((xy), (wz))) ∨ IY(wz)

)
,

FSY(xy) =
∨

wz∈Y∗

(
TS((xy), (wz)) ∧ FY(wz)

)
,

and

TSY(xy) =
∨

wz∈Y∗

(
TS((xy), (wz)) ∧ TY(wz)

)
,

ISY(xy) =
∨

wz∈Y∗

(
IS((xy), (wz)) ∧ IY(wz)

)
,

FSY(xy) =
∧

wz∈Y∗

(
FS((xy), (wz)) ∨ FY(wz)

)
.

A pair SY = (SY, SY) is called neutrosophic rough relation.

Definition 5. A neutrosophic rough digraph on a nonempty set X∗ is a 4-ordered tuple G = (R, RX, S, SY)
such that

(a) R is a neutrosophic tolerance relation on X∗,
(b) S is a neutrosophic tolerance relation on Y∗ ⊆ X∗ × X∗,
(c) RX = (RX, RX) is a neutrosophic rough set on X∗,
(d) SY = (SY, SY) is a neutrosophic rough relation on X∗,
(e) (RX, SY) is a neutrosophic rough digraph where G = (RX, SY) and G = (RX, SY) are lower and upper

approximate neutrosophic digraphs of G such that

TSY(xy) ≤ min{TRX(x), TRX(y)},
ISY(xy) ≤ min{IRX(x), IRX(y)},
FSY(xy) ≤ max{FRX(x), FRX(y)},

TSY(xy) ≤ min{TRX(x), TRX(y)},
ISY(xy) ≤ min{IRX(x), IRX(y)},
FSY(xy) ≤ max{FRX(x), FRX(y)} ∀ x, y ∈ X∗.

Example 1. Let X∗ = {p, q, r, s, t} be a nonempty set and R a neutrosophic tolerance relation on X∗ is given as:
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R p q r s t
p (1,1,0) (0.5,0.2,0.3) (0.1,0.9,0.4) (0.6,0.5,0.2) (0.2,0.1,0.8)
q (0.5,0.2,0.3) (1,1,0) (0.3,0.7,0.5) (0.1,0.9,0.6) (0.6,0.5,0.1)
r (0.1,0.9,0.4) (0.3,0.7,0.5) (1,1,0) (0.2,0.8,0.7) (0.1,0.9,0.6)
s (0.6,0.5,0.2) (0.1,0.9,0.6) (0.2,0.8,0.7) (1,1,0) (0.2,0.3,0.1)
t (0.2,0.1,0.8) (0.6,0.5,0.1) (0.1,0.9,0.6) (0.2,0.3,0.1) (1,1,0)

Let X1 = {(p, 0.2, 0.1, 0.7), (q, 0.4, 0.5, 0.6), (r, 0.7, 0.8, 0.9), (s, 0.2, 0.9, 0.1), (t, 0.6, 0.8, 0.4)} be
a neutrosophic set on X∗. The lower and upper approximations of X1 are given as:

RX1 = {(p, 0.2, 0.1, 0.7), (q, 0.3, 0.5, 0.6), (r, 0.4, 0.1, 0.9), (s, 0.2, 0.5, 0.6), (t, 0.2, 0.5, 0.6)},
RX1 = {(p, 0.4, 0.2, 0.8), (q, 0.6, 0.9, 0.4), (r, 0.7, 0.8, 0.6), (s, 0.2, 0.9, 0.1), (t, 0.6, 0.8, 0.1)}.

Let Y∗ = {pr, qs, rt, sp, tq} ⊆ X∗ × X∗ and S a neutrosophic tolerance relation which is given as:

S pr qs rt sp tq
pr (1,1,0) (0.2,0.2,0.7) (0.1,0.9,0.6) (0.1,0.5,0.4) (0.2,0.1,0.8)
qs (0.2,0.2,0.7) (1,1,0) (0.2,0.3,0.5) (0.1,0.5,0.6) (0.1,0.5,0.6)
rt (0.1,0.9,0.6) (0.2,0.3,0.5) (1,1,0) (0.2,0.1,0.8) (0.1,0.5,0.6)
sp (0.1,0.5,0.4) (0.1,0.5,0.6) (0.2,0.1,0.8) (1,1,0) (0.2,0.2,0.3)
tq (0.2,0.1,0.8) (0.1,0.5,0.6) (0.1,0.5,0.6) (0.2,0.2,0.3) (1,1,0)

Let Y1 = {(pr, 0.2, 0.1, 0.5), (qs, 0.1, 0.3, 0.3), (rt, 0.2, 0.1, 0.4), (sp, 0.1, 0.1, 0.2), (tq, 0.1, 0.4, 0.3)} be
a neutrosophic set on Y∗. The lower and upper approximations of Y1 are given as:

SY1 = {(pr, 0.2, 0.1, 0.5), (qs, 0.1, 0.3, 0.3), (rt, 0.2, 0.1, 0.4), (sp, 0.1, 0.1, 0.2), (tq, 0.1, 0.4, 0.3)},
SY1 = {(pr, 0.2, 0.2, 0.4), (qs, 0.2, 0.4, 0.3), (rt, 0.2, 0.4, 0.4), (sp, 0.2, 0.3, 0.2), (tq, 0.2, 0.4, 0.3)}.

Thus, G = (RX1, SY1) and G = (RX1, SY1) are neutrosophic digraphs as shown in Figure 1.

R p q r s t
p (1,1,0) (0.5,0.2,0.3) (0.1,0.9,0.4) (0.6,0.5,0.2) (0.2,0.1,0.8)
q (0.5,0.2,0.3) (1,1,0) (0.3,0.7,0.5) (0.1,0.9,0.6) (0.6,0.5,0.1)
r (0.1,0.9,0.4) (0.3,0.7,0.5) (1,1,0) (0.2,0.8,0.7) (0.1,0.9,0.6)
s (0.6,0.5,0.2) (0.1,0.9,0.6) (0.2,0.8,0.7) (1,1,0) (0.2,0.3,0.1)
t (0.2,0.1,0.8) (0.6,0.5,0.1) (0.1,0.9,0.6) (0.2,0.3,0.1) (1,1,0)

Let X1 = {(p, 0.2, 0.1, 0.7), (q, 0.4, 0.5, 0.6), (r, 0.7, 0.8, 0.9), (s, 0.2, 0.9, 0.1), (t, 0.6, 0.8, 0.4)} be a neutrosophic set
on X∗. The lower and upper approximations of X1 are given as:

RX1 = {(p, 0.2, 0.1, 0.7), (q, 0.3, 0.5, 0.6), (r, 0.4, 0.1, 0.9), (s, 0.2, 0.5, 0.6), (t, 0.2, 0.5, 0.6)},
RX1 = {(p, 0.4, 0.2, 0.8), (q, 0.6, 0.9, 0.4), (r, 0.7, 0.8, 0.6), (s, 0.2, 0.9, 0.1), (t, 0.6, 0.8, 0.1)}.

Let Y ∗ = {pr, qs, rt, sp, tq} ⊆ X∗ ×X∗ and S a neutrosophic tolerance relation which is given as:

S pr qs rt sp tq
pr (1,1,0) (0.2,0.2,0.7) (0.1,0.9,0.6) (0.1,0.5,0.4) (0.2,0.1,0.8)
qs (0.2,0.2,0.7) (1,1,0) (0.2,0.3,0.5) (0.1,0.5,0.6) (0.1,0.5,0.6)
rt (0.1,0.9,0.6) (0.2,0.3,0.5) (1,1,0) (0.2,0.1,0.8) (0.1,0.5,0.6)
sp (0.1,0.5,0.4) (0.1,0.5,0.6) (0.2,0.1,0.8) (1,1,0) (0.2,0.2,0.3)
tq (0.2,0.1,0.8) (0.1,0.5,0.6) (0.1,0.5,0.6) (0.2,0.2,0.3) (1,1,0)

Let Y1 = {(pr, 0.2, 0.1, 0.5), (qs, 0.1, 0.3, 0.3), (rt, 0.2, 0.1, 0.4), (sp, 0.1, 0.1, 0.2), (tq, 0.1, 0.4, 0.3)} be a neutro-
sophic set on Y ∗. The lower and upper approximations of Y1 are given as:

SY1 = {(pr, 0.2, 0.1, 0.5), (qs, 0.1, 0.3, 0.3), (rt, 0.2, 0.1, 0.4), (sp, 0.1, 0.1, 0.2), (tq, 0.1, 0.4, 0.3)},
SY1 = {(pr, 0.2, 0.2, 0.4), (qs, 0.2, 0.4, 0.3), (rt, 0.2, 0.4, 0.4), (sp, 0.2, 0.3, 0.2), (tq, 0.2, 0.4, 0.3)}.

Thus, G = (RX1, SY1) and G = (RX1, SY1) are neutrosophic digraphs as shown in Fig. 1.
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Figure 1: Neutrosophic Rough Digraph G1 = (G1, G1)

Example 2.2. Let X∗ = {u, v, w, x, y, z} be a crisp set and R a neutrosophic tolerance relation on X∗ given
by

5

Figure 1. Neutrosophic rough digraph G1 = (G1, G1).

Example 2. Let X∗ = {u, v, w, x, y, z} be a crisp set and R a neutrosophic tolerance relation on X∗ given by

R u v w x y z
u (1,1,0) (0.2,0.3,0.5) (0.5,0.6,0.9) (0.3,0.8,0.3) (0.3,0.2,0.1) (0.1,0.1,0.5)
v (0.2,0.3,0.5) (1,1,0) (0.9,0.5,0.6) (0.1,0.5,0.7) (0.8,0.9,0.1) (0.8,0.9,0.1)
w (0.5,0.6,0.9) (0.9,0.5,0.6) (1,1,0) (0.3,0.6,0.8) (0.2,0.3,0.6) (0.7,0.6,0.6)
x (0.3,0.8,0.3) (0.1,0.5,0.7) (0.3,0.6,0.8) (1,1,0) (0.5,0.1,0.9) (0.8,0.7,0.2)
y (0.3,0.2,0.1) (0.8,0.9,0.1) (0.2,0.3,0.6) (0.5,0.1,0.9) (1,1,0) (0.6,0.5,0.9)
z (0.1,0.1,0.5) (0.8,0.9,0.1) (0.7,0.6,0.6) (0.8,0.7,0.2) (0.6,0.5,0.9) (1,1,0)
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Thus, G = (RX, SY) and G = (RX, SY) are the neutrosophic digraphs as shown in Figure 2. 
Thus, G = (RX, SY ) and G = (RX, SY ) are the neutrosophic digraphs as shown in Fig. 2.
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6

Now we discuss regular neutrosophic rough digraphs.

Definition 6. Let G = (G, G) be a neutrosophic rough digraph on a nonempty set X∗. The indegree of a vertex
x ∈ G is the sum of membership degree, indeterminacy and falsity of all edges towards x from other vertices in
G and G, respectively, represented by idG(x) and defined by

idG(x) = idG(x) + idG(x),
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where

idG(x) = ( ∑
x,y∈SY

TG(yx), ∑
x,y∈SY

IG(yx), ∑
x,y∈SY

FG(yx)),

idG(x) = ( ∑
x,y∈SY

TG(yx), ∑
x,y∈SY

IG(yx), ∑
x,y∈SY

FG(yx)).

The outdegree of a vertex x ∈ G is the sum of membership degree, indeterminacy and falsity of all edges
outward from x to other vertices in G and G, respectively, represented by odG(x) and defined by

odG(x) = odG(x) + odG(x),

where

odG(x) = ( ∑
x,y∈SY

TG(xy), ∑
x,y∈SY

IG(xy), ∑
x,y∈SY

FG(xy)),

odG(x) = ( ∑
x,y∈SY

TG(xy), ∑
x,y∈SY

IG(xy), ∑
x,y∈SY

FG(xy)).

dG(x) = idG(x) + odG(x) is called degree of vertex x.

Definition 7. A neutrosophic rough digraph is called a regular neutrosophic rough digraph of degree
(m1, m2, m3) if

dG(x) = (m1, m2, m3) ,∀x ∈ X.

Example 3. Let X∗ = {p, q, r, s} be a nonempty set and R a neutrosophic tolerance relation on X∗ is given as:

R p q r s
p (1,1,0) (0.1,0.9,0.8) (0.7,0.5,0.8) (0.1,0.9,0.8)
q (0.9,0.8,0.1) (1,1,0) (0.1,0.9,0.8) (0.4,0.3,0.9)
r (0.7,0.5,0.8) (0.1,0.9,0.8) (1,1,0) (0.1,0.9,0.8)
s (0.1,0.9,0.8) (0.4,0.3,0.9) (0.1,0.9,0.8) (1,1,0)

Let X1 = {(p, 0.1, 0.4, 0.8), (q, 0.2, 0.3, 0.9), (r, 0.1, 0.6, 0.8), (s, 0.9, 0.6, 0.3)} be a neutrosophic set on X∗.
The lower and upper approximations of X1 are given as:

RX1 = {(p, 0.1, 0.3, 0.8), (q, 0.2, 0.3, 0.9), (r, 0.1, 0.3, 0.8), (s, 0.8, 0.4, 0.4)},
RX1 = {(p, 0.1, 0.6, 0.8), (q, 0.4, 0.6, 0.8), (r, 0.1, 0.6, 0.8), (s, 0.9, 0.6, 0.3)}.

Let Y∗ = {pq, qr, rs, sp} ⊆ X∗ × X∗ and S a neutrosophic tolerance relation on Y∗ which is given as:

S pq qr rs sp
pq (1,1,0) (0.1,0.9,0.8) (0.4,0.3,0.9) (0.1,0.9,0.8)
qr (0.1,0.9,0.8) (1,1,0) (0.1,0.9,0.8) (0.4,0.3,0.9)
rs (0.4,0.3,0.9) (0.1,0.9,0.8) (1,1,0) (0.1,0.9,0.8)
sp (0.1,0.9,0.8) (0.4,0.3,0.9) (0.1,0.9,0.8) (1,1,0)

Let Y1 = {(pq, 0.1, 0.3, 0.8), (qr, 0.1, 0.3, 0.3), (rs, 0.1, 0.3, 0.8), (sp, 0.1, 0.3, 0.8)} be a neutrosophic set
on Y∗. The lower and upper approximations of Y1 are given as:

SY1 = {(pq, 0.1, 0.3, 0.8), (qr, 0.1, 0.3, 0.3), (rs, 0.1, 0.3, 0.8), (sp, 0.1, 0.3, 0.8)},
SY1 = {(pq, 0.1, 0.3, 0.8), (qr, 0.1, 0.3, 0.3), (rs, 0.1, 0.3, 0.8), (sp, 0.1, 0.3, 0.8)}.

Thus, G1 = (G1, G1) is a regular neutrosophic rough digraph as shown in Figure 3.
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Figure 3: Regular Neutrosophic Rough Digraph G1 = (G1, G1)

SY1 = {(pq, 0.1, 0.3, 0.8), (qr, 0.1, 0.3, 0.3), (rs, 0.1, 0.3, 0.8), (sp, 0.1, 0.3, 0.8)},
SY1 = {(pq, 0.1, 0.3, 0.8), (qr, 0.1, 0.3, 0.3), (rs, 0.1, 0.3, 0.8), (sp, 0.1, 0.3, 0.8)}.

Thus, G1 = (G1, G1) is a regular neutrosophic rough digraph as shown in Fig. 3.

Definition 2.8. Let G1 = (G1, G1) and G2 = (G2, G2) be two neutrosophic rough digraphs. Then the
direct sum of G1 and G2 is a neutrosophic rough digraph G = G1 ⊕ G2 = (G1 ⊕ G2, G1 ⊕ G2), where
G1 ⊕G2 = (RX1 ⊕RX2, SY1 ⊕ SY2) and G1 ⊕G2 = (RX1 ⊕RX2, SY1 ⊕ SY2) are neutrosophic digraphs.

(1)

TRX1⊕RX2(x) =





TRX1(x), if x ∈ RX1 −RX2

TRX2(x), if x ∈ RX2 −RX1

max(TRX1(x), TRX2(x)), if x ∈ RX1 ∩RX2

IRX1⊕RX2(x) =





IRX1(x), if x ∈ RX1 −RX2

IRX2(x), if x ∈ RX2 −RX1

max(IRX1(x), IRX2(x)), if x ∈ RX1 ∩RX2

FRX1⊕RX2(x) =





FRX1(x), if x ∈ RX1 −RX2

FRX2(x), if x ∈ RX2 −RX1

min(FRX1(x), FRX2(x)), if x ∈ RX1 ∩RX2

TSY1⊕SY2(x, y) =

{
TSY1(x, y), if (x, y) ∈ SY1

TSY2(x, y), if (x, y) ∈ SY2

ISY1⊕SY2(x, y) =

{
ISY1(x, y), if (x, y) ∈ SY1

ISY2(x, y), if (x, y) ∈ SY2

FSY1⊕SY2(x, y) =

{
FSY1(x, y), if (x, y) ∈ SY1

FSY2(x, y), if (x, y) ∈ SY2

8

Figure 3. Regular neutrosophic rough digraph G1 = (G1, G1).

Definition 8. Let G1 = (G1, G1) and G2 = (G2, G2) be two neutrosophic rough digraphs. Then the
direct sum of G1 and G2 is a neutrosophic rough digraph G = G1 ⊕ G2 = (G1 ⊕ G2, G1 ⊕ G2),
where G1 ⊕ G2 = (RX1 ⊕ RX2, SY1 ⊕ SY2) and G1 ⊕ G2 = (RX1 ⊕ RX2, SY1 ⊕ SY2) are
neutrosophic digraphs.

(1)

TRX1⊕RX2(x) =





TRX1(x), if x ∈ RX1 − RX2

TRX2(x), if x ∈ RX2 − RX1

max(TRX1(x), TRX2(x)), if x ∈ RX1 ∩ RX2

IRX1⊕RX2(x) =





IRX1(x), if x ∈ RX1 − RX2

IRX2(x), if x ∈ RX2 − RX1

max(IRX1(x), IRX2(x)), if x ∈ RX1 ∩ RX2

FRX1⊕RX2(x) =





FRX1(x), if x ∈ RX1 − RX2

FRX2(x), if x ∈ RX2 − RX1

min(FRX1(x), FRX2(x)), if x ∈ RX1 ∩ RX2

TSY1⊕SY2(x, y) =

{
TSY1(x, y), if (x, y) ∈ SY1

TSY2(x, y), if (x, y) ∈ SY2

ISY1⊕SY2(x, y) =

{
ISY1(x, y), if (x, y) ∈ SY1

ISY2(x, y), if (x, y) ∈ SY2

FSY1⊕SY2(x, y) =

{
FSY1(x, y), if (x, y) ∈ SY1

FSY2(x, y), if (x, y) ∈ SY2
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TRX1⊕RX2
(x) =





TRX1
(x), if x ∈ RX1 − RX2

TRX2
(x), if x ∈ RX2 − RX1

max(TRX1
(x), TRX2

(x)), if x ∈ RX1 ∩ RX2

IRX1⊕RX2
(x) =





IRX1
(x), if x ∈ RX1 − RX2

IRX2
(x), if x ∈ RX2 − RX1

max(IRX1
(x), IRX2

(x)), if x ∈ RX1 ∩ RX2

FRX1⊕RX2
(x) =





FRX1
(x), if x ∈ RX1 − RX2

FRX2
(x), if x ∈ RX2 − RX1

min(FRX1
(x), FRX2

(x)), if x ∈ RX1 ∩ RX2

TSY1⊕SY2
(x, y) =

{
TSY1

(x, y), if (x, y) ∈ SY1

TSY2
(x, y), if (x, y) ∈ SY2

ISY1⊕SY2
(x, y) =

{
ISY1

(x, y), if (x, y) ∈ SY1

ISY2
(x, y), if (x, y) ∈ SY2

FSY1⊕SY2
(x, y) =

{
FSY1

(x, y), if (x, y) ∈ SY1

FSY2
(x, y), if (x, y) ∈ SY2

Example 4. Let X∗ = {p, q, r, s, t} be a set. Let G1 = (G1, G1) and G2 = (G2, G2) be two neutrosophic
rough digraphs on X∗ as shown in Figures 1 and 4. The direct sum of G1 and G2 is G = (G1 ⊕ G2, G1 ⊕ G2),
where G1 ⊕ G2 = (RX1 ⊕ RX2, SY1 ⊕ SY2) and G1 ⊕ G2 = (RX1 ⊕ RX2, SY1 ⊕ SY2) are neutrosophic
digraphs as shown in Figure 5.

(2)

TRX1⊕RX2
(x) =





TRX1
(x), if x ∈ RX1 −RX2

TRX2
(x), if x ∈ RX2 −RX1

max(TRX1
(x), TRX2

(x)), if x ∈ RX1 ∩RX2

IRX1⊕RX2
(x) =





IRX1
(x), if x ∈ RX1 −RX2

IRX2
(x), if x ∈ RX2 −RX1

max(IRX1
(x), IRX2

(x)), if x ∈ RX1 ∩RX2

FRX1⊕RX2
(x) =





FRX1
(x), if x ∈ RX1 −RX2

FRX2
(x), if x ∈ RX2 −RX1

min(FRX1
(x), FRX2

(x)), if x ∈ RX1 ∩RX2

TSY1⊕SY2
(x, y) =

{
TSY1

(x, y), if (x, y) ∈ SY1

TSY2
(x, y), if (x, y) ∈ SY2

ISY1⊕SY2
(x, y) =

{
ISY1

(x, y), if (x, y) ∈ SY1

ISY2
(x, y), if (x, y) ∈ SY2

FSY1⊕SY2
(x, y) =

{
FSY1

(x, y), if (x, y) ∈ SY1

FSY2
(x, y), if (x, y) ∈ SY2

Example 2.4. Let X∗ = {p, q, r, s, t} be a set. Let G1 = (G1, G1) and G2 = (G2, G2) be two neutrosophic
rough digraphs on X∗ as shown in Fig.1 and Fig.4. The direct sum of G1 and G2 is G = (G1 ⊕G2, G1 ⊕G2),
where G1 ⊕G2 = (RX1 ⊕RX2, SY1 ⊕SY2) and G1 ⊕G2 = (RX1 ⊕RX2, SY1 ⊕SY2) are neutrosophic digraphs
as shown in Fig.5.
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Figure 4: Neutrosophic Rough Digraph G = (G2, G2)

Remark 2.1. The direct sum of two regular neutrosophic rough digraphs may not be regular neutrosophic rough
digraph as it can be seen in the following example.

Example 2.5. Consider the two regular neutrosophic rough digraphs G1 = (G1, G1) and G2 = (G2, G2) as
shown in Fig.3 and Fig.6, respectively, then the direct sum G = (G1 ⊕G2, G1 ⊕G2) of G1 and G2 as shown in
Fig.7 is not a regular neutrosophic rough digraph.

Remark 2.2. If G1 = (G1, G1) and G2 = (G2, G2) are two regular neutrosophic rough digraphs with degree
(m1,m2,m3) and (n1, n2, n3) on X∗

1 , X∗
2 , respectively, and X∗

1 ∩X∗
2 = φ, then G1⊕G2 is a regular neutrosophic

rough digraph if and only if (m1,m2,m3) = (n1, n2, n3).

9

Figure 4. Neutrosophic rough digraph G = (G2, G2).
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Figure 5: Neutrosophic Rough Digraph G = (G1 ⊕G2, G1 ⊕G2)
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Figure 6: Regular Neutrosophic Rough Digraph G2 = (G2, G2)

Definition 2.9. Let G1 = (G1, G1) and G2 = (G2, G2) be two neutrosophic rough digraphs on crisp sets X∗
1

and X∗
2 respectively. The residue product of G1 and G2 is a neutrosophic rough digraph G = G1 ∗ G2 =

(G1 ∗ G2, G1 ∗ G2), where G1 ∗ G2 = (RX1 ∗ RX2, SY1 ∗ SY2) and G1 ∗ G2 = (RX1 ∗ RX2, SY1 ∗ SY2) are
neutrosophic digraphs, respectively, such that

(1)

TRX1∗RX2(x1, x2) = max{TRX1(x1), TRX2(x2)},
IRX1∗RX2(x1, x2) = max{IRX1(x1), IRX2(x2)},
FRX1∗RX2(x1, x2) = min{FRX1(x1), FRX2(x2)}, ∀(x1, x2) ∈ RX1 ×RX2
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Figure 5. Neutrosophic rough digraph G = (G1 ⊕ G2, G1 ⊕ G2).

Remark 1. The direct sum of two regular neutrosophic rough digraphs may not be regular neutrosophic rough
digraph, as shown in the following example.

Example 5. Consider the two regular neutrosophic rough digraphs G1 = (G1, G1) and G2 = (G2, G2) as
shown in Figures 3 and 6, respectively, then the direct sum G = (G1 ⊕ G2, G1 ⊕ G2) of G1 and G2 as shown in
Figure 7 is not a regular neutrosophic rough digraph.
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Figure 5: Neutrosophic Rough Digraph G = (G1 ⊕G2, G1 ⊕G2)
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Definition 2.9. Let G1 = (G1, G1) and G2 = (G2, G2) be two neutrosophic rough digraphs on crisp sets X∗
1

and X∗
2 respectively. The residue product of G1 and G2 is a neutrosophic rough digraph G = G1 ∗ G2 =

(G1 ∗ G2, G1 ∗ G2), where G1 ∗ G2 = (RX1 ∗ RX2, SY1 ∗ SY2) and G1 ∗ G2 = (RX1 ∗ RX2, SY1 ∗ SY2) are
neutrosophic digraphs, respectively, such that

(1)

TRX1∗RX2(x1, x2) = max{TRX1(x1), TRX2(x2)},
IRX1∗RX2(x1, x2) = max{IRX1(x1), IRX2(x2)},
FRX1∗RX2(x1, x2) = min{FRX1(x1), FRX2(x2)}, ∀(x1, x2) ∈ RX1 ×RX2

10

Figure 6. Regular neutrosophic rough digraph G2 = (G2, G2).
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Figure 7: Neutrosophic Rough Digraph G = (G1 ⊕G2, G1 ⊕G2)

TSY1∗SY2(x1, x2)(y1, y2) = TSY1(x1, y1),

ISY1∗SY2(x1, x2)(y1, y2) = ISY1(x1, y1),

FSY1∗SY2(x1, x2)(y1, y2) = FSY1(x1, y1), ∀(x1, y1) ∈ SY1, x1 6= y2

(2)

TRX1∗RX2
(x1, x2) = max{TRX1
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(x2)},
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(x1, x2) = max{IRX1
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Example 2.6. Let G1 = (G1, G1) and G2 = (G2, G2) be two neutrosophic rough digraphs on the two crisp sets
X∗

1 = {p, q} and X∗
2 = {u, v, w, x} as shown in Fig. 8 and Fig.9. Then the residue product of G1 and G2 is a

neutrosophic rough digraph G = G1 ∗G2 = (G1 ∗G2, G1 ∗ G2) where G1 ∗G2 = (RX1 ∗ RX2, SY1 ∗ SY2) and
G1 ∗G2 = (RX1 ∗RX2, SY1 ∗ SY2) and the respective figures are shown in Fig.10.

Theorem 2.1. If G1 = (G1, G1) and G2 = (G2, G2) are two neutrosophic rough digraph such that |X∗
2 | > 1,

then their residue product is regular if and only if G1 is regular.

Proof. Let G1 ∗G2 be a regular neutrosophic rough digraph.
Then, for any two vertices (x1, x2) and (y1, y2) in X∗

1 ×X∗
2 ,

dG1∗G2(x1, x2) = dG1∗G2(y1, y2)
⇒ dG1(x1) = dG1(y1)

This is true for all vertices in X∗
1 . Hence G1 is a regular neutrosophic rough digraph.

11

Figure 7. Neutrosophic rough digraph G = (G1 ⊕ G2, G1 ⊕ G2).

Remark 2. If G1 = (G1, G1) and G2 = (G2, G2) are two regular neutrosophic rough digraphs with degree
(m1, m2, m3) and (n1, n2, n3) on X∗1 , X∗2 , respectively, and X∗1 ∩ X∗2 = φ, then G1 ⊕ G2 is a regular
neutrosophic rough digraph if and only if (m1, m2, m3) = (n1, n2, n3).

Definition 9. Let G1 = (G1, G1) and G2 = (G2, G2) be two neutrosophic rough digraphs on
crisp sets X∗1 and X∗2 respectively. The residue product of G1 and G2 is a neutrosophic rough
digraph G = G1 ∗ G2 = (G1 ∗ G2, G1 ∗ G2), where G1 ∗ G2 = (RX1 ∗ RX2, SY1 ∗ SY2) and
G1 ∗ G2 = (RX1 ∗ RX2, SY1 ∗ SY2) are neutrosophic digraphs, respectively, such that

(1)

TRX1∗RX2(x1, x2) = max{TRX1(x1), TRX2(x2)},
IRX1∗RX2(x1, x2) = max{IRX1(x1), IRX2(x2)},
FRX1∗RX2(x1, x2) = min{FRX1(x1), FRX2(x2)}, ∀(x1, x2) ∈ RX1 × RX2
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ISY1∗SY2(x1, x2)(y1, y2) = ISY1(x1, y1),

FSY1∗SY2(x1, x2)(y1, y2) = FSY1(x1, y1), ∀(x1, y1) ∈ SY1, x1 6= y2
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Example 6. Let G1 = (G1, G1) and G2 = (G2, G2) be two neutrosophic rough digraphs on the two crisp sets
X∗1 = {p, q} and X∗2 = {u, v, w, x} as shown in Figures 8 and 9. Then the residue product of G1 and G2 is
a neutrosophic rough digraph G = G1 ∗ G2 = (G1 ∗ G2, G1 ∗ G2) where G1 ∗ G2 = (RX1 ∗ RX2, SY1 ∗ SY2)

and G1 ∗ G2 = (RX1 ∗ RX2, SY1 ∗ SY2) and the respective figures are shown in Figure 10.
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Figure 8: Neutrosophic Rough Digraph G1 = (G1, G1).
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Figure 9: Neutrosophic Rough Digraph G2 = (G2, G2).
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Figure 10: Neutrosophic Rough Digraph G = (G1 ∗G2, G1 ∗G2).
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Figure 8. Neutrosophic rough digraph G1 = (G1, G1).
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Figure 8: Neutrosophic Rough Digraph G1 = (G1, G1).

b

b

bb

b

b

bb

(u, 0.7, 0.7, 0.2)

(v
,0
.6
,0
.6
,0
.1
)

(w, 0.5, 0.7, 0.1)

(x
,0
.7
,0
.7
,0
.5
)

(u, 0.3, 0.2, 0.8)
(v
,0
.3
,0
.2
,0
.9
)

(w, 0.3, 0.2, 0.7)
(x
,0
.1
,0
.3
,0
.9
)

G2 = (RX2, SY2) G2 = (RX2, SY2)

(0
.1
, 0
.2
, 0
.4
)

(0.1, 0.1, 0.4)

(0.2, 0.1, 0.4)

(0
.2
, 0
.2
, 0
.4
)

(0.3, 0.2, 0.1)

(0
.3
, 0
.2
, 0
.1
)(0.3, 0.2, 0.3)

(0
.3
, 0
.2
, 0
.3
)

Figure 9: Neutrosophic Rough Digraph G2 = (G2, G2).
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Figure 10: Neutrosophic Rough Digraph G = (G1 ∗G2, G1 ∗G2).
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Figure 9. Neutrosophic rough digraph G2 = (G2, G2).
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Figure 8: Neutrosophic Rough Digraph G1 = (G1, G1).
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Figure 9: Neutrosophic Rough Digraph G2 = (G2, G2).
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Figure 10: Neutrosophic Rough Digraph G = (G1 ∗G2, G1 ∗G2).
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Figure 10. Neutrosophic rough digraph G = (G1 ∗ G2, G1 ∗ G2).
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Theorem 1. If G1 = (G1, G1) and G2 = (G2, G2) are two neutrosophic rough digraph such that |X∗2 | > 1,
then their residue product is regular if and only if G1 is regular.

Proof. Let G1 ∗ G2 be a regular neutrosophic rough digraph.
Then, for any two vertices (x1, x2) and (y1, y2) in X∗1 × X∗2 ,

dG1∗G2(x1, x2) = dG1∗G2(y1, y2)

⇒ dG1(x1) = dG1(y1).
This is true for all vertices in X∗1 . Hence G1 is a regular neutrosophic rough digraph.

Conversely, suppose that G1 = (G1, G1) is a (m1, m2, m3)-regular neutrosophic rough digraph and
G2 = (G2, G2) is any neutrosophic rough digraph with |X∗2 | > 1. If |X∗2 | > 1, then dG1∗G2(x1, x2) =

dG1(x1) = (m1, m2, m3). This is a constant ordered-triplet for all vertices in X∗1 × X∗2 . Hence G1 ∗ G2 is
a regular neutrosophic rough digraph.

3. Applications to Decision-Making

In this section, we present some real life applications of neutrosophic rough digraphs in decision
making. In decision-making, the selection is facilitated by evaluating each choice on the set of criteria.
The criteria must be measurable and their outcomes must be measured for every decision alternative.

3.1. Online Reviews and Ratings

Customer reviews are increasingly available online for a wide range of products and services.
As customers search online for product information and to evaluate product alternatives, they often
have access to dozens or hundreds of product reviews from other customers. These reviews are very
helpful in product selection. However, only considering the good reviews about a product is not very
helpful in decision-making. The customer should keep in mind bad and neutral reviews as well. We
use percentages of good reviews, bad reviews and neutral reviews of a product as truth membership,
false membership and indeterminacy respectively.

Mrs. Sadia wants to purchase a refrigerator. For this purpose she visits web sites of different
refrigerator companies. The refrigerator companies and their ratings by other customers are shown
in Table 1.

Table 1. Companies and their ratings.

X∗ Good Reviews Neutral Bad Reviews

PEL 45% 29% 37%
Dawlance 52% 25% 49%

Haier 51% 43% 45%
Waves 47% 41% 38%
Orient 51% 35% 48%

Here X∗ = {Pel(P),Dawlance(D),Haier(H),Waves(W),Orient(O)} and the neutrosophic set on X∗

according to the reviews will be X = {(P, 0.45, 0.29, 0.37), (D, 0.52, 0.25, 0.49), (H, 0.51, 0.43, 0.45),
(W, 0.47, 0.41, 0.38)(O, 0.51, 0.35, 0.48)}. The neutrosophic tolerance relation on X∗ is given below

R P D H W O
P (1,1,0) (0.5,0.6,0.9) (0.2,0.3,0.6) (0.1,0.2,0.3) (0.4,0.6,0.8)
D (0.5,0.6,0.9) (1,1,0) (0.1,0.6,0.9) (0.4,0.5,0.9) (0.9,0.8,0.2)
H (0.2,0.3,0.6) (0.1,0.6,0.9) (1,1,0) (0.2,0.9,0.6) (0.1,0.9,0.7)
W (0.1,0.2,0.3) (0.4,0.5,0.9) (0.2,0.9,0.6) (1,1,0) (0.2,0.5,0.9)
O (0.4,0.6,0.8) (0.9,0.8,0.2) (0.1,0.9,0.7) (0.2,0.5,0.9) (1,1,0)
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The lower and upper approximations of X are as follows:

RX = {(P, 0.45, 0.29, 0.49), (D, 0.51, 0.25, 0.49), (H, 0.51, 0.35, 0.45),

(W, 0.45, 0.41, 0.40), (O, 0.51, , 0.25, 0.49)},
RX = {(P, 0.50, 0.35, 0.37), (D, 0.52, 0.43, 0.48), (H, 0.51, 0.43, 0.45),

(W, 0.47, 0.43, 0.37), (O, 0.52, 0.43, 0.48)}.

Let Y∗ = {(P, D), (P, H), (D, H), (D, W), (H, W), (H, O), (W, P), (W, O), (O, P), (O, D)} be the
subset of X∗ × X∗ and the tolerance relation S on Y∗ is given as follows:

S (P,D) (P,H) (D,H) (D,W) (H,W)
(P,D) (1,1,0) (0.1,0.6,0.9) (0.1,0.6,0.9) (0.4,0.5,0.9) (0.2,0.3,0.9)
(P,H) (0.1,0.6,0.9) (1,1,0) (0.5,0.6,0.9) (0.2,0.6,0.9) (0.2,0.3,0.6)
(D,H) (0.1,0.6,0.9) (0.5,0.6,0.9) (1,1,0) (0.2,0.9,0.6) (0.1,0.6,0.9)
(D,W) (0.4,.5,.9) (0.2,0.6,0.9) (0.2,0.6,0.9) (1,1,0) (0.1,0.6,0.9)
(H,W) (0.2,0.3,0.9) (0.2,0.3,0.6) (0.1,0.6,0.9) (0.1,0.6,.9) (1,1,0)
(H,O) (0.2,0.3,0.6) (0.1,0.3,0.7) (0.1,0.6,0.9) (0.1,0.5,0.9) (0.2,0.5,0.9)
(W,P) (0.1,0.2,0.9) (0.1,0.2,0.6) (0.2,0.3,0.9) (0.1,0.2,0.9) (0.1,0.2,0.6)
(W,O) (0.1,0.2,0.3) (0.1,0.2,0.7) (0.1,0.5,0.9) (0.2,0.5,0.9) (0.2,0.5,0.9)
(O,P) (0.4,0.6,0.9) (0.2,0.3,0.8) (0.2,0.3,0.6) (0.1,0.2,0.3) (0.1,0.2,0.7)
(O,D) (0.4,0.6,0.8) (0.1,0.6,0.9) (0.1,0.6,0.9) (0.4,0.5,0.9) (0.1,0.5,0.9)

S (H,O) (W,P) (W,O) (O,P) (O,D)
(P,D) (0.2,0.3,0.6) (0.1,0.2,0.9) (0.1,0.2,0.3) (0.4,0.6,0.9) (0.4,0.6,0.8)
(P,H) (0.1,0.3,0.7) (0.1,0.2,0.6) (0.1,0.2,0.7) (0.2,0.3,0.8) (0.1,0.6,0.9)
(D,H) (0.2,0.3,0.9) (0.1,0.5,0.9) (0.2,0.3,0.6) (0.1,0.6,0.9) (0.1,0.6,0.9)
(D,W) (0.1,0.2,0.9) (0.2,0.5,0.9) (0.1,0.2,0.3) (0.4,0.5,0.9) (0.1,0.5,0.9)
(H,W) (0.1,0.2,0.6) (0.2,0.5,0.9) (0.1,0.2,0.7) (0.1,0.5,0.9) (0.2,0.5,0.9)
(H,O) (1,1,0) (0.2,0.6,0.8) (0.2,0.9,0.6) (0.1,0.6,0.8) (0.1,0.8,0.7)
(W,P) (0.2,0.6,0.8) (1,1,0) (0.4,0.6,0.8) (0.2,0.5,0.9) (0.2,0.5,0.9)
(W,O) (0.2,0.9,0.6) (0.4,0.6,0.8) (1,1,0) (0.2,0.5,0.9) (0.2,0.5,0.9)
(O,P) (0.1,0.6,0.8) (0.2,0.5,0.9) (0.2,0.5,0.9) (1,1,0) (0.5,0.6,0.9)
(O,D) (0.1,0.8,0.7) (0.2,0.5,0.9) (0.2,0.5,0.9) (0.5,0.6,0.9) (1,1,0)

Thus, the lower and upper approximations of Y are calculated as follows:

SY = {((P, D), 0.42, 0.23, 0.47), ((P, H), 0.45, 0.28, 0.45), ((D, H), 0.50, 0.21, 0.45),

((D, W), 0.43, 0.22, 0.45), ((H, W), 0.41, 0.30, 0.44), ((H, O), 0.51, 0.22, 0.46),

((W, P), 0.42, 0.26, 0.40), ((W, O), 0.42, 0.23, 0.44), ((O, P), 0.43, 0.25, 0.48),

((O, D), 0.50, 0.22, 0.48)}
SY = {((P, D), 0.42, 0.30, 0.44), ((P, H), 0.50, 0.30, 0.41), ((D, H), 0.50, 0.30, 0.45),

((D, W), 0.43, 0.30, 0.45), ((H, W), 0.41, 0.30, 0.44), ((H, O), 0.51, 0.30, 0.46),

((W, P), 0.42, 0.26, 0.37), ((W, O), 0.45, 0.30, 0.44), ((O, P), 0.50, 0.28, 0.45),

((O, D), 0.50, 0.30, 0.47)}.

Thus, G = (RX, SY) and G = (RX, SY) are the neutrosophic digraphs as shown in Figure 11.
To find the best company, we use the following formula:

S(vi) = ∑
vi∈X∗

(TRX(vi)×TRX(vi))+(IRX(vi)×IRX(vi))−(FRX(vi)×FRX(vi))

1−{T(vivj)+I(vivj)−F(vivj)}

where
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T(vivj) = max
vj∈X∗

TSY(vivj)× max
vj∈X∗

TSY(vivj),

I(vivj) = max
vj∈X∗

ISY(vivj)× max
vj∈X∗

ISY(vivj),

F(vivj) = min
vj∈X∗

FSY(vivj)× min
vj∈X∗

FSY(vivj).

By direct calculations we have

S(P) = 0.167, S(D) = 0.156, S(H) = 0.268, S(W) = 0.272, S(O) = 0.155.

From the above calculations it is clear that Waves is the best company for refrigerator.
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Figure 11: G = (G,G)

T (vivj) = max
vj∈X∗

TSY (vivj)× max
vj∈X∗

TSY (vivj),

I(vivj) = max
vj∈X∗

ISY (vivj)× max
vj∈X∗

ISY (vivj),

F (vivj) = min
vj∈X∗

FSY (vivj)× min
vj∈X∗

FSY (vivj).

By direct calculations we have

S(P ) = 0.167, S(D) = 0.156, S(H) = 0.268, S(W ) = 0.272, S(O) = 0.155.

From above calculations it is clear that Waves is the best company for refrigerator.

3.2 Context of Recruitment

Choosing the right candidate for the position available is not something that should be left to chance or guess-
work.
How to choose the right candidate.
In any recruitment process the ability of the candidate is weighed up against the suitability of the candidate.
Pakistan Telecommunication Company Limited(PTCL) wants to recruit a person for the post of administrator.
To keep the procedure simple the company wants to appoint their employee on the basis of education(Edu) and
experience(Exp). Let X∗ = {(C1, Edu), (C1, Exp), (C2, Edu), (C2, Exp), (C3, Edu), (C3, Exp)} be the set of
candidates who applied for the post and their corresponding attributes. Let R be a neutrosophic tolerance on
X∗ given as follows:

R (C1,Edu) (C1,Exp) (C2,Edu) (C2,Exp) (C3,Edu) (C3,Exp)
(C1,Edu) (1,1,0) (0.3,0.6,0.1) (0.6,0.7,0.2) (0.6,0.5,0.8) (0.3,0.2,0.1) (0.9,0.1,0.1)
(C1,Exp) (0.3,0.6,0.1) (1,1,0) (0.9,0.9,0.3) (0.8,0.7,0.6) (0.4,0.5,0.9) (0.3,0.1,0.1)
(C2,Edu) (0.6,0.7,0.2) (0.9,0.9,0.3) (1,1,0) (0.6,0.5,0.1) (0.3,0.2,0.1) (0.4,0.8,0.7)
(C2,Exp) (0.6,0.5,0.8) (0.8,0.7,0.6) (0.6,0.5,0.1) (1,1,0) (0.1,0.1,0.2) (0.5,0.6,0.7)
(C3,Edu) (0.3,0.2,0.1) (0.4,0.5,0.9) (0.3,0.2,0.1) (0.1,0.1,0.2) (1,1,0) (0.2,0.1,0.2)
(C3,Exp) (0.9,0.1,0.1) (0.3,0.1,0.1) (0.4,0.8,0.7) (0.5,0.6,0.7) (0.2,0.1,0.2) (1,1,0)

.

Let X = {((C1, Edu), 0.9, 0.1, 0.5), ((C1, Exp), 0.2, 0.6, 0.5), ((C2, Edu), 0.7, 0.2, 0.3), ((C2, Exp),
0.1, 0.3, 0.9), ((C3, Edu), 0.4, 0.6, 0.8), ((C3, Exp), 0.8, 0.1, 0.2)} be a neutrosophic set define on X∗. Then the
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Figure 11. G = (G, G).

3.2. Context of Recruitment

Choosing the right candidate for the position available is not something that should be left to
chance or guesswork.

How to choose the right candidate?

In any recruitment process the ability of the candidate is weighed against the suitability
of the candidate. Pakistan Telecommunication Company Limited (PTCL) wants to recruit
a person for the post of administrator. To keep the procedure simple, the company
wants to appoint their employee on the basis of education (Edu) and experience (Exp).
Let X∗ = {(C1, Edu), (C1, Exp), (C2, Edu), (C2, Exp), (C3, Edu), (C3, Exp)} be the set of candidates
who applied for the post and their corresponding attributes. Let R be a neutrosophic tolerance on X∗

given as follows:

R (C1,Edu) (C1,Exp) (C2,Edu) (C2,Exp) (C3,Edu) (C3,Exp)
(C1,Edu) (1,1,0) (0.3,0.6,0.1) (0.6,0.7,0.2) (0.6,0.5,0.8) (0.3,0.2,0.1) (0.9,0.1,0.1)
(C1,Exp) (0.3,0.6,0.1) (1,1,0) (0.9,0.9,0.3) (0.8,0.7,0.6) (0.4,0.5,0.9) (0.3,0.1,0.1)
(C2,Edu) (0.6,0.7,0.2) (0.9,0.9,0.3) (1,1,0) (0.6,0.5,0.1) (0.3,0.2,0.1) (0.4,0.8,0.7)
(C2,Exp) (0.6,0.5,0.8) (0.8,0.7,0.6) (0.6,0.5,0.1) (1,1,0) (0.1,0.1,0.2) (0.5,0.6,0.7)
(C3,Edu) (0.3,0.2,0.1) (0.4,0.5,0.9) (0.3,0.2,0.1) (0.1,0.1,0.2) (1,1,0) (0.2,0.1,0.2)
(C3,Exp) (0.9,0.1,0.1) (0.3,0.1,0.1) (0.4,0.8,0.7) (0.5,0.6,0.7) (0.2,0.1,0.2) (1,1,0)
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Let X = {((C1, Edu), 0.9, 0.1, 0.5), ((C1, Exp), 0.2, 0.6, 0.5), ((C2, Edu), 0.7, 0.2, 0.3), ((C2, Exp), 0.1,
0.3, 0.9), ((C3, Edu), 0.4, 0.6, 0.8), ((C3, Exp), 0.8, 0.1, 0.2)} be a neutrosophic set define on X∗. Then the
lower and upper approximations of X are given as:

RX = {((C1, Edu), 0.2, 0.1, 0.6), ((C1, Exp), 0.2, 0.2, 0.8), ((C2, Edu), 0.1, 0.2, 0.6),

((C2, Exp), 0.1, 0.3, 0.9), ((C3, Edu), 0.2, 0.6, 0.8), ((C3, Exp), 0.2, 0.1, 0.5)},
RX = {((C1, Edu), 0.9, 0.6, 0.2), ((C1, Exp), 0.7, 0.6, 0.2), ((C2, Edu), 0.7, 0.6, 0.3),

((C2, Exp), 0.6, 0.6, 0.3), ((C3, Edu), 0.4, 0.6, 0.2), ((C3, Exp, 0.9, 0.3, 0.2)}.

Let Y∗ = {(C1, Edu)(C1, Exp), (C1, Exp)(C2, Edu), (C1, Edu)(C3, Exp), (C3, Exp)(C1, Exp),
(C1, Exp)(C2, Exp), (C2, Exp)(C2, Edu), (C3, Exp)(C3, Edu), (C3, Edu)(C2, Exp),
(C3, Exp)(C2, Exp)} ⊆ X∗ × X∗ and S be a neutrosophic tolerance relation on Y∗ given as follows:

S (C1,Edu)(C1,Exp) (C1,Exp)(C2,Edu) (C1,Edu)(C3,Exp) (C3,Exp)(C1,Exp) (C1,Exp)(C2,Exp)
(C1,Edu)(C1,Exp) (1,1,0) (0.3,0.6,0.3) (0.3,0.1,0.1) (0.9,0.1,0.1) (0.3,0.6,0.6)
(C1,Exp)(C2,Edu) (0.3,0.6,0.3) (1,1,0) (0.3,0.6,0.7) (0.3,0.1,0.3) (0.6,0.5,0.1)
(C1,Edu)(C3,Exp) (0.3,0.1,0.1) (0.3,0.6,0.7) (1,1,0) (0.3,0.1,0.1) (0.3,0.6,0.7)
(C3,Exp)(C1,Exp) (0.9,0.1,0.1) (0.3,0.1,0.3) (0.3,0.1,0.1) (1,1,0) (0.3,0.1,0.6)
(C1,Exp)(C2,Exp) (0.3,0.6,0.6) (0.6,0.5,0.1) (0.3,0.6,0.7) (0.3,0.1,0.6) (1,1,0)
(C2,Exp)(C2,Edu) (0.6,0.5,0.8) (0.8,0.7,0.6) (0.4,0.5,0.8) (0.5,0.6,0.7) (0.6,0.5,0.6)
(C3,Exp)(C2,Exp) (0.8,0.1,0.6) (0.3,0.1,0.1) (0.5,0.1,.7) (0.8,0.7,0.6) (0.3,0.1,0.1)
(C3,Exp)(C3,Edu) (0.4,0.1,0.9) (0.3,0.1,0.1) (0.2,0.1,.2) (0.4,0.5,0.9) (0.1,0.1,0.2)
(C3,Edu)(C2,Exp) (0.3,0.2,0.6) (0.4,0.5,0.9) (0.3,.2,.7) (0.2,0.1,0.6) (0.4,0.5,0.9)

S (C2,Exp)(C2,Edu) (C3,Exp)(C2,Exp) (C3,Exp)(C3,Edu) (C3,Edu)(C2,Exp)
(C1,Edu)(C1,Exp) (0.6,0.5,0.8) (0.8,0.1,0.6) (0.4,0.1,0.9) (0.3,0.2,0.6)
(C1,Exp)(C2,Edu) (0.8,0.7,0.6) (0.3,0.1,0.1) (0.3,0.1,0.1) (0.4,0.5,0.9)
(C1,Edu)(C3,Exp) (0.4,0.5,0.8) (0.5,0.1,0.7) (0.2,0.1,0.2) (0.3,0.2,0.7)
(C3,Exp)(C1,Exp) (0.5,0.6,0.7) (0.8,0.7,0.6) (0.4,0.5,0.9) (0.2,0.1,0.6)
(C1,Exp)(C2,Exp) (0.6,0.5,0.6) (0.3,0.1,0.1) (0.1,0.1,0.2) (0.4,0.5,0.9)
(C2,Exp)(C2,Edu) ( 1,1,0) (0.5,0.5,0.7) (0.3,0.2,0.7) (0.1,0.1,0.2)
(C3,Exp)(C2,Exp) (0.5,0.5,0.7) (1,1,0) (0.1,0.1,0.2) (0.2,0.1,0.2)
(C3,Exp)(C3,Edu) (0.3,0.2,0.7) (0.1,0.1,0.2) ( 1,1,0) (0.1,0.1,0.2)
(C3,Edu)(C2,Exp) (0.1,0.1,0.2) (0.2,0.1,0.2) (0.1,0.1,0.2) (1,1,0)

Let Y = {((C1, Edu)(C1, Exp), 0.2, 0.1, 0.1), ((C1, Exp)(C2, Edu), 0.1, 0.1, 0.3), ((C1, Edu)(C3, Exp),
0.2, 0.1, 0.2), ((C3, Exp)(C1, Exp), 0.2, 0.1, 0.2), ((C1, Exp)(C2, Exp), 0.1, 0.2, 0.3), ((C2, Exp)(C2, Edu),
0.1, 0.2, 0.3)), ((C3, Exp)(C2, Exp), 0.1, 0.1, 0.3), ((C3, Exp)(C3, Edu), 0.2, 0.1, 0.2), ((C3, Edu)(C2, Exp),
0.1, 0.3, 0.3)} be neutrosophic rough set on Y∗. Then the lower and upper approximations of Y are
given as follows:

SY = {((C1, Edu)(C1, Exp), 0.2, 0.1, 0.3), ((C1, Exp)(C2, Edu), 0.1, 0.1, 0.3),

((C1, Edu)(C3, Exp), 0.2, 0.1, 0.3), ((C3, Exp)(C1, Exp), 0.2, 0.1, 0.3),

((C1, Exp)(C2, Exp), 0.1, 0.2, 0.3), ((C2, Exp)(C2, Edu, 0.1, 0.2, 0.3)),

((C3, Exp)(C2, Exp), 0.1, 0.1, 0.3), ((C3, Exp)(C3, Edu), 0.1, 0.1, 0.3),

((C3, Edu)(C2, Exp), 0.1, 0.3, 0.3)},
SY = {((C1, Edu)(C1, Exp), 0.2, 0.2, 0.1), ((C1, Exp)(C2, Edu), 0.2, 0.3, 0.2),

((C1, Edu)(C3, Exp), 0.2, 0.2, 0.1), ((C3, Exp)(C1, Exp), 0.2, 0.2, 0.1),

((C1, Exp)(C2, Exp), 0.2, 0.2, 0.1), ((C2, Exp)(C2, Edu, 0.2, 0.2, 0.3)),

((C3, Exp)(C2, Exp), 0.2, 0.2, 0.2), ((C3, Exp)(C3, Edu), 0.2, 0.2, 0.2),

((C3, Edu)(C2, Exp), 0.2, 0.3, 0.2)}
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Thus, G = (RX, SY) and G = (RX, SY) are the neutrosophic digraphs as shown in
Figures 12 and 13.
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Figure 13. Neutrosophic Digraph G = (RX, SY)

To find the best employee using the following calculations, we have

IRY(C1) = IRY(C1,Edu)+IRY(C1,Exp)
2 = 0.9+0.7

2 = 0.8

IRY(C2) = IRY(C2,Edu)+IRY(C2,Exp)
2 = 0.7+0.6

2 = 0.65

IRY(C3) = IRY(C3,Edu)+IRY(C3,Exp)
2 = 0.4+0.9

2 = 0.65

max{IRY(C1), IRY(C2), IRY(C3)} = max{0.8, 0.65, 0.65} = 0.8

Thus, C1 is the best employee for the post under consideration. So, PTCL can hire C1 for the post
of administrator.

4. Comparative Analysis of Rough Neutrosophic Digraphs and Neutrosophic Rough Digraphs

Rough neutrosophic digraphs and neutrosophic rough digraphs are two different notions on
the basis of their construction and approach. In rough neutrosophic digraphs, the relation defined
on the universe of discourse is a crisp equivalence relation that only classifies the elements which
are related. On the other hand, in neutrosophic rough digraphs the relation defined on the set is
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neutrosophic tolerance relation. The neutrosophic tolerance relation not only classifies the elements of
the set which are related but also expresses their relation in terms of three components, namely truth
membership (T), Indeterminacy (I) and falsity (F). This approach leaves room for indeterminacy and
incompleteness. Below, we apply the method of rough neutrosophic digraphs to the above presented
application (online reviews and ratings).

Here X∗ = {Pel(P), Dawlance(D), Haier(H), Waves(W), Orient(O)} and the neutrosophic set
on X∗ according to the reviews will be X = {(P, 0.45, 0.29, 0.37), (D, 0.52, 0.25, 0.49), (H, 0.51, 0.43, 0.45),
(W, 0.47, 0.41, 0.38), (O, 0.51, 0.35, 0.48)}. The equivalence relation on X∗ is given below

R P D H W O
P 1 0 1 0 1
D 0 1 0 0 0
H 1 0 1 0 1
W 0 0 0 1 0
O 1 0 1 0 1

The lower and upper approximations of X are as follows:

RX = {(P, 0.45, 0.29, 0.48), (D, 0.52, 0.25, 0.49), (H, 0.45, 0.29, 0.48),

(W, 0.47, 0.41, 0.38), (O, 0.45, , 0.29, 0.48)},
RX = {(P, 0.51, 0.43, 0.37), (D, 0.52, 0.25, 0.49), (H, 0.51, 0.43, 0.37),

(W, 0.47, 0.41, 0.38), (O, 0.51, 0.43, 0.37)}.

Let Y∗ = {(P, D), (P, H), (D, H), (D, W), (H, W), (H, O), (W, P), (W, O), (O, P), (O, D)} be the
subset of X∗ × X∗ and the equivalence relation S on Y∗ is given as follows:

S (P,D) (P,H) (D,H) (D,W) (H,W) (H,O) (W,P) (W,O) (O,P) (O,D)
(P,D) 1 0 0 0 0 0 0 0 0 0
(P,H) 0 1 0 0 0 1 0 0 1 1
(D,H) 0 0 1 0 0 0 0 0 0 0
(D,W) 0 0 0 1 0 0 0 0 0 0
(H,W) 0 0 0 0 1 0 0 0 0 0
(H,O) 0 1 0 0 0 1 0 0 1 1
(W,P) 0 0 0 0 0 0 1 1 0 0
(W,O) 0 0 0 0 0 0 1 1 0 0
(O,P) 0 1 0 0 0 1 0 0 1 1
(O,D) 0 1 0 0 0 1 0 0 1 1

Thus, the lower and upper approximations of Y are calculated as follows:

SY = {((P, D), 0.45, 0.25, 0.48), ((P, H), 0.42, 0.24, 0.37), ((D, H), 0.45, 0.25, 0.47),

((D, W), 0.45, 0.24, 0.48), ((H, W), 0.45, 0.29, 0.38), ((H, O), 0.42, 0.24, 0.37),

((W, P), 0.42, 0.22, 0.37), ((W, O), 0.42, 0.22, 0.37), ((O, P), 0.42, 0.24, 0.37),

((O, D), 0.42, 0.24, 0.37)}
SY = {((P, D), 0.45, 0.25, 0.48), ((P, H), 0.45, 0.29, 0.37), ((D, H), 0.45, 0.25, 0.47),

((D, W), 0.45, 0.24, 0.48), ((H, W), 0.45, 0.29, 0.38), ((H, O), 0.45, 0.29, 0.37),

((W, P), 0.45, 0.29, 0.35), ((W, O), 0.45, 0.29, 0.35), ((O, P), 0.45, 0.29, 0.37),

((O, D), 0.45, 0.29, 0.37)}.
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To find the best company ratings, we use the following formula:

S(vi) = ∑
vi∈X∗

(TRX(vi)×TRX(vi))+(IRX(vi)×IRX(vi))−(FRX(vi)×FRX(vi))

1−{T(vivj)+I(vivj)−F(vivj)}

where

T(vivj) = max
vj∈X∗

TSY(vivj)× max
vj∈X∗

TSY(vivj),

I(vivj) = max
vj∈X∗

ISY(vivj)× max
vj∈X∗

ISY(vivj),

F(vivj) = min
vj∈X∗

FSY(vivj)× min
vj∈X∗

FSY(vivj).

By direct calculations, we have

S(P) = 0.20, S(D) = 0.0971, S(H) = 0.2077, S(W) = 0.2790, S(O) = 0.2011.

From the above calculations, we have Waves as the best choice and Dawlance as the least choice
for refrigerator. This is because the relation applied in this method is crisp equivalence relation which
does not consider the uncertainty between the companies of the same equivalence class. Whereas
in our proposed method, least choice for refrigerator is different. So, the results may vary when we
apply the method of rough neutrosophic digraphs and neutrosophic rough digraphs on the same
application. This means that rough neutrosophic digraphs and neutrosophic rough digraphs have
a different approach.

5. Conclusions

Neutrosophic set and rough set are two different theories to deal with uncertainty and imprecise
and incomplete information. Due to the limitation of human knowledge to understand the complex
problems, it is very difficult to apply only a single type of uncertainty method to deal with such
problems. Therefore, it is necessary to develop hybrid models by incorporating the advantages of
many other different mathematical models dealing with uncertainty. Thus, by combining these two
mathematical tools, we have presented a new hybrid model, namely, neutrosophic rough digraphs.
We have escribed regular neutrosophic rough digraphs and we have presented novel applications
of our proposed hybrid in decision-making. We have given a comparison of both models, rough
neutrosophic digraphs and neutrosophic rough digraphs. We plan to extend our research work to
(1) Neutrosophic rough hypergraphs; (2) Bipolar neutrosophic rough hypergraphs; (3) Soft rough
neutrosophic graphs; (4) Decision support systems based on neutrosophic rough information.
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Abstract: This paper is the first study of the neutrosophic triplet loop (NTL) which was originally
introduced by Floretin Smarandache. NTL originated from the neutrosophic triplet set X: a collection
of triplets (x, neut(x), anti(x)) for an x ∈ X which obeys some axioms (existence of neutral(s) and
opposite(s)). NTL can be informally said to be a neutrosophic triplet group that is not associative.
That is, a neutrosophic triplet group is an NTL that is associative. In this study, NTL with inverse
properties such as: right inverse property (RIP), left inverse property (LIP), right cross inverse
property (RCIP), left cross inverse property (LCIP), right weak inverse property (RWIP), left weak
inverse property (LWIP), automorphic inverse property (AIP), and anti-automorphic inverse property
are introduced and studied. The research was carried out with the following assumptions: the
inverse property (IP) is the RIP and LIP, cross inverse property (CIP) is the RCIP and LCIP, weak
inverse property (WIP) is the RWIP and LWIP. The algebraic properties of neutrality and opposite in
the aforementioned inverse property NTLs were investigated, and they were found to share some
properties with the neutrosophic triplet group. The following were established: (1) In a CIPNTL
(IPNTL), RIP (RCIP) and LIP (LCIP) were equivalent; (2) In an RIPNTL (LIPNTL), the CIP was
equivalent to commutativity; (3) In a commutative NTL, the RIP, LIP, RCIP, and LCIP were found to
be equivalent; (4) In an NTL, IP implied anti-automorphic inverse property and WIP, RCIP implied
AIP and RWIP, while LCIP implied AIP and LWIP; (5) An NTL has the IP (CIP) if and only if
it has the WIP and anti-automorphic inverse property (AIP); (6) A CIPNTL or an IPNTL was a
quasigroup; (7) An LWIPNTL (RWIPNTL) was a left (right) quasigroup. The algebraic behaviours
of an element, its neutral and opposite in the associator and commutator of a CIPNTL or an IPNTL
were investigated. It was shown that (Zp, ∗) where x ∗ y = (p − 1)(x + y), for any prime p, is a
non-associative commutative CIPNTL and IPNTL. The application of some of these varieties of
inverse property NTLs to cryptography is discussed.

Keywords: neutrosophic; triplet loop; quasigroup; loop; generalized group; neutrosophic triplet
group; group; cryptography

1. Introduction

1.1. Generalized Group

A generalized group is an algebraic structure which has a deep physical background in the unified
gauge theory and has direct relation with isotopies. Mathematicians and physicists have been trying
to construct a suitable unified theory for twistor theory, isotopies theory, and so on. It was known that
generalized groups are tools for constructions in unified geometric theory and electroweak theory.
Electroweak theories are essentially structured on Minkowskian axioms, and gravitational theories are
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constructed on Riemannian axioms. According to Araujo et. al. [1], the generalized group is equivalent
to the notion of a completely simple semigroup.

Some of the structures and properties of generalized groups have been studied by Vagner [2],
Molaei [3], [4], Mehrabi, Molaei, and Oloomi [5], Agboola [6], Adeniran et al. [7], and Fatehi and
Molaei [8]. Smooth generalized groups were introduced in Agboola [9], and later Agboola [10] also
presented smooth generalized subgroups while Molaei [11], Molaei and Tahmoresi [12] considered the
notion of topological generalized groups, and Maleki and Molaei [13] studied the quotient space of
generalized groups.

Definition 1. (Generalized Group)
A generalized group G is a non-empty set admitting a binary operation called multiplication, subject to the

set of rules given below.

(i) (xy)z = x(yz) for all x, y, z ∈ G.
(ii) For each x ∈ G, there exists a unique e(x) ∈ G such that xe(x) = e(x)x = x (existence and uniqueness

of identity element).
(iii) For each x ∈ G, there exists x−1 ∈ G such that xx−1 = x−1x = e(x) (existence of inverse element).

Definition 2. Let L be a non-empty set. Define a binary operation (·) on L. If x · y ∈ L for all x, y ∈ L, (L, ·)
is called a groupoid.

If the equation a · x = b (resp. y · a = b) has a unique solution relative to x (resp. y) (i.e., obeys the left
(resp. right) cancellation law), then (L, ·) is called a left (resp. right) quasigroup. If a groupoid (L, ·) is both a
left quasigroup and right quasigroup, then it is called a quasigroup. If there exists an element e ∈ L called the
identity element such that for all x ∈ L, x · e = e · x = x, then a quasigroup (L, ·) is called a loop.

For more on quasigroups and loops, readers should check [14–20].

Definition 3. (Generalized loop)
A generalized loop is the pair (G, ·) where G is a non-empty set and “·” a binary operation such that the

following are true.

(i) (G, ·) is a groupoid.
(ii) For each x ∈ G, there exists a unique e(x) ∈ G such that xe(x) = e(x)x = x.
(iii) For each x ∈ G, there exists x−1 ∈ G such that xx−1 = x−1x = e(x).

A generalized group G exhibits the following properties:

(i) For each x ∈ G, there exists a unique x−1 ∈ G.
(ii) e(e(x)) = e(x) and e(x−1) = e(x) whenever x ∈ G.
(iii) If G is commutative, then G is a group.

1.2. Neutrosophic Triplet Group

Neutrosophy is a new branch of philosophy which studies the nature, origin, and scope of
neutralities as well as their interaction with ideational spectra. In 1995, Florentin Smarandache [21]
first introduced the concept of neutrosophic logic and neutrosophic sets where each proposition in
neutrosophic logic is approximated to have the percentage of truth in a subset T, the percentage of
indeterminacy in a subset I, and the percentage of falsity in a subset F so that this neutrosophic logic is
called an extension of fuzzy logic, especially to intuitionistic fuzzy logic. In fact, the neutrosophic set
is the generalization of classical sets [22], fuzzy sets [23], intuitionistic fuzzy sets [22,24] and interval
valued fuzzy sets [22], to mention a few. This mathematical tool is used to handle problems consisting of
uncertainty, imprecision, indeterminacy, inconsistency, incompleteness, and falsity. The development
process of neutrosophic sets, fuzzy sets, and intuitionistic fuzzy sets are still growing, with various
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applications; here are some recent research works in these directions [25–32]. By utilizing the idea of
neutrosophic theory, Vasantha Kandasamy and Florentin Smarandache studied neutrosophic algebraic
structures in [33–35] by introducing an indeterminate element “I” in the algebraic structure and
then combining “I” with each element of the structure with respect to the corresponding binary
operation ∗. This was called a neutrosophic element, and the generated algebraic structure was
termed a neutrosophic algebraic structure. They further studied several neutrosophic algebraic
structures, such as neutrosophic fields, neutrosophic vector spaces, neutrosophic groups, neutrosophic
bigroups, neutrosophic N-groups, neutrosophic semigroups, neutrosophic bisemigroups, neutrosophic
N-semigroups, neutrosophic loops, neutrosophic biloops, neutrosophic N-loops, neutrosophic
groupoids, neutrosophic bigroupoids, and so on.

Smarandache and Ali [36] for the first time introduced the idea of the neutrosophic triplet,
which they had previously discussed in [37]. They used these neutrosophic triplets to introduce
the neutrosophic triplet group, which is different from the classical group both in structural and
fundamental properties. They gave distinction and comparison of neutrosophic triplet group with
the classical generalized group. They also drew a brief sketch of the possible applications of the
neutrosophic triplet group in some other research areas. Jaiyéo. lá [38] studied new algebraic properties
of the neutrosophic triplet group with new applications. Some new applications of neutrosophy
were announced in Okpako and Asagba [39], Sahin and Kargin [40], Vasantha Kandasamy et al. [41],
and Smarandache [42]. Agboola et al. [43] and Zhang et al. [44] are some recent works on neutrosophic
triplet groups, neutrosophic quadruple, and neutrosophic duplet of algebraic structures.

Definition 4. (Neutrosophic Triplet Set)
Let X be a set together with a binary operation ∗ defined on it. Then, X is called a neutrosophic triplet set if

for any x ∈ X, there exists a neutral of “x” denoted by neut(x) (not necessarily the identity element) andan
opposite of “x” denoted by anti(x) or xJ, with neut(x), anti(x) ∈ X such that:

x ∗ neut(x) = neut(x) ∗ x = x and x ∗ anti(x) = anti(x) ∗ x = neut(x).

The elements x, neut(x), and anti(x) are collectively referred to as a neutrosophic triplet, and denoted by
(x, neut(x), anti(x)).

Remark 1. For the same x ∈ X, each neut(x) and anti(x) may not be unique. In a neutrosophic triplet set
(X, ∗), an element y (resp. z) is the second (resp. third) component of a neutrosophic triplet if there exist x, z ∈ X
(x, y ∈ X) such that x ∗ y = y ∗ x = x and x ∗ z = z ∗ x = y. Thus, (x, y, z) is the neutrosophic triplet.

Example 1. (Smarandache and Ali [36])
Consider (Z6,×6) where Z6 = {0, 1, 2, 3, 4, 5} and ×6 is multiplication in modulo 6. (2, 4, 2), (4, 4, 4),

and (0, 0, 0) are neutrosophic triplets, but 3 does not give rise to a neutrosophic triplet.

Definition 5. (Neutrosophic Triplet Group)
Let (X, ∗) be a neutrosophic triplet set. Then, (X, ∗) is called a neutrosophic triplet group if (X, ∗) is a

semigroup. If in addition, (X, ∗) obeys the commutativity law, then (X, ∗) is called a commutative neutrosophic
triplet group.

Remark 2. A neutrosophic triplet group is not a group in general, but a group is a neutrosophic triplet group
where neut(x) = e the general identity element for all x ∈ X and anti(x) is unique for each x ∈ X.

1. A generalized loop is a generalized group if and only if it is associative.
2. A neutrosophic triplet loop (NTL) is a neutrosophic triplet group if and only if it is associative.
3. An NTL is a generalized loop if and only if neut(x) = e(x) is unique for each x.
4. An NTL is a loop if and only if it is a quasigroup and neut(x) = neut(y) for all x, y.
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Example 2. (Smarandache and Ali [36])
Consider (Z10,⊗) where x⊗ y = 3xy mod 10. (Z10,⊗) is a commutative neutrosophic triplet group but

neither a classical group nor a generalized group.

Example 3. (Smarandache and Ali [36])
Consider (Z10, ?) where x ? y = 5x + y mod 10. (Z10, ?) is a non-commutative neutrosophic triplet

group, but not a classical group.

Theorem 1. (Smarandache and Ali [36])
Let (X, ∗) be a neutrosophic triplet group. The following are true for all x, y, z ∈ X.

1. x ∗ y = x ∗ z⇔ neut(x) ∗ y = neut(x) ∗ z.
2. y ∗ x = z ∗ x ⇔ y ∗ neut(x) = z ∗ neut(x).
3. anti(x) ∗ y = anti(x) ∗ z⇒ neut(x) ∗ y = neut(x) ∗ z.
4. y ∗ anti(x) = z ∗ anti(x)⇒ y ∗ neut(x) = z ∗ neut(x).
5. neut(x) ∗ neut(x) = neut(x) i.e., neut

(
neut(x)

)
= neut(x).

6. neut(x)n = neut(x) for any n ∈ N; anti(neut(x)) = neut(x).
7. neut(x) ∗ anti(x) = anti(x) ∗ neut(x) = anti(x) i.e. neut

(
anti(x)

)
= neut(x).

Definition 6. (Neutrosophic Triplet Loop—NTL)
Let (X, ∗) be a neutrosophic triplet set. Then, (X, ∗) is called a neutrosophic triplet loop if (X, ∗) is a

groupoid. If in addition, (X, ∗) obeys the commutativity law, then (X, ∗) is called a commutative neutrosophic
triplet loop.

Let (X, ∗) be a neutrosophic triplet loop. If neut(xy) = neut(x)neut(y) for all x, y ∈ X, then X is
called normal.

Remark 3. An NTL is a neutrosophic triplet group if and only if it is associative. Thus, an NTL is a
generalization of a neutrosophic triplet group, and it is interesting to study an NTL that obeys weak associative
law. NTL was originally introduced by Florentin Smarandache.

Example 4. Let (Z10,+, ·) be the field of integers modulo 10. Consider (Z10, ∗), where for all x, y ∈ Z10, x ∗
y = 2x + 2y. The following are neutrosophic triplets:

(0, 0, 0), (0, 0, 5), (2, 4, 0), (2, 4, 5), (4, 8, 0), (4, 8, 5), (6, 2, 0), (6, 2, 5), (8, 6, 0), (8, 6, 5)

in (Z10, ∗). Thus, {0, 2, 4, 5, 6, 8} is a neutrosophic triplet set. (Z10, ∗) is non-associative because (x ∗ y) ∗ z =

4x + 4y + 2z 6= x ∗ (y ∗ z) = 2x + 4y + 4z. (Z10, ∗) is a non-associative NTL (i.e., not a neutrosophic triplet
group) with 2 ∗ neut(x) = 9x and 4 ∗ anti(x) = 5x.

Definition 7. (Inverse Properties and Neutrosophic Triplet Loop)
(X, ∗) will be called a right inverse property neutrosophic triplet loop (RIPNTL) if it obeys the right inverse

property (RIP)
(y ∗ x) ∗ anti(x) = y (1)

(X, ∗) will be called a left inverse property neutrosophic triplet loop (LIPNTL) if it obeys the left inverse
property (LIP)

anti(x) ∗ (x ∗ y) = y (2)

(X, ∗) will be called an inverse property neutrosophic triplet loop if it obeys both (1) and (2).

(X, ∗) will be called a left cross inverse property neutrosophic triplet loop (LCIPNTL) if it obeys the left
cross inverse property (LCIP)

anti(x) ∗ (y ∗ x) = y (3)
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(X, ∗) will be called a right cross inverse property neutrosophic triplet loop (RCIPNTL) if it obeys the right cross
inverse property (RCIP)

(x ∗ y) ∗ anti(x) = y (4)

(X, ∗) will be called a cross inverse property neutrosophic triplet loop (CIPNTL) if it obeys both (3) and (4).

(X, ∗) will be called a right weak inverse property neutrosophic triplet loop (RWIPNTL) if it obeys the
right weak inverse property (RWIP)

x ∗ anti(y ∗ x) = anti(y) (5)

(X, ∗) will be called a left weak inverse property neutrosophic triplet loop (LWIPNTL) if it obeys the left weak
inverse property (LWIP)

anti(x ∗ y) ∗ x = anti(y) (6)

(X, ∗) will be called a weak inverse property neutrosophic triplet loop (WIPNTL) if it obeys both (5) and (6).

(X, ∗) will be called an automorphic inverse property neutrosophic triplet loop (AIPNTL) if it obeys the
automorphic inverse property (AIP)

anti(x ∗ y) = anti(x) ∗ anti(y) (7)

(X, ∗) will be called an antiautomorphic inverse property neutrosophic triplet loop (AAIPNTL) if it obeys the
antiautomorphic inverse property (AAIP)

anti(x ∗ y) = anti(y) ∗ anti(x) (8)

(X, ∗) will be called a semi-automorphic inverse property neutrosophic triplet loop (SAIPNTL) if it obeys the
semi-automorphic inverse property (SAIP)

anti
(
(x ∗ y) ∗ x

)
=
(
anti(x) ∗ anti(y)

)
∗ anti(x) (9)

Definition 8. (Associators and Commutators of Neutrosophic Triplet Loop)
Let (X, ∗) be an NTL. For any x, y, z ∈ X,

1. (x, y, z) ∈ X is called the right associator of x, y, z if xy ∗ z = (x ∗ yz)(x, y, z).
2. [x, y, z] ∈ X is called the left associator of x, y, z if xy ∗ z = [x, y, z](x ∗ yz).
3. (x, y) ∈ X is called the right commutator of x, y if x ∗ y = (y ∗ x)(x, y).
4. [x, y] ∈ X is called the right commutator of x, y if x ∗ y = [x, y](y ∗ x).

This paper is the first study of a class of neutrosophic triplet loop (NTL) containing varieties
of inverse property NTLs and the application of some of them to cryptography. The second
section contains the main results on the varieties of inverse property NTLs in Definition 7 and the
interrelationships. The algebraic properties of their neutrality and opposite were investigated, and were
found to share some properties with the neutrosophic triplet group. An example of these varieties
of NTL is given. Summaries of the results in the second section are exhibited as two Hasse diagrams
in Figure 1. The third section discusses the application of some of these varieties of inverse property
NTLs to cryptography.

2. Main Results

Lemma 1. Let X be a CIPNTL. Then:

1. neut(x) = neut(anti(x)), anti(anti(x)) = x and J2 = I.
2. LxRanti(x) = I = RxLanti(x).
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3. X is an RIPNTL if and only X is an LIPNTL.
4. neut(x) = anti(neut(x)) and neut(neut(x)) = neut(x)neut(x).

Proof.

1. Put y = anti(x) in (4) to get x anti(x) ∗ anti(x) = anti(x)⇒

neut(x)anti(x) = anti(x) (10)

Put y = anti(x) in (3) to get anti(x) ∗ anti(x)x = anti(x)⇒

anti(x)neut(x) = anti(x) (11)

By (10) and (11), we have neut(x) = neut(anti(x)). By this, anti(x)x = x anti(x) = neut(x) ⇒
anti(anti(x)) = x and J2 = I.

2. These are just (3) and (4) put in translation forms.
3. From 2., LxRanti(x)RxLanti(x) = I. So, Ranti(x)Rx = I ⇒ LxRanti(x) ⇔ y anti(x) ∗ x = y ⇒

anti(x) ∗ xy = y ⇔ y anti(anti(x)) ∗ anti(x) = y ⇒ anti(x) ∗ xy = y ⇔ yx ∗ anti(x) = y ⇒
anti(x) ∗ xy = y ⇔ X has the RIP, which implies that X has the LIP. Similarly, since by 2.,
RxLanti(x)LxRanti(x) = I, then we get X has the LIP implies X has the RIP.

4. Let x ∈ X. Recall that x neut(x) = x = neut(x)x. So, by the RCIP, neut(x)x ∗ anti(neut(x)) =
x anti(neut(x))⇒

x anti(neut(x)) = x. (12)

Similarly, by the LCIP,
anti(neut(x))x = x. (13)

Thus, by (12) and (13), neut(x) = anti(neut(x)). Furthermore, neut(x)neut(x) =

anti(neut(x))neut(x) = neut(x)anti(neut(x))⇒ neut(neut(x)) = neut(x)neut(x).

Lemma 2. Let X be a CIPNTL or an IPLNTL. Then:

1. Equations a ∗ x = b and y ∗ c = d have solutions for x, y ∈ X and these solutions are unique for all
a, b, c, d ∈ X. (unique solvability)

2. The cancellation laws hold.
3. The right and left translation maps Ra and La are bijections for all a ∈ X.

Proof. For CIPNTL.

1. a ∗ x = b⇒ (a ∗ x)anti(a) = b anti(a)⇒ x = b anti(a) ∈ X. Similarly, y ∗ c = d⇒ anti(c)(y ∗ c) =
anti(c)d⇒ y = anti(c)d.

Let x1, x2 ∈ X such that a ∗ x1 = b = a ∗ x2 ⇒ (a ∗ x1)anti(a) = (a ∗ x2)anti(a)⇒ x1 = x2.
2. This follows from 1.
3. Ra : X → X given by xRa = x ∗ a. Ra is a bijection if and only if the equation x ∗ a = b is

uniquely solvable for x for all a, b ∈ X. La : X → X given by xLa = a ∗ x. La is a bijection if and
only if the equation a ∗ x = b is uniquely solvable for x for all a, b ∈ X.

For IPNTL.

1. a ∗ x = b⇒ anti(a)(a ∗ x) = anti(a)b⇒ x = anti(a)b ∈ X. Similarly, y ∗ c = d⇒ (y ∗ c)anti(c) =
d anti(c)⇒ y = d anti(c).

Let x1, x2 ∈ X such that a ∗ x1 = b = a ∗ x2 ⇒ anti(a)(a ∗ x1) = anti(a)(a ∗ x2)⇒ x1 = x2.
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2. This follows from above.
3. Ra : X → X given by xRa = x ∗ a. Ra is a bijection if and only if the equation x ∗ a = b is

uniquely solvable for x for all a, b ∈ X. La : X → X given by xLa = a ∗ x. La is a bijection if and
only if the equation a ∗ x = b is uniquely solvable for x for all a, b ∈ X.

Theorem 2. Let X be an NTL.

1. X is an RCIPNTL if and only if x ∗ y anti(x) = y.
2. X is an LCIPNTL if and only if anti(x)y ∗ x = y.
3. X is a CIPNTL if and only if x ∗ y anti(x) = y = anti(x)y ∗ x.

Proof.

1. By Lemma 2, if X is an RCIPNTL, then it is a left quasigroup and La is a bijection for a ∈ X.
Consider an NTL which has the property x ∗ y anti(x) = y. Put y = neut(anti(x)) to
get x ∗ neut(anti(x))anti(x) = neut(anti(x)) ⇒ x ∗ anti(x) = neut(anti(x)) ⇒ neut(x) =

neut(anti(x)) ⇒ anti(anti(x)) = x. Thus, x ∗ a = b ⇒ x ∗ anti(anti(a)) = b ⇒ anti(a)(x ∗
anti(anti(a))) = anti(a)b ⇒ x = anti(a)b. Let x1, x2 ∈ X. Then, x1 ∗ a = x2 ∗ a ⇒ x1 ∗
anti(anti(a)) = x2 ∗ anti(anti(a))⇒ anti(a)

(
x1 ∗ anti(anti(a))

)
= anti(a)

(
x2 ∗ anti(anti(a))

)
⇒

x1 = x2. So, x ∗ a = b is uniquely solvable for x that Ra is bijective.
RCIP implies LxRanti(x) = I ⇒ Ranti(x) = L−1

x ⇒ Ranti(x)Lx = I ⇒ x ∗ y anti(x) = y. Conversely,
x ∗ y anti(x) = y⇒ Ranti(x)Lx = I ⇒ Lx = R−1

anti(x) ⇒ LxRanti(x) = I ⇒ RCIP.
2. By Lemma 2, if X is an LCIPNTL, then it is a right quasigroup and Ra is a bijection for a ∈ X.

Consider an NTL which has the property anti(x)y ∗ x = y. Put y = neut(anti(x)) to
get anti(x)neut(anti(x)) ∗ x = neut(anti(x)) ⇒ anti(x) ∗ x = neut(anti(x)) ⇒ neut(x) =

neut(anti(x)) ⇒ anti(anti(x)) = x. Thus, a ∗ x = b ⇒ anti(anti(a)) ∗ x = b ⇒ (anti(anti(a)) ∗
x)anti(a) = b anti(a) ⇒ x = b anti(a). Let x1, x2 ∈ X. Then, a ∗ x1 = a ∗ x2∗ ⇒ anti(anti(a)) ∗
x1∗ = anti(anti(a)) ∗ x2 ⇒

(
anti(anti(a)) ∗ x1

)
anti(a) =

(
anti(anti(a)) ∗ x2

)
anti(a) ⇒ x1 = x2.

So, a ∗ x = b is uniquely solvable for x that La is bijective.
LCIP implies RxLanti(x) = I ⇒ R−1

x = Lanti(x) ⇒ Lanti(x)Rx = I ⇒ anti(x)y ∗ x = y. Conversely,
anti(x)y ∗ x = y⇒ Lanti(x)Rx = I ⇒ L−1

anti(x) = Rx ⇒ RxLanti(x) = I ⇒ LCIP.
3. This follows from 1. and 2.

Lemma 3. Let X be an IPNL. Then:

1. neut(x) = neut(anti(x)), anti(anti(x)) = x and J2 = I.
2. RxRanti(x) = I = LxLanti(x).
3. X is an RCIPNL if and only X is an LCIPNL.
4. neut(x) = anti(neut(x)) and neut(neut(x)) = neut(x)neut(x).

Proof.

1. Put y = anti(x) in (1) to get anti(x)x ∗ anti(x) = anti(x)⇒

neut(x)anti(x) = anti(x) (14)

Put y = anti(x) in (2) to get anti(x) ∗ x anti(x) = anti(x)⇒

anti(x)neut(x) = anti(x) (15)

Florentin Smarandache (ed.) Collected Papers, VII

411



By (14) and (15), we have neut(x) = neut(anti(x)). By this, anti(x)x = x anti(x) = neut(x) ⇒
anti(anti(x)) = x and J2 = I.

2. These are just (1) and (2) put in translation forms.
3. Keep Theorem 2 in mind. From 2., RxRanti(x)LxLanti(x) = I. So, Ranti(x)Lx = I ⇒ RxLanti(x) ⇔

x ∗ y anti(x) = y⇒ anti(x) ∗ yx = y⇔ X has the RCIP implies X has the LCIP. Similarly, since
by 2., LxLanti(x)RxRanti(x) = I, then we get X has the LCIP implies X has the RCIP.

4. Let x ∈ X. Recall that x neut(x) = x = neut(x)x. So, by the RIP, x neut(x) ∗ anti(neut(x)) =

x anti(neut(x))⇒
x anti(neut(x)) = x. (16)

Similarly, by the LIP,
anti(neut(x))x = x. (17)

Thus, by (16) and (17), neut(x) = anti(neut(x)). Furthermore, neut(x)neut(x) =

anti(neut(x))neut(x) = neut(x)anti(neut(x))⇒ neut(neut(x)) = neut(x)neut(x).

Theorem 3. Let X be a CIPNTL. For all x, y ∈ X,

1.
(

x, x, anti(x)
)
= neut(x) =

[
x, x, anti(x)

]
.

2.
(

x, y, anti(x)
)
= neut(y) =

[
x, y, anti(x)

]
.

3.
(
anti(x), x, x

)
= neut(x) =

[
anti(x), x, x

]
.

4.
(
anti(x), y, x

)
= neut(y) =

[
anti(x), y, x

]
.

5.
(
x, neut(x)

)
= neut(x) =

[
x, neut(x)

]
.

6.
(
neut(x), x

)
= neut(x) =

[
neut(x), x

]
.

7. (x, x) = neut(xx) = [x, x].
8.

(
x, anti(x)

)
= neut(neut(x)) =

[
x, anti(x)

]
.

9.
(
anti(x), x

)
= neut(neut(x)) =

[
anti(x), x

]
.

10. (x, y) = (xy)anti(yx) and [x, y] = anti(yx)(xy).
11. X is commutative if and only if (x, y) = neut(yx) if and only if [x, y] = neut(yx).
12. If X is commutative, then X is normal if and only if (x, y) = (x, neut(x))(y, neut(y)) if and only if

[x, y] = [x, neut(x)][y, neut(y)].
13. X is normal if and only if (x, y)anti(xy) ∗ (yx) = neut(y)neut(x) if and only if (yx) ∗

(x, y)anti(xy) = neut(y)neut(x) if and only if anti(xy)[x, y] ∗ yx = neut(y)neut(x) if and only
if (yx) ∗ anti(xy)[x, y] = neut(y)neut(x).

14.
(

x, neut(x), anti(x)
)
= neut(neut(x)) =

(
anti(x), neut(x), x

)
.

15.
(
neut(x), x, anti(x)

)
=
(
anti(x), x, neut(x)

)
=
(
x, anti(x), neut(x)

)
=
(
neut(x), anti(x), x

)
=

neut(x).

Proof.

1 and 2 From the right associator, xy ∗ anti(x) =
(
x ∗ y anti(x)

)(
x, y, anti(x)

)
⇒ y =

y
(
x, y, anti(x)

)
⇒ y anti(y) = y

(
x, y, anti(x)

)
∗ anti(y) ⇒

(
x, y, anti(x)

)
= neut(y). Hence,(

x, x, anti(x)
)
= neut(x).

From the left associator, xy ∗ anti(x) =
[
x, y, anti(x)

](
x ∗ y anti(x)

)
⇒ y =

[
x, y, anti(x)

]
y ⇒

anti(y)y = anti(y) ∗
[
x, y, anti(x)

]
y ⇒

[
x, y, anti(x)

]
= neut(y). Hence,

[
x, x, anti(x)

]
=

neut(x).
3 and 4 From the right associator, anti(x)y ∗ x =

(
anti(x) ∗ yx

)(
anti(x), y, x

)
⇒ y =

y
(
anti(x), y, x

)
⇒ y anti(y) = y

(
anti(x), y, x

)
∗ anti(y) ⇒

(
anti(x), y, x

)
= neut(y). Hence,(

anti(x), x, x
)
= neut(x).

From the left associator, anti(x)y ∗ x =
[
anti(x), y, x

](
anti(x) ∗ yx

)
⇒ y =

[
anti(x), y, x

]
y ⇒
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anti(y)y = anti(y) ∗
[
anti(x), y, x

]
y ⇒

[
anti(x), y, x

]
= neut(y). Hence,

[
anti(x), x, x

]
=

neut(x).
5 and 6 From the right commutator, x ∗ neut(x) = (neut(x) ∗ x)(x, neut(x)) ⇒ x = x(x, neut(x)) ⇒

x anti(x) = x(x, neut(x)) ∗ anti(x)⇒
(
x, neut(x)

)
= neut(x). Similarly,

(
neut(x), x

)
= neut(x).

From the left commutator, x ∗ neut(x) = [x, neut(x)](neut(x) ∗ x) ⇒ x = [x, neut(x)]x ⇒
anti(x)x = anti(x) ∗ x(x, neut(x))⇒

[
x, neut(x)

]
= neut(x). Similarly,

[
neut(x), x

]
= neut(x).

7 From the right commutator, x ∗ x = (xx)(x, x) ⇒ xx ∗ anti(xx) = (xx)(x, x) ∗ anti(xx) ⇒
neut(xx) = (x, x). From the left commutator, x ∗ x = [x, x](xx) ⇒ anti(xx) ∗ xx = anti(xx) ∗
[x, x](xx)⇒ neut(xx) = [x, x].

8 and 9 From the right commutator, x ∗ anti(x) = (anti(x) ∗ x)(x, anti(x)) ⇒ neut(x) =

neut(x)(x, anti(x)) ⇒ neut(x)anti(neut(x)) = neut(x)(x, anti(x)) ∗ anti(neut(x)) ⇒
big(x, anti(x)

)
= neut(neut(x)). Similarly,

(
anti(x), x

)
= neut(neut(x)).

From the left commutator, anti(x) ∗ x = [x, anti(x)](x ∗ anti(x)) ⇒ neut(x) =

[x, anti(x)]neut(x) ⇒ anti(neut(x))neut(x) = anti(neut(x)) ∗ [x, anti(x)]neut(x) ⇒
[x, anti(x)] = neut(neut(x)). Similarly,

[
anti(x), x

]
= neut(neut(x)).

10 From the right commutator, xy = yx ∗ (x, y) ⇒ xy ∗ anti(yx) = (yx)(x, y) ∗ anti(yx) ⇒
(x, y) = (xy)anti(yx). From the left commutator, xy = [x, y] ∗ yx ⇒ anti(yx) ∗ xy =

anti(yx) ∗ [x, y](yx)⇒ [x, y] = anti(yx)(xy).
11 This follows from 10.
12 This follows from 6 and 10.
13 We shall use 10.

X is normal if and only if (x, y)anti(xy) = (xy)anti(yx) ∗ anti(yx) ⇔ (x, y)anti(xy) =

anti(yx)⇔

(x, y)anti(xy) ∗ (yx) = anti(yx)(yx) or (yx) ∗ (x, y)anti(xy) = (yx)anti(yx)⇔
(x, y)anti(xy) ∗ (yx) = neut(yx) or (yx) ∗ (x, y)anti(xy) = neut(yx)⇔

(x, y)anti(xy) ∗ (yx) = neut(y)neut(x) or (yx) ∗ (x, y)anti(xy) = neut(y)neut(x).

X is normal if and only if anti(xy)[x, y] = anti(xy) ∗ anti(yx)(xy)⇔ anti(xy)[x, y] = anti(yx)⇔

anti(xy)[x, y] ∗ (yx) = anti(yx)(yx) or (yx) ∗ anti(xy)[x, y] = (yx)anti(yx)⇔
anti(xy)[x, y] ∗ (yx) = neut(yx) or (yx) ∗ anti(xy)[x, y] = neut(yx)⇔

anti(xy)[x, y] ∗ (yx) = neut(y)neut(x) or (yx) ∗ anti(xy)[x, y] = neut(y)neut(x).

14 Apply the right and left associators.
15 Apply the right and left associators.

Lemma 4. Let X be an NTL.

1. Let X be an RIPNL. X is a CIPNTL if and only if X is commutative.
2. Let X be an LIPNL. X is a CIPNTL if and only if X is commutative.
3. Let X be commutative. The following are equivalent:

(a) RIP.
(b) LIP.
(c) RCIP.
(d) LCIP.
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1. Let X be an RIPNL. Then, yx ∗ anti(x) = y. RCIP implies xy ∗ anti(x) = y ⇒ xy ∗ anti(x) =

yx ∗ anti(x) ⇒ xy = yx. Conversely, RIP and commutativity imply xy ∗ anti(x) = y and
anti(x) ∗ yx = y imply RCIP and LCIP.

2. Let X be an LIPNL. Then, anti(x) ∗ xy = y. LCIP implies anti(x) ∗ yx = y ⇒ anti(x) ∗ yx =

anti(x) ∗ xy = y ⇒ xy = yx. Conversely, LIP and commutativity imply xy ∗ anti(x) = y and
anti(x) ∗ yx∗ = y imply RCIP and LCIP.

3. This follows from 1 and 2.
4. Let X be commutative. X has the RIP iff yx ∗ anti(x) = y ⇔ anti(x) ∗ xy = y iff X has the

LIP. X has the RIP iff yx ∗ anti(x) = y ⇔ xy ∗ anti(x) = y iff X has the RCIP. X has the RIP iff
yx ∗ anti(x) = y⇔ anti(x) ∗ yx∗ = y iff X has the LCIP.

Theorem 4. Let X be an IPNTL. For all x, y ∈ X,

1.
(

x, y, anti(y)
)
= anti

(
x neut(y)

)
x,
(
x, x, anti(x)

)
= neut(x).

2.
(
anti(y), y, x

)
= anti(x) ∗ neut(y)x,

(
anti(x), x, x

)
= neut(x).

3.
[
x, y, anti(y)

]
= x anti

(
x neut(y)

)
,
[
x, x, anti(x)

]
= neut(x).

4.
[
anti(y), y, x

]
= neut(y),

[
anti(x), x, x

]
= neut(x).

5. (x, y) = anti(yx)(xy) and [x, y] = (xy)anti(yx).
6.

(
x, y, anti(y)

)
=
[
x, y, anti(y)

]
⇔ x ∗ anti(neut(y))anti(x) = anti(neut(y)).

7.
(
anti(y), y, x

)
=
[
anti(y), y, x

]
⇔ x neut(y) = neut(y)x.

8. anti
(

x
[
anti(y), y, x

])
x =

(
x, y, anti(y)

)
.

9. anti(x) ∗
[
anti(y), y, x

]
x =

(
anti(y), y, x

)
.

10. x anti
(

x
[
anti(y), y, x

])
x =

[
x, y, anti(y)

]
.

11.
(
neut(x), x

)
= neut(x) =

[
neut(x), x

]
and (x, x) = neut(xx) = [x, x].

12.
(
x, neut(x), anti(x)

)
= neut(neut(x)) =

(
anti(x), neut(x), x

)
.

13.
(
neut(x), x, anti(x)

)
=
(
anti(x), x, neut(x)

)
=
(
x, anti(x), neut(x)

)
=
(
neut(x), anti(x), x

)
=

neut(x).

Proof.

1. From the right associator, xy ∗ anti(y) = (x ∗ y anti(y))
(
x, y, anti(y)

)
⇒ x = x neut(y) ∗(

x, y, anti(y)
)
⇒ anti

(
x neut(y)

)
x = anti

(
x neut(y)

)[
x neut(y) ∗

(
x, y, anti(y)

)]
⇒(

x, y, anti(y)
)
= anti

(
x neut(y)

)
x. Hence,

(
x, x, anti(x)

)
= neut(x).

2. From the right associator, anti(y)y ∗ x = (anti(y) ∗ yx)
(
anti(y), y, x

)
⇒ neut(y)x =

x
(
anti(y), y, x

)
⇒ anti(x) ∗ neut(y)x = anti(x) ∗ x

(
anti(y), y, x

)
⇒
(
anti(y), y, x

)
= anti(x) ∗

neut(y)x. Hence,
(
anti(x), x, x

)
= neut(x).

3. From the left associator, xy ∗ anti(y) =
[
x, y, anti(y)

]
(x ∗ y anti(y)) ⇒ x =[

x, y, anti(y)
]
(x neut(y)) ⇒ x anti

(
x neut(y)

)
=
[
x, y, anti(y)

]
(x neut(y)) ∗ anti

(
x neut(y)

)
⇒[

x, y, anti(y)
]
= x anti

(
x neut(y)

)
. Hence,

[
x, x, anti(x)

]
= neut(x).

4. From the left associator, anti(y)y ∗ x =
[
anti(y), y, x

]
(anti(y) ∗ yx) ⇒ neut(y)x =[

anti(y), y, x
]
x Lemma 2

=⇒
[
anti(y), y, x

]
= neut(y). Hence,

[
anti(x), x, x

]
= neut(x).

5. From the right commutator, x ∗ y = (y ∗ x)(x, y) ⇒ anti(yx) ∗ xy = anti(yx) ∗ (yx)(x, y) ⇒
(x, y) = anti(yx)(xy). From the left commutator, x ∗ y = [x, y](y ∗ x) ⇒ xy ∗ anti(yx) =

[x, y](yx) ∗ anti(yx)⇒ [x, y] = (xy)anti(yx).

6. By 1 and 3,
(
x, y, anti(y)

)
=
[
x, y, anti(y)

]
⇔ anti

(
x neut(y)

)
x = x anti

(
x neut(y)

) AAIP
=⇒

Theorem 5
anti(neut(y))anti(x) ∗ x = x ∗ anti(neut(y))anti(x)⇔ anti(neut(y)) = x ∗ anti(neut(y))anti(x).

7. By 2 and 4,
(
anti(y), y, x

)
=
[
anti(y), y, x

]
⇔ anti(x) ∗ neut(y)x = neut(y) ⇔ x

(
anti(x) ∗

neut(y)x
)
= x neut(y)⇔ x neut(y) = neut(y)x.

Proof.
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8. This follows combining by 1 and 4.
9. This follows combining by 2 and 4.

10. This follows combining by 3 and 4.
11. Apply 5.
12. Apply the right and left associators.
13. Apply the right and left associators.

Lemma 5. Let X be a CIPNTL or an IPLNTL. Then:

1. neut(x) is unique for each x ∈ X.
2. anti(x) is unique for each x ∈ X.
3. X is a generalized loop and a quasigroup.
4. X is a loop if and only if neut(x) = neut(y) for all x, y ∈ X.
5. If X is associative, then X is a loop and group.
6. X is a group if and only if X is associative.

Proof.

1. By Lemma 2(2), neut(x)x = x = neut(x)′ ⇒ neut(x) = neut(x)′.
2. By Lemma 2(2), anti(x)x = x = anti(x)′ ⇒ anti(x) = x = anti(x)′.
3. These follow by 1. and Lemma 2(1).
4. By the definition of NTL and loop, and 2.
5. An associative quasigroup is a loop and a group.
6. A loop is a group if and only it is associative.

Theorem 5. Let X be an NTL.

1. If X is an IPNTL, then for all x ∈ X:

(a) X is an AAIPNL.
(b) R−1

x = Ranti(x) and L−1
x = Lanti(x).

(c) JRx J = L−1
x and JLx J = R−1

x .
(d) X is a WIPNTL.

2. If X is a CIPNTL, then for all x ∈ X:

(a) X is an AIPNTL.
(b) LxRanti(x) = I = Ranti(x)Lx and RxLanti(x) = I = Lanti(x)Rx.
(c) JRx J = Ranti(x) and JLx J = Lanti(x).
(d) X is a WIPNTL.

3. If X is an RCIPNTL, then for all x ∈ X:

(a) X is an AIPNTL.
(b) LxRanti(x) = I = Ranti(x)Lx.
(c) JRx J = Ranti(x) and JLx J = Lanti(x) if and only if anti

(
anti(x)

)
= x.

(d) X is an RWIPNTL.

4. If X is an LCIPNTL, then for all x ∈ X:

(a) X is an AIPNL.
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(b) RxLanti(x) = I = Lanti(x)Rx.
(c) JRx J = Ranti(x) and JLx J = Lanti(x) if and only if anti

(
anti(x)

)
= x.

(d) X is an LWIPNTL.

Proof.

1. Let X be an IPNTL.

(a) xy = z ⇒ x = z anti(y) ⇒ anti(y) = anti(z)x ⇒ anti(z) = anti(y)anti(x) ⇒
anti(y)anti(x) = anti(xy)⇒ AAIP. So, X is an AAIPNL.

(b) RIP implies xy ∗ anti(y) = x ⇒ RyRanti(y) = I ⇒ R−1
y = Ranti(y). LIP implies anti(y) ∗

yx = x ⇒ LyLanti(y) = I ⇒ L−1
y = Lanti(y).

(c) yJRx J = anti
(
anti(y)x

)
= anti(x)anti

(
anti(y)

)
= anti(x)y = yLanti(x) = yL−1

x ⇒
JRx J = L−1

x . Also, yJLx J = anti
(
x anti(y)

)
= anti

(
anti(y)

)
anti(x) = yanti(x) =

yRanti(x) = yR−1
x ⇒ JLx J = R−1

x .
(d) anti(xy)x = anti(y)anti(x) ∗ x = anti(y)⇒ LWIP. Also, x anti(yx) = x ∗ anti(x)anti(y) ∗

x = anti(y)⇒ RWIP. So, X is a WIPNTL.

2. Let X be a CIPNTL.

(a) xy = z ⇒ y = z anti(x) ⇒ anti(x) = y anti(z) ⇒ anti(z) = anti(x)anti(y) ⇒
anti(x)anti(y) = anti(xy)⇒ AIP. So, X is an AIPNL.

(b) By Theorem 2: RCIP implies that LxRanti(x) = I = Ranti(x)Lx and LCIP implies that
RxLanti(x) = I = Lanti(x)Rx.

(c) yJRx J = anti
(
anti(y)x

)
= anti

(
anti(y)

)
anti(x) = y anti(x) = yRanti(x) ⇒ JRx J =

Ranti(x). Also, yJLx J = anti
(
x anti(y)

)
= anti(x)anti

(
anti(y)

)
= anti(x)y = yLanti(x) ⇒

JLx J = Lanti(x).
(d) anti(xy)x = anti(x)anti(y) ∗ x = anti(y)⇒ LWIP. Also, x anti(yx) = x ∗ anti(y)anti(x) ∗

x = anti(y)⇒ RWIP. So, X is a WIPNTL.

3. Let X be an RCIPNTL.

(a) xy = z ⇒ y = z anti(x) ⇒ anti(x) = y anti(z) ⇒ anti(z) = anti(x)anti(y) ⇒
anti(x)anti(y) = anti(xy)⇒ AIP. So, X is an AIPNL.

(b) By Theorem 2: RCIP implies that LxRanti(x) = I = Ranti(x)Lx.
(c) yJRx J = anti

(
anti(y)x

)
= anti

(
anti(y)

)
anti(x). So, JRx J = Ranti(x) ⇔

anti
(
anti(y)

)
anti(x) = y anti(x)⇔ anti

(
anti(y)

)
= y.

Also, yJLx J = anti
(
x anti(y)

)
= anti(x)anti

(
anti(y)

)
. So, JLx J = Lanti(x) ⇔

anti(x)anti
(
anti(y)

)
= anti(x)y⇔ anti

(
anti(y)

)
= y.

(d) x anti(yx) = x ∗ anti(y)anti(x) = anti(y)⇒ RWIP. So, X is an RWIPNTL.

4. Let X be an LCIPNTL.

(a) xy = z ⇒ x = anti(y)z ⇒ anti(y) = anti(z)x ⇒ anti(z) = anti(x)anti(y) ⇒
anti(x)anti(y) = anti(xy)⇒ AIP. So, X is an AIPNL.

(b) By Theorem 2: LCIP implies that RxLanti(x) = I = Lanti(x)Rx.
(c) yJRx J = anti

(
anti(y)x

)
= anti

(
anti(y)

)
anti(x). So, JRx J = Ranti(x) ⇔

anti
(
anti(y)

)
anti(x) = y anti(x)⇔ anti

(
anti(y)

)
= y.

Also, yJLx J = anti
(
x anti(y)

)
= anti(x)anti

(
anti(y)

)
. So, JLx J = Lanti(x) ⇔

anti(x)anti
(
anti(y)

)
= anti(x)y⇔ anti

(
anti(y)

)
= y.

(d) anti(xy)x = anti(x)anti(y) ∗ x = anti(y)⇒ LWIP. So, X is an LWIPNTL.
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Theorem 6. Let X be an NTL.

1. If X is an LWIPNTL, then for all x ∈ X:

(a) neut(x) = anti
(
neut(x)

)
.

(b) neut
(
neut(x)

)
= neut(x)neut(x).

(c) anti
(
anti(x)

)
= x and J2 = I.

(d) neut(x) = neut
(
anti(x)

)
.

(e) J is a bijection.
(f) X is a left quasigroup.
(g) Lx is a bijection.

2. If X is an RWIPNTL, then for all x ∈ X:

(a) neut(x) = anti
(
neut(x)

)
.

(b) neut
(
neut(x)

)
= neut(x)neut(x).

(c) anti
(
anti(x)

)
= x and J2 = I.

(d) neut(x) = neut
(
anti(x)

)
.

(e) J is a bijection.
(f) X is a right quasigroup.
(g) Rx is a bijection.

3. The following are equivalent.

(a) X is an LWIPNTL and Rx is bijective.
(b) X is an RWIPNTL and Lx is bijective.
(c) X is an LWIPNTL and X is a right quasigroup.
(d) X is an RWIPNTL and X is a left quasigroup.

4. If X is a WIPNTL, then L2
x = I ⇔ R2

x = I.
5. If X is an LCIPNTL, then X is a right quasigroup.
6. If X is an RCIPNTL, then X is a left quasigroup.

Proof.

1. Let X be an LWIPNTL, then anti(xy)x = anti(y).
Put y = anti(x) to get anti

(
x anti(x)

)
x = anti

(
anti(x)

)
⇒

anti
(
neut(x)

)
x = anti

(
anti(x)

)
(18)

Put y = neut(x) to get anti
(
x neut(x)

)
x = anti

(
neut(x)

)
⇒ x anti(x) = anti

(
neut(x)

)
⇒

neut(x) = anti
(
neut(x)

)
(19)

(19) implies neut(x)neut(x) = anti
(
neut(x)

)
neut(x)⇒

neut(x)neut(x) = neut
(
neut(x)

)
(20)

From (18) and (19), neut(x)x = anti
(
anti(x)

)
⇒ x = anti

(
anti(x)

)
and so, J2 = I

Put x = neut(y) to get anti
(
neut(y) y

)
neut(y) = anti(y)⇒

anti(y)neut(y) = anti(y) (21)
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Put x = anti(y) to get anti
(
anti(y) y

)
anti(y) = anti(y)⇒ anti

(
neut(y)

)
anti(y) = anti(y)⇒

neut(y)anti(y) = anti(y) (22)

By (21) and (22), neut
(
anti(y)

)
= neut(y)

Let J : X → X ↑ xJ = anti(x). Then, x1 J = x2 J ⇒ anti(x1) = anti(x2) ⇒ anti
(
anti(x1)

)
=

anti
(
anti(x2)

)
⇒ x1 = x2. So, J is 1-1. For all y ∈ X, there exists x ∈ X such that xJ = y because

anti(x) = y⇒ anti
(
anti(x)

)
= anti(y)⇒ x = anti(y) ∈ X.

Consider La : X → X ↑ xLa = ax. Let x1La = x2La ⇒ ax1 = ax2 ⇒ anti(ax1) = anti(ax2) ⇒
anti(ax1) ∗ a = anti(ax2) ∗ a⇒ anti(x1) = anti(x2)⇒ anti

(
anti(x1)

)
= anti

(
anti(x2)

)
⇒ x1 = x2.

For all y ∈ X, there exists x ∈ X such that xLa = y because ax = y ⇒ anti(ax) = anti(y) ⇒
anti(ax) ∗ a = anti(y) ∗ a ⇒ anti(x) = anti(y) a ⇒ anti

(
anti(x)

)
= anti

(
anti(y) a

)
⇒ x =

anti
(
anti(y) a

)
.

2. Let X be an RWIPNTL, then x anti(yx) = anti(y).
Put y = anti(x) to get x anti

(
anti(x)x

)
= anti

(
anti(x)

)
⇒

x anti
(
neut(x)

)
= anti

(
anti(x)

)
. (23)

Put y = neut(x) to get x anti
(
neut(x)x

)
= anti

(
neut(x)

)
⇒ x anti(x) = anti

(
neut(x)

)
⇒

neut(x) = anti
(
neut(x)

)
. (24)

(24) implies neut(x)neut(x) = anti
(
neut(x)

)
neut(x)⇒

neut(x)neut(x) = neut
(
neut(x)

)
. (25)

From (23) and (24), xneut(x) = anti
(
anti(x)

)
⇒ x = anti

(
anti(x)

)
and so, J2 = I .

Put x = neut(y) to get neut(y)anti
(
y neut(y)

)
= anti(y)⇒

neut(y)anti(y) = anti(y). (26)

Put x = anti(y) to get anti(y)anti
(
y anti(y)

)
= anti(y)⇒ anti(y)anti

(
neut(y)

)
= anti(y)⇒

anti(y)neut(y) = anti(y). (27)

By (26) and (27), neut
(
anti(y)

)
= neut(y) .

Let J : X → X ↑ xJ = anti(x). Then, x1 J = x2 J ⇒ anti(x1) = anti(x2) ⇒ anti
(
anti(x1)

)
=

anti
(
anti(x2)

)
⇒ x1 = x2. So, J is 1-1. For all y ∈ X, there exists x ∈ X such that xJ = y because

anti(x) = y⇒ anti
(
anti(x)

)
= anti(y)⇒ x = anti(y) ∈ X.

Consider Ra : X → X ↑ xRa = xa. Let x1Ra = x2Ra ⇒ x1a = x2a⇒ anti(x1a) = anti(x2a)⇒
a ∗ anti(x1a) = a ∗ anti(x2a) ⇒ anti(x1) = anti(x2) ⇒ anti

(
anti(x1)

)
= anti

(
anti(x2)

)
⇒ x1 =

x2. For all y ∈ X, there exists x ∈ X such that xRa = y because xa = y⇒ anti(xa) = anti(y)⇒
a ∗ anti(xa) = a ∗ anti(y) ⇒ anti(x) = a anti(y) ⇒ anti

(
anti(x)

)
= anti

(
a anti(y)

)
⇒ x =

anti
(
a anti(y)

)
.

3. X is an LWIPNTL if and only if anti(xy)x = anti(y)⇔ Lx JRx = J and X is an RWIPNTL if and
only if x anti(yx) = anti(y)⇔ Rx JLx = J.
X is an LWIPNTL and Rx is bijective if and only if (Lx JRx)−1 = J−1 and Rx is bijective if and
only if R−1

x J−1L−1
x = J−1 ⇔ R−1

x JL−1
x = J ⇔ Rx JLx = J and Lx is bijective if and only if X is an

RWIPNTL and Lx is bijective.
For a groupoid X: Lx is bijective for all x ∈ X if and only if X is a left quasigroup and Rx is
bijective for all x ∈ X if and only if X is a right quasigroup. Hence, (a) to (d) are equivalent.
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4. If X is a WIPNTL, then it is both an LWIPNTL and RWIPNTL which implies that Lx JRx = J and
Rx JLx = J. Consequently, Lx JR2

x JLx = J2 and Rx JL2
x JRx = J2. Thus, L2

x = I ⇔ R2
x = I.

5. This follows from Lemma 2.
6. This follows from Lemma 2.

Theorem 7. Let X be an NTL.

1. X has the LWIP and AAIP, then X has the RIP.
2. X has the RWIP and AAIP, then X has the LIP.
3. X has the LWIP and AIP, then X has the RCIP.
4. X has the RWIP and AIP, then X has the LCIP.
5. X is an IPNTL if and only if X is a WIPNTL and an AAIPNTL.
6. X is a CIPNTL if and only if X is a WIPNTL and an AIPNTL.

Proof. Let X be an NTL.

1. LWIP implies anti(xy)x = anti(y) AAIP⇒ anti(y)anti(x) ∗ x = anti(y)
y 7→anti(y)⇒
x 7→anti(x)

anti
(
anti(y)

)
anti

(
anti(x)

)
∗ anti(x) = anti

(
anti(y)

)
⇒ yx ∗ anti(x) = y⇒ RIP.

2. RWIP implies x anti(yx) = anti(y) AAIP⇒ x ∗ anti(x)anti(y) = anti(y)
y 7→anti(y)⇒
x 7→anti(x)

anti(x) ∗

anti
(
anti(x)

)
anti

(
anti(y)

)
= anti

(
anti(y)

)
⇒ anti(x) ∗ xy = y⇒ LIP.

3. LWIP implies anti(xy)x = anti(y) AIP⇒ anti(x)anti(y) ∗ x = anti(y)
y 7→anti(y)⇒
x 7→anti(x)

anti
(
anti(x)

)
anti

(
anti(y)

)
∗ anti(x) = anti

(
anti(y)

)
⇒ xy ∗ anti(x) = y⇒ RCIP.

4. RWIP implies x anti(yx) = anti(y) AIP⇒ x ∗ anti(y)anti(x) = anti(y)
y 7→anti(y)⇒
x 7→anti(x)

anti(x) ∗

anti
(
anti(y)

)
anti

(
anti(x)

)
= anti

(
anti(y)

)
⇒ anti(x) ∗ yx = y⇒ LCIP.

5. This backward of the statement follows by 1 and 2, while the forward of the statement follows by
1 of Theorem 5.

6. This backward of the statement follows by 3 and 4, while the forward of the statement follows by
2 of Theorem 5.

Lemma 6. Let X be an NTL.

1. If X is an AIPNTL, then

(a) neut
(
anti(x)

)
= anti

(
neut(x)

)
.

(b) anti
(

neut(x)neut(y)
)
= neut

(
anti(x)

)
neut

(
anti(y)

)
.

2. If X is an AAIPNTL, then

(a) neut
(
anti(x)

)
= anti

(
neut(x)

)
.

(b) anti
(

neut(x)neut(y)
)
= neut

(
anti(y)

)
neut

(
anti(x)

)
.

3. If X is an AIPNTL (AAIPNTL), then X is an AAIPNTL (AIPNTL) if and only if anti(x)anti(y) =

anti(y)anti(x).
4. Let X be an AIPNTL (AAIPNTL), then X is an AAIPNTL (AIPNTL) if

(a)
(

anti(x), anti(y)
)
= neut

(
anti(y)anti(x)

)
or

(b)
[

anti(x), anti(y)
]
= neut

(
anti(y)anti(x)

)
.
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Proof.

1. Let X be an AIPNTL. Then, anti(xy) = anti(x)anti(y).

(a) Put y = neut(x) to get anti
(
x neut(x)

)
= anti(x)anti

(
neut(x)

)
⇒

anti(x) = anti(x)anti
(
neut(x)

)
. (28)

Do the replacement x 7→ neut(x) and put y = x to get anti
(
neut(x)x

)
=

anti
(
neut(x)

)
anti(x)⇒

anti(x) = anti
(
neut(x)

)
anti(x). (29)

Combining (28) and (29), we get neut
(
anti(x)

)
= anti

(
neut(x)

)
.

(b) Do the replacements x 7→ neut(x) and y 7→ neut(y) to get

anti
(

neut(x)neut(y)
)
= anti

(
neut(x)

)
anti

(
neut(y)

)
= neut

(
anti(x)

)
neut

(
anti(y)

)
.

2. Let X be an AAIPNTL. Then, anti(xy) = anti(y)anti(x).

(a) Put y = neut(x) to get anti
(
x neut(x)

)
= anti

(
neut(x)

)
anti(x)⇒

anti(x) = anti
(
neut(x)

)
anti(x). (30)

Do the replacement x 7→ neut(x) and put y = x to get anti
(
neut(x)x

)
=

anti(x)anti
(
neut(x)

)
⇒

anti(x) = anti(x)anti
(
neut(x)

)
(31)

Combining (30) and (31), we get neut
(
anti(x)

)
= anti

(
neut(x)

)
.

(b) Do the replacements x 7→ neut(x) and y 7→ neut(y) to get

anti
(

neut(x)neut(y)
)
= anti

(
neut(y)

)
anti

(
neut(x)

)
= neut

(
anti(y)

)
neut

(
anti(x)

)
.

3. This follows from the AIP and AAIP.
4. This follows from the AIP and AAIP.

Theorem 8. Let (Zp,+, ·) be the field of integers modulo p, where p is prime. Define ∗ on Zp as follows:
x ∗ y = ax + ay for a fixed 0, 1 6= a ∈ Zp. Then:

1. (Zp,+·) is a non-associative commutative NTL.
2. The following are equivalent.

(a) (Zp, ∗) is a CIPNTL.
(b) (Zp, ∗) is an IPNTL.
(c) a2 ≡ 1 mod p.

Proof.

1. (Zp, ∗) is a groupoid by the definition of ∗.

Commutativity x ∗ y = ax + ay = ay + ax = y ∗ x. So, (Zp, ∗) is commutative.
Neutrality x ∗ neut(x) = x ⇔ ax + a neut(x) = x ⇔ a neut(x) = x − ax = (1 − a)x ⇔

neut(x) = a−1(1− a)x. Similarly, neut(x) ∗ x = x ⇔ neut(x) ∗ x = a−1(1− a)x.
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IPNTL

CIPNTL

commutativity

AAIPNTL RIPNTL LIPNTL RWIPNTL LWIPNTL

CIPNTL

IPNTL

commutativity

AIPNTL RWIPNTL LWIPNTL SAIPNTL

Figure 1. Inverse property neutrosophic triplet loop (NTL) Hasse diagrams. AAIP: antiautomorphic
inverse property; AIP: automorphic inverse property; CIP: cross inverse property; LCIP: left cross
inverse property; LIP: left inverse property; LWIP: left weak inverse property; RCIP: right cross inverse
property; RIP: right inverse property; RWIP: right weak inverse property; SAIP: semi-automorphic
inverse property; WIP: weak inverse property.

Opposite x ∗ anti(x) = neut(x) ⇔ ax + a anti(x) = neut(x) ⇔ ax + a anti(x) = a−1(1−
a)x ⇔ anti(x) = a−1(1− a)x − ax = a1[a−1(1− a)− a]x ⇔ anti(x) = [a−2(1− a)− 1]x.
Similarly, anti(x) ∗ x = neut(x) ⇔ anti(x) = [a−2(1− a)− 1]x. So, (Zp, ∗) is a NTL. So,
(Zp, ∗) is an NTL.

Non-Associativity x ∗ (y ∗ z) = ax + a(ay + az) = ax + a2y + a2z and (x ∗ y) ∗ z = a(ax +

ay) + az = a2x + a2y + az. So, x ∗ (y ∗ z) 6= (x ∗ y) ∗ z.

∴ (Zp, ∗) is a non-associative commutative NTL.
2. Going by 3. of Lemma 4, it suffices to only show that (Zp, ∗) is a RIPL. (Zp, ∗) has the RIP if

and only if (y ∗ x) ∗ anti(x) = y ⇔ (ay + ax) ∗ anti(x) = y ⇔ a(ay + ax) + a anti(x) = y ⇔
a2y + a2x + a[a−2(1− a)− 1]x = y⇔ a2y + [a−1(1− a)− a + a2]x = 1y + 0x ⇔ a2 ≡ 1 mod p.

Remark 4. In Theorem 8, a2 ≡ 1 mod p ⇔ p|a2 − 1 ⇔ ∃ k ∈ Z 3 a2 − 1 = pk ⇔ a =
√

pk + 1 for
some k ∈ Z with a < p. Hence, with the requirements that a2 = pk + 1 and a < p, k = p − 2, so that
a = p− 1.

Example 5. (Zp, ∗) where x ∗ y = (p− 1)(x + y), for any prime p is a non-associative commutative CIPNTL
and IPNTL.

3. Application to Cryptography

Keedwell [45], Keedwell and Shcherbacov [46–49], Jaiyéo. lá [50–55], and Jaiyéo. lá and
Adéníran [56] are of great significance in the study of quasigroups and loop with the WIP, AIP,
CIP, their generalizations (i.e., m-inverse loops and quasigroups, (r,s,t)-inverse quasigroups) and
applications to cryptography.
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Cross inverse property quasigroups have been found appropriate for cryptography because they
give rise to what is called ‘cycle of inverses’ or ‘inverse cycles’ or simply ‘cycles’.

After Jaiyéo. lá [57] studied the universality of Osborn loops; a class of loop which includes
universal WIP loops, some of the identities established in Jaiyéo. lá and Adéníran [58] were singled out
and christened ‘cryptographic identities’, and their applications to cryptography have been reported
in Jaiyéo. lá [59,60], Jaiyéo. lá and Adéníran [61].

Going by Lemma 1, Lemma 3, and Theorem 6, a CIPNTL, IPNTL, LWIPNTL, or RWIPNTL X obeys
the property anti

(
anti(x)

)
= x for any x ∈ X. Additionally, by Lemma 4, a commutative NTL X with

RIP or LIP or RCIP or LCIP also has the property anti
(
anti(x)

)
= x for any x ∈ X. Hence, long inverse

cycles which naturally arise in CIP quasigroup will not be feasible for such NTLs. However, for an
RCIPNTL, LCIPNTL, RIPNTL, or LRIPNTL X that is non-commutative, long inverse cycles will be
feasible (this makes an attack on the system more difficult). Thus, such a non-commutative NTL which
is not a CIPNTL, IPNTL, RWIPNTL, or RWIPNTL will be appropriate for cryptography. The procedure
for applying any of them is described below.

RCIPNTL Assume that the message to be transmitted can be represented as a single element x ∈ X.
Then, this is enciphered by pre-multiplying by another element y ∈ X so that the cipher text is
yx ∈ X. At the receiving end, the cipher text is deciphered by post-multiplying by anti(y) ∈ X
to get the plain text.

LCIPNTL Assume that the message to be transmitted can be represented as a single element x ∈ X.
Then, this is enciphered by post-multiplying by another element y ∈ X so that the cipher text is
xy ∈ X. At the receiving end, the cipher text is deciphered by pre-multiplying by anti(y) ∈ X to
get the plain text.

RIPNTL Assume that the message to be transmitted can be represented as a single element x ∈ X.
Then, this is enciphered by post-multiplying by another element y ∈ X so that the cipher text is
xy ∈ X. At the receiving end, the cipher text is deciphered by post-multiplying by anti(y) ∈ X
to get the plain text.

LIPNTL Assume that the message to be transmitted can be represented as a single element x ∈ X.
Then, this is enciphered by pre-multiplying by another element y ∈ X so that the cipher text is
yx ∈ X. At the receiving end, the cipher text is deciphered by pre-multiplying by anti(y) ∈ X to
get the plain text.

Note that these four procedures can alternatively be carried out using Theorem 2.
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ABSTRACT This paper proposes a multi-criteria decision making method called the neutrosophic data analytical hierarchy 
process (NDAHP) for the single-valued neutrosophic set (SVNS). This method is an extension of the neutrosophic analytic 
hierarchy process (NAHP) but was designed to handle actual datasets which consists of crisp values. Our proposed NDAHP 
method uses an objective weighting mechanism whereas all other existing versions of the AHP, fuzzy AHP and other fuzzy based 
AHP method in literature such as the NAHP and picture fuzzy AHP uses a subjective weighting mechanism to arrive at the 
decision. This makes our proposed NDAHP method a very objective one as the weightage of the criteria which forms the input of 
the evaluation matrix are determined in an objective manner using actual data collected for the problem, and hence will not change 
according to the opinions of the different decision makers which are subjective.  The proposed NDAHP method is applied to a 
multi-criteria decision making problem related to the ranking of the financial performance of five public listed petrochemical 
companies trading in the main board of the Kuala Lumpur Stock Exchange (KLSE). Actual dataset of 15 financial indices for the 
five petrochemical companies for 2017 obtained from Yahoo! Finance were used in this study. Following this, a brief comparative 
study is conducted to evaluate the performance of our NDAHP algorithm against the results of other existing SVNS based decision 
making methods in literature. The results are compared against actual results obtained from KLSE. To further verify the rankings 
obtained through each method, the Spearman and Pearson ranking tests are carried out on each of the decision making methods 
that are studied. It is proved that our proposed NDAHP method produces the most accurate results, and this was further verified 
from the results of the Spearman and Pearson ranking tests.    

KEYWORDS: Single-valued neutrosophic set; analytic hierarchy process (AHP); multi-criteria decision making; neutrosophic 
AHP; neutrosophic decision making 

1. INTRODUCTION

Fuzzy set theory [1] is an extension of classical set theory 
which was developed as a tool to deal with the uncertainty and 
vagueness that exists in most of the situations that we 

encounter on a daily basis. Fuzzy sets are characterized by a 
single membership value which indicates the degree of 
belongingness of the elements to a set. The fuzzy set model 
provided solutions when solving problems where the 
information is imprecise due to the non-sharply determined 
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criteria of the membership classes. Developments made in the 
application of fuzzy set theory led to a greater demand for 
advanced studies in this area. This and the deficiencies in 
fuzzy set theory led to the development of many similar 
models with the most commonly used ones being the 
intuitionistic fuzzy set [2], interval-valued fuzzy set [3], 
interval-valued intuitionistic fuzzy set [4], vague set [5],
neutrosophic set [6], hesitant fuzzy set [7] and picture fuzzy 
set [8]. 

The inability of fuzzy sets and intuitionistic fuzzy sets 
(IFSs) in dealing with the inconsistency and indeterminacy 
components of any information, both of which are inevitably 
present in most real world situations was one of the factors 
that led to the introduction of the neutrosophic set in 1995.
The neutrosophic set (NS) is an extension of the IFS model, 
and was introduced to solve problems with inconsistent, 
incomplete and indeterminate information. The NS model has 
a triple membership structure that consists of a truth,
indeterminacy and falsity membership function, each of 
which expresses the degree of belongingness, degree of 
indeterminacy and degree of non-belongingness of an object 
to a set, respectively. Another significant difference between
the NS and other fuzzy based models is the independent nature 
of the three membership functions in the NS model. Although 
the initial NS model was developed to take on values in the 
non-standard subinterval of ]-0,1+[ which was fine in the 
study of philosophy, it was found to be unsuitable to be used 
in solving real-life problems related to engineering and 
science. This shortcoming of the NS model led to the 
inception of the single-valued neutrosophic set (SVNS) by 
Wang et al. [9] which is a special case of the NS with 
membership values in the standard unit interval of [0, 1]. This 
makes the SVNS model more suitable and convenient to be
used in problem solving as it is more compatible with the 
structure of fuzzy sets and other fuzzy-based models whose 
membership functions are also defined in the interval of [0, 1] 
(see [51-63] for details). This paper is concerned with 
developing a decision making method for the SVNS model 
based on the analytic hierarchy process (AHP).

The analytic hierarchy process (AHP) was first
introduced by Saaty [10] as a mathematical tool that is used to 
make a decision from several alternatives, by taking their 
criteria into consideration. After the evaluation process is 
done using AHP, decision makers can then obtain the results 
which ranks the alternatives from the most desirable to the 
least desirable. Nowadays, AHP had been widely accepted as 
an effective tool to handle multi-criteria decision making 
(MCDM) problems. The AHP method is a relatively simple 
and practical tool to be used as it does not involve advanced 
mathematical theory, but rather converts the thinking process 

of the decision maker into quantitative and qualitative data, 
and subsequently analyses the multi-criteria data by using 
simple mathematical tools. Also, the pair-wise comparison 
between different criteria and construction of a matrix does 
not require advanced mathematical knowledge [11]. AHP also
requires lesser quantitative data compared to other MCDM 
methods as it is more focused on the criteria involved in the 
evaluation process, and the evaluation of the importance of 
these criteria by the decision makers. However, this lack of 
numerical data also poses a problem as the entire decision 
making process is dependent on the subjective opinions of the 
decision makers which can be inconsistent and may vary from
one decision maker to another depending on their prior 
experiences and personal opinions. As such, the results 
obtained for a problem using the opinions of a set of decision
makers may not be convincing for other decision makers.
Although, we can compute the consistency ratio and use this 
to determine the consistency of the opinions (i.e. weightage of 
the criteria) given by the decision makers, it is still not reliable 
enough and actually lengthens the decision making process.
This is because we need to continuously modify the opinions 
given by the decision makers until a consistency index of zero 
or at least a sufficiently small value close to zero is reached.
This may also increase the chances of getting erroneous 
results and lead to the decision makers making a wrong 
decision. These disadvantages of the traditional AHP methods
can be overcome by modifying the algorithm of the AHP to 
use actual datasets as the input for the AHP method instead of 
using the subjective opinions of the decision makers as the 
input for the AHP method. This is the feature of our proposed 
AHP method based on SVNSs which will be expounded in the 
subsequent sections.

Another major disadvantage of the AHP method is its 
inability to handle the subjectivity and vagueness of human 
judgment or behavior [12]. The fuzzy set model and other 
fuzzy based models on the other hand, have the advantage of 
being able to capture the fuzziness of the criteria and other 
decision parameters in an efficient manner. This led to the 
introduction of the fuzzy analytic hierarchy process (FAHP) 
method by Van Laarhoven and Pedrycz [13]. A lot of studies
had been done to examine the reliability and credibility of the 
FAHP. Some of the recent studies in this area are due to 
Nguyen et al. [14] who used FAHP to determine the ranking 
of the importance of parameters in a transportation project. 
Ruiz-Padillo et al. [15] applied FAHP to study the factors that 
contributed to traffic noise problem in a region, whereas 
Calabrese et al. [16] applied FAHP in the selection of criteria 
that affects the performance of a company.

Xu and Liao [17] proposed the intuitionistic fuzzy 
analytic hierarchy process (IFAHP) by combining the AHP 
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method and the IFS model to improve the capability of FAHP 
without affecting its originality and inherent characteristics. 
Many researchers have acknowledged the advantages of 
IFAHP and have applied it in various problems in different 
areas. Abdullah, Jaafar and Taib [18, 19] studied the ranking 
of Human Capital Indicators using IFAHP, and evaluated the 
criteria involved in sustainable energy technology in 
Malaysia, respectively. Kaur [20] applied IFAHP to evaluate 
and select the best vendor for a company, while Nguyen [21] 
employed the IFAHP method to estimate and subsequently 
eliminate the potential risks faced by a shipping system. 

Apart from the above, other fuzzy based AHP methods 
have been introduced in literature. These include the interval-
valued fuzzy analytic hierarchy process (IVFAHP) by Mirzaei 
[22] and the interval-valued intuitionistic fuzzy analytic 
hierarchy process (IVIFAHP) by Abdullah and Najib [23]. 
Mirzaei [22] applied his proposed IVFAHP to select the best 
cargo terminals for a logistics problem, whereas Fahmi, 
Derakhshan and Kahraman [24] applied the IVIFAHP to a 
human resource management problem to select the best 
candidate for university position. The rapid development in 
neutrosophic theory led to the introduction of the neutrosophic 
analytic hierarchy process (NAHP) by Radwan, Senousy and 
Riad [25] who then applied this method to the selection of the 
most suitable learning management system for an educational 
institution.  

The remainder of this paper is organized as follows. In 
Section 2, we recapitulate some of the fundamental concepts 
related to SVNSs and the NAHP method. In Section 3, we 
introduce our proposed neutrosophic data analytic hierarchy 
process (NDAHP) based on the SVNS model. In Section 4, 
the proposed decision-making method is then applied to a 
problem related to the evaluation of the performance of a 
company based on 15 financial parameters. Actual data for the 
five companies that were studied were obtained from Yahoo! 
Finance for the year 2017. In Section 5, a comprehensive 
comparative analysis of the results obtained via our proposed 
method and other recent SVNS based decision making 
methods are presented. We further verify the results obtained 
via our proposed NDAHP method using the Pearson and 
Spearman rank tests. It is proved that our proposed NDAHP 
method is more effective and produces more reliable results 
compared to the other SVNS based decision making method. 
Concluding remarks are given in Section 6, followed by the 
acknowledgements and list of references.    
2. PRELIMINARIES

In this section, we recapitulate some important concepts 
pertaining to the theory of SVNSs, and some of the recent 
developments related to SVNS based decision making. We 

refer the readers to [6, 9] for further details pertaining to the 
NS and SVNS theory, respectively.     

The single-valued neutrosophic set (SVNS) model [9] is 
a special case of the general neutrosophic set where the range 
of each of the three membership functions are in the standard 
unit of interval of [0, 1], instead of the non-standard interval 
of ]-0,1+[. The SVNS model is one of the most commonly 
used versions of the NS model, and a lot of research related to 
SVNS based decision making can be found in literature [26-
44]. 

The formal definition of the classical NS introduced by 
Smarandache [6] is given below. 

Let 𝑈 be a universe of discourse, with a class of elements 
in 𝑈 denoted by 𝑥. 
Definition 2.1. [6] A neutrosophic set 𝐴 is an object having 
the form 𝐴 = {〈𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉: 𝑥 ∈ 𝑈}, where the
functions 𝑇, 𝐼, 𝐹 ∶ 𝑈 →]−0, 1+[ denote the truth, 
indeterminacy, and falsity membership functions, 
respectively, of the element 𝑥 ∈ 𝑈 with respect to 𝐴. The 
membership functions must satisfy the condition  

0− ≤ 𝑇𝐴(𝑥) +  𝐼𝐴(𝑥) +  𝐹𝐴(𝑥) ≤ 3+.

Definition 2.2. [6] A neutrosophic set 𝐴 is contained in 
another neutrosophic set 𝐵, if 𝑇𝐴(𝑥) ≤ 𝑇𝐵 (𝑥), 𝐼𝐴(𝑥) ≥ 𝐼𝐵(𝑥),

and 𝐹𝐴(𝑥) ≥ 𝐹𝐵(𝑥), for all 𝑥 ∈ 𝑈. This relationship is denoted
as 𝐴 ⊆ 𝐵. 

The SVNS [9] is a specific form of the NS with values of the 
membership functions defined in the standard interval of [0, 
1]. The formal definition of the SVNS is presented below, and 
this is followed by the definitions of some of the important 
concepts and set theoretic operations of the SVNS.   

Definition 2.3. [9] A SVNS 𝐴 is a neutrosophic set that is 
characterized by a truth-membership function 𝑇𝐴(𝑥), an
indeterminacy-membership function 𝐼𝐴(𝑥), and a falsity-
membership function 𝐹𝐴(𝑥), where 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈

[0, 1]. This set 𝐴 can thus be written as 

𝐴 = {⟨𝑥, 𝑇_𝐴 (𝑥), 𝐼_𝐴 (𝑥), 𝐹_𝐴 (𝑥)⟩: 𝑥 ∈ 𝑈}.  (1) 

The sum of 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) and 𝐹𝐴(𝑥) must fulfill the condition
0 ≤ 𝑇𝐴(𝑥) +  𝐼𝐴(𝑥) +  𝐹𝐴(𝑥) ≤ 3. For a SVNS 𝐴 in 𝑈, the
triplet (𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)) is called a single-valued
neutrosophic number (SVNN). For the sake of convenience, 
we simply let 𝑥 = (𝑇𝑥 , 𝐼𝑥 , 𝐹𝑥) to represent a SVNN as an
element in the SVNS 𝐴.  
Definition 2.4. [9] Let 𝐴 and 𝐵 be two SVNSs over a universe 
𝑈.  
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(i) 𝐴 is contained in 𝐵, if 𝑇𝐴(𝑥) ≤ 𝑇𝐵(𝑥), 𝐼𝐴(𝑥) ≥ 𝐼𝐵(𝑥),

and 𝐹𝐴(𝑥) ≥ 𝐹𝐵(𝑥), for all 𝑥 ∈ 𝑈. This relationship is
denoted as 𝐴 ⊆ 𝐵.  

(ii) 𝐴 and 𝐵 are said to be equal if 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴. 
(iii) 𝐴𝑐 = (𝑥, (𝐹𝐴(𝑥), 1 − 𝐼𝐴(𝑥), 𝑇𝐴(𝑥))), for all 𝑥 ∈ 𝑈.

(iv) 𝐴 ∪ 𝐵 = (𝑥, (max(𝑇𝐴, 𝑇𝐵), min(𝐼𝐴, 𝐼𝐵), min(𝐹𝐴 , 𝐹𝐵))),

for all 𝑥 ∈ 𝑈. 
(v) 𝐴 ∩ 𝐵 = (𝑥, (min(𝑇𝐴 , 𝑇𝐵 ), max(𝐼𝐴, 𝐼𝐵), max(𝐹𝐴, 𝐹𝐵))),

for all 𝑥 ∈ 𝑈. 
Definition 2.5. [9] Let 𝑥 = (𝑇𝑥 , 𝐼𝑥 , 𝐹𝑥) and 𝑦 = (𝑇𝑦 , 𝐼𝑦 , 𝐹𝑦) be
two SVNNs. The operations for SVNNs can be defined as 
follows: 

(i) 𝑥⨁𝑦 = (𝑇𝑥 + 𝑇𝑦 − 𝑇𝑥 ∗ 𝑇𝑦 , 𝐼𝑥 ∗ 𝐼𝑦 , 𝐹𝑥 ∗ 𝐹𝑦)

(ii) 𝑥⨂𝑦 = (𝑇𝑥 ∗ 𝑇𝑦 , 𝐼𝑥 + 𝐼𝑦 − 𝐼𝑥 ∗ 𝐼𝑦 , 𝐹𝑥 + 𝐹𝑦 − 𝐹𝑥 ∗

𝐹𝑦)

(iii) 𝜆𝑥 = (1 − (1 − 𝑇𝑥)𝜆 , (𝐼𝑥)𝜆 , (𝐹𝑥)𝜆), where 𝜆 > 0

(iv) 𝑥𝜆 = ((𝑇𝑥)𝜆 , 1 − (1 − 𝐼𝑥)𝜆 , 1 − (1 − 𝐹𝑥)𝜆), where
𝜆 > 0.   

Definition 2.6. [45] Let 𝐴 and 𝐵 be two SVNSs over a finite 
universe 𝑈 = {𝑥1, 𝑥2, … , 𝑥𝑛}. Then the various distance
measures between 𝐴 and 𝐵 are defined as follows: 

(i) The Hamming distance between 𝐴 and 𝐵 are defined as: 

𝑑𝐻(𝐴, 𝐵) = ∑{|𝑇𝐴(𝑥𝑖) − 𝑇𝐵(𝑥𝑖)| + |𝐼𝐴(𝑥𝑖) − 𝐼𝐵(𝑥𝑖)| + |𝐹𝐴(𝑥𝑖) − 𝐹𝐵(𝑥𝑖)|} 

𝑛

𝑖=1

 (2) 

(ii) The normalized Hamming distance between 𝐴 and 𝐵 are defined as: 

𝑑𝐻
𝑁(𝐴, 𝐵) =

1

3𝑛
∑{|𝑇𝐴(𝑥𝑖) − 𝑇𝐵 (𝑥𝑖)| + |𝐼𝐴(𝑥𝑖) − 𝐼𝐵(𝑥𝑖)| + |𝐹𝐴(𝑥𝑖) − 𝐹𝐵(𝑥𝑖)|}

𝑛

𝑖=1

  (3) 

(iii) The Euclidean distance between 𝐴 and 𝐵 are defined as: 

𝑑𝐸(𝐴, 𝐵) = √∑ {(𝑇𝐴(𝑥𝑖) − 𝑇𝐵(𝑥𝑖))
2

+ (𝐼𝐴(𝑥𝑖) − 𝐼𝐵(𝑥𝑖))
2

+ (𝐹𝐴(𝑥𝑖) − 𝐹𝐵(𝑥𝑖))
2
}

𝑛

𝑖=1

 (4) 

(iv) The normalized Euclidean distance between 𝐴 and 𝐵 are defined as: 

𝑑𝐸
𝑁(𝐴, 𝐵) = √

1

3𝑛
∑ {(𝑇𝐴(𝑥𝑖) − 𝑇𝐵(𝑥𝑖))

2

+ (𝐼𝐴(𝑥𝑖) − 𝐼𝐵(𝑥𝑖))
2

+ (𝐹𝐴(𝑥𝑖) − 𝐹𝐵(𝑥𝑖))
2
}

𝑛

𝑖=1

 (5) 

3. THE PROPOSED NDAHP METHOD BASED ON
SVNS 

In this section, we present the decision making algorithm 
for our proposed neutrosophic data analytic hierarchy process 
(NDAHP). The important components of our proposed 
NDAHP method such as the formula for the pairwise 
comparison step and the formula to convert the crisp data to 
SVNN are also presented and explained. 

Neutrosophic data analytic hierarchy process (NDAHP) 

Previous research related to NAHP (Radwan, Senousy & 
Riad [25], Abdel-Basset, Mohamed and Smarandache [46], 
and Alava et al. [47]) highlighted the practicality of NAHP by 
applying it to solve various MCDM problems. However, all 
of these research only considers experts’ opinions which can 
be very subjective and the importance of a criterion evaluated 
by an expert may be subverted by actual data. Besides, the 
experts’ may not have consensus with each other, as one 
expert may not necessarily agree with the importance of a 
criteria as determined by another expert. 

To overcome this problem, we propose a new AHP 
method based on the SVNS model called the neutrosophic 
data analytic hierarchy process (NDAHP). The main 
difference between our NDAHP method and the NAHP 
method is that the NDAHP uses actual data to obtain the 
weightage of the criteria, instead of relying on experts’ 
opinion to obtain the weightage of the criteria. Hence, the 
results obtained through the NDAHP model will be more 
accurate as the weightage and importance of each criteria and 
alternative is determined objectively by using actual datasets. 
Therefore, our proposed method produces input and output 
values that better reflect the actual situation as per the law of 
input argument. 

The decision making method for the NDAHP method 
and the procedure to apply in MCDM problems is described 
as follows: 

Step 1: Construct hierarchical model 

The framework of the application need to be constructed in 
order to give the decision maker a clearer idea about the 
application. First, the objective need to be determined because 
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that is important for the decision maker to determine the 
criteria and alternatives of the problem. Next, the decision 
maker needs to select the criteria and alternatives that are 
related to the objective. Involvement of unrelated criteria and 
alternatives will result in inaccurate results being obtained. 

Figure 1: An example of a NDAHP structure 

Step 2: Obtain actual datasets for the problem from 
reliable source(s) 

The necessary data need to be exported from reliable and 
verified source(s). Any datasets sourced from unverified 
sources may contain wrong information and this will affect 
the accuracy of the results obtained. 

Step 3: Convert crisp data into single-valued neutrosophic 
numbers (SVNN) 

The crisp data needs to be converted into single-valued 

neutrosophic number (SVNN) using Eq. (6) and (7) that was 

introduced by Nirmal and Bhatt [48]. 

Beneficial criteria: 

𝑅𝑖𝑗 =
𝑋𝑖𝑗 − 𝑀𝑖𝑛𝑋𝑖𝑗

𝑀𝑎𝑥𝑋𝑖𝑗 − 𝑀𝑖𝑛𝑋𝑖𝑗

 (6) 

Non-beneficial criteria: 

𝑅𝑖𝑗 =
𝑀𝑎𝑥𝑋𝑖𝑗 − 𝑋𝑖𝑗

𝑀𝑎𝑥𝑋𝑖𝑗 − 𝑀𝑖𝑛𝑋𝑖𝑗

 (7) 

Beneficial criteria refers to criteria which are preferable when 

the value is higher, for example, revenue and quality. Non-

beneficial criteria refers to criteria which are preferable when 

the value is lower, for example cost and debt. 

After obtaining the value of 𝑅𝑖𝑗 , the corresponding

SVNNs are then computed using Eq. (8) and (9) which are 

also due to Nirmal and Bhatt [48].  

Beneficial criteria: 

(𝑡𝑝, 𝑖𝑝 , 𝑓𝑝) = (𝑅𝑖𝑗 , 1 − 𝑅𝑖𝑗 , 1 − 𝑅𝑖𝑗)   (8) 

Non-beneficial criteria: 

(𝑡𝑝, 𝑖𝑝 , 𝑓𝑝) = (1 − 𝑅𝑖𝑗 , 𝑅𝑖𝑗 , 𝑅𝑖𝑗)   (9) 

Step 4: Pairwise comparison 

In this step, the SVNN of each criteria need to be compared to 

the other criteria to determine their relative importance. Here 

we introduce a formula to calculate the comparison values in 

the pairwise comparison matrix. Eq. (10) is proposed as no 

other formula are available in the existing literature for the 

purpose of calculating the comparison values in the 

comparison matrix using actual data.  

𝑎𝑖𝑗 =
𝜃𝑖 − 𝜃𝑗 + 1

2
 (10) 

where 𝜃𝑖 , 𝜃𝑗 and 𝑎𝑖𝑗  denotes the SVNN of the criteria 𝑖, SVNN
of the criteria 𝑗 and the SVNN in the comparison matrix, 
respectively.  

The comparison values obtained are to be placed in a 

comparison matrix in the form given in Table 1.  

Table 1: Comparison matrix 

Criteria 𝜃1 𝜃2 ⋯ 𝜃𝑛

𝜃1

𝜃1 − 𝜃1 + 1

2

𝜃1 − 𝜃2 + 1

2
⋯ 

𝜃1 − 𝜃𝑛 + 1

2

𝜃2

𝜃2 − 𝜃1 + 1

2

𝜃2 − 𝜃2 + 1

2
⋯ 

𝜃2 − 𝜃𝑛 + 1

2

⋮ ⋮ ⋮ ⋯ ⋮ 

𝜃𝑛

𝜃𝑛 − 𝜃1 + 1

2

𝜃𝑛 − 𝜃2 + 1

2
⋯ 

𝜃𝑛 − 𝜃𝑛 + 1

2

Step 5: Consistency checking 

The purpose of this step is to check the consistency of the 
matrix and determine the acceptability of the matrix. 

Given a SVNS 𝐴 = (𝑎𝑖𝑗)
𝑛×𝑛

, where each 𝑎𝑖𝑗  represents
a neutrosophic number (𝑇𝑖𝑗 , 𝐼𝑖𝑗 , 𝐹𝑖𝑗) and a consistency matrix
𝐶 = (𝑐𝑖𝑗)

𝑛×𝑛
= (𝑇′𝑖𝑗 , 𝐼′𝑖𝑗 , 𝐹′𝑖𝑗)

𝑛×𝑛
. The procedure to

determine the consistency is as outlined below. 
(i) For 𝑗 > 𝑖 + 1, 
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𝑇′𝑖𝑗 =
√𝑇𝑖𝑘 × 𝑇𝑘𝑗 × 𝑇𝑖(𝑗−1) × 𝑇(𝑗−1)𝑗

𝑗−𝑖−1

√𝑇𝑖𝑘 × 𝑇𝑘𝑗 × 𝑇𝑖(𝑗−1) × 𝑇(𝑗−1)𝑗
𝑗−𝑖−1

+ √(1 − 𝑇𝑖𝑘) × (1 − 𝑇𝑘𝑗) × (1 − 𝑇𝑖(𝑗−1)) × (1 − 𝑇(𝑗−1)𝑗)
𝑗−𝑖−1

𝐼′𝑖𝑗= 
√𝐼𝑖𝑘×𝐼𝑘𝑗×𝐼𝑖(𝑗−1)×𝐼(𝑗−1)𝑗

𝑗−𝑖−1

√𝐼𝑖𝑘×𝐼𝑘𝑗×𝐼𝑖(𝑗−1)×𝐼(𝑗−1)𝑗
𝑗−𝑖−1

+ √(1−𝐼𝑖𝑘)×(1−𝐼𝑘𝑗)×(1−𝐼𝑖(𝑗−1))×(1−𝐼(𝑗−1)𝑗)
𝑗−𝑖−1

𝐹′𝑖𝑗 =
√𝐹𝑖𝑘 × 𝐹𝑘𝑗 × 𝐹𝑖(𝑗−1) × 𝐹(𝑗−1)𝑗

𝑗−𝑖−1

√𝐹𝑖𝑘 × 𝐹𝑘𝑗 × 𝐹𝑖(𝑗−1) × 𝐹(𝑗−1)𝑗
𝑗−𝑖−1

+ √(1 − 𝐹𝑖𝑘) × (1 − 𝐹𝑘𝑗) × (1 − 𝐹𝑖(𝑗−1)) × (1 − 𝐹(𝑗−1)𝑗)
𝑗−𝑖−1

 , 

where 𝑘 = 𝑖 + 1. 

(ii)  For 𝑗 = 𝑖 + 1, 𝑐𝑖𝑗 = (𝑇𝑖𝑗 , 𝐼𝑖𝑗 , 𝐹𝑖𝑗), where 𝑘 = 𝑖 + 1.

(iii) For 𝑗 < 𝑖, 𝑐𝑖𝑗 = (𝐹′𝑗𝑖 , 1 − 𝐼′𝑗𝑖 , 𝑇′𝑗𝑖), where 𝑘 = 𝑖 + 1.

By applying the above formula, the consistency index (CI) of 
the data will be obtained in the form of a matrix. The decision 
maker will then need to apply Eq. (11) to obtain the 
consistency ratio (CR): 

𝐶𝑅 =
1

2(𝑛 − 1)(𝑛 − 2)
∑ ∑(|𝑇′𝑖𝑗 − 𝑇𝑖𝑗| + |𝐼′𝑖𝑗 − 𝐼𝑖𝑗|

𝑛

𝑗=1

𝑛

𝑖=1

+ |𝐹′𝑖𝑗 − 𝐹𝑖𝑗|)  (11) 

The matrix is said to be acceptable and can be further 
processed if the value of the CR is less than 0.1, otherwise, 
the data is considered inconsistent and requires 
reconstruction.  

Remarks: This consistency checking step is done to examine 
the validity of the alternatives’ preference when the 
comparison matrix is constructed. The consistency ratio tends 
to be large when the relative importance is determined by the 
subjective opinions of human experts and, as a result the 
comparison matrix tends to become inconsistent. As our 
proposed NDAHP method uses actual datasets to obtain the 
weightage and pairwise comparison values which is very 
objective, this consistency checking step is not necessary to 
be carried out. 

Step 6: Compute relative weightage 

After the consistency is checked, and found to be acceptable, 
the weightage of criteria is calculated. Since the weightage of 
the criteria are in the form SVNNs, some of the properties and 
concepts pertaining to SVNS given in Eqs. (12) to (16) need 
to be used. These formula are due to Radwan, Senousy and 

Riad [25]; here 𝐴1, 𝐴2 denote SVNSs, and 𝑁 denotes the
number of alternatives or criteria.  

(i) 𝐴1 + 𝐴2 = (𝑡1 + 𝑡2 − 𝑡1𝑡2, 𝑖1𝑖2, 𝑓1𝑓2)  (12) 
(ii) 𝐴1 × 𝐴2 = (𝑡1𝑡2, 𝑖1 + 𝑖2 − 𝑖1𝑖2, 𝑓1 + 𝑓2 − 𝑓1𝑓2)     (13)
(iii) 𝐴1

𝐴2
= (

𝑡1

𝑡2
,

𝑖1−𝑖2

1−𝑖2
,

𝑓1−𝑓2

1−𝑓2
)  (14) 

(iv) 𝐴1 × 𝑁 = (1 − (1 − 𝑡1)𝑁 , 𝑖1
𝑁 , 𝑓1

𝑁)  (15) 

(v) 𝐴1

𝑁
= (1 − (1 − 𝑡1)

1

𝑁, 𝑖1

1

𝑁, 𝑓1

1

𝑁)  (16) 

These operations are going to be used in the computation 
of weightage for the criteria. A pairwise comparison matrix is 
constructed, and each of the element in the matrix is a SVNN. 
The procedure to obtain the weightage is as described below. 

First, sum up the SVNN in the column using Eq. (12). 
The result of the summation of the SVNNs forms a new 
matrix of dimension (1 × 𝑛). Next, divide every element in 
the matrix by the corresponding element in matrix 𝐵 using Eq. 
(15). As a result, a matrix 𝐴′ of dimension (𝑛 × 𝑛) is formed. 
Lastly, the weightage is obtained by calculating the average 
value of the SVNNs that represent the different criteria row 
by row using Eq. (12) and Eq. (16).  

Step 7: Obtain overall ranking 

In this step, the decision maker needs to repeat step 3 to step 
6 described above to calculate the weightage of the sub-
criteria and alternatives. After the weightage of the criteria, 
sub-criteria and alternatives have been obtained, the overall 
weightage can be calculated. The concept of the method to 
obtain the overall weightage is the same as the method used 
to calculate the overall weightage in the AHP method. The 
procedure to obtain the overall weightage are shown in Table 
2.

Florentin Smarandache (ed.) Collected Papers, VII

430



From Table 2, the notation 𝜃𝑖 denotes the weightage of
criteria 𝑖 while 𝑊𝑋𝑖

 denotes the weightage of alternative 𝑋

with respect to criteria 𝑖. Note that the overall weightage 
obtained is in SVNN form. Eq. (17) is then used to convert the 
SVNNs to crisp values.  

𝑆(𝐴𝑗) =
3 + 𝑡𝑗 − 2𝑖𝑗 − 𝑓𝑗

4
 (17) 

where 𝑡𝑗 , 𝑖𝑗  and 𝑓𝑗 denotes the truth, indeterminacy and falsity
membership value for alternative 𝐴𝑗 .

Table 2: Procedure to obtain the overall weightage 
Criteria Alternatives Weightage

 𝐴 
Weightage

 𝐵 
Weightage

 𝐶 

𝜃1

𝑊𝐴1

𝜃1𝑊𝐴1
𝜃1𝑊𝐵1

𝜃1𝑊𝐶1𝑊𝐵1
 

𝑊𝐶1

𝜃2

𝑊𝐴2

𝜃2𝑊𝐴2
𝜃2𝑊𝐵2

𝜃2𝑊𝐶2
𝑊𝐵2

𝑊𝐶2

𝜃3

𝑊𝐴3

𝜃3𝑊𝐴3
𝜃3𝑊𝐵3

𝜃3𝑊𝐶3
𝑊𝐵3

𝑊𝐶3

Total ∑ 𝜃𝑖𝑊𝐴𝑖

𝑛

𝑖=1
∑ 𝜃𝑖𝑊𝐵𝑖

𝑛

𝑖=1
∑ 𝜃𝑖𝑊𝐶𝑖

𝑛

𝑖=1

Step 8: Determine overall ranking 

At the end of step 7, a weightage is obtained for every 
alternative. At this final step, the decision maker has to 
arrange the weightage obtained for each alternative in 
descending order, and subsequently make a decision. 

4. APPLICATION OF THE NDAHP METHOD IN A
MCDM PROBLEM 
In this section, the utility and practicality of our proposed 
NDAHP method are demonstrated by applying the NDAHP 
method to a MCDM problem related to the ranking of the 
financial performance of five selected petrochemical 
companies in Malaysia.  
4.1  Ranking the financial perfomance of petrochemical 
companies in Malaysia  
The performance of a company is measured using the 
financial indicators of the company, and this is an important 
factor that contributes to investor confidence and the 
performance of the company in the stock market. Here, we 
consider five public listed petrochemical companies that are 

trading in the main board of the Kuala Lumpur Stock 
Exchange (KLSE). The companies are Hengyuan Refining 
Company Berhad (HENGYUAN), Petron Malaysia Refining 
and Marketing Berhad (PETRONM), Barakah Offshore 
Petroleum Berhad (BARAKAH), Sapura Energy Berhad 
(SAPURA) and Perdana Petroleum Berhad (PERDANA), and 
these companies form the set of alternatives for this problem. 
The objective of the study is to rank the five companies based 
on their financial performance in the year 2017. To examine 
this, 15 financial ratios and financial indicators for the five 
companies are considered. These are the sales growth, asset 
growth, shareholder’s equity growth, accounts receivable 
turnover, fixed assets turnover, equity turnover, total asset 
turnover, debt ratio, debt to equity ratio, ROA, ROE, net profit 
margin, current ratio, quick ratio and cash ratio, and these 
form the set of criteria for this problem. Actual datasets for 
the financial ratios for the financial year 2017 for these five 
companies were used in this study. These datasets were 
obtained from the official annual reports of the respective 
companies that were obtained from the Securities 
Commission of Malaysia and/or the official websites of the 
companies.  

The above-mentioned datasets were applied to our 
proposed NDAHP method and the results obtained are as 
given in Table 3. 

Table 3: Results obtained from our proposed NDAHP 
method 

Petrochemical company Weightage Ranking 

HENGYUAN 0.223344084 1 

PETRONM 0.218360145 2 

BARAKAH 0.186326396 3 

SAPURA 0.186265568 4 

PERDANA 0.185703807 5 

4.2 Discussion of results 

The consistency of the comparison between alternatives and 
criteria was examined and the average consistency ratio is 
1.88494 × 10−16 which means that the comparison matrices 
will not be affected by the consistency and can be further 
processed. 

Financial ratio is a useful tool for investors and 
analysts to evaluate the financial performance of a company. 
In this study, we propose the use of the NDAHP method to 
evaluate the financial performance of five petrochemical 
companies in the year 2017 by taking into consideration 15 
financial ratios namely sales growth, asset growth, 
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shareholder’s equity growth, accounts receivable turnover, 
fixed asset turnover, equity turnover, total assets turnover, 
debt ratio, debt to equity ratio, ROA, ROE, net profit margin, 
current ratio, quick ratio and cash ratio. 

The results obtained corroborates the actual results 
obtained from the Edge financial newspaper. In the following, 
we provide explanations to support our results. It was found 
that HENGYUAN has the best financial performance among 
the five petrochemical companies with a weightage of 
0.223344084. HENGYUAN performed well in the growth 
ratios, liquidity ratios and profitability ratios components in 
the petrochemical sector. The net profit of HENGYUAN in 
the financial year 2017 is RM930 million, which is a triple of 
the RM335 million net profit recorded in the previous 
financial year. This was mainly contributed by the 38.47% 
growth in revenue of the company from RM8.37 billion in 
2016 to RM11.58 billion in 2017. HENGYUAN also recorded 
a higher production output thanks to the higher level of plant 
reliability in 2017. Several major hurricane and fire incidents 
that happened in the US had caused a number of major 
refineries in the US and Netherlands to shut down, and this 
had eventually caused an increase in global product prices. 
This higher profit margins for the refining was fully 
capitalized by HENGYUAN.  

PETRONM recorded the second best financial 
performance among the five selected petrochemical 
companies with a weightage of 0.218360145. PETRONM is 
good in managing the financial leverage ratio in which the 
debt to equity ratio was constantly maintained at below one. 
A low debt to equity ratio indicates that the assets in 
PETRONM was fund by their equities instead of debt. The 
increase in oil prices and sales volume had contributed a 
RM405.2 million net profit in the financial year 2017. The 
sales volume increased by 9% from 2016 to 2017 which was 
contributed by the high demand of aviation and industrial 
sector sales of their Turbo Diesel Euro 5 and Blaze 100 Euro 
4M products.   

BARAKAH had a net loss of RM217 million in 
financial year 2017 compared with a RM14.53 million net 
profit made in financial year 2016. The revenue was decreased 
a lot in the fourth quarter of financial year 2017 due to the cost 
overruns in their on-going projects. Besides these, 
BARAKAH also had a major financial concern as their loan 
of RM38.53 million taken in 2017 had to be settled within 12 
months, and overall there was a RM71.83 million negative 
cash flow recorded. All in all, BARAKAH had a negative 
growth ratio and profitability ratio for 2017, and the company 
was incurring losses. 

SAPURA suffered from financial problems which 
were mainly due to material uncertainties which meant that 

the company was not confident enough to maintain its 
solvency. The current liabilities exceeded the current assets 
for the financial period ending June 30, 2017, and some major 
impairment needed to be made on their plants and equipment. 

PERDANA was re-listed on the main board of the 
KLSE since the middle of August 2017. Their goal was to 
improve offshore support vessel (OSV) utilization rate in 
2017, which was affected by decreasing oil prices in 2016, 
thus resulting in a low vessel utilization rate. This issue 
negatively impacted the financial performance of PERDANA, 
ad resulted in PERDANA having a negative growth ratio and 
profitability ratio. To improve on this situation and cut down 
on their recurring losses, PERDANA began having joint 
ventures with some major players in the petrochemical sector 
such as Petronas and Shell.    

5. COMPARATIVE STUDIES
In this section, we present a brief but comprehensive 
comparative analysis of some of the recent works in this area 
and our proposed method. These recent approaches are 
applied to our case study related to the evaluation of financial 
performance of the five petrochemical companies done in 
Section 4.1. The existing methods that were chosen for this 
comparative studies are the neutrosophic Technique for Order 
Preference by Similarity to an Ideal Solution (NTOPSIS) by 
Biswas, Pramanik and Giri [43], neutrosophic correlation 
coefficient (NCC) by Ye [26], neutrosophic cross-entropy 
(NCE) by Pramanik et al. [49], neutrosophic Evaluation based 
on Distance from Average Solution (NEDAS) by Peng and 
Liu [31] and the improved single valued neutrosophic 
weighted averaging geometric aggregation operator 
(ISVNWAGAO) by Mandal and Basu [50]. These five 
methods will be applied to our case study and the results 
obtained will be compared to the results obtained from our 
proposed NDAHP method in a bid to verify the effectiveness 
of our proposed MCDM method.  
5.1 Comparison of results obtained through different 

methods 

Table 4: The results obtained using different methods for 

the case study in Section 4.1 
Method The final ranking 

NTOPSIS [43] HENGYUAN ≽ PETRONM ≽ PERDANA ≽ 

BARAKAH ≽SAPURA  

NCC [26] HENGYUAN ≽ PETRONM ≽ SAPURA ≽ 

BARAKAH ≽ PERDANA 

NCE [49] HENGYUAN ≽ PETRONM ≽ BARAKAH ≽ 

PERDANA ≽ SAPURA 

NEDAS [31] PETRONM ≽ HENGYUAN ≽ SAPURA≽ 

PERDANA ≽ BARAKAH 
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[50] 

HENGYUAN ≽ PETRONM ≽ SAPURA  ≽ 

BARAKAH ≽ PERDANA 

Our proposed 

NDAHP method 

HENGYUAN ≽ PETRONM ≽ BARAKAH ≽ 

SAPURA≽ PERDANA 

Actual ranking HENGYUAN ≽ PETRONM ≽ BARAKAH ≽ 

SAPURA ≽ PERDANA 

5.2 Discussion of results 

From the results obtained in Table 4, it can be observed that 
different rankings and optimal alternatives were obtained 
from the different methods that were compared. These 
differences are due to a number of reasons which are 
summarized briefly below: 

(i) In the NDAHP method, we use the hierarchical 
principal in which we compare the pairwise values between 
the criteria and between the alternatives. The criteria weights 
are needed to be determined to rank the alternatives. However, 
we use the distance principal for NEDAS method in which the 
distance is between the alternatives and the average solution. 
This is the reason for the difference in the results obtained via 
the NDAHP and NEDAS methods.     

(ii) The NDAHP method provides the weightage of 
different criteria under different alternatives. For example, in 
our case study related to the ranking of the financial 
performance of five selected petrochemical companies, the 
NDAHP method provides the weightage of the different 
criteria for the companies HENGYUAN, PETRONM, 
BARAKAH, SAPURA and PERDANA. Decision makers can 
observe the comparative advantage of a company through the 
differences in the weightage of the different criteria. For 
examples, the weightage of sales growth under HENGYUAN 
is 0.20507543 which is much higher than the other companies, 
which makes it clear to the decision makers that 
HENGYUAN has the highest sales growth among the five 
petrochemical companies that are studied. 
5.3 Further verification of results using Spearman’s rank 
and Pearson coefficient correlation 
Correlation is an analysis that examine the strength of the 
relationship between two variables. A rank test can help users 
to examine how strong are the relationship between two 
variables. The result obtained from the rank test is range from 
between -1 to 1. A value of -1 indicates that the two variables 
are negatively correlated, i.e. for every increase in the first 
variable, there will a certain amount of decrease in the second 
variable. A value of 1 indicates that the two variables are 
positively correlated, i.e. for every increase in the first 
variable, there will be a certain amount of increase in the 
second variable. When the result obtained is 0, it means that 
there is no relationship between the two variables. 

Here, the correlation between the results obtained 
from the decision making methods used in Table 4 and the 
actual ranking will be examined to determine how strong is 
the relationship between the result obtained by decision 
making method and the actual ranking. The rank test used here 
will be the Spearman’s rank correlation coefficient and 
Pearson correlation coefficient. The result of Spearman’s rank 
correlation coefficient is determined by using the ranking 
while the Pearson correlation coefficient is determined by 
using weightage or the value used to determine the ranking. 
The formula used to determine the correlation between the 
two variables are as given below: 

i) Spearman’s rank correlation coefficient

Correlation = 1 −
6 ∑ 𝑑𝑖

2𝑛
𝑖=1

𝑛(𝑛2 − 1)
 (18) 

ii) Pearson correlation coefficient

Correlation

=
𝑛 ∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 − ∑ 𝑥𝑖

𝑛
𝑖=1 ∑ 𝑦𝑖

𝑛
𝑖=1

√𝑛 ∑ 𝑥𝑖
2𝑛

𝑖=1 − (∑ 𝑥𝑖
𝑛
𝑖=1 )2√𝑛 ∑ 𝑦𝑖

2𝑛
𝑖=1 − (∑ 𝑦𝑖

𝑛
𝑖=1 )2

 (19) 

The results obtained from the rank test are presented in Table 
5. 

Table 5: Correlation between the results of the ranking 

of financial performance 

Ranking 
Spearman’s rank 

correlation coefficient 

Pearson correlation 

coefficient 

1 1.0 NDAHP 0.922317 NCC 

2 0.9 NCC 
0.91458 

ISVNWA

GAO 

3 0.9 NCE 0.906758 NDAHP 

4 0.9 ISVNWA

GAO 
0.888549 NTOPSIS 

5 0.7 NTOPSIS 0.556343 NEDAS 

6 0.6 NEDAS -0.88332 NCE 

From the results obtained from Spearman’s rank correlation 
coefficient, it can be clearly seen that our proposed NDAHP 
method is perfectly correlated with the actual ranking while 
the NCC, NCE and ISVNWAGAO are slightly less correlated 
to the actual ranking compared to the NDAHP method, 
whereas the NTOPSIS and NEDAS methods have the worst 
correlation with the actual ranking. 

From the results obtained from Pearson coefficient 
correlation, the results obtained from decision making 
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methods of NDAHP, NCC, ISVNWAGAO and NTOPSIS are 
strongly correlated with the actual ranking. However, the 
results obtained from the NEDAS method has a very low 
consistency with the actual ranking, whereas the results 
obtained from the NCE method is negatively correlated with 
the actual ranking with a Pearson correlation coefficient of -
0.88332. 

It is therefore clearly proven that our proposed NDAHP 
method is the approach that produces results that are most 
consistent with the actual ranking.  

6. CONCLUSION AND REMARKS

The concluding remarks and the significant contributions that 
were made by the work in this paper are summarized below: 
(i) A novel AHP method for the single-valued neutrosophic 
set (SVNS) model called the neutrosophic data analytic 
hierarchy process (NDAHP) is introduced. Our proposed 
NDAHP method holds the distinction of being the only AHP 
based method in literature that is designed to handle actual 
datasets i.e. data in the form of crisp values. This makes it 
novel and more comprehensive compared to existing AHP 
methods in literature as these are only able to handle 
subjective information in the form of opinions collected from 
the users and decision makers based on their individual 
opinions and experiences.  
(ii) The NAHP method uses the opinions of experts to 
determine the relative importance of each criteria, whereas 
our proposed NDAHP method has a step incorporated into it 
which is able to convert the crisp values in actual datasets. 
Therefore, our proposed NDAHP method uses an objective 
weighting mechanism whereas all other existing versions of 
the AHP, fuzzy AHP and other fuzzy based AHP method in 
literature such as the NAHP and picture fuzzy AHP uses a 
subjective weighting method in the process of determining the 
weights of the criteria. Furthermore, the formula used in our 
method to convert the crisp values in the real-life datasets to 
single-valued neutrosophic numbers is also able to 
differentiate between the beneficial and non-beneficial 
criteria. This makes our proposed NDAHP method a very 
objective one as the weightage of the criteria and evaluation 
matrix are determined in an objective manner using the actual 
data collected for the problem, and hence will not change 
according to the opinions of the different decision makers 
which are subjective. This also makes it unnecessary to 
determine the consistency of the evaluation matrix as our 
method uses an objective weighting mechanism.  
(iii) Through thorough analysis using the Spearman’s rank 
correlation coefficient and Pearson’s correlation coefficient 
tests, we have proven that our proposed NDAHP method 
produces results that are consistent with the actual results. 

This clearly indicates that our proposed method is not only an 
effective decision making algorithm but one that is also highly 
reliable and accurate.  
Funding: This research was funded by the Ministry of 
Education, Malaysia under grant no. 
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Abstract: Soft sets (SSs), neutrosophic sets (NSs), and rough sets (RSs) are different mathematical
models for handling uncertainties, but they are mutually related. In this research paper, we introduce
the notions of soft rough neutrosophic sets (SRNSs) and neutrosophic soft rough sets (NSRSs) as
hybrid models for soft computing. We describe a mathematical approach to handle decision-making
problems in view of NSRSs. We also present an efficient algorithm of our proposed hybrid model to
solve decision-making problems.

Keywords: soft rough neutrosophic sets; neutrosophic soft rough sets; decision-making; algorithm

1. Introduction

Smarandache [1] initiated the concept of neutrosophic set (NS). Smarandache’s NS is characterized
by three parts: truth, indeterminacy, and falsity. Truth, indeterminacy and falsity membership values
behave independently and deal with the problems of having uncertain, indeterminant and imprecise
data. Wang et al. [2] gave a new concept of single valued neutrosophic set (SVNS) and defined the set
of theoretic operators in an instance of NS called SVNS. Ye [3–5] studied the correlation coefficient and
improved correlation coefficient of NSs, and also determined that, in NSs, the cosine similarity measure
is a special case of the correlation coefficient. Peng et al. [6] discussed the operations of simplified
neutrosophic numbers and introduced an outranking idea of simplified neutrosophic numbers.

Molodtsov [7] introduced the notion of soft set as a novel mathematical approach for handling
uncertainties. Molodtsov’s soft sets give us new technique for dealing with uncertainty from the
viewpoint of parameters. Maji et al. [8–10] introduced neutrosophic soft sets (NSSs), intuitionistic
fuzzy soft sets (IFSSs) and fuzzy soft sets (FSSs). Babitha and Sunil gave the idea of soft set relations [11].
In [12], Sahin and Kucuk presented NSS in the form of neutrosophic relation.

Rough set theory was initiated by Pawlak [13] in 1982. Rough set theory is used to study the
intelligence systems containing incomplete, uncertain or inexact information. The lower and upper
approximation operators of RSs are used for managing hidden information in a system. Therefore,
many hybrid models have been built such as soft rough sets (SRSs), rough fuzzy sets (RFSs),
fuzzy rough sets (FRSs), soft fuzzy rough sets (SFRSs), soft rough fuzzy sets (SRFSs), intuitionistic
fuzzy soft rough sets (IFSRS), neutrosophic rough sets (NRSs), and rough neutrosophic sets (RNSs) for
handling uncertainty and incomplete information effectively. Soft set theory and RS theory are two
different mathematical tools to deal with uncertainty. Evidently, there is no direct relationship between
these two mathematical tools, but efforts have been made to define some kind of relation [14,15].
Feng et al. [15] took a significant step to introduce parametrization tools in RSs. They introduced SRSs,
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in which parameterized subsets of universal sets are elementary building blocks for approximation
operators of a subset. Shabir et al. [16] introduced another approach to study roughness through SSs,
and this approach is known as modified SRSs (MSR-sets). In MSR-sets, some results proved to be
valid that failed to hold in SRSs. Feng et al. [17] introduced a modification of Pawlak approximation
space known as soft approximation space (SAS) in which SAS SRSs were proposed. Moreover, they
introduced soft rough fuzzy approximation operators in SAS and initiated a idea of SRFSs, which is an
extension of RFSs introduced by Dubois and Prade [18] . Meng et al. [19] provide further discussion
of the combination of SSs, RSs and FSs. In various decision-making problems, RSs have been used.
The existing results of RSs and other extended RSs such as RFSs, generalized RFSs, SFRSs and IFRSs
based decision-making models have their advantages and limitations [20,21]. In a different way,
RS approximations have been constructed into the IF environment and are known as IFRSs, RIFSs and
generalized IFRSs [22–24]. Zhang et al. [25,26] presented the notions of SRSs, SRIFSs, and IFSRSs,
its application in decision-making, and also introduced generalized IFSRSs. Broumi et al. [27,28]
developed a hybrid structure by combining RSs and NSs, called RNSs. They also presented interval
valued neutrosophic soft rough sets by combining interval valued neutrosophic soft sets and RSs.
Yang et al. [29] proposed single valued neutrosophic rough sets (SVNRSs) by combining SVNSs and
RSs, and established an algorithm for decision-making problems based on SVNRSs in two universes.
For some papers related to NSs and multi-criteria decision-making (MCDM), the readers are referred
to [30–38]. The notion of SRNSs is a extension of SRSs, SRIFSs, IFSRSs, introduced by Zhang et al.
motivated by the idea of single valued neutrosophic rough sets (SVNRSs) introduced, we extend the
single valued neutrosophic rough sets’ lower and upper approximations to the case of a neutrosophic
soft rough set. The concept of a neutrosophic soft rough set is introduced by coupling both the
neutrosophic soft sets and rough sets. In this research paper, we introduce the notions of SRNSs
and NSRSs as hybrid models for soft computing. Approximation operators of SRNSs and NSRSs are
described and their relevant properties are investigated in detail. We describe a mathematical approach
to handle decision-making problems in view of NSRSs. We also present an efficient algorithm of our
proposed hybrid model to solve decision-making problems.

2. Construction of Soft Rough Neutrosophic Sets

In this section, we introduce the notions of SRNSs by combining soft sets with RNSs and soft
rough neutrosophic relations (SRNRs). Soft rough neutrosophic sets consist of two basic components,
namely neutrosophic sets and soft relations, which are the mathematical basis of SRNSs. The basic idea
of soft rough neutrosophic sets is based on the approximation of sets by a couple of sets known as the
lower soft rough neutrosophic approximation and the upper soft rough neutrosophic approximation
of a set. Here, the lower and upper approximation operators are based on an arbitrary soft relation.
The concept of soft rough neutrosophic sets is an extension of the crisp set, rough set for the study
of intelligent systems characterized by inexact, uncertain or insufficient information. It is a useful
tool for dealing with uncertainty or imprecision information. The concept of neutrosophic soft
sets is powerful logic to handle indeterminate and inconsistent situations, and the theory of rough
neutrosophic sets is also powerful mathematical logic to handle incompleteness. We introduce the
notions of soft rough neutrosophic sets (SRNSs) and neutrosophic soft rough sets (NSRSs) as hybrid
models for soft computing. The rating of all alternatives is expressed with the upper soft rough
neutrosophic approximation and lower soft rough neutrosophic approximation operator and the pair
of neutrosophic sets that are characterized by truth-membership degree, indeterminacy-membership
degree, and falsity-membership degree from the view point of parameters.

Definition 1. Let Y be an initial universal set and M a universal set of parameters. For an arbitrary soft relation
P over Y×M, let Ps : Y → N (M) be a set-valued function defined as Ps(u) = {k ∈ M | (u, k) ∈ P}, u ∈ Y.

Let (Y, M, P) be an SAS. For any NS C = {(k, TC(k), IC(k), FC(k)) | k ∈ M} ∈ N (M), where N (M)

is a neutrosophic power set of parameter set M, the lower soft rough neutrosophic approximation (LSRNA) and
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the upper soft rough neutrosophic approximation (USRNA) operators of C w.r.t (Y, M, P) denoted by P(C) and
P(C), are, respectively, defined as follows:

P(C) = {(u, TP(C)(u), IP(C)(u), FP(C)(u)) | u ∈ Y},

P(C) = {(u, TP(C)(u), IP(C)(u), FP(C)(u)) | u ∈ Y},

where
TP(C)(u) =

∨
k∈Ps(u)

TC(k), IP(C)(u) =
∧

k∈Ps(u)

IC(k), FP(C)(u) =
∧

k∈Ps(u)

FC(k),

TP(C)(u) =
∧

k∈Ps(u)

TC(k), IP(C)(u) =
∨

k∈Ps(u)

IC(k), FP(C)(u) =
∨

k∈Ps(u)

FC(k).

It is observed that P(C) and P(C) are two NSs on Y, P(C), P(C) : N (M)→ P(Y) are referred to as the
LSRNA and the USRNA operators, respectively. The pair (P(C), P(C)) is called SRNS of C w.r.t (Y, M, P).

Remark 1. Let (Y, M, P) be an SAS. If C ∈ IF(M) and C ∈ P(M), where IF(M) and P(M) are
intuitionistic fuzzy power set and crisp power set of M, respectively. Then, the above SRNA operators P(C) and
P(C) degenerate to SRIFA and SRA operators, respectively. Hence, SRNA operators are an extension of SRIFA
and SRA operators.

Example 1. Suppose that Y = {w1, w2, w3, w4, w5} is the set of five careers under observation, and Mr. X
wants to select best suitable career. Let M = {k1, k2, k3, k4} be a set of decision parameters. The parameters
k1, k2, k3 and k4 stand for “aptitude”, “work value”, “skill” and “recent advancement”, respectively. Mr. X
describes the “most suitable career” by defining a soft relation P from Y to M, which is a crisp soft set as shown
in Table 1.

Table 1. Crisp soft relation P.

P w1 w2 w3 w4 w5

k1 1 1 0 1 0
k2 0 1 1 0 1
k3 0 1 0 0 0
k4 1 1 1 0 1

Ps : Y → N (M) is a set valued function, and we have Ps(w1) = {k1, k4}, Ps(w2) =

{k1, k2, k3, k4}, Ps(w3) = {k2, k4}, Ps(w4) = {k1} and Ps(w5) = {k2, k4}. Mr. X gives most the favorable
parameter object C, which is an NS defined as follows:

C = {(k1, 0.2, 0.5, 0.6), (k2, 0.4, 0.3, 0.2), (k3, 0.2, 0.4, 0.5), (k4, 0.6, 0.2, 0.1)}.

From the Definition 1, we have

TP(C)(w1) =
∨

k∈Ps(w1)

TC(k) =
∨
{0.2, 0.6} = 0.6,

IP(C)(w1) =
∧

k∈Ps(w1)

IC(k) =
∧
{0.5, 0.2} = 0.2,

FP(C)(w1) =
∧

k∈Ps(w1)

FC(k) =
∧
{0.6, 0.1} = 0.1,

TP(C)(w2) = 0.6, IP(C)(w2) = 0.2, FP(C)(w2) = 0.1,

TP(C)(w3) = 0.6, IP(C)(w3) = 0.2, FP(C)(w3) = 0.1,
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TP(C)(w4) = 0.2, IP(C)(w4) = 0.5, FP(C)(w4) = 0.6,

TP(C)(w5) = 0.6, IP(C)(w5) = 0.2, FP(C)(w5) = 0.1.

Similarly,

TP(C)(w1) =
∧

k∈Ps(w1)

TC(k) =
∧
{0.2, 0.6} = 0.2,

IP(C)(w1) =
∨

k∈Ps(w1)

IC(k) =
∨
{0.5, 0.2} = 0.5,

FP(C)(w1) =
∨

k∈Ps(w1)

FC(k) =
∨
{0.6, 0.1} = 0.6,

TP(C)(w2) = 0.2, IP(C)(w2) = 0.5, FP(C)(w2) = 0.6,

TP(C)(w3) = 0.4, IP(C)(w3) = 0.3, FP(C)(w3) = 0.2,

TP(C)(w4) = 0.2, IP(C)(w4) = 0.5, FP(C)(w4) = 0.6,

TP(C)(w5) = 0.4, IP(C)(w5) = 0.3, FP(C)(w5) = 0.2.

Thus, we obtain

P(C) = {(w1, 0.6, 0.2, 0.1), (w2, 0.6, 0.2, 0.1), (w3, 0.6, 0.2, 0.1), (w4, 0.2, 0.5, 0.6), (w5, 0.6, 0.2, 0.1)},
P(C) = {(w1, 0.2, 0.5, 0.6), (w2, 0.2, 0.5, 0.6), (w3, 0.4, 0.3, 0.2), (w4, 0.2, 0.5, 0.6), (w5, 0.4, 0.3, 0.2)}.

Hence, (P(C), P(C)) is an SRNS of C.

Theorem 1. Let (Y, M, P) be an SAS. Then, the LSRNA and the USRNA operators P(C) and P(C) satisfy
the following properties for all C, D ∈ N (M):

(i) P(C) =∼ P(∼ C),
(ii) P(C ∩ D) = P(C) ∩ P(D),
(iii) C ⊆ D ⇒ P(C) ⊆ P(D),
(iv) P(C ∪ D) ⊇ P(C) ∪ P(D),
(v) P(C) =∼ P(∼ C),
(vi) P(C ∪ D) = P(C) ∪ P(D),
(vii) C ⊆ D ⇒ P(C) ⊆ P(D),
(viii) P(C ∩ D) ⊆ P(C) ∩ P(D),

where ∼ C is the complement of C.

Proof. (i) By definition of SRNS, we have

∼ C = {(k, FC(k), 1− IC(k), TC(k))},
P(∼ C) = {(u, TP(∼C)(u), IP(∼C)(u), FP(∼C)(u)) | u ∈ Y},

∼ P(∼ C) = {(u, FP(∼C)(u), 1− IP(∼C)(u), TP(∼C)(u)) | u ∈ Y},

where

FP(∼C)(u) =
∨

k∈Ps(u)

TC(k), IP(∼C)(u) =
∨

k∈Ps(u)

(1− IC(k)), TP(∼C)(u) =
∧

k∈Ps(u)

FC(k).

Hence, ∼ P(∼ C) = P(C).
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(ii)

P(C ∩ D) = {(u, TP(C∩D)(u), IP(C∩D)(u), FP(C∩D)(u)) | u ∈ Y}

= {(u,
∧

k∈Ps(u)

T(C∩D)(k),
∨

k∈Ps(u)

I(C∩D)(k),
∨

k∈Ps(u)

F(C∩D)(k)) | u ∈ Y}

= {(u,
∧

k∈Ps(u)

(TC(k) ∧ TD(k)),
∨

k∈Ps(u)

(IC(k) ∨ ID(k)),

∨
k∈Ps(u)

(FC(k) ∨ FD(k)) | u ∈ Y}

= {(u, TP(C)(u) ∧ TP(D)(u), IP(C)(u) ∨ IP(D)(u), FP(C)(u) ∨ FP(D)(u)) | u ∈ Y}
= P(C) ∩ P(D).

(iii) It can be easily proved by Definition 1.
(iv)

TP(C∪D)(u) =
∧

k∈Ps(u)

TC∪D(k)

=
∧

k∈Ps(u)

(TC(k) ∨ TD(k))

≥ (
∧

k∈Ps(u)

TC(k) ∨
∧

k∈Ps(u)

TD(k))

≥ (TP(C)(u) ∨ TP(D)(u)),

TP(C∪D)(u) ≥ TP(C)(u) ∪ TP(D)(u).

Similarly, we can prove that

IP(C∪D)(u) ≤ IP(C)(u) ∪ IP(D)(u),

FP(C∪D)(u) ≤ FP(C)(u) ∪ FP(D)(u).

Thus, P(C ∪ D) ⊇ P(C) ∪ P(D).
The properties (v)–(viii) of the USRNA P(C) can be easily proved similarly.

Example 2. Considering Example 1, we have

∼ C = {(k1, 0.6, 0.5, 0.2), (k2, 0.2, 0.7, 0.4), (k3, 0.5, 0.6, 0.2), (k4, 0.1, 0.8, 0.6)},
P(∼ C) = {(w1, 0.6, 0.5, 0.2), (w2, 0.6, 0.5, 0.2), (w3, 0.2, 0.7, 0.4), (w4, 0.6, 0.5, 0.2),

(w5, 0.2, 0.7, 0.4)},
∼ P(∼ C) = {(w1, 0.2, 0.5, 0.6), (w2, 0.2, 0.5, 0.6), (w3, 0.4, 0.3, 0.2), (w4, 0.2, 0.5, 0.6),

(w5, 0.4, 0.3, 0.2)},
= P(C).

Let D = {(k1, 0.4, 0.2, 0.6), (k2, 0.5, 0.3, 0.2), (k3, 0.5, 0.5, 0.1), (k4, 0.6, 0.4, 0.7)},
P(D) = {(w1, 0.4, 0.4, 0.7), (w2, 0.4, 0.5, 0.6), (w3, 0.5, 0.4, 0.7), (w4, 0.4, 0.2, 0.6),

(w5, 0.5, 0.4, 0.7)},
C ∩ D = {(k1, 0.2, 0.5, 0.6), (k2, 0.4, 0.3, 0.2), (k3, 0.2, 0.5, 0.5), (k4, 0.6, 0.4, 0.7)},
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P(C ∩ D) = {(w1, 0.2, 0.5, 0.7), (w2, 0.2, 0.5, 0.6), (w3, 0.4, 0.4, 0.7), (w4, 0.2, 0.5, 0.6),

(w5, 0.4, 0.4, 0.7)},
P(C) ∩ P(D) = {(w1, 0.2, 0.5, 0.7), (w2, 0.2, 0.5, 0.6), (w3, 0.4, 0.4, 0.7), (w4, 0.2, 0.5, 0.6),

(w5, 0.4, 0.4, 0.7)},
P(C ∩ D) = P(C) ∩ P(D),

C ∪ D = {(k1, 0.4, 0.2, 0.6), (k2, 0.5, 0.3, 0.2), (k3, 0.5, 0.4, 0.1), (k4, 0.6, 0.2, 0.1)},
P(C ∪ D) = {(w1, 0.4, 0.2, 0.6), (w2, 0.4, 0.4, 0.6), (w3, 0.5, 0.3, 0.2), (w4, 0.4, 0.2, 0.6),

(w5, 0.5, 0.3, 0.2)},
P(C) ∪ P(D) = {(w1, 0.4, 0.4, 0.6), (w2, 0.4, 0.5, 0.6), (w3, 0.5, 0.3, 0.2), (w4, 0.4, 0.2, 0.6),

(w5, 0.5, 0.3, 0.2)}.

Clearly, P(C ∪ D) ⊇ P(C) ∪ P(D). Hence, properties of the LSRNA operator hold, and we can easily
verify the properties of the USRNA operator.

The conventional soft set is a mapping from a parameter to the subset of universe and let (P, M)

be a crisp soft set. In [11], Babitha and Sunil introduced the concept of soft set relation. Now, we present
the constructive definition of SRNR by using a soft relation R from M×M = Ḿ to P(Y × Y = Ý),
where Y is a universal set and M is a set of parameter.

Definition 2. A SRNR (R(D), R(D)) on Y is a SRNS, R : Ḿ→ P(Ý) is a soft relation on Y defined by

R(kik j) = {uiuj | ∃ui ∈ P(ki), uj ∈ P(k j)}, uiuj ∈ Ý.

Let Rs : Ý → P(Ḿ) be a set-valued function by

Rs(uiuj) = {kik j ∈ Ḿ | (uiuj, kik j) ∈ R}, uiuj ∈ Ý.

For any D ∈ N (Ḿ), the USRNA and the LSRNA operators of D w.r.t (Ý, Ḿ, R) defined as follows:

R(D) = {(uiuj, TR(D)(uiuj), IR(D)(uiuj), FR(D)(uiuj)) | uiuj ∈ Ý},

R(D) = {(uiuj, TR(D)(uiuj), IR(D)(uiuj), FR(D)(uiuj)) | uiuj ∈ Ý},

where

TR(D)(uiuj) =
∨

kikj∈Rs(uiuj)

TD(kik j), IR(D)(uiuj) =
∧

kikj∈Rs(uiuj)

ID(kik j),

FR(D)(uiuj) =
∧

kikj∈Rs(uiuj)

FD(kik j),

TR(D)(uiuj) =
∧

kikj∈Rs(uiuj)

TD(kik j), IR(D)(uiuj) =
∨

kikj∈Rs(uiuj)

ID(kik j),

FR(D)(uiuj) =
∨

kikj∈Rs(uiuj)

FD(kik j).

The pair (R(D), R(D)) is called SRNR and R, R : N (Ḿ) → P(Ý) are called the LSRNA and the
USRNA operators, respectively.
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Remark 2. For an NS D on Ḿ and an NS C on M,

TD(kik j) ≤ min
ki∈M
{TC(ki)},

ID(kik j) ≤ min
ki∈M
{IC(ki)},

FD(kik j) ≤ min
ki∈M
{FC(ki)}.

According to the definition of SRNR, we get

TR(D)(uiuj) ≤ min{TR(C)(ui), TR(C)(uj)},
IR(D)(uiuj) ≤ max{IR(C)(ui), IR(C)(uj)},
FR(D)(uiuj) ≤ max{FR(C)(ui), FR(C)(uj)}.

Similarly, for the LSRNA operator R(D),

TR(D)(uiuj) ≤ min{TR(C)(ui), TR(C)(uj)},
IR(D)(uiuj) ≤ max{IR(C)(ui), IR(C)(uj)},
FR(D)(uiuj) ≤ max{FR(C)(ui), FR(C)(uj)}.

Example 3. Let Y = {u1, u2, u3} be a universal set and M = {k1, k2, k3} be a set of parameters. A soft set
(P, M) on Y can be defined in tabular form (see Table 2) as follows:

Table 2. Soft set (P, M).

P u1 u2 u3

k1 1 1 0
k2 0 0 1
k3 1 1 1

Let E = {u1u2, u2u3, u2u2, u3u2} ⊆ Ý and L = {k1k3, k2k1, k3k2} ⊆ Ḿ. Then, a soft relation R on E
(from L to E) can be defined in tabular form (see Table 3) as follows:

Table 3. Soft relation R.

R u1u2 u2u3 u2u2 u3u2

k1k3 1 1 1 0
k2k1 0 0 0 1
k3k2 0 1 0 0

Now, we can define set-valued function Rs such that

Rs(u1u2) = {k1k3}, Rs(u2u3) = {k1k3, k3k2}, Rs(u2u2) = {k1k3}, Rs(u3u2) = {k2k1}.

Let C = {(k1, 0.2, 0.4, 0.6), (k2, 0.4, 0.5, 0.2), (k3, 0.1, 0.2, 0.4)} be an NS on M, then
R(C) = {(u1, 0.2, 0.2, 0.4), (u2, 0.2, 0.4, 0.4), (u3, 0.4, 0.2, 0.2)},
R(C) = {(u1, 0.1, 0.4, 0.6), (u2, 0.1, 0.4, 0.6), (u3, 0.1, 0.5, 0.4)},
Let D = {(k1k3, 0.1, 0.2, 0.2), (k2k1, 0.1, 0.1, 0.2), (k3k2, 0.1, 0.2, 0.1)} be an NS on L, then
R(D) = {(u1u2, 0.1, 0.2, 0.2), (u2u3, 0.1, 0.2, 0.1), (u2u2, 0.1, 0.2, 0.2), (u3u2, 0.1, 0.1, 0.2)},
R(D) = {(u1u2, 0.1, 0.2, 0.2), (u2u3, 0.1, 0.2, 0.1), (u2u2, 0.1, 0.2, 0.2), (u3u2, 0.1, 0.1, 0.2)}.

Hence, R(D) = (R(D), R(D)) is SRNR.
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3. Construction of Neutrosophic Soft Rough Sets

In this section, we will introduce the notions of NSRSs, neutrosophic soft rough relations (NSRRs).

Definition 3. Let Y be an initial universal set and M a universal set of parameters. For an arbitrary
neutrosophic soft relation P̃ from Y to M, (Y, M, P̃) is called neutrosophic soft approximation space (NSAS).
For any NS C ∈ N (M), we define the upper neutrosophic soft approximation (UNSA) and the lower
neutrosophic soft approximation (LNSA) operators of C with respect to (Y, M, P̃) denoted by P̃(C) and P̃(C),
respectively as follows:

P̃(C) = {(u, TP̃(C)(u), IP̃(C)(u), FP̃(C)(u)) | u ∈ Y},

P̃(C) = {(u, TP̃(C)(u), IP̃(C)(u), FP̃(C)(u)) | u ∈ Y},

where

TP̃(C)(u) =
∨

k∈M

(
TP̃(C)(u, k) ∧ TC(k)

)
, IP̃(C)(u) =

∧
k∈M

(
IP̃(C)(u, k) ∨ IC(k)

)
,

FP̃(C)(u) =
∧

k∈M

(
FP̃(C)(u, k) ∨ FC(k)

)
,

TP̃(C)(u) =
∧

k∈M

(
FP̃(C)(u, k) ∨ TC(k)

)
, IP̃(C)(u) =

∨
k∈M

(
(1− IP̃(C)(u, k)) ∧ IC(k)

)
,

FP̃(C)(u) =
∨

k∈M

(
TP̃(C)(u, k) ∧ FC(k)

)
.

The pair (P̃(C), P̃(C)) is called NSRS of C w.r.t (Y, M, P̃), and P̃ and P̃ are referred to as the LNSRA
and the UNSRA operators, respectively.

Remark 3. A neutrosophic soft relation over Y × M is actually a neutrosophic soft set on Y. The NSRA
operators are defined over two distinct universes Y and M. As we know, universal set Y and parameter set M are
two different universes of discourse but have solid relations. These universes can not be considered as identical
universes; therefore, the reflexive, symmetric and transitive properties of neutrosophic soft relations from Y to M
do not exist.

Let P̃ be a neutrosophic soft relation from Y to M, if, for each u ∈ Y, there exists k ∈ M such that
TP̃(u, k) = 1, IP̃(u, k) = 0, FP̃(u, k) = 0. Then, P̃ is referred to as a serial neutrosophic soft relation from Y to
parameter set M.

Example 4. Suppose that Y = {w1, w2, w3, w4} is the set of careers under consideration, and Mr. X wants
to select the most suitable career. M = {k1, k2, k3} is a set of decision parameters. Mr. X describes the “most
suitable career” by defining a neutrosophic soft set (P̃, M) on Y that is a neutrosophic relation from Y to M as
shown in Table 4.

Table 4. Neutrosophic soft relation P̃.

P̃ w1 w2 w3 w4

k1 (0.3, 0.4, 0.5) (0.4, 0.2, 0.3) (0.1, 0.5, 0.4) (0.2, 0.3, 0.4)
k2 (0.1, 0.5, 0.4) (0.3, 0.4, 0.6) (0.4, 0.4, 0.3) (0.5, 0.3, 0.8)
k3 (0.3, 0.4, 0.4) (0.4, 0.6, 0.7) (0.3, 0.5, 0.4) (0.5, 0.4, 0.6)
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Now, Mr. X gives the most favorable decision object C, which is an NS on M defined as follows:
C = {(k1, 0.5, 0.2, 0.4), (k2, 0.2, 0.3, 0.1), (k3, 0.2, 0.4, 0.6)}. By Definition 3, we have

TP̃(C)(w1) =
∨

k∈M

(
TP̃(C)(w1, k) ∧ TC(k)

)
=
∨
{0.3, 0.1, 0.2} = 0.3,

IP̃(C)(w1) =
∧

k∈M

(
IP̃(C)(w1, k) ∨ IC(k)

)
=
∧
{0.4, 0.5, 0.4} = 0.4,

FP̃(C)(w1) =
∧

k∈M

(
FP̃(C)(w1, k) ∨ FC(k)

)
=
∧
{0.5, 0.4, 0.6} = 0.4,

TP̃(C)(w2) = 0.4, IP̃(C)(w2) = 0.2, FP̃(C)(w2) = 0.4,

TP̃(C)(w3) = 0.2, IP̃(C)(w3) = 0.4, FP̃(C)(w3) = 0.3,

TP̃(C)(w4) = 0.2, IP̃(C)(w4) = 0.3, FP̃(C)(w4) = 0.4.

Similarly,

TP̃(C)(w1) =
∧

k∈M

(
FP̃(C)(w1, k) ∨ TC(k)

)
=
∧
{0.5, 0.4, 0.4} = 0.4,

IP̃(C)(w1) =
∨

k∈M

(
(1− IP̃(C)(w1, k)) ∧ IC(k)

)
=
∨
{0.2, 0.3, 0.4} = 0.4,

FP̃(C)(w1) =
∨

k∈M

(
TP̃(C)(w1, k) ∧ FC(k)

)
=
∨
{0.3, 0.1, 0.3} = 0.3,

TP̃(C)(w2) = 0.5, IP̃(C)(w2) = 0.4, FP̃(C)(w2) = 0.4,

TP̃(C)(w3) = 0.4, IP̃(C)(w3) = 0.4, FP̃(C)(w3) = 0.3,

TP̃(C)(w4) = 0.5, IP̃(C)(w4) = 0.4, FP̃(C)(w4) = 0.5.

Thus, we obtain

P̃(C) = {(w1, 0.3, 0.4, 0.4), (w2, 0.4, 0.2, 0.4), (w3, 0.2, 0.4, 0.3), (w4, 0.2, 0.3, 0.4)},
P̃(C) = {(w1, 0.4, 0.4, 0.3), (w2, 0.5, 0.4, 0.4), (w3, 0.4, 0.4, 0.3), (w4, 0.5, 0.4, 0.5)}.

Hence, (P̃(C), P̃(C)) is an NSRS of C.

Theorem 2. Let (Y, M, P̃) be an NSAS. Then, the UNSRA and the LNSRA operators P̃(C) and P̃(C) satisfy
the following properties for all C, D ∈ N (M):

(i) P̃(C) =∼ P̃(∼ A),
(ii) P̃(C ∩ D) = P̃(C) ∩ P̃(D),
(iii) C ⊆ D ⇒ P̃(C) ⊆ P̃(D),
(iv) P̃(C ∪ D) ⊇ P̃(C) ∪ P̃(D),

(v) P̃(C) =∼ P̃(∼ C),

(vi) P̃(C ∪ D) = P̃(C) ∪ P̃(D),

(vii) C ⊆ D ⇒ P̃(C) ⊆ P̃(D),

(viii) P̃(C ∩ D) ⊆ P̃(C) ∩ P̃(D).
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Proof. (i)

∼ C = {(k, FC(k), 1− IC(k), TC(k)) | k ∈ M}.
By definition of NSRS, we have

P̃(∼ C) = {
(
u, TP̃(∼C)(u), IP̃(∼C)(u), FP̃(∼C)(u)

)
| u ∈ Y},

∼ P̃(∼ C) = {
(
u, FP̃(∼C)(u), 1− IP̃(∼C)(u), TP̃(∼C)(u)

)
| u ∈ Y},

FP̃(∼C)(u) =
∧

k∈M

(
FP̃(u, k) ∨ TC(k)

)
= TP̃(C)(u),

1− IP̃(∼C)(u) = 1−
( ∧

k∈M

[IP̃(u, k) ∨ I∼C(k)]
)

=
∨

k∈M

(
(1− IP̃(u, k)) ∧ (1− I∼C(k))

)
=

∨
k∈M

(
(1− IP̃(u, k)) ∧

(
1− (1− IC(k))

))
=

∨
k∈M

(
(1− IP̃(u, k)) ∧ IC(k)

)
= IP̃(C)(u),

TP̃(∼C)(u) =
∨

k∈M

(
TP̃(u, k) ∧ T∼C(k)

)
=

∨
k∈M

(
TP̃(u, k) ∧ FC(k)

)
= FP̃(C)(u).

Thus, P̃(C) = ∼ P̃(∼ C).

(ii)

P̃(C ∩ D) = {
(
u, TP̃(C∩D)(u), IP̃(C∩D)(u), FP̃(C∩D)(u)

)
},

P̃(C) ∩ P̃(D) = {
(
u, TP̃(C)(u) ∧ TP̃(D)(u), IP̃(C)(u) ∨ IP̃(D)(u), FP̃(C)(u) ∨ FP̃(D)(u)

)
}.

Now, consider

TP̃(C∩D)(u) =
∧

k∈M

(
FP̃(u, k) ∨ TC∩D(k)

)
=

∧
k∈M

(
FP̃(u, k) ∨ (TC(k) ∧ TD(k))

)
=

∧
k∈M

(
FP̃(u, k) ∨ TC(k)

)
∧
∧

k∈M

(
FP̃(u, k) ∨ TD(k)

)
= TP̃(C)(u) ∧ TP̃(D)(u),
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IP̃(C∩D)(u) =
∨

k∈M

(
(1− IP̃(u, k)) ∧ IC∩D(k)

)
=

∨
k∈M

(
(1− IP̃(u, k)) ∧ (IC(k) ∨ ID(k))

)
=

∨
k∈M

(
(1− IP̃(u, k))) ∧ IC(k)

)
∨
∨

k∈M

(
(1− IP̃(u, k)) ∨ ID(k)

)
= IP̃(C)(u) ∨ IP̃(D)(u),

FP̃(C∩D)(u) =
∨

k∈M

(
TP̃(u, k) ∧ FC∩D(k)

)
=

∨
k∈M

(
TP̃(u, k) ∧ (FC(k) ∨ FD(k))

)
=

∨
k∈M

(
TP̃(u, k) ∧ FC(k)

)
∨
∨

k∈M

(
TP̃(u, k) ∧ FD(k)

)
= FP̃(C)(u) ∨ FP̃(D)(u).

Thus, P̃(C ∩ D) = P̃(C) ∩ P̃(D).

(iii) It can be easily proven by Definition 3.
(iv)

P̃(C ∪ D) = {
(
u, TP̃(C∪D)(u), IP̃(C∪D)(u), FP̃(C∪D)(u)

)
},

P̃(C) ∪ P̃(D) = {
(
u, TP̃(C)(u) ∨ TP̃(D)(u), IP̃(C)(u) ∧ IP̃(D)(u), FP̃(C)(u) ∧ FP̃(D)(u)

)
},

TP̃(C∪D)(u) =
∧

k∈M

(FP̃(u, k) ∨ TC∪D(k))

=
∧

k∈M

(
FP̃(u, k) ∨ [TC(k) ∨ TD(k)]

)
=

∧
k∈M

(
[FP̃(u, k) ∨ TC(k)] ∨ [FP̃(u, k) ∨ TD(k)]

)
≥

∧
k∈M

(
FP̃(u, k) ∨ TC(k)

)
∨
∧

k∈M

(
FP̃(u, k) ∨ TD(k)

)
= TP̃(C)(u) ∨ TP̃(D)(u),

IP̃(C∪D)(u) =
∨

k∈M

(
(1− IP̃(u, k)) ∧ IC∪D(k)

)
=

∨
k∈M

(
(1− IP̃(u, k)) ∧ [IC(k) ∧ ID(k)]

)
=

∨
k∈M

(
[1− IP̃(u, k)) ∧ IC(k)] ∧ [(1− IP̃(u, k)) ∧ ID(k)]

)
≤

∨
k∈M

(
(1− IP̃(u, k)) ∧ IC(k)

)
∧
∨

k∈M

(
(1− IP̃(u, k)) ∧ ID(k)

)
= IP̃(C)(u) ∧ IP̃(D)(u),

FP̃(C∪D)(u) =
∨

k∈M

(
TP̃(u, k) ∧ FC∪D(k)

)
=

∨
k∈M

(
TP̃(u, k) ∧ [FC(k) ∧ FD(k)]

)
=

∨
k∈M

(
[TP̃(u, k) ∧ FC(k)] ∧ [TP̃(u, k) ∧ FD(k)]

)
≤

∨
k∈M

(
TP̃(u, k) ∧ FC(k)

)
∧
∨

k∈M

(
TP̃(u, k) ∧ FD(k)

)
= FP̃(C)(u) ∧ FP̃(D)(u).
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(vii)

P̃(C ∩ D) = {
(
u, TP̃(C∩D)

(u), IP̃(C∩D)
(u), FP̃(C∩D)

(u)
)
},

P̃(C) ∩ P̃(D) = {
(
u, TP̃(C)(u) ∧ TP̃(D)

(u), IP̃(C)(u) ∨ IP̃(D)
(u), FP̃(C)(u) ∨ FP̃(D)

(u)
)
},

TP̃(C∩D)
(u) =

∨
k∈M

(TP̃(u, k) ∧ TC∩D(k))

=
∨

k∈M

(
TP̃(u, k) ∧ [TC(k) ∧ TD(k)]

)
=

∨
k∈M

(
[TP̃(u, k) ∧ TC(k)] ∧ [TP̃(u, k) ∧ TD(k)]

)
≤

∨
k∈M

(
TP̃(u, k) ∧ TC(k)

)
∧
∨

k∈M

(
TP̃(u, k) ∧ TD(k)

)
= TP̃(C)(u) ∧ TP̃(D)

(u),

IP̃(C∩D)
(u) =

∧
k∈M

(
IP̃(u, k) ∨ IC∩D(k)

)
=

∧
k∈M

(
IP̃(u, k) ∨ [IC(k) ∨ ID(k)]

)
=

∧
k∈M

(
[IP̃(u, k) ∨ IC(k)] ∨ [IP̃(u, k) ∨ ID(k)]

)
≥

∧
k∈M

(
(IP̃(u, k)) ∨ IC(k)

)
∨
∧

k∈M

(
(IP̃(u, k)) ∨ ID(k)

)
= IP̃(C)(u) ∨ IP̃(D)

(u),

FP̃(C∩D)
(u) =

∧
k∈M

(
FP̃(u, k) ∨ FC∩D(k)

)
=

∧
k∈M

(
FP̃(u, k) ∨ [FC(k) ∨ FD(k)]

)
=

∧
k∈M

(
[FP̃(u, k) ∨ FC(k)] ∨ [FP̃(u, k) ∨ FD(k)]

)
≥

∧
k∈M

(
FP̃(u, k) ∨ FC(k)

)
∨
∧

k∈M

(
FP̃(u, k) ∨ FD(k)

)
= FP̃(C)(u) ∨ FP̃(D)

(u).

Thus, P̃(C ∩ D) ⊆ P̃(C) ∩ P̃(D).

The properties (v)–(vii) of the UNSRA operator P̃(C) can be easily proved similarly.

Theorem 3. Let (Y, M, P̃) be an NSAS. The UNSRA and the LNSRA operators P̃ and P̃ satisfy the following
properties for all C, D ∈ N (M):

(i) P̃(C− D) ⊇ P̃(C)− P̃(D),

(ii) P̃(C− D) ⊆ P̃(C)− P̃(D).
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Proof. (i) By Definition 3 and definition of difference of two NSs, for all u ∈ Y,

TP̃(C−D)(u) =
∧

k∈M

(
FP̃(u, k) ∨ TC−D(k)

)
=

∧
k∈M

(
FP̃(u, k) ∨ (TC(k) ∧ FD(k))

)
=

∧
k∈M

(
[FP̃(u, k) ∨ TC(k)] ∧ [FP̃(u, k) ∨ FD(k)]

)
=

∧
k∈M

(
FP̃(u, k) ∨ TC(k)

)
∧
∧

k∈M

(
FP̃(u, k) ∨ FD(k)

)
= TP̃(C)(u) ∧ FP̃(D)

(u)

= TP̃(C)−P̃(D)
(u),

IP̃(C−D)(u) =
∨

k∈M

(
(1− IP̃(u, k)) ∧ IC−D(k)

)
=

∨
k∈M

(
(1− IP̃(u, k)) ∧ (IC(k) ∧ (1− ID(k)))

)
=

∨
k∈M

(
[(1− IP̃(u, k)) ∧ IC(k)] ∧ [(1− IP̃(u, k)) ∧ (1− ID(k))]

)
=

∨
k∈M

(
[(1− IP̃(u, k)) ∧ IC(k)] ∧ [1−

(
IP̃(u, k) ∨ ID(k)

)
]
)

≤
∨

k∈M

(
(1− IP̃(u, k)) ∧ IC(k)

)
∧
∨

k∈M

(
1−

(
IP̃(u, k) ∨ ID(k)

))
≤

∨
k∈M

(
(1− IP̃(u, k)) ∧ IC(k)

)
∧
(

1−
∧

k∈M

(
IP̃(u, k) ∨ ID(k)

))
= IP̃(C)(u) ∧ (1− IP̃(D)

(u))

= IP̃(C)−P̃(D)
(u),

FP̃(C−D)(u) =
∨

k∈M

(
TP̃(u, k) ∧ FC−D(k)

)
=

∨
k∈M

(
TP̃(u, k) ∧ (FC(k) ∧ TD(k))

)
=

∨
k∈M

(
[TP̃(u, k) ∧ FC(k)] ∧ [TP̃(u, k) ∧ TD(k)]

)
≤

∨
k∈M

(
TP̃(u, k) ∧ FC(k)

)
∧
∨

k∈M

(
TP̃(u, k) ∧ TD(k)

)
= FP̃(C)(u) ∧ TP̃(D)

(u)

= FP̃(C)−P̃(D)
(u).

Thus, P̃(C− D) ⊆ P̃(C)− P̃(D).

(ii) By Definition 3 and definition of difference of two NSs, for all u ∈ Y,
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TP̃(C−D)
(u) =

∨
k∈M

(
TP̃(u, k) ∧ TC−D(k)

)
=

∨
k∈M

(
TP̃(u, k) ∧ (TC(k) ∧ FD(k))

)
=

∨
k∈M

(
[TP̃(u, k) ∧ TC(k)] ∧ [TP̃(u, k) ∧ FD(k)]

)
≤

∨
k∈M

(
TP̃(u, k) ∧ TC(k)

)
∧
∨

k∈M

(
TP̃(u, k) ∧ FD(k)

)
= TP̃(C)(u) ∧ FP̃(D)(u)

= TP̃(C)−P̃(D)
(u),

IP̃(C−D)
(u) =

∧
k∈M

(
IP̃(u, k) ∨ IC−D(k)

)
=

∧
k∈M

(
IP̃(u, k) ∨ (IC(k) ∧ (1− ID(k)))

)
=

∧
k∈M

(
[IP̃(u, k) ∨ IC(k)] ∧ [IP̃(u, k) ∨ (1− ID(k))]

)
=

∧
k∈M

(
[IP̃(u, k) ∨ IC(k)] ∧ [1− (1− IP̃(u, k)) ∨ (1− ID(k))]

)
=

∧
k∈M

(IP̃(u, k) ∨ IC(k)) ∧
(

1−
∨

k∈M

(
(1− IP̃(u, k)) ∧ ID(k)

))
= IP̃(C)(u) ∧ (1− IP̃(D)(u))

= IP̃(C)−P̃(D)
(u),

FP̃(C−D)
(u) =

∧
k∈M

(
FP̃(u, k) ∨ FC−D(k)

)
=

∧
k∈M

(
FP̃(u, k) ∨ (FC(k) ∧ TD(k))

)
=

∧
k∈M

(
[FP̃(u, k) ∨ FC(k)] ∧ [FP̃(u, k) ∨ TD(k)]

)
=

∧
k∈M

(
FP̃(u, k) ∨ FC(k)

)
∧
∧

k∈M

(
FP̃(u, k) ∨ TD(k)

)
= FP̃(C)(u) ∧ TP̃(D)(u)

= FP̃(C)−P̃(D)
(u).

Thus, P̃(C− D) ⊆ P̃(C)− P̃(D).

Theorem 4. Let (Y, M, P̃) be an NSAS. If P̃ is serial, then the UNSA and the LNSA operators P̃ and P̃ satisfy
the following properties for all ∅,M, C ∈ N (M):

(i) P̃(∅) = ∅, P̃(M) = Y,

(ii) P̃(C) ⊆ P̃(C).

Florentin Smarandache (ed.) Collected Papers, VII

451



Proof. (i)

P̃(∅) = {(u, TP̃(∅)
(u), IP̃(∅)

(u), FP̃(∅)
(u)) | u ∈ Y},

TP̃(∅)
(u) =

∨
k∈M

(
TP̃(u, k) ∧ T∅(k)

)
,

IP̃(∅)
(u) =

∧
k∈M

(
IP̃(u, k) ∨ I∅(k)

)
,

FP̃(∅)
(u) =

∧
k∈M

(
FP̃(u, k) ∨ F∅(k)

)
.

Since ∅ is a null NS on M, T∅(k) = 0, I∅(k) = 1, F∅(k) = 1, and this implies
TP̃(∅)

(u) = 0, IP̃(u) = 1, FP̃(u) = 1. Thus, P̃(∅) = ∅.

Now,

P̃(M) = {(u, TP̃(M)(u), IP̃(M)(u), FP̃(M)(u)) | u ∈ Y},

TP̃(M)(u) =
∧

k∈M

(
FP̃(u, k) ∨ TM(k)

)
, IP̃(M)(u) =

∨
k∈M

(
(1− IP̃(u, k)) ∧ IM(k)

)
,

FP̃(M)(u) =
∨

k∈M

(
TP̃(u, k) ∧ FM(k)

)
.

Since M is full NS on M, TM(k) = 1, IM(k) = 0, FM(k) = 0, for all k ∈ M, and this implies
TP̃(M)(u) = 1, IP̃(M)(u) = 0, FP̃(M)(u) = 0. Thus, P̃(M) = Y.

(ii) Since (Y, M, P̃) is an NSAS and P̃ is a serial neutrosophic soft relation, then, for each u ∈ Y, there
exists k ∈ M, such that TP̃(u, k) = 1, IP̃(u, k) = 0, and FP̃(u, k) = 0. The UNSRA and LNSRA
operators P̃(C), and P̃(C) of an NS C can be defined as:

TP̃(C)(u) =
∨

k∈M

TC(k), IP̃(C)(u) =
∧

k∈M

IC(k),

FP̃(C)(u) =
∧

k∈M

FC(k),

TP̃(C)(u) =
∧

k∈M

TC(k), IP̃(C)(u) =
∨

k∈M

IC(k),

FP̃(C)(u) =
∨

k∈M

FC(k).

Clearly, TP̃(C)(u) ≤ TP̃(C)(u), IP̃(C)(u) ≥ TP̃(C)(u), FP̃(C)(u) ≥ FP̃(C)(u) for all u ∈ Y.

Thus, P̃(C) ⊆ P̃(C).

The conventional NSS is a mapping from a parameter to the neutrosophic subset of universe and
let (P̃, M) be NSS. Now, we present the constructive definition of neutrosophic soft rough relation by
using a neutrosophic soft relation R̃ from M×M = Ḿ to N (Y× Y = Ý), where Y is a universal set
and M is a set of parameters.

Definition 4. A neutrosophic soft rough relation (R̃(D), R̃(D)) on Y is an NSRS, R̃ : Ḿ → N (Ý) is
a neutrosophic soft relation on Y defined by

R̃(kik j) = {uiuj | ∃ui ∈ P̃(ki), uj ∈ P̃(k j)}, uiuj ∈ Ý,
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such that

TR̃(uiuj, kik j) ≤ min{TP̃(ui, ki), TP̃(uj, k j)},
IR̃(uiuj, kik j) ≤ max{IP̃(ui, ki), IP̃(uj, k j)},
FR̃(uiuj, kik j) ≤ max{FP̃(ui, ki), FP̃(uj, k j)}.

For any D ∈ N (Ḿ), the UNSA and the LNSA of B w.r.t (Ý, Ḿ, R̃) are defined as follows:

R̃(D) = {(uiuj, TR̃(D)
(uiuj), IR̃(D)

(uiuj), FR̃(D)
(uiuj)) | uiuj ∈ Ý},

R̃(D) = {(uiuj, TR̃(D)(uiuj), IR̃(D)(uiuj), FR̃(D)(uiuj)) | uiuj ∈ Ý},

where

TR̃(D)
(uiuj) =

∨
kikj∈Ḿ

(
TR̃(uiuj, kik j) ∧ TD(kik j)

)
,

IR̃(D)
(uiuj) =

∧
kikj∈M̃

(
IR̃(uiuj, kik j) ∨ ID(kik j)

)
,

FR̃(D)
(uiuj) =

∧
kikj∈M̃

(
FR̃(uiuj, kik j) ∨ FD(kik j)

)
,

TR̃(D)(uiuj) =
∧

kikj∈Ḿ

(
FR̃(uiuj, kik j) ∨ TD(kik j)

)
,

IR̃(D)(uiuj) =
∨

kikj∈M̃

(
(1− IR̃(uiuj, kik j)) ∧ ID(kik j)

)
,

FR̃(D)(uiuj) =
∨

kikj∈M̃

(
TR̃(uiuj, kik j) ∧ FD(kik j)

)
.

The pair (R̃(D), R̃(D)) is called NSRR and R̃, R̃ : N (Ḿ) → N (Ý) are called the LNSRA and the
UNSRA operators, respectively.

Remark 4. Consideer an NS D on Ḿ and an NS C on M,

TD(kik j) ≤ min{TC(ki), TC(k j)},
ID(kik j) ≤ max{IC(ki), IC(k j)},
FD(kik j) ≤ max{FC(ki), FC(k j)}.

According to the definition of NSRR, we get

TR̃(D)
(uiuj) ≤ min{TR̃(C)(ui), TR̃(C)(uj)},

IR̃(D)
(uiuj) ≤ max{IR̃(C)(ui), IR̃(C)(uj)},

FR̃(D)
(uiuj) ≤ max{FR̃(C)(ui).FR̃(C)(uj)}.
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Similarly, for LNSRA operator R̃(D),

TR̃(D)(uiuj) ≤ min{TR̃(C)(ui), TR̃(C)(uj)},
IR̃(D)(uiuj) ≤ max{IR̃(C)(ui), IR̃(C)(uj)},
FR̃(D)(uiuj) ≤ max{FR̃(C)(ui).FR̃(C)(uj)}.

Example 5. Let Y = {u1, u2, u3} be a universal set and M = {k1, k2, k3} a set of parameters. A neutrosophic
soft set (P̃, M) on Y can be defined in tabular form (see Table 5) as follows:

Table 5. Neutrosophic soft set (P̃, M).

P̃ u1 u2 u3

k1 (0.4, 0.5, 0.6) (0.7, 0.3, 0.2) (0.6, 0.3, 0.4)
k2 (0.5, 0.3, 0.6) (0.3, 0.4, 0.3) (0.7, 0.2, 0.3)
k3 (0.7, 0.2, 0.3) (0.6, 0.5, 0.4) (0.7, 0.2, 0.4)

Let E = {u1u2, u2u3, u2u2, u3u2} ⊆ Ý and L = {k1k3, k2k1, k3k2} ⊆ Ḿ.

Then, a soft relation R̃ on E (from L to E) can be defined in tabular form (see Table 6) as follows:

Table 6. Neutrosophic soft relation R̃.

R̃ u1u2 u2u3 u2u2 u3u2

k1k3 (0.4, 0.4, 0.5) (0.6, 0.3, 0.4) (0.5, 0.4, 0.2) (0.5, 0.4, 0.3)
k2k1 (0.3, 0.3, 0.4) (0.3, 0.2, 0.3) (0.2, 0.3, 0.3) (0.7, 0.2, 0.2)
k3k2 (0.3, 0.3, 0.2) (0.5, 0.3, 0.2) (0.2, 0.4, 0.4) (0.3, 0.4, 0.4)

Let C = {(k1, 0.2, 0.4, 0.6), (k2, 0.4, 0.5, 0.2), (k3, 0.1, 0.2, 0.4)} be an NS on M, then
R̃(C) = {(u1, 0.4, 0.2, 0.4), (u2, 0.3, 0.4, 0.3), (u3, 0.4, 0.2, 0.3)},
R̃(C) = {(u1, 0.3, 0.5, 0.4), (u2, 0.2, 0.5, 0.6), (u3, 0.4, 0.5, 0.6)},
Let B = {(k1k3, 0.1, 0.3, 0.5), (k2k1, 0.2, 0.4, 0.3), (k3k2, 0.1, 0.2, 0.3)} be an NS on L, then
R̃(D) = {(u1u2, 0.2, 0.3, 0.3), (u2u3, 0.2, 0.3, 0.3), (u2u2, 0.2, 0.4, 0.3), (u3u2, 0.2, 0.4, 0.3)},
R̃(D) = {(u1u2, 0.2, 0.4, 0.4), (u2u3, 0.2, 0.4, 0.5), (u2u2, 0.3, 0.4, 0.5), (u3u2, 0.2, 0.4, 0.5)}.
Hence, R̃(D) = (R̃(D), R̃(D)) is NSRR.

Theorem 5. Let P̃1, P̃2 be two NSRRs from universal Y to a parameter set M; for all C ∈ N (M), we have

(i) P̃1 ∪ P̃2(C) = P̃1(C) ∩ P̃2(C),

(ii) P̃1 ∪ P̃2(C) = P̃1(C) ∪ P̃2(C).

Theorem 6. Let P̃1, P̃2 be two neutrosophic soft relations from universal Y to a parameter set M; for all
C ∈ N (M), we have

(i) P̃1 ∩ P̃2(C) ⊇ P̃1(C) ∪ P̃2(C) ⊇ P̃1(C) ∩ P̃2(C),

(ii) P̃1 ∩ P̃2(C) ⊆ P̃1(C) ∩ P̃2(C).
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4. Application

In this section, we apply the concept of NSRSs to a decision-making problem. In recent times,
the object recognition problem has gained considerable importance. The object recognition problem
can be considered as a decision-making problem, in which final identification of object is founded on
a given amount of information. A detailed description of the algorithm for the selection of the most
suitable object based on an available set of alternatives is given, and the proposed decision-making
method can be used to calculate lower and upper approximation operators to address deep concerns
of the problem. The presented algorithms can be applied to avoid lengthy calculations when dealing
with a large number of objects. This method can be applied in various domains for multi-criteria
selection of objects. A multicriteria decision making (MCDM) can be modeled using neutrosophic soft
rough sets and is ideally suited for solving problems.

In the pharmaceutical industry, different pharmaceutical companies develop, produce and
discover pharmaceutical medicines (drugs) for use as medication. These pharmaceutical companies
deal with “brand name medicine” and “generic medicine”. Brand name medicine and generic medicine
are bioequivalent, have a generic medicine rate and element of absorption. Brand name medicine and
generic medicine have the same active ingredients, but the inactive ingredients may differ. The most
important difference is cost. Generic medicine is less expensive as compared to brand names in
comparison. Usually, generic drug manufacturers have competition to produce products that cost less.
The product may possibly be slightly dissimilar in color, shape, or markings. The major difference is
cost. We consider a brand name drug “u = Claritin (loratadink)” with an ideal neutrosophic value
number nu = (1, 0, 0) used for seasonal allergy medication. Consider

Y = {u1 = Nasacort Aq (Triamcinolone), u2 = Zyrtec D (Cetirizine/Pseudoephedrine),

u3 = Sudafed (Pseudoephedrine), u4 = Claritin-D (loratadine/pseudoephedrine),

u5 = Flonase (Fluticasone)}

is a set of generic versions of “Clarition”. We want to select the most suitable generic version of Claritin
on the basis of parameters e1 = Highly soluble, e2 = Highly permeable, e3 = Rapidly dissolving.
M = {e1, e2, e3} be a set of paraments. Let P̃ be a neutrosophic soft relation from Y to parameter set
M as shown in Table 7.

Table 7. Neutrosophic soft set (P̃, M).

P̃ e1 e2 e3

u1 (0.4, 0.5, 0.6) (0.7, 0.3, 0.2) (0.6, 0.3, 0.4)
u2 (0.5, 0.3, 0.6) (0.3, 0.4, 0.3) (0.7, 0.2, 0.3)
u3 (0.7, 0.2, 0.3) (0.6, 0.5, 0.4) (0.7, 0.2, 0.4)
u4 (0.5, 0.7, 0.5) (0.8, 0.4, 0.6) (0.8, 0.7, 0.6)
u5 (0.6, 0.5, 0.4) (0.7, 0.8, 0.5) (0.7, 0.3, 0.5)

Suppose C = {(e1, 0.2, 0.4, 0.5), (e2, 0.5, 0.6, 0.4), (e3, 0.7, 0.5, 0.4)} is the most favorable object
that is an NS on the parameter set M under consideration. Then, (P̃(C), P̃(C)) is an NSRS in
NSAS (Y, M, P̃), where

P̃(C) = {(u1, 0.6, 0.5, 0.4), (u2, 0.7, 0.4, 0.4), (u3, 0.7, 0.4, 0.4), (u4, 0.7, 0.6, 0.5), (u5, 0.7, 0.5, 0.5)},
P̃(C) = {(u1, 0.5, 0.6, 0.4), (u2, 0.5, 0.6, 0.5), (u3, 0.3, 0.3, 0.5), (u4, 0.5, 0.6, 0.5), (u5, 0.4, 0.5, 0.5)}.
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In [6], the sum of two neutrosophic numbers is defined. The sum of LNSRA and the UNSRA
operators P̃(C) and P̃(C) is an NS P̃(C)⊕ P̃(C) defined by

P̃(C)⊕ P̃(C) = {(u1, 0.8, 0.3, 0.16), (u2, 0.85, 0.24, 0.2), (u3, 0.79, 0.2, 0.2), (u4, 0.85, 0.36, 0.25),

(u5, 0.82, 0.25, 0.25)}.

Let nui = (Tnui
, Inui

, Fnui
) be a neutrosophic value number of generic versions medicine ui. We can

calculate the cosine similarity measure S(nui , nu) between each neutrosophic value number nui of
generic version ui and ideal value number nu of brand name drug u, and the grading of all generic
version medicines of Y can be determined. The cosine similarity measure is calculated as the inner
product of two vectors divided by the product of their lengths. It is the cosine of the angle between
the vector representations of two neutrosophic soft rough sets. The cosine similarity measure is
a fundamental measure used in information technology. In [3], the cosine similarity is measured
between neutrosophic numbers and demonstrates that the cosine similarity measure is a special case
of the correlation coefficient in SVNS. Then, a decision-making method is proposed by the use of
the cosine similarity measure of SVNSs, in which the evaluation information for alternatives with
respect to criteria is carried out by truth-membership degree, indeterminacy-membership degree,
and falsity-membership degree under single-valued neutrosophic environment. It defined as follows:

S(nu, nui ) =
Tnu · Tnui

+ Inu · Inui
+ Fnu · Fnui√

T2
nu + Tn2

u
+ F2

nu +
√

T2
nui

+ Tn2
ui
+ F2

nui

. (1)

Through the cosine similarity measure between each object and the ideal object, the ranking order
of all objects can be determined and the best object can be easily identified as well. The advantage is
that the proposed MCDM approach has some simple tools and concepts in the neutrosophic similarity
measure approach among the existing ones. An illustrative application shows that the proposed
method is simple and effective.

The generic version medicine ui with the larger similarity measure S(nui , nu) is the most suitable
version ui because it is close to the brand name drug u. By comparing the cosine similarity measure
values, the grading of all generic medicines can be determined, and we can find the most suitable
generic medicine after selection of suitable NS of parameters. By Equation (1), we can calculate the
cosine similarity measure between neutrosophic value numbers nu of u and nui of ui as follows:

S(nu, nu1) = 0.9203, S(nu, nu2) = 0.9386, S(nu, nu3) = 0.9415,

S(nu, nu4) = 0.8888 S(nu, nu5) = 0.9183.

We get S(nu, nu3) > S(nu, nu2) > S(nu, nu1) > S(nu, nu5) > S(nu, nu4). Thus, the optimal decision
is u3, and the most suitable generic version of Claritin is Sudafed (Pseudoephedrine). We have used
software MATLAB (version 7, MathWorks, Natick, MA, USA) for calculations in the application. The
flow chart of the algorithm is general for any number of objects with respect to certain parameters.
The flow chart of our proposed method is given in Figure 1. The method is presented as an algorithm
in Algorithm 1.
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Srart

Read the number of elements in universal setY
and number of elements in parameter setM.

Read neutrosophic soft relatioñP
and neutrosophic setC onM .

T
P̃ (C)

= zeros(n, 1)

I
P̃ (C)

= ones(n, 1)
F
P̃ (C)

= ones(n, 1)

TP̃ (C) = ones(n, 1)
IP̃ (C) = zeros(n, 1)
FP̃ (C) = zeros(n, 1)

if

P̃ (C) 6= P̃ (C)

P̃ (C)⊕ P̃ (C) = zeros(n, 3)

nu = (1, 0, 0)

S(nu, nui) = zeros(n,1)

D = max(S)

fprintf(“ you can choice the elementu,j")

Stop

True

False

i = i+ 1

l = l + 1

fprintf(“ it is a neutrosophic set on universal set")

k = k + 1

Figure 1: Flow chart for selection of most suitable objects

22

Figure 1. Flow chart for selection of most suitable objects.
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Algorithm 1: Algorithm for selection of the most suitable objects

1. Begin
2. Input the number of elements in universal set Y = {u1, u2, . . . , un}.
3. Input the number of elements in parameter set M = {e1, e2, . . . , em}.
4. Input a neutrosophic soft relation P̃ from Y to M.
5. Input an NS C on M.
6. if size(P̃) 6= [n, 3 ∗m]

7. fprintf(8 size of neutrosophic soft relation from universal set to parameter
set is not correct, it should be of order %dx%d; ′, n, 3 ∗m)

8. error(8 Dimemsion of neutrosophic soft relation on vertex set is not correct. ’)
9. end
10. if size(C) 6= [m, 3]
11. fprintf(8 size of NS on parameter set is not correct,

it should be of order %dx3; ’,m)
12. error(’Dimemsion of NS on parameter set is not correct.’)
13. end
14. TP̃(C) = zeros(n, 1);

15. IP̃(C) = ones(n, 1);

16. FP̃(C) = ones(n, 1);

17. TP̃(C) = ones(n, 1);
18. IP̃(C) = zeros(n, 1);
19. FP̃(C) = zeros(n, 1);
20. if size(P̃) == [n, 3 ∗m]

21. if size(C) == [m, 3]
22. if P̃ >= 0 && P̃ <= 1
23. if C >= 0 && C <= 1
24. for i = 1 : n
25. for k = 1 : m
26. j=3*k-2;
27. TP̃(C)(i, 1) = max(TP̃(C)(i, 1), min(P̃(i, j), C(k, 1)));

28. IP̃(C)(i, 1) = min(IP̃(C)(i, 1), max(P̃(i, j + 1), C(k, 2)));

29. FP̃(C)(i, 1) = min(FP̃(C)(i, 1), max(P̃(i, j + 2), C(k, 3)));

30. TP̃(C)(i, 1) = min(TP̃(C)(i, 1), max(P̃(i, j + 2), C(k, 1)));
31. IP̃(C)(i, 1) = max(IP̃(C)(i, 1), min((1− P̃(i, j + 1)), C(k, 2)));
32. FP̃(C)(i, 1) = max(FP̃(C)(i, 1), min(P̃(i, j), C(k, 3)));
33. end
34. end
35. P̃(C) = (TP̃(C), IP̃(C), FP̃(C))

36. P̃(C) = (TP̃(C), IP̃(C), FP̃(C))

37. if P̃(C) == P̃(C)
38. fprintf(8 it is a neutrosophic set on universal set. ′)
39. else
40. fprintf(8it is an NSRS on universal set. ′)
41. P̃(C)⊕ P̃(C) = zeros(n, 3);
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42. for i=1:n
43. TP̃(C)(i)⊕ TP̃(C)(i) = TP̃(C)(i) + TP̃(C)(i)

− TP̃(C)(i). ∗ TP̃(C)(i);

44. IP̃(C)(i)⊕ IP̃(C)(i) = IP̃(C)(i). ∗ IP̃(C)(i);

45. FP̃(C)(i)⊕ FP̃(C)(i) = FP̃(C)(i). ∗ FP̃(C)(i);

46. end
47. nu = (1, 0, 0);
48. S(nu, nui ) = zeros(n, 1);
49. for i=1:n

50. S(nu, nui ) =
Tnu · Tnui

+ Inu · Inui
+ Fnu · Fnui√

T2
nu + Tn2

u
+ F2

nu +
√

T2
nui

+ Tn2
ui
+ F2

nui

;

51. end
52. S(nu, nui )

53. D=max(S);
54. l=0;
55. m=zeros(n,1);
56. D2=zeros(n,1);
57. for j=1:n
58. if S(j,1)==D
59. l=l+1;
60. D2(j,1)=S(j,1);
61. m(j)=j;
62. end
63. end
64. for j = 1 : n
65. if m(j) = 0
66. fprintf(8 you can choice the element u%d

′,j)
67. end
68. end
69. end
70. end
71. end
72. end
73. end
74. End

5. Conclusions and Future Directions

Rough set theory can be considered as an extension of classical set theory. Rough set theory
is a very useful mathematical model to handle vagueness. NS theory, RS theory and SS theory are
three useful distinguished approaches to deal with vagueness. NS and RS models are used to handle
uncertainty, and combining these two models with another remarkable model of SSs gives more
precise results for decision-making problems. In this paper, we have first presented the notion of
SRNSs. Furthermore, we have introduced NSRSs and investigated some properties of NSRSs in detail.
The notion of NSRS can be utilized as a mathematical tool to deal with imprecise and unspecified
information. In addition, a decision-making method based on NSRSs has been proposed. This research
work can be extended to (1) rough bipolar neutrosophic soft sets; (2) bipolar neutrosophic soft rough
sets; (3) interval-valued bipolar neutrosophic rough sets; and (4) neutrosophic soft rough graphs.
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Abstract: Technique for the order of preference by similarity to ideal solution (TOPSIS) and elimination
and choice translating reality (ELECTRE) are widely used methods to solve multi-criteria decision
making problems. In this research article, we present bipolar neutrosophic TOPSIS method and bipolar
neutrosophic ELECTRE-I method to solve such problems. We use the revised closeness degree to rank
the alternatives in our bipolar neutrosophic TOPSIS method. We describe bipolar neutrosophic TOPSIS
method and bipolar neutrosophic ELECTRE-I method by flow charts. We solve numerical examples by
proposed methods. We also give a comparison of these methods.

Keywords: neutrosophic sets; bipolar neutrosophic TOPSIS; bipolar neutrosophic ELECTRE-I;
normalized Euclidean distance

1. Introduction

The theory of fuzzy sets was introduced by Zadeh [1]. Fuzzy set theory allows objects to be members
of the set with a degree of membership, which can take any value within the unit closed interval [0, 1].
Smarandache [2] originally introduced neutrosophy, a branch of philosophy which examines the origin,
nature, and scope of neutralities, as well as their connections with different intellectual spectra. To apply
neutrosophic set in real-life problems more conveniently, Smarandache [2] and Wang et al. [3] defined
single-valued neutrosophic sets which takes the value from the subset of [0, 1]. Thus, a single-valued
neutrosophic set is an instance of neutrosophic set, and can be used feasibly to deal with real-world
problems, especially in decision support. Deli et al. [4] dealt with bipolar neutrosophic sets, which is
an extension of bipolar fuzzy sets [5].

Multi-criteria decision making (MCDM) is a process to make an ideal choice that has the highest
degree of achievement from a set of alternatives that are characterized in terms of multiple conflicting
criteria. Hwang and Yoon [6] developed the TOPSIS method, which is one of the most favorable
and effective MCDM methods to solve MCDM problems. In classical MCDM methods, the attribute
values and weights are determined precisely. To deal with problems consisting of incomplete and
vague information, in 2000 Chen [7] conferred the fuzzy version of TOPSIS method for the first time.
Chung and Chu [8] presented fuzzy TOPSIS method under group decision for facility location selection
problem. Hadi et al. [9] proposed the fuzzy inferior ratio method for multiple attribute decision making
problems. Joshi and Kumar [10] discussed the TOPSIS method based on intuitionistic fuzzy entropy
and distance measure for multi criteria decision making. A comparative study of multiple criteria
decision making methods under stochastic inputs is described by Kolios et al. [11]. Akram et al. [12–14]
considered decision support systems based on bipolar fuzzy graphs. Applications of bipolar fuzzy
sets to graphs have been discussed in [15,16]. Faizi et al. [17] presented group decision making for
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hesitant fuzzy sets based on characteristic objects method. Recently, Alghamdi et al. [18] have studied
multi-criteria decision-making methods in bipolar fuzzy environment. Dey et al. [19] considered
TOPSIS method for solving the decision making problem under bipolar neutrosophic environment.

On the other hand, the ELECTRE is one of the useful MCDM methods. This outranking
method was proposed by Benayoun et al. [20], which was later referred to as ELECTRE-I method.
Different versions of ELECTRE method have been developed as ELECTRE-I, II, III, IV and TRI.
Hatami-Marbini and Tavana [21] extended the ELECTRE-I method and gave an alternative fuzzy
outranking method to deal with uncertain and linguistic information. Aytac et al. [22] considered
fuzzy ELECTRE-I method for evaluating catering firm alternatives. Wu and Chen [23] proposed
the multi-criteria analysis approach ELECTRE based on intuitionistic fuzzy sets. In this research
article, we present bipolar neutrosophic TOPSIS method and bipolar neutrosophic ELECTRE-I method
to solve MCDM problems. We use the revised closeness degree to rank the alternatives in our
bipolar neutrosophic TOPSIS method. We describe bipolar neutrosophic TOPSIS method and bipolar
neutrosophic ELECTRE-I method by flow charts. We solve numerical examples by proposed methods.
We also give a comparison of these methods. For other notions and applications that are not mentioned
in this paper, the readers are referred to [24–29].

2. Bipolar Neutrosophic TOPSIS Method

Definition 1. Ref. [4] Let C be a nonempty set. A bipolar neutrosophic set (BNS) B̃ on C is defined as follows

B̃ = {c,
〈

T+
B̃
(c), I+

B̃
(c), F+

B̃
(c), T−

B̃
(c), I−

B̃
(c), F−

B̃
(c)
〉
| c ∈ C},

where, T+
B̃
(c), I+

B̃
(c), F+

B̃
(c) : C → [0, 1] and T−

B̃
(c), I−

B̃
(c), F−

B̃
(c) : C → [−1, 0].

We now describe our proposed bipolar neutrosophic TOPSIS method.
Let S = {S1, S2, · · · , Sm} be a set of m favorable alternatives and let T = {T1, T2, · · · , Tn} be

a set of n attributes. Let W = [w1 w2 · · · wn]T be the weight vector such that 0 ≤ wj ≤ 1 and
n
∑

j=1
wj = 1. Suppose that the rating value of each alternative Si, (i = 1, 2, · · · , m) with respect to the

attributes Tj, (j = 1, 2, · · · , n) is given by decision maker in the form of bipolar neutrosophic sets (BNSs).
The steps of bipolar neutrosophic TOPSIS method are described as follows:

(i) Each value of alternative is estimated with respect to n criteria. The value of each alternative
under each criterion is given in the form of BNSs and they can be expressed in the decision
matrix as

K = [kij]m×n =


k11 k12 ... k1n
k21 k22 ... k2n

. . ... .

. . ... .
km1 km2 ... kmn

.

Each entry kij =< T+
ij , I+ij , F+

ij , T−ij , I−ij , F−ij >, where, T+
ij , I+ij and F+

ij represent the degree of

positive truth, indeterminacy and falsity membership, respectively, whereas, T−ij , I−ij and F−ij
represent the degree of negative truth, indeterminacy and falsity membership, respectively,
such that T+

ij , I+ij , F+
ij ∈ [0, 1], T−ij , I−ij , F−ij ∈ [−1, 0] and 0 ≤ T+

ij + I+ij + F+
ij − T−ij − I−ij − F−ij ≤ 6,

i = 1, 2, 3, ..., m; j = 1, 2, 3, ..., n.
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(ii) Suppose that the weights of the criteria are not equally assigned and they are totally unknown
to the decision maker. We use the maximizing deviation method [30] to determine the unknown
weights of the criteria. Therefore, the weight of the attribute Tj is given as

wj =

m
∑

i=1

m
∑

l=1
|kij − kl j|√√√√ n

∑
j=1

(
m
∑

i=1

m
∑

l=1
|kij − kl j|

)2
,

and the normalized weight of the attribute Tj is given as

w∗j =

m
∑

i=1

m
∑

l=1
|kij − kl j|

n
∑

j=1

(
m
∑

i=1

m
∑

l=1
|kij − kl j|

) .

(iii) The accumulated weighted bipolar neutrosophic decision matrix is computed by multiplying
the weights of the attributes to aggregated decision matrix as follows:

K⊗W = [k
wj
ij ]m×n =



kw1
11 kw2

12 ... kwn
1n

kw1
21 kw2

22 ... kwn
2n

. . ... .

. . ... .

kw1
m1 kw2

m2 ... kwn
mn


.

where

k
wj
ij =< T

wj+

ij , I
wj+

ij , F
wj+

ij , T
wj−
ij , I

wj−
ij , F

wj−
ij >

=< 1− (1− T+
ij )

wj , (I+ij )
wj , (F+

ij )
wj ,−(−T−ij )

wj ,−(−I−ij )
wj ,−(1− (1− (−F−ij ))

wj) >,

(iv) Two types of attributes, benefit type attributes and cost type attributes, are mostly applicable in
real life decision making. The bipolar neutrosophic relative positive ideal solution (BNRPIS) and
bipolar neutrosophic relative negative ideal solution (BNRNIS) for both type of attributes are
defined as follows:

BNRPIS =
(〈+Tw1+

1 ,+ Iw1+
1 ,+ Fw1+

1 ,+ Tw1−
1 ,+ Iw1−

1 ,+ Fw1−
1

〉
,
〈+Tw2+

2 ,+ Iw2+
2 ,+ Fw2+

2 ,+ Tw2−
2 ,

+ Iw2−
2 ,+ Fw2−

2
〉
, ...,

〈+Twn+
n ,+ Iwn+

n ,+ Fwn+
n ,+ Twn−

n ,+ Iwn−
n ,+ Fwn−

n
〉)

,

BNRNIS =
(〈−Tw1+

1 ,− Iw1+
1 ,− Fw1+

1 ,− Tw1−
1 ,− Iw1−

1 ,− Fw1−
1

〉
,
〈−Tw2+

2 ,− Iw2+
2 ,− Fw2+

2 ,− Tw2−
2 ,

− Iw2−
2 ,− Fw2−

2
〉
, ...,

〈−Twn+
n ,− Iwn+

n ,− Fwn+
n ,− Twn−

n ,− Iwn−
n ,− Fwn−

n
〉)

,
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such that, for benefit type criteria, j = 1, 2, ..., n〈+T
wj+

j ,+ I
wj+

j ,+ F
wj+

j ,+ T
wj−
j ,+ I

wj−
j ,+ F

wj−
j

〉
=
〈

max(T
wj+

ij ), min(I
wj+

ij ), min(F
wj+

ij ),

min(T
wj−
ij ), max(I

wj−
ij ), max(F

wj−
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Similarly, for cost type criteria, j = 1, 2, ..., n〈+T
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.

(v) The normalized Euclidean distance of each alternative
〈

T
wj+

ij , I
wj+
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wj+

ij , T
wj−
ij , I

wj−
ij , F

wj−
ij

〉
from
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j ,+ T
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wj−
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j
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can be calculated as

dN(Si, BNRPIS) =

√√√√√ 1
6n

n
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}
,

and the normalized Euclidean distance of each alternative
〈

T
wj+
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wj+

ij , F
wj+
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ij , I

wj−
ij , F

wj−
ij

〉
from the BNRNIS
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〉
can be calculated as

dN(Si, BNRNIS) =

√√√√√ 1
6n

n
∑

j=1

{
(T

wj+

ij −− T
wj+

j )2 + (I
wj+

ij −− I
wj+

j )2 + (F
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ij −− F
wj+

j )2+
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wj−
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wj−
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}
.

(vi) Revised closeness degree of each alternative to BNRPIS represented as ρi and it is calculated
using formula

ρ(Si) =
dN(Si, BNRNIS)

max{dN(Si, BNRNIS)} −
dN(Si, BNRPIS)

min{dN(Si, BNRPIS)} , i = 1, 2, ..., m.

(vii) By using the revised closeness degrees, the inferior ratio to each alternative is determined
as follows:

IR(i) =
ρ(Si)

min
1≤i≤m

(ρ(Si))
.

It is clear that each value of IR(i) lies in the closed unit interval [0,1].
(viii) The alternatives are ranked according to the ascending order of inferior ratio values and the best

alternative with minimum choice value is chosen.

Geometric representation of the procedure of our proposed bipolar neutrosophic TOPSIS method
is shown in Figure 1.

Florentin Smarandache (ed.) Collected Papers, VII

465



Identification of alternatives and criteria

method

Rank the alternatives according to ascending

order of inferior ratio values

Calculate the inferior ratio of each alternative

Calculate the revised closeness degree of

each alternative to BNRPIS

Calculate the distance of each alternative from

BNRPIS and BNRNIS

Compute BNRPIS and BNRNIS

Construct weighted bipolar neutrosophic decision

matrix

Calculate weights of criteria by maximizing deviation

Construct bipolar neutrosophic decision matrix

Technique for the order of preference by similarity

to ideal solution (TOPSIS)

Figure 2.2: Flow chart of bipolar neutrosophic TOPSIS method

Step 3. The weighted bipolar neutrosophic decision matrix is constructed by multiplying the weights to decision
matrix as given in Table 2:

6

Figure 1. Flow chart of bipolar neutrosophic TOPSIS.

3. Applications

In this section, we apply bipolar neutrosophic TOPSIS method to solve real life problems: the best
electronic commerce web site, heart surgeon and employee were chosen.
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3.1. Electronic Commerce Web Site

Electronic Commerce (e-commerce, for short) is a process of trading the services and goods
through electronic networks like computer structures as well as the internet. In recent times e-commerce
has become a very fascinating and convenient choice for both the businesses and customers.
Many companies are interested in advancing their online stores rather than the brick and mortar
buildings, because of the appealing requirements of customers for online purchasing. Suppose that
a person wants to launch his own online store for selling his products. He will choose the e-commerce
web site that has comparatively better ratings and that is most popular among internet users. After
initial screening four web sites, S1 = Shopify, S2 = 3d Cart, S3 = BigCommerce and S4 = Shopsite,
are considered. Four attributes, T1 = Customer satisfaction, T2 = Comparative prices, T3 = On-time
delivery and T4 = Digital marketing, are designed to choose the best alternative.

Step 1. The decision matrix in the form of bipolar neutrosophic information is given as in Table 1:

Table 1. Bipolar neutrosophic decision matrix.

S�T T1 T2 T3 T4

S1 (0.4, 0.2, 0.5, (0.5, 0.3, 0.3, (0.2, 0.7, 0.5, (0.4, 0.6, 0.5,
−0.6,−0.4,−0.4) −0.7,−0.2,−0.4) −0.4,−0.4,−0.3) −0.3,−0.7,−0.4)

S2 (0.3, 0.6, 0.1, (0.2, 0.6, 0.1, (0.4, 0.2, 0.5, (0.2, 0.7, 0.5,
−0.5,−0.7,−0.5) −0.5,−0.3,−0.7) −0.6,−0.3,−0.1) −0.5,−0.3,−0.2)

S3 (0.3, 0.5, 0.2, (0.4, 0.5, 0.2, (0.9, 0.5, 0.7, (0.3, 0.7, 0.6,
−0.4,−0.3,−0.7) −0.3,−0.8,−0.5) −0.3,−0.4,−0.3) −0.5,−0.5,−0.4)

S4 (0.6, 0.7, 0.5, (0.8, 0.4, 0.6, (0.6, 0.3, 0.6, (0.8, 0.3, 0.2,
−0.2,−0.1,−0.3) −0.1,−0.3,−0.4) −0.1,−0.4,−0.2) −0.1,−0.3,−0.1)

Step 2. The normalized weights of the criteria are calculated by using maximizing deviation method
as given below:

w1 = 0.2567, w2 = 0.2776, w3 = 0.2179, w4 = 0.2478, where
4

∑
j=1

wj = 1.

Step 3. The weighted bipolar neutrosophic decision matrix is constructed by multiplying the weights
to decision matrix as given in Table 2:

Table 2. Weighted bipolar neutrosophic decision matrix.

S�T T1 T2 T3 T4

S1 (0.123, 0.662, 0.837, (0.175, 0.716, 0.716, (0.047, 0.925, 0.86, (0.119, 0.881, 0.842,
−0.877,−0.79,−0.123) −0.906,−0.64,−0.132) −0.819,−0.819,−0.075) −0.742,−0.915,−0.119)

S2 (0.087, 0.877, 0.554, (0.06, 0.868, 0.528, (0.105, 0.704, 0.86, (0.054, 0.915, 0.842,
−0.837,−0.913,−0.163) −0.825,−0.716,−0.284) −0.895,−0.769,−0.023) −0.842,−0.742,−0.054)

S3 (0.087, 0.837, 0.662, (0.132, 0.825, 0.64, (0.395, 0.86, 0.925, (0.085, 0.915, 0.881,
−0.79,−0.734,−0.266) −0.716,−0.94,−0.175) −0.769,−0.819,−0.075) −0.842,−0.842,−0.119)

S4 (0.21, 0.913, 0.837, (0.36, 0775, 0.868, (0.181, 0.769, 0.895, (0.329, 0.742, 0.671,
−0.662,−0.554,−0.087) −0.528,−0.716,−0.132) −0.605,−0.819,−0.047) −0.565,−0.742,−0.026)

Step 4. The BNRPIS and BNRNIS are given by

BNRPIS =< (0.21, 0.662, 0.554,−0.877,−0.554,−0.087),

(0.06, 0.868, 0.868,−0.528,−0.94,−0.284),

(0.395, 0.704, 0.86,−0.895,−0.769,−0.023),

(0.329, 0.742, 0.671,−0.842,−0.742,−0.062) >;
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BNRNIS =< (0.087, 0.913, 0.837,−0.662,−0.913,−0.266),

(0.36, 0.716, 0.528,−0.906,−0.64,−0.132),

(0.047, 0.925, 0.925,−0.605,−0.819,−0.075),

(0.054, 0.915, 0.881,−0.565,−0.915,−0.119) > .

Step 5. The normalized Euclidean distances of each alternative from the BNRPISs and the BNRNISs
are given as follows:

dN(S1, BNRPIS) = 0.1805, dN(S1, BNRNIS) = 0.1125,

dN(S2, BNRPIS) = 0.1672, dN(S2, BNRNIS) = 0.1485,

dN(S3, BNRPIS) = 0.135, dN(S3, BNRNIS) = 0.1478,

dN(S4, BNRPIS) = 0.155, dN(S4, BNRNIS) = 0.1678.

Step 6. The revised closeness degree of each alternative is given as

ρ(S1) = −0.667, ρ(S2) = −0.354, ρ(S3) = −0.119, ρ(S4) = −0.148.

Step 7. The inferior ratio to each alternative is given as

IR(1) = 1, IR(2) = 0.52, IR(3) = 0.18, IR(4) = 0.22.

Step 8. Ordering the web stores according to ascending order of alternatives, we obtain: S3 < S4 <

S2 < S1. Therefore, the person will choose the BigCommerce for opening a web store.

3.2. Heart Surgeon

Suppose that a heart patient wants to select a best cardiac surgeon for heart surgery. After initial
screening, five surgeons are considered for further evaluation. These surgeons represent the
alternatives and are denoted by S1, S2, S3, S4, and S5 in our MCDM problem. Suppose that he
concentrates on four characteristics, T1 = Availability of medical equipment, T2 = Surgeon reputation,
T3 = Expenditure and T4 = Suitability of time, in order to select the best surgeon. These characteristics
represent the criteria for this MCDM problem.

Step 1. The decision matrix in the form of bipolar neutrosophic information is given as in Table 3:

Table 3. Bipolar neutrosophic decision matrix.

S�T T1 T2 T3 T4

S1 (0.6, 0.5, 0.3, (0.5, 0.7, 0.4, (0.3, 0.5, 0.5, (0.5, 0.3, 0.6,
−0.5,−0.7,−0.4) −0.6,−0.4,−0.5) −0.7,−0.3,−0.4) −0.4,−0.7,−0.5)

S2 (0.9, 0.3, 0.2, (0.7, 0.4, 0.2, (0.4, 0.7, 0.6, (0.8, 0.3, 0.2,
−0.3,−0.6,−0.5) −0.4,−0.5,−0.7) −0.6,−0.3,−0.3) −0.2,−0.5,−0.7)

S3 (0.4, 0.6, 0.6, (0.5, 0.3, 0.6, (0.7, 0.5, 0.3, (0.4, 0.6, 0.7,
−0.7,−0.4,−0.3) −0.6,−0.4,−0.4) −0.4,−0.4,−0.6) −0.5,−0.4,−0.4)

S4 (0.8, 0.5, 0.3, (0.6, 0.4, 0.3, (0.4, 0.5, 0.7, (0.5, 0.4, 0.6,
−0.3,−0.4,−0.5) −0.5,−0.7,−0.8) −0.5,−0.4,−0.2) −0.6,−0.7,−0.3)

S5 (0.6, 0.4, 0.6, (0.4, 0.7, 0.6, (0.6, 0.3, 0.5, (0.5, 0.7, 0.4,
−0.4,−0.7,−0.3) −0.7,−0.5,−0.6) −0.3,−0.7,−0.4) −0.3,−0.6,−0.5)
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Step 2. The normalized weights of the criteria are calculated by using maximizing deviation method
as given below:

w1 = 0.2480, w2 = 0.2424, w3 = 0.2480, w4 = 0.2616, where
4

∑
j=1

wj = 1.

Step 3. The weighted bipolar neutrosophic decision matrix is constructed by multiplying the weights
to decision matrix as given in Table 4:

Table 4. Weighted bipolar neutrosophic decision matrix.

S�T T1 T2 T3 T4

S1 (0.203, 0.842, 0.742, (0.155, 0.917, 0.801, (0.085, 0.842, 0.842, (0.166, 0.730, 0.875,
−0.842,−0.915,−0.119) −0.884,−0.801,−0.155) −0.915,−0.742,−0.119) −0.787,−0.911,−0.166)

S2 (0.435, 0.742, 0.671, (0.253, 0.801, 0.677, (0.119, 0.915, 0.881, (0.344, 0.730, 0.656,
−0.742,−0.881,−0.158) −0.801,−0.845,−0.253) −0.881,−0.742,−0.085) −0.656,−0.834,−0.270)

S3 (0.119, 0.881, 0.881, (0.155, 0.747, 0.884, (0.258, 0.842, 0.742, (0.125, 0.875, 0.911,
−0.915,−0.797,−0.085) −0.884,−0.801,−0.116) −0.797,−0.797,−0.203) −0.834,−0.787,−0.125)

S4 (0.329, 0.842, 0.742, (0.199, 0.801, 0.747, (0.119, 0.842, 0.915, (0.166, 0.787, 0.875,
−0.742,−0.797,−0.158) −0.845,−0.917,−0.323) −0.842,−0.797,−0.054) −0.875,−0.911,−0.089)

S5 (0.203, 0.797, 0.881, (0.116, 0.917, 0.884, (0.203, 0.742, 0.842, (0.166, 0.911, 0.787,
−0.797,−0.915,−0.085) −0.917,−0.845,−0.199) −0.742,−0.915,−0.119) −0.730,−0.875,−0.166)

Step 4. The BNRPIS and BNRNIS are given by

BNRPIS =< (0.435, 0.742, 0.671,−0.915,−0.797,−0.085),

(0.253, 0.747, 0.677,−0.917,−0.801,−0.116),

(0.085, 0.915, 0.915,−0.742,−0.915,−0.203),

(0.344, 0.730, 0.656,−0.875,−0.787,−0.089) >;

BNRNIS =< (0.119, 0.881, 0.881,−0.742,−0.915,−0.158),

(0.116, 0.917, 0.884,−0.801,−0.917,−0.323),

(0.258, 0.742, 0.742,−0.915,−0.742,−0.054),

(0.125, 0.911, 0.911,−0.656,−0.911,−0.270) > .

Step 5. The normalized Euclidean distances of each alternative from the BNRPISs and the BNRNISs
are given as follows:

dN(S1, BNRPIS) = 0.1176, dN(S1, BNRNIS) = 0.0945,

dN(S2, BNRPIS) = 0.0974, dN(S2, BNRNIS) = 0.1402,

dN(S3, BNRPIS) = 0.1348, dN(S3, BNRNIS) = 0.1043,

dN(S4, BNRPIS) = 0.1089, dN(S4, BNRNIS) = 0.1093,

dN(S5, BNRPIS) = 0.1292, dN(S5, BNRNIS) = 0.0837.

Step 6. The revised closeness degree of each alternative is given as

ρ(S1) = −0.553, ρ(S2) = 0, ρ(S3) = −0.64, ρ(S4) = −0.338, ρ(S5) = −0.729

Step 7. The inferior ratio to each alternative is given as

IR(1) = 0.73, IR(2) = 0, IR(3) = 0.88, IR(4) = 0.46, IR(5) = 1.
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Step 8. Ordering the alternatives in ascending order, we obtain: S2 < S4 < S1 < S3 < S5. Therefore,
S2 is best among all other alternatives.

3.3. Employee (Marketing Manager)

Process of employee selection has an analytical importance for any kind of business. According to
firm hiring requirements and the job position, this process may vary from a very simple process
to a complicated procedure. Suppose that a company wants to hire an employee for the post of
marketing manager. After initial screening, four candidates are considered as alternatives and
denoted by S1, S2, S3 and S4 in our MCDM problem. The requirements for this post, T1 = Confidence,
T2 = Qualification, T3 = Leading skills and T4 = Communication skills, are considered as criteria in
order to select the most relevant candidate.

Step 1. The decision matrix in the form of bipolar neutrosophic information is given as in Table 5:

Table 5. Bipolar neutrosophic decision matrix.

S�T T1 T2 T3 T4

S1 (0.8, 0.5, 0.3, (0.7, 0.3, 0.2, (0.5, 0.4, 0.6, (0.9, 0.3, 0.2,
−0.3,−0.6,−0.5) −0.3,−0.5,−0.4) −0.5,−0.3,−0.4) −0.3,−0.4,−0.2)

S2 (0.5, 0.7, 0.6 (0.4, 0.7, 0.5, (0.6, 0.8, 0.5, (0.5, 0.3, 0.6,
−0.4,−0.2,−0.4) −0.6,−0.2,−0.3) −0.3,−0.5,−0.7) −0.6,−0.4,−0.3)

S3 (0.4, 0.6, 0.8, (0.6, 0.3, 0.5, (0.3, 0.5, 0.7, (0.5, 0.7, 0.4,
−0.7,−0.3,−0.4) −0.2,−0.4,−0.6) −0.8,−0.4,−0.2) −0.6,−0.3,−0.5)

S4 (0.7, 0.3, 0.5, (0.5, 0.4, 0.6, (0.6, 0.4, 0.3, (0.4, 0.5, 0.7,
−0.4,−0.2,−0.5) −0.4,−0.5,−0.3) −0.3,−0.5,−0.7) −0.6,−0.5,−0.3)

Step 2. The normalized weights of the criteria are calculated by using maximizing deviation method
as given below:

w1 = 0.25, w2 = 0.2361, w3 = 0.2708, w4 = 0.2431, where
4

∑
j=1

wj = 1.

Step 3. The weighted bipolar neutrosophic decision matrix is constructed by multiplying the weights
to decision matrix as given in Table 6:

Table 6. Weighted bipolar neutrosophic decision matrix.

S�T T1 T2 T3 T4

S1 (0.3313, 0.8409, 0.7401, (0.2474, 0.7526, 0.6839, (0.1711, 0.7803, 0.8708, (0.4287, 0.7463, 0.6762,
−0.7401,−0.8801,−0.1591) −0.7526,−0.8490,−0.1136) −0.8289,−0.7218,−0.1292) −0.7463,−0.8003,−0.0528)

S2 (0.1591, 0.9147, 0.8801, (0.1136, 0.9192, 0.8490, (0.2197, 0.9414, 0.8289, (0.1551, 0.7463, 0.8832,
−0.7953,−0.6687,−0.1199) −0.8864,−0.6839,−0.0808) −0.7218,−0.8289,−0.2782) −0.8832,−0.8003,−0.0831)

S3 (0.1199, 0.8801, 0.9457, (0.1945, 0.7526, 0.8490, (0.0921, 0.8289, 0.9079, (0.1551, 0.9169, 0.8003,
−0.9147,−0.7401,−0.1199) −0.6839,−0.8055,−0.1945) −0.9414,−0.7803,−0.0586) −0.8832,−0.7463,−0.1551)

S4 (0.2599, 0.7401, 0.8409, (0.1510, 0.8055, 0.8864, (0.2197, 0.7803, 0.7218, (0.1168, 0.8449, 0.9169,
−0.7953,−0.6687,−0.1591) −0.8055,−0.8490,−0.0808) −0.7218,−0.8289,−0.2782) −0.8832,−0.8449,−0.0831)

Step 4. The BNRPIS and BNRNIS are given by

BNRPIS =< (0.3313, 0.7401, 0.7401,−0.9147,−0.6687,−0.1199),

(0.2474, 0.7526, 0.6839,−0.8864,−0.6839,−0.0808),

(0.2197, 0.7803, 0.7218,−0.9414,−0.7218,−0.0586),

(0.4287, 0.7463, 0.6762,−0.8832,−0.7463,−0.0528) >;
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BNRNIS =< (0.1199, 0.9147, 0.9457,−0.7401,−0.8801,−0.1591),

(0.1136, 0.9192, 0.8864,−0.6839,−0.8490,−0.1945),

(0.0921, 0.9414, 0.9079,−0.7218,−0.8289,−0.2782),

(0.1168, 0.9169, 0.9169,−0.7463,−0.8449,−0.1551) > .

Step 5. The normalized Euclidean distances of each alternative from the BNRPISs and the BNRNISs
are given as follows:

dN(S1, BNRPIS) = 0.0906, dN(S1, BNRNIS) = 0.1393,

dN(S2, BNRPIS) = 0.1344, dN(S2, BNRNIS) = 0.0953,

dN(S3, BNRPIS) = 0.1286, dN(S3, BNRNIS) = 0.1011,

dN(S4, BNRPIS) = 0.1293, dN(S4, BNRNIS) = 0.0999.

Step 6. The revised closeness degree of each alternative is given as

ρ(S1) = 0, ρ(S2) = −0.799, ρ(S3) = −0.694, ρ(S4) = −0.780.

Step 7. The inferior ratio to each alternative is given as

IR(1) = 0, IR(2) = 1, IR(3) = 0.87, IR(4) = 0.98.

Step 8. Ordering the alternatives in ascending order, we obtain: S1 < S3 < S4 < S2. Therefore, the
company will select the candidate S1 for this post.

4. Bipolar Neutrosophic ELECTRE-I Method

In this section, we propose bipolar neutrosophic ELECTRE-I method to solve MCDM problems.
Consider a set of alternatives, denoted by S = {S1, S2, S3, · · · , Sm} and the set of criteria, denoted by
T = {T1, T2, T3, · · · , Tn} which are used to evaluate the alternatives.

(i–iii) As in the section of bipolar neutrosophic TOPSIS, the rating values of alternatives with respect
to the criteria are expressed in the form of matrix [kij]m×n. The weights wj of the criteria Tj are
evaluated by maximizing deviation method and the weighted bipolar neutrosophic decision
matrix [k

wj
ij ]m×n is constructed.

(iv) The bipolar neutrosophic concordance sets Exy and bipolar neutrosophic discordance sets Fxy

are defined as follows:

Exy = {1 ≤ j ≤ n | ρxj ≥ ρyj}, x 6= y, x, y = 1, 2, · · · , m,

Fxy = {1 ≤ j ≤ n | ρxj ≤ ρyj}, x 6= y, x, y = 1, 2, · · · , m,

where, ρij = T+
ij + I+ij + F+

ij + T−ij + I−ij + F−ij , i = 1, 2, · · · , m, j = 1, 2, · · · , n.

(v) The bipolar neutrosophic concordance matrix E is constructed as follows:

E =



− e12 . . . e1m
e21 − . . . e2m
.
.
.

em1 em2 . . . −


,
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where, the bipolar neutrosophic concordance indices exy
,s are determined as

exy = ∑
j∈Exy

wj.

(vi) The bipolar neutrosophic discordance matrix F is constructed as follows:

F =



− f12 . . . f1m
f21 − . . . f2m
.
.
.

fm1 fm2 . . . −


,

where, the bipolar neutrosophic discordance indices f xy
,s are determined as

fxy =

max
j∈Fxy

√√√√√ 1
6n

{
(T

wj+

xj − T
wj+

yj )2 + (I
wj+

xj − I
wj+

yj )2 + (F
wj+

xj − F
wj+

yj )2+

(T
wj−
xj − T

wj−
yj )2 + (I

wj−
xj − I

wj−
yj )2 + (F

wj−
xj − F

wj−
yj )2

}

max
j

√√√√√ 1
6n

{
(T

wj+

xj − T
wj+

yj )2 + (I
wj+

xj − I
wj+

yj )2 + (F
wj+

xj − F
wj+

yj )2+

(T
wj−
xj − T

wj−
yj )2 + (I

wj−
xj − I

wj−
yj )2 + (F

wj−
xj − F

wj−
yj )2

} .

(vii) Concordance and discordance levels are computed to rank the alternatives. The bipolar
neutrosophic concordance level ê is defined as the average value of the bipolar neutrosophic
concordance indices as

ê =
1

m(m− 1)

m

∑
x=1,
x 6=y

m

∑
y=1,
y 6=x

exy,

similarly, the bipolar neutrosophic discordance level f̂ is defined as the average value of the
bipolar neutrosophic discordance indices as

f̂ =
1

m(m− 1)

m

∑
x=1,
x 6=y

m

∑
y=1,
y 6=x

fxy.

(viii) The bipolar neutrosophic concordance dominance matrix φ on the basis of ê is determined
as follows:

φ =



− φ12 . . . φ1m
φ21 − . . . φ2m

.

.

.
φm1 φm2 . . . −


,

where, φxy is defined as

φxy =

{
1, if exy ≥ ê,
0, if exy < ê.

Florentin Smarandache (ed.) Collected Papers, VII

472



(ix) The bipolar neutrosophic discordance dominance matrix ψ on the basis of f̂ is determined
as follows:

ψ =



− ψ12 . . . ψ1m
ψ21 − . . . ψ2m

.

.

.
ψm1 ψm2 . . . −


,

where, ψxy is defined as

ψxy =

{
1, if fxy ≤ f̂ ,
0, if fxy > f̂ .

(x) Consequently, the bipolar neutrosophic aggregated dominance matrix π is evaluated by
multiplying the corresponding entries of φ and ψ, that is

π =



− π12 . . . π1m
π21 − . . . π2m

.

.

.
πm1 πm2 . . . −


,

where, πxy is defined as

πxy = φxyψxy.

(xi) Finally, the alternatives are ranked according to the outranking values πxy
,s. That is, for each

pair of alternatives Sx and Sy, an arrow from Sx to Sy exists if and only if πxy = 1. As a result,
we have three possible cases:

(a) There exits a unique arrow from Sx into Sy.
(b) There exist two possible arrows between Sx and Sy.
(c) There is no arrow between Sx and Sy.

For case a, we decide that Sx is preferred to Sy. For the second case, Sx and Sy are indifferent,
whereas, Sx and Sy are incomparable in case c.

Geometric representation of proposed bipolar neutrosophic ELECTRE-I method is shown
in Figure 2.
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Identification of alternatives and criteria

Construct bipolar neutrosophic decision matrix

Calculate the weights of criteria by maximizing

Construct weighted bipolar neutrosophic decision

Construct bipolar neutrosophic concordance sets

Construct bipolar neutrosophic discordance sets

Compute the bipolar neutrosophic concordance

matrix

deviation method

dominance matrix

dominance matrix

Sketching of decision graph

Compute the bipolar neutrosophic aggregated

dominance matrix

Compute the bipolar neutrosophic discordance

Elimination and choice translating reality I

(ELECTRE-I)

Figure 2.3: Flow chart of bipolar neutrosophic ELECTRE-I method

7

Figure 2. Flow chart of bipolar neutrosophic ELECTRE-I.
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Numerical Example

In Section 3, MCDM problems are presented using the bipolar neutrosophic TOPSIS method.
In this section, we apply our proposed bipolar neutrosophic ELECTRE-I method to select the “electronic
commerce web site” to compare these two MCDM methods. Steps (1–3) have already been done in
Section 3.1. So we move on to Step 4.

Step 4. The bipolar neutrosophic concordance sets Exy
,s are given as in Table 7:

Table 7. Bipolar neutrosophic concordance sets.

Exy�y 1 2 3 4

E1y - {1, 2, 3} {1, 2} { }
E2y {4} - {4} { }
E3y {3, 4} {1, 2, 3} - {3}
E4y {1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 4} -

Step 5. The bipolar neutrosophic discordance sets Fxy
,s are given as in Table 8.

Table 8. Bipolar neutrosophic discordance sets.

Fxy�y 1 2 3 4

F1y - {4} {3, 4} {1, 2, 3, 4}
F2y {1, 2, 3} - {1, 2, 3} {1, 2, 3, 4}
F3y {1, 2} {4} - {1, 2, 4}
F4y { } { } {3} -

Step 6. The bipolar neutrosophic concordance matrix E is computed as follows

E =


− 0.7522 0.5343 0

0.2478 − 0.2478 0
0.4657 0.7522 − 0.2179

1 1 0.7821 −


Step 7. The bipolar neutrosophic discordance matrix F is computed as follows

F =


− 0.5826 0.9464 1
1 − 1 1
1 0.3534 − 1
0 0 0.6009 −


Step 8. The bipolar neutrosophic concordance level is ê = 0.5003 and bipolar neutrosophic discordance

level is f̂ = 0.7069. The bipolar neutrosophic concordance dominance matrix φ and bipolar
neutrosophic discordance dominance matrix ψ are as follows

φ =


− 1 1 0
0 − 0 0
0 1 − 0
1 1 1 −

, ψ =


− 1 0 0
0 − 0 0
0 1 − 0
0 0 0 −

.

Step 9. The bipolar neutrosophic aggregated dominance matrix π is computed as
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π =


− 1 0 0
0 − 0 0
0 1 − 0
0 0 0 −

.

According to nonzero values of πxy, we get the alternatives in the following sequence:

S1 → S2 ← S3

Therefore, the most favorable alternatives are S3 and S1.

5. Comparison of Bipolar Neutrosophic TOPSIS and Bipolar Neutrosophic ELECTRE-I

TOPSIS and ELECTRE-I are the most commonly used MCDM methods to solve decision making
problems, in which the best possible alternative is selected among others. The main idea of the
TOPSIS method is that the chosen alternative has the shortest distance from positive ideal solution and
the greatest distance from negative ideal solution, whereas the ELECTRE-I method is based on the
binary comparison of alternatives. The proposed MCDM methods TOPSIS and ELECTRE-I are based
on bipolar neutrosophic information. In the bipolar neutrosophic TOPSIS method, the normalized
Euclidean distance is used to compute the revised closeness coefficient of alternatives to BNRPIS and
BNRNIS. Alternatives are ranked in increasing order on the basis of inferior ratio values. Bipolar
neutrosophic TOPSIS is an effective method because it has a simple process and is able to deal with
any number of alternatives and criteria. Throughout history, one drawback of the TOPSIS method is
that more rank reversals are created by increasing the number of alternatives. The proposed bipolar
neutrosophic ELECTRE-I is an outranking relation theory that compares all pairs of alternatives and
figures out which alternatives are preferred to the others by systematically comparing them for each
criterion. The connection between different alternatives shows the bipolar neutrosophic concordance
and bipolar neutrosophic discordance behavior of alternatives. The bipolar neutrosophic TOPSIS
method gives only one possible alternative but the bipolar neutrosophic ELECTRE-I method sometimes
provides a set of alternatives as a final selection to consider the MCDM problem. Despite all of the
above comparisons, it is difficult to determine which method is most convenient, because both methods
have their own importance and can be used according to the choice of the decision maker.

6. Conclusions

A single-valued neutrosophic set as an instance of a neutrosophic set provides an additional
possibility to represent imprecise, uncertainty, inconsistent and incomplete information which exist
in real situations. Single valued neutrosophic models are more flexible and practical than fuzzy
and intuitionistic fuzzy models.We have presented the procedure, technique and implication of
TOPSIS and ELECTRE-I methods under bipolar neutrosophic environment. The rating values of
alternatives with respect to attributes are expressed in the form of BNSs. The unknown weights of
the attributes are calculated by maximizing the deviation method to construct the weighted decision
matrix. The normalized Euclidean distance is used to calculate the distance of each alternative from
BNRPIS and BNRNIS. Revised closeness degrees are computed and then the inferior ratio method
is used to rank the alternatives in bipolar neutrosophic TOPSIS. The concordance and discordance
matrices are evaluated to rank the alternatives in bipolar neutrosophic ELECTRE-I. We have also
presented some examples to explain these methods.
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Abstract: In this research study, we introduce the notion of single-valued neutrosophic incidence

graphs. We describe certain concepts, including bridges, cut vertex and blocks in single-valued

neutrosophic incidence graphs. We present some properties of single-valued neutrosophic incidence

graphs. We discuss the edge-connectivity, vertex-connectivity and pair-connectivity in neutrosophic

incidence graphs. We also deal with a mathematical model of the situation of illegal migration from

Pakistan to Europe.

Keywords: single-valued neutrosophic incidence graphs; edge-connectivity; vertex-connectivity

and pair-connectivity; application

1. Introduction

The concept of graph theory was introduced by Euler. A crisp graph shows the relations between

the elements of the vertex set. A weighted graph gives the extent of these relations. Many problems

can be solved if proper weights are given. However, in many situations, the weights may not known,

and the relationship is uncertain. Hence, a fuzzy relation can be used to handle such situations.

Rosenfeld [1] developed the concept of a fuzzy graph. He also discussed several concepts like edges,

paths, bridges and connectedness in a fuzzy graph. Most of the theoretical development of fuzzy

graph theory is based on Rosenfeld’s initial work. Bhutani et al. [2,3] introduced the advance concepts

in fuzzy graphs.

Sometimes when the relationship between the elements of the vertex set is indeterminate, the

fuzzy graph and its extension fails. This indeterminacy can be overcome by using single-valued

neutrosophic graphs [4].

Dinesh, in [5], introduced the concept of unordered pairs of vertices which are not incident

with end vertices. The fuzzy incidence graph not just shows the relations between vertices, but also

provides information about the influence of a vertex on an edge. Dinesh extended the idea of the fuzzy

incidence graph in [6] by introducing new concepts in this regard. Later, Methew et al. [7] discussed

the connectivity concepts in fuzzy incidence graphs. Malik et al. [8] applied the notion of the fuzzy

incidence graph in problems involving human trafficking. They discussed the role played by the

vulnerability of countries and their government’s response to human trafficking. Methew et al. [9]

studied fuzzy incidence blocks and their applications in illegal migration problems. They used fuzzy

incidence graphs as a model for a nondeterministic network with supporting links. They used fuzzy

incidence blocks to avoid the vulnerable links in the network.

The paper is organized as follows: In Section 1, we give some preliminary notions and

terminologies of fuzzy incidence graphs which are needed to understand the extended concept of the

single-valued neutrosophic incidence graph. In Section 2, we present the definition of a single-valued

neutrosophic incidence graph. We also discuss the edge-connectivity, vertex-connectivity and
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pair-connectivity in neutrosophic incidence graphs. In Section 3, we give a mathematical model of

the situation of illegal migration from Pakistan to Europe. Finally, the paper is concluded by some

remarks in Section 4. Below we present some preliminary definitions from [6] and [4]. For further

study on these topics, the readers are referred to references [1,7–16].

Let G = (V, E) be a graph on a nonempty set, V. Then, G′ = (V, E, I) is called an incidence

graph, where I ⊆ V × E. The elements of I are called incidence pairs or simply, pairs.

A fuzzy incidence graph of an incidence graph, G′ = (V, E, I), is an ordered-triplet, G̃ = (µ, λ, ψ),

where µ is a fuzzy subset of V, λ is a fuzzy relation of V, and ψ is a fuzzy subset of I such that

ψ(x, xy) ≤ min{µ(x), λ(xy)}, ∀x ∈ V, xy ∈ E.

We may compare elements of two neutrosophic sets A and B, that is

(TA(x), IA(x), FA(x)) < (TB(x), IB(x), FB(x))

⇒ TA(x) < TB(x), IA(x) < IB(x), FA(x) > FB(x).

2. Single-Valued Neutrosophic Incidence Graphs

Definition 1. A single-valued neutrosophic incidence graph of an incidence graph, G′ = (V, E, I), is an

ordered-triplet, G̃ = (A, B, C), such that

1. A is a single-valued neutrosophic set on V.

2. B is a single-valued neutrosophic relation on V.

3. C is a single-valued neutrosophic subset of V × E such that

TC(x, xy)≤min{TA(x), TB(xy)},

IC(x, xy)≤min{IA(x), IB(xy)},

FC(x, xy)≤max{FA(x), FB(xy)}, ∀x ∈ V, xy ∈ E.

Here, we discuss an example of a single-valued neutrosophic incidence graph (SVNIG).

Example 1. Consider an incidence graph, G = (V, E, I), such that V = {a, b, c, d}, E =

{ab, bc, bd, cd, ad} and I = {(a, ab), (b, ab), (b, bc), (c, bc), (b, bd), (d, bd), (c, cd), (d, cd), (d, ad), (a, ad)},

as shown in Figure 1.

Let G̃ = (A, B, C) be a single-valued neutrosophic incidence graph associated with G, as shown in

Figure 2, where

A ={(a, 0.2, 0.5, 0.8), (b, 0.3, 0.5, 0.1), (c, 0.9, 0.9, 0.1), (d, 0.8, 0.1, 0.2)},

B ={(ab, 0.2, 0.4, 0.7), (bc, 0.3, 0.4, 0.1), (bd, 0.1, 0.1, 0.1), (cd, 0.7, 0.1, 0.2), (ad, 0.1, 0.1, 0.5)},

C ={((a, ab), 0.2, 0.3, 0.7), ((b, ab), 0.1, 0.4, 0.6), ((b, bc), 0.3, 0.3, 0.1), ((c, bc), 0.2, 0.3, 0.1),

((b, bd), 0.1, 0.1, 0.1), ((d, bd), 0.1, 0.1, 0.2), ((c, cd), 0.7, 0.1, 0.2), ((d, cd), 0.7, 0.1, 0.2)

((d, ad), 0.1, 0.1, 0.4), ((a, ad), 0.1, 0.1, 0.5)}.
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Figure 2. Single-valued neutrosophic incidence graph.

Definition 2. The support of an SVNIG G̃ = (A, B, C) is denoted by G∗ = (A∗, B∗, C∗) where

A∗ = support of A = {x ∈ V : TA(x) > 0, IA(x) > 0, FA(x) > 0},

B∗ = support of B = {xy ∈ E : TB(xy) > 0, IB(xy) > 0, FB(xy) > 0},

C∗ = support of C = {(x, xy) ∈ I : TC(x, xy) > 0, IC(x, xy) > 0, FC(x, xy) > 0}.

Now we introduce the concepts of edge, pair, walk, trail, path and connectedness in an SVNIG.

Definition 3. If xy ∈ B∗, then xy is an edge of the SVNIG G̃ = (A, B, C) and if (x, xy), (y, xy) ∈ C∗, then

(x, xy) and (y, xy) are called pairs of G̃.

Definition 4. A sequence

P : u0, (u0, u0u1), u0u1, (u1, u0u1), u1, (u1, u1u2), u1u2, (u2, u1u2), u2, ...,

un−1, (un−1, un−1un), un−1un, (un, un−1un), un

of vertices, edges and pairs in G̃ is a walk. It is a closed walk if u0 = un.

In the above sequence, if all edges are distinct, then it is a trail, and if the pairs are distinct, then it is an

incidence trail. P is called a path if the vertices are distinct. A path is called a cycle if the initial and end vertices

of the path are same. Any two vertices of G̃ are said to be connected if they are joined by a path.

Example 2. In the example presented earlier

P1 : a, (a, ab), ab, (b, ab), b, (b, bd), bd, (d, bd), d, (d, da), da, (a, da), a
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is a walk. It is a closed walk since the initial and final vertices are same, i.e., it is not a path, but it is a trail and

an incidence trail.

P2 : a, (a, ab), ab, (b, ab), b, (b, bd), bd, (d, bd), d

P2 is a walk, path, trail and an incidence trail.

Definition 5. Let G̃ = (A, B, C) be a nSVNIG. Then, H̃ = (L, M, N) is a single-valued neutrosophic

incidence subgraph of G̃ if L ⊆ A, M ⊆ B and N ⊆ C. H̃ is a single-valued neutrosophic incidence spanning

subgraph of G̃ if L∗ = A∗.

Definition 6. In an SVNIG, the strength of a path, P, is an ordered triplet denoted by

S(P) = (s1, s2, s3), where

s1 = min{TB(uv) : uv ∈ P},

s2 = min{IB(uv) : uv ∈ P},

s3 = max{FB(uv) : uv ∈ P}.

Similarly, the incidence strength of a path, P, in an SVNIG is denoted by IS(P) = (is1, is2, is3), where

is1 = min{TC(u, uv) : (u, uv) ∈ P},

is2 = min{IC(u, uv) : (u, uv) ∈ P},

is3 = max{FC(u, uv) : (u, uv) ∈ P}.

Example 3. Let G = (V, E, I) be an incidence graph, as shown in Figure 3, and G̃ = (A, B, C) is an SVNIG

associated with G, which is shown in Figure 4.

Clearly, P : u, (u, uv), uv, (v, uv), v, (v, vx), vx, (x, vx), x is a path in G̃.

The strength of the path, P, is S(P) = (0.2, 0.1, 0.5), and the incidence strength of P is

IS(P) = (0.1, 0.1, 0.6).
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Figure 3. Incidence graph.
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Figure 4. Single-valued neutrosophic incidence graph.

Definition 7. In an SVNIG, G̃ = (A, B, C) the greatest strength of the path from l to m, where l,m

∈ A∗ ∪ B∗ is the maximum of strength of all paths from l to m.

S∞(l, m) =max{S(P1), S(P2), S(P3), ...}

=(s∞

1 , s∞

2 , s∞

3 )

=
(

max(s11, s12, s13, ...), max(s21, s22, s23, ...), min(s31, s32, s33, ...)
)

.

S∞(l,m) is sometimes called the connectedness between l and m.

Similarly, the greatest incidence strength of the path from l to m, where l,m ∈ A∗ ∪ B∗ is the maximum

incidence strength of all paths from l to m.

IS∞(l, m) =max{IS(P1), IS(P2), IS(P3), ...}

=(is∞

1 , is∞

2 , is∞

3 )

=
(

max(is11, is12, is13, ...), max(is21, is22, is23, ...), min(is31, is32, is33, ...)
)

,

where Pj, j = 1, 2, 3, . . . are different paths from l to m.

IS∞(l, m) is sometimes referred as the incidence connectedness between l and m.

Example 4. In the SVNIG given in Figure 4, the total paths from vertex u to w are as follows:

P1 : u, (u, ux), ux, (x, ux), x, (x, wx), wx, , (w, wx), w.

P2 : u, (u, uv), uv, (v, uv), v, (v, vw), vw, (w, vw), w.

P3 : u, (u, uv), uv, (v, uv), v, (v, vx), vx, (x, vx), x, (x, wx), wx, (w, wx), w.

P4 : u, (u, ux), ux, (x, ux), x, (x, vx), vx, (v, vx), v, (v, vw), vw, (w, vw), w.

The corresponding incidence strengths of each path are

IS(P1) = (s11, s21, s31) = (0, 0.1, 0.6),

IS(P2) = (s12, s22, s32) = (0, 0.1, 0.5),

IS(P3) = (s13, s23, s33) = (0, 0.1, 0.6),

IS(P4) = (s14, s24, s34) = (0, 0.1, 0.6).
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Now, the greatest incidence strength of the path from u to w is calculated as follows:

IS∞(u, w) = max{IS(P1), IS(P2), IS(P3), IS(P4)}

= (max{is11, is12, is13, is14}, max{is21, is22, is23, is24}, min{is31, is32, is33, is34})

= (max{0, 0, 0, 0}, max{0.1, 0.1, 0.1, 0.1}, min{0.6, 0.5, 0.6, 0.6})

= (0, 0.1, 0.5).

Definition 8. An SVNIG, G̃ = (A, B, C), is a cycle if, and only if, the underlying graph, G∗ =

(A∗, B∗, C∗), is a cycle.

Definition 9. The SVNIG G̃ = (A, B, C) is a neutrosophic cycle if, and only if, G∗ = (A∗, B∗, C∗) is a

cycle and there exists no unique edge, xy ∈ B∗, such that

TB(xy) =min{TB(uv) : uv ∈ B∗},

IB(xy) = min{IB(uv) : uv ∈ B∗},

FB(xy) =max{FB(uv) : uv ∈ B∗}.

Definition 10. The SVNIG G̃ = (A, B, C) is a neutrosophic incidence cycle if, and only if it is a neutrosophic

cycle and there exists no unique pair, (x, xy) ∈ C∗, such that

TC(x, xy) =min{TC(u, uv) : (u, uv) ∈ C∗},

IC(x, xy) = min{IC(u, uv) : (u, uv) ∈ C∗},

FC(x, xy) =max{FC(u, uv) : (u, uv) ∈ C∗}.

Example 5. Let G̃ = (A, B, C) be an SVNIG, as shown in Figure 5. G̃ is a cycle, since G = (A∗, B∗, C∗)

(support of G̃) is clearly a cycle.

Also,

TB(ab)=0.1 = min{TB(ab), TB(bc), TB(cd), TB(de), TB(ea)},

IB(ab) =0.1 = min{IB(ab), IB(bc), IB(cd), IB(de), IB(ea)},

FB(ab)=0.6 = max{FB(ab), FB(bc), FB(cd), FB(de), FB(ea)},

and

TB(bc)=0.1 = min{TB(ab), TB(bc), TB(cd), TB(de), TB(ea)},

IB(bc) =0.1 = min{IB(ab), IB(bc), IB(cd), IB(de), IB(ea)},

FB(bc)=0.6 = max{FB(ab), FB(bc), FB(cd), FB(de), FB(ea)}.

So, G̃ is a neutrosophic cycle.

Furthermore, G̃ is a neutrosophic incidence cycle since there is more than one pair, namely, (b, ab) and

(d, de), such that

TC(b, ab)= 0.1 =min{TC(u, uv) : (u, uv) ∈ C∗},

IC(b, ab) = 0.1 =min{IC(u, uv) : (u, uv) ∈ C∗},

FC(b, ab)= 0.7 =max{FC(u, uv) : (u, uv) ∈ C∗},

and

TC(d, de)= 0.1 =min{TC(u, uv) : (u, uv) ∈ C∗},

IC(d, de) = 0.1 =min{TC(u, uv) : (u, uv) ∈ C∗},

FC(d, de)= 0.7 =max{TC(u, uv) : (u, uv) ∈ C∗}.
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Figure 5. Single-valued neutrosophic incidence graph.

The concepts of bridges, cutvertices and cutpairs in SVNIG are defined as follows.

Definition 11. Let G̃ = (A, B, C) be an SVNIG. An edge, uv, in G̃ is called a bridge if, and only if, uv is a

bridge in G∗ = (A∗, B∗, C∗)—that is, the removal of uv disconnects G∗.

An edge uv is called a neutrosophic bridge if

S
′
∞(x, y) < S∞(x, y), for some x, y ∈ A∗,

(s
′
∞

1 , s
′
∞

2 , s
′
∞

3 ) < (s∞

1 , s∞

2 , s
′
∞

3 )

⇒ s
′
∞

1 < s∞

1 , s
′
∞

2 < s∞

2 , s
′
∞

3 > s∞

3

where S
′
∞(x, y) and S∞(x, y) denote the connectedness between x and y in G

′
= G̃−{uv} and G̃,

respectively.

An edge, uv, is called a neutrosophic incidence bridge if

IS
′
∞(x, y) < IS∞(x, y), for some x, y ∈ A∗,

(is
′
∞

1 , is
′
∞

2 , is
′
∞

3 ) < (is∞

1 , is∞

2 , is
′
∞

3 )

⇒ is
′
∞

1 < is∞

1 , is
′
∞

2 < is∞

2 , is
′
∞

3 > is∞

3

where IS
′
∞(x, y) and IS∞(x, y) denote the incidence connectedness between x and y in G

′
= G̃−{uv}

and G̃, respectively.

Definition 12. Let G̃ = (A, B, C) be an SVNIG. A vertex, v, in G̃ is a cutvertex if, and only if, it is a

cutvertex in G∗ = (A∗, B∗, C∗)—that is G∗ − {v} is a disconnect graph.

A vertex, v, in an SVNIG is called a neutrosophic cutvertex if the connectedness between any two vertices

in G
′
= G̃−{v} is less than the connectedness between the same vertices in G̃—that is,

S
′
∞(x, y) < S∞(x, y), for some x, y ∈ A∗.

A vertex, v, in SVNIG G̃ is a neutrosophic incidence cutvertex if for any pair of vertices, x, y, other than

v, the following condition holds:

IS
′
∞(x, y) < IS∞(x, y),

where IS
′
∞(x, y) and IS∞(x, y) denote the incidence connectedness between x and y in G

′
= G̃−{v} and G̃,

respectively.
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Definition 13. Let G̃ = (A, B, C) be an SVNIG. A pair (u, uv) is called a cutpair if, and only if, (u, uv) is

a cutpair in G∗ = (A∗, B∗, C∗)—that is, after removing the pair (u, uv), there is no path between u and uv.

Let G̃ = (A, B, C) be an SVNIG. A pair (u, uv) is called a neutrosophic cutpair if deleting the pair

(u, uv) reduces the connectedness between u, uv ∈ A∗ ∪ B∗, that is,

S
′
∞(u, uv) < S∞(u, uv),

where S
′
∞(u, uv) and S∞(u, uv) denote the connectedness between u and uv in G

′
= G̃G̃−{(u, uv)}

and G̃, respectively.

A pair (u, uv) is called neutrosophic incidence cutpair if

IS
′
∞(u, uv) < IS∞(u, uv), for u, uv ∈ A∗ ∪ B∗,

where IS
′
∞(u, uv) and IS∞(u, uv) denote the incidence connectedness between u and uv in

G
′
= G̃−{(u, uv)} and G̃, respectively.

Example 6. In the SVNIG, G̃, given in Figure 6, ab and bc are bridges, since their removal disconnects the

underlying graph, G∗.

In G̃, ab, bc, cd and de are neutrosophic bridges, since, for a, e ∈ A∗,

S
′
∞(a, e) < S∞(a, e)

after the removal of each of the bridges. The edges—ab, bc, cd and de—are neutrosophic incidence bridges in G̃

as well.

b and c are cutvertices. In addition, all the vertices of G̃ are neutrosophic cutvertices, except for a, since

the removal of a does not affect the connectedness of G̃. b, c, d and e are neutrosophic incidence cutvertices in G̃.

The pairs (a, ab), (b, ab), (b, bc) and (c, bc) are the cutpairs, neutrosophic cutpairs and also neutrosophic

incidence cutpairs in the given graph.
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Figure 6. Single-valued neutrosophic incidence graph.

Theorem 1. Let G̃ = (A, B, C) be a SVNIG. If uv is a neutrosophic bridge, then uv is not a weakest edge in

any cycle.

Proof. Let uv be a neutrosophic bridge and suppose, on the contrary, that uv is the weakest edge of

a cycle. Then, in this cycle, we can find an alternative path, P1, from u to v that does not contain the

edge uv, and S(P1) is greater than or equal to S(P2), where P2 is the path involving the edge uv. Thus,

removal of the edge uv from G̃ does not affect the connectedness between u and v—a contradiction

to our assumption. Hence, uv is not the weakest edge in any cycle.

Florentin Smarandache (ed.) Collected Papers, VII

486



Theorem 2. If (u, uv) is a neutrosophic incidence cutpair, then (u, uv) is not the weakest pair in any cycle.

Proof. Let (u, uv) be a neutrosophic incidence cutpair in G̃. On contrary suppose that (u, uv) is a

weakest pair of a cycle. Then we can find an alternative path from u to uv having incidence strength

greater than or equal to that of the path involving the pair (u, uv). Thus, removal of the pair (u, uv)

does not affect the incidence connectedness between u and uv but this is a contradiction to our

assumption that (u, uv) is a neutrosophic incidence cutpair. Hence (u, uv) is not a weakest pair in

any cycle.

Theorem 3. Let G̃ = (A, B, C) be a SVNIG. If uv is a neutrosophic bridge in G̃, then

S∞(u, v) = (s∞

1 , s∞

2 , s∞

3 ) = (TB(uv), IB(uv), FB(uv)).

Proof. Let G̃ be an SVNIG, and uv is a neutrosophic bridge in G̃. On the contrary, suppose that

S∞(u, v) > (TB(uv), IB(uv), FB(uv)).

Then, there exists a u-v path, P, with

S(P) > (TB(uv), IB(uv), FB(uv))

and

(TB(xy), IB(xy), FB(xy)) > (TB(uv), IB(uv), FB(uv)),

for all edges on path P. Now, P, together with the edge, uv, forms a cycle in which uv is the weakest

edge, but it is a contradiction to the fact that uv is a neutrosophic bridge. Hence,

S∞(u, v) = (s∞

1 , s∞

2 , s∞

3 ) = (TB(uv), IB(uv), FB(uv)).

Theorem 4. If (u, uv) is a neutrosophic incidence cutpair in an SVNIG G̃ = (A, B, C), then

IS∞(u, uv) = (is∞

1 , is∞

2 , is∞

3 ) = (TC(u, uv), IC(u, uv), FC(u, uv)).

Proof. The proof is on the same line as Theorem 3.

Theorem 5. Let G̃ = (A, B, C) be an SVNIG and G∗ = (A∗, B∗, C∗) is a cycle. Then, an edge, uv, is a

neutrosophic bridge of G̃ if, and only if, it is an edge common to two neutrosophic incidence cutpairs.

Proof. Suppose that uv is a neutrosophic bridge of G̃. Then, there exist vertices u and v with the uv

edge lying on every path with the greatest incidence strength between u and v. Consequently, there

exists only one path, P, (say) between u and v which contains a uv edge and has the greatest incidence

strength. Any pair on P will be a neutrosophic incidence cutpair, since the removal of any one of them

will disconnect P and reduce the incidence strength.

Conversely, let uv be an edge common to two neutrosophic incidence cutpairs (u, uv) and (v, uv).

Thus both (u, uv) and (v, uv) are not the weakest cutpairs of G̃. Now, G∗ = (A∗, B∗, C∗) being a cycle,

there exist only two paths between any two vertices. Also the path P1 from the vertex u to v not

containing the pairs (u, uv) and (v, uv) has less incidence strength than the path containing them.

Thus, the path with the greatest incidence strength from u to v is

P2 : u, (u, uv), uv, (v, uv), v.

Florentin Smarandache (ed.) Collected Papers, VII

487



Also,

S∞(u, v) = S(P2) = (TB(uv), IB(uv), FB(uv)).

Therefore, uv is a neutrosophic bridge.

Definition 14. Let G̃ = (A, B, C) be an SVNIG. An edge, uv, of G̃ is called a strong edge if

S
′
∞(u, v) ≤ (TB(uv), IB(uv), FB(uv)),

where S
′
∞(u, v) represents the connectedness between u and v in G′ = G̃−{uv}.

In particular, an edge, uv, is said to be an α-strong edge if

S
′
∞(u, v) < (TB(uv), IB(uv), FB(uv)),

and it is called a β-strong edge if

S
′
∞(u, v) = (TB(uv), IB(uv), FB(uv)).

Definition 15. A pair (u, uv) in an SVNIG, G̃, is called a strong pair if

IS
′
∞(u, uv) ≤ (TC(u, uv), IC(u, uv), FC(u, uv)),

where IS
′
∞(u, uv) represents the incidence connectedness between u and uv in G′ =G̃−{(u, uv)}.

In particular, (u, uv) is called α-strong pair if

IS
′
∞(u, uv) < (TC(u, uv), IC(u, uv), FC(u, uv)),

and it is called β-strong pair if

IS
′
∞(u, uv) = (TC(u, uv), IC(u, uv), FC(u, uv)).

It is not necessary for all edges and pairs to be strong. Edges and pairs exist which are not strong

in an SVNIG. Such edges and pairs are given in the following definition.

Definition 16. Let G̃ = (A, B, C) be an SVNIG. An edge, uv, is said to be a δ-edge if

(TB(uv), IB(uv), FB(uv)) < S
′
∞(u, v).

Similarly, a pair (u, uv) in G̃ is called a δ-pair if

(TC(u, uv), IC(u, uv), FC(u, uv)) < IS
′
∞(u, uv).

Theorem 6. In an SVNIG, every neutrosophic incidence cutpair is a strong pair.

Proof. Let G̃ = (A, B, C) be an SVNIG. Let (u, uv) ∈ C∗ be a neutrosophic incidence cutpair. Then,

by Definition 13, we have

IS
′
∞(u, uv) < IS∞(u, uv).

On the contrary, suppose that (u, uv) is not a strong incidence pair. Then, it follows that

IS
′
∞(u, uv) > (TC(u, uv), IC(u, uv), FC(u, uv)).

Let P be the path from u to uv in G′ =G̃−{(u, uv)} with the greatest incidence strength. Then, P

together with (u, uv), forms a cycle in G̃. Now, in this cycle, (u, uv) is the weakest pair, but, based on
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Theorem 2, it is not possible, since (u, uv) is a neutrosophic incidence cutpair. Hence, our assumption

is wrong, and (u, uv) is a strong incidence pair.

Theorem 7. In an SVNIG G̃ = (A, B, C). The pair (u, uv) is a neutrosophic incidence cutpair if, and only if,

it is α-strong.

Proof. Let (u, uv) be a neutrosophic incidence cutpair in G̃. Then, according to the Definition 13

of cutpair,

IS∞(u, uv) > IS
′
∞(u, uv).

Then, based on Theorem 4, it follows that

(TC(u, uv), IC(u, uv), FC(u, uv)) > IS
′
∞(u, uv),

which is the definition of α-strong pair. Hence, (u, uv) is an α-strong pair in G̃.

Conversely, let (u, uv) be an α-strong pair in G̃. Then, by definition

(TC(u, uv), IC(u, uv), FC(u, uv)) > IS
′
∞(u, uv).

It follows that P : u, (u, uv), uv is a unique path from u to uv which has the greatest incidence

strength of all paths.Therefore, any other path from u to uv will have a lower incidence strength.

IS∞(u, uv) > IS
′
∞(u, uv).

Hence, (u, uv) is a neutrosophic incidence cutpair.

Definition 17. Let G̃ = (A, B, C) be an SVNIG.

(i) G̃ is called a block if G∗ = (A∗, B∗, C∗) is block. That is, there are no cutvertices in G∗.

(ii) G̃ is called a neutrosophic block if G̃ has no neutrosophic cutvertices.

(iii) G̃ is called a neutrosophic incidence block if it has no neutrosophic incidence cutvertices.

Example 7. Consider the SVNIG G̃ = (A, B, C) shown in Figure 7 with A∗ = {a, b, c} and B∗ =

{ab, bc, ac}. G̃ is a block, since the crisp graph, G∗, has no cutvertex and it is a neutrosophic incidence block.

G̃ is not a neutrosophic block, since it has a neutrosophic cutvertex, namely, a.

b

b b
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b
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) (0
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, 0

.1
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(0.5, 0.5, 0.1)
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G = (A, B, C)

b

b

(0.5, 0.5, 0.2)

(0.5, 0.5, 0.1)

(0.7, 0.6, 0.1)

Figure 7. Single-valued neutrosophic incidence graph.

Theorem 8. Let G̃ = (A, B, C) be a neutrosophic incidence block. A pair, (u, uv), in G̃, such that

(TC(u, uv), IC(u, uv), FC(u, uv)) = (max TC(x, xy), max IC(x, xy), min FC(x, xy)),
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for all (x, xy) ∈ C∗, is a strong pair.

Proof. Let G̃ be a neutrosophic incidence block. By definition, there are no neutrosophic incidence

cutvertices in G̃. Let (u, uv) be a pair in G̃, such that

(TC(u, uv), IC(u, uv), FC(u, uv)) = (max TC(x, xy), max IC(x, xy), min FC(x, xy)).

We will prove that (u, uv) is a strong pair by showing that

(TC(u, uv), IC(u, uv), FC(u, uv)) ≥ IS
′
∞(u, uv).

The incidence strength of any path, P, from u to uv will be less than or equal to

(TC(u, uv), IC(u, uv), FC(u, uv)). If (u, uv) is the only pair in G̃ with

(TC(u, uv), IC(u, uv), FC(u, uv)) = (max TC(x, xy), max IC(x, xy), min FC(x, xy)),

then every other path from x to xy in G̃ will have less incidence strength than

(TC(u, uv), IC(u, uv), FC(u, uv)), and hence,

(TC(u, uv), IC(u, uv), FC(u, uv)) > IS
′
∞(u, uv).

Thus, (u, uv) is an α-strong pair.

If (u, uv) is not unique, then the maximum possible value for the incidence strength of any path

in G
′
= G̃−{(u, uv)} will be equal to (TC(u, uv), IC(u, uv), FC(u, uv)). Therefore, there exists a path

from u to uv with an incidence strength equal to (TC(u, uv), IC(u, uv), FC(u, uv)), that is

(TC(u, uv), IC(u, uv), FC(u, uv)) = IS
′
∞(u, uv).

Then, (u, uv) is β-strong.

3. Application

According to the Federal Investigation Agency (FIA), Pakistan is among the fourth largest

country in terms of its citizens who illegally enter Europe. There is no formally declared policy of the

Government of Pakistan for Migration and Pakistani Migrants. Every year, thousands of Pakistanis

fleeing poverty, unemployment, law and other problems attempt to illegally enter Europe. A lot of

them even die before reaching the destination. These illegal immigrants use land routes featuring

Pakistan, Iran, Turkey and Greece to enter Europe. Greece is a gateway to the west, and roughly nine

out of ten people illegally entering Europe follow this route. Below, we present a mathematical model

of this phenomenon.

Consider SVNIG G̃ = (A, B, C) as shown in Figure 8, a mathematical model of the situation of

illegal migration from Pakistan to European, where

A = {(Pakistan, 0.9, 0.8, 0.7), (Iran, 0.8, 0.6, 0.8), (Turkey, 0.9, 0.8, 0.7), (Greece, 0.9, 0.8, 0.6)}

is the set of countries under consideration,

B = {((Pak, Iran), 0.7, 0.6, 0.4), ((Iran, Turkey), 0.5, 0.5, 0.5), ((Turkey, Greece), 0.6, 0.8, 0.5)}

represents the flow of people traveling legally from country x to country y and

C ={((Pak, (Pak, Iran)), 0.5, 0.6, 0.3), ((Iran, (Pak, Iran)), 0.4, 0.2, 0.8), ((Iran, (Iran, Turkey)), 0.5, 0.5, 0.4),

((Turkey, (Iran, Turkey)), 0.3, 0.5, 0.4), ((Turkey, (Turkey, Greece)), 0.6, 0.8, 0.2),

((Greece, (Turkey, Greece)), 0.2, 0.2, 0.6)}
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represents the flow of people traveling illegally from country x to the country y. It is clear that

each pair in this model is a neutrosophic incidence cutpair. So, every government of the countries

featuring in this path must make hard and fast rules to control illegal migration as it creates lot

of problems for both sending and receiving countries. Policy makers and practitioners need to

develop a comprehensive understanding of the phenomenon of illegal migration in order to manage

it effectively. We present our proposed method in Algorithm 1.

b

b

b

(Pak,0, 9, 0.8, 0.7)

(0.4, 0.2, 0.8)

b

b

b

(Iran,0.8, 0.6, 0.8)

(Greece,0.9, 0.8, 0.6)

(Turkey,0.9, 0.8, 0.7)

b (0.7, 0.6, 0.4)

(0.5, 0.6, 0.3)

b

b

(0.2, 0.2, 0.6)

b
(0.5, 0.5, 0.4)

(0.5, 0.5, 0.5)(0.3, 0.5, 0.4)(0.6, 0.8, 0.2)

(0.6, 0.8, 0.5)

G̃ = (A, B, C)

Figure 8. Model of the situation of illegal migration from Pakistan to Europe.

Algorithm 1 Method of Finding Neutrosophic Incidence Cutpair

1. Input the vertex set, V.

2. Input the edge set, E ⊆ V × V.

3. Construct the single-valued neutrosophic set, A, on V.

4. Construct the single-valued neutrosophic relation, B, on E.

5. Construct the single-valued neutrosophic set, C, on V × E.

6. Calculate the incidence strength, IS(ui, uj), of all possible paths from ui to uj, such that

is1 = min{TC(ui, uiui+1) : (ui, uiui+1) ∈ I},

is2 = min{IC(ui, uiui+1) : (ui, uiui+1) ∈ I},

is3 = max{FC(ui, uiui+1) : (ui, uiui+1) ∈ I}.

7. Calculate the greatest incidence strength, IS∞(ui, uj), of paths from ui to uj.

8. Remove the pair (ui, uiui+1) from I.

9. Repeat step 6 and step 7 to calculate the incidence strength, IS
′
∞(ui, uj) from ui to uj.

10. Compare the two greatest incidence strengths.

11. If IS
′
∞(ui, uj) < IS∞(ui, uj), then (ui, uiui+1) is the required neutrosophic incidence cutpair.

4. Conclusions

Graph theory is a useful tool for analyzing and modeling different mathematical structures.

However, its failure to determine relationships between vertices (nodes) and edge (arcs) led to

the introduction of the fuzzy incidence graph. The single-valued neutrosophic incidence graph

is an extension of fuzzy incidence graph, which can be used as a tool for constructing different

mathematical models with indeterminate information and interconnected supporting links. In this

paper, we discussed different properties of single-valued neutrosophic incidence graphs. We studied

the block structure of single-valued neutrosophic incidence graphs. We aim to extend the application

of single-valued neutrosophic incidence graphs to human trafficking.
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Abstract- In this article we introduce the notation of neutrosophic nano semi closed, neutrosophic nano α 
closed, neutrosophic nano pre closed, neutrosophic nano semi pre closed and neutrosophic nano regular closed 
and investigate some of their properties. Further we study the concept of neutrosophic nano sg closed, 
neutrosophic nano ψ   closed and neutrosophic nano αψ closed and derive some of their properties.  

Keywords and Phrases: neutrosophic nano semi closed, neutrosophic nano α closed, neutrosophic nano pre 
closed, neutrosophic nano semi pre closed, neutrosophic nano regular closed, neutrosophic nano sg closed, 
neutrosophic nano ψ closed and neutrosophic nano αψ closed.  

1. Introduction

The nation of α closed sets in topological spaces was introduced by O.Njastad[1]. M.K.R.S.Veerakumar [2]
was explored the notion of ψ closed. The new concept of αψ closed set in topology was introduced by R.Devi 
et.al [3]. Nanotopology was introduced by LellisThivagar et.al [4]. It contains approximations and boundary 
region. The open set contains only five set that is empty, universe, Lower and upper approximation, boundary 
region. Fuzzy and intuitionistic fuzzy were introduced by Zadeh [5] and K.Atanassav [6]. The new theory 
neutrosophic set described by membership, indeterminacy and non-membership were introduced by 

Smarandache [7]. The neutrosophic set in (X, N )is having the form 

 ),(:)(),(),(, NSSS XxxNxIxMxS  , where the functions  1,0: SM S ,  1,0: SI S , 

 1,0: SNS denoted the degree of membership, indeterminacy, degree of non-membership. The 

neutrosophic set  ),(:)(),(),(, NSSS XxxNxIxMxS  is called a subset of 

 ),(:)(),(),(, NTTT XxxNxIxMxT  [in short S  T] if degree of membership and

indeterminacy is minimum in S and degree of non-membership is maximum in S or degree of membership is 
minimum and degree of non-membership and indeterminacy is maximum in S. The complement on NTS

 ),(:)(),(),(, NSSS XxxNxIxMxS  is  ),(:)(),(),(, NSSS
C XxxMxIxNxS  . 

Parimala et.al [8] introduced and studied the concept of neutrosophic α-closed sets. 

Now LellisThivagar et.al [9] explored a new concept of neutrosophic nano topology. In that paper he 
discussed about neutrosophic nano interior and neutrosophic nano closure. 

In this paper, basic properties of neutrosophic nano semi closed, neutrosophic nano α closed, neutrosophic 
nano pre closed, neutrosophic nano semi pre closed and neutrosophic nano regular closed were introduced. It 
also established the notion of neutrosophic nano sg closed, neutrosophic nano ψ closed and neutrosophic nano 
αψ closed. Further, studied some of their related attributes were discussed. 

2. Preliminaries

This section shows that some related definition and properties.

Definition 2.1.[4] Let U be a non-empty finite set of objects called the universe and R be an equivalence 
relation on U named as the indiscernibility relation. Then U is divided into disjoint equivalence classes. Let X is 
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a subset of U, then the lower approximation of X with respect to R is is denoted by 

  Ux
XxRxRR


 )(:)( , where R(X) denotes the equivalence class determined by Ux .

Definition 2.2. [4] The upper approximation of X with respect to R is the set of all objects, which can be 

possibly classified as X with respect to R and its is denoted by   
Ux

XxRxRR


 )(:)( .

Definition 2.3. [4] The boundary region of X with respect to R is the set of all objects, which can be possibly 

classified neither as X nor as not X with respect to R and its is denoted by RRBR  .

Definition 2.4. [4]If (U, R) is an approximation space and X, Y ⊆ U. Then 

1. RXR 

2.   )()( RR  and UURUR  )()(

3. )()()( YRXRYXR  

4. )()()( YRXRYXR  
5. )()()( YRXRYXR  
6. )()()( YRXRYXR  

7. )()( YRXR   and )()( YRXR   whenever YX 

8.  cc RXR )(  and  cc RXR )(

9.   RRRRR  )(

10.   RRRRR  )(

Definition 2.5. [9] Let U be an universe and R be an equivalence relation on U 

and Let S be a neutrosophic subset of U. Then the neutrosophic nano topology 

is defined by  )(),(),(,1,0)( SBSNSNS NNNN  , where 

1.   UyyzNIMySN RyRyRyR  ,/,,,)( )()()(  

2.   UyyzNIMySN RyRyRyR
 ,/,,,)(

)()()(

3. NNSBN )(

Wher       ),(),(),( )()()( zNNzIIzMM SRyzyRSRyzyRSRyzyR  

      )(),(),(
)()()(

zNNzIIzMM SRyzyRSRyzyRSRyzyR  
. 

Definition 2.6. [9] Let (U, )(SN ) be a neutrosophic nano topological spaces, 

where SU.  Assume S and T be neutrosophic subset of U. Then the following

hold: 

1. SNNcl(S).

2. S is neutrosophic nano closed iffNNcl(S) = S.

3. NNcl(0N) = 0N and NNcl(1N) = 1.
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4. ST implies NNcl(S)NNcl(T).

5. NNcl(S T) = NNcl(S) NNcl(T).

6. NNcl(S T)NNcl(S) NNcl(T).

7. NNcl(NNcl(A)) = NNcl(S).

Definition 2.7. [9] Let (U, )(SN ) be a neutrosophic nano topological spaces, 

where SU. Assume S and T be neutrosophic subset of U. Then the following

hold: 

1. NNint(S) S.

2. S is neutrosophic nano open iff NNint(S) = S.

3. NNint(0N) = 0N and NNint(1N) = 1N.

4. ST implies NNint(S)NNint(T).

5. NNint(S) NNint(T) NNint(S [ T).

6. NNint(S T) = NNint(S) NNint(T).

7. NNint(NNint(A)) = NNint(S).

Definition 2.8. [10] Let (X, N ) be a non-empty fixed set.  A neutrosophic set A is an object having the form

 ),(:)(),(),(, NSSS XxxNxIxMxS  . Where MS(x), IS(x),  NS(x) which represent the degree of

membership, the degree of indeterminacy, and the degree of non-membership of each element ),( NXx  to

the set S. 

Definition 2.9. [11] Let S and T be NS of the form  ),(:)(),(),(, NSSS XxxNxIxMxS  and 

 ),(:)(),(),(, NTTT XxxNxIxMxT  . Then

(1) ST if and only if )()( xMxM TS  , )()( xIxI TS  and )()( xNxN TS   for all ),( NXx  or

),()( xMxM TS  )()( xIxI TS  and )()( xNxN TS  for all ),( NXx  .

(2) S = T if and only if ST and T S.

(3)  ),(:)(),(),(, NSSS
C XxxMxIxNxS  . 

(4)  ),(:)()(),()(),()(, NTSTSTS XxxNxNxIxIxMxMxTS  .

(5)  ),(:)()(),()(),()(, NTSTSTS XxxNxNxIxIxMxMxTS  .

Definition 2.10. [11] Let (X, N ) be NTS and  ),(:)(),(),(, NSSS XxxNxIxMxS   be a NS in X. 

Then the neutrosophic closure and neutrosophic interior of S are defined by 

(1) Ncl(S) = {K:K is an NCS in X and SK}
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(2) Nint(S) = {K:K is an NOS in X and K S}

3. Neutrosophic Nano Αψ Closed Sets

Definition 3.1. Let  (U, )(SN ) be a neutrosophic nano topological space. Then 

A neutrosophic nano subset S in (U, )(SN ) is said to be:

(a) Neutrosophic nano semi closed (NNSC) if NNint(NNcl(S)) S.

(b) Neutrosophic nano α closed (NNαC) if NNcl(NNint(NNcl(S))) S.

(c) Neutrosophic nano pre closed (NNPC) if NNcl(NNint(S)) S.

(d) Neutrosophic nano semi pre closed (NNSPC) if NNint(NNcl(NNint(S))) S.

(e) Neutrosophic nano regular closed (NNRC) if NNcl(NNint(S)) = S. 

(f) Neutrosophic nano sg closed set (NNSGC) if NNscl(S)V whenever SV

and V is neutrosophic nano semi open. 

(g) neutrosophic nano ψ closed set (NNψC) if NNscl(S)V whenever S  V

and V is neutrosophic nanosg open. 

(h) neutrosophic nano αψ closed set (NNαψC) if NN cl(S)V whenever

SV and V is neutrosophic nano α open.

This shows that the following example. 

Example 3.2. Assume  321 ,, nnnU  be the universe set and the equivalence relation is

    321 ,,/ nnnRU  Let 










)2.0,6.0,2.0(

,
)1.0,3.0,6.0(

,
)3.0,4.0,3.0(

321 nnn
S

be neutrosophic nano subset of U. Then 










)3.0,5.0,2.0(

,
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,
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)( 321
*

nnn
SN
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SN
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)( 321 nnn
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. Here  )(),(),(,1,0)( *
* SBSNSNS NNNN   be a

neutrosophic nano open set and a neutrosophic nano closed set is    )(),(),(,1,0)( *
* SBSNSNS N

CC
NN

C
N   

where 
,

)2.0,5.0,3.0(
,

)5.0,3.0,2.0(
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)( 321
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nnn

SN C
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,
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C
. Assume 










)3.0,2.0,3.0(

,
)6.0,2.0,2.0(

,
)2.0,3.0,2.0(

321 nnn
R

be a neutrosophic 

nano semi closed because NNint(NNcl(R)) = NN(NNcl(R)) = NN(N*
C)=0NR. Similarlly, R is also neutrosophic

nano α closed, neutrosophic nano pre closed and neutrosophic nano semi pre closed.  

Example 3.3. Assume  321 ,, nnnU  be the universe set and the equivalence relation is

    321 ,,/ nnnRU  Let 










)3.0,2.0,3.0(

,
)1.0,3.0,2.0(

,
)2.0,3.0,3.0(

321 nnn
S

 be neutrosophic nano subset of U. Then 
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)( 321
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nnn
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,
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)( 321* nnn
SN

and )()( * SNSBN  .

Here  )(),(),(,1,0)( *
* SBSNSNS NNNN  be a neutrosophic nano open set and a neutrosophic nano closed 
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set is    )(),(),(,1,0)( *
* SBSNSNS N

CC
NN

C
N  where 
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closed because NNcl(NNint(R)) = R. 

Example 3.4. Assume  321 ,, nnnU  be the universe set and the equivalence relation is
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* SBSNSNS N

CC
NN

C
N   

where 
,

)1.0,2.0,5.0(
,

)1.0,3.0,5.0(
,

)3.0,3.0,4.0(
)( 321

*










nnn

SN C










)4.0,3.0,2.0(

,
)3.0,4.0,1.0(

,
)4.0,3.0,2.0(

)( 321* nnn
SN C and 










)3.0,3.0,4.0(

,
)3.0,3.0,2.0(

,
)3.0,3.0,3.0(

)( 321 nnn
SB N

C

. Assume 










)5.0,2.0,1.0(

,
)5.0,3.0,1.0(

,
)3.0,3.0,3.0(

321 nnn
R

be a neutrosophic nano sg closed and 










)4.0,2.0,3.0(

,
)2.0,3.0,1.0(

,
)3.0,3.0,3.0(

321 nnn
C

be a neutrosophic nano ψ closed and also neutrosophic nano αψ 

closed. 

Theorem 3.5. Let (U, )(SN )  be a neutrosophic nano topological space. Then 

the following are hold: 

(a) Every neutrosophic nano closed set is neutrosophic nano semi closed set. 

(b) Every neutrosophic nano closed set is neutrosophic nano α closed set. 

(c) Every neutrosophic nano closed set is neutrosophic nano pre closed. 

(d) Every neutrosophic nano closed set is neutrosophic nano semi pre closed set. 

(e) Every neutrosophic nano regular closed set is neutrosophic nano closed set. 

(f) Every neutrosophic nano  closed set is neutrosophic nano semi closed set. 

(g) Every neutrosophic nano α αclosed set is neutrosophic nano pre closed set. 

Proof. 

(a) Let S be a neutrosophic nano closed set then NNcl(S) = S. This implies 

NNint(NNcl(S))  NNint(S) = S . Therefore NNint(NNcl(S))  S. Then neutrosophic nano closed set is
neutrosophic nano semi closed set. 
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(b) Let S be a neutrosophic nano closed set then NNcl(S) = S. This implies NNint(NNcl(S)) NNint(S) S
implies that NNcl(NNint(NNcl(S))NNcl(S) =S. Therefore NNcl(NNint(NNcl(S)) S. Then S is neutrosophic
nano α closed set. 

(c) Let S be a neutrosophic nano closed set then NNcl(S) = S. We know that NNint(S) S. This implies
NNcl(NNint(S))NNcl(S) = S . Therefore NNcl(NNint(S)) S. Then S is neutrosophic nano pre closed.

(d) Let S be a neutrosophic nano closed set then NNcl(S) = S. We know that NNint(S) S. This implies
NNcl(NNint(S))NNcl(S) = S implies that NNint(NNcl(NNint(S))NNint(S)  S. Then S is neutrosophic nano
semi pre closed set. 

(e) Let S be a neutrosophic nano regular closed set then NNcl(NNint(S)) =S. This implies NNcl(NNcl(NNint(S))) = 
NNcl(S) implies that NNcl(NNint(S)) =NNcl(S) = S . Therefore S is neutrosophic nano closed set. 

(f) Let S be a neutrosophic nano α closed set then NNcl(NNint(NNcl(S)) S implies that NNint(NNcl(S)) S.
Hence S is neutrosophic nano semi closed set 

(g) Let S be a neutrosophic nano α closed set then NNcl(NNint(NNcl(S)) S. We know that S is neutrosophic
nano closed set so NNcl(S) = S implies that NNcl(NNint(S)) S. Hence S is neutrosophic nano pre closed set

The inverse part not true by the following examples. 

Example 3.6. By using Example [3.2], 

(a) Let us take 










)3.0,2.0,3.0(

,
)6.0,2.0,2.0(

,
)2.0,3.0,2.0(

321 nnn
R

be a neutrosophic nano semi closed but it is not 

nutrosophicnano closed. 

(b) Let us take 










)3.0,2.0,3.0(

,
)6.0,2.0,2.0(

,
)2.0,3.0,2.0(

321 nnn
R be a neutrosophic nanoαclosed but it is not 

nutrosophicnano closed. 

(c ) Let us take 










)3.0,2.0,3.0(

,
)6.0,2.0,2.0(

,
)2.0,3.0,2.0(

321 nnn
R be a neutrosophic nano pre closed but it is not 

nutrosophicnano closed. 

(d) Let us take 
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)6.0,2.0,2.0(
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)2.0,3.0,2.0(

321 nnn
R be a neutrosophic nano semi pre closed but it is 

not nutrosophicnano closed. 

(e) Let us take 










)3.0,2.0,3.0(

,
)6.0,2.0,2.0(

,
)2.0,3.0,2.0(

321 nnn
R

be a neutrosophic nano closed but it is not 

nutrosophicnano regular closed. 

(f) Assume  321 ,, nnnU  be the universe set and the equivalence relation is     321 ,,/ nnnRU  Let 
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and 

Florentin Smarandache (ed.) Collected Papers, VII

498












)3.0,3.0,4.0(
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nano semi closed but it is not neutrosophic nano α closed. 

(g) Assume  321 ,, nnnU  be the universe set and the equivalence relation is     321 ,,/ nnnRU  Let 
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S

be neutrosophic nano subset of U. Then 
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)4.0,2.0,5.0(

,
)2.0,3.0,5.0(

,
)3.0,3.0,4.0(

321 nnn
R

be a neutrosophic 

nano semi closed but it is not neutrosophic nano α closed. 

Theorem 3.7.Let (U, )(SN ) be a neutrosophic topological space. Then the following are hold: 

(a) Every neutrosophic nano closed set is neutrosophic nano αψ closed set. 

(b) Every neutrosophic nano α closed set is neutrosophic nano αψ closed set. 

(c) Every neutrosophic nano semi closed set is neutrosophic nano sg closed. 

(d) Every neutrosophic nano ψ closed set is neutrosophic nano αψ closed set. 

Proof. 

(a) Let S be a neutrosophic nano closed set. This implies NNcl(S) = S. Now assume that T be a neutrosophic 
nano α open set and ST, then NN cl(S)NNcl(S) = ST. Therefore NN cl(S)T. Hence S is neutrosophic
nano αψ closed. 

(b) Let S be a neutrosophic nano α closed set then NNcl(S) = S. Now assume that ST and T be a neutrosophic
nano αψ open set, then NN cl(S)NNcl(S)T. Therefore it is neutrosophic nano αψ closed set.

(c) Let S be a neutrosophic nano semi closed then NNscl(S) = S.  Assume that ST, T is neutrosophic nano
semi open, then NNscl(S)T. Then S is neutrosophic nano sg closed set.

(d) Let S be a neutrosophic nano α closed. Every neutrosophic nano α open set is neutrosophic nano semi open 
and neutrosophic nano semi open is neutrosophic nano sg open. Assume that ST, T is neutrosophic nano sg
open, then NNcl(NNscl(S))T. Then S is neutrosophic nano αψ closed set.

The inverse part not true by the following examples. 

Example 3.8.By using Example [3.5 (f)] 

(a) Let 
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)2.0,3.0,1.0(

,
)3.0,3.0,3.0(

321 nnn
C

be a neutrosophic nano semi open and also neutrosophic nano 

α open. Here 










)5.0,2.0,1.0(

,
)5.0,3.0,1.0(

,
)3.0,3.0,3.0(

321 nnn
R

 be a neutrosophic nanosg closed and 










)1.0,2.0,5.0(

,
)1.0,3.0,5.0(

,
)3.0,3.0,3.0(

321 nnn
V

 be a neutrosophic nanosg open and CV . Hence C is neutrosophic

nano αψ closed but it is not neutrosophic nano closed set. 
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(b) Let 
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)3.0,3.0,3.0(

321 nnn
C

be a neutrosophic nano semi open and also neutrosophic nano 

α open. Here 
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,
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,
)3.0,3.0,3.0(

321 nnn
R

 be a neutrosophic nano sg closed and 
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,
)1.0,3.0,5.0(

,
)3.0,3.0,3.0(

321 nnn
V

 be a neutrosophic nanosg open and CV . Hence C is neutrosophic

nano αψ closed but it is not neutrosophic nano α closed set. 

(c) Let 










)4.0,2.0,3.0(

,
)2.0,3.0,1.0(

,
)3.0,3.0,3.0(

321 nnn
U

be a neutrosophic nano semi open .Here 










)4.0,3.0,2.0(

,
)4.0,3.0,3.0(

,
)3.0,3.0,2.0(

321 nnn
C

.  Hence C is neutrosophic nano sg closed but it is not neutrosophic 

nano semi closed set. 

(d) Let 










)4.0,2.0,3.0(

,
)2.0,3.0,1.0(

,
)3.0,3.0,3.0(

321 nnn
C

be a neutrosophic nano semi open and also neutrosophic nano 

α open. Here 










)4.0,2.0,2.0(

,
)4.0,3.0,1.0(

,
)3.0,3.0,3.0(

321 nnn
R

is not neutrosophic nano sg closed and 










)2.0,2.0,4.0(

,
)1.0,3.0,4.0(

,
)3.0,3.0,3.0(

321 nnn
V

is not neutrosophic nano sg open and CU . Hence C is neutrosophic

nano αψ closed but it is not neutrosophic nano ψ closed set. 

Theorem 3.9. The union of two neutrosophic nano αψ closed set is also neutrosophic nano αψ closed set. 

Proof. Let us assume that S and T be two neutrosophic nano αψ closed sets. Let S ∪ T ⊆ V , V is neutrosophic 
nano α open. By definition of neutrosophic nano αψ closed set, NN ψcl(S) ⊆ V and NNψcl(T) ⊆ V . This implies 
that NNψcl(S ∪ T) ⊆ V . Hence S ∪ T is neutrosophic nano αψ closed set. 

Theorem3.10. Let S is neutrosophic nano αψ closed set if S is both neutrosophic nano α open and neutrosophic 
nano ψ closedset. 

Proof.Let us assume that S is both neutrosophic nano α open and neutrosophic nano ψ closed set, then by 
definition of neutrosophic nano ψ closed set, NNscl(S) ⊆ T this implies that NNψcl(S) ⊆ NNscl(S) ⊆ T. Therefore 
NNψcl(S) ⊆ T. Hence S is neutrosophic nano αψ closed set. 

Theorem 3.11. Assume S be a neutrosophic nano αψ closed set in neutrosophic nano topological spaces U. Then 
NNψcl(S) − S does not contain any non-empty neutrosophic nano α closed set.  

Proof. Let us assume T be non-empty neutrosophic nano α closed subset of NNψcl(S)−S. Then S ⊂ U −T, where 
U −T is neutrosophic nano α open. Thus NNψcl(S) ⊂ U − T or equivalently T ⊂ U − NNψcl(S). This is 
contradiction by assumption. Hence NNψcl(S) − S does not contain any non-empty neutrosophic nano α closed s 
topological space. 

Theorem 3.12. Let S be neutrosophic nano αψ closed subset of neutrosophic topological spaces such that S ⊂ T 
⊂ NNψcl(S), then T is also neutrosophic nano αψ closed subset of neutrosophic nano topological space. 

Proof. Let S be a neutrosophic nano αψ closed set, by definition S ⊆ W and W is neutrosophic nano α open set 
in neutrosophic nano topological spaces then NNψcl(S) ⊂ W. Now assume that T ⊂ W and W is neutrosophic 
nano α open set. Here NNψcl(S) is neutrosophic nano ψ closed set. Therefore NNψcl(T) ⊆ NNψcl(NNψcl(S)) = 
NNψcl(S) ⊂ W. Hence NNψcl(S) ⊂ W. Therefore S is also neutrosophic nano αψ closed subset of neutrosophic 
nano topological space. 

Theorem 3.13. Let S be a subset of neutrosophic nano topological space then the following conditions are 
equivalent  

(i) S is neutrosophic nano semi open and neutrosophic nano ψ closed. 

(ii) S is neutrosophic nano regular open. 
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Proof. (i) ⇒ (ii) Let us assume that S is neutrosophic nano semi open and neutrosophic nano ψ closed sets. 
Every neutrosophic nano semi open is neutrosophic nanosg open. Then NNscl(S) ⊆ S ⇒ NNcl(NNint(S)) ⊆ S ⇒ 
NNint(NNcl(NNint(S)) ⊆ NNint(S). As S is neutrosophic nano open sets then it is neutrosophic nano α open and 
so S ⊆ NNint(NN cl(NNint(S)). Then NNint(NNcl(S)) ⊆ S ⊆ NNint(NNcl(S)). Therefore S = NNint(NNcl(S)). 
Hence S is neutrosophic nano regular open set. 

(ii) ⇒ (i) Each neutrosophic nano regular open set is neutrosophic nano open and every neutrosophic nano open 
set is neutrosophic nano semi open. By assumption S is neutrosophic nano semi open and by definition of 
neutrosophic nano regular open set, S = NNint(NNcl(S)) then NNint(NNcl(S)) ⊆ S, therefore it is also 
neutrosophic nano semi closed. Henec it is also neutrosophic nano ψ closed set. 

4. Conclusion

In this paper it is discussed about the new concept of neutrosophic nano semi closed, neutrosophic nano α 
closed, neutrosophic nano pre closed, neutrosophic nano semi pre closed and neutrosophic nano regular closed 
and investigate some of their properties. Also the work is extended as neutrosophic nano sg closed, neutrosophic 
nano ψ closed and neutrosophic nano αψ closed and derive some of their properties and theorems. 
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Abstract: Neutrosophic sets (NSs) handle uncertain information while fuzzy sets (FSs) and
intuitionistic fuzzy sets (IFs) fail to handle indeterminate information. Soft set theory, neutrosophic
set theory, and rough set theory are different mathematical models for handling uncertainties and
they are mutually related. The neutrosophic soft rough set (NSRS) model is a hybrid model by
combining neutrosophic soft sets with rough sets. We apply neutrosophic soft rough sets to graphs.
In this research paper, we introduce the idea of neutrosophic soft rough graphs (NSRGs) and describe
different methods of their construction. We consider the application of NSRG in decision-making
problems. In particular, we develop efficient algorithms to solve decision-making problems.

Keywords: neutrosophic soft rough sets; neutrosophic soft rough graphs; decision-making; algorithm

1. Introduction

Smarandache [1] initiated the concept of neutrosophic set (NS). Smarandache’s NS is characterized
by three parts: truth, indeterminacy, and falsity. Truth, indeterminacy and falsity membership
values behave independently and deal with problems having uncertain, indeterminant and imprecise
data. Wang et al. [2] gave a new concept of single valued neutrosophic sets (SVNSs) and defined
the set theoretic operators on an instance of NS called SVNS. Peng et al. [3] discussed the
operations of simplified neutrosophic numbers and introduced an outranking idea of simplified
neutrosophic numbers.

Molodtsov [4] introduced the notion of soft set (SS) as a novel mathematical approach for handling
uncertainties. Molodtsov’s SSs gave us a new technique for dealing with uncertainty from the
viewpoint of parameters. Maji et al. [5–7] introduced neutrosophic soft sets (NSSs), intuitionistic
fuzzy soft sets and fuzzy soft sets (FSSs). In [8], Sahin and Kucuk presented NSS in the form of
neutrosophic relations.

Theory of rough set (RS) was proposed by Pawlak [9] in 1982. Rough set theory is used to study
the intelligence systems containing incomplete, uncertain or inexact information. The lower and upper
approximation operators of RSs are used for managing hidden information in a system. Feng et al. [10]
took a significant step to introduce parametrization tools in RSs. Meng et al. [11] provide further
discussion of the combination of SSs, RSs and FSs. The existing results of RSs and other extended
RSs such as rough fuzzy sets, generalized rough fuzzy sets, soft fuzzy rough sets and intuitionistic
fuzzy rough sets based decision-making models have their advantages and limitations [12,13].
In a different way, rough set approximations have been constructed into the intuitionistic fuzzy
environment and are known as intuitionistic fuzzy rough sets and rough intuitionistic fuzzy sets [14,15].
Zhang et al. [16,17] presented the notions of soft rough sets, soft rough intuitionistic fuzzy sets,
intuitionistic fuzzy soft rough sets, its application in decision-making, and also introduced generalized
intuitionistic fuzzy soft rough sets. Broumi et al. [18,19] developed a hybrid structure by combining
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RSs and NSs, called RNSs, they also presented interval valued neutrosophic soft rough sets by
combining interval valued neutrosophic soft sets and RSs. Yang et al. [20] proposed single valued
neutrosophic rough sets (SVNRSs) by combining SVNSs and RSs and defined SVNRSs on two universes
and established an algorithm for a decision-making problem based on SVNRSs on two universes.
Akram and Nawaz [21] have introduced the concept of soft graphs and some operation on soft
graphs. Certain concepts of fuzzy soft graphs and intuitionistic fuzzy soft graphs are discussed
in [22–24]. Akram and Shahzadi [25] have introduced neutrosophic soft graphs. Zafar and Akram [26]
introduced a rough fuzzy digraph and several basic notions concerning rough fuzzy digraphs. In this
research paper, a neutrosophic soft rough set is a generalization of a neutrosophic rough set, and we
introduce the idea of neutrosophic soft rough graphs (NSRGs) that are made by combining NSRSs
with graphs and describe different methods of their construction. We consider the application of NSRG
in decision-making problems and resolve the problem. In particular, we develop efficient algorithms
to solve decision-making problems.

For other notations, terminologies and applications not mentioned in the paper, the readers are
referred to [27–35].

2. Neutrosophic Soft Rough Information

In this section, we will introduce the notions of neutrosophic soft rough relation (NSRR),
and NSRGs.

Definition 1. Let Y be an initial universal set, P a universal set of parameters and M Ď P. For an arbitrary
neutrosophic soft relation Q over YˆM, pY,M, Qq is called neutrosophic soft approximation space (NSAS).

For any NS A P N pMq, we define the upper neutrosophic soft rough approximation (UNSRA) and the
lower neutrosophic soft rough approximation (LNSRA) operators of A with respect to pY,M, Qq denoted by
QpAq and QpAq, respectively as follows:

QpAq “ tpu, TQpAqpuq, IQpAqpuq, FQpAqpuqq | u P Yu,

QpAq “ tpu, TQpAqpuq, IQpAqpuq, FQpAqpuqq | u P Yu,

where

TQpAqpuq “
ł

ePM

`

TQpAqpu, eq ^ TApeq
˘

, IQpAqpuq “
ľ

ePM

`

IQpAqpu, eq _ IApeq
˘

,

FQpAqpuq “
ľ

ePM

`

FQpAqpu, eq _ FApeq
˘

; TQpAqpuq “
ľ

ePM

`

FQpAqpu, eq _ TApeq
˘

,

IQpAqpuq “
ł

ePM

`

p1´ IQpAqpu, eqq ^ IApeq
˘

, FQpAqpuq “
ł

ePM

`

TQpAqpu, eq ^ FApeq
˘

.

The pair pQpAq, QpAqq is called NSRS of A w.r.t pY,M, Qq, Q and Q are referred to as the LNSRA and
the UNSRA operators, respectively.

Example 1. Suppose that Y “ tw1, w2, w3, w4u is the set of careers under consideration, and Mr. X wants to
select the best suitable career. M “ te1, e2, e3u is a set of decision parameters. Mr. X describes the “most suitable
career" by defining a neutrosophic soft set pQ,Mq on Y that is a neutrosophic relation from Y to M as shown in
Table 1.

Table 1. Neutrosophic soft relation Q.

Q w1 w2 w3 w4

e1 p0.3, 0.4, 0.5q p0.4, 0.2, 0.3q p0.1, 0.5, 0.4q p0.2, 0.3, 0.4q
e2 p0.1, 0.5, 0.4q p0.3, 0.4, 0.6q p0.4, 0.4, 0.3q p0.5, 0.3, 0.8q
e3 p0.3, 0.4, 0.4q p0.4, 0.6, 0.7q p0.3, 0.5, 0.4q p0.5, 0.4, 0.6q
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Now, Mr. X gives the most favorable decision object A, which is an NS on M defined as follows: A “

tpe1, 0.5, 0.2, 0.4q, pe2, 0.2, 0.3, 0.1q, pe3, 0.2, 0.4, 0.6qu. By Definition 1, we have

TQpAqpw1q “ 0.3, IQpAqpw1q “ 0.4, FQpAqpw1q “ 0.4,

TQpAqpw2q “ 0.4, IQpAqpw2q “ 0.2, FQpAqpw2q “ 0.4,

TQpAqpw3q “ 0.2, IQpAqpw3q “ 0.4, FQpAqpw3q “ 0.3,

TQpAqpw4q “ 0.2, IQpAqpw4q “ 0.3, FQpAqpw4q “ 0.4.

Similarly,
TQpAqpw1q “ 0.4, IQpAqpw1q “ 0.4, FQpAqpw1q “ 0.3,

TQpAqpw2q “ 0.5, IQpAqpw2q “ 0.4, FQpAqpw2q “ 0.4,

TQpAqpw3q “ 0.4, IQpAqpw3q “ 0.4, FQpAqpw3q “ 0.3,

TQpAqpw4q “ 0.5, IQpAqpw4q “ 0.4, FQpAqpw4q “ 0.5.

Thus, we obtain

QpAq “ tpw1, 0.3, 0.4, 0.4q, pw2, 0.4, 0.2, 0.4q, pw3, 0.2, 0.4, 0.3q, pw4, 0.2, 0.3, 0.4qu,

QpAq “ tpw1, 0.4, 0.4, 0.3q, pw2, 0.5, 0.4, 0.4q, pw3, 0.4, 0.4, 0.3q, pw4, 0.5, 0.4, 0.5qu.

Hence, pQpAq, QpAqq is an NSRS of A.

The conventional neutrosophic soft set is a mapping from a parameter to the neutrosophic
subset of the universe and letting pQ,Mq be neutrosophic soft set. Now, we present the constructive
definition of neutrosophic soft rough relation by using a neutrosphic soft relation S from MˆM “ Ḿ
to N pYˆY “ Ýq, where Y is a universal set and M be a set of parameters.

Definition 2. A neutrosophic soft rough relation pSpBq, SpBqq on Y is an NSRS, S : Ḿ Ñ N pÝq is a
neutrosophic soft relation on Y defined by

Speiejq “ tuiuj | Dui P Qpeiq, uj P Qpejqu, uiuj P Ý, such that

TSpuiuj, eiejq ď mintTQpui, eiq, TQpuj, ejqu

ISpuiuj, eiejq ď maxtIQpui, eiq, IQpuj, ejqu

FSpuiuj, eiejq ď maxtFQpui, eiq, FQpuj, ejqu.

For any B P N pḾq, B “ t
`

eiej, TBpeiejq, IBpeiejq, FBpeiejq
˘

uiuj P Ḿu,
TBpeiejq ď mintTApeiq, TApejqu,

IBpeiejq ď maxtIApeiq, IApejqu,

FBpeiejq ď maxtFApeiq, FApejqu.

The UNSA and the LNSA of B w.r.t pÝ, Ḿ, Sq are defined as follows:

SpBq “ tpuiuj, TSpBqpuiujq, ISpBqpuiujq, FSpBqpuiujqq | uiuj P Ýu,

SpBq “ tpuiuj, TSpBqpuiujq, ISpBqpuiujq, FSpBqpuiujqq | uiuj P Ýu,
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where

TSpBqpuiujq “
ł

eiejPḾ

`

TSpuiuj, eiejq ^ TBpeiejq
˘

,

ISpBqpuiujq “
ľ

eiejPM̃

`

ISpuiuj, eiejq _ IBpeiejq
˘

,

FSpBqpuiujq “
ľ

eiejPM̃

`

FSpuiuj, eiejq _ FBpeiejq
˘

;

TSpBqpuiujq “
ľ

eiejPḾ

`

FSpuiuj, eiejq _ TBpeiejq
˘

,

ISpBqpuiujq “
ł

eiejPM̃

`

p1´ ISpuiuj, eiejqq ^ IBpeiejq
˘

,

FSpBqpuiujq “
ł

eiejPM̃

`

TSpuiuj, eiejq ^ FBpeiejq
˘

.

The pair pSpBq, SpBqq is called NSRR and S, S : N pḾq Ñ N pÝq are called the LNSRA and the UNSRA
operators, respectively.

Remark 1. Consider an NS B on Ḿ and an NS A on M, according to the definition of NSRR, we get

TSpBqpuiujq ď mintTSpAqpuiq, TSpAqpujqu,

ISpBqpuiujq ď maxtISpAqpuiq, ISpAqpujqu,

FSpBqpuiujq ď maxtFSpAqpuiq.FSpAqpujqu.

Similarly, for LNSRA operator SpBq,

TSpBqpuiujq ď mintTSpAqpuiq, TSpAqpujqu,

ISpBqpuiujq ď maxtISpAqpuiq, ISpAqpujqu,

FSpBqpuiujq ď maxtFSpAqpuiq.FSpAqpujqu.

Example 2. Let Y “ tu1, u2, u3u be a universal set and M “ te1, e2, e3u a set of parameters. A neutrosophic
soft set pQ,Mq on Y can be defined in tabular form in Table 2 as follows:

Table 2. Neutrosophic soft set pQ,Mq.

Q u1 u2 u3

e1 p0.4, 0.5, 0.6q p0.7, 0.3, 0.2q p0.6, 0.3, 0.4q
e2 p0.5, 0.3, 0.6q p0.3, 0.4, 0.3q p0.7, 0.2, 0.3q
e3 p0.7, 0.2, 0.3q p0.6, 0.5, 0.4q p0.7, 0.2, 0.4q

Let E “ tu1u2, u2u3, u2u2, u3u2u Ď Ý and L “ te1e3, e2e1, e3e2u Ď Ḿ.
Then, a soft relation S on E (from L to E) can be defined in Table 3 as follows:
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Table 3. Neutrosophic soft relation S.

S u1u2 u2u3 u2u2 u3u2

e1e3 p0.4, 0.4, 0.5q p0.6, 0.3, 0.4q p0.5, 0.4, 0.2q p0.5, 0.4, 0.3q
e2e1 p0.3, 0.3, 0.4q p0.3, 0.2, 0.3q p0.2, 0.3, 0.3q p0.7, 0.2, 0.2q
e3e2 p0.3, 0.3, 0.2q p0.5, 0.3, 0.2q p0.2, 0.4, 0.4q p0.3, 0.4, 0.4q

Let A “ tpe1, 0.2, 0.4, 0.6q, pe2, 0.4, 0.5, 0.2q, pe3, 0.1, 0.2, 0.4qu be an NS on M, then
SpAq “ tpu1, 0.4, 0.2, 0.4q, pu2, 0.3, 0.4, 0.3q, pu3, 0.4, 0.2, 0.3qu,
SpAq “ tpu1, 0.3, 0.5, 0.4q, pu2, 0.2, 0.5, 0.6q, pu3, 0.4, 0.5, 0.6qu.
Let B “ tpe1e3, 0.1, 0.3, 0.5q, pe2e1, 0.2, 0.4, 0.3q, pe3e2, 0.1, 0.2, 0.3qu be an NS on L, then
SpBq “ tpu1u2, 0.2, 0.3, 0.3q, pu2u3, 0.2, 0.3, 0.3q, pu2u2, 0.2, 0.4, 0.3q, pu3u2, 0.2, 0.4, 0.3qu,
SpBq “ tpu1u2, 0.2, 0.4, 0.4q, pu2u3, 0.2, 0.4, 0.5q, pu2u2, 0.3, 0.4, 0.5q, pu3u2, 0.2, 0.4, 0.5qu.
Hence, SpBq “ pSpBq, SpBqq is NSRR.

Definition 3. A neutrosophic soft rough graph (NSRG) on a non-empty V is an 4-ordered tuple
pV,M, QpAq, SpBqq such that

(i) M is a set of parameters,
(ii) Q is an arbitrary neutrosophic soft relation over V ˆM,
(iii) S is an arbitrary neutrosophic soft relation over V́ ˆ Ḿ,
(vi) QpAq “ pQA, QAq is an NSRS of A,
(v) SpBq “ pSB, SBq is an NSRR on V́ Ă V ˆV,
(iv) G “ pQpAq, SpBqq is a neutrosophic soft rough graph, where G “ pQA, SBq and G “ pQA, SBq are lower

neutrosophic approximate graph (LNAG) and upper neutrosophic approximate graph (UNAG), respectively
of neutrosophic soft rough graph (NSRG) G “ pQpAq, SpBqq.

Example 3. Let V “ tv1, v2, v3, v4, v5, v6u be a vertex set andM “ te1, e2, e3u a set of parameters. A neutrosophic
soft relation over V ˆM can be defined in tabular form in Table 4 as follows:

Table 4. Neutrosophic soft relation Q.

Q v1 v2 v3 v4 v5 v6

e1 p0.4, 0.5, 0.6q p0.7, 0.3, 0.5q p0.6, 0.2, 0.3q p0.4, 0.4, 0.2q p0.5, 0.5, 0.6q p0.4, 0.5, 0.6q
e2 p0.5, 0.4, 0.2q p0.6, 0.4, 0.5q p0.7, 0.3, 0.4q p0.5, 0.3, 0.2q p0.4, 0.5, 0.4q p0.6, 0.5, 0.4q
e3 p0.5, 0.4, 0.1q p0.6, 0.3, 0.2q p0.5, 0.4, 0.3q p0.6, 0.2, 0.3q p0.5, 0.4, 0.4q p0.7, 0.3, 0.5q

Let A “ tpe1, 0.5, 0.4, 0.6q, pe2, 0.7, 0.4, 0.5q, pe3, 0.6, 0.2, 0.5qu be an NS on M, then

SpAq “ tpv1, 0.5, 0.4, 0.5q, pv2, 0.6, 0.3, 0.5q, pv3, 0.7, 0.4, 0.5q, pv4, 0.6, 0.2, 0.5q, pv5, 0.5,

0.4, 0.5q, pv6, 0.6, 0.3, 0.5qu,

SpAq “ tpv1, 0.6, 0.4, 0.5q, pv2, 0.5, 0.4, 0.6q, pv3, 0.5, 0.4, 0.6q, pv4, 0.5, 0.4, 0.5q, pv5, 0.6,

0.4, 0.5q, pv6, 0.6, 0.4, 0.5qu.

Let E “ tv1v1, v1v2, v2v1, v2v3, v4v5, v3v4, v5v2, v5v6u Ď V́ and L “ te1e3, e2e1, e3e2u Ď Ḿ.
Then, a neutrosophic soft relation S on E (from L to E) can be defined in Tables 5 and 6 as follows:

Table 5. Neutrosophic soft relation S.

S v1v1 v1v2 v2v1 v2v3

e1e2 p0.4, 0.4, 0.2q p0.4, 0.4, 0.5q p0.4, 0.4, 0.5q p0.6, 0.3, 0.4q
e2e3 p0.5, 0.4, 0.1q p0.4, 0.3, 0.2q p0.4, 0.3, 0.2q p0.5, 0.3, 0.2q
e1e3 p0.4, 0.4, 0.1q p0.4, 0.2, 0.2q p0.4, 0.2, 0.2q p0.5, 0.3, 0.3q
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Table 6. Neutrosophic soft relation S.

S v3v4 v4v5 v5v2 v5v6

e1e2 p0.4, 0.2, 0.2q p0.4, 0.4, 0.2q p0.4, 0.3, 0.4q p0.3, 0.2, 0.3q
e2e3 p0.6, 0.2, 0.4q p0.3, 0.2, 0.1q p0.4, 0.3, 0.2q p0.4, 0.3, 0.4q
e1e3 p0.4, 0.2, 0.3q p0.4, 0.3, 0.1q p0.5, 0.3, 0.2q p0.5, 0.3, 0.5q

Let B “ tpe1e2, 0.4, 0.4, 0.5; q, pe2e3, 0.5, 0.4, 0.5q, pe1e3, 0.5, 0.2, 0.5qu be an NS on L, then

SB “ tpv1v1, 0.5, 0.4, 0.5q, pv1v2, 0.4, 0.2, 0.5q, pv2v1, 0.4, 0.2, 0.5q, pv2v3, 0.5, 0.3, 0.5q,

pv3v4, 0.5, 0.2, 0.5q, pv4v5, 0.4, 0.3, 0.5q, pv5v2, 0.5, 0.3, 0.5q, pv5v6, 0.5, 0.3, 0.5qu,

SB “ tpv1v1, 0.4, 0.4, 0.5qpv1v2, 0.5, 0.4, 0.4q, pv2v1, 0.5, 0.4, 0.4q, pv2v3, 0.4, 0.4, 0.5q,

pv3v4, 0.4, 0.4, 0.5q, pv4v5, 0.4, 0.4, 0.4q, pv5v2, 0.4, 0.4, 0.5q, pv5v6, 0.4, 0.4, 0.5qu.

Hence, SpBq “ pSB, SBq is NSRR on V́.

Thus, G “ pQA, SBq and G “ pQA, SBq are LNAG and UNAG, respectively, are shown in Figure 1.

Table 5: Neutrosophic soft relation S
S v1v1 v1v2 v2v1 v2v3

e1e2 (0.4, 0.4, 0.2) (0.4, 0.4, 0.5) (0.4, 0.4, 0.5) (0.6, 0.3, 0.4)
e2e3 (0.5, 0.4, 0.1) (0.4, 0.3, 0.2) (0.4, 0.3, 0.2) (0.5, 0.3, 0.2)
e1e3 (0.4, 0.4, 0.1) (0.4, 0.2, 0.2) (0.4, 0.2, 0.2) (0.5, 0.3, 0.3)

Table 6: Neutrosophic soft relation S
S v3v4 v4v5 v5v2 v5v6

e1e2 (0.4, 0.2, 0.2) (0.4, 0.4, 0.2) (0.4, 0.3, 0.4) (0.3, 0.2, 0.3)
e2e3 (0.6, 0.2, 0.4) (0.3, 0.2, 0.1) (0.4, 0.3, 0.2) (0.4, 0.3, 0.4)
e1e3 (0.4, 0.2, 0.3) (0.4, 0.3, 0.1) (0.5, 0.3, 0.2) (0.5, 0.3, 0.5)

Let B = {(e1e2, 0.4, 0.4, 0.5; ), (e2e3, 0.5, 0.4, 0.5), (e1e3, 0.5, 0.2, 0.5)} be a NS on L, then

SB = {(v1v1, 0.5, 0.4, 0.5), (v1v2, 0.4, 0.2, 0.5), (v2v1, 0.4, 0.2, 0.5), (v2v3, 0.5, 0.3, 0.5),
(v3v4, 0.5, 0.2, 0.5), (v4v5, 0.4, 0.3, 0.5), (v5v2, 0.5, 0.3, 0.5), (v5v6, 0.5, 0.3, 0.5)},

SB = {(v1v1, 0.4, 0.4, 0.5)(v1v2, 0.5, 0.4, 0.4), (v2v1, 0.5, 0.4, 0.4), (v2v3, 0.4, 0.4, 0.5),
(v3v4, 0.4, 0.4, 0.5), (v4v5, 0.4, 0.4, 0.4), (v5v2, 0.4, 0.4, 0.5), (v5v6, 0.4, 0.4, 0.5)}.

Hence S(B) = (SB, SB) is NSRR on V́ .

Thus, G = (QA,SB) and G = (QA,SB) are LNAG and UNAG, respectively are shown in Figure 1.

Hence, G = (G,G) is NSRG.
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Figure 1: Neutrosophic soft rough graph G = (G,G)

Definition 2.4. Let G = (V,M, Q, S) be a neutrosophic soft rough graph on a non-empty set V . The
order of G can be denoted by O(G), defined by

O(G) = O(G) +O(G), where

O(G) =
∑

v∈V

QA(v),O(G) =
∑

v∈V

QA(v).

The size of neutrosophic soft rough graph G, denoted by S(G), defined by

S(G) = (SG+ SG), where

S(G) =
∑

uv∈E

SB(uv),S(G) =
∑

uv∈E

SB(uv).

6

Figure 1. Neutrosophic soft rough graph G “ pG, Gq

Hence, G “ pG, Gq is NSRG.

Definition 4. Let G “ pV,M, Q, Sq be a neutrosophic soft rough graph on a non-empty set V. The order of G
can be denoted by OpGq, defined by

OpGq “ OpGq `OpGq, where

OpGq “
ÿ

vPV

QApvq, OpGq “
ÿ

vPV

QApvq.

The size of neutrosophic soft rough graph G, denoted by SpGq, defined by

SpGq “ pSG` SGq, where

SpGq “
ÿ

uvPE

SBpuvq, SpGq “
ÿ

uvPE

SBpuvq.

Example 4. Let G be a neutrosophic soft rough graph as shown in Figure 1. Then,

OpGq “ p3.5, 2.0, 3.0q, OpGq “ p3.3, 2.4, 3.2q,

OpGq “ OpGq `OpGq “ p6.8, 4.4, 6.2q, and

SpGq “ p3.2, 1.8, 3.0q SpGq “ p2.5, 2.4, 2.8q

SpGq “ SpGq ` SpGq “ p5.7, 4.2, 5.8q.
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Definition 5. Let G1 “ pG1, G1q and G2 “ pG2, G2q be two neutrosophic soft rough graphs on V. The union
of G1 and G2 is a neutrosophic soft rough graph G “ G1 Y G2 “ pG1 Y G2, G1 Y G2q, where G1 Y G2 “

pQA1 YQA2, SB1 Y SB2q and G1 Y G2 “ pQA1 YQA2, SB1 Y SB2q are neutrosophic graphs, such that

(i) @v P QA1 but v R QA2.

TQA1YQA2
pvq “TQA1

pvq, TQA1YQA2pvq “ TQA1pvq,

IQA1YQA2
pvq “IQA1

pvq, IQA1YQA2pvq “ IQA1pvq,

FQA1YQA2
pvq “FQA1

pvq, FQA1YQA2pvq “ FQA1pvq.

(ii) @v R QA1 but v P QA2.

TQA1YQA2
pvq “TQA2

pvq, TQA1YQA2pvq “ TQA2pvq,

IQA1YQA2
pvq “IQA2

pvq, IQA1YQA2pvq “ IQA2pvq,

FQA1YQA2
pvq “FQA2

pvq, FQA1YQA2pvq “ FQA2pvq.

(iii) @v P QA1 XQA2

TQA1YQA2
pvq “maxtTQA1

pvq, TQA2
pvqu, TQA1YQA2pvq “ maxtTQA1pvq, TQA2pvqu,

IQA1YQA2
pvq “mintIQA1

pvq, IQA2
pvqu, IQA1YQA2pvq “ mintIQA1pvq, IQA2pvqu,

FQA1YQA2
pvq “mintFQA1

pvq, FQA2
pvqu, FQA1YQA2pvq “ mintFQA1pvq, FQA2pvqu.

(iv) @vu P SB1 but vu R SB2.

TSB1YSB2
pvuq “TSB1

pvuq, TSB1YSB2pvuq “ TSB1pvuq,

ISB1YSB2
pvuq “ISB1

pvuq, ISB1YSB2pvuq “ ISB1pvuq,

FSB1YSB2
pvuq “FSB1

pvuq, FSB1YSB2pvuq “ FSB1pvuq.

(v) @vu R SB1 but vu P SB2

TSB1YSB2
pvuq “TSB2

pvuq, TSB1YSB2pvuq “ TSB2pvuq,

ISB1YSB2
pvuq “ISB2

pvuq, ISB1YSB2pvuq “ ISB2pvuq,

FSB1YSB2
pvuq “FSB2

pvuq, FSB1YSB2pvuq “ FSB2pvuq.

(vi) @vu P SB1 X SB2

TSB1YSB2
pvuq “maxtTSB1

pvuq, TSB2
pvuqu, TSB1YSB2pvuq “ maxtTSB1pvuq, TSB2pvuqu,

ISB1YSB2
pvuq “mintISB1

pvuq, ISB2
pvuqu, ISB1YSB2pvuq “ mintISB1pvuq, ISB2pvuqu,

FSB1YSB2
pvuq “mintFSB1

pvuq, FSB2
pvuqu, FSB1YSB2pvuq “ mintFSB1pvuq, FSB2pvuqu.

Example 5. Let V “ tv1, v2, v3, v4u be a set of universes, and M “ te1, e2, e3u a set of parameters. Then,
a neutrosophic soft relation over V ˆM can be written as in Table 7.

Table 7. Neutrosophic soft relation Q.

Q v1 v2 v3 v4

e1 p0.5, 0.4, 0.3q p0.7, 0.6, 0.5q p0.7, 0.6, 0.4q p0.5, 0.7, 0.4q
e2 p0.3, 0.5, 0.6q p0.4, 0.5, 0.1q p0.3, 0.6, 0.5q p0.4, 0.8, 0.2q
e3 p0.7, 0.5, 0.8q p0.2, 0.3, 0.8q p0.7, 0.3, 0.5q p0.6, 0.4, 0.3q
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Let A1 “ tpe1, 0.5, 0.7, 0.8q, pe2, 0.7, 0.5, 0.3q, pe3, 0.4, 0.5, 0.3qu, and A2 “ tpe1, 0.6, 0.3, 0.5q,
pe2, 0.5, 0.8, 0.2q, pe3, 0.5, 0.7, 0.2qu are two neutrosophic sets on M, Then, QpA1q “ pQpA1q, QpA1qq and
QpA2q “ pQpA2q, QpA2qq are NSRSs, where

QpA1q “ tpv1, 0.5, 0.6, 0.5q, pv2, 0.5, 0.5, 0.7qpv3, 0.5, 0.5, 0.7q, pv40.4, 0.5, 0.5qu,

QpA1q “ tpv1, 0.5, 0.5, 0.6q, pv2, 0.5, 0.5, 0.3q, pv3, 0.5, 0.5, 0.5q, pv40.5, 0.5, 0.3qu,

QpA2q “ tpv1, 0.6, 0.5, 0.5q, pv2, 0.5, 0.7, 0.5q, pv3, 0.5, 0.7, 0.5q, pv4, 0.5, 0.6, 0.5qu,

QpA2q “ tpv1, 0.5, 0.4, 0.5q, pv2, 0.6, 0.6, 0.2q, pv3, 0.6, 0.6, 0.5q, pv4, 0.5, 0.7, 0.2qu.

Let E “ tv1v2, v1v4, v2v2, v2v3, v3v3, v3v4u Ď V ˆ V, and L “ te1e2, e1e3, e2e3u Ă Ḿ. Then,
a neutrosophic soft relation on E can be written as in Table 8.

Table 8. Neutrosophic soft relation S.

S v1v2 v1v4 v2v2 v2v3 v3v3 v3v4

e1e2 (0.3, 0.4 ,0.1) p0.4, 0.4, 0.2q p0.4, 0.5, 0.1q p0.3, 0.5, 0.4q p0.3, 0.4, 0.4q p0.4, 0.5, 0.2q
e1e3 (0.2 ,0.3 ,0.3) p0.4, 0.3, 0.2q p0.2, 0.3, 0.5q p0.4, 0.3, 0.3q p0.5, 0.3, 0.3q p0.5, 0.4, 0.3q
e2e3 (0.2,0.3,0.5) p0.3, 0.3, 0.3q p0.2, 0.3, 0.1q p0.4, 0.3, 0.1q p0.3, 0.3, 0.5q p0.3, 0.4, 0.3q

Let B1 “ tpe1e2, 0.5, 0.4, 0.5q, pe1e3, 0.3, 0.4, 0.5q, pe2e3, 0.4, 0.4, 0.3qu, and B2 “ tpe1e2, 0.5, 0.3, 0.2q,
pe1e3, 0.4, 0.3, 0.3q, pe2e3, 0.4, 0.6, 0.2qu are two neutrosophic sets on L, Then, SpB1q “ pSpB1q, SpB1qq and
SpB2q “ pSpB2q, SpB2qq are NSRRs, where

SpB1q “ tpv1v2, 0.3, 0.4, 0.3q, pv1v4, 0.3, 0.4, 0.4q, pv2v2, 0.4, 0.4, 0.4q, pv2v3, 0.3, 0.4, 0.4q,

pv3v3, 0.3, 0.4, 0.5q, pv3v4, 0.3, 0.4, 0.5qu,

SpB1q “ tpv1v2, 0.3, 0.4, 0.5q, pv1v4, 0.4, 0.4, 0.3q, pv2v2, 0.4, 0.4, 0.3q, pv2v3, 0.4, 0.4, 0.3q,

pv3v3, 0.3, 0.4, 0.5q, pv3v4, 0.4, 0.4, 0.3qu;

SpB2q “ tpv1v2, 0.4, 0.6, 0.2q, pv1v4, 0.4, 0.6, 0.3q, pv2v2, 0.4, 0.6, 0.2q, pv2v3, 0.4, 0.6, 0.3q,

pv3v3, 0.4, 0.6, 0.3q, pv3v4, 0.4, 0.6, 0.3qu,

SpB2q “ tpv1v2, 0.3, 0.3, 0.2q, pv1v4, 0.4, 0.3, 0.2q, pv2v2, 0.4, 0.3, 0.2q, pv2v3, 0.4, 0.3, 0.2q,

pv3v3, 0.4, 0.3, 0.3q, pv3v4, 0.4, 0.4, 0.2qu.

Thus, G1 “ pG1, G1q and G2 “ pG2, G2q are NSRGs, where G1 “ pQpA1q, SpB1qq, G1 “

pQpA1q, SpB1qq as shown in Figure 2.
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Figure 2: Neutrosophic soft rough graph G1 = (G1, G1)

G2 = (Q(A2), S(B2)), G2 = (Q(A2), S(B2)) as shown in Figure 3.
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Figure 3: Neutrosophic soft rough graph G2 = (G2, G2)

The union of G1 = (G1, G1) and G2 = (G2, G2) is NSRG G = G1∪G2 = (G1∪G2, G1∪G2) as shown
in Figure 4.
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Figure 4: Neutrosophic soft rough graph G1 ∪G2 = (G1 ∪G2, G1 ∪G2)

Definition 2.6. Let G1 = (G1, G1) and G2 = (G2, G2) be two NSRGs on V . The intersection of G1

and G2 is a neutrosophic soft rough graph G = G1 ∩ G2 = (G1 ∩ G2, G1 ∩ G2), where G1 ∩ G2 =

9

Figure 2. Neutrosophic soft rough graph G1 “ pG1, G1q

G2 “ pQpA2q, SpB2qq, G2 “ pQpA2q, SpB2qq as shown in Figure 3.
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Figure 2: Neutrosophic soft rough graph G1 = (G1, G1)

G2 = (Q(A2), S(B2)), G2 = (Q(A2), S(B2)) as shown in Figure 3.
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Figure 3: Neutrosophic soft rough graph G2 = (G2, G2)

The union of G1 = (G1, G1) and G2 = (G2, G2) is NSRG G = G1∪G2 = (G1∪G2, G1∪G2) as shown
in Figure 4.
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Figure 4: Neutrosophic soft rough graph G1 ∪G2 = (G1 ∪G2, G1 ∪G2)

Definition 2.6. Let G1 = (G1, G1) and G2 = (G2, G2) be two NSRGs on V . The intersection of G1

and G2 is a neutrosophic soft rough graph G = G1 ∩ G2 = (G1 ∩ G2, G1 ∩ G2), where G1 ∩ G2 =

9

Figure 3. Neutrosophic soft rough graph G2 “ pG2, G2q

The union of G1 “ pG1, G1q and G2 “ pG2, G2q is NSRG G “ G1YG2 “ pG1YG2, G1YG2q as shown
in Figure 4.
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Figure 2: Neutrosophic soft rough graph G1 = (G1, G1)

G2 = (Q(A2), S(B2)), G2 = (Q(A2), S(B2)) as shown in Figure 3.
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Figure 3: Neutrosophic soft rough graph G2 = (G2, G2)

The union of G1 = (G1, G1) and G2 = (G2, G2) is NSRG G = G1∪G2 = (G1∪G2, G1∪G2) as shown
in Figure 4.
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Figure 4: Neutrosophic soft rough graph G1 ∪G2 = (G1 ∪G2, G1 ∪G2)

Definition 2.6. Let G1 = (G1, G1) and G2 = (G2, G2) be two NSRGs on V . The intersection of G1

and G2 is a neutrosophic soft rough graph G = G1 ∩ G2 = (G1 ∩ G2, G1 ∩ G2), where G1 ∩ G2 =

9

Figure 4. Neutrosophic soft rough graph G1 Y G2 “ pG1 Y G2, G1 Y G2q

Definition 6. Let G1 “ pG1, G1q and G2 “ pG2, G2q be two NSRGs on V. The intersection of G1 and G2 is a
neutrosophic soft rough graph G “ G1 XG2 “ pG1 XG2, G1 XG2q, where G1 XG2 “ pQA1 XQA2, SB1 X

SB2q and G1 X G2 “ pQA1 XQA2, SB1 X SB2q are neutrosophic graphs, respectively, such that

(i) @v P QA1 but v R QA2.

TQA1XQA2
pvq “TQA1

pvq, TQA1XQA2pvq “ TQA1pvq,

IQA1XQA2
pvq “IQA1

pvq, IQA1XQA2pvq “ IQA1pvq,

FQA1XQA2
pvq “FQA1

pvq, FQA1XQA2pvq “ FQA1pvq.

(ii) @v R QA1 but v P QA2.

TQA1XQA2
pvq “TQA2

pvq, TQA1XQA2pvq “ TQA2pvq,

IQA1XQA2
pvq “IQA2

pvq, IQA1XQA2pvq “ IQA2pvq,

FQA1XQA2
pvq “FQA2

pvq, FQA1XQA2pvq “ FQA2pvq.
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(iii) @v P QA1 XQA2

TQA1XQA2
pvq “mintTQA1

pvq, TQA2
pvqu, TQA1XQA2pvq “ mintTQA1pvq, TQA2pvqu,

IQA1XQA2
pvq “maxtIQA1

pvq, IQA2
pvqu, IQA1XQA2pvq “ maxtIQA1pvq, IQA2pvqu,

FQA1XQA2
pvq “maxtFQA1

pvq, FQA2
pvqu, FQA1XQA2pvq “ maxtFQA1pvq, FQA2pvqu.

(iv) @vu P SB1 but vu R SB2.

TSB1XSB2
pvuq “TSB1

pvuq, TSB1XSB2pvuq “ TSB1pvuq,

ISB1XSB2
pvuq “ISB1

pvuq, ISB1XSB2pvuq “ ISB1pvuq,

FSB1XSB2
pvuq “FSB1

pvuq, FSB1XSB2pvuq “ FSB1pvuq.

(v) @vu R SB1 but vu P SB2

TSB1XSB2
pvuq “TSB2

pvuq, TSB1XSB2pvuq “ TSB2pvuq,

ISB1XSB2
pvuq “ISB2

pvuq, ISB1XSB2pvuq “ ISB2pvuq,

FSB1XSB2
pvuq “FSB2

pvuq, FSB1XSB2pvuq “ FSB2pvuq.

(vi) @vu P SB1 X SB2

TSB1XSB2
pvuq “mintTSB1

pvuq, TSB2
pvuqu, TSB1XSB2pvuq “ mintTSB1pvuq, TSB2pvuqu,

ISB1XSB2
pvuq “maxtISB1

pvuq, ISB2
pvuqu, ISB1XSB2pvuq “ maxtISB1pvuq, ISB2pvuqu,

FSB1XSB2
pvuq “maxtFSB1

pvuq, FSB2
pvuqu, FSB1XSB2pvuq “ maxtFSB1pvuq, FSB2pvuqu.

Definition 7. Let G1 “ pG1, G1q and G2 “ pG2, G2q be two neutrosophic soft rough graphs on V. The join
of G1 and G2 is a neutrosophic soft rough graph G “ G1 ` G2 “ pG1 ` G2, G1 ` G2q, where G1 ` G2 “

pQA1 ` QA2, SB1 ` SB2q and G1 ` G2 “ pQA1 ` QA2, SB1 ` SB2q are neutrosophic graph, respectively,
such that

(i) @v P QA1 but v R QA2.

TQA1`QA2
pvq “TQA1

pvq, TQA1`QA2pvq “ TQA1pvq,

IQA1`QA2
pvq “IQA1

pvq, IQA1`QA2pvq “ IQA1pvq,

FQA1`QA2
pvq “FQA1

pvq, FQA1`QA2pvq “ FQA1pvq.

(ii) @v R QA1 but v P QA2.

TQA1`QA2
pvq “TQA2

pvq, TQA1`QA2pvq “ TQA2pvq,

IQA1`QA2
pvq “IQA2

pvq, IQA1`QA2pvq “ IQA2pvq,

FQA1`QA2
pvq “FQA2

pvq, FQA1`QA2pvq “ FQA2pvq.

(iii) @v P QA1 XQA2

TQA1`QA2
pvq “maxtTQA1

pvq, TQA2
pvqu, TQA1`QA2pvq “ maxtTQA1pvq, TQA2pvqu,

IQA1`QA2
pvq “mintIQA1

pvq, IQA2
pvqu, IQA1`QA2pvq “ mintIQA1pvq, IQA2pvqu,

FQA1`QA2
pvq “mintFQA1

pvq, FQA2
pvqu, FQA1`QA2pvq “ mintFQA1pvq, FQA2pvqu.
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(iv) @vu P SB1 but vu R SB2.

TSB1`SB2
pvuq “TSB1

pvuq, TSB1`SB2pvuq “ TSB1pvuq,

ISB1`SB2
pvuq “ISB1

pvuq, ISB1`SB2pvuq “ ISB1pvuq,

FSB1`SB2
pvuq “FSB1

pvuq, FSB1`SB2pvuq “ FSB1pvuq.

(v) @vu R SB1 but vu P SB2

TSB1`SB2
pvuq “TSB2

pvuq, TSB1`SB2pvuq “ TSB2pvuq,

ISB1`SB2
pvuq “ISB2

pvuq, ISB1`SB2pvuq “ ISB2pvuq,

FSB1`SB2
pvuq “FSB2

pvuq, FSB1`SB2pvuq “ FSB2pvuq.

(vi) @vu P SB1 X SB2

TSB1`SB2
pvuq “maxtTSB1

pvuq, TSB2
pvuqu, TSB1`SB2pvuq “ maxtTSB1pvuq, TSB2pvuqu,

ISB1`SB2
pvuq “mintISB1

pvuq, ISB2
pvuqu, ISB1`SB2pvuq “ mintISB1pvuq, ISB2pvuqu,

FSB1`SB2
pvuq “mintFSB1

pvuq, FSB2
pvuqu, FSB1`SB2pvuq “ mintFSB1pvuq, FSB2pvuqu.

(vii) @vu P Ẽ, where Ẽ is the set of edges joining vertices of QA1 and QA2.

TSB1`SB2
pvuq “mintTQA1

pvq, TQA2
puqu, TSB1`SB2pvuq “ mintTQA1pvq, TQA2puqu,

ISB1`SB2
pvuq “maxtIQA1

pvq, IQA2
puqu, ISB1`SB2pvuq “ maxtIQA1pvq, IQA2puqu,

FSB1`SB2
pvuq “maxtFQA1

pvq, FQA2
puqu, FSB1`SB2pvuq “ maxtFQA1pvq, FQA2puqu.

Definition 8. The Cartesian product of G1 and G2 is a G “ G1˙G2 “ pG1˙G2, G1˙G2q, where G1˙G2 “

pQA1 ˙QA2, SB1 ˙ SB2q and G1 ˙ G2 “ pQA1 ˙QA2, SB1 ˙ SB2q are neutrosophic digraph, such that

(i) @ pv1, v2q P QA1 ˆQA2.

T
pQA1˙QA2q

pv1, v2q “mintTQA1
pv1q, TQA2

pv1qu, TpQA1˙QA2q
pv1, v2q “ mintTQA1pv1q, TQA2pv1qu,

I
pQA1˙QA2q

pv1, v2q “maxtIQA1
pv1q, IQA2

pv1qu, IpQA1˙QA2q
pv1, v2q “ maxtIQA1pv1q, IQA2pv1qu,

F
pQA1˙QA2q

pv1, v2q “maxtFQA1
pv1q, FQA2

pv1qu, FpQA1˙QA2q
pv1, v2q “ maxtFQA1pv1q, FQA2pv1qu.

(ii) @v1v2 P SB2, v P QA1.

T
pSB1˙SB2q

`

pv, v1qpv, v2q
˘

“mintTQA1
pvq, TSB2

pv1v2qu,

TpSB1˙SB2q

`

pv, v1qpv, v2q
˘

“mintTQA1pvq, TSB2pv1v2qu,

I
pSB1˙SB2q

`

pv, v1qpv, v2q
˘

“maxtIQA1
pvq, ISB2

pv1v2qu,

IpSB1˙SB2q

`

pv, v1qpv, v2q
˘

“maxtIQA1pvq, ISB2pv1v2qu,

F
pSB1˙SB2q

`

pv, v1qpv, v2q
˘

“maxtFQA1
pvq, FSB2

pv1v2qu,

FpSB1˙SB2q

`

pv, v1qpv, v2q
˘

“maxtFQA1pvq, FSB2pv1v2qu.
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(iii) @v1v2 P SB1, v P QA2.

TpSB1˙SB2q

`

pv1, vqpv2, vq
˘

“mintTSB1pv1v2q, TQA2pvqu,

T
pSB1˙SB2q

`

pv1, vqpv2, vq
˘

“mintTSB1
pv1v2q, TQA2

pvqu,

I
pSB1˙SB2q

`

pv1, vqpv2, vq
˘

“maxtISB1
pv1v2q, IQA2

pvqu,

IpSB1˙SB2q

`

pv1, vqpv2, vq
˘

“maxtISB1pv1v2q, IQA2pvqu,

F
pSB1˙SB2q

`

pv1, vqpv2, vq
˘

“maxtFSB1
pv1v2q, FQA2

pvqu,

FpSB1˙SB2q

`

pv1, vqpv2, vq
˘

“maxtFSB1pv1v2q, FQA2pvqu.

Definition 9. The cross product of G1 and G2 is a neutrosophic soft rough graph G “ G1 e G2 “ pG1 e

G2, G1 e G2q, where G1 e G2 “ pQA1 eQA2, SB1 e SB2q and G1 e G2 “ pQA1 eQA2, SB1 e SB2q are
neutrosophic graphs, respectively, such that

(i) @ pv1, v2q P QA1 ˆQA2.

T
pQA1eQA2q

pv1, v2q “mintTQA1
pv1q, TQA2

pv1qu, TpQA1eQA2q
pv1, v2q “ mintTQA1pv1q, TQA2pv1qu,

I
pQA1eQA2q

pv1, v2q “maxtIQA1
pv1q, IQA2

pv1qu, IpQA1eQA2q
pv1, v2q “ maxtIQA1pv1q, IQA2pv1qu,

F
pQA1eQA2q

pv1, v2q “maxtFQA1
pv1q, FQA2

pv1qu, FpQA1eQA2q
pv1, v2q “ maxtFQA1pv1q, FQA2pv1qu.

(ii) @v1u1 P SB1, v2u2 P SB2.

T
pSB1eSB2q

`

pv1, v2qpu1, u2q
˘

“mintTSB1
pv1u1q, TSB2

pv1u2qu,

TpSB1eSB2q

`

pv1, v2qpu1, u2q
˘

“mintTSB1pv1u1q, TSB2pv1u2qu,

I
pSB1eSB2

`

pv1, v2qpu1, u2q
˘

“maxtISB1
pv1u1q, ISB2

pv1u2qu,

IpSB1eSB2q

`

pv1, v2qpu1, u2q
˘

“maxtISB1pv1u1q, ISB2pv1u2qu,

F
pSB1eSB2

`

pv1, v2qpu1, u2q
˘

“maxtFSB1
pv1u1q, FSB2

pv1u2qu,

FpSB1eSB2q

`

pv1, v2qpu1, u2q
˘

“maxtFSB1pv1u1q, FSB2pv1u2qu.

Definition 10. The rejection of G1 and G2 is a neutrosophic soft rough graph G “ G1|G2 “ pG1|G2, G1|G2q,
where G1|G2 “ pSA1|SA2, SB1|SB2q and G1|G2 “ pSA1|SA2, SB1|SB2q are neutrosophic graphs such that

(i) @ pv1, v2q P QA1 ˆQA2.

T
pQA1|QA2q

pv1, v2q “mintTQA1
pv1q, TQA2

pv2qu, TpQA1|QA2q
pv1, v2q “ mintTQA1pv1q, TQA2pv2qu,

I
pQA1|QA2q

pv1, v2q “maxtIQA1
pv1q, IQA2

pv2qu, IpQA1|QA2q
pv1, v2q “ maxtIQA1pv1q, IQA2pv2qu,

F
pQA1|QA2q

pv1, v2q “maxtFQA1
pv1q, FQA2

pv2qu, FpQA1|QA2q
pv1, v2q “ maxtFQA1pv1q, FQA2pv2qu.

(ii) @v2u2 R SB2, v P QA1.

T
pSB1|SB2q

`

pv, v2qpv, u2q
˘

“mintTQA1
pvq, TQA2

pv2q, TQA2
pu2qu,

TpSB1|QB2q

`

pv, v2qpv, u2q
˘

“mintTQA1pvq, TQA2pv2q, TQA2pu2qu,

pISB1|SB2q

`

pv, v2qpv, u2q
˘

“maxtIQA1
pvq, IQA2

pv2q, IQA2
pu2qu,

pISB1|SB2q

`

pv, v2qpv, u2q
˘

“maxtIQA1pvq, IQA2pv2q, IQA2pu2qu,

pFSB1|SB2q

`

pv, v2qpv, u2q
˘

“maxtFQA1
pvq, FQA2

pv2q, FQA2
pu2qu,

pFSB1|SB2q

`

pv, v2qpv, u2q
˘

“maxtFQA1pvq, FQA2pv2q, FQA2pu2qu.
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(iii) @v1u1 R SB1, v P QA2,

TpSB1|SB2q

`

pv1, vqpu1, vq
˘

“mintTQA1pv1q, TQA1pu1q, TQA2pvqu,

IpSB1|SB2q

`

pv1, vqpu1, vq
˘

“maxtIQA1pv1q, IQA1pu1q, IQA2pvqu,

FpSB1|SB2q

`

pv1, vqpu1, vq
˘

“maxtFQA1pv1q, FQA1pu1q, FQA2pvqu,

T
pSB1|SB2q

`

pv1, vqpu1, vq
˘

“mintTQA1
pv1q, TQA1

pu1q, TQA2
pvqu,

I
pSB1|SB2q

`

pv1, vqpu1, vq
˘

“maxtIQA1
pv1q, IQA1

pu1q, IQA2
pvqu,

F
pSB1|SB2q

`

pv1, vqpu1, vq
˘

“maxtFQA1
pv1q, FQA1

pu1q, FQA2
pvqu.

(iv) @v1u1 R SB1, v2u2 R SB2, v1 “ u1.

TpSB1|SB2q

`

pv1, v2qpu1, u2q
˘

“mintTQA1pv1q, TQA1pu1q, TQA2pv2q, TQA2pu2qu,

IpSB1|SB2q

`

pv1, v2qpu1, u2q
˘

“maxtIQA1pv1q, IQA1pu1q, IQA2pv2q, IQA2pu2qu,

FpSB1|SB2q

`

pv1, v2qpu1, u2q
˘

“maxtFQA1pv1q, FQA1pu1q, FQA2pv2q, FQA2pu2qu,

T
pSB1|SB2q

`

pv1, v2qpu1, u2q
˘

“mintTQA1
pv1q, TQA1

pu1q, TQA2
pv2q, TQA2

pu2qu,

I
pSB1|SB2q

`

pv1, v2qpu1, u2q
˘

“maxtIQA1
pv1q, IQA1

pu1q, IQA2
pv2q, IQA2

pu2qu,

F
pSB1|SB2q

`

pv1, v2qpu1, u2q
˘

“maxtFQA1
pv1q, FQA1

pu1q, FQA2
pv2q, FQA2

pu2qu,

Example 6. Let G1 “ pG1, G1q and G2 “ pG2, G2q be two neutrosophic soft rough graphs on V, where
G1 “ pQA1, SB1q and G1 “ pQA1, SB1q are neutrosophic graphs as shown in Figure 2 and G2 “ pQA2, SB2q

and G2 “ pQA2, SB2q are neutrosophic graphs as shown in Figure 3. The Cartesian product of G1 “ pG1, G1q

and G2 “ pG2, G2q is NSRG G “ G1 ˆ G2 “ pG1 ˆ G2, G1 ˆ G2q as shown in Figure 5.
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Figure 5: Cartesian product of two neutrosophic soft rough graphs G1 ×G2

Definition 2.11. The symmetric difference of G1 and G2 is a neutrosophic soft rough graph G =
G1 ⊕ G2 = (G1 ⊕ G2, G1 ⊕ G2), where G1 ⊕ G2 = (QA1 ⊕ QA2, SB1 ⊕ SB2) and G1 ⊕ G2 = (QA1 ⊕
QA2, SB1 ⊕ SB2) are neutrosophic graphs, respectively, such that

(i) ∀ (v1, v2) ∈ QA1 ×QA2.

T(QA1⊕QA2)
(v1, v2) =min{TQA1

(v1), TQA2
(v2)}, T(QA1⊕QA2)(v1, v2) = min{TQA1(v1), TQA2(v2)},

I(QA1⊕QA2)
(v1, v2) =max{IQA1

(v1), IQA2
(v2)}, I(QA1⊕QA2)(v1, v2) = max{IQA1(v1), IQA2(v2)},

F(QA1⊕QA2)
(v1, v2) =max{FQA1

(v1), FQA2
(v2)}, F(QA1⊕QA2)(v1, v2) = max{FQA1(v1), FQA2(v2)}.

(ii) ∀v1v2 ∈ SB2, v ∈ QA1.

T(SB1⊕SB2)

(
(v, v1)(v, v2)

)
=min{TQA1

(v), TSB2
(v1v2)},

T(SB1⊕SB2)

(
(v, v1)(v, v2)

)
=min{TQA1(v), TSB2(v1v2)},
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(
(v, v1)(v, v2)

)
=max{IQA1

(v), ISB2
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(
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=max{FQA1

(v), FSB2
(v1v2)},

F(SB1⊕SB2)

(
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)
=max{FQA1(v), FSB2(v1v2)}.

15

(b)

Figure 5. Cartesian product of two neutrosophic soft rough graphs G1 ˆ G2

Definition 11. The symmetric difference of G1 and G2 is a neutrosophic soft rough graph G “ G1 ‘ G2 “

pG1‘G2, G1‘G2q, where G1‘G2 “ pQA1‘QA2, SB1‘ SB2q and G1‘G2 “ pQA1‘QA2, SB1‘ SB2q

are neutrosophic graphs, respectively, such that

(i) @ pv1, v2q P QA1 ˆQA2.

T
pQA1‘QA2q

pv1, v2q “mintTQA1
pv1q, TQA2

pv2qu, TpQA1‘QA2q
pv1, v2q “ mintTQA1pv1q, TQA2pv2qu,

I
pQA1‘QA2q

pv1, v2q “maxtIQA1
pv1q, IQA2

pv2qu, IpQA1‘QA2q
pv1, v2q “ maxtIQA1pv1q, IQA2pv2qu,

F
pQA1‘QA2q

pv1, v2q “maxtFQA1
pv1q, FQA2

pv2qu, FpQA1‘QA2q
pv1, v2q “ maxtFQA1pv1q, FQA2pv2qu.

(ii) @v1v2 P SB2, v P QA1.

T
pSB1‘SB2q

`

pv, v1qpv, v2q
˘

“mintTQA1
pvq, TSB2

pv1v2qu,

TpSB1‘SB2q

`

pv, v1qpv, v2q
˘

“mintTQA1pvq, TSB2pv1v2qu,

I
pSB1‘SB2q

`

pv, v1qpv, v2q
˘

“maxtIQA1
pvq, ISB2

pv1v2qu,

IpSB1‘SB2q

`

pv, v1qpv, v2q
˘

“maxtIQA1pvq, ISB2pv1v2qu,

F
pSB1‘SB2q

`

pv, v1qpv, v2q
˘

“maxtFQA1
pvq, FSB2

pv1v2qu,

FpSB1‘SB2q

`

pv, v1qpv, v2q
˘

“maxtFQA1pvq, FSB2pv1v2qu.
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(iii) @v1v2 P SB1, v P QA2.

T
pSB1‘SB2q

`

pv1, vqpv2, vq
˘

“mintTSB1
pv1v2q, TQA2

pvqu,

TpSB1‘SB2q

`

pv1, vqpv2, vq
˘

“mintTSB1pv1v2q, TQA2pvqu,

I
pSB1‘SB2q

`

pv1, vqpv2, vq
˘

“maxtISB1
pv1v2q, IQA2

pvqu,

IpSB1‘SB2q

`

pv1, vqpv2, vq
˘

“maxtISB1pv1v2q, IQA2pvqu,

F
pSB1‘SB2q

`

pv1, vqpv2, vq
˘

“maxtFSB1
pv1v2q, FQA2

pvqu,

FpSB1‘SB2q

`

pv1, vqpv2, vq
˘

“maxtFSB1pv1v2q, FQA2pvqu.

(iv) @v1u1 R SB1, v2u2 P SB2.

T
pSB1‘SB2q

`

pv1, v2qpu1, u2q
˘

“mintTSB1
pv1u1q, TQA2

pv2q, TQA2
pu2qu,

TpSB1‘SB2q

`

pv1, v2qpu1, u2q
˘

“mintTSB1pv1u1q, TQA2pv2q, TQA2pu2qu,

I
pSB1‘SB2q

`

pv1, v2qpu1, u2q
˘

“maxtISB1
pv1u1q, IQA2

pv2q, IQA2
pu2qu,

IpSB1‘SB2q

`

pv1, v2qpu1, u2q
˘

“maxtISB1pv1u1q, IQA2pv2q, IQA2pu2qu,

F
pSB1‘SB2q

`

pv1, v2qpu1, u2q
˘

“maxtFSB1
pv1u1q, FQA2

pv2q, FQA2
pu2qu,

FpSB1‘SB2q

`

pv1, v2qpu1, u2q
˘

“maxtFSB1pv1u1q, FQA2pv2q, FQA2pu2qu.

(v) @v1u1 R SB1, v2u2 P SB2.

T
pSB1‘SB2q

`

pv1, v2qpu1, u2q
˘

“mintTQA1
pv1q, TQA1

pu1q, TSB2
pv2u2qu,

TpSB1‘SB2q

`

pv1, v2qpu1, u2q
˘

“mintTQA1pv1q, TQA1pu1q, TSB2pv2u2qu,

I
pSB1‘SB2q

`

pv1, v2qpu1, u2q
˘

“maxtIQA1
pv1q, IQA1

pu1q, ISB2
pv2u2qu,

IpSB1‘SB2q

`

pv1, v2qpu1, u2q
˘

“maxtIQA1pv1q, IQA1pu1q, ISB2pv2u2qu,

F
pSB1‘SB2q

`

pv1, v2qpu1, u2q
˘

“maxtFQA1
pv1q, FQA1

pu1q, FSB2
pv2u2qu,

FpSB1‘SB2q

`

pv1, v2qpu1, u2q
˘

“maxtFQA1pv1q, FQA1pu1q, FSB2pv2u2qu.

Example 7. Let G1 “ pG1, G1q and G2 “ pG2, G2q be two neutrosophic soft rough graphs on V, where
G1 “ pQA1, SB1q and G1 “ pQA1, SB1q are neutrosophic graphs as shown in Figure 6 and G2 “ pQA2, SB2q

and G2 “ pQA2, SB2q are neutrosophic graphs as shown in Figure 7.

(iii) ∀v1v2 ∈ SB1, v ∈ QA2.

T(SB1⊕SB2)

(
(v1, v)(v2, v)

)
=min{TSB1

(v1v2), TQA2
(v)},

T(SB1⊕SB2)

(
(v1, v)(v2, v)

)
=min{TSB1(v1v2), TQA2(v)},

I(SB1⊕SB2)

(
(v1, v)(v2, v)

)
=max{ISB1

(v1v2), IQA2
(v)},

I(SB1⊕SB2)

(
(v1, v)(v2, v)

)
=max{ISB1(v1v2), IQA2(v)},

F(SB1⊕SB2)

(
(v1, v)(v2, v)

)
=max{FSB1

(v1v2), FQA2
(v)},

F(SB1⊕SB2)

(
(v1, v)(v2, v)

)
=max{FSB1(v1v2), FQA2(v)}.

(iv) ∀v1u1 /∈ SB1, v2u2 ∈ SB2.

T(SB1⊕SB2)

(
(v1, v2)(u1, u2)

)
=min{TSB1

(v1u1), TQA2
(v2), TQA2

(u2)},
T(SB1⊕SB2)

(
(v1, v2)(u1, u2)

)
=min{TSB1(v1u1), TQA2(v2), TQA2(u2)},

I(SB1⊕SB2)

(
(v1, v2)(u1, u2)

)
=max{ISB1

(v1u1), IQA2
(v2), IQA2

(u2)},
I(SB1⊕SB2)

(
(v1, v2)(u1, u2)

)
=max{ISB1(v1u1), IQA2(v2), IQA2(u2)},

F(SB1⊕SB2)

(
(v1, v2)(u1, u2)

)
=max{FSB1

(v1u1), FQA2
(v2), FQA2

(u2)},
F(SB1⊕SB2)

(
(v1, v2)(u1, u2)

)
=max{FSB1(v1u1), FQA2(v2), FQA2(u2)}.

(v) ∀v1u1 /∈ SB1, v2u2 ∈ SB2.

T(SB1⊕SB2)

(
(v1, v2)(u1, u2)

)
=min{TQA1

(v1), TQA1
(u1), TSB2

(v2u2)},
T(SB1⊕SB2)

(
(v1, v2)(u1, u2)

)
=min{TQA1(v1), TQA1(u1), TSB2(v2u2)},

I(SB1⊕SB2)

(
(v1, v2)(u1, u2)

)
=max{IQA1

(v1), IQA1
(u1), ISB2

(v2u2)},
I(SB1⊕SB2)

(
(v1, v2)(u1, u2)

)
=max{IQA1(v1), IQA1(u1), ISB2(v2u2)},

F(SB1⊕SB2)

(
(v1, v2)(u1, u2)

)
=max{FQA1

(v1), FQA1
(u1), FSB2

(v2u2)},
F(SB1⊕SB2)

(
(v1, v2)(u1, u2)

)
=max{FQA1(v1), FQA1(u1), FSB2(v2u2)}.

Example 2.7. Let G1 = (G1, G1) and G2 = (G2, G2) be two neutrosophic soft rough graphs on V ,
where G1 = (QA1, SB1) and G1 = (QA1, SB1) are neutrosophic graphs as shown in Figure 6 and

G2 = (QA2, SB2) and G2 = (QA2, SB2) are neutrosophic graphs as shown in Figure 7
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Figure 6: Neutrosophic soft rough graph G1 = (G1, G1)
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Figure 6. Neutrosophic soft rough graph G1 “ pG1, G1q
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Figure 7: Neutrosophic soft rough graph G2 = (G2, G2)

The symmetric difference of G1 and G2 is G = G1 ⊕ G2 = (G1 ⊕ G2, G1 ⊕ G2), where G1 ⊕ G2 =
(QA1 ⊕QA2, SB1 ⊕ SB2) and G1 ⊕G2 = (QA1 ⊕ QA2, SB1 ⊕ SB2) are neutrosophic graphs as shown
in Figure 8.

G1 ⊕G2

b b
(aa, 0.4, 0.3, 0.1)

b b

bb

b

b

b

9

(ab, 0.4, 0.3, 0.3)(ac, 0.1, 0.3, 0.2)

(ba, 0.3, 0.2, 0.3)

(b
b,

0
.4
,
0
.3
,
0
.3
)

(b
c
,
0
.1
,
0
.3
,
0
.3
)

(ca, 0.5, 0.4, 0.3) (cb, 0.4, 0.4, 0.3)(cc, 0.1, 0.9, 0.3)

(0.4, 0.3, 0.3)(0.1, 0.3, 0.2)

(0.1, 0.3, 0.3) (0.3, 0.3, 0.3)

(0.1, 0.4, 0.3) (0.4, 0.4, 0.3)

(0.1, 0.4, 0.3)

(0
.1
,
0
.3
,
0
.2
)

(0
.1
,
0
.4
,
0
.2
)

(0
.2
,
0
.2
,
0
.3
)

(0
.2
,
0
.3
,
0
.2
)

(0
.3
,
0
.4
,
0
.3
)

(0
.3
,
0
.4
,
0
.3
)

(0.
1, 0

.4,
0.3

)

(0
.1
, 0
.4
, 0
.3
)

(0
.4
, 0
.4
, 0
.3
)

(0
.4
,0
.4
,0
.3
)

(0.1, 0.3, 0.2) (0.
1, 0

.3,
0.2

)

(0.1, 0.4, 0.3)

G1 ⊕G2

b b
(aa, 0.4, 0.6, 0.9)

b b

bb

b

b

b

(ab, 0.4, 0.6, 0.3)(ac, 0.1, 0.3, 0.2)

(ba, 0.4, 0.5, 0.9)

(b
b,

0
.4
,
0
.5
,
0
.9
)

(b
c
,
0
.4
,
0
.3
,
0
.3
)

(ca, 0.6, 0.2, 0.9) (cb, 0.4, 0.6, 0.3)(cc, 0.6, 0.3, 0.3)

(0.4, 0.6, 0.9)(0.4, 0.6, 0.3)

(0.4, 0.5, 0.3) (0.4, 0.5, 0.3)

(0.5, 0.3, 0.1) (0.4, 0.3, 0.2)

(0.4, 0.6, 0.3)

(0
.4
,
0
.3
,
0
.3
)

(0
.1
,
0
.4
,
0
.3
)

(0
.4
,
0
.6
,
0
.3
)

(0
.4
,
0
.2
,
0
.9
)

(0
.1
,
0
.6
,
0
.3
)

(0
.1
,
0
.4
,
0
.9
)

(0.
1, 0

.6,
0.3

)

(0
.4
, 0
.6
, 0
.3
)

(0
.4
, 0
.6
, 0
.3
)

(0
.4
,0
.6
,0
.3
)

(0.4, 0.6, 0.3) (0.
4, 0

.6,
0.3

)

(0.1, 0.6, 0.3)

Figure 8: Neutrosophic soft rough graph G1 ⊕G2 = (G1 ⊕G2, G1 ⊕G2)

Definition 2.12. The lexicographic product of G1 and G2 is a neutrosophic soft rough graph G =
G1 ⊙ G2 = (G1∗ ⊙ G2∗, G

∗
1 ⊙ G∗

2), where G1∗ ⊙ G2∗ = (QA1 ⊙ QA2, SB1 ⊙ SB2) and G∗
1 ⊙ G∗

2 =

(QA1 ⊙QA2, SB1 ⊙ SB2) are neutrosophic graphs, respectively, such that

(i) ∀ (v1, v2) ∈ QA1 ×QA2.

T(QA1⊙QA2)
(v1, v2) =min{TQA1

(v1), TQA2
(v2)}, T(QA1⊙QA2)(v1, v2) = min{TQA1(v1), TQA2(v2)},

I(QA1⊙QA2)
(v1, v2) =max{IQA1

(v1), IQA2
(v2)}, I(QA1⊙QA2)(v1, v2) = max{IQA1(v1), IQA2(v2)},

F(QA1⊙QA2)
(v1, v2) =max{FQA1

(v1), FQA2
(v2)}, F(QA1⊙QA2)(v1, v2) = max{FQA1(v1), FQA2(v2)}.

(ii) ∀v1v2 ∈ SB2, v ∈ QA1.

T(SB1⊙SB2)

(
(v, v1)(v, v2)

)
=min{TQA1

(v), TSB2
(v1v2)},

T(SB1⊙SB2)

(
(v, v1)(v, v2)

)
=min{TQA1(v), TSB2(v1v2)},

I(SB1⊙SB2)

(
(v, v1)(v, v2)

)
=max{IQA1

(v), ISB2
(v1v2)},

I(SB1⊙SB2)

(
(v, v1)(v, v2)

)
=max{IQA1(v), ISB2(v1v2)},

F(SB1⊙SB2)

(
(v, v1)(v, v2)

)
=max{FQA1

(v), FSB2
(v1v2)},

F(SB1⊙SB2)

(
(v, v1)(v, v2)

)
=max{FQA1(v), FSB2(v1v2)}.
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Figure 7. Neutrosophic soft rough graph G2 “ pG2, G2q

The symmetric difference of G1 and G2 is G “ G1 ‘ G2 “ pG1 ‘ G2, G1 ‘ G2q, where G1 ‘ G2 “

pQA1 ‘ QA2, SB1 ‘ SB2q and G1 ‘ G2 “ pQA1 ‘ QA2, SB1 ‘ SB2q are neutrosophic graphs as shown
in Figure 8.
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Figure 7: Neutrosophic soft rough graph G2 = (G2, G2)

The symmetric difference of G1 and G2 is G = G1 ⊕ G2 = (G1 ⊕ G2, G1 ⊕ G2), where G1 ⊕ G2 =
(QA1 ⊕QA2, SB1 ⊕ SB2) and G1 ⊕G2 = (QA1 ⊕ QA2, SB1 ⊕ SB2) are neutrosophic graphs as shown
in Figure 8.
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Figure 8: Neutrosophic soft rough graph G1 ⊕G2 = (G1 ⊕G2, G1 ⊕G2)

Definition 2.12. The lexicographic product of G1 and G2 is a neutrosophic soft rough graph G =
G1 ⊙ G2 = (G1∗ ⊙ G2∗, G

∗
1 ⊙ G∗

2), where G1∗ ⊙ G2∗ = (QA1 ⊙ QA2, SB1 ⊙ SB2) and G∗
1 ⊙ G∗

2 =

(QA1 ⊙QA2, SB1 ⊙ SB2) are neutrosophic graphs, respectively, such that

(i) ∀ (v1, v2) ∈ QA1 ×QA2.

T(QA1⊙QA2)
(v1, v2) =min{TQA1

(v1), TQA2
(v2)}, T(QA1⊙QA2)(v1, v2) = min{TQA1(v1), TQA2(v2)},

I(QA1⊙QA2)
(v1, v2) =max{IQA1

(v1), IQA2
(v2)}, I(QA1⊙QA2)(v1, v2) = max{IQA1(v1), IQA2(v2)},

F(QA1⊙QA2)
(v1, v2) =max{FQA1

(v1), FQA2
(v2)}, F(QA1⊙QA2)(v1, v2) = max{FQA1(v1), FQA2(v2)}.

(ii) ∀v1v2 ∈ SB2, v ∈ QA1.

T(SB1⊙SB2)

(
(v, v1)(v, v2)

)
=min{TQA1

(v), TSB2
(v1v2)},

T(SB1⊙SB2)

(
(v, v1)(v, v2)

)
=min{TQA1(v), TSB2(v1v2)},

I(SB1⊙SB2)

(
(v, v1)(v, v2)

)
=max{IQA1

(v), ISB2
(v1v2)},

I(SB1⊙SB2)

(
(v, v1)(v, v2)

)
=max{IQA1(v), ISB2(v1v2)},

F(SB1⊙SB2)

(
(v, v1)(v, v2)

)
=max{FQA1

(v), FSB2
(v1v2)},

F(SB1⊙SB2)

(
(v, v1)(v, v2)

)
=max{FQA1(v), FSB2(v1v2)}.
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Figure 8. Neutrosophic soft rough graph G1 ‘ G2 “ pG1 ‘ G2, G1 ‘ G2q

Definition 12. The lexicographic product of G1 and G2 is a neutrosophic soft rough graph G “ G1dG2 “ pG1˚d

G2˚, G˚1 dG˚2 q, where G1˚dG2˚ “ pQA1dQA2, SB1d SB2q and G˚1 dG˚2 “ pQA1dQA2, SB1d SB2q are
neutrosophic graphs, respectively, such that

(i) @ pv1, v2q P QA1 ˆQA2.

T
pQA1dQA2q

pv1, v2q “mintTQA1
pv1q, TQA2

pv2qu, TpQA1dQA2q
pv1, v2q “ mintTQA1pv1q, TQA2pv2qu,

I
pQA1dQA2q

pv1, v2q “maxtIQA1
pv1q, IQA2

pv2qu, IpQA1dQA2q
pv1, v2q “ maxtIQA1pv1q, IQA2pv2qu,

F
pQA1dQA2q

pv1, v2q “maxtFQA1
pv1q, FQA2

pv2qu, FpQA1dQA2q
pv1, v2q “ maxtFQA1pv1q, FQA2pv2qu.

(ii) @v1v2 P SB2, v P QA1.

T
pSB1dSB2q

`

pv, v1qpv, v2q
˘

“mintTQA1
pvq, TSB2

pv1v2qu,

TpSB1dSB2q

`

pv, v1qpv, v2q
˘

“mintTQA1pvq, TSB2pv1v2qu,

I
pSB1dSB2q

`

pv, v1qpv, v2q
˘

“maxtIQA1
pvq, ISB2

pv1v2qu,

IpSB1dSB2q

`

pv, v1qpv, v2q
˘

“maxtIQA1pvq, ISB2pv1v2qu,

F
pSB1dSB2q

`

pv, v1qpv, v2q
˘

“maxtFQA1
pvq, FSB2

pv1v2qu,

FpSB1dSB2q

`

pv, v1qpv, v2q
˘

“maxtFQA1pvq, FSB2pv1v2qu.
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(iii) @v1u1 P SB1, v1u2 P SB2.

T
pSB1dSB2q

`

pv1, v1qpu1, u2q
˘

“mintTSB1
pv1u1q, TSB2

pv1u2qu,

TpSB1dSB2q

`

pv1, v1qpu1, u2q
˘

“mintTSB1pv1u1q, TSB2pv1u2qu,

I
pSB1dSB2

`

pv1, v1qpu1, u2q
˘

“maxtISB1
pv1u1q, ISB2

pv1u2qu,

IpSB1dSB2q

`

pv1, v1qpu1, u2q
˘

“maxtISB1pv1u1q, ISB2pv1u2qu,

F
pSB1dSB2

`

pv1, v1qpu1, u2q
˘

“maxtFSB1
pv1u1q, FSB2

pv1u2qu,

FpSB1dSB2q

`

pv1, v1qpu1, u2q
˘

“maxtFSB1pv1u1q, FSB2pv1u2qu.

Definition 13. The strong product of G1 and G2 is a neutrosophic soft rough graph G “ G1 b G2 “ pG1˚ b

G2˚, G˚1 b G˚2 q, where G1˚ b G2˚ “ pQA1 bQA2, SB1 b SB2q and G˚1 b G˚2 “ pQA1 bQA2, SB1 b SB2q

are neutrosophic graphs, respectively, such that

(i) @ pv1, v2q P QA1 ˆQA2.

T
pQA1bQA2q

pv1, v2q “mintTQA1
pv1q, TQA2

pv2qu, TpQA1bQA2q
pv1, v2q “ mintTQA1pv1q, TQA2pv2qu,

I
pQA1bQA2q

pv1, v2q “maxtIQA1
pv1q, IQA2

pv2qu, IpQA1bQA2q
pv1, v2q “ maxtIQA1pv1q, IQA2pv2qu,

F
pQA1bQA2q

pv1, v2q “maxtFQA1
pv1q, FQA2

pv2qu, FpQA1bQA2q
pv1, v2q “ maxtFQA1pv1q, FQA2pv2qu.

(ii) @v1v2 P SB2, v P QA1.

T
pSB1bSB2q

`

pv, v1qpv, v2q
˘

“mintTQA1
pvq, TSB2

pv1v2qu,

TpSB1bSB2q

`

pv, v1qpv, v2q
˘

“mintTQA1pvq, TSB2pv1v2qu,

I
pSB1bSB2q

`

pv, v1qpv, v2q
˘

“maxtIQA1
pvq, ISB2

pv1v2qu,

IpSB1bSB2q

`

pv, v1qpv, v2q
˘

“maxtIQA1pvq, ISB2pv1v2qu,

F
pSB1bSB2q

`

pv, v1qpv, v2q
˘

“maxtFQA1
pvq, FSB2

pv1v2qu,

FpSB1bSB2q

`

pv, v1qpv, v2q
˘

“maxtFQA1pvq, FSB2pv1v2qu.

(iii) @v1v2 P SB1, v P QA2.

T
pSB1bSB2q

`

pv1, vqpv2, vq
˘

“mintTSB1
pv1v2q, TQA2

pvqu,

TpSB1bSB2q

`

pv1, vqpv2, vq
˘

“mintTSB1pv1v2q, TQA2pvqu,

I
pSB1bSB2q

`

pv1, vqpv2, vq
˘

“maxtISB1
pv1v2q, IQA2

pvqu,

IpSB1bSB2q

`

pv1, vqpv2, vq
˘

“maxtISB1pv1v2q, IQA2pvqu,

F
pSB1bSB2q

`

pv1, vqpv2, vq
˘

“maxtFSB1
pv1v2q, FQA2

pvqu,

FpSB1bSB2q

`

pv1, vqpv2, vq
˘

“maxtFSB1pv1v2q, FQA2pvqu.
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(iv) @v1u1 P SB1, v1u2 P SB2.

T
pSB1bSB2q

`

pv1, v1qpu1, u2q
˘

“mintTSB1
pv1u1q, TSB2

pv1u2qu,

TpSB1bSB2q

`

pv1, v1qpu1, u2q
˘

“mintTSB1pv1u1q, TSB2pv1u2qu,

I
pSB1bSB2

`

pv1, v1qpu1, u2q
˘

“maxtISB1
pv1u1q, ISB2

pv1u2qu,

IpSB1bSB2q

`

pv1, v1qpu1, u2q
˘

“maxtISB1pv1u1q, ISB2pv1u2qu,

F
pSB1bSB2

`

pv1, v1qpu1, u2q
˘

“maxtFSB1
pv1u1q, FSB2

pv1u2qu,

FpSB1bSB2q

`

pv1, v1qpu1, u2q
˘

“maxtFSB1pv1u1q, FSB2pv1u2qu.

Definition 14. The composition of G1 and G2 is a neutrosophic soft rough graph G “ G1rG2s “

pG1˚rG2˚s, G˚1 rG
˚
2 sq, where G1˚rG2˚s “ pQA1rQA2s, SB1rSB2sqs and G˚1 rG

˚
2 s “ pQA1rQA2s, SB1rSB2sq

are neutrosophic graphs, respectively, such that

(i) @pv1, v2q P QA1 ˆQA2.

T
pQA1ˆQA2q

pv1, v2q “mintTQA1
pv1q, TQA2

pv2qu, TpQA1ˆQA2q
pv1, v2q “ mintTQA1pv1q, TQA2pv2qu,

I
pQA1ˆQA2q

pv1, v2q “maxtIQA1
pv1q, IQA2

pv2qu, IpQA1ˆQA2q
pv1, v2q “ maxtIQA1pv1q, IQA2pv2qu,

F
pQA1ˆQA2q

pv1, v2q “maxtFQA1
pv1q, FQA2

pv2qu, FpQA1ˆQA2q
pv1, v2q “ maxtFQA1pv1q, FQA2pv2qu.

(ii) @v1v2 P SB2, v P QA1.

T
pSB1ˆSB2q

`

pv, v1qpv, v2q
˘

“mintTQA1
pvq, TSB2

pv1v2qu,

TpSB1ˆSB2q

`

pv, v1qpv, v2q
˘

“mintTQA1pvq, TSB2pv1v2qu,

I
pSB1ˆSB2q

`

pv, v1qpv, v2q
˘

“maxtIQA1
pvq, ISB2

pv1v2qu,

IpSB1ˆSB2q

`

pv, v1qpv, v2q
˘

“maxtIQA1pvq, ISB2pv1v2qu,

F
pSB1ˆSB2q

`

pv, v1qpv, v2q
˘

“maxtFQA1
pvq, FSB2

pv1v2qu,

FpSB1ˆSB2q

`

pv, v1qpv, v2q
˘

“maxtFQA1pvq, FSB2pv1v2qu.

(iii) @v1v2 P SB1, v P QA2.

T
pSB1ˆSB2q

`

pv1, vqpv2, vq
˘

“mintTSB1
pv1v2q, TQA2

pvqu,

TpSB1ˆSB2q

`

pv1, vqpv2, vq
˘

“mintTSB1pv1v2q, TQA2pvqu,

I
pSB1ˆSB2q

`

pv1, vqpv2, vq
˘

“maxtISB1
pv1v2q, IQA2

pvqu,

IpSB1ˆSB2q

`

pv1, vqpv2, vq
˘

“maxtISB1pv1v2q, IQA2pvqu,

F
pSB1ˆSB2q

`

pv1, vqpv2, vq
˘

“maxtFSB1
pv1v2q, FQA2

pvqu,

FpSB1ˆSB2q

`

pv1, vqpv2, vq
˘

“maxtFSB1pv1v2q, FQA2pvqu.
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(iv) @v1u1 P SB1, v1 ‰ u2 P QA2.

T
pSB1ˆSB2q

`

pv1, v1qpu1, u2q
˘

“mintTSB1
pv1u1q, TSB2

pv1u2qu,

TpSB1ˆSB2q

`

pv1, v1qpu1, u2q
˘

“mintTSB1pv1u1q, TSB2pv1u2qu,

I
pSB1ˆSB2

`

pv1, v1qpu1, u2q
˘

“maxtISB1
pv1u1q, ISB2

pv1u2qu,

IpSB1ˆSB2q

`

pv1, v1qpu1, u2q
˘

“maxtISB1pv1u1q, ISB2pv1u2qu,

F
pSB1ˆSB2

`

pv1, v1qpu1, u2q
˘

“maxtFSB1
pv1u1q, FSB2

pv1u2qu,

FpSB1ˆSB2q

`

pv1, v1qpu1, u2q
˘

“maxtFSB1pv1u1q, FSB2pv1u2qu.

Definition 15. Let G “ pG, Gq be a neutrosophic soft rough graph. The complement of G, denoted by
Ǵ “ pǴ, Ǵq is a neutrosophic soft rough graph, where Ǵ “ pQ́A, ŚBq and Ǵ “ pQ́A, ŚBq are neutrosophic
graphs such that

(i) @v P QA.

´TQApvq “ TQApvq, ´IQApvq “ IQApvq, ´FQApvq “ FQApvq,

´TQApvq “ TQApvq, ´IQApvq “ IQApvq, ´FQApvq “ FQApvq.

(ii) @ v, u P QA.

´TSBpvuq “ mintTQApvq, TQApuqu ´ TSBpvuq,

´ISBpvuq “ maxtIQApvq, IQApuqu ´ ISBpvuq,

´FSBpvuq “ maxtFQApvq, FQApuqu ´ FSBpvuq,

´TSBpvuq “ mintTQApvq, TQApuqu ´ TSBpvuq,

´ISBpvuq “ maxtIQApvq, IQApuqu ´ ISBpvuq,

´FSBpvuq “ maxtFQApvq, FQApuqu ´ FSBpvuq.

Example 8. Consider an NSRGs G as shown in Figure 9.

(ii) ∀ v, u ∈ QA.

´TSB(vu) = min{TQA(v), TQA(u)} − TSB(vu),

´ISB(vu) = max{IQA(v), IQA(u)} − ISB(vu),

´FSB(vu) = max{FQA(v), FQA(u)} − FSB(vu),

´TSB(vu) = min{TQA(v), TQA(u)} − TSB(vu),

´ISB(vu) = max{IQA(v), IQA(u)} − ISB(vu),

´FSB(vu) = max{FQA(v), FQA(u)} − FSB(vu).

Example 2.8. Consider a NSRGs G as shown in Figure 9. The complement of G is Ǵ = (Ǵ, Ǵ) is
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b
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Figure 9: Neutrosophic soft rough graph G = (G,G)

obtained by using the Definition 2.15, where Ǵ = (Q́A, ŚB) and Ǵ = (Q́A, ŚB) are neutrosophic graphs
as shown in Figure 10.
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Figure 10: Neutrosophic soft rough graph Ǵ = (Ǵ, Ǵ)

Definition 2.16. A graph G is called self complement, if G = Ǵ, i.e.,

(i) ∀v ∈ QA.

´TQA(v) = TQA(v),
´IQA(v) = IQA(v),

´FQA(v) = FQA(v),

´TQA(v) = TQA(v), ´IQA(v) = IQA(v), ´FQA(v) = FQA(v).

(ii) ∀ v, u ∈ QA.

´TSB(vu) = TSB(vu),
´ISB(vu) = ISB(vu),

´FSB(vu) = FSB(vu),

´TSB(vu) = TSB(vu), ´ISB(vu) = ISB(vu), ´FSB(vu) = FSB(vu).

Definition 2.17. A neutrosophic soft rough graph G is called strong neutrosophic soft rough graph if
∀uv ∈ SB,

TSB(vu) =min{TQA(v), TQA(u)}, ISB(vu) = max{IQA(v), IQA(u)}), FSB(vu) = max{FQA(v), FQA(u)}
TSB(vu) =min{TQA(v), TQA(u)}, ISB(vu) = max{IQA(v), IQA(u)}, FSB(vu) = max{FQA(v), FQA(u)}.

20

Figure 9. Neutrosophic soft rough graph G “ pG, Gq

The complement of G is Ǵ “ pǴ, Ǵq is obtained by using the Definition 15, where Ǵ “ pQ́A, ŚBq and

Ǵ “ pQ́A, ŚBq are neutrosophic graphs as shown in Figure 10.
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(ii) ∀ v, u ∈ QA.

´TSB(vu) = min{TQA(v), TQA(u)} − TSB(vu),

´ISB(vu) = max{IQA(v), IQA(u)} − ISB(vu),

´FSB(vu) = max{FQA(v), FQA(u)} − FSB(vu),

´TSB(vu) = min{TQA(v), TQA(u)} − TSB(vu),

´ISB(vu) = max{IQA(v), IQA(u)} − ISB(vu),

´FSB(vu) = max{FQA(v), FQA(u)} − FSB(vu).

Example 2.8. Consider a NSRGs G as shown in Figure 9. The complement of G is Ǵ = (Ǵ, Ǵ) is

b b
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b
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b b
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Figure 9: Neutrosophic soft rough graph G = (G,G)

obtained by using the Definition 2.15, where Ǵ = (Q́A, ŚB) and Ǵ = (Q́A, ŚB) are neutrosophic graphs
as shown in Figure 10.
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Figure 10: Neutrosophic soft rough graph Ǵ = (Ǵ, Ǵ)

Definition 2.16. A graph G is called self complement, if G = Ǵ, i.e.,

(i) ∀v ∈ QA.

´TQA(v) = TQA(v),
´IQA(v) = IQA(v),

´FQA(v) = FQA(v),

´TQA(v) = TQA(v), ´IQA(v) = IQA(v), ´FQA(v) = FQA(v).

(ii) ∀ v, u ∈ QA.

´TSB(vu) = TSB(vu),
´ISB(vu) = ISB(vu),

´FSB(vu) = FSB(vu),

´TSB(vu) = TSB(vu), ´ISB(vu) = ISB(vu), ´FSB(vu) = FSB(vu).

Definition 2.17. A neutrosophic soft rough graph G is called strong neutrosophic soft rough graph if
∀uv ∈ SB,

TSB(vu) =min{TQA(v), TQA(u)}, ISB(vu) = max{IQA(v), IQA(u)}), FSB(vu) = max{FQA(v), FQA(u)}
TSB(vu) =min{TQA(v), TQA(u)}, ISB(vu) = max{IQA(v), IQA(u)}, FSB(vu) = max{FQA(v), FQA(u)}.

20

Figure 10. Neutrosophic soft rough graph Ǵ “ pǴ, Ǵq

Definition 16. A graph G is called self complement, if G “ Ǵ, i.e.,

(i) @v P QA.

´TQApvq “ TQApvq, ´IQApvq “ IQApvq, ´FQApvq “ FQApvq,

´TQApvq “ TQApvq, ´IQApvq “ IQApvq, ´FQApvq “ FQApvq.

(ii) @ v, u P QA.

´TSBpvuq “ TSBpvuq, ´ISBpvuq “ ISBpvuq, ´FSBpvuq “ FSBpvuq,
´TSBpvuq “ TSBpvuq, ´ISBpvuq “ ISBpvuq, ´FSBpvuq “ FSBpvuq.

Definition 17. A neutrosophic soft rough graph G is called strong neutrosophic soft rough graph if @uv P SB,

TSBpvuq “mintTQApvq, TQApuqu, ISBpvuq “ maxtIQApvq, IQApuquq, FSBpvuq “ maxtFQApvq, FQApuqu,

TSBpvuq “mintTQApvq, TQApuqu, ISBpvuq “ maxtIQApvq, IQApuqu, FSBpvuq “ maxtFQApvq, FQApuqu.

Example 9. Consider a graph G such that V “ tu, v, wu and E “ tuv, vw, wuu, as shown in Figure 11. Let
QA be a neutrosophic soft rough set of V and let SB be a neutrosophic soft rough set of E defined in the Tables 9
and 10, respectively.

Table 9. Neutrosophic soft rough set on V.

V QA QA

u p0.8, 0.5, 0.2q p0.7, 0.5, 0.2q
v p0.9, 0.5, 0.1q p0.7, 0.5, 0.2q
w p0.7, 0.5, 0.1q p0.7, 0.5, 0.2q

Table 10. Neutrosophic soft rough set on E.

E SB SB

uv p0.8, 0.5, 0.2q p0.7, 0.5, 0.2q
vw p0.7, 0.5, 0.1q p0.7, 0.5, 0.2q
wu p0.7, 0.5, 0.2q p0.7, 0.5, 0.2q
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Example 2.9. Consider a graph G such that V = {u, v, w} and E = {uv, vw,wu}. Let QA be an
neutrosophic soft rough set of V and let SB be a neutrosophic soft rough set of E defined in the Table
9 and 10, respectively.

Table 9: Neutrosophic soft rough set on V
V QA QA

u (0.8, 0.5, 0.2) (0.7, 0.5, 0.2)
v (0.9, 0.5, 0.1) (0.7, 0.5, 0.2)
w (0.7, 0.5, 0.1) (0.7, 0.5, 0.2)

Table 10: Neutrosophic soft rough set on E
E SB SB
uv (0.8, 0.5, 0.2) (0.7, 0.5, 0.2)
vw (0.7, 0.5, 0.1) (0.7, 0.5, 0.2)
wu (0.7, 0.5, 0.2) (0.7, 0.5, 0.2)

u(0.8,0.5,0.2)v(0.9,0.5,0.1)

w(0.7,0.5,0.2)

(0
.7
,
0
.5
,
0
.2
)

(0.8, 0.5, 0.2)

G = (QA,SB)

bb

b

(0.7
, 0.5

, 0.2
)

u(0.7,0.5,0.2)v(0.7,0.5,0.2)

w(0.7,0.5,0.2)

(0
.7
,
0
.5
,
0
.2
) (0.7, 0.5, 0.2)

G = (QA,SB)

bb

b

(0.7
, 0.5

, 0.2
)

Figure 11: Strong neutrosophic soft rough graph G = (QA,SB)

Hence, G = (QA,SB) is a strong neutrosophic soft rough graph.

Definition 2.18. A neutrosophic soft rough graph G is called complete neutrosophic soft rough graph if
∀ vu ∈ QA,

TSB(vu) =min{TQA(v), TQA(u)}, ISB(vu) = max{IQA(v), IQA(u)}, FSB(vu) = max{FQA(v), FQA(u)},
TSB(vu) =min{TQA(v), TQA(u)}, ISB(vu) = max{IQA(v), IQA(u)}, FSB(vu) = max{FQA(v), FQA(u)}.

Remark 2.2. Every complete neutrosophic soft rough graph is a strong neutrosophic soft rough graph.
But the converse is not true.

Definition 2.19. A neutrosophic soft rough graph G is isolated, if ∀x, y ∈ QA.

TSB(vu) = 0, ISB(vu) = 0, FSB(vu) = 0, TSB(vu) = 0, ISB(vu) = 0, FSB(vu) = 0,

Theorem 2.1. The rejection of two neutrosophic soft rough graphs is a neutrosophic soft rough graph.

Proof. Let G1 = (G1, G1) and G2 = (G2, G2) be two NSRGs. Let G = G1|G2 = (G1|G2, G1|G2) be
the rejection of G1 and G2, where G1|G2 = (QA1|QA2, SB1|SB2) and G1|G2 = (QA1|QA2, SB1|SB2).
We claim that G = G1|G2 is an neutrosophic soft rough graph. It is enough to show that SB1|SB2

and SB1|SB2 are neutrosophic relations on QA1|QA2 and QA1|QA2, respectively. First, we show that
SB1|SB2 is a neutrosophic relation on QA1|QA2.

21

Figure 11. Strong neutrosophic soft rough graph G “ pQA, SBq

Hence, G “ pQA, SBq is a strong neutrosophic soft rough graph.

Definition 18. A neutrosophic soft rough graph G is called a complete neutrosophic soft rough graph if
@ vu P QA,

TSBpvuq “mintTQApvq, TQApuqu, ISBpvuq “ maxtIQApvq, IQApuqu, FSBpvuq “ maxtFQApvq, FQApuqu,

TSBpvuq “mintTQApvq, TQApuqu, ISBpvuq “ maxtIQApvq, IQApuqu, FSBpvuq “ maxtFQApvq, FQApuqu.

Remark 2. Every complete neutrosophic soft rough graph is a strong neutrosophic soft rough graph. However,
the converse is not true.

Definition 19. A neutrosophic soft rough graph G is isolated, if @x, y P QA.

TSBpvuq “ 0, ISBpvuq “ 0, FSBpvuq “ 0, TSBpvuq “ 0, ISBpvuq “ 0, FSBpvuq “ 0.

Theorem 1. The rejection of two neutrosophic soft rough graphs is a neutrosophic soft rough graph.

Proof. Let G1 “ pG1, G1q and G2 “ pG2, G2q be two NSRGs. Let G “ G1|G2 “ pG1|G2, G1|G2q be the
rejection of G1 and G2, where G1|G2 “ pQA1|QA2, SB1|SB2q and G1|G2 “ pQA1|QA2, SB1|SB2q. We
claim that G “ G1|G2 is a neutrosophic soft rough graph. It is enough to show that SB1|SB2 and
SB1|SB2 are neutrosophic relations on QA1|QA2 and QA1|QA2, respectively. First, we show that
SB1|SB2 is a neutrosophic relation on QA1|QA2.
If v P QA1, v1v2 R SB2, then

TpSB1|SB2q
ppv, v1qpv, v2qq “ pTQA1pvq ^ pTQA2pv2q ^ TQA2pv2qqq

“ pTQA1pvq ^ TQA2pv2qq ^ pTQA1pvq ^ TQA2pv2qq

“ TpQA1|QA2q
pv, v1q ^ TpQA1|QA2q

pv, v2q

TpSB1|SB2q
ppv, v1qpv, v2qq “ TpQA1|QA2q

pv, v1q ^ TpQA1|QA2q
pv, v2q

Similarly, IpSB1|SB2q
ppv, v1qpv, v2qq “ IpQA1|QA2q

pv, v1q _ IpQA1|QA2q
pv, v2q

FpSB1|SB2q
ppv, v1qpv, v2qq “ FpQA1|QA2q

pv, v1q _ FpQA1|QA2q
pv, v2q.

If v1v2 R SB1, v P QA2, then

TpSB1|SB2q
ppv1, vqpv2, vqq “ ppTQA1pv1q ^ TQA1pv2qq ^ TQA2pvqq

“ ppTQA1pv1q ^ TQA2pvqq ^ pTQA1pv2q ^ TQA2pvqqq

“ TpQA1|QA2q
pv1, vq ^ TpQA1|QA2q

pv2, vq

TpSB1|SB2q
ppv1, vqpv2, vqq “ TpQA1|QA2q

pv1, vq ^ TpQA1|QA2q
pv2, vq

Similarly, IpSB1|SB2q
ppv1, vqpv2, vqq “ IpQA1|QA2q

pv1, vq _ IpQA1|QA2q
pv2, vq

FpSB1|SB2q
ppv1, vqpv2, vqq “ FpQA1|QA2q

pv1, vq _ FpQA1|QA2q
pv2, vq.
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If v1v2 R SB1, u1, u2 R SB2, then

TpSB1|SB2q
ppv1, u1qpv2, u2qq “ ppTQA1pv1q ^ TQA1pv2qq ^ pTQA2pu1q ^ TQA2pu2qqq

“ pTQA1pv1q ^ TQA2pu1qq ^ pTQA1pv2q ^ TQA2pu2qq

“ TpQA1|QA2q
pv1, u1q ^ TpQA1|QA2q

pv2, u2q

TpSB1|SB2q
ppv1, u1qpv2, u2qq “ TpQA1|QA2q

pv1, u1q ^ TpQA1|QA2q
pu1, u2q

Similarly, IpSB1|SB2q
ppv1, u1qpv2, u2qq “ IpQA1|QA2q

pv1, u1q _ IpQA1|QA2q
pu1, u2q

FpSB1|SB2q
ppv1, u1qpv2, u2qq “ FpQA1|QA2q

pv1, u1q _ FpQA1|QA2q
pu1, u2q.

Thus, SB1|SB2 is a neutrosophic relation on QA1|QA2. Similarly, we can show that SB1|SB2 is a
neutrosophic relation on QA1|QA2. Hence, G is a neutrosophic soft rough graph.

Theorem 2. The Cartesian product of two NSRGs is a neutrosophic soft rough graph.

Proof. Let G1 “ pG1, G1q and G2 “ pG2, G2q be two NSRGs. Let G “ G1 ˙ G2 “ pG1 ˙ G2, G1 ˙ G2q

be the Cartesian product of G1 and G2, where G1 ˙ G2 “ pQA1 ˙ QA2, SB1 ˙ SB2q and G1 ˙ G2 “

pQA1 ˙QA2, SB1 ˙ SB2q. We claim that G “ G1 ˙ G2 is a neutrosophic soft rough graph. It is enough
to show that SB1 ˙ SB2 and SB1 ˙ SB2 are neutrosophic relations on QA1 ˙ QA2 and QA1 ˙ QA2,
respectively. We have to show that SB1 ˙ SB2 is a neutrosophic relation on QA1 ˙QA2.

If v P QA1, v1u1 P SB2, then

TpSB1˙SB2q
ppv, v1qpv, u1qq “ TpQA1q

pvq ^ TpSB2q
pv1u1q

ď TpQA1q
pvq ^ pTpQA2q

pv1q ^ TpQA2qpu1qq

“ pTpQA1q
pvq ^ TpQA2q

pv1qq ^ pTpQA1q
pvq ^ TpQA2q

pu1qq

“ TpQA1˙QA2q
pv, v1q ^ TpQA1˙QA2q

pv, u1q

TpSB1˙SB2q
ppv, v1qpv, u1qq ď TpQA1˙QA2q

pv, v1q ^ TpQA1˙QA2q
pv, u1q

Similarly, IpSB1˙SB2q
ppv, v1qpv, u1qq ď IpQA1˙QA2q

pv, v1q _ IpQA1˙QA2q
pv, u1q

FpSB1˙SB2q
ppv, v1qpv, u1qq ď FpQA1˙QA2q

pv, v1q _ FpQA1˙QA2q
pv, u1q.

If v1u1 P SB1, z P QA2, then

TpSB1˙SB2q
ppv1, zqpu1, zqq “ TpSB1q

pv1u1q ^ TpQA2q
pzq

ď pTpQA1qpv1q^pQA1q
pu1qq ^ TpQA2q

pzq

“ TpQA1˙QA2q
pv1, zq ^ TpQA1˙QA2q

pu1, zq

TpSB1˙SB2q
ppv1, zqpu1, zqq ď TpQA1˙QA2q

pv1, zq ^ TpQA1˙QA2q
pu1, zq

Similarly, IpSB1˙SB2q
ppv1, zqpu1, zqq ď IpQA1˙QA2q

pv1, zq _ IpQA1˙QA2q
pu1, zq

FpSB1˙SB2q
ppv1, zqpu1, zqq ď FpQA1˙QA2q

pv1, zq _ FpQA1˙QA2q
pu1, zq.

Therefore, SB1 ˙ SB2 is a neutrosophic relation on QA1 ˙ QA2. Similarly, SB1 ˙ SB2 is a
neutrosophic relation on QA1 ˙QA2. Hence, G is a neutrosophic rough graph.

Theorem 3. The cross product of two neutrosophic soft rough graphs is a neutrosophic soft rough graph.

Proof. Let G1 “ pG1, G1q and G2 “ pG2, G2q be two NSRGs. Let G “ G1 e G2 “ pG1 e G2, G1 e G2q

be the cross product of G1 and G2, where G1 e G2 “ pQA1 eQA2, SB1 e SB2q and G1 e G2 “ pQA1 e

QA2, SB1 e SB2q. We claim that G “ G1 e G2 is a neutrosophic soft rough graph. It is enough to show
that SB1 e SB2 and SB1 e SB2 are neutrosophic relations on QA1 eQA2 and QA1 eQA2, respectively.
First, we show that SB1 e SB2 is a neutrosophic relation on QA1 eQA2.
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If v1u1 P SB1, v1u2 P SB2, then

TpSB1eSB2q
ppv1, v1qpu1, u2qq “ TpSB1q

pv1u1q ^ TpSB2q
pv1u2q

ď pTpQA1q
pv1q ^ TpQA1q

pu1q ^ pTpQA2q
pv1q ^ TpQA2q

pu2qq

“ pTpQA1q
pv1q ^ TpQA2q

pv1qq ^ pTpQA1q
pu1q ^ TpQA2q

pu2qq

“ TpQA1eQA2q
pv1, v1q ^ TpQA1eQA2q

pu1, u2q

TpSB1eSB2q
ppv1, v1qpu1, u2qq ď TpQA1eQA2q

pv1, v1q ^ TpQA1eQA2q
pv, u2q

Similarly, IpSB1eSB2q
ppv1, v1qpu1, u2qq ď IpQA1eQA2q

pv1, v1q _ IpQA1eQA2q
pv, u2q

FpSB1eSB2q
ppv1, v1qpu1, u2qq ď FpQA1eQA2q

pv1, v1q _ FpQA1eQA2q
pv, u2q.

Thus, SB1 e SB2 is a neutrosophic relation on QA1 eQA2. Similarly, we can show that SB1 e SB2

is a neutrosophic relation on QA1 eQA2. Hence, G is a neutrosophic soft rough graph.

3. Application

In this section, we apply the concept of NSRSs to a decision-making problem. In recent times,
the object recognition problem has gained considerable importance. The object recognition problem
can be considered as a decision-making problem, in which final identification of objects is founded on
a given set of information. A detailed description of the algorithm for the selection of most suitable
objects based on an available set of alternatives is given, and purposed decision-making method
can be used to calculate lower and upper approximation operators to progress deep concerns of the
problem. The presented algorithms can be applied to avoid lengthy calculations when dealing with
large number of objects. This method can be applied in various domains for multi-criteria selection
of objects.

Selection of Most Suitable Generic Version of Brand Name Medicine

In the pharmaceutical industry, different pharmaceutical companies develop, produce and
discover pharmaceutical medicine (drugs) for use as medication. These pharmaceutical companies
deals with “brand name medicine” and “generic medicine”. Brand name medicine and generic
medicine are bioequivalent, and have a generic medicine rate and element of absorption. Brand name
medicine and generic medicine have the same active ingredients, but the inactive ingredients may
differ. The most important difference is cost. Generic medicine is less expensive as compared to
brand name comparators. Usually, generic drug manufacturers face competition to produce cost less
products. The product may possibly be slightly dissimilar in color, shape, or markings. The major
difference is cost. We consider a brand name drug “u “ Loratadine” used for seasonal allergies
medication. Consider

V “ tu1 “ Triamcinolone, u2 “ Cetirizine/Pseudoephedrine,

u3 “ Pseudoephedrine, u4 “ loratadine/pseudoephedrine,

u5 “ Fluticasoneu

is a set of generic versions of “Loratadine”. We want to select the most suitable generic version of
Loratadine on the basis of parameters e1 “ Highly soluble, e2 “ Highly permeable, e3 “ Rapidly
dissolving. M “ te1, e2, e3u be a set of paraments. Let Q be a neutrosophic soft relation from V to
parameter set M, and describe truth-membership, indeterminacy-membership and false-membership
degrees of generic version medicine corresponding to the parameters as shown in Table 11.

Florentin Smarandache (ed.) Collected Papers, VII

524



Table 11. Neutrosophic soft set pQ, Mq.

Q u1 u2 u3 u4 u5

e1 p0.4, 0.5, 0.6q p0.5, 0.3, 0.6q p0.7, 0.2, 0.3q p0.5, 0.7, 0.5q p0.6, 0.5, 0.4q
e2 p0.7, 0.3, 0.2q p0.3, 0.4, 0.3q p0.6, 0.5, 0.4q p0.8, 0.4, 0.6q p0.7, 0.8, 0.5q
e3 p0.6, 0.3, 0.4q p0.7, 0.2, 0.3q p0.7, 0.2, 0.4q p0.8, 0.7, 0.6q p0.7, 0.3, 0.5q

Suppose A “ tpe1, 0.2, 0.4, 0.5q, pe2, 0.5, 0.6, 0.4q, pe3, 0.7, 0.5, 0.4qu is the most favorable object that
is an NS on the parameter set M under consideration. Then, pQpAq, QpAqq is an NSRS in NSAS
pV, M, Qq, where

QpAq “ tpu1, 0.6, 0.5, 0.4q, pu2, 0.7, 0.4, 0.4q, pu3, 0.7, 0.4, 0.4q, pu4, 0.7, 0.6, 0.5q, pu5, 0.7, 0.5, 0.5qu,

QpAq “ tpu1, 0.5, 0.6, 0.4q, pu2, 0.5, 0.6, 0.5q, pu3, 0.3, 0.3, 0.5q, pu4, 0.5, 0.6, 0.5q, pu5, 0.4, 0.5, 0.5qu.

Let E “ tu1v2, u1u3, u4u1, u2u3, u5u3, u2u4, u2u5u Ď V́ and L “ te1e3, e2e1, e3e2u Ď Ḿ.
Then, a neutrosophic soft relation S on E (from L to E) can be defined as follows in Table 12:

Table 12. Neutrosophic soft relation S.

S u1u2 u1u3 u4u1 u2u3 u5u3 u2u4 u2u5

e1e2 (0.3, 0.4 ,0.2) p0.4, 0.4, 0.5q p0.4, 0.4, 0.5q p0.6, 0.3, 0.4q p0.4, 0.2, 0.2q p0.4, 0.4, 0.2q p0.4, 0.3, 0.4q
e2e3 (0.5 ,0.4 ,0.1) p0.4, 0.3, 0.2q p0.4, 0.3, 0.2q p0.3, 0.3, 0.2q p0.6, 0.2, 0.4q p0.3, 0.2, 0.1q p0.3, 0.3, 0.2q
e1e3 (0.4,0.4,0.1) p0.4, 0.2, 0.2q p0.4, 0.2, 0.2q p0.5, 0.3, 0.3q p0.4, 0.2, 0.3q p0.4, 0.3, 0.1q p0.5, 0.3, 0.2q

Let B “ tpe1e2, 0.2, 0.4, 0.5q, pe2e3, 0.5, 0.4, 0.4q, pe1e3, 0.5, 0.2, 0.5qu be an NS on L that describes some
relationship between the parameters under consideration; then, SB “ pSB, SBq is an NSRR, where

SB “ tpu1u2, 0.5, 0.4, 0.4q, pu1u3, 0.4, 0.2, 0.4q, pu4u1, 0.4, 0.2, 0.4q, pu2u3, 0.5, 0.3, 0.4q,

pu5u3, 0.5, 0.2, 0.4q, pu2u4, 0.4, 0.3, 0.4q, pu2u5, 0.5, 0.3, 0.4qu,

SB “ tpu1u2, 0.2, 0.4, 0.4qpu1u3, 0.5, 0.4, 0.4q, pu4u1, 0.5, 0.4, 0.4q, pu2u3, 0.4, 0.4, 0.5q,

pu5u3, 0.2, 0.4, 0.4q, pu2u4, 0.2, 0.4, 0.4q, pu2u5, 0.4, 0.4, 0.5qu.

Thus, G “ pG, Gq is an NSRG as shown in Figure 12.
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(u5, 0.82, 0.25, 0.25)},
= SB ⊕ SB = {(u1u2, 0.6, 0.16, 0.16), (u1u3, 0.7, 0.8, 0.16), (u4u1, 0.7, 0.8, 0.16), (u2u3, 0.7,

0.12, 0.2), (u5u3, 0.6, 0.08, 0.16), (u2u4, 0.52, 0.12, 0.16), (u2u5, 0.7, 0.12, 0.2), }.

The score function S̃(uk) defines for each generic version medicine ui ∈ V ,

S̃(ui) =
∑

uiuj∈E

Tα(uj) + Iα(uj)− Fα(uj)

3− (T (uiuj) + I (uiuj)− F (uiuj))
(3.2)

and uk with the larger score value uk = max
i

S(ui) is, the most suitable generic version medicine. By

calculations, we have

S̃(u1) = 0.88, S̃(u2) = 0.69, S̃(u3) = 0.26 S̃(u4) = 0.57, and S̃(u5) = 0.33. (3.3)

Here, u1 is the optimal decision, the most suitable generic version of “Loratadine” is “Triamcinolone”.
We have develop a Matlab program for calculating the required results in the application. The algorithm
is given in Table 3.1.

Algorithm 3.1. Algorithm for selection of most suitable objects

1. Input the number of elements in vertex set V = {u1, u2, . . . , un}.

2. Input the number of elements in parameter set M = {e1, e2, . . . , em}.
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Definition 20. [3] Let C and D be two single valued neutrosophic numbers, and the sum of two single valued
neutrosophic number is defined as follows:

C‘D “ă TC ` TD ´ TC ˆ TD, IC ˆ ID, FC ˆ FD ą . (1)

Algorithm 1: Algorithm for selection of most suitable objects

1. Input the number of elements in vertex set V “ tu1, u2, . . . , unu.
2. Input the number of elements in parameter set M “ te1, e2, . . . , emu.
3. Input a neutrosophic soft relation Q from V to M.
4. Input a neutrosophic set A on M.
5. Compute neutrosophic soft rough vertex set QA “ pQA, QpAqq.
6. Input the number of elements in edge set E “ tu1u1, u1u2, . . . , uku1u.
7. Input the number of elements in parameter set Ḿ “ te1e1, e1e2, . . . , ele1u.
8. Input a neutrosophic soft relation S from V́ to Ḿ.
9. Input a neutrosophic set B on Ḿ.

10. Compute neutrosophic soft rough edge set SB “ pSB, SpBqq.
11. Compute neutrosophic set α “ pTαpuiq, Iαpuiq, Fαpuiqq, where

Tαpuiq “ TQpAqpuiq ` TQpAqpuiq ´ TQpAqpuiq ˆ TQpAqpuiq,

Iαpuiq “ TQpAqpuiq ˆ TQpAqpuiq,

Fαpuiq “ FQpAqpuiq ˆ FQpAqpuiq.

12. Compute neutrosophic set β “ pTβpuiuiq, Iβpuiujq, Fβpuiujqq, where

Tβpuiujq “ TSpBqpuiujq ` TSpBqpuiujq ´ TSpBqpuiujq ˆ TSpBqpuiujq,

Iβpuiujq “ TSpBqpuiujq ˆ TSpBqpuiujq,

Fβpuiujq “ FSpBqpuiujq ˆ FSpBqpuiujq.

13. Calculate the score values of each object ui, and the score function is defined as follows:

S̃puiq “
ÿ

uiujPE

Tαpujq ` Iαpujq ´ Fαpujq

3´ pTβpuiujq ` Iβpuiujq ´ Fβpuiujqq
.

14. The decision is Si if Si “
n

max
i“1

S̃i.

15. If i has more than one value, then any one of Si may be chosen.

The sum of UNSRS QA and the LNSRS QA and sum of LNSRR SB and the UNSRR SB are NSs
QA‘QA and SB‘ SB, respectively defined by

α “ QA‘QA “ tpu1, 0.8, 0.3, 0.16q, pu2, 0.85, 0.24, 0.2q, pu3, 0.79, 0.2, 0.2q, pu4, 0.85, 0.36, 0.25q,

pu5, 0.82, 0.25, 0.25qu,

β “ SB‘ SB “ tpu1u2, 0.6, 0.16, 0.16q, pu1u3, 0.7, 0.8, 0.16q, pu4u1, 0.7, 0.8, 0.16q, pu2u3, 0.7,

0.12, 0.2q, pu5u3, 0.6, 0.08, 0.16q, pu2u4, 0.52, 0.12, 0.16q, pu2u5, 0.7, 0.12, 0.2qu.

The score function S̃pukq defines for each generic version medicine ui P V,

S̃puiq “
ÿ

uiujPE

Tαpujq ` Iαpujq ´ Fαpujq

3´ pTβpuiujq ` Iβpuiujq ´ Fβpuiujqq
(2)
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and uk with the larger score value uk “ max
i

Spuiq is the most suitable generic version medicine.

By calculations, we have

S̃pu1q “ 0.88, S̃pu2q “ 0.69, S̃pu3q “ 0.26 S̃pu4q “ 0.57, and S̃pu5q “ 0.33. (3)

Here, u1 is the optimal decision, and the most suitable generic version of “Loratadine” is
“Triamcinolone”. We have used software MATLAB (version 7, MathWorks, Natick, MA, USA) for
calculating the required results in the application. The algorithm is given in Algorithm 1. The algorithm
of the program is general for any number of objects with respect to certain parameters.

4. Conclusions

Rough set theory can be considered as an extension of classical set theory. Rough set theory
is a very useful mathematical model to handle vagueness. NS theory, RS theory and SS theory are
three useful distinguished approaches to deal with vagueness. NS and RS models are used to handle
uncertainty, and combining these two models with another remarkable model of SSs gives more precise
results for decision-making problems. In this paper, we have presented the notion of NSRGs and
investigated some properties of NSRGs in detail. The notion of NSRGs can be utilized as a mathematical
tool to deal with imprecise and unspecified information. In addition, a decision-making method based
on NSRGs is proposed. This research work can be extended to (1) Rough bipolar neutrosophic
soft sets; (2) Bipolar neutrosophic soft rough sets, (3) Interval-valued bipolar neutrosophic rough sets,
and (4) Soft rough neutrosophic graphs.
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Abstract: A neutrosophic number (a + bI) is a significant mathematical tool to deal with 

indeterminate and incomplete information which exists generally in real-world problems, where a 

and bI denote the determinate component and indeterminate component, respectively. We define 

score functions and accuracy functions for ranking neutrosophic numbers. We then define a cosine 

function to determine the unknown weight of the criteria. We define the neutrosophic number 

harmonic mean operators and prove their basic properties. Then, we develop two novel 

multi-criteria group decision-making (MCGDM) strategies using the proposed aggregation 

operators. We solve a numerical example to demonstrate the feasibility, applicability, and 

effectiveness of the two proposed strategies. Sensitivity analysis with the variation of “I” on 

neutrosophic numbers is performed to demonstrate how the preference ranking order of 

alternatives is sensitive to the change of “I”. The efficiency of the developed strategies is 

ascertained by comparing the results obtained from the proposed strategies with the results 

obtained from the existing strategies in the literature. 

Keywords: neutrosophic number; neutrosophic number harmonic mean operator (NNHMO); 

neutrosophic number weighted harmonic mean operator (NNWHMO); cosine function; score 

function; multi-criteria group decision-making 

1. Introduction

Multi-criteria decision-making (MCDM), and multi-criteria group decision-making (MCGDM) 

are significant branches of decision theories which have been commonly applied in many scientific 

fields. They have been developed in many directions, such as crisp environments [1,2], and 

uncertain environments, namely fuzzy environments [3–13], intuitionistic fuzzy environments 

[14–24], and neutrosophic set environments [25–45]. Smarandache [46,47] introduced another 

direction of uncertainty by defining neutrosophic numbers (NN), which represent indeterminate 

and incomplete information in a new way. A NN consists of a determinate component and an 

indeterminate component. Thus, the NNs are more applicable to deal with indeterminate and 

incomplete information in real world problems. The NN is expressed as the function N = p + qI in 

which p is the determinate component and qI is the indeterminate component. If N = qI, i.e., the 

indeterminate part reaches the maximum label, the worst situation occurs. If N = p, i.e., the 

indeterminate part does not appear, the best situation occurs. Thus, the application of NNs is more 
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appropriate to deal with the indeterminate and incomplete information in real-world 

decision-making situations. 

Information aggregation is an essential practice of accumulating relevant information from 

various sources. It is used to present aggregation between the min and max operators. The harmonic 

mean is usually used as a mathematical tool to accumulate the central tendency of information [48]. 

The harmonic mean (HM) is widely used in statistics to calculate the central tendency of a set of 

data. Park et al. [49] proposed multi-attribute group decision-making (MAGDM) strategy based on 

HM operators under uncertain linguistic environments. Wei [50] proposed a MAGDM strategy 

based on fuzzy-induced, ordered, weighted HM. In a fuzzy environment, Xu [48] studied a 

fuzzy-weighted HM operator, fuzzy ordered weighted HM operator, and a fuzzy hybrid HM 

operator, and employed them for MADM problems. Ye [51] proposed a multi-attribute 

decision-making (MADM) strategy based on harmonic averaging projection for a simplified 

neutrosophic sets (SNS) environment. 

In a NN environment, Ye [52] proposed a MAGDM using de-neutrosophication strategy and a 

possibility degree ranking strategy for neutrosophic numbers. Liu and Liu [53] proposed a NN 

generalized weighted power averaging operator for MAGDM. Zheng et al. [54] proposed a 

MAGDM strategy based on a NN generalized hybrid weighted averaging operator. Pramanik et al. 

[55] studied a teacher selection strategy based on projection and bidirectional projection measures in 

a NN environment. 

Only four [52–55] MCGDM strategies using NNs have been reported in the literature. 

Motivated from the works of Ye [52], Liu and Liu [53], Zheng et al. [54], and Pramanik et al. [55], we 

consider the proposed strategies to handle MCGDM problems in a NN environment.  

The strategies [52–55] cannot deal with the situation when larger values other than arithmetic 

mean, geometric mean, and harmonic mean are necessary for experimental purposes. To fill the 

research gap, we propose two MCGDM strategies. 

In this paper, we develop two new MCGDM strategies based on a NN harmonic mean operator 

(NNHMO) and a NN weighted harmonic mean operator (NNWHMO) to solve MCGDM problems. 

We define a cosine function to determine unknown weights of the criteria. To develop the proposed 

strategies, we define score and accuracy functions for ranking NNs for the first time in the literature. 

The rest of the paper is structured as follows: Section 2 presents some preliminaries of NNs and 

score and accuracy functions of NNs. Section 3 devotes NN harmonic mean operator (NNHMO) and 

NN weighted harmonic mean operator (NNWHMO). Section 4 defines the cosine function to 

determine unknown criteria weights. Section 5 presents two novel decision-making strategies based 

on NNHMO and NNWHMO. In Section 6, a numerical example is presented to illustrate the 

proposed MCGDM strategies and the results show the feasibility of the proposed MCGDM 

strategies. Section 7 compares the obtained results derived from the proposed strategies and the 

existing strategies in NN environment. Finally, Section 8 concludes the paper with some remarks 

and future scope of research. 

2. Preliminaries

In this section, definition of harmonic and weighted harmonic mean of positive real numbers, 

concepts of NNs, operations on NNs, score and accuracy functions of NNs are outlined. 

2.1. Harmonic Mean and Weighted Harmonic Mean 

Harmonic mean is a traditional average, which is generally used to determine central tendency 

of data. The harmonic mean is commonly considered as a fusion method of numerical data. 

Definition 1. [48]: The harmonic mean H of the positive real numbers x1, x2, …, xn is defined as: 
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Definition 2. [49]: The weighted harmonic mean H of the positive real numbers x1, x2, …, xn is defined as 
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2.2. NNs 

A NN [46,47] consists of a determinate component x and an indeterminate component yI, and is 

mathematically expressed as z = x + yI for x, y   R, where I is indeterminacy interval and R is the set 

of real numbers. A NN z can be specified as a possible interval number, denoted by z = [x + yIL, x + 

yIU] for z   Z (Z is set of all NNs) and I   [IL, IU]. The interval I   [IL, IU] is considered as an 

indeterminate interval.  

• If yI = 0, then z is degenerated to the determinate component z = x

• If x = 0, then z is degenerated to the indeterminate component z = yI

• If IL = IU, then z is degenerated to a real number.

Let two NNs be z1 = x1 + y1I and z2 = x2 + y2I for z1, z2   Z, and I   [IL, IU]. Some basic

operational rules for z1 and z2 are presented as follows: 

(1) I2 = I 

(2) I.0 = 0 

(3) I/I = Undefined 

(4) z1 + z2 = x1 + x2 + (y1 + y2)I = [x1 + x2 + (y1 + y2)IL, x1 + x2 + (y1 + y2)IU] 

(5) z1 − z2 = x1 − x2 + (y1 − y2)I = [x1 − x2 + (y1 − y2)IL, x1 − x2 + (y1 − y2)IU] 

(6) z1   z2 = x1x2 + (x1y2 + x2y1)I + y1y2I2 = x1x2 + (x1y2 + x2y1 + y1y2)I 

(7) 
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Definition 3. For any NN z = x + yI = [x + yIL, x + yIU], (x and y not both zeroes), its score and accuracy 

functions are defined, respectively, as follows: 
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)(exp1)( LU IIyxzAc  (2) 

Theorem 2. Both score function Sc(z) and accuracy function Ac(z) are bounded. 

Proof. 

x, y   R and I   [0, 1] 
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Since 0  Sc(z)   1, score function is bounded. 

Again: 

1)(exp0  LU IIyx

0)(exp1  LU IIyx

1)(exp10  LU IIyx  

Since 0  Ac(z)   1, accuracy function is bounded. □ 

Definition 4. Let two NNs be z1 = x1 + y1I = [x1 + y1IL, x1 + y1IU], and z2 = x2 + y2I = [x2 + y2IL, x2 + y2IU], then the 

following comparative relations hold: 

• If S(z1) > S(z2), then z1 > z2

• If S(z1) = S(z2) and A(z1) < A(z2), then z1 < z2

• If S(z1) = S(z2) and A(z1) = A(z2), then z1 = z2.

Example 1. Let three NNs be z1 = 10 + 2I, z2 = 12 and z3 = 12 + 5I and I   [0, 0.2]. Then, 

S(z1) = 0.5099, S(z2) = 0.5, S(z3) = 0.5577, A(z1) = 0.999969, A(z2) = 0.999994, A(z3) = 0.999997. 

We see that, 
)()()( 321 zSzSzS 

, and 
)()( 23 zSzA 
. 

Using Definition 2, we conclude that, 231 zzz  . 

3. Harmonic Mean Operators for NNs

In this section, we define harmonic mean operator and weighted harmonic mean operator for 

neutrosophic numbers. 

3.1. NN-Harmonic Mean Operator (NNHMO) 

Definition 5. Let zi = xi + yiI (i = 1, 2, …, n) be a collection of NNs. Then the NNHMO is defined as follows: 
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Theorem 3. Let zi = xi + yiI (i = 1, 2, …, n) be a collection of NNs. The aggregated value of the 

),,,NNHMO( 21 nzzz   operator is also a NN. 

Proof. 
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This shows that NNHMO is also a NN. □ 

3.2. NN-Weighted Harmonic Mean Operator (NNWHMO) 

Definition 6. Let zi = xi + yiI (i = 1, 2, …, n) be a collection of NNs and wi (i = 1, 2, …, n) is the weight of zi (i 

= 1, 2, …, n) and .1
1




n

i
iw  Then the NN-weighted harmonic mean (NNWHMO) is defined as follows: 
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Theorem 4. Let zi = xi + yiI (i = 1, 2, …, n) be a collection of NNs. The aggregated value of the 

),,,NNWHMO( 21 nzzz   operator is also a NN. 

Proof. 
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This shows that NNWHMO is also a NN. □ 

Example 2. Let two NNs be z1 = 3 + 2I and z2 = 2 + I and I   [0, 0.2]. Then: 
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Example 3. Let two NNs be z1 = 3 + 2I and z2 = 2 + I, I   [0, 0.2] and w1 = 0.4, w2 = 0.6, then: 
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The NNHMO operator and the NNWHMO operator satisfy the following properties. 

P1. Idempotent law: If zi = z for i = 1, 2, …, n then, zzzz n ),,,NNHMO( 21   and 
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P2. Boundedness: Both the operators are bounded. 

Proof. Let ),,,min( 21min nzzzz  , ),,,max( 21max nzzzz   for i = 1, 2, …, n then, 

max21min ),,,NNHMO( zzzzz n    and max21min ),,,NNWHMO( zzzzz n   . 

Hence, both the operators are bounded. □ 
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This proves the monotonicity of the functions ),,,NNHMO( 21 nzzz   and 

),,,NNWHMO( 21 nzzz  . □ 

P4. Commutativity: If ),,,( 21 zzz n
   be any permutation of ),,,( 21 nzzz   then, 

),,,NNHMO(),,,NNHMO( 2121 zzz nnzzz     and ),,,NNWHMO(),,,NNWHMO( 2121 zzz nnzzz    . 
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4. Cosine Function for Determining Unknown Criteria Weights

When criteria weights are completely unknown to decision-makers, the entropy measure [56] 

can be used to calculate criteria weights. Biswas et al. [57] employed entropy measure for MADM 

problems to determine completely unknown attribute weights of single valued neutrosophic sets 

(SVNSs). Literature review reflects that, strategy to determine unknown weights in the NN 

environment is yet to appear. In this paper, we propose a cosine function to determine unknown 

criteria weights.  

Definition 7. The cosine function of a NN P = xij + yijI = [xij + yijIL, xij + yijIU], (i = 1, 2, ..., m; j = 1, 2, ..., n) is 

defined as follows:  
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The cosine function )(PCOS j  satisfies the following properties: 

P1. 1)( PCOS j , if 0and0  xy ijij

P2. 0)( PCOS j , if .00  yijij andx  

P3. )()( QCOSPCOS jj  , if xij of P > xij of Q or yij of P < yij of Q or both. 
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P3. For, xij of P > xij of Q  

  Determinate part of P > Determinate part of Q 

  )()( PCOSQCOS jj  . 

For, yij of P < yij of Q 

  Indeterminacy part of P < Indeterminacy part of Q 

  )()( PCOSQCOS jj  . 

For, xij of P > xij of Q and yij of P < yij of Q 
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  (Real part of P > Real part of Q) & (Indeterminacy part of P < Indeterminacy part of Q) 

  )()( PCOSQCOS jj  .□ 

Example 4. Let two NNs be z1 = 3 + 2I, and z2 = 3 + 5I, then, 9066.0)( 1 zCOS , 7817.0)( 2 zCOS . 

Example 5. Let two NNs be z1 = 3 + I, and z2 = 7 + I, then, 9693.0)( 1 zCOS , 9938.0)( 2 zCOS . 

Example 6. Let two NNs be z1 = 10 + 2I, and z2 = 2 + 10I, then, 9882.0)( 1 zCOS , 7178.0)( 2 zCOS . 

5. Multi-Criteria Group Decision-Making Strategies Based on NNHMO and NNWHMO

Two MCGDM strategies using the NNHMO and NNWHMO respectively are developed in this 

section. Suppose that A = {A1, A2, …, Am} is a set of alternatives, C = {C1, C2, …, Cn} is a set of criteria 

and DM = {DM1, DM2, …, DMk} is a set of decision-makers. Decision-makers’ assessment for each 

alternative Ai will be based on each criterion Cj. All the assessment values are expressed by NNs. 

Steps of decision making strategies based on proposed NNHMO and NNWHMO to solve MCGDM 

problems are presented below.  

5.1. MCGDM Strategy 1 (Based on NNHMO) 

Strategy 1 is presented (see Figure 1) using the following six steps: 

Step 1. Determine the relation between alternatives and criteria. 

Each decision-maker forms a NN decision matrix. The relation between the alternative Ai (i = 1, 

2, ..., m) and the criterion Cj (j = 1, 2, ..., n) is presented in Equation (7).  
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(7) 

Note 1: Here, kijij Iyx   represents the NN rating value of the alternative Ai with respect to the 

criterion Cj for the decision-maker DMk. 

Step 2. Using Equation (3), determine the aggregation values ( )( i
aggr

k ADM ), (i = 1, 2, …, n) for all 

decision matrices.  

Step 3. To fuse all the aggregation values ( )( i
aggr

k ADM ), corresponding to alternatives Ai, we define 

the averaging function as follows: 

 
1 1

 1,  2,  , ;  1( ) ( ( ,  2,  )); 1. ,
k k

aggr aggr

i t it t
t t

DM A DM A i n t kw w
 

     
 

(8) 

Here, wt (t = 1, 2, …, k) is the weight of the decision-maker DMt. 

Step 4. Determine the preference ranking order.  

Using Equation (1), determine the score values Sc(zi) (accuracy degrees Ac(zi), if necessary) (i = 

1, 2, …, m) of all alternatives Ai. All the score values are arranged in descending order. The 

alternative corresponding to the highest score value (accuracy values) reflects the best choice. 

Step 5. Select the best alternative from the preference ranking order. 

Step 6. End. 
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Figure 1. Steps of MCGDM Strategy 1 based on NNHMO. 

5.2. MCGDM Strategy 2 (Based on NNWHMO) 

Strategy 2 is presented (see Figure 2) using the following seven steps: 

Step 1. This step is similar to the first step of Strategy 1. 

Step 2. Determine the criteria weights. 

Using Equation (6), determine the criteria weights from decision matrices ( ]|[ CADM t ), (t = 1, 2, 

..., k).  

Step 3. Determine the weighted aggregation values ( )( i
waggr

k ADM ). 

Using Equation (4), determine the weighted aggregation values ( )( i
waggr

k ADM ), (i = 1, 2, …, n) for 

all decision matrices.  

Step 4. Determine the averaging values. 

To fuse all the weighted aggregation values ( )( i
waggr

k ADM ), corresponding to alternatives Ai, we 

define the averaging function as follows: 

 
1

 1,  2,  , ;  1,  2,  ( ) ( ( )) ,
k

waggr waggr

i t it
t

i n tDM DM A kA w


    (9) 

Here, wt (t = 1, 2, …, k) is the weight of the decision maker DMt. 

Step 5. Determine the ranking order. 

Using Equation (1), determine the score values S(zi) (accuracy degrees A(zi), if necessary) (i = 1, 

2, …, m) of all alternatives Ai. All the score values are arranged in descending order. The alternative 

corresponding to the highest score value (accuracy values) reflects the best choice. 

Step 6. Select the best alternative from the preference ranking order. 

Step 7. End. 
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Figure 2. Steps of MCGDM strategy based on NNWHMO. 

6. Simulation Results

We solve a numerical example studied by Zheng et al. [54]. An investment company desires to 

invest a sum of money in the best investment fund. There are four possible selection options to 

invest the money. Feasible selection options are namely, A1: Car company (CARC); A2: Food 

company (FOODC); A3: Computer company (COMC); A4: Arms company (ARMC). 

Decision-making must be based on the three criteria namely, risk analysis (C1), growth analysis (C2), 

environmental impact analysis (C3). The four possible selection options/alternatives are to be 

selected under the criteria by the NN assessments provided by the three decision-makers DM1, DM2, 

and DM3.  

6.1. Solution Using MCGDM Strategy 1 

Step 1. Determine the relation between alternatives and criteria. 

All assessment values are provided by the following three NN based decision matrices (shown 

in Equations (10)–(12). 
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Note 2: Here, ]|[1 CLDM , ]|[2 CLDM and ]|[3 CLDM are the decision matrices for the decision makers 

DM1, DM2 and DM3 respectively. 

Step 2. Determine the weighted aggregation values ( )( i
aggr

k ADM ). 
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Using Equation (3), we calculate the aggregation values ( )( i
aggr

k ADM ) as follows: 

1 1 1 2 1 3 1 4
( ) 3.829 0.785 ; ( ) 5.625; ( ) 4.285 0.214 ; ( ) 5.362 0.514 ;aggr aggr aggr aggrDM A I DM A DM A I DM A I        

2 1 2 2 2 3 2 4
( ) 4.285; ( ) 5.206 0.415 ; ( ) 4.196 0.532 ; ( ) 5.234 0.618 ;aggr aggr aggr aggrDM A DM A I DM A I DM A I        

3 1 3 2 3 3 3 4
( ) 4.019 0.605 ; ( ) 5.817 0.433 ; ( ) 4.876 0.387 ; ( ) 6.023 0.257 .aggr aggr aggr aggrDM A I DM A I DM A I DM A I         

Step 3. Determine the averaging values. 

Using Equation (8), we calculate the averaging values (Considering equal importance of all the 

decision makers) to fuse all the aggregation values corresponding to the alternative Ai. 

1 2 3 4
( ) 4.044 0.463 ; ( ) 5.549 0.282 ; ( ) 4.452 0.378 ; ( ) 5.539 0.463 .aggr aggr aggr aggrDM A I DM A I DM A I DM A I       

Step 4. Using Equation (1), we calculate the score values Sc(Ai) (i = 1, 2, 3, 4). Sensitivity analysis and 

ranking order of alternatives are shown in Table 1 for different values of I. 

Table 1. Sensitivity analysis and ranking order with variation of “I” on NNs for strategy 1. 

I Sc(Ai) Ranking Order 

I = [0, 0] S(A1) = 0.4988, S(A2) = 0.4993, S(A3) = 0.4982, S(A4) = 0.4983 A2 A1 A4 A3 

I   [0, 0.2] S(A1) = 0.5081, S(A2) = 0.5144, S(A3) = 0.5067, S(A4) = 0.5056 A2 A1 A3 A4 

I   [0, 0.4] S(A1) = 0.5182, S(A2) = 0.5195, S(A3) = 0.5151, S(A4) = 0.5249 A2 A1 A4 A3 

I   [0, 0.6] S(A1) = 0.5289, S(A2) = 0.5346, S(A3) = 0.5236, S(A4) = 0.5233 A2 A1 A3 A4 

I   [0, 0.8] S(A1) = 0.5396, S(A2) = 0.5497, S(A3) = 0.5320, S(A4) = 0.5316 A2 A1 A3 A4 

I   [0, 1] S(A1) = 0.5503, S(A2) = 0.5547, S(A3) = 0.5405, S(A4) = 0.5399 A2 A1 A3 A4 

Step 5. Food company (FOODC) is the best alternative for investment. 

Step 6. End. 

Note 3: In Figure 3, we represent ranking order of alternatives with variation of “I” based on 

strategy 1. Figure 3 reflects that various values of I, ranking order of alternatives are different. 

However, the best choice is the same.  

Figure 3. Ranking order with variation of ‘I’ based on strategy 1. 

6.2. Solution Using MCGDM Strategy 2 

Step 1. Determine the relation between alternatives and criteria. 

This step is similar to the first step of strategy 1. 

Step 2. Determine the criteria weights. 

Using Equations (5) and (6), criteria weights are calculated as follows: 

[w1 = 0.3265, w2 = 0.3430, w3 = 0.3305] for DM1, 
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[w1 = 0.3332, w2 = 0.3334, w3 = 0.3334] for DM2, 

[w1 = 0.3333, w2 = 0.3335, w3 = 0.3332] for DM3. 

Step 3. Determine the weighted aggregation values ( )( i
waggr

k ADM ). 

Using Equation (4), we calculate the aggregation values ( )( i
aggr

k ADM ) as follows: 

1 1 1 2 1 3 1 4
( ) 3.861 0.774 ; ( ) 6.006; ( ) 4.307 0.234 ; ( ) 5.399 0.541 ;aggr aggr aggr aggrDM A I DM A DM A I DM A I        

2 1 2 2 2 3 2 4
( ) 4.288; ( ) 5.219 0.429 ; ( ) 4.206 0.541 ; ( ) 5.251 0.629 ;aggr aggr aggr aggrDM A DM A I DM A I DM A I        

3 1 3 2 3 3 3 4
( ) 4.024 0.616 ; ( ) 5.824 0.445 ; ( ) 4.889 0.393 ; ( ) 6.029 0.265 .aggr aggr aggr aggrDM A I DM A I DM A I DM A I         

Step 4. Determine the averaging values. 

Using Equation (9), we calculate the averaging (Considering equal importance of all the 

decision makers to fuse all the aggregation values corresponding to the alternative Ai. 

1 2 3 4
( ) 4.057 0.463 ; ( ) 5.568 0.291 ; ( ) 4.467 0.389 ; ( ) 5.559 0.478 .aggr aggr aggr aggrDM A I DM A I DM A I DM A I       

Step 5. Determine the ranking order. 

Using Equation (1), we calculate the score values Sc(Ai) (i = 1, 2, 3, 4). Since scores values are 

different, accuracy values are not required. Sensitivity analysis and ranking order of alternatives are 

shown in Table 2 for different values of I. 

Table 2. Sensitivity analysis and ranking order with variation of “I” on NNs for strategy 2. 

I Sc(Ai) Ranking Order 

I = 0 S(A1) = 0.4968, S(A2) = 0.4993, S(A3) = 0.4981, S(A4) = 0.4982 A2 A4 A3 A1 

I   [0, 0.2] S(A1) = 0.5081, S(A2) = 0.5095, S(A3) = 0.5068, S(A4) = 0.5067 A2 A1 A4 A3 

I   [0, 0.4] S(A1) = 0.5195, S(A2) = 0.5198, S(A3) = 0.5155, S(A4) = 0.5153 A2 A1 A3 A4 

I   [0, 0.6] S(A1) = 0.5308, S(A2) = 0.5350, S(A3) = 0.5241, S(A4) = 0.5239 A2 A1 A3 A4 

I   [0, 0.8] S(A1) = 0.5421, S(A2) = 0.5502, S(A3) = 0.5328, S(A4) = 0.5324 A2 A1 A3 A4 

I   [0, 1] S(A1) = 0.5535, S(A2) = 0.5654, S(A3) = 0.5415, S(A4) = 0.5410 A2 A1 A3 A4 

Step 6. Food company (FOODC) is the best alternative for investment. 

Step 7. End. 

Note 4: In Figure 4, we represent ranking order of alternatives with variation of “I” based on 

strategy 2. Figure 4 reflects that various values of I, ranking order of alternatives are different. 

However, the best choice is the same.  

Figure 4. Ranking order with variation of ‘I’ on NNs for Strategy 2. 
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7. Comparison Analysis and Contributions of the Proposed Approach

7.1. Comparison Analysis 

In this subsection, a comparison analysis is conducted between the proposed MCGDM 

strategies and the other existing strategies in the literature in NN environment. Table 1 reflects that 

A2 is the best alternative for I = 0 and 0I  i.e., for all cases considered. Table 2 reflects that A2 is the 

best alternative for any values of I. Ranking order differs for different values of I. 

The ranking results obtained from the existing strategies [52–54] are furnished in Table 3. The 

ranking orders of Ye [52] and Zheng et al. [54] are similar for all values of I considered. When I lies in 

[0, 0], [0, 0.2], [0, 0.4], A2 is the best alternative for [52–54] and the proposed strategies. When I lies in 

[0, 0.6], [0, 0.8], [0, 1], A4 is the best alternative for [52,54], whereas A2 is the best alternative for [53], 

and the proposed strategies.  

Table 3. Comparison of ranking preference order with variation of ‘I’ on NNs for different strategies. 

I Ye [52] Zheng et al. [54] Liu and Liu [53] Proposed Strategy 1 Proposed Strategy 2 

[0, 0] A2 A4 A3 A1 A2 A4 A3 A1 A2 A4 A1 A3 A2 A1 A4 A3 A2 A4 A3 A1

[0, 0.2] A2 A4 A3 A1 A2 A4 A3 A1 A2 A3 A1 A4 A2 A1 A3 A4 A2 A1 A4 A3

[0, 0.4] A2 A4 A3 A1 A2 A4 A3 A1 A2 A3 A4 A1 A2 A1 A4 A3 A2 A1 A3 A4

[0, 0.6] A4 A2 A3 A1 A4 A2 A3 A1 A2 A3 A4 A1 A2 A1 A3 A4 A2 A1 A3 A4

[0, 0.8] A4 A2 A3 A1 A4 A2 A3 A1 A2 A3 A4 A1 A2 A1 A3 A4 A2 A1 A3 A4

[0, 1] A4 A2 A3 A1 A4 A2 A3 A1 A2 A4 A3 A1 A2 A1 A3 A4 A2 A1 A3 A4

In strategy [52], deneutrosophication process is analyzed. It does not recognize the importance 

of the aggregation information. MCGDM due to Liu and Liu [53] is based on NN generalized 

weighted power averaging operator. This strategy cannot deal the situation when larger value other 

than arithmetic mean, geometric mean, and harmonic mean is necessary for experimental purpose.  

The strategy proposed by Zheng et al. [54] cannot be used when few observations contribute 

disproportionate amount to the arithmetic mean. The proposed two MCGDM strategies are free 

from these shortcomings.  

7.2. Contributions of the Proposed Approach 

• NNHMO and NNWHMO in NN environment are firstly defined in the literature. We have also

proved their basic properties.

• We have proposed score and accuracy functions of NN numbers for ranking. If two score

values are same, then accuracy function can be used for ranking purpose.

• The proposed two strategies can also be used when observations/experiments contribute is

disproportionate amount to the arithmetic mean. The harmonic mean is used when sample

values contain fractions and/or extreme values (either too small or too big).

• To calculate unknown weights structure of criteria in NN environment, we have proposed

cosine function.

• Steps and calculations of the proposed strategies are easy to use.

• We have solved a numerical example to show the feasibility, applicability, and effectiveness of

the proposed two strategies.
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proposed MCGDM strategies can be applied in supply selection, pattern recognition, cluster 

analysis, medical diagnosis, etc. 
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Abstract: A rough neutrosophic set model is a hybrid model which deals with vagueness by using
the lower and upper approximation spaces. In this research paper, we apply the concept of rough
neutrosophic sets to graphs. We introduce rough neutrosophic digraphs and describe methods of
their construction. Moreover, we present the concept of self complementary rough neutrosophic
digraphs. Finally, we consider an application of rough neutrosophic digraphs in decision-making.

Keywords: rough neutrosophic sets; rough neutrosophic digraphs; decision-making

1. Introduction

Smarandache [1] proposed the concept of neutrosophic sets as an extension of fuzzy sets [2].
A neutrosophic set has three components, namely, truth membership, indeterminacy membership
and falsity membership, in which each membership value is a real standard or non-standard subset
of the nonstandard unit interval ]0−, 1 + [ ([3]), where 0− = 0− ε, 1+ = 1 + ε, ε is an infinitesimal
number > 0. To apply neutrosophic set in real-life problems more conveniently, Smarandache [3] and
Wang et al. [4] defined single-valued neutrosophic sets which takes the value from the subset of [0, 1].
Actually, the single valued neutrosophic set was introduced for the first time by Smarandache in 1998
in [3]. Ye [5] considered multicriteria decision-making method using the correlation coefficient under
single-valued neutrosophic environment. Ye [6] also presented improved correlation coefficients of
single valued neutrosophic sets and interval neutrosophic sets for multiple attribute decision making.

Rough set theory was proposed by Pawlak [7] in 1982. Rough set theory is useful to study
the intelligence systems containing incomplete, uncertain or inexact information. The lower and
upper approximation operators of rough sets are used for managing hidden information in a system.
Therefore, many hybrid models have been built, such as soft rough sets, rough fuzzy sets, fuzzy
rough sets, soft fuzzy rough sets, neutrosophic rough sets, andrough neutrosophic sets, for handling
uncertainty and incomplete information effectively. Dubois and Prade [8] introduced the notions
of rough fuzzy sets and fuzzy rough sets. Liu and Chen [9] have studied different decision-making
methods. Broumi et al. [10] introduced the concept of rough neutrosophic sets. Yang et al. [11]
proposed single valued neutrosophic rough sets by combining single valued neutrosophic sets
and rough sets, and established an algorithm for decision-making problem based on single valued
neutrosophic rough sets on two universes. Mordeson and Peng [12] presented operations on
fuzzy graphs. Akram et al. [13–16] considered several new concepts of neutrosophic graphs with
applications. Zafer and Akram [17] introduced a novel decision-making method based on rough
fuzzy information. In this research study, we apply the concept of rough neutrosophic sets to graphs.
We introduce rough neutrosophic digraphs and describe methods of their construction. Moreover,
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we present the concept of self complementary rough neutrosophic digraphs. We also present an
application of rough neutrosophic digraphs in decision-making.

We have used standard definitions and terminologies in this paper. For other notations,
terminologies and applications not mentioned in the paper, the readers are referred to [18–22].

2. Rough Neutrosophic Digraphs

Definition 1. [4] Let Z be a nonempty universe. A neutrosophic set N on Z is defined as follows:

N = {< x : µN(x), σN(x), λN(x) >, x ∈ Z}

where the functions µ, σ, λ :Z→ [0, 1] represent the degree of membership, the degree of indeterminacy and the
degree of falsity.

Definition 2. [7] Let Z be a nonempty universe and R an equivalence relation on Z.A pair (Z, R) is called an
approximation space. Let N∗ be a subset of Z and the lower and upper approximations of N∗ in the approximation
space (Z, R) denoted by RN∗ and RN∗ are defined as follows:

RN∗ = {x ∈ Z|[x]R ⊆ N∗},
RN∗ = {x ∈ Z|[x]R ⊆ N∗},

where [x]R denotes the equivalence class of R containing x. A pair (RN∗, RN∗) is called a rough set.

Definition 3. [10] Let Z be a nonempty universe and R an equivalence relation on Z. Let N be a neutrosophic
set(NS) on Z. The lower and upper approximations of N in the approximation space (Z, R) denoted by RN and
RN are defined as follows:

RN = {< x, µR(N)(x), σR(N)(x), λR(N)(x) >: y ∈ [x]R, x ∈ Z},
RN = {< x, µR(N)(x), σR(N)(x), λR(N)(x) >: y ∈ [x]R, x ∈ Z},

where,

µR(N)(x) =
∧

y∈[x]R
µN(y), µR(N)(x) =

∨
y∈[x]R

µN(y),

σR(N)(x) =
∧

y∈[x]R
σN(y), σR(N)(x) =

∨
y∈[x]R

σN(y,

λR(N)(x) =
∨

y∈[x]R
λN(y), λR(N)(x) =

∧
y∈[x]R

λN(y).

A pair (RN, RN) is called a rough neutrosophic set.

We now define the concept of rough neutrosophic digraph.

Definition 4. Let V∗ be a nonempty set and R an equivalence relation on V∗. Let V be a NS on V∗, defined as

V = {< x, µV(x), σV(x), λV(x) >: x ∈ V∗}.

Then, the lower and upper approximations of V represented by RV and RV, respectively, are characterized
as NSs in V∗ such that ∀ x ∈ V∗,

R(V) = {< x, µR(V)(x), σR(V)(x), λR(V)(x) >: y ∈ [x]R},
R(V) = {< x, µR(V)(x), σR(V)(x), λR(V)(x) >: y ∈ [x]R},

where,

µR(V)(x) =
∧

y∈[x]R
µV(y), µR(V)(x) =

∨
y∈[x]R

µV(y),

σR(V)(x) =
∧

y∈[x]R
σV(y), σR(V)(x) =

∨
y∈[x]R

σV(y),

λR(V)(x) =
∨

y∈[x]R
λV(y), λR(V)(x) =

∧
y∈[x]R

λV(y).

Florentin Smarandache (ed.) Collected Papers, VII

546



Let E∗ ⊆ V∗ ×V∗ and S an equivalence relation on E∗ such that

((x1, x2), (y1, y2)) ∈ S⇔ (x1, y1), (x2, y2) ∈ R.

Let E be a neutrosophic set on E∗ ⊆ V∗ ×V∗ defined as

E = {< xy, µE(xy), σE(xy), λE(xy) >: xy ∈ V∗ ×V∗},

such that

µE(xy) ≤ min{µRV(x), µRV(y)},
σE(xy) ≤ min{σRV(x), σRV(y)},
λE(xy) ≤ max{λRV(x), λRV(y)} ∀x, y ∈ V∗.

Then, the lower and upper approximations of E represented by SE and SE, respectively, are defined
as follows

SE = {< xy, µSE(xy), σSE(xy), λSE(xy) >: wz ∈ [xy]S, xy ∈ V∗ ×V∗},
SE = {< xy, µSE(xy), σSE(xy), λSE(xy) >: wz ∈ [xy]S, xy ∈ V∗ ×V∗},

where,

µS(E)(xy) =
∧

wz∈[xy]S
µE(wz), µS(E)(xy) =

∨
wz∈[xy]S

µE(wz),

σS(E)(xy) =
∧

wz∈[xy]S
σE(wz), σS(E)(xy) =

∨
wz∈[xy]S

σE(wz),

λS(E)(xy) =
∨

wz∈[xy]S
λE(wz), λS(E)(xy) =

∧
wz∈[xy]S

λE(wz).

A pair SE = (SE, SE) is called a rough neutrosophic relation.

Definition 5. A rough neutrosophic digraph on a nonempty set V∗ is a four-ordered tuple G = (R, RV, S, SE)
such that

(a) R is an equivalence relation on V∗;
(b) S is an equivalence relation on E∗ ⊆ V∗ ×V∗;
(c) RV = (RV, RV) is a rough neutrosophic set on V∗;
(d) SE = (SE, SE) is a rough neutrosophic relation on V∗ and
(e) (RV, SE) is a neutrosophic digraph where G = (RV, SE) and G = (RV, SE) are lower and upper

approximate neutrosophic digraphs of G such that

µSE(xy) ≤ min{µRV(x), µRV(y)},

σSE(xy) ≤ min{σRV(x), σRV(y)},

λSE(xy) ≤ max{λRV(x), λRV(y)},

and

µSE(xy) ≤ min{µRV(x), µRV(y)},
σSE(xy) ≤ min{σRV(x), σRV(y)},
λSE(xy) ≤ max{λRV(x), λRV(y)} ∀ x, y ∈ V∗.

Example 1. Let V∗ = {a, b, c} be a set and R an equivalence relation on V∗

R =

 1 0 1
0 1 0
1 0 1

 .
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Let V = {(a, 0.2, 0.3, 0.6), (b, 0.8, 0.6, 0.5), (c, 0.9, 0.1, 0.4)} be a neutrosophic set on V∗. The lower and
upper approximations of V are given by,

RV = {(a, 0.2, 0.1, 0.6), (b, 0.8, 0.6, 0.5), (c, 0.2, 0.1, 0.6)},
RV = {(a, 0.9, 0.3, 0.4), (b, 0.8, 0.6, 0.5), (c, 0.9, 0.3, 0.4)}.

Let E∗ = {aa, ab, ac, bb, ca, cb} ⊆ V∗ ×V∗ and S an equivalence relation on E∗ defined as:

S =



1 0 1 0 1 0
0 1 0 0 0 1
1 0 1 0 1 0
0 0 0 1 0 0
1 0 1 0 1 0
0 1 0 0 0 1


.

Let E = {(aa, 0.2, 0.1, 0.4), (ab, 0.2, 0.1, 0.5), (ac, 0.1, 0.1, 0.5), (bb, 0.7, 0.5, 0.5), (ca, 0.1, 0.1, 0.3),
(cb, 0.2, 0.1, 0.5)} be a neutrosophic set on E∗ and SE = (SE, SE) a rough neutrosophic relation where SE and
SE are given as

SE ={(aa, 0.1, 0.1, 0.5), (ab, 0.2, 0.1, 0.5), (ac, 0.1, 0.1, 0.5), (bb, 0.7, 0.5, 0.5),

(ca, 0.1, 0.1, 0.5), (cb, 0.2, 0.1, 0.5)},
SE ={(aa, 0.2, 0.1, 0.3), (ab, 0.2, 0.1, 0.5), (ac, 0.2, 0.1, 0.3), (bb, 0.7, 0.5, 0.5),

(ca, 0.2, 0.1, 0.3), (cb, 0.2, 0.1, 0.5)}.

Thus, G = (RV, SE) and G = (RV, SE) are neutrosophic digraphs as shown in Figure 1.

Figure 1. Rough neutrosophic digraph G = (G, G).

We now form new rough neutrosophic digraphs from old ones.

Definition 6. Let G1 = (G1, G1) and G2 = (G2, G2) be two rough neutrosophic digraphs on a set V∗.
Then, the intersection of G1 and G2 is a rough neutrosophic digraph G = G1 e G2 = (G1 ∩ G2, G1 ∩ G2),
where G1 ∩ G2 = (RV1 ∩ RV2, SE1 ∩ SE2) and G1 ∩ G2 = (RV1 ∩ RV2, SE1 ∩ SE2) are neutrosophic
digraphs, respectively, such that
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(1) µRV1∩RV2(x) = min{µRV1(x), µRV2(x)},
σRV1∩RV2(x) = min{σRV1(x), σRV2(x)},
λRV1∩RV2(x) = max{λRV1(x), λRV2(x)} ∀ x ∈ RV1 ∩ RV1,

µSE1∩SE2(xy) = min{µSE1(x), µSE2(y)},
σSE1∩SE2(xy) = min{σSE1(x), σSE2(y)}
λSE1∩SE2(xy) = max{λSE1(x), λSE2(y)} ∀ xy ∈ SE1 ∩ SE2,

(2) µRV1∩RV2
(x) = min{µRV1

(x), µRV2
(x)},

σRV1∩RV2
(x) = min{σRV1

(x), σRV2
(x)},

λRV1∩RV2
(x) = max{λRV1

(x), λRV2
(x)} ∀ x ∈ RV1 ∩ RV2,

µSE1∩SE2
(xy) = min{µSE1

(x), µSE2
(y)}

σSE1∩SE2
(xy) = min{σSE1

(x), σSE2
(y)}

λSE1∩SE2
(xy) = max{λSE1

(x), λSE2
(y)} ∀ xy ∈ SE1 ∩ SE2.

Example 2. Consider the two rough neutrosophic digraphs G1 and G2 as shown in Figures 1 and 2. The
intersection of G1 and G2 is G = G1 e G2 = (G1 ∩ G2, G1 ∩ G2) where G1 ∩ G2 = (RV1 ∩ RV2, SE1 ∩ SE2)

and G1 ∩ G2 = (RV1 ∩ RV2, SE1 ∩ SE2) are neutrosophic digraphs as shown in Figure 3.

Figure 2. Rough neutrosophic digraph G = (G, G).

Figure 3. Rough neutrosophic digraph G1 e G2 = (G1 ∩ G2, G1 ∩ G2).

Theorem 1. The intersection of two rough neutrosophic digraphs is a rough neutrosophic digraph.

Proof. Let G1 = (G1, G1) and G2 = (G2, G2) be two rough neutrosophic digraphs. Let G = G1 e G2 =

(G1 ∩ G2, G1 ∩ G2) be the intersection of G1 and G2, where G1 ∩ G2 = (RV1 ∩ RV2, SE1∩, SE2) and
G1 ∩ G2 = (RV1 ∩ RV2, SE1 ∩ SE2). To prove that G = G1 e G2 is a rough neutrosophic digraph, it is
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enough to show that SE1 ∩ SE2 a nd SE1 ∩ SE2 are neutrosophic relation on RV1 ∩ RV2 and RV1 ∩ RV2,
respectively. First, we show that SE1 ∩ SE2 is a neutrosophic relation on RV1 ∩ RV2.

µSE1∩SE2(xy) = µSE1(xy) ∧ µSE2(xy)

≤ (µRV1(x) ∧ µRV2(y)) ∧ (µRV1(x) ∧ µRV2(y))

= (µRV1(x) ∧ µRV2(x)) ∧ (µRV1(y) ∧ µRV2(y)

= µRV1∩RV2(x) ∧ µRV1∩RV2(y)

µSE1∩SE2(xy) ≤ min{µRV1∩RV2(x), µRV1∩RV2(y)}
σSE1∩SE2(xy) = σSE1(xy) ∧ σSE2(xy)

≤ (σRV1(x) ∧ σRV2(y)) ∧ (σRV1(x) ∧ σRV2(y))

= (σRV1(x) ∧ σRV2(x)) ∧ (σRV1(y) ∧ σRV2(y)

= σRV1∩RV2(x) ∧ σRV1∩RV2(y)

σSE1∩SE2(xy) ≤ min{σRV1∩RV2(x), σRV1∩RV2(y)}
λSE1∩SE2(xy) = λSE1(xy) ∧ λSE2(xy)

≤ (λRV1(x) ∨ λRV2(y)) ∧ (λRV1(x) ∨ λRV2(y))

= (λRV1(x) ∧ λRV2(x)) ∨ (λRV1(y) ∧ λRV2(y)

= λRV1∩RV2(x) ∨ λRV1∩RV2(y)

λSE1∩SE2(xy) ≤ max{λRV1∩RV2(x), λRV1∩RV2(y)}.

Thus, from above it is clear that SE1 ∩ SE2 is a neutrosophic relation on RV1 ∩ RV2.
Similarly, we can show that SE1 ∩ SE2 is a neutrosophic relation on RV1 ∩ RV2. Hence, G is a

rough neutrosophic digraph.

Definition 7. The Cartesian product of two neutrosophic digraphs G1 and G2 is a rough neutrosophic digraph
G = G1 n G2 = (G1 n G2, G1 n G2), where G1 n G2 = (R1 n R2, SE1 n SE2 and G1 n G2 = (RV1 n
RV2, SE1 n SE2) such that

(1) µRV1nRV2(x1, x2) = min{µRV1(x1), µRV2(x2)},
σRV1nRV2(x1, x2) = min{σRV1(x1), µRV2(x2)},
λRV1nRV2(x1, x2) = max{λRV1(x1), µRV2(x2)}, ∀ (x1, x2) ∈ RV1 n RV2,

µSE1nSE2(x, x2)(x, y2) = min{µRV1(x), µSE2(x2, y2)},
σSE1nSE2(x, x2)(x, y2) = min{σRV1(x), σSE2(x2, y2)},
λSE1nSE2(x, x2)(x, y2) = max{λRV1(x), λSE2(x2, y2)} ∀ x ∈ RV1, x2y2 ∈ SE2,

µSE1nSE2(x1, z)(y1, z) = min{µSE1(x1, y1), µRV2(z)},
σSE1nSE2(x1, z)(y1, z) = min{σSE1(x1, y1), σRV2(z)},
λSE1nSE2(x1, z)(y1, z) = max{λSE1(x1, y1), λRV2(z)} ∀ x1y1 ∈ SE1, z ∈ RV2,

(2) µRV1nRV2
(x1, x2) = min{µRV1

(x1), µRV2
(x2)},

σRV1nRV2
(x1, x2) = min{σRV1

(x1), µRV2
(x2)},

λRV1nRV2
(x1, x2) = max{λRV1

(x1), µRV2
(x2)} ∀ (x1, x2) ∈ RV1 n RV2,

µSE1nSE2
(x, x2)(x, y2) = min{µRV1

(x), µSE2
(x2, y2)},

σSE1nSE2
(x, x2)(x, y2) = min{σRV1

(x), σSE2
(x2, y2)},

λSE1nSE2
(x, x2)(x, y2) = max{λRV1

(x), λSE2
(x2, y2)} ∀ x ∈ RV1, x2y2 ∈ SE2,
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µSE1nSE2
(x1, z)(y1, z) = min{µSE1

(x1, y1), µRV2
(z)},

σSE1nSE2
(x1, z)(y1, z) = min{σSE1

(x1, y1), σRV2
(z)},

λSE1nSE2
(x1, z)(y1, z) = max{λSE1

(x1, y1), λRV2
(z)} ∀ x1y1 ∈ SE1, z ∈ RV2,

Example 3. Let V∗ = {a, b, c, d} be a set. Let G1 = (G1, G1) and G2 = (G2, G2) be two rough neutrosophic
digraphs on V∗, as shown in Figures 4 and 5. The cartesian product of G1 and G2 is G = (G1 × G2, G1 × G2),
where G1 × G2 = (RN1 × RN2, SE1 × SE2) and G1 × G2 = (RN1 × RN2, SE1 × SE2) are neutrosophic
digraphs, as shown in Figures 6 and 7, respectively.

Figure 4. Rough neutrosophic digraph G1 = (G1, G1).

Figure 5. Rough neutrosophic digraph G2 = (G2, G2).
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Figure 6. Neutrosophic digraph G1 × G2 = (RN1 × RN2, SE1 × SE2).

Figure 7. Neutrosophic digraph G1 × G2 = (RN1 × RN2, SE1 × SE2).

Theorem 2. The Cartesian product of two rough neutrosophic digraphs is a rough neutrosophic digraph.

Proof. Let G1 = (G1, G1) and G2 = (G2, G2) be two rough neutrosophic digraphs. Let G = G1 n G2 =

(G1 n G2, G1 n G2) be the Cartesian product of G1 and G2, where G1 n G2 = (RV1 n RV2, SE1 n SE2)

and G1 n G2 = (RV1 n RV2, SE1 n SE2). To prove that G = G1 n G2 is a rough neutrosophic digraph,
it is enough to show that SE1 n SE2 and SE1 n SE2 are neutrosophic relation on RV1 n RV2 and
RV1 n RV2, respectively. First, we show that SE1 n SE2 is a neutrosophic relation on RV1 n RV2.
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If x ∈ RV1, x2y2 ∈ SE2, then

µSE1nSE2(x, x2)(x, y2) = µRV1(x) ∧ µSE2(x2, y2)

≤ µRV1(x) ∧ (µRV2(x2) ∧ µRV2(y2))

= (µRV1(x) ∧ µRV2(x2)) ∧ (µRV1(x) ∧ µRV2(y2))

= µRV1nRV2(x, x2) ∧ µRV1nRV2(x, y2)

µSE1nSE2(x, x2)(x, y2) ≤ min{µRV1nRV2(x, x2), µRV1nRV2(x, y2)},
σSE1nSE2(x, x2)(x, y2) = σRV1(x) ∧ σSE2(x2, y2)

≤ σRV1(x) ∧ (σRV2(x2) ∧ σRV2(y2))

= (σRV1(x) ∧ σRV2(x2)) ∧ (σRV1(x) ∧ σRV2(y2)

= σRV1nRV2(x, x2) ∧ σRV1nRV2(x, y2)

σSE1nSE2(x, x2)(x, y2) ≤ min{σRV1nRV2(x, x2), σRV1nRV2(x, y2)},
λSE1nSE2(x, x2)(x, y2) = λRV1(x) ∨ λSE2(x2, y2)

≤ λRV1(x) ∨ (λRV2(x2) ∨ λRV2(y2))

= (λRV1(x) ∨ λRV2(x2)) ∨ (λRV1(x) ∨ λRV2(y2))

= λRV1nRV2(x, x2) ∨ λRV1nRV2(x, y2)

λSE1nSE2(x, x2, x, y2) ≤ max{λRV1nRV2(x, x2), λRV1nRV2(x, y2)}.

If x1y1 ∈ SE1, z ∈ RV2, then

µSE1nSE2(x1, z)(y1, z) = µSE1(x1, y1) ∧ µRV2(z)

≤ (µRV1(x1) ∧ µRV1(y1)) ∧ µRV2(z)

= (µRV1(x1) ∧ µRV2(z)) ∧ (µRV1(y1) ∧ µRV2(z))

= µRV1nRV2(x1, z) ∧ µRV1nRV2(y1, z)

µSE1nSE2(x1, z)(y1, z) ≤ min{µRV1nRV2(x1, z), µRV1nRV2(y1, z)},
σSE1nSE2(x1, z)(y1, z) = σSE1(x1, y1) ∧ σRV2(z)

≤ (σRV1(x1) ∧ σRV1(y1)) ∧ σRV2(z)

= (σRV1(x1) ∧ σRV2(z)) ∧ (σRV1(y1) ∧ σRV2(z))

= σRV1nRV2(x1, z) ∧ σRV1nRV2(y1, z)

σSE1nSE2(x1, z)(y1, z) ≤ min{σRV1nRV2(x1, z), σRV1nRV2(y1, z)},
λSE1nSE2(x1, z)(y1, z) = λSE1(x1, y1) ∨ λRV2(z)

≤ (λRV1(x1) ∨ λRV1(y1)) ∨ λRV2(z)

= (λRV1(x1) ∨ λRV2(z)) ∨ (λRV1(y1) ∨ λRV2(z))

= λRV1nRV2(x1, z) ∨ λRV1nRV2(y1, z)

λSE1nSE2(x1, z)(y1, z) ≤ max{λRV1nRV2(x1, z), λRV1nRV2(y1, z)}.

Thus, from above, it is clear that SE1 n SE2 is a neutrosophic relation on RV1 n RV2.
Similarly, we can show that SE1 n SE2 is a neutrosophic relation on RV1 n RV2. Hence,

G = (G1 n G2, G1 n G2) is a rough neutrosophic digraph.

Definition 8. The composition of two rough neutrosophic digraphs G1 and G2 is a rough neutrosophic digraph
G = G1 ◦ G2 = (G1 ◦ G2, G1 ◦ G2), where G1 ◦ G2 = (RV1 ◦ RV2, SE1 ◦ SE2) and G1 ◦ G2 = (RV1 ◦
RV2, SE1 ◦ SE2) are neutrosophic digraphs, respectively, such that

(1) µRV1◦RV2(x1, x2) = min{µRV1(x1), µRV2(x2)},
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σRV1◦RV2(x1, x2) = min{σRV1(x1), µRV2(x2)},
λRV1◦RV2(x1, x2) = max{λRV1(x1), µRV2(x2)} ∀ (x1, x2) ∈ RV1 × RV2,

µSE1◦SE2(x, x2)(x, y2) = min{µRV1(x), µSE2(x2, y2)},
σSE1◦SE2(x, x2)(x, y2) = min{σRV1(x), σSE2(x2, y2)},
λSE1◦SE2(x, x2)(x, y2) = max{λRV1(x), λSE2(x2, y2)} ∀ x ∈ RV1, x2y2 ∈ SE2,

µSE1◦SE2(x1, z)(y1, z) = min{µSE1(x1, y1), µRV2(z)},
σSE1◦SE2(x1, z)(y1, z) = min{σSE1(x1, y1), σRV2(z)},
λSE1◦SE2(x1, z)(y1, z) = max{λSE1(x1, y1), λRV2(z)} ∀ x1y1 ∈ SE1, z ∈ RV2,

µSE1◦SE2(x1, x2)(y1, y2) = min{µSE1(x1, y1), µRV2(x2), µRV2(y2)},
σSE1◦SE2(x1, x2)(y1, y2) = min{σSE1(x1, y1), σRV2(x2), σRV2(y2)},
λSE1◦SE2(x1, x2)(y1, y2) = max{λSE1(x1, y1), λRV2(x2), λRV2(y2)}

∀ x1y1 ∈ SE1, x2, y2 ∈ RV2, x2 6= y2.

(2) µRV1◦RV2
(x1, x2) = min{µRV1

(x1), µRV2
(x2)},

σRV1◦RV2
(x1, x2) = min{σRV1

(x1), µRV2
(x2)},

λRV1◦RV2
(x1, x2) = max{λRV1

(x1), µRV2
(x2)} ∀ (x1, x2) ∈ RV1 × RV2,

µSE1◦SE2
(x, x2)(x, y2) = min{µRV1

(x), µSE2
(x2, y2)},

σSE1◦SE2
(x, x2)(x, y2) = min{σRV1

(x), σSE2
(x2, y2)},

λSE1◦SE2
(x, x2)(x, y2) = max{λRV1

(x), λSE2
(x2, y2)} ∀ x ∈ RV1, x2y2 ∈ SE2,

µSE1◦SE2
(x1, z)(y1, z) = min{µSE1

(x1, y1), µRV2
(z)},

σSE1◦SE2
(x1, z)(y1, z) = min{σSE1

(x1, y1), σRV2
(z)},

λSE1◦SE2
(x1, z)(y1, z) = max{λSE1

(x1, y1), λRV2
(z)} ∀ x1y1 ∈ SE1, z ∈ RV2,

µSE1◦SE2
(x1, x2)(y1, y2) = min{µSE1

(x1, y1), µRV2
(x2), µRV2

(y2)},

σSE1◦SE2
(x1, x2)(y1, y2) = min{σSE1

(x1, y1), σRV2
(x2), σRV2

(y2)},

λSE1◦SE2
(x1, x2)(y1, y2) = max{λSE1

(x1, y1), λRV2
(x2), λRV2

(y2)}

∀ x1y1 ∈ SE1, x2, y2 ∈ RV2, x2 6= y2

Example 4. Let V∗ = {p, q, r} be a set. Let G1 = (G1, G1) and G2 = (G2, G2) be two RND on V∗,
where G1 = (RV1, SE1) and G1 = (RV1, SE1) are ND, as shown in Figure 8. G2 = (RV2, SE2) and
G2 = (RV2, SE2) are also ND, as shown in Figure 9.

The composition of G1 and G2 is G = G1 ◦G2 = (G1 ◦G2, G1 ◦G2) where G1 ◦G2 = (RV1 ◦RV2, SE1 ◦
SE2) and G1 ◦ G2 = (RV1 ◦ RV2, SE1 ◦ SE2) are NDs, as shown in Figures 10 and 11.
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Figure 8. Rough neutrosophic digraph G1 = (G1, G1).

Figure 9. Rough neutrosophic digraph G2 = (G2, G2).

Figure 10. Neutrosophic digraph G1 ◦ G2 = (RV1 ◦ RV2, SE1 ◦ SE2).
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Figure 11. Neutrosophic digraph G1 ◦ G2 = (RV1 ◦ RV2, SE1 ◦ SE2).

Theorem 3. The Composition of two rough neutrosophic digraphs is a rough neutrosophic digraph.

Proof. Let G1 = (G1, G1) and G2 = (G2, G2) be two rough neutrosophic digraphs. Let G = G1 ◦ G2 =

(G1 ◦ G2, G1 ◦ G2) be the Composition of G1 and G2, where G1 ◦ G2 = (RV1 ◦ RV2, SE1 ◦ SE2) and
G1 ◦ G2 = (RV1 ◦ RV2, SE1 ◦ SE2). To prove that G = G1 ◦ G2 is a rough neutrosophic digraph, it is
enough to show that SE1 ◦ SE2 and SE1 ◦ SE2 are neutrosophic relations on RV1 ◦ RV2 and RV1 ◦ RV2,
respectively. First, we show that SE1 ◦ SE2 is a neutrosophic relation on RV1 ◦ RV2.

If x ∈ RV1, x2y2 ∈ SE2, then

µSE1◦SE2(x, x2)(x, y2) = µRV1(x) ∧ µSE2(x2, y2)

≤ µRV1(x) ∧ (µRV2(x2) ∧ µRV2(y2))

= (µRV1(x) ∧ µRV2(x2)) ∧ (µRV1(x) ∧ µRV2(y2))

= µRV1◦RV2(x, x2) ∧ µRV1◦RV2(x, y2)

µSE1◦SE2(x, x2)(x, y2) ≤ min{µRV1◦RV2(x, x2), µRV1◦RV2(x, y2)},
σSE1◦SE2(x, x2)(x, y2) = σRV1(x) ∧ σSE2(x2, y2)

≤ σRV1(x) ∧ (σRV2(x2) ∧ σRV2(y2))

= (σRV1(x) ∧ σRV2(x2)) ∧ (σRV1(x) ∧ σRV2(y2)

= σRV1◦RV2(x, x2) ∧ σRV1◦RV2(x, y2)

σSE1◦SE2(x, x2)(x, y2) ≤ min{σRV1◦RV2(x, x2), σRV1◦RV2(x, y2)},
λSE1◦SE2(x, x2)(x, y2) = λRV1(x) ∨ λSE2(x2, y2)

≤ λRV1(x) ∨ (λRV2(x2) ∨ λRV2(y2))

= (λRV1(x) ∨ λRV2(x2)) ∨ (λRV1(x) ∨ λRV2(y2))

= λRV1◦RV2(x, x2) ∨ λRV1◦RV2(x, y2)

λSE1◦SE2(x, x2, x, y2) ≤ max{λRV1◦RV2(x, x2), λRV1◦RV2(x, y2)}.

If x1y1 ∈ SE1, z ∈ RV2, then

µSE1◦SE2(x1, z)(y1, z) = µSE1(x1, y1) ∧ µRV2(z)

≤ (µRV1(x1) ∧ µRV1(y1)) ∧ µRV2(z)

= (µRV1(x1) ∧ µRV2(z)) ∧ (µRV1(y1) ∧ µRV2(z))

= µRV1◦RV2(x1, z) ∧ µRV1◦RV2(y1, z)

µSE1◦SE2(x1, z)(y1, z) ≤ min{µRV1◦RV2(x1, z), µRV1◦RV2(y1, z)},
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σSE1◦SE2(x1, z)(y1, z) = σSE1(x1, y1) ∧ σRV2(z)

≤ (σRV1(x1) ∧ σRV1(y1)) ∧ σRV2(z)

= (σRV1(x1) ∧ σRV2(z)) ∧ (σRV1(y1) ∧ σRV2(z))

= σRV1◦RV2(x1, z) ∧ σRV1◦RV2(y1, z)

σSE1◦SE2(x1, z)(y1, z) ≤ min{σRV1◦RV2(x1, z), σRV1◦RV2(y1, z)},
λSE1◦SE2(x1, z)(y1, z) = λSE1(x1, y1) ∨ λRV2(z)

≤ (λRV1(x1) ∨ λRV1(y1)) ∨ λRV2(z)

= (λRV1(x1) ∨ λRV2(z)) ∨ (λRV1(y1) ∨ λRV2(z))

= λRV1◦RV2(x1, z) ∨ λRV1◦RV2(y1, z)

λSE1◦SE2(x1, z)(y1, z) ≤ max{λRV1◦RV2(x1, z), λRV1◦RV2(y1, z)}.

If x1y1 ∈ SE1, x2, y2 ∈ RV2 such that x2 6= y2,

µSE1◦SE2(x1, x2)(y1, y2) = µSE1(x1y1) ∧ µRV2(x2) ∧ µRV2(y2)

≤ (µRV1(x1) ∧ µRV1(y1)) ∧ µRV2(x2) ∧ µRV2(y2)

= (µRV1(x1) ∧ µRV2(x2)) ∧ (µRV1(y1)) ∧ µRV2(y2))

= µRV1◦RV2(x1, x2) ∧ µRV1◦RV2(y1, y2)

µSE1◦SE2(x1, x2)(y1, y2) ≤ min{µRV1◦RV2(x1, x2), µRV1◦RV2(y1, y2)}
σSE1◦SE2(x1, x2)(y1, y2) = σSE1(x1y1) ∧ σRV2(x2) ∧ σRV2(y2)

≤ (σRV1(x1) ∧ σRV1(y1)) ∧ σRV2(x2) ∧ σRV2(y2)

= (σRV1(x1) ∧ σRV2(x2)) ∧ (σRV1(y1)) ∧ σRV2(y2))

= σRV1◦RV2(x1, x2) ∧ σRV1◦RV2(y1, y2)

σSE1◦SE2(x1, x2)(y1, y2) ≤ min{σRV1◦RV2(x1, x2), σRV1◦RV2(y1, y2)}
λSE1◦SE2(x1, x2)(y1, y2) = λSE1(x1y1) ∨ λRV2(x2) ∨ λRV2(y2)

≤ (λRV1(x1) ∨ λRV1(y1)) ∨ λRV2(x2) ∨ λRV2(y2)

= (λRV1(x1) ∨ λRV2(x2)) ∨ (λRV1(y1)) ∨ λRV2(y2))

= λRV1◦RV2(x1, x2) ∨ λRV1◦RV2(y1, y2)

λSE1◦SE2(x1, x2)(y1, y2) ≤ max{λRV1◦RV2(x1, x2), λRV1◦RV2(y1, y2)}.

Thus, from above, it is clear that SE1 ◦ SE2 is a neutrosophic relation on RV1 ◦ RV2.
Similarly, we can show that SE1 ◦ SE2 is a neutrosophic relation on RV1 ◦ RV2. Hence,

G = (G1 ◦G2, G1 ◦G2) is a rough neutrosophic digraph.

Definition 9. Let G = (G, G) be a RND. The complement of G, denoted by G′ = (G′, G′) is a rough
neutrosophic digraph, where G′ = ((RV)′, (SE)′) and G′ = ((RV)′, (SE)′) are neutrosophic digraph such that

(1) µ(RV)′(x) = µRV(x),

σ(RV)′(x) = σRV(x),

λ(RV)′(x) = λRV(x) ∀ x ∈ V∗

µ(SE)′(x, y) = min{µRV(x), µRV(y)} − µSE(xy)

σ(SE)′(x, y) = min{σRV(x), σRV(y)} − σSE(xy)

λ(SE)′(x, y) = max{λRV(x), λRV(y)} − λSE(xy) ∀ x, y ∈ V∗.

Florentin Smarandache (ed.) Collected Papers, VII

557



(2) µRV′(x) = µRV(x),

σRV′(x) = σRV(x),

λRV′(x) = λRV(x), ∀ x ∈ V∗

µ(SE)′(x, y) = min{µRV(x), µRV(y)} − µSE(xy)

σ(SE)′(x, y) = min{σRV(x), σRV(y)} − σSE(xy)

λ(SE)′(x, y) = max{λRV(x), λRV(y)} − λSE(xy) ∀ x, y ∈ V∗.

Example 5. Consider a rough neutrosophic digraph as shown in Figure 4. The lower and upper approximations
of graph G are G = (RV, SE) and G = (RV, SE), respectively, where

RV = {(a, 0.2, 0.4, 0.6), (b, 0.2, 0.4, 0.6), (c, 0.2, 0.5, 0.9), (d, 0.2, 0.5, 0.9)},
RV = {(a, 0.3, 0.8, 0.3).(b, 0.3, 0.8, 0.3), (c, 0.5, 0.6, 0.8), (d, 0.5, 0.6, 0.8)},

SE = {(aa, 0.2, 0.3, 0.3), (ab, 0.2, 0.3, 0.3), (ad, 0.1, 0.3, 0.8), (bc, 0.1, 0.3, 0.8),
(bd, 0.1, 0.3, 0.8), (dc, 0.2, 0.4, 0.7), (dd, 0.2, 0.4, 0.7)},

SE = {(aa, 0.2, 0.4, 0.3), (ab, 0.2, 0.4, 0.3), (ad, 0.2, 0.4, 0.7), (bc, 0.2, 0.4, 0.7),
(bd, 0.2, 0.4, 0.7), (dc, 0.2, 0.4, 0.7), (dd, 0.2, 0.4, 0.7)}.

The complement of G is G′ = (G′, G′). By calculations, we have

(RV)′ = {(a, 0.2, 0.4, 0.6), (b, 0.2, 0.4, 0.6), (c, 0.2, 0.5, 0.9), (d, 0.2, 0.5, 0.9)},
(RV)′ = {(a, 0.3, 0.8, 0.3).(b, 0.3, 0.8, 0.3), (c, 0.5, 0.6, 0.8), (d, 0.5, 0.6, 0.8)},

(SE)′ = {(aa, 0, 0.1, 0.3), (ab, 0, 0.1, 0.3), (ac, 0.2, 0.4, 0.9), (ad, 0.1, 0.1, 0.1), (ba, 0.2, 0.4, 0.6), (bb, 0.2, 0.4, 0.6),

(bc, 0.1, 0.1, 0.1), (bd, 0.1, 0.1, 0.1), (ca, 0.2, 0.4, 0.9), (cb, 0.2, 0.4, 0.9), (cc, 0.2, 0.5, 0.9), (cd, 0.2, 0.5, 0.9),

(da, 0.2, 0.4, 0.9), (db, 0.2, 0.4, 0.9), (dc, 0, 0.1, 0.2), (dd, 0, 0.1, 0.2)},

(SE)′ = {(aa, 0.1, 0.4, 0), (ab, 0.1, 0.4, 0), (ac, 0.3, 0.6, 0.8), (ad, 0.1, 0.2, 0.1), (ba, 0.3, 0.8, 0.3), (bb, 0.3, 0.8, 0.3),

(bc, 0.1, 0.2, 0.1), (bd, 0.1, 0.2, 0.1), (ca, 0.3, 0.6, 0.8), (cb, 0.3, 0.6, 0.8), (cc, 0.5, 0.6, 0.8), (cd, 0.5, 0.6, 0.8),

(da, 0.3, 0.6, 0.8), (db, 0.3, 0.6, 0.8), (dc, 0.3, 0.2, 0.1), (dd, 0.3, 0.2, 0.1)}.

Thus, G′ = ((RV)′, (SE)′) and G′ = ((RV)′, (SE)′) are neutrosophic digraph, as shown in Figure 12.

Figure 12. Rough neutrosophic digraph G′ = (G′, G′).

Definition 10. A rough neutrosophic digraph G = (G, G) is self complementary if G and G′ are isomorphic,
that is, G ∼= G′ and G ∼= G′.

Florentin Smarandache (ed.) Collected Papers, VII

558



Example 6. Let V∗ = {a, b, c} be a set and R an equivalence relation on V∗ defined as:

R =

 1 0 1
0 1 0
1 0 1

 .

Let V = {(a, 0.2, 0.4, 0.8), (b, 0.2, 0.4, 0.8), (c, 0.4, 0.6, 0.4)} be a neutrosophic set on V∗. The lower and
upper approximations of V are given as,
RV = {(a, 0.2, 0.4, 0.8), (b, 0.2, 0.4, 0.8), (c, 0.2, 0.4, 0.8)},
RV = {(a, 0.4, 0.6, 0.4), (b, 0.2, 0.4, 0.8), (c, 0.4, 0.6, 0.4)}.

Let E∗ = {aa, ab, ac, ba} ⊆ V∗ ×V∗ and S an equivalence relation on E∗ defined as

S =


1 0 1 0
0 1 0 0
1 0 1 0
0 0 0 1

 .

Let E = {(aa, 0.1, 0.3, 0.2), (ab, 0.1, 0.2, 0.4), (ac, 0.2, 0.2, 0.4), (ba, 0.1, 0.2, 0.4)} be a neutrosophic set
on E∗ and SE = (SE, SE) a RNR where SE and SE are given as
SE = {(aa, 0.1, 0.2, 0.4), (ab, 0.1, 0.2, 0.4), (ac, 0.1, 0.2, 0.4), (ba, 0.1, 0.2, 0.4)},
SE = {(aa, 0.2, 0.3, 0.2), (ab, 0.1, 0.2, 0.4), (ac, 0.2, 0.3, 0.2), (ba, 0.1, 0.2, 0.4)}.

Thus, G = (RV, SE) and G = (RV, SE) are neutrosophic digraphs, as shown in Figure 13.
The complement of G is G′ = (G′, G′), where G′ = G and G′ = G are neutrosophic digraphs, as shown
in Figure 13, and it can be easily shown that G and G′ are isomorphic. Hence, G = (G, G) is a self
complementary RND.

Figure 13. Self complementary RND G = (G, G).

Theorem 4. Let G = (G, G) be a self complementary rough neutrosophic digraph. Then,

∑
w,z∈V∗

µSE(wz) =
1
2 ∑

w,z∈V∗
(µRV(w) ∧ µRV(z))

∑
w,z∈V∗

σSE(wz) =
1
2 ∑

w,z∈V∗
(σRV(w) ∧ σRV(z))

∑
w,z∈V∗

λSE(wz) =
1
2 ∑

w,z∈V∗
(λRV(w) ∨ λRV(z))

∑
w,z∈V∗

µSE(wz) =
1
2 ∑

w,z∈V∗
(µRV(w) ∧ µRV(z))

∑
w,z∈V∗

σSE(wz) =
1
2 ∑

w,z∈V∗
(σRV(w) ∧ σRV(z))

∑
w,z∈V∗

λSE(wz) =
1
2 ∑

w,z∈V∗
(λRV(w) ∨ λRV(z)).
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Proof. Let G = (G, G) be a self complementary rough neutrosophic digraph. Then, there exist two
isomorphisms g : V∗ −→ V∗ and g : V∗ −→ V∗, respectively, such that

µ(RV)′(g(w)) = µRV(w),

σ(RV)′(g(w)) = σRV(w),

λ(RV)′(g(w)) = λRV(w), ∀ w ∈ V∗

µ(SE)′(g(w)g(z)) = µ(SE)(wz),

σ(SE)′(g(w)g(z)) = σ(SE)(wz),

λ(SE)′(g(w)g(z)) = λ(SE)(wz) ∀ w, z ∈ V∗.

and

µ(RV)′(g(w)) = µRV(w),

σ(RV)′(g(w)) = σRV(w),

λ(RV)′(g(w)) = λRV(w), ∀ w ∈ V∗

µ(SE)′(g(w)g(z)) = µ(SE)(wz),

σ(SE)′(g(w)g(z)) = σ(SE)(wz),

λ(SE)′(g(w)g(z)) = λ(SE)(wz) ∀ w, z ∈ V∗.

By Definition 7, we have

µ(SE)′(g(w)g(z)) = (µRV(w) ∧ µRV(z))− µ(SE)(wz)

µ(SE)(wz) = (µRV(w) ∧ µRV(z))− µ(SE)(wz)

∑
w,z∈V∗

µ(SE)(wz) = ∑
w,z∈V∗

(µRV(w) ∧ µRV(z))− ∑
w,z∈V∗

µ(SE)(wz)

2 ∑
w,z∈V∗

µ(SE)(wz) = ∑
w,z∈V∗

(µRV(w) ∧ µRV(z))

∑
w,z∈V∗

µ(SE)(wz) =
1
2 ∑

w,z∈V∗
(µRV(w) ∧ µRV(z))

σ(SE)′(g(w)g(z)) = (σRV(w) ∧ σRV(z))− σ(SE)(wz)

σ(SE)(wz) = (σRV(w) ∧ σRV(z))− σ(SE)(wz)

∑
w,z∈V∗

σ(SE)(wz) = ∑
w,z∈V∗

(σRV(w) ∧ σRV(z))− ∑
w,z∈V∗

σ(SE)(wz)

2 ∑
w,z∈V∗

σ(SE)(wz) = ∑
w,z∈V∗

(σRV(w) ∧ σRV(z))

∑
w,z∈V∗

σ(SE)(wz) =
1
2 ∑

w,z∈V∗
(σRV(w) ∧ σRV(z))

λ(SE)′(g(w)g(z)) = (λRV(w) ∨ λRV(z))− λ(SE)(wz)

λ(SE)(wz) = (λRV(w) ∨ λRV(z))− λ(SE)(wz)

∑
w,z∈V∗

λ(SE)(wz) = ∑
w,z∈V∗

(λRV(w) ∨ λRV(z))− ∑
w,z∈V∗

λ(SE)(wz)

2 ∑
w,z∈V∗

λ(SE)(wz) = ∑
w,z∈V∗

(λRV(w) ∨ λRV(z))

∑
w,z∈V∗

λ(SE)(wz) =
1
2 ∑

w,z∈V∗
(λRV(w) ∨ λRV(z))
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Similarly, it can be shown that

∑
w,z∈V∗

µSE(wz) =
1
2 ∑

w,z∈V∗
(µRV(w) ∧ µRV(z))

∑
w,z∈V∗

σSE(wz) =
1
2 ∑

w,z∈V∗
(σRV(w) ∧ σRV(z))

∑
w,z∈V∗

λSE(wz) =
1
2 ∑

w,z∈V∗
(λRV(w) ∨ λRV(z)).

This completes the proof.

3. Application

Investment is a very good way of getting profit and wisely invested money surely gives certain
profit. The most important factors that influence individual investment decision are: company’s
reputation, corporate earnings and price per share. In this application, we combine these factors into
one factor, i.e. company’s status in industry, to describe overall performance of the company. Let us
consider an individual Mr. Shahid who wants to invest his money. For this purpose, he considers some
private companies, which are Telecommunication company (TC), Carpenter company (CC), Real Estate
business (RE), Vehicle Leasing company (VL), Advertising company (AD), and Textile Testing company
(TT). Let V∗={TC, CC, RE, VL, AD, TT } be a set. Let T be an equivalence relation defined on V∗

as follows:

T =



1 0 1 0 1 0
0 1 0 0 0 0
1 0 1 0 1 0
0 0 0 1 0 1
1 0 1 0 1 0
0 0 0 1 0 1


.

Let V = {(TC, 0.3, 0.4, 0.1), (CC, 0.8, 0.1, 0.5), (RE, 0.1, 0.2, 0.6), (VL, 0.9, 0.6, 0.1), (AD, 0.2, 0.5,
0.2), (TT, 0.8, 0.6, 0.5)} be a neutrosophic set on V∗ with three components corresponding to each
company, which represents its status in the industry and TV = (TV, TV) a rough neutrosophic set,
where TV and TV are lower and upper approximations of V, respectively, as follows:

TV = {(TC, 0.1, 0.2, 0.6), (CC, 0.8, 0.1, 0.5), (RE, 0.1, 0.2, 0.6), (VL, 0.8, 0.6, 0.5), (AD,

0.1, 0.2, 0.6), (TT, 0.8, 0.6, 0.5)},
TV = {(TC, 0.3, 0.5, 0.1), (CC, 0.8, 0.1, 0.5), (RE, 0.3, 0.5, 0.1), (VL, 0.9, 0.6, 0.1), (AD,

0.3, 0.5, 0.1), (TT, 0.9, 0.6, 0.1)}.
Let E∗ = {(TC, CC), (TC, AD), (TC, RE), (CC, VL), (CC, TT), (AD, RE), (TT, VL)},

be the set of edges and S an equivalence relation on E∗ defined as follows:

S =



1 0 0 0 0 0 0
0 1 1 0 0 1 0
0 1 1 0 0 1 0
0 0 0 1 1 0 0
0 1 0 1 1 0 0
0 0 1 0 0 1 0
0 0 0 0 0 0 1


.
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Let E = {
(
(TC, CC), 0.1, 0.1, 01

)
,
(
(TC, AD), 0.1, 0.2, 0.1

)
,
(
(TC, RE), 0.1, 0.2, 0.1

)
,(

(CC, VL), 0.8, 0.1, 0.5
)
,
(
(CC, TT), 0.8, 0.1, 0.5

)
,
(
(AD, RE), 0.1, 0.2, 0.1

)
,(

(TT, VL), 0.8, 0.6, 0.1
)
}

be a neutrosophic set on E∗ which represents relationship between companies and SE = (SE, SE)
a rough neutrosophic relation, where SE and SE are lower and upper upper approximations of E,
respectively, as follows:

SE = {
(
(TC, CC), 0.1, 0.1, 0.1

)
,
(
(TC, AD), 0.1, 0.2, 0.1

)
,
(
(TC, RE), 0.1, 0.2, 0.1

)
,(

(CC, VL), 0.8, 0.1, 0.5
)
,
(
(CC, TT), 0.8, 0.1, 0.5

)
,
(
(AD, RE), 0.1, 0.2, 0.1

)
,(

(TT, VL), 0.8, 0.6, 0.1
)
},

SE = {
(
(TC, CC), 0.1, 0.1, 0.1

)
,
(
(TC, AD), 0.1, 0.2, 0.1

)
,
(
(TC, RE), 0.1, 0.2, 0.1

)
,(

(CC, VL), 0.8, 0.1, 0.5
)
,
(
(CC, TT), 0.8, 0.1, 0.5

)
,
(
(AD, RE)0.1, 0.2, 0.1

)
,(

(TT, VL), 0.8, 0.6, 0.1
)
}.

Thus, G = (TV, SE) and G = (TV, SE) is a rough neutrosophic digraph as shown in Figure 14.

.

Figure 14. Rough neutrosophic digraph G = (G, G).

To find out the most suitable investment company, we define the score values

S(vi) = ∑
vivj∈E∗

T(vj) + I(vj)− F(vj)

3− (T(vivj) + I(vivj)− F(vivj))
,

where

T(vj) =
T(vj)+T(vj)

2 ,

I(vj) =
I(vj)+I(vj)

2 ,

F(vj) =
F(vj)+F(vj)

2 ,

and
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T(vivj) =
T(vivj)+T(vivj)

2 ,

I(vivj) =
I(vivj)+I(vivj)

2 ,

F(vivj) =
F(vivj)+F(vivj)

2 .

of each selected company and industry decision is vk if vk = max
i

S(vi). By calculation, we have

S(TC) = 0.4926, S(CC) = 1.4038, S(RE) = 0.0667, S(VL) = 0.3833, S(AD) = 0.1429 and S(TT) = 1.3529.
Clearly, CC is the optimal decision. Therefore, the carpenter company is selected to get maximum
possible profit. We present our proposed method as an algorithm. This Algorithm 1 returns the optimal
solution for the investment problem.

Algorithm 1 Calculation of Optimal decision

1: Input the vertex set V∗.
2: Construct an equivalence relation T on the set V∗.
3: Calculate the approximation sets TV and TV.
4: Input the edge set E∗ ⊆ V∗ ×V∗.
5: Construct an equivalence relation S on E∗.
6: Calculate the approximation sets SE and SE.
7: Calculate the score value, by using formula

S(vi) = ∑
vivj∈E∗

T(vj) + I(vj)− F(vj)

3− (T(vivj) + I(vivj)− F(vivj))
.

8: The decision is S(vk) = max
vi∈V∗

S(vi).

9: If vk has more than one value, then any one of S(vk) may be chosen.

4. Conclusions and Future Directions

Neutrosophic sets and rough sets are very important models to handle uncertainty from two
different perspectives. A rough neutrosophic model is a hybrid model which is made by combining
two mathematical models, namely, rough sets and neutrosophic sets. This hybrid model deals with soft
computing and vagueness by using the lower and upper approximation spaces. A rough neutrosophic
set model gives more precise results for decision-making problems as compared to neutrosophic set
model. In this paper, we have introduced the notion of rough neutrosophic digraphs. This research
work can be extended to: (1) rough bipolar neutrosophic soft graphs; (2) bipolar neutrosophic soft
rough graphs; (3) interval-valued bipolar neutrosophic rough graphs; and (4) neutrosophic soft
rough graphs.
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Abstra ct 

Neutrosophic set and neutrosophic logic theory are renowned theories to deal with complex, not clearly explained and uncertain 
real  life  problems,  in which  classical  fuzzy  sets/models may  fail  to model  properly. This  paper  introduces  an  algorithm  for 
finding minimum  spanning  tree  (MST)  of  an  undirected  neutrosophic weighted  connected  graph  (abbr. UNWCG) where  the 
arc/edge lengths are represented by a single valued neutrosophic numbers. To build the MST of UNWCG, a new algorithm based 
on matrix approach has been introduced. The proposed algorithm is compared to other existing methods and finally a numerical 
example is provided 

of the conventional set, type 1 fuzzy set and intuitionistic fuzzy set. The NSs are described by a truth membership 
function  (t),  an  indeterminate  membership  function  (i)  and  a  false  membership  function  (f)  independently.  The 
values of t, i and f are within the nonstandard unit interval ]−0, 1+[. Moreover, for the sake of applying NSs in real-
world problems efficiently, Smarandache  [5]  introduced  the  idea of single valued neutrosophic set  (abbr. SVNS). 

1. Introduction

Smarandache [5] has proposed the idea of “Neutrosophic set” (abbr. NS) which can capture the natural phenomenon 
of the imprecision and uncertainty that exists in the real life scenarios. The idea of NS is direct extensions of the idea 
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Then, Wang et al.[6] described some properties of SVNSs. The NS model is an useful method for dealing with real 
world problems because it can capture the uncertainty ( i.e., incomplete, inconsistent and indeterminate information)  
of  the  real  world  problem.  The  NSs  is  applied  in  various  fields  [24].  To  make  distinction  between  two  single  
valued  neutrosophic  numbers,  a  series  of  score  functions  are  presented  by  some  scholars  (see  table  1).  Many 
algorithms are available to find minimum spanning tree which has a large applications in divers fields of computers 
science and engineering.  In classical graph  theory,  there are many algorithms  for  finding  the MST  [4],  two most 
well know algorithms are Prim’s algorithm and Kruskal algorithm. In the literature, several types of spanning tree 
problems have been   developed by many researchers when the weights of the edges are not precise and there is an 
uncertainty  [1,  2,  3,  10,  28].  Recently  using  the  idea  of  single  valued  neutrosophic  sets  on  graph  theory,  a  new 
theory  is  introduced and it is defined as single valued neutrosophic graph theory (abbr. SVNGT).  The concept of 
SVNGT and their extensions finds its applications in diverse fields [12- 24]. However, to the best of our knowledge, 
there  are  only  few  studies  in  the  literature  to  deal  with  the  minimum  spanning  tree  problem  in  neutrosophic 
environment. Ye [8] presented a method to design the MST of a graph where nodes (samples) are represented in the 
form  of  SVNS  and  distance  between  two  nodes  which  represents  the  dissimilarity  between  the  corresponding 
samples has been derived.   Mullai et al. [27] studied the shortest path problem by minimal spanning tree algorithm 
using  bipolar  neutrosophic  numbers.  Kandasamy  [7]  proposed  a  double-valued  neutrosophic  Minimum  Spanning 
Tree  (abbr.  DVN-MST)  clustering  algorithm,  to  cluster  the  data  represented  by  double-valued   neutrosophic 
information. Mandal and Basu [9] proposed a solution approach of the optimum spanning tree problems considering 
the  inconsistency,  incompleteness and  indeterminacy of  the  information. The authors consider a network problem 
with multiple criteria which are represented by weight of each edge in neutrosophic sets. The approach proposed by 
the  authors  is  based  on  similarity  measure.  It  should  be  noted  that  the  triangular  fuzzy  numbers  and  SVNSs  are 
similar in the mathematical notation, but totally different.  

Table 1. Different types of score functions of SVNS 

Refrences Score function 

27 

 RIDVANS A =  
 1 2

2
T I F  

11 

 NANCYS A =  
  1 1

2
2 2T I F T F     

25 

 ZHANGS A =  
 2

3
T I F  

The  main  contribution  of  this  manuscript  is  to  extend  the  matrix  approach  for  finding  the  cost  minimum 
spanning tree of an undirected neutrosophic graph. Neutrosophic graphs give more precision, and compatibility  to 
model the MST problem in neutrosophic environment when compared to the fuzzy MST. 

The manuscript is organized as follows. We briefly introduce the ideas of NSs, SVNS, and the score function of 
single valued neutrosophic number in Section 2. Section 3 present the formulation problem. Section 4 describes an 
algorithm  for  finding  the minimum  spanning  tree of neutrosophic undirected graph.  In Section 5,  an  example  is 
presented  to  described  the proposed method.  In Section 6, A  comparative  study with others  existing methods  is 
presented. We present the conclusion of the paper in Section 7. 

2. Preli minaries

Some of  the  important background knowledge for  the materials  that are presented  in  this paper  is presented  in 
this section. These results can be found in [5, 6, 25].  
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Definition 2.1 [5] Le      be an universal set. The neutrosophic set A on the universal set    categorized in to three 
membership functions called the true   ( )AT x , indeterminate  ( )AI x  and  false  ( )AF x  contained in real standard or 
non-standard subset of  ]-0, 1+[  respectively. 

−0    sup  ( )AT x  + sup ( )AI x + sup ( )AF x     3+        (1) 

Definition 2.2 [6] Let    be a universal set. The single valued neutrosophic sets (SVNs) A on  the universal     is 
denoted as following 

A = { (x),  ( )AI x ,  ( )AF x    x  }       (2) 

The  functions  ( )AT x    [0.  1]  is  the  degree  of  truth  membership  of  x  in  A,  ( )AI x    [0.  1]  is  the  degree  of 
indeterminacy of  x  in A  and  ( )AF x    [0.  1]  degree of  falsity membership of x  in A. The  ( )AT x ,  ( )AI x   and 

( )AF x satisfy the following condition: 
           0   ( )AT x + ( )AI x + ( ) 3AT x          (3) 

To rank  the single valued neutrosophic sets, Zhang [25] defined  the score function and  the relation order between 
two SVNs as follows. 
Definition 2.3  [25] Let A= ( T, I, F) be a SVNs.  Then a score function S is defined as follow 

 ZHANGS A =
 2

3
T I F  

 (4) 

Here, T, I  and  F  represent  the  degree  of  truth  membership  value,  indeterminacy  membership  value  and  falsity 
membership values of A.  

Remar k 2.4: In neutrosophic mathematics, the zero sets are represented by the following form  0N
={<x, (0, 1, 1)> 

:x  X}. 

3. Proble m formulation

A  spanning  tree  of  a  connected  neutrosophic  graph  �	 is  an  acyclic  sub-graph  which  includes  every  node  of 
neutrosophic graph �	and  it also  is connected. Every neutrosophic spanning  tree has exactly �	−	1	arcs, where �	
represents	the number of nodes of the neutrosophic graph. A neutrosophic minimum spanning tree (MST) problem 
is  to  find  a  neutrosophic  spanning  tree  such  that  the  sum  of  all  its  arc  costs/  lengths  is  minimum.  In  crisp 
environment, the MST problem uses the exact costs/lengths associated with the edges of the graph. However, in real 
life scenarios the arc lengths may be imprecise/uncertain in nature. The decision maker takes their decision based on 
insufficient information due to lack of evidence or incompleteness. The effective way to work with this imprecision 
information  is  to  consider  a  neutrosophic  graph.  In  this  paper,  we  have  considered  an  undirected  neutrosophic 
weighted connected graph. The arc weights of  the neutrosophic graph are represented as neutrosophic    instead of 
crisp value. To design the MST, we have introduced an algorithm to solve this problem. 

4. Minimum spann ing tree algo rith m of neutrosoph ic undirected gra ph

In  this section,  a new version of minimum  spanning  tree problem  based on matrix approach  is presented and 
discussed on a graph with neutrosophic edge weight. 

In  the  following,  we  propose  a  neutrosophic  minimum  spanning  tree  algorithm,  whose  computing  steps  are 
described below: 
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Input:  Adjacency matrix M = ij n n
W


   for the undirected  weighted neutrosophic graph G with their edge weight.

Outpu t: MST T of graph G 

Step 1: Input neutrosophic adjacency matrix A 

Step 2: Using the score function (4), convert the neutrosophic matrix into a score matrix  ij n n
S


   .

Step 3: Iterate step 4 and step 5 until all (n-1) elements of matrix of S are either marked to 0 or all the nonzero (≠0) 
elements of the matrix are marked. 
Step 4: Find the M either column wise or row wise to compute the unmarked minimum element  ijS ,which is  the 

cost of the corresponding arc  ije in M. 

Step 5:  If  the corresponding arc  ije  of chosen  ijS produce  a cycle with  the previous marked entries of  the score 

matrix S then set  ijS = 0 else mark ijS . 
Step 6: Design the tree T including only the marked elements from the S which will be computed MST of G. 
Step 7: Stop. 

5. Practical  example

Consider the graph G= (V, E) depicted in figure 1 where V represents the vertices and E represent the edge of 
the graph. Each arc consists of neutrosophic edge’s weight. Here V= 6 and edge =9. The different steps involved in 
the design of the MST are presented as follows 

Fig 1. Undirected neutrosophic graphs 

The neutrosophic adjacency matrix A of the undirected neutrosophic graph is given below: 

Thus, using the score function, we get the score matrix 

(0.8, 0.2, 0.1) 5 

(0.7, 0.4, 0.4) 

(0.5,0.4, 0.3) 

6 

(0.4, 0.5, 0.6) (0.1, 0.7, 0.6) 

(0.3, 0.5, 0.7) 

(0.3, 0.8, 0.9) (0.2, 0.3, 0.4) 
2  4 

(0.4,0.3,0.5) 

1 

3

Algorith m: 
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S =

Fig. 2. Score matrix 

 By referring to the figure 2, the minimum entries 0.2 is selected and the corresponding edge (2, 4) is highlighted 
by red color in figure 3 . Repeat the procedure until the iteration will exist. 

Fig. 3 Undirected neutrosophic graph where the edge (2, 4) is highlighted 

By referring to the figure 4, the next non zero minimum entries 0.267 is marked and corresponding edge (2, 3) is 
highlighted with red color in figure 5. 

S =

Fig. 4 

    Fig. 5 Undirected neutrosophic graph where the edge (2,3) is  highlighted 

0.833 5 

0.633

0.6

6 

0.4330.267

0.367

0.20.5
2 4

0.533

1

3

0.833 5 

0.633

0.6

6 

0.4330.267

0.367

0.20.5
2 4

0.533

1

3
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S =

Fig.6 

By referring to the figure 6, the next minimum non zero element 0.367 is marked. But it produces the cycle so 
we delete and mark it as 0 instead of 0.367. The cycle {2, 3, 4} is shown in figure 7.  

    Fig 7. cycle {2, 3, 4} 

The next non zero minimum element 0.433 is marked and it is shown in the figure 8. The corresponding marked 
arc is portrayed in figure 9. 

S =

Fig.8 

   Fig.9. Undirected neutrosophic graph where the edge (4, 6) is  highlighted 

The  next  non  zero minimum  element  0.5  is marked  and  it  is  described  in  the  figure  10. The  corresponding 
marked arc is portrayed in figure 11. 
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S =

Fig .10 

               
               

Fig. 11 Undirected neutrosophic graph where the edge (1,2) is  highlighted 

By  referring  to  the  figure 12. The next minimum non zero element 0.533  is now marked. But  it produces  the 
cycle so we delete it and mark it as 0 in the place of 0.533. 

S =

Fig .12 

The next non zero minimum entries 0.6 is marked it is shown in the figure 13. The corresponding marked edge is 
portrayed in figure 14. 

S =

Fig .13 
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Fig .14 Undirected neutrosophic graph where the edge (5, 6) is  highlighted 

By referring to  the figure 15. The next minimum non zero element 0.633  is marked. But this edge produces a 
cycle. So, we delete and mark it as 0 in the place of 0.633 

S =

Fig .15 
By referring to the figure 16. The next minimum non zero element 0.833 is marked. But while drawing the edges 

it produces the cycle so we delete and mark it as 0 instead of 0.833 

S =

Fig .16 
After the above steps, the final path of MST of G is portrayed in figure 17. 

Fig .17. Final path of  minimum cost of spanning tree of neutrosophic graph. 

According  to  the procedure of matrix approach presented  in section 4. Thus,  the crisp minimum cost spanning 
tree is 2 and the final MST is{1, 2},{2, 3},{2, 4},{4, 6},{6, 5} 
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6. COM PARATIVE STUDY

In  this section,  the proposed method presented  in section 4  is compared with other existing methods including 
the algorithm proposed by Mullai et al [27]  as follow   

Iteration 1:  Let  1C = {1} and   1C ={2, 3, 4 ,5} 

Iteration 2:  Let  2C = {1, 4} and   2C  = {2, 3 ,5} 

Iteration 3:  Let  3C = {1, 4, 3} and  3C   = {2, 5} 

Iteration 4:  Let  4C = {1,3, 4, 5} and  4C  ={2} 

Finally, the single valued neutrosophic minimal spanning tree is 

Fig .18 . Single valued neutrosophic minimal spanning tree obtained by Mullai’s algorithm. 

   So,  using  the  score  function  (4),  the  SVN  MST  {1,  2},{2,  3},{2,  4},{4,  6},{6,  5}  obtained  by  Mullai’s 
algorithm is the same as the path obtained by the proposed algorithm.  

    The difference between the proposed algorithm and Mullai’s algorithm is that the proposed approach is based on 
matrix  approach,  which  can  be  easily  implemented  in  Matlab,  whereas  the  Mullai’s  algorithm  is  based  on  the 
comparison of edges in each iteration of the algorithm and this leads to high computation. 

7. Conclusion

This paper deals with a MST problem under the neutrosophic environment.  The edges of graph are represented 
by SVNSs. Numerical examples are used to describe the proposed algorithm. The main contribution of this study is 
to describe an algorithmic approach for MST in uncertain environment using neutrosophic set as edge weights. The 
proposed algorithm for MST is simple enough and efficient for real world problems. This work can be extended to 
the  case  of  directed  neutrosophic  graphs  and  other  structure  of  graphs  including  bipolar  neutrosophic  graphs, 
interval valued neutrosophic graphs, interval valued bipolar neutrosophic graphs.  
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Abstract: Data clustering is an important field in pattern recognition and machine learning.
Fuzzy c-means is considered as a useful tool in data clustering. The neutrosophic set, which is
an extension of the fuzzy set, has received extensive attention in solving many real-life problems of
inaccuracy, incompleteness, inconsistency and uncertainty. In this paper, we propose a new clustering
algorithm, the single-valued neutrosophic clustering algorithm, which is inspired by fuzzy c-means,
picture fuzzy clustering and the single-valued neutrosophic set. A novel suitable objective function,
which is depicted as a constrained minimization problem based on a single-valued neutrosophic set,
is built, and the Lagrange multiplier method is used to solve the objective function. We do several
experiments with some benchmark datasets, and we also apply the method to image segmentation
using the Lena image. The experimental results show that the given algorithm can be considered as
a promising tool for data clustering and image processing.

Keywords: single-valued neutrosophic set; fuzzy c-means; picture fuzzy clustering; Tsallis entropy

1. Introduction

Data clustering is one of the most important topics in pattern recognition, machine learning and
data mining. Generally, data clustering is the task of grouping a set of objects in such a way that objects
in the same group (cluster) are more similar to each other than to those in other groups (clusters). In the
past few decades, many clustering algorithms have been proposed, such as k-means clustering [1],
hierarchical clustering [2], spectral clustering [3], etc. The clustering technique has been used in many
fields, including image analysis, bioinformatics, data compression, computer graphics and so on [4–6].

The k-means algorithm is one of the typical hard clustering algorithms that is widely used in
real applications due to its simplicity and efficiency. Unlike hard clustering, the fuzzy c-means (FCM)
algorithm [7] is one of the most popular soft clustering algorithms in which each data point belongs to
a cluster to some degree that is specified by membership degrees in [0, 1], and the sum of the clusters
for each of the data should be equal to one. In recent years, many improved algorithms for FCM have
been proposed. There are three main ways to build the clustering algorithm. First is extensions of
the traditional fuzzy sets. In this way, numerous fuzzy clustering algorithms based on the extension
fuzzy sets, such as the intuitionistic fuzzy set, the Type-2 fuzzy set, etc., are built. By replacing
traditional fuzzy sets with intuitionistic fuzzy set, Chaira introduced the intuitionistic fuzzy clustering
(IFC) method in [8], which integrated the intuitionistic fuzzy entropy with the objective function.
Hwang and Rhee suggested deploying FCM on (interval) Type-2 fuzzy set sets in [9], which aimed to
design and manage uncertainty for fuzzifier m. Thong and Son proposed picture fuzzy clustering based
on the picture fuzzy set (PFS) in [10]. Second, the kernel-based method is applied to improve the fuzzy
clustering quality. For example, Graves and Pedrycz presented a kernel version of the FCM algorithm,
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namely KFCM in [11]. Ramathilagam et al. analyzed the Lung Cancer database by incorporating the
hyper tangent kernel function [12]. Third, adding regularization terms to the objective function is
used to improve the clustering quality. For example, Yasuda proposed an approach to FCM based on
entropy maximization in [13]. Of course, we can use these together to obtain better clustering quality.

The neutrosophic set was proposed by Smarandache [14] in order to deal with real-world
problems. Now, the neutrosophic set is gaining significant attention in solving many real-life
problems that involve uncertainty, impreciseness, incompleteness, inconsistency and indeterminacy.
A neutrosophic set has three membership functions, and each membership degree is a real standard
or non-standard subset of the nonstandard unit interval ]0−, 1+[= 0− ∪ [0, 1] ∪ 1+. Wang et al. [15]
introduced single-valued neutrosophic sets (SVNSs), which are an extension of intuitionistic fuzzy
sets. Moreover, the three membership functions are independent, and their values belong to the unit
interval [0, 1]. In recent years, the studies of SVNSs have been rapidly developing. For example,
Majumdar and Samanta [16] studied the similarity and entropy of SVNSs. Ye [17] proposed correlation
coefficients of SVNSs and applied them to single-valued neutrosophic decision-making problems, etc.
Zhang et al. in [18] proposed a new definition of the inclusion relation of neutrosophic sets (which is
also called the Type-3 inclusion relation), and a new method of ranking neutrosophic sets was given.
Zhang et al. in [19] studied neutrosophic duplet sets, neutrosophic duplet semi-groups and cancelable
neutrosophic triplet groups.

The clustering methods by the neutrosophic set have been studied deeply. In [20], Ye proposed
a single-valued neutrosophic minimum spanning tree (SVNMST) clustering algorithm, and he also
introduced single-valued neutrosophic clustering methods based on similarity measures between
SVNSs [21]. Guo and Sengur introduced the neutrosophic c-means clustering algorithm [22], which
was inspired by FCM and the neutrosophic set framework. Thong and Son did significant work on
clustering based on PFS. In [10], a picture fuzzy clustering algorithm, called FC-PFS, was proposed.
In order to determine the number of clusters, they built an automatically determined most suitable
number of clusters based on particle swarm optimization and picture composite cardinality for
a dataset [23]. They also extended the picture fuzzy clustering algorithm for complex data [24].
Unlike the method in [10], Son presented a novel distributed picture fuzzy clustering method on the
picture fuzzy set [25]. We can note that the basic ideas of the fuzzy set, the intuitionistic fuzzy set and
the SVNS are consistent in the data clustering, but there are differences in the representation of the
objects, so that the clustering objective functions are different. Thus, the more adequate description can
be better used for clustering. Inspired by FCM, FC-PFS, SVNS and the maximization entropy method,
we propose a new clustering algorithm, the single-valued neutrosophic clustering algorithm based on
Tsallis entropy maximization (SVNCA-TEM), in this paper, and the experimental results show that the
proposed algorithm can be considered as a promising tool for data clustering and image processing.

The rest of paper is organized as follows. Section 2 shows the related work on FCM, IFC and
FC-PFS. Section 3 introduces the proposed method, using the Lagrange multiplier method to solve
the objective function. In Section 4, the experiments on some benchmark UCI datasets indicate that
the proposed algorithm can be considered as a useful tool for data clustering and image processing.
The last section draws the conclusions.

2. Related Works

In general, suppose dataset D = {X1, X2, · · · , Xn} includes n data points, each of the data
Xi = {xi1; xi2; · · · ; xid} ∈ Rd is a d-dim feature vector. The aim of clustering is to get k disjoint clusters
{Cj|, j = 1, 2, · · · , k}, satisfying Cj′ ∩j′ 6=j Cj = ∅ and D = ∪k

j=1Cj. In the following, we will briefly
introduce three fuzzy clustering methods, which are FCM, IFC and FC-PFS.

2.1. Fuzzy c-Means

The FCM was proposed in 1984 [7]. FCM is a data clustering technique wherein each data point
belongs to a cluster to some degree that is specified by a membership grade. A data point Xi of cluster
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Cj is denoted by the term µij, which shows the fuzzy membership degree of the i-th data point in the
j-th cluster. We use V = {V1, V2, · · · , Vk} to describe the cluster centroids of the clusters, and Vj ∈ Rd

is the cluster centroid of Cj. The FCM is based on the minimization of the following objective function:

J =
n

∑
i=1

k

∑
j=1

um
ij ‖xi −Vj‖2, (1)

where m represents the fuzzy parameter and m ≥ 1. The constraints for (1) are,

k

∑
l=1

µil = 1, µij ∈ [0, 1], i = 1, 2, · · · , n, j = 1, 2, · · · , k. (2)

Using the Lagrangian method, the iteration scheme to calculate cluster centroids Vj and the fuzzy
membership degrees µij of the objective function (1) is as follows:

Vj =
∑n

i=1 µm
ij Xi

∑n
i=1 µm

ij
, j = 1, 2, · · · , k. (3)

µij = (
k

∑
l=1

(
‖Xi −Vj‖
‖Xi −Vl‖

)
2

m−1 )−1. i = 1, 2, · · · , n. j = 1, 2, · · · , k. (4)

The iteration will not stop until it reaches the maximum iterations or |J(t) − J(t−1)| < ε, where J(t)

and J(t−1) are the objection function value at (t)-th and (t− 1)-th iterations, and ε is a termination
criterion between zero and 0.1. This procedure converges to a local minimum or a saddle point of J.
Finally, each data point is assigned to a different cluster according to the fuzzy membership value,
that is Xi belongs to Cl if µil = max(µi1, µi2, · · · , µik).

2.2. Intuitionistic Fuzzy Clustering

The intuitionistic fuzzy set is an extension of fuzzy sets. Chaira proposed intuitionistic fuzzy
clustering (IFC) [8], which integrates the intuitionistic fuzzy entropy with the objective function of
FCM. The objective function of IFS is:

J =
n

∑
i=1

k

∑
j=1

µm
ij ‖Xi −Vj‖2 +

k

∑
j=1

π∗j e1−π∗j , (5)

where π∗j = 1
n ∑n

i=1 πij, and πij is the hesitation degree of Xi for Cj. The constraints of IFC are similar
to (2). Hesitation degree πik is initially calculated using the following form:

πij = 1− µij − (1− uα
ij)

1/α, where α ∈ [0, 1], (6)

and the intuitionistic fuzzy membership values are obtained as follows:

µ∗ij = µij + πij, (7)

where µ∗ij(µij) denotes the intuitionistic (conventional) fuzzy membership of the i-th data in the j-th
class. The modified cluster centroid is:

Vj =
∑n

i=1 µ∗mij Xi

∑n
i=1 µ∗mij

, j = 1, 2, · · · , k. (8)
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The iteration will not stop until it reaches the maximum iterations or the difference between µ
∗(t)
ij

and µ
∗(t−1)
ij is not larger than a pre-defined threshold ε, that is maxi,j |µ

∗(t)
ij − µ

∗(t−1)
ij | < ε.

2.3. Picture Fuzzy Clustering

In [26], Cuong introduced the picture fuzzy set (which is also called the standard neutrosophic
set [27]), which is defined on a non-empty set S, Ȧ = {〈x, µȦ(x), ηȦ(x), γȦ(x)〉|x ∈ S}, where µȦ(x)
is the positive degree of each element x ∈ X, ηȦ(x) is the neutral degree and γȦ(x) is the negative
degree satisfying the constraints,{

µȦ(x), ηȦ(x), γȦ(x) ∈ [0, 1], ∀x ∈ S.
µȦ(x) + ηȦ(x) + γȦ(x) ≤ 1, ∀x ∈ S.

(9)

The refusal degree of an element is calculated as:

ξ Ȧ(x) = 1− (µȦ(x) + ηȦ(x) + γȦ(x)), ∀x ∈ S. (10)

In [10], Thong and Son proposed picture fuzzy clustering (FC-PFS), which is related to
neutrosophic clustering. The objective function is:

J =
n

∑
i=1

k

∑
j=1

(µij(2− ξij))
m‖Xi −Vj‖2 +

n

∑
i=1

k

∑
j=1

ηij(log ηij + ξij). (11)

where i = 1, · · · , n, j = 1, · · · , k. µij, ηij and ξij are the positive, neutral and refusal degrees, respectively,
for which each data point Xi belongs to cluster Cj. Denote µ, η and ξ as the matrices whose elements
are µij, ηij and ξij, respectively. The constraints for FC-PFS are defined as follows:

uij, ηij, ξij ∈ [0, 1],
uij + ηij + ξij ≤ 1,
∑k

l=1(uil(2− ξil)) = 1,
∑k

l=1(ηil + ξil/k) = 1.

(12)

Using the Lagrangian multiplier method, the iteration scheme to calculate µij, ηij, ξij and Vj for
the model (11,12) is as the following equations:

ξij = 1− (µij + ηij)− (1− (µij + ηij)
α)1/α, where α ∈ [0, 1], (i = 1, · · · , n, j = 1, · · · , k), (13)

µij =
1

∑k
l=1(2− ξij)(

‖Xi−Vj‖
‖Xi−Vl‖

)
2

m−1

, (i = 1, · · · , n, j = 1, · · · , k), (14)

ηij =
e−ξij

∑k
l=1 e−ξil

(1− 1
k

k

∑
l=1

ξil), (i = 1, · · · , n, j = 1, · · · , k), (15)

Vj =
∑n

i=1(µij(2− ξij))
mXi

∑n
i=1(µij(2− ξij))m , (j = 1, · · · , k). (16)

The iteration will not stop until it reaches the maximum iterations or ‖µ(t) − µ(t−1)‖+ ‖η(t) −
η(t−1)‖+ ‖ξ(t) − ξ(t−1)‖ < ε.

3. The Proposed Model and Solutions

Definition 1. [15] Set U as a space of points (objects), with a generic element in U denoted by u. A SVNS
A in U is characterized by three membership functions, a truth membership function TA, an indeterminacy
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membership function IA and a falsity-membership function FA, where ∀u ∈ U, TA(u), IA(u), FA(u) ∈ [0, 1].
That is, TA : U → [0, 1], IA : U → [0, 1] and FA : U → [0, 1]. There is no restriction on the sum of
TA(u), IA(u) and FA(u); thus, 0 ≤ TA(u) + IA(u) + FA(u) ≤ 3.

Moreover, the hesitate membership function is defined as HA : U → [0, 3] and ∀u ∈ U, TA(u) +
IA(u) + FA(u) + HA(u) = 3.

Entropy is a key concept in the uncertainty field. It is a measure of the uncertainty of a system or
a piece of information. It is an improvement of information entropy. The Tsallis entropy [28], which is
a generalization of the standard Boltzmann–Gibbs entropy, is defined as follows.

Definition 2. [28] Let X be a finite set and X be a a random variable taking values x ∈ X , with distribution
p(x). The Tsallis entropy is defined as Sm(X) = 1

m−1 (1−∑x∈X p(x)m), where m > 0 and m 6= 1.

For FCM, µij denotes the fuzzy membership degree of Xi to Cj, and supports ∑k
j=1 µij = 1.

From Definition 2, the Tsallis entropy of µ can be described by Sm(µ) = ∑n
i=1

1
m−1 (1 − ∑k

j=1 µm
ij ).

n being a fixed number, Yasuda [13] used the following formulary to describe the the Tsallis entropy
of µ:

Sm(µ) = −
1

m− 1
(

n

∑
i=1

k

∑
j=1

µm
ij − 1). (17)

The maximum entropy principle has been widely applied in many fields, such as spectral
estimation, image restoration, error handling of measurement theory, and so on. In the following,
the maximum entropy principle is applied to the single-valued neutrosophic set clustering. After the
objection function of clustering is built, the maximum fuzzy entropy is used to regularize variables.

Suppose that there is a dataset D consisting of n data points in d dimensions. Let µij, γij, ηij
and ξij be the truth membership degree, falsity-membership degree, indeterminacy membership
degree and hesitate membership degree, respectively, that each data point Xi belongs to cluster
Cj. Denote µ, γ, η and ξ as the matrices, the elements of which are µij, γij, ηij and ξij, respectively,
where ξij = 3− µij − γij − ηij. The single-valued neutrosophic clustering based on Tsallis entropy
maximization (SVNC-TEM) is the minimization of the following objective function:

J = ∑n
i=1 ∑k

j=1(µij(4− ξij − γij))
m‖Xi −Vj‖2 + ρ

m−1 (∑
n
i=1 ∑k

j=1(uij(4− γij − ξij))
m − 1)

+∑n
i=1 ∑k

j=1 ηij(log ηij + ξij/3),
(18)

The constraints are given as follows:

µij, γij, ηij ∈ [0, 1], ξij ∈ [0, 3], (i = 1, 2, · · · , n, j = 1, 2, · · · , k) (19)

k

∑
l=1

(uil(4− γil − ξil)) = 1, (i = 1, 2, · · · , n), (20)

k

∑
l=1

(ηil + ξil/(3 ∗ k)) = 1, (i = 1, 2, · · · , n) (21)

The proposed model in Formulary (18)–(21) is applied to the maximum entropy principle of the
SVNS. Now, let us summarize the major points of this model as follows.

• The first term of the objection function (18) describes the weighted distance sum of each data
point Xi to the cluster center Vj. µij being from the positive aspect and (4− ξij − γij) (four is
selected in order to guarantee µij ∈ [0, 1] in the iterative calculation) from the negative aspect,
denoting the membership degree for Xi to Vj, we use µij(4− ξij − γij) to represent the “integrated
true” membership of the i-th data point in the j-th cluster. From the maximum entropy principle,
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the best to represent the current state of knowledge is the one with largest entropy, so the
second term of the objection function (18) describes the negative Tsallis entropy of µ(4− γ− ξ),
which means that the minimization of (18) is the maximum Tsallis entropy. ρ is the regularization
parameter. If γ = η = ξ = 0, the proposed model returns the FCM model.

• Formulary (19) guarantees the definition of the SVNS (Definition 1).
• Formulary (20) implies that the “integrated true” membership of a data point Xi to the

cluster center Vj satisfies the sum-row constraint of memberships. For convenience, we set
Tij = µij(4− ξij − γij), and Xi belongs to class Cl if Til = max(Ti1, Ti2, · · · , Tik).

• Equation (21) guarantees the working of the SVNS since at least one of two uncertain factors,
namely indeterminacy membership degree and hesitate membership degree, always exists in
the model.

Theorem 1. The optimal solutions of the systems (18–21) are:

Vj =
∑n

i=1(µij(4− γij − ξij))
mXi

∑n
i=1(µij(4− γij − ξij))m , (22)

µij =
1

∑k
l=1(4− γij − ξij)(

‖Xi−Vj‖2+
ρ

m−1
‖Xi−Vl‖2+

ρ
m−1

)
1

m−1

, (23)

γij = 4− ξij −
1

uij ∑k
l=1(

‖Xi−Vj‖2+
ρ

m−1
‖Xi−Vl‖2+

ρ
m−1

)
1

m−1

, (24)

ηij = (1− 1
3k

k

∑
l=1

ξil)
e−ξij

∑k
l=1 e−ξil

, (25)

ξij = 3− µij − γij − ηij. (26)

Proof. The Lagrangian multiplier of the optimization model (18–21) is:

J = ∑n
i=1 ∑k

j=1(uij(4− γij − ξij))
m‖Xi −Vj‖2 + ρ

m−1 (∑
n
i=1 ∑k

j=1(uij(4− γij − ξij))
m − 1)

+∑n
i=1 ∑k

j=1 ηij(log ηij + ξij/3) + ∑n
i=1 λi(∑C

j=1 µij(4− γij − ξij)
m)− 1)

+∑n
i=1 χi(∑k

j=1(ηij + ξij/(3k))− 1),
(27)

where λi and χi are Lagrangian multipliers.
In order to get Vj, taking the derivative of the objective function with respect to Vj, we have ∂J

∂Vj
=

∑n
i=1(µij(4− γij − ξij))

m(−2Xi + 2Vj). Since ∂J
∂Vj

= 0, so ∑n
i=1(µij(4− ηij − ξij))

m(−2Xi + 2Vj) = 0

⇔ ∑n
i=1(µij(4− ηij − ξij))

mXi = ∑n
i=1(µij(4− ηij − ξij))

mVj ⇔ Vj =
∑n

i=1(µij(4−ηij−ξij))
mXi

∑N
i=1(µij(4−ηij−ξij))m .

Similarly, ∂J
∂µij

= mµm−1
ij (4− ξij− ηij)

m‖Xi−Vj‖2 + ρm
m−1 µm−1

ij (4− ξij− ηij)
m)+λi(4− ξij− ηij) =

0⇔ µm−1
ij (4− γij − ξij)

m−1(m‖Xi −Vj‖2 + ρm
m−1 ) + λi = 0⇔ µij =

1
4−γij−ξij

( λi
m‖Xk−Vj‖2+

ρm
m−1

)
1

m−1 .

From (20), we can get ∑k
l=1(

λi
m‖Xi−Vl‖2+

mρ
m−1

)
1

m−1 = 1, that is λi = ( 1
∑k

l=1
1

(m‖Xi−Vl‖2+
mρ

m−1 )
1

m−1

)m−1, so

µij =
1

∑k
l=1(4−ξij−ηij)(

‖Xi−Vj‖2+
ρ

m−1
‖Xi−Vl‖2+

ρ
m−1

)
1

m−1

; thus, (23) holds.

From (23), we can also get µij(4 − γij − ξij) = 1

∑k
l=1(

‖Xi−Vj‖2+
ρ

m−1
‖Xi−Vl‖2+

ρ
m−1

)
1

m−1

, so γij = 4 − ξij −

1

uij ∑C
i=1(

‖Xi−Vj‖2+
ρ

m−1
‖Xi−Vk‖2+

ρ
m−1

)
1

m−1

; thus, (24) holds.

Florentin Smarandache (ed.) Collected Papers, VII

580



Similarly, ∂L
∂ηij

= log ηij + 1 − χi + ξij = 0 ⇔ ηij = e(χi − 1 − ξij), From (21), we have

∑k
l=1 eχi−1−ξil + 1

3k ∑k
l=1 ξil = 1⇔ eχi−1 ∑k

l=1 e−ξil = 1− 1
3k ∑k

l=1 ξil ⇔ eχi−1 =
1− 1

3k ∑k
l=1 ξil

∑k
l=1 e−ξil

. Therefore,

we have ηij = (1− 1
3k ∑k

l=1 ξil)
e−ξij

∑k
l=1 e−ξil

.

Finally, from Definition 1, we can get ξij = 3− µij − γij − ηij. Thus, (26) holds.

Theorem 1 guarantees the convergence of the proposed method. The detailed descriptions of
SVNC-TEM algorithm are presented in the following Algorithm 1:

Algorithm 1: SVNC-TEM

Input: Dataset D = {X1, X2, · · · , Xn} (n elements, d dimensions), number of clusters k,
maximal number of iterations (Max-Iter), parameters: m, ε, ρ

Output: Cluster result
1: t = 0;
2: Initialize µ, γ, ξ, satisfies Constraints (19) and (20);
3: Repeat
4: t = t + 1;

5: Update V(t)
j , (j = 1, 2, · · · , k) using Equation (22);

6: Update µ
(t)
ij , (i = 1, 2, · · · , n, j = 1, 2, · · · , k) using Equation (23);

7: Update γ
(t)
ij , (i = 1, 2, · · · , n, j = 1, 2, · · · , k) using Equation (24);

8: Update η
(t)
ij , (i = 1, 2, · · · , n, j = 1, 2, · · · , k) using Equation (25);

9: Update ξ
(t)
ij , (i = 1, 2, · · · , n, j = 1, 2, · · · , k) using Equation (26);

10: Update T(t)
ij = µ

(t)
ij (4− γ

(t)
ij − ξ

(t)
ij ), (i = 1, 2, · · · , n, j = 1, 2, · · · , k);

11: Update J(t) using Equation (18);
12: Until |J(t) − J(t−1)| < ε or Max-Iter is reached.
13: Assign Xi(i = 1, 2, · · · , n) to the l-th class if Til = max(Ti1, Ti2, · · · , Tik).

Compared to FCM, the proposed algorithm needs additional time to calculate µ, γ, η and ξ in
order to more precisely describe the object and get better performance. If the dimension of the given
dataset is d, the number of objects is n, the number of clusters is c and the number of iterations
is t, then the computational complexity of the proposed algorithm is O(dnct). We can see that the
computational complexity is very high if d and n are large.

4. Experimental Results

In this section, some experiments are intended to validate the effectiveness of the proposed
algorithm SVNC-TEM for data clustering. Firstly, we used an artificial dataset to show that SVNC-TEM
can cluster well. Secondly, the proposed clustering method was used in image segmentation using
an example. Lastly, we selected five benchmark datasets, and SVNC-TEM was compared to four
state-of-the-art clustering algorithms, which were: k-means, FCM, IFC and FS-PFS.

In the experiments, the parameter m was selected as two and ε = 10−5. The maximum iterations
(Max-Iter) = 100. The selected datasets have class labels, so the number of cluster k was known in
advance. All the codes in the experiments were implemented in MATLAB R2015b.

4.1. Artificial Data to Cluster by the SVNC-TEM Algorithm

The activities of the SVNC-TEM algorithm are illustrated to cluster artificial data, which was
two-dimensional data and had 100 data points, into four classes. We use an example to show the
clustering process of the proposed algorithm. The distribution of data points is illustrated in Figure 1a.
Figure 1b–e shows the cluster results when the number of iterations was t = 1, 5, 10, 20, respectively.
We can see that the clustering result was obtained when t = 20. Figure 1f shows the final results of
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the clustering; the number of iterations was 32. We can see that the proposed algorithm gave correct
clustering results from Figure 1.
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(f) t = 32

Figure 1. The demonstration figure of the clustering process for artificial data. (a) The original data.
(b–e) The clustering figures when the number of iterations t = 1, 5, 10, 20, respectively. (f) The final
clustering result.

4.2. Image Segmentation by the SVNC-TEM Algorithm

In this subsection, we use the proposed algorithm for image segmentation. As a simple example,
the Lena image was used to test the proposed algorithm for image segmentation. Through this example,
we wish to show that the proposed algorithm can be applied to image segmentation. Figure 2a is the
original Lena image. Figure 2b shows the segmentation images when the number of clusters was k = 2,
and we can see that the quality of the image was greatly reduced. Figure 2c–f shows the segmentation
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images when the number of clusters was k = 5, 8, 11 and 20, respectively. We can see that the quality
of segmentation image was improved very much with the increase of the clustering number.

(a) Lena image (b) k = 2 (c) k = 5

(d) k = 8 (e) k = 11 (f) k = 20

Figure 2. The image segmentation for the Lena image. (a) The original Lena image. (b–f) The clustering
images when the number of clusters k = 2, 5, 8, 11 and 20, respectively.

The above two examples demonstrate that the proposed algorithm can be effectively applied
to clustering and image processing. Next, we will further compare the given algorithm to other
state-of-art clustering algorithms on benchmark datasets.

4.3. Comparison Analysis Experiments

In order to verify the clustering performance, in this subsection, we experiment with five
benchmark datasets of the UCI Machine Learning Repository, which are IRIS, CMC, GLASS, BALANCE
and BREAST. These datasets were used to test the performance of the clustering algorithm. Table 1
shows the details of the characteristics of the datasets.

Table 1. Description of the experimental datasets.

Dataset No. of Elements No. of Attributes No. of Classes Elements in Each Classes

IRIS 150 4 3 [50, 50, 50]
CMC 1473 9 3 [629, 333, 511]

GLASS 214 9 6 [29, 76, 70, 17, 13, 9]
BALANCE 625 4 3 [49, 288, 288]

BREAST 277 9 2 [81, 196]

In order to compare the performance of the clustering algorithms, three evaluation criteria were
introduced as follows.

Given one data point Xi, denote pi as the truth class and qi as the predicted clustering class.
The clustering accuracy (ACC) measure is evaluated as follows:

ACC =
∑n

i=1 δ(pi, map(qi))

n
, (28)
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where n is the total number of data points, δ(x, y) = 1 if x = y; otherwise, δ(x, y) = 0. map(•) is the
best permutation mapping function that matches the obtained clustering label to the equivalent label
of the dataset. One of the best mapping functions is the Kuhn–Munkres algorithm [29]. The higher the
ACC was, the better the clustering performance was.

Given two random variables X and Y, MI(X; Y) is the mutual information of X and Y. H(X) and
H(Y) are the entropies of P and Q, respectively. We use the normalized mutual information (NMI)
as follows:

NMI(X; Y) =
MI(X; Y)√
H(X)H(Y)

. (29)

The clustering results Ĉ = {Ĉj}k̂
j=1 and the ground truth classes C = {Cj}k

j=1 are regarded as two
discrete random variables. Therefore, NMI is specified as follows:

NMI(C; Ĉ) =
∑k̂

i=1 ∑k
j=1 |Ĉi ∩ Cj| log

n|Ĉi∩Cj |
|Ĉi ||Cj |√

(∑k̂
i=1 |Ĉi log |Ĉi |

n |)(∑
k
j=1 |Cj| log

|Cj |
n )

. (30)

The higher the NMI was, the better the clustering performance was.
The Rand index is defined as,

RI =
2(a + d)
n(n− 1)

, (31)

where a is the number of pairs of data points belonging to the same class in C and to the same cluster
in Ĉ. d is the number of pairs of data points belonging to the different class and to the different cluster.
n is the number of data points. The larger the Rand index is, the better the clustering performance is.

We did a series of experiments to indicate the performance of the proposed method for
data clustering. In the experiments, we set the parameters of all approaches in the same way
to make the experiments fair enough, that is for parameter ρ, we set ρ = {0.01, 0.05, 0.07,
0.1, 0.15, 0.5, 1, 2, 5, 8, 9, 15, 20, 50}. For α, we set α = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. For each
parameter, we ran the given method 50 times and selected the best mean value to report. Tables 2–4
show the results with the different evaluation measures. In these tables, we use bold font to indicate
the best performance.

Table 2. The ACC for different algorithms on different datasets.

Dataset k-Means FCM IFC FC-PFS SVNC-TEM

IRIS 0.8803 0.8933 0.9000 0.8933 0.9000
CMC 0.3965 0.3917 0.3958 0.3917 0.3985

GLASS 0.3219 0.2570 0.3636 0.2935 0.3681
BALANCE 0.5300 0.5260 0.5413 0.5206 0.5149

BREAST 0.6676 0.5765 0.6595 0.6585 0.6686

Bold format: the best performance.

Table 3. The NMI for different algorithms on different datasets.

Dataset k-Means FCM IFC FC-PFS SVNC-TEM

IRIS 0.7514 0.7496 0.7102 0.7501 0.7578
CMC 0.0320 0.0330 0.0322 0.0334 0.0266

GLASS 0.0488 0.0387 0.0673 0.0419 0.0682
BALANCE 0.1356 0.1336 0.1232 0.1213 0.1437

BREAST 0.0623 0.0309 0.0285 0.0610 0.0797

Bold format: the best performance.
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We analyze the results from the dataset firstly. For IRIS dataset, the proposed method obtained
the best performance for ACC, NMI and RI. For the CMC dataset, the proposed method had the best
performance for ACC and RI. For the GLASS and BREAST datasets, the proposed method obtained
the best performance for ACC and NMI. For the BALANCE dataset, the proposed method had the
best performance for NMI and RI. On the other hand, from the three evaluation criteria, for ACC and
NMI, the proposed method beat the other methods for four datasets. For RI, SVNC-TEM beat the other
methods for three datasets. From the experimental results, we can see that the proposed method had
better clustering performance than the other algorithms.

Table 4. The RI for different algorithms on different datasets.

Dataset k-Means FCM IFC FC-PFS SVNC-TEM

IRIS 0.8733 0.8797 0.8827 0.8797 0.8859
CMC 0.5576 0.5582 0.5589 0.5582 0.5605

GLASS 0.5373 0.6294 0.4617 0.5874 0.4590
BALANCE 0.5940 0.5928 0.5899 0.5904 0.5999

BREAST 0.5708 0.5159 0.5732 0.5656 0.5567

Bold format: the best performance.

5. Conclusions

In the paper, we consider the truth membership degree, the falsity-membership degree,
the indeterminacy membership degree and hesitate membership degree in a comprehensive way for
data clustering by the single-valued neutrosophic set. We propose a novel data clustering algorithm,
SVNC-TEM, and the experimental results showed that the proposed algorithm can be considered
as a promising tool for data clustering and image processing. The proposed algorithm had better
clustering performance than the other algorithms such as k-means, FCM, IFC and FC-PFS. Next, we
will consider the proposed method to deal with outliers. Moreover, we will consider the clustering
algorithm combined with spectral clustering and other clustering methods.
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Abstract. Interval bipolar neutrosophic set is a signifi-
cant extension of interval neutrosophic set where every 
element of the set comprises of three independent posi-
tive membership functions and three independent nega-
tive membership functions. In this study, we first define 
correlation coefficient, and weighted correlation coeffi-
cient measures of interval bipolar neutrosophic sets and 

prove their basic properties. Then, we develop a new 
multi-attribute decision making strategy based on the 
proposed weighted correlation coefficient measure. Fi-
nally, we solve an investment problem with interval bipo-
lar neutrosophic information and comparison is given to 
demonstrate the applicability and effectiveness of the 
proposed strategy. 

Keywords: Interval bipolar neutrosophic set, multi-attribute decision making, correlation coefficient measure.

1 Introduction

Correlation coefficient is an important decision making 
apparatus in statistics to evaluate the relation between two 
sets. In neutrosophic environment [1], Hanafy et al. [2] 
derived a formula for correlation coefficient between two 
neutrosophic sets (NSs). Hanafy et al. [3] obtained the 
correlation coefficient of NSs by using centroid strategy 
which lies in [-1, 1]. The correlation coefficient obtained 
from [3] provides the information about the degree of the 
relationship between two NSs and also informs us whether 
the NSs are positive or negatively related. In 2013, Ye [4] 
defined correlation, correlation coefficient, weighted 
correlation coefficient in single valued neutrosophic set 
(SVNS) [5] environment and established a multi-criteria 
decision making (MCDM) based on the proposed weighted 
correlation coefficient measure. Broumi and Smarandache 
[6] introduced the concept of correlation coefficient and 
weighted correlation coefficient between two interval 
neutrosophic sets (INSs) [7] and established some of their 
basic properties. Hanafy et al. [8] studied the notion of 
correlation and correlation coefficient of neutrosophic data 
under probability spaces. Ye [9] suggested an improved 
correlation coefficient between two SVNSs in order to 
overcome the drawbacks of the correlation coefficient 
discussed in [4] and investigated its properties. In the same 

study, Ye [9] extended the concept of correlation 
coefficient measure of SVNS to correlation coefficient 
measure of INS environment. Furthermore, Ye [9] 
developed strategies for solving multi-attribute decision 
making (MADM) problems with single valued 
neutrosophic and interval neutrosophic environments based 
on the proposed correlation coefficient measures.   Broumi 
and Deli [10] defined correlation measure of two 
neutrosophic refined (multi) sets [11] by extending the 
correlation measure of two intuitionistic fuzzy multi-sets 
proposed by Rajarajeswari and Uma [12] and proved some 
of its basis properties. Zhang et al. [13] defined an 
improved weighted correlation coefficient on the basis of 
integrated weight for INSs and a decision making strategy 
is developed. Karaaslan [14] proposed a strategy to 
compute correlation coefficient between possibility 
neutrosophic soft sets and presented several properties 
related to the proposed strategy. Karaaslan [15] defined a 
new mathematical structure called single-valued 
neutrosophic refined soft sets (SNRSSs) and presented its 
set theoretical operations such as union, intersection and 
complement and proved some of their basic properties. In 
the same study [15], two formulas to determine correlation 
coefficient between two SNRSSs are proposed and the 
developed strategy is used to solve a clustering analysis 
problem. Şahin and Liu [16]  defined single valued 
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neutrosophic hesitant fuzzy sets (SVNHFSs) and 
established some basic properties and finally proposed a 
decision making strategy. Liu and Luo [17] defined 
correlation coefficient and weighted correlation coefficient 
for interval-valued neutrosophic hesitant fuzzy sets 
(INHFSs) due to Liu and Shi [18] and studied their 
properties. Then, Liu and Luo [17] developed a MADM 
strategy within the framework of INHFSs based on 
weighted correlation coefficient.  Ye [19] suggested a 
dynamic single valued neutrosophic multiset (DSVNM) 
based on dynamic information obtained from different time 
intervals in several practical situations in order to express 
dynamical data and operational relations of DSVNMs. In 
the same study [19], correlation coefficient and weighted 
correlation coefficient measures between DSVNMs are 
proposed and a MADM strategy is developed on the basis 
of the proposed weighted correlation coefficient under 
DSVNM setting. Recently, Ye [20] proposed two 
correlation coefficient between normal neutrosophic sets 
(NNSs) based on the score functions of normal 
neutrosophic numbers and investigated their essential 
properties. In the same study, Ye [20] formulated a 
MADM strategy by employing correlation coefficient of 
NNSs in normal neutrosophic environment.  Pramanik et 
al. [21] defined correlation coefficient and weighted 
correlation coefficient between two rough neutrosophic 
sets and proved their basic properties. In the same study, 
Pramanik et al. [21] developed a multi-criteria decision 
making strategy based on the proposed correlation 
coefficient measure and solved an illustrative example in 
medical diagnosis. 

In 2015, Deli et al. [22] introduced a novel concept 
called bipolar neutrosophic sets (BNSs) by 
generalizing the concepts of bipolar fuzzy sets [23, 24] 
and bipolar intuitionistic fuzzy sets [25]. In the same 
study, Deli et al. [22] defined score, accuracy and 
certainty functions to compare BNSs and formulated a 
MCDM approach based on the score, accuracy and 
certainty functions and bipolar neutrosophic weighted 
average operator (Aw) and bipolar neutrosophic 
weighted geometric operator (Gw). In bipolar 
neutrosophic environment, Dey et al. [26] developed a 
MADM approach based on technique for order of 
preference by similarity to ideal solution (TOPSIS) 
strategy. Deli and Subas [27] and Şahin et al. [28] 
developed MCDM strategies based on correlation 
coefficient and Jaccard similarity measures, 
respectively in BNS environment. Uluçay et al. [29] 
defined Dice, weighted Dice similarity measures, 
hybrid and weighted hybrid similarity measures for 

MCDM problems with bipolar neutrosophic 
information. Pramanik et al. [30] defined projection, 
bidirectional projection and hybrid projection 
measures between BNSs and proved their basic 
properties and then, three new MADM models are 
developed based on proposed measures.   

Mahmood et al. [31] and Deli et al. [32] incorporated 
the notion of interval bipolar neutrosophic sets 
(IBNSs) and defined some operations and operators 
for IBNSs. Recently, Pramanik et al. [33] defined new 
cross entropy and weighted cross entropy measures in 
BNS and IBNS environment and discussed some of 
their essential properties. In the same study, Pramanik 
et al. [33] developed two novel MADM strategies on 
the basis of the proposed weighted cross entropy 
measures. 

Research gap:

MADM strategy based on correlation coefficient under 
IBNSs environment. 

This paper answers the following research questions: 

i. Is it possible to introduce a novel correlation
coefficient measure for IBNSs?

ii. Is it possible to introduce a novel weighted
correlation coefficient measure for IBNSs?

iii. Is it feasible to formulate a novel MADM strategy
based on the proposed correlation coefficient measure
in IBNS environment?

iv. Is it feasible to formulate a novel MADM strategy
based on the proposed weighted correlation
coefficient measure in IBNS environment?

Motivation: 

The aforementioned analysis presents the motivation be-
hind developing correlation coefficient -based strategy for 
handling MADM problems with IBNS information.  

The objectives of the paper are as follows: 
1. To define a new correlation coefficient measure and a

new weighted correlation coefficient measure in IBNS
environment and prove their basic properties.

2. To develop a new MADM strategy based on weighted
correlation coefficient measure in IBNS environment.

In order to fill the research gap, we propose correlation 
coefficient-based MADM strategy in IBNS environment.  
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Rest of the article is organized as follows. Section 2 
provides the preliminaries of bipolar fuzzy sets, bipolar in-
tuitionistic fuzzy sets, BNSs and IBNSs. Section 3 defines 
the correlation coefficient and weighted correlation coeffi-
cient measures in IBNS environment and establishes their 
basic properties. In section 4, a new MADM strategy based 
on the proposed weighted correlation coefficient measure 
is developed. In section 5, we solve a numerical example 
and comparison analysis is given. Finally, in the last sec-
tion, conclusions are presented. 

2 Preliminaries 

2.1 Bipolar fuzzy sets 
A bipolar fuzzy set [23, 24] B in X is characterized by 

a positive membership function )(xB

  and a negative 
membership function )(xB

 . A bipolar fuzzy set B is 
expressed in the following way. 

B = {x, )(),( xx BB

    xX} 

where :)(xB

  X  [0, 1] and :)(xB

  X  [-1, 0] for 
each point x X. 

2.2 Bipolar intuitionistic fuzzy sets 

Consider X be a non-empty set, then a BIFS [25] E is ex-
pressed in the following way. 

E= {x, )(),(),(),( xxxx EEEE

    xX}       

where :)(),( xx EE

   X  [0, 1] and :)(),( xx EE

   X 

[-1, 0] for each point x X such that 0  )()( xx EE

    1 

and -1  )()( xx EE

   0. 

2.3 Bipolar neutrosophic sets 

A BNS [22]M in X is presented as follows: 
M = {x, )( ),( ),(),(),(),( xxxxxx MMMMMM

   x

X} 
where )(xM

 , )(xM

 , )(xM

 : X  [0, 1] 

and )(xM

 , )(xM

 , )(xM

 : X  [-1, 0].The positive 

membership degrees )(xM

 , )(xM

 , )(xM

 denote the 
truth membership, indeterminate membership, and false 
membership functions of an object x X corresponding to 
a BNS M and the negative membership 
degrees )(xM

 , )(xM

 , )(xM

 denote the truth 
membership, indeterminate membership, and false 
membership of an object x X to several implicit counter 
property associated with a BNS M. 

Definition 2.3.1 
Let, M1 = {x, )( ),( ),(),(),(),(

111111
xxxxxx MMMMMM

   x

X} and M2 = {x, )( ),( ),(),(),(),(
222222

xxxxxx MMMMMM

  

x X} be any two BNSs. Then, a BNS M1 is contained in 
another BNS M2, represented by M1 M2 if and only if 

)(
1

xM

  )(
2

xM

 , )(
1

xM

  )(
2

xM

 , )(
1

xM

  )(
2

xM

 ;

)(
1

xM

  )(
2

xM

 , )(
1

xM

  )(
2

xM

 , )(
1

xM

  )(
2

xM

 for 
all x X. 

Definition 2.3.2 
Let, M1 = 
{x, )( ),( ),(),(),(),(

111111
xxxxxx MMMMMM

   x

X} and M2 = 
{x, )( ),( ),(),(),(),(

222222
xxxxxx MMMMMM

   x

X} be any two BNSs [22] , then M1 = M2 if and only if 
)(

1
xM

  ),(
2

xM

 )(
1

xM

  ),(
2

xM

 )(
1

xM

  ),(
2

xM



)(
1

xM

  ),(
2

xM

 )(
1

xM

  ),(
2

xM

 )(
1

xM

  )(
2

xM

 for 
all x X. 

Definition 2.3.3 
The complement of a BNS [33] M is Mc == {x,

)( ),( ),(),(),(),( xxxxxx CCCCCC MMMMMM

   x 

X} 
where 

)(c x
M

 = )(xM

 , )(c x
M

 = 1 - )(xM

 , )(c x
M

 = )(xM

 ; 

)(c x
M

 = )(xM

 , )(c x
M

 = -1 - )(xM

 , )(c x
M

 = )(xM

 . 

Definition 2.3.4 
The union [30]of two BNSs M1 and M2 represented by 

M1M2 is defined as follows: 
M1M2 = {Max ( )(

1
xTM

 , )(
2

xTM

 ), Min ( )(
1

xI M

 , )(
2

xI M

 ), 

Min ( )(
1

xFM

 , )(
2

xFM

 ), Min ( )(
1

xTM

 , )(
2

xTM

 ), Max 

( )(
1

xI M

 , )(
2

xI M

 ), Max ( )(
1

xFM

 , )(
2

xFM

 )},  xX.

Definition 2.3.5 
The intersection [30] of two BNSs M1 and M2 denoted 

by M1M2 is defined as follows: 
M1M2 = {Min ( )(

1
xTM

 , )(
2

xTM

 ), Max 

( )(
1

xI M

 , )(
2

xI M

 ), Max ( )(
1

xFM

 , )(
2

xFM

 ), Max 

( )(
1

xTM

 , )(
2

xTM

 ), Min ( )(
1

xI M

 , )(
2

xI M

 ), Min 

( )(
1

xFM

 , )(
2

xFM

 )},  x X. 
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2.4 Interval bipolar neutrosophic sets 

Consider X  be the space of objects, then an IBNS     
[31, 32] L in X is is represented as follows: 

L= {x,

)](sup),([inf)],(sup),([inf

)],(sup),([inf)],(sup),([inf

)],(sup),([inf)],(sup),([inf

xxxx

xxxx

xxxx

LLLL

LLLL

LLLL













  x X}  

where L is characterized by positive and negative truth-
membership 

L (x), 


L  (x); inderterminacy-membership 


L (x), 


L (x); falsity-membership 

L (x), 


L (x) 

functions respectively. Here, 

L (x), 

L (x), 


L (x) [0,1]; 

L (x), 

L (x), 

L (x)  [-1, 0] for all x X 

with the conditions  0  sup 

L  (x) + sup 

L  (x) + sup


L (x)  3, and -3  sup 

L (x) + sup 

L (x) + sup


L (x)  0. 

Definition 2.4.1 :  Let LI = {x, < [inf 

1L (x), sup 

1L (x)]; 

[inf 

1L (x), sup 

1L (x)]; [inf 

1L (x), sup 

1L (x)]; [inf 

1L (x), 

sup 

1L (x)]; [inf 

1L (x), sup 

1L (x)]; [inf 

1L (x), sup 

1L (x)] 

>  x X} and L2 == {x, < [inf 

2L  (x), sup 

2L (x)]; 

[inf 

2L (x), sup 

2L (x)]; [inf 

2L (x), sup 

2L (x)]; 

[inf 

2L (x), sup 

2L (x)]; [inf 

2L (x), sup 

2L (x)]; 

[inf 

2L (x), sup 

2L (x)] >  x X} be two IBNSs [31] . Then 
LI   L2 if and only if 

inf 

1L (x)  inf 

2L (x), sup 

1L (x)  sup 

2L (x), 

inf 

1L (x)  inf 

2L (x), sup 

1L (x)  sup 

2L (x), 

inf 

1L (x)  inf 

2L (x), sup 

1L (x)  sup 

2L (x), inf 

1L (x) 
 inf 

2L (x), sup 

1L (x)  sup 

2L (x), inf 

1L

(x)  inf 

2L (x), sup 

1L  (x)  sup 

2L (x),  inf 

1L (x)  inf 


2L (x), sup 

1L (x)  sup 

2L (x), for all xX. 

Definition 2.4.2: Consider LI = {x, < [inf 

1L (x), 

sup 

1L (x)]; [inf 

1L (x), sup 

1L (x)]; [inf 

1L (x), 

sup 

1L (x)]; [inf 

1L (x), sup 

1L (x)]; [inf 

1L (x), 

sup 

1L (x)]; [inf 

1L (x), sup 

1L (x)] >  x X} and L2 = {x, 

< [inf 

2L (x), sup 

2L (x)]; [inf 

2L (x), sup 

2L (x)]; 

[inf 

2L (x), sup 

2L (x)]; [inf 

2L (x), sup 

2L (x)]; 

[inf 

2L (x), sup 

2L (x)]; [inf 

2L (x), sup 

2L (x)] >  x X} 
be two IBNSs [31] . Then LI = L2 if and only if 

inf 

1L (x) = inf 

2L (x), sup 

1L (x) = sup 

2L (x), 

inf 

1L (x) = inf 

2L (x), sup 

1L (x) = sup 

2L (x), inf 

1L (x) 

= inf 

2L (x), sup 

1L (x) = sup 

2L (x), inf 

1L (x) = 

inf 

2L (x), sup 

1L (x) = sup 

2L (x), inf 

1L (x) = 

inf 

2L (x), sup 

1L  (x) = sup 

2L (x),  inf 

1L (x) = inf 


2L (x), sup 

1L (x)  = sup 

2L (x), for all xX. 

Definition 2.4.3: The complement [33]of L = {x, < [inf 


L (x), sup 

L (x)]; [inf 

L (x), sup 

L (x)]; [inf 

L (x), 

sup 

L (x)]; [inf 

L (x), sup 

L (x)]; [inf 

L (x), sup 

L (x)]; 

[inf 

L (x), sup 

L (x)] >  x X} is defined as LC = {x, < 

[inf 
CL

 (x), sup 
CL

 (x)]; [inf 
CL

 (x), sup 
CL

 (x)]; 

[inf 
CL

 (x), sup 
CL

 (x)]; [inf 
CL

 (x), sup 
CL

 (x)]; 

[inf 
CL

 (x), sup 
CL

 (x)]; [inf 
CL

 (x), sup 
CL

 (x)] >  x X} 
where 

inf 
CL

 (x) = inf 

L (x), sup 
CL

 (x) = sup 

L (x), inf 


CL
 (x) = 1 - sup 

L (x), sup 
CL

 (x) = 1 - inf 

L (x), 

inf 
CL

 (x) = inf 

L , sup 
CL

 (x) = sup 

L , inf 
CL

 (x) = 

inf 

L , sup 
CL

 (x) = sup 

L , inf 
CL

 (x) = -1 - sup 

L (x), 

sup 
CL

 (x) = -1 - inf 

L (x), inf 
CL

 (x) = inf 

L  (x), 

sup 
CL

 (x) = sup 

L  (x) for all x X.

3 Correlation coefficient measures under IBNSs 
setting 

Definition 3.1: Let L1 and L2 be two IBNSs in X = {x1, 
x2, …, xn}, then the correlation between  L1 and L2 is 
defined as follows: 
R (L1, L2) = 
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Definition 3.2: Consider L1 and L2 be two IBNSs in X 
= {x1, x2, …, xn}, then the correlation coefficient between 
L1 and L2 is defined as follows: 
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Theorem 1. The correlation coefficient measure Cor (L1, 
L2) between two IBNSs L1, L2 satisfies the following 
properties: 

(C1) Cor (L1, L2) = Cor (L2, L1) ; 
(C2) 0Cor (L1, L2) 1; 
(C3) Cor (L1, L2) = 1, if L1= L2.

Proof: 

       (1) Cor (L1, L2) =
2/1

2211

21

)],(),([
),(

LLRLLR

LLR



=
2/1

1122

12

)],(),([
),(

LLRLLR

LLR


= Cor (L2, L1). 

(2) Since, R (L1, L2) 0, R (L1, L1) 0, R (L2, L2) 0 
and using Cauchy-Schwarz inequality we can easily prove 
that Cor (L1, L2)  1, therefore, 0Cor (L1, L2) 1. 

(3) If L1 = L2, then inf 

1L (x) = inf 

2L (x), sup 

1L (x) =
sup 

2L (x), inf 

1L (x) = inf 

2L (x), sup 

1L (x) = 

sup 

2L (x),inf 

1L (x) = inf 

2L (x), sup 

1L (x) = sup 

2L (x), 

inf 

1L (x) = inf 

2L (x), sup 

1L (x) = sup 

2L (x), inf 

1L (x) 

= inf 

2L (x), sup 

1L (x) = sup 

2L (x), inf 

1L (x) = inf



2L (x), sup 

1L (x) = sup 

2L (x) for any x X and 
therefore, Cor (L1, L2) = 1. 

Definition 3.3: Let wi = (w1, w2, ..., wn)  [0, 1] be the 
weight vector of the elements xj (j = 1, 2, ..., n), the 
weighted correlation coefficient between two IBNSs L1, L2 

can be defined by the following formula 

Corw (L1, L2) = 2/1
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If w = (1/n, 1/n, ..., 1/n)T, the Eq. (2) is reduced to Eq. (1). 

Theorem 2. The weighted correlation coefficient 
measure Corw (L1, L2) between two IBNSs L1, L2 also

satisfies the following properties: 
(C1) Corw (L1, L2) = Corw (L2, L1); 
(C2) 0Corw (L1, L2) 1; 
(C3) Corw (L1, L2) = 1, if L1= L2.

Proof: 

 (1)  Corw (L1, L2) =
2/1

2211

21

)],().,([
),(

LLRLLR

LLR

ww

w

= 2/1
1122

12

)],().,([
),(

LLRLLR

LLR

ww

w = Corw (L2, L1). 

(2) Since, Rw (L1, L2) 0, Rw (L1, L1) 0, Rw (L2, 
L2) 0 and using Cauchy-Schwarz inequality we can easily 
prove that Corw (L1, L2) 1, so, 0Corw (L1, L2) 1. 
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(3) If L1 = L2, then inf 

1L (x) = inf 

2L (x), sup 

1L (x) = 

sup 

2L (x), inf 

1L (x) = inf 

2L (x), sup 

1L (x) = 

sup 

2L (x),inf 

1L (x) = inf 

2L (x), sup 

1L (x) = sup 

2L (x), 

inf 

1L (x) = inf 

2L (x), sup 

1L (x) = sup 

2L (x), inf 

1L (x) 

= inf 

2L (x), sup 

1L (x) = sup 

2L (x), inf 

1L (x) = inf 


2L (x), sup 

1L (x) = sup 

2L (x) for any x X and hence, 
Corw (L1, L2) = 1. 

Example 1. Suppose that L1 = < [0.3, 0.7], [0.3, 0.8], 
[0.5, 0.9], [-0.9, -0.3], [-0.6, -0.2], [-0.8, -0.4] > and L2 = < 
[0.1, 0.6], [0.2, 0.7], [0.3, 0.5], [-0.8, -0.2], [-0.8, -0.3], [-
0.7, -0.4] > be two IBNSs, then correlation coefficient 
between L1 and L2 is obtain using Eq. (1) as follows: 

Cor (L1, L2) == 0.4870391. 

Example 2. If w = 0.4, then the weighted correlation 
coefficient between L1 = < [0.3, 0.7], [0.3, 0.8], [0.5, 0.9], 
[-0.9, -0.3], [-0.6, -0.2], [-0.8, -0.4] > and L2 = < [0.1, 0.6], 
[0.2, 0.7], [0.3, 0.5], [-0.8, -0.2], [-0.8, -0.3], [-0.7, -0.4] > 
is calculated by using Eq. (2) as follows. 

Corw (L1, L2) = 0.5689123. 

4. MADM strategy based on weighted corre-
lation coefficient measure in IBNS environment 

In this section, we have developed a novel MADM 
strategy based on weighted correlation coefficient measure 
in interval bipolar neutrosophic environment. Let, F = {F1, 
F2, …, Fm}, (m  2) be a discrete set of m feasible 
alternatives,  G = {G1, G2, …, Gn}, (n  2) be a set of n 
predefined attributes and wj be the weight vector of the 
attributes such that 0wj 1 and 



n
w

1j j = 1. The steps for 

solving MADM problems in IBNS environment are 
presented as follows. 

Step 1. The evaluation of the performance value of 
alternative Fi (i = 1, 2, …, m) with regard to the predefined 
attribute Gj (j = 1, 2, …, n) provided by the decision maker 
or expert can be presented in terms of  interval bipolar 
neutrosophic values qij = < [inf 

ij , sup 

ij ], [inf 

ij , sup


ij ], [inf 

ij , sup 

ij ], [inf 

ij , sup 

ij ], [inf 

ij , sup


ij ], [inf 

ij , sup 

ij ] > = < cij, dij, eij, fij, gij, hij, rij, sij, tij,
uij, vij, wij>, i = 1, 2, ..., m; j = 1, 2, ..., n. The interval 
bipolar neutrosophic decision matrix

nmijR ]~[ is presented
as given below. 

nmijR ]~[ =

mF

F

F

.

.
2

1



























mnmm

n

n

n

qqq

qqq

qqq

GGG

...
......
......

...
...

...

21

22221

11211

21

Step 2.The interval bipolar neutrosophic positive ideal 
solution (IBN-PIS) can be defined as follows: *Q < 

jc ,


jd , 

je , 

jf , 

jg , 

jh , 

jr , 

js , 

jt , 

ju , 

jv , 

jw > = < 
[{ )(Max

i ijc |jJ+; )(Min
i ijc |jJ-}, { )(Max

i ijd |jJ+}; 

)(Min
i ijd |jJ-}], [{ )(Min

i ije |jJ+; )(Max
i ije |jJ-}, 

{ )(Min
i ijf |jJ+}; )(Max

i ijf |jJ-}], [{ )(Min
i ijg |jJ+; 

)(Max
i ijg |jJ-}, { )(Min

i ijh |jJ+}; )(Max
i ijh |jJ-}], 

[{ )(Min
i ijr |jJ+; )(Max

i ijr |jJ-}, { )(sMin
i ij |jJ+; 

)(Max
i ijs |jJ-}], [{ )(Max ijt |jJ+; { )(Min

i ijt |jJ-}, 

{ )(Max
i iju |jJ+}; )(Min

i iju |jJ-}], [{ )(Max
i ijv |jJ+; 

{ )(Min
i ijv |jJ-}, { )(Max iji

w |jJ+}; )(Min iji
w |j  J-}] >, 

j = 1, 2, …, n, where J+, J- denote the benefit and cost type 
attributes, respectively.

Step 3. The weighted correlation coefficient of IBNS 
between alternative Fi (i = 1, 2, ..., m) and the ideal 
alternative *Q  can be derived as follows: 

Corw (Fi, *Q ) = 2/1**

*
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Step 4: The biggest value of Corw (Fi, *Q ), i = 1, 2, ..., 
m implies Fi , (i = 1, 2, ..., m) is the better alternative. 

In Fig 1. we represent the steps for solving MADM 
problems based on weighted correlation coefficient 
measure in IBNS environment.  
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Figure.1 Decision making procedure of proposed MADM strategy 

5. Numerical example
In this section, an illustrative numerical problem is

solved to illustrate the proposed strategy. We consider an 
MADM studied in [31, 33] where there are four possible 
alternatives to invest money namely, a food company (F1), 
a car company (F2), a arm company (F3), and a computer 
company (F4). The investment company must take a 
decision based on the three predefined attributes namely 
growth analysis (G1), risk analysis (G2), and environment 
analysis (G3) where G1, G2 are the benefit type and G3 is 
the cost type attribute [34] and the weight vector of G1, G2, 
and G3 is given by w = (w1, w2, w3) = (0.35, 0.25, 0.4) [31].  

The proposed strategy consisting of the following steps: 

Step 1. The evaluation of performance value of the 
alternatives with respect to the attributes provided by the 
decision maker can be expressed by interval bipolar 
neutrosophic values and the decision matrix is presented as 
follows:  

Interval bipolar neutrosophic decision matrix 
G1

 
 
 
 




























]7.0,8.0[],1.0,2.0[],0.0,1.0[],2.0,1.0[],1.0,0.0[],8.0,7.0[
]3.0,6.0[],3.0,4.0[],2.0,3.0[],4.0,3.0[],3.0,2.0[],6.0,3.0[
]6.0,7.0[],2.0,3.0[],1.0,2.0[],3.0,2.0[],2.0,1.0[],7.0,6.0[
]4.0,5.0[],3.0,4.0[],2.0,3.0[],4.0,3.0[],3.0,2.0[],5.0,4.0[
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F

F

F

F
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]6.0,7.0[],1.0,3.0[],1.02.0[],3.0,1.0[],2.0,1.0[],7.0,6.0[
]5.0,6.0[],3.0,4.0[],2.0,3.0[],4.0,3.0[],3.0,2.0[],6.0,5.0[
]6.0,7.0[],2.0,3.0[],1.0,2.0[],3.0,2.0[],2.0,1.0[],7.0,6.0[
]4.0,6.0[],2.0,4.0[],1.0,3.0[],4.0,2.0[],3.0,1.0[],6.0,4.0[

4

3

2

1

F

F

F

F

G3

 Multi attribute decision making problem 

    

 

Formulate the interval bipolar 
neutrosophic decision matrix Step-1 

Determine interval bipolar 
neutrosophic positive ideal 

solution 
Step- 2 

Step- 3 
Calculate weighted correlation 
coefficient measures between 

alternatives and the ideal 
solution 

  Decision making analysis phase 

Rank the alternatives and 
select the best option 

Step-4 
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]6.0,7.0[],8.0,9.0[],3.0,4.0[],9.0,8.0[],4.0,3.0[],7.0,6.0[
]4.0,5.0[],7.0,9.0[],2.0,4.0[],9.0,7.0[],4.0,2.0[],5.0,4.0[
]3.0,6.0[],8.0,9.0[],3.0,5.0[],9.0,8.0[],5.0,3.0[],6.0,3.0[
]7.0,9.0[],4.0,5.0[],2.0,3.0[],5.0,4.0[],3.0,2.0[],9.0,7.0[

4

3

2

1

F

F

F

F

. 
Step 2. Determine the IBN-PIS ( *Q ) from interval bipolar 

neutrosophic decision matrix as follows:

],[],,[],,[],,[],,[],,[ 1111
-

11111111
 wvutsrhgfedc = 

< [0.7, 0.8], [0.0, 0.1], [0.1, 0.2], [-0.3, -0.2], [-0.2, -0.1], [-

0.5, -0.3]; 

],[],,[],,[],,[],,[],,[ 222222222222
 wvutsrhgfedc = < 

[0.6, 0.7], [0.1, 0.2], [0.1, 0.3], [-0.3, -0.2], [-0.3, -0.1], [-

0.6, -0.4]; 

],[],,[],,[],,[],,[],,[ 333333333333
 wvutsrhgfedc = < 

[0.3, 0.5], [0.3, 0.5], [0.8, 0.9], [-0.3, -0.2], [-0.9, -0.8], [-

0.9, -0.7]. 

Step 3. The weighted correlation coefficient Corw (Fi, *Q ) 

between alternative Fi (i = 1, 2, ..., m) and IBN-PIS *Q is 

obtained as given below. 

Rw (F1, Q*) = 2.4465, Rw (F1, F1,) = 2.585351, Rw (Q*, Q*) 

= 2.850693, Corw (F1, Q*) = 0.331952,

Rw (F2, Q*) = 2.9205, Rw (F2, F2) = 2.905408, Corw (F2, Q*) 

= 0.3526141, 

Rw (F3, Q*) = 2.6625, Qw (F3, F3) = 2.701919, Corw (F3, 

Q*) = 0.3456741, 

Rw (F4, Q*) = 3.098, Qw (F4, F4) = 3.048081, Corw (F4, Q*) 

= 0.3565369. 

We observe that Corw (F4, Q*) > Corw (F2, Q*) > Corw (F3, 

Q*) > Corw (F1, Q*).  

Step 4. According to the weighted correlation coefficient 

values, the ranking order of the companies is presented as: 

F4 > F2 > F3 > F1.  

Hence, the most desirable investment company is F4. 

In Fig 2. we represent the graphical representation of 

alternatives versus weighted correlation coefficient values.  
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Fig 2. Graphical representation of alternatives versus 

weighted correlation coefficient values. 

Next, we compare the obtained results with the results of 

Mahmood et al. [31] and Pramanik et al. [33] in Table 1 

where the weight vector of the attributes is w = (0.35, 0.25, 

0.4) [31]. We see that ranking orders of alternatives 

derived by the proposed strategy and the strategies 

discussed by Mahmood et al. [31] and Pramanik et al. [33] 

are different. We also observe that F4 is the best option 

obtained by the proposed strategy as well as the strategy 

discussed by Mahmood et al. [31] . However, Pramanik et 

al. [33] found that F2 is the most desirable alternative 

based on weighted cross entropy measure. 

Table 1.  The results derived from different strategies 

strategy Ranking results Best 
choice 

The proposed 
weighted correlation 
coefficient strategy 

F4   F2   F3   F1 F4

Mahmood et al.’s 
strategy [31] 

F4   F1   F3   F2 F4

Weighted cross       
entropy measure [33] 

F1 ≺ F3 ≺ F4 ≺ F2 F2 
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6 Conclusion 

In the study, we have defined correlation coefficient 
and weighted correlation coefficient measures in interval 
bipolar neutrosophic environments and prove their basic 
properties. Using the proposed weighted correlation coeffi-
cient measure, we have developed a novel MADM strategy 
in interval bipolar neutrosophic environment. We have 
solved an investment problem with interval bipolar neutro-
sophic information. Comparison analysis with other exist-
ing strategies is presented to demonstrate the feasibility 
and applicability of the proposed strategy. We hope that 
the proposed correlation coefficient measures can be em-
ployed to tackle realistic multi attribute decision making 
problems such as clustering analysis [15], medical diagno-
sis [21], weaver selection [35-37], fault diagnosis [38], 
brick selection [39- 40], data mining [41], logistic centre 
location selection [42- 43], school selection [44], teacher 
selection [45-47], image processing, information fusion, 
etc. in interval bipolar neutrosophic environment. Using 
aggregation operators, the proposed strategy can be ex-
tended to multi attribute group decision making problem in 
interval bipolar neutrosophic set environment.    
. 
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Abstract: In this paper, we first propose the concept of divergence measure on neutrosophic sets. We also provide 
some formulas for the divergence measure for neutrosophic sets. After that, we investigate the properties of pro-
posed neutrosophic divergence measure. Finally, we also apply these formulas in medical problem and the classi-
fication problem.  

Keywords: neutrosophic set, divergence measure, classification problem.

1 Introduction 

The neutrosophic set [25] was first introduced by Smarandache as an extension of intuitionistic fuzzy set [1] 
and fuzzy set [36]. It is a useful mathematical tool for dealing with ambiguous and inaccurate problems [4-6, 10, 
24, 26-35, 37]. So far, many theoretical and applied results have been exploited on neutrosophic sets as the simi-
larity/distance measures of neutrosophic sets [7-9, 11, 17-19, 22]. Neutrosophic set is applied in the multi-criteria 
decision making (MCDM) problem [4-6, 10-16, 23]. A special case of neutrosophic set is Single valued neutro-
sophic set (SVNS) which introduced by Wang et al [29].  In 2014, Ye proposed distance-based similarity 
measures of single valued neutrosophic sets and their multiple attribute group decision making method [32]. In 
2017, Ye studied cotangent similarity measures for single-valued neutrosophic sets and applied it in the MCDM 
problem and in the fault diagnosis of steam turbine [34].  

In the study of the applications of fuzzy set theory, the measurements are focused heavily on research. 
Measurements are often used to measure the degree of similarity or dissimilarity between objects. One of the 
dissimilarity measures of fuzzy sets/intuitionistic fuzzy sets was recently investigated by investigators as a 
measure of the divergence of fuzzy sets [3, 12, 20, 21]. Divergence measures also have many applications in 
practical problem classes and give us interesting results [3, 12, 20, 21]. Some authors have applied divergence 
measure to determine the relationship between the patient and the treatment regimen based on symptoms, 
thereby selecting the most appropriate treatment regimen for each patient [3]. Divergence measure is also used in 
multi-criterion decision problems [3, 12, 20, 21].  

In this paper, we introduce the concept of divergence measure of neutrosophic sets, called neutrosophic 
divergence measure. We also give some expressions that define the neutrosophic divergence measures. After that, 
we investigate the properties of them. Finally, we use these neutrosophic divergence measure to identify 
appropriate treatment regimens for each patient and use them in the sample recognition problem.  

The article is organized as follows: In section 2, we recall the knowledge related to neutrosophic sets. In 
section 3, we introduce the concept of neutrosophic divergence measure and investigate their properties. We 
show some applications of neutrosophic divergence measures in section 4. In section 5, we give conclusion on 
neutrosophic divergence measure and its some development direction. 

2 Preliminary 

Definition 1. Neutrosophic set (NS) [28]: 
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 ( , ( ), ( ), ( )) |A A AA x T x I x F x x U  (1) 

where ( ) [0,1]AT x  is a trust membership function,  ( ) 0,1AI x  is indeterminacy membership function, 

 ( ) 0,1AF x   is falsity-membership function of A . 

 We denote ( )NS U  is a collection of neutrosophic set on U . In which 

 ( ,1,1,0) |U u u U 
and 

 ( , 0, 0,1) |u u U  

For two set , ( )A B NS U we have:

- Union of A and B :  

  , ( ), ( ), ( )A B x T x I x F xA B A B A B    

where 

max( ( ), ( ))( )A BT T x T xBAx  , 

( ) min( ( ), ( ))I x I x I xBAA B 
and 

( ) min( ( ), ( ))F x F x F xBAA B 

for all x X .

- Intersection of A and B : 

  , ( ), ( ), ( )A B x T x I x F xA B A B A B    

where 

min( ( ), ( ))( )A BT T x T xBAx  , 

( ) max( ( ), ( ))I x I x I xBAA B 
and 

( ) max( ( ), ( ))F x F x F xBAA B 

for all x X .

- Subset: A B  if only if

( ) ( ), ( ) ( ), ( ) ( )T x T x I x I x F x F xB B BA A A  

for all x X .

- Equal set: A B  if only if A B  and .B A
- Complement of A : 

 ( , ( ),1 ( ), ( )) |C
A A AA x F x I x T x x U  

3 Divergence measures of neutrosophic sets 

Definition 2. Let A and B  be two neutrosophic sets on U . A function : ( ) ( )D NS U NS U R   is a

divergence measure of neutrosophic sets if it satisfies the following conditions: 

Div1. ( , ) ( , )D A B D B A ,

Div2. ( , ) 0D A B   iff A B
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Div3. ( , ) ( , )D A C B C D A B   for all ( )C NS U ,

Div4. ( , ) ( , )D A C B C D A B   for all ( )C NS U .

We can easily verify that the divergence measures of neutrosophic sets are non-negative. Because, if we choose 

C   then conditions Div2 and Div3 in definition 2, then we have

( , ) ( , ) ( , ) 0D A B D A C B C D       . 

Now we give some divergence measures of Neutrosophic sets and their properties. 

Definition 3. Let A  and B  be two neutrosophic sets on 
1 2{u , ,..., }nU u u . A function : ( )D NS U

( )NS U R   is defined as follows

1

1
( , ) [ ( , ) ( , ) ( , )]

n
i i i
T I F

i

D A B D A B D A B D A B
n 

    (2) 

where 
2 ( ) 2 ( )

( , ) ( ) ln ( ) ln
( ) ( ) ( ) ( )

T u T ui i iA BD A B T u T ui iT BA T u T u T u T ui i i iB BA A

 
 

 (3) 

2 ( ) 2 ( )
( , ) ( ) ln ( )ln

( ) ( ) ( ) ( )
i A i B i
I A i B i

A i B i A i B i

I u I u
D A B I u I u

I u I u I u I u
 

    (4) 
and 

2 ( ) 2 ( )
( , ) ( )ln ( )ln

( ) ( ) ( ) ( )
i A i B i
F A i B i

A i B i A i B i

F u F u
D A B F u F x

F u F u F u F u
 

 
.  (5) 

To proof that ( , )D A B is a divergence measure of neutrosophic sets we need some following lemma. 

Lemma 1. Given (0,1]a . For all [0,1 ]z a   then  

( ) ln 2 ( ) (2 2 ) (2 ) ln(2 )f z a a a z ln a z a z a z         (6) 

is a non-decreasing function and ( ) 0f z  .

Proof. 

We obtain 
( )

ln(2 2 ) ln(2 ) 0
f z

a z a z
z


    


 for all [0,1 ]z a  . □ 

Lemma 2. Given (0,1]b . For all (0, ]z b  then 

( ) ln 2 ln 2 ( ) ln( )f z b b z z b z b z      (7) 

is a non-increasing function and ( ) 0f z  .

Proof. 

We have 
( )

ln 2 ln( ) 0
f z

z b z
z


   


 for all (0, ]z b . □ 

Lemma 3. Given (0,1]a . For all [ ,1]z a  then 

( ) ln 2 ( ) ln( ) ln 2f z a a a z a z z z      (8) 

is a non-decreasing function and ( ) 0f z  .

Proof. 

We have 
( )

ln 2 ln( ) 0
f z

z a z
z


   


 for all [ ,1]z a . □ 

Theorem 1. The function ( , )D A B  defined by eq (2, 3, 4, 5) (in definition 3) is a divergence measure of two 

Neutrosophic sets.  
Proof.  

We check the conditions of the definition. For two Neutrosophic sets A and B  on U , we have: 
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 Div1: ( , ) ( , )D A B D B A ,

 Div2:

+ If A B  we have ( , ) ( , ) ( , ) 0i i i
T I FD A B D A B D A B   . So that ( , ) 0D A B  .

+ Assume that 

1

1
( , ) [ ( , ) ( , ) ( , )] 0

n
i i i
T I F

i

D A B D A B D A B D A B
n 

   

For each iu U we have ( ) ( )A i B iT u T u (or ( ) ( )A i B iT u T u ). So that, using Lemma 1 with 

( ), ( ) ( )A i B i A ia T u z T u T u    (if ( ) ( )A i B iT u T u ) we have 

( ) ln 2 ( ) (2 2 ) (2 ) ln(2 )

2 2( )
ln ( ) ln 0

2 2

f z a a a z ln a z a z a z

a a z
a a z

a z a z

      


   
 

We obtain 

0
2 ( ) 2 ( )

( , ) ( )ln ( )ln
( ) ( ) ( ) ( )

T u T ui i iA BD AB T u T ui iT BA T u T u T u T ui i i iB BA A

 
 

and ( , ) 0iD A BT  if only if ( ) ( ) 0B i A iz T u T u    i.e. ( ) ( )B i A iT u T u .

By same way, we also obtain ( , ) 0i
ID A B  and ( , ) 0i

ID A B  if only if ( ) ( )B i A iI u I u ;

( , ) 0i
FD A B  and ( , ) 0i

FD A B  if only if ( ) ( )B i A iF u F u . Those imply that ( , ) 0D A B   if only if

.A B

 Div3. For all ( )C NS U and for all , ( 1,2,..., )iu U i n  . Because of the symmetry of divergence meas-

ures, we can consider the following cases:
- With falsity-membership  function we have: 

+ If ( ) ( ) ( )A i B i C iT u T u T u    then ( ) ( )A C i A iT u T u   and ( ) ( )B C i B iT u T u  so that 

( , )

2 ( ) ( )
( ) ln ( ) ln

( ) ( ) ( ) ( )

i
T

A C i B C i
A C i B C i

A C i B C i A C i B C i

D A C B C

T u T u
T u T u

T u T u T u T u
 

 
   

 

 
 

2 ( ) 2 ( )
( ) ln ( ) ln

( ) ( ) ( ) ( )
A i B i

A i B i
A i B i A i B i

T u T u
T u T u

T u T u T u T u
 

 

( , )i
TD A B

+ If ( ) ( ) ( )A i C i B iT u T u T u    then ( ) ( )A C i C iT u T u   and ( ) ( )B C i B iT u T u  . So that, according the 

lemma 3 with ( )A ia T u , we have

( , )

2 ( ) 2 ( )
( ) ln ( ) ln

( ) ( ) ( ) ( )

i
T

A i C i
A i C i

A i C i A i C i

D A C B C

T u T u
T u T u

T u T u T u T u
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2 ( ) 2 ( )
( ) ln ( ) ln

( ) ( ) ( ) ( )

( , )

A i B i
A i C i

A i B i A i B i

i
T

T u T u
T u T u

T u T u T u T u

D A B

 
 



+ If ( ) ( ) ( )C i A i B iT u T u T u   then ( ) ( ) ( )A C i B C i C iT u T u T u    and ( ) ( )B i C iT u T u z  with

[0,1 ( )]A iz T u  so that according the lemma 1 we have

( , )i
TD A C B C   

2 ( ) 2 ( )
( ) ln ( ) ln 0

( ) ( ) ( ) ( )
C i C i

C i C i
C i C i C i C i

T u T u
T u T u

T u T u T u T u
  

 

2 ( ) 2 ( ) 2
( ) ln ( ) ln

2 ( ) 2 ( )
A i A i

A i B i
A i A i

T u T u z
T u T u

T u z T u z


 

 
2 ( ) 2 ( )

( ) ln ( ) ln
( ) ( ) ( ) ( )

A i B i
A i B i

A i B i A i B i

T u T u
T u T u

T u T u T u T u
 

 

( , ).i
TD A B

- With indeterminacy membership function: we prove similarly to the case of falsity-membership function. 
- With falsity membership function, we have:  

+ If ( ) ( ) ( )A i B i C iF u F u F u    then ( ) ( )A C i C iF u F u   and ( ) ( )B C i C iF u F u  so that according lemma 

1 we have 

( , )i
FD A C B C   

2 ( ) 2 ( )
( )ln ( )ln

( ) ( ) ( ) ( )
A C i B C i

A C i B C i
A C i B C i A C i B C i

F u F u
F u F u

F u F u F u F u
 

 
   

 
 

2 ( ) 2 ( )
( ) ln ( ) ln 0

( ) ( ) ( ) ( )
C i C i

C i C i
C i C i C i C i

F u F u
F u F u

F u F u F u F u
  

 

2 ( ) 2 ( )
( ) ln ( ) ln

( ) ( ) ( ) ( )
B i B i

A i B i
A i B i A i B i

F u F u
F u F u

F u F u F u F u
 

 

( , )i
FD A B

+ If ( ) ( ) ( )A i C i B iF u F u F u    then ( ) ( )A C i C iF u F u   and ( ) ( )B C i B iF u F u  . So that, according the 

lemma 2 with ( )B ib F u we have

( , )

2 ( ) 2 ( )
( ) ln ( ) ln

( ) ( ) ( ) ( )

i
F

C i B i
C i B i

C i B i C i B i

D A C B C

F u F u
F u F u

F u F u F u F u

 

 
 

2 ( ) 2 ( )
( ) ln ( ) ln

( ) ( ) ( ) ( )
A i B i

A i B i
A i B i A i B i

F u F u
F u F u

F u F u F u F u
 

 

( , ).i
FD A B

 + If ( ) ( ) ( )C i A i B iF u F u F u    then according the lemma 1 we have

( , )i
FD A C B C   

2 ( ) 2 ( )
( ) ln ( ) ln

( ) ( ) ( ) ( )
A i B i

A i B i
A i B i A i B i

F u F u
F u F u

F u F u F u F u
 

 

( , ).i
FD A B
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Now, we add that with respect to the respective components we have 

1

( , )

1
[ ( , ) ( , ) ( , )]

n
i i i
T I F

i

D A C B C

D A C B C D A C B C D A C B C
n 

 

        

1

1
[ ( , ) ( , ) ( , ) ]

( , )

n
i i i

T I F
i

D A B D A B D A B
n

D A B


  





 Div4. We perform as Div 3. □

Now we consider some properties of the divergence measures defined in definition 3. 

Theorem 2. For all Neutrosophic set , ( )A B PFS U . We have

(D1) For all  A B , or B A we have

( , ) ( , ) ( , ),D A B B D A A B D A B   
(D2) ( , ) ( , )D A B A B D A B   ,

(D3) For all  A B C  we have

( , ) ( , ),D A B D A C

(D4) For all  A B C   we have

( , ) ( , )D B C D A C .

Proof. 

(D1). If A B  then ( , ) ( , )D A B B D A B   so that, we have

( , ) ( , )D A A B D A B  .

If B A  then ( , ) ( , ) 0D A B B D B B   so that, we have

( , ) ( , ) 0D A A B D A A   .

It means that if A B , or B A we have

( , ) ( , ) ( , ).D A B B D A A B D A B   
(D2). Because of the symmetry of the divergence measure. We consider the cases: 
+ If ( ) ( )A i B iT u T u  then we have 

( , )i
TD A B A B 

2 ( ) 2 ( )
( ) ln ( ) ln

( ) ( ) ( ) ( )
B i A i

B i A i
A i B i A i B i

T u T u
T u T u

T u T u T u T u
 

 

( , ),D A B  

+ if ( ) ( )B i A iT u T u  then we have 

( , )i
TD A B A B 

2 ( ) 2 ( )
( ) ln ( ) ln

( ) ( ) ( ) ( )
A i B i

A i B i
A i B i A i B i

T u T u
T u T u

T u T u T u T u
 

 
( , ).D A B  

By the same consideration for indeterminacy membership function and falsity membership function, we obtain 

( , ) ( , )D A B A B D A B   ,

(D3). For all  A B C  and for all iu U  we have:

- With the falsity-membership  function: 
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From condition ( ) ( ) ( )A i B i C iT u T u T u   and lemma 2 we have:

( , )i
TD A B

2 ( ) 2 ( )
( ) ln ( ) ln

( ) ( ) ( ) ( )
A i B i

A i B i
A i B i A i B i

T u T u
T u T u

T u T u T u T u
 

 

2 ( ) 2 ( )
( ) ln ( ) ln

( ) ( ) ( ) ( )
A i C i

A i C i
A i C i C i A i

T u T u
T u T u

T u T u T u T u
 

 

( , ),i
TD A C

- With the indeterminacy membership function: 

By the same way as falsity- membership function we have ( , ) ( , ),i i
I ID A B D A C  

- With the falsity- membership function: 

From condition ( ) ( ) ( )A i B i C iF u F u F u   and lemma 3 we have: 

( , )i
FD A B

2 ( ) 2 ( )
( ) ln ( ) ln

( ) ( ) ( ) ( )
A i B i

A i B i
A i B i A i B i

F u F u
F u F u

F u F u F u F u
 

 

2 ( ) 2 ( )
( ) ln ( ) ln

( ) ( ) ( ) ( )
A i C i

A i C i
A i C i A i C i

F u F u
F u F u

F u F u F u F u
 

 
( , ).i

FD A C  

So that, we obtain the result ( , ) ( , ).D A B D A C
(D4). By the same way as (D4) using lemma 1, lemma 2 and lemma 3, it is easy to derive these results when 
considering specific cases. □ 

4 Applications of divergence measure of Neutrosophic set 

In this section we apply the Neutrosophic divergence measures in the medical diagnosis and classification 
problems.  

4.1 In the medical diagnosis 

Now, we applied the Neutrosophic divergence measure for obtaining a proper diagnosis for the data given in 
Table 1 and Table 2.  This data was modified from the data that introduced in [2]. Usage of diagnostic methods 

D = {Viral fever ( 1A ), Malaria ( 2A ), Typhoid ( 3A ), Stomach problem ( 4A ), Chest problem( 5A )} for patients 

with given values of symptoms S = {temperature ( 1s ), headache ( 2s ), stomach pain ( 3s ), cough ( 4s ), chest 

pain ( 5s )}. In this case, the neutrosophic set is useful to handle them. Here, for each , ( 1, 2,...,5)kA D k  , 

is expressed in form that is a neutrosophic set on the universal set  1 2 3 4 5, , , ,S s s s s s , see Table 1. The

information of symptoms characteristic for the considered patients is given in Table 2. In which, for each patient 

( 1, 2,3,4)jB j  is a neutrosophic set in the universal set  1 2 3 4 5, , , ,S s s s s s .

To select the appropriate diagnostic method we calculate the divergence measure between each patient and 
each diagnosis. After that, we chose the smallest value of them. This will be to give us the best diagnosis for 
each patient (Table 3).  

The divergence measure of a diagnosis ( 1,2,...,5)kA D k  for each patient ( 1, 2,3,4)jB j   is computed 

by using the Eq.(2), Eq.(3), Eq.(4), Eq.(5) as  follows: 

1

1
( , ) [ ( , ) ( , ) ( , )]

n
i i i

k j T k j I k j F k j
i

D A B D A B D A B D A B
n 
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where 
2 ( )2 ( )

( ) ( ) ln ( ) ln
( ) ( ) ( ) ( )

, jk

k j

k j k j

BA
k j A B

A B A B

T uT u ii iD T u T ui iT T u T u T u T ui i i i
A B  

 

2 ( )2 ( )
( ) ( ) ln ( ) ln

( ) ( ) ( ) ( )
, jk

k j

k j k j

BA
I k j A B

A B A BI I

I uI u ii iD I u I ui iu I u u I ui i i i
A B  

 

and 
2 ( )2 ( )

( ) ( ) ln ( ) ln
( ) ( ) ( ) ( )

, jk

k j

k j k j

BA
F k j A B

A B A BF F

F uF u ii iD F u F ui iu F u u F ui i i i
A B  

 
. 

Table 1. Symptoms Characteristics for the Diagnosis 

Viral fever Malaria Typhoid 
Stomach 

Problem 
Chest 

Problem 

Temperature (0.7,0.5,0.6) (0.7,0.9,0.1) (0.3,0.7,0.2) (0.1,0.6,0.7) (0.1,0.9,0.8) 

Headache (0.8,0.2,0.9) (0.4,0.5, 0.5) (0.6,0.9,0.2) (0.7,0.4,0.3) (0.1,0.6,0.7) 

Somach pain (0.8,1,0.1) (0.5,0.9,0.2) (0.2,0.5,0.5) (0.7,0.7,0.8) (0.5,0.7,0.6) 

Cough (0.45,0.8,0.7) (0.7,0.8,0.6) (0.2,0.5,0.5) (0.2,0.8,0.65) (0.2,0.8,0.6) 

Chest pain (0.2,0.6,0.5) (0.1,0.6,0.8) (0.1,0.8,0.8) (0.5,0.8,0.6) (0.8,0.8,0.2) 

Table 2. Symptoms Characteristics for the Patients  

Temperature Headache Stomach pain Cough Chest pain 

Al ( )1B ) (0.7,0.6,0.5) (0.6,0.3,0. 5) (0. 5,0. 5,0.75) (0.8,0.75,0.5) (0.7,0.2,0.6) 

Bob ( )2B (0.7,0.3,0.5) (0.5,0.5,0.8) (0.6,0. 5,0. 5) (0.65,0.4,0.75) (0. 2,0.85,0.65) 

Joe ( )3B (0.75,0.5,0.5) (0.2,0.85,0.7) (0.7,0.6,0.4) (0.7,0.55,0. 5) (0. 5,0. 9,0.64) 

Ted 
4

( )B (0.4,0.7,0.6) (0.7,0.5,0.7) (0.6,0.7,0.5) (0.5,0.9,0.65) (0.6,0.5,0.85) 

The computed results of the divergence measures are listed in Table 3. From the results, we see that Al and Ted 
should use diagnostic methods corresponding to Stomach Problem, Bob use a Viral fever, Joe use a Malaria.  

Table 3. Diagnosis results for the divergence measure using eq. (2)  

Viral fever Malaria Typhoid 
Stomach 
Problem 

Chest 
Problem 

Al 0.81614 0.82946 1.14558 0.75326 1.10798 

Bob 0.49750 0.59104 0.73430 0.79456 1.14038 

Joe 0.75011 0.60603 0.89659 0.88206 0.79920 

Ted 0.48722 0.61785 0.81009 0.36199 0.72614 

4.2 In the classification problem 

Assume that, we have m  pattern 1 2{ , ,..., }mA A A , in which each pattern is a Neutrosophic set on 

universal set 1 2{ , ,..., }nU u u u . Suppose that, we have a sample B  with the given feature information. Our 

goal is to classify sample B into which sample. To solve this, we calculate the divergence measure of B  with 

each pattern ( 1, 2,..., )iA i m . Then we choose the smallest value. It gives us the class that B belongs to. 

Example 1. Assume that three are three Neutrosophic patterns in 1 2 3{ , , }U u u u  as following
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1 1 2 3{(u ,0.7,0.7,0.2),(u ,0.7,0.8,0.4), (u ,0.6,0.8,0.2)}A 

2 1 2 3{(u ,0.5,0.7,0.3),(u ,0.7,0.7,0.5),(u ,0.8,0.6,0.1)}A 

3 1 2 3{(u ,0.9,0.5,0.1),(u ,0.7,0.6,0.4),(u ,0.8,0.5,0.2)}A 
Assume that a sample 

1 2 3{(u ,0.7,0.8,0.4),(u ,0.8,0.5,0.3),(u ,0.5,0.8,0.5)}B 
Using the divergence measure in Eq.(2) we have 

1( , ) 0.15372D A B  , 
2( , ) 0.26741D A B  3( , ) 0.29516D A B  . 

So that we can classifies that B belongs to class 1A . 

5 Conclusion 

Neutrosophic set theory is more and more interested by researches. There are many theoretical and applied 
results on Neutrosophic sets that are built and developed. In this paper, we study the divergence measure of 
Neutrosophic sets. Along with that, we offer some divergence formulas on Neutrosophic sets and give some 
properties of these measurements. Finally we apply the proposed measures in some cases.  

In the future, we will continue to study this measure and offer some of their applications in other areas such 
as image segmentation or multi-criteria decision making. 
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Abstract.In this paper, we introduced a new concept of single valued neutrosophic graph (SVNG) known as constant single valued 

neutrosophic graph (CSVNG). Basically, SVNG is a generalization of intuitionistic fuzzy graph (IFG). More specifically, we described 

and explored somegraph theoretic ideas related to the introduced concepts of CSVNG. An application of CSVNG in a Wi-Fi network 

system is discussed and a comparison of CSVNG with constant IFG is established showing the worth of the proposed work. Further, 

several terms like constant function and totally constant function are investigated in the frame-work of CSVNG and their characteristics 

are studied.

Keywords.Single valued neutrosophic graph. Constant single valued neutrosophic graph; constant function; totally con-

stant function; Wi-Fi network. 

1. Introduction
Dealing with uncertain situations and insufficient information requires some high potential mathematical tools. 

Graph theory is one of the mathematical tools which effectively deals with large data. If there are some of uncer-

tainty factors, then fuzzy graph is the appropriate tool to be used. In addition to its ability of handling large data, 

graph theory has a special interest as it can be applied in several important areas including management sciences 

[19], social sciences [17], computer and information sciences [41], communication networks [18],  description of 

group structures [39], database theory [26]and economics [25]. 

The concept of fuzzy set (FS) proposed by Zadeh [46] is among the famous toolsdealing with uncertain situations 

and insufficient information. After, Kaufmann [20] introduced the notion of fuzzy graph. A comprehensive study 

on fuzzy graphs is done by Rosenfeld [40]in which he shown some of their basic properties. The work in the field 

of graph theory is exemplary during the past decades as its concepts are applied in many real-life problems such 

as cluster analysis [14,6,45,30], slicing [30], for solving fuzzy intersecting equations [31,29], in some theory of 

data base [26], in networking problems [27], in the structure of a group [43, 32], in chemistry [44], in air trafficking 

[35], in the control of traffic [34] etc. The worth of FG lies in its capability of handling with uncertainties and it 

has done so far better but Atanassov [1] proposed that FSs only deals with one sided uncertainties which is not 

enough as human nature isn’t limited to only yes type or no type problems. Hence the logic of intuitionistic fuzzy 

set (IFS) have been developed sufficient to deal with uncertainties of both yes and no types. Atanassov’s IFS gave 

rise to the theory of IFG proposed by Parvathi and Karunambigai [36]. The structure of IFG is advanced and is 

applied successfully social networks [13], clustering [23], radio coverage network [21] and shortest path problems 

[32] etc. Furthermore, Parvathi et al [36-28] did some work on constant IFGs and operations of IFGs. The concept 

of intuitionistic fuzzy hypergraphs (IFHGs) was proposed by Parvathi et al. [37] which were applied in real life 

problems by Akram and Wieslaw [3]. NagoorGani and Shajitha [15] wrote about degree, order and size for IFGin 

2010. Akram and Davvaz [2] gave the concept of strong IFG. 

Smarandache in 1995 develop the neutrosophic logic which give rise to a novel theory of neutrosophic set (NS) 

[42] which give rise to the development of single/double and triple valued NSs [16,22,24]. Broumi et al initiated 

the concept of single-valued neutrosophic graph (SVNG) [7]. Work on the operations of SVNG can be found in 

[5]. Note on the degree, order and size of SVNG is present in [8].Recently, Broumi et al[47]introduced a single-

valued neutrosophic techniques for analysis of WIFI connection. The hypergraph i.e. single-valued neutrosophic 

hyper graph is introduced in [4]. Neutrosophic sets and graphs have ben widely studied in recent decades. Various 
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real life applications are discussed using neutrosophc techniques. For development in neutrosophic sets and graphs 

and their applications, one is refer to [9-12, 48-67,68-71]. 

In this paper, we introduced the concept of CSVNG and investigated some graph theoretic ideas related to this 

introduced concept. An application of CSVNG in a Wi-Fi network system is discussed and a comparison of 

CSVNG with constant IFG is established in order to show the worth of the proposed concept. 

The rest of the paper is organized as follows. In Section 2, we recalled the necessary basic concepts and properties 

of IFG, CIFG and SVNG.In section 3, the concept of CSVNG is described and some related graph theoretic ideas 

are explored. In Section 4, we discussed the characteristic of CSVNGs, while section 5 deals with an application 

of CSVNGs in Wi-Fi network system. Finally,  advantages and concluding remarks are discussed. 

2 Preliminaries 

This section is basically about some very basic definitions. The concepts of IFG, CIFG and SVNG are discussed 

and explained with the help of some examples. For undefined terms and notions, we refer to [5, 8, 35, 36]. 

Definition 1 [36]. A Pair Ǥ = (Ѷ, Ẽ) is said to be �	
 if

(i) Ѷ = �ѷ, ѷ�, ѷ�, … ѷ�� are the set of vertices such that Ṫ: Ѷ ⟶ [0, 1] and F: Ѷ ⟶ [0, 1] represents

the degree of membership and non-membership of the element ѷ� ∈ Ѷ respectively with a condition

that 0 ≤ Ṫ(ѷ�) + F(ѷ�) ≤ 1 for all ѷ� ∈ Ѷ, (� ∈ �).
(ii) Ẽ ⊆ Ѷ × Ѷ where Ṫ�: Ѷ × Ѷ ⟶ [0, 1] and F�: Ѷ × Ѷ ⟶ [0, 1] represents the degree of membership

and non-membership of the element (ѷ� , ѷ#) ∈ Ẽ such that Ṫ�$ѷ� , ѷ#% ≤	min'Ṫ(ѷ�), Ṫ(ѷ#)( andF�$ѷ� , ѷ#% ≤	max'F(ѷ�), F(ѷ#)( with a condition 0 ≤ Ṫ�$ѷ� , ѷ#% + F�$ѷ� , ѷ#% ≤ 1 for all$ѷ� , ѷ#% ∈ Ẽ	(� ∈ �).
Example 1.Let Ǥ = (Ѷ, Ẽ) be an IFG where Ѷ = �ѷ, ѷ�, ѷ�� be the set of vertices and Ẽ = �ѷѷ�, ѷѷ�, ѷ�ѷ��
be the set of edges. Then 

ѷ

ѷ� ѷ�
Figure 1 (IFG) 

Definition 2 [28].A pair Ǥ = (Ѷ, Ẽ) is said to be Constant−�	
 of degree (ƙ�, ƙ#) or $ƙ� , ƙ#% − �	
.If
ḍṪ(ѷ�) = ƙ�, ḍ, $ѷ-% = ƙ-∀ѷ� , ѷ# ∈ Ѷ.

Example 2. Let Ǥ = (Ѷ, Ẽ) be an IFG where Ѷ = �ѷ, ѷ�, ѷ�, ѷ/� be the set of vertices and Ẽ =�ѷѷ�, ѷ�ѷ�, ѷ�ѷ/, ѷ/ѷ�  be the set of edges. Then
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			ѷ0 ѷ�

ѷ/ ѷ�

Figure 2 (Constant−�	
 of degree (ƙ� , ƙ#)) 
The degree of ѷ, ѷ�, ѷ�, ѷ/ is (0.5, 1.0).

Definition 3 [7].A pair Ǥ = (Ѷ, Ẽ)is said to be as 123
 if

(i) Ѷ = �ѷ, ѷ�, ѷ�, … ѷ��are the set of vertices such that Ṫ: Ѷ ⟶ [0, 1], Î: Ѷ ⟶ [0, 1] andF: Ѷ ⟶ [0, 1]
denote the degree of membership, indeterminacy and non-membership of the element ѷ� ∈ Ѷ respec-

tively with a condition that0 ≤ Ҭ + Î + F ≤ 3 for all ѷ� ∈ Ѷ, (� ∈ �).

(ii) 	Ě ⊆ Ѷ × ѶwhereṪ�: Ѷ × Ѷ ⟶ [0, 1], Î�: Ѷ × Ѷ ⟶ [0, 1] andF�: Ѷ × Ѷ ⟶ [0, 1] denote the degree of

membership, abstinence and non-membership of the element $ѷ� , ѷ#% ∈ Ẽ such that Ṫ�$ѷ� , ѷ#% ≤min'Ṫ�(ѷ�), Ṫ�$ѷ#%(, Î�$ѷ� , ѷ#% ≥ max'Î�(ѷ�), Î�$ѷ#%( and F�$ѷ� , ѷ#% ≥ max'F�(ѷ�),			F�$ѷ#%( with a

condition 0 ≤ Ṫ�$ѷ� , ѷ#% + Î�$ѷ� , ѷ#% ∈ +F�$ѷ� , ѷ#% ≤ 3 for all  $ѷ� , ѷ#% ∈ Ẽ, (� ∈ �).
Example 3.Let Ǥ = (Ѷ, Ẽ) be aSVNG where Ѷ = �ѷ, ѷ�, ѷ�, ѷ/� be the set of vertices and Ẽ =�ѷѷ�, ѷ�ѷ�, ѷ�ѷ/, ѷ/ѷ�  be the set of edges. Then

		ѷ ѷ�

ѷ/ ѷ�

Figure 3 .SVNG 
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3 Constant single valued neutrosophic graph 

In this section, the concept of CSVNG is introduced and supported with some examples. We discussed some 

related terms like completeness, total degree and constant function and exemplified them. Some results are also 

studied related to completeness and constant functions.

Definition 4. A pair Ǥ = (Ѷ, Ẽ) is said to be constant−123
 of degree (ƙ� , ƙ#, ƙ>)or $ƙ�, ƙ# , ƙ>% − 123
.IfḍṪ(ѷ�) = ƙ� , ḍÎ$ѷ#% = ƙ#,	andḍ?(ѷ>) = ƙ>∀ѷ� , ѷ# , ѷ> ∈ Ѷ.
Example 4.Let Ǥ = (Ѷ, Ẽ) be a SVNG where Ѷ = �ѷ, ѷ�, ѷ�, ѷ/� be the set of vertices and Ẽ =�ѷѷ�, ѷ�ѷ�, ѷ�ѷ/, ѷ/ѷ�  be the set of edges. Then CSVNG is shown in the below figure 4.

ѷ ѷ�

ѷ/ ѷ�

Figure 4 (Constant-SVNG of degree (ƙ� , ƙ# , ƙ>))
The degree of ѷ, ѷ�, ѷ�, ѷ/ is (0.9, 1.3, 1.6).
Remark 1. A complete 123
 may not be a constant-123
.
Example 5.Consider a graph Ǥ = (Ѷ, Ẽ) where Ѷ = �ѷ, ѷ�, ѷ�, ѷ/� be the set of vertices and Ẽ ='ѷѷ�, ѷ�ѷ�, ѷ�ѷ/, ѷѷ�,ѷ�ѷ/, ѷ/ѷ(  be the set of edges. Then

ѷ

ѷ/ ѷ�

	
ѷ�

Figure 5 (Ǥ is complete but not Constant-123
) 
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Definition 5. The total degree of a vertex ѷ in a123
 is defined as

Bɗ(ѷ) = DE ɗṪF(ѷ) + Ṫ(ѷ),
ѷ∈Ẽ

E ɗÎF(ѷ) + Î(ṽ),
ѷ∈Ẽ

E ɗ?F(ѷ) + F(ѷ)
ѷ∈Ẽ

H
If every vertex has the same total degree, then it is called 123
 of total degree or totally constant 123
.
Example 6.Consider a graph Ǥ = (Ѷ, Ẽ) where Ѷ = �ѷ, ѷ�, ѷ�, ѷ/� be the set of vertices and Ẽ =�ѷѷ�, ѷ�ѷ�, ѷ�ѷ/, ѷ/ѷ�  be the set of edges. Then

ѷ ѷ�

ѷ/ ѷ�
Figure 6 (SVNG) 

Constant SVNG of total degree (1.6, 1.8, 1.7).
Theorem 1. If  Ǥ be a SVNG. Then (Ṫ, Î, F)is a constant function iff the following are equivalent.

(i) Ǥis a constant SVNG. 

(ii) Ǥis a totally constant SVNG. 

ProofLet (Ṫ, Î, F) be a constant function and Ṫ(ѷ) = ċ , Î(ѷ) = ċ�,	andF(ѷ) = ċ�  for all ѷ� ∈ Ѷ. Whereċ,ċ� and ċ�  are constants. Suppose that Ǥ  is a $ƙ� , ƙ#, ƙ>% − L123
.  Then ɗṪ(ѷ�) = ƙ , ɗÎ(ѷ�) = ƙ�  andɗ?(ѷ�) = ƙ� for all ѷ� ∈ Ѷ.  Therefore, BɗṪ(ѷ�) = ɗṪ(ѷ�) + Ṫ(ѷ�) , BɗÎ(ѷ�) = ɗÎ(ѷ�) + Î(ѷ�)  and Bɗ?(ѷ�) =ɗ?(ѷ�) + F(ѷ�) for all ѷ� ∈ Ѷ, BɗṪ(ѷ�) = ƙ + ċ, BɗÎ(ѷ�) = ƙ� + ċ� and Bɗ?(ѷ�) = ƙ� + ċ�for all ѷ� ∈ Ѷ.HenceǤ is a totally constant SVNG.

Now, Assume that Ǥ is a (Ṫ, Î, F)-totally constant SVNG. Then BɗṪ(ѷ�) = ŗ, BɗÎ(ѷ�) = ŗ� and Bɗ?(ѷ�) = ŗ�
for all ѷ� ∈ Ѷ. ɗṪ(ѷ�) + Ṫ(ѷ�) = ŗ, ɗṪ(ѷ�) + ċ = ŗ, ɗṪ(ѷ�) = ŗ − ċ,	similarlyɗÎ(ѷ�) + Î(ѷ�) = ŗ�, ɗÎ(ѷ�) =ŗ� − ċ� and ɗ?(ѷ�) + F(ѷ�) = ŗ�, ɗ?(ѷ�) = ŗ� − ċ�.  Therefore, Ǥ  is a constant SVNG. Hence (i) and (ii) are

equivalent. 

Conversely, assume that (i) and (ii) are equivalent That is Ǥ is a constant SVNG iff Ǥ is a totally constant SVNG.

Assume (Ṫ, Î, F) is not a constant function. Then Ṫ(ѷ) ≠ Ṫ(ѷ�), Î(ѷ) ≠ Î(ѷ�) and F(ѷ) ≠ F(ѷ�)for

at least one pairof vertices ѷ, ѷ� ∈ Ѷ.  Consider Ǥ	 be a $ƙ�, ƙ# , ƙ>% − 123
.  Then, Ṫ(ѷ) = Ṫ(ѷ�) =ƙ, Î(ѷ) = Î(ѷ�) = ƙ� and F(ѷ) = F(ѷ�) = ƙ� . So, BɗṪ(ѷ) = ɗṪ(ѷ) + Ṫ(ѷ) = ƙ + Ṫ(ѷ),  andBɗṪ(ѷ�) = ƙ + Ṫ(ѷ�).  Similarly , BɗÎ(ѷ) = ƙ� + Î(ѷ), BɗÎ(ѷ�) = ƙ� + Î(ѷ�) and Bɗ?(ѷ) = ƙ� +F(ѷ), Bɗ?(ѷ�) = ƙ� + F(ѷ�) .Since Ṫ(ѷ) ≠ Ṫ(ѷ�) , Î(ѷ) ≠ Î(ѷ�)  and F(ѷ) ≠ F(ѷ�).  We haveBɗṪ(ѷ) ≠ BɗṪ(ѷ�), BɗÎ(ѷ) ≠ BɗÎ(ѷ�)and Bɗ?(ѷ) ≠ Bɗ?(ѷ�).  Therefore, Ǥ is not totally constant SVNG which

is contradiction to our supposition. 

Now, consider Ǥ  be a totally constant SVNG. Then, BɗṪ(ѷ) = BɗṪ(ѷ�) ,ɗṪ(ѷ) + Ṫ(ѷ) = ɗṪ(ѷ�) + Ṫ(ѷ�) ,ɗṪ(ѷ) − ɗṪ(ѷ�) = Ṫ(ѷ�) − Ṫ(ѷ)	(�. O. ≠ 0)ɗṪ(ѷ) ≠ ɗṪ(ѷ�) . Similarly ɗÎ(ѷ) ≠ ɗÎ(ѷ�) and ɗ?(ѷ) ≠ɗ?(ѷ�). , Ǥ is not constant which is contradiction to our assumption. Hence (Ṫ, Î, F) is constant function.

Example 7.Consider a graph Ǥ = (Ѷ, Ẽ) where Ѷ = �ѷ, ѷ�, ѷ�, ѷ/� be the set of vertices and Ẽ =�ѷѷ�, ѷ�ѷ�, ѷ�ѷ/, ѷ/ѷ�  be the set of edges. Then
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ѷ/ ѷ�

Figure 7. SVNG 

(Ṫ, Î, 	F)is a constant function, then Ǥ is constant and totally constant.

Theorem 2. Let Ǥ is constant and totally constant then (Ṫ, Î, 	F) is a constant function.

Proof. Assume that Ǥ be a $ƙ�, ƙ# , ƙ>% −constant and (ŗ, ŗ�, ŗ�) −totally constant SVNG. Therefore, ɗṪ(ѷ) =ƙ, ɗÎ(ѷ) = ƙ�and ɗ	?(ѷ) = ƙ� for ѷ ∈ Ѷ and BɗṪ(ѷ) = ŗ, BɗÎ(ѷ) = ŗ�and Bɗ	?(ѷ) = ŗ� for all ѷ ∈ Ѷ.Ṫ(ѷ) + ƙ = ŗfor all ѷ ∈ Ѷ. Ṫ(ѷ) = ŗ − ƙ, for all ѷ ∈ Ѷ. Hence Ṫ(ѷ) is a constant function. SimilarlyÎ(ѷ) = ŗ� − ƙ� and 	F(ѷ) = ŗ� − ƙ� for all ѷ ∈ Ѷ.
Remark 2. Converse of the above theorem 2 is not true. 

Example 8. Consider a graph Ǥ = (Ѷ, Ẽ) where Ѷ = �ѷ, ѷ�, ѷ�, ѷ/� be the set of vertices and Ẽ =�ѷѷ�, ѷ�ѷ�, ѷ�ѷ/, ѷ/ѷ�  be the set of edges. Then

ѷ ѷ�

ѷ/ ѷ�

Figure 8. SVNG 

(Ṫ, Î, 	F)is a constant function But neither constant SVNG nor totally constant SVNG.

4 Characterization of constant SVNG on a cycle 
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This section is based on some important results on even (odd) cycles, bridges in SVNGs and cut vertex of even 

(odd) cycle. The stated results are supported with some examples.  . 

Theorem 3. If  Ǥ is an SVNG where crisp graph Ǥ  is an odd cycle. Then Ǥ is constant SVNG iff  (Ṫ�, Î�, 	F�) is a

constant function. 

Proof. Suppose (Ṫ�, Î�, 	F�) is constant function Ṫ� = ċ, Î� = ċ�,	and	F� = ċ� for all (ѷ� , ѷ#) ∈ Ẽ. Then ɗṪ(ѷ�) =2ċ, ɗÎ(ѷ�) = 2ċ� and ɗ	?(ѷ�) = 2ċ� for all ѷ� ∈ ѶSoǤ is constant SVNG.

Conversely, assume that Ǥ is (ƙ, ƙ�, ƙ�) −regular SVNG. If ɐ, ɐ�, ɐ�…ɐ��R be the edges of  Ǥ in that order. IfṪ�(ɐ) = ċ, Ṫ�(ɐ�) = ƙ − ċ, Ṫ�(ɐ�) = ƙ − (ƙ − ċ) = ċ,Ṫ�(ɐ/) = ƙ − ċ and so on. Likewise, Î�(ɐ) =ċ� , Î�(ɐ�) = ƙ� − ċ� , Î�(ɐ�) = ƙ� − (ƙ� − ċ�) = ċ� , Î�(ɐ/) = ƙ� − ċ�  and 	F�(ɐ) = ċ� , 	F�(ɐ�) = ƙ� − ċ� ,	F�(ɐ�) = ƙ� − (ƙ� − ċ�) = ċ�,	F�(ɐ/) = ƙ� − ċ� and so on. Therefore

							Ṫ�(ɐ�) = S ċ, �T	�	�U	VWWƙ − ċ, �T	�	�U	OXOY		Z
Hence Ṫ�(ɐ) = Ṫ(ɐ��R) = ċ.  So, if ɐ  and ɐ��R  incident at a vertex ѷ , then ɗṪ(ѷ) = ƙ, ɗ(ɐ)  +ɗ(ɐ��R) = ƙ , ċ + ċ = ƙ, 2ċ = ƙ, ċ = ƙ[� . 

Remark 3. The above theorem (3) is not true for totally constant SVNG. 

Example 8.Consider a graph Ǥ = (Ѷ, Ẽ) where Ѷ = �ѷ, ѷ�, ѷ�� be the set of vertices and Ẽ =�ѷѷ�, ѷ�ѷ�, ѷ�ѷ�  be the set of edges. Then

ѷ

ѷ�		 ѷ�
Figure 9. SVNG 

(Ṫ�, Î�, 	F�)is constant function but not totally constant.

Theorem 4. If  Ǥ  is an SVNG where crisp graph Ǥ   is an even cycle. Then Ǥ  is constant SVNG iff ei-

ther	(Ṫ�, Î�, 	F�) is a constant function or alternative edges have same membership, indeterminacy and non-mem-

bership values. 

Proof. If (Ṫ�, Î�, 	F�)  is a constant function then Ǥ  is constant SVNG. Conversely, assume that Ǥ  is(ƙ, ƙ�, ƙ�) −constant SVNG. If ɐ, ɐ�, ɐ�…ɐ�� be the edges of even cycle  Ǥ in that order. By using the above

theorem (3),							Ṫ�(ɐ�) = S ċ, �T	�	�U	VWWƙ − ċ, �T	�	�U	OXOY		Z , 	Î�(ɐ�) = S ċ�, �T	�	�U	VWWƙ� − ċ�, �T	�	�U	OXOY		Z
And 

	F�(ɐ�) = S ċ�, �T	�	�U	VWWƙ� − ċ�, �T	�	�U	OXOY		Z. If  ċ = ƙ − ċ, the (Ṫ�, Î�, 	F�) is constant function. If ċ ≠ ƙ − ċ then al-

ternative edges have same membership, indeterminacy and non-membership values. 

Remark 4.The above theorem (4) is not true for totally constant SVNG. 

Example 9.Consider a graph Ǥ = (Ѷ, Ẽ) where Ѷ = �ѷ, ѷ�, ѷ�, ѷ/� be the set of vertices and Ẽ =�ѷѷ�, ѷ�ѷ�, ѷ�ѷ/, ѷ/ѷ�  be the set of edges. Then
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ѷ ѷ�

ѷ/ ѷ�

Figure 10.SVNG 

(Ṫ�, Î�, 	F�)is constant function, then Ǥ is constant SVNG. But not totally constant SVNG.

Theorem 5. If Ǥ is constant SVNG is an odd cycle does not have SVN bridge. Hence it does not have  SVN cut-

vertex. 

Proof. Suppose Ǥ is constant SVNG is an odd cycle of its crisp graph. Then (Ṫ�, Î�, 	F�) is constant function.

Therefore removal any edge does not reduce the strength of connectedness between any pair of vertex. Therefore Ǥ has no SVN edge and Hence there is no SVN cut vertex.

Remark 5. For totally constant the above theorem (5) is not true. 

Example 10. Consider a graph Ǥ = (Ѷ, Ẽ) where Ѷ = �ѷ, ѷ�, ѷ�� be the set of vertices and Ẽ =�ѷѷ�, ѷ�ѷ�, ѷ�ѷ�  be the set of edges. Then

ѷ

ѷ� ѷ�

Figure 11 .SVNG 

$Ṫ�, Î�, 	F�%is constant function, but neither SVN bridge nor SVN cut vertex.

Theorem 6. If Ǥ is constant SVNG is an even cycle of its crisp graph. Then either Ǥ does not have SVN bridge 

also it does not have SVN cut vertex. 

Proof. Straightforward. 

Remark 6. For totally constant the above theorem (6) is not true. 
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Example 11.Consider a graph Ǥ = (Ѷ, Ẽ) where Ѷ = �ѷ, ѷ�, ѷ�, ѷ/� be the set of vertices and Ẽ =�ѷѷ�, ѷ�ѷ�, ѷ�ѷ/, ѷ/ѷ�  be the set of edges. Then

ѷ ѷ�

ѷ/ ѷ�

Figure 12.SVNG 

$Ṫ�, Î�, 	F�%is constant function, but neither SVN bridge nor SVN cut vertex.

5 Application 

In this section, we applied the concept of CSVNG to model a Wi-Fi system. It is discussed how the concept of 

CSVNGs is useful in modelling such network. 

The Wi-Fi technology that is connected to the internet can be employed to deliver access to devices which are 

within the range of a wireless networks. The coverage extension can be as small area as few rooms to large as 

many square kilometres among two or more interconnected access points. The dependency of Wi-Fi range is on 

frequency band, radio power production and modulation techniques. Paralleled to traditional wired network secu-

rity which is wired networking, simplified access is basic problem with wireless network security, it is essential 

that one either gain access to building (connecting/ relating into interior web tangibly), or a break through an 

exterior firewall. To facilitate Wi-Fi, one essentially require to be within the range of Wi-Fi linkage. The solid Wi-

Fi hotspot device is the internal coin Wi-Fi which is designed to aid all internal setting owners. Make available 

100 meters Wi-Fi signal range to outdoor and 30 meters to indoor. With the help of CSVNG this type of Wi-Fi 

linkage is deliberated and demonstrated. 

The CSVNG is useful to a Wi-Fi network. The purpose for doing this is that there are three values in aCSVNG. 

The first one signifies connectivity, the second one defined the technical error of the device such as device is in 

range but changes between the connected and disconnected state and the third value indicates the disconnectiv-

ity.The notion of IFG only permits us to model two states such as connected and disconnected, a Wi-Fi system 

cannot be demonstrated using this confined structure of IFG. Though the CSVNG deliberate more than these two 

similarities. 

An outdoor Wi-Fi co-ordination, comprises four vertices which characterise the Wi-Fi devices in such a way that 

there is a block between each two routers and collectively both routers have been giving signals to the block, given 

away in figure (13). The devices can provide signal to each block with the help of CSVNG persistently. 
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ѷ ѷ�

ѷ/ ѷ�

Figure 13.SVNG. 

In figure 13, the four apexes denotes four different routers. The edge displays the signal strength of routers between 

each two routers. Each edge and apex take the single valued neutrosophic number form where the first value 

denotes the connectivity, the second one defined the technical error of the device, changes between the connected 

and disconnected state while the device is in range but, and the third value displays the disconnectivity. By using 

definition 4, the degree of every vertex is deliberated. In this situation which characterises that all router has been 

giving the same signal, so the degree of all routers is same. This also indicates that each router providing the same 

signal to the block. As a consequence, the concept of CSVNG displaying its importance, has been exercised to 

practical operations effectively. 

Table 1 shows the degree of each vertex of figure 13. 

Table 1 .vertex and its degree 

Advantages: 

The advantages of SVNGs over prevailing concepts of IFGs is due to the enhanced structure of SVNGs which 

allows us to deal with of more than two types ambiguous condition as it is done in the present situation of Wi-Fi 

vertex Degree 

ѷ (0.9, 1.5, 1.6) 

ѷ� (0.9, 1.5, 1.6) 

ѷ� (0.9, 1.5, 1.6) 

ѷ/ (0.9, 1.5, 1.6) 
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system. While the IFG allow only to deal with two states connected and disconnected which means that IFGs 

cannot be employed to model the Wi-Fi system. 

Conclusion: 

The conception of CSVNG has been developed in this paper. With the help of examples, basic graph theoretic 

ideas such as degree of CSVNG, constant functions, totally CSVNG and characterization of CSVNG on a cycle 

are proved. That notion of CSVNG have been applied to a real-world problem of Wi-Fi system and the conse-

quences are deliberated. A comparison of CSVNG with CIFG have showed the worth of CSVNGs. Further, in 

the proposed frame work, implementations in the field of engineering and computer sciences can be considered 

in near future.
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Abstract
An elongation of the single-valued neutrosophic set is an interval-valued neutrosophic set. It has been demonstrated to deal 
indeterminacy in a decision-making problem. Real-world problems have some kind of uncertainty in nature and among them; 
one of the influential problems is solving the shortest path problem (SPP) in interconnections. In this contribution, we con-
sider SPP through Bellman’s algorithm for a network using interval-valued neutrosophic numbers (IVNNs). We proposed a 
novel algorithm to obtain the neutrosophic shortest path between each pair of nodes. Length of all the edges is accredited an 
IVNN. Moreover, for the validation of the proposed algorithm, a numerical example has been offered. Also, a comparative 
analysis has been done with the existing methods which exhibit the advantages of the new algorithm.

Keywords Interval-valued neutrosophic numbers · Ranking methods · Shortest path problem · Bellman’s algorithm · 
Directed graph network

Introduction and review of the literature

A tool which represents the partnership or relationship func-
tion is called a Fuzzy Set (FS) and handles the real-world 
problems in which generally some type of uncertainty exists 
[1]. This concept was generalized by Atanassov [2] to intui-
tionistic fuzzy set (IFS) which is determined in terms of 
membership (MS) and non-membership (NMS) functions, 

the characteristic functions of the set. Beside this, several 
theories have been developed for uncertainties, including 
generalized orthopair FSs [3], Pythagorean FSs [4], pic-
ture FSs [5], hesitant interval-based neutrosophic linguis-
tic sets [6], N-valued interval neutrosophic sets (NVINSs) 
[7], generalized interval-valued triangular intuitionistic 
FSs [8], interval-valued trapezoidal intuitionistic FSs [9], 
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interval-valued Pythagorean FSs [10], interval-valued IFSs 
[11], and interval type 2 FSs [12].

In 1995, Smarandache [13] premises the theme of neu-
trosophic sets (NS). The NS is to be a set of elements hav-
ing a membership degree, indeterminate membership and 
also non-membership with the criterion less than or equal 
to 3. The neutrosophic number is an exceptional type of 
neutrosophic sets that extend the domain of numbers from 
those of real numbers to neutrosophic numbers. By general-
izing SVNSs [14], Wang et al. premised the idea of IVNS. 
The IVNS [15] is a more general database to generalize the 
concept of different types of sets to express membership 
degrees’ truth, indeterminacy, and a false degree in terms 
of intervals. Thus, several papers are published in the field 
of fuzzy and neutrosophic sets [46–62].

Harish [16] proposed and analyzed an extension of the 
score function by incorporating hesitance. The authors pre-
sented an algorithm for the function including qualitative 
examples. Jun et al. [17] discuss INSs in algebra of BCK/
BCI. Mehmet [18] put forward for analyzing the concept of 
the interval cut set (ICS) and strong ICS (α, β, γ) of IVNSs 
with proof and examples. Also, there are other several exten-
sions of NSs described in the literature including interval-
valued bipolar neutrosophic sets [19], hesitant interval 
neutrosophic linguistic set [20], and interval neutrosophic 
hesitant fuzzy sets [21]; for more details of neutrosophic set 
and their extensions, we refer the reader to [22–28].

Among humanistic problems of computer science, finding 
the shortest path is one of the significant problems. Many of 
the algorithms existing for optimization assumed the edge 
weights as the absolute real numbers. Despite this, we need 
to deal inexplicit parameters such as scope, costs, time and 
requirements in real-world problems. For example, a sub-
stantial length of any road is permanent; still, traveling time 
along the road varies according to weather and traffic con-
ditions. An uncertain fact of those cases directs us to adopt 
fuzzy logic, fuzzy numbers, intuitionistic fuzzy and so on. 

The SPP using fuzzy numbers is called fuzzy shortest path 
problem (FSPP). Several researchers are paying attention in 
fuzzy shortest path (FSP) and intuitionistic FSP algorithms.

Das and De [29] employed Bellman dynamic program-
ming problem for solving FSP based on value and ambiguity 
of trapezoidal intuitionistic fuzzy numbers. De and Bhincher 
[30] have studied the FSP in a network under triangular 
fuzzy number (TFN) and trapezoidal fuzzy number (TpFN) 
using two approaches such as influential programming of 
Bellman and linear programming with multi-objective. 
Kumar et al. [31] proposed a model to find the SP of the 
network under intuitionistic trapezoidal fuzzy number based 
on interval value. Meenakshi and Kaliraja [32] formulated 
interval-valued FSPP for interval-valued type and developed 
a technique to solve SPP.

Elizabeth and Sujatha [33] solved FSPP using interval-
valued fuzzy matrices. Based on traditional Dijkstra algo-
rithm, Enayattabar et al. [34] solved SPP in the interval-
valued pythagorean fuzzy setting. Dey et al. [35] formulated 
fuzzy shortest path problem with interval type 2 fuzzy num-
bers. But, if the indeterminate information has appeared, 
all these kinds of shortest path problems failed. For this 
reason, some new approaches have been developed using 
neutrosophic numbers. Then neutrosophic shortest path 
was first developed by Broumi et al. [36]. The authors in 
[36] constructed an extension of Dijkstra algorithm to solve 
neutrosophic SPP. Then they used the extended version to 
treat the NSPP where the edge weight is characterized by 
IVNNs [37].

Broumi et al. [38–40] first introduced a technique of find-
ing SP under SV-trapezoidal and triangular fuzzy neutro-
sophic environment. In [41], the authors proposed another 
approach to solve SPP on a network using trapezoidal neu-
trosophic numbers. Broumi et al. [42] developed a new 
algorithm to solve SPP using bipolar neutrosophic setting. 
In another paper, Broumi et al. [43] discussed an algorith-
mic approach based on a score function defined in [44] for 

Table 1  Authors’ contributions 
towards neutrosophic shortest 
path problem

IVN interval-valued neutrosophic, PA proposed algorithm

Author and references Year Contribution

Broumi et al. [36] 2016 Solved NSPP using Dijkstra algorithm
Broumi et al. [37] 2016 Solved NSPP for interval-based data using Dijkstra algorithm
Broumi et al. [38] 2016 Discovered the SP using SV-TpNNs
Broumi et al. [40] 2016 Worked out SPP using single-valued neutrosophic graphs
Broumi et al. [41] 2017 Solved SPP under neutrosophic setting as well as trapezoidal fuzzy
Broumi et al. [42] 2017 Solved SPP under bipolar neutrosophic environment.
Broumi et al. [43] 2017 Dealt SPP under interval-valued neutrosophic setting
Broumi et al. [44] 2018 Proposed maximizing deviation method with partial weight in a 

decision-making problem under the neutrosophic environment
This paper – Introduction of the neutrosophic version of a Bellman’s algorithm
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solving NSPP on a network with IVNN as the edges. Liu 
and You proposed interval neutrosophic Muirhead mean 
operators and their applications in multiple-attribute group 
decision-making [45]. Thus, several papers are published 
in the field of neutrosophic sets [46–55]. Table 1 summa-
rizes some contributions towards NSPP. Based on the idea 
of Bellman’s algorithm, SPP is solved for fuzzy network 
[29–32]. This algorithm is not applied yet on neutrosophic 
network. Therefore, there is a need to establish a neutro-
sophic version of Bellman’s algorithm for neutrosophic 
shortest path problems.

The main motivation of this study is to introduce an algo-
rithmic approach for SPP in an uncertain environment which 
will be simple enough and effective in real-life problem. The 
main contributions of this paper are as follows.

• We concentrate on a NSP on a neutrosophic graph in
which an IVNN, instead of a real number/fuzzy number,
is assigned to each arc length.

• A modified Bellman’s algorithm is introduced to deal the
shortest path problem in an uncertain environment.

• Based on the idea discussed in [15], we use an addition
operation for adding the IVNNs corresponding to the
edge weights present in the path. It is used to find the
path length between source and destination nodes. We
also use a ranking method to choose the shortest path
associated with the lowest value of rank.

In this work, we are motivated to solve SPP by introduc-
ing a new version of BA where the edge weight is repre-
sented by IVNNs. The remaining part of the paper is pre-
sented as follows. The next section contains a few of the 
ideas and theories as overview of interval neutrosophic set 
followed by which the Bellman algorithm is discussed. In 
the subsequent section, an analytical illustration is presented, 
where our algorithm is applied. Then contingent study has 
been done with existing methods. Before the concluding sec-
tion, advantages of the proposed algorithm are presented. 
Finally, conclusive observations are given.

Overview on interval‑valued neutrosophic 
set

In this part, we recall few primary notions pertaining to 
NSs, SVNSs, IVNSs and some existing ranking functions 
for IVNNs which are the background of this study and will 
help us to further research.

Definition 1 [13] Let X be a set of elements and its uni-
versal elements denoted by x; we define the neutrosophic 
set A (NS A) by A = {< x: TA(x) , IA(x) , FA(x) > , x ∈ X}, 
where the functions T, I, F: X → ]−0,1+[ are called the truth, 

indeterminate and false MS functions, respectively, and they 
satisfy the following condition: 

The values of the three MS functions are taken from 
 ]−0,1+[. As we have difficulty of applying NSs to real-time 
issues, Wang et al. [14] put forward the approach of a SVNS, 
which is the simplification of a NS and can be applied to any 
real-world topic.

Definition 2 [14] A⃛ is the SVNS in X and is described by 
the set: 

where TA⃛(x), IA⃛(x),FA⃛(x) ∈ [0, 1] satisfying the condition:

Definition 3 [15] An IVNS in X, which represented by:

where [TL

A⃛
(x), TU

A⃛
(x)

]
, [IL

A⃛
(x), IU

A⃛
(x)

]
, [FL

A⃛
(x),FU

A⃛
(x)] ⊆ [0, 1]

are the interval numbers satisfying the condition:

Now we consider a few mathematical operations on inter-
val-valued neutrosophic numbers (IVNNs)s.

Definition 4 [15] Let 

be two IVNNs and 𝜂 > 0.

Then

(1)−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

(2)A⃛ =
�
⟨x ∶ TA⃛(x), IA⃛(x),FA⃛(x)⟩, x ∈ X

�
,

(3)0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

(4)A⃛ =
�
⟨x ∶ T̃A⃛(x), ĨA⃛(x), F̃A⃛(x)⟩, x ∈ X

�
,

(5)
A⃛ =
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, [FL
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�
,

(6)0 ≤ sup TA(x) + sup IA(x) + supFA(x) ≤ 3.
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where 𝜂 > 0.

Deneutrosophication formulas for interval‑valued 
neutrosophic numbers

To compare two IVNNs A⃛1 and A⃛2 , a map from [N (R)] to 
real line called score function has been used here. In the 
review of the literature, there are some formulas for deneu-
trosophication; in this paper, the following formulas have 
been focused [44, 45] and defined as follows:

Using score function (SF), the ranking technique is 
defined as below:

 (i) A⃛1 < A⃛2 if SF(A⃛1) < SF(A⃛2).

 (ii) A⃛1 > A⃛2 if SF(A⃛1) > SF(A⃛2).

 (iii) A⃛1 = A⃛2 if SF(A⃛1) = SF(A⃛2).

(10)
A⃛
𝜂 =

⟨[(
T
L

a

)𝜂
,
(
T
U

a

)𝜂]
,
[
1 −

(
1 − I

L

a

)𝜂
, 1 −

(
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U

a

)𝜂]
,

[
1 −

(
1 − F

L

a

)𝜂
, 1 −

(
1 − F

U

a

)𝜂]⟩
,

(11)
SRidvan

(
A⃛1
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=

(
1

4
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×
[
2 + TL

x
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− 2IL
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=
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2
−
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x
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2

]
.

Computation of the shortest path based 
on neutrosophic numbers

In this section, the new algorithmic approach to solve IVNSP 
is provided. It is pretended that there are n nodes with the 
source node (SN), node 1 and destination node (DN), node 
n. The neutrosophic length between nodes i and j is denoted
by dij and the set of all nodes having a connection with the 
node i is denoted by MN(i).

Mathematical formulation of BELLMAN dynamic 
programming

Consider a directed connected graph G = (V ,E) from SN ‘1’ 
and the DN ‘n’ which is acyclic and they are organized by
topological ordering 

(
Eij; i < j

)
 . Using the Bellman powerful

programming system, the shortest path can be determined by 
forward pass computation method. The Bellman powerful 
programming system is defined as follows:

where dij is the weight the directed edge Eij , f (i) is the length 
of SP node i from the SN 1.

Neutrosophic Bellman–Ford algorithm:

(13)f (i) =

{
0, i = 1

min
i<j

[
f (i) + dij

]
, otherwise ,

Fig. 1  Interval-valued neutro-
sophic network
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In the posterior section, we present a simple illustration 
to show the brevity of our method.

Illustrative example

This part is based on a numerical problem adapted from [43] 
to show the potential application of the proposed algorithm.

Example 1 Consider an interval-valued neutrosophic net-
work whose edge weights are represented by IVNNs with 
SN, node 1 and DN, node 6 (Fig. 1). Table 2 represents 
interval-valued neutrosophic distance.

Here we need to find the shortest distance from node 1 to 
node 6 (Table 3).

Using the proposed algorithm in previous section, the SP 
from SN and DN is calculated as follows:

Table 2  The details of edge 
information in terms of interval-
valued neutrosophic numbers

Edges IVN distance Edges IVN distance

1–2 ([0.1, 0.2], [0.2, 0.3], [0.4, 0.5]) 3–4 ([0.2, 0.3], [0.2, 0.5], [0.4, 0.5])

1–3 ([0.2, 0.4], [0.3, 0.5], [0.1, 0.2]) 3–5 ([0.3, 0.6], [0.1, 0.2], [0.1, 0.4])

2–3 ([0.3, 0.4], [0.1, 0.2], [0.3, 0.5]) 4–6 ([0.4, 0.6], [0.2, 0.4], [0.1, 0.3])

2–5 ([0.1, 0.3], [0.3, 0.4], [0.2, 0.3]) 5–6 ([0.2, 0.3], [0.3, 0.4], [0.1, 0.5])
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thus

Therefore, the path P: 1 → 2 → 5 → 6 is recognized as the 
neutrosophic shortest path, and the crisp shortest path is 
0.35.

f (1) = 0,

f (2) = min
i<2

{
f (1) + c12

}
= c∗

12
= 0, 1,

f (3) = min
i<3

{
f (i) + c

i3

}
= min

{
f (1) + c13, f (2) + c23

}

= {0 + 0, 175, 0, 1 + 0, 235} = {0, 175, 0, 335} = 0, 175,

f (4) = min
i<4

{
f (i) + c

i4

}
= min

{
f (3) + c34

}

= {0, 175 + 0, 05} = 0, 225,

f (5) = min
i<5

{
f (i) + c

i5

}
= min

{
f (2) + c25, f (3) + c35

}

= {0.1 + 0, 125, 0, 175 + 0, 455} = {0.225, 0, 625} = 0.225,

f (6) = min
i<6

{
f (i) + c

i6

}
= min

{
f (4) + c46, f (5) + c56

}

= {0.225 + 0, 35, 0, 225 + 0, 125} = {0.575, 0, 350} = 0.350,

f (6) = f (5) + c
56

= f (2) + c
25

+ c
56

= f (1) + c
12

+ c
25

+ c
56

= c
12

+ c
25

+ c
56

.

Table 3  The details of 
deneutrosophication value of 
edge (i, j)

Edges SRidvan SLiu

1–2 0.1 1.45
1–3 0.175 1.75
2–3 0.325 1.8
2–5 0.125 1.6
3–4 0.05 1.45
3–5 0.45 2.05
4–6 0.35 2
5–6 0.125 1.6

Table 4  Comparison of the sequence of nodes using neutrosophic shortest path and our proposed algorithm

Possible path Sequence of nodes Crisp shortest path length

Neutrosophic shortest path with interval-valued neutrosophic 
numbers [43]

1 → 2 → 5 → 6 ([0.35, 0.60], [0.01, 0.04], [0.008, 0.075])

PA based on SRidvan 1 → 2 → 5 → 6 0.35

PA based on SLiu 1 → 2 → 5 → 6 4.65

Contingent study

In this section, the analysis of contingency for the proposed 
algorithm with existing approaches has been analyzed. A 
comparison of the results between the existing and new tech-
nique is shown in Table 4.

From the result, it is shown that the introduced algorithm 
contributes sequence of visited nodes which shown to be 
similar to neutrosophic shortest path presented in [43].

The neutrosophic shortest path (NSP) remains 
the same, namely 1 → 2 → 5 → 6, but the neutro-
sophic shortest path length (NSPL) differs, namely 
([0.424, 0.608], [0.012, 0.06], [0.016, 0.125]), respectively. 
From here we come to the conclusion that there exists no 
unique method for comparing neutrosophic numbers and dif-
ferent methods may satisfy different desirable criteria.

Advantages and limitations of the proposed 
algorithm

Advantages

By correlating our PA with Broumi et al. [43] to solve the 
same problem, we conclude that the proposed approach 
leads to the same path 1 → 2 → 5 → 6. The extended Bell-
man’s algorithm operates on neutrosophic directed graphs 
with negative weight edges whereas the extended Dijkstra 
algorithm proposed in [37] cannot deal with. This approach 
can be easily extended and applied to other neutrosophic 
networks with the edge weight as

1. Single-value neutrosophic numbers.
2. Bipolar neutrosophic numbers.
3. Trapezoidal neutrosophic numbers.
4. Cubic neutrosophic numbers.
5. Interval bipolar neutrosophic numbers.
6. Triangular neutrosophic numbers and so on.

Limitations

1. Slow response will be observed when there is a change
in the network as this change will spread node-by-node.

2. If node failure occurs then routing loops may exist.
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Conclusion

In this study, we describe the NSP, where edge weights are 
represented by IVNS. The advantage of using IVNSs in NSP 
is discussed in this paper. The classical Bellman’s algorithm 
is modified by incorporating the uncertainty using IVNSs 
for NPP between source and destination nodes. We use a 
numerical example to illustrate the efficiency of our pro-
posed algorithm. The main goal of this work is to describe 
an algorithm for NSP in the neutrosophic environment using 
IVNS as edge weight. The proposed algorithm is very effec-
tive for real-life problem. In this paper, we have used a sim-
ple numerical example to illustrate our proposed algorithm. 
Therefore, as future work, we need to consider a large-scale 
practical shortest path problem using our proposed algo-
rithm and to compare our proposed algorithm with the exist-
ing algorithm in terms of strictness of optimality, efficiency, 
computational time, and other aspects.
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Abstract: With the development of the social economy and enlarged volume of information,
the application of multiple-attribute decision-making (MADM) has become increasingly complex,
uncertain, and obscure. As a further generalization of hesitant fuzzy set (HFS), simplified
neutrosophic hesitant fuzzy set (SNHFS) is an efficient tool to process the vague information and
contains the ideas of a single-valued neutrosophic hesitant fuzzy set (SVNHFS) and an interval
neutrosophic hesitant fuzzy set (INHFS). In this paper, we propose a decision-making approach based
on the maximizing deviation method and TOPSIS (Technique for Order Preference by Similarity to
Ideal Solution) to solve the MADM problems, in which the attribute weight information is incomplete,
and the decision information is expressed in simplified neutrosophic hesitant fuzzy elements. Firstly,
we inaugurate an optimization model on the basis of maximizing deviation method, which is useful
to determine the attribute weights. Secondly, using the idea of the TOPSIS, we determine the relative
closeness coefficient of each alternative and based on which we rank the considered alternatives to
select the optimal one(s). Finally, we use a numerical example to show the detailed implementation
procedure and effectiveness of our method in solving MADM problems under simplified neutrosophic
hesitant fuzzy environment.

Keywords: simplified neutrosophic hesitant fuzzy set; multi-attribute decision-making;
maximizing deviation; TOPSIS

1. Introduction

The concept of neutrosophy was originally introduced by Smarandache [1] from a philosophical
viewpoint. Gradually, it has been discovered that without a specific description, it is not easy to apply
neutrosophic sets in real applications because a truth-membership, an indeterminacy-membership,
and a falsity-membership degree, in non-standard unit interval ]0−, 1+[, are independently assigned
to each element in the set. After analyzing this difficulty, Smarandache [2] and Wang [3] initiated the
notion of a single-valued neutrosophic set (SVNS) and made the first ever neutrosophic publication.
Ye [4] developed the concept of simplified neutrosophic set (SNS). SNS, a subclass of a neutrosophic
set, contains the ideas of a SVNS and an interval neutrosophic set (INS), which are very useful in real
science and engineering applications with incomplete, indeterminate, and inconsistent information
existing commonly in real situations. Torra and Narukawa [5] put forward the concept of HFS as
another extension of fuzzy set [6]. HFS is an effective tool to represent vague information in the process
of MADM, as it permits the element membership degree to a set characterized by a few possible values
in [0, 1] and can be accurately described in terms of the judgment of the experts.
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Ye [7] introduced SVNHFS as an extension of SVNS in the spirit of HFS and developed the
single-valued neutrosophic hesitant fuzzy weighted averaging and weighted geometric operator. The
SVNHFS represents some uncertain, incomplete, and inconsistent situations where each element
has certain different values characterized by truth-membership hesitant, indeterminacy-membership
hesitant, and falsity-membership hesitant function. For instance, when the opinion of three experts
is required for a certain statement, they may state that the possibility that the statement is true
is {0.3, 0.5, 0.8}, and the statement is false is {0.1, 0.4}, and the degree that they are not sure
is {0.2, 0.7, 0.8}. For single-valued neutrosophic hesitant fuzzy notation, it can be expressed as
{{0.3, 0.5, 0.8}, {0.1, 0.4}, {0.2, 0.7, 0.8}}. Liu and Luo [8] discussed the certainty function, score
function, and accuracy function of SVNHFS and proposed the single-valued neutrosophic hesitant
fuzzy ordered weighted averaging operator and hybrid weighted averaging operator. Sahin and
Liu [9] proposed the correlation coefficient with single-valued neutrosophic hesitant fuzzy information
and successfully applied it to decision-making problems. Li and Zhang [10] introduced Choquet
aggregation operators with single-valued neutrosophic hesitant fuzzy information for MADM.
Juan-Juan et al. [11] developed a decision-making technique using geometric weighted Choquet
integral Heronian mean operator for SVNHFSs. Wang and Li [12] developed the generalized prioritized
weighted average operator, the generalized prioritized weighted geometric operator with SVNHFS,
and further developed an approach on the basis of the proposed operators to solve MADM problems.
Recently, Akram et al. [13–16] and Naz et al. [17–19] put forward certain novel decision-making
techniques in the frame work of extended fuzzy set theory. Furthermore, Liu and Shi [20] proposed
the concept of INHFS by combining INS with HFS and developed the generalized weighted operator,
generalized ordered weighted operator, and generalized hybrid weighted operator with the proposed
interval neutrosophic hesitant fuzzy information. Ye [21] and Kakati et al. [22] proposed the correlation
coefficients and Choquet integrals, respectively, with INHFS. Mahmood et al. [23] discussed the vector
similarity measures with SNHFS. In practical terms, the SNHFS measures the truth-membership,
the indeterminacy-membership and the falsity-membership degree by SVNHFSs and INHFSs. The
classical sets, fuzzy sets, intuitionistic fuzzy sets, SVNSs, INSs, SNSs, and HFSs are the particular
situations of SNHFSs. In modeling vague and uncertain information, SNHFS is more flexible
and practice.

In the theory of decision analysis, MADM is one of the most important branches and several
beneficial models and approaches have been developed related to decision analysis. However, due to
limited time, lack of data or knowledge, and the limited expertise of the expert about the problem,
MADM process under simplified neutrosophic hesitant fuzzy circumstances, encounters the situations
where the information about attribute weights is completely unknown or incompletely known.
The existing approaches are not suitable to handle these situations. Furthermore, among some
useful MADM methodologies, the maximizing deviation method and the TOPSIS provide a ranking
approach, which is measured by the farthest distance from the negative-ideal solution (NIS) and
the shortest distance from the positive-ideal solution (PIS). For all these, in this paper, we propose
an innovative approach of maximizing deviation and TOPSIS to objectively determine the attribute
weights and rank the alternatives with completely unknown or partly known attribute weights. We
propose the new distance measure and discuss the application of SNHFSs to MADM. In the framework
of TOPSIS, we construct a novel generalized method under the simplified neutrosophic hesitant
fuzzy environment. As compared to the existing work, the SNHFSs availably depict more general
decision-making situations.

The paper is structured as follows: Section 2 establishes a simplified neutrosophic hesitant fuzzy
MADM based on maximizing deviations and TOPSIS. In Section 3, a numerical example is given
to demonstrate the effectiveness of our model and method and finally we draw conclusions in Section 4.

SVNHFS as a more flexible general formal framework extends the concept of fuzzy set [6],
intuitionistic fuzzy set [24], SVNS [3] and HFS [25]. Ye [7] proposed the following definition of SVNHFS.
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Definition 1. [7] Let Z be a fixed set, a SVNHFS n on Z is defined as

n = {〈z, t(z), i(z), f(z)〉|z ∈ Z}

where t(z), i(z), f(z) are the sets of a few values in [0, 1], representing the possible truth-membership
hesitant degree, indeterminacy-membership hesitant degree and falsity-membership hesitant degree of
the element z to n, respectively; t(z) = {γ1, γ2, . . . , γl}, γ1, γ2, . . . , γl are the elements of t(z);
i(z) = {δ1, δ2, . . . , δp}, δ1, δ2, . . . , δp are the elements of i(z); f(z) = {η1, η2, . . . , ηq}, η1, η2, . . . , ηq are the
elements of f(z), for every z ∈ Z; and l, p, q denote, respectively, the numbers of the hesitant fuzzy elements
in t, i, f.

For simplicity, the expression n(z) = {t(z), i(z), f(z)} is called a single-valued neutrosophic
hesitant fuzzy element (SVNHFE), which we represent by simplified symbol n = {t, i, f}.

Definition 2. [7] Let n, n1 and n2 be three SVNHFEs. Then their operations are defined as follows:

1. n1 ⊕ n2 =
⋃

γ1∈t1,δ1∈i1,η1∈f1,γ2∈t2,δ2∈i2,η2∈f2

{{γ1 + γ2 − γ1γ2}, {δ1δ2}, {η1η2}};

2. n1 ⊗ n2 =
⋃

γ1∈t1,δ1∈i1,η1∈f1,γ2∈t2,δ2∈i2,η2∈f2

{{γ1γ2}, {δ1 + δ2 − δ1δ2}, {η1 + η2 − η1η2}};

3. ςn =
⋃

γ∈t,δ∈i,η∈f
{{1− (1− γ)ς}, {δς}, {ης}}; ς > 0

4. nς =
⋃

γ∈t,δ∈i,η∈f
{{γς}, {1− (1− δ)ς}, {1− (1− η)ς}} ς > 0.

2. TOPSIS and Maximizing Deviation Method for Simplified Neutrosophic Hesitant Fuzzy
Multi-Attribute Decision-Making

In this section, we propose the normalization technique and the distance measures of SNHFSs
and based on this we develop further a new decision-making approach based on maximum deviation
and TOPSIS under simplified neutrosophic hesitant fuzzy circumstances to explore the application of
SNHFSs to MADM.

2.1. TOPSIS and Maximizing Deviation Method for Single-Valued Neutrosophic Hesitant Fuzzy
Multi-Attribute Decision-Making

In this subsection, we only use SVNHFSs in SNHFSs and develop a new decision-making
approach, by combining the idea of SVNHFSs with maximizing deviation, to solve a MADM problem
in single-valued neutrosophic hesitant fuzzy environment.

2.1.1. Description of the MADM Problem

Consider a MADM problem containing a discrete set of m alternatives {A1, A2, . . . , Am} and a
set of all attributes P = {P1, P2, . . . , Pn}. The evaluation information of the ith alternative with respect
to the jth attribute is a SVNHFE nij = 〈tij, iij, fij〉, where tij, iij and fij indicate the preference degree,
uncertain degree, and falsity degree, respectively, of the decision maker facing the ith alternative
that satisfied the jth attribute. Then the single-valued neutrosophic hesitant fuzzy decision matrix
(SVNHFDM) N , can be constructed as follows:

N =


n11 n12 . . . n1n
n21 n22 . . . n2n

...
...

. . .
...

nm1 nm2 . . . nmn


Assume that each attribute has different importance, the weight vector of all attributes is defined

as w = (w1, w2, . . . , wn)t, where 0 ≤ wj ≤ 1 and
n
∑

j=1
wj = 1 with wj representing the importance degree
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of the attribute Pj. Due to the complexity of the practical decision-making problems, the attribute
weights information is frequently incomplete. For ease, let = be the set of the known information
about attribute weights, which we can construct by the following forms, for i 6= j:

(i) wi ≥ wj (weak ranking);

(ii) wi − wj ≥ αi, αi > 0 (strict ranking);

(iii) wi − wj ≥ wk − wl , for j 6= k 6= l (ranking of differences);

(iv) wi ≥ αiwj, 0 ≤ αi ≤ 1 (ranking with multiples);

(v) αi ≤ wi ≤ αi + ξi, 0 ≤ αi ≤ αi + ξi ≤ 1 (interval form).

In the comparison of SVNHFEs, the number of their corresponding element may be unequal.
To handle this situation, we normalize the SVNHFEs as follows:

Suppose that n = {t, i, f} is a SVNHFE, then γ̄ = vγ+ + (1 − v)γ−, δ̄ = vδ+ + (1 − v)δ−

and η̄ = vη+ + (1− v)η− are the added truth-membership, the indeterminacy-membership and
the falsity-membership degree, respectively, where γ− and γ+ are the minimum and the maximum
elements of t, respectively, δ− and δ+ are the minimum and the maximum elements of i, respectively,
η− and η+ are the minimum and the maximum elements of f, respectively, and v ∈ [0, 1] is a parameter
assigned by the expert according to his risk preference.

For the normalization of SVNHFE, different values of v produce different results for the added
truth-membership, the indeterminacy-membership and the falsity-membership degree. Usually,
there are three cases of the preference of the expert:

• If v = 0, the pessimist expert may add the minimum truth-membership degree γ−, the minimum
indeterminacy-membership degree δ− and the minimum falsity-membership degree η−.

• If v = 0.5, the neutral expert may add the truth-membership degree γ−+γ+

2 ,

the indeterminacy-membership degree δ−+δ+

2 and the falsity-membership degree η−+η+

2 .
• If v = 1, the optimistic expert may add the maximum truth-membership degree γ−, the maximum

indeterminacy-membership degree δ− and the maximum falsity-membership degree η−.

For instance, if we have two SVNHFEs n1 = {t1, i1, f1} = {{0.3, 0.5}, {0.4, 0.6, 0.8}, {0.5, 0.7}},
n2 = {t2, i2, f2} = {{0.1, 0.4, 0.5}, {0.6, 0.7}, {0.2, 0.6, 0.9}}. Here #t1 = 2, #i1 = 3, #f1 = 2, #t2 = 3,
#i2 = 2 and #f2 = 3. Clearly, #t1 6= #t2, #i1 6= #i2, and #f1 6= #f2. The truth-membership and
the falsity-membership degree of n1, while the indeterminacy-membership degree of n2 need to
be pre-treated.

If v = 0, then we may add the minimum truth-membership degree or the
indeterminacy-membership degree or the falsity-membership degree for the target
object. For the SVNHFE n1, the truth-membership and falsity-membership degree of
n1 can be attained as {0.3, 0.3, 0.5} and {0.5, 0.5, 0.7}, i.e., n1 can be normalized as
n1 = {{0.3, 0.3, 0.5}, {0.4, 0.6, 0.8}, {0.5, 0.5, 0.7}}. For the SVNHFE n2, the indeterminacy-membership
degree of n2 can be obtained as {0.6,0.6,0.7}, i.e., n2 is normalized as n2 =

{{0.1, 0.4, 0.5}, {0.6, 0.6, 0.7}, {0.2, 0.6, 0.9}}.
If v = 0.5, then we may add the average truth-membership degree or the

indeterminacy-membership degree or the falsity-membership degree for the target
object. For the SVNHFE n1, the truth-membership and falsity-membership degree of
n1 can be attained as {0.3, 0.4, 0.5} and {0.5, 0.6, 0.7}, i.e., n1 can be normalized as
n1 = {{0.3, 0.4, 0.5}, {0.4, 0.6, 0.8}, {0.5, 0.6, 0.7}}. For the SVNHFE n2, the indeterminacy-membership
degree of n2 can be obtained as {0.6,0.65,0.7}, i.e., n2 is normalized as n2 =

{{0.1, 0.4, 0.5}, {0.6, 0.65, 0.7}, {0.2, 0.6, 0.9}}.
If v = 1, then we may add the maximum truth-membership degree or the

indeterminacy-membership degree or the falsity-membership degree for the normalization.
For the SVNHFE n1, the truth-membership and falsity-membership degree of n1
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can be attained as {0.3, 0.5, 0.5} and {0.5, 0.7, 0.7}, i.e., n1 is normalized as n1 =

{{0.3, 0.5, 0.5}, {0.4, 0.6, 0.8}, {0.5, 0.7, 0.7}}. For the SVNHFE n2, the indeterminacy-membership
degree of n2 can be attained as {0.6,0.7,0.7}, i.e., n2 is normalized as n2 =

{{0.1, 0.4, 0.5}, {0.6, 0.7, 0.7}, {0.2, 0.6, 0.9}}.
The algorithm for the normalization of SVNHFEs is given in Algorithm 1.

Algorithm 1 The algorithm for the normalization of SVNHFEs.
INPUT: Two SVNHFEs n1 = (t1, i1, f1), n2 = (t2, i2, f2) and the value of v.
OUTPUT: The normalization of n1 = (t1, i1, f1) and n2 = (t2, i2, f2).

1: Count the number of elements of n1 and n2, i.e., #t1, #i1, #f1, #t2, #i2, #f2;
2: Determine the minimum and the maximum of the elements of n1 and n2;
3: t = arg mini=1,2 #ti, i = arg mini=1,2 #ii, f = arg mini=1,2 #fi;
4: if #t1 = #t2 then break;
5: else if t = #t1 then
6: n = #t2 − #t1;
7: Determine the value of γ̄ for t1;
8: for i=1:1:n do
9: t1 = t1 ∪ γ̄;

10: end for
11: else
12: n = #t1 − #t2;
13: Determine the value of γ̄ for t2;
14: for i=1:1:n do
15: t2 = t2 ∪ γ̄;
16: end for
17: end if
18: if #i1 = #i2 then break;
19: else if i = #i1 then
20: n = #i2 − #i1;
21: Determine the value of δ̄ for i1;
22: for i=1:1:n do
23: i1 = i1 ∪ δ̄;
24: end for
25: else
26: n = #i1 − #i2;
27: Determine the value of δ̄ for i2;
28: for i=1:1:n do
29: i2 = i2 ∪ δ̄;
30: end for
31: end if
32: if #f1 = #f2 then break;
33: else if f = #f1 then
34: n = #f2 − #f1;
35: Determine the value of η̄ for f1;
36: for i=1:1:n do
37: f1 = f1 ∪ η̄;
38: end for
39: else
40: n = #f1 − #f2;
41: Determine the value of η̄ for f2;
42: for i=1:1:n do
43: f2 = f2 ∪ η̄;
44: end for
45: end if
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2.1.2. The Distance Measures for SVNHFSs

Definition 3. Let n1 = {t1, i1, f1} and n2 = {t2, i2, f2} be two normalized SVNHFEs, then the single-valued
neutrosophic hesitant fuzzy Hamming distance between n1 and n2 can be defined as follows:

d1(n1, n2) =
1
3

(
1
#t

#t

∑
ς=1

∣∣∣γσ(ς)
1 − γ

σ(ς)
2

∣∣∣+ 1
#i
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∣∣∣δσ(ς)
1 − δ

σ(ς)
2

∣∣∣+ 1
#f

#f

∑
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∣∣∣ησ(ς)
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σ(ς)
2

∣∣∣) , (1)

where #t = #t1 = #t2, #i = #i1 = #i2 and #f = #f1 = #f2. γ
σ(ς)
i , δ

σ(ς)
i and η

σ(ς)
i are the ςth largest values in

γi, δi and ηi, respectively (i = 1, 2).

In addition, the single-valued neutrosophic hesitant fuzzy Euclidean distance is defined as:
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By using the geometric distance model of [26], the above distances can be generalized as follows:

d(n1, n2) =

(
1
3

(
1
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#t

∑
ς=1

∣∣∣γσ(ς)
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α

, (3)

where α is constant and α > 0. Based on the value of α, the relationship among d(n1, n2), d1(n1, n2) and
d2(n1, n2) can be deduced as:

• If α = 1, then the distance d(n1, n2) = d1(n1, n2).
• If α = 2, then the distance d(n1, n2) = d2(n1, n2).

Therefore, the distance d(n1, n2) is a generalization of the single-valued neutrosophic hesitant fuzzy
Hamming distance d1(n1, n2) and the single-valued neutrosophic hesitant fuzzy Euclidean distance d2(n1, n2).

Theorem 1. Let n1 = {t1, i1, f1} and n2 = {{1}, {0}, {0}} be two SVNHFEs, then the generalized distance
d(n1, n

′
2) can be calculated as:

d(n1, n
′
2) =

(
1
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(1− γ)α +
1
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ηα

)) 1
α

where n
′
2 is the normalization outcome of n2 by the comparison of n1 and n2.
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Proof. Using (3), the generalized distance d(n1, n
′
2) can be calculated as:
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Theorem 2. Let n1 = {t1, i1, f1} and n2 = {{0}, {1}, {1}} be two SVNHFEs, then the generalized distance
d(n1, n

′
2) can be calculated as:
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.

where n
′
2 is the normalization outcome of n2 by the comparison of n1 and n2.

Proof. Using (3), the generalized distance d(n1, n
′
2) can be calculated as:
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.

2.1.3. Computation of Optimal Weights Using Maximizing Deviation Method

Case I: Completely unknown attribute weight information
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Construct an optimization model on the basis of the approach of maximizing deviation to
determine the attributes optimal relative weights with SVNHFS. For the attribute Pj ∈ Z, the deviation
of the alternative Ai to all the other alternatives can be represented as:

Dij(w) =
m

∑
k=1

d(nij, nkj)wj, i = 1, 2, . . . , m, j = 1, 2, . . . , n
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,

j = 1, 2, . . . , n. Then Dj(w) indicates the deviation value of all alternatives to other alternatives for the
attribute Pj ∈ Z.

On the basis of the above analysis, to select the weight vector w which maximizes all deviation
values for all the attributes, a non-linear programming model is constructed as follows:
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s.t. wj ≥ 0, j = 1, 2, . . . , n,
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To solve the above model, we construct the Lagrange function:
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where ξ is a real number, representing the Lagrange multiplier variable. Then we compute the partial
derivatives of L and let:
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By solving above equations, an exact and simple formula for determining the attribute weights
can be obtained as follows:
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Because the weights of the attributes should satisfy the normalization condition, so we obtain the
normalized attribute weights:
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Case II: Partly known attribute weight information
However, there are some situations that the information about the weight vector is partially

known instead of completely known. For such situations, on the basis of the set of the known weight
information, =, the constrained optimization model can be designed as:
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s.t. w ∈ =, wj ≥ 0, j = 1, 2, . . . , n,
n
∑

j=1
wj = 1

where = is also a set of constraint conditions that the weight value wj should satisfy according to
the requirements in real situations. The model (M− 2) is a linear programming model. By solving
this model, we obtain the optimal solution w = (w1, w2, . . . , wn)t, which can be used as the attributes
weight vector.

2.1.4. TOPSIS Method

Recently, several MADM techniques are established such as TOPSIS [27], TODIM [28], VIKOR [29],
MULTIMOORA [30] and minimum deviation method [31]. TOPSIS method is attractive as limited
subjective input is required from experts. It is quite well known that TOPSIS is a useful and easy
approach helping an expert choose the optimal alternative according to both the minimal distance
from the positive-ideal solution and the maximal distance from the negative-ideal solution. Therefore,
after attaining the weight of attributes by using the maximizing deviation method, in this section,
we develop a MADM approach based on TOPSIS model under single-valued neutrosophic hesitant
fuzzy circumstances. The PIS A+, and the NIS A− can be computed as:

A+ = {n+1 , n+2 , . . . , n+n } (5)

= {{{1}, {0}, {0}}, {{1}, {0}, {0}}, . . . , {{1}, {0}, {0}}}. (6)

A− = {n−1 , n−2 , . . . , n−n } (7)

= {{{0}, {1}, {1}}, {{0}, {1}, {1}}, . . . , {{0}, {1}, {1}}}. (8)

Based on Equation (3), Theorems 1 and 2, the separation measures d+i and d−i of each alternative
from the single-valued neutrosophic hesitant fuzzy PIS A+ and the NIS A−, respectively, are
determined as:
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where i = 1, 2, . . . , m.
The relative closeness coefficient of an alternative Ai with respect to the single-valued

neutrosophic hesitant fuzzy PIS A+ can be defined as follows:

RC(Ai) =
d−i

d+i + d−i
(13)

where 0 ≤ RC(Ai) ≤ 1, i = 1, 2, . . . , m. The ranking orders of all alternatives can be
determined according to the closeness coefficient CR(Ai) and select the best one(s) from a set of
appropriate alternatives.

The scheme of the proposed MADM technique is given in Figure 1. The detailed algorithm is
constructed as follows:

Step 1. Construct the decision matrix N = [nij]m×n for the MADM problem, where the entries
nij(i = 1, 2, . . . , m; j = 1, 2, . . . , n) are SVNHFEs, given by the decision makers, for the
alternative Ai according to the attribute Pj.

Step 2. On the basis of Equation (4) determine the attribute weights w = (w1, w2, . . . , wm)t, if the
attribute weights information is completely unknown, and turn to Step 4. Otherwise go
to Step 3.

Step 3. Use model (M-2) to determine the attribute weights w = (w1, w2, . . . , wm)t, if the information
about the attribute weights is partially known.

Step 4. Based on Equations (6) and (8), we determine the corresponding single-valued neutrosophic
hesitant fuzzy PIS A+ and the single-valued neutrosophic hesitant fuzzy NIS A−, respectively.

Step 5. Based on Equations (10) and (12), we compute the separation measures d+i and d−i of
each alternative Ai from the single-valued neutrosophic hesitant fuzzy PIS A+ and the
single-valued neutrosophic hesitant fuzzy NIS A−, respectively.

Step 6. Based on Equation (13), we determine the relative closeness coefficient RC(Ai) (i =

1, 2, . . . , m) of each alternative Ai to the single-valued neutrosophic hesitant fuzzy PIS A+.
Step 7. Rank the alternatives Ai (i = 1, 2, . . . , m) based on the relative closeness coefficients

RC(Ai) (i = 1, 2, . . . , m) and select the optimal one(s).
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Description of the MADM Problem

Construct simplified neutrosophic

Maximizing deviation

Identify the PIS and the NIS

TOPSIS method

Rank the alternatives

hesitant fuzzy decision matrix
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Figure 1: The scheme of the developed approach for MADM.

2.2 Maximizing deviation method for interval neutrosophic hesitant fuzzy253

multi-attribute decision making254

In this subsection, we only use INHFSs in SNHFSs and put forward a novel decision making approach,255

by combining the idea of INHFSs with maximizing deviation, to solve a MADM problem in interval256

neutrosophic hesitant fuzzy environment.257

Definition 2.2. [13] Let Z be a fixed set, an INHFS ñ on Z is defined as:

ñ = {〈z, t̃(z), ĩ(z), f̃(z)〉|z ∈ Z}

where t̃(z), ĩ(z), f̃(z) are sets of some interval-values in [0, 1], indicating the possible truth-membership258

hesitant degree, indeterminacy-membership hesitant degree and falsity-membership hesitant degree of259

the element z to ñ, respectively; t̃(z) = {γ̃1, γ̃2, . . . , γ̃l}, γ̃1, γ̃2, . . . , γ̃l are the elements of t̃(z); ĩ(z) =260

{δ̃1, δ̃2, . . . , δ̃p}, δ̃1, δ̃2, . . . , δ̃p are the elements of ĩ(z); f̃(z) = {η̃1, η̃2, . . . , η̃q}, η̃1, η̃2, . . . , η̃q are the elements261

of f̃(z), for every z ∈ Z; and l, p, q denote, respectively, the numbers of the interval-valued hesitant fuzzy262

elements in t̃, ĩ, f̃.263

For convenience, the expression ñ(z) = {̃t(z), ĩ(z), f̃(z)} is called an interval neutrosophic hesitant264

fuzzy element (INHFE), which we represent by simplified symbol ñ = {̃t, ĩ, f̃}.265

266

Similar to subsection 2.1, we consider a MADM problem, where A = {A1, A2, . . . , Am} is a discrete267

set of m alternatives and P = {P1, P2, . . . , Pn} is a set of n attributes. The evaluation information of268

11

Figure 1. The scheme of the developed approach for MADM.

2.2. TOPSIS and Maximizing Deviation Method for Interval Neutrosophic Hesitant Fuzzy Multi-Attribute
Decision-Making

In this subsection, we only use INHFSs in SNHFSs and put forward a novel decision-making
approach, by combining the idea of INHFSs with maximizing deviation, to solve a MADM problem in
interval neutrosophic hesitant fuzzy environment.

Definition 4 ([20]). Let Z be a fixed set, an INHFS ñ on Z is defined as:

ñ = {〈z, t̃(z), ĩ(z), f̃(z)〉|z ∈ Z}

where t̃(z), ĩ(z), f̃(z) are sets of some interval-values in [0, 1], indicating the possible truth-membership
hesitant degree, indeterminacy-membership hesitant degree and falsity-membership hesitant degree of the
element z to ñ, respectively; t̃(z) = {γ̃1, γ̃2, . . . , γ̃l}, γ̃1, γ̃2, . . . , γ̃l are the elements of t̃(z); ĩ(z) =

{δ̃1, δ̃2, . . . , δ̃p}, δ̃1, δ̃2, . . . , δ̃p are the elements of ĩ(z); f̃(z) = {η̃1, η̃2, . . . , η̃q}, η̃1, η̃2, . . . , η̃q are the elements
of f̃(z), for every z ∈ Z; and l, p, q denote, respectively, the numbers of the interval-valued hesitant fuzzy
elements in t̃, ĩ, f̃.

For convenience, the expression ñ(z) = {t̃(z), ĩ(z), f̃(z)} is called an interval neutrosophic hesitant
fuzzy element (INHFE), which we represent by simplified symbol ñ = {t̃, ĩ, f̃}.
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Similar to Section 2.1, we consider a MADM problem, where A = {A1, A2, . . . , Am} is a discrete
set of m alternatives and P = {P1, P2, . . . , Pn} is a set of n attributes. The evaluation information of the
ith alternative with respect to the jth attribute is an INHFE ñij = 〈t̃ij, ĩij, f̃ij〉, where t̃ij, ĩij and f̃ij indicate
the interval-valued preference degree, interval-valued uncertain degree, and interval-valued falsity
degree, respectively, of the expert facing the ith alternative that satisfied the jth attribute. Then the
interval neutrosophic hesitant fuzzy decision matrix (INHFDM) Ñ , can be constructed as follows:

Ñ =


ñ11 ñ12 . . . ñ1n
ñ21 ñ22 . . . ñ2n

...
...

. . .
...

ñm1 ñm2 . . . ñmn


In the comparison of INHFEs, the number of their corresponding element may be unequal.

To handle this situation, we normalize the INHFEs as follows:
Suppose that ñ = {t̃, ĩ, f̃} is an INHFE, then ¯̃γ = vγ̃+ + (1− v)γ̃−, ¯̃δ = vδ̃+ + (1− v)δ̃− and

¯̃η = vη̃+ + (1− v)η̃− are the added truth-membership, the indeterminacy-membership and the
falsity-membership degree, respectively, where γ̃−, γ̃+, δ̃−, δ̃+ and η̃−, η̃+ are the minimum and the
maximum elements of t̃, ĩ and f̃, respectively, and v ∈ [0, 1] is a parameter assigned by the expert
according to his risk preference.

For the normalization of INHFE, different values of v produce different results for the added
truth-membership, the indeterminacy-membership and the falsity-membership degree. Usually, there
are three cases of the preference of the expert:

• If v = 0, the pessimist expert may add the minimum truth-membership degree γ̃−, the minimum
indeterminacy-membership degree δ̃− and the minimum falsity-membership degree η̃−.

• If v = 0.5, the neutral expert may add the truth-membership degree γ̃−+γ̃+

2 ,

the indeterminacy-membership degree δ̃−+δ̃+

2 and the falsity-membership degree η̃−+η̃+

2 .
• If v = 1, the optimistic expert may add the maximum truth-membership degree γ̃+, the maximum

indeterminacy-membership degree δ̃+ and the maximum falsity-membership degree η̃+.

The algorithm for the normalization of INHFEs is given in Algorithm 2.
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Algorithm 2 The algorithm for the normalization of INHFEs.

INPUT: Two INHFEs ñ1 = (t̃1, ĩ1, f̃1) and ñ2 = (t̃2, ĩ2, f̃2) and the value of ṽ.
OUTPUT: The normalization of ñ1 = (t̃1, ĩ1, f̃1) and ñ2 = (t̃2, ĩ2, f̃2).

1: Count the number of elements of ñ1 and ñ2, i.e., #t̃1, #ĩ1, #f̃1, #t̃2, #ĩ2, #f̃2;
2: Determine the minimum and the maximum of the elements of ñ1 and ñ2;
3: t̃ = arg mini=1,2 #t̃i, ĩ = arg mini=1,2 #ĩi, f̃ = arg mini=1,2 #f̃i
4: if #t̃1 = #t̃2 then break;
5: else if t̃ = #t̃1 then
6: n = #t̃2 − #t̃1;
7: Determine the value of γ̃ for t̃1;
8: for i=1:1:n do
9: t̃1 = t̃1 ∪ γ̃;

10: end for
11: else
12: n = #t̃1 − #t̃2;
13: Determine the value of γ̃ for t̃2;
14: for i=1:1:n do
15: t̃2 = t̃2 ∪ γ̃;
16: end for
17: end if
18: if #ĩ1 = #ĩ2 then break;
19: else if ĩ = #ĩ1 then
20: n = #ĩ2 − #ĩ1;
21: Determine the value of δ̃ for ĩ1;
22: for i=1:1:n do
23: ĩ1 = ĩ1 ∪ δ̃;
24: end for
25: else
26: n = #ĩ1 − #ĩ2;
27: Determine the value of δ̃ for ĩ2;
28: for i=1:1:n do
29: ĩ2 = ĩ2 ∪ δ̃;
30: end for
31: end if
32: if #f̃1 = #f̃2 then break;
33: else if f̃ = #f̃1 then
34: n = #f̃2 − #f̃1;
35: Determine the value of η̃ for f̃1;
36: for i=1:1:n do
37: f̃1 = f̃1 ∪ η̃;
38: end for
39: else
40: n = #f̃1 − #f̃2;
41: Determine the value of η̃ for f̃2;
42: for i=1:1:n do
43: f̃2 = f̃2 ∪ η̃;
44: end for
45: end if

2.2.1. The Distance Measures for INHFSs

Definition 5. Let ñ1 = {t̃1, ĩ1, f̃1} and ñ2 = {t̃2, ĩ2, f̃2} be two normalized INHFEs, then we define the interval
neutrosophic hesitant fuzzy Hamming distance between ñ1 and ñ2 as follows:

d̃1(ñ1, ñ2) =
1
6

(
1
#t̃

#t̃

∑
ς=1

(∣∣∣γ̃σ(ς)L

1 − γ̃
σ(ς)L

2

∣∣∣+ ∣∣∣γ̃σ(ς)U

1 − γ̃
σ(ς)U

2

∣∣∣)+ 1
#ĩ

#ĩ

∑
ς=1

(∣∣∣δ̃σ(ς)L

1 − δ̃
σ(ς)L

2

∣∣∣
+
∣∣∣δ̃σ(ς)U

1 − δ̃
σ(ς)U

2

∣∣∣)+ 1
#f̃

#f̃

∑
ς=1

(∣∣∣η̃σ(ς)L

1 − η̃
σ(ς)L

2

∣∣∣+ ∣∣∣η̃σ(ς)U

1 − η̃
σ(ς)U

2

∣∣∣)) ,
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where #t̃ = #t̃1 = #t̃2, #ĩ = #ĩ1 = #ĩ2 and #f̃ = #f̃1 = #f̃2. γ̃
σ(ς)
i , δ̃

σ(ς)
i and η

σ(ς)
i are the ςth largest values in

γ̃i, δ̃i and η̃i, respectively (i = 1, 2).
In addition, the interval neutrosophic hesitant fuzzy Euclidean distance is defined as:

d̃2(ñ1, ñ2) =

(
1
6

(
1
#t̃

#t̃

∑
ς=1

((
γ̃

σ(ς)L

1 − γ̃
σ(ς)L

2

)2
+
(

γ̃
σ(ς)U

1 − γ̃
σ(ς)U

2

)2
)
+

1
#ĩ

#ĩ

∑
ς=1

((
δ̃

σ(ς)L

1 − δ̃
σ(ς)L

2

)2

+
(

δ̃
σ(ς)U

1 − δ̃
σ(ς)U

2

)2
)
+

1
#f̃

#f̃

∑
ς=1

((
η̃

σ(ς)L

1 − η̃
σ(ς)L

2

)2
+
(

η̃
σ(ς)U

1 − η̃
σ(ς)U

2

)2
))) 1

2

.

By using the geometric distance model of [26], the above distances can be generalized as follows:

d̃(ñ1, ñ2) =

(
1
6

(
1
#t̃

#t̃

∑
ς=1

((
γ̃

σ(ς)L

1 − γ̃
σ(ς)L

2

)α
+
(

γ̃
σ(ς)U

1 − γ̃
σ(ς)U

2

)α
)
+

1
#ĩ

#ĩ

∑
ς=1

((
δ̃

σ(ς)L

1 − δ̃
σ(ς)L

2

)α

+
(

δ̃
σ(ς)U

1 − δ̃
σ(ς)U

2

)α
)
+

1
#f̃

#f̃

∑
ς=1

((
η̃

σ(ς)L

1 − η̃
σ(ς)L

2

)α
+
(

η̃
σ(ς)U

1 − η̃
σ(ς)U

2

)α
))) 1

α

,

where α is constant and α > 0. Based on the value of α, the relationship among d̃(ñ1, ñ2), d̃1(ñ1, ñ2) and
d̃2(ñ1, ñ2) can be deduced as:

• If α = 1, then the distance d̃(ñ1, ñ2) = d̃1(ñ1, ñ2).
• If α = 2, then the distance d̃(ñ1, ñ2) = d̃2(ñ1, ñ2).

Therefore, the distance d̃(ñ1, ñ2) is a generalization of the interval neutrosophic hesitant fuzzy Hamming
distance d̃1(ñ1, ñ2) and the interval neutrosophic hesitant fuzzy Euclidean distance d̃2(ñ1, ñ2).

Theorem 3. Let ñ1 = {t̃1, ĩ1, f̃1} and ñ2 = {{[1, 1]}, {[0, 0]}, {[0, 0]}} be two INHFEs, then the generalized
distance d̃(ñ1, ñ

′
2) can be calculated as:

d̃(ñ1, ñ
′
2) =

 1
6

 1
#t̃1

∑
γ̃∈t̃1

(
(

1− γ̃L
)α

+
(

1− γ̃U
)α

) +
1

#ĩ1
∑

δ̃∈ĩ1
((δ̃L)α + (δ̃U)α) +

1
#f̃1

∑
η̃∈f̃1

((η̃L)α + (η̃U)α)

 1
α

.

where ñ
′
2 is the normalization outcome of ñ2 by the comparison of ñ1 and ñ2.

Theorem 4. Let ñ1 = {t̃1, ĩ1, f̃1} and ñ2 = {{[0, 0]}, {[1, 1]}, {[1, 1]}} be two INHFEs, then the generalized
distance d̃(ñ1, ñ

′
2) can be calculated as:

d̃(ñ1, ñ
′
2) =

 1
6

 1
#t̃1

∑
γ̃∈t̃1

((γ̃L)α + (γ̃U)α) +
1

#ĩ1
∑

δ̃∈ĩ1

((
1− δ̃L

)α
+
(

1− δ̃U
)α)

+
1

#f̃1
∑

η∈f̃1

((
1− η̃L

)α
+
(

1− η̃U
)α) 1

α

.

where ñ
′
2 is the normalization outcome of ñ2 by the comparison of ñ1 and ñ2.

2.2.2. Computation of Optimal Weights Using Maximizing Deviation Method

Case I: Completely unknown information on attribute weights
Using the maximizing deviation method, we construct an optimization model to determine the

attributes optimal relative weights in interval neutrosophic hesitant fuzzy setting. For the attribute
Pj ∈ Z, the deviation of the alternative Ai to all the other alternatives can be represented as:

D̃ij(w) =
m

∑
k=1

d̃(ñij, ñkj)wj, i = 1, 2, . . . , m, j = 1, 2, . . . , n
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where

d̃(ñij, ñkj) =

(
1
6

(
1
#t̃

#t̃

∑
ς=1

(∣∣∣γ̃σ̃(ς)L

ij − γ̃
σ̃(ς)L

kj

∣∣∣α + ∣∣∣γ̃σ̃(ς)U

ij − γ̃
σ̃(ς)U

kj

∣∣∣α)+
1
#ĩ

#ĩ

∑
ς=1

(∣∣∣δ̃σ̃(ς)L

ij − δ̃
σ̃(ς)L

kj

∣∣∣α

+
∣∣∣δ̃σ̃(ς)U

ij − δ̃
σ̃(ς)U

kj

∣∣∣α)+
1
#f̃

#f̃

∑
ς=1

(∣∣∣η̃σ̃(ς)L

ij − η̃
σ̃(ς)L

kj

∣∣∣α + ∣∣∣η̃σ̃(ς)U

ij − η̃
σ̃(ς)U

kj

∣∣∣α)))
1
α

.

Let

D̃j(w) =
m

∑
i=1

D̃ij(w) =
m

∑
i=1

m

∑
k=1

wj

(
1
6

(
1
#t̃

#t̃

∑
ς=1

(∣∣∣γ̃σ̃(ς)L

ij − γ̃
σ̃(ς)L

kj

∣∣∣α + ∣∣∣γ̃σ̃(ς)U

ij − γ̃
σ̃(ς)U

kj

∣∣∣α)+
1
#ĩ

#ĩ

∑
ς=1

(∣∣∣δ̃σ̃(ς)L

ij − δ̃
σ̃(ς)L

kj

∣∣∣α

+
∣∣∣δ̃σ̃(ς)U

ij − δ̃
σ̃(ς)U

kj

∣∣∣α)+
1
#f̃

#f̃

∑
ς=1

(∣∣∣η̃σ̃(ς)L

ij − η̃
σ̃(ς)L

kj

∣∣∣α + ∣∣∣η̃σ̃(ς)U

ij − η̃
σ̃(ς)U

kj

∣∣∣α)))
1
α

,

j = 1, 2, . . . , n. Then Dj(w) represents the deviation value of all alternatives to other alternatives for
the attribute Pj ∈ Z.

On the basis of the analysis above, to select the weight vector w which maximizes all deviation
values for all the attributes, a non-linear programming model is constructed as follows:

(M− 3)



max D̃(w) =
n

∑
j=1

m

∑
i=1

m

∑
k=1

wj


1
6


1
#t̃

#t̃

∑
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kj
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#f̃
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∣∣∣α + ∣∣∣η̃σ̃(ς)U
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σ̃(ς)U

kj

∣∣∣α)




1
α

s.t. wj ≥ 0, j = 1, 2, . . . , n,
n

∑
j=1

w2
j = 1

To solve the above model, we construct the Lagrange function:

L(w, ξ) =
n

∑
j=1

m

∑
i=1

m

∑
k=1

(
1
6

(
1
#t̃

#t̃
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kj
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1
α

wj +
ξ

2

(
n

∑
j=1

w2
j − 1

)

where ξ is a real number, representing the Lagrange multiplier variable. Then we compute the partial
derivatives of L and let:

∂L
∂wj

=
m

∑
i=1

m
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α

+ ξwj = 0

∂L
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=
1
2

(
n

∑
j=1

w2
j − 1

)
= 0

Florentin Smarandache (ed.) Collected Papers, VII

643



By solving the above equations, to determining the attribute weights, an exact and simple formula
can be obtained as follows:

w∗j =

m
∑

i=1

m
∑

k=1

 1
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2

As the weights of the attributes should satisfy the normalization condition, so we obtain the
normalized attribute weights:

wj =
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(14)

Case II: Partly known information on attribute weights
However, there are some situations that the information about the weight vector is partially

known. For such situations, using the set of the known weight information, =, the constrained
optimization model can be designed as:

(M− 4)
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1
α

s.t. w ∈ =, wj ≥ 0, j = 1, 2, . . . , n,
n

∑
j=1

wj = 1

where = is also a set of constraint conditions that the weight value wj should satisfy according to
the requirements in real situations. By solving the linear programming model (M− 4), we obtain the
optimal solution w = (w1, w2, . . . , wn)t, which can be used as the weight vector of attributes.

In interval neutrosophic hesitant fuzzy environment, the PIS Ã+, and the NIS Ã− can be defined
as follows:

Ã+ = {ñ+1 , ñ+2 , . . . , ñ+n }
= {{{[1, 1]}, {[0, 0]}, {[0, 0]}}, {{[1, 1]}, {[0, 0]}, {[0, 0]}}, . . . , {{[1, 1]}, {[0, 0]}, {[0, 0]}}}.

Ã− = {ñ−1 , ñ−2 , . . . , ñ−n }
= {{{[0, 0]}, {[1, 1]}, {[1, 1]}}, {{[0, 0]}, {[1, 1]}, {[1, 1]}}, . . . , {{[0, 0]}, {[1, 1]}, {[1, 1]}}}.
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On the basis of Equation (14), Theorems 3 and 4, the separation measures d̃+i and d̃−i of each
alternative from the interval neutrosophic hesitant fuzzy PIS Ã+ and the interval neutrosophic hesitant
fuzzy NIS Ã−, respectively, are determined as:

d̃+i =
n

∑
j=1

d̃(ñ
′
ij , ñ

+
j )wj =

n

∑
j=1

d̃(ñ
′
ij , {{[1, 1]}, {[0, 0]}, {[0, 0]}})wj (15)

=
n

∑
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 1
6
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α

,(16)

d̃−i =
n

∑
j=1
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′
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−
j )wj =
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′
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δ̃∈ĩ′ij

((
1− δ̃L

)α
+
(

1− δ̃U
)α)

+
1

#f̃′ij
∑

η̃∈f̃′ij

((
1− η̃L

)α
+
(

1− η̃U
)α) 1

α

, (18)

where i = 1, 2, . . . , m. The relative closeness coefficient of an alternative Ãi with respect to the PIS Ã+

is defined as:

RC(Ãi) =
d̃−i

d̃+i + d̃−i
(19)

where 0 ≤ RC(Ãi) ≤ 1, i = 1, 2, . . . , m. The ranking orders of all alternatives can be
determined according to the closeness coefficient CR(Ãi) and select the optimal one(s) from a set of
appropriate alternatives.

3. An Illustrative Example

To examine the validity and feasibility of developed decision-making approach in this section, we give
a smartphone accessories supplier selection problem in realistic scenario as follows: In the smartphone
fields, the Chinese market is the immense one in the world and the competition of smartphone field is so
fierce that several companies could not avoid the destiny of bankrupt. In the Chinese market, a firm, who
does not want to be defeated must choose the excellent accessories suppliers to fit its supply requirements
and technology strategies. A new smartphone design firm called “Hua Xin” incorporated company, who
wants to choose a few accessories suppliers for guaranteeing the productive throughput. For simplicity,
we assume only one kind of accessory known as Central Processing Unit (CPU), which is used as an
essential part in smartphones. The firm determines five CPU suppliers (alternatives) Ai(i = 1, 2, . . . , 5)
through the analysis of their planned level of effort and the market investigation. The evaluation criteria
are (1) P1 : cost; (2) P2 : technical ability; (3) P3 : product performance; (4) P4 : service performance.
Because the uncertainty of the information, the evaluation information given by the three experts is
expressed as SVNHFEs. The SVNHFDM is given in Table 1. The hierarchical structure of constructed
decision-making problem is depicted in Figure 2.

Table 1. Single-valued neutrosophic hesitant fuzzy decision matrix.

P1 P2

A1 {{0.2},{0.3,0.5},{0.1,0.2,0.3}} {{0.6,0.7},{0.1,0.3},{0.2,0.4}}
A2 {{0.1},{0.3},{0.5,0.6}} {{0.4},{0.3,0.5},{0.5,0.6}}
A3 {{0.6,0.7},{0.2,0.3},{0.1,0.2}} {{0.1,0.2},{0.3},{0.6,0.7}}
A4 {{0.2,0.3},{0.1,0.2},{0.5,0.6}} {{0.3,0.4},{0.2,0.3},{0.5,0.6,0.7}}
A5 {{0.7},{0.4,0.5},{0.2,0.4,0.5}} {{0.6},{0.1,0.7},{0.3,0.5}}

P3 P4

A1 {{0.2,0.3},{0.4},{0.7,0.8}} {{0.4},{0.1,0.3},{0.5,0.7,0.9}}
A2 {{0.1,0.3},{0.4},{0.5,0.6,0.8}} {{0.6,0.8},{0.2},{0.3,0.5}}
A3 {{0.2,0.3},{0.1,0.2},{0.6,0.7}} {{0.2,0.3},{0.4},{0.2,0.5,0.6}}
A4 {{0.2,0.4},{0.3},{0.1,0.2}} {{0.6},{0.2},{0.3,0.5}}
A5 {{0.3},{0.5},{0.1,0.4}} {{0.5},{0.1,0.2},{0.3,0.4}}
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Take v = 0.5, α = 2, and we normalize the SVNHFDM by using Algorithm 1. The normalized
SVNHFDM is given in Table 2.

Selection of the best
Smartphone accessories supplier

Cost

P1

Technical ability

P2

Product
P3

Service
P4

A1

A2

A5

A4

A3

Goal

performance

performance

Figure 2: The smartphone accessories supplier selection hierarchical structure.

Table 1: Single-valued neutrosophic hesitant fuzzy decision matrix.

P1 P2

A1 {{0.2},{0.3,0.5},{0.1,0.2,0.3}} {{0.6,0.7},{0.1,0.3},{0.2,0.4}}
A2 {{0.1},{0.3},{0.5,0.6}} {{0.4},{0.3,0.5},{0.5,0.6}}
A3 {{0.6,0.7},{0.2,0.3},{0.1,0.2}} {{0.1,0.2},{0.3},{0.6,0.7}}
A4 {{0.2,0.3},{0.1,0.2},{0.5,0.6}} {{0.3,0.4},{0.2,0.3},{0.5,0.6,0.7}}
A5 {{0.7},{0.4,0.5},{0.2,0.4,0.5}} {{0.6},{0.1,0.7},{0.3,0.5}}

P3 P4

A1 {{0.2,0.3},{0.4},{0.7,0.8}} {{0.4},{0.1,0.3},{0.5,0.7,0.9}}
A2 {{0.1,0.3},{0.4},{0.5,0.6,0.8}} {{0.6,0.8},{0.2},{0.3,0.5}}
A3 {{0.2,0.3},{0.1,0.2},{0.6,0.7}} {{0.2,0.3},{0.4},{0.2,0.5,0.6}}
A4 {{0.2,0.4},{0.3},{0.1,0.2}} {{0.6},{0.2},{0.3,0.5}}
A5 {{0.3},{0.5},{0.1,0.4}} {{0.5},{0.1,0.2},{0.3,0.4}}

Take ̟ = 0.5, α = 2, and we normalize the SVNHFDM by utilizing Algorithm 1. The normalized362

SVNHFDM is given in Table 2.363
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Figure 2. The smartphone accessories supplier selection hierarchical structure.

Table 2. Normalized single-valued neutrosophic hesitant fuzzy decision matrix.

P1 P2

A1 {{0.2,0.2},{0.3,0.5},{0.1,0.2,0.3}} {{0.6,0.7},{0.1,0.3},{0.2,0.3,0.4}}
A2 {{0.1,0.1},{0.3,0.3},{0.5,0.55,0.6}} {{0.4,0.4},{0.3,0.5},{0.5,0.55,0.6}}
A3 {{0.6,0.7},{0.2,0.3},{0.1,0.15,0.2}} {{0.1,0.2},{0.3,0.3},{0.6,0.65,0.7}}
A4 {{0.2,0.3},{0.1,0.2},{0.5,0.55,0.6}} {{0.3,0.4},{0.2,0.3},{0.5,0.6,0.7}}
A5 {{0.7,0.7},{0.4,0.5},{0.2,0.4,0.5}} {{0.6,0.6},{0.1,0.7},{0.3,0.4,0.5}}

P3 P4

A1 {{0.2,0.3},{0.4,0.4},{0.7,0.75,0.8}} {{0.4,0.4},{0.1,0.3},{0.5,0.7,0.9}}
A2 {{0.1,0.3},{0.4,0.4},{0.5,0.6,0.8}} {{0.6,0.8},{0.2,0.2},{0.3,0.4,0.5}}
A3 {{0.2,0.3},{0.1,0.2},{0.6,0.65,0.7}} {{0.2,0.3},{0.4,0.4},{0.2,0.5,0.6}}
A4 {{0.2,0.4},{0.3,0.3},{0.1,0.15,0.2}} {{0.6,0.6},{0.2,0.2},{0.3,0.4,0.5}}
A5 {{0.3,0.3},{0.5,0.5},{0.1,0.25,0.4}} {{0.5,0.5},{0.1,0.2},{0.3,0.35,0.4}}

Now to obtain the optimal accessory supplier, we use the developed method, which contains the
following two cases:
Case 1: The information of the attribute weights is completely unknown, then the MADM approach
related to accessory supplier selection includes the following steps:

Step 1: On the basis of Equation (4), we get the optimal weight vector:

w = (0.2994, 0.2367, 0.2521, 0.2118)T

Step 2: Based on the decision matrix of Table 2, we get the normalization of the reference points A+

and A− as follows:

A+ = {n+1 , n+2 , n+3 , n+4 }

= {{{1, 1}, {0, 0}, {0, 0, 0}}, {{1, 1}, {0, 0}, {0, 0, 0}}, {{1, 1}, {0, 0}, {0, 0, 0}}, {{1, 1}, {0, 0}, {0, 0, 0}}},
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A− = {n−1 , n−2 , n−3 , n−4 }

= {{{0, 0}, {1, 1}, {1, 1, 1}}, {{0, 0}, {1, 1}, {1, 1, 1}}, {{0, 0}, {1, 1}, {1, 1, 1}}, {{0, 0}, {1, 1}, {1, 1, 1}}}.

Step 3: On the basis of Equations (10) and (12), we determine the geometric distances d+i = d(Ai, A+)

and d−i = d(Ai, A−) for the alternative Ai(i = 1, 2, . . . , 5) as shown in Table 3.
Step 4: Use Equation (13) to determine the relative closeness of each alternative Ai with respect to

the single-valued neutrosophic hesitant fuzzy PIS A+:

RC(A1) = 0.5251, RC(A2) = 0.4896, RC(A3) = 0.5394, RC(A4) = 0.5600, RC(A5) = 0.5927.

Step 5: On the basis of the relative closeness coefficients RC(Ai), rank the alternatives Ai(i =

1, 2, . . . , 5): A5 � A4 � A3 � A1 � A2. Thus, the optimal alternative (CPU supplier) is
A5.

Table 3. The geometric distances for alternatives.

Geometric Distance A1 A2 A3 A4 A5

d+i = d(Ai, A+) 0.5142 0.5434 0.4974 0.4781 0.4279
d−i = d(Ai, A−) 0.5685 0.5212 0.5824 0.6086 0.6226

Case 2: The information of the attribute weights is partly known, and the known weight information
is as follows:

= = {0.15 ≤ w1 ≤ 0.2, 0.16 ≤ w2 ≤ 0.18, 0.3 ≤ w3 ≤ 0.35, 0.3 ≤ w4 ≤ 0.45,
4

∑
j=1

wj = 1}

Step 1: Use the model (M-2) to establish the single-objective programming model as follows:

(M− 2)


max D(w) = 5.6368w1 + 4.4554w2 + 4.7465w3 + 3.9864w4

s.t. w ∈ =, wj ≥ 0, j = 1, 2, 3, 4,
4
∑

j=1
wj = 1

By solving this model, we obtain the attributes weight vector:

w = (0.2000, 0.1600, 0.3400, 0.3000)T

Step 2: According to the decision matrix of Table 2, the normalization of the reference points A+ and
A− can be obtained as follows:

A+ = {n+1 , n+2 , n+3 , n+4 }

= {{{1, 1}, {0, 0}, {0, 0, 0}}, {{1, 1}, {0, 0}, {0, 0, 0}}, {{1, 1}, {0, 0}, {0, 0, 0}}, {{1, 1}, {0, 0}, {0, 0, 0}}},

A− = {n−1 , n−2 , n−3 , n−4 }

= {{{0, 0}, {1, 1}, {1, 1, 1}}, {{0, 0}, {1, 1}, {1, 1, 1}}, {{0, 0}, {1, 1}, {1, 1, 1}}, {{0, 0}, {1, 1}, {1, 1, 1}}}.

Step 3: Based on Equations (10) and (12), we determine the geometric distances d(Ai, A+) and
d(Ai, A−) for the alternative Ai(i = 1, 2, . . . , 5) as shown in Table 4.

Step 4: Use Equation (13) to determine the relative closeness of each alternative Ai with respect to
the single-valued neutrosophic hesitant fuzzy PIS A+:

RC(A1) = 0.4972, RC(A2) = 0.5052, RC(A3) = 0.5199, RC(A4) = 0.5808, RC(A5) = 0.5883.
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Step 5: Based on the relative closeness coefficients RC(Ai), rank the alternatives Ai(i = 1, 2, . . . , 5):
A5 � A4 � A3 � A2 � A1. Thus, the optimal alternative (CPU supplier) is A5.

Taking v = 0.5, we normalize the single-valued neutrosophic hesitant fuzzy decision matrix
and compute the closeness coefficient of the alternatives with the different values of α.
The comparison results are given in Figure 3.

Table 4. The geometric distances for alternatives.

Geometric Distance A1 A2 A3 A4 A5

d(Ai, A+) 0.5446 0.5244 0.5220 0.4534 0.4341
d(Ai, A−) 0.5385 0.5355 0.5652 0.6281 0.6202
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Figure 3. Comparison of the closeness coefficient of the alternative.

The analysis process under interval neutrosophic hesitant fuzzy circumstances:

In the above smartphone accessories supplier selection problem, if the information provided by
the experts is indicated in INHFEs, as in Table 5. Then, to choose the optimal CPU supplier, we proceed
to use the developed approach.

Take v = 0.5, α = 2, and we normalize the INHFDM by using Algorithm 2. The normalized
INHFDM is given in Table 6.
Case 1: The information of the attribute weights is completely unknown , then the MADM method of
accessory supplier selection consists of the following steps:

Step 1: On the basis of Equation (14), we get the optimal weight vector:

w = {0.2963, 0.2562, 0.2388, 0.2087}
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Step 2: According to the decision matrix of Table 6, the normalization of the reference points Ã+ and
Ã− can be obtained as follows:

Ã+ = {ñ+1 , ñ+2 , ñ+3 , ñ+4 }

= {{{[1, 1], [1, 1]}, {[0, 0], [0, 0]}, {[0, 0], [0, 0], [0, 0]}}, {{[1, 1], [1, 1]}, {[0, 0], [0, 0]}, {[0, 0], [0, 0], [0, 0]}},

{{[1, 1], [1, 1]}, {[0, 0], [0, 0]}, {[0, 0], [0, 0], [0, 0]}}, {{[1, 1], [1, 1]}, {[0, 0], [0, 0]}, {[0, 0], [0, 0], [0, 0]}}},

Ã− = {ñ−1 , ñ−2 , ñ−3 , ñ−4 }

= {{{[0, 0], [0, 0]}, {[1, 1], [1, 1]}, {[1, 1], [1, 1], [1, 1]}}, {{[0, 0], [0, 0]}, {[1, 1], [1, 1]}, {[1, 1], [1, 1], [1, 1]}},

{{[0, 0], [0, 0]}, {[1, 1], [1, 1]}, {[1, 1], [1, 1], [1, 1]}}, {{[0, 0], [0, 0]}, {[1, 1], [1, 1]}, {[1, 1], [1, 1], [1, 1]}}}.

Step 3: Based on Equations (15) and (17), we determine the geometric distances d̃(Ai, A−) and
d̃(Ai, A+) for the alternative Ai(i = 1, 2, . . . , 5) as shown in Table 7.

Step 4: Use Equation (19) to determine the relative closeness of each alternative Ãi with respect to
the interval neutrosophic hesitant fuzzy PIS Ã+:

RC(Ã1) = 0.5169, RC(Ã2) = 0.4592, RC(Ã3) = 0.4969, RC(Ã4) = 0.5368, RC(Ã5) = 0.5643.

Step 5: Based on the relative closeness coefficients RC(Ãi), rank the alternatives Ai(i = 1, 2, . . . , 5):
A5 � A4 � A1 � A3 � A2. Thus, the optimal alternative (CPU supplier) is A5.

Case 2: The information of the attribute weights is partly known, and the known weight information
is given as follows:

= = {0.15 ≤ w1 ≤ 0.2, 0.16 ≤ w2 ≤ 0.18, 0.3 ≤ w3 ≤ 0.35, 0.3 ≤ w4 ≤ 0.45,
4

∑
j=1

wj = 1}

Step 1: Use the model (M-4) to establish the single-objective programming model as follows: (M−

4)


max D(w) = 4.5556w1 + 4.2000w2 + 3.3222w3 + 3.3111w4

s.t. w ∈ =, wj ≥ 0, j = 1, 2, 3, 4,
4
∑

j=1
wj = 1

By solving this model, we obtain the weight vector of attributes:

w = {0.2000, 0.1800, 0.3200, 0.3000}

Step 2: According to the decision matrix of Table 6, we can obtain the normalization of the reference
points Ã+ and Ã− as follows:

Ã+ = {ñ+1 , ñ+2 , ñ+3 , ñ+4 }

= {{{[1, 1], [1, 1]}, {[0, 0], [0, 0]}, {[0, 0], [0, 0], [0, 0]}}, {{[1, 1], [1, 1]}, {[0, 0], [0, 0]}, {[0, 0], [0, 0], [0, 0]}},

{{[1, 1], [1, 1]}, {[0, 0], [0, 0]}, {[0, 0], [0, 0], [0, 0]}}, {{[1, 1], [1, 1]}, {[0, 0], [0, 0]}, {[0, 0], [0, 0], [0, 0]}}},

Ã− = {ñ−1 , ñ−2 , ñ−3 , ñ−4 }

= {{{[0, 0], [0, 0]}, {[1, 1], [1, 1]}, {[1, 1], [1, 1], [1, 1]}}, {{[0, 0], [0, 0]}, {[1, 1], [1, 1]}, {[1, 1], [1, 1], [1, 1]}},

{{[0, 0], [0, 0]}, {[1, 1], [1, 1]}, {[1, 1], [1, 1], [1, 1]}}, {{[0, 0], [0, 0]}, {[1, 1], [1, 1]}, {[1, 1], [1, 1], [1, 1]}}}.

Step 3: Use Equations (15) and (17) to determine the geometric distances d̃(Ai, A+) and d̃(Ai, A−)
for the alternative Ai(i = 1, 2, . . . , 5) as shown in Table 8.

Florentin Smarandache (ed.) Collected Papers, VII

649



Step 4: Use Equation (19) to determine the relative closeness of each alternative Ãi with respect to
the interval neutrosophic hesitant fuzzy PIS Ã+:

RC(Ã1) = 0.4955, RC(Ã2) = 0.4729, RC(Ã3) = 0.4803, RC(Ã4) = 0.5536, RC(Ã5) = 0.5607.

Step 5: According to the relative closeness coefficients RC(Ãi), rank the alternatives Ai(i =

1, 2, . . . , 5): A5 � A4 � A1 � A3 � A2. Thus, the optimal alternative (CPU supplier)
is A5.

Taking v = 0.5, we normalize the interval neutrosophic hesitant fuzzy decision matrix and
compute the closeness coefficient of the alternatives with the different values of α. The comparison
results are given in Figure 4.
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Figure 4. Comparison of the closeness coefficient of the alternative.
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Table 5. Interval neutrosophic hesitant fuzzy decision matrix.

P1 P2

A1 {{[0.2,0.3]},{[0.3,0.4],[0.5,0.7]},{[0.1,0.3],[0.2,0.5],[0.3,0.6]}} {{[0.6,0.8],[0.7,0.9]},{[0.1,0.2],[0.3,0.5]},{[0.2,0.3],[0.4,0.5]}}
A2 {{[0.1,0.3]},{[0.3,0.5]},{[0.5,0.7],[0.6,0.8]}} {{[0.4,0.6]},{[0.3,0.4],[0.5,0.6]},{[0.5,0.7],[0.6,0.8]}}
A3 {{[0.6,0.7],[0.7,0.8]},{[0.2,0.4],[0.3,0.5]},{[0.1,0.3],[0.2,0.4]}} {{[0.1,0.3],[0.2,0.4]},{[0.3,0.6]},{[0.6,0.8],[0.7,0.9]}}
A4 {{[0.2,0.5],[0.3,0.4]},{[0.1,0.3],[0.2,0.3]},{[0.5,0.6],[0.6,0.7]}} {{[0.3,0.5],[0.4,0.6]},{[0.2,0.3],[0.3,0.4]},{[0.5,0.7],[0.6,0.8],[0.7,0.9]}}
A5 {{[0.7,0.8]},{[0.4,0.6],[0.5,0.7]},{[0.2,0.3],[0.4,0.6],[0.5,0.7]}} {{[0.6,0.8]},{[0.1,0.3],[0.7,0.8]},{[0.3,0.4],[0.5,0.6}}

P3 P4

A1 {{[0.2,0.4],[0.3,0.5]},{[0.4,0.5]},{[0.7,0.8],[0.8,0.9]}} {{[0.4,0.6]},{[0.1,0.2],[0.3,0.4]},{[0.5,0.6],[0.7,0.8],[0.8,0.9]}}
A2 {{[0.1,0.3],[0.3,0.5]},{[0.4,0.6]},{[0.5,0.6],[0.6,0.7],[0.8,0.9]}} {{[0.6,0.7],[0.8,0.9]},{[0.2,0.5]},{[0.3,0.5],[0.5,0.7]}}
A3 {{[0.2,0.3],[0.3,0.4]},{[0.1,0.3],[0.2,0.4]},{[0.6,0.8],[0.7,0.9]}} {{[0.2,0.4],[0.3,0.5]},{[0.4,0.6]},{[0.2,0.3],[0.5,0.7],[0.6,0.8]}}
A4 {{[0.2,0.3],[0.4,0.5]},{[0.3,0.6]},{[0.1,0.4],[0.2,0.5]}} {{[0.6,0.8]},{[0.2,0.3]},{[0.3,0.4],[0.5,0.6]}}
A5 {{[0.3,0.5]},{[0.5,0.6]},{[0.1,0.3],[0.4,0.5]}} {{[0.5,0.7]},{[0.1,0.3],[0.2,0.5]},{[0.3,0.5],[0.4,0.8]}}

Table 6. Normalized interval neutrosophic hesitant fuzzy decision matrix.

P1 P2

A1 {{[0.2,0.3],[0.2,0.3]},{[0.3,0.4],[0.5,0.7]},{[0.1,0.3],[0.2,0.5],[0.3,0.6]}} {{[0.6,0.8],[0.7,0.9]},{[0.1,0.2],[0.3,0.5]},{[0.2,0.3],[0.3,0.4],[0.4,0.5]}}
A2 {{[0.1,0.3],[0.1,0.3]},{[0.3,0.5],[0.3,0.5]},{[0.5,0.7],[0.55,0.75],[0.6,0.8]}} {{[0.4,0.6],[0.4,0.6]},{[0.3,0.4],[0.5,0.6]},{[0.5,0.7],[0.55,0.75],[0.6,0.8]}}
A3 {{[0.6,0.7],[0.7,0.8]},{[0.2,0.4],[0.3,0.5]},{[0.1,0.3],[0.15,0.35],[0.2,0.4]}} {{[0.1,0.3],[0.2,0.4]},{[0.3,0.6],[0.3,0.6]},{[0.6,0.8],[0.65,0.85],[0.7,0.9]}}
A4 {{[0.2,0.5],[0.3,0.4]},{[0.1,0.3],[0.2,0.3]},{[0.5,0.6],[0.55,0.65],[0.6,0.7]}} {{[0.3,0.5],[0.4,0.6]},{[0.2,0.3],[0.3,0.4]},{[0.5,0.7],[0.6,0.8],[0.7,0.9]}}
A5 {{[0.7,0.8],[0.7,0.8]},{[0.4,0.6],[0.5,0.7]},{[0.2,0.3],[0.4,0.6],[0.5,0.7]}} {{[0.6,0.8],[0.6,0.8]},{[0.1,0.3],[0.7,0.8]},{[0.3,0.4],[0.4,0.5],[0.5,0.6}}

P3 P4

A1 {{[0.2,0.4],[0.3,0.5]},{[0.4,0.5],[0.4,0.5]},{[0.7,0.8],[0.75,0.85],[0.8,0.9]}} {{[0.4,0.6],[0.4,0.6]},{[0.1,0.2],[0.3,0.4]},{[0.5,0.6],[0.7,0.8],[0.8,0.9]}}
A2 {{[0.1,0.3],[0.3,0.5]},{[0.4,0.6],[0.4,0.6]},{[0.5,0.6],[0.6,0.7],[0.8,0.9]}} {{[0.6,0.7],[0.8,0.9]},{[0.2,0.5],[0.2,0.5]},{[0.3,0.5],[0.4,0.6],[0.5,0.7]}}
A3 {{[0.2,0.3],[0.3,0.4]},{[0.1,0.3],[0.2,0.4]},{[0.6,0.8],[0.65,0.85],[0.7,0.9]}} {{[0.2,0.4],[0.3,0.5]},{[0.4,0.6],[0.4,0.6]},{[0.2,0.3],[0.5,0.7],[0.6,0.8]}}
A4 {{[0.2,0.3],[0.4,0.5]},{[0.3,0.6],[0.3,0.6]},{[0.1,0.4],[0.15,0.45],[0.2,0.5]}} {{[0.6,0.8],[0.6,0.8]},{[0.2,0.3],[0.2,0.3]},{[0.3,0.4],[0.4,0.5],[0.5,0.6]}}
A5 {{[0.3,0.5],[0.3,0.5]},{[0.5,0.6],[0.5,0.6]},{[0.1,0.3],[0.25,0.4],[0.4,0.5]}} {{[0.5,0.7],[0.5,0.7]},{[0.1,0.3],[0.2,0.5]},{[0.3,0.5],[0.35,0.65],[0.4,0.8]}}
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Table 7. The geometric distances for alternatives.

Geometric Distance A1 A2 A3 A4 A5

d̃(Ai, A+) 0.5169 0.5711 0.5361 0.4952 0.4625
d̃(Ai, A−) 0.5531 0.4849 0.5295 0.5740 0.5991

Table 8. The geometric distances for alternatives.

Geometric Distance A1 A2 A3 A4 A5

d̃(Ai, A+) 0.5406 0.5562 0.5569 0.4752 0.4653
d̃(Ai, A−) 0.5310 0.4990 0.5147 0.5894 0.5938

3.1. Comparative Analysis

Zhao et al. [31] generalized the minimum deviation method to accommodate hesitant
fuzzy values for solving the decision-making problems. We have used this approach
on the above illustrative example and compared the decision results with proposed
approach of this paper for SNHFSs. In the approach of Zhao et al., assume that the
subjective preference values to all the alternatives Aj(j = 1, 2, 3, 4, 5) assigned by the
experts are: s1 = {{0.3, 0.4}, {0.2, 0.5}, {0.1, 0.3, 0.7}}, s2 = {{0.2, 0.7}, {0.1, 0.9}, {0.3, 0.6}},
s3 = {{0.8}, {0.5, 0.8}, {0.4, 0.7, 0.9}}, s4 = {{0.1, 0.4}, {0.6}, {0.5, 0.7, 0.8}} and s5 = {{0.3}, {0.4, 0.6},
{0.2, 0.4}}. Also s̃1 = {{[0.3, 0.5], [0.4, 0.6]}, {[0.2, 0.3], [0.5, 0.7]}, {[0.1, 0.2], [0.3, 0.4], [0.7, 0.9]}}, s̃2 =

{{[0.2, 0.3], [0.7, 0.9]}, {[0.1, 0.4], [0.7, 0.9]}, {[0.3, 0.4], [0.6, 0.8]}}, s̃3 =

{{[0.8, 0.9]}, {[0.5, 0.6], [0.8, 0.9]}, {[0.4, 0.6], [0.7, 0.9], [0.6, 0.7]}}, s̃4 =

{{[0.1, 0.4], [0.4, 0.5]}, {[0.6, 0.7]}, {[0.5, 0.7], [0.7, 0.8], [0.8, 0.9]}} and s̃5 = {{[0.3, 0.5]}, {[0.4, 0.5],
[0.6, 0.8]}, {[0.2, 0.3], [0.4, 0.7]}}.

The results corresponding to these approaches are summarized in Table 9.

Table 9. Comparative analysis.

Methods Score of Alternatives Ranking of Alternatives

Zhao et al. [31] for SVNHFS 0.4431 0.4025 0.4941 0.5073 0.5691 A5 � A4 � A3 � A1 � A2
Our proposed method for SVNHFS 0.5251 0.4896 0.5394 0.5600 0.5927 A5 � A4 � A3 � A1 � A2

Zhao et al. [31] for INHFS 0.4559 0.4206 0.4255 0.5334 0.5791 A5 � A4 � A1 � A3 � A2
Our proposed method for INHFS 0.5169 0.4592 0.4969 0.5368 0.5643 A5 � A4 � A1 � A3 � A2

From this comparative study, the results obtained by the approach [31] coincide with the proposed
one which validates the proposed approach. The main reason is that in approach [31], the subjective
preferences are taken into account to serve as decision information and will have a positive effect on the
final decision results. Hence, the proposed approach can be suitably used to solve the MADM problems.
The advantages of our proposed method are as follows: (1) The developed approach has good
flexibility and extension. (2) The SNHFSs of developed approach availably depicts increasingly general
decision-making situations. (3) With the aid of the maximizing deviation and TOPSIS, the developed
approach uses the satisfaction level of the alternative to the ideal solutions to make the decision.

4. Conclusions

SNHFS is a suitable tool for dealing with the obscurity of an expert’s judgments over alternatives
according to attributes. SNHFSs are useful for representing the hesitant assessments of the experts,
and remains the edge of SNSs and HFSs, which accommodates an increasingly complex MADM
situation. SNHFS (by combining SNS and HFS) as an extended format represents some general
hesitant scenarios. In this paper, firstly we have developed the normalization method and the distance
measures of SNHFSs and further, to obtain the attribute optimal relative weights, we have proposed a
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decision-making approach called the maximizing deviation method with SNHFSs including SVNHFSs
and INHFSs. Secondly, we have developed a new approach based on TOPSIS to solve MADM problems
under SNHFS environment (SVNHFS and INHFS). Finally, we have illustrated the applicability and
effectiveness of the developed method with a smartphone accessories supplier selection problem.
In future work, we will extend the proposed approach of SNHFSs to other areas, such as pattern
recognition, medical diagnosis, clustering analysis, and image processing.
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Abstract: Recently, neutrosophic sets are found to be more general and useful to express
incomplete, indeterminate and inconsistent information. The purpose of this paper is to introduce
new aggregation operators based on logarithmic operations and to develop a multi-criteria
decision-making approach to study the interaction between the input argument under the single
valued neutrosophic (SVN) environment. The main advantage of the proposed operator is that it can
deal with the situations of the positive interaction, negative interaction or non-interaction among the
criteria, during decision-making process. In this paper, we also defined some logarithmic operational
rules on SVN sets, then we propose the single valued neutrosophic hybrid aggregation operators as a
tool for multi-criteria decision-making (MCDM) under the neutrosophic environment and discussd
some properties. Finally, the detailed decision-making steps for the single valued neutrosophic
MCDM problems were developed, and a practical case was given to check the created approach and
to illustrate its validity and superiority. Besides this, a systematic comparison analysis with other
existent methods is conducted to reveal the advantages of our proposed method. Results indicate that
the proposed method is suitable and effective for decision process to evaluate their best alternative.

Keywords: single valued neutrosophic sets; logarithmic operational laws; logarithmic aggregation
operators; MCGDM problems

1. Introduction

The information involves, in most of the real-life decision-making problems are often incomplete,
indeterminate and inconsistent. Fuzzy set theory introduced by Zadeh [1] deals with imprecise,
inconsistent information. Although fuzzy set information proved to be very handy but it cannot
express the information about rejection. Atanassov [2] introduced the intuitionistic fuzzy set (IFS) to
bring in non-membership. Non membership function represents degree of rejection. To incorporate
indeterminate and inconsistent information, in addition to incomplete information, the concept of
neutrosophic set (NS) proposed by Smarandache [3]. A NS generalizes the notion of the classic set,
fuzzy set (FS) [1], IFS [2], paraconsistent set [4], dialetheist set, paradoxist set [4], and tautological
set [4] to name a few. In NS, indeterminacy is quantified explicitly, and truth, indeterminacy, and falsity
memberships are expressed independently. The NS generalizes different types of non-crisp sets but
in real scientific and engineering applications the NS and the set-theoretic operators require to be
specified. For a detailed study on NS we refer to [5–17].
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Related Work

Most of the weighted aggregation operators consider situations in which criteria and preferences
of experts are independent, which means that additivity is a main property of these operators.
However, in real life decision-making problems, the criteria of the problems are often interdependent
or interactive.

Most of the weighted average operators are based on the basic algebraic product and algebraic
sum of single valued neutrosophic numbers (SVNNs) which are not the only operations available to
model the intersection and union of SVNNs. The logarithmic algebraic product and sum are two good
alternatives of algebraic operations which can be used the model intersection and union of SVNNs.
Moreover, it is observed that in the literature there is little investigation on aggregation operators
utilizing the logarithmic operations on SVNNs. For a detailed review on the applications of logarithmic
operations, we refer to [10]. As already mentioned that the single valued neutrosophic set (SVNS) is an
effective tool to describe the uncertain, incomplete and indeterminate information. The logarithmic
single valued neutrosophic hybrid and logarithmic generalized single valued neutrosophic algebraic
operators have the ability to express interactions among the criteria and it can replace the weighted
average to aggregate dependent criteria for obtaining more accurate results. Motivated by these,
we find it interesting to develop the logarithmic single valued neutrosophic hybrid aggregation
operators for decision-making with neutrosophic information.

Also, we proposed the possibility of a degree-ranking technique for SVNNs from the probability
point of view, since the ranking of SVNNs is very important for decision-making under the SVN
environment. Furthermore, we proposed a multi-criteria decision-making model based on the
logarithmic single valued neutrosophic hybrid weighted operators. Forstudy the multi-criteria
decision-making models, we refer [18–31].

The aim of writing this paper is to introduce a decision-making method for MCDM problems in
which there exist interrelationships among the criteria. The contributions of this research are:

(1) A novel logarithmic operations for neutrosophic information is defined, which can overcome
the weaknesses of algebraic operations and obtain the relationship between various SVNNs.

(2) Logarithmic operators for IFSs are extended to logarithmic single-valued neutrosophic hybrid
operators and logarithmic generalized single-valued neutrosophic operators, namely, logarithmic
single valued neutrosophic hybrid weighted averaging (L-SVNHWA), logarithmic single valued
neutrosophic hybrid weighted geometric (L-SVNHWG), logarithmic generalized single-valued
neutrosophic weighted averaging (L-GSVNWA) and logarithmic single-valued neutrosophic weighted
geometric (L-GSVNWG) to SVNSs, which can overcome the algebraic operators drawbacks.

(3) A decision-making approach to handle the MCDM problems under the neutrosophic
informations is introduced.

To attain our research goals which are stated above, the arrangement of the paper is offered
as: Section 2 concentrates on basic definitions and operations of existing extensions of fuzzy set
theories. In Section 3, some novel logarithmic operational laws of SVNSs are presented. Section 4
defines the logarithmic hybrid aggregation operators for SVNNs. In Section 5, an algorithm for
handling the neutrosophic MCDM problem based on the developed logarithmic operators is presented.
In Section 5.1, an application to verify the novel method is given and Section 5.2 presents the
comparison study about algebraic and logarithmic aggregation operators. Section 6 consists of the
conclusion of the study.

2. Preliminaries

This section includes the concepts and basic operations of existing extensions of fuzzy sets to
make the study self contained.
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Definition 1. [2] For a set <, by an intuitionistic fuzzy set in <, we have a structure

ζ = {〈Pσ (r) , Nσ (r)〉 |r ∈ <} , (1)

in which Pσ : < → Θ and Nσ : < → Θ indicate the membership and non-membership grades in <, Θ = [0, 1]
be the unit interval. Also the following condition is satisfied by Pσ and Nσ, 0 ≤ Pσ (r) + Nσ (r) ≤ 1; ∀ r ∈ <.
Then ζ is said to be intuitionistic fuzzy set in <.

Definition 2. [32] For a set <, by a neutrosophic set in <, we have a structure

ζ = {〈Pσ (r) , Iσ (r) , Nσ (r)〉 |r ∈ <} , (2)

in which Pσ : < → Θ, Iσ : < → Θ and Nσ : < → Θ indicate the truth, indeterminacy and falsity memberships
in<, Θ = ]0−, 1+[. Also the following condition is satisfied by Pσ, Iσ and Nσ, 0− ≤ Pσ (r)+ Iσ (r)+ Nσ (r) ≤
3+; ∀ r ∈ <. Then, ζ is said to be neutrosophic set in <.

Definition 3. [33] For a set <, by a single valued neutrosophic set in <, we mean a structure

ζ = {〈Pσ (r) , Iσ (r) , Nσ (r)〉 |r ∈ <} , (3)

in which Pσ : < → Θ, Iσ : < → Θ and Nσ : < → Θ indicate the truth, indeterminacy and falsity
memberships in <, Θ = [0, 1]. Also the following condition is satisfied by Pσ, Iσ and Nσ, 0 ≤ Pσ (r) + Iσ (r) +
Nσ (r) ≤ 3; ∀r ∈ <. Then, ζ is said to be a single valued neutrosophic set in <. We denote this triplet
ζ = 〈Pσ (r) , Iσ (r) , Nσ (r)〉, in whole study called SVNN.

Ye [14], Wang et al. [33] and [34] proposed the basic operations of SVNNs, which are as follows:

Definition 4. [34] For any two SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉

and ζq =〈
Pξq (r) , Iξq (r) , Nξq (r)

〉
in <. The union, intersection and compliment are proposed as:

(1) ζp ⊆ ζq i f f ∀r ∈ <, Pξp (r) ≤ Pξq (r) , Iξp (r) ≥ Iξq (r) and Nξp (r) ≥ Nξq (r);
(2) ζp = ζq i f f ζp ⊆ ζq and ζq ⊆ ζp;

(3) ζp ∪ ζq =
〈

max
(

Pξp , Pξq

)
, min

(
Iξp , Iξq

)
, min

(
Nξp , Nξq

)〉
;

(4) ζp ∩ ζq =
〈

min
(

Pξp , Pξq

)
, max

(
Iξp , Iξq

)
, max

(
Nξp , Nξq

)〉
;

(5) ζc
p =

〈
Nξp , Iξp , Pξp

〉
.

Definition 5. [13,15,33] For any two SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉

and ζq =〈
Pξq (r) , Iξq (r) , Nξq (r)

〉
in < and β ≥ 0.Then the operations of SVNNs are proposed as:

(1) ζp ⊕ ζq =
{

Pξp + Pξq − Pξp · Pξq , Iξp · Iξq , Nξp · Nξq

}
;

(2) β · ζp =
{

1− (1− Pξp)
β, (Iξp)

β, (Nξp)
β
}

;

(3) ζp ⊗ ζq =
{

Pξp · Pξq , Iξp + Iξq − Iξp · Iξq , Nξp + Nξq − Nξp · Nξq

}
;

(4) ζ
β
p =

{
(Pξp)

β, 1− (1− Iξp)
β, 1− (1− Nξp)

β
}

.

(5) βζp =


(

β
1−Pξp , 1− β

Iξp , 1− β
Nξp
)

i f β ∈ (0, 1)((
1
β

)1−Pξp , 1−
(

1
β

)Iξp , 1−
(

1
β

)Nξp
)

i f β ≥ 1

Definition 6. [33] For any three SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉

, ζq =
〈

Pξq (r) , Iξq (r) , Nξq (r)
〉

and ζl =
〈

Pσl (r) , Iσl (r) , Nσl (r)
〉

in < and β1, β2 ≥ 0. Then, we have
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(1) ζp ⊕ ζq = ζq ⊕ ζp;
(2) ζp ⊗ ζq = ζq ⊗ ζp;
(3) β1(ζp ⊕ ζq) = β1ζp ⊕ β1ζq, β1 > 0;

(4) (ζp ⊗ ζq)β1 = ζ
β1
p ⊗ ζ

β1
q , β1 > 0;

(5) β1ζp ⊕ β2ζp = (β1 + β2)ζp, β1 > 0, β2 > 0;

(6) ζ
β1
p ⊗ ζ

β2
p = ζ

β1+β2
p , β1 > 0, β2 > 0;

(7) (ζp ⊕ ζq)⊕ ζl = ζp ⊕ (ζq ⊕ ζl);
(8) (ζp ⊗ ζq)⊗ ζl = ζp ⊗ (ζq ⊗ ζl).

Definition 7. [33] For any SVNN ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉

in <. Then score and accuracy values are
defined as:
(1) S̃(ζp) = Pξp − Iξp − Nξp

(2) Ã(ζp) = Pξp + Iξp + Nξp

The above definitions of score and accuracy funtions suggest which SVNN is greater than other
SVNNs. The comparison technique is defined in following definition.

Definition 8. [33] For any SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, 2) in <.

Then comparison techniques are proposed as:
(1) If S̃(ζ1) < S̃(ζ2), then ζ1 < ζ2,
(2) If S̃(ζ1) > S̃(ζ2), then ζ1 > ζ2,
(3) If S̃(ζ1) = S̃(ζ2), and
(a) Ã(ζ1) < Ã(ζ2), then ζ1 < ζ2,
(b) Ã(ζ1) > Ã(ζ2), then ζ1 > ζ2,
(c) Ã(ζ1) = Ã(ζ2), then ζ1 ≈ ζ2.

Garg and Nancy [10] proposed some logarithmic-based aggregation operators, which are
as follows:

Definition 9. [10] For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, 2, ..., n) in <,

with 0 < σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1. Then, the structure of logarithmic single valued

neutrosophic weighted averaging (L-SVNWA) operator is defined as:

L− SVNWA (ζ1, ζ2, ..., ζn) =


1−

n
∏

p=1

(
`ogσp Pξp

)βp
,

n
∏

p=1

(
`ogσp

(
1− Iξp

))βp
,

n
∏

p=1

(
`ogσp

(
1− Nξp

))βp


, (4)

where βp (p = 1, 2, ..., n) are weight vectors with βp ≥ 0 and ∑n
p=1 βp = 1.
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Definition 10. [10] For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, 2, ..., n) in <,

with 0 < σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1. Then, the structure of the logarithmic single-valued

neutrosophic-ordered weighted averaging (L-SVNOWA) operator is defined as:

L− SVNOWA (ζ1, ζ2, ..., ζn) =


1−

n
∏

p=1

(
`ogσp Pζη(p)

)βp
,

n
∏

p=1

(
`ogσp

(
1− Iζη(p)

))βp
,

n
∏

p=1

(
`ogσp

(
1− Nζη(p)

))βp


, (5)

where βp (p = 1, 2, ..., n) are weighting vector with βp ≥ 0, ∑n
p=1 βp = 1 and pth largest weighted value is

ζη(p) consequently by total order ζη(1) ≥ ζη(2) ≥ ... ≥ ζη(n).

Definition 11. [10] For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, 2, ..., n) in <,

with 0 < σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1. Then, the structure of logarithmic single-valued

neutrosophic-weighted geometric (L-SVNWG) operator is defined as:

L− SVNWG (ζ1, ζ2, ..., ζn) =



n
∏

p=1

(
1− `ogσp Pξp

)βp
,

1−
n
∏

p=1

(
1− `ogσp

(
1− Iξp

))βp
,

1−
n
∏

p=1

(
1− `ogσp

(
1− Nξp

))βp


, (6)

where βp (p = 1, 2, ..., n) are weight vectors with βp ≥ 0 and ∑n
p=1 βp = 1.

Definition 12. [10] For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, 2, ..., n) in <,

with 0 < σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1. Then, the structure of logarithmic single valued

neutrosophic ordered weighted geometric (L-SVNOWG) operator is defined as:

L− SVNOWG (ζ1, ζ2, ..., ζn) =



n
∏

p=1

(
1− `ogσp Pξη(p)

)βp
,

1−
n
∏

p=1

(
1− `ogσp

(
1− Iξη(p)

))βp
,

1−
n
∏

p=1

(
1− `ogσp

(
1− Nξη(p)

))βp


, (7)

where βp (p = 1, 2, ..., n) are weighting vector with βp ≥ 0 and ∑n
p=1 βp = 1 and pth are the largest weighted

value is ζη(p) consequently by total order ζη(1) ≥ ζη(2) ≥ ... ≥ ζη(n).

3. Logarithmic Operational Laws

Motivated by the well growing concept of SVNSs, we introduce some novel logarithmic
operational laws for single valued neutrosophic numbers. As in real number systems `ogσ0 is
meaningless and `ogσ1 is not defined therefore, in our study we take non-empty SVNSs and σ 6= 1,
where σ is any real number.

Definition 13. For any SVNN ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉

in <. The logarithmic SVNN is defined as:

`ogσζp =
{〈

1−
(
`ogσPξp (r)

)
, `ogσ

(
1− Iξp (r)

)
, `ogσ

(
1− Nξp (r)

)〉
|r ∈ <

}
, (8)
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in which Pσ : < → Θ, Iσ : < → Θ and Nσ : < → Θ are indicated the truth, indeterminacy and falsity
memberships in <, Θ = [0, 1] be the unit interval. Also following condition is satisfied by Pσ, Iσ and Nσ,
0 ≤ Pσ (r) + Iσ (r) + Nσ (r) ≤ 3;∀ r ∈ <. Therefore the truth membership grade is

1−
(
`ogσPξp (r)

)
: < → Θ, such that 0 ≤ 1−

(
`ogσPξp (r)

)
≤ 1, for all r ∈ <

the indeterminacy membership is

`ogσ

(
1− Iξp (r)

)
: < → Θ, such that 0 ≤ `ogσ

(
1− Iξp (r)

)
≤ 1, for all r ∈ <

and falsity membership is

`ogσ

(
1− Nξp (r)

)
: < → Θ, such that 0 ≤ `ogσ

(
1− Nξp (r)

)
≤ 1, for all r ∈ <.

Therefore

`ogσζp =
{〈

1−
(
`ogσPξp (r)

)
, `ogσ

(
1− Iξp (r)

)
, `ogσ

(
1− Nξp (r)

)〉
|r ∈ <

}
0 < σ ≤ min

{
Pξp , 1− Iξp , 1− Nξp

}
≤ 1, σ 6= 1

is SVNS.

Definition 14. For any SVNN ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉

in <. If

`ogσζp =




1−

(
`ogσPξp (r)

)
,

`ogσ

(
1− Iξp (r)

)
,

`ogσ

(
1− Nξp (r)

)
 0 < σ ≤ min

{
Pξp , 1− Iξp , 1− Nξp

}
< 1


1−

(
`og 1

σ
Pξp (r)

)
,

`og 1
σ

(
1− Iξp (r)

)
,

`og 1
σ

(
1− Nξp (r)

)
 0 < 1

σ ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1,

σ 6= 1

(9)

then the function `ogσζp is known to be a logarithmic operator for SVNS, and its value is said to be logarithmic
SVNN (L-SVNN). Here, we take `ogσ0 = 0, σ > 0, σ 6= 1.

Theorem 1. [10] For any SVNN ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉

in <, then `ogσζp is also be SVNN.

Now, we give some discussion on the basic properties of the L-SVNN.

Definition 15. For any two L-SVNNs `ogσζp =


1−

(
`ogσPξp (r)

)
,

`ogσ

(
1− Iξp (r)

)
,

`ogσ

(
1− Nξp (r)

)
 and `ogσζq =


1−

(
`ogσPξq (r)

)
,

`ogσ

(
1− Iξq (r)

)
,

`ogσ

(
1− Nξq (r)

)
 in < and β ≥ 0.Then the logarithmic operations of L-SVNNs are propose as

(1) `ogσζp ⊕ `ogσζq =


1−

(
`ogσPξp (r)

)
·
(
`ogσPξq (r)

)
,

`ogσ

(
1− Iξp (r)

)
· `ogσ

(
1− Iξq (r)

)
,

`ogσ

(
1− Nξp (r)

)
· `ogσ

(
1− Nξq (r)

)
 ;
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(2) β · `ogσζp =


1−

(
`ogσPξp (r)

)β
,(

`ogσ

(
1− Iξp (r)

))β
,(

`ogσ

(
1− Nξp (r)

))β

 ;

(3) `ogσζp ⊗ `ogσζq =


1−

(
`ogσPξp (r)

)
· 1−

(
`ogσPξq (r)

)
,

1−
(

1− `ogσ

(
1− Iξp (r)

))
·
(

1− `ogσ

(
1− Iξq (r)

))
,

1−
(

1− `ogσ

(
1− Nξp (r)

))
·
(

1− `ogσ

(
1− Nξq (r)

))
 ;

(4)
(
`ogσζp

)β
=



(
1−

(
`ogσPξp (r)

))β
,

1−
(

1− `ogσ

(
1− Iξp (r)

))β
,

1−
(

1− `ogσ

(
1− Nξp (r)

))β

 .

Theorem 2. [10] For any two L-SVNNs `ogσζp =


1−

(
`ogσPξp (r)

)
,

`ogσ

(
1− Iξp (r)

)
,

`ogσ

(
1− Nξp (r)

)
 (p = 1, 2) in <, with 0 <

σ ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1, β, β1, β2 > 0 be any real numbers. Then

(1) β (`ogσζ1 ⊕ `ogσζ2) = β`ogσζ1 ⊕ β`ogσζ2;
(2) (`ogσζ1 ⊗ `ogσζ2)

β = (`ogσζ1)
β ⊗ (`ogσζ2)

β ;
(3) β1`ogσζ1 ⊕ β2`ogσζ1 = (β1 + β2) `ogσζ1;
(4) (`ogσζ1)

β1 ⊗ (`ogσζ1)
β2 = (`ogσζ1)

(β1+β2) ;

(5)
(
(`ogσζ1)

β1
)β2

= (`ogσζ1)
β1β2 .

Comparison Technique for L-SVNNs

Definition 16. [10] For any L-SVNN `ogσζp =


1−

(
`ogσPξp (r)

)
,

`ogσ

(
1− Iξp (r)

)
,

`ogσ

(
1− Nξp (r)

)
 in <. Then score and accuracy

values are define as
(1) S̃(`ogσζp) = 1−

(
`ogσPξp (r)

)
− `ogσ

(
1− Iξp (r)

)
−
(
`ogσ

(
1− Nξp (r)

))
(2) Ã(`ogσζp) = 1−

(
`ogσPξp (r)

)
+ `ogσ

(
1− Iξp (r)

)
+
(
`ogσ

(
1− Nξp (r)

))
The above defined score and accuracy values suggest which L-SVNN are greater than other

L-SVNNs. The comparison technique is defined in the following definition.

Definition 17. For any L-SVNNs `ogσζp =


1−

(
`ogσPξp (r)

)
,

`ogσ

(
1− Iξp (r)

)
,

`ogσ

(
1− Nξp (r)

)
 (p = 1, 2) in <. Then, comparison

technique is proposed as:
(1) If S̃(`ogσζ1) < S̃(`ogσζ2) then `ogσζ1 < `ogσζ2,
(2) If S̃(`ogσζ1) > S̃(`ogσζ2) then `ogσζ1 > `ogσζ2,
(3) If S̃(`ogσζ1) = S̃(`ogσζ2) then
(a) Ã(`ogσζ1) < Ã(`ogσζ2) then `ogσζ1 < `ogσζ2,
(b) Ã(`ogσζ1) > Ã(`ogσζ2) then `ogσζ1 > `ogσζ2,
(c) Ã(`ogσζ1) = Ã(`ogσζ2) then `ogσζ1 ≈ `ogσζ2.
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4. Logarithmic Aggregation Operators for L-SVNNs

Now, we propose novel logarithmic hybrid aggregation operators for L-SVNNs based on
logarithmic operations laws as follows:

4.1. Logarithmic Hybrid Averaging Operator

Definition 18. For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <, with 0 <

σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1. The structure of logarithmic single valued neutrosophic hybrid

weighted averaging (L-SVNHWA) operator is

L− SVNHWA (ζ1, ζ2, ..., ζn) =
n

∑
p=1

ωp`ogσp ζ∗η(p), (10)

where βp (p = 1, ..., n) is the weighting vector with βp ≥ 0 and ∑n
p=1 βp = 1 and pth biggest weighted value is

ζ∗
η(p)

(
ζ∗

η(p) = nβpζη(p), P ∈ N
)

consequently by total order ζ∗
η(1) ≥ ζ∗

η(2) ≥ ... ≥ ζ∗
η(n). Also, the associated

weights are ω = (ω1, ω2, ..., ωn) with ωp ≥ 0, Σn
p=1ωp = 1.

Theorem 3. For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <, with 0 <

σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1. Then by using logarithmic operations and Definition 18,

L− SVNHWA is defined as

L− SVNHWA (ζ1, ζ2, ..., ζn)

=




1−

n
∏

p=1

(
`ogσp P∗ξη(p)

)ωp
,

n
∏

p=1

(
`ogσp

(
1− I∗ξη(p)

))ωp
,

n
∏

p=1

(
`ogσp

(
1− N∗ξη(p)

))ωp


0 < σp ≤ min


Pξp ,

1− Iξp ,
1− Nξp

 < 1



1−
n
∏

p=1

(
`og 1

σp
P∗ξη(p)

)ωp

,

n
∏

p=1

(
`og 1

σp

(
1− I∗ξη(p)

))ωp

,

n
∏

p=1

(
`og 1

σp

(
1− N∗ξη(p)

))ωp


0 < 1

σp
≤ min


Pξp ,

1− Iξp ,
1− Nξp

 < 1,

σ 6= 1

(11)

where βp (p = 1, ..., n) are weighting vector with βp ≥ 0 and ∑n
p=1 βp = 1 and pth biggest weighted value is

ζ∗
η(p)

(
ζ∗

η(p) = nβpζη(p), P ∈ N
)

consequently by total order ζ∗
η(1) ≥ ζ∗

η(2) ≥ ... ≥ ζ∗
η(n). Also the associated

weights are ω = (ω1, ω2, ..., ωn) with ωp ≥ 0, Σn
p=1ωp = 1.

Proof. Using mathematical induction to prove Equation (3), we proceed as:
(a) For n = 2, since

ω1`ogσ1 ζ∗η(1) =


1−

(
`ogσ1 P∗ξη(1)

)ω1
,(

`ogσ1

(
1− I∗ξη(1)

))ω1
,(

`ogσ1

(
1− N∗ξη(1)

))ω1
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and

ω2`ogσ2 ζ∗η(2) =


1−

(
`ogσ2 P∗ξη(2)

)ω2
,(

`ogσ2

(
1− I∗ξη(2)

))ω2
,(

`ogσ2

(
1− N∗ξη(2)

))ω2


Then

L− SVNHWA (ζ1, ζ2) = ω1`ogσ1 ζ∗η(1) ⊕ω2`ogσ2 ζ∗η(2)

=


1−

(
`ogσ1 P∗ξη(1)

)ω1
,(

`ogσ1

(
1− I∗ξη(1)

))ω1
,(

`ogσ1

(
1− N∗ξη(1)

))ω1

⊕


1−
(
`ogσ2 P∗ξη(2)

)ω2
,(

`ogσ2

(
1− I∗ξη(2)

))ω2
,(

`ogσ2

(
1− N∗ξη(2)

))ω2



=


1−

(
`ogσ1 P∗ξη(1)

)ω1 ·
(
`ogσ2 P∗ξη(2)

)ω2
,(

`ogσ1

(
1− I∗ξη(1)

))ω1 ·
(
`ogσ2

(
1− I∗ξη(2)

))ω2
,(

`ogσ1

(
1− N∗ξη(1)

))ω1 ·
(
`ogσ2

(
1− N∗ξη(2)

))ω2



=


1−

2
∏

p=1

(
`ogσp P∗ξη(p)

)ωp
,

n
∏

p=1

(
`ogσp

(
1− I∗ξη(p)

))ωp
,

n
∏

p=1

(
`ogσp

(
1− N∗ξη(p)

))ωp


.

(b) Now Equation (3) is true for n = k,

L− SVNHWA (ζ1, ζ2, ..., ζk) =



1−
k

∏
p=1

(
`ogσp P∗ξη(p)

)ωp
,

k
∏

p=1

(
`ogσp

(
1− I∗ξη(p)

))ωp
,

k
∏

p=1

(
`ogσp

(
1− N∗ξη(p)

))ωp


.

(c) Now, we prove that Equation (3) for n = k + 1, that is

L− SVNHWA (ζ1, ζ2, ..., ζk) =
k

∑
p=1

ωp`ogσp ζ∗η(p) + ωk+1`ogσk+1 ζ∗η(k+1)
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L− SVNHWA (ζ1, ζ2, ..., ζk)

=



1−
k

∏
p=1

(
`ogσp P∗ξη(p)

)ωp
,

k
∏

p=1

(
`ogσp

(
1− I∗ξη(p)

))ωp
,

k
∏

p=1

(
`ogσp

(
1− N∗ξη(p)

))ωp


⊕


1−

(
`ogσk+1 P∗ξη(k+1)

)ωk+1
,(

`ogσk+1

(
1− I∗ξη(k+1)

))ωk+1
,(

`ogσk+1

(
1− N∗ξη(k+1)

))ωk+1



=



1−
k+1
∏

p=1

(
`ogσp P∗ξη(p)

)ωp
,

k+1
∏

p=1

(
`ogσp

(
1− I∗ξη(p)

))ωp
,

k+1
∏

p=1

(
`ogσp

(
1− N∗ξη(p)

))ωp


Thus Equation (3) is true for n = z + 1. Hence its satisfies for whole n. Therefore

L− SVNHWA (ζ1, ζ2, ..., ζn) =


1−

n
∏

p=1

(
`ogσp P∗ξη(p)

)ωp
,

n
∏

p=1

(
`ogσp

(
1− I∗ξη(p)

))ωp
,

n
∏

p=1

(
`ogσp

(
1− N∗ξη(p)

))ωp


.

In a similarly way, if 0 < 1
σp
≤ min

{
Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1, we can also obtain

L− SVNHWA (ζ1, ζ2, ..., ζn) =



1−
n
∏

p=1

(
`og 1

σp
P∗ξη(p)

)ωp

,

n
∏

p=1

(
`og 1

σp

(
1− I∗ξη(p)

))ωp

,

n
∏

p=1

(
`og 1

σp

(
1− N∗ξη(p)

))ωp


which completes the proof.

Remark 1. If σ1 = σ2 = σ3 = ... = σn = σ, that is 0 < σ ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1,

then L− SVNHWA operator is reduced as follows

L− SVNHWA (ζ1, ζ2, ..., ζn) =


1−

n
∏

p=1

(
`ogσP∗ξη(p)

)ωp
,

n
∏

p=1

(
`ogσ

(
1− I∗ξη(p)

))ωp
,

n
∏

p=1

(
`ogσ

(
1− N∗ξη(p)

))ωp


. (12)

Properties

L− SVNHWA operator satisfies some properties are enlist below;
(1) Idempotency: For any collection of SVNNs ζp =

〈
Pξp (r) , Iξp (r) , Nξp (r)

〉
(p = 1, ..., n) in <.

Then, if collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) are identical, that is

L− SVNHWA (ζ1, ζ2, ..., ζn) = ζ. (13)
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(2) Boundedness: for any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in

<. ζ−p =
〈

minp P∗ξp
, maxp I∗ξp

, maxp N∗ξp

〉
and ζ+p =

〈
maxp P∗ξp

, minp I∗ξp
, minp N∗ξp

〉
(p = 1, ..., n) in <,

therefore
ζ−p ⊆ L− SVNHWA (ζ1, ζ2, ..., ζn) ⊆ ζ+p . (14)

(3) Monotonically: for any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <.

If ζη(p) ⊆ ζ∗η(p) for (p = 1, ..., n) , then

L− SVNHWA (ζ1, ζ2, ..., ζn) ⊆ L− SVNHWA (ζ∗1 , ζ∗2 , ..., ζ∗n) . (15)

4.2. Logarithmic Hybrid Geometric Operators

Definition 19. For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <, with 0 <

σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1. The structure of logarithmic single valued neutrosophic hybrid

weighted geometric (L-SVNHWG) operator is

L− SVNHWG (ζ1, ζ2, ..., ζn) =
n

∏
p=1

(
`ogσp ζ∗η(p)

)ωp
(16)

where βp (p = 1, ..., n) are weight vectors with βp ≥ 0 and ∑n
p=1 βp = 1 and pth biggest weighted value is

ζ∗
η(p)

(
ζ∗

η(p) =
(

ζη(p)

)nβp
, P ∈ N

)
consequently by total order ζ∗

η(1) ≥ ζ∗
η(2) ≥ ... ≥ ζ∗

η(n). Also associated

weights are ω = (ω1, ω2, ..., ωn) with ωp ≥ 0, Σn
p=1ωp = 1.

Theorem 4. For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <, with 0 <

σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1. Then by using logarithmic operations and Definition 19,

L−SVNHWG define as

L− SVNHWG (ζ1, ζ2, ..., ζn)

=





n
∏

p=1

(
1− `ogσp P∗ξη(p)

)βp

1−
n
∏

p=1

(
1−

(
`ogσp

(
1− I∗ξη(p)

)))βp

1−
n
∏

p=1

(
1−

(
`ogσp

(
1− n∗ξη(p)

)))βp


0 < σp ≤ min


Pξp ,

1− Iξp ,
1− Nξp

 < 1



n
∏

p=1

(
1− `og 1

σp
P∗ξη(p)

)βp

1−
n
∏

p=1

(
1−

(
`og 1

σp

(
1− I∗ξη(p)

)))βp

1−
n
∏

p=1

(
1−

(
`og 1

σp

(
1− n∗ξη(p)

)))βp


0 < 1

σp
≤ min


Pξp ,

1− Iξp ,
1− Nξp

 < 1,

σ 6= 1

(17)

where βp (p = 1, ..., n) are weight vectors with βp ≥ 0 and ∑n
p=1 βp = 1 and pth biggest weighted value is

ζ∗
η(p)

(
ζ∗

η(p) =
(

ζη(p)

)nβp
, P ∈ N

)
consequently by total order ζ∗

η(1) ≥ ζ∗
η(2) ≥ ... ≥ ζ∗

η(n). Also associated

weights are ω = (ω1, ω2, ..., ωn) with ωp ≥ 0, Σn
p=1ωp = 1.

Proof. Using mathematical induction to prove Equation (4), we proceed as:
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(a) For n = 2, since

(`ogσ1 ζ∗1)
ω1 =


(

1− `ogσ1 P∗ξ1

)ω1

1−
(

1−
(
`ogσ1

(
1− I∗ξ1

)))ω1

1−
(

1−
(
`ogσ1

(
1− N∗ξ1

)))ω1


and

(`ogσ2 ζ∗2)
ω2 =


(

1− `ogσ2 P∗ξ2

)ω2

1−
(

1−
(
`ogσ2

(
1− I∗ξ2

)))ω2

1−
(

1−
(
`ogσ2

(
1− N∗ξ2

)))ω2

 .

Then

L− SVNHWG (ζ1, ζ2) = (`ogσ1 ζ∗1)
ω1 ⊗ (`ogσ2 ζ∗2)

ω2

=


(

1− `ogσ1 P∗ξ1

)ω1

1−
(

1−
(
`ogσ1

(
1− I∗ξ1

)))ω1

1−
(

1−
(
`ogσ1

(
1− N∗ξ1

)))ω1

⊗


(
1− `ogσ2 P∗ξ2

)ω2

1−
(

1−
(
`ogσ2

(
1− I∗ξ2

)))ω2

1−
(

1−
(
`ogσ2

(
1− N∗ξ2

)))ω2



=


(

1− `ogσ1 P∗ξ1

)ω1 ·
(

1− `ogσ2 P∗ξ2

)ω2

1−
(

1−
(
`ogσ1

(
1− I∗ξ1

)))ω1 ·
(

1−
(
`ogσ2

(
1− I∗ξ2

)))ω2

1−
(

1−
(
`ogσ1

(
1− N∗ξ1

)))ω1 ·
(

1−
(
`ogσ2

(
1− N∗ξ2

)))ω2



=



2
∏

p=1

(
1− `ogσp P∗ξp

)ωp
,

1−
2

∏
p=1

(
1−

(
`ogσp

(
1− I∗ξp

)))ωp

1−
2

∏
p=1

(
1−

(
`ogσp

(
1− N∗ξp

)))ωp


.

(b) Now Equation (4) is true for n = k,

L− SVNHWG (ζ1, ζ2, ..., ζk) =



k
∏

p=1

(
1− `ogσp P∗ξp

)ωp

1−
k

∏
p=1

(
1−

(
`ogσp

(
1− I∗ξp

)))ωp

1−
k

∏
p=1

(
1−

(
`ogσp

(
1− N∗ξp

)))ωp


,

(c) Now, we prove that Equation (4) for n = k + 1, that is

L− SVNHWG (ζ1, ζ2, ..., ζk, ζk+1) =
k

∏
p=1

(
`ogσp ζp

)ωp
⊗
(
`ogσk+1 ζk+1

)ωk+1
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L− SVNHWG (ζ1, ζ2, ..., ζk, ζk+1)

=



k
∏

p=1

(
1− `ogσp P∗ξp

)ωp

1−
k

∏
p=1

(
1−

(
`ogσp

(
1− I∗ξp

)))ωp

1−
k

∏
p=1

(
1−

(
`ogσp

(
1− N∗ξp

)))ωp


⊗


(

1− `ogσp P∗ξk+1

)ωk+1

1−
(

1−
(
`ogσp

(
1− I∗ξk+1

)))ωk+1

1−
(

1−
(
`ogσp

(
1− N∗ξk+1

)))ωk+1



=



k+1
∏

p=1

(
1− `ogσp P∗ξp

)ωp

1−
k+1
∏

p=1

(
1−

(
`ogσp

(
1− I∗ξp

)))ωp

1−
k+1
∏

p=1

(
1−

(
`ogσp

(
1− N∗ξp

)))ωp


Thus Equation (4) is true for n = z + 1. Hence it is satisfied for all n. Therefore

L− SVNHWG (ζ1, ζ2, ..., ζn) =



n
∏

p=1

(
1− `ogσp P∗ξp

)ωp

1−
n
∏

p=1

(
1−

(
`ogσp

(
1− I∗ξp

)))ωp

1−
n
∏

p=1

(
1−

(
`ogσp

(
1− N∗ξp

)))ωp


.

In a similar way, if 0 < 1
σp
≤ min

{
Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1, we can also obtain

L− SVNHWG (ζ1, ζ2, ..., ζn) =



n
∏

p=1

(
1− `og 1

σp
P∗ξp

)ωp

1−
n
∏

p=1

(
1−

(
`og 1

σp

(
1− I∗ξp

)))ωp

1−
n
∏

p=1

(
1−

(
`og 1

σp

(
1− N∗ξp

)))ωp


which completes the proof.

Remark 2. If σ1 = σ2 = σ3 = ... = σn = σ, that is 0 < σ ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1,

then L− SVNHWG operator reduced as follows

L− SVNHWG (ζ1, ζ2, ..., ζn) =



n
∏

p=1

(
1− `ogσP∗ξp

)ωp

1−
n
∏

p=1

(
1−

(
`ogσ

(
1− I∗ξp

)))ωp

1−
n
∏

p=1

(
1−

(
`ogσ

(
1− N∗ξp

)))ωp


. (18)

Properties

L− SVNHWG operator satisfies some properties are enlist below;
(1) Idempotency: for any collection of SVNNs ζp =

〈
Pξp (r) , Iξp (r) , Nξp (r)

〉
(p = 1, ..., n) in <.

Then, if collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) are identical, that is

L− SVNHWG (ζ1, ζ2, ..., ζn) = ζ. (19)
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(2) Boundedness: for any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in

<. ζ−p =
〈

minp Pξp , maxp Iξp , maxp Nξp

〉
and ζ+p =

〈
maxp Pξp , minp Iξp , minp Nξp

〉
(p = 1, ..., n) in <,

therefore
ζ−p ⊆ L− SVNHWG (ζ1, ζ2, ..., ζn) ⊆ ζ+p . (20)

(3) Monotonically: for any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <.

If ζp ⊆ ζ∗p for (p = 1, ..., n) , then

L− SVNHWG (ζ1, ζ2, ..., ζn) ⊆ L− SVNHWG (ζ∗1 , ζ∗2 , ..., ζ∗n) . (21)

4.3. Generalized Logarithmic Averaging Operator

Definition 20. For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <, with 0 <

σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1. The structure of logarithmic generalized single-valued

neutrosophic weighted averaging (L-GSVNWA) operator is

L− GSVNWA (ζ1, ζ2, ..., ζn) =

(
n

∑
p=1

βp`ogσp

(
ζp
)γ

) 1
γ

(22)

where βp (p = 1, ..., n) are weighting vector with βp ≥ 0 and ∑n
p=1 βp = 1.

Theorem 5. For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <, with 0 <

σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1, γ ≥ 1. Then by using logarithmic operations and Definition 20,

L− GSVNWA define as

L− GSVNWA (ζ1, ζ2, ..., ζn)



(
1−

n
∏

p=1

(
1−

(
1−

(
`ogσp Pξp

))γ)βp
) 1

γ

,

1−
[

1−
n
∏

p=1

(
1−

(
1− `ogσp

(
1− Iξp

))γ)βp
] 1

γ

1−
[

1−
n
∏

p=1

(
1−

(
1− `ogσp

(
1− Nξp

))γ)βp
] 1

γ


0 < σp ≤ min


Pξp ,

1− Iξp ,
1− Nξp

 < 1



(
1−

n
∏

p=1

(
1−

(
1−

(
`og 1

σp
Pξp

))γ)βp
) 1

γ

,

1−
[

1−
n
∏

p=1

(
1−

(
1− `og 1

σp

(
1− Iξp

))γ)βp
] 1

γ

1−
[

1−
n
∏

p=1

(
1−

(
1− `og 1

σp

(
1− Nξp

))γ)βp
] 1

γ


0 < 1

σp
≤ min


Pξp ,

1− Iξp ,
1− Nξp

 < 1,

σ 6= 1

(23)

where βp (p = 1, ..., n) are weighting vector with βp ≥ 0 and ∑n
p=1 βp = 1.

Apparently, if we use γ = 1, then the L−GSVNWA operator is becomes into L− SVNWA operator.

Proof. Theorem 5 take the form by utilized the technique of mathematical induction and procedure is
eliminate here.
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Remark 3. If σ1 = σ2 = σ3 = ... = σn = σ, that is 0 < σ ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1,

then L− GSVNWA operator reduced as follows

L− GSVNWA (ζ1, ζ2, ..., ζn) =



(
1−

n
∏

p=1

(
1−

(
1−

(
`ogσPξp

))γ)βp
) 1

γ

,

1−
[

1−
n
∏

p=1

(
1−

(
1− `ogσ

(
1− Iξp

))γ)βp
] 1

γ

1−
[

1−
n
∏

p=1

(
1−

(
1− `ogσ

(
1− Nξp

))γ)βp
] 1

γ


. (24)

Properties

L− GSVNWA operator satisfies some properties are enlist below;
(1) Idempotency: For any collection of SVNNs ζp =

〈
Pξp (r) , Iξp (r) , Nξp (r)

〉
(p = 1, ..., n) in <.

Then, if collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) are identical, that is

L− GSVNWA (ζ1, ζ2, ..., ζn) = ζ. (25)

(2) Boundedness: for any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in

<. ζ−p =
〈

minp Pξp , maxp Iξp , maxp Nξp

〉
and ζ+p =

〈
maxp Pξp , minp Iξp , minp Nξp

〉
(p = 1, ..., n) in <,

therefore
ζ−p ⊆ L− GSVNWA (ζ1, ζ2, ..., ζn) ⊆ ζ+p . (26)

(3) Monotonically: for any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <.

If ζp ⊆ ζ∗p for (p = 1, ..., n) , then

L− GSVNWA (ζ1, ζ2, ..., ζn) ⊆ L− GSVNWA (ζ∗1 , ζ∗2 , ..., ζ∗n) . (27)

4.4. Generalized Logarithmic Geometric Operator

Definition 21. For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <, with

0 < σp ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1. The structure of logarithmic generalized single valued

neutrosophic weighted geometric (L-GSVNWG) operator is

L− GSVNWG (ζ1, ζ2, ..., ζn) =

(
n

∑
p=1

(
`ogσp

(
ζp
)γ
)βp

) 1
γ

(28)

where βp (p = 1, ..., n) are weighting vector with βp ≥ 0 and ∑n
p=1 βp = 1.
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Theorem 6. For any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in<, with 0 < σp ≤

min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1, γ ≥ 1. Then by using logarithmic operations and definition (21),

L− GSVNWG define as

L− GSVNWG (ζ1, ζ2, ..., ζn)



1−
[

1−
n
∏

p=1

(
1−

(
`ogσp Pξp

)γ)βp
] 1

γ

,(
1−

n
∏

p=1

(
1−

(
`ogσp

(
1− Iξp

))γ)βp
) 1

γ

(
1−

n
∏

p=1

(
1−

(
`ogσp

(
1− Nξp

))γ)βp
) 1

γ


0 < σp ≤ min


Pξp ,

1− Iξp ,
1− Nξp

 < 1



1−
[

1−
n
∏

p=1

(
1−

(
`og 1

σp
Pξp

)γ)βp
] 1

γ

,(
1−

n
∏

p=1

(
1−

(
`og 1

σp

(
1− Iξp

))γ)βp
) 1

γ

(
1−

n
∏

p=1

(
1−

(
`og 1

σp

(
1− Nξp

))γ)βp
) 1

γ


0 < 1

σp
≤ min


Pξp ,

1− Iξp ,
1− Nξp

 < 1,

σ 6= 1

(29)

where βp (p = 1, ..., n) is the weighting vector with βp ≥ 0 and ∑n
p=1 βp = 1.

Apparently, if we use γ = 1, then the L−GSVNWG operator is becomes into L− SVNWG operator.

Proof. Theorem 6 takes the form by utilizing the technique of mathematical induction and the
procedure is eliminated here.

Remark 4. If σ1 = σ2 = σ3 = ... = σn = σ, that is 0 < σ ≤ min
{

Pξp , 1− Iξp , 1− Nξp

}
< 1, σ 6= 1,

then L− GSVNWG operator reduced as follows

L− GSVNWG (ζ1, ζ2, ..., ζn) =



1−
[

1−
n
∏

p=1

(
1−

(
`ogσPξp

)γ)βp
] 1

γ

,(
1−

n
∏

p=1

(
1−

(
`ogσ

(
1− Iξp

))γ)βp
) 1

γ

(
1−

n
∏

p=1

(
1−

(
`ogσ

(
1− Nξp

))γ)βp
) 1

γ


. (30)

Properties

L− GSVNWG operator satisfies some properties are enlist below;
(1) Idempotency: For any collection of SVNNs ζp =

〈
Pξp (r) , Iξp (r) , Nξp (r)

〉
(p = 1, ..., n) in <.

Then, if collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) are identical, that is

L− GSVNWG (ζ1, ζ2, ..., ζn) = ζ. (31)
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(2) Boundedness: for any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in

<. ζ−p =
〈

minp Pξp , maxp Iξp , maxp Nξp

〉
and ζ+p =

〈
maxp Pξp , minp Iξp , minp Nξp

〉
(p = 1, ..., n) in <,

therefore
ζ−p ⊆ L− GSVNWG (ζ1, ζ2, ..., ζn) ⊆ ζ+p . (32)

(3) Monotonically: for any collection of SVNNs ζp =
〈

Pξp (r) , Iξp (r) , Nξp (r)
〉
(p = 1, ..., n) in <.

If ζp ⊆ ζ∗p for (p = 1, ..., n) , then

L− GSVNWG (ζ1, ζ2, ..., ζn) ⊆ L− GSVNWG (ζ∗1 , ζ∗2 , ..., ζ∗n) . (33)

5. Proposed Technique for Solving Decision-Making Problems

This section includes the new approach to decision-making based on the single-valued
neutrosophic sets, and we will propose a decision-making matrix as indicated below.

Let H = (h1, h2, ..., hm) be a distinct collection of m probable alternatives and Y = (y1, y2, ..., yn)

be a finite collection of n criteria, where hi indicate the i-th alternatives and yj indicate the j-th criteria.
Let D = (d1, d2, ..., dt) be a finite set of t experts, where dk indicate the k-th expert. The expert dk
supply her appraisal of an alternative hi on an attribute yj as a SVNNs (i = 1, ..., m; j = 1, ..., n).

The expert’s information is represented by the SVNS decision-making matrix Ds =
[

E(s)
ip

]
m×n

. Assume

that βp(p = 1, ..., m) is the weight vector of the attribute yj, where 0 ≤ βp ≤ 1,
n
∑

p=1
βp = 1 and

ψ = (ψ1, ψ2, ..., ψm) be the weights of the decision makers dk such that ψk ≤ 1,
n
∑

k=1
ψk = 1.

When we construct the SVNS decision-making matrices, Ds =
[

E(s)
ip

]
m×n

for decision. Basically,

criteria have two types, one is benefit criteria and other one is cost criteria. If the SVNS decision
matrices have cost-type criteria metricsDs =

[
Es

ip

]
m×n

can be converted into the normalized SVNS

decision matrices, Rs =
[
r(s)ip

]
m×n

, where rs
ip =

{
Es

ip , for benefit criteria Ap

Es
ip , for cost criteria Ap ,

j = 1, ..., n, and Es
ip is

the complement of Es
ip . The normalization is not required, if the criteria have the same type.

Step 1: In this step, we get the neutrosophic information, using the all proposed logarithmic
aggregation operators to evolute the alternative preference values with associated weights, which are
ω = (ω1, ω2, ..., ωn) with ωp ≥ 0, Σn

p=1ωp = 1.

Step 2: We find the score value S̃(`ogσζp) and the accuracy value Ã(`ogσζp) of the cumulative
total preference value hi (i = 1, ..., m).

Step 3: By definition, we give ranking to the alternatives hi (i = 1, ..., m) and choose the best
alternative which has the maximum score value.

5.1. Numerical Example

Assume that there is a committee which selects five applicable emerging technology enterprises
Hg(g = 1, ..., 5), which are given as follows.
(1) Augmented reality (H1),
(2) Personalized medicine (H2) ,
(3) Artificial intelligence (H3),
(4) Gene drive (H4) and
(5) Quantum computing (H5).

They assess the possible rising technology enterprises according to the five attributes, which are
(1) Advancement (D1),
(2) Market risk (D2),
(3) Financial investments (D3),
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(4) Progress of science and technology (D4) and
(5) Designs (D5) .

To avoid the conflict between them, the decision makers take the attribute weights as
β = (0.15, 0.28, 0.20, 0.22, 0.15)T . They construct the SVNS decision-making matrix given in Table 1.

Table 1. Emerging Technology Enterprises D1.

D1 D2 D3 D4 D5

H1 (0.5, 0.3, 0.4) (0.3, 0.2, 0.5) (0.2, 0.2, 0.6) (0.4, 0.2, 0.3) (0.3, 0.3, 0.4)
H2 (0.7, 0.1, 0.3) (0.3, 0.2, 0.7) (0.6, 0.3, 0.2) (0.2, 0.4, 0.6) (0.7, 0.1, 0.2)
H3 (0.5, 0.3, 0.4) (0.4, 0.2, 0.6) (0.6, 0.1, 0.2) (0.3, 0.1, 0.5) (0.6, 0.4, 0.3)
H4 (0.7, 0.3, 0.2) (0.2, 0.2, 0.7) (0.4, 0.5, 0.2) (0.2, 0.2, 0.5) (0.4, 0.5, 0.4)
H5 (0.4, 0.1, 0.3) (0.2, 0.1, 0.5) (0.4, 0.1, 0.5) (0.6, 0.3, 0.4) (0.3, 0.2, 0.4)

Since D1, D3 are benefit-type criteria and D2, D4 is cost type criteria, the normalization is required
for these decision matrices. Normalized decision matrices are shown in Table 2.

Table 2. Emerging Technology Enterprises R1.

D1 D2 D3 D4 D5

H1 (0.5, 0.3, 0.4) (0.5, 0.2, 0.3) (0.2, 0.2, 0.6) (0.3, 0.2, 0.4) (0.3, 0.3, 0.4)
H2 (0.7, 0.1, 0.3) (0.7, 0.2, 0.3) (0.6, 0.3, 0.2) (0.6, 0.4, 0.2) (0.7, 0.1, 0.2)
H3 (0.5, 0.3, 0.4) (0.6, 0.2, 0.4) (0.6, 0.1, 0.2) (0.5, 0.1, 0.3) (0.6, 0.4, 0.3)
H4 (0.7, 0.3, 0.2) (0.7, 0.2, 0.2) (0.4, 0.5, 0.2) (0.5, 0.2, 0.2) (0.4, 0.5, 0.4)
H5 (0.4, 0.1, 0.3) (0.5, 0.1, 0.2) (0.4, 0.1, 0.5) (0.4, 0.3, 0.6) (0.3, 0.2, 0.4)

Step 1: Now, we apply all the proposed logarithmic aggregation operators to collective
neutrosophic information as follows.

Case 1: Using logarithmic single-valued neutrosophic hybrid weighted averaging aggregation
operator, we obtained the results shown in Table 3.

Table 3. Aggregated information using the logarithmic single valued neutrosophic hybrid weighted
averaging (L-SVNHWA) operator for σ = 0.3.

H1 (0.17624, 0.23432, 0.43885)
H2 (0.66164, 0.16229, 0.21840)
H3 (0.52788, 0.18347, 0.32224)
H4 (0.49410, 0.30962, 0.20985)
H5 (0.22496, 0.12393, 0.39318)

Case 2: Using Logarithmic single valued neutrosophic hybrid weighted geometric aggregation
operator, we obtainedthe results shown in Table 4.

Table 4. Aggregated information using logarithmic single valued neutrosophic hybrid weighted
geometric (L-SVNHWG) operator for σ = 0.1.

H1 (0.52472, 0.12638, 0.24189)
H2 (0.81968, 0.10633, 0.11764)
H3 (0.74946, 0.11782, 0.17620)
H4 (0.70685, 0.18942, 0.11685)
H5 (0.58497, 0.07427, 0.23305)

Step 2: We find the score index S̃(`ogσζp) and the accuracy index Ã(`ogσζp) of the cumulative
overall preference value hi (i = 1, 2, 3, 4, 5).
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Case 1: Using the score of aggregated information for L-SVNHWA operator, we obtained the
results shown in Table 5.

Table 5. Score of aggregated information for L-SVNHWA operator.

S̃(`og0.3H1) −1.14345 Ã(`og0.3H1) 0.25985
S̃(`og0.3H2) 0.30519 Ã(`og0.3H2) 1.0087
S̃(`og0.3H3) −0.02207 Ã(`og0.3H3) 0.96078
S̃(`og0.3H4) −0.08895 Ã(`og0.3H4) 0.91781
S̃(`og0.3H5) −0.76389 Ã(`og0.3H5) 0.28571

Case 2: Score of Aggregated information for L-SVNHWG Operator, we obtained the results shown
in Table 6.

Table 6. Score of aggregated information for L-SVNHWG operator.

S̃(`og0.1H1) 0.540979 Ã(`og0.1H1) 0.89888
S̃(`og0.1H2) 0.810463 Ã(`og0.1H2) 1.01683
S̃(`og0.1H3) 0.736126 Ã(`og0.1H3) 1.01338
S̃(`og0.1H4) 0.704159 Ã(`og0.1H4) 0.994506
S̃(`og0.1H5) 0.618387 Ã(`og0.1H5) 0.903179

Step 3: We find the best (suitable) alternative which has the maximum score value from the
set of alternatives hi (i = 1, 2, 3, 4, 5). Overall preference value and ranking of the alternatives are
summarized in Table 7.

Table 7. Overall preference value and ranking of the alternatives.

S̃(H1) S̃(H2) S̃(H3) S̃(H4) S̃(H5) Ranking

L− SVNHWA −1.143 0.305 −0.022 −0.088 −0.763 H2 > H3 > H4 > H5 > H1
L− SVNHWG 0.540 0.810 0.736 0.704 0.618 H2 > H3 > H4 > H5 > H1

5.2. Comparison with Existing Methods

This section consists of the comparative analysis of several existing aggregation operators of
neutrosophic information with the proposed logarithmic single valued hybrid weighted aggregation
operators. Existing methods for aggregated neutrosophic information are shown in Table 8–11.

Table 8. Average aggregated SVN information.

SVNWA [35] SVNOWA [35] NWA [14]

H1 (0.3779, 0.2259, 0.4002) (0.3820, 0.2449, 0.4071) (0.3779, 0.2314, 0.4223)
H2 (0.6615, 0.2052, 0.2381) (0.6663, 0.1801, 0.2430) (0.6615, 0.2426, 0.2446)
H3 (0.5656, 0.1763, 0.3131) (0.5597, 0.1838, 0.3122) (0.5656, 0.2109, 0.3272)
H4 (0.5722, 0.2929, 0.2219) (0.5706, 0.3145, 0.2219) (0.5722, 0.3348, 0.2338)
H5 (0.4165, 0.1413, 0.3607) (0.3960, 0.1373, 0.3696) (0.4165, 0.1633, 0.4131)

Table 9. Average aggregated SVN information.

SVNFWA [12] SVNHWA [11] γ = 2

H1 (0.3755, 0.2262, 0.4018) (0.3725, 0.2264, 0.4033)
H2 (0.6611, 0.2072, 0.2385) (0.6608, 0.2086, 0.2388)
H3 (0.5652, 0.1779, 0.3141) (0.5648, 0.1790, 0.3149)
H4 (0.5692, 0.2956, 0.2225) (0.5663, 0.2978, 0.2230)
H5 (0.4159, 0.1422, 0.3646) (0.4151, 0.1427, 0.3680)
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Table 10. Average aggregated SVN information.

SVNHWA [11] γ = 3 L-SVNWA [10]

H1 (0.3693, 0.2266, 0.4048) (0.3130, 0.1753, 0.3544)
H2 (0.6604, 0.2099, 0.2390) (0.6486, 0.1989, 0.2313)
H3 (0.5645, 0.1800, 0.3157) (0.4989, 0.1733, 0.3321)
H4 (0.5635, 0.3000, 0.2234) (0.5585, 0.2736, 0.1942)
H5 (0.4143, 0.1432, 0.3714) (0.2849, 0.1249, 0.3758)

Table 11. Average aggregated SVN information.

L-SVNOWA [10]

H1 (0.3229, 0.1926, 0.3607)
H2 (0.6549, 0.1719, 0.2368)
H3 (0.4896, 0.1823, 0.3303)
H4 (0.5561, 0.2975, 0.1942)
H5 (0.2442, 0.1209, 0.3834)

Now, we analyze the ranking of the alternatives according to their aggregated information (in
Table 12).

Table 12. Overall ranking of the alternatives.

Existing Operators Ranking

NWA [14] H2 > H3 > H4 > H5 > H1
SVNWA [35] H2 > H3 > H4 > H5 > H1

SVNOWA [35] H2 > H3 > H4 > H5 > H1
SVNWG [35] H2 > H3 > H4 > H5 > H1

SVNOWG [35] H2 > H3 > H4 > H5 > H1
SVNFWA [12] H2 > H3 > H4 > H5 > H1

SVNHWA [11] γ = 2 H2 > H3 > H4 > H5 > H1
SVNHWA [11] γ = 3 H2 > H3 > H4 > H5 > H1

NWG [14] H2 > H3 > H4 > H5 > H1
SVNFWG [12] H2 > H3 > H4 > H5 > H1

SVNHWG [11] γ = 2 H2 > H3 > H4 > H5 > H1
SVNHWG [11] γ = 3 H2 > H3 > H4 > H5 > H1

SNWEA [15] H2 > H3 > H5 > H4 > H1
L-SVNWA [10] H2 > H4 > H3 > H5 > H1

L-SVNOWA [10] H2 > H4 > H3 > H5 > H1
L-SVNWG [10] H2 > H4 > H3 > H1 > H5

L-SVNOWG [10] H2 > H3 > H4 > H5 > H1

Proposed Operators Ranking

L-SVNHWA H2 > H3 > H4 > H5 > H1
L-SVNHWG H2 > H3 > H4 > H5 > H1
L-GSVNWA H2 > H4 > H3 > H5 > H1
L-GSVNWG H2 > H4 > H3 > H1 > H5

The bast alternative was H2. The obtained results utilizing logarithmic single valued neutrosophic
hybrid weighted operators and logarithmic generalized single valued neutrosophic weighted operators
were same as results shows existing methods. Hence, this study proposed novel logarithmic
aggregation operators to aggregate the neutrosophic information more effectively and efficiently.
Utilizing the proposed logarithmic aggregation operators, we sound the best alternative from a set of
alternatives given by the decision maker. Hence the proposed MCDM technique based on logarithmic
operators lets us find the best alternative as an applications in decision support systems.
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6. Conclusions

In this work, an attempt has been made to present different kinds of logarithmic weighted
averaging and geometric aggregation operators based on the single-valued neutrosophic set
environment. Earlier, it has been observed that the various aggregation operators are defined under
the SVNSs environment where the aggregation operators based on the algebraic or Einstein t-norm
and t-conorm. In this paper, we proposed novel logarithmic hybrid aggregation operators and also
logarithmic generalized averaging and geometric aggregation operators. Aggregation operators,
namely L-SVNHWA, L-SVNHWG, L-GSVNWA and L-GSVNWA are developed under the SVNSs
environment and we have studied their properties in detail. Further, depending on the standardization
of the decision matrix and the proposed aggregation operators, a decision-making approach is
presented to find the best alternative to the SVNSs environment. An illustrative example is taken
for illustrating the developed approach, and their results are compared with some of the existing
approaches of the SVNSs environment to show the validity of it. From the studies, we conclude that
the proposed approach is more generic and suitable for solving the stated problem.

In the future, we shall link the proposed operators with some novel fuzzy sets, like as type 2
fuzzy sets, neutrosophic sets, and so on. Moreover, we may examine if our constructed approach
can also be applied in different areas, such as personal evaluation, medical artificial intelligence,
energy management and supplier selection evaluation.
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Abstract: A complex neutrosophic set is a useful model to handle indeterminate situations with a
periodic nature. This is characterized by truth, indeterminacy, and falsity degrees which are the
combination of real-valued amplitude terms and complex-valued phase terms. Hypergraphs are
objects that enable us to dig out invisible connections between the underlying structures of complex
systems such as those leading to sustainable development. In this paper, we apply the most fruitful
concept of complex neutrosophic sets to theory of hypergraphs. We define complex neutrosophic
hypergraphs and discuss their certain properties including lower truncation, upper truncation,
and transition levels. Furthermore, we define T-related complex neutrosophic hypergraphs and
properties of minimal transversals of complex neutrosophic hypergraphs. Finally, we represent the
modeling of certain social networks with intersecting communities through the score functions and
choice values of complex neutrosophic hypergraphs. We also give a brief comparison of our proposed
model with other existing models.

Keywords: complex neutrosophic hypergraphs; T-related complex neutrosophic hypergraphs;
algorithms; comparative analysis

1. Introduction

Fuzzy sets (FSs) were originally defined by Zadeh [1] as a novel approach to represent uncertainty
arising in various fields that was questioned by many researchers at that time. A FS is characterized by
a truth membership function µ which ranges over [0, 1]. To generalize the notion of FSs, intuitionistic
fuzzy sets (IFSs) were proposed by Atanassov [2] because it is not always true that the falsity degree of
an element in a FS is 1− µ(x) as there may be some hesitation part. Therefore, the truth (t) and falsity
(f) membership functions are used independently to characterize an IFS such that the sum of truth
and falsity degrees should not be greater than one. Fuzzy sets give the degree of membership of an
element in a given set (the non-membership of degree equals one minus the degree of membership),
while IFSs give both a degree of membership and a degree of non-membership, which are more-or-less
independent from each other. Liu et al. [3] introduced different types of centroid transformations of IF
values. Furthermore, Feng et al. [4] defined various new operations for generalized IF soft sets. As an
extension of IFSs, Smarandache [5] introduced the concept of neutrosophy to study the nature, origin,
and neutralities, and the neutrosophic set (NS). A NS is characterized by truth (t), indeterminacy
(i), and falsity (f) membership functions. A NS is used as a powerful mathematical tool to deal the
inconsistent data that exists in our daily life. For the practical use of NSs in science and engineering,
Smarandache [5] and Wang et al. [6] introduced single-valued neutrosophic sets (SVNSs). A SVNS
propose an additional choice to handle indeterminate information. Ye [7] proposed a decision-making
method by using the weighted correlation coefficient or the weighted cosine similarity measure of
SVNSs to rank the alternatives and proposed an illustrative example to demonstrate the application of
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the proposed decision-making method. The same author defined SVN minimum spanning tree and its
clustering method [8]. Ye [9] also proposed a multicriteria decision-making method using aggregation
operators for simplified NSs.

The existing models such as FSs, IFSs, SVNSs cannot handle imprecise, inconsistent,
and incomplete information of periodic nature. These theories are applicable to different areas of
science, but there is one major deficiency in these sets, i.e., a lack of capability to model two-dimensional
phenomena. To overcome this difficulty, the concept of complex fuzzy sets (CFSs) was introduced by
Ramot et al. [10]. A CFS is characterized by a membership function µ(x) whose range is not limited to
[0, 1] but extends to the unit circle in the complex plane. Hence, µ(x) is a complex-valued function
that assigns a grade of membership of the form v(x)eια(x), ι =

√
−1 to any element x in the universe

of discourse. Thus, the membership function µ(x) of CFS consists of two terms, i.e., amplitude term
v(x) which lies in the unit interval [0, 1] and phase term (periodic term) α(x) which lies in the interval
[0, 2π]. This phase term distinguishes a CFS model from all other models available in the literature.
Opposing to a fuzzy characteristic function, the range of CFS’s membership degrees is not restricted
to [0, 1], but extends to the complex plane with unit circle. Ramot et al. [11] discussed the union,
intersection, and compliment of CFSs with the help of illustrative examples. A systematic review
of CFSs was proposed by Yazdanbakhsh and Dick [12]. To generalize the concept of CFSs, complex
intuitionistic fuzzy sets (CIFSs) were introduced by Alkouri and Salleh [13] by adding non-membership
degree ν(x) = s(x)eιβ(x) to the CFSs subjected to the constraint r + s ≤ 1. The CIFSs are used to
handle the information of uncertainty and periodicity simultaneously. The complex-valued truth and
falsity membership degrees can be used to represent uncertainty in many physical quantities such as
impedance in electrical engineering, wave function, and decision-making problems. The CFS has only
one extra phase term, while CIFS has two additional phase terms which are used in several concepts
such as distance measure, projections, and cylindric extensions. To handle imprecise information with
a periodic nature, complex neutrosophic sets (CNSs) were proposed by Ali and Smarandache [14].
As we see that uncertainty, inconsistency, and falsity in data are periodic in nature, to handle these
types of problems, the CNS plays an important role. A CNS is characterized by a complex-valued
truth t(x), complex-valued indeterminate i(x), and complex-valued falsity f (x) membership functions,
whose range is extended from [0, 1] to the unit disk in the complex plane. They proposed set theoretic
operations such as complement, union, intersection, complex neutrosophic product, Cartesian product,
distance measure, and δ-equalities of CNSs and presented an application of CNSs in signal processing.

The vagueness in the representation of various objects and the uncertain interactions between them
originated the necessity of fuzzy graphs (FGs) that were first defined by Rosenfeld [15]. He studied
several basic graph-theoretic concepts (e.g., bridges and trees), and established some of their properties.
Some remarks on FGs were given by Bhattacharya [16] and he proved that results from (crisp) graph
theory do not always hold for FGs. To handle the vague and uncertain relations with periodic nature,
FGs were extended to complex fuzzy graphs (CFGs) by Thirunavukarasu et al. [17]. They studied the
lower and upper bounds of energy of CFGs and illustrated these concepts through numeric examples.
Since FGs and CFGs just provide the truth degrees and uncertainties occurring repeatedly, respectively,
of pairwise relations. To consider the truth as well as falsity degrees between pairwise relationships
simultaneously, intuitionistic fuzzy graphs (IFGs) were defined by Parvathi and Karunambigai [18].
To handle periodic nature of falsity degrees in IFGs, Yaqoob et al. [19] defined complex intuitionistic
fuzzy graphs (CIFGs). They studied the homomorphisms of CIFGs and provided an application of
CIFGs in cellular network provider companies for the testing of their proposed approach. To extend
the concept of IFGs, Broumi et al. [20] defined single-valued neutrosophic graphs (SVNGs) and
investigated some of their properties such as strong SVNGs, constant SVNGs, and complete SVNGs.
Certain operations on SVNGs were studied by Akram and Shahzadi [21]. Single-valued neutrosophic
planar graphs were defined by Akram [22]. Applications of neutrosophic soft graphs were studied
by Akram and Shahzadi [23]. To generalize the concept of neutrosophic graphs and CIFGs, complex
neutrosophic graphs (CNGs) were defined by Yaqoob and Akram [24]. They discussed some basic

Florentin Smarandache (ed.) Collected Papers, VII

678



operations on CNGs and described these operations with the help of concrete examples. They also
presented energy of CNGs.

A hypergraph, as an extension of crisp graph, is considered to be the most developing and
powerful tool to model different practical problems in various fields, including biological sciences,
computer sciences, and social networks [25]. To deal uncertainty in crisp hypergraphs, fuzzy
hypergraphs (FHGs), as an extension of FGs, were defined by Kaufmann [26]. Lee-Kwang and
Lee [27] discussed the fuzzy partition using FHGs. A valuable contribution on FGs and FHGs has been
proposed by Mordeson and Nair [28]. Fuzzy transversals of FHGs were studied by Goetschel et al. [29].
To discuss the falsity degrees of hypernetworks, intuitionistic fuzzy hypergraphs (IFHGs) were defined
by Parvathi et al. [30]. Akram and Dudek [31] proposed some applications of IFHGs. A method
for finding the shortest hyperpath in an IFHG (weighted) was proposed by Parvathi et al. [32].
They converted an IFN into intuitionistic fuzzy scores and find the IF shortest hyperpath in the
network using the scores and accuracy values. Akram and Shahzadi [33] introduced SVN hypergraphs.
Akram and Luqman [34] defined intuitionistic single-valued neutrosophic hypergraphs. The same
authors [35] introduced bipolar neutrosophic hypergraphs and discussed the applications of these
hypergraphs in marketing and biology. Transversals and minimal transversals of m-polar FHGs were
studied by Akram and Sarwar [36]. For further studies on FHGs and related extensions, readers are
referred to [37–40].

The motivation behind this research work is the existence of indeterminate information of periodic
nature in hypernetwork models. A complex neutrosophic hypergraph model plays an important role in
handling complicated behavior of indeterminacy and inconsistency with periodic nature. The proposed
model generalizes the complex fuzzy model as well as complex intuitionistic fuzzy model. To prove
the applicability of our proposed model, we consider two voting procedures. Suppose that 0.6 voters
say “yes”, 0.2 say “no”, and 0.2 are “undecided” in the first voting procedure and 0.3 voters say
“yes”, 0.3 say “no”, and 0.4 are “undecided” in the second voting procedure. We assume that these
two procedures held at different days. It is clear that a CFS cannot handle this situation as it only
depicts the truth membership 0.6 of voters but fails to represent the falsity and indeterminate degrees.
Similarly, a CIFS represents the truth 0.6 and falsity 0.2 degrees of voters but it does not illustrate the
0.2 undecided voters. Now, if we set the amplitude terms as the membership degrees of first voting
procedure and phase terms as the membership degrees of second voting procedure, then we can
illustrate this information using a complex neutrosophic model as, {0.6eι(0.3)2π , 0.2eι(0.3)2π , 0.2eι(0.4)2π}.
The aim of the proposed work is to apply the most generalized concept of complex neutrosophic
sets to hypergraphs to deal periodic nature of inconsistent information existing in hypernetworks.
The proposed research generalizes the concepts of CNGs, CFHGs, CIFHGs, and overcomes the
drawbacks occurring in previous research. The proposed model is more generalized framework as
it does not only deal the reductant nature of imprecise information but also includes the benefits of
hypergraphs. Thus, the main objective of this research work is to combine the fruitful effects of CNSs
and hypergraph theory.

The contents of this paper are as follows: In Section 2, we define complex neutrosophic
hypergraphs, level hypergraphs, lower truncation, upper truncation, and transition levels of these
hypergraphs. In Section 3, we define T-related complex neutrosophic hypergraphs and discuss
certain properties of minimal transversals of complex neutrosophic hypergraphs. We justify the
proposed concepts through some concrete examples. Section 4 illustrates the modeling of some social
networks with overlapping communities by means of complex neutrosophic hypergraphs. In Section 5,
we present a brief comparison of our proposed model with other existing models. In Section 6,
we discuss the results of our proposed research. Section 7 deals with conclusions and future directions.
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2. Complex Neutrosophic Hypergraphs

Definition 1. [5] Let J be a non-empty set. A neutrosophic set (NS) on J is defined as,

N = {(x, tN(x), iN(x), fN(x))|x ∈ J },

where tN , iN , fN : J →]0−, 1+[ denote the truth, indeterminacy, and falsity degrees of N such that 0− ≤
tN(x) + iN(x) + fN(x) ≤ 3+.

Definition 2. [6] A single-valued neutrosophic set (SVNS) on J is defined as,

S = {(x, tS(x), iS(x), fS(x))|x ∈ J },

where tS, iS, fS : J → [0, 1] denote the truth, indeterminacy, and falsity degrees of S such that 0 ≤ tS(x) +
iS(x) + fS(x) ≤ 3.

If J is continues, then

S =
∫
x

(tS(x), iS(x), fS(x))
x

, ∀ x ∈ J .

If J is discrete, then

S = ∑
x

(tS(x), iS(x), fS(x))
x

, ∀ x ∈ J .

Definition 3. [13] A complex intuitionistic fuzzy set (CIFS) I on the universal set J is defined as,

I = {(u, tI(u)eιφI(u), f I(u)eιψI(u))|u ∈ J },

where ι =
√
−1, tI(u), f I(u) ∈ [0, 1] are known as amplitude terms, φI(u), ψI(u) ∈ [0, 2π] are called phase

terms, and for every u ∈ J , 0 ≤ tI(u) + f I(u) ≤ 1.

Complex neutrosophic sets are defined using SVNSs.

Definition 4. [14] A complex neutrosophic set (CNS) N on the universal set J is defined as,

N = {(u, tN (u)eιφN (u), iN (u)eιϕN (u), fN (u)eιψN (u))|u ∈ J },

where ι =
√
−1, tN (u), iN (u), fN (u) ∈ [0, 1] are known as amplitude terms, φN (u), ϕN (u), ψN (u) ∈

[0, 2π] are called phase terms, and for every u ∈ J , 0 ≤ tN (u) + iN (u) + fN (u) ≤ 3.

Definition 5. [24] A complex neutrosophic relation (CNR) is a CNS on J ×J given as,

R = {(rs, tR(rs)eιφR(rs), iR(rs)eιϕR(rs), fR(rs)eιψR(rs))|rs ∈ J ×J },

where ι =
√
−1, tR : J × J → [0, 1], iR : J × J → [0, 1], fR : J × J → [0, 1] characterize the truth,

indeterminacy, and falsity degrees of R, and φR(rs), ϕR(rs), ψR(rs) ∈ [0, 2π] such that for all rs ∈ J × J ,
0 ≤ tR(rs) + iR(rs) + fR(rs) ≤ 3.
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Definition 6. [24] A complex neutrosophic graph (CNG) on J is an ordered pair G = (A, B), where A is a
CNS on J and B is CNR on J such that

tB(ab) ≤ min{tA(a), tA(b)},
iB(ab) ≤ min{iA(a), iA(b)},
fB(ab) ≤ max{ fA(a), fA(b)}, (for amplitude terms)

φB(ab) ≤ min{φA(a), φA(b)},
ϕB(ab) ≤ min{ϕA(a), ϕA(b)},
ψB(ab) ≤ max{ψA(a), ψA(b)}, (for phase terms)

0 ≤ tB(ab) + iB(ab) + fB(ab) ≤ 3, for all a, b ∈ J .

Example 1. Consider a CNG G = (A, B) on J = {c1, c2, c3}, where A = {(c1, 0.7eι(0.9)π , 0.6eι(0.8)π ,
0.9eι(0.7)π), (c2, 0.5eι(0.5)π , 0.7eι(0.9)π , 0.9eι(0.7)π), (c3, 0.8eι(0.8)π , 0.6eι(0.9)π , 0.5eι(0.7)π)} and B = {(c1c2,
0.5eι(0.5)π , 0.6eι(0.8)π , 0.6eι(0.6)π), (c2c3, 0.5eι(0.5)π , 0.6eι(0.8)π , 0.4eι(0.6)π), (c1c3, 0.7eι(0.8)π , 0.5eι(0.8)π ,
0.4eι(0.6)π)} are CNS and CNR on J , respectively. The corresponding graph is shown in Figure 1.

b

b b

(c1, 0.7e
ι(0.9)π , 0.6eι(0.8)π , 0.9eι(0.7)π)

(c2, 0.5e
ι(0.5)π , 0.7eι(0.9)π , 0.9eι(0.7)π) (c3, 0.8e

ι(0.8)π , 0.6eι(0.9)π , 0.5eι(0.7)π)

(c
1
c 2
, 0
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(0
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)π
, 0
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)π
, 0
.6
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(0
.6
)π
)

(c2c3, 0.5e
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(c
1 c

3 , 0.7e ι(0.8)π
, 0.5e ι(0.8)π

, 0.4e ι(0.6)π
)

Figure 1. Complex neutrosophic graph.

Definition 7. [14] Let N1 = {(u, tN1(u)e
ιφN1 (u), iN1(u)e

ιϕN1 (u), fN1(u)e
ιψN1 (u))|u ∈ J } and N2 =

{(u, tN2(u)e
ιφN2 (u), iN2(u)e

ιϕN2 (u), fN2(u)e
ιψN2 (u))|u ∈ J } be two CNSs in J , then

(i) N1 ⊆ N2 ⇔ tN1(u) ≤ tN2(u), iN1(u) ≤ iN2(u), fN1(u) ≥ fN2(u), and φN1(u) ≤ φN2(u), ϕN1(u) ≤
ϕN2(u), ψN1(u) ≥ ψN2(u) for amplitudes and phase terms, respectively, for all u ∈ J .

(ii) N1 = N2 ⇔ tN1(u) = tN2(u), iN1(u) = iN2(u), fN1(u) = fN2(u), and φN1(u) = φN2(u), ϕN1(u) =
ϕN2(u), ψN1(u) = ψN2(u) for amplitudes and phase terms, respectively, for all u ∈ J .

(iii) N1 ∪ N2 = {(u, max{tN1(u), tN2(u)}eι max{φN1 (u),φN2 (u)}, min{iN1(u), iN2(u)}eι min{ϕN1 (u),ϕN2 (u)},

min{ fN1(u), fN2(u)}eι min{ψN1 (u),ψN2 (u)})|u ∈ N1 ∪ N2}.
(iv) N1 ∩ N2 = {(u, min{tN1(u), tN2(u)}eι min{φN1 (u),φN2 (u)}, max{iN1(u), iN2(u)}eι max{ϕN1 (u),ϕN2 (u)},

max{ fN1(u), fN2(u)}eι max{ψN1 (u),ψN2 (u)})|u ∈ N1 ∩ N2}.
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Definition 8. The support of a CNS N = {(u, tN(u)eιφN(u), iN(u)eιϕN(u) fN(u)eιψS(u))|u ∈ J } is defined as

supp(N) = {u|tN(u) 6= 0, iN(u) 6= 0, fN(u) 6= 1, 0 < φN(u), ϕN(u), ψN(u) < 2π}.

The height of a CNS N = {(u, tN(u)eιφN(u), iN(u)eιϕN(u) fN(u)eιψS(u))|u ∈ J } is defined as

h(N) = {max
u∈J

tN(u)e
ι max

u∈J
φN(u)

, max
u∈J

iN(u)e
ι max

u∈J
ϕN(u)

, min
u∈J

fN(u)e
ι min

u∈J
ψN(u)}.

Definition 9. A complex neutrosophic hypergraph (CNHG) on J is defined as an ordered pairH = (N , λ),
where N = {N1, N2, · · · , Nk} is a finite family of CNSs on J and λ is a CNR on CNSs Nj’s such that

(i)

tλ({r1, r2, · · · , rl}) ≤ min{tNj(r1), tNj(r2), · · · , tNj(rl)},
iλ({r1, r2, · · · , rl}) ≤ min{iNj(r1), iNj(r2), · · · , iNj(rl)},
fλ({r1, r2, · · · , rl}) ≤ max{ fNj(r1), fNj(r2), · · · , fNj(rl)}, (for amplitude terms)

φλ({r1, r2, · · · , rl}) ≤ min{φNj(r1), φNj(r2), · · · , φNj(rl)},
ϕλ({r1, r2, · · · , rl}) ≤ min{ϕNj(r1), ϕNj(r2), · · · , ϕNj(rl)},
ψλ({r1, r2, · · · , rl}) ≤ max{ψNj(r1), ψNj(r2), · · · , ψNj(rl)}, (for phase terms)

0 ≤ tλ + iλ + fλ ≤ 3, for all r1, r2, · · · , rl ∈ J .
(ii)

⋃
j

supp(Nj) = J , for all Nj ∈ N .

Please note that Ek = {r1, r2, · · · , rl} is the crisp hyperedge ofH = (N , λ).

Definition 10. Let H = (N , λ) be a CNHG. The height of H, denoted by h(H), is defined as
h(H) = (max λleι max φ, max λmeι max ϕ, min λneι min ψ), where λl = max tξ j(vk), φ = max φξ j(vk),
λm = max iξ j(vk), ϕ = max ϕξ j(vk), λn = min fξ j(vk), ψ = min ψξ j(vk). Here, tξ j(vk), iξ j(vk), fξ j(vk)

denote the truth, indeterminacy, and falsity degrees of vertex vk to hyperedge ξ j, respectively.

Definition 11. LetH = (N , λ) be a CNHG. Suppose that α, β, γ ∈ [0, 1] and Θ, Φ, Ψ ∈ [0, 2π] such that 0 ≤
α + β + γ ≤ 3. The (αeιΘ, βeιΦ, γeιΨ)-level hypergraph ofH is defined as an ordered pairH(αeιΘ ,βeιΦ ,γeιΨ) =

(N (αeιΘ ,βeιΦ ,γeιΨ), λ(αeιΘ ,βeιΦ ,γeιΨ)), where

(i) λ(αeιΘ ,βeιΦ ,γeιΨ) = {λ(αeιΘ ,βeιΦ ,γeιΨ)
j : λj ∈ λ} and λ

(αeιΘ ,βeιΦ ,γeιΨ)
j = {u ∈ J : tλj(u) ≥ α, φλj(u) ≥

Θ, iλj(u) ≥ β, ϕλj(u) ≥ Φ, and fλj(u) ≤ γ, ψλj(u) ≤ Ψ},
(ii) N (αeιΘ ,βeιΦ ,γeιΨ) =

⋃
λj∈λ

λ
(αeιΘ ,βeιΦ ,γeιΨ)
j .

Please note that (αeιΘ, βeιΦ, γeιΨ)-level hypergraph ofH is a crisp hypergraph.

Definition 12. Let H = (N , λ) be a CNHG and for 0 < α ≤ t(h(H)), 0 < β ≤ i(h(H)),
γ ≥ f (h(H)) > 0, 0 < Θ ≤ φ(h(H)), 0 < Φ ≤ ϕ(h(H)), and Ψ ≥ ψ(h(H)) > 0,
let H(αeιΘ ,βeιΦ ,γeιΨ) = (N (αeιΘ ,βeιΦ ,γeιΨ), λ(αeιΘ ,βeιΦ ,γeιΨ)) be the level hypergraph of H. The sequence of
complex numbers {(α1eιΘ1 , β1eιΦ1 , γ1eιΨ1), (α2eιΘ2 , β2eιΦ2 , γ2eιΨ2), · · · , (αneιΘn , βneιΦn , γneιΨn)} such that
0 < α1 < α2 < · · · < αn = t(h(H)), 0 < β1 < β2 < · · · < βn = i(h(H)), γ1 > γ2 > · · · >
γn = f (h(H)) > 0, 0 < Θ1 < Θ2 < · · · < Θn = φ(h(H)), 0 < Φ1 < Φ2 < · · · < Φn = ϕ(h(H)),
and Ψ1 > Ψ2 > · · · > Ψn = ψ(h(H)) > 0 satisfying the conditions,

(i) if αk+1 < α′ ≤ αk, βk+1 < β′ ≤ βk, γk+1 > γ′ ≥ γk, Θk+1 < φ ≤ Θk, Φk+1 < ϕ ≤ Φk,

Ψk+1 > ψ ≥ Ψk, then λ(α′eιφ ,β′eιϕ ,γ′eιψ) = λ(αkeιΘk ,βkeιΦk ,γkeιΨk ), and
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(ii) λ(αkeιΘk ,βkeιΦk ,γkeιΨk ) ⊂ λ(αk+1eιΘk+1 ,βk+1eιΦk+1 ,γk+1eιΨk+1 ),

is called the fundamental sequence ofH = (N , λ), denoted by Fs(H). The set of (αje
ιΘj , β je

ιΦj , γje
ιΨj)

-level hypergraphs {H(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ),H(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ), · · · ,H(αneιΘn ,βneιΦn ,γneιΨn )} is called the set of
core hypergraphs or the core set ofH, denoted by c(H).

Example 2. Consider a CNHG H = (N , λ) on J = {r1, r2, r3, r4, r5, r6}. The CNR λ is given as,
λ({r1, r2, r3}) = (0.6eι(0.6)2π , 0.4eι(0.4)2π , 0.3eι(0.3)2π), λ({r1, r4}) = (0.8eι(0.8)2π , 0.5eι(0.5)2π , 0.4eι(0.4)2π),
λ({r3, r4, r5}) = (0.3eι(0.3)2π , 0.2eι(0.2)2π , 0.1eι(0.1)2π), and λ({r1, r5, r6}) = (0.3eι(0.3)2π , 0.2eι(0.2)2π ,
0.1eι(0.1)2π). The corresponding CNHG is shown in Figure 2.

Let

(α1eιΘ1 , β1eιΦ1 , γ1eιΨ1) = (0.9eι(0.9)2π , 0.7eι(0.7)2π , 0.6eι(0.6)2π),

(α2eιΘ2 , β2eιΦ2 , γ2eιΨ2) = (0.8eι(0.8)2π , 0.5eι(0.5)2π , 0.4eι(0.4)2π),

(α3eιΘ3 , β3eιΦ3 , γ3eιΨ3) = (0.6eι(0.6)2π , 0.4eι(0.4)2π , 0.3eι(0.3)2π),

(α4eιΘ4 , β4eιΦ4 , γ4eιΨ4) = (0.3eι(0.3)2π , 0.2eι(0.2)2π , 0.1eι(0.1)2π).

Please note that the sequence {(α1eιΘ1 , β1eιΦ1 , γ1eιΨ1), (α2eιΘ2 , β2eιΦ2 , γ2eιΨ2), (α3eιΘ3 , β3eιΦ3 , γ3eιΨ3),
(α4eιΘ4 , β4eιΦ4 , γ4eιΨ4)} satisfies all the conditions of Definition 12. Thus, it is a fundamental sequence ofH.
The corresponding (αje

ιΘj , β je
ιΦj , γje

ιΨj)-level hypergraphs are shown in Figures 3–5.
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Figure 2. Complex neutrosophic hypergraphH.
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b

r1

b

r4

b
r4

H(α1e
ιΘ1 ,β1e

ιΦ1 ,γ1e
ιΨ1 )

H(α2e
ιΘ2 ,β2e

ιΦ2 ,γ2e
ιΨ2 )

Figure 3. H(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ),H(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 )-level hypergraphs.

b b b

b

r1
r2 r3

r
4

Figure 4. H(α3eιΘ3 ,β3eιΦ3 ,γ3eιΨ3 )-level hypergraph.

b b b

b b
b

r1 r2
r3

r4 r5 r6

Figure 5. H(α4eιΘ4 ,β4eιΦ4 ,γ4eιΨ4 )-level hypergraph.

Definition 13. A CNHGH = (N , λ) is ordered if c(H) is ordered, i.e., if c(H) = {H(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ),
H(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ), · · · ,H(αneιΘn ,βneιΦn ,γneιΨn )}, then {H(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ) ⊂ H(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ) ⊂
· · · ⊂ H(αneιΘn ,βneιΦn ,γneιΨn )}.

A CNHGH = (N , λ) is simply ordered if c(H) is simply ordered, i.e., if e ∈ Ej+1 \ Ej, then e * Jj.
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Example 3. Consider a CNHGH = (N , λ) as shown in Figure 2. The set of core hypergraphs is given as,

c(H) = {H(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ),H(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ),H(α3eιΘ3 ,β3eιΦ3 ,γ3eιΨ3 ),H(α4eιΘ4 ,β4eιΦ4 ,γneιΨ4 )},

where

H(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ) = (J1, E1), J1 = {r4}, E1 = {},
H(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ) = (J2, E2), J2 = {r1, r4}, E2 = {{r1, r4}},
H(α3eιΘ3 ,β3eιΦ3 ,γ3eιΨ3 ) = (J3, E3), J3 = {r1, r2, r3, r4}, E3 = {{r1, r4}, {r1, r2, r3}},
H(α4eιΘ4 ,β4eιΦ4 ,γ4eιΨ4 ) = (J4, E4), J4 = {r1, r2, r3, r4, r5, r6}, E4 = {{r1, r4}, {r1, r2, r3}, {r1, r5, r6}

, {r3, r4, r5}}.

Please note that

H(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ) ⊆ H(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ) ⊆ H(α3eιΘ3 ,β3eιΦ3 ,γ3eιΨ3 ) ⊆ H(α4eιΘ4 ,β4eιΦ4 ,γ4eιΨ4 ).

Hence,H = (N , λ) is an ordered CNHG. Also,H = (N , λ) is simply ordered.

Definition 14. A CNHGH = (N , λ) with Fs(H) = {(α1eιΘ1 , β1eιΦ1 , γ1eιΨ1), (α2eιΘ2 , β2eιΦ2 , γ2eιΨ2),
· · · , (αneιΘn , βneιΦn , γneιΨn)} is called sectionally elementary if for every λj ∈ λ and for k ∈ {1, 2, · · · ,

n}, λ
(αeιΘ ,βeιΦ ,γeιΨ)
j = λ

(αkeιΘk ,βkeιΦk ,γkeιΨk )
j , for all α ∈ (αk+1, αk], β ∈ (βk+1, βk], γ ∈ (γk+1, γk], Θ ∈

(Θk+1, Θk], Φ ∈ (Φk+1, Φk], and Ψ ∈ (Ψk+1, Ψk].

Definition 15. Let N be a CNS on J . The lower truncation of N at level (αeιΘ, βeιΦ, γeιΨ), 0 < α, β, γ ≤ 1,
0 < Θ, Φ, Ψ ≤ 2π, is the CNSS N[(αeιΘ ,βeιΦ ,γeιΨ)] defined by,

tN
[(αeιΘ ,βeιΦ ,γeιΨ)]

(x)e
iφN

[(αeιΘ ,βeιΦ ,γeιΨ)]
(x)

=

{
tN(x)eiφN(x), if x ∈ N(αeιΘ ,βeιΦ ,γeιΨ),

0, otherwise.

iN
[(αeιΘ ,βeιΦ ,γeιΨ)]

(x)e
iϕN

[(αeιΘ ,βeιΦ ,γeιΨ)]
(x)

=

{
iN(x)eiϕN(x), if x ∈ N(αeιΘ ,βeιΦ ,γeιΨ),

0, otherwise.

fN
[(αeιΘ ,βeιΦ ,γeιΨ)]

(x)e
iψN

[(αeιΘ ,βeιΦ ,γeιΨ)]
(x)

=

{
fN(x)eiψN(x), if x ∈ N(αeιΘ ,βeιΦ ,γeιΨ),

0, otherwise.

Definition 16. Let N be a CNS on J . The upper truncation of N at level (αeιΘ, βeιΦ, γeιΨ), 0 < α, β, γ ≤ 1,
0 < Θ, Φ, Ψ ≤ 2π, is the CNSS N[(αeιΘ ,βeιΦ ,γeιΨ)] defined by,

t
N[(αeιΘ ,βeιΦ ,γeιΨ)](x)e

iφ
N[(αeιΘ ,βeιΦ ,γeιΨ)]

(x)
=

{
αeιΘ, if x ∈ N(αeιΘ ,βeιΦ ,γeιΨ),

tN(x)eiφN(x), otherwise.

i
N[(αeιΘ ,βeιΦ ,γeιΨ)](x)e

iϕ
N[(αeιΘ ,βeιΦ ,γeιΨ)]

(x)
=

{
βeιΦ, if x ∈ N(αeιΘ ,βeιΦ ,γeιΨ),

iN(x)eiϕN(x), otherwise.

f
N[(αeιΘ ,βeιΦ ,γeιΨ)](x)e

iψ
N[(αeιΘ ,βeιΦ ,γeιΨ)]

(x)
=

{
γeιΨ, if x ∈ N(αeιΘ ,βeιΦ ,γeιΨ),

fN(x)eiψN(x), otherwise.
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Definition 17. Let H = (N , λ) be a CNHG. The lower truncation H[(αeιΘ ,βeιΦ ,γeιΨ)] of H at
level (αeιΘ, βeιΦ, γeιΨ) is defined as, H[(αeιΘ ,βeιΦ ,γeιΨ)] = (N[(αeιΘ ,βeιΦ ,γeιΨ)], λ[(αeιΘ ,βeιΦ ,γeιΨ)])), where
N[(αeιΘ ,βeιΦ ,γeιΨ)] = {N[(αeιΘ ,βeιΦ ,γeιΨ)]|N ∈ N}.

The upper truncationH[(αeιΘ ,βeιΦ ,γeιΨ)] ofH at level (αeιΘ, βeιΦ, γeιΨ) is defined as,H[(αeιΘ ,βeιΦ ,γeιΨ)] =

(N [(αeιΘ ,βeιΦ ,γeιΨ)], λ[(αeιΘ ,βeιΦ ,γeιΨ)])), where N [(αeιΘ ,βeιΦ ,γeιΨ)] = {N[(αeιΘ ,βeιΦ ,γeιΨ)]|N ∈ N}.

Definition 18. Let N be a CNS on J . Then, each (αeιΘ, βeιΦ, γeιΨ), such that α ∈ (0, t(h(N))), β ∈
(0, i(h(N))), γ ∈ (0, f (h(N))), Θ ∈ (0, φ(h(N))), Ψ ∈ (0, ϕ(h(N))), and Ψ ∈ (0, ψ(h(N))), for which
N(αeιθ ,βeιφ ,γeιψ) ⊂ N(αeιΘ ,βeιΦ ,γeιΨ), is called a transition level of N.

Example 4. Consider a CNHG H = (N , λ) as shown in Figure 2. The (0.6eι(0.6)2π ,
0.4eι(0.4)2π , 0.3eι(0.3)2π)-level hypergraph of H is shown in Figure 4. Then, the lower truncation
H[(0.6eι(0.6)2π ,0.4eι(0.4)2π ,0.3eι(0.3)2π)] = (N[(0.6eι(0.6)2π ,0.4eι(0.4)2π ,0.3eι(0.3)2π)], λ[(0.6eι(0.6)2π ,0.4eι(0.4)2π ,0.3eι(0.3)2π)]) of H is
a CNHG on J1 = {r1, r2, r3, r4} as given in Figure 6.

b b b

b

(r1, 0.8e
ι(0.8)2π , 0.5eι(0.5)2π , 0.4e

ι(0.4)2π) (r2, 0.7eι(0.7)2π , 0.4eι(0.4)2π , 0.3eι(0.3)2π)

(r3, 0.6eι(0.6)2π , 0.4eι(0.4)2π , 0.3eι(0.3)2π)

(r
4 , 0.9e ι(0

.9
)2
π
, 0.7e ι(0

.7
)2
π
, 0.6e ι(0

.6
)2
π
)

(0.6eι(0.6)2π , 0.4eι(0.4)2π , 0.3eι(0.3)2π)

(0.8e ι(0
.8
)2
π
, 0.5e ι(0

.5
)2
π
, 0.4e ι(0

.4
)2
π
)

Figure 6. Lower truncation ofH.

Not that J1 =
⋃

N∈N
N[(0.6eι(0.6)2π ,0.4eι(0.4)2π ,0.3eι(0.3)2π)]. The upper truncation

H[(0.6eι(0.6)2π ,0.4eι(0.4)2π ,0.3eι(0.3)2π)] = (N [(0.6eι(0.6)2π ,0.4eι(0.4)2π ,0.3eι(0.3)2π)], λ[(0.6eι(0.6)2π ,0.4eι(0.4)2π ,0.3eι(0.3)2π)]) of
H is a CNHG on J = {r1, r2, r3, r4, r5, r6} as given in Figure 7.
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b b b

b
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Figure 7. Upper truncation ofH.

Definition 19. Let H = (N , λ) be a CNHG. A complex neutrosophic transversal (CNT) τ is a CNS of J
satisfying the condition ξh(ξ) ∩ τh(ξ) 6= ∅, for all ξ ∈ λ, where h(ξ) is the height of ξ.

A minimal complex neutrosophic transversal τ1 is the CNT ofH with the property that if τ ⊂ τ1, then τ is
not a CNT ofH.

Let us denote the family of minimal CNTs ofH by Tr(H).

Definition 20. A CNT τ with the property that τ(αeιΘ ,βeιΦ ,γeιΨ) ∈ tr(H(αeιΘ ,βeιΦ ,γeιΨ)), for all α, β, γ ∈ [0, 1],
and Θ, Φ, Ψ ∈ [0, 2π] is called the locally minimal CNT ofH. The collection of all locally minimal CNTs ofH
is represented by T∗r (H).

Please note that T∗r (H) ⊆ Tr(H), but the converse is not generally true.

Definition 21. Let N be a CNS on J . Then, the basic sequence of N determined by N, denoted by Bs(N),
is defined as {(α1eιΘ1 , β1eιΦ1 , γ1eιΨ1)N , (α2eιΘ2 , β2eιΦ2 , γ2eιΨ2)N , · · · , (αneιΘn , βneιΦn , γneιΨn)N}, where

(i) α1 > α2 > · · · > αn, β1 > β2 > · · · > βn, γ1 < γ2 < · · · < γn, Θ1 > Θ2 > · · · > Θn,
Φ1 > Φ2 > · · · > Φn, Ψ1 < Ψ2 < · · · < Ψn,

(ii) (α1eιΘ1 , β1eιΦ1 , γ1eιΨ1) = h(N),
(iii) {(α2eιΘ2 , β2eιΦ2 , γ2eιΨ2)N , · · · , (αneιΘn , βneιΦn , γneιΨn)N} are the transition levels of N.

Definition 22. Let Bs(N) = {(α1eιΘ1 , β1eιΦ1 , γ1eιΨ1)N , (α2eιΘ2 , β2eιΦ2 , γ2eιΨ2)N , · · · , (αneιΘn , βneιΦn ,
γneιΨn)N} be the basic sequence of N. Then, the set of basic cuts Bc(N) is defined as, Bc(N) =

{N(αeιΘ ,βeιΦ ,γeιΨ)|(αeιΘ, βeιΦ, γeιΨ) ∈ Bs(N)}.

Lemma 1. LetH = (N , λ) be a CNHG with Fs(H) = {(α1eιΘ1 , β1eιΦ1 , γ1eιΨ1), (α2eιΘ2 , β2eιΦ2 , γ2eιΨ2),
· · · , (αneιΘn , βneιΦn , γneιΨn)}. Then,

(i) If (αeιΘ, βeιΦ, γeιΨ) is a transition level of τ ∈ Tr(H), then there exists an ε > 0 such that for all
α1 ∈ (α, α + ε], β1 ∈ (β, β + ε], γ1 ∈ (γ, γ + ε], Θ1 ∈ (Θ, Θ + ε], Φ1 ∈ (Φ, Φ + ε], Ψ1 ∈
(Ψ, Ψ + ε], τ(αeιΘ ,βeιΦ ,γeιΨ) is a minimal H(αeιΘ ,βeιΦ ,γeιΨ) transversal extension of τ(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ),
i.e., if τ(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ) ⊆ C ⊂ τ(αeιΘ ,βeιΦ ,γeιΨ), then C is not a transversal ofH(αeιΘ ,βeιΦ ,γeιΨ).

(ii) Tr(H), i.e., the collection of minimal transversals ofH is sectionally elementary.
(iii) Fs(Tr(H)) is properly contained in Fs(H).

(iv) τ(αeιΘ ,βeιΦ ,γeιΨ) ∈ Tr(H(αeιΘ ,βeιΦ ,γeιΨ)), for all τ ∈ Tr(H) and for every α2 < α ≤ α1, β2 < β ≤ β1,
γ2 > γ ≥ γ1, Θ2 < Θ ≤ Θ1, Φ2 < Φ ≤ Φ1, Ψ2 > Ψ ≥ Ψ1.

Florentin Smarandache (ed.) Collected Papers, VII

687



Definition 23. Let H = (N , λ) be a CNHG. The complex neutrosophic line graph of H is defined as an
ordered pair l(H) = (Nl , λl), where Nl = λ and there exists an edge between two vertices in l(H) if
|supp(λj) ∩ supp(λk)| ≥ 1, for all λj, λk ∈ λ. The membership degrees of l(H) are given as,

(i) Nl(Ek) = λ(Ek),

(ii) λl(EjEk) = (min{tλ(Ej), tλ(Ek)}eι min{φλ(Ej),φλ(Ek)}, min{iλ(Ej), iλ(Ek)}eι min{ϕλ(Ej),ϕλ(Ek)},

max{ fλ(Ej), fλ(Ek)}eι max{ψλ(Ej),ψλ(Ek)}).

3. T-Related Complex Neutrosophic Hypergraphs

Definition 24. A CNHG H = (N , λ) is N-tempered CNHG of H = (J , E) if there exists H = (J , E),
a crisp hypergraph, and a CNS N such that λ = {δe|e ∈ E}, where

tδ(u)eιφδ(u) =

{
min{tN(x)eι min{φN(x)}|x ∈ e}, if u ∈ e,

0, otherwise.

iδ(u)eιϕδ(u) =

{
min{iN(x)eι min{ϕN(x)}|x ∈ e}, if u ∈ e,

0, otherwise.

fδ(u)eιψδ(u) =

{
max{ fN(x)eι max{ψN(x)}|x ∈ e}, if u ∈ e,

0, otherwise

An N-tempered CNHGH = (N , λ) determined by H and CNS N is denoted by N ⊗ H.

Definition 25. A pair (G, J) of crisp hypergraphs is T-related if whenever g is a minimal transversal of G, k is
any transversal of J, and g ⊆ k, then there exists a minimal transversal t of J such that g ⊆ t ⊆ k.

Definition 26. Let H = (N , λ) be a CNHG with Fs(H) =

{(α1eιΘ1 , β1eιΦ1 , γ1eιΨ1), (α2eιΘ2 , β2eιΦ2 , γ2eιΨ2), · · · , (αneιΘn , βneιΦn , γneιΨn)}. Then, H is T-related
if from the core set

c(H) = {H(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ),H(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ), · · · ,H(αneιΘn ,βneιΦn ,γneιΨn )}

ofH, every successive ordered pair (H(αje
ιΘj ,β je

ιΦj ,γje
ιΨj ),H(αj−1eιΘj−1 ,β j−1eιΦj−1 ,γj−1eιΨj−1 )) is T-related.

If Fs(H) contains only one element,H is considered to be trivially T-related.

Theorem 1. LetH = (N , λ) be a T-related CNHG, then Tr(H) = T∗r (H).

Proof. LetH = (N , λ) be a T-related CNHG with Fs(H) = {(α1eιΘ1 , β1eιΦ1 , γ1eιΨ1), (α2eιΘ2 , β2eιΦ2 ,
γ2eιΨ2), · · · , (α1eιΘn , βneιΦn , γneιΨn)}. Then, there arises two cases:

Case (i) First we consider that Fs(H) = {(α1eιΘ1 , β1eιΦ1 , γ1eιΨ1)}. Then, Lemma 1 implies that for

each ξ ∈ Tr(H), ξ(αeιΘ ,βeιΦ ,γeιΨ) ∈ Tr(H(αeιΘ ,βeιΦ ,γeιΨ)), for all 0 < α ≤ t(h(H)), 0 < β ≤
i(h(H)), γ ≥ f (h(H)) > 0, 0 < Θ ≤ φ(h(H)), 0 < Φ ≤ ϕ(h(H)), and Ψ ≥ ψ(h(H)) > 0.
Thus, Tr(H) = T∗r (H).

Case (ii) We now suppose that |Fs(H)| ≥ 2. Since, T∗r (H) ⊆ Tr(H), we just have

to prove that Tr(H) ⊆ T∗r (H). Let ξ ∈ Tr(H), and ξ(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ) ⊂
ξ(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ). AS ξ(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ) ∈ Tr(H(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 )), ξ(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ) ∈
Tr(H(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 )), and the ordered pair (H(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ),H(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 )) is
T-related. If ξ(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ) /∈ Tr(H(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 )), then there exists a minimal
transversal τ ofH(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ) such that ξ(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ) ⊆ τ2 ⊂ ξ(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ).
Hence, we obtain a CNT δ of H such that δ ⊂ ξ. Let ξ(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ) = τ1 and
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δ = ξ(α3eιΘ3 ,β3eιΦ3 ,γ3eιΨ3 ) ∪ ρ2 ∩ ρ1, where ρk is an elementary CNS with support τk and
height (αkeιΘk , βkeιΦk , γkeιΨk ), k = 1, 2. This contradiction shows that ξ(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ) ∈
Tr(H(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 )). Then, Lemma 1 implies that ξ(αeιΘ ,βeιΦ ,γeιΨ) ∈ Tr(H(αeιΘ ,βeιΦ ,γeιΨ)),
for α ∈ (α3, α1], β ∈ (β3, β1], γ ∈ (γ3, γ1], Θ ∈ (Θ3, Θ1], Φ ∈ (Φ3, Φ1], Ψ ∈ (Ψ3, Ψ1].
Continuing the same recursive procedure, we show that ξ(αeιΘ ,βeιΦ ,γeιΨ) ∈ Tr(H(αeιΘ ,βeιΦ ,γeιΨ)),
for each α ∈ (0, α1], β ∈ (0, β1], γ ∈ (0, γ1], Θ ∈ (0, Θ1], Φ ∈ (0, Φ1], Ψ ∈ (0, Ψ1].

Example 5. LetH = (N , λ) be a CNHG represented by the incidence matrix as given in Table 1.
Please note that

λ(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π) = {{j1, j2}, {j1, j3}, {j2, j3}},
λ(0.6eι(0.6)2π ,0.6eι(0.6)2π ,0.6eι(0.6)2π) = {{j1, j2, j4}, {j1, j3, j4}, {j2, j3, j5}},
λ(0.3eι(0.3)2π ,0.3eι(0.3)2π ,0.3eι(0.3)2π) = {{j1, j2, j4, j5}, {j1, j3, j4, j5}, {j2, j3, j4, j5}}.

Clearly, Fs(H) = {(0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π), (0.6eι(0.6)2π , 0.6eι(0.6)2π , 0.6eι(0.6)2π),
(0.3eι(0.3)2π , 0.3eι(0.3)2π , 0.3eι(0.3)2π)}. Also, Tr(H) = {τ1, τ2, τ3} = T∗r (H), where

τ1 = {(j1, 0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π), (j2, 0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π)},
τ2 = {(j1, 0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π), (j3, 0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π)},
τ3 = {(j2, 0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π), (j3, 0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π)}.

Since, {j4, j5} ∈ Tr(H(0.6eι(0.6)2π ,0.6eι(0.6)2π ,0.6eι(0.6)2π)) and {j4} ∈ Tr(H(0.3eι(0.3)2π ,0.3eι(0.3)2π ,0.3eι(0.3)2π)),
i.e., no minimal transversal of H(0.3eι(0.3)2π ,0.3eι(0.3)2π ,0.3eι(0.3)2π) contains {j4, j5}.
Thus, (H(0.6eι(0.6)2π ,0.6eι(0.6)2π ,0.6eι(0.6)2π),H(0.3eι(0.3)2π ,0.3eι(0.3)2π ,0.3eι(0.3)2π)) is not T-related, therefore H is
not T-related.

Table 1. Incidence matrix of CNHGH = (N , λ).

I λ1 λ2 λ3

j1 (0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π) (0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π) (0, 0, 1)
j2 (0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π) (0, 0, 1) (0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π)

j3 (0, 0, 1) (0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π) (0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π)

j4 (0.6eι(0.6)2π , 0.6eι(0.6)2π , 0.6eι(0.6)2π) (0.6eι(0.6)2π , 0.6eι(0.6)2π , 0.6eι(0.6)2π) (0.3eι(0.3)2π , 0.3eι(0.3)2π , 0.3eι(0.3)2π)

j5 (0.3eι(0.3)2π , 0.3eι(0.3)2π , 0.3eι(0.3)2π) (0.3eι(0.3)2π , 0.3eι(0.3)2π , 0.3eι(0.3)2π) (0.6eι(0.6)2π , 0.6eι(0.6)2π , 0.6eι(0.6)2π)

Theorem 2. LetH = (N , λ) be an ordered CNHG, then Tr(H) = T∗r (H)⇔ H is T-related.

Proof. In view of Theorem 1, this is enough to prove that Tr(H) = T∗r (H) implies H is T-related.
Suppose that Fs(H) = {(α1eιΘ1 , β1eιΦ1 , γ1eιΨ1), (α2eιΘ2 , β2eιΦ2 , γ2eιΨ2), · · · , (αneιΘn , βneιΦn , γneιΨn)}
and H is not T-related. Here, we obtain ξ ∈ Tr(H) such that ξ /∈ T∗r (H). Assume that

the ordered pair (H(αje
ιΘj ,β je

ιΦj ,γje
ιΨj ),H(αj+1eιΘj+1 ,β j+1eιΦj+1 ,γj+1eιΨj+1 )) is not T-related and c(H) =

{H(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ),H(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ), · · · ,H(αneιΘn ,βneιΦn ,γneιΨn )}. Then, there exists a CNT τk such
that τk ∈ Tr(H(αkeιΘk ,βkeιΦk ,γkeιΨk )) and τk ⊂ τk+1, where

τk+1 ∈ Tr(H(αk+1eιΘk+1 ,βk+1eιΦk+1 ,γk+1eιΨk+1 ))

satisfying the condition that N is not a minimal transversal ofH(αk+1eιΘk+1 ,βk+1eιΦk+1 ,γk+1eιΨk+1 ), for every
N, τk ⊆ N ⊆ τk+1. Since, H = (N , λ) is an ordered CNHG, then H(αkeιΘk ,βkeιΦk ,γkeιΨk ) ⊆
H(αk+1eιΘk+1 ,βk+1eιΦk+1 ,γk+1eιΨk+1 ), therefore τk is not a transversal of H(αk+1eιΘk+1 ,βk+1eιΦk+1 ,γk+1eιΨk+1 ),
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for otherwise τk ∈ Tr(H(αk+1eιΘk+1 ,βk+1eιΦk+1 ,γk+1eιΨk+1 )), which is a contradiction to our assumption.
Let δ be an arbitrary CNT of H(αk+1eιΘk+1 ,βk+1eιΦk+1 ,γk+1eιΨk+1 ) such that τk ⊆ δ ⊆ τk+1. Now, if τk ⊆
Q ⊂ δ, then Q is not a crisp transversal of H(αk+1eιΘk+1 ,βk+1eιΦk+1 ,γk+1eιΨk+1 ). As we know that
δ /∈ Tr(H(αk+1eιΘk+1 ,βk+1eιΦk+1 ,γk+1eιΨk+1 )) and τk ⊂ δ. Thus, we can obtain a minimal CNT ξ of H
such that ξ /∈ T∗r (H). First, we compute a minimal CNT ξ1 of H(αkeιΘk ,βkeιΦk ,γkeιΨk ), where τk is the

top level cut of ξ1 at level (αkeιΘk , βkeιΦk , γkeιΨk ) and satisfies ξ
(αk+1eιΘk+1 ,βk+1eιΦk+1 ,γk+1eιΨk+1 )
1 ⊆ τk+1.

Then, Lemma 1 implies that the (αk+1eιΘk+1 , βk+1eιΦk+1 , γk+1eιΨk+1)-cut, ξ
(αk+1eιΘk+1 ,βk+1eιΦk+1 ,γk+1eιΨk+1 )
1

of ξ1 should equal to some δ that satisfies τk ⊆ δ ⊆ τk+1 and τk ⊆ Q ⊂ δ, then Q is not a
crisp transversal of H(αk+1eιΘk+1 ,βk+1eιΦk+1 ,γk+1eιΨk+1 ). Thus, we obtain ξ1 ∈ Tr(H(αkeιΘk ,βkeιΦk ,γkeιΨk )) \
T∗r (H(αkeιΘk ,βkeιΦk ,γkeιΨk )).

We now assume that (αkeιΘk , βkeιΦk , γkeιΨk ) ⊂ (α1eιΘ1 , β1eιΦ1 , γ1eιΨ1). Since, H is ordered,
then there exists an ordered sequence tk ⊇ tk−1 ⊃ · · · ⊇ t1 of crisp minimal transversals of
H(αkeιΘk ,βkeιΦk ,γkeιΨk ), H(αk−1eιΘk−1 ,βk−1eιΦk−1 ,γk−1eιΨk−1 ), · · · , H(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ), respectively. Let ρl be
an elementary CNSS with support tl and height ξl . Then, ξ = ρ1 ∪ · · · ∪ ρl−1 ∪ δ such that ξ ∈ Tr(H)

and ξ /∈ T∗r (H).

Corollary 1. LetH = (N , λ) be an ordered CNHG with Fs(H) = {(α1eιΘ1 , β1eιΦ1 , γ1eιΨ1), (α2eιΘ2 ,
β2eιΦ2 , γ2eιΨ2), · · · , (αneιΘn , βneιΦn , γneιΨn)} and c(H) = {H(α1eιΘ1 ,β1eιΦ1 ,γ1eιΨ1 ),H(α2eιΘ2 ,β2eιΦ2 ,γ2eιΨ2 ),
· · · ,H(αneιΘn ,βneιΦn ,γneιΨn )}.

If an ordered pair (H(αje
ιΘj ,β je

ιΦj ,γje
ιΨj ),H(αj+1eιΘj+1 ,β j+1eιΦj+1 ,γj+1eιΨj+1 )) is not T-related, then

(i) (αj+1eιΘj+1 , β j+1eιΦj+1 , γj+1eιΨj+1) ∈ Fs(Tr(H)).

(ii) (αj+1eιΘj+1 , β j+1eιΦj+1 , γj+1eιΨj+1) is a transition level for ξ ∈ Tr(H) \ T∗r (H).

Example 6. Let N = {(u, tN(u)eιφN(u), iN(u)eιϕN(u), fN(u)eιψN(u))|u ∈ J } be a CNS on
J = {a1, a2, a3, a4, a5, a6, a7} such that N(a7) = (0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π) and N(a) =

(0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π), for all a ∈ J \ {a7}. Let H = (J , E) be a crisp hypergraph on J , where
E1 = {a1, a2, a4}, E2 = {a1, a3, a4}, E3 = {a4, a5, a6}, E4 = {a1, a5}, and E5 = {a5, a7}. Then, N-tempered
CNHGH = (N , λ) is given by the incidence matrix as shown in Table 2.

Here, 0 = (0, 0, 1), 0.9eι(0.9)2π=(0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π), and 0.4eι(0.4)2π= (0.4eι(0.4)2π ,
0.4eι(0.4)2π , 0.4eι(0.4)2π). Please note that Fs(H) = {(0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π), (0.4eι(0.4)2π ,
0.4eι(0.4)2π , 0.4eι(0.4)2π)} and c(H) = {H(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π),H(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π)},
where

H(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π) = (J1}, E1), J1 = {a1, a2, a3, a4, a5, a6},
E1 = {{a1, a2, a4}, {a1, a3, a4}, {a4, a5, a6}, {a1, a5}},

H(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π) = (J2, E2), J2 = {a1, a2, a3, a4, a5, a6, a7},
E2 = {{a1, a2, a4}, {a1, a3, a4}, {a4, a5, a6}, {a1, a5}{a5, a7}}.

Please note that

{a1, a4} ∈ Tr(H(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)), {a1, a4} /∈ Tr(H(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π)),

i.e., {a1, a4, a5} is a transversal of H(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π) but not a minimal transversal.
Therefore, the ordered pair (H(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π),H(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π)) as well as H is
not T-related.
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Table 2. Incidence matrix of N-tempered CNHGH.

H λ1 λ2 λ3 λ4 λ5

a1 0.9eι(0.9)2π 0.9eι(0.9)2π 0 0.9eι(0.9)2π 0
a2 0.9eι(0.9)2π 0 0 0 0
a3 0 0.9eι(0.9)2π 0 0 0
a4 0.9eι(0.9)2π 0.9eι(0.9)2π 0.9eι(0.9)2π 0 0
a5 0 0 0.9eι(0.9)2π 0.9eι(0.9)2π 0.4eι(0.4)2π

a6 0 0 0.9eι(0.9)2π 0 0
a7 0 0 0 0 0.4eι(0.4)2π

Remark 1.

• Example 6 shows that there exists some ordered CNHGs that are not T-related.

• Every simply ordered CNHGH = (N , λ) satisfies (T∗r (H)(αeιΘ ,βeιΦ ,γeιΨ) = Tr(H(αeιΘ ,βeιΦ ,γeιΨ)), for all
α ∈ (0, t(h(H))], β ∈ (0, i(h(H))], γ ∈ (0, f (h(H))], Θ ∈ (0, φ(h(H))], Φ ∈ (0, ϕ(h(H))], Ψ ∈
(0, ψ(h(H))].

Lemma 2. Let H = (J , E) be a crisp hypergraph and j be an arbitrary vertex of H. Then j ∈ E ∈ Tr(H)⇔
j ∈ Ek ∈ E such that for any hyperedge El 6= Ek of H, El * Ek.

Proposition 1. Let H1 = (J1, E1) be a crisp partial hypergraph of H = (J , E) that is obtained by removing
those hyperedges of H = (J , E) that contain any other edges properly. Then,

(i) Tr(H1) = Tr(H),
(ii) ∪Tr(H) = J1.

Definition 27. Let H = (N , λ) be a CNHG. The join of H, denoted by J(H), is defined as, J(H) =
⋃

ρ∈λ
ρ,

where λ is the CN hyperedge set ofH.
For every α ∈ (0, t(h(H))], β ∈ (0, i(h(H))], γ ∈ (0, f (h(H))], Θ ∈ (0, φ(h(H))], Φ ∈ (0, ϕ(h(H))],

Ψ ∈ (0, ψ(h(H))], the (αeιΘ, βeιΦ, γeιΨ)-level cut of J(H), i.e., (J(H))(αeιΘ ,βeιΦ ,γeιΨ) is the set of vertices of
(αeιΘ, βeιΦ, γeιΨ)-level hypergraph ofH, i.e., (J(H))(αeιΘ ,βeιΦ ,γeιΨ) = J (H(αeιΘ ,βeιΦ ,γeιΨ)).

Lemma 3. LetH = (N , λ) be a CNHG and ξ ∈ Tr(H). If j ∈ supp(ξ), then there exists a CN hyperedge ρ

ofH such that

(i) ρ(j) = h(ρ) = ξ(j) > 0,

(ii) ξh(ρ) ∩ ρh(ρ) = {j}.

Proof. Let j0 ∈ supp(ξ) such that ξ ∈ Tr(H) and ξ(j0) = (α0eιφ0 , β0eιϕ0 , γ0eιψ0). Since every
ξ1 that is a transversal of H contains a transversal ξ such that ξ ⊆ j(H). This implies that
j0 ∈ N (α0eιφ0 ,β0eιϕ0 ,γ0eιψ0 ) = J (H(α0eιφ0 ,β0eιϕ0 ,γ0eιψ0 )). Therefore, there exists at least one hyperedge ρ

of H such that ρ(j0) ≥ (α0eιφ0 , β0eιϕ0 , γ0eιψ0). Let λ = {λ1, λ2, · · · , λm} be the set of hyperedges
of H and ρ(j0) ≥ (α0eιφ0 , β0eιϕ0 , γ0eιψ0). We now prove that there exists at least one λk ∈ λ

such that h(λj) = (α0eιφ0 , β0eιϕ0 , γ0eιψ0). For otherwise, we have h(λk) = (αkeιφk , βkeιϕk , γkeιψk ) ≥
(α0eιφ0 , β0eιϕ0 , γ0eιψ0), for all λk ∈ λ, k = 1, 2, · · · , m. This implies that for every λk ∈ λ,
there exists an element uk ∈ supp(ξ) such that uk ∈ (λk)

(αkeιφk ,βkeιϕk ,γkeιψk ) ∩ ξ(αkeιφk ,βkeιϕk ,γkeιψk ),
for (αkeιφk , βkeιϕk , γkeιψk ) ≥ (α0eιφ0 , β0eιϕ0 , γ0eιψ0). Since, ξ(j0) = (α0eιφ0 , β0eιϕ0 , γ0eιψ0), then h(λk) =

(αkeιφk , βkeιϕk , γkeιψk ) ≥ (α0eιφ0 , β0eιϕ0 , γ0eιψ0) and uk ∈ (λk)
(αkeιφk ,βkeιϕk ,γkeιψk ) ∩ ξ(αkeιφk ,βkeιϕk ,γkeιψk )

imply that uk 6= j0, k = 1, 2, · · · , m. If these hold, it could be shown that ξ /∈ Tr(H) by computing a
CNT δ of H that satisfies δ ⊂ ξ. This argument follows form the fact that J and λ are finite, there
exist intervals (α0 − ε, α0], (β0 − ε, β0], (γ0 − ε, γ0], (φ0 − 2πε, φ0], (ϕ0 − 2πε, ϕ0], and (ψ0 − 2πε, ψ0]
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such that H(αeιφ ,βeιϕ ,γeιψ) = H(α0eιφ0 ,β0eιϕ0 ,γ0eιψ0 ) on (α0 − ε, α0], (β0 − ε, β0], (γ0 − ε, γ0], (φ0 − 2πε, φ0],
(ϕ0 − 2πε, ϕ0], and (ψ0 − 2πε, ψ0].

Define δ(u) as,

tδ(u) =

{
tξ(u), if u 6= j0,

α0 − ε, if u = j0.
, iδ(u) =

{
iξ(u), if u 6= j0,

β0 − ε, if u = j0.
,

fδ(u) =

{
fξ(u), if u 6= j0,

γ0 − ε, if u = j0.
, φδ(u) =

{
φξ(u), if u 6= j0,

φ0 − 2πε, if u = j0.
,

ϕδ(u) =

{
ϕξ(u), if u 6= j0,

ϕ0 − 2πε, if u = j0.
, ψδ(u) =

{
ψξ(u), if u 6= j0,

ψ0 − 2πε, if u = j0.
.

Clearly δ ⊂ ξ and δ is a transversal of H. Also, ξ(α0eιφ0 ,β0eιϕ0 ,γ0eιψ0 ) \ {j0} contains {uk|k =

1, 2, · · · , m}. Therefore, ξ(α0eιφ0 ,β0eιϕ0 ,γ0eιψ0 ) \ {j0} is a transversal of H(α0eιφ0 ,β0eιϕ0 ,γ0eιψ0 ). The same
argument holds for every H(αeιφ ,βeιϕ ,γeιψ), where α ∈ (α0 − ε, α0], β ∈ (β0 − ε, β0], γ ∈ (γ0 − ε, γ0],
φ ∈ (φ0 − 2πε, φ0], ϕ ∈ (ϕ0 − 2πε, ϕ0], ψ ∈ (ψ0 − 2πε, ψ0]. Since, δ(αeιφ ,βeιϕ ,γeιψ) = ξ(αeιφ ,βeιϕ ,γeιψ),
for all α ∈ (0, t(h(H))] \ (α0 − ε, α0], β ∈ (0, i(h(H))] \ (β0 − ε, β0], γ ∈ (0, f (h(H))] \ (γ0 − ε, γ0],
φ ∈ (0, φ(h(H))] \ (φ0− 2πε, φ0], ϕ ∈ (0, ϕ(h(H))] \ (ϕ0− 2πε, ϕ0], ψ ∈ (0, ψ(h(H))] \ (ψ0− 2πε, ψ0].
This establishes the existence of ρ ∈ H for which ρ(j0) = h(ρ) = ξ(j0) > 0.

We now suppose that every hyperedge from the set λ = {λ1, λ2, · · · , λm} with height ξ(j0)
contain two or more than two elements of ξ(α0eιφ0 ,β0eιϕ0 ,γ0eιψ0 ) \ {j0}. BY repeating the above procedure,
we can establish that ξ /∈ Tr(H), which is a contradiction.

Example 7. Consider a CNHG H = (N , λ) on J = {u1, u2, u3, u4} as represented by incidence matrix
given in Table 3.

Here, 0.7eι(0.7)2π= (0.7eι(0.7)2π , 0.7eι(0.7)2π , 0.7eι(0.7)2π), 0.9eι(0.9)2π= (0.9eι(0.9)2π , 0.9eι(0.9)2π ,
0.9eι(0.9)2π), 0.4eι(0.4)2π= (0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π). Then, we see that λ1, λ3, and λ5 have no
transitions levels and (0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π) is the transition level of λ2 and λ4. The basic
sequences are given as,

Bs(λ1) = {(0.7eι(0.7)2π , 0.7eι(0.7)2π , 0.7eι(0.7)2π)},
Bs(λ2) = {(0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π), (0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π)},
Bs(λ3) = {(0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π)},
Bs(λ4) = {(0.7eι(0.7)2π , 0.7eι(0.7)2π , 0.7eι(0.7)2π), (0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π)},
Bs(λ5) = {(0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π)}.

Thus,

Bc(λ1) = {λ(0.7eι(0.7)2π ,0.7eι(0.7)2π ,0.7eι(0.7)2π)
1 },

Bc(λ2) = {λ(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)
2 , λ

(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π)
2 },

Bc(λ3) = {λ(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)
3 },

Bc(λ4) = {λ(0.7eι(0.7)2π ,0.7eι(0.7)2π ,0.7eι(0.7)2π)
4 , λ

(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π)
4 },

Bc(λ5) = {λ(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π)
5 }.
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Also, we have Fs(H) = {(0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π), (0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π)}
and c(H) = {H(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π),H(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π)}, where

λ(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π) = {{u1, u2, u3}, {u1, u2}, {u2, u3}},
λ(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π) = {{u1, u2, u3, u4}, {u1, u2}, {u1, u2, u4}, {u2, u3}, {u2, u3, u4}}.

We now determine Tr(H) and T∗r (H). If τ ∈ Tr(H), then τh(λ1) ∩{u1, u2} 6= ∅, τh(λ2) ∩{u1, u2} 6= ∅,
τh(λ3) ∩ {u2, u3} 6= ∅, τh(λ4) ∩ {u2, u3} 6= ∅, and τh(λ5) ∩ {u1, u3, u4} 6= ∅. Please note that Tr(H) =

{τ1, τ2, τ3, τ4}, where

τ1 = {(u1, 0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π), (u3, 0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π)},
τ2 = {(u2, 0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π), (u3, 0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π},
τ3 = {(u2, 0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π), (u4, 0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π},
τ4 = {(u2, 0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π), (u1, 0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π}.

Now Tr(H(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)) = {{u2}, {u1, u3}} and Tr(H(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π)) =

{{u1, u3}, {u2, u3}, {u2, u4}, {u1, u2}, {u1, u3, u4}} and τ
(αeιΘ ,βeιΦ ,γeιΨ)
k ∈ Tr(H(αeιΘ ,βeιΦ ,γeιΨ)), for all α ∈

(0, t(h(H))], β ∈ (0, i(h(H))], γ ∈ (0, f (h(H))], Θ ∈ (0, φ(h(H))], Φ ∈ (0, ϕ(h(H))], Ψ ∈ (0, ψ(h(H))].
Hence, T∗r (H) = {τ1}.

We now illustrate Lemma 3 through the above example.

λ2(u1) = h(λ2) = τ1(u1) = (0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π),

λ3(u3) = h(λ3) = τ1(u3) = (0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π),

λ2(u2) = h(λ2) = τ2(u2) = (0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π),

λ5(u3) = h(λ5) = τ2(u3) = (0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π),

λ3(u2) = h(λ3) = τ3(u2) = (0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π),

λ5(u4) = h(λ5) = τ3(u4) = (0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π),

λ5(u1) = h(λ5) = τ4(u2) = (0.4eι(0.4)2π , 0.4eι(0.4)2π , 0.4eι(0.4)2π),

λ3(u2) = h(λ3) = τ4(u2) = (0.9eι(0.9)2π , 0.9eι(0.9)2π , 0.9eι(0.9)2π).

Also note that

τ
(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)
1 ∩ λ

(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)
2 = {u1},

τ
(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)
1 ∩ λ

(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)
3 = {u3},

τ
(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)
2 ∩ λ

(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)
2 = {u2},

τ
(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π)
2 ∩ λ

(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π)
5 = {u3},

τ
(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)
3 ∩ λ

(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)
3 = {u2},

τ
(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π)
3 ∩ λ

(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π)
5 = {u4},

τ
(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π)
4 ∩ λ

(0.4eι(0.4)2π ,0.4eι(0.4)2π ,0.4eι(0.4)2π)
5 = {u1},

τ
(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)
4 ∩ λ

(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)
3 = {u2}.

Hence, (Tr(H))(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π) = {τ(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)
1 ,

τ
(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)
2 , τ

(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)
3 , τ

(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)
4 } = {{u1,

u3}, {u2}, {u2}, {u2}} = {{u1, u3}, {u2}} = Tr(H(0.9eι(0.9)2π ,0.9eι(0.9)2π ,0.9eι(0.9)2π)).
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Table 3. Incidence matrix ofH.

IH λ1 λ2 λ3 λ4 λ5

u1 0.7eι(0.7)2π 0.9eι(0.9)2π (0, 0, 1) (0, 0, 1) 0.4eι(0.4)2π

u2 0.7eι(0.7)2π 0.9eι(0.9)2π 0.9eι(0.9)2π 0.7eι(0.7)2π (0, 0, 1)
u3 (0, 0, 1) (0, 0, 1) 0.9eι(0.9)2π 0.7eι(0.7)2π 0.4eι(0.4)2π

u4 (0, 0, 1) 0.4eι(0.4)2π (0, 0, 1) 0.4eι(0.4)2π 0.4eι(0.4)2π

Theorem 3. Let H = (N , λ) be a CNHG and j ∈ J . If ξ ∈ Tr(H) with j ∈ supp(ξ), then there exists an
hyperedge ρ ∈ λ such that

(i) ρ(j) = h(ρ),

(ii) For λ1 ∈ λ such that h(λ1) ≥ h(ρ), λ
h(λ1)
1 * ρh(ρ),

(iii) Ek * ρh(ρ), where Ek is an arbitrary hyperedge ofHh(ρ),
(iv) ξ(j) = ρ(j).

Corollary 2. Let H = (N , λ) be a CNHG. If λ1 ∈ λ satisfies h(λ1) ≥ h(ρ), λ
h(λ1)
1 * ρh(ρ), then h(λ1) ∈

Fs(H).

4. Applications

In this section, we propose the modeling of overlapping communities that exist in different social
networks through CNHGs. These communities intersect each other when one person belongs to
multiple communities at the same time. The vertices of the CNHGs are used to represent different
communities and the hyperlinks of individuals who participate in more than one community are
illustrated using hyperedges of CNHGs. Here, we define a score function for ranking CNSs by
considering the truth, indeterminacy, and falsity degrees.

Definition 28. Let N = (teιφ, ieιϕ, f eιψ) be a CNN, the score function S of N is defined as,

S(N) =
1 + t− 2i− f

2
+

2π + φ− 2ϕ− ψ

4π
,

where S(N) ∈ [−2, 2].

4.1. Modeling of Intersecting Research Communities

Research scholars have different fields of interest and these multiple research interests make
researchers parts of different research communities at the same time. For example, Mathematics,
Physics, and Computer Science may be the fields of interest for one researcher at the same time.
That is how overlapping communities occur in research fields. We use a CNHG to model intersecting
communities that emerge in different research fields. The vertices of a CNHG represent the different
research fields and these fields are connected through an hyperedge that represents a research scholar
who works in the corresponding fields. The corresponding model of intersecting research communities
is shown in Figure 8.
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Figure 8. Intersecting research communities.

Here, the truth, indeterminacy, and falsity degrees of each vertex represent the accepted,
submitted, and rejected articles of that community in a specific period of time that is represented by
the phase terms. This inconsistent information with periodic nature is given in Table 4.

Table 4. Periodic behavior of research communities.

Research Fields Accepted Articles Submitted Articles Rejected Articles

F1 0.6eι(0.6)2π 0.6eι(0.3)2π 0.5eι(0.4)2π

F2 0.7eι(0.5)2π 0.3eι(0.7)2π 0.5eι(0.4)2π

F3 0.8eι(0.4)2π 0.6eι(0.3)2π 0.4eι(0.5)2π

F4 0.8eι(0.4)2π 0.6eι(0.7)2π 0.7eι(0.5)2π

F5 0.9eι(0.3)2π 0.4eι(0.5)2π 0.7eι(0.2)2π

F6 0.6eι(0.5)2π 0.3eι(0.4)2π 0.7eι(0.1)2π

F7 0.4eι(0.5)2π 0.3eι(0.2)2π 0.6eι(0.3)2π

F8 0.4eι(0.7)2π 0.5eι(0.1)2π 0.5eι(0.2)2π

F9 0.4eι(0.3)2π 0.4eι(0.4)2π 0.6eι(0.3)2π

F10 0.4eι(0.5)2π 0.5eι(0.2)2π 0.7eι(0.3)2π

Please note that number of accepted, submitted, and rejected articles of community F1 are 0.6, 0.6,
and 0.5, and the corresponding behaviors repeat after (0.6)2π, (0.3)2π, and (0.4)2π periods of time,
respectively, and so on. The research scholar λ1 belongs to communities F1, F2, and F3 as he shares
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these three fields of interest. Similarly, λ2 belongs to F3 and F8 and the communities overlap with each
other. The indeterminate information about a researcher is calculated using CNRs given as,

λ1({F1, F2, F3}) = (0.6eι(0.2)2π , 0.3eι(0.3)2π , 0.4eι(0.2)2π),

λ2({F3, F8}) = (0.4eι(0.3)2π , 0.5eι(0.1)2π , 0.4eι(0.2)2π),

λ3({F1, F4}) = (0.6eι(0.3)2π , 0.4eι(0.2)2π , 0.7eι(0.4)2π),

λ4({F5, F8, F6}) = (0.4eι(0.3)2π , 0.3eι(0.1)2π , 0.7eι(0.2)2π),

λ5({F5, F7, F10}) = (0.4eι(0.3)2π , 0.3eι(0.2)2π , 0.7eι(0.3)2π),

λ6({F8, F9, F10}) = (0.4eι(0.3)2π , 0.4eι(0.1)2π , 0.7eι(0.3)2π).

It shows the researcher represented by λ1 has 0.6 accepted, 0.3 submitted, and 0.4 rejected articles
within some specific periods of time. The line graph of intersecting communities as given in Figure 8 is
shown in Figure 9. Here, the nodes represent the individuals and the communities are described by
the links of same color.

b b b

b b b

(λ1, 0.6eι(0.2)2π , 0.3eι(0.3)2π , 0.4eι(0.2)2π) (λ2, 0.4eι(0.3)2π , 0.5eι(0.1)2π , 0.4eι(0.2)2π) (λ3, 0.6eι(0.3)2π , 0.4eι(0.2)2π , 0.7eι(0.4)2π)

(λ4, 0.4eι(0.3)2π , 0.3eι(0.1)2π , 0.7eι(0.2)2π) (λ5, 0.4eι(0.3)2π , 0.3eι(0.2)2π , 0.7eι(0.3)2π) (λ6, 0.4eι(0.3)2π , 0.4eι(0.1)2π , 0.7eι(0.3)2π)
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(0.4eι(0.3)2π , 0.3eι(0.1)2π , 0.7eι(0.3)2π) (0.4eι(0.3)2π , 0.3eι(0.1)2π , 0.7eι(0.3)2π)

Figure 9. Line graph of intersecting research communities.

This line graph represents the relationships between researchers. The researchers that belong to
the community F3 are connected through pink edge, members of F1 are linked by red edge, members
of F10 are connected by purple links, cyan and blue edges are used to represent the relation between
the members of F5 and F8, respectively. The absence of F2, F4, F6, F7, and F9 in the above graph shows
that these communities share no common researchers as their members. The membership degrees
of each edge of this line graph represent the collective work of corresponding researchers. The score
functions and choice values of a CNG are given as,

Sjk =
1
2
[1 + tjk − 2ijk − f jk] +

1
4π

[2π + φjk − 2ϕjk − ψjk],

Cj = ∑
k

Sjk +
1
2
[1 + tj − 2ij − f j] +

1
4π

[2π + φj − 2ϕj − ψj],

respectively. The score functions and choice values of researchers represented by the line graph given
in Figure 9 are calculated in Table 5.
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Table 5. Score and choice values of complex neutrosophic line graph.

Sjk λ1 λ2 λ3 λ4 λ5 λ6 Cj

λ1 0 0.600 0.350 0 0 0 0.450
λ2 0.600 0 0 0.500 0 0.350 0.900
λ3 0.350 0 0 0 0 0 −0.350
λ4 0 0.500 0 0 0.450 0.450 0.900
λ5 0 0 0 0.450 0 0.450 0.200
λ6 0 0.350 0 0 0.450 0 −0.050

The choice values of Table 5 show that λ2 and λ4 are the most active and efficient participants
of these research communities. Also, the score values show that λ1 and λ2 are the members
with the strongest interactions between them and can share the most fruitful ideas relevant to
their corresponding research fields being the participants of intersecting research communities.
The procedure adopted in our application is described in Algorithm 1.

Algorithm 1: Selection of a systematic member from intersecting research communities

1. Input the set of vertices (research communities) F1, F2, · · · , Fj.
2. Input the CNS N of vertices such that N(Fk) = (tkeιφk , ikeιϕk , fkeιψk ), 1 ≤ k ≤ j,

0 ≤ tk + ik + fk ≤ 3.
3. Input the number of hyperedges (researchers) r of a CNHGH = (N , λ).
4. Input the membership degrees of the hyperedges E1, E2, · · · , Er.
5. Construct a complex neutrosophic line graph l(H) = (Nl , λl) whose vertices are the r

hyperedges E1, E2, · · · , En such that Nl(En) = λ(En).
6. If |supp(λj) ∩ supp(λk)| ≥ 1, then draw an edge between Ej and Ek and λl(EjEk) =

(min{tλ(Ej), tλ(Ek)}eι min{φλ(Ej),φλ(Ek)}, min{iλ(Ej), iλ(Ek)}eι min{ϕλ(Ej),ϕλ(Ek)}, max{ fλ(Ej),

fλ(Ek)}eι max{ψλ(Ej),ψλ(Ek)}).
7. Input the adjacency matrix I = [(tmn, imn, fmn)]r×r of vertices of complex neutrosophic line

graph l(H).
8. do m from 1→ r
9. Cm = 0
10. do n from 1→ r
11. Smn = 1

2 [1 + tmn − 2imn − fmn] +
1

4π [2π + φmn − 2ϕmn − ψmn]
12. Cm = Cm + Smn
13. end do
14. Cm = Cm + 1

2 [1 + tm − 2im − fm] +
1

4π [2π + φm − 2ϕm − ψm]
15. end do
16. The vertex with highest choice value in l(H) is the most effective researcher among all the

participants.

4.2. Influence of Modern Teaching Strategies on Educational Institutes

Teaching strategies are defined as the methods, techniques, and procedures that an educational
institute use to improve its performance. An educational institute can be judged according to its
inputs and outputs that are highly affected through the teaching techniques adopted by that institute.
Traditional teaching methods mainly depends on textbooks and emphasizes on basic skills while the
modern techniques are based on technical approach and emphasizes on creative ideas. Thus, modern
teaching is very important and most effective in this technological era. Presently, educational
institutes are modified through modern teaching strategies to enhance their outputs and these modern
techniques play a vital role for teachers to explain the concepts in more effective and radiant manner.
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Here, we consider a CNHG modelH = (N , λ) to study the influence of modern teaching methods on a
specific group of institutes in a time frame of 12 months. The vertices of a CNHG represent the different
teaching strategies and these techniques are grouped through an hyperedge if they are applied in the
same institute. Since more than one institute can adopt a same strategy so the intersecting communities
occur in this case. Each strategy is different form the other in terms of its positive, neutral, and negative
impacts on students. The truth, indeterminacy, and falsity degrees of each strategy represent the
positive, neutral, and negative effects of the corresponding technique on some institute during the time
period of 12 months. The indeterminate information about modern teaching strategies with periodic
nature is given in Table 6.

Table 6. Impacts of modern teaching strategies.

Teaching Strategy Positive Effects Neutral Behavior Negative Effects

Brain storming 0.8eι(10/12)2π 0.7eι(7/12)2π 0.1eι(1/12)2π

Micro technique 0.6eι(4/12)2π 0.6eι(3/12)2π 0.1eι(1/12)2π

Mind map 0.6eι(6/12)2π 0.3eι(5/12)2π 0.7eι(7/12)2π

Cooperative learning 0.8eι(10/12)2π 0.7eι(7/12)2π 0.1eι(1/12)2π

Dramatization 0.5eι(3/12)2π 0.3eι(3/12)2π 0.2eι(2/12)2π

Educational software 0.8eι(10/12)2π 0.3eι(3/12)2π 0.2eι(1/12)2π

Please note that the membership values (0.8eι(10/12)2π , 0.7eι(7/12)2π , 0.1eι(1/12)2π) of brainstorming
show that this teaching technique has positive influence with degree 0.8 and this effect spreads over
ten months, the indeterminacy value represents the neutral effect or indeterminate behavior with
degree 0.7 with time interval of seven months, and the falsity degree 0.1 illustrates some negative
effects of this strategy that spreads over one month. Similarly, the effects of all other strategies can be
seen form Table 6 along with their time periods. An hyperedge of a CNHG represent some institute in
which the corresponding techniques are applied. The model of CNHG grouping these strategies is
shown in Figure 10.

Here, each hyperedge represents an institute which groups the strategies adopted by that institute
and the membership degrees of each hyperedge represent the combined effects of teaching strategies
on corresponding institute. We now want to find a strategy or a collection of those techniques which
are easy to apply, less in cost, and have higher positive effects on the performance of educational
institutes. To find such methods, we calculate the minimal transversal of CNHG given in Figure 10
using Algorithm 2.

Algorithm 2: Find a minimal complex neutrosophic transversal

1. Input the CNSs λ1, λ2, · · · , λr of hyperedges.
2. Input the membership degrees of hyperedges.
3. do j from 1→ r

4. Sj = λ
h(λj)

j

5. S = S ∪ Sj

6. end do
7. Take τ as the CNSS with support S.
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Figure 10. Complex neutrosophic hypergraph model of modern teaching strategies.

By following Algorithm 2, we construct a minimal CNT ofH = (N , λ).
We have five hyperedges E1, E2, E3, E4, E5 of H. The heights of all complex neutrosophic

hyperedges are given as,

h(λ1) = (0.8eι(10/12)2π , 0.7eι(7/12)2π , 0.1eι(1/12)2π), λ
h(λ1)
1 = {Brain storming},

h(λ2) = (0.7eι(10/12)2π , 0.6eι(7/12)2π , 0.1eι(1/12)2π), λ
h(λ2)
2 = {Brain storming},

h(λ3) = (0.8eι(10/12)2π , 0.3eι(3/12)2π , 0.2eι(1/12)2π), λ
h(λ3)
3 = {Educational software},

h(λ4) = (0.8eι(10/12)2π , 0.7eι(7/12)2π , 0.1eι(1/12)2π), λ
h(λ4)
4 = {Cooperative learning},

h(λ5) = (0.8eι(10/12)2π , 0.7eι(7/12)2π , 0.1eι(1/12)2π), λ
h(λ5)
5 = {Brainstorming, Cooperative learn.}.

S = λ
h(λ1)
1 ∪ λ

h(λ2)
2 ∪ λ

h(λ3)
3 ∪ λ

h(λ4)
4 ∪ λ

h(λ5)
5

= {Brainstorming, Cooperative learning, Educational software}.

The CNS with support S is given as,

{(Brain storming, 0.8eι(10/12)2π , 0.7eι(7/12)2π , 0.1eι(1/12)2π), (Cooperative learning, 0.8eι(10/12)2π ,

0.7eι(7/12)2π , 0.1eι(1/12)2π), (Educational software, 0.8eι(10/12)2π , 0.3eι(3/12)2π , 0.2eι(1/12)2π)},

which is the minimal CNT of H = (N , λ) and it shows that brainstorming, cooperative learning,
and educational software are the most influential teaching strategies for the given period of time.
Thus, for some certain period of time, an influential and effective collection of modern teaching
techniques can be determined.
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5. Comparative Analysis

A CNS is characterized by truth, indeterminacy, and falsity degrees which are the combination
of real-valued amplitude terms and complex-valued phase terms. To prove the flexibility and
generalization of our proposed model CNHGs, we propose the modeling of social networks through
CNGs, CFHGs, and CIFHGs. Consider a part of the social network as described in Section 4.2.
Here, we consider only three modern techniques that are brainstorming, cooperative learning,
and educational software. A CFHG model of these techniques is given in Figure 11.
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Figure 11. Complex fuzzy hypergraph model of teaching techniques.

Please note that a CFHG model of intersecting techniques just illustrates the positive effects of
these methods during a specific time interval. We see that a CFHG model fails to describe the negative
effects of teaching strategies. To describe the positive as well as negative effects of these strategies,
we use a CIFHG model as shown in Figure 12.
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Figure 12. Complex intuitionistic fuzzy hypergraph model of teaching techniques.

This shows that a CIFHG model can well describe the positive and negative impacts of modern
techniques on educational institutes but it cannot handle the situations when there is no effect during
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some time interval or there is indeterminate behavior. To handle such type of situations, we use a
complex neutrosophic model as shown in Figure 13.
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(Educational software, 0.8eι(10/12)2π , 0.1eι(10/12)2π , 0.4eι(10/
12)2π)

λ
1

λ
2

Figure 13. Complex neutrosophic graph model of modern techniques.

Please note that a CNG model describe the truth, indeterminacy, and falsity degrees of impacts
of teaching methods for some specific interval of time and proves to be a more generalized model as
compared to CF and CIF models. Figure 13 shows that λ1 institute adopts the modern methods such
as educational software and cooperative learning. Now, if an institute wants to use more than two
strategies then this model fails to model the required situation. For example, λ1 wants to adopt the all
three modern teaching techniques. Then, we cannot model this social network using a simple graph.
To handle such type of difficulties, i.e., for the modeling of indeterminate information with periodic
nature existing in social hypernetworks, we have proposed CNHGs. The applicability and flexibility
of our proposed model can be seen from Table 7.

Table 7. Comparative analysis.

Hyperedge Containing
Models Edges Three Strategies Positive Effect Neutral Behavior Negative Effect

{Brain storming, 0.8eι(10/12)2π - -
CFHG model λ1 Cooperative learning, 0.8eι(10/12)2π - -

Educational software} 0.8eι(10/12)2π - -

{Brain storming, 0.8eι(10/12)2π - 0.3eι(10/12)2π

CIFHG model λ1 Cooperative learning, 0.8eι(10/12)2π - 0.5eι(10/12)2π

Educational software} 0.8eι(10/12)2π - 0.4eι(10/12)2π

Cannot
combine - 0.8eι(10/12)2π 0.2eι(10/12)2π 0.3eι(10/12)2π

CNG model more - 0.8eι(10/12)2π 0.3eι(10/12)2π 0.5eι(10/12)2π

than two - 0.8eι(10/12)2π 0.1eι(10/12)2π 0.4eι(10/12)2π

elements

{Brain storming, 0.8eι(10/12)2π 0.2eι(10/12)2π 0.3eι(10/12)2π

CNHG model λ1 Cooperative learning, 0.8eι(10/12)2π 0.3eι(10/12)2π 0.5eι(10/12)2π

Educational software} 0.8eι(10/12)2π 0.1eι(10/12)2π 0.4eι(10/12)2π

6. Discussions

It can be seen clearly from Table 7 that all existing models, including CNGs, CFHGs, and CIFHGs
lack some information to handle the periodic and indeterminate data in case of hypernetworks. Table 7
shows that a CFHG model can illustrate the combine effects of three different techniques through a
hyperedge. The truth degrees 0.8eι(10/12)2π of these techniques show that these methods provide very
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good influence which spread over ten months but this model fails to describe the negative effects of
some teaching technique happening periodically. A CIFHG model is then used to overcome such type
of deficiencies. The falsity degree 0.4eι(10/12)2π of “educational software” shows that this technique
has some negative effects that spread over ten months. The failure of CIFHG model appears when
neither positive nor negative effects or neutral effects of periodic nature are experienced because
some information does not have only truth and falsity degrees but also some indeterminacy degrees
which are independent of each other. For example, a 20o temperature in summer means a cool
day and in winter means a warm day but neither cool nor warm day in spring. This phenomenon
indicates that some real-life situations may have indeterminacy and periodicity along with uncertainty.
To handle such type of phenomena, a CNS model is more flexible and applicable. As we have seen
from Table 7 that a CNG illustrates the positive and negative as well as indeterminate effects of
under consideration teaching strategies applied to different institutes. The membership degrees
(0.8eι(10/12)2π , 0.2eι(10/12)2π , 0.3eι(10/12)2π) show that some particular technique has 0.8 positive effects,
0.2 neutral effects, and 0.3 negative effects on some institute and all these effects spread over ten
months. The main drawback of a CNG model is that a single edge can connect only two vertices,
i.e., if we consider the teaching techniques as vertices and these vertices (techniques) are connected
through an edge if they are adopted by a same institute. Then, a CNG model cannot illustrate the
situation when more than two techniques are applied to a single institute. In modeling of such type of
hypernetworks with indeterminacy of periodic nature, we propose a CNHG model. It can be seen
clearly from Table 7 that our proposed model is more generalized framework as it does not only
deal the reductant nature of imprecise information but also includes the benefits of hypergraphs.
Hence, a CNHG model combines the fruitful effects of CNSs and hypergraph theory.

7. Conclusions and Future Directions

A CNS extends the concept of SVNS from real unit interval [0, 1] to the complex plane and is used
to represent two-dimensional imprecise and indeterminate information. A CNS plays a vital role in
modeling the real-life applications where the truth, indeterminacy, and falsity degrees of given data
are periodic in nature. Thus, a CNS is more effective and generalized framework to deal the periodic
nature of indeterminacy where the CFS and CIFS fail. For example, a wave particle such as an electron
can be in two different positions at the same time and the CFS is not able to deal with this phenomenon.
A CIFS can only represent the information involving the information of the type: “yes” or “no"
occurring periodically. These models fail to deal the information that is neither true nor false or true
and false at the same time. A CNS model is more effectively used to deal such type of situations in our
daily life. In this paper, we have defined CNHGs which generalize the concepts of CFHGs and CIFHGs.
We have studied the level hypergraphs, lower truncation, upper truncation, and transition levels of
CNHGS. Furthermore, we have defined T-related CNHGs and discussed their certain properties.
We have illustrated the proposed ideas through some concrete examples. Moreover, we have presented
the modeling of certain social networks with intersecting communities using CNHGs. We have
determined a strong participant in overlapping research communities by defining the score and choice
values of CNGs. We have also determined the collection of most influential teaching strategies using
the minimal transversals of CNHGs. Finally, we have proved the novelty and applicability of this work
by giving a brief comparison of our proposed model with other existing models. We have seen that the
main drawback of CFHG models is that they cannot deal the falsity and indeterminate information
existing in a periodic manner. Similarly, a CIFHG fails to handle the situations when the indeterminate
and inconsistent information is happening repeatedly. The proposed analysis proved the dominance of
CNHG model to all other existing models by comparing the applicability of CFHGs, CIFHGs, CNGs,
and CNHGs using numeric examples as well as some theoretic results.

We aim to broaden our study to (1) Complex bipolar fuzzy hypergraphs, (2) Complex bipolar
neutrosophic hypergraphs, (3) Complex fuzzy soft hypergraphs and (4) Complex Pythagorean fuzzy
soft hypergraphs.

Florentin Smarandache (ed.) Collected Papers, VII

702



References

1. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
2. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy sets. Syst. 1986, 20, (1)87-96. (In Bulgarian) [CrossRef]
3. Liu, X.; Kim, H.; Feng, F.; Alcantud, J. Centroid transformations of intuitionistic fuzzy values based on

aggregation operators. Mathematics 2018, 6, 215. [CrossRef]
4. Feng, F.; Fujita, H.; Ali, M.I.; Yager, R.R.; Liu, X. Another view on generalized intuitionistic fuzzy soft sets

and related multiattribute decision making methods. IEEE Trans. Fuzzy Syst. 2018, 27, 474–488. [CrossRef]
5. Smarandache, F. Neutrosophy Neutrosophic Probability; Set and Logic; American Research Press: Rehoboth,

DE, USA, 1998.
6. Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Single valued neutrosophic sets.

Multispace Multistructure 2010, 4, 410–413.
7. Ye, J. Multicriteria decision-making method using the correlation coefficient under singlevalued neutrosophic

environment. Int. J. General Syst. 2013, 42, 386–394. [CrossRef]
8. Ye, J. Single-valued neutrosophic minimum spanning tree and its clustering method. J. Intell. Syst. 2014, 23,

311–324. [CrossRef]
9. Ye, J. A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets.

J. Intell. Fuzzy Syst. 2014, 26, 2459–2466.
10. Ramot, D.; Milo, R.; Friedman, M.; Kandel, A. Complex fuzzy sets. IEEE Trans. Fuzzy Syst. 2002, 10, 171–186.

[CrossRef]
11. Ramot, D.; Friedman, M.; Langholz, G.; Kandel, A. Complex fuzzy logic. IEEE Trans. Fuzzy Syst. 2003, 11,

450–461. [CrossRef]
12. Yazdanbakhsh, O.; Dick, S. A systematic review of complex fuzzy sets and logic. Fuzzy Sets. Syst. 2018, 338,

1–22. [CrossRef]
13. Alkouri, A.; Salleh, A. Complex intuitionistic fuzzy sets. AIP Conf. Proc. 2012, 14, 464–470.
14. Ali, M.; Smarandache, F. Complex neutrosophic set. Neural Comput. Appl. 2017, 28, 1817–1834. [CrossRef]
15. Rosenfeld, A. Fuzzy graphs. In Fuzzy Sets and Their Applications; Zadeh, L.A., Fu, K.S., Shimura, M., Eds.;

Academic Press: New York, NY, USA, 1975; pp. 77–95.
16. Bhattacharya, P. Some remarks on fuzzy graphs. Pattern Recognit. Lett. 1987, 6, 297–302. [CrossRef]
17. Thirunavukarasu, P.; Suresh, R.; Viswanathan, K.K. Energy of a complex fuzzy graph. Int. J. Math. Sci.

Eng. Appl. 2016, 10, 243–248.
18. Parvathi, R.; Karunambigai, M.G. Intuitionistic fuzzy graphs. In Computational Intelligence, Theory and

Applications; Reusch, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2006.
19. Yaqoob, N.; Gulistan, M.; Kadry, S.; Wahab, H. Complex intuitionistic fuzzy graphs with application in

cellular network provider companies. Mathematics 2019, 7, 35. [CrossRef]
20. Broumi, S.; Talea, M.; Bakali, A.; Smarandache, F. Single valued neutrosophic graphs. J. New Theory 2016, 10,

86–101.
21. Akram, M.; Shahzadi, G. Operations on single-valued neutrosophic graphs. J. Uncertain Syst. 2017, 11,

176–196.
22. Akram, M. Single-valued neutrosophic planar graphs. Int. J. Algebra Stat. 2016, 5, 157–167. [CrossRef]
23. Akram, M.; Shahzadi, S. Neutrosophic soft graphs with application. J. Intell. Fuzzy Syst. 2017, 32, 841–858.

[CrossRef]
24. Yaqoob, N.; Akram, M. Complex neutrosophic graphs. Bull. Comput. Appl. Math. 2018, 6, 85–109.
25. Berge, C. Graphs and Hypergraphs; North-Holland Publishing Company: Amsterdam, The Netherlands, 1973.
26. Kaufmann, A. Introduction a la Thiorie des Sous-Ensemble Flous, 1; Masson: Paris, France, 1977.
27. Lee-kwang, H.; Lee, K.-M. Fuzzy hypergraph and fuzzy partition. IEEE Trans. Syst. Man Cybern. 1995, 25,

196–201. [CrossRef]

Florentin Smarandache (ed.) Collected Papers, VII

703

http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/S0165-0114(86)80034-3
http://dx.doi.org/10.3390/math6110215
http://dx.doi.org/10.1109/TFUZZ.2018.2860967
http://dx.doi.org/10.1080/03081079.2012.761609
http://dx.doi.org/10.1515/jisys-2013-0075
http://dx.doi.org/10.1109/91.995119
http://dx.doi.org/10.1109/TFUZZ.2003.814832
http://dx.doi.org/10.1016/j.fss.2017.01.010
http://dx.doi.org/10.1007/s00521-015-2154-y
http://dx.doi.org/10.1016/0167-8655(87)90012-2
http://dx.doi.org/10.3390/math7010035
http://dx.doi.org/10.20454/ijas.2016.1207
http://dx.doi.org/10.3233/JIFS-16090
http://dx.doi.org/10.1109/21.362951


28. Mordeson, J.N.; Nair, P.S. Fuzzy Graphs and Fuzzy Hypergraphs, 2nd ed.; Physica Verlag: Heidelberg,
Germany, 1998.

29. Goetschel, R.H.; Craine, W.L.; Voxman, W. Fuzzy transversals of fuzzy hypergraphs. Fuzzy Sets Syst. 1996,
84, 235–254. [CrossRef]

30. Parvathi, R.; Thilagavathi, S.; Karunambigai, M.G. Intuitionistic fuzzy hypergraphs. Cybern. Inf. Technol.
2009, 9, 46–53.

31. Akram, M.; Dudek, W.A. Intuitionistic fuzzy hypergraphs with applications. Inf. Sci. 2013, 218, 182–193.
[CrossRef]

32. Parvathi, R.; Akram, M.; Thilagavathi, S. Intuitionistic fuzzy shortest hyperpath in a network.
Inf. Process. Lett. 2013, 113, 599–603.

33. Akram, M.; Shahzadi, S.; Saeid, A.B. Single-valued neutrosophic hypergraphs. TWMS J. App. Eng. Math.
2018, 8, 122–135. [CrossRef]

34. Akram, M.; Luqman, A. Intuitionistic single-valued neutrosophic hypergraphs. Opsearch 2017, 54, 799–815.
[CrossRef]

35. Akram, M.; Luqman, A. Bipolar neutrosophic hypergraphs with applications. J. Intell. Fuzzy Syst. 2017, 33,
1699–1713. [CrossRef]

36. Akram, M.; Sarwar, M. Transversals of m-polar fuzzy hypergraphs with applications. J. Intell. Fuzzy Syst.
2017, 33, 351–364. [CrossRef]

37. Akram, M.; Luqman, A. Certain concepts of bipolar fuzzy directed hypergraphs. Mathematics 2017, 5, 17.
[CrossRef]

38. Chen, S.M. Interval-valued fuzzy hypergraph and fuzzy partition. IEEE Trans. Syst. Man Cybern. 1997, 27,
725–733. [CrossRef] [PubMed]

39. Luqman, A.; Akram, M.; Koam, A.N. An m-polar fuzzy hypergraph model of granular computing. Symmetry
2019, 11, 483. [CrossRef]

40. Luqman, A.; Akram, M.; Koam, A.N. Granulation of hypernetwork models under the q-rung picture fuzzy
environment. Mathematics 2019, 7, 496. [CrossRef]

Florentin Smarandache (ed.) Collected Papers, VII

704

http://dx.doi.org/10.1016/0165-0114(95)00327-4
http://dx.doi.org/10.1016/j.ins.2012.06.024
http://dx.doi.org/10.26837/jaem.377615
http://dx.doi.org/10.1007/s12597-017-0306-9
http://dx.doi.org/10.3233/JIFS-17228
http://dx.doi.org/10.3233/JIFS-161668
http://dx.doi.org/10.3390/math5010017
http://dx.doi.org/10.1109/3477.604121
http://www.ncbi.nlm.nih.gov/pubmed/18255914
http://dx.doi.org/10.3390/sym11040483
http://dx.doi.org/10.3390/math7060496
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.


ABSTRACT In recent years, ‘‘mathematical orientations on real-life problems’’, which continue to increase,
began to make a significant impact. Information systems for many decision-making problems consist of
uncertain, incomplete, indeterminate and indiscernible structures and components. Classical set theory and
interpretation methods fail to represent, express and solve the problems of these types or cause to make
wrong decisions. For this reason, in this study, we provide definitions and methods to present information
and problem representations in more detail and precision. This paper introduces three new topologies
called covering-based rough fuzzy, covering-based rough intuitionistic fuzzy and covering-based rough
neutrosophic nano topology. Some fundamental definitions such as open set, closed set, interior, closure
and basis are given. Neutrosophic definitions and properties are mainly investigated. We give some real
life applications of covering-based rough neutrosophic nano topology in the final part of the paper and an
explanatory example of decision making application by defining core point.

INDEX TERMS Approximation space, core point, covering-based topology, fuzzy nano topology, fuzzy
sets, intuitionistic nano topology, intuitionistic sets, neutrosophic nano topology, neutrosophic sets, rough
decision making, location selection problem.

I. INTRODUCTION
The world of science has been working on and producing
uncertain, incomplete, indeterminate, and indiscernible struc-
tures since crisp structures are understood to be unable to
solve most real-life problems. In the last decade, uncertain
representations, which have found enormous applications in
engineering, medicine, computers, space research and even
social sciences, make them feel that they will take more space
in the future. In this sense, wewould like to contribute to these
recent developments with a study that includes both topol-
ogy, generalized fuzzy and decision making. In this section,
we will introduce the main uncertain information systems
from the past to the present and explain why they need to
work immediately after we talk about their applications.

Rough set theory is a way of representing and reasoning
imprecision and uncertain information in data [1]. It deals
with the approximation of sets constructed from descrip-
tive data elements. This is helpful while aiming to explore
decision rules, important features, and minimization of con-
ditional attributes. While an information set represents the
probabilistic uncertainty due to vagueness, rough set theory
is widely used to represent imprecision due to incomplete
knowledge.

Traditional rough approaches are based on equivalence
relations, but this condition is not fulfilled in some cases.
So, the approximations have been broaden to the similarity
relation based rough sets [2], [3], the tolerance relation based
rough sets [4], the dominance relation based rough sets [5],
the arbitrary binary relation based rough sets [6], [7], [9].
An attractive and inherent research aim in rough set theory
is to study rough set theory by means of topology. In fact,
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Polkowski [10] made a sign that topological aspects of rough
set theory were recognized early within the scope of topol-
ogy of partitions. In 1988, Skowron [11] and Wiweger [12]
discussed this issue separately for the traditional rough set
theory. Topological spaces obtained by rough sets bottomed
on information were systems putted up and characterized by
Polkowski [13]. Kortelainen [14] paid regard to relationships
among topological spaces, modified sets, and rough sets
based on a pre-order. Skowron et al. [4], [15] generalized the
classical approximation spaces to tolerance approximation
spaces, and discussed the problems of attribute reduction in
these spaces [16]. Lashin et al. [17] introduced the topology
generated by a sub-base, and defined a topological rough
membership function by the sub-base of the topology. In addi-
tion, connections between fuzzy rough set theory and fuzzy
topology were also investigated [18]–[20]. General topol-
ogy is accepted as an introduction to the understanding of
topology, and the basis of general topology is the topological
space, which is generally regarded as a representation of
the universal space, and in particular the geometric shape in
the concepts of mathematical analysis. The general topology
has become the appropriate framework for each collection
associated with relationships. Topology is also a strong math-
ematical instrument to examine into information systems,
rough sets and so on [11], [17].

Recently, some of the works featured in the scope of
this article and stand out are as follows. Zhan and his col-
laborations have studied on multi-criteria decision making
problems of covering-based general multi-granulation intu-
itionistic fuzzy rough sets, covering based variable precision
(I,T)-fuzzy rough sets, covering-based intuitionistic fuzzy
rough sets, novel fuzzy rough set models [22]–[28]. Zhang,
Yang and their collaborations have studied decision making
problems of generalized interval neutrosophic rough sets,
covering-based generalized IF rough sets, a hybrid model
of single valued neutrosophic sets and rough sets, hesitant
fuzzy linguistic rough set, and Merger and acquisition target
selection based on interval neutrosophic multi-granulation
rough sets [29]–[33].

This paper introduces some new topologies having
properties of nano and covering. Furthermore, we give a
decision making example of bus stations location on neu-
trosophic environment by using core points of the defined
topologies.

Our main motivations in this study are that:
(i) We have shown that not only the classical approach

spaces, but also the different mathematical structures
of these spaces provide opportunities for decision-
making.

(ii) The applications of approximation spaces and rough
sets on decision making are generally interpreted in the field
of medicine. In this work, we give an example of decision
making on location selection. On the one hand, with the
proposed new definitions, we presented wider versions of the
approach space topologies and gave an example that can be
applied to real life problems.

The proposed method has two important advantages.
(i) Firstly, since the method can be applied to neutro-

sophic data, more detailed evaluations can be made on the
information.

(ii) Another important advantage is the complexity of the
algorithm and the process step is not too much by disabling
the process can only have ideas with the core point.

As the definitions in the paper are new, it is very difficult
to compare with other publications and studies. In particular,
the core definition in our study differs from the core definition
in the classical sense for rough sets and approximation spaces.
To compare the method with some existing methods, Lellis
Thivagar and his collaborations [34]–[36], which provides
intensive studies especially in the fields of Nano Topology
and its applications, has given the definition of Nano topology
within the framework of neutrosopy, but with this structure,
they pointed out that one could find applications in areas such
as Geographical Information Systems (GIS) field including
remote sensing, object reconstruction from airborne laser
scanner, real time tracking, routing applications andmodeling
cognitive agents [37]. They did not give a specific applica-
tion example. Moreover, the definition of core used in many
methods is different from the definition of core used in our
study. On the other hand, while a decision-making process is
generally in the form of algorithms consisting of five or six
steps, our method can only make a definition with the core
definition.

II. PRELIMINARIES
Fuzzy set notion was putted forward by Zadeh in 1965 [21].
Fuzzy sets and fuzzy logic have been performed in numerous
real life applications to manage vagueness until today. On a
universe K , a fuzzy set A defined, uses a value µA(u) ∈
[0, 1] to give the membership grade of A. Intuitionistic fuzzy
set concept was introduced by Atanassov [38] in 1986. The
concept is a generalization of fuzzy sets and provably equiv-
alent to interval valued fuzzy sets. The concept takes both
truth-membership TA(x) and falsity-membership FA(x), with
TA(x),FA(x) ∈ [0, 1] and 0 ≤ TA(x) + FA(x) ≤ 1
into consideration. In [39], Smarandache introduced neu-
trosophy in 1995. Indeterminacy is quantified explicitly and
truth-membership, indeterminacy membership and falsity-
membership are independent In neutrosophic set. A neutro-
sophic set A defined on universe K . x = x(T , I ,F) ∈ A with
T , I and F being the real standard or non-standard subsets of
]−0, 1+[. T is the degree of truth-membership function in the
set A, I is the indeterminacy-membership function in the set A
and F is the falsity-membership function in the set A. In [1],
Pawlak introduced the rough set theory in 1982. Rough set
theory addresses vagueness and uncertainty in data analysis
and information systems. It gives some ways to obtain the
deciding factors from data.

Let K be a non-empty set and R be an equivalence relation
on K , and (K ,R) be an approximation space, and let X ⊆ K ,

1) in A, the lower approximation of X is the set

X = {x ∈ K : [x]R ⊂ X}.
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2) In A, the upper approximation of X is the set

X = {x ∈ K : [x]R ∧ X 6= φ}.

3) In A, the boundary region of X is the set

BN (X ) = X − X .

If (K ,R) is an approximation space with X ,Y ⊆ K , then

1) X and Y are roughly bottom-equal in A, written (X∼Y ),
⇐⇒ X = Y .

2) X and Y are roughly top-equal in A, written (X ' Y ),
⇐⇒ X = Y .

3) X and Y are roughly equal in A, written X ≈ Y , ⇐⇒
X = Y and X = Y .

≈ is an equivalence relation on the power set of K . The
family of all equivalence classes of the rough relation ≈ is
denoted by

R≈ = {[X ] : X ⊆ K },

where [X ] is a rough set, its elements are subsets of K having
the same lower approximation and the same upper approxi-
mation. For each rough set X ⊆ K , we write X = (X ,X ).
Note that φ = (φ, φ) and K = (K ,K ). So φ and K are rough
sets. If X ,Y ∈ R≈, then Y ⊆≈ X ⇐⇒ Y ⊆ X and Y ⊆ X ,
and Y will be called a rough subset of X . The family of all
rough subsets of X in (K ,R) is called rough power set of X .

If (K ,R) is an approximation space and X ,Y are rough
subsets of K , then the rough union, rough intersection and
rough complement are defined as follows:

1) X ∨ Y = (X ∨ Y ,X ∨ Y ).
2) X ∧ Y = (X ∧ Y ,X ∧ Y ).
3) X c = (K \ X ,K \ X ) = K − X .

In [40], Bryniarski defined the notion of covering-based
rough sets, which is an extension of the classical Pawlak’s
rough set. If C is a family of non-empty subsets of a non-
empty set K such that ∪C = K , then C is called a covering
of K . Bryniarski defined the lower and upper approximations
and the boundary region in a similar way as Pawlak.

By a covering approximation space (K ,C), we mean that
K is a non-empty set and C is a covering of K satisfying
the following approximation condition: ∀A,B ⊂ C such that
A ⊂ B, ∃X ⊂ K with A = X , B = X . If X ⊂ K , then
the ordered pair (X ,X ) is the covering-based rough set of X .
The definition of the covering rough subsets in any covering
approximation space (K ,C) is similar to definition of rough
subsets in any approximation space (K ,R), [41].
Definition 1 [41]: Let (K ,C) be a covering approxima-

tion space and τ be a subfamily of the family of all covering
rough subsets of X = (X ,X ,BN (X )) having the following
properties:

1) X ,∅ ∈ τ .
2) Infinite union of the elements of τ is in τ .
3) Finite intersection of elements of τ is in τ .

Then τ is called a covering-based nano topology on X .

III. COVERING-BASED ROUGH FUZZY NANO TOPOLOGY
Definition 2 [21]:LetA be a non-empty set. A fuzzy setX

is of the form X = {< a : µX (a) >, a ∈ A}, where
0 ≤ µX (a) ≤ 1 is the degree of membership of each a ∈ A to
the set X .
Definition 3 [37]: Let R be an equivalence relation on

a non-empty set X . Let F be a fuzzy set in X with the
membership function µF . Then the fuzzy nano lower, fuzzy
nano upper approximation of F and fuzzy nano boundary ofF
in the approximation (X ,R) denoted by F (F), F (F) and
BF (F) are respectively defined as follows:

1) F (F) = {< x, µR(A)(x) > /y ∈ [x]R, x ∈ X}
2) F (F) = {< x, µR(A)(x) > /y ∈ [x]R, x ∈ X}
3) BF (F) = F (F)−F (F)
where µR(A)(x) = ∧y∈[x]R (y) and µR(A)(x) = ∨y∈[x]R (y).
Definition 4 [37]: Let R be an equivalence relation on a

non-empty set X and F be a fuzzy set in X . Suppose that the
collection τF (F) = {0F , 1F ,F (F),F (F),BF(F)} forms a
topology. Then it is said to be a fuzzy nano topology. We call
(X , τF (F)) the fuzzy nano topological space. The elements
of τF (F) are called fuzzy nano open sets.
Definition 5: Let (K ,C) be a covering approximation

space where K is a non-empty set and let X be a subset of K .
Let A be a fuzzy set in K with the membership function µA.
Then the covering-based rough fuzzy nano lower, covering-
based rough fuzzy nano upper approximation of A and
covering rough based fuzzy nano boundary of A in the
approximation (K ,C) denoted by FCX (A), FCX (A) and
FBN (X )(A) are respectively defined as follows:

1) FCX (A) = {< k, µCX (A))(k) > /y ∈ [k]CX , k ∈ K }
2) FCX (A) = {< k, µCX (A))(k) > /y ∈ [k]CX , k ∈ K }
3) FBN (X )(A) = {< k, µBN (X )(A)(k) > /y ∈

[k]BN (X ), k ∈ K }
where µCX (A) (k) = ∧y∈[k]CX (y), µCX (A)(k) = ∨y∈[k]CX

(y) and

µBN (X )(A)(k) = ∨y∈[k]BN (X ) (y). Addition to this, CX is the
lower approximation of X with respect to C , CX is the upper
approximation of X with respect to C and CBN (X ) = CX \CX .

If τF (C,X ,A) = {0F , 1F ,FCX (A), FCX (A),
FBN (X )(A)} forms topology, τF (C,X ,A) is called covering-
based rough fuzzy nano topology. The elements of
τF (C,X ,A) are called covering-based rough fuzzy nano
open sets.
Example 6: τF (C,X ,A) defines a topology for given

a universe K = {P1,P2,P3}, a covering set C =

{{P1,P2}, {P2,P3}}, a subset X = {P1,P3}, and a fuzzy set
A = {< P1, 0 >,< P2, 1 >,< P3, 0.3 >}. Then,

CX = ∅

CX = {{P1,P2}, {P2,P3}}

CBN (X ) = FCX (A)

FCX (A) = ∅ = 0F ,

FCX (A) = {< P1, 1 >,< P2, 1 >,< P3, 1 >},

FBN (X )(A) = FCX (A)

Finally, τF (C,X ,A) defines a topology.
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If B = {< x, µB(x) >: x ∈ K } is a fuzzy set, its comple-
ment is Bc = {< x, 1− µB(x) >: x ∈ K }. [τF (C,X ,A)]c is
a set containing Bc ?for every B ∈ τF (C,X ,A).

IV. COVERING-BASED ROUGH INTUITIONISTIC
FUZZY TOPOLOGY
Definition 7 [38]: An intuitionstic set X in a non-empty

set A is of the form X = {< a : µX (a), νX (a) >, a ∈ A},
where µX (a) and νX (a) represent the degree of membership
function and the degree of non-membership respectively of
each a ∈ A to the set X and 0 ≤ µX (a) + νX (a) ≤ 1 for
all a ∈ A.
Definition 8 [37]: Let R be an equivalence relation on

a non-empty set X . Let F be an intuitionistic set in X with
the membership function µF and the non-membership func-
tion νF . The intuitionistic nano lower, intuitionistic nano
upper approximation and intuitionistic nano boundary of F
in the approximation (X ,R) denoted by I (F), I (F) and BI (F),
respectively, are defined as follows:

1) I (F) = {< x, µR(A)(x), νR(A)(x) > /y ∈ [x]R, x ∈ X}
2) I (F) = {< x, µR(A)(x), νR(A)(x) > /y ∈ [x]R, x ∈ X}
3) BI (F) = I (F)− I (F).
Definition 9: Let (K ,C) be a covering approximation

space in a non-empty set K . Assume that X is a subset of K .
Let A be an intuitionistic fuzzy set in K with the membership
function µA and the non-membership function ν. Then the
covering based rough intuitionistic fuzzy nano lower, cov-
ering based rough intuitionistic fuzzy nano upper approxi-
mation of A and covering based rough intuitionistic fuzzy
nano boundary of A in the approximation (K ,C) denoted by
I FCX (A), I FCX (A) and I FBN (X )(A), respectively, are
defined as follows:

1) I FCX (A) = {< k, (µCX (A))(k), νCX (A))(k)) > /y ∈
[k]CX , k ∈ K }

2) I FCX (A) = {< k, (µCX (A))(k), νCX (A))(k)) > /y ∈
[k]CX , k ∈ K }

3) I FBN (X )(A) = {< k, (µBN (X )(A)(k), νBN (X )(A)(k)) >
/y ∈ [k]BN (X ), k ∈ K }

where µCX (A) (k) = ∧y∈[k]CX (y), µCX (A)(k) = ∨y∈[k]CX
(y) and

µBN (X )(A)(k) = ∨y∈[k]BN (X ) (y).
νCX (A) (k) = ∨y∈[k]CX (y), νCX (A) (k) = ∧y∈[k]CX

(y) and
νBN (X )(A)(k) = ∧y∈[k]BN (X ) (y).
Addition to this, CX is the lower approximation of X with

respect toC ,CX is the upper approximation of X with respect
to C and CBN (X ) = CX \ CX .

If τI F (C,X ,A) = {0F , 1F ,I FCX (A), I FCX (A),
I FBN (X )(A)} forms topology, τI F (C,X ,A) is called cov-
ering based rough intuitionistic fuzzy nano topology. The
elements of τI F (C,X ,A) are called covering based rough
intuitionistic fuzzy nano open sets.

V. COVERING BASED ROUGH NEUTROSOPHIC NANO
TOPOLOGY
Definition 10 [43]: Let A be a non-empty set. A neutro-

sophic set N is defined as:

N = {(a,T (a), I (a),F(a)) : a ∈ A}

where TN : A 7−→]−0, 1+[ is a truth-membership func-
tion, IN : A 7−→]−0, 1+[ is an indeterminacy-membership
function and FN : A 7−→]−0, 1+[ is a falsity-membership
function.
Definition 11 [43]: Let A be a non-empty set. A single

valued neutrosophic set N is defined as:

N = {(a,T (a), I (a),F(a)) : a ∈ A}

where TN : A 7−→ [0, 1], is a truth-membership function,
IN : A 7−→ [0, 1] is an indeterminacy-membership function
and FN : A 7−→ [0, 1] is a falsity-membership function with
0 ≤ TN (a) + IN (a) + FN (a) ≤ 3. We denote a single valued
neutrosophic number by x = (T , I ,F).
Definition 12 [42]: Let X be a non-empty set. Let A =
{< x : TA(x), IA(x),FA(x) >, x ∈ X} and B = {< x :
TB(x), IB(x),FB(x) >, x ∈ X} be neutrosophic sets. Then the
following statements hold:

1) 0N = {< x, 0, 0, 1 >: x ∈ X} and 1N = {<
x, 1, 0, 0 >: x ∈ X}.

2) A ⊆ B iff TA(x) ≤ TB(x), IA(x) ≤ IB(x), FB(x) ≤ FA(x)
for all x ∈ X .

3) A = B iff A ⊆ B and B ⊆ A.
4) AC = {< x,FA(x), 1− IA(x),TA(x) >: x ∈ X}.
5) A ∩ B = {x,TA(x) ∧ TB(x), IA(x) ∧ IB(x),FA(x) ∨

FB(x) for all x ∈ X}.
6) A ∪ B = {x,TA(x) ∨ TB(x), IA(x) ∨ IB(x),FA(x) ∧

FB(x) for all x ∈ X}.

Definition 13 [44]: Let R be an equivalence relation on
a non-empty set X . Let A be a neutrosophic set in X such
that µA is the membership function, υA is the indeterminacy
function and ωA is the non-membership function. Then in
the approximation (X ,R), the lower and the upper approx-
imations of A denoted by N (A) and N (A), respectively, are
defined as follows:

N (A) = {< x, µN (A), υN (A), ωN (A) > : y ∈ [x]R, x ∈ X}

N (A) = {< x, µN (A), υN (A), ωN (A) > : y ∈ [x]R, x ∈ X}

µN (A)(x) =
∧
y∈[x]R

µA(y), υN (A)(x) =
∧
y∈[x]R

υA(y),

ωN (A)(x) =
∨
y∈[x]R

ωA(y)

and

µN (A)(x) =
∨
y∈[x]R

µA(y), υN (A)(x) =
∨
y∈[x]R

µA(y),

ωN (A)(x) =
∧
y∈[x]R

µA(y),

Thus, 0 ≤ µN (A) + υN (A) + ωN (A) ≤ 3 and 0 ≤
µN (A) + υN (A) + ωN (A) ≤ 3 where

∨
means max operator

and
∧

means min operator. µA(y), υA(y) and ωA(y) are the
membership, indeterminacy and non-membership of y with
respect to A. It is fairly easy to show that N (A) and N (A) are
two neutrosophic sets in X .
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Definition 14 [37]: Let R be an equivalence relation on
a non-empty set X . Let A be a neutrosophic set in X and
if the collection τN (A) = {0N , 1N ,N ,N } forms a topology
then it is said to be a rough neutrosophic topology. We call
(X , τN (A)) rough neutrosophic topological space. The ele-
ments of (X , τN (A)) are called rough neutrosophic topological
open sets.
Example 15: Let X = {P1,P2,P3,P4}, X/R = {{P1,P2},
{P3,P4}}, and

A = {< P1, (0.8, 0.7, 0.4) >,< P2, (0.2, 0.3, 0.4) >,

< P3, (0.1, 0.6, 0.2) >,< P4, (0, 0.4, 0.9) >}.

Then

N (A) = {< P1, (0.2, 0.3, 0.4) >,

< P2, (0.2, 0.3, 0.4) >,

< P3, (0, 0.4, 0.9) >,

< P4, (0, 0.4, 0.9) >}

N (A) = {< P1, (0.8, 0.7, 0.4) >,

< P2, (0.8, 0.7, 0.4) >,

< P3, (0.1, 0.6, 0.2) >,

< P4, (0.1, 0.6, 0.2) >}

N (A) ∩ N (A) = {< P1, (0.2, 0.3, 0.4) >,

< P2, (0.2, 0.3, 0.6) >,

< P3, (0, 0.4, 0.9) >,

< P4, (0, 0.4, 0.9) >} = N (A)

N (A) ∪ N (A) = {< P1, (0.8, 0.7, 0.4) >,

< P2, (0.8, 0.7, 0.4) >,

< P3, (0.1, 0.6, 0.2) >,

< P4, (0.1, 0.6, 0.2) >} = N (A)

0N ∩ N (A) = 0N , 0N ∩ N (A) = 0N ,

0N ∪ N (A) = N (A), 0N ∪ N (A) = N (A)

1N ∩ N (A) = N (A), 1N ∩ N (A) = N (A),

1N ∪ N (A) = 1N , 1N ∪ N (A) = 1N
0N ∩ 1N = 0N , 0N ∪ 1N = 1N

Therefore, (X , τN (A)) = {0N , 1N ,N (A),N (A)} forms
topology.
Definition 16: [44] Let R be an equivalence relation on

a non-empty set X . Let A be a neutrosophic set in X such
that µA is the membership function, υA is the indeterminacy
function and ωA is the non-membership function. Then in the
approximation (X ,R), the lower, the upper and the boundary
approximations of A denoted by N (A), N (A) and BN (A),
respectively, are defined as follows:

N (A) = {< x, µN (A), υN (A), ωN (A) > : y ∈ [x]R, x ∈ X}

N (A) = {< x, µN (A), υN (A), ωN (A) > : y ∈ [x]R, x ∈ X}

BN (A) = N (A)− N (A)

where;

µN (A)(x) =
∧
y∈[x]R

µA(y), υN (A)(x) =
∨
y∈[x]R

µA(y),

ωN (A)(x) =
∨
y∈[x]R

µA(y)

and

µN (A)(x) =
∨
y∈[x]R

µA(y), υN (A)(x) =
∧
y∈[x]R

µA(y),

ωN (A)(x) =
∧
y∈[x]R

µA(y),

Thus, 0 ≤ µN (A) + υN (A) + ωN (A) ≤ 3 and 0 ≤
µN (A) + υN (A) + ωN (A) ≤ 3 where

∨
means max operator

and
∧

means min operator. µA(y), υA(y) and ωA(y) are the
membership, indeterminacy and non-membership of y with
respect to A. It is not difficult to see that N (A), N (A) and
BN (A) are three neutrosophic sets in X .
Definition 17: Let K be a non-empty set, (K ,C) be a

covering approximation space and X be a subset of K . Let A
be a neutrosophic set in K such that µA is the membership
function, υA is the indeterminacy function and ωA is the
non-membership function. Then the covering based rough
neutrosophic nano lower, covering based rough neutrosophic
nano upper approximation of A and covering based rough
neutrosophic nano boundary ofA in the approximation (K ,C)
denoted by N CX (A), N CX (A) and NBN (X )(A), respectively,
are defined as follows:

N CX (A) = {< k, (µCX (A))(k), νCX (A))(k), ωCX (A))(k))

> /y ∈ [k]CX , k ∈ K }

N CX (A) = {< k, (µCX (A) (k), νCX (A) (k), ωCX (A)(k))

> /y ∈ [k]CX , k ∈ K }

NBN (X )(A) = {< k, (µBN (X )(A)(k), νBN (X )(A)(k),

ωBN (X )(A)(k)) > /y ∈ [k]BN (X ), k ∈ K }

where

µCX (A) (k)=∧y∈[k]CX (A)µ(y), νCX (A) (k)=∧y∈[k]CX (A)ν(y),

ωCX (A) (k)=∨y∈[k]CX ω(y), µCX (A) (k)=∨y∈[k]CX (A)µ(y),

νCX (A) (k)=∨y∈[k]CX (A)ν(y), ωCX (A) (k) = ∧y∈[k]CX
ω(y),

µBN (X )(A)(k) = ∨y∈[k]BN (X )µ(y),

νBN (X )(A)(k) = ∨y∈[k]BN (X )ν(y),

and ωBN (X )(A)(k) = ∧y∈[k]BN (X )ω(y). Addition to this,
CX is the lower approximation of X with respect to C ,
CX is the upper approximation of X with respect to C and
CBN (X ) = CX \ CX .

If τN (C,X ,A) = {0N , 1N ,N CX (A), N CX (A),NBN (X )
(A)} forms topology, τN (C,X ,A) is called covering based
rough neutrosophic nano topology.
Example 18: τN (C,X ,A) defines a topology for a given

universe K = {P1,P2,P3}, a covering set C = {{P1,P2},
{P2,P3}}, a subset X = {P1,P3}, and a neutrosophic
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set A = {< P1, (0, 0.2, 1) >,< P2, (1, 0, 0.6) >,

< P3, (0.3, 0.4, 0, 5) >}. Then, CX = ∅, CX =

{{P1,P2}, {P2,P3}}, CBN (X ) = CX , N CX (A) = ∅ = 0N ,
N CX (A) = {< P1, (1, 0.2, 0.6) >,< P2, (1, 0.2, 0.6) >,

< P2, (1, 0.4, 0.6) >,< P3, (1, 0.4, 0.6) >}, and
NBN (X )(A) = N CX (A).
Finally, it is not difficult to check that τN (C,X ,A)

defines a topology. The complement of τN (C,X ,A) is
[τN (C,X ,A)]c = {0N , 1N , {< P1, (0.6, 0.8, 1) >,< P2,
(0.6, 0.8, 1) >,< P2, (0.6, 0.6, 1) >,< P3, (0.6, 0.
6, 1) >}}.
Definition 19: Let τN (C,X ,A) be covering based rough

neutrosophic nano topology. The elements of τN (C,X ,A)
are called covering based rough neutrosophic nano open
sets.
Definition 20: Let τN (C,X ,A) be covering based rough

neutrosophic topology. The elements of [τN (C,X ,A)]c are
called covering based rough neutrosophic nano closed sets.
Definition 21: If τN (C,X ,A) is a covering based rough

neutrosophic nano topological space on an universe K and
B be any neutrosophic subset of K . Then the covering based
rough neutrosophic nano interior of B is defined as the union
of all covering based rough neutrosophic nano open subsets
of B and it is denoted by Nint (B). Nint (B) is the largest
covering based rough neutrosophic nano open subset of B.
Example 22: Consider the covering based rough neutro-

sophic nano topology τN (C,X ,A) in Example 4.9. Let
B = {< P2, (0.6, 0.8, 1) >,< P2, (0.6, 0.6, 1) >,< P3,
(0.6, 0.6, 1) >}. Then Nint (B) = {< P1, (0.6, 0.8, 1) >,
< P2, (0.6, 0.8, 1) >,< P2, (0.6, 0.6, 1) >,< P3, (0.6,
0.6, 1) >}}. If B = {< P2, (0.6, 0.8, 0) >,<

P2, (0.3, 0.6, 1) >,< P3, (0.6, 0.5, 1) >}, then Nint (B) = ∅.
Definition 23: If τN (C,X ,A) is a covering based rough

neutrosophic nano topological space on an universe K and B
be any neutrosophic subset of K . The covering based rough
neutrosophic nano closure of B is defined as the intersection
of all covering based rough neutrosophic nano closed sets
containing B and it is denoted by Ncl(B). Ncl(B) is the
smallest covering based rough neutrosophic nano closed set
containing B.
Definition 24: Let τN (C,X ,A) be a covering based rough

neutrosophic nano topological space on an universe K and B
be a collection of subsets of τN (C,X ,A). If the collection
of all unions members of of B is a covering based rough
neutrosophic nano topological space on K , then it is called
a base for τN (C,X ,A).
Definition 25: [45]: Let (K ,C) be a covering based

approximation space. For any x ∈ K , the neighbourhood of x
is defined by Neighbor(x) = {M ∈ C | x ∈ M}.
By Definition 4.16, we give the following definition of the

neighbourhood in our topology.
Definition 26: Let τN (C,X ,A) be a covering based rough

neutrosophic nano topological space on a universe K ,
we define the neighbourhood of x as follows:

Neighbor(x) =
⋂
{K ∈ τN (C,X ,A) | x ∈ K }.

Definition 27: Let τN (C,X ,A) be a covering based rough
neutrosophic nano topological space on a universe K . If x is
in each covering based rough neutrosophic nano set, then x is
called a core point.

VI. APPLICATIONS
Thivagar and his associates showed that rough set, approx-
imation space and especially nano topology has many real
life applications in medical diagnosis, digital image segmen-
tation, pattern recognition, nutrition modelling and recruit-
ment process [34]–[36]. Generally, the symptoms of the
patients or the opinions of the experts about certain attributes
are evaluated on a table. In most of these studies, the core
and the basis of the topologies of the approximation spaces
formed by the lower and upper approximations, and bound-
aries are the determinants of the decision making with the
data obtained from this table on a discourse. However,
in some problemswithmore complex input and output, fuzzy,
intuitionistic fuzzy or triple (neutrosophic) input or output are
the features that are revealed. Especially in the field of pattern
recognition, high-order spectra are used for the analysis and
processing of triple inputs and outputs. When analysing these
patterns, these triple inputs or outputs should be processed
as data directly on their own property rather than being used
as an attribute. In addition to pattern recognition, the use of
higher order spectrum finds wide application in many areas
such as diabetes diagnosis, heart rate, biomedical signals,
radar HRRP target recognition [46]–[50]. More generally,
rough neutrosophic nano topology can be used for analyz-
ing and decision-making process on discourses with ternary
data. Moreover, on the discourse of the data, covering based
rough neutrosophic nano topology can be used to classify the
discourse’s parts in order to maintain the integrity of the dis-
course. When using covering based rough neutrosophic nano
topology, the topology base will help to make a decision, just
like other analyses via rough set and topology. Here, we give
a simple application for a possible use of the topology.
Example 28: A city hall wants to make layout plan for bus

stations with the intention of landscaping. Five bus stations
that are indicated by K = {s1, s2, s3, s4, s5} are desired to be
placed in the city. For some reasons, (information sharing,
connection, distances to touristy areas, or convenience for
fast transport of disabled individuals etc.) some buses moving
between these stations are grouped to cover all stations of
the city in terms of each station’s situations. Let this cov-
ering set C be {{s1, s2, s3}, {s2, s4}, {s3, s5}}. Moreover, they
also offer a subset of non-surrendered options under certain
options, and this subset isX = {s2, s3, s5}. The city hall coun-
cil presents an offer for the city hall’s bus station placement
and asks an expert A to prepare an evaluation report. The
expert presents the report in the form of neutrosophic values
because the expert evaluates many parameters. The report of
the expert for the stations in accordance with the offer of
the city hall is as follows: A = {< s1, (0.2, 0.6, 0.3) >,
< s2, (0, 0.1, 0) >,< s3, (0, 0, 1) >,< s4, (1, 0, 0) >,
< s5, (0, 0.2, 1) >}.
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As the first stage for checking whether the assessment of
the expert is valid or not, we regard it as a covering based
rough neutrosophic nano topology form in accordance with
the offer and the report. If this structure forms the topology,
we say that there is compatibility between the offer and the
report. Now, let’s examine it.

CX = {{s2, s4}{s3, s5}, {s1, s2, s3}}

CX = {{s3, s5}}

CBN (X ) = {{s1, s2, s3}, {s2, s4}}

N CX (A) = {< s1, (0, 0, 1) >,< s2, (0, 0, 1) >,

< s3, (0, 0, 1) >,< s4, (0, 0, 1) >,

< s5, (0, 0, 1) >}

N CX (A) = {< s3, (0, 0, 1) >,< s5, (0, 0, 1) >}

NBN (X )(A) = {< s1, (0, 0, 1) >,< s2, (0, 0, 1) >,

< s3, (0, 0, 1) >,< s4, (0, 0, 1) >}

Then, it forms a covering based rough neutrosophic nano
topology. On the other hand, there are two core points < s3,
(0, 0, 1) > and< s5, (0, 0, 1) > in the topology. These points
indicate that< s3, (0, 0, 1) > and< s5, (0, 0, 1) > definitely
wrong decisions for the planned placement of s3 and s5.

VII. CONCLUSION
Some new topologies and their definitions on covering prop-
erty have been given in this paper. We gave new topology
definitions that combine the sets such fuzzy, intuitionistic
fuzzy, neutrosophic and rough with nano topology which are
useful in many decision making problems. We showed that
they are suitable to apply to many real life problems after the
given definitions, and in the last part of the paper we gave
the decision making application for a bus station placement
problem. we hope that the work in this paper constitutes a
new basis for new studies and applications.

In the future, we will define new points addition to core
point definition and study decisionmaking problems by using
the points. Another future plan is to extend this study with
interval valued and bipolar neutrosophic sets and their topolo-
gies and implement them on computer.

REFERENCES
[1] Z. Pawlak, ‘‘Rough sets,’’ Int. J. Comput. Inf. Sci., vol. 11, no. 5,

pp. 341–356, Oct. 1982.
[2] E. A. Abo-Tabl, ‘‘Rough sets and topological spaces based on similarity,’’

Int. J. Mach. Learn. Cybern., vol. 4, pp. 451–458, Oct. 2013, doi: 10.1007/
s13042-012-0107-7.

[3] R. Slowinski and D. Vanderpooten, ‘‘A generalized definition of rough
approximations based on similarity,’’ IEEE Trans. Knowl. Data Eng.,
vol. 12, no. 2, pp. 331–336, Mar./Apr. 2000, doi: 10.1109/69.842271.

[4] A. Skowron and J. Stepaniuk, ‘‘Tolerance approximation spaces,’’ Fun-
dam. Inform., vol. 27, nos. 2–3, pp. 245–253, 1996.

[5] H.-P. Zhang, Y. Ouyang, and Z. Wangc, ‘‘Note on ‘Generalized rough
sets based on reflexive and transitive relations,’’’ Inf. Sci., vol. 179,
pp. 471–473, Feb. 2009, doi: 10.1016/j.ins.2008.10.009.

[6] G. Liu and W. Zhu, ‘‘The algebraic structures of generalized rough set
theory,’’ Inf. Sci., vol. 178, pp. 4105–4113, Nov. 2008, doi: 10.1016/j.ins.
2008.06.021.

[7] Y. Y. Yao, ‘‘Relational interpretations of neighborhood operators and rough
set approximation operators,’’ Inf. Sci., vol. 111, nos. 1–4, pp. 239–259,
1998, doi: 10.1016/S0020-0255(98)10006-3.

[8] W. Zhu, ‘‘Relationship between generalized rough sets based on binary
relation and covering,’’ Inf. Sci., vol. 179, pp. 210–225, Jan. 2009, doi: 10.
1016/j.ins.2008.09.015.

[9] G. L. Liu and Y. Sai, ‘‘A comparison of two types of rough sets induced
by coverings,’’ Int. J. Approx. Reasoning, vol. 50, pp. 521–528, Mar. 2009,
doi: 10.1016/j.ijar.2008.11.001.

[10] L. Polkowski, Rough Sets: Mathematical Foundations. Berlin, Germany:
Physica-Verlag, 2002, doi: 10.1007/978-3-7908-1776-8.

[11] A. Skowron, ‘‘On topology in information system,’’ in Bulletin of Polish
Academic Science and Mathematics, vol. 36, 1988, pp. 477–480.

[12] A. Wiweger, ‘‘On topological rough sets,’’ in Bulletin of Polish Academic
Science and Mathematics, vol. 37, 1988, pp. 51–62.

[13] L. Polkowski, ‘‘On fractals defined in information systems via rough
set theory,’’ in Proc. Bull. Int. Rough Set Soc. (RSTGC), vol. 5, 2001,
pp. 163–166.

[14] J. Kortelainen, ‘‘On relationship between modified sets, topological spaces
and rough sets,’’ Fuzzy Sets Syst., vol. 61, pp. 91–95, Jan. 1994, doi: 10.
1016/0165-0114(94)90288-7.

[15] A. Skowron, R. Świniarski, and P. Synak, ‘‘Approximation spaces and
information granulation,’’ in Transactions on Rough Sets III (Lecture
Notes in Computer Science), vol. 3400, 2005, pp. 175–189, doi: 10.1007/
114278348.

[16] J. Järvinen and J. Kortelainen, ‘‘A unifying study between modal-
like operators, topologies and fuzzy sets,’’ Fuzzy Sets Syst., vol. 158,
pp. 1217–1225, Jun. 2007, doi: 10.1016/j.fss.2007.01.011.

[17] E. F. Lashin, A. M. Kozae, A. A. A. Khadra, and T. Medhat, ‘‘Rough
set theory for topological spaces,’’ Int. J. Approx. Reasoning, vol. 40,
pp. 35–43, Jul. 2005, doi: 10.1016/j.ijar.2004.11.007.

[18] T.-J. Li, Y. Yeung, and W.-X. Zhang, ‘‘Generalized fuzzy rough approx-
imation operators based on fuzzy coverings,’’ Int. J. Approx. Reasoning,
vol. 48, pp. 836–856, Aug. 2008, doi: 10.1016/j.ijar.2008.01.006.

[19] K. Qin and Z. Pei, ‘‘On the topological properties of fuzzy rough
sets,’’ Fuzzy Sets Syst., vol. 151, pp. 601–613, May 2005, doi: 10.1016/j.
fss.2004.08.017.

[20] A. K. Srivastava and S. P. Tiwari, ‘‘On relationships among fuzzy approx-
imation operators, fuzzy topology, and fuzzy automata,’’ Fuzzy Sets Syst.,
vol. 138, pp. 197–204, Aug. 2003, doi: 10.1016/S0165-0114(02)00442-6.

[21] L. A. Zadeh, ‘‘Fuzzy sets,’’ Inf. Control, vol. 8, no. 3, pp. 338–353,
Jun. 1965.

[22] H. Jiang, J. Zhan, and D. Chen, ‘‘Covering based variable precision
(I, T)-fuzzy rough sets with applications to multi-attribute decision-
making,’’ IEEE Trans. Fuzzy Syst., vol. 27, no. 8, pp. 1558–1572,
Aug. 2019, doi: 10.1109/TFUZZ.2018.2883023.

[23] K. Zhang, J. Zhan, and Y. Yao, ‘‘TOPSIS method based on a fuzzy
covering approximation space: An application to biological nano-materials
selection,’’ Inf. Sci., vol. 502, pp. 297–329, Oct. 2019, doi: 10.1016/j.
ins.2019.06.043.

[24] L. Zhang, J. Zhan, Z. Xu, and J. C. R. Alcantud, ‘‘Covering-based gen-
eral multigranulation intuitionistic fuzzy rough sets and corresponding
applications to multi-attribute group decision-making,’’ Inf. Sci., vol. 494,
pp. 114–140, Aug. 2019.

[25] K. Zhang, J. Zhan, and W.-Z. Wu, ‘‘Novel fuzzy rough set models and
corresponding applications to multi-criteria decision-making,’’ Fuzzy Sets
Syst., to be published, doi: 10.1016/j.fss.2019.06.019.

[26] J. Zhan andW. Xu, ‘‘Two types of coverings based multigranulation rough
fuzzy sets and applications to decision making,’’ Artif. Intell. Rev., to be
published, doi: 10.1007/s10462-018-9649-8.

[27] J. Zhan and W. Xu, ‘‘Covering-based intuitionistic fuzzy rough sets and
applications in multi-attribute decision-making,’’ Artif. Intell. Rev., to be
published, doi: 10.1007/s10462-018-9674-7.

Florentin Smarandache (ed.) Collected Papers, VII

711

http://dx.doi.org/10.1007/s13042-012-0107-7
http://dx.doi.org/10.1007/s13042-012-0107-7
http://dx.doi.org/10.1109/69.842271
http://dx.doi.org/10.1016/j.ins.2008.10.009
http://dx.doi.org/10.1016/j.ins.2008.06.021
http://dx.doi.org/10.1016/j.ins.2008.06.021
http://dx.doi.org/10.1016/S0020-0255(98)10006-3
http://dx.doi.org/10.1016/j.ins.2008.09.015
http://dx.doi.org/10.1016/j.ins.2008.09.015
http://dx.doi.org/10.1016/j.ijar.2008.11.001
http://dx.doi.org/10.1007/978-3-7908-1776-8
http://dx.doi.org/10.1016/0165-0114(94)90288-7
http://dx.doi.org/10.1016/0165-0114(94)90288-7
http://dx.doi.org/10.1007/114278348
http://dx.doi.org/10.1007/114278348
http://dx.doi.org/10.1016/j.fss.2007.01.011
http://dx.doi.org/10.1016/j.ijar.2004.11.007
http://dx.doi.org/10.1016/j.ijar.2008.01.006
http://dx.doi.org/10.1016/j.fss.2004.08.017
http://dx.doi.org/10.1016/j.fss.2004.08.017
http://dx.doi.org/10.1016/S0165-0114(02)00442-6
http://dx.doi.org/10.1109/TFUZZ.2018.2883023
http://dx.doi.org/10.1016/j.ins.2019.06.043
http://dx.doi.org/10.1016/j.ins.2019.06.043
http://dx.doi.org/10.1016/j.fss.2019.06.019
http://dx.doi.org/10.1007/s10462-018-9649-8
http://dx.doi.org/10.1007/s10462-018-9674-7


[28] J. Zhan, X. Zhang, and Y. Yao, ‘‘Covering based multigranulation fuzzy
rough sets and corresponding applications,’’ Artif. Intell. Rev., to be pub-
lished, doi: 10.1007/s10462-019-09690-y.

[29] H. L. Yang, Y. L. Bao, and Z. L. Guo, ‘‘Generalized interval neutrosophic
rough sets and its application in multi-attribute decision making,’’ in
Filomat, vol. 3, 2018, pp. 11–33.

[30] L. Zhang, J. Zhan, and Z. Xu, ‘‘Covering-based generalized IF rough sets
with applications to multi-attribute decision-making,’’ Inf. Sci., vol. 478,
pp. 275–302, Apr. 2019.

[31] H.-L. Yang, C.-L. Zhang, Z. L. Guo, Y.-L. Liu, and X. Liao, ‘‘A hybrid
model of single valued neutrosophic sets and rough sets: Single valued neu-
trosophic rough set model,’’ Soft Comput., vol. 21, no. 21, pp. 6253–6267,
2017.

[32] C. Zhang, D. Li, and J. Liang, ‘‘Hesitant fuzzy linguistic rough set over
two universes model and its applications,’’ Int. J. Mach. Learn. Cybern.,
vol. 9, no. 4, pp. 577–588, 2018.

[33] C. Zhang, D. Li, A. Sangaiah, and S. Broumi, ‘‘Merger and acquisition
target selection based on interval neutrosophic multigranulation rough sets
over two universes,’’ Symmetry, vol. 9, no. 7, p. 126, 2017.

[34] M. L. Thivagar and C. Richard, ‘‘Nutrition modeling through nano topol-
ogy,’’ Int. J. Eng. Res. Appl., vol. 4, no. 1, pp. 327–334, 2014.

[35] M. L. Thivagar and V. S. Devi, ‘‘Computing technique for recruitment
process via nano topology,’’ Sohag J. Math., vol. 3, no. 1, pp. 37–45, 2016.

[36] M. L. Thivagar and S. P. R. Priyalatha, ‘‘Medical diagnosis in a indiscerni-
bility matrix based on nano topology,’’ Cogent Math. Statist., vol. 4, no. 1,
2017, Art. no. 1330180.

[37] M. L. Thivagar, S. Jafari, V. S. Devi, and V. Antonysamy, ‘‘A novel
approach to nano topology via neutrosophic sets,’’ in Neutrosophic Sets
and Systems, vol. 20, 2018, pp. 86–94.

[38] K. Atanassov, ‘‘Intuitionistic fuzzy sets,’’ in Fuzzy Sets and Systems,
vol. 20, 1986, pp. 87–96.

[39] F. Smarandache, Neutrosophy: Neutrosophic Probability, Set, and Logic:
Analytic Synthesis & Synthetic Analysis. Rehoboth, 1998, pp. 104–106.

[40] E. Brynairski, ‘‘A calculus of rough sets of the first order, bull of the polish
academy sciences,’’Mathematics, vol. 37, nos. 1–6, pp. 71–78, 1989.

[41] N. Alharbi, H. Aydi, and C. Özel, ‘‘Rough spaces on covering based rough
sets,’’ Eur. J. Pure Appl. Math., vol. 12, no. 2, pp. 533–543, 2019.

[42] F. Smarandache, ‘‘Neutrosophic set-a generalization of the intuitionistic
fuzzy set,’’ Int. J. Pure Appl. Math., vol. 24, no. 3, p. 287, 2005.

[43] W. Haibin, F. Smarandache, Y. Zhang, R. Sunderraman, Single Valued
Neutrosophic Sets. Infinite Study, 2010.

[44] S. Broumi, F. Smarandache, and M. Dhar, ‘‘Rough neutrosophic sets,’’
Neutrosophic Sets Syst., vol. 3, pp. 60–65,May 2014, doi: 10.5281/zenodo.
571606.

[45] P. Zhu, ‘‘Covering rough sets based on neighborhoods: An approach
without using neighborhoods,’’ Int. J. Approx. Reasoning, vol. 52, no. 3,
pp. 461–472, 2011.

[46] V. Chandran, B. Carswell, B. Boashash, and S. Elgar, ‘‘Pattern recognition
using invariants defined from higher order spectra: 2-D image inputs,’’
IEEE Trans. Image Process., vol. 6, no. 5, pp. 703–712, May 1997.

[47] L. Du, H. Liu, and Z. Bao, and M. Xing, ‘‘Radar HRRP target recognition
based on higher order spectra,’’ IEEE Trans. Signal Process., vol. 53, no. 7,
pp. 2359–2368, Jul. 2005.

[48] R. Acharya, C. K. Chua, E. Y. K. Ng, and W. Yu, and C. Chee, ‘‘Applica-
tion of higher order spectra for the identification of diabetes retinopathy
stages,’’ J. Med. Syst., vol. 32, no. 6, pp. 481–488, 2008.

[49] K. C. Chua, V. Chandran, and U. R. Acharya, and C. M. Lim, ‘‘Application
of higher order statistics/spectra in biomedical signals—A review,’’ Med.
Eng. Phys., vol. 32, no. 7, pp. 679–689, 2010.

[50] K. C. Chua, V. Chandran, U. R. Acharya, and C. M. Lim, ‘‘Cardiac state
diagnosis using higher order spectra of heart rate variability,’’ J. Med. Eng.
Technol., vol. 32, no. 2, pp. 145–155, 2008.

Florentin Smarandache (ed.) Collected Papers, VII

712

http://dx.doi.org/10.1007/s10462-019-09690-y
http://dx.doi.org/10.5281/zenodo.571606
http://dx.doi.org/10.5281/zenodo.571606


This work was supported in part by the Natural Science Foundation of China under Grant 61702013, in part by the Joint of Beijing Natural
Science Foundation and Education Commission under Grant KZ201810009011, and in part by the Science and Technology Innovation
Project of North China University of Technology under Grant 19XN108.

ABSTRACT Dermoscopic images suffer from irregular and vague boundaries. New directions established
the neutrosophic set (NS) approaches for clustering, and segmenting the dermoscopic images. In this work,
an accurate segmentation process was developed by mapping initially the dermoscopic images to the NS
domain. Thus, the neutrosophic image was defined by three subsets, namely True (T ), Indeterminacy (I )
and False (F). For accurate boundary detection and segmentation, different high pass (HP) filter types were
used in the definition of I subset and low pass (LP) filter types in the definition of T . These filters form a
new way to obtain an NS image for segmenting dermoscopy images. A comparative study was carried on the
ISIC2016 skin lesion dermoscopic images dataset using different combinations of NS filter types and sizes.
The results depicted the superiority of using an unsharp filter in implementing the I subset and an average
filter for the T subset. 96% segmentation accuracy was reported using the proposed design compared to 92%
accuracy using the default NS definition.

INDEX TERMS Neutrosophic set, dermoscopic images, unsharp filter, average filter, image segmentation.

I. INTRODUCTION
One of themost challenging tasks in healthcare is the accurate
diagnosis due to the dependency on the physicians’ expe-
rience along with the fuzziness in the medical images. For
precise instinctive diagnosis, several medical image process-
ing procedures, such as denoising, clustering, segmentation,
and classification, have been presented based on fuzzy the-
ory to infer the intrinsic vagueness, ambiguity, and uncer-
tainty [1]–[3]. However, fuzzy-based approaches are sensitive
to the artifacts and noise; thus, do not deliberate the pixels’
spatial context [4]. To overcome this drawback, the neu-
trosophic concept which introduced by Smarandache as a
generalization of the fuzzy set [5], [6], was applied. Gen-
erally, neutrosophic set (NS) generalizes the perception of
the fuzzy-based approaches including the fuzzy set, and intu-
itionistic fuzzy set [7].

By integrating medical image analysis with the NS, sev-
eral computer-aided diagnosis (CAD) systems have been
developed in the clinical care. Accordingly, researchers
developed different NS-based medical image segmentation
methods for lesions and abnormalities detection in CAD sys-
tems [8]–[12]. Cheng and Guo [13] applied a thresholding
based segmentation method after transforming the image in
the NS domain. The three NS subsets, namely True (T ),
Indeterminacy (I ), and False (F) were generated. Then,
the entropy in NS was calculated to estimate the indeter-
mination. In addition, to reduce the set’s indetermination,
an λ-mean operation was employed. Sert and Alkan [14]
designed NS-based Chan–Vese segmentation approach for
edge detection. Zhang et al. [15] applied the neutrosophy
theory for image segmentation by mapping the image in the
NS domain and employed a watershed approach to segment
the image.

Furthermore, several studies were conducted on the
clustering-based segmentation algorithm using NS.
Shan et al. [16] proposed NS-based clustering procedure,
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called neutrosophic L-means (NLM) for segmentation. In NS
domain, Guo and Cheng [9] introduced fuzzy c-means clus-
tering, where the entropy was used to calculate the inde-
terminacy of the image. An α-mean operator was proposed
for diminishing the indeterminacy to guarantee homogenous
image. Subsequently, the membership value in the fuzzy
c-means clustering was updated in consistent with the inde-
terminacy value to obtain the segmented image. Moreover,
Guo and Sengur [17] redefined a clustering convergence
criterion by integrating NS with an improved fuzzy c-means
(IFCM). Further, the same authors introduced the fuzzy
c-means clustering with NS context [18]. This procedure was
named neutrosophic c-means (NCM), where the clustering
procedure was considered a constrained minimization prob-
lem of a pre-defined objective function. Another clustering-
based segmentation, namely K-means was integrated with
the NS by Mohan et al. [19], where a non-local neutro-
sophic wiener filter was designed to enhance the image
quality. Recently, Ashour et al. [20] proposed a neutro-
sophic clustering with histogram estimation for dermoscopic
image segmentation. Histogram-based cluster estimation was
implemented firstly to determine the initial number of clus-
ters in the image, and then the NCM algorithm was applied
for segmentation.

In the previous NS-based studies, median filter and Sobel
filter were used in the NS to implement the truth subset,
and indeterminacy subset, respectively. For accurate bound-
ary detection and segmentation, the present work designed
a novel implementation of the T and I neutrosophic sub-
sets to guarantee the superior segmentation performance for
dermoscopic image. Subsequently, a comparative study was
conducted on the size and type of the proposed NS filters
that compute the T and I neutrosophic subsets in the NS.
Different high-pass (HP) filters were employed to compute
the I subset, namely Prewitt, Sobel, kernel, double kernel,
and unsharp with different filter sizes. Moreover, different
low-pass (LP) filters were tested to obtain the T subset,
namely median, average, and order rank filters (minimum,
maximum). The k-means clustering process was utilized for
segmentation based on the values in T and I . The proposed
new NS subsets were evaluated to segment the dermoscopic
images’ lesions in the International Skin Imaging Collabora-
tion (ISIC) 2016 Challenge dataset [21].

The structure of the rest sections is as follows. Section II
presents a new methodology for defining the neutrosophic
subsets. Section III contains the detailed results, comparative
studies and discussion. The conclusion of the present work is
denoted in section IV.

II. METHODOLOGY
The dermoscopic images have inconsistent structures and
suffer from asymmetrical and ambiguous boundaries along
with the existence of artifacts, noise, hair and air bubbles.
For precise analysis of skin lesions, several researchers trans-
formed the dermoscopic images into the NS domain to solve
the uncertainty and indeterminacy during the segmentation

process and to detect the boundaries of the lesion cor-
rectly [24], [25]. In this work, the k-means clustering is
employed for segmenting the skin lesions’ orbicular shape
and groups the pixels of the image into different clusters.
However, to increase the performance of the k-means, a new
definition of the NS filters is introduced to guarantee the
accurate boundary detection.

Usually, the HP filters are used for image enhancement,
while the LP filters are used for smoothing and noise sup-
pression. Accordingly, the traditional definitions of the NS
subsets employed Sobel filter for computing the I subset, and
a median filter for representing the T subset [10], [17]–[20].
Typically, the unsharp filter has better performance to
enhance and sharpen the high frequency components in the
images compared to other HP filters, such as Prewitt, Sobel,
and kernel operators [22]. Moreover, the average (which is
linear filter) filter has good performance and high speed
compared to the median (which is a non-linear filter) in image
processing and analysis [23]. Subsequently, in the present
work, a new combination of the filters was proposed, where
unsharp filter and average filter were used to define the I and
T subsets, respectively. Likewise, the window size of each
filter was determined along with a comparative study with
other filter types. To evaluate the novel definition in the NS
subsets for the segmentation process, the ISIC 2016 dataset
was employed in this work.

A. NEUTROSOPHIC IMAGE
NS describes the indeterminacy and uncertainty in any envi-
ronment. In the NS, three neutrosophic subsets, i.e. T , I ,
and F are defined for any event to represent the degrees of
truth, indeterminacy, and falsity, respectively. These subsets
are used to transform an image into the NS space creating a
neutrosophic image, which is represented as < T , I ,F >.
Typically, the default NS was defined using Sobel filter

and median filter. The proposed work designed a new NS
definition on the dermoscopic images, where T represents
the skin lesion region, while I represents the lesion boundary
information, and F represents the background. Using the
minimum and maximum intensities Vmin and Vmax, the T and
F neutrosophic subsets are represented as follows [20], [25]:

T (l,m) =
V (l,m)− Vmin

Vminmax

(1)

F(l,m) = 1− T (l,m) (2)

where for each pixel V (l,m) in an image V , the three subsets
are given by {T (l,m) , I (l,m) ,F (l,m)} in the neutrosophic
image. Furthermore, using the local average intensity ε(l,m),
the I neutrosophic subset is given by:

I (l,m) =
ε(l,m)− εmin

εminmax

(3)

where εmin and εmax are the minimum andmaximum absolute
difference values, respectively, of the local mean-value, and
εminmax represents the difference between them. A HP filter
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H (a, b) is applied to calculate the indeterminacy of the NS
image.

In NS, the entropy specifies the pixels distribution in the
neutrosophic image. The entropy of I is measured using the
following expression:

EntI = −
∑max{I }

i=min{I }
prI (i)ln(prI (i)) (4)

where prI (i) is probability of the pixel in the I subset. Conse-
quently, the entropy of I is used to associate T and F with I .

B. PROPOSED NEUTROSOPHIC SET DEFINITION
AND SEGMENTATION APPROACH
1) UNSHARP FILTER FOR I SUBSET DEFINITION
For precise mapping of the dermoscopic images into NS
domain, it is indispensable to select the type and size of
the HP filter for calculating the indeterminacy of the neu-
trosophic image. Unlike the Sobel filter which used in the
previous studies of NS [20], [25], the unsharp filter is an accu-
rate sharpening operator that augments the high-frequency
components and boundary information [26]. Hence, in the
proposed work, an unsharp operator HUnsharp is used to rep-
resent the H (a, b) during the calculations of the I subset in
equations 3 and 4. Furthermore, a comparative study using
different HP filters is conducted to determine the best filter
design for calculating the I subset.
By applying the unsharp filter on an image O(x, y),

the formed gradient image P(x, y) is stated as:

P(x, y) = O(x, y)− Olowpass(x, y) (5)

where Olowpass(x, y) is the processed O(x, y) image using the
LP filter. For refining, the high frequency component is added
back to the original image as follows:

OUnsharp(x, y) = O(x, y)+ c ∗ P(x, y) (6)

where c is a scaling constant. The unsharp filterHUnsharp with
size 3× 3 can be represented as:

In addition, the HUnsharp of size 5× 5 is represented as:

Therefore, the I subset is defined for each pixel in the NS
domain using the proposed HUnsharp.

2) AVERAGE FILTER FOR T SUBSET DEFINITION
The subset I is used to find the pixels that will be considered
while modifying the subset T in the next version NS finding.
Typically, the average filter is a linear spatial filter which
computes the pixels’ average in the mask neighborhood.

This averaging process reduces the sharp transition in the
image’s intensities. Accordingly, the local mean T (l,m) can
be expressed using this average filter as follows:

Tlocal_average(l,m) =
1

s× s

∑m+s/2

a=m−s/2

∑l+s/2

b=l−s/2
V (a, b)

(7)

where V (a, b) is the local image that filtered byH (a, b), and s
is the filter size. In the α-mean operation, a LP (average filter)
is employed to calculate the true subset of the neutrosophic
image, and then T is modified according to the values of I .
To use α-mean operation iteratively for updating T , the I
is used to determine the pixels that will be taken α-mean
operation. This α-mean operation used a threshold value α
to identify the pixels for updating the used pixels’ intensity
in T as follows:

Tupdated (l,m) =

{
Tlocal_average(l,m), I (l,m) > α

T (l,m), I (l,m) ≤ α
(8)

Then, Tupdated (l,m) is used to produce the new updated NS
image using the following formula:

Vmodified (l,m) = Vupdatedminmaxmin (9)

Finally, the entropy of I is used as a terminating criterion of
the iterative process using a threshold δ, which is given by:

EntI (i)− EntI (i+ 1)
EntI (i)

< δ (10)

From the preceding methodology, the new definition of
the NS subset is proposed. For the dermoscopic images seg-
mentation, I subset used an unsharp (HP) filter for boundary
detection of the skin lesion. Then, based on the αmean, which
are used in the updating of the final version of the T image
in the NS. In the present work, for skin lesion segmentation,
a dermoscopic image enhancement using hair removal was
conducted. Then, the red channel of the RGB image, which
contains all information about lesion, was transformed to
the NS domain using the new NS definition. The generated
components of the neutrosophic image are used to cluster the
pixels of the dermoscopic images. A threshold value is used
to update the T subset to obtain the modified version based on
the computed I subset. Then, the k-means clustering process
was applied for segmentation based on the values in T and I .

III. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, different filters were used to implement I
and T subsets to compare the proposed new NS filters with
combinations of different filters for evaluating the perfor-
mance of the proposed NS filters design (definition). Thus,
for this comparative study, Prewitt, Sobel, kernel, double
kernel and unsharp filters with different sizes were used in the
design of the HP filters of the I subset. Additionally, another
different LP filters’ design for the T subset were used, namely
median, average, and order filter (minimum, and maximum).
Figure 1 illustrated the initial steps before using the NS filter
on images.
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FIGURE 1. Initial pre-processing steps: (a) original images number
ISIC_0000153 and ISIC_0011082 at the upper row and the lower row,
respectively, (b) after hair removal filter, and (c) red channel of the
filtered image.

FIGURE 2. Comparative study of the different combinations for designing
the NS filter for the images with numbers in (a), where (b) proposed
unsharp of size 5 × 5 with average filter of size 3 × 3, (c) kernel of 9 × 9
with median filter of 3 × 3, (d) double kernel of 9 × 9 with maximum
order filter of size 3 × 3, and (e) unsharp of size 5 × 5 with minimum
order filter of size 3 × 3.

Different combinations of filters are used, and results are
compared visually in Figure 2, which displayed the final seg-
mented skin lesion images. These combinations are unsharp
filter of size 5 × 5 with average filter of size 3 × 3, kernel
filter of 9× 9 with median filter of 3× 3, double kernel filter
of size 9 × 9 with maximum order filter of size 3 × 3, and
unsharp filter of size 5× 5 with minimum order filter of size
3× 3.

Figure 2 established that the best combinations consist
of using unsharp filter of size 5 × 5 with average filter of
size 3× 3, or Laplacian kernel of 9× 9 with median filter of
3× 3. However, using the unsharp of size 5× 5 with average
filter of size 3 × 3 provided more smooth borders compared
to using the kernel of 9 × 9 with median filter of 3 × 3.
Accordingly, Figures 3 demonstrated a comparison between
the unsharp of size 5 × 5 with average filter of size 3 × 3
commination, and the kernel of 9 × 9 with median filter of
3 × 3 combinations in terms of the NS steps for an example
using the image ISIC_0000153, respectively.

To evaluate the performance of the new NS filters design,
90 dermoscopy images from the ISIC2016 skin lesion
dermoscopic images were used. The segmentation perfor-
mance was evaluated by measuring several metrics, includ-
ing the Dice coefficient (Dice), JAC, accuracy, specificity,

FIGURE 3. Comparative study in terms of the steps of the NS to obtain
the segmented image using the proposed unsharp of size 5 × 5 with
average filter of size 3 × 3 combination at the first row, and the Kernel of
9 × 9 with median filter of 3 × 3 at the second row of the figure for image
number ISIC_0000153, where (a) initial T image, (b) initial F image,
(c) last T version after the NS iterations, (d) Last F version after the last NS
iterations, (e) final NS output, (f) k-means output, and (g) the final
segmented image.

TABLE 1. Segmentation results comparison of different combinations.

and sensitivity [20]. The Dice measures the association
between S1 and S2 is given by:

Dice =
2|S1 ∩ S2|
|S1| + |S2|

(11)

where ∪ and ∩ are the union and intersection operations,
respectively. Additionally, the JAC for J1 and J2 is defined
by:

JAC(J1, J2) =
J1 ∩ J2
J1 ∪ J2

(12)

where J1 and J2 are the segmented and ground-truth images,
respectively. The other metrics include accuracy which mea-
sures the ratio between the negative and positive results;
specificity which measures how the segmentation method
predicts the other regions in the image; and sensitivity which
measures the detection capability of the segmentationmethod
for detecting the lesion regions. Table 1 and Figure 4 reported
the average evaluation metrics over the used dataset images
using different combinations, where the ISIC2016 dataset
includes different sizes of skin lesion dermoscopic images.

The results in Table 1 established the superiority of the used
new NS filters definition even the used images have different
images’ sizes.

Table 1 and Figure 4 established the superiority of the
proposed unsharp 5×5with average 3×3 combination for the
NS filter design compared to the other combinations in terms
of the measured evaluation metrics. In addition, the compu-
tational time of the NS with the different combinations are
reported in Figure 5.

However, the average computational time of the NS using
the different combinations stated that the unsharp 5 × 5
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FIGURE 4. Comparison in terms of the average evaluation metrics over
90 images using different combinations followed by k-means.

FIGURE 5. Comparison in terms of the average computational time in
seconds over 90 images using different combinations followed by
k-means and using in the traditional k-means and GC methods.

with average 3 × 3 took the maximum computational time
of 22.07 seconds, while the kernel 9 × 9 with median 3 × 3
took less computational time of 5.17 seconds during the NS
process. The double kernel 9× 9 with maximum order filter
3 × 3 followed by k-means requires the least time during
the NS process of 4.78 seconds in comparison to using the
other NS combinations. Another comparison in terms of the
different evaluation metrics using the traditional graph-cut,
k-means and the NS default filters (Sobel 3× 3 with median
3×3) followed by k-means in comparison with the proposed
combinations of the NS filters followed by the k-means is
described in Table 2.

Table 2 illustrated the superiority of the proposed
NS definition for skin lesion segmentation. Accordingly,
it is recommended in the future work to integrate the
proposed NS definition with other segmentation meth-
ods. Moreover, the proposed definition can be tested
with different medical images from different modalities,
including microscopic images, ultrasound images, and mag-
netic resonance images to find the utmost appropriate NS
definitions.

TABLE 2. Comparison between the traditional segmentation methods
with the proposed NS filters in terms of the average evaluation metrics.

IV. CONCLUSION
Edge detection and segmentation are significant steps for
accurate recognition of skin lesion diseases in automated
diagnostic systems. Due to the fuzziness, irregular shape, and
intra-class inconsistency of the lesion boundaries, recently
NS is employed efficiently in skin lesion segmentation. Since
the NS depends mainly on its three subsets, namely T , I ,
andF , using different definitions of the NS filters have a great
impact on the performance of the NS in image processing.

This work introduced new definitions of the NS subset and
improved the overall performance of skin lesion segmenta-
tion in dermoscopic images. An experiment was taken on
the proposed definition with different filters’ combinations
including the default filter of using Sobel with median filter.
In addition, other combinations and segmentation methods,
such as GC and k-means were examined. Furthermore, sev-
eral evaluationmetrics were measured on the images from the
public ISIC2016 dataset.

The results established the superiority of the proposed
combination using unsharp 5 × 5 with average 3 × 3 which
achieved the best measured metric values of 96% accuracy,
99% specificity, and 83% sensitivity as well as 0.91 Dice
and 0.83 JAC. However, the proposed design took the longest
computational time of 22.07 seconds compared to the other
combinations.

In future, a new dermoscopic image segmentation
approach based on the proposed NS definition can be
improved with other segmentation methods. Moreover,
the same proposed segmentation algorithm can be used
for segmenting in different medical applications including
advanced diseases’ images and identify the diseases as well
as this new NS filters representation can be generalized with
natural images dataset of different sizes.
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A B S T R A C T

Dynamic decision problems constrained by time are of highly-interested in many aspects of real life. This
paper proposes a new concept called the Dynamic Interval-valued Neutrosophic Set (DIVNS) for such the
dynamic decision-making applications. Firstly, we define the definitions and mathematical operations,
properties and correlations of DIVNSs. Next, we develop a new TOPSIS (Technique for Order of Preference
by Similarity to Ideal Solution) method based on the proposed DIVNS theory. Finally, a practical
application of the method for evaluating lecturers’ performance at the University of Languages and
International Studies, Vietnam National University, Hanoi (ULIS-VNU) is given to illustrate the efficiency
of our approach.
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1. Introduction

Neutrosophic set (NS) [45] is able to handle indeterminacy
information [51,52,58]. NS and its extensions have become
widely applied in almost areas, such as decision-making
[1,12,20,21,33,34,41,42,49,58–62],clusteringanalysis [56,59], image
processing [27,28], etc. However, in some complex problems in real-
life, data may be collected from different time intervals or multi-
periods, which raises the need for dynamic decision making for such
the situations. The term ‘dynamic’ can be regarded in term of criteria
such as (a) a series of decisions required to reach a goal; (b) path
dependent decision; (c) the state of decision. This research considers
the ‘dynamic’ decision problems which are constrained by time, as
seen, for example, in emergency management and patient care.
Specifically, when the economic situation of a certain company is
investigated, the economic growth level of product series should be
investigated by changes of the trend of profit of all products through
the periods. Another example can be found in medical diagnosis
where clinicians have to exam patients by different time intervals.
719
Recently, Yan et al. [53] developed a dynamic multiple attribute
decision making method with grey number (considering both
attribute value aggregation of all periods and their fluctuation
among periods) to calculate degree of every alternative. This model
was also used in [32] to manage linguistic bipolar scales using
transformation between bipolar and unipolar linguistic terms. Ye
[57] proposed a dynamic neutrosophic multiset. For decision
assistance in dynamic environments, some algorithms that used
TOPSIS under neutrosophic linguistic environments were presented
in [2,10,11,22,23,25,26,33–37,40,55]. There have been also some
works that applied the Interval-Valued Neutrosophic Set (IVNS) with
the TOPSIS method for decision making [6,11,29,33,49,54,62]. Other
relevant decision making methods can be retrieved in [3–5,7–9,13–
19]. However, the existing researches did not consider different time
intervals as the objective of this research aims. To the best of our
knowledge, fluctuation of alternative’s attribute values within
periods on NSs has not been examined. In many practical cases,
there is not enough available information to judge complicated
situations, indeed it often given approximate ranges.

In this paper, we propose a new TOPSIS method based on a new
extension of NS called the Dynamic Interval-valued Neutrosophic
Set (DIVSN) for dynamic decision-making problems. The main
contribution includes:

(a) We define definitions and mathematical operations, properties
and correlations of DIVNSs.
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(b) We develop a new TOPSIS method based on the proposed
DIVNS theory.

(c) A practical application of the method for evaluating
lecturers’ performance at the Vietnam National University,
Hanoi (ULIS-VNU) is given to illustrate the efficiency of our
approach.

Section 2 defines the new concept of Dynamic Interval-
valued Neutrosophic Set (DIVSN). Section 3 presents the TOPSIS
method for DIVSN. Section 4 illustrates the proposed method in
a practical application. Finally, Section 5 summarizes the
findings.

2. Dynamic interval-valued neutrosophic set
A ¼
x1; 0:1; 0:25½ �; 0:15;0:2½ �; 0:3; 0:6½ �ð Þ; 0:45;0:5½ �; 0:1; 0:3½ �; 0:2; 0:4½ �ð Þ; 0:6; 0:7½ �; 0:52;0:6½ �; 0:7; 0:9½ �ð Þh i;
x2; 0:38;0:4½ �; 0:25; 0:4½ �; 0:12;0:3½ �ð Þ; 0:07;0:1½ �; 0:1; 0:2½ �; 0:09;0:1½ �ð Þ; 0:22;0:3½ �; 0:4; 0:5½ �; 0:3; 0:43½ �ð Þh i;
x3; 0:7; 0:9½ �; 0:33;0:45½ �; 0:59;0:6½ �ð Þ; 0:2; 0:22½ �; 0:5; 0:6½ �; 0:2; 0:3½ �ð Þ; 0:8; 0:9½ �; 0:3; 0:41½ �; 0:3; 0:33½ �ð Þh i

8<
:

9=
;

2.1. Set definition

Definition 2.1. [45]: Let U be a universe of discourse. A
neutrosophic set is:

A ¼ x : TA xð Þ; IA xð Þ; FA xð Þh i; x 2 Uf g

where TA xð Þ; IA xð Þ; FA xð Þ 2 ½0; 1� and
0 � sup TA xð Þð Þ þ sup IA xð Þð Þ þ sup FA xð Þð Þ � 3.

Definition 2.2. [45]: A neutrosophic number is defined as
N ¼ a þ bI, where a and b are real numbers, and I is the
indeterminacy.

Definition 2.3. [57]: A Dynamic Single-Valued Neutrosophic Set
(DSVNS) is: A ¼ x 2 U; x Tx tð Þ; Ix tð Þ; Fx tð Þð Þf g for all x 2 A:

Tx; Ix; Fx : 0; 1½ Þ ! 0; 1½ �

where Tx; Ix; Fx are continuous functions whose argument is
time tð Þ.

Based on the definition of DSVNS above, we formulate the new
definition as below.

Definition 2.4. A Dynamic Interval-Valued Neutrosophic Set
(DIVNS) is in the form below:

x TL
x tð Þ; TU

x tð Þ
h i

; ILx tð Þ; IUx tð Þ
h i

; FLx tð Þ; FUx tð Þ
h i� �

where t � 0,

TL
x tð Þ < TU

x tð Þ; ILx tð Þ < IUx tð Þ; FLx tð Þ < FUx tð Þ
And

TL
x tð Þ; TU

x tð Þ
h i

; ILx tð Þ; IUx tð Þ
h i

; FLx tð Þ; FUx tð Þ
h i

� 0; 1½ �

In other words, a DIVNS is a neutrosophic set whose elements’
neutrosophic components (membership, indeterminacy, non-
membership) are all intervals changing with respect to time.

For a simplified notation, we denote:

Tx tð Þ ¼ TL
x tð Þ; TU

x tð Þ
h i

; Ix tð Þ ¼ ILx tð Þ; IUx tð Þ
h i

; Fx tð Þ ¼ FLx tð Þ; FUx tð Þ
h i

where Tx tð Þ; Ix tð Þ; Fx tð Þ : 0; 1½ Þ ! P 0; 1½ �ð Þ with P 0; 1½ �ð Þ been the
power set of 0; 1½ �.
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We can also use the notation A tð Þ and x tð Þ, meaning that
each element x in A depends on t. Or Tx tð Þ; Ix tð Þ; Fx tð Þ are interval –

valued functions (a particular case of neutrosophic function [1]).
The difference of the new definition against the existing one in

[57]:
We have extended Ye’s DSVNS [57] to DIVNS by considering a

time sequence: t ¼ t1; t2; :::; tkf g then at each time tl; 1 � l � m, the
neutrosophic components of the generic element x 2 A change as
follow:

x Tx t1ð Þ; Ix t1ð Þ; Fx t1ð Þh i; Tx t2ð Þ; Ix t2ð Þ; Fx t2ð Þh i; :::; Tx tkð Þ; Ix tkð Þ; Fx tkð Þh ið Þ

Example 2.1. A DIVNS in time sequence t ¼ t1; t2; t3f g and a
universal NS ¼ x1; x2; x3f g is given:
2.2. Set theoretic operations of DIVNS

Let A tð Þ and B tð Þ be two DIVNSs included in U;

A tð Þ ¼ x tð Þ; TA
x tlð Þ; IAx tlð Þ; FAx tlð Þ

D E� �
; 8tl 2 t; x 2 U

n o
; B tð Þ

¼ x tð Þ; TB
x tlð Þ; IBx tlð Þ; FBx tlð Þ

D E� �
; 8tl 2 t; x 2 U

n o

Definition 2.5. : DIVNS Intersection

A tð Þ \ B tð Þ ¼ x tð Þ; TA
x tlð Þ ^ TB

x tlð Þ; IAx tlð Þ _ IBx tlð Þ; FAx tlð Þ _ FBx tlð Þ
D E� �

;
n
8tl 2 t; x 2 Ug

Definition 2.6. DIVNS Union

A tð Þ [ B tð Þ ¼ x tð Þ; TA
x tlð Þ _ TB

x tlð Þ; IAx tlð Þ ^ IBx tlð Þ; FAx tlð Þ ^ FBx tlð Þ
D E� �

;
n
8tl 2 t; x 2 Ug

Definition 2.7. DIVNS Complement

A tð ÞC ¼ x tð Þ; FAx tlð Þ; 1 � IAx tlð Þ; TA
x tlð Þ

D E� �
; 8tl 2 t; x 2 U

n o

Definition 2.8. DIVNS inclusion

A tð Þ � B tð Þ � TA
x tlð Þ � TB

x tlð Þ; IAx tlð Þ � IBx tlð Þ and FAx tlð Þ � FBx tlð Þ:

Definition 2.9. DIVNS Equality

A tð Þ ¼ B tð Þ,A tð Þ � B tð Þ and A tð Þ � B tð Þ:

In the above DIVNS aggregation operators by “^” we meant the
“t-norm” and by “_”

the t-conorm from the single–valued fuzzy sets
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2.3. Operations on DIVNS numbers

Let us consider two DIVNS numbers:

a tð Þ ¼ TA
x t1ð Þ; IAx t1ð Þ; FAx t1ð Þ

D E
; :::; TA

x tkð Þ; IAx tkð Þ; FAx tkð Þ
D En o

b tð Þ ¼ TB
x t1ð Þ; IBx t1ð Þ; FBx t1ð Þ

D E
; :::; TB

x tkð Þ; IBx tkð Þ; FBx tkð Þ
D En o

:

r A tð Þ; B tð Þð Þ ¼ 1
k

Xk
l¼1

Pn
i¼1

infTA xi; tlð Þ 
 infTB xi; tlð Þ þ supTA xi; tlð Þ 
 supTB xi; tlð Þ
þinfIA tlð Þ 
 infIB xi; tlð Þ þ supIA xi; tlð Þ 
 supIB xi; tlð Þ
þinfFA xi; tlð Þ 
 infFB xi; tlð Þ þ supFA xi; tlð Þ 
 supFB xi; tlð Þ

0
B@

1
CA
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� �2
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� �2

þ supFA xi; tlð Þ
� �2
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75

vuuuut
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ð5Þ
Definition 2.10. Addition of DIVNS numbers

a tð Þ 	 b tð Þ ¼

TA
x t1ð Þ þ TB

x t1ð Þ � TA
x t1ð Þ 
 TB

x t1ð Þ;
IAx t1ð Þ 
 IBx t1ð Þ; FAx t1ð Þ 
 FBx t1ð Þ

* +
;

:::;

TA
x tkð Þ þ TB

x tkð Þ � TA
x tkð Þ 
 TB

x tkð Þ;
IAx tkð Þ 
 IBx tkð Þ; FAx tkð Þ 
 FBx tkð Þ

* +
8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð1Þ

Definition 2.11. Multiplication of DIVNS numbers
a tð Þ � b tð Þ

¼

TA
x t1ð Þ 
 TB

x t1ð Þ; IAx t1ð Þ þ IBx t1ð Þ � IAx t1ð Þ 
 IBx t1ð Þ;
FAx t1ð Þ þ FBx t1ð Þ � FAx t1ð Þ 
 FBx t1ð Þ

* +
;

:::;

TA
x tkð Þ 
 TB

x tkð Þ; IAx tkð Þ þ IBx tkð Þ � IAx tkð Þ 
 IBx tkð Þ;
FAx tkð Þ þ FBx tkð Þ � FAx tkð Þ 
 FBx tkð Þ

* +
8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð2Þ

Definition 2.12. Scalar Multiplication of DIVNS numbers

a 
 a tð Þ ¼ 1 � 1 � TA
x t1ð Þ

� �a
; IAx t1ð Þa; FAx t1ð Þa

D E
; :::;

n

1 � 1 � TA
x tkð Þ

� �a
; IAx tkð Þa; FAx tkð Þa

D E
g ð3Þ

Definition 2.13. Power of the DIVNS numbers

a tð Þa ¼
TA
x t1ð Þa; 1 � 1 � IAx t1ð Þ

� �a
; 1 � 1 � FAx t1ð Þ

� �aD E
;

:::;

TA
x tkð Þa; 1 � 1 � IAx tkð Þ

� �a
; 1 � 1 � FAx tkð Þ

� �aD E
8>><
>>:

9>>=
>>;

ð4Þ
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Definition 2.14. Correlation coefficient of DIVNSs

Let

A tð Þ ¼ x tð Þ; TA x; tlð Þ; IA x; tlð Þ; FA x; tlð Þ
D E� �

; 8tl 2 t; x 2 U
n o

;

B tð Þ ¼ x tð Þ; TB x; tlð Þ; IB x; tlð Þ; FB x; tlð Þ
D E� �

; 8tl 2 t; x 2 U
n o

be two DIVNs in t ¼ t1; t2; :::; tkf g and U ¼ x1; x2; :::; xnð Þ.
A correlation coefficient is:
Theorem 2.1. The correlation coefficient between A and B
satisfies:

Pr1ð Þ 0 � r A tð Þ; B tð Þð Þ � 1;
Pr2ð Þ r A tð Þ; B tð Þð Þ ¼ 1 if A tð Þ ¼ B tð Þ;
Pr3ð Þr A tð Þ; B tð Þð Þ ¼ r B tð Þ; A tð Þð Þ

Proof.
(Pr1) It is obvious that r A tð Þ; B tð Þð Þ � 0. From Cauchy–Schwarz

inequality, we have

Xn
i¼1

infTA xi; tlð Þ 
 infTB xi; tlð Þ þ supTA xi; tlð Þ 
 supTB xi; tlð Þ
þinfIA tlð Þ 
 infIB xi; tlð Þ þ supIA xi; tlð Þ 
 supIB xi; tlð Þ
þinfFA xi; tlð Þ 
 infFB xi; tlð Þ þ supFA xi; tlð Þ 
 supFB xi; tlð Þ

0
B@

1
CA �
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for each l 2 1; 2; :; kf g. Thus, 0 � r A tð Þ; B tð Þð Þ � 1.

(Pr2) A tð Þ ¼ B tð Þ. 8l 2 1; 2; :::; kf g. We have infTA xi; tlð Þ ¼
infTB xi; tlð Þ; supTA xi; tlð Þ ¼ supTB xi; tlð Þ; infIA xi; tlð Þ ¼ infIB xi; tlð Þ;
supIA xi; tlð Þ ¼ supIB xi; tlð Þ; infFA xi; tlð Þ ¼ infFB xi; tlð Þ; supFA xi; tlð Þ ¼
supFB xi; tlð Þ; infTA xi; tlð Þ ¼ infTB xi; tlð Þ ) r A tð Þ; B tð Þð Þ ¼ 1

(Pr3) It is easily observed.

Definition 2.15. Weighted Correlation Coefficient of DIVNSs

Different weights for xi i ¼ 1; :::; nð Þ and tl l ¼ 1; :::; kð Þ are
integrated as follows.



rW A tð Þ; B tð Þð Þ ¼ 1
k

Xk
l¼1

vl 


Pn
i¼1

wi 

infTA xi; tlð Þ 
 infTB xi; tlð Þ þ supTA xi; tlð Þ 
 supTB xi; tlð Þ
þinfIA tlð Þ 
 infIB xi; tlð Þ þ supIA xi; tlð Þ 
 supIB xi; tlð Þ

þinfFA xi; tlð Þ 
 infFB xi; tlð Þ þ supFA xi; tlð Þ 
 supFB xi; tlð Þ

0
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ð6Þ

Imp xð Þ ¼
Xh
q¼1

ILpmq xtl
� �0

@
1
A

1
h � k

;
Xh
q¼1

IUpmq xtl
� �0

@
1
A

1
h � k

2
6664

3
7775

Fmp xð Þ ¼
Xh
q¼1

FLpmq xtl
� �0

@
1
A

1
h � k

;
Xh
q¼1

FUpmq xtl
� �0

@
1
A

1
h � k

2
6664

3
7775
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where w ¼ w1; w2; :::; wnð ÞT and v ¼ v1; v2; :::;vmð ÞT are
weighting vectors of xi i ¼ 1; :::; nð Þ and tl l ¼ 1; :::; kð Þ with

Pn
i¼1

wi ¼
1 and

Pk
l¼1

vl ¼ 1.
When wi ¼ 1

n; i ¼ 1; :::;n= and vl ¼ 1
k; l ¼ 1; :::;m= , Eq. (6) turns

to (5).
The weighted correlation coefficient between A and B also

satisfies the properties as in Theorem 2.1.

3. A topsis method for divns

Assume A ¼ A1; A2; :::; Avf g and C ¼ C1; C2; :::; Cnf g and D ¼
D1; D2; :::;Dhf g are sets of alternatives, attributes, and decision
makers. For a decision maker Dq; q ¼ 1; :::; h; the evaluation
characteristic of an alternatives Am; m ¼ 1; :::; v; on an attribute
Cp; p ¼ 1; :::; n; in time sequence t ¼ t1; t2; :::; tkf g is represented by

the decision matrix Dq tlð Þ ¼ dqmp tð Þ
� �

v
n
; l ¼ 1; 2; :::; k: where

dqmp tð Þ¼ xqdmp
tð Þ; Tq dmp; t

� �
; Iq dmp; t

� �
; Fq dmp; t

� �� �D E
; t ¼ t1; t2; :::; tkf g
wp ¼ 1
h � k

�
TL
p1 xt1
� �

; TU
p1 xt1
� �h i

; ILp1 xt1
� �

; IUp1 xt1
� �h i

; FLp1 xt1
� �

; FUp1 xt1
� �h in o

þ :::þ
TL
ph xth
� �

; TU
ph xth
� �h i

; ILph xth
� �

; IUph xth
� �h i

; FLph xth
� �

; FUph xth
� �h in o

* +
; ð8Þ
taken by DIVNSs evaluated by decision maker Dq.

3.1. Aggregate ratings

Let xmpq tlð Þ ¼ f TL
mpq xtl

� �
; TU

mpq xtl
� �h i

; ILmpq xtl
� �

; IUmpq xtl
� �h i

;

FLmpq xtl
� �

; FUmpq xtl
� �h i

g be the suitability rating of alternative Am

for criterion Cp by decision-maker Dq in time sequence tl; where:
m ¼ 1; :::; v; p ¼ 1; :::; n; q ¼ 1; :::; h; l ¼ 1; :::; k. The averaged suit-

ability rating xmp ¼ TL
mp xð Þ; TU

mp xð Þ�; ILmp xð Þ; IUmp xð Þ�;
hhn

FLmp xð Þ; FUmp xð Þ�
h

g can be evaluated as:
xmp ¼ 1
h � k

�
TL
mpq xt1

� �
; TU

mpq xt1
� �h i

; ILmpq xt1
� �

; IUmpq xt1
� �h i

; FLmpq xt1
� �

; FUmpq xt1
� �h n 

þ :::þ
TL
mpq xtk

� �
; TU

mpq xtk
� �h i

; ILmpq xtk
� �

; IUmpq xtk
� �h i

; FLmpq xtk
� �

; FUmpq xtk
� �h in o

* +
; ð7Þ
where,
Tmp xð Þ ¼ 1 � 1 � 1 �
Xh
q¼1

TL
pmq xtl

� �0
@

1
A
1
h

8>>><
>>>:

9>>>=
>>>;

1
k* +

; 1 � 1 � 1 �
Xh
q¼1

T

0
@

8>>><
>>>:

*
2
66666664
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3.2. Importance weight aggregation

Let xpq tlð Þ ¼ TL
pq xtl
� �

; TU
pq xtl
� �h i

; ILpq xtl
� �

; IUpq xtl
� �h i

; ½
n

FLpq xtl
� �

;

FUpq xtl
� ��g be weight of Dq to criterion Cp in time sequence tl;

where: p ¼ 1; :::; n; q ¼ 1; :::; h; l ¼ 1; :::; k: The average weight

wp ¼ TL
p xð Þ; TU

p xð Þ�; ILp xð Þ; IUp xð Þ�; FLp xð Þ; FUp xð Þ�
hh ohn

can be evaluated

as:
io
U
pmq xtl

� �1A
1
h

9>>>=
>>>;

1
k+

3
77777775
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where,
Tp xð Þ ¼ 1 � 1 � 1 �
Xh
q¼1

TL
pq xtl
� �0

@
1
A
1
h

8>>><
>>>:

9>>>=
>>>;

1
k* +

; 1 � 1 � 1 �
Xh
q¼1

TU
pq xtl
� �0

@
1
A
1
h

8>>><
>>>:

9>>>=
>>>;

1
k* +

2
66666664

3
77777775

Ip xð Þ ¼
Xh
q¼1

ILpq xtl
� �0

@
1
A

1
h � k

;
Xh
q¼1

IUpq xtl
� �0

@
1
A

1
h � k

2
6664

3
7775

Fp xð Þ ¼
Xh
q¼1

FLpq xtl
� �0

@
1
A

1
h � k

;
Xh
q¼1

FUpq xtl
� �0

@
1
A

1
h � k

2
6664

3
7775
3.3. Compute the average weighted ratings

Average weighted ratings of alternatives in tl; are:

Gm ¼ 1
n

Xn
p¼1

xmp � wp ; m ¼ 1; :::; v; p ¼ 1; :::; n; ð9Þ

3.4. Determination of Aþ; A�; dþi and d�i
Interval neutrosophic positive and negative ideal solutions

namely (PIS, Aþ) and (NIS, A�) are:

Aþ ¼ x; 1; 1½ �; 0; 0½ �; 0; 0½ �ð Þf g ð10Þ

A� ¼ x; 0; 0½ �; 1; 1½ �; 1; 1½ �ð Þf g ð11Þ
The distances of each alternative Am; m ¼ 1; . . . ; t from Aþ and

A� in time sequence tl; are calculated as:

dþm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm � Aþ

� �2
r

ð12Þ

d�m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm � A�

� �2
r

ð13Þ

where dþm and d�m represents the shortest and farthest distances of
Am:

3.4. Obtain best coefficient

The best coefficient in time sequence tl; is shown below where
high value indicates closer to interval neutrosophic PIS and farther
from interval neutrosophic NIS:

CCm ¼ d�m
dþm þ d�m

ð14Þ

4. Applications

This section applies the proposed method to evaluate lecturers’
performance in the case study of ULIS-VNU having 11 Faculties, 11
Departments, 09 Functional departments, 05 Centers and 01
Foreign Language Specializing High School with over 700 lecturers
and 8000 high school, undergraduate and graduate students.
Assume that ULIS-VNU needs to evaluate the lecturers’ perfor-
mance. After preliminary screening, five lecturers, i.e. A1; . . . ; A5;
723
and three decision makers, i.e. D1; . . . ; D3; are chosen. Ratings of
five lecturers are done by criteria as total of publications ðC1Þ;
teaching student evaluations ðC2Þ; personality characteristics ðC3Þ;
professional society ðC4Þ; teaching experience ðC5Þ; fluency of
foreign language ðC6Þ.

4.1. Aggregate ratings

Suitability ratings S= {Ve_Po,Po, Me, Go, Ve_Go} in t = {t1, t2, t3} is,
Ve_Po = Very_Poor = ([0.1, 0.2], [0.6, 0.7], [0.7, 0.8]),
Po = Poor = ([0.2, 0.3], [0.5, 0.6], [0.6, 0.7]),
Me = Medium = ([0.3, 0.5], [0.4, 0.6], [0.4, 0.5]),
Go = Good = ([0.5, 0.6], [0.4, 0.5], [0.3, 0.4]),
Ve_Go = Very_Good = ([0.6, 0.7], [0.2, 0.3], [0.2, 0.3]),
Table 1 presents suitability ratings where the aggregated

ratings of lecturers versus criteria are shown at the last column of
Table 1.

4.2. Importance weight aggregation

The importance V = {U_ IPA, O_ IPA, IPA, V_ IPA, A_IPA} in t = {t1,
t2, t3} is:

U_ IPA = ([0.1, 0.2], [0.4, 0.5], [0.6, 0.7]) = Unimportant,
O_IPA = ([0.2, 0.4], [0.5, 0.6], [0.4, 0.5]) = Ordinary_Important,
IPA = ([0.4, 0.6], [0.4, 0.5], [0.3, 0.4]) = Important,
V_IPA = ([0.6, 0.8], [0.3, 0.4], [0.2, 0.3]) = Very_Important,
A_IPA = ([0.7, 0.9], [0.2, 0.3], [0.1, 0.2]) = Absolutely_Important

(Tables 2–4),

4.3. Weighted ratings

Aþ; A�; dþi and d�i

4.4. Determine the lecturer

Table 5 shows the ranking order is A2  A3  A4  A1  A5:

Thus, the best lecturer is A2:

5. Comparison

This section compares the proposed TOPSIS method for DIVSN
with the similarity measures between INSs proposed by Ye [62] to
illustrate the advantages and applicability of the proposed method.
Using Ye’s [62] method and the data in Table 3, the score function,
the accuracy function and the certainty function of the lecturers
are shown in Table 6.



Table 1
Aggregated ratings.

Criteria Lecturers Decision makers Aggregated ratings

t1 t2 t3

D1 D2 D3 D1 D2 D3 D1 D2 D3

C1 A1 Me Go Go Go Go Go Go Ve_Go Go ([0.494, 0.603], [0.370, 0.5], [0.296, 0.4])
A2 Go Go Ve_Go Ve_Go Go Ve_Go Ve_Go Go Ve_Go ([0.558, 0.659], [0.272, 0.4], [0.239, 0.3])
A3 Me Go Go Go Go Go Go Go Ve_Go ([0.494, 0.603], [0.370, 0.5], [0.296, 0.4])
A4 Go Me Go Go Go Go Go Go Go ([0.481, 0.590], [0.400, 0.5], [0.310, 0.4])
A5 Me Go Me Go Go Me Go Go Go ([0.441, 0.569], [0.400, 0.5], [0.330, 0.4])

C2 A1 Go Go Go Ve_Go Go Go Go Go Go ([0.512, 0.613], [0.370, 0.5], [0.287, 0.4])
A2 Ve_Go Go Ve_Go Me Go Go Ve_Go Go Go ([0.518, 0.627], [0.317, 0.4], [0.271, 0.4])
A3 Ve_Go Go Go Go Me Go Go Me Go ([0.474, 0.593], [0.370, 0.5], [0.306, 0.4])
A4 Go Go Go Go Ve_Go Go Go Go Ve_Go ([0.524, 0.625], [0.343, 0.4], [0.274, 0.4])
A5 Ve_Go Go Go Go Ve_Go Go Go Go Me ([0.506, 0.615], [0.343, 0.5], [0.283, 0.4])

C3 A1 Ve_Go Ve_Go Go Go Ve_Go Go Go Me Go ([0.518, 0.627], [0.317, 0.4], [0.271, 0.4])
A2 Go Ve_Go Go Ve_Go Go Ve_Go Go Go Ve_Go ([0.547, 0.648], [0.294, 0.4], [0.251, 0.4])
A3 Go Ve_Go Ve_Go Go Go Go Go Ve_Go Go ([0.536, 0.637], [0.317, 0.4], [0.262, 0.4])
A4 Go Go Go Ve_Go Go Go Ve_Go Go Go ([0.524, 0.625], [0.343, 0.4], [0.274, 0.4])
A5 Ve_Go Go Go Go Ve_Go Go Go Go Go ([0.524, 0.625], [0.343, 0.4], [0.274, 0.4])

C4 A1 Me Go Me Go Go Me Me Go Me ([0.397, 0.547], [0.400, 0.6], [0.352, 0.5])
A2 Go Me Go Go Me Go Go Me Go ([0.441, 0.569], [0.400, 0.5], [0.330, 0.4])
A3 Go Go Go Go Go Me Go Go Ve_Go ([0.494, 0.603], [0.370, 0.5], [0.296, 0.4])
A4 Me Po Me Go Me Me Go Go Me ([0.365, 0.518], [0.410, 0.6], [0.380, 0.5])
A5 Me Me Po Me Me Me Me Go Me ([0.316, 0.494], [0.410, 0.6], [0.405, 0.5])

C5 A1 Me Go Me Me Go Go Go Me Go ([0.419, 0.558], [0.400, 0.5], [0.341, 0.4])
A2 Go Ve_Go Go Ve_Go Go Go Go V_G Go ([0.536, 0.637], [0.317, 0.4], [0.262, 0.4])
A3 Go Go Me Go Go Go Go Ve_Go Go ([0.494, 0.603], [0.370, 0.5], [0.296, 0.4])
A4 Ve_Go Go Go Ve_Go Go Go Ve_Go Go Go ([0.536, 0.637], [0.317, 0.4], [0.262, 0.4])
A5 Go Go Go Go Go Go Go Ve_Go Go ([0.512, 0.613], [0.370, 0.5], [0.287, 0.4])

C6 A1 Ve_Go Go Go Ve_Go Go Ve_Go Ve_Go Go Ve_Go ([0.558, 0.659], [0.272, 0.4], [0.239, 0.3])
A2 Go Go Go Go Ve_Go Ge Go Go Ve_Go ([0.524, 0.625], [0.343, 0.4], [0.274, 0.4])
A3 Ve_Go Go Ve_Go Ve_Go Go Ve_Go Ve_Go Go Ve_Go ([0.569, 0.670], [0.252, 0.4], [0.229, 0.3])
A4 Go Ve_Go Go Go Ve_Go Go Go Go Go ([0.524, 0.625], [0.343, 0.4], [0.274, 0.4])
A5 Go Go Go Ve_Go Go Go Go Ve_Go Go ([0.524, 0.625], [0.343, 0.4], [0.274, 0.4])

Table 2
Aggregated weights.

Criteria Decision-makers Aggregated weights

t1 t2 t3

D1 D2 D3 D1 D2 D3 D1 D2 D3

C1 IPA IPA IPA IPA V_IPA IPA V_IPA IPA V_IPA ([0.476, 0.683], [0.363, 0.5], [0.262, 0.4])
C2 V_IPA V_IPA IPA V_IPA V_IPA V_IPA A_IPA V_IPA V_IPA ([0.595, 0.800], [0.296, 0.4], [0.194, 0.3])
C3 IPA IPA V_IPA IPA IPA V_IPA V_IPA IPA V_IPA ([0.499, 0.706], [0.352, 0.5], [0.251, 0.4])
C4 IPA V_IPA IPA IPA O_IPA IPA IPA IPA IPA ([0.408, 0.613], [0.397, 0.5], [0.296, 0.4])
C5 IPA IPA IPA V_IPA IPA V_IPA IPA IPA IPA ([0.452, 0.657], [0.375, 0.5], [0.274, 0.4])
C6 V_IPA V_IPA IPA IPA IPA IPA V_IPA V_IPA IPA ([0.499, 0.706], [0.352, 0.5], [0.251, 0.4])

Table 3
Weighted ratings.

Lecturers Aggregated weights

A1 ([0.170, 0.397], [0.648, 0.8], [0.545, 0.6])
A2 ([0.190, 0.436], [0.617, 0.7], [0.519, 0.6])
A3 ([0.187, 0.419], [0.642, 0.8], [0.535, 0.6])
A4 ([0.178, 0.400], [0.643, 0.8], [0.538, 0.6])
A5 ([0.173, 0.395], [0.649, 0.8], [0.549, 0.6])

Table 4
The distance of each lecturer from Aþ and A� .

Lecturers dþ d�

A1 0.346 0.675
A2 0.375 0.647
A3 0.359 0.662
A4 0.352 0.668
A5 0.345 0.676

Table 5
Closeness coefficient.

Lecturers Closeness coefficient Ranking

A1 0.339 4
A2 0.367 1
A3 0.351 2
A4 0.345 3
A5 0.338 5

Table 6
Modified score, accuracy and certainty function of each lecturer.

Lecturers Score function Accuracy function Certainty function Ranking

A1 0,332 �0,297 0,283 4
A2 0,361 �0,241 0,313 1
A3 0,345 �0,267 0,303 2
A4 0,339 �0,284 0,289 3
A5 0,331 �0,300 0,284 5
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Table 6 shows that the ranking order of the five lecturers is
A2  A3  A4  A1  A5: Thus, the best lecturer is A2: The result is
the same as that of the proposed method. This means that our
method in the simplest form can procedure the results of the best
method for this problem. Moreover, it is more generalized and
flexible than the Ye’s [62] method in dynamic environments.

6. Conclusion

This paper proposed a new concept of Dynamic Interval Valued
Neutrosophic Set (DIVNS) where all the factors in DIVNSs such as
truth, indeterminacy and falsity degrees are in different ranges of
time. Mathematical operations associated with DIVNSs and
correlation coefficients have also been defined. In addition, we
have proposed a new TOPSIS method based on the DIVNSs and
their application to evaluate lecturers' performance in the ULIS-
VNU. This shows the feasibility and applications of Neutrosophic
Theory in Industry.

In the future, we will use DIVNSs as well as the TOPSIS method
to express dynamic information, and develop additional extention
theories for DIVNSs such as operators, similarity measure. In
addition, we extended this method to predictive problems such as
in [24, 30, 31, 38, 39, 43, 44,46, 47, 48, 50, 63–92].
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Introduction

Initially this article stems from our discussion on math and mysticism, inspired by an article by Ralph Abraham [1]. But it becomes a 
discussion on the role of intuition and inspiration in scientific discovery process.

Hopefully this article will help anyone who aspires to be good scientists or engineers.

Logic and experience

Logic and mystical experiences are exclusive domains that cross over into one another, on occasion, just as everything else does as 
participants in Experiences of the Wholeness, Harmony, Balance, Caring, and Oneness of the Alive Aware Intelligent Conscious Universe. All 
of this partly constitutes the Mind of God, which is vaster and more complex than most human beings are able to even vaguely comprehend. 

For example, from the basis of Bhutatmas, the tiny Consciousness-experiencing creatures that have vast experiential memories, that 
Everything, all fields, all forces, all matter, all life, and the entire of the Infinite Cosmos, results from the activities and agglomerations of 
Bhutatmas, in an Infinite Universe constructed and operated by Intelligent Design. 

According to the Vedic literature on this topic, Divinity resides in the Actually Infinitely Small, which is everywhere and nowhere, at the 
same time. Thus, it can and does act on everything that is and everything that happens. But Divinity has set things up so that Everything 
has Free Will and individual volition. A factor that has been left out of the Vedic literature on the topic of Bhutatmas, is that every Bhutatma 
is Unique, with a unique set of memories of experiences, regarding multiple Realities (not just this one). So, Uniqueness is an absolute in 
all the realms, and all the Realities.

Logic and Experience are mutually exclusive. If you are involved in logic, you are not able to have full and deep experiences of the 
senses and sensitivities, at the same time.

So, there is the Nature World operating in Divine Harmony, and the “people world”, which made from analytical thought. Analytical 
thought separates the human being from being able to directly Experience the Cosmic Harmony, personally. However, Nature is constructed, 
and operates such that human beings can go beyond thought and into Direct Experience of the Cosmic Harmony and the Natural Harmony. 

We hope that by now, the readers have arrived at some cognizant awareness of the differences between analytic thought and experiential 
thought; between the Nature and Divine Ways, and foolish people ways which are based in behavioral ignorance of the All and constrained 
by thought-originated pains and struggles, which result from the “ego”, which is a product of analytical thought.
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Direct experience, inner vision and experiencing God

More “right brain” activity, based on direct experiences, leads to direct experiences of the Divine. Your “inner vision” (the “mind’s eye”) 
can help readers in this, and in many other ways. 

The inner vision is also the seat of many of the intuitive faculties, which are experiencable facts, not imaginings. That means the 
information obtained by the intuitive faculty is verifiable and reproducibly observable.

In order to do that, the Balanced Brain is the most efficacious way to function, as well as the most efficient, and the most comfortable.

To obtain the Balanced Brain, the person usually needs to spend a great deal of their spare time being receptive, being the “receiver”, 
being accepting and exploring, and not using the analytical intellect, but instead, spending time in the Now and in the Senses and 
Sensitivities. This is best enjoyed in Natural settings.

For instance, one of us (RNB) spent one to three hours each day in the Forest in the Experiential State, exploring how Nature works, 
every day for 17 years. Somewhere in those years, he arrived into Transcendent States and Natural Awarenesses. 

Not many people know what the Natural Man is like, because they’ve never experienced it. And they’ve never seen one. The Natural 
Man is removed from all varieties of intellectual indoctrinations and pain-producing ego-based behaviors. 

Lao Tzu calls this condition “An uncarved section of wood”, partly because it is an arrival at the Original State. (How we were when 
we first came here, before all the indoctrinations and traumas started removing us from being who we were when we first came here).

In relation with discovery process, one of us (RNB) distinguishes discovery, soft vision from merging vision. Those three types of vision 
are based on Native American Spiritual Practice. For more explanation on these, see RNB’s article on penetrating insight [8].

The role of intuition and logic in scientific discovery process

Logical analysis is best used when following after an intuition or an “instinct”. An instinct is almost infallible. And once you have trained 
your mind to be attentive to their experience and sense, and they keep an open mind, then many ways of innovations will open their own 
ways to their mind. 

All people got a lot of natural ability and learned skills, so it should be fairly easy for them to start tracking things down. 

This is just the same thing, only better, because it’s about Discovering things and being Creative.

So, now we come to this conclusion: intuition leads to insights and this is actually the source of true discovery like Tesla etc. Logical 
analytic can pursue where the intuition leads them, but not the other way around.

In this train of thought, we can also learn from Neutrosophic Logic as discovered by one of us (FS), which emphasizes that there are 
middle ways, or dynamics of opposites and neutralities in everything we observe [9]. Similarly, in order to condense our discussion on 
the role of intuition and analysis in scientific discovery, let us emphasize that intuition and insight should come first then logical analysis 
can follow through to see what can be done with that intuition. We prefer to call it “intuilytics” process. That is: analytic work inspired by 
intuitions. Although, at first glance it looks difficult, it would be more smooth if we follow this path, not the other way around (intuition 
follows logical-analysis).

In the following section, we will discuss two examples of scientific discovery processes, which hopefully will emphasize our points as 
mentioned above.
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Two examples of scientific discovery process

Learning from Henri Vidal

Let us discuss a novel concept in engineering, called: earth stabilization using Reinforced Earth. Sometimes, earth reinforcement is also 
called mechanically stabilized earth (MSE) [2].

Using straw, sticks, and branches to reinforce adobe bricks and mud dwellings has happened since the earliest part of human history, 
and around 1960s French engineer Sir Henri Vidal invented the modern form of MSE, he termed Terre Armee (reinforced earth). In his 
submission for his patents he covered every possible reinforcement and facing type. Reinforcing levees with branches has been done in 
China for at least a thousand years, and other reinforcements have been universally used to prevent soil erosion. 

Modern use of soil reinforcing for retaining wall construction was pioneered by French architect and engineer Henri Vidal in the 1960s. 
The first MSE wall in the United States was built in 1971 on State Route 39 near Los Angeles. It is estimated that since 1997, approximately 
23,000 MSE walls have been constructed in the world.

How the idea of Reinforced Earth came? It all began like a game, when Henri Vidal, a French highway engineer and architect, was trying 
to build a sandcastle on the beach. But the sand kept on falling off and this led to the idea of reinforcing the construction with pine needles. 
That is how the general principle of Reinforced Earth. From that experience, he went on and wrote his dissertation on La Terre Armee [3]. 

Here we see an example how a direct experience (playing with sand castles) gave an intuition which then leads to a scientific discovery.

Although usually, the materials used in reinforcing earth are metal, plastics or other man-made materials, we can use natural-made 
materials such as bamboo, which is commonly available in many villages in Asia or other tropical countries. 

However, studies on bamboo-earth reinforcement is pretty scarce [4,5].

Learning from Monozukuri

Perhaps you’ve heard of the Japanese word monozukuri (sometimes written as 物作り, but most often written as ものづくり). Literally 
translated, it means to make (zukuri) things (mono). Yet, there is so much meaning lost in translation. A better translation would be 
“manufacturing; craftsmanship; or making things by hand”. However, this translation also does not give justice to the weight and influence 
this idea has in Japan. 

The word itself is quite old and considered to be an original Japanese (i.e., not Chinese or Western-origin) word. Historically, it was 
used in connection with an individual artisan and craftsman who took pride in his or her products.

You probably know of famous artists like Shakespeare, Michelangelo, Picasso, Kahlo, and many more. Now do you know a famous 
potter? No? How about a famous smith? A carpenter? How about a weaver? We’d surprised if you do. We didn’t.

Japan also has its share of famous Japanese artists. Many of them are officially recognized as Living National Treasures (人間国宝 
Ningen Kokuhō) of Japan. They include performing artists like musicians, dancers, and actors in traditional Japanese arts.

Yet another subtle way in which the Japanese express their value for work is in their greetings. At the end of the workday when 
the workers leave the factory, office, or general workplace, the custom greeting to the departing colleague is gokurosama (ご苦労さま), 
meaning thank you for your effort.
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Yet, digging deeper into the Japanese character, this greeting implies more than just effort, directly connecting to hard and physical 
labor. The first kanji 苦 stands for pain, trouble, difficulty, hardship; and the second kanji 労 stands for labor, toil, work, effort. Overall, this 
common message thanks the departing colleague for his hard and demanding physical work, even if the person is only an office worker. 
This is another example in how the value of physical work is deeply ingrained into the Japanese society.

A spin-off of monozukuri is hitozukuri (人作り, making people) for developing people. This includes the lifelong education, training, 
and coaching of people, not only in the classroom but especially at work.

At Nissan they are also kotozukuri (事作り, making stories) for “brand storytelling,” with the goal of entering into “dialogue with the 
customer.” However, this is little used outside of Nissan.

To summarize, the Monozukuri concept embraces more than the literal meaning. It offers the idea of possessing the “spirit to produce 
excellent products and the ability to constantly improve a production system and process”. The concept carries “overtones of excellence, skill, 
spirit, zest, and pride in the ability to make things good things very well. Monozukuri is not mindless repetition; it requires creative minds 
and is often related to craftsmanship which can be earned through lengthy apprenticeship practice rather than the structured course 
curricula taught at traditional schools.” In that sense, Monozukuri is an art rather than science [7].

Again, you see that deep in Japanese original work ethics they put high value on direct experience in work and arts, in other words 
“handcrafting” gets a special value in Japanese culture. 

That partly explains why Japanese people often came out with new products which were simply designed to accommodate a special 
niche, such as Walkman by Sony, which was designed for people who like to enjoy music while walking or doing aerobic in the street 
without having to disturb other people nearby.

Once again, direct experience and hand working can lead to so many types of inventions and also in scientific discoveries.

Concluding Remarks

What we intend to show in this article is that the distinction between the logic and experience is something related to analytics 
function of the left brain and intuitive-wholeness function of the right brain. We suppose the healthy way is to optimise both function of 
left and right brain. 

And similarly, in order to experience God, we shall feel Him intuitively not rationally. 

So, now we come to this conclusion: intuition leads to insights and this is actually the source of true discovery like Tesla etc. Logical 
analysis can pursue where the intuition leads them, but not the other way around.

Using Neutrosophic Logic, we propose a new term for this process: intuilytics.
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ABSTRACT One of the most efficient tools for modeling uncertainty in decision-making problems is the
neutrosophic set (NS) and its extensions, such as complexNS (CNS), interval NS (INS), and interval complex
NS (ICNS). Linguistic variables have been long recognized as a useful tool in decision-making problems
for solving the problem of crisp neutrosophic membership degree. In this paper, we aim to introduce new
concepts: single-valued linguistic complex neutrosophic set (SVLCNS-2) and interval linguistic complex
neutrosophic set (ILCNS-2) that are more applicable and adjustable to real-world implementation than those
of their previous counterparts. Some set-theoretic operations and the operational rules of SVLCNS-2 and
ILCNS-2 are designed. Then, gather classifications of the candidate versus criteria, gather the significance
weights, gather the weighted rankings of candidates versus criteria and a score function to arrange the
candidates are determined. New TOPSIS decision-making procedures in SVLCNS-2 and ICNS-2 are
presented and applied to lecturer selection in the case study of the University of Economics and Business,
Vietnam National University. The applications demonstrate the usefulness and efficiency of the proposal.

INDEX TERMS Lecturer selection, linguistic interval complex neutrosophic set, multi-criteria decision-
making, neutrosophic set.

I. INTRODUCTION
One of the most efficient tools for demonstrating uncertainty
and vagueness in decision making is the NS [1] which is the
more generality of classical set, fuzzy set and intuitionistic
fuzzy set (IFS) by adding three grades of truth, falsehood,
and indeterminacy of a confirmed statement. It has been
employed in various decision making processes such as in
[2]–[8]. Yet, in order to adapt NS with more real com-
plex cases, CNS and INS have been proposed accordingly.
Wang et al. [9] suggested the notion of INSwhich is described
by the degree of truth, falsehood and indeterminacy whose
values and standards are intervals rather than real numbers.
Ali and Smarandache [10] suggested the idiom CNS which

is an expansion form of complex fuzzy set and complex IFS
to handle the unnecessary nature of ambiguity, incomplete-
ness, indefiniteness and changeability in periodic data. These
extensions have been applied to decision making problems
successfully [7].

As an expansion to this trend, Ali et al. [11] have recently
proposed the notion of ICNS by fusing CNS and INS in a
homogeneous way. Therein, the authors defined some set
notional procedures of ICNS such as intersection, union
and complement, and afterwards the operational principles.
A decision-making transaction in ICNS was presented and
applied to green supplier selection [11]. It has been realized
from this research that ICNS with suitable ranking methods
generated from the score, accuracy and certainty functions
can handle the real decision cases that have not been solved
by the relevant works such as of Ye [12]. However, this
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research remains a problem: It is not simple to discover a crisp
neutrosophic membership degree (as in the Single-Valued
Neutrosophic Set (SVN)). In many real applications, we have
to deal with undecided and imprecise information in our
everyday life that could be represented by linguistic variables
instead of the crisp neutrosophic membership degree [13].

The idea of linguistic variables in decision making prob-
lems has been long recognized as a useful approach. Li,
Zhang and Wang [13] advanced two multi-criteria decision-
making (MCDM) techniques in which the interrelationships
among individual data are considered under linguistic neutro-
sophic environments. Fang and Ye [14] gave the connotation
of a linguistic neutrosophic number which is categorized
independently by the truth, indeterminacy, and falsity linguis-
tic variables for multiple attribute group decision-making.
Interval neutrosophic linguistic numbers (INLNs) has also
been defined by Ma, Wang, Wang & Wu [15] for an appli-
cation of practical treatment selection using interval neutro-
sophic linguistic multi-criteria group decision-making. SVN
linguistic trapezoid linguistic aggregation operators were
developed for decisionmaking problems [22]. Ye [24] studied
some aggregation operators of INLNs for multiple attribute
decision making (MADM). Some more literature can be seen
in [4], [16]–[27].

TOPSIS is popular decision making technique for interval
neutrosophic unclear semantic variables [23]. Pouresmaeil et
al. [35] utilized TOPSIS for defining the weights of decision
makers with single valued neutrosophic information. Otay
and Kahraman [36] employed interval neutrosophic TOP-
SIS method to evaluate Six Sigma projects, which aimed
at providing almost defect-free products and/or services to
customers. Pramanik et al. [37] planned TOPSIS method for
MADM under neutrosophic cubic, which is the generalized
form of cubic set and interval neutrosophic set. Liang, Zhao
and Wu [38] designed a new term called linguistic neutro-
sophic numbers and integrated it into TOPSIS for investment
and development of mineral resources. A multi-criteria group
decision-making methodology incorporating power combi-
nation factors, TOPSIS-based QUALIFLEX and life cycle
assessment technique was proposed in [21] to find the key to
green product design selection using neutrosophic linguistic
information. Altinirmak et al. [39] used single valued Neutro-
sophic Set based entropy to rank the banks for analyzing m-
banking quality factors. Eraslan and Çağman [40] combined
TOPSIS and Grey Relational Analysis under fuzzy soft sets
for drug selection. It has been shown that TOPSIS is a well-
known method for decision making under uncertain envi-
ronments of neutrosophic and linguistic [2], [11], [18], [23],
[33], [41], [42]. Howerver, the current research on TOPSIS
model do not mention the period of time when describing
observation data in their model.

Meanwhile, many complex real-world problems about
decision support system in which data contains some charac-
ters such as: uncertain, heterogeneous, inconsistent and have
concerned with the period of time. To consider a financial
corporation or company this chooses to set up novel software

to process and analyses company data. For this, the company
goes into a huddle some experts who give the information
concerning: various choices of software which data process
and analysis in financial fields, corresponding software ver-
sion and other information. Surveying and observing the
software is done within a period of time. After that, the
company desires to select the most favorable alternative of
software with its newest version concurrently. Here, we need
to pay attention two things (a) to choose the best candidate
of software (b) its newest version. This cannot be simplified
accurately using classical concept of Fuzzy Set or NS. So the
preferable way to show all of the information in this problem
is using the theory of Linguistic Variables and ICNS.

In this paper, we aim to introduce new concepts namely
Single-Valued Linguistic Interval Complex Neutrosophic
Set (SVLCNS-2) and Interval Linguistic Interval Com-
plex Neutrosophic Set (ILCNS-2) that are more pliable and
adjustable to real-world implementations than those of their
previous counter parts motivated from the mentioned anal-
ysis. Specifically, we define the SVLCNS-2 and ILCNS-2.
Next, we describe some set notional operations such as the
intersection, union and complement. Moreover, we set the
functioning basics of SVLCNS-2 and ILCNS-2. Then, we
develop gather classifications of candidate versus criteria,
gather the significance weights, gather the weighted classi-
fications of candidates versus criteria and determine a score
function to rank the candidates. Lastly, new TOPSIS decision
making procedures in SVLCNS-2 and ICNS-2 are presented.
Personnel selection plays a crucial role in human resource

administration since the inappropriate personnel might rea-
son various problems affecting productivity, accuracy, pli-
ability and goodness of the products adversely [28]. It is
a complicated process in the meaning that several factors
should be estimated concurrently in order to find the right
people for the appropriate jobs [28]. Personnel selection is
a decision making problem where quality of decision affects
the success of a person in an organization [29]. In the context
of university selection, the consideration for reasonable and
realistic selection measures of adequate candidates and effec-
tive prediction of possible success at university, therefore,
becomes more and more important [30]. It has been long
recognized that measuring of intelligence is no longer enough
as a medium for a person’s skills and success estimation [31].
It is indeed adopted by various factors to judge the suitability
and adaptability of a candidate in a university context. Hence,
developing effective selection or decision making techniques
is critical indeed [32].

The proposed TOPSIS methods are applied to lecturer
selection in the case study of University of Economics and
Business - Vietnam National University (UEB-VNU), which
is one of the leading universities in Hanoi, Vietnam. A
committee of four decision makers (DMs) and six selection
criteria are presented in the application. The applications
demonstrate the usefulness and efficiency of the proposal.

The rest of this paper is prepared as follows. The for-
mulation of SVLCNS-2 and its operations are presented in
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Sections 2 and 3 while ILCNS-2 and operations are given in
Sections 4 and 5. The TOPSIS decisionmaking procedures on
SVLCNS-2 and ILCNS-2 are explained in Section 6. Lastly,
an application of the procedures for lecturer selection on a
real case study is illustrated in Section 7. Section 8 compares
the suggested method with another decision making method.
Conclusions and further studies allocate in Section 9.

II. SINGLE-VALUED LINGUISTIC COMPLEX
NEUTROSOPHIC SET (SVLCNS-2)
Definition 1 (Type-1 Single VALUED Linguistic Complex
Neutrosophic Set (SVLCNS-1)): Let

∐
be a universe of dis-

course and a complex neutrosophic set A included in
∐
. Let

Ş = {Ş1,Ş2, . . . ,Şn, for 2 ≤ ņ < ∞, be a set of totally
ordered labels (therefore the classical min/max operators
work on S), with Şi. < Şj̧ for i. < j̧, where i., j̧ε {1, 2, 3,
. . . , }. Let R̄ = {[Şi.,Şj̧],Şi.,Şj̧∈Ş, i. < j̧} be a set of label
intervals. A single-valued type-1 complex neutrosophic set
(SVLCNS-1) is a setA ⊂

∐
such that each element x in A has

linguistic degree of complex truthmembership TA(x) ∈ S×S,
a linguistic degree of complex indeterminate membership
IA(x) ∈ S × S, and a linguistic degree of complex falsity
membership FA(x) ∈ S × S and sθ (x) ∈ S. A SVLCNS set Ą
can be written as,

Ą = {〈 , [Şθ ( ), (−TĄ( ),
a
I Ą( ),FĄ( ))]〉}

where
−TĄ ( ) = −T1Ą ( )· ej.T2Ą( )
a
I Ą ( ) =

a
I 1Ą ( )· ej.

a
I 2Ą( )

FĄ ( ) = F1Ą ( )· ej.F2Ą( )


where T1A (x) is representing linguistic amplitude truth mem-
bership and ej.T2A(x) is denoting the linguistic phase truth
membership function. Moreover, I1A (x) refers to linguistic
amplitude indeterminate membership while ej.I2A(x) indicates
linguistic phase indeterminate membership. Further, F1A (x)
is called the linguistic amplitude falsity membership and
ej.F2A(x) is said to be the linguistic phase falsehood member-
ship function:

3 ∗ s1 ≤ min {T1A (x)} +min {I1A (x)} +min {F1A (x)} ,
max {T1A (x)} +max {I1A (x)} +max {F1A (x)} ≤ 3 ∗ sn,
3 ∗ s1 ≤ min {T2A (x)} +min {I2A (x)} +min {F2A (x)} ,
max {T2A (x)} +max {I2A (x)} +max {F2A (x)} ≤ 3 ∗ sn.

Definition 2 (Type-2 Single Valued Linguistic Complex
Neutrosophic Set (SVLCNS-2)): Let

∐
be a universe of

discourse and a complex NS A included in
∐
. Let Ş =

{Ş1,Ş2, . . . ,Şn, for >= 2, be a set of ordered labels
with si < sj with i, j ∈ {1, 2, 3, . . . n}. Let R ={[
si, sj

]
, si, sj ∈ S, i < j

}
be a collection of label intervals.

A single-valued type-2 linguistic complex neutrosophic set
(SVLCNS-2) is a set A ⊂

∐
such that each element x in A has

linguistic degree of complex truth membership TA (x) ∈ R,
a linguistic degree of complex indeterminate membership

IA (x) ∈ R, and a linguistic degree of complex falsity mem-
bership FĄ ( ) ∈R̄ and 2θ ( )∈Ş. A SVLCNS set A can be
written as,

Ą =
{〈

,

[
2θ ( ),

(
−TĄ ( ),

a
I Ą ( ),FĄ ( )

)]〉
| ∈5

}
where

−TĄ ( ) = −T1Ą ( )· ej.T2Ą( )
a
I Ą ( ) =

a
I 1Ą ( )· ej.

a
I 2Ą( )

FĄ ( ) = F1Ą ( )· ej.F2Ą( )


where T1A (x) represents the amplitude truth membership
and ej.T2A(x) denotes the phase truth membership func-
tion. Moreover, I1A (x) refers to the amplitude indetermi-
nate membership while ej.I2A(x) indicates the phase inde-
terminate membership function. Further, F1A (x) is called
the amplitude falsity membership and ej.F2A(x) is said to
be the phase falsehood membership function while 0 ≤

−TĄ ( ),
a
I Ą ( ),FĄ ( ) ≤ 3.

Due to complexity of higher computation involved in
SVLCNS-1, in this paper, we will use SVLCNS-2 for devel-
oping the TOPSIS method.
Definition 3: Let Ą and be two SVLCNSs-2 over

∐
which are defined by 〈2θĄ( ), (−TĄ( ),

a
I Ą( ),FĄ( ))〉, and

〈2θ ( ), (−T ( ),
a
I ( ),F ( ))〉, respectively. Their union sig-

nified as Ą∪ and is defined as:

2θ
ĄU.

( ) = 2θ
1ĄU.

( ),

−TĄU. ( ) = −T1ĄU. ( )· e
j.T

2ĄU. ( ),

a
I ĄU. ( ) =

a
I 1ĄU. ( )· e

j.
a
I 2ĄU. ( ),

FĄU. ( ) = F1ĄU. ( )· e
j.F

2ĄU. ( ),

where

2θ
1ĄU.

( ) = ∨

(
2θĄ( ),2θ ( )

)
,

−T1ĄU. ( ) = ∨
(
−TĄ ( ),−T ( )

)
,

−T2ĄU. ( ) = ∨
(
−TĄ ( ),−T ( )

)
,

a
I 1ĄU. ( ) = ^

(
a
I Ą ( ),

a
I ( )

)
,

−T2ĄU. ( ) = ^
(
inf−TĄ ( ), inf−T ( )

)
,

F1ĄU. ( ) = ^
(
FĄ ( ),F ( )

)
,

F2ĄU. ( ) = ^
(
FĄ ( ),F ( )

)
.

for all x ∈ X. The symbols ∨,∧ represents maximize and
minimize operators.
Definition 4: Let Ą and be two SVLCNSs-2 over

∐
which are defined by 〈2θĄ( ), (−TĄ( ),

a
I Ą( ),FĄ( ))〉, and

〈2θ ( ), (−T ( ),
a
I ( ),F ( ))〉, respectively. Their intersec-

tion signified as A ∪ B and is defined as:

2θĄ∩ ( ) = 2θ1Ą∩ ( ),
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−TĄ∩ ( ) = −T1Ą∩ ( )· ej.T2Ą∩ ( ),
a
I Ą∩ ( ) =

a
I 1Ą∩ ( )· ej.

a
I 2Ą∩ ( ),

FĄ∩ ( ) = F1Ą∩ ( )· ej.F2Ą∩ ( ),

where

2θ1Ą∩ ( ) = ^
(
2θĄ( ),2θ ( )

)
,

−T1Ą∧ ( ) = ^
(
−TĄ ( ),−T ( )

)
,

−T2Ą∧ ( ) = ^
(
−TĄ ( ),−T ( )

)
,

a
I 1Ą∩ ( ) = ∨

(
a
I Ą ( ),

a
I ( )

)
,

−T2Ą∪ ( ) = ∨
(
inf−TĄ ( ), inf−T ( )

)
,

F1Ą∩ ( ) = ∨
(
FĄ ( ),F ( )

)
,

F2Ą∩ ( ) = ∨
(
FĄ ( ),F ( )

)
.

for all x ∈ X. The symbols ∨,∧ represents max and min
operators.
Proposition 2: Let Ą and be two SVLCNS-2 over

∐
.

Then
a) ĄU. = U. Ą,
b) Ą ∩ = ∩ Ą,
c) ĄU. Ą = Ą,
d) Ą ∩ Ą = Ą,
Proof: Straightforward.

Proposition 6: Let A,B andC be three SVLCNS-2 over
∐
.

Then
a) ĄU. ( U. ) = (ĄU. ) U. ,
b) Ą∩( ∩ ) = Ą ∩ ,
c) ĄU. ( ∩ ) = (ĄU. ) ∩

(
ĄU.

)
d) Ą∩( U. ) = (Ą ∩ ) U.

(
Ą ∩

)
e) ĄU. ( ∩ ) = Ą,
f) ĄU. (Ą ∩ ) = Ą.
Theorem 7: The SVLCNS-2ĄU. is the minimum set com-

prising together Ą and .
Proof: Straightforward.

Theorem 8: The SVLCNS-2ĄU. is the leading one com-
prised in together Ą and .

Proof: Straightforward.
Theorem 9:LetP be the power set of all SVLCNSs-2. Then

(P,∪,∩) forms a distributive lattice.
Proof: Straightforward.

III. OPERATIONAL RULES OF SVLCNS-2
Let A and B be two SVLCNSs-2 over

∐
which are defined

by 〈2θĄ( ), (−TĄ( ),
a
I Ą( ),FĄ( ))〉, and 〈2θ ( ), (−T ( ),

a
I ( ),F ( ))〉, correspondingly. the operational rules of
SVLCNS-2 are definite as:

a) The product of Ą and signified as

Ą ⊗ = 〈2θĄ⊗ , (−TĄ⊗ ( ),
a
I Ą⊗ ( ),FĄ⊗ ( ))〉, is

defined as:

2θA⊗B(x) = 2θA(x).2θB(x),

[2j,2k ]v = [2jv ,2kv ], v > 0.

TA⊗B (x) = (T1A (x).T1B (x))· ej(T2A(x).T2B(x)),

IĄ⊗ ( ) = (I1Ą ( )+I1 ( )−I1Ą ( ) I1 ( ))

·ej(I2Ą( ).I2 ( )),

FĄ⊗ ( ) = (F1Ą ( )+F1 ( )−F1Ą ( )F1 ( ))

·ej(F2Ą( ).F2 ( )),

b) The addition of Ą and indicated as Ą ⊕ =

〈2θĄ⊕ , (−TĄ⊕ ( ),
a
I Ą⊕ ( ),FĄ⊕ ( ))〉, is well-defined as:

2θA⊕B(x) = 2θA(x) +2θB(x),

TA⊕B (x) = ((T1A (x)+ T1B (x))− (T1A (x).T1B (x)))

·ej(T2A(x)+T2B(x)),

IA⊕B (x) = (I1A (x).I1B (x))· ej(I2A(x)+I2B(x)),

FA⊕B (x) = (F1A (x).F1B (x))· ej(F2A(x)+F2B(x)).

c) The scalar multiplication of A is a SVLCNS-2 denoted
as C = kA defined as:

k2θA(x) = 2kθA(x)

TC (x) =
(
1− (1− T1A(x))k

)
· ej(T2A(x))

k
,

IC (x) =
(
(T1A(x))k

)
· ej(I2A(x))

k
,

FC (x) =
(
(F1A(x))k

)
· ej(F2A(x))

k
.

Proposition 10: Let A and B be two SVLCNSs-2 over∐
which are defined by 〈2θĄ( ), (−TĄ( ),

a
I Ą( ),FĄ( ))〉 and

〈2θ ( ), (−T ( ),
a
I ( ),F ( ))〉, respectively. Then

a) Ą⊗ = ⊗ Ą,
b) Ą⊕ = ⊕ Ą,
c) k(Ą⊗ ) = k( ⊗ Ą),
d) (k1 ⊗ k2)Ą = k1 ⊗ Ąk2Ą.

IV. INTERVAL LINGUISTIC COMPLEX NEUTROSOPHIC
SET (ILCNS-2)
Definition 11: Let

∐
be a universe of discourse and let

S = {s1, s2, . . . , sn}, for ∞ > n ≥ 2, be a collection of
single value, linguistic markers, where s1 < s2 < . . . < sn
and they are the qualitative values of a linguistic variable.
The linguistic relation of order si < sj, means that label si
is less important than label sj An interval linguistic type-2
complex neutrosophic set (ILCNS-2) is a set A ⊂

∐
such that

each element x in A has linguistic degree of complex interval-
membership TA (x) ⊆ R× R, a linguistic degree of complex
interval-indeterminate membership IA (x) ⊆ R × R, and
a linguistic degree of complex interval-falsity membership
FA (x) ⊆ R×R,2θ(x) ∈ S. An ILCNS-2 set A can be written
as,

Ą =
{〈

,

[
2θ ( ),

(
−TĄ ( ),

a
I Ą ( ),FĄ ( )

)]〉
| ∈5

}
,

where

TA (x) =
[
infT1A (x), supT1A (x)

]
· ej[infT2A(x),supT2A(x)]

IA (x) =
[
inf I1A (x), sup I1A (x)

]
· ej[inf I2A(x),sup I2A(x)]

FA (x) =
[
infF1A (x), supF1A (x)

]
· ej[infF2A(x),supF2A(x)]
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where
[
infT1A (x), supT1A (x)

]
represents the interval ampli-

tude truth membership and ej[infT2A(x),supT2A(x)] denotes
the interval phase truth membership function. Moreover,[
inf I1A (x), sup I1A (x)

]
refers to the interval amplitude inde-

terminate membership while ej[inf I2A(x),sup I2A(x)] indicates the
interval phase indeterminate membership function. Further,[
infF1A (x), supF1A (x)

]
is called the interval amplitude fal-

sity membership and ej[infF2A(x),supF2A(x)] is said to be the
interval phase falsehood membership function.
Definition 12: Let A and B be two ILCNSs-2 over

∐
which are defined by 〈 , [2θ( )(−TĄ( ),

a
I Ą( ),FĄ( ))]〉, and

〈 , [2θ ( )(−T ( ),
a
I ( ),F ( ))]〉, respectively . Their union:

ĄU.

= {〈 , [Ş2ĄU. ( ), (−TĄU. ( ),
a
I ĄU. ( ),FĄU. ( ))]〉| ∈5},

is defined as:

2θ
ĄU.

( ) = 2θ
1ĄU.

( ),

−TĄU. ( ) =
[
inf−T1ĄU. ( ), sup−T1ĄU. ( ),

]
·e
j
[
infT

2ĄU. ( )
,supT

2ĄU. ( )
]
,

IĄU. ( ) =
[
inf I1ĄU. ( ), sup I1ĄU. ( ),

]
·e
j
[
infI

2ĄU. ( )
,supI

2ĄU. ( )
]
,

FĄU. ( ) =
[
infF1ĄU. ( ), supF1ĄU. ( ),

]
·e
j
[
infF

2ĄU. ( )
,supF

2ĄU. ( )
]
,

where

2θ1A∪B(x) = ∨
(
θθA(x),2θB(x)

)
,

infT1A∪B (x) = ∨ (infT1A (x), infT1B (x)),

supT1A∪B (x) = ∨ (supT1A (x), supT1B (x)),

inf I1A∪B (x) = ∧ (inf I1A (x), inf I1B (x)),

sup I1A∪B (x) = ∧ (sup I1A (x), sup I1B (x)),

infF1A∪B (x) = ∧ (infF1A (x), infF1B (x)),

supF1A∪B (x) = ∧ (supF1A (x), supF1B (x)),

for all x ∈ X. The symbols ∨,∧ represents max and min
operators, respectively.
Definition 13: Let A and B be two ILCNSs-2 over

∐
which are defined by 〈 , [2θ ( )(−TĄ( ),

a
I Ą( ),FĄ( ))]〉, and

〈 , [2θ ( )(−T ( ), I ( ),F ( ))]〉, respectively. Their inter-
section denoted as, Ą ∩ = {〈 , [2θĄ∩ ( ), (−TĄ∩ ( ),
a
I Ą∩ ( ),FĄ∩ ( ))]〉| ∈5}, is defined as:

2θĄ∩ ( ) = 2θ1Ą∩ ( )

−TĄ∩ ( ) =
[
inf−T1Ą∩ ( ), sup−T1Ą∩ ( ),

]
·ej
[
infT 2Ą∩ ( ),supT 2Ą∩ ( )

]
,

IĄ∩ ( ) =
[
inf I1Ą∩ ( ), sup I1Ą∩ ( ),

]

·ej
[
infI2Ą∩ ( ),supI2Ą∩ ( )

]
,

FĄ∩ ( ) =
[
infF1Ą∩ ( ), supF1Ą∩ ( ),

]
·ej
[
infF2Ą∩ ( ),supF2Ą∩ ( )

]
,

where

2θ1A∩B(x) = ∧
(
2θA(x),2θB(x)

)
,

infT1A∩B (x) = ∧ (infT1A (x), infT1B (x)),

supT1A∩B (x) = ∧ (supT1A (x), supT1B (x)),

inf I1A∩B (x) = ∨ (inf I1A (x), inf I1B (x)),

sup I1A∩B (x) = ∨ (sup I1A (x), sup I1B (x)),

infF1A∩B (x) = ∨ (infF1A (x), infF1B (x)),

supF1A∩B (x) = ∨ (supF1A (x), supF1B (x)),

for all x ∈ X. The symbols ∨,∧ represents max and min
operators, respectively.
Proposition 14:LetĄ and be two ILCNS-2 over

∐
. Then

a) ĄU. = U. Ą,
b) Ą ∩ = ∩ Ą,
c) ĄU. Ą = Ą,
d) Ą ∩ Ą = Ą.
Proof: Straightforward.

Proposition 15: Let A,B and C be three ILCNS over
∐
.

Then
a) ĄU. ( U. ) = (ĄU. ) U. ,
b) Ą∩( ∩ ) = Ą ∩ ,
c) ĄU. ( ∩ ) = (ĄU. ) ∩

(
ĄU.

)
d) Ą∩( U. ) = (Ą ∩ ) U.

(
Ą ∩

)
e) ĄU. ( ∩ ) = Ą,
f) ĄU. (Ą ∩ ) = Ą.
Proof: Straightforward.

Theorem 16: The ILCNS ĄU. is the minimum set com-
prising together Ą and .

Proof: Straightforward.
Theorem 17: The ILCNS A∩B is the leading one enclosed

in Ą and .
Proof: Straightforward.

Theorem 18: Let P be the power set of all ILCNSs.
Then,(P,∪,∩) forms a distributive lattice.

Proof: Straightforward.
Definition 19: Let A and B be two ILCNSs over

∐
which

are defined by Eq. (1, 2), as shown at the top of the next page.
The Hamming and Euclidian distances between two

ILCNS A and B for phase terms are defined as follows by
Eqs. (3, 4), as shown at the top of the next page

A = 〈x, [2θA(x), ([T
L
A (x),T

U
A (x)], [ILA (x), I

U
A (x)],

[FLA (x),F
U
A (x)])]〉

and

B = 〈x, [2θB(x), ([T
L
B (x),T

U
B (x)], [ILB (x), I

U
B (x)],

[FLB (x),F
U
B (x)])]〉,

respectively; where [T LA (x),T
U
A (x)] = [tLA (x), t

U
A (x)]

ej[ω
L
A(x),ω

U
A (x)], [ILA (x), I

U
A (x)] = [iLA(x), i

U
A (x)]e

j[ψL
A (x),ψ

U
A (x)],
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daH (A,B) =
1

6(n−1)
(|θA×tLA−θB×t

L
B |+|θA×t

R
A−θB×t

R
B |

+ |θA×iLA−θB×i
L
B|+|θA×i

R
A−θB×i

R
B|+|θA×f

L
A −θB×f

L
B |+|θA×f

R
A −θB×f

R
B | (1)

daE (A,B)

=

√
1

6(n−1)
((θA×tLA−θB×t

L
B )

2+(θA×tRA−θB×t
R
B )

2+(θA×iLA−θB×i
L
B)

2+(θA×iRA−θB×i
R
B)

2+(θA×f LA −θB×f
L
B )2+(θA×f RA −θB×f

R
B )2)

(2)

dpH (A,B)

= |ωLA(x)−ω
L
B(x)|+|ω

R
A(x)−ω

R
B(x)|+|ψ

L
A (x)−ψ

L
B (x)|+|ψ

R
A (x)−ψ

R
B (x)|+|φ

L
A (x)−φ

L
B (x)|+|φ

R
A (x)−φ

R
B (x)| (3)

dpE (A,B)

=

√
(ωLA(x)−ω

L
B(x))

2+(ωRA(x)−ω
R
B(x))

2+(ψL
A (x)−ψ

L
B (x))

2+(ψR
A (x)−ψ

R
B (x))

2+(φLA (x)−φ
L
B (x))

2+(φRA (x)−φ
R
B (x))

2 (4)

[FLA (x),F
U
A (x)] = [f LA (x), f

U
A (x)]ej[φ

L
A (x),φ

U
A (x)], [T LB (x),

TUB (x)] = [tLB (x), t
U
B (x)]ej[ω

L
B(x),ω

U
B (x)]

, [ILB (x), I
U
B (x)] =

[iLB(x), i
U
B (x)]e

j[ψL
B (x),ψ

U
B (x)]

, [FLA (x),F
U
A (x)] = [f LA (x), f

U
A (x)]

ej[φ
L
A (x),φ

U
A (x)].

The Hamming and Euclidian distances between two
ILCNS A and B for amplitude terms are well-defined as:

V. OPERATIONAL RULES OF ILCNS
Let A and B be two ILCNSs over

∐
which are illustrated

by
〈
x,
[
2θA(x), (TA (x), IA (x),FA (x))

]〉
and 〈x, [2θB(x),

(TB (x), IB (x),FB (x))]〉 respectively. Then, the operational
rules of ILCNS-2 are illustrated as:

a) The product of A and B indicated as

A⊗ B =
〈
x,
[
2θA⊗B(x), (TA⊗B (x), IA⊗B (x),FA⊗B (x))

]〉
is defined as:

2θA⊗B(x) = 2θA(x).2θB(x)

TA⊗B (x) = (infT1A (x). infT1B (x))· ej(infT2A(x). infT2B(x))

TA⊗B (x) = (supT1A (x). supT1B (x))· ej(supT2A(x). supT2B(x))

IA⊗B (x) = (inf I1A (x). inf I1B (x))· ej(inf I2A(x). inf I2B(x))

IA⊗B (x) = (sup I1A (x). sup I1B (x))· ej(sup I2A(x). sup I2B(x))

FA⊗B (x) = (infF1A (x). infF1B (x))· ej(infF2A(x). infF2B(x))

FA⊗B (x) = (supF1A (x). supF1B (x))· ej(supF2A(x). supF2B(x))

b) The addition of A and B denoted as

A⊕ B =
〈
x,
[
2θA⊕B(x), (TA⊕B (x), IA⊕B (x),FA⊕B (x))

]〉
is defined as:

2θA⊕B(x) = 2θA(x) +2θB(x),

TA⊕B (x) =
(
(infT1A (x)+ infT1B (x))
− (infT1A (x). infT1B (x))

)
·ej(infT2A(x)+infT2B(x))

TA⊕B (x) =
(
(supT1A (x)+ supT1B (x))
− (supT1A (x). supT1B (x))

)
·ej(supT2A(x)+supT2B(x)),

IA⊕B (x) = (inf I1A (x). inf I1B (x))· ej(inf I2A(x)+inf I2B(x)),

IA⊕B (x) = (sup I1A (x). sup I1B (x))· ej(sup I2A(x)+sup I2B(x)),

FA⊕B (x) = (infF1A (x). infF1B (x))· ej(infF2A(x)+infF2B(x)),

FA⊕B (x) = (supF1A (x). supF1B (x))· ej(supF2A(x)+supF2B(x)).

c) The scalar multiplication of A is an ILCNS-2 denoted as
C = kA is defined as:

k2θA(x) = 2kθA(x),

infTC (x) =
(
1− (1− infT1A(x))k

)
· ejk infT2A(x),

supTC (x) =
(
1− (1− supT1A(x))k

)
· ejk supT2A(x),

inf IC (x) =
(
(infT1A(x))k

)
· ejk infT2A(x),

sup IC (x) =
(
(supT1A(x))k

)
· ejk supT2A(x),

infFC (x) =
(
(infF1A(x))k

)
· ejk infF2A(x),

supFC (x) =
(
(supF1A(x))k

)
· ejk supF2A(x).

Proposition 20: Let A and B be two SVLCNSs-2 over∐
which are defined by

〈
2θA(x), (TA (x), IA (x),FA (x))

〉
, and〈

2θB(x), (TB (x), IB (x),FB (x))
〉
respectively. We have

a) A⊗ B = B⊗ A,
b) A⊕ B = B⊕ A,
c) k (A⊗ B) = k (B⊗ A), (k1 ⊗ k2)A = k1A⊗ k2A.

VI. A TOPSIS MODEL FOR SVLCNS-2 AND ILCNS-2
For simplicity, we only describe the model for ILCNS-2.
The model for SVLCNS-2 can be deduced similarly. Let
us suppose that a team of h DMs (Dq, q = 1, . . . , h) is
accountable for assessing m alternatives (Am,m = 1, . . . , t)
under p selection criteria (Cp, p = 1, . . . , n), the stages of the
proposed TOPSIS technique are as:

A. AGGREGATE RATINGS OF ALTERNATIVES VERSUS
CRITERIA
Let

xmpq =

〈
x,

2θmpq (x)
 [T Lmpq(x),T

U
mpq(x)],

[ILmpq(x), I
U
mpq(x)],

[FLmpq(x),F
U
mpq(x)]


〉

(5)
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Tmp(x) =

1−
1−

h∑
q=1

T L
pmq

(x)

 1
h

, 1−

1−
h∑

q=1

T R
pmq

(x)

 1
h
 ej

[
1
h

h∑
q=1

wLmq(x),
1
h

h∑
q=1

wUmq(x)

]

Imp(x) =


 h∑
q=1

IL
pmq

 1
h

,

 h∑
q=1

IR
pmq

 1
h
 ej

[
1
h

h∑
q=1

ψL
mq(x),

1
h

h∑
q=1

ψU
mq(x)

]

Fmp(x) =


 h∑
q=1

FL
pmq

 1
h

,

 h∑
q=1

FR
pmq

 1
h
 ej

[
1
h

h∑
q=1

φLmq(x),
1
h

h∑
q=1

φUmq(x)

]

be the suitability assessment allocated to alternative Am
by DM Dq for criterion Cp, where: [T Lmpq,T

U
mpq] =

[tLmpq, t
U
mpq] · e

j[ωLmpq(x),ω
U
mpq(x)], [ILmpq, I

U
mpq] = [iLmpq, i

U
mpq] ·

ej[ψ
L
mpq(x),ψ

U
mpq(x)], [FLmpq,F

U
mpq]= [f

L
mpq, f

U
mpq]·e

j[φLmpq(x),φ
U
mpq(x)],

m = 1, . . . , t;P= = 1, . . . , = 1, . . . , Using the
operational rules of the ILCNS, the averaged suitability

rating xmp =

〈
x,

2θmp (x)
 [T Lmp(x),T

U
mp(x)],

[ILmp(x), I
U
mp(x)],

[FLmp(x),F
U
mp(x)]


〉
can be

evaluated Tmp(x), Imp(x),Fmp(x), as shown at the top of the
this page.

B. AGGREGATE THE IMPORTANCE WEIGHTS
Let

wpq =

〈
x,

2ρpq (x)
 [T Lpq(x),T

U
pq(x)],

[ILpq(x), I
U
pq(x)],

[FLpq(x),F
U
pq(x)]


〉

be the weight allocated by DM Dq to criterion Cp,
where [T Lpq,T

U
pq] = [tLpq, t

U
pq] · e

j[ωLpq(x),ω
U
pq(x)], [ILpq, I

U
pq] =

[iLpq, i
U
pq] · e

j[ψL
pq(x),ψ

U
pq(x)], [FLpq,F

U
pq] = [f Lpq, f

U
pq ] ·

ej[φ
L
pq(x),φ

U
pq(x)], FUpq = f Upq ·e

j[φLpq(x),φ
U
pq(x)],P= = 1, . . . , =

1, . . . , Using the operational rules of the ILCNS, the average

weight wp =

〈
x,

2ρp (x)
 [T Lp (x),T

U
p (x)],

[ILp (x), I
U
p (x)],

[FLp (x),F
U
p (x)]


〉
can be

evaluated as:

wp = (
1
h
)⊗ (wp1 ⊕ wp2 ⊕ . . .⊕ wph), (6)

where

Tp(x)

=


1−

1−
h∑

q=1

T L
pq
(x)

 1
h

,

1−

1−
h∑

q=1

T R
pq
(x)

 1
h


e
j

[
1
h

h∑
q=1

wLq (x),
1
h

h∑
q=1

wUq (x)

]

Ip(x)

=


 h∑
q=1

IL
pq

 1
h

,

 h∑
q=1

IR
pq

 1
h
 ej

[
1
h

h∑
q=1

ψL
q (x),

1
h

h∑
q=1

ψU
q (x)

]

Fp(x)

=


 h∑
q=1

FL
pq

 1
h

,

 h∑
q=1

FR
pq

 1
h
 ej

[
1
h

h∑
q=1

φLq (x),
1
h

h∑
q=1

φUq (x)

]

C. AGGREGATE THE WEIGHTED RATINGS OF
ALTERNATIVES VERSUS CRITERIA
The weighted ratings of alternatives can be advanced via the
operations of ILCNS as follows:

Gm =
1
n

n∑
p=1

xmp ∗ wp, m = 1, . . . , t; p = 1, . . . , n. (7)

D. CALCULATION OFA+, A−, d+i AND d−i
The positive-ideal solution (FPIS, A+) and fuzzy negative
ideal solution (FNIS, A−) are obtained as Eq. (8, 9), as shown
at the top of the next page. The distances of each alternative
Am,m = 1, . . . , t from A+ and A− for the amplitude terms
and the phase terms are calculated as:

da+m =
√
(Gam − Aa+)2 (10)

da−m =
√
(Gam − Aa−)2 (11)

dp+m =
√
(Gpm − Ap+)2 (12)

dp−m =
√
(Gpm − Ap−)2 (13)

where da+m , dp+m characterizes the shortest distances of candi-
date Am, and da−m , dp−m , characterizes the farthest distance of
candidate Am.

E. OBTAIN THE CLOSENESS COEFFICIENT
The closeness coefficients for the amplitude terms and the
phase terms of every candidate, which are cleared to define
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A+ =
〈
x,
{
2max(θmpq,ρpq)(x)([1, 1]e

jmax([ωLmpq(x).ω
L
pq(x),ω

U
mpq(x).ω

U
pq(x)]), [0, 0], [0, 0]

}〉
(8)

A− =
〈
x,
{
2min(θmpq,ρpq) (x)([0, 0], [1, 1]e

jmax([ψLmpq(x).ψ
L
pq(x),ψ

U
mpq(x).ψ

U
pq(x)])

, [1, 1]ejmax([φLmpq(x).φ
L
pq(x),φ

U
mpq(x).φ

U
pq(x)])

}〉
(9)

the classification order of all candidates, are calculated as:

CCa
i =

da−i
da+i + d

a−
i

(14)

CCp
i =

dp−i
dp+i + d

p−
i

(15)

A higher value of the closeness coefficient designates that
an candidate is closer to PIS and farther from NIS con-
currently. Let A1 and A2 be any two ILCNS-2. Then, the
classification method can be cleared as follows:

If CCa
A1
> CCa

A2
then A1 > A2

If CCa
A1
= CCa

A2
and CCp

A1
> CCp

A2
then A1 > A2

If CCa
A1
= CCa

A2
and CCp

A1
= CCp

A2
then A1 = A2.

VII. AN APPLICATION OF THE PROPOSED TOPSIS
METHOD
This section applies the proposed TOPSISmethod for lecturer
selection in the case of University of Economics and Business
- Vietnam National University (UEB-VNU), which is one
of the leading universities in Hanoi, Vietnam. Assume that
UEB-VNU need to choose an alternative for the teaching
position. Data were gathered by conducting semi-structured
discussions with UEB-VNU’s Board of management, Office
of Human resources and department head. A commission
of four DMs, i.e. D1, . . . ,D3, and D4, were requested to
distinctly proceed to their own evaluation for the significance
weights of selection criteria and the ratings of four poten-
tial alternatives. Based on the discussion with the commis-
sion members, six selection criteria are considered including
number of publications (C1), quality of publications (C2),
personality factors (C3), activity in professional society (C4),
classroom teaching experience (C5), and fluency in a foreign
language (C6). The computational proceeding is concised as
follows.

A. AGGREGATION OF THE RATINGS OF CANDIDATES
VERSUS CRITERIA
Four DMs decide the suitability rankings of four potential
alternatives versus the criteria using the ILCNS 2 ={21=

VP, 22 = P,23 = M ,24 = G,25= VG}
where VP = Very Poor =< (21, ([0.1, 0.2]ej[0.5,0.6],
[0.6, 0.7]ej[0,4,0.5], [0.6, 0.7]ej[0.3,0.4])) >,P = Poor
=< (22, ([0.2, 0.3]ej[0.6,0.7], [0.5, 0.6]ej[0.5,0.6], [0.6,
0.7]ej[0.4,0.5])) >,M=Medium=< (23, ([0.3, 0.5]ej[0.7,0.8],
[0.4, 0.6]ej[0.6,0.7],[0.4, 0.5]ej[0.5,0.6])) >,G =

Good =< (24, ([0.5, 0.6]ej[0.8,0.9], [0.4, 0.5]ej[0.7,0.8],
[0.3, 0.4]ej[0.6,0.7])) >, and VG = Very Good =<
(25, ([0.6, 0.7]ej[0.9,1.0], [0.2, 0.3]ej[0.8,0.9], [0.2,

0.3]ej[0.7,0.8])), to evaluate the appropriateness of the candi-
dates under six criteria.
Table 1 presents the suitability rankings of four alternatives

(Ą1, Ą2, Ą3, Ą4) versus six criteria (C1, ..,C6) from four
DMs ( 1, 2, 3, 4) using the ILCNS. Using Eq. (5), the
aggregated ratings of the candidates versus the criteria from
the DMs are shown at the last column of Table 1.

B. AGGREGATE THE IMPORTANCE WEIGHTS
After defining the lecturer assortment criteria, the com-
mission members are asked to define the level of sig-
nificance of every criterion using the ILCNS, V =

{v1 = UI, v2 = OI, v3 = I, v4 = VI, v5 = AI},
where UI = Unimportant =< (v1, ([0.1, 0.2]ej[0.4,0.5], [0.4,
0.5]ej[0.3,0.4], [0.6, 0.7]ej[0.2,0.3])) >, OI = Ordinary Impor-
tant =< (v2, ([0.2, 0.4]ej[0.5,0.6], [0.5, 0.6]ej[0.4,0.5], [0.4,
0.5]ej[0.3,0.4])) >, I = Important=< (v3, ([0.4, 0.6]ej[0.6,0.7],
[0.4, 0.5]ej[0.5,0.6], [0.3, 0.4]ej[0.4,0.5])) >, VI = Very
Important =< (v4, ([0.6, 0.8]ej[0.7,0.8], [0.3, 0.4]ej[0.6,0.7],
[0.2, 0.3]ej[0.5,0.6])) >, and AI = Absolutely Impor-
tant =< (v5, ([0.7, 0.9]ej[0.8,0.9], [0.2, 0.3]ej[0.7,0.8], [0.1,
0.2]ej[0.6,0.7])) >.
Table 2 shows the significance weights of the six criteria

from the four DMs. The gathered weights of criteria attained
by Eq. (6) are displayed in the last column of Table 2.

C. AGGREGATE THE WEIGHTED RATINGS OF
ALTERNATIVES VERSUS CRITERIA
Table 3 presents the weighted ratings of alternatives of each
candidate using Eq. (7).

D. CALCULATION OF A+, A−, d+i AND d−i
As presented in Table 4, the distance of each candidate from
A+ and A− for the amplitude term and the phase term can be
calculated using Eqs.(8-13).

E. OBTAIN THE CLOSENESS COEFFICIENT
The closeness coefficients of each alternative can be com-
puted by Equations (14)-(15), as shown in Table 5. Therefore,
the ranking order of the four candidate is A1 � A4 � A3 �
A2. Consequently, the best candidate is A1.
The ILCNS is the generalization of ILNS and ICNS. Obvi-

ously, the extended decision making methods in [10], [12],
[23], [25] are the special cases of the proposal in this paper.

F. SENSITIVITY ANALYSIS
A sensitivity analysis was performed to investigate the impact
of criteria weights on the ranking of the candidates (lecturers).
The detail of scenarios are shown in Table 6. The results show
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TABLE 1. Aggregated ratings of lecturers versus the criteria.
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TABLE 2. The importance and aggregated weights of the criteria.

TABLE 3. Weighted assessments of each candidate.

TABLE 4. The distance of every alternative from A+ and A−.

TABLE 5. Closeness coefficients of candidates.

that eight out of eleven scenarios, the candidate is ranked
either as the first or the second candidate. This confirms
domination of the candidate A1 compared to other alterna-
tives. Therefore, the candidate selection decision is relatively
insensitive to criteria weights.

VIII. COMPARISON OF THE SUGGESTED METHOD WITH
ANOTHER DECISION MAKING METHOD
This section compares the proposed TOPSIS decisionmaking
procedure in ICNS with a different MCDM methodology to

illustrate applicability and its advantages. We recall an exam-
ple explored by Sahin and Yigider [33] in which a production
industry wishes to choose and assess their suppliers. In this
model, four DMs (D1, . . . ,D4) have been selected to valuate
five suppliers (S1, . . . , S5) with respect to five performance
criteria including delivery (C1), quality (C2), flexibility (C3),
service (C4) and price (C5). The information of weights
provided to the five criteria by the four DMs are offered in
Table 7. The gathered weights of criteria gained by Eq. (4)
are displayed in the last column of Table 7.
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TABLE 6. Scenarios for sensitivity analysis.

TABLE 7. The significance and aggregated weights of the criteria.

The averaged ratings of suppliers versus the criteria are
shown in Table 8.

Table 9 shows the last fuzzy valuation values of every
supplier using Eq. (7).

The distance of each supplier from A+ and A− for the
amplitude term and the phase term can be calculated using
Eqs. (8-13) as shown in Table 10.

The closeness coefficients of each supplier can be cal-
culated by Eqs. (14-15), as shown in Table 11. Therefore,
the ranking order of the five suppliers is A5 � A2 �
A3 � A4 � A1.
The result indicates that there is a slightly different among

the rating order of suppliers using the suggested method and
Sahin and Yigider [33]. This is due to the proposed technique
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TABLE 8. Aggregated evaluations of suppliers versus the criteria.
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TABLE 9. The last fuzzy valuation values of every supplier.

TABLE 10. The distance of each supplier from A+ and A−.

TABLE 11. Closeness coefficients of suppliers.

applying the ILCNS, which is the generalization of ILNS,
ICNS and INS.

IX. CONCLUSIONS
Linguistic based strategies are very useful tool in decision
making problems for solving the problem of crisp values. In
this paper, we proposed the Single-Valued Linguistic Interval
Complex Neutrosophic Set (SVLCNS) and Interval Linguis-
tic Interval Complex Neutrosophic Set (ILCNS) for decision
making under uncertainty situations. Some basic set notional
operations such as the intersection, union and complement
as well as the functioning rules of SVLCNS and ILCNS
were also defined of the proposed framework. Moreover, we
also developed a new TOPSIS decision making method in
SVLCNS and ICNS that was applied to lecturer selection
problem for the case study of (UEB-VNU) with four DMs
and six selection criteria. It has been explained throughout the
elaborated computation in the application that the suggested
decision making methods are efficient.

Further works of this research involve deriving variants
of the TOPSIS methods in terms of multi-attribute deci-
sion making [11], [43]–[48]. Strategies for decision sup-
port in real-time and dynamic decision-making tasks are
also our next target. In the follow up study, this work
can be extended to the triangular and trapezoidal linguis-
tic numbers of SVLCNS and ILCNS. Several types of
similarity measures can be utilized to extend the pro-
posed framework in the near future. The different types of
correlation coefficients can also be studied in this regard.
Linguistic complex interval neutrosophic prioritized aggre-
gation operators can be designed for decision making issues
based on the proposed work. Some other types of aggre-
gation operators such as Hammy mean operators, weighted
aggregation operators, arithmetic and harmonic aggregation
operators, power aggregation operators etc. can be devel-
oped in the follow up works. Moreover, linguistic hesitant
complex interval neutrosophic set can be another possi-
ble study in this regard. The proposed framework can be
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embedded in soft set to develop linguistic complex interval
neutrosophic set.

APPENDIX
This section reviews some basic notions and definitions
of neutrosophic set, single-value neutrosophic set, interval-
valued complex neutrosophic set and single-valued neutro-
sophic linguistic variable as follows [1], [9], [10], [13]:

Let U be a universe of discourse and a set N ⊂ U, such that

N = {x(TA(x), IA(x),FA(x)), x ∈ U},

where TA(x), IA(x),FA(x) ⊆ [0, 1] are real subsets, for all
x ∈ U, is called a neutrosophic set (NS)

If TA(x), IA(x),FA(x) ∈ [0,1] are real (crisp) numbers, for
all x ∈ U, then N is called a single-valued neutrosophic set
(SVNS).

If TA(x), IA(x),FA(x) ⊆ [0, 1] are real intervals, for all
x ∈ U, then N is called a interval-valued neutrosophic set
(IVNS).

If CN = {x(T1A(x)e^ (jT 2A(x)), I1A(x)e^ (jI 2A(x)),
F1A(x)e^ (jF 2A(x)), x ∈ U }, where T1A(x),T2A(x),
I1A(x), I2A(x),F1A(x), F2A ⊆ [0, 1] are real subsets, for all
x ∈ U, then CN is called a complex neutrosophic set (CNS).

If T1A(x),T2A(x), I1A(x), I2A(x),F1A(x),F2A ∈ [0, 1] are
real (crisp) numbers, for all x ∈ U, then CN is called a single-
valued complex neutrosophic set (SVCNS).

If T1A(x),T2A(x), I1A(x), I2A(x),F1A(x),F2A ⊂ [0, 1] are
real intervals, for all x ∈ U, then CN is called a interval-
valued complex neutrosophic set (IVCNS).
Let U be a universe of discourse and S = {s1, s2, . . . , sn}

be a set of labels. A single-valuedlinguistic variable (L) with
respect to the attribute A is defined as:

L: U→ S,L(x) = sx ∈ {s1, s2, . . . , sn}.

A single-valuedneutrosophic linguistic variable (NL) with
respect to the attribute A is defined as:

NL: U→ S3, NL (x) = (tx, ix, fx),

where tx, ix, fx ∈ {s1, s2, . . . , sn},

and tx represents the positive degree of the element x with
respect to the attribute A, ix represents the indeterminate
degree of the element x with respect to the attribute A, while
fx represents the false degree of the element x with respect to
the attribute A.
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Abstract In this paper, we first introduce novel concepts

of m-polar neutrosophic set (MPNS) and topological

structure on m-polar neutrosophic set by combining the m-

polar fuzzy set (MPFS) and neutrosophic set. Then, we

investigate several characterizations of m-polar neutro-

sophic set and establish its various operations with the help

of examples. We propose score functions for the compar-

ison of m-polar neutrosophic numbers (MPNNs). We

establish m-polar neutrosophic topology and define inte-

rior, closure, exterior, and frontier for m-polar neutrosophic

sets (MPNSs) with illustrative examples. We discuss some

results with counter examples, which hold for classical set

theory, but do not hold for m-polar neutrosophic set theory.

We introduce a cosine similarity measure and a set theo-

retic similarity measure for m-polar neutrosophic sets

(MPNSs). Furthermore, we present three algorithms for

multi-criteria decision-making (MCDM) in medical diag-

nosis and clustering analysis under uncertainty by using m-

polar neutrosophic sets (MPNSs) and m-polar neutrosophic

topology. Lastly, we present advantages, validity, flexibil-

ity, and comparison of our proposed algorithms with the

existing techniques.

Keywords m-Polar neutrosphic set � Score functions for

MPNNs � m-Polar neutrosphic topological space �
Similarity measures for MPNSs � Multi-criteria decision-

making for medical diagnosis � Multi-criteria decision-

making for clustering analysis

1 Introduction and Background

Multi-criteria decision-making (MCDM) is a process that

explicitly evaluates best alternative(s) among the feasible

options. In archaic times, decisions were framed without

handling the uncertainties in the data, which may lead to

inadequate results to the real-life operational situations. If

we amass the data and deduce the result without handling

hesitations, then given results will be ambivalent, indefi-

nite, or equivocal. MCDM is an integral part in modern

management, business, medical diagnosis, and many other

real-world problems. Essentially, rational or sound decision

is necessary for a decision-maker. Every decision-maker

takes hundreds of decisions subconsciously or consciously

making it as the central part of his execution. Medical

diagnosis with MCDM provides solutions for the doctors to

determine symptoms of disease and kind of illness. MCDM

is used in solving problems that contain complex and

multiple criteria. In MCDM, we have to identify the

problem by determining the possible alternatives, evaluate

each alternative based upon the criteria given by the

decision-maker or group of decision-makers and lastly

select the best alternative. MCDM problems under fuzzy

environment were first introduced by Bellman and Zadeh

in (1970) [4]. A number of useful mathematical tools such

as fuzzy sets, m-polar fuzzy sets, neutrosophic sets, and

soft sets have been developed to deal with uncertainties and

ambiguities for multi-criteria decision-making problems.
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Zadeh introduced fuzzy set [48] as a significant math-

ematical model to characterize and assembling of the

objects whose boundary is ambiguous. A fuzzy set F in the

reference setQ is represented by a mapping r : Q ! ½0; 1�.
In real-life problems, we face various situations including

uncertainties and ambiguities. For instance, if we speak

about the ‘‘beautiful cities of a country’’ then the exact

decision is ambiguous. Some cities are very beautiful,

some of them are medium beautiful, and some are less

beautiful. The criteria of being ‘‘beautiful’’ can be changed

according to the decision-maker’s choice. In these situa-

tions, the classical set theory fails and we use fuzzy set

theory to treat these type of hesitations in the decision-

making problems. We use linguistic terms to relate a real-

world situation to the fuzzy numeric value and accumulate

the input in the form of fuzzy numbers or fuzzy sets.

After Zadeh, many extensions of fuzzy sets have been

presented and investigated such as, intuitionistic fuzzy sets

(IFSs) [3], single valued neutrosophic sets (SVNSs)

[28–30, 35], picture fuzzy sets [8], bipolar fuzzy sets

(BPFSs) [50–52], m-polar fuzzy sets (MPFSs) [5], interval-

valued fuzzy sets (IVFSs) [49], and Pythagorean fuzzy sets

(PFSs) [42–44]. A neutrosophic set N is defined by

N ¼ fh1;Að1Þ;Sð1Þ;Yð1Þi; 1 2 Qg, where A;S;Y :

Q !��0; 1þ½ and �0�Að1Þ þSð1Þ þYð1Þ� 3þ. The

neutrosophic set yields the value from real standard or non-

standard subsets of ��0; 1þ½. It is difficult to utilize these

values in daily life science and technology problems. Con-

sequently, the neutrosophic set which takes the value from

the subset of [0, 1] is to be regarded here. An abstraction of

bipolar fuzzy set was inaugurated by Chen [5] named as

MPFS. An MPFS C in a non-empty universal set Q is a

function C : Q ! ½0; 1�m, symbolized by C ¼
fh1;PioKð1Þi : 1 2 Q; i ¼ 1; 2; 3; . . .;mg where Pi :

½0; 1�m ! ½0; 1� is the ith projection mathematical function

ði 2 mÞ.C/ð1Þ ¼ ð0; 0; . . .; 0Þ is the smallest value in ½0; 1�m ,
and C

eX
ð1Þ ¼ ð1; 1; . . .; 1Þ is the greatest value in ½0; 1�m.

In the last few decades, many mathematicians worked

on similarity measures, correlation coefficients, topological

spaces, aggregation operators, and decision-making appli-

cations. These structures have different formulae according

to the different sets and give better solutions to decision-

making problems. It has numerous applications in the field

of pattern recognition, medical diagnosis, artificial intelli-

gence, social sciences, business, and multi-attribute deci-

sion-making problems.

Akram et al. [1] presented certain applications of m-

polar fuzzy sets in the decision-making problems. Ali

et al. [2] presented various properties of soft sets and rough

sets with fuzzy soft sets. Garg [10] introduced new gen-

eralized Pythagorean fuzzy information aggregation using

Einstein operations and established its application to

decision-making problems. Garg [11] introduced general-

ized intuitionistic fuzzy interactive geometric interaction

operators using Einstein t-norm and t-conorm and their

application to decision-making. Karaaslan [15] introduced

neutrosophic soft sets with its applications in decision-

making. Xu et al. [41] established clustering algorithm for

intuitionistic fuzzy sets and presented its applications for

clustering. Jose and Kuriaskose [14] investigated aggre-

gation operators with the corresponding score function for

MCDM in the context of IFNs. Mahmood et al. [19]

established generalized aggregation operators for cubic

hesitant fuzzy numbers (CHFNs) and use it into MCDM

problems. In 1968, Chang [7] introduced fuzzy topology on

fuzzy sets. After fuzzy topology, many researchers have

been introduced topologies and their properties on different

hybrid structures of fuzzy sets. Pao-Ming and Ying-Ming

[20, 21] introduced the structure of neighborhood of fuzzy-

point. They provided the concept of fuzzy quasi-coincident

and Q-neighborhood. They also discussed important

properties of fuzzy topological space by using fuzzy

Q-neighborhood. Shabir and Naz [31] established soft

topological spaces. Deli et al. [9] introduced bipolar neu-

trosophic sets and their application based on multi-criteria

decision-making problems. Riaz and Hashmi [23–25]

developed fixed point theorems of fuzzy neutrosophic soft

(FNS) mapping with its decision-making. They established

multi-attribute group decision-making (MAGDM) for

agribusiness by using various cubic m-polar fuzzy aver-

aging aggregation operators. They introduced a novel

structure of linear Diophantine fuzzy set as a generalization

of intuitionistic fuzzy set, Pythagorean fuzzy set, and

q-rung orthopair fuzzy set with its applications in multi-

attribute decision-making problems. Riaz et al. [26, 27]

introduced N-soft topology and its applications to multi-

criteria group decision-making (MCGDM). They estab-

lished cubic bipolar fuzzy ordered weighted geometric

aggregation operators and presented their applications by

using internal and external bipolar fuzzy information.

Feng et al. [12, 13] introduced properties of soft sets

combined with fuzzy soft sets and multi-attribute decision-

making (MADM) models in the environment of general-

ized intuitionistic fuzzy soft sets and fuzzy soft sets. Liu

et al. [16] established hesitant intuitionistic fuzzy linguistic

operators and presented its MAGDM problems. Wei et al.

[36] invented hesitant triangular fuzzy operators in MADM

problems. Wei et al. [37, 38] worked on similarity mea-

sures on picture fuzzy sets and correlation coefficient to the

interval-valued intuitionistic fuzzy sets with application in

decision-making problems. Ye [45–47] introduced priori-

tized aggregation operators in the context of interval-val-

ued hesitant fuzzy numbers (IVHFNs) and established it on

MAGDM algorithms. He also established MCDM methods

for interval neutrosophic sets and correlation coefficient
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under single-value neutrosophic environment. He estab-

lished cosine similarity measures for intuitionistic fuzzy

sets with application in decision-making problems. Zhang

et al. [53] introduced aggregation operators with MCDM

by using interval-valued fuzzy neutrosophic sets (IVFNSs).

An extended TOPSIS method for decision-making was

developed by Chi and Lui [6] on IVFNSs. Zhao et al. [55]

introduced generalized aggregation operators in the context

of intuitionistic fuzzy sets. Zhang et al. [54] established

various results on clustering approach to intuitionistic

fuzzy sets. Peng et al. [22] introduced Pythagorean fuzzy

information measures and established interesting results on

Pythagorean fuzzy sets. They introduced clustering algo-

rithm for Pythagorean fuzzy sets and presented numerous

applications on Pythagorean fuzzy input data. Li and

Cheng [17] established new similarity measures of IFSs

and its applications to pattern recognition. Lin et al. [18]

studied hesitant fuzzy linguistic information and presented

its application to models of selecting an ERP system.

Salton and McGill [32] introduced modern information

retrieval. Singh [33] established correlation coefficients of

picture fuzzy sets. Son [34] inaugurated a novel distributed

picture fuzzy clustering method on picture fuzzy sets. Xu

and Chen [39, 40] established correlation, distance, and

similarity measures on intuitionistic fuzzy sets.

In this era, experts think that the universe is moving

towards multi-polarity. Therefore, it comes as no surprise

that multi-polarity in data and information plays a vital role

in various fields of science and technology. In neurobiol-

ogy, multi-polar neurons in brain gather a great deal of

information from other neurons. In information technology,

multi-polar technology can be exploited to operate large-

scale systems. In some real-life situations, we have to deal

with the dissatisfaction and indeterminacy grades for the

alternatives of the reference set. For instance, in the oper-

ation of throwing up a ballot, there exist some people who

vote in favor, some of them vote against, and some abstain.

In the area of electrical engineering, we deal with the

conductors and non-conductors, but there also exist some

substances which are insulators. These types of situations

can easily handled by using neutrosophic set theory. In

some real-life applications, we have to deal with multi-

polarity, truth values, indeterminacy, and falsity grades

of alternatives. To deal with these type of hesitations and

uncertainties, we establish the idea of m-polar neutrosophic

set (MPNS).

Themotivation and objectives of this extended and hybrid

work are given step by step in the whole manuscript. We

establish that other hybrid structures of fuzzy sets become

special cases of MPNS under some suitable conditions. We

discuss about the robustness, flexibility, simplicity, and

superiority of our suggested model and algorithms. This

model is most generalized form and use to collect data at a

large scale and applicable in medical, engineering, artificial

intelligence, agriculture, and other daily life problems. In

future, this work can be gone easily for other approaches and

different types of hybrid structures.

The scheme of this manuscript is organized as follows.

Section 2, implies a novel idea of m-polar neutrosophic set

(MPNS). We establish some of its operations, score func-

tion, and improved score function. In Sect. 3, we use

MPNS to establish m-polar neutrosophic topological space

(MPNTS). We define various topological structures such as

interior, closure, exterior, and frontier for MPNSs with the

help of illustrations. We establish various results with their

counter examples, which holds for classical set theory, but

do not hold for m-polar neutrosophic set theory. We

introduce cosine similarity measure and set theoretic sim-

ilarity measure for MPNSs. In Sect. 4, we establish some

methods for the solution of MCDM problems based on

medical diagnosis and clustering analysis using MPNTS

and MPNSs. We propose three algorithms with linguistic

information based on m-polar neutrosophic data using

MPNTS, similarity measures, and clustering analysis. It is

interesting to note that first two algorithms for medical

diagnosis yield the same result. Furthermore, we present

advantages, simplicity, flexibility, and validity of the pro-

posed algorithms. We give a brief discussion and com-

parative analysis of our proposed approach with some

existing methodologies. In the end, the conclusion of this

work is summarized in Sect. 5.

2 m-Polar Neutrosophic Set (MPNS)

Chen et al. [5] have proposed the concept of m-polar fuzzy

set (MPFS) in 2014, which have the capability to deal with

the data having vagueness and uncertainty under multi-

criteria, multi-source, multi-sensor, and multi-polar infor-

mation. Smarandache [30] extended the neutrosophic set,

respectively, to neutrosophic overset (when some neutro-

sophic component is [ 1), neutrosophic underset (when

some neutrosophic component is \0), and to neutrosophic

offset (when some neutrosophic components are off the

interval [0, 1], i.e., some neutrosophic component [ 1 and

other neutrosophic component \0). In 2016, Smarandache

introduced the neutrosophic tripolar set and neutrosophic

multi-polar set, also the neutrosophic tripolar graph and

neutrosophic multi-polar graph [30].

The membership grades of m-polar fuzzy sets range over

the interval ½0; 1�m, which represent m criteria of the object,

but it cannot deal with the falsity and indeterminacy part of

the object.

Neutrosophic set (NS) deals with truth, falsity, and

indeterminacy for one criteria of the alternative, but cannot
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deal with the multi-criteria, multi-source, multi-polar

information fusion of the alternatives. To overcome this

problem, we introduce a new model of m-polar neutro-

sophic set (MPNS) by combining the concepts of m-polar

fuzzy set (MPFS) and neutrosophic set (NS). MPNS has the

ability to deal with the m criteria and to deal with the truth,

falsity, and indeterminacy grades for each alternative. In

fact, m-polar neutrosophic set is an extension of bipolar

neutrosophic set introduced by Deli et al. [9]. We establish

various properties and operations on m-polar neutrosophic

sets. We propose score functions for the comparison of m-

polar neutrosophic numbers (MPNNs). In the whole

manuscript, we use Q as a fixed sample space and D as an

indexing set. We use A;S and Y as membership, inde-

terminacy, and non-membership grades, respectively.

Definition 2.1 An object MN in the reference set Q is

called m-polar neutrosophic set (MPNS), if it can be

expressed as

MN ¼ f�1; hAað1Þ;Sað1Þ;Yað1Þi
�

: 1 2 Q; a ¼ 1; 2; 3; . . .;mg

where Aa;Sa;Ya : Q ! ½0; 1� and 0�Aað1Þ þSað1Þþ
Yað1Þ� 3; a ¼ 1; 2; 3; . . .;m. This condition shows that all

the three grades Aa;Sa and Ya; ða ¼ 1; 2; 3; . . .;mÞ are

independent and represents the truth, indeterminacy, and

falsity of the considered object or alternative for multiple

criteria, respectively. Simply an m-polar neutrosophic

number (MPNN) can be represented as I ¼
�hAa;Sa;Yai

�

, where 0�Aa þSa þYa � 3; a ¼ 1; 2;

3; . . .;m. In tabular form, the MPNS can be represented as

Table 1.

Example 2.2 Let Q ¼ f11; 12; 13g be the collection of

some well-known smart phones. Then 4-polar neutrosophic

set in Q can be written as

MN ¼
n

ð11; h0:512; 0:231; 0:321i; h0:653; 0:223; 0:116i;
h0:875; 0:114; 0:243i; h0:961; 0:115; 0:431iÞ;
ð12; h0:657; 0:114; 0:226i; h0:765; 0:224; 0:245i;
h0:875; 0:465; 0:213i; h0:961; 0:141; 0:212iÞ;
ð13; h0:876; 0:221; 0:321i; h0:657; 0:115; 0:116i;
h0:987; 0:114; 0:322i; h0:675; 0:221; 0:423iÞ

o

:

In this set, multi-polarity (m = 1,2,3,4) of each altternative

1 shows its characteristic or qualities according to the

considered criteria such as

a1 ¼ affordable; a2 ¼ longlastingbattery;

a3 ¼ extrastorage; a4 ¼ goodcameraquality:

For each 1 and each of its criteria, we have neutrosophic

values to represent the truth, indeterminacy, and falsity of

corresponding alternative according to the considered

criteria under the influence of expert’s opinion. In the set

MN for 11 the first triplet h0:512; 0:231; 0:321i shows that
the smart phone 11 has 51:2% truth value, 23:1% indeter-

minacy, and 32:1% falsity value for the criteria ‘‘afford-

able.’’ Similarly, we can see the values for all alternatives

corresponding to the other criteria.

There is a relationship between MPNS and other hybrid

structures of fuzzy set. This relationship can be elaborated

in the given flow chart diagram of Fig. 1, where

a ¼ 1; 2; 3; . . .;m.

Definition 2.3 An MPNS MN is said to be an empty

MPNS, if Aað1Þ ¼ 0;Sað1Þ ¼ 1 and Yað1Þ ¼ 1; 8a ¼
1; 2; 3; . . .;m and it can be written as

0MN ¼ f1; ðh0; 1; 1i; h0; 1; 1i; � � � ; h0; 1; 1iÞ : 1 2 Qg
and for absolute MPNS we have Aað1Þ ¼ 1;Sað1Þ ¼ 0 and

Yað1Þ ¼ 0; 8a ¼ 1; 2; 3; . . .;m and it can be written as

Fig. 1 Relationship between MPNS and other hybrid fuzzy sets

Table 1 Tabular representation

of m-polar neutrosophic set
MN MPNS

11
�hA1ð11Þ;S1ð11Þ;Y1ð11Þi; hA2ð11Þ;S2ð11Þ;Y2ð11Þi; � � � ; hAmð11Þ;Smð11Þ;Ymð11Þi

�

12
�hA1ð12Þ;S1ð12Þ;Y1ð12Þi; hA2ð12Þ;S2ð12Þ;Y2ð12Þi; � � � ; hAmð12Þ;Smð12Þ;Ymð12Þi

�

� � � � � � � � � � � � � � � � � � � � � � � �
1N

�hA1ð1NÞ;S1ð1NÞ;Y1ð1NÞi; hA2ð1NÞ;S2ð1NÞ;Y2ð1NÞi; � � � ; hAmð1NÞ;Smð1NÞ;Ymð1NÞi
�

Florentin Smarandache (ed.) Collected Papers, VII

750



1MN ¼ f1; ðh1; 0; 0i; h1; 0; 0i; � � � ; h1; 0; 0iÞ : 1 2 Qg
The assembling of all MPNSs in Q is represented as

mpnðQÞ.
Now we define some operations for MPNSs.

Definition 2.4 Let MN;MN}
2 mpnðQÞ, where

MN ¼ �

1; hAað1Þ;Sað1Þ;Yað1Þi
�

: 1 2 Q; a ¼ 1; 2; 3; . . .;m
� �

MN}
¼ �

1; h}Aað1Þ; }Sað1Þ; }Yað1Þi
�

: 1 2 Q; a ¼ 1; 2; 3; . . .;m
� �

; } 2 D

then:

(i) Mc
N ¼ �

1; hYað1Þ; 1�Sað1Þ;Aað1Þi
�

: 1 2 Q; a ¼ 1; 2; 3; . . .;m
� �

(ii) MN1
¼ MN2

, h1Aað1Þ; 1Sað1Þ; 1Yað1Þi ¼ h2Aað1Þ; 2Sað1Þ; 2Yað1Þi; 1 2 Q;

a ¼ 1; 2; 3; . . .;m

(iii) MN1
� MN2

, 1Aað1Þ� 2Aað1Þ; 1Sað1Þ� 2Sað1Þ; 1Yað1Þ� 2Yað1Þ; 1 2 Q;

a ¼ 1; 2; 3; . . .;m

(iv)
S

}
MN}

¼ fð1; � sup
}

}Aað1Þ; inf
}

}Sað1Þ; inf
}

}Yað1Þ
�Þ; 1 2 Q; } 2 D;

a ¼ 1; 2; 3; . . .;mg
(v) T

}
MN}

¼ fð1; � inf
}

}Aað1Þ; sup
}

}Sað1Þ; sup
}

}Yað1Þ
�Þ; 1 2 Q; } 2 D; a ¼ 1; 2; 3; . . .;mg

Example 2.5 Consider two 4-polar neutrosophic setsMN1

and MN2
given in tabular form as Table 2.

Now we calculate complement, union, and intersection

by using Definition 2.4 and results can be seen in tabular

form as Table 3.

In order to deal with multi-criteria decision-making

problems with m-polar neutrosophic numbers (MPNNs),

we define some score functions for the ranking of

MPNNs.

Definition 2.6 Let I ¼ �hAa;Sa;Yai; a ¼ 1; 2; 3; . . .;m
�

be an MPNN, then its score functions are given as:

£1ðIÞ ¼ 1

2m

�

mþ
X

m

a¼1

ðAa � 2Sa �YaÞ
	

; £1ðIÞ 2 ½0; 1�

£2ðIÞ ¼ 1

m

X

m

a¼1

ðAa � 2Sa �YaÞ; £2ðIÞ 2 ½�1; 1�

In the case, when score value of two MPNNs is same, we

define an improved score function for the ranking of

MPNNs given as

£3ðIÞ ¼ 1

2m

�

mþ
X

m

a¼1

�ðAa � 2Sa �YaÞð2�Aa �YaÞ
�

	

;

£3ðIÞ 2 ½�1; 1�:

In the case, when Aa þYa ¼ 1; 8 a ¼ 1; 2; . . .;m, then

£3ðIÞ reduces to £1ðIÞ.
Definition 2.7 Let I1 and I2 be two MPNNs, then the

following order relation between the score values of

MPNNs hold:

(a) If £1ðI1Þ � £1ðI2Þ then I1 � I2.

(b) If £1ðI1Þ ¼ £1ðI2Þ then
(1) If £2ðI1Þ � £2ðI2Þ then I1 � I2.

(2) If £2ðI1Þ ¼ £2ðI2Þ then
(i) If £3ðI1Þ � £3ðI2Þ then I1 � I2.

(ii) If £3ðI1Þ 	 £3ðI2Þ then I1 	 I2.

(iii) If £3ðI1Þ ¼ £3ðI2Þ then I1 
I2.

Example 2.8 Consider two 2-polar neutrosophic numbers

I1 and I2 given in tabular form as Table 4.

Then by using Definition 2.6 £1ðI1Þ ¼ 1
2ð2Þ ½2þ 0:5�

2ð0:3Þ � 0:4þ 0:5� 2ð0:1Þ � 0:8� ¼ 0:25. Similarly,

£1ðI2Þ ¼ 0:25. This shows that £1 fails to give the ranking

between both 2PNNs. Now we will use second score

function £2. By using Definition 2.6, we obtain the score

values £2ðI1Þ ¼ �0:5 ¼ £2ðI2Þ. This shows that £2 also

fails to evaluate the ranking. Now we will use improved

score function for the ranking of 2PNNs. After calcula-

Table 2 4-polar neutrosophic

sets MN1
and MN2

Q 4PNSs

MN1

�h0:611; 0:111; 0:251i; h0:821; 0:631; 0:111i; h0:721; 0:381; 0:591i; h0:211; 0:321; 0:411i�

MN2

�h0:321; 0:621; 0:511i; h0:831; 0:111; 0:921i; h0:521; 0:431; 0:391i; h0:181; 0:931; 0:821i�

Table 3 Complement, union,

and intersection of 4-polar

neutrosophic sets

Q 4PNSs

Mc
N

�h0:251; 0:889; 0:611i; h0:111; 0:369; 0:821i; h0:591; 0:619; 0:721i; h0:411; 0:679; 0:211i�

MN1
[MN2

�h0:611; 0:111; 0:251i; h0:831; 0:111; 0:111i; h0:721; 0:381; 0:391i; h0:211; 0:321; 0:411i�

MN1
\MN2

�h0:321; 0:621; 0:511i; h0:821; 0:631; 0:921i; h0:521; 0:431; 0:591i; h0:181; 0:931; 0:821i�

Table 4 2-polar neutrosophic numbers I1 and I2

Q 2PNNs

I1

�h0:5; 0:3; 0:4i; h0:5; 0:1; 0:8i�

I2

�h0:2; 0:3; 0:1i; h0:2; 0:1; 0:5i�
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tions, we get £3ðI1Þ ¼ 0:275 and £3ðI2Þ ¼ 0:125. Hence

£3ðI1Þ � £3ðI2Þ, so I1 � I2.

Remark

• For null MPNN 0I we have £3ð0IÞ ¼ �1.

• For absolute MPNN 1I we have £3ð1IÞ ¼ 1.

Proposition 2.9 Let MN 2 mpnðQÞ, and 0MN and
1MN be null and absolute MPNSs. Then the following

axioms hold:

(i) MN � MN [MN,

(ii) MN \MN � MN,

(iii) MN [ 0MN ¼ MN,

(iv) MN \ 0MN ¼ 0MN,

(v) MN [ 1MN ¼ 1MN,

(vi) MN \ 1MN ¼ MN

Proof The proof is obvious and can be proved by Defi-

nition 2.4. h

Proposition 2.10 Let MN1
;MN1

;MN3
2 mpnðQÞ, then

the following results hold:

(i) MN1
[MN2

¼ MN2
[MN1

,

(ii) MN1
\MN2

¼ MN2
\MN1

,

(iii) MN1
[ ðMN2

[MN3
Þ ¼ ðMN1

[MN2
Þ [MN3

,

(iv) MN1
\ ðMN2

\MN3
Þ ¼ ðMN1

\MN2
Þ \MN3

,

(v) ðMN1
[MN2

Þc ¼ Mc
N1

\Mc
N2
,

(vi) ðMN1
\MN2

Þc ¼ Mc
N1

[Mc
N2

Proof The proof is obvious and can be proved by Defi-

nition 2.4. h

3 m-Polar Neutrosophic Topology

In this section, we introduce the m-polar neutrosophic

topology on m-polar neutrosophic set and discuss interior,

closure, exterior, and frontier of MPNSs with the help of

illustrations. We introduce various results which hold for

classical set theory, but do not hold for MPN data. We

present a cosine similarity measure and set theoretic sim-

ilarity measure to find the similarity between MPNSs.

3.1 m-Polar Neutrosophic Topological Space

In mathematics, topology is concerned with the alterna-

tives of a geometric object that are kept under continuous

deformations, such as stretching, twisting, crumpling, and

bending, but not tearing or gluing. ‘‘A topological space is

a set endowed with a structure, called a topology, which

allows defining continuous deformation of subspaces and

more broadly, all kinds of continuity.’’ The concept of

topology can be defined by using sets, continuous func-

tions, manifolds, algebra, differentiable functions, differ-

ential geometry, etc. It has numerous applications in

biology, medical diagnosis, physics, computer science,

robotics, game theory, and fiber art.

The question arises here that why we use m-polar neu-

trosophic topological space? Crisp topological space can-

not deal with the uncertainties and imprecision in the

decision-making problems. To handle these ambiguities,

Chang [7] introduced fuzzy topological spaces in 1968.

After that, many mathematicians established topological

spaces on other hybrid structures of fuzzy sets. Every

topological space has its own boundaries, e.g., neutro-

sophic topological space cannot deals with the multiple

criteria or multi-polarity of alternatives. m-polar topologi-

cal space cannot deal with the indeterminacy part and

dissatisfaction part of alternatives in decision-making

problems. To remove these restrictions, we introduce m-

polar neutrosophic topological space (MPNTS) by com-

bining the m-polar fuzzy sets and neutrosophic sets.

MPNTS handle these hesitations in the input data by

treating with the multi-polarity, membership, non-mem-

bership, and indeterminacy grades for the decision-making

problems. The motivation of our projected model is given

step by step in the whole manuscript, especially in Sect. 4.

Definition 3.1 Let Q be the non-empty reference set and

mpnðQÞ be the collection of all MPNSs in Q. Then the

collection T MN
containing MPNSs is called m-polar neu-

trosophic topology (MPNT) if it satisfies the following

properties:

(i) 0MN;
1MN 2 T MN

.

(ii) If ðMNÞ} 2 T MN
; 8} 2 D, then

S

}2D
ðMNÞ} 2 T MN

.

(iii) If MN1
;MN2

2 T MN
, then MN1

\MN2
2 T MN

.

Then the pair ðQ; T MN
Þ is called MPNTS. The members

of T MN
are called open MPNSs and their complements are

called closed MPNSs.

Theorem 3.2 Let ðQ; T MN
Þ be an MPNTS. Then the

following conditions are satisfied:

(i) 0MN and 1MN are open MPNSs.

(ii) Union of any number of open MPNSs is open.
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(iii) Intersection of finite number of closed MPNSs is

closed.

Proof The proof is obvious. h

Example 3.3 Let Q ¼ f11; 12; 13; 14g be an assembling of

books. Then mpnðQÞ be the collection of all MPNSs in Q.

We consider two 3-polar neutrosophic subsets of mpnðQÞ
given as

MN1
¼
n

ð11; h0:871; 0:451; 0:412i; h0:317; 0:412; 0:321i;
h0:187; 0:213; 0:118iÞ; ð12; h0:547; 0:158; 0:413i;
h0:518; 0:152; 0:118i; h0:618; 0:418; 0:321iÞ;
ð13; h0:618; 0:341; 0:231i; h0:815; 0:118; 0:527i;
h0:511; 0:431; 0:215iÞ; ð14; h0:518; 0:391; 0:812i;
h0:815; 0:321; 0:415i; h0:911; 0:321; 0:512iÞ

o

MN2
¼
n

ð11; h0:611; 0:512; 0:611i; h0:218; 0:531; 0:415i;
h0:035; 0:311; 0:211iÞ; ð12; h0:212; 0:218; 0:513i;
h0:435; 0:218; 0:315i; h0:519; 0:511; 0:438iÞ;
ð13; h0:418; 0:432; 0:321i; h0:639; 0:218; 0:357i;
h0:211; 0:531; 0:316iÞ; ð14; h0:219; 0:491; 0:815i;
h0:716; 0:421; 0:518i; h0:712; 0:421; 0:618iÞ

o

Then clearly the collection T MN
¼ f0MN;

1MN;MN1
;

MN2
g is 3-polar neutrosophic topological space.

Definition 3.4 Let ðQ; T MN
Þ and ðQ; T 0

MN
Þ be two

MPNTSs in Q. Two MPNTSs are said to be comparable if

T MN
� T 0

MN
or T 0

MN
� T MN

.

If T MN
� T 0

MN
, then T MN

is courser or weaker than

T 0
MN

and T 0
MN

is stronger and finer than T MN
.

Theorem 3.5 Let ðQ; T MN
Þ be an MPNTS. Then the

following conditions are satisfied:

(i) 0MN and 1MN are closed MPNSs.

(ii) Intersection of any number of closed MPNSs is

closed.

(iii) Union of finite number of closed MPNSs is closed.

Proof

(i) ð1MNÞc ¼ 0MN and ð0MNÞc ¼ 1MN are both

open and closed MPNSs.

(ii) If fMNa : Mc
Na

2 T MN
; a 2 Dg is an assembling of

closed MPNSs then ðT
a2D

MNaÞc ¼
S

a2D
Mc

Na
is open.

This shows that
T

a2D
MNa is closed MPNS.

(iii) Since MNb
is closed for b ¼ 1; 2; . . .; z, then

ðS
z

b¼1

MNb
Þc ¼ T

z

b¼1

Mc
Nb

is open MPNS. Thus

S

z

b¼1

MNb
is closed MPNS.

h

Definition 3.6 Let ðQ; T MN
Þ be MPNTS and

MN 2 mpnð1MNÞ, then interior of MN is denoted as

Mo
N and defined as the union of all open MPN subsets

contained in MN. It is the greatest open MPNS contained

in MN.

Example 3.7 We consider the 3-polar neutrosophic topo-

logical space constructed in Example 3.3 and let MN3
2

mpnðQÞ given as

MN3
¼ fð11; h0:713; 0:412; 0:311i; h0:318; 0:418; 0:311i;
h0:451; 0:211; 0:218iÞ; ð12; h0:312; 0:117; 0:418i;
h0:513; 0:212; 0:218i; h0:613; 0:411; 0:438iÞ;
ð13; h0:518; 0:321; 0:311i; h0:718; 0:118; 0:257i;
h0:317; 0:461; 0:217iÞ; ð11; h0:319; 0:219; 0:615i;
h0:719; 0:321; 0:418i; h0:811; 0:321; 0:417iÞg

Then Mo
N3

¼ oMN [MN2
¼ MN2

is open MPNS.

Theorem 3.8 Let ðQ; T MN
Þ be MPNTS and

MN 2 mpnðQÞ. Then MN is open MPNS , Mo
N ¼ MN.

Proof If MN is open MPNS then greatest open MPNS

contained in MN is itself MN. Thus Mo
N ¼ MN.

Conversely, if Mo
N ¼ MN then Mo

N is open MPNS.

This implies that MN is open MPNS. h

Theorem 3.9 Let ðQ; T MN
Þ be MPNTS and

MN1
;MN2

2 mpnð1MNÞ , then
(i) ðMo

N1
Þo ¼ Mo

N1
,

(ii) MN1
� MN2

) Mo
N1

� Mo
N2
,

(iii) ðMN1
\MN2

Þo ¼ Mo
N1

\Mo
N2
,

(iv) ðMN1
[MN2

Þo � Mo
N1

[Mo
N2
.

Proof The proof is obvious. h
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Definition 3.10 Let ðQ; T MN
Þ be MPNTS and

MN 2 mpnðQÞ, then the closure of MN is denoted by

MN and defined by intersection of all closed-MPN

supersets of MN. It is the smallest closed-MPN superset of

MN.

Example 3.11 We consider the 3-polar neutrosophic

topological space constructed in Example 3.3, then closed

MPNSs are given as,

oMc
N ¼ 1MN;

1Mc

N ¼ oMN;

Mc
N1

¼ fð11; h0:412; 0:549; 0:871i; h0:321; 0:588; 0:317i;
h0:118; 0:787; 0:187iÞ; ð12; h0:413; 0:842; 0:547i;
h0:118; 0:848; 0:518i; h0:321; 0:582; 0:618iÞ;
ð13; h0:231; 0:659; 0:618i; h0:257; 0:882; 0:815i;
h0:215; 0:569; 0:511iÞ; ð14; h0:812; 0:609; 0:518i;
h0:415; 0:679; 0:815i; h0:512; 0:679; 0:911iÞg

Mc
N2

¼ fð11; h0:611; 0:488; 0:611i; h0:415; 0:487; 0:218i;
h0:211; 0:689; 0:035iÞ; ð12; h0:513; 0:782; 0:212i;
h0:315; 0:782; 0:435i; h0:438; 0:489; 0:519iÞ;
ð13; h0:321; 0:568; 0:418i; h0:357; 0:782; 0:639i;
h0:316; 0:469; 0:211iÞ; ð14; h0:815; 0:509; 0:219i;
h0:518; 0:579; 0:716i; h0:618; 0:579; 0:712iÞg

Let MN4
2 mpnð1MNÞ given as

MN4
¼ fð11; h0:319; 0:615; 0:888i; h0:217; 0:618; 0:411i;
h0:115; 0:817; 0:345iÞ; ð12; h0:312; 0:888; 0:617i;
h0:113; 0:878; 0:678i; h0:231; 0:598; 0:765iÞ;
ð13; h0:112; 0:767; 0:887i; h0:213; 0:889; 0:889i;
h0:114; 0:667; 0:665iÞ; ð14; h0:319; 0:768; 0:615i;
h0:321; 0:778; 0:898i; h0:435; 0:767; 0:987iÞg

Then MN4
¼ 1MN \Mc

N1
\Mc

N2
¼ Mc

N1
is closed

MPNS.

Theorem 3.12 Let ðQ; T MN
Þ be MPNTS and

MN 2 mpnðQÞ. MN is closed MPNS , MN ¼ MN.

Proof The proof is obvious. h

Definition 3.13 Let MN be an MPN-subset of ðQ; T MN
Þ,

then its frontier or boundary is defined by FrðMNÞ ¼
MN \Mc

N.

Definition 3.14 Let MN be an MPN-subset of ðQ; T MN
Þ,

then its exterior can be represented as ExtðMNÞ and

defined as ExtðMNÞ ¼ ðMNÞc ¼ ðMc
NÞo.

Example 3.15 We consider the MPNTS constructed in

Example 3.3 and consider the MPNSs MN3
and MN4

given in Examples 3.7 and 3.11. Then by using previous

definitions we can write that

Mo
N3

¼ MN2
;MN3

¼ 1MN;

FrðMN3
Þ ¼ 1MN;ExtðMN3

Þ ¼ 0MN;

Mo
N4

¼ 0MN;MN4
¼ Mc

N1
;

FrðMN4
Þ ¼ Mc

N1
;ExtðMN4

Þ ¼ MN1
:

Now, we present some results which do not hold in

MPNTS but hold in crisp set theory due to the law of

contradiction and law of excluded middle.

Remark

(i) In MPNTS, the members of discrete topology are

infinite due to the infinite subsets of an arbitrary

MPNS.

(ii) In MPNTS law of contradictionMN \Mc
N ¼ 0MN

and law of excluded middle MN [Mc
N ¼ 1MN do

not hold in general. In Example 3.15, we can

observe that MN3
\Mc

N3
6¼ 0MN and

MN3
[Mc

N3
6¼ 1MN.

(iii) In m-polar neutrosophic set theory, an assembling

T MN
¼ f0MN;

1MN;MN;Mc
Ng is not an MPNTS

in general. But this result hold in classical set theory.

This result can be easily seen by using Example

3.15.

Theorem 3.16 Let MN 2 mpnð1MNÞ, then
(1) ðMo

NÞc ¼ ðMc
NÞ,

(2) ðMNÞc ¼ ðMc
NÞo,

(3) ExtðMc
NÞ ¼ Mo

N,

(4) ExtðMNÞ ¼ ðMc
NÞo,

(5) ExtðMNÞ [ FrðMNÞ [Mo
N 6¼ 1MN,

(6) FrðMNÞ ¼ FrðMc
NÞ,

(7) Mo
N \ FrðMNÞ 6¼ 0MN.

Proof

(1) and (2): are obvious.

(3) ExtðMc
NÞ ¼ ðMc

NÞc
) ExtðMc

NÞ ¼ ½ðMc
NÞc�o

) ExtðMc
NÞ ¼ Mo

N.

(4) ExtðMNÞ ¼ ðMNÞc
) ExtðMNÞ ¼ ðMc

NÞo.
(5) ExtðMNÞ [ FrðMNÞ [Mo

N 6¼ 1MN. By Example

3.15, we can see that MN1
[Mc

N1
[ 0MN 6¼ 1MN.

(6) FrðMc
NÞ ¼ ðMc

NÞ \ ½ðMc
NÞ�c
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) FrðMc
NÞ ¼ ðMc

NÞ \ ðMNÞ ¼ FrðMNÞ.
(7) Mo

N \ FrðMNÞ 6¼ 0MN. Example 3.15 shows that

MN2
\ 1MN 6¼ 0MN.

h

3.2 Similarity Measures

In this part, we present two different formulae for simi-

larity measures between MPNSs. This concept will help us

in the forthcoming section of multi-criteria decision-

making.

Definition 3.17 (Cosine similarity measure for MPNSs)

We define the cosine similarity measure for m-polar neu-

trosophic sets based on Bhattacharyas distance [32, 47].

Suppose that MN1
;MN2

2 mpnðMNÞ, in Q ¼ f11;
12; . . .; 1lg. A cosine similarity measure between MN1

MN2
is given as

C1
MPNSðMN1

;MN2
Þ ¼ 1

ml

X

l

g¼1

X

m

a¼1

1Aað1gÞ2Aað1gÞ þ 1Sað1gÞ2Sað1gÞ þ 1Yað1gÞ2Yað1gÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1Aað1gÞÞ2 þ ð1Sað1gÞÞ2 þ ð1Yað1gÞÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2Aað1gÞÞ2 þ ð2Sað1gÞÞ2 þ ð2Yað1gÞÞ2
q :

C1
MPNS satisfies the following properties,

(1) 0�C1
MPNS � 1,

(2) C1
MPNSðMN1

;MN2
Þ ¼ C1

MPNSðMN2
;MN1

Þ,
(3) C1

MPNSðMN1
;MN2

Þ ¼ 1 if MN1
¼ MN2

,

(4) If MN1
� MN2

� MN3
then

C1
MPNSðMN1

;MN3
Þ�C1

MPNSðMN1
;MN2

Þ and
C1
MPNSðMN1

;MN3
Þ�C1

MPNSðMN2
;MN3

Þ. The proof
of these properties can be easily done by using the

above definition.

Definition 3.18 (Set theoretic similarity measure of

MPNSs) We define the set theoretic similarity measure for

m-polar neutrosophic sets based on set theoretic viewpoint

[40]. Suppose that MN1
;MN2

2 mpnðMNÞ, in

Q ¼ f11; 12; . . .; 1lg. A set theoretic similarity measure

between MN1
MN2

is given as

C2
MPNSðMN1

;MN2
Þ ¼ 1

ml

X

l

g¼1

X

m

a¼1

1Aað1gÞ2Aað1gÞ þ 1Sað1gÞ2Sað1gÞ þ 1Yað1gÞ2Yað1gÞ
max½ð1Aað1gÞÞ2 þ ð1Sað1gÞÞ2 þ ð1Yað1gÞÞ2; ð2Aað1gÞÞ2 þ ð2Sað1gÞÞ2 þ ð2Yað1gÞÞ2�

:

C2
MPNS satisfies the following properties,

(1) 0�C2
MPNS � 1,

(2) C2
MPNSðMN1

;MN2
Þ ¼ C2

MPNSðMN2
;MN1

Þ,
(3) C2

MPNSðMN1
;MN2

Þ ¼ 1 if MN1
¼ MN2

,

(4) If MN1
� MN2

� MN3
then

C2
MPNSðMN1

;MN3
Þ�C2

MPNSðMN1
;MN2

Þ and
C2
MPNSðMN1

;MN3
Þ�CMPNSðMN ;MNÞ. The

proof of these properties can be easily done by using

the above definition.

4 Multi-criteria Decision-Making Under m-Polar
Neutrosophic Data

Multi-criteria decision-making (MCDM) is a process to

find an optimal alternative that has the highest degree of

satisfaction from a set of feasible alternatives characterized

by multiple criteria, and these kinds of MCDM problems

arise in many real-world situations. In this section, we

discuss two applications of medical diagnosis and cluster-

ing analysis of students with the help of m-polar fuzzy

neutrosophic data. We present three novel algorithms for

multi-criteria decision-making (MCDM) with linguistic

information based on the MPNTS and MPFNSs for medi-

cal diagnosis and clustering analysis.

In each algorithm, we use m-polar neutrosophic input

data. Firstly, we collect input information for every algo-

rithm in the form of linguistic variables and then convert

them into m-polar neutrosophic numbers (MPNNs) by

using fuzzy logics. When our data set is covered into

proposed m-polar neutrosophic numeric values, then we

apply each algorithm one by one. At last, we get better

results for medical diagnosis and clustering analysis.

4.1 MCDM for Medical Diagnosis

In this part of our manuscript, we establish two different

techniques based on MPNTS and on similarity measures to

investigate the disease with m-polar neutrosophic

information.

Florentin Smarandache (ed.) Collected Papers, VII

755



Proposed Technique of Algorithm 1

In this algorithm, rating of each criteria according to the

corresponding alternative is constructed by using m-polar

neutrosophic information for MCDM and given in input

matrix (can be taken in tabular form by using m-polar

neutrosophic numbers) as

P ¼½Ia
gn�r�s ¼ ½hAa

gn;S
a
gn;Y

a
gni�r�s; a ¼ 1; 2; 3; . . .;m

P ¼½Ia
gn�r�s ¼

ðhAa
11;S

a
11;Y

a
11iÞ ðhAa

12;S
a
12;Y

a
12iÞ � � � ðhAa

1s;S
a
1s;Y

a
1siÞ

ðhAa
21;S

a
21;Y

a
21iÞ ðhAa

22;S
a
22;Y

a
22iÞ � � � ðhAa

2s;S
a
2s;Y

a
2siÞ

..

. ..
. . .

. ..
.

ðhAa
r1;S

a
r1;Y

a
r1iÞ ðhAa

r2;S
a
r2;Y

a
r2iÞ � � � ðhAa

rs;S
a
rs;Y

a
rsiÞ

0

B

B

B

B

@

1

C

C

C

C

A

ð1Þ
In matrix P, the entries Aa

gn;S
a
gn , and Ya

gn represent truth,

indeterminacy, and falsity membership grades for alterna-

tive ðg corresponding to the criteria Cn, where g ¼ 1; 2;

3; . . .; r; n ¼ 1; 2; 3; . . .; s. These grades satisfies the fol-

lowing properties under MPN environment.

(1) 0�Aa
gn � 1; 0�Sa

gn � 1; 0�Ya
gn � 1.

(2) 0�Aa
gn þSa

gn þYa
gn � 3, for

g ¼ 1; 2; 3; . . .; r; n ¼ 1; 2; 3; . . .; s; a ¼ 1; 2; 3. . .;m.

The rating of each criteria corresponding to the alternative

for m-triplets is illustrated in this work. The input decision

matrices In; n ¼ 1; 2; 3; . . .; z for z number of experts can

be written by using m-polar neutrosophic data same as

Equation 2. Then we construct an m-polar neutrosophic

topological space T MN by using experts data

In; n ¼ 1; 2; 3; . . .; z. Find interior Po of MPN-matrix P

under the constructed T MN
. Then we calculate score

values of all the alternatives in Po. We rank these fuzzy

values and choose alternative having maximum fuzzy

value as an optimal decision. The step-wise description of

this proposed technique is given as Algorithm 1.

4.1.1 Proposed Technique of Algorithm 2:

In this algorithm, rating of each criteria according to the

corresponding alternative is constructed by using m-polar

neutrosophic information for MCDM and given in input

matrix (can be taken in tabular form by using m-polar

neutrosophic numbers) as

P ¼½Ia
gn�r�s ¼ ½hAa

gn;S
a
gn;Y

a
gni�r�s; a ¼ 1; 2; 3; . . .;m

P ¼½Ia
gn�r�s ¼

ðhAa
11;S

a
11;Y

a
11iÞ ðhAa

12;S
a
12;Y

a
12iÞ � � � ðhAa

1s;S
a
1s;Y

a
1siÞ

ðhAa
21;S

a
21;Y

a
21iÞ ðhAa

22;S
a
22;Y

a
22iÞ � � � ðhAa

2s;S
a
2s;Y

a
2siÞ

..

. ..
. . .

. ..
.

ðhAa
r1;S

a
r1;Y

a
r1iÞ ðhAa

r2;S
a
r2;Y

a
r2iÞ � � � ðhAa

rs;S
a
rs;Y

a
rsiÞ

0

B

B

B

B

@

1

C

C

C

C

A

ð2Þ
In matrixP, the entriesAa

gn;S
a
gn , andY

a
gn represents truth,

indeterminacy, and falsity membership grades for alterna-

tive ðg corresponding to the criteria Cn, where g ¼ 1; 2;

3; . . .; r; n ¼ 1; 2; 3; . . .; s. These grades satisfies the fol-

lowing properties under MPN environment.

(1) 0�Aa
gn � 1; 0�Sa

gn � 1; 0�Ya
gn � 1.

(2) 0�Aa
gn þSa

gn þYa
gn � 3, for

g ¼ 1; 2; 3; . . .; r; n ¼ 1; 2; 3; . . .; s; a ¼ 1; 2; 3. . .;m.

Florentin Smarandache (ed.) Collected Papers, VII

756



The rating of each criteria corresponding to the alternative

for m-triplets is illustrated in this work. The input decision

matrices In; n ¼ 1; 2; 3; . . .; z for z number of experts can

be written by using m-polar neutrosophic data same as

Equation 2. We calculate cosine similarity measure and set

theoretic similarity measure between In; n ¼ 1; 2; 3; . . .; z

and P. We choose the m-polar neutrosophic sets from

In; n ¼ 1; 2; 3; . . .; z having highest cosine similarity mea-

sure and highest set theoretic similarity measure. Then we

calculate score values of all the alternatives in the selected

sets from In; n ¼ 1; 2; 3; . . .; z. We rank these fuzzy values

and choose alternative having maximum fuzzy value as an

optimal decision. The step-wise description of this pro-

posed technique is given as Algorithm 2.

The flow chart diagram of proposed algorithms can be

seen in Fig. 2.

4.1.2 Numerical example

Suppose that a patient is facing some health issues and the

symptoms are temperature, headache, fatigue, loss of

appetite, stomach pain, inadequate immune system, mus-

cle, and joint pain. According to the doctor’s opinion, all

these symptoms lead to the following diseases Tuberculo-

sis, Hepatitis C, and Typhoid fever. Let us consider the set

Q ¼ fð1; ð2; ð3g of the alternatives consisting of three

diseases and the set Z ¼ fJ ;J ;J ;J g of symptoms,

where

ð1 ¼ Tuberculosis; ð2 ¼ Hepatitis C; ð3 ¼ Typhoid fever;

J 1 ¼ Fever; J 2 ¼ Poor immune system

J 3 ¼ Muscle and joint pain, fatigue;

J 4 ¼ Unintentional weight loss; loss of appetite

We input the data of patient according to his doctor in

the form of 4-polar neutrosophic set for each disease cor-

responding to every symptom. In this data, the numeric

values corresponding to each symptom show that how

many chances he have to be suffered from the considered

disease. In Table 5 for disease ð1 ¼Tuberculosis, the first

triplet h0:635; 0:115; 0:114i shows that according to

his symptom ‘‘J 1 ¼fever’’ patient has 63; 5% truth chan-

ces, 11:5% indeterminacy, and 11:4% falsity chances to

have tuberculosis. Similarly, we can observe all values of

patient according to his symptoms for all diseases.

We consider that we have ‘‘z=3’’ highly qualified

experts, then according to these experts the data of each

disease corresponding to each symptom is given in tabular

form of 4-polar neutrosophic sets as Tables 6, 7, and 8.

Each In; n ¼ 1; 2; 3 representing the data of each disease

corresponding to each symptom according to 3 experts.

This means that for expert I1 and disease ð1 ¼tuberculosis
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the first triplet h0:511; 0:311; 0:213i shows that according

to symptom ‘‘J 1 ¼ fever’’ there are 63; 5% truth chances,

11:5% indeterminacy, and 11:4% falsity chances to have

tuberculosis. On the same pattern, we can observe all

values of diseases according to the corresponding symp-

toms for each expert.

4.1.3 Solution by using Algorithm 1

Now we construct 4-polar neutrosophic topological space

T MN
on In; n ¼ 1; 2; 3 given as T MN ¼ fI1;I2;I3;

0MN;
1MNg. We find the interior Po of P by using

Definition 3.6 under the 4PNTS T MN
. Thus

Po ¼ 0MN [ I1 [ I2 ¼ I2. Now we use Definition 2.6

on I2 to find scores of all the diseases ðd; d ¼ 1; 2; 3:

£1ðI2ð1Þ ¼
1

2� 4
ð4þ ð0:611� 2ð0:213Þ � 0:118Þ

þ ð0:711� 2ð0:321Þ � 0:118Þ
þ ð0:412� 2ð0:511Þ � 0:611Þ
þ ð0:813� 2ð0:211Þ � 0:341ÞÞ ¼ 0:3558:

Similarly, we can find £1ðI2ð2Þ ¼ 0:662 and

£1ðI2ð3Þ ¼ 0:3691. By Definition 2.7 we can write that

ð2 � ð3 � ð1. Hence, patient is suffering from Hepatitis C.

Graphically results can be seen as Fig. 3.

Fig. 2 Flowchart diagram of proposed algorithm 1 and algorithm 2

Table 5 4-Polar neutrosophic

data of patient P
P 4-polar neutrosophic sets

ð1
�h0:635; 0:115; 0:114i; h0:813; 0:239; 0:115i; h0:513; 0:431; 0:513i h0:911; 0:119; 0:238i�

ð2
�h0:739; 0:119; 0:115i; h0:923; 0:111; 0:108i; h0:889; 0:108; 0:117i; h0:835; 0:113; 0:218i�

ð3
�h0:919; 0:113; 0:122i; h0:818; 0:112; 0:211i; h0:611; 0:513; 0:618i; h0:713; 0:218; 0:319i�

Table 6 4-polar neutrosophic

data for expert I1

I1 4-polar neutrosophic sets

ð1
�h0:511; 0:311; 0:213i; h0:631; 0:431; 0:211i; h0:328; 0:611; 0:782i h0:713; 0:348; 0:411i�

ð2
�h0:638; 0:324; 0:237i; h0:816; 0:118; 0:119i; h0:717; 0:115; 0:218i; h0:719; 0:222; 0:249i�

ð3
�h0:889; 0:212; 0:213i; h0:699; 0:189; 0:232i; h0:413; 0:718; 0:818i; h0:518; 0:421; 0:518i�

Table 7 4-polar neutrosophic

data for expert I2

I2 4-polar neutrosophic sets

ð1
�h0:611; 0:213; 0:118i; h0:711; 0:321; 0:118i; h0:412; 0:511; 0:611i h0:813; 0:211; 0:341i�

ð2
�h0:718; 0:211; 0:117i; h0:916; 0:113; 0:112i; h0:817; 0:113; 0:211i; h0:815; 0:211; 0:234i�

ð3
�h0:918; 0:116; 0:132i; h0:713; 0:116; 0:213i; h0:511; 0:611; 0:713i; h0:613; 0:321; 0:416i�

Table 8 4-polar neutrosophic

data for expert I3

I3 4-polar neutrosophic sets

ð1
�h0:711; 0:118; 0:108i; h0:811; 0:213; 0:108i; h0:512; 0:421; 0:521i h0:815; 0:118; 0:213i�

ð2
�h0:723; 0:119; 0:111i; h0:928; 0:112; 0:110i; h0:888; 0:111; 0:119i; h0:889; 0:181; 0:201i�

ð3
�h0:929; 0:115; 0:128i; h0:813; 0:112; 0:211i; h0:611; 0:511; 0:613i; h0:718; 0:213; 0:325i�
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4.1.4 Solution by using Algorithm 2

Now by using Tables 5, 6, 7, and 8, we find cosine simi-

larity measures between ðI1;PÞ; ðI2;PÞ and ðI3;PÞ by

using Definition 3.17 given as

C1
MPNSðI2;PÞ

¼ 1

3� 4

 

ð0:611Þð0:635Þ þ ð0:213Þð0:115Þ þ ð0:118Þð0:114Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð0:611Þ2 þ ð0:213Þ2 þ ð0:118Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð0:635Þ2 þ ð0:115Þ2 þ ð0:114Þ2
q

þ ð0:711Þð0:813Þ þ ð0:321Þð0:329Þ þ ð0:118Þð0:115Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð0:711Þ2 þ ð0:321Þ2 þ ð0:118Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð0:813Þ2 þ ð0:329Þ2 þ ð0:115Þ2
q þ � � �

þ ð0:613Þð0:713Þ þ ð0:321Þð0:218Þ þ ð0:416Þð0:319Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð0:613Þ2 þ ð0:321Þ2 þ ð0:416Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð0:713Þ2 þ ð0:218Þ2 þ ð0:319Þ2
q

!

:

C1
MPNSðI2;PÞ ¼ 11:89053

12
¼ 0:990878. Similarly, we can

find similarity between other MPNSs given as

C1
MPNSðI1;PÞ ¼ 11:50807

12
¼ 0:95900, C1

MPNSðI3;PÞ ¼
11:996
12

¼ 0:99966 . This shows that C1
MPNSðI3;PÞ � C1

MPNS

ðI2;PÞ � C1
MPNSðI1;PÞ . From this ranking it is clear to

see that opinion of expertI3 is most related and similar to the

condition of patient P. So, we select I3 and calculate score

values of all diseases ðd; d ¼ 1; 2; 3 by using Definition 2.6.

This implies that £1ðI3ð1Þ ¼ 0:5198, £1ðI3ð2Þ ¼ 0:7301 ,

£1ðI3ð3Þ ¼ 0:4977 . By Definition 2.7 we can write that

ð2 � ð1 � ð3. Hence patient is suffering from Hepatitis C.

Now, we use set theoretic similarity measure C2
MPNS to

find similarity between ðI1;PÞ; ðI2;PÞ and ðI3;PÞ by

using Definition 3.18 given as

C2
MPNSðI2;PÞ

¼ 1

3� 4

 

ð0:611Þð0:635Þ þ ð0:213Þð0:115Þ þ ð0:118Þð0:114Þ
maxðð0:611Þ2 þ ð0:213Þ2 þ ð0:118Þ2; ð0:635Þ2 þ ð0:115Þ2 þ ð0:114Þ2Þ

þ ð0:711Þð0:813Þ þ ð0:321Þð0:329Þ þ ð0:118Þð0:115Þ
maxðð0:711Þ2 þ ð0:321Þ2 þ ð0:118Þ2; ð0:813Þ2 þ ð0:329Þ2 þ ð0:115Þ2Þ þ � � �

þ ð0:613Þð0:713Þ þ ð0:321Þð0:218Þ þ ð0:416Þð0:319Þ
maxðð0:613Þ2 þ ð0:321Þ2 þ ð0:416Þ2; ð0:713Þ2 þ ð0:218Þ2 þ ð0:319Þ2Þ

!

:

C2
MPNSðI2;PÞ ¼ 10:44972

12
¼ 0:87081. Similarly, we can find

similarity between other MPNSs given as C2
MPNSðI1;PÞ ¼

10:51971
12

¼ 0:87664, C2
MPNSðI3;PÞ ¼ 11:2283

12
¼ 0:9355. This

shows that C2
MPNSðI3;PÞ � C2

MPNSðI1;PÞ � C2
MPNS

ðI2;PÞ. From this ranking it is clear to see that opinion of

expert I3 is most related and similar to the condition of

patient P. So, we select I3 and calculate score values of all

diseases ðd; d ¼ 1; 2; 3 by using Definition 2.6. This

implies that £1ðI3ð1Þ ¼ 0:5198, £1ðI3ð2Þ ¼ 0:7301,

£1ðI3ð3Þ ¼ 0:4977. By Definition 2.7 we can write that

ð2 � ð1 � ð3. Hence patient is suffering from Hepatitis C.

Graphically results can be seen as Fig 4.

4.1.5 Discussion and Comparison Analysis:

In this section, we discuss advantages validity, simplicity,

flexibility, and superiority of our proposed approach and

algorithms. We also give a brief comparison analysis of

proposed method with existing approaches.

Advantages of Proposed Approach

Now we discuss some advantages of the proposed

techniques based on MPNSs.

(i) Validity of the Method

The suggested method is valid and suitable for all types

of input data. we present two novel algorithms in this

manuscript one for MPNTS and other for similarity mea-

sures. We introduced two similarity measures between

MPNSs. It is interesting to note that both algorithms and

both formulas of similarity gives the same result (see

Table 9). In this work, both algorithms have their own

importance and can be used according to the requirement

of decision-maker. Both algorithms are valid and give best

decision in multi-criteria decision-making (MCDM)

problems.

(ii) Simplicity and Flexibility Dealing with Different

Criteria

In MCDM problems, we experience different types of

criteria and input data according to the given situations. The

proposed algorithms are simple and easy to understand

which can be applied easily on whatever type of alternatives

andmeasures. Both algorithms are flexible and easily altered

according to the different situations, inputs, and outputs.

There is a slightly difference between the ranking of the

proposed approaches because different formulae have

Fig. 3 Ranking of alternatives under MPNTS
Fig. 4 Ranking of attributes under similarity measures
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different ordering strategies, so they can afford the slightly

different effect according to their deliberations.

(iii) Superiority of Proposed Method

From all above discussion, we observe that our proposed

models of m-polar neutrosophic set and m-polar neutro-

sophic topological space are superior to existing approaches

including fuzzy neutrosophic sets, m-polar intuitionistic

fuzzy sets, interval-valued m-polar fuzzy sets and m-polar

fuzzy sets. Moreover, many hybrid structures of fuzzy sets

become the special cases of m-polar neutrosophic set with

the addition of some suitable conditions (see Fig. 1). So our

proposed approach is valid, flexible, simple, and superior to

other hybrid structures of fuzzy sets.

Comparison Analysis

(1) In our proposed method, we define m-polar

neutrosophic topological space and two algorithms

based on MPN input data. The impressive point of

this model is that we can use it for mathematical

modeling at a large scale or ‘‘m’’ numbers of criteria

with its truth, falsity, and indeterminacy part. These

m-degrees basically show the corresponding

properties or any set criteria about the alternatives.

As in giving numerical example, we use m ¼ 4 to

analyze the data for four symptoms appearing to the

patient. The value of ‘‘m’’ can be taken as large as

possible, which is not possible for other approaches.

Moreover, many hybrid structures of fuzzy set

become the special cases of m-polar neutrosophic set

with the addition of some suitable conditions (see

Fig. 1).

(2) Table 10 as given above listing the results of the

comparison in the final ranking of top 3 alternatives

(diseases). As it could be observed in the comparison

Table 10, the best selection made by the proposed

methods is comparable to already established methods

which is expressive in itself and approves the reliability

and validity of the proposed method. Now the question

turns out that whywe need to specify a novel algorithm

based on this novel structure? There are many

arguments which show that proposed operator is

more suitable than other existing methods. As we

know that intuitionistic fuzzy sets, picture fuzzy sets,

fuzzy sets, hesitant fuzzy sets, neutrosophic sets, and

other existing hybrid structures of fuzzy sets have some

limitations and not able to present full information

about the situation. But our proposed model ofm-polar

neutrosophic set is most suitable for MCDM methods

and deals with multi-criteria having truth,

indeterminacy, and falsity values. Due to the addition

of neutrosophic nature in multi-polarity, these three

grades go independent of each other and give a lot of

information about the multiple criteria for

the alternatives.

Table 10 Comparison of proposed algorithms with some existing approaches

Methods Similarity measures on sets Ranking of alternatives

Wei [37] Picture fuzzy set ð2 � ð1 � ð3

Xu and Chen [39, 40] Intuitionistic fuzzy set and correlation measures ð2 � ð1 � ð3

Ye [45] Correlation coefficient of neutrosophic set ð2 � ð1 � ð3

Ye [47] Intuitionistic fuzzy set ð2 � ð3 � ð1

Li and Cheng [17] Intuitionistic fuzzy set ð2 � ð3 � ð1

Lin [18] Hesitant fuzzy linguistic information ð2 � ð1 � ð3

Wei [38] Interval-valued intuitionistic fuzzy set ð2 � ð3 � ð1

Proposed algorithm1 m-Polar neutrosophic topological space ð2 � ð3 � ð1

Proposed algorithm2 Cosine similarity on m-polar neutrosophic sets ð2 � ð1 � ð3

Proposed algorithm2 Set theooretic similarity on m-polar neutrosophic sets ð2 � ð1 � ð3

Table 9 Score values for optimal choice under both algorithms

Algorithm Method ð1 ð2 ð3 Ranking of alternatives

Algorithm1 m-Polar neutrosophic topological space 0.3558 0.622 0.3691 ð2 � ð3 � ð1

Algorithm2 Cosine similarity on m-polar neutrosophic sets 0.5198 0.7301 0.4977 ð2 � ð1 � ð3

Algorithm2 Set theoretic similarity on m-polar neutrosophic sets 0.5198 0.7301 0.4977 ð2 � ð1 � ð3
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(3) The similarity measures for other existing hybrid

structures of fuzzy set become special cases of

similarity measures of m-polar neutrosophic set. So,

this model is more generalized and can easily deal

with the problems involving intuitionistic,

neutrosophy, hesitant, picture, and fuzziness of

alternatives. The constructed topological space on

MPNS becomes superior to existing topological

spaces and easily deals with the problems in

MCDM methods.

4.2 Clustering Analysis in Multi-criteria Decision-

Making

We introduce a novel clustering algorithm under m-polar

neutrosophic environment to solve multi-criteria decision-

making problem. Before this, we revise some basic

concepts.

Definition 4.1 [41] Let MNf
be ‘‘q’’ m-polar neutro-

sophic sets (MPNSs), then G ¼ ðgbfÞq�q is said to be

similarity matrix, where gbf ¼ CðMNb
;MNf

Þ represents

the similarity measure of MPNSs MNb
and MNf

and

satisfy the following:

(1) 0� gbf � 1;b; f ¼ 1; 2; 3; . . .; q,

(2) gbb ¼ 1; b ¼ 1; 2; 3; . . .; q,

(3) gbf ¼ gfb; b; f ¼ 1; 2; 3; . . .; q.

Definition 4.2 [41] Let G ¼ ðgbfÞq�q be the similarity

matrix. Then G2 ¼ G  G ¼ ðgbfÞq�q is said to be a com-

position matrix of G, where
gbf ¼ max

d
fminfgbd; gdfgg; b; f ¼ 1; 2; 3; . . .; q

Theorem 4.3 [41] Let G ¼ ðgbfÞq�q be a similarity

matrix, then after a finite compositions ðG ! G2 !
G4 ! � � � ! G2d ! � � �Þ, 9 a positive integer d such that

G2d ¼ G2ðdþ1Þ
. G2d is an equivalence similarity matrix.

Definition 4.4 [41] Let G ¼ ðgbfÞq�q be an equivalence

similarity matrix. Then Gð ¼ ðgðbfÞq�q is said to be ð-cut-

ting matrix of G, where

gðbf ¼
0 ifgbf\ð

1 ifgbf � ð

�

b; f ¼ 1; 2; 3; . . .; q and ð is confidence level with

ð 2 ½0; 1�.
Now, we use these basic ideas for the construction of a

novel clustering algorithm based on MPNSs given as

algorithm 3. In the constructed numerical example of

clustering analysis, we discuss algorithm 3 with more detail

and clarity.
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4.2.1 Numerical Example

Suppose that Q ¼ fMN1
;MN2

;MN3
;MN4

;MN5
;MN6

;

MN7
g be the collection of seven students. They take an

admission in a Science project learning academy for the

preparation of a national competition on Science projects.

Every student is evaluated on the basis of some important

educational parameters, which are set according to the

experts of that academy. To get fair assessment of these

students, the evaluation committee establish the set of

decision variables given as Z ¼ fg1; g2; g3g, where
g1 ¼ Intellectually curious; g2 ¼ Obedient and punctual;

g3 ¼ Experience

Experts need to categorize the students according to these

parameters and create their clustering corresponding to

different sections of that academy. We subdivide these

parameters into further criteria given as

• ‘‘Intellectually curious’’ student may be creative and

give his original ideas.

• ‘‘Obedient and punctual’’ may be hard-working and

honest.

• ‘‘Experience’’ means that some students have high or

medium high experience.

In tabular form, this information can be seen as Table 11.

Some linguistic terms are defined to convert verbal

description of experts about Z into mathematical language

given in Table 12.

Experts select the weight vector ‘‘}’’ for the strength of

established decision variables as } ¼ ð0:60; 0:25; 0:15ÞT .
To clarify the differences of the opinion of experts and to

cover the input data, we construct 2-polar neutrosophic sets

given in Table 13. The flow chart diagram of proposed

algorithm is given in Fig. 5.

Now, we calculate similarity measure C between ele-

ments of Table 13 and construct similarity matrix.

Table 11 Characteristics of decision variables

Decision variables Characteristics for 2-polar

neutrosophic soft set

Intellectually curious hcreative; originalityi
Obedient and punctual hhard� working; honesti
Experience hhigh;mediumhighi

Table 12 Linguistic terms for rating criteria for weight vector

Linguistic terms (LTs) Fuzzy numbers

Good/G 0:60� x� 1

Medium good/MG 0:20� x\0:60

Medium/M 0:10� x\0:20

Medium bad/MB 0:05� x\0:10

Bad/B 0� x\0:05

Fig. 5 Flow chart diagram of proposed algorithm 3 for clustering

Table 13 2-Polar neutrosophic input table

Students g1 g2 g3

MN1

�h0:81; 0:21; 0:11i; h0:89; 0:23; 0:38i� �h0:78; 0:32; 0:17i; h0:83; 0:21; 0:11i� �h0:61; 0:42; 0:31i; h0:71; 0:31; 0:41i�

MN2

�h0:73; 0:23; 0:18i; h0:79; 0:21; 0:31i� �h0:79; 0:23; 0:14i; h0:81; 0:31; 0:21i� �h0:83; 0:31; 0:18i; h0:73; 0:41; 0:37i�

MN3

�h0:91; 0:11; 0:15i; h0:86; 0:31; 0:24i� �h0:83; 0:21; 0:43i; h0:89; 0:21; 0:41i� �h0:72; 0:43; 0:39i; h0:69; 0:41; 0:43i�

MN4

�h0:74; 0:31; 0:44i; h0:79; 0:37; 0:28i� �h0:79; 0:28; 0:32i; h0:73; 0:41; 0:28i� �h0:81; 0:31; 0:21i; h0:83; 0:19; 0:22i�

MN5

�h0:93; 0:11; 0:18i; h0:91; 0:12; 0:15i� �h0:91; 0:21; 0:31i; h0:89; 0:15; 0:19i� �h0:89; 0:21; 0:23i; h0:87; 0:23; 0:24i�

MN6

�h0:78; 0:21; 0:37i; h0:75; 0:21; 0:41i� �h0:82; 0:31; 0:34i; h0:79; 0:25; 0:42i� �h0:88; 0:28; 0:23i; h0:75; 0:21; 0:15i�

MN7

�h0:79; 0:28; 0:15i; h0:83; 0:15; 0:19i� �h0:86; 0:23; 0:31i; h0:87; 0:13; 0:31i� �h0:89; 0:31; 0:24i; h0:79; 0:28; 0:24i�
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G ¼

0:1000 0:9339 0:9100 0:8670 0:8863 0:9055 0:9092

0:9339 0:1000 0:8860 0:9130 0:8903 0:9207 0:9388

0:9100 0:8860 0:1000 0:8634 0:9145 0:8771 0:9100

0:8670 0:9130 0:8634 0:1000 0:8535 0:9204 0:8973

0:8863 0:8903 0:9145 0:8535 0:1000 0:8701 0:9354

0:9055 0:9207 0:8771 0:9204 0:8701 0:1000 0:9085

0:9092 0:9388 0:9100 0:8973 0:9354 0:9085 0:1000

0

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

A

G2 ¼

0:1000 0:9339 0:9100 0:9130 0:9100 0:9207 0:9339

0:9339 0:1000 0:9100 0:9204 0:9354 0:9207 0:9388

0:9100 0:9100 0:1000 0:8973 0:9145 0:9100 0:9145

0:9130 0:9204 0:8973 0:1000 0:8973 0:9204 0:9130

0:9100 0:9354 0:9145 0:8973 0:1000 0:9085 0:9354

0:9207 0:9207 0:9100 0:9204 0:9085 0:1000 0:9207

0:9339 0:9388 0:9145 0:9130 0:9354 0:9207 0:1000

0

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

A

As G2 *G, so we move towards the further calculations.

G4 ¼

0:1000 0:9339 0:9145 0:9204 0:9339 0:9207 0:9339

0:9339 0:1000 0:9145 0:9204 0:9354 0:9207 0:9388

0:9145 0:9145 0:1000 0:9130 0:9145 0:9145 0:9145

0:9204 0:9204 0:9130 0:1000 0:9204 0:9204 0:9204

0:9339 0:9354 0:9145 0:9204 0:1000 0:9207 0:9354

0:9207 0:9207 0:9145 0:9204 0:9207 0:1000 0:9388

0:9339 0:9388 0:9145 0:9204 0:9354 0:9388 0:1000

0

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

A

G8 ¼

0:1000 0:9339 0:9145 0:9204 0:9339 0:9339 0:9339

0:9339 0:1000 0:9145 0:9204 0:9354 0:9339 0:9388

0:9145 0:9145 0:1000 0:9145 0:9145 0:9145 0:9145

0:9204 0:9204 0:9145 0:1000 0:9204 0:9204 0:9204

0:9339 0:9354 0:9145 0:9204 0:1000 0:9354 0:9354

0:9339 0:9339 0:9145 0:9204 0:9354 0:1000 0:9388

0:9339 0:9388 0:9145 0:9204 0:9354 0:9388 0:1000

0

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

A

G16 ¼

0:1000 0:9339 0:9145 0:9204 0:9339 0:9339 0:9339

0:9339 0:1000 0:9145 0:9204 0:9354 0:9339 0:9388

0:9145 0:9145 0:1000 0:9145 0:9145 0:9145 0:9145

0:9204 0:9204 0:9145 0:1000 0:9204 0:9204 0:9204

0:9339 0:9354 0:9145 0:9204 0:1000 0:9354 0:9354

0:9339 0:9388 0:9145 0:9204 0:9354 0:1000 0:9388

0:9339 0:9388 0:9145 0:9204 0:9354 0:9388 0:1000

0

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

A

G32 ¼

0:1000 0:9339 0:9145 0:9204 0:9339 0:9339 0:9339

0:9339 0:1000 0:9145 0:9204 0:9354 0:9339 0:9388

0:9145 0:9145 0:1000 0:9145 0:9145 0:9145 0:9145

0:9204 0:9204 0:9145 0:1000 0:9204 0:9204 0:9204

0:9339 0:9354 0:9145 0:9204 0:1000 0:9354 0:9354

0:9339 0:9388 0:9145 0:9204 0:9354 0:1000 0:9388

0:9339 0:9388 0:9145 0:9204 0:9354 0:9388 0:1000

0

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

A

It is clear that G32 ¼ G16  G16 ¼ G16 is an equivalence

similarity matrix. Since the confidence level ð has a strong

connection with the elements of the equivalence similarity

matrix. For ð we construct ð-cutting matrix Gð. Different ð

produces different Gð and different clustering for the uni-

versal set Q. For different values of ð different clustering

results are given in Table 14.

The clustering effect diagram for different ð-cutting of

seven students can be seen in Fig. 6. This means that by

utilizing this novel algorithm experts of academy can easily

classify the students corresponding to different sections of

the academy according to their ability. All the clustering

depend upon the parameter ð, which is confidence level

and selected according to the opinions and suggestions of

experts.

4.2.2 Comparison

Now, we compare our proposed method with some exist-

ing approaches and we see that our proposed approach has

the following advantages.

Table 14 The clustering results

of seven students
Confidence level ð Clusters

0:9388\ð� 1 fMN1
g; fMN2

g; fMN3
g; fMN4

g; fMN5
g; fMN6

g; fMN7
g

0:9354\ð� 0:9388 fMN1
g; fMN2

;MN6
;MN7

g; fMN3
g; fMN4

g; fMN5
g

0:9339\ð� 0:9354 fMN1
g; fMN2

;MN5
;MN6

;MN7
g; fMN3

g; fMN4
g

0:9204\ð� 0:9339 fMN1
;MN2

;MN5
;MN6

;MN7
g; fMN3

g; fMN4
g

0:9145\ð� 0:9204 fMN1
;MN2

;MN4
;MN5

;MN6
;MN7

g; fMN3
g

0� ð� 0:9145 fMN1
;MN2

;MN3
;MN4

;MN5
;MN6

;MN7
g;

Fig. 6 The clustering effect diagram of seven students
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(1) By using the methods of Xu et al. [41] and Zhang

et al. [54], we cannot handle the multi-polar input

data and cannot deal with the indeterminacy part of

the alternatives. They used intuitionistic fuzzy sets

(IFSs) for the clustering of input data. In our

proposed approach, we deal our clustering with the

multiple data with the truth, indeterminacy, and

falsity part of the alternatives. So, our method is more

efficient and deal with numerous applications having

multiple data.

(2) Peng et al. [22] presented the clustering idea on

Pythagorean fuzzy sets (PFSs). They increased the

domain of Xu et al. [41] and Zhang et al. [54]

approaches, but they cannot handle the multi-polar

input data and cannot deal with the indeterminacy

part of the alternatives. Our proposed method

removes these restrictions and can easily handle

multi-criteria decision-making problems.

(3) According to Peng et al. [22] research idea, Zhang

et al. [54] produced the loss of too much information

in the data during the calculation by using

intuitionistic fuzzy similarity degrees. This loss

effects upon the final result of clustering. Our

proposed approach does not lose any input data

during the calculations and produces accurate and

appropriate results. This comparison is given in

tabular form in Table 15.

5 Conclusion

Decision analysis has been intensively examined by

numerous scholars and researchers. The techniques devel-

oped for this task mainly depend on the type of decision

problem under consideration. Most of its relating issues are

associated with uncertain, imprecise and multi-polar

information, which cannot be tackled properly through

fuzzy set. To overcome this particular deficiency of fuzzy

sets, Chen et al. [5] have proposed the concept of m-polar

fuzzy set (MPFS) in 2014, which has the capability to deal

with the data having vagueness and uncertainty under

multi-polar information. Neutrosophic set deals with the

MCDM methods having truth, falsity, and indeterminacy

grades for the corresponding alternatives. In this manu-

script, we have established the idea of m-polar neutro-

sophic set (MPNS) by combining the two independent

concepts of m-polar fuzzy set and neutrosophic set. We

have established the notion of m-polar neutrosophic

topology and defined interior, closure, exterior, and frontier

in the context of MPNSs with the help of illustrations. We

have presented cosine similarity measure and set theoretic

similarity measure to find the similarity between MPNSs.

Three novel algorithms for multi-criteria decision-making

(MCDM) with linguistic information have been developed

on the basis of MPNTS, similarity measures, and clustering

analysis. Furthermore, we have presented advantages,

simplicity, flexibility, and validity of the proposed algo-

rithms. We have discussed and compared our results with

some existing methodologies.
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Abstract 
We introduce now for the first time the neutrosophic modal logic. The Neutrosophic Modal 

Logic includes the neutrosophic operators that express the modalities. It is an extension of 
neutrosophic predicate logic and of neutrosophic propositional logic. 

1. Introduction
The paper extends the fuzzy modal logic (Girle, 2010; Hájek & Harmancová, 1993; & Liau 

& Pen Lin, 1992), fuzzy environment (Hur et. al., 2006) and neutrosophic sets, numbers and 
operators (Liu et. al., 2014; Liu & Shi, 2015; Liu & Tang, 2016; Liu & Wang, 2016; Liu & Li, 
2017; Liu & Tang, 2016; Liu et. al., 2016; Liu, 2016), together with the last developments of the 
neutrosophic environment {including (t,i,f)-neutrosophic algeb-raic structures, neutrosophic triplet 
structures, and neutrosophic overset / underset / offset} (Smarandache, 2016a; Smarandache & Ali, 
2016; Smarandache, 2016b) passing through the symbolic neutrosophic logic (Smarandache, 2015), 
ultimately to neutrosophic modal logic. 

This paper also answers Rivieccio’s question on neutrosophic modalities. 
All definitions, sections, and notions in-troduced in this paper were never done before, 

neither in my previous work nor in other researchers’. 
Therefore, we introduce now the Neutrosophic Modal Logic and the Refined Neutrosophic 

Modal Logic. Then we can extend them to Symbolic Neutrosophic Modal Logic and Refined 
Symbolic Neutrosophic Modal Logic, using labels instead of numerical values. 

There is a large variety of neutrosophic modal logics, as actually happens in classical modal 
logic too. Similarly, the neutrosophic accessibility relation and possible neutrosophic worlds have many 
interpretations, depending on each par-ticular application. Several neutrosophic modal applications are 
also listed. 

Due to numerous applications of neutrosophic modal logic (see the examples throughout the 
paper), the introduction of the neutrosophic modal logic was needed. 

Neutrosophic Modal Logic is a logic where some neutrosophic modalities have been included. 
Let 𝒫 be a neutrosophic proposition. We have the following types of neutrosophic modalities: 

I. Neutrosophic Alethic Modalities (related to truth) has three neutros-ophic operators: 
Neutrosophic Possibility: It is neutros-ophically possible that 𝒫. 
Neutrosophic Necessity: It is neutros-ophically necessary that 𝒫. 
Neutrosophic Impossibility: It is neutros-ophically impossible that 𝒫. 

II. Neutrosophic Temporal Modalities (related to time)
It was the neutrosophic case that 𝒫. 
It will neutrosophically be that 𝒫. 
And similarly: 
It has always neutrosophically been that 𝒫. 
It will always neutrosophically be that 𝒫. 

III. Neutrosophic Epistemic Modalities (related to knowledge):
It is neutrosophically known that 𝒫. 
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IV. Neutrosophic Doxastic Modalities (related to belief):
It is neutrosophically believed that 𝒫. 

V. Neutrosophic Deontic Modalities: 
It is neutrosophically obligatory that 𝒫. 
It is neutrosophically permissible that 𝒫. 

2. Neutrosophic Alethic Modal Operators
The modalities used in classical (alethic) modal logic can be neutrosophicated by inserting 

the indeterminacy. 
We insert the degrees of possibility and degrees of necessity, as refinement of classical 

modal operators. 

2.1. Neutrosophic Possibility Operator 
The classical Possibility Modal Operator «◊ 𝑃» meaning «It is possible that P» is extended 

to Neutrosophic Possibility Operator: ◊ே 𝒫 meaning «It is (t, i, f)-possible that 𝒫 », using 
Neutrosophic Probability, where «(t, i, f)-possible» means t % possible (chance that 𝒫 occurs), i % 
indeterminate (indeterminate-chance that 𝒫 occurs), and f % impossible (chance that 𝒫 does not 
occur). 

If 𝒫൫𝑡, 𝑖, 𝑓൯ is a neutrosophic proposition, with 𝑡, 𝑖, 𝑓 subsets of [0, 1], then the 
neutrosophic truth-value of the neutrosophic possibility operator is: 

◊ே 𝒫 = ቀsup൫𝑡൯, inf൫𝑖൯, inf൫𝑓൯ቁ, (1) 

which means that if a proposition P is 𝑡 true, 𝑖 indeterminate, and 𝑓 false, then the value 

of the neutrosophic possibility operator ◊ே 𝒫 is: sup൫𝑡൯ possibility, inf൫𝑖൯ indeterminate-
possibility, and inf൫𝑓൯ impossibility. 

For example. 
Let P = «It will be snowing tomorrow». 
According to the meteorological center, the neutrosophic truth-value of 𝒫 is: 
𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5}),  
i.e. [0.5, 0.6] true, (0.2, 0.4) indeterminate, and {0.3, 0.5} false. 
Then the neutrosophic possibility operator is: 
◊ே 𝒫 = (sup[0.5, 0.6], inf(0.2, 0.4), inf{0.3, 0.5}) = (0.6, 0.2, 0.3),
i.e. 0.6 possible, 0.2 indeterminate-possibility, and 0.3 impossible. 

2.2. Neutrosophic Necessity Operator 
The classical Necessity Modal Operator «□𝑃» meaning «It is necessary that P» is extended 

to Neutrosophic Necessity Operator: □ே𝒫 meaning «It is (t, i, f)-necessary that 𝒫 », using again the 
Neutrosophic Probability, where similarly «(t, i, f)-necessity» means t % necessary (surety that 𝒫 
occurs), i % indeterminate (indeterminate-surety that 𝒫 occurs), and f % unnecessary (unsurely that 
𝒫 occurs). 

If 𝒫൫𝑡, 𝑖, 𝑓൯ is a neutrosophic proposition, with 𝑡, 𝑖, 𝑓 subsets of [0, 1], then the 
neutrosophic truth value of the neutrosophic necessity operator is: 

□ே𝒫 = ቀinf൫𝑡൯, sup൫𝑖൯, sup൫𝑓൯ቁ, (2) 

which means that if a proposition 𝒫 is 𝑡 true, 𝑖 indeterminate, and 𝑓 false, then the value 

of the neutrosophic necessity operator □ே𝒫 is: inf൫𝑡൯ necessary, sup൫𝑖൯ indeterminate-necessity, 
and sup൫𝑓൯ unnecessary. 

Taking the previous example: 
𝒫 = «It will be snowing tomorrow», with 𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5}), 
then the neutrosophic necessity operator is: 
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□ே𝒫 = (inf[0.5, 0.6], sup(0.2, 0.4), sup{0.3, 0.5}) = (0.5, 0.4, 0.5),
i.e. 0.5 necessary, 0.4 indeterminate-necessity, and 0.5 unnecessary. 

2.3. Other Possibility and Necessity Operators 
The previously defined neutrosophic pos-sibility and respectively neutrosophic necessity 

operators, for 𝒫൫𝑡, 𝑖, 𝑓൯ a neutrosophic propos-ition, with 𝑡, 𝑖, 𝑓 subset-valued included in [0, 1], 
 ◊𝑁𝒫 = (sup(𝑡𝑝), inf(𝑖𝑝), inf(𝑓𝑝)),

□𝑁𝒫 = (inf(𝑡𝑝), sup(𝑖𝑝), sup(𝑓𝑝)),
work quite well for subset-valued (including interval-valued) neutrosophic components, but 

they fail for single-valued neutrosophic components because one gets ◊𝑁𝒫 = □𝑁𝒫. 
Depending on the applications, more possibility and necessity operators may be defined. 
Their definitions may work, mostly based on max / min / min for possibility operator and 

min / max / max for necessity operator ( when dealing with single-valued neutrosophic components 
in [0, 1] ), or based on sup / inf / inf for possibility operator and inf / sup / sup for necessity operator 
(when dealing with interval-valued or more general with subset-valued of neutrosophic components 
included in [0, 1] ): 

For examples. 
Let 𝒫൫𝑡, 𝑖, 𝑓൯ be a neutrosophic proposition, with 𝑡, 𝑖, 𝑓 single-valued of [0, 1], then 

the neutrosophic truth-value of the neutrosophic possibility operator is: 
◊ே 𝒫 = ( max{𝑡, 1-𝑓}, min{𝑖, 1-𝑖}, min{𝑓, 1- 𝑡} )
or 
◊ே 𝒫 = ( max{𝑡, 1-𝑡}, min{𝑖, 1-𝑖}, min{𝑓, 1- 𝑓} )
or 
◊ே 𝒫 = (1- 𝑓, 𝑖, 𝑓)
{defined by Anas Al-Masarwah}. 
Let 𝒫൫𝑡, 𝑖, 𝑓൯ be a neutrosophic proposition, with 𝑡, 𝑖, 𝑓 single-valued of [0, 1], then 

the neutrosophic truth-value of the neutrosophic necessity operator is: 
□ே𝒫 = ( min{𝑡, 1-𝑓}, max{𝑖, 1-𝑖}, max{𝑓, 1- 𝑡} )
or 
□ே𝒫 = ( min{𝑡, 1-𝑡}, max{𝑖, 1-𝑖}, max{𝑓, 1- 𝑓} )
or 
□ே𝒫 = (𝑡, 𝑖, 1 − 𝑡)
{defined by Anas Al-Masarwah}. 
The above six defined operators may be extended from single-valued numbers of [0, 1] to 

interval and subsets of [0, 1], by simply replacing the subtractions of numbers by subtractions of 
intervals or subsets, and “min” by “inf”, while “max” by “sup”. 

3. Connection between Neutrosophic Possibility Operator and Neutrosophic Necessity
Operator 

In classical modal logic, a modal operator is equivalent to the negation of the other: 
◊ 𝑃 ↔ ¬□¬𝑃,  (3) 
□𝑃 ↔ ¬ ◊ ¬𝑃. (4) 

In neutrosophic logic one has a class of neutrosophic negation operators. The most used one is: 
¬
𝑁𝑃(𝑡, 𝑖, 𝑓) = 𝑃ത(𝑓, 1 − 𝑖, 𝑡), (5) 
where t, i, f are real subsets of the interval [0, 1]. 

Let’s check what’s happening in the neutros-ophic modal logic, using the previous example. 
One had:  
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𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5}), 
then  

¬
𝑁𝒫 = 𝒫ത({0.3, 0.5}, 1 − (0.2, 0.4), [0.5, 0.6]) =

𝒫ത({0.3, 0.5}, 1 − (0.2, 0.4), [0.5, 0.6]) = 
𝒫ത({0.3, 0.5}, (0.6, 0.8), [0.5, 0.6]). 

Therefore, denoting by 
↔
𝑁

 the neutrosophic equivalence, one has: 
¬
𝑁

□
𝑁

¬
𝑁𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5})

↔
𝑁

↔
𝑁

 It is not neutrosophically necessary that «It will not be snowing tomorrow» 
↔
𝑁

 It is not neutrosophically necessary that 𝒫ത({0.3, 0.5}, (0.6, 0.8), [0.5, 0.6]) 
↔
𝑁

 It is neutrosophically possible that
¬
𝑁𝒫ത({0.3, 0.5}, (0.6, 0.8), [0.5, 0.6]) 

↔
𝑁

 It is neutrosophically possible that 𝒫([0.5, 0.6], 1 − (0.6, 0.8), {0.3, 0.5}) 
↔
𝑁

 It is neutrosophically possible that 𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5}) 
↔
𝑁

◊
𝑁

𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5}) = (0.6, 0.2, 0.3).

Let’s check the second neutrosophic equivalence. 
¬
𝑁

◊
𝑁

¬
𝑁𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5})

↔
𝑁

↔
𝑁

 It is not neutrosophically possible that «It will not be snowing tomorrow» 
↔
𝑁

 It is not neutrosophically possible that 𝒫ത({0.3, 0.5}, (0.6, 0.8), [0.5, 0.6]) 
↔
𝑁

 It is neutrosophically necessary that
¬
𝑁𝒫ത({0.3, 0.5}, (0.6, 0.8), [0.5, 0.6]) 

↔
𝑁

 It is neutrosophically necessary that 𝒫([0.5, 0.6], 1 − (0.6, 0.8), {0.3, 0.5}) 
↔
𝑁

 It is neutrosophically necessary that 𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5}) 
↔
𝑁

□
𝑁

𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5}) = (0.6, 0.2, 0.3). 

4. Neutrosophic Modal Equivalences
Neutrosophic Modal Equivalences hold within a certain accuracy, depending on the 

definitions of neutrosophic possibility operator and neutros-ophic necessity operator, as well as on 
the definition of the neutrosophic negation – employed by the experts depending on each 
application. Under these conditions, one may have the following neutrosophic modal equivalences: 

◊ே 𝒫൫𝑡, 𝑖, 𝑓൯
↔
𝑁

¬
𝑁

□
𝑁

¬
𝑁𝒫൫𝑡, 𝑖, 𝑓൯ (6) 

□ே𝒫൫𝑡, 𝑖, 𝑓൯
↔
𝑁

¬
𝑁

◊
𝑁

¬
𝑁𝒫൫𝑡, 𝑖, 𝑓൯ (7) 

For example, other definitions for the neutros-ophic modal operators may be: 

◊ே 𝒫൫𝑡, 𝑖, 𝑓൯ = ቀsup൫𝑡൯, sup൫𝑖൯, inf൫𝑓൯ቁ, (8) 

or 

◊ே 𝒫൫𝑡, 𝑖, 𝑓൯ = ൬sup൫𝑡൯,


ଶ
, inf൫𝑓൯൰ etc., (9) 

while 

□ே𝒫൫𝑡, 𝑖, 𝑓൯ = ቀinf൫𝑡൯, inf൫𝑖൯, sup൫𝑓൯ቁ, (10) 

or 
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□ே𝒫൫𝑡, 𝑖, 𝑓൯ = ቀinf൫𝑡൯, 2𝑖 ∩ [0,1], sup൫𝑓൯ቁ  (11)

etc. 

5. Neutrosophic Truth Threshold
In neutrosophic logic, first we have to introduce a neutrosophic truth threshold, 𝑇𝐻 =

〈𝑇௧, 𝐼௧, 𝐹௧〉, where 𝑇௧, 𝐼௧, 𝐹௧ are subsets of [0, 1]. We use uppercase letters (T, I, F) in order to 
distinguish the neutrosophic components of the threshold from those of a proposition in general. 

We can say that the proposition 𝒫൫𝑡, 𝑖, 𝑓൯ is neutrosophically true if: 
inf൫𝑡൯ ≥ inf(𝑇௧) and sup൫𝑡൯ ≥ sup(𝑇௧);   (12) 

inf൫𝑖൯ ≤ inf(𝐼௧) and sup൫𝑡൯ ≤ sup(𝐼௧);   (13) 
inf൫𝑓൯ ≤ inf(𝐹௧) and sup൫𝑓൯ ≤ sup(𝐹௧). (14) 

For the particular case when all 𝑇௧, 𝐼௧, 𝐹௧ and 𝑡, 𝑖, 𝑓 are single-valued numbers from the 
interval [0, 1], then one has: 

The proposition 𝒫൫𝑡, 𝑖, 𝑓൯ is neutrosophically true if: 
𝑡 ≥ 𝑇௧; 
𝑖 ≤ 𝐼௧; 
𝑓 ≤ 𝐹௧. 
The neutrosophic truth threshold is established by experts in accordance to each application. 

6. Neutrosophic Semantics
Neutrosophic Semantics of the Neutrosophic Modal Logic is formed by a neutrosophic 

frame 𝐺ே, which is a non-empty neutrosophic set, whose elements are called possible neutrosophic 
worlds, and a neutrosophic binary relation ℛே, called neutrosophic accesibility relation, between 
the possible neutrosophic worlds. By notation, one has: 

〈𝐺ே , ℛே〉. 

A neutrosophic world 𝑤′ே that is neutrosophically accessible from the neutrosophic world 
𝑤ே is symbolized as: 
𝑤ேℛே𝑤′ே. 

In a neutrosophic model each neutrosophic proposition 𝒫 has a neutrosophic truth-value 
൫𝑡௪ಿ

, 𝑖௪ಿ
, 𝑓௪ಿ

൯ respectively to each neutrosophic world 𝑤ே ∈ 𝐺ே, where 𝑡௪ಿ
, 𝑖௪ಿ

, 𝑓௪ಿ
 are subsets 

of [0, 1]. 
A neutrosophic actual world can be similarly noted as in classical modal logic as 𝑤ே ∗ . 
Formalization 
Let 𝑆ே be a set of neutrosophic propositional variables. 

7. Neutrosophic Formulas
1. Every neutrosophic propositional variable 𝒫 ∈ 𝑆ே is a neutrosophic formula.

2. If A, B are neutrosophic formulas, then
¬
𝑁𝐴, 𝐴

∧
𝑁

𝐵, 𝐴
∨
𝑁

𝐵, 𝐴
→
𝑁

𝐵, 𝐴
↔
𝑁

𝐵, and ◊
𝑁

𝐴, 
□
𝑁

𝐴, are 

also neutrosophic formulas, where 
¬
𝑁, 

∧
𝑁

, 
∨
𝑁

, 
→
𝑁

, 
↔
𝑁

, and ◊
𝑁

, 
□
𝑁

 represent the neutrosophic negation, 

neutrosophic intersection, neutrosophic union, neutros-ophic implication, neutrosophic equivalence, 
and neutrosophic possibility operator, neutrosophic necessity operator respectively. 
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8. Accesibility Relation in a Neutrosophic Theory
Let 𝐺ே be a set of neutrosophic worlds 𝑤ே such that each 𝑤ே chracterizes the propositions 

(formulas) of a given neutrosophic theory 𝜏. 
We say that the neutrosophic world 𝑤′ே is accesible from the neutrosophic world 𝑤ே, and 

we write: 𝑤ேℛே𝑤′ே or ℛே(𝑤ே , 𝑤′ே), if for any proposition (formula) 𝒫 ∈ 𝑤ே, meaning the 
neutrosophic truth-value of 𝒫 with respect to 𝑤ே is 

𝒫൫𝑡
௪ಿ , 𝑖

௪ಿ , 𝑓
௪ಿ൯,

one has the neutrophic truth-value of 𝒫 with respect to 𝑤′ே 
𝒫൫𝑡

௪ᇱಿ , 𝑖
௪ᇱಿ , 𝑓

௪ᇱಿ൯,
where 
inf൫𝑡

௪ᇱಿ൯ ≥ inf൫𝑡
௪ಿ൯ and sup൫𝑡

௪ᇱಿ൯ ≥ sup൫𝑡
௪ಿ൯;  (15) 

inf൫𝑖
௪ᇱಿ൯ ≤ inf൫𝑖

௪ಿ൯ and sup൫𝑖
௪ᇱಿ൯ ≤ sup൫𝑖

௪ಿ൯;  (16) 

inf൫𝑓
௪ᇱಿ൯ ≤ inf൫𝑓

௪ಿ൯ and sup൫𝑓
௪ᇱಿ൯ ≤ sup൫𝑓

௪ಿ൯  (17) 

(in the general case when 𝑡
௪ಿ , 𝑖

௪ಿ , 𝑓
௪ಿ and 𝑡

௪ᇱಿ , 𝑖
௪ᇱಿ , 𝑓

௪ᇱಿ are subsets of the interval [0, 1]).

But in the instant of 𝑡
௪ಿ , 𝑖

௪ಿ , 𝑓
௪ಿ and 𝑡

௪ᇱಿ , 𝑖
௪ᇱಿ , 𝑓

௪ᇱಿ as single-values in [0, 1], the above
inequalities become: 

𝑡
௪ᇱಿ ≥ 𝑡

௪ಿ, (18) 

𝑖
௪ᇱಿ ≤ 𝑖

௪ಿ, (19) 

𝑓
௪ᇱಿ ≤ 𝑓

௪ಿ.  (20) 

9. Applications
If the neutrosophic theory 𝜏 is the Neutros-ophic Mereology, or Neutrosophic Gnosisology, 

or Neutrosophic Epistemology etc., the neutrosophic accesibility relation is defined as above. 

9.1. Neutrosophic n-ary Accesibility Relation 
We can also extend the classical binary accesibility relation ℛ to a neutrosophic n-ary 

accesibility relation 

ℛே
(), for n integer ≥ 2. 

Instead of the classical 𝑅(𝑤, 𝑤′), which means that the world 𝑤′ is accesible from the world 
𝑤, we generalize it to: 

ℛே
()

൫𝑤ଵಿ
, 𝑤ଶಿ

, … , 𝑤ಿ
; 𝑤ே

ᇱ ൯, 
which means that the neutrosophic world 𝑤ே

ᇱ  is accesible from the neutrosophic worlds 
𝑤ଵಿ

, 𝑤ଶಿ
, … , 𝑤ಿ

 all together. 

9.2. Neutrosophic Kripke Frame 
𝑘ே = 〈𝐺ே, 𝑅ே〉 is a neutrosophic Kripke frame, since: 
𝑖. 𝐺ே is an arbitrary non-empty neutrosophic set of neutrosophic worlds, or neutrosophic 

states, or neutrosophic situations. 
𝑖𝑖. 𝑅ே ⊆ 𝐺ே × 𝐺ே is a neutrosophic accesibility relation of the neutrosophic Kripke frame. 

Actually, one has a degree of accessibility, degree of indeterminacy, and a degree of non-acces-
sibility. 

9.3. Neutrosophic (t, i, f)-Assignement 
The Neutrosophic (t, i, f)-Assignement is a neutrosophic mapping 
𝑣ே: 𝑆ே × 𝐺ே → [0,1] ⨯ [0,1] ⨯ [0,1]   (21) 
where, for any neutrosophic proposition 𝒫 ∈ 𝑆ே and for any neutrosophic world 𝑤ே, one 

defines: 
𝑣ே൫𝑃,  𝑤ே൯ = ൫𝑡

௪ಿ , 𝑖
௪ಿ , 𝑓

௪ಿ൯ ∈ [0,1] ⨯ [0,1] ⨯ [0,1]  (22) 
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which is the neutrosophical logical truth value of the neutrosophic proposition 𝒫 in the 
neutros-ophic world 𝑤ே. 

9.4. Neutrosophic Deducibility 
We say that the neutrosophic formula 𝒫 is neutrosophically deducible from the neutrosophic 

Kripke frame 𝑘ே, the neutrosophic (t, i, f) – assignment 𝑣ே, and the neutrosophic world 𝑤ே, and we 
write as: 

𝑘ே, 𝑣ே, 𝑤ே 
⊨
𝑁

 𝒫.  (23) 

Let’s make the notation: 
𝛼ே(𝒫; 𝑘ே , 𝑣ே , 𝑤ே) 

that denotes the neutrosophic logical value that the formula 𝒫 takes with respect to the 
neutrosophic Kripke frame 𝑘ே, the neutrosophic (t, i, f)-assignment 𝑣ே, and the neutrosphic world 
𝑤ே. 

We define 𝛼ே by neutrosophic induction: 

1. 𝛼ே(𝒫; 𝑘ே, 𝑣ே, 𝑤ே) 
𝑑𝑒𝑓

=
𝑣ே(𝒫, 𝑤ே) if 𝒫 ∈ 𝑆ே and 𝑤ே ∈ 𝐺ே. 

2. 𝛼ே ቀ
¬
𝑁𝒫; 𝑘ே, 𝑣ே, 𝑤ேቁ

𝑑𝑒𝑓
=

 
¬
𝑁

[𝛼ே(𝒫; 𝑘ே, 𝑣ே, 𝑤ே)]. 

3. 𝛼ே ቀ𝒫
∧
𝑁

𝑄; 𝑘ே , 𝑣ே , 𝑤ேቁ 
𝑑𝑒𝑓

=
 [𝛼ே(𝒫; 𝑘ே, 𝑣ே, 𝑤ே)]

∧
𝑁

[𝛼ே(𝑄; 𝑘ே , 𝑣ே , 𝑤ே)] 

4. 𝛼ே ቀ𝒫
∨
𝑁

𝑄; 𝑘ே , 𝑣ே , 𝑤ேቁ 
𝑑𝑒𝑓

=
 [𝛼ே(𝒫; 𝑘ே, 𝑣ே, 𝑤ே)]

∨
𝑁

[𝛼ே(𝑄; 𝑘ே , 𝑣ே , 𝑤ே)] 

5. 𝛼ே ቀ𝒫
→
𝑁

𝑄; 𝑘ே, 𝑣ே, 𝑤ேቁ 
𝑑𝑒𝑓

=
 [𝛼ே(𝒫; 𝑘ே , 𝑣ே , 𝑤ே)]

→
𝑁

[𝛼ே(𝑄; 𝑘ே , 𝑣ே , 𝑤ே)] 

6. 𝛼ே ቀ
◊
𝑁

𝒫; 𝑘ே, 𝑣ே, 𝑤ேቁ 
𝑑𝑒𝑓

=
〈sup, inf, inf〉{𝛼ே(𝒫; 𝑘ே, 𝑣ே, 𝑤ᇱ

ே), 𝑤ᇱ ∈

𝐺ே  and 𝑤ே𝑅ே𝑤′ே}. 

7. 𝛼ே ቀ
□
𝑁

𝒫; 𝑘ே, 𝑣ே, 𝑤ேቁ
𝑑𝑒𝑓

=
〈inf, sup, sup〉{𝛼ே(𝒫; 𝑘ே , 𝑣ே , 𝑤ᇱ

ே),

𝑤ே
ᇱ ∈ 𝐺ே and 𝑤ே𝑅ே𝑤′ே}. 

8. 
⊨
𝑁

𝒫 if and only if 𝑤ே ∗⊨ 𝒫 (a formula 𝒫 is neutrosophically deducible if and only if 𝒫 

is neutrosophically deducible in the actual neutrosophic world). 

We should remark that 𝛼ே has a degree of truth ൫𝑡ఈಿ
൯, a degree of indeterminacy ൫𝑖ఈಿ

൯, and 

a degree of falsehood ൫𝑓ఈಿ
൯, which are in the general case subsets of the interval [0, 1]. 

Applying 〈sup, inf, inf〉 to 𝛼ே is equivalent to calculating: 
〈sup൫𝑡ఈಿ

൯, inf൫𝑖ఈಿ
൯, inf൫𝑓ఈಿ

൯〉, 
and similarly  
〈inf, sup, sup〉𝛼ே = 〈inf൫𝑡ఈಿ

൯, sup൫𝑖ఈಿ
൯, sup൫𝑓ఈಿ

൯〉. 

10. Refined Neutrosophic Modal Single-Valued Logic
Using neutrosophic (t, i, f) - thresholds, we refine for the first time the neutrosophic modal 

logic as: 
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10.1. Refined Neutrosophic Possibility Operator 
◊ଵ

𝑁
𝒫(௧,,) = «It is very little possible (degree of possibility 𝑡ଵ) that 𝒫», corresponding to the 

threshold (𝑡ଵ, 𝑖ଵ, 𝑓ଵ), i.e. 0 ≤ 𝑡 ≤ 𝑡ଵ, 𝑖 ≥ 𝑖ଵ, 𝑓 ≥ 𝑓ଵ, for 𝑡ଵ a very little number in [0, 1]; 

◊ଶ

𝑁
𝒫(௧,,) = «It is little possible (degree of pos-sibility 𝑡ଶ) that 𝒫», corresponding to the 

threshold (𝑡ଶ, 𝑖ଶ, 𝑓ଶ), i.e. 𝑡ଵ < 𝑡 ≤ 𝑡ଶ, 𝑖 ≥ 𝑖ଶ > 𝑖ଵ, 𝑓 ≥ 𝑓ଶ > 𝑓ଵ; 
… … …  
and so on; 
◊

𝑁
𝒫(௧,,) = «It is possible (with a degree of possibility 𝑡) that 𝒫», corresponding to the 

threshold (𝑡, 𝑖, 𝑓), i.e. 𝑡ିଵ < 𝑡 ≤ 𝑡, 𝑖 ≥ 𝑖 > 𝑖ିଵ, 𝑓 ≥ 𝑓 > 𝑓ିଵ. 

10.2. Refined Neutrosophic Necessity Operator 
□ଵ

𝑁
𝒫(௧,,) = «It is a small necessity (degree of necessity 𝑡ାଵ) that 𝒫», i.e. 𝑡 < 𝑡 ≤ 𝑡ାଵ, 

𝑖 ≥ 𝑖ାଵ ≥ 𝑖, 𝑓 ≥ 𝑓ାଵ > 𝑓; 

□ଶ

𝑁
𝒫(௧,,) = «It is a little bigger necessity (degree of necessity 𝑡ାଶ) that 𝒫», i.e. 𝑡ାଵ <

𝑡 ≤ 𝑡ାଶ, 𝑖 ≥ 𝑖ାଶ > 𝑖ାଵ, 𝑓 ≥ 𝑓ାଶ > 𝑓ାଵ; 
… … …  
and so on; 

□

𝑁
𝒫(௧,,) = «It is a very high necessity (degree of necessity 𝑡ା) that 𝒫», i.e. 𝑡ାିଵ <

𝑡 ≤ 𝑡ା = 1, 𝑖 ≥ 𝑖ା > 𝑖ାିଵ, 𝑓 ≥ 𝑓ା > 𝑓ାିଵ. 

11. Application of the Neutrosophic Threshold
We have introduced the term of (t, i, f)-physical law, meaning that a physical law has a 

degree of truth (t), a degree of indeterminacy (i), and a degree of falsehood (f). A physical law is 
100% true, 0% indeterminate, and 0% false in perfect (ideal) conditions only, maybe in laboratory. 

But our actual world (𝑤ே ∗) is not perfect and not steady, but continously changing, 
varying, fluctuating. 

For example, there are physicists that have proved a universal constant (c) is not quite 
universal (i.e. there are special conditions where it does not apply, or its value varies between 
(𝑐 − 𝜀, 𝑐 + 𝜀), for 𝜀 > 0 that can be a tiny or even a bigger number). 

Thus, we can say that a proposition 𝒫 is neutrosophically nomological necessary, if 𝒫 is 
neutrosophically true at all possible neutrosophic worlds that obey the (t, i, f)-physical laws of the 
actual neutrosophic world 𝑤ே ∗. 

In other words, at each possible neutrosophic world 𝑤ே, neutrosophically accesible from 
𝑤ே ∗, one has: 

𝒫൫𝑡
௪ಿ , 𝑖

௪ಿ , 𝑓
௪ಿ൯ ≥ 𝑇𝐻(𝑇௧, 𝐼௧, 𝐹௧),  (24)

i.e. 𝑡
௪ಿ ≥ 𝑇௧, 𝑖

௪ಿ ≤ 𝐼௧, and 𝑓
௪ಿ ≥ 𝐹௧.  (25)

12. Neutrosophic Mereology
Neutrosophic Mereology means the theory of the neutrosophic relations among the parts of a 

whole, and the neutrosophic relations between the parts and the whole. 
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A neutrosophic relation between two parts, and similarly a neutrosophic relation between a 
part and the whole, has a degree of connectibility (t), a degree of indeterminacy (i), and a degree of 
disconnectibility (f). 

12.1. Neutrosophic Mereological Threshold 
Neutrosophic Mereological Threshold is def-ined as: 

(min( ),max( ),max( ))M M M MTH t i f   (26)

where 𝑡ெ is the set of all degrees of con-nectibility between the parts, and between the parts 
and the whole; 

𝑖ெ is the set of all degrees of indeterminacy between the parts, and between the parts and the 
whole; 

𝑓ெ is the set of all degrees of disconnectibility between the parts, and between the parts and 
the whole. 

We have considered all degrees as single-valued numbers. 

13. Neutrosophic Gnosisology
Neutrosophic Gnosisology is the theory of (t, i, f)-knowledge, because in many cases we are 

not able to completely (100%) find whole knowledge, but only a part of it (t %), another part 
remaining unknown (f %), and a third part indeterminate (unclear, vague, contradictory) (i %), 
where t, i, f are subsets of the interval [0, 1]. 

13.1. Neutrosophic Gnosisological Threshold 
Neutrosophic Gnosisological Threshold is defined, similarly, as: 

(min( ),max( ),max( ))G G G GTH t i f
(27) 

where 𝑡ீ is the set of all degrees of knowledge of all theories, ideas, propositions etc., 
𝑖ீ is the set of all degrees of indeterminate-knowledge of all theories, ideas, propositions 

etc., 
𝑓  is the set of all degrees of non-knowledge of all theories, ideas, propositions etc. 
We have considered all degrees as single-valued numbers. 

14. Neutrosophic Epistemology
And Neutrosophic Epistemology, as part of the Neutrosophic Gnosisology, is the theory of 

(t, i, f)-scientific knowledge. Science is infinite. We know only a small part of it (t%), another big 
part is yet to be discovered (f%), and a third part indeterminate (unclear, vague, contradictory) (i%). 
Of course, t, i, f are subsets of [0, 1]. 

14.1. Neutrosophic Epistemological Threshold 
Neutrosophic Epistemological Threshold is defined as: 

(min( ),max( ),max( ))E E E ETH t i f  (28) 

where 𝑡ா is the set of all degrees of scientific knowledge of all scientific theories, ideas, 
propositions etc., 

𝑖ா is the set of all degrees of indeterminate scientific knowledge of all scientific theories, 
ideas, propositions etc., 

𝑓ா is the set of all degrees of non-scientific knowledge of all scientific theories, ideas, 
propositions etc. 

We have considered all degrees as single-valued numbers. 
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15. Conclusions
We have introduced for the first time the Neutrosophic Modal Logic and the Refined 

Neutrosophic Modal Logic.  
Symbolic Neutrosophic Logic can be connected to the neutrosophic modal logic too, where 

instead of numbers we may use labels, or instead of quantitative neutrosophic logic we may have a 
quantitative neutrosophic logic. As an extension, we may introduce Symbolic Neutrosophic Modal 
Logic and Refined Symbolic Neutrosophic Modal Logic, where the symbolic neutrosophic modal 
operators (and the symbolic neutrosophic accessibility relation) have qualitative values (labels) 
instead on numerical values (subsets of the interval [0, 1]). 

Applications of neutrosophic modal logic are to neutrosophic modal metaphysics. Similarly 
to classical modal logic, there is a plethora of neutrosophic modal logics. Neutrosophic modal 
logics is governed by a set of neutrosophic axioms and neutrosophic rules. The neutrosophic 
accessibility relation has various interpretations, depending on the applications. Similarly, the 
notion of possible neutrosophic worlds has many interpretations, as part of possible neutrosophic 
semantics. 
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Abstract
In the last decade, concealed by uncertain atmosphere, many algorithms have been studied deeply to workout the shortest 
path problem. In this paper, we compared the shortest path problem with various existing algorithms. Finally, we concluded 
the best algorithm for certain environment.

Keywords Fuzzy sets · Intuitionistic fuzzy sets · Vague sets · Neutrosophic sets · Shortest path problem

Introduction

SPP is a cardinal issue among familiar connectional prob-
lems which occur in different areas of engineering and sci-
ence, such as application in highway networks, portage and 
conquer in intelligence channels and problem of scheduling. 
The SPP focuses on recommending the path which has mini-
mum length enclosed by two vertices. The length of the arc/
edge produces the quantities of the real life, namely cost, 
time, etc. In the case of conventional method of measuring 
SP, the length of each bend is assumed as a crisp numbers. 
If there is uncertainty on the parameters in the network, then 
the length can be represented by fuzzy number.

In the current preceding, many of the SPPs with various 
types of input data have been examined in junction with 

fuzzy, intuitionistic, vague, interval fuzzy, interval-valued 
intuitionistic fuzzy and neutrosophic sets [2, 3, 8, 9, 11, 13, 
14, 17–20, 23, 30, 39, 46–52, 83–92]. Up until now plenty 
of new algorithms have been designed.

The paper is arranged as: section “Preliminaries” com-
prehends the primary definitions and overviewed SPP under 
different sets in sections, “SPP in vague environment”, “SPP 
in fuzzy environment”, “SPP in intuitionistic fuzzy environ-
ment” and “SPP in neutrosophic environment”, respectively. 
Lastly, conclusion has been presented for the objective of 
the paper.

Florentin Smarandache (ed.) Collected Papers, VII

777

Shortest Path Problem in Fuzzy, Intuitionistic Fuzzy 

and Neutrosophic Environment: An Overview 

Said Broumi, Mohamed Talea, Assia Bakali, Florentin Smarandache, 

Deivanayagampillai Nagarajan, Malayalan Lathamaheswari, Mani Parimala 

Said Broumi, Mohamed Talea, Assia Bakali, Florentin Smarandache, Deivanayagampillai Nagarajan, 
Malayalan Lathamaheswari, Mani Parimala (2019). Shortest Path Problem in Fuzzy, Intuitionistic 
Fuzzy and Neutrosophic Environment: An Overview. Complex & Intelligent Systems 5: 371-378  

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-019-0098-z&domain=pdf


Preliminaries

Here, we principally recollected some of the concepts con-
nected to neutrosophic sets (NSs), single-valued neutro-
sophic sets (SVNSs) related to the present work. See espe-
cially [10, 12] for further details and background.

Definition 2.1. Let X be a nonempty set. A fuzzy set A drawn 
from X is defined as,

where �A ∶ X → [0, 1], is called the membership function of
A and defined over a universe of discourse X.

Definition 2.2. A type-2 fuzzy set, denoted by A is char-
acterized by a type-2 membership function �

A
(x, u), where 

x ∈ X,u ∈ Jx ⊆ [0, 1], i.e.,

Definition 2.3. An interval-valued fuzzy set is a special case 
of type-2 fuzzy sets by representing the membership func-
tion �

A
=
[
�
A
,�

A

]
, where �

A
 is a lower membership func-

tion and �
A

 is an upper membership function. The area 
between these lower and upper membership functions is 
called a footprint of uncertainty (FOU), which represents the 
level of uncertainty of the set.

Definition 2.4. Let X be a nonempty set. An intuitionistic 
fuzzy set (IFS)A in X is an object having the form

where the functions �A(x), �A(x) ∶ X → [0, 1] define the 
degree of membership and nonmembership, respec-
tively, of the element x ∈ X to A, for the entire element 
x ∈ X 0 ≤ �A(x) + �A(x) ≤ 1. Also, �A(x) = 1 − �A(x) − �A(x) 
is called the index of IFS, and is the degree of indeterminacy 
of x ∈ X to the IFS A, which expresses the lack of knowledge 
of whether x belongs to IFS or not. Also �A(x) ∈ [0, 1] , i.e., 
�A(x) ∶ X → [0, 1] and 0 ≤ �A(x) ≤ 1, ∀x ∈ X.

Definition 2.5. An interval-valued intuitionistic fuzzy set 
(IVIFS) A in X is defined as an object of the form

where the functions PA(x) ∶ X → [0, 1] , QA(x) ∶ X → [0, 1] 
denote the degree of membership and non-membership 
of A , respectively. Also, PA(x) =

[
PL
A
(x),PU

A
(x)

]
 and

QA(x) =
[
QL

A
(x),QU

A
(x)

]
,0 ≤ PU

A
(x) + QU

A
(x) ≤ 1,∀x ∈ X

Definition 2.6. Let U be the universe, U =
{
x1, x2,… , xn

}
, 

with a generic element of U denoted by xi, i = 1, 2,… , n. 

(1)A =
{
x,�A(x)|x ∈ X

}
,

(2)A =
{(

(x, u),𝜇
A
(x, u)

)
|x ∈ X, ∀u ∈ Jx ⊆ [0, 1]

}
.

(3)A =
�
⟨x,�A(x), �A(x)⟩�x ∈ X

�
,

(4)A =
�
⟨x,PA(x),QA(x)⟩�x ∈ X

�
,

A vague set is defined as an object of the form 
A =

{⟨
xi, TA

(
xi
)
,FA

(
xi
)⟩

|xi ∈ X
}

 in U  is characterized
by a truth membership function TA and a false membership 
function FA, i.e., TA ∶ U → [0, 1], FA ∶ U → [0, 1], where 
TA

(
xi
)
 is the lower bound on the grade of membership of

xi, FA

(
xi
)

is the lower bound on the negation of xi, derived
from the evidence against xi and TA

(
xi
)
+ FA

(
xi
)
≤ 1. The

grade of membership of xi in the vague set A is bounded 
to the subinterval 

[
TA

(
xi
)
, 1 − FA

(
xi
)]

 of the interval [0, 1]. 
The vague value 

[
TA

(
xi
)
, 1 − FA

(
xi
)]

 indicates that the exact
grade of membership �A

(
xi
)
 of xi may be unknown. But it is

bounded by TA
(
xi
)
≤ �A

(
xi
)
≤ 1 − FA

(
xi
)
.

Definition 2.7. An interval-valued vague set A over a 
universe of discourse X is defined as an object of the 
f o r m A =

{⟨
xi,

[
TL
A
, TU

A

]
,
[
FL
A
,FU

A

]⟩
|xi ∈ X

}
,w h e r e 

0 ≤ TL
A
≤ TU

A
≤ 1 and 0 ≤ TU

A
≤ TL

A
≤ 1. For each interval-

valued vague set A, �A
(
xi
)
= 1 − TL

A

(
xi
)
− FL

A

(
xi
)
 and are

called degree of hesitancy of xi.

Definition 2.8 Consider the space X consists of universal 
elements characterized by x. The NS A is a phenomenon 
which has the structure A =

{(
TA(x), IA(x),FA(x)

)
∕x ∈ X

}
, 

where the three grades of memberships are from X to ] −0, 
 1+ [ of the element x ∈ X to the set A, with the criterion:

The functions, and are the truth, indeterminate and falsity 
grades which lie in real standard/non-standard subsets of 
 ]−0,  1+[. Since there is a complication of applying NSs to 
realistic issues, Samarandache and Wang wt al. [11, 12] pro-
posed the notion of SVNS, which is a specimen of NS and it 
is useful for realistic applications of all the fields.

Definition 2.9. Let X be the space of objects which contains 
global elements. A SVNS is represented by degrees of mem-
bership grades mentioned in Definition 2.1. For all x in X, 
TA(x), IA(x) FA(x) ∈ [0, 1]. A SVNS can be written as

Definition 3. Let X be a space of objects with generic ele-
ments in X denoted by x. An interval-valued neutrosophic 
set (IVNS) A in X is characterized by truth membership 
function, TA(x), indeterminacy membership function IA(x) 
and falsity membership function FA(x). For each point x in 
X, TA(x), IA(x), FA(x) ∈ [0, 1], and an IVNS A is defined by

where TA(x) =
[
TL
A
(x), TU

A
(x)

]
,IA(x) =

[
IL
A
(x), IU

A
(x)

]
 and

FA(x) =
[
FL
A
(x),FU

A
(x)

]
.

(5)−
0 ≤ TA(x) + IA(x) + FA(x) ≤ 3

+
.

(6)A =
{
< x ∶ TA(x), IA(x),FA(x) > ∕x ∈ X

}

(7)
A =

{⟨[
TL

A
(x), TU

A
(x)

]
,
[
IL
A
(x), IU

A
(x)

]
,
[
FL

A
(x),FU

A
(x)

]⟩
|x ∈ X

}
,
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SPP in vague environment

A peculiar way for getting a shortest path (SP) of a given 
network was found by Dou et al. [26]. in 2008, where the 
sets are vague. Firstly, the authors recommended that the 
length of the SP was determined using vague sets from 
the source node (SN) to the destination node (DN) for 
conventional network with direction. Secondly, they cal-
culated the degree of resemblance among the lengths of 
the vague paths under vague similarity measure. Finally, it 
was concluded that the path which has the greater degree 
of similarity is a SP. A novel algorithm was constructed 
to identify the SP in a directed graph (DG), where the 
distance between the arcs is considered as vague number 
in triangular measure rather than real number. In 2018, 
Rashmanlou et al. solved SPP using Euclidean distance 
for vague network [57].

SPP in fuzzy environment

This part describes about various methods to solve SPP 
using fuzzy arc length by many authors. SPP can be solved 
in an optimized way for a given network using fuzzy logic 
as the real-world problems are uncertain in nature. Dubois 
and Prade solved fuzzy SPP (FSPP) using Floyd’s and 
Ford’s algorithms firstly [5]. In the year 2000, Okada and 
soper introduced an algorithm to solve FSPP in terms of 
multiple labeling procedure [32]. Klein [27] projected a 
vital programming fuzzy algorithm based on recursive 
concept. Lin [41] constructed a technique of fuzzy linear 
programming to find the fuzzy SP (FSPP) length of a net-
work. Yao [42] contemplated two different FSPP such as 
SPP using triangular fuzzy numbers (TFNs) and SPP using 
level (1–β 1–α) interval-valued fuzzy numbers (IVFNs).

In 2003, the same author solved FSSP using two differ-
ent types of methods, namely TFNs and level (1 − �, 1 − �) 
interval-valued FNs (IVFNs). Nayeem and Pal introduced 
an algorithm to solve SPP using notoriety index, where 
the lengths of the arc were taken as interval numbers or 
TFNs [44]. In the year 2005, Chuang recommended a 
novel idea to identify FSP by finding the length of the 
FSP encompassed by all possible paths of a given net-
work [38]. Kung et al. established new technique to handle 
FSPP by representing the arc length as TFN [40]. In 2009, 
Yadav and Biswas conferred a new method to solve SPP 
by considering the edge length as FN in a directed graph 
instead of real number. The authors constructed an algo-
rithm to discover an optimal path by considering that both 
input and output are FNs [22]. Also in the same period, 
Lin solved SPP using interval-valued FNs and endorsed 

distance method of defuzzification [62]. In 2010, Pandian 
and Rajendran introduced path classification algorithm to 
find the minimal path by considering crisp or uncertain 
weights (TFNs) from one node to another. In this method, 
indeterminate nodes in the minimum path can be found 
without going backward and this is the major advantage. 
This would be very helpful for the decision-makers to omit 
indeterminate nodes [28]. Seda presented all-pairs SPP by 
applying fuzzy ranking method [25]. In 2012, Meenakshi 
and Kaliraja determined SP for IVFN (Interval Valued 
Fuzzy Network) [61].

In 2013, Shukla projected Floyd’s algorithm to solve 
SPP using a concept of fuzzy sets which is based on graded 
mean unification of FNs [21]. In 2014, Elizabeth and Sujatha 
introduced a novel approach to solve FSPP by finding mini-
mum arithmetic mean among IVFN matrices [31]. The same 
authors Huyen et al. gave a direction on establishing a design 
for SPP with TFNs as the edge weights. In this work, math-
ematical concept of the algorithm is developed on Defined 
Strict Comparative Relation Function for the set of TFNs 
[56]. Nayeem proposed a novel expected value algorithm 
for the FSSP [60].

In 2015, Mukerje [34] explored the fuzzy approach 
programming to solve FSPP. Here, the authors converted 
a single-objective fuzzy linear programming (SOFLP) by 
considering TFNs and TpFNs as the edge weight into crisp 
multi-objective Linear Programming (CMOLP). Anusuya 
and Sathya proposed a design for SPP where the arc lengths 
are type-2 fuzzy numbers (T2FNs) from SN to DN in a net-
work [54]. Also, the authors established an algorithm for 
SPP using type reduction on the edges using centroid and 
center of gravity of FSwhich gives the FSP where the arc 
lengths are represented by discrete T2FN [55]. Mahdavi 
et al. [16] applied dynamic programming method for finding 
the shortest chain in a fuzzy network. In [33] Okada solved 
FSPPs by incorporating interactivity among path. Deng et al. 
[53] established fuzzy Dijikstra algorithm for solving SPP 
under uncertain environment. Dey et al. have contributed the 
following ideas: solved FSPP using IT2FSs (interval type-2 
fuzzy set) as the edge weights, they have altered conven-
tional Dijikstra’s design by including impreciseness using 
IT2FSs to solve SPP from SN to DN, afford a new way for 
SPP in imprecise setting using IT2FSs for the edge weights 
and examined the path algebra and its generalized algorithm 
for FSPP [6]. Meenakshi and Kaliraja described the SP for 
a network under the notion of interval valued fuzzy (IVF) 
where the SP in lower limit fuzzy networks coexists with 
the case for upper limit [7]. In 2016, Dey et al. introduced a 
model to solve FSPP for using Interval Type-2 Fuzzy (IT2F) 
[59].In 2017, Biswas proposed IVFSP in a multi-graph [63]. 
In 2018, Eshaghnezhad et al. presented a first scientific paper 
for resolving of FSP by artificial network model which has 
the property of the global exponential stability [82].
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SPP in intuitionistic fuzzy environment

In this part, various methods have been disclosed in litera-
ture to handle the SPP by taking intuitionistic fuzzy (IF) 
as the arc lengths by different authors.

In 2007, Karunambigai et al. refined an approach found 
on dynamic programming to solve SPP using intuitionistic 
fuzzy graphs (IFGs) [24]. In 2010, Gani also established 
a technique to identify intuitionistic fuzzy shortest path 
(IFSP) for a given network [3]. Mukherje pre-owned an 
interesting methodology to solve IFSPP using the idea 
of Dijikstra’s algorithm and intuitionistic fuzzy hybrid 
Geometric (IFHG) operator [45]. Majudmder and Pal 
[30] solved SPP for intuitionistic fuzzy network. In 2013, 
Biswas modified an IF method for SPP in a realistic multi-
graph [35]. Rangasamy et al. proposed score-based meth-
odology to find the shortest hyper paths for a given net-
work where hyper edges are characterized by IF weights 
without describing similarity measure and Euclidean dis-
tance [43]. Babacioru conferred an algorithm to find the 
minimum arc length of an IF hyper path using MAPLE 
[15]. In [29], Jayagowri and GeethaRamani solved SPP 
on a network with the use of Trapezoidal Intuitionistic 
Fuzzy Numbers (TpFNs).In 2014, Porchelvi and Sudha 
recommended a minimum path labeling algorithm to solve 
SPP using triangular IF number (TIFN) [36]. Also, they 
proposed a new and different methodology to solve SPP 
with TIFNs, where the authors found the minimal edge 
using IF distance by applying graded mean integration 
and examined SPP from a particular vertex to all other 
ones in a network [37]. In 2015, Kumar et al. suggested a 
design to identify the SP and shortest distance in an IVIF 
graph where the nodes are taken as crisp numbers and 
edge weights are assigned by IVITpFNs (Interval Valued 
Intuitionistic Trapezoidal Fuzzy Numbers) [1]. Kumar 
et al. proposed an algorithm for SPP using IVITpFN as 
the weights in a network [58].

SPP in neutrosophic environment

The authors modeled a design to find the ideal path where 
the inputs and outputs are neutrosophic numbers (NNs) 
[4]. In 2016, Broumi et al.solved SPP, by considering the 
edge weights as, SVTpNNs as the edge weights [68], Tri-
angular fuzzy neutrosophic numbers (TFNNs) [69], bipo-
lar neutrosophic set [70] and applied Dijikstra’s method 
to solve NSPP and IVNSPP [67, 72]. In 2017, Broumi 
et al. solved SPP using SVNGs [64], by adopting SVTNNs 
and SVTpNNs [65, 66]; found an optimal solution for 
the NSPP using trapezoidal data under neutrosophic 

environment [68], by SVNN; solved the MST problem 
[73], by Trapezoidal fuzzy neutrosophic [74]; introduced 
a new notion of matrix design for MST in IVNG [79]; and 
introduced computational method to MST in IV bipolar 
neutrosophic setting [80]. Also in [75], Broumi et al. pro-
posed another algorithm to solve MST problem on a net-
work with the use of SVTpNNs. Broumi et al. [76] solved 
MST problem in a bipolar neutrosophic environment. 
Mullai et al. solved SPP by minimal spanning tree (MST) 
using BNS [77]. In 2018, Broumi et al. applied IVNNs 
and BNS SPP for a given network [70, 71]. Dey et al. pro-
posed a novel design for MST for NGs which are undi-
rected [78]. Jeyanthi and Radhika [81] solved NSPP using 
Floyd’s algorithm firstly. Basset et al. proposed a hybrid 
approach of neutrosophic sets and DEMATEL method for 
developing the criteria for supplier selection [83]. Bas-
set et al. introduced a novel method, to solve the fully 
neutrosophic linear programming problems [84]. Basset 
et al. proposed three-way decisions based on neutrosophic 
sets and AHP-QFD framework for the problem supplier 
selection [85]. Basset et al. proposed a novel framework 
to evaluate cloud computing services [86]. Basset et al. 
introduced an extension of neutrosophic AHP-SWOT 
analysis for strategic planning and decision-making [87]. 
Basset et al. proposed an approach of hybrid neutrosophic 
multiple criteria group decision-making for project selec-
tion. [88]. Basset et al. proposed a framework for a group 
decision-making problem, based on neutrosophic VIKOR 
approach for e-government website evaluation [89]. Basset 
et al. proposed an economic tool for quantifying risks in 
supply chain as a framework for risk assessment, manage-
ment and evaluation [90].

The following table confers four types of SPP contain-
ing FSPP, IFSPP and neutrosophic SPP (NSPP) and for 
the case of interval numbers to all the types of parameters.

Short-
est path 
problem 
on network 
with

Edges/ 
vertices

Indetermi-
nacy

Ambiguity Uncertainty

Crisp 
param-
eters

Crisp Num-
ber (CN)

Inadequate 
to handle

Inadequate 
to handle

Inadequate to 
handle

Crisp 
Interval 
Param-
eters

Crisp 
Interval 
Number 
(IN)

Inadequate 
to handle

Inadequate 
to handle

Inadequate to 
handle

Fuzzy 
parame-
ters (FPs)

Fuzzy 
Number 
(FN)

Unable to 
deal

Unable to 
deal

Able to deal 
with uncer-
tainty
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Short-
est path 
problem 
on network 
with

Edges/ 
vertices

Indetermi-
nacy

Ambiguity Uncertainty

Interval FPs Interval 
Fuzzy 
Number 
(IFN)

Unable to 
deal

Unable to 
deal

Able to deal 
with more 
uncertainty, 
as it has 
lower and 
upper mem-
bership 
values

Intuitionis-
tic fuzzy 
param-
eters 
(IFPs)

Intuitionis-
tic Fuzzy 
Number 
(IFN)

Inadequate 
to deal

Adequate 
to deal

Adequate to 
deal

Interval 
IFPs

Interval 
Intui-
tionistic 
Fuzzy 
Number 
(IFN)

Inadequate 
to deal

Adequate 
to deal 
clearly as 
it has loer 
and upper 
mem-
bership 
values

Adequate to 
deal more 
uncertainty 
as it has 
lower and 
upper mem-
bership 
functions

Neutro-
sophic 
parame-
ters (NPs)

Neutro-
sophic 
Number 
(NN)

Able to 
handle

Able to 
handle

Able to 
handle

Interval 
NPs

Interval 
Neutro-
sophic 
Number 
(INN)

Able to 
handle 
more 
indeter-
minacy

Able to 
handle 
more 
ambigu-
ity

Able to han-
dle more 
uncertainty 
as it has 
lower and 
upper mem-
bership 
functions.

From the overhead table, it is seen that the available meth-
ods could not employed to solve NSPP from SN to DN for a 
given network with IVNN as the edge weights.

But neutrosophic environment can able to solve SPP effec-
tively as it handles indeterminacy together with impreciseness 
and ambiguity to take the best decision in identifying the SP 
with the use of IVNN rather than single-valued NN. Effort-
lessly, the proposed algorithm can be adapted to any kind of 
NNs.

As the neutrosophic logic deals indeterminacy with the col-
lected/given information, the algorithms proposed to find SPP 
may be the best one than other algorithms under fuzzy and 
intuitionistic fuzzy environments.

Advantages and limitations of different 
types of sets

The below table expresses the capacity of various types 
of sets as an advantage and their incapability to handle 
some conditions or important situations towards to real-
istic problems.

Various types of sets Advantages Limitations

Crisp sets Can accurately 
determine with no 
hesitation

Cannot describe the 
uncertain

Information
Fuzzy sets Can describe the 

uncertain
Information

Cannot describe the 
uncertain

Information with non-
membership degree

Interval valued fuzzy 
sets

Can able to deal 
interval data 
instead of exact 
data

Cannot handle the 
uncertain

Information with non-
membership degree

Intuitionistic fuzzy 
sets

Can describe the 
uncertain

Information with 
membership (MS) 
and non-mem-
bership (NMS) 
degrees simultane-
ously

Cannot describe the 
sum of MS and 
NMS degrees bigger 
than 1

Interval valued Intui-
tionistic fuzzy sets

Able to handle inter-
val data

Cannot portray the 
addition of MS and 
NMS degrees bigger 
than 1

Vague sets Can describe uncer-
tain

Information with 
grades of MS and 
NMS at the same 
time.

Cannot describe the 
sum of MS and 
NMS degrees greater 
than 1.

Pythagorean fuzzy 
sets

It has full space to 
describe the sum 
of MS and NMS 
degrees greater 
than 1

Cannot describe the 
square sum of MS 
and NMS degrees 
greater than 1

Interval valued 
Pythagorean fuzzy 
sets

Capable of dealing 
interval data

Unable to define the 
square sum of MS 
and NMS degrees 
greater than 1

Neutrosophic Sets Able to deal indeter-
minacy of the data 
and the optimized 
solution can be 
obtained com-
pletely.

Unable to handle 
interval data

Interval valued Neu-
trosophic sets

Able to deal inde-
terminacy of the 
interval data and 
the optimized 
solution can be 
obtained .

Unable to handle 
incomplete weight 
information
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Conclusion

Crisp SPP (CSPP) can be adopted only if there exists cer-
tainty on the parameters of nodes and edges. If uncertainty 
exists in the arc, then the authors have been recommended 
to use FSPP. Later, FSPPs cannot be enforced for the cer-
tain message which is not endured and indecisive, and 
so the investigation invented the concept of IFSPP. Fur-
ther when the information about the path is indetermined, 
uncertain and unreliable, neutrosophic concept has been 
implemented and obtained the solution for neutrosophic 
shortest path problem in the literature. All the existing 
algorithms developed by the reserachers. The algorithms 
have been used for various real world problems but occa-
sionally not suitable for persuade situations. Hence, the 
recognized algorithms in various sets such as vague 
set (VS), FS, IFS and NS are forced. In real world, the 
researcher who has clear knowledge about the data can 
accept and implement the algorithms for solving SPP. This 
paper will be very helpful to the new researchers to pro-
pose novel concepts to solve the shortest path problem. In 
the future, based on this present study, new algorithms and 
frameworks will be designed to find the shortest path for a 
given network under various types of sets environments.
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Abst ract  

  Many researchers have been proposing various algorithms to unravel different types of fuzzy shortest path 
problems. There are many algorithms like Dijkstra’s, Bellman-Ford,Floyd-Warshall and kruskal’s etc are 
existing for solving the shortest path problems. In this work a shortest path problem with interval valued 
neutrosophic numbers is investigated using the proposed algorithm. A* algorithm is extensively applied in pathfinding 
and graph traversal.Unlike the other algorithms mentioned above, A* algorithm entails heuristic function to 
uncover the cost of path that traverses through the particular state. In the structured  work A* algorithm is applied 
to unravel the length  of the shortest path by utilizing ranking function from the source node to the destination 
node. A* algorithm is executed by applying best first search with the help of this search, it greedily decides 
which vertex to investigate subsequently. A* is equally complete and optimal if an acceptable heuristic is 
concerned. The arc lengths in interval valued neutrosophic numbers are defuzzified using the score function.. A 
numerical example is used to illustrate the proposed approach. 

Keywords:  Heuristic function, Interval Valued Neutrosophic Graph, Score Function,Shortest Path Problem. 
Destination node, Source node. 

1.Int roduct ion

In order to overcome the real life situations which could not be handled in some conditions, Zadeh[1] 
introduced Fuzzy logic which was further developed by Zimmermann[2]. For handling uncertainty the interval 
valued neutrosophic set is used. The truth-membership, the indeterminacy-membership and the falsity-membership 
are characterized independently in interval valued neutrosophic set which are able to work with the information’s 
which are conflicting, undetermined, and partial.  The rational subdivision of  studying the nature, origins, and scope 
of neutralities, in addition to interface with a variety of ideational spectra is phrased as neutrosophy.The extension of  
neutrosophic set to neutrosophic offset, underset, and overset was proposed by Smarandache[3]. Bipolar 
neutrosophic sets, simplified neutrosophic sets, interval valued neutrosophic sets, single valued neutrosophic sets etc 
are various extension of neutrosophic sets[4,5,6]. The single valued neutrosophic notion is helpful in a range of 
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fields, such as the decision making problem, medical diagnosis, etc. Various concepts in graph theory were 
introduced by combining single valued neutrosophic sets. The single valued neutrosophic graph is the simplification 
of fuzzy graphs and intuitionistic fuzzy graphs. An interval valued neutrosophic graph oversimplifies the notions of 
a fuzzy graph, an intuitionistic fuzzy graph, an interval valued fuzzy graph and a single valued neutrosophic graph. 
The most common topic in research is finding the shortest path of the graph by traversing the edges with different 
types of algorithms. By using the score function Broumi et. al. [7] proposed an algorithm to solve the neutrosophic 
shortest path problem where the network arc lengths are represented by interval valued neutrosophic numbers. 
Multiple labeling is applied for finding shortest path with intuitionstic fuzzy arc length by Jabarulla et.al[8]. 
Kumar and Kaur [9] provided the solution of fuzzy maximal flow problems using fuzzy linear programming. Garg 
et al. [10] have proposed the Hybrid model for medical diagnosis using Neutrosophic Cognitive Maps with Genetic 
Algorithms. An Algorithm for shortest path problem in a network with interval valued intuitionstic trapezoidal fuzzy 
number was presented by Kumar et al.[11]. Jayagowri et al. [12] used Trapezoidal Intuitionistic Fuzzy Number to 
Find Optimized Path in a Network. Broumi et al have dealt with various concepts of neutroshopic graphs like single 
valued neutrosophic graphs, on bipolar single valued neutrosophic graphs and interval valued neutrosophic graphs 
etc with different algorithms [13,14,15,16,17,18].  Various aspects of Neutrosophic Graphs were studied by 
Smarandache[19]. Pentagonal Neutrosophic Number and its Application in Networking Problem was proposed by 
Avishek Chakraborty [20]. Thamaraiselvi  et al.[21] found a new approach for optimization of real life transportation 
problems in neutrosophic environment.  Tuhin bera[22] gave an approach to solve the linear programming problem 
using single valued trapezoidal neutrosophic number. Sapan Kumar Das [23] have used neutrosophic numbers in 
integer programming. Edalatpanah [24] suggested a new technique to solve triangular neutrosophic linear 
programming . Majumdar et al.[25] has worked on shortest path problem on intuitionistic fuzzy network . Bhimraj 
basumatary[26] have unraveled the  interval-valued triangular neutrosophic linear programming .There are many 
algorithms existing for solving the shortest path problems like Dijkstra’s, Bellman-Ford,Floyd-Warshall and kruskal’s 
etc for finding the optimal path . In this paper A * algorithm is applied for solving the interval valued neutrosophic 
shortest path problem. 

A* algorithm is a best-first search algorithm that depends on an open list and a closed list to discover a path 
that is both optimal and complete towards the goal.  A* search finds the shortest path through a search space to goal 
state using heuristic function. This technique finds minimal cost solutions and is directed to a goal state called A* 
search. This algorithm is complete if the branching factor is finite and every action has fixed cost. By defuzzifying 
the given interval valued neutrosophic cost by applying score function and by applying A* algorithm we find the 
optimal path. 
This paper is organized as follows. In Section 2, the basic concepts about neutrosophic sets and interval valued 
neutrosophic graph is presented. In Section 3, A* algorithm is proposed to find the shortest path and distance in an 
interval valued neutrosophic graph. In Section 4 a numerical example is illustrated with the algorithm .Section 5 
conclusion and proposals for future research is given. 

2. Pre liminar ies[16]

Definit ion 2.1:  

 Let X be a space of points with generic elements in X denoted by x is the neutrosophic set A is an object having the 
form, A = {〈� ∶ ��(�), ��(�), ��(�)〉 , � ∈ �},where the functions T,I,F : X→]-0,1+[ define respectively the truth-
membership function, indeterminacy- membership function and falsity - membership function of the element , � ∈� to the set A with the condition -0 ≤  ��(�) + ��(�) + ��(�) ≤ 3� .The functions are real standard or non standard 
subsets of  ]-0,1+ [. 
Definit ion 2.2:  
Let RN = 〈[��  , ��, �� , ��, ](�� , ��, ��)〉 and SN = 〈[��  , ��, �� , �� , ](��, ��, ��)〉 be two trapezoidal neutrosophic 
numbers (TpNNs) and � ≥ 0 ,then 
RN ⊕ SN = 〈[��  + �� , ��  + �� , ��  + �� , ��  + ��  ](�� + +�# − �� �# , �� �#, ����)〉  
RN ⊗ SN = 〈[��   . ��  , ��  . �� , ��  . �� , ��   . ��  ]'��  . �# ,�� + �# − �� . �#, ��+�� − �� . ��(〉 
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� RN = 〈[)��  , )�� , )��, )�� , ]'1 − (1 − ��))+, (��)+ , (��)+(〉
Definit ion 2.3:  
Let X is a space of points (objects) with generic elements in X denoted by x. An interval valued neutrosophic set A 
(INS A) in X is shown by the truth- membership function TA (x), an indeterminacy-membership function IA (x), and 
a falsity-membership function FA (x). For each point x in X, there are ��(�)= [ ��,  , ��-]⊆ [0, 1], ��(�)= [ ��,  , ��-]⊆ [0,1], ��(�)= [ ��,   , ��-]⊆ [0, 1], and the sum ��(�), ��(�) and ��(�) satisfies the condition    
0≤ /01��(�) + /01��(�) + /01��(�) ≤ 3, then an INS can be expressed as A={〈�: ��(�), ��(�), ��(�)〉, � ∈�}={〈�: [ ��,  , ��-], [ ��,  , ��-], [ ��,   , ��-]〉, � ∈ �} 
Definition 2.4:  
Let 345 = 〈6758  , 759:, 6;58  , ;59:, 6<58  , <59:〉 and 34= = 〈67=8  , 7=9:, 6;=8  , ;=9:, 6<=8   , <=9:〉 

 be two interval valued neutrosophic numbers and l > 0 . Thus, the operational rules are   

  defined as: 

1.>?@⊕>?A = [�@, + �A, − �@,�A, , �@- + �A- − �@-�A-]. 6�@,�A ,,  �@-�A ,-  :. 6�@,�A ,,  �@-�A ,-  : 

2. >?@⊗>?A=〈6�@,�A ,,  �@-�A ,-  :. [�5, + �=, − �5,�=,, �5- + �=- − �5-�=-]. [�5, + �=, −   �5,�=, , �5- +  �=- − �5-�=-]〉 
3. B>C = 〈61 − (1 − ��,)D, 1 − (1 − ��-)D:. [(�@,)D. (�@-)D]. [(�@,)D. (�@-)D]〉
4. >?D=〈6(�@,)D, (�@-)D:. 61 − (1 − ��-)D. 1 − (1 − ��-)D:, 61 − (1 − ��,)D, 1 −   (1 − ��-)D:〉 ,Where B > 0

Definit ion 2.5: To compare between two IVNN, Ridvan [33] used a score function concept in 2014. The score 
function is used for comparing the IVNS grades. This function demonstrates that the greater the value, the greater 
the interval-valued neutrosophic sets, and through the use of this concept paths can be ranked. 
 Let  >?@ = (T1, I1, F1) be an interval valued neutrosophic number, then, the score function s(345)  of an IVNN can be 
defined as follows: 

S'>G@( = H@IJ × [2 + �@, + �@- − 2�@, − 2�@- − �@, − �@-] 
 Comparison of interval valued neutrosophic numbers 

  Let >?@ = (T1, I1, F1 )  and >?A = (T2, I2, F2 ) be two interval valued neutrosophic   
  numbers then 
(i) >G@ <>GA if  S'>G@( < S'>GA( 
(ii) >G@ >>GA if  S'>G@( > S'>GA( 
(iii) >G@ =>GA if  S'>G@( = S'>GA( 

3. Basic notations in A* search
f – f is the parameter of A* which is the sum of the other parameters G and H and is the least cost from one node to 
the next node. This parameter is responsible for helping us find the most optimal path from our source to destination. 
g – g is the cost of moving from one node to the other node. This parameter changes for every node as we move up 
to find the most optimal path. 
h – h is the heuristic/estimated path between the current code to the destination node. This cost is not actual but is, in 
reality, a guess cost that we use to find which could be the most optimal path between our source and destination 
3.1: Algor ithm  for  A* Search  
1. Locate the initial node on the list of ORIGIN.
2. If (ORIGIN is empty) or (ORIGIN = GOAL) terminate search.
3. Remove the first node from ORIGIN. Call this node as n.
4. If (n = GOAL) terminate search with success.
5. Else in case, if node a has successors, generate all of them. Find the fitness number of the successors by totaling
the evaluation function value & the cost function value. Sort the list by fitness number. 
6. Name the list as START.
7. Replace ORIGIN with START.
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8. Go to step 2.
3.2: A* Pseud o Code 
Let us have the following assumptions, 
Let us denote the goal node as ng , node_current as nc , node_successor  as nsc ,successor_current_cost as scc  and  
source node is ns. 
The nodes that have been evaluated by the heuristic function but not expanded into successors yet are collected in 
OPEN set. 
The nodes that have been visited and expanded in CLOSE set. 
1. Put ns in the OPEN list with f(ns) = h(ns) (initialization)
2. While the OPEN list is not empty {
3. Take from the open list the node nc with the lowest
4. f(nc) = g(nc) ⊕ h(nc)
5. if nc is ng  we have found the solution; break
6. Generate each state nsc that come after nc
7. for each nsc of nc {
8. Set scc = g(nc) ⊕ w(nc, nsc)
9. if ns  is in the OPEN list {
10. if g(ns) ≤ scc then go to (line 20)
11.} else if nsc is in the CLOSED list { 
12. if g(nsc) ≤ scc then go to (line 20)
13. Move nsc from the CLOSED list to the OPEN list
14.} else { 
15. Add nsc to the OPEN list
16. Set h(nsc) to be the heuristic distance to ng
17.} 
18. Set g(nsc) = scc
19. Set the parent of nsc to nc
20.} 
21. Add nc to the CLOSED list.
22.} 
23. if(nc != ng) exit with error (the OPEN list is empty)

4. Numeri cal Examp le
Consider the given interval valued neutroshopic shortest path problem with five edges with interval valued 
neutroshopic fuzzy weights as in Fig:1. 

Fig.1.An interval valued neutroshopic shortest path problem 
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Let us take the interval valued neutroshopic fuzzy weight for the edge from S-A, by applying the score function 
formula we convert the interval valued neutroshopic fuzzy weights to crisp number, 
<[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]> 

S((>) = H@IJ × [2 + �@, + �@- −  2�@, − 2�@- − �@, − �@-] 
= H@IJ × [2 + 0.1 + 0.2 − 2 × 0.2 − 2 × 0.3 − 0.4 − 0.5] 
= H@IJ × [2.3 − 0.4 − 0.6 − 0.4 − 0.5] 
= H@IJ × [0.4] = 0.1 
Similarly by proceeding with the formula for score function, we can find the crisp values given in the table below. 

Table:1. Interval valued Neutrosophic distance 

Edges Interval valued Neutrosophic distance Crisp 
Values 

S-A   <[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]> 0.1 
S-B   <[0.4, 0.6], [0.2, 0.4], [0.1, 0.3]> 0.35 
A-B   <[0.3, 0.4], [0.2, 0.3], [0.4, 0.5> 0.2 
B-C  <[0.3, 0.4], [0.2, 0.3], [0.4, 0.5> 0.2 
A-C   <[0.3, 0.6], [0.1, 0.2], [0.1, 0.4]> 0.45 
A-G   <[0.7, 0.8], [0.1, 0.2], [0.2, 0.3]> 0.6 
C-G      <[0.1, 0.2], [0.2, 0.3], [0.3, 0.4]> 0.15 

After finding the crisp values and substituting in the corresponding paths we get, 

Fig.2. Crisp valued neutroshopic shortest path problem 

Interval valued neutroshopic heuristic values to end nodes are given in the following table.2. 
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Table: 2. Heuristic values 

Let us start with the source node S 
ITERATION:  0 
S→0⊕0.65=0.65 
From the source node S the graph expands through two paths A and B. 
ITERATION:  1 
S→A: f (A) = g(A) ⊕h(A) = 0.1⊕0.6=0.7 
S→B: f (A) = g (B) ⊕h(B) = 0.35⊕0.2=0.55(MIN) 
By comparing the above values the path S→B has minimum value, so we proceed to traverse from that path, 
ITERATION:  3 
S→B →C: f(A) =g(C) ⊕h(C) = (0.35⊕0.2)⊕0.1=0.65 
S→A →B: f(B)  =g (B) ⊕h (B) = (0.1⊕0.2) ⊕0.2=0.5(MIN) 
S→A →C: f(C) = g(C) ⊕h(C)=(0.1⊕0.45)⊕0.1=0.65 
S→A →G: f(G) = g(G) ⊕h(G) = (0.1⊕0.6)⊕0=0.7 
By comparing the above values the path S→A →B has minimum value, so we proceed to traverse from that path, 
ITERATION:  4 
S→A →B→C: f(C) = g(C) ⊕h(C) = (0. 1⊕0.2⊕0.2) ⊕0.1=0.6(MIN) 
By comparing the paths S→A →B→C and S→B the path S→B is minimum. 
So traverse from that path to reach the goal node. 
ITERATION:  5 
S→B →C→G: f (G) = g(G) ⊕h(G)=(0.35⊕0.2⊕0.15)⊕0=0.7 
By comparing the paths S→B →C→G and S→A →B→C the  
path S→A →B→C is minimum. 
So traverse from that path to reach the goal node. 
ITERATION:  6 
To reach the goal node we can traverse in the two paths, 
S→A →B→C→G: f(G)= g(G) ⊕h(G)=( 0.1⊕0.2⊕0.2⊕0.15)⊕0=0.65(MIN) 
S→A →C→G: f(G)= g(G) ⊕h(G)=( 0.1⊕0.45⊕0.15)⊕0=0.7 
By comparing the paths S→A →B→C→G and S→A →C→G the path S→B →C→G is minimum 

Node h(n)  Cris p h(n)  
S      <[0.9, 0.8], [0.1, 0.2], [0.2, 0.3]> 0.65 

A  <[0.7, 0.8], [0.1, 0.2], [0.2, 0.3]> 0.6 
B   <[0.3, 0.4], [0.2, 0.3], [0.4, 0.5> 0.2 
C  <[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]> 0.1 
G   <[0,0], [0,0], [1, 1]> 0 
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Fig.3. Shortest path from source node to goal node. 

The shortest path is given by S→A →B→C→G. 

5. Conclusion

A* algorithm is applied to solve the shortest path problem on a network with an interval valued neutrosophic arc 

lengths in this paper. A* algorithm is complete and optimal. A* algorithm is the best one from other techniques. It is 

used to solve very complex problems. A* algorithm is optimally efficient, i.e. there is no other optimal algorithm 

guaranteed to expand fewer nodes than A*.Heuristic values are considered in calculating the path by this method. 

Score function is used for defuzzification. The technique is enlightened by a numerical example with the help of 

theoretical information. The time complexity of A* depends on the heuristic. In the worst case of an unbounded 

search space, the number of nodes expanded is exponential in the depth of the solution (the shortest path) d: O(bd), 

where b is the branching factor. A* can also be adapted to a bidirectional search algorithm.Furthermore, the 

following algorithm of the interval neutrosophic shortest path problem can be extended into an interval valued 

bipolar neutrosophic environment. 
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Decision making is an indispensable activity but the environment is highly characterized with uncertainty. The concept 

of fuzzy set introduced by Lofti.A.Zadeh [1] plays a vital role in tackling such uncertain and imprecise situations. 

Abst ra ct 

Neutrosophic overset, neutrosophic underset and neutrosophic offset introduced by Smarandache 
are the special kinds of neutrosophic sets with values beyond the range [0,1] and these sets are 
pragmatic in nature as it represents the real life situations. This paper introduces the concept of 
saturated refined neutrosophic sets and extends the same to the special kinds of neutrosophic sets. 
The proposed concept is applied in decision making on Teacher’s adaptation to cybergogy. The 
decision making environment is characterized by different types of teachers, online teaching 
skills and various training methods. Fuzzy relation is used to match the most suitable method to 
the different kinds of teachers with the intervention of saturated interval valued neutrosophic 
refined oversets, offsets and undersets. The results obtained by applying the notion of saturated 
refined sets using various distance measures represent the effect of training methods on teacher’s 
adaptation to learner-centred teaching methods, which certainly give space to gain many insights 
on the relationship between quality of training and teacher’s adaptation rate. The proposed 
concept has wide scope and few limitations. 

Keyword s: neutrosophic oversets, neutrosophic offsets, neutrosophic offsets, refined sets, 
saturated, interval-valued sets, cybergogy 
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Fuzzy sets differ from crisp sets by membership functions and membership values. The elements of crisp sets contain 
binary membership values i.e either 1 or 0, it doesn’t deal with intermediate values. Fuzzy sets overcome this short 
coming with the inclusion of intermediate values and extending the range of values from {0,1} to [0,1]. Fuzzy sets are 
highly comprehensive and inclusive in nature. Fuzzy sets are extensively used to handle complex systems and control 
as these sets possess high rate of industrial applications. Fuzzy sets are extended to intuitionistic sets by Atanssov[2] 
with the introduction of non-membership function to membership function. The elements of intuitionistic sets possess 
both membership and non-membership values ranging from [0,1]. The hesitancy margin is calculated by subtracting 
the sum of membership and non-membership values from 1. In intuitionistic sets the hesitancy margin is dependent 
on membership and non-membership values. Intuitionistic sets and various forms of it are widely used in multiple 
attribute decision making. Khan et al [3] used Interval-valued Pythagorean fuzzy GRA method for multiple-attribute 
decision making with incomplete weight information. Zhuosheng Jia et al[4] used interval valued intuitionistic fuzzy 
sets in multiple attribute group decision making method TOPSIS. Intuitionistic sets are further extended to 
neutrosophic sets by Smarandache[5] and these sets have truth membership functions, indeterminacy functions and 
non-membership functions. The elements of neutrosophic sets are triplets with independent truth, indeterminacy and 
false membership values ranging from [0,1]. Neutrosophic sets are widely used in multiple attribute decision making. 
Abdel-Baset et al [6,7] developed multi criteria decision making method with neutrosophic representation in 
evaluating green supply chain management practices and in sustainable supplier selection. Hu et al [8] also contributed 
to neutrosophic decision making on the selection of doctors.Nada A. Nabeeh et al [9] proposed a hybrid approach of 
neutrosophic with MULTIMOORA in application of personnel selection. Ajay et al [10] developed the single -valued 
triangular neutrosophic approach of decision making on multi objectives based on ratio analysis.Sahidul Islam et al 
[11] formulated neutrosophic goal programming approach to a green supplier selection model with quantity discount. 
Mullai.M et al [12] used neutrosophic intelligent energy efficient routing for wireless ad-hoc network based on multi-
criteria decision making. Abdel Nasser et al [13] proposed an integrated neutrosophic and TOPSIS for evaluating 
airline service quality. Neutrosophic hypersoft sets are also used in decision making. Muhammad Saqlain et al [14] 
presented the applications of neutrosophic hypersoft sets in TOPSIS using accuracy function. Surapati et al[15] 
developed  Multi-level linear programming problem with neutrosophic numbers. Ajay et al [16,17] discussed decision 
making techniques based on bipolar neutrosophic sets, neutrosophic cubic fuzy sets , Chakravarthy et al [18,19] 
expounded the implications of cyclindrical and pentagonal neutrosophic numbers in networking and mobile 
communication respectively . Deli et al [20,21] proposed multi attribute decision making models based on weighted 
geometric operators and two centroid point for single valued triangular neutrosophic number. Neutrosophic graphs 
are also widely used in decision making. Juanjuan et al [22] developed a multi attribute decision making model using 
single valued neutrosophic graphs. Dragisa et al [23] proposed a novel approach of assessing the reliability of the data 
in decision making. Shahzaib et al [24] framed a decision making model to select agroculture land using neutrosophic 
information. Muhammad et al [25] developed auto car decision making model using Bipolar Neutrosophic Soft Sets. 
Philippe [26] has also discussed the neutrosophical representations in cognitive dimension. The neutrosophic sets are 
extensively applied in multi criteria decision making. 

Smarandache [27] introduced neutrosophic oversets, offsets and undersets which are the special kinds of neutrosophic 
sets with values beyond [0,1]. Overset is characterized with membership values greater than 1, underset is 
characterized with membership values less than 0 and the combination of both these sets is offset. Smarandache 
justified the practical implications of these special kinds of sets with real life illustrations. These kinds of neutrosophic 
sets highly influenced and motivated us to propose a fuzzy relational decision making model with saturated refined 
interval- valued neutrosophic oversets, undersets and offsets based on application of refined neutrosophic sets in 
medical diagnosis by Deli et al [28]. Smarandache conceptualized n-valued refined neutrosophic sets and these sets 
are used in decision making model of medical diagnosis. Broumi [29] extended the model of Deli et al by applying 
correlation measure. Various distance measures are used to make optimal decisions without changing the neutrosophic 
representations. In their model relation between symptoms and diseases was represented by neutrosophic sets; relation 
between patients and symptoms was represented by refined neutrosophic sets over certain interval period of time. In 
this decision making model the representation of the symptoms of the patients varies from time to time. But on 
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profound analysis, the effects of treatment on the status and the degree of symptoms lack representation. This deficit 
in the decision maing model paved the way for developing a novel decision making model with new kind of 
representations.The same model is extended to fuzzy relation decision making model on teacher’s adaptation to 
cybergogy in this research work. A relation between digital teaching skills and training methods is represented by 
neutrosophic sets and the relation between different kinds of teachers and the acquisition of digital skills after 
continuous stages of training is represented by refined neutrosophic oversets, undersets and offsets. Such kinds of 
representations are made to reflect the impact of training on skill acquisition rate by the teachers. The degree of digital 
skill acquisition by the teacher greatly depends on the personal interest, trainer’s approach and training environment. 
The self- interest of the teachers may induce them to spend additional time other than the specified training time; also 
the disinterest of the teachers or dislike of trainer’s approach may make them to refrain from the training and their 
participation rate is disturbed. At such circumstances refined neutrosophic oversets, underset and offset are used to 
represent such impacts. Also a new concept of saturated refined sets is introduced in this paper. The refined 
neutrosophic overset, underset and offset values remain to settle to a particular value over a consecutive period of time 
then it is called as saturated. The existences of situations where the degree of digital skill acquisition is confined and 
attained the maximum value and also there is no chance of further change over a period of training can be represented 
by saturated refined neutrosophic sets. The apt method of training to different kinds of teachers is determined by using 
hamming distance, normalized hamming distance, Euclidean distance and normalized Euclidean distance measures. 
The practical implications of neutrosophic overset, underset and offset are not explored to the best of the knowledge 
and so this research work will certainly fill the gap and it is intended to do so. 

The paper is organized as follows: section 2 presents the basic definitions; section 3 describes about saturated 
refined neutrosophic sets; section 4 consists of the application of the proposed model; section 5 discusses the results 
and the last section concludes the work. 

2. Pre liminar ies

Definit ion 2.1 [27]    

Let X be an universe of discourse, A neutrosophic set A in X is expressed by A={< �;	��(�), ��(�), ��(�) >/� ∈

�}and T,I,F:X→]-0:1+[  where T,I,F are the degree of membership(True), the indeterminacy and degree of non-

membership(False) respectively, and 0≤ ��(�) + ��(�) + ��(�) ≤ 3. 

Definit ion 2.2 [27]   

 Let X be the universe of discourse with a generic element in X is denoted by x. An interval valued neutrosophic set 

(IVNS) A in X is defined by  A={	�,<[���(�), ���(�)], [���(�), ���(�)], [��
�(�), ��

�(�)] >; 	� ∈ �}  

where ��, ��, �� are the truth membership function, indeterminacy membership function, falsity membership function 

respectively.For each point x in X, We have [���(�), ���(�)], [���(�), ���(�)],[��
�(�), ��

�(�)]⊆[0,1] with the condition 

0≤ ��
�(�) + ��

�(�) + ��
�(�) ≤ 3. 

Definit ion2.3 [27] 

  Let U be a universe of discourse. A neutrosophic refined set (NRS) A on U can be defined as follows 

         A={<x,<��
�(�), ��

�(�) … ��
�(�)), ���

�(�), ��
�(�) … ��

�(�)�, (��
�(�)��

�(�) … ��
�(�) > � ∈ �} and  

0≤ ��
�(�) + ��

�(�) + ��
�(�) ≤ 3, (� = 1,2… �)and���(�) ≤ ��

�(�) ≤ ⋯ ≤ ��
�(�)		���	���	 

� ∈ �,���(�), ��
� (�), 	��

�(�), � = 1,2… �is the truth membership sequence,indeterminancy membership sequence and 

falsity membership sequence of the element x respectively. 
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Definit ion 2.4 [27]  

       Let U be the universe of discourse. A neutrosophic set A1 in U which consist the membership function 

T(x),I(x),F(x) that define true, Indeterminacy and falsity respectively, of a generic element x∈ �, 

										��(�), ��(�), ��(�):� → [0, � ]� ℎ���	0 < 1 < �, ���	�  is called over limit. 

A single valued neutrosophic over set A1 is defined as 

         A1={x,<��(�); ��(�); ��(�)>x∈ �} such that in the neutrosophic components contains there exist atleast one 

element in A1 is >1 and no element is < 0. 

Definit ion 2.5[27] 

  Let U be the universe of discourse. A neutrosophic set A2 in U which consist the membership function T(x), I(x), 

F(x) that define true, Indeterminacy and falsity respectively, of a generic element x∈ �, 

										��(�), ��(�), ��(�):� → [� , 1]� ℎ���	� < 0 < 1, ���	�  is called under limit. 

A single valued neutrosophic underset A2 is defined as 

         A2={x,<��(�); ��(�); ��(�)>x∈ �}  

such that in the neutrosophic components contains there exist atleast one element in A2 is <0 and no element is >1 

Definit ion 2.6 [27]    

Let U be the universe of discourse. A neutrosophic set A3 in U which consist the membership function T(x),I(x),F(x) 

that define true, Indeterminacy and falsity respectively, of a generic element x∈ �, 

										��(�), ��(�), ��(�):� → [� , � ]� ℎ���	� < 0 < 1 < �, ���	�  is called under limit while �  is called over 

limit,			��(�), ��(�), ��(�) 	∈ 	 [� , � ].The neutrosophic single-valued offset A3 is defined by 

         A3 = {x, <��(�); ��(�); ��(�)> x∈ �} such that in the neutrosophic components contains there is atleast one 

element is >1 and atleast another is < 0. 

Definit ion 2.7 [27]    

Let U be the universe of discourse. A neutrosophic set A1 in U which consist the membership function T(x), I(x), F(x) 

that define true, Indeterminacy and falsity respectively, of a generic element x∈ �,  

										��(�), ��(�), ��(�):� → �([0, � ])� ℎ���	0 < 1 < � , ���	�  is called over limit, 

��(�), ��(�), ��(�) ⊆ [0, � ], ���	�([0, � ]) is the set of all subsets of [0, � ].An interval valued neutrosophic overset 

A1 is defined as  A1={x,<��(�); ��(�); ��(�)>x∈ �} such that in the neutrosophic component contains there is atleast 

one is partially or totally above 1 and no element has partially or totally below 0. 

Definit ion 2.8 [27]    

Let U be the universe of discourse. A neutrosophic set A2 in U which consist the membership function T(x), I(x), F(x) 

that define true, Indeterminacy and falsity respectively, of a generic element x∈ �, 

	��(�), ��(�), ��(�):� → �([� , 1])� ℎ���	� < 0 < 1, ���	�  is called under limit. 
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��(�), ��(�), ��(�) ⊆ [� , 1], ���	�([� , 1]) is the set of all subsets of [� , 1].An interval valued neutrosophic overset 

A2 is defined as A2={x,<��(�); ��(�); ��(�)>x∈ �} such that in the neutrosophic component contains there is atleast 

one is partially or totally below 0 and no element has partially or totally above 1. 

Definit ion 2.9 [27]    

Let U be the universe of discourse. A neutrosophic set A3 in U which consist the membership function T(x),I(x),F(x) 

that define true, indeterminacy and falsity respectively, of a generic element x∈ �, 

										��(�), ��(�), ��(�):� → �[� , � ]� ℎ���	� < 0 < 1 < � , ���	�  is called under limit while �  is called over 

limit,			��(�), ��(�), ��(�) 	⊆ �	[� , � ] and �	[� , � ]	�� the set of all subsets of [� , � ] 

An interval valued neutrosophic offset A3 is defined as A3 = {x, <��(�); ��(�); ��(�)> x∈ �} such that in the 

neutrosophic components contains atleast one is partially or totally above 1 and atleast another is partially or totally 

below 0. 

 Definition: 2.10 [17] 

 Let A,B	∈ ����� (�).Then 

1.Hamming distance between A and B is denoted as dH(A,B) and is defined by

�� (�, �) =
1

6
� � (|��

�(��) − ��
�(��)|+ |��

�(��) − ��
�(��)|+ |��

�(��) − ��
�(��)|+ |��

�(��) − ��
�(��)|

�

���

�

���

+ |��
�(��) − ��

�(��)|+ |��
�(��) − ��

�(��)| 

2.Normalized hamming distance between A and B is denoted as dNH(A,B) and is defined by

�� (�, �) =
1

6��
� � (|��

�(��) − ��
�(��)|+ |��

�(��) − ��
�(��)|+ |��

�(��) − ��
�(��)|+ |��

�(��) − ��
�(��)|

�

���

�

���

+ |��
�(��) − ��

�(��)|+ |��
�(��) − ��

�(��)| 

3.Euclidean distance between A and B is denoted as dE(A,B) and is defined by

��(�, �) =
1

6
� � {(|��

�(��) − ��
�(��)|

� + |��
�(��) − ��

�(��)|
� + |��

�(��) − ��
�(��)|

� + |��
�(��) − ��

�(��)|
�

�

���

�

���

+ |��
�(��) − ��

�(��)|
� + |��

�(��) − ��
�(��)|

�)}
�
�

4.Normalized Euclidean distance between A and B is denoted as dNE(A,B) and is defined ��(�, �) =

�

���
∑ ∑ {(|��

�(��) − ��
�(��)|

� + |��
�(��) − ��

�(��)|
� + |��

�(��) − ��
�(��)|

� + |��
�(��) − ��

�(��)|
� + |��

�(��) −�
���

�
���

��
�(��)|

� + |��
�(��) − ��

�(��)|
�)}

�

�

3. Satura ted Refined Neutro sophic sets

Irfan Deli et al [28] presented the properties and various operations of neutrosophic refined sets. An element 

of neutrosophic refined set has a sequence of truth, indeterminacy and falsity membership values. In the model 
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proposed by Irfan Deli et al [28] the symptoms of the patients at three different intervals of time are presented as 

neutrosophic refined sets. But in reality if the patients are undergoing treatment and the symptoms are checked at 

different intervals of time, suppose if a patient gets cured and gets back to normal conditions, then the symptoms of 

the disease are nil and it takes same values if testing of symptoms takes place at consecutive period of time. At this 

junction the membership values gets saturated, and this instance is the origin of saturated refined neutrosophic sets. 

Let U be a universe of discourse. A neutrosophic saturated refined set (NSRS) A on U can be defined as follows 

 A={<x, (���(�), ���(�) … , ��
�(�), ��

�(�)), ���
�(�), ��

�(�) … ��
�(�), ��

�(�)�, (��
�(�)��

�(�) … ��
�(�), ��

�(�) > � ∈

�and 0≤ ��
�(�) + ��

� (�) + ��
�(�) ≤ 3, (� = 1,2… �)and���(�) ≤ ��

�(�) ≤ ⋯ ≤ ��
�(�)		���	���

� ∈ �,	���(�), ��
� (�), 	��

�(�), � = 1,2… �is the truth membership sequence, indeterminacy membership sequence and 

falsity membership sequence of the element x respectively. 

Let U be a universe of discourse. A interval – valued saturated refined neutrosophic set A on U can be defined as 

follows 

A={<x, ����
��(�), ��

��(�)�, ���
��(�), ��

��(�)�, … . ��
�(�)� , ����

��(�), ��
��(�)�, ���

��(�), ��
��(�)�, … . ��

�(�)�,

(���
��(�), ��

��(�)�, ���
��(�), ��

��(�)�, … . ��
�(�)) > � ∈ �and 0≤ ��

�(�) + ��
� (�) + ��

�(�) ≤ 3, (� =

1,2… �)and���(�) ≤ ��
�(�) ≤ ⋯ ≤ ��

�(�)		���	���	 

� ∈ �,	���(�), ��
� (�), 	��

�(�), � = 1,2… �is the truth membership sequence, indeterminacy membership sequence and 

falsity membership sequence of the element x respectively. 

Remark:  

1. If any of the membership values is saturated it is partial in nature and it is also a saturated refined set.

2.The saturated refined neutrosophic sets can be extended to overset, underset and offset.

3.The interval – valued refined neutrosophic sets are also extended to saturated interval- valued refined neutrosophic

sets and the saturated values varies from interval sets to single valued sets over a period of time. 

4. Appli cation of the pro posed decision ma king model

A decision making model together with fuzzy relational matrix and saturated refined neutrosophic overset, 

underset and offset is validated with the following illustration.  

Decision Making Env ironment  

Presently COVID – 19 has brought a paradigm shift in teaching and learning process, the teaching fraternity 

is expected to possess digital teaching skills to face the post quarantine period. The developing nations have begun to 

encourage online educational system with the motive of unlocking learning during lock down. In this juncture the 

teachers are categorized based on their attributes and exposed to different kinds of training method to foster the 

acquisition of digital skills. The ultimate aim of this decision making model is to determine the suitable training 

method to the different kinds of teachers. This training programme is conducted to train the teachers to acquire online 

teaching skills. The expected outcome is enhancement of teacher’s online teaching skills. The effectiveness of the 

programme is evaluated based on certain attributes and these attributes duly play crucial role in the enhancement of 

teacher’s online teaching skills. 
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A1 Trainer’s efficiency- Refers to mastery 

A2 Teacher’s interest 

A3 Teacher’s duration of participation – present throughout the sessions 

A4 Teacher’s grasping ability – how quick they understand 

A5 Trainer’s Approach – Refers to inter personal relationship/ social skills 

The teachers are made to undergo four phases of training namely I, II, III, IV and they are grouped into four 

categories and their characteristic features are presented in Table 4.1    

Table 4.1 Types of Teachers & Attributes 

The training to teachers are given using the following modes such as Self- paced learning, Blended learning, Adaptive 

learning, Virtual classes. The digital skills that are focussed in this training programme are Online skills, Digital 

literacy skills, Administrative skills of Learning Management System (LMS), Technology skills, Organization skills. 

The relation between digital skills and training methods are presented in Table 4.2 

Table 4.2 Relation between skills and methods 

Types of 

Teachers  

Chara cteri zation 

T1 Encouraging,Motivating,Systematic,Holistic 

T2 Optimistic,creative,interactive,Facllitative 

T3 Pragmatic,realistic,joyful,flexible 

T4 Weak commitment, Projective,Low professional ,Resistant to 

change 

The attributes are 
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The degree of acquisition rate of digital teaching skills is presented as saturated refined interval-valued neutrosophic 

overset, underset and offset in Table 4.3. 

Tabl e 4.3 Relat ion bet ween Teachers  and Skil l acqui sition 

Online  Skills Digital  liter acy 

Skills 

Administr ative 

skills of LMS 

Technol ogy Skills Org anization 

skills 

T1 

([0.7,0.8],[0.3,0.4], 

[0.5,0.7]) 

([0.75,0.85],[0.41,0.

5],[0.45,0.6]) 

([0.79,0.95],[0.45,0.

58],0.4) 

[(0.6,0.7],[0.2,0.3],

[0.5,0.6]) 

([0.65,0.75],[0.28,0

.35],[0.43,0.48]) 

([0.78,0.88],[0.36,0

.4],0.31) 

([0.89,1.1],[0.37,0.

41],0.31) 

([0.5,0.6],[0.2,0.3],[

0.1,0.3]) 

([0.55,0.67],[0.31,0.

43],[0.1,0.28]) 

(0.61,[0.33,0.44],[.0

.1,0.15]) 

(0.61,[0.35,0.44],[-

.0.1,0.12]) 

([0.3,0.4],[0.7,0.8],[

0.4,0.6]) 

([0.37,0.45],[0.81,0.

93],[0.52,0.58]) 

([0.39,0.48],1.3,[0.5

3,0.56]) 

([0.43,0.52],1.3,[0.5

4,0.55]) 

([0.4,0.5],[0.2,0.

3],[0.03,0.05]) 

([0.46,0.57],[0.2

6,0.35],[0.01,0.0

3]) 

(0.52,[0.28,0.37],

[0.01,0.02]) 
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([0.9,1.2],[0.48,0.59

],0.4) 

([0.52,[0.31,0.38

],[-0.01,0.01]) 

T2 ([0.6,0.7],[0.3,0.4],[

0.7.0.8]) 

([0.75,0.83],[0.33.0.

46],[0.71,0.75]) 

([0.83,0.95],[0.4,0.4

8],0.68) 

([0.96,1.3],[0.44,0.5

4],0.68) 

([0.5,0.6],[0.6,0.7],

[0.1,0.2]) 

([0.56,0.61],[0.68,0

.73],[0.1,0.15]) 

([0.59,[0.71,0.75],[

0.1,0.12]) 

([0.59,[0.72,0.77],[ 

-0.1,0.11]) 

([0.4,0.5],[0.8,0.9],[

0.3,0.4]) 

([0.47.0.58],[0.88,0.

97],[0.3,0.35]) 

([0.55,0.63],1.13,[0.

3,0.34]) 

([0.55,0.78],1.13,[0.

3,0.31]) 

([0.7,0.8],[0.3,0.4],[

0.2,0.3]) 

([0.75,0.83][0.35,0.

43],[0.1,0.2]) 

([0.86,0.95],0.39,[0.

05,0.1) 

([0.96,1.1],0.39,[-

0.01,0.04]) 

([0.3,0.4],[0.7,0.

8],[0.5,0.6]) 

([0.36,0.46],[0.7

9,0.89],[0.5,0.55]

) 

([0.37,0.53],[0.8

9,0.99],0.52) 

([0.45,0.56],[0.9

5,1.1],0.52) 

T3 ([0.8,0.9],[0.2,0.3],[

0.4,0.5]) 

([0.86,0.98],[0.3,0.4

1],[0.4,0.45]) 

(1.1,[0.38,0.49],[0.3

5,0.4) 

(1.1,[0.42.0.51],[0.3

5,0.38]) 

([0.4,0.5],[0.8,0.9],

[0.5,0.6]) 

([0.47,0.57],[0.83,0

.93],[0.45,0.57]) 

([0.55,0.61],1.2,[0.

45,0.51]) 

([0.55,0.62],1.2,[0.

45,0.49]) 

([0.3,0.4],[0.2,0.3],[

0.1,0.2]) 

([0.38,0.47],[0.26,0.

37],[0.1,0.15]) 

(0.45,[0.28,0.39], 

[0.1,0.12]) 

(0.45,[0.28,0.42], 

[-0.1,0.1]) 

([0.5,0.6],[0.7,0.8],[

0.3,0.4]) 

([0.57,0.68],[0.85,0.

91],[0.2,0.3]) 

(0.63,[0.91,0.99],[0.

2,0.25]) 

(0.63,[0.98,1.2], 

[0.21,0.23]) 

([0.3,0.4],[0.4,0.

5],[0.2,0.3]) 

([0.35,0.46],[0.4

7,0.57],[0.1,0.2]) 

(0.43,0.52,[0.1,0.

15]) 

(0.43,0.52,[ 

-0.1,0.12]) 

T4 ([0.3,0.4],[0.5,0.6],[

0.2,0.3]) 

([0.41,0.49],[0.6.0.6

7],[0.1,0.2]) 

([0.45,0.53],0.61,[0.

1,0.15]) 

([0.45,0.55],0.61, 

([0.5,0.6],[0.8,0.9],

[0.6,0.7]) 

([0.52,0.61],[0.88,0

.98],[0.5,0.6]) 

([0.63,0.64],1.3,[0.

5,0.55]) 

([0.7,0.8],[0.5,0.6],[

0.36,0.57]) 

([0.8,0.91],[0.55,0.6

5],[0.36,0.55]) 

([0.88,0.99],0.61,[0.

2,0.25]) 

([0.2,0.3],[0.1,0.27]

, 

[0.1,0.2]) 

([0.4,0.63],[0.1,0.25

],[0.1,0.13]) 

([0.46,0.63],0.26,[0.

05,0.1]) 

([0.3,0.4],[0.8,0.

9],[0.5,0.6]) 

([0.45,0.53],[0.8

8,0.91],[0.45,0.5]

) 

(0.45,[0.98,1.1],0

.41) 
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The normalized Hamming distance is used to determine the most suitable training method to teachers and the values 

are presented in Table 4.4. 

Table 4.4 Normalized Hamming Distance between Teachers and Methods 

Blended M ode Self- paced M ode Adapti ve Mode Virt ual Mode 

T1 0.214 0.183 0.194 0.217 

T2 0.286 0.299 0.28 0.279 

T3 0.245 0.199 0.185 0.246 

T4 0.254 0.286 0.26 0.27 

The results obtained by Hamming distance, Euclidean and Normalized Euclidean distance methods are presented in 

Table 4.5,4.6 and 4.7 respectively 

Table 4.5   Hamming Distance between Teachers and Methods 

Blended Mode Self-paced Mode Adaptive Mode Virtual Mode 

T1 0.858 0.73 0.774 0.866 

T2 1.142 1.174 1.122 1.117 

T3 0.999 0.798 0.741 0.986 

T4 1.014 1.143 1.037 1.076 

Table 4.6   Euclidean Distance between Teachers and Methods 

Blended Mode Self-paced Mode Adaptive Mode Virtual Mode 

T1 0.115 0.095 0.096 0.12 

T2 0.129 0.13 0.128 0.127 

T3 0.131 0.112 0.0876 0.124 

[-0.1,0.11]) ([0.65,0.71],1.3,[0.

48,0.52]) 

([0.98,1.1],0.61,[0.2

,0.23]) 

([0.47,0.63],0.26,[ 

-0.05,0.05]) 

(0.45,[0.99,1.2],0

.41) 
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T4 0.129 0.132 0.131 0.133 

Table 4.7   Normalized Euclidean Distance between Teachers and Methods 

Blended Mode Self-paced Mode Adaptive Mode Virtual Mode 

T1 0.0289 0.0239 0.024 0.0274 

T2 0.0321 0.0325 0.0323 0.0317 

T3 0.0328 0.028 0.0219 0.031 

T4 0.0277 0.033 0.0324 0.0332 

Discussion 

 Table 4.4,4.5,4.6 &4.7 clearly presents the most suitable training method to various kinds of teachers. The lowest 

distance gives the apt method. Self- paced mode is suitable to type I teachers; Virtual mode to type II teachers; 

Adaptative mode to type III teachers and blended mode to type IV teachers. This optimal relation between teachers 

and methods are highly pragmatic as it has incorporated the influence of external and internal factors of the training 

programme. The various methods of distance measures are used to determine the feasible method of teaching and on 

comparative analysis, the results obtained by using the different methods, are same. The proposed decision making 

model with saturated refined neutrosophic sets of different kinds can be extended further with other representations 

of neutrosophic sets, also other kinds of distance measures can be applied to find the optimal method of teaching. This 

model also has certain limitations as neutrosophic oversets, undersets and offsets of representations are used only 

specifically and these special kinds of representations cannot be applied at all circumstances. This decision -making 

model caters to particular needs.  

Conclusion 

In this research work the concept of saturated refined neutrosophic sets, interval –valued saturated refined 

neutrosophic sets and its extension to neutrosophic overset, underset and offset are proposed. A decision making 

model with fuzzy relational matrix and saturated refined neutrosophic overset, underset and offset is proposed in this 

paper. The model is validated with a real life application. This research work will certainly enlighten the researchers 

to explore in deep about the concepts of neutrosophic overset, underset and offset. The profound extension of these 

concepts will disclose new portals of neutrosophic research.  
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Abstract: Dynamic multi-criteria decision-making (DMCDM) models have many meaningful
applications in real life in which solving indeterminacy of information in DMCDMs strengthens the
potential application of DMCDM. This study introduces an extension of dynamic internal-valued
neutrosophic sets namely generalized dynamic internal-valued neutrosophic sets. Based on this
extension, we develop some operators and a TOPSIS method to deal with the change of both criteria,
alternatives, and decision-makers by time. In addition, this study also applies the proposal model to
a real application that facilitates ranking students according to attitude-skill-knowledge evaluation
model. This application not only illustrates the correctness of the proposed model but also introduces
its high potential appliance in the education domain.

Keywords: generalized dynamic interval-valued neutrosophic set; hesitant fuzzy set; dynamic
neutrosophic environment; dynamic TOPSIS method; neutrosophic data analytics

1. Introduction

Multi-criteria decision-making (MCDM) in real world is often dynamic [1]. In the dynamic MCDM
(DMCDM) model, neither alternatives nor criteria are constant throughout the whole problem and do
not change over time. Besides, the DMCDM model has to cope with both dynamic and indeterminate
problems of data. For example, when ranking tertiary students during learning time in a university by
the set of criteria based on attitudes-skills-knowledge model (ASK), the criteria, students and lecturers
are changing during semesters. The lecturers’ evaluations using scores, or other ordered scales, are also
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subject to indeterminacy because of lecturers’ personal experiences and biases. Therefore, a ranking
model that can handle these issues is necessary.

In [2], Smarandache introduced neutrosophic set including truth-membership, an indeterminacy-
membership and a falsity-membership to well treat the problem of information indeterminacy. Since
then, variant forms of MCDM and DMCDM models have been proposed as in [3–15]. In order to
consider the time dimension, Wang [16] proposed the interval neutrosophic set and its mathematical
operators. Ye [9] proposed MCDM in interval-valued neutrosophic set. Dynamic MCDM for
dynamic interval-valued neutrosophic set (DIVNS) was proposed in [14]. The authors have developed
mathematical operators for TOPSIS method in DIVNSs.

In some cases, criteria, alternatives and decision-makers are changing by time. This fact requires
a new method for DMCDM using TOPSIS method in the interval-valued neutrosophic set [17] with
diversion of history data. The TOPSIS method for DIVNS in [14] did not solve the problem with
the changing criteria, alternatives, and decision-makers. Liu et al. [13] combined the theory of both
interval-valued neutrosophic set and hesitant fuzzy set to solve the MCDM problem. However,
this study did not use TOPSIS method, and it did not consider the change of criteria also. In order
to take the history data into account, Je [10] proposed two hesitant interval neutrosophic linguistic
weighted operators to ranking alternatives in dynamic environment. In short, the DMCDM model in
DIVNS based on TOPSIS method has not been addressed before.

The purpose of this paper is to deal with the change of criteria, alternatives, and decision-makers
during time. We define generalized dynamic interval-valued neutrosophic set (GDIVNS) and some
operators. Based on mathematical operators in GDIVNS (distance and weighted aggregation operators),
a framework of dynamic TOPSIS is introduced. The proposed method is applied for ranking students
of Thuongmai University, Vietnam on attributes of ASK model. ASK model is applicable for evaluation
of tertiary students’ performance, and it gives more information that support employers besides a set
of university exit benchmark. It also facilitates students to make proper self-adjustments and help them
pursue appropriate professional orientation for their future career [18–21]. This application proves the
suitability of the proposed model for real ranking problems.

This paper is structured as follows: The Section 1 is an introduction, and the Section 2 provides the
brief preliminaries for DMCDM model in both legacy environment and interval-valued neutrosophic
set. The Section 3 presents the definition of GDIVNS and some mathematical operators on this
set. The Section 4 introduces the framework of dynamic TOPSIS method in GDIVNSs environment.
The Section 5 presents the application of dynamic TOPSIS method in the problem of ranking students
based on attributes of ASK model. The Section 6 compares the result of proposed model with previous
TOPSIS model in DIVNS. The last section mentions the brief summary of this study and intended
future works.

2. Preliminary

2.1. Multi-Criteria Decision-Making Model Based on History

A dynamic multi-criteria decision-making model introduced by Campanella and Ribeiro [1] is a
DMCDM in which all alternatives and criteria are subject to change. The model gives decisions at all
periods or just at the last one. The final rating of alternatives is calculated as:

Et(a) =


Rt(a), a ∈ At\HA

t−1
DE(Et−1(a), Rt(a)), a ∈ At ∩HA

t−1
Et−1(a), a ∈ HA

t−1\At

(1)

where At is a set of alternatives at period t, HA
t−1 is a historical set of alternatives at period t− 1 (HA

0 = Ø),
Rt(a) is rating of alternative a at period t, and DE is an aggregation operator.
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2.2. Dynamic Interval-Valued Neutrosophic Set and Hesitant Fuzzy Set

Thong et al. [14] introduced the concept of dynamic interval-valued neutrosophic set (DIVNS).

Definition 1. [14] Let U be a universe of discourse, and A be a dynamic interval-valued neutrosophic Set
(DIVNS) expressed by,

A =
{
x,

〈[
TL

x (τ), TU
x (τ)

]
,
[
IL
x (τ), IU

x (τ)
]
,
[
FL

x(τ), FU
x (τ)

]〉∣∣∣∣x ∈ U
}

(2)

where Tx, Ix, Fx are the truth-membership, indeterminacy-membership, falsity-membership respectively,
τ = {τ1, τ2, . . . , τk} is set of time sequence and[

TL
x (τ), TU

x (τ)
]
⊆ [0, 1];

[
IL
x (τ), IU

x (τ)
]
⊆ [0, 1];

[
FL

x(τ), FU
x (τ)

]
⊆ [0, 1]

Example 1. A DIVNS in time sequence τ = {τ1, τ2} and universal U = {x1, x2, x3} is:

A =


x1,

〈
([0.5, 0.6], [0.1, 0.3], [0.2, 0.4]), ([0.4, 0.55], [0.25, 0.3], [0.3, 0.42])

〉
x2,

〈
([0.7, 0.81], [0.1, 0.2], [0.1, 0.2]), ([0.72, 0.8], [0.11, 0.25], [0.2, 0.4])

〉
x3,

〈
([0.3, 0.5], [0.4, 0.5], [0.6, 0.7]), ([0.4, 0.5], [0.5, 0.6], [0.66, 0.73])

〉


Hesitant fuzzy set (HFS) first introduced by Torra and Narukawa [19] and Torra [20] is defined
as follows.

Definition 2. [20] A hesitant fuzzy set E on U is defined by the function hE(x). When hE(x) is applied to U,
it returns a finite subset of [0, 1], which can be represented as

E =
{〈

x, hE(x)
〉∣∣∣x ∈ U

}
(3)

where hE(x) is a set of some values in [0, 1].

Example 2. Let X = {x1, x2, x3} be the discourse set, and hE(x1) = {0.1, 0.2}, hE(x2) = {0.3} and hE(x3) =

{0.2, 0.3, 0.5}. Then, E can be considered as a HFS:

E = {〈x1, {0.1, 0.2}〉, 〈x2, {0.3}〉, 〈x3, {0.2, 0.3, 0.5}〉}

3. Generalized Dynamic Interval-Valued Neutrosophic Set

Extending DIVNS by the concept of HFS is considered how to express the criteria, alternatives,
and DMs that are changing during time criteria, alternatives and decision-makers are changing by time.

In this section, we propose the concepts of generalized dynamic interval-valued neutrosophic
set (GDIVNS) and generalized dynamic interval-valued neutrosophic element (GDIVNE) including
fundamental elements, operational laws as well as the score functions. Then, GDIVNS’s theory is
applied for the decision-making model in Section 4.

Definition 3. Let U be a universe of discourse. A generalized dynamic interval-valued neutrosophic set
(GDIVNS) in U can be expressed as,

Ẽ =
{〈

x, h̃Ẽ(x(tr))
〉
|x ∈ U ;∀tr ∈ t;

}
(4)

where h̃Ẽ(x(tr)) is expressed for importing HFS into DIVNS. h̃Ẽ(x(tr)) is a set of DIVNSs at period tr and

t = {t1, t2, t3, . . . , ts}, which denotes the possible DIVNSs of the element x ∈ X to the set Ẽ, h̃Ẽ(x(tr)) can
be represented by a generalized dynamic interval-valued neutrosophic element (GDIVNE). When s = 1 and
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∣∣∣∣̃hẼ(x(tr))
∣∣∣∣ = 1, GDIVNS simplifies to DIVNS [14]. For convenience, we denote h̃ = h̃Ẽ(x(t)) =

{
γ
∣∣∣∣γ ∈ h̃

}
,

where
γ =

([
TL(x(τ)), TU(x(τ))

]
,
[
IL(x(τ)), IU(x(τ))

]
,
[
FL(x(τ)), FU(x(τ))

])
is a dynamic interval-valued neutrosophic number.

Example 3. Let t = {t1, t2}; τ = {τ1, τ2} and an universal X = {x1, x2, x3}. A GDIVNS in X is given as:

Ẽ =



〈
x1,

{ 〈
([0.2, 0.33], [0.4, 0.5], [0.6, 0.7]), ([0.24, 0.39], [0.38, 0.47], [0.56, 0.7])

〉
,〈

([0.29, 0.37], [0.3, 0.5], [0.4, 0.58]), ([0.4, 0.5], [0.2, 0.3], [0.35, 0.42])
〉 }〉

,〈
x2,

{ 〈
([0.8, 0.9], [0.1, 0.2], [0.1, 0.2]), ([0.72, 0.8], [0.11, 0.25], [0.23, 0.45])

〉
,〈

([0.4, 0.6], [0.2, 0.4], [0.3, 0.4]), ([0.41, 0.5], [0.26, 0.39], [0.2, 0.3])
〉 }〉

,〈
x3,

{ 〈
([0.6, 0.7], [0.2, 0.3], [0.4, 0.5]), ([0.52, 0.66], [0.34, 0.4], [0.6, 0.77])

〉
,〈

([0.54, 0.62], [0.15, 0.3], [0.2, 0.4]), ([0.4, 0.5], [0.25, 0.32], [0.39, 0.43])
〉 }〉


Definition 4. Let h̃, h̃1 and h̃2 be three GDIVNEs. When λ > 0, the operations of GDIVNEs are defined
as follows:

(i) Addition

h̃1 ⊕ h̃2 = ∪
∀γ1∈̃h1;∀γ2∈̃h2

{
γ1 ⊕ γ2

}
=


〈 [

TL
γ1
(x(τ)) + TL

γ2
(x(τ)) − TL

γ1
(x(τ)) × TL

γ2
(x(τ)), TU

γ1
(x(τ)) + TU

γ2
(x(τ)) − TU

γ1
(x(τ)) × TU

γ2
(x(τ))

]
,[

IL
γ1
(x(τ)) × IL

γ2
(x(τ)), IU

γ1
(x(τ)) × IU

γ2
(x(τ))

]
,
[
FL
γ1
(x(τ)) × FL

γ2
(x(τ)), FU

γ1
(x(τ)) × FU

γ2
(x(τ))

] 〉
(ii) Multiplication

h̃1 ⊗ h̃2 = ∪
∀γ1∈̃h1;∀γ2∈̃h2

{
γ1 ⊗ γ2

}
=


〈 [

TL
γ1
(x(τ)) × TL

γ2
(x(τ)), TU

γ1
(x(τ)) × TU

γ2
(x(τ))

]
,[

IL
γ1
(x(τ)) + IL

γ2
(x(τ)) − IL

γ1
(x(τ)) × IL

γ2
(x(τ)), IU

γ1
(x(τ)) + IU

γ2
(x(τ)) − IU

γ1
(x(τ)) × IU

γ2
(x(τ))

]
,[

FL
γ1
(x(τ)) + FL

γ2
(x(τ)) − FL

γ1
(x(τ)) × FL

γ2
(x(τ)), FU

γ1
(x(τ)) + FU

γ2
(x(τ)) − FU

γ1
(x(τ)) × FU

γ2
(x(τ))

]
〉

(iii) Scalar Multiplication

λ̃h = ∪
∀γ∈̃h

{
λγ

}
= ∪

∀γ∈̃h


〈 [

1−
(
1− TL(x(τ))

)λ
, 1−

(
1− TU(x(τ))

)λ]
,[(

IL(x(τ))
)λ

,
(
IU(x(τ))

)λ]
,
[(

FL(x(τ))
)λ

,
(
FU(x(τ))

)λ] 〉
(iv) Power

h̃λ = ∪
∀γ∈̃h

{
γλ

}
= ∪

∀γ∈̃h


〈 [(

TL(x(τ))
)λ

,
(
TU(x(τ))

)λ]
,
[
1−

(
1− IL(x(τ))

)λ
, 1−

(
1− IU(x(τ))

)λ]
,[

1−
(
1− FL(x(τ))

)λ
, 1−

(
1− FU(x(τ))

)λ] 〉

Definition 5. Let h̃ be a GDIVNE. Then, the score functions of the GDIVNE h̃ are defined by,

S
(̃
h
)
=

1

#̃h
×

1
k

∑
∀γ∈̃h

k∑
l=1

((
TL(τl) + TU(τl)

2
+

(
1−

IL(τl) + IU(τl)

2

)
+

(
1−

FL(τl) + FU(τl)

2

))
/3

)
(5)
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where τ = {τ1, τ2, . . . , τk}, and #̃h is number of elements in h̃. Obviously, S
(̃
h
)
∈ [0, 1]. If S

(̃
h1

)
≥ S

(̃
h2

)
, then

h̃1 ≥ h̃2.

Example 4. Let three GDIVNEs:

h̃1 =
{〈
([1, 1], [0, 0], [0, 0]), ([1, 1], [0, 0], [0, 0])

〉
,
〈
([1, 1], [0, 0], [0, 0]), ([1, 1], [0, 0], [0, 0])

〉}
h̃2 =

{〈
([0, 0], [1, 1], [0, 0]), ([0, 0], [1, 1], [0, 0])

〉
,
〈
([0, 0], [1, 1], [0, 0]), ([0, 0], [1, 1], [0, 0])

〉}
h̃3 =

{〈
([0, 0], [1, 1], [1, 1]), ([0, 0], [1, 1], [1, 1])

〉
,
〈
([0, 0], [1, 1], [1, 1]), ([0, 0], [1, 1], [1, 1])

〉}
According to Equation (5), we have S

(̃
h1

)
= 1; S

(̃
h2

)
= 1

3 ; S
(̃
h3

)
= 0. Thus, h̃1 > h̃2 > h̃3.

Definition 6. Let h̃ j( j = 1, 2, . . . , n) be a collection of GDIVNEs. Generalized dynamic interval-valued
neutrosophic weighted average (GDIVNWA) operator is defined as

GDIVNWA
(̃
h1, h̃2, . . . , h̃n

)
=

n∑
j=1

w j̃h j

= ∪

γ1∈̃h1,γ2∈̃h2,...,γn∈̃hn




1− n∏
j=1

(
1− TL

γ j
(τ)

)w j , 1−
n∏

j=1

(
1− TU

γ j
(τ)

)w j

, n∏
j=1

(
IL
γ j
(τ)

)w j ,
n∏

j=1

(
IU
γ j
(τ)

)w j

,  n∏
j=1

(
FL
γ j
(τ)

)w j ,
n∏

j=1

(
FU
γ j
(τ)

)w j





(6)

Theorem 1. Let h̃ j( j = 1, 2, . . . , n) be the collection of GDIVNEs. The result aggregated from GDIVNWA
operator is still a GDIVNE.

Proof. The Equation (6) is proved by mathematical inductive reasoning method. �

When n = 1, Equation (6) holds because it simplifies to the trivial outcome, which is obviously
GDIVNE as,

GDIVNWA
(̃
h1

)
=


[
1−

(
1− TL

γ1
(τ)

)w1 , 1−
(
1− TU

γ1
(τ)

)w1
]
,[(

IL
γ1
(τ)

)w1 ,
(
IU
γ1
(τ)

)w1
]
,
[(

FL
γ1
(τ)

)w1 ,
(
FU
γ1
(τ)

)w1
]  (7)

Let us assume that (6) is true for n = z,

z∑
j=1

w j̃h j = ∪

γ1∈̃h1,γ2∈̃h2,...,γz∈̃hz




1− z∏
j=1

(
1− TL

γ j
(τ)

)w j , 1−
z∏

j=1

(
1− TU

γ j
(τ)

)w j

, z∏
j=1

(
IL
γ j
(τ)

)w j ,
z∏

j=1

(
IU
γ j
(τ)

)w j

,  z∏
j=1

(
FL
γ j
(τ)

)w j ,
z∏

j=1

(
FU
γ j
(τ)

)w j



 (8)
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When n = z + 1

z+1∑
j=1

w j̃h j =
z∑

j=1
w j̃h j ⊕wz+1h̃z+1

= ∪

γ1∈̃h1,γ2∈̃h2,...,γz∈̃hz




1− z∏
j=1

(
1− TL

γ j
(τ)

)w j , 1−
z∏

j=1

(
1− TU

γ j
(τ)

)w j

, z∏
j=1

(
IL
γ j
(τ)

)w j ,
z∏

j=1

(
IU
γ j
(τ)

)w j

,  z∏
j=1

(
FL
γ j
(τ)

)w j ,
z∏

j=1

(
FU
γ j
(τ)

)w j





⊕


[
1−

(
1− TL

γk+1
(τ)

)wz+1 , 1−
(
1− TU

γz+1
(τ)

)wz+1
]
,[(

IL
γz+1

(τ)
)wz+1 ,

(
IU
γz+1

(τ)
)wz+1

]
,
[(

FL
γz+1

(τ)
)wz+1 ,

(
FU
γz+1

(τ)
)wz+1

] 
= ∪

γ1∈̃h1,γ2∈̃h2,...,γz+1∈̃hz+1




1− z+1∏
j=1

(
1− TL

γ j
(τ)

)w j , 1−
z+1∏
j=1

(
1− TU

γ j
(τ)

)w j

,z+1∏
j=1

(
IL
γ j
(τ)

)w j ,
z+1∏
j=1

(
IU
γ j
(τ)

)w j

, z+1∏
j=1

(
FL
γ j
(τ)

)w j ,
z+1∏
j=1

(
FU
γ j
(τ)

)w j





(9)

It follows that if (6) holds for n = z, then it holds for n = z + 1. Because it is also true for n = 1,
according to the method of mathematical inductive reasoning, Equation (6) holds for natural numbers
N and Theorem 1 is proven.

Definition 7. Let h̃ j( j = 1, 2, . . . , n) be a collection of GDIVNEs. Generalized dynamic interval-valued
neutrosophic weighted geometric (GDIVNWG) operator is defined as

GDIVNWG
(̃
h1, h̃2, . . . , h̃n

)
=

n∏
j=1

h̃
w j

j

= ∪

γ1∈̃h1,γ2∈̃h2,...,γn∈̃hn




 n∏
j=1

(
TL
γ j
(τ)

)w j
,

n∏
j=1

(
TU
γ j
(τ)

)w j

, 1− n∏
j=1

(
1− IL

γ j
(τ)

)w j
, 1−

n∏
j=1

(
1− IU

γ j
(τ)

)w j

,1− n∏
j=1

(
1− FL

γ j
(τ)

)w j
, 1−

n∏
j=1

(
1− FU

γ j
(τ)

)w j





(10)

Theorem 2. Let h̃ j( j = 1, 2, . . . , n) be the collection of GDIVNEs. The result aggregated from GDIVNWG
operator is still a GDIVNE.

Proof. The Equation (10) is proved by mathematical inductive reasoning method. �

When n = 1, Equation (10) is true because it simplifies to the trivial outcome, which is
obviously GDIVNE,

GDIVNWG
(̃
h1

)
=


[(

TL
γ1
(τ)

)w1 ,
(
TU
γ1
(τ)

)w1
]
,
[
1−

(
1− IL

γ1
(τ)

)w1 , 1−
(
1− IU

γ1
(τ)

)w1
]
,[

1−
(
1− FL

γ1
(τ)

)w1 , 1−
(
1− FU

γ1
(τ)

)w1
]  (11)

Let us assume that (10) is true for n = z.

z∏
j=1

h̃
w j

j = ∪

γ1∈̃h1,γ2∈̃h2,...,γz∈̃hz




 z∏
j=1

(
TL
γ j
(τ)

)w j
,

z∏
j=1

(
TU
γ j
(τ)

)w j

, 1− z∏
j=1

(
1− IL

γ j
(τ)

)w j
, 1−

z∏
j=1

(
1− IU

γ j
(τ)

)w j

,1− z∏
j=1

(
1− FL

γ j
(τ)

)w j
, 1−

z∏
j=1

(
1− FU

γ j
(τ)

)w j



 (12)
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When n = z + 1

z+1∏
j=1

h̃
w j

j =
z∏

j=1
h̃

w j

j ⊗ h̃wz+1
z+1

= ∪

γ1∈̃h1,γ2∈̃h2,...,γz∈̃hz




 k∏
j=1

(
TL
γ j
(τ)

)w j
,

k∏
j=1

(
TU
γ j
(τ)

)w j

, 1− k∏
j=1

(
1− IL

γ j
(τ)

)w j
, 1−

k∏
j=1

(
1− IU

γ j
(τ)

)w j

,1− k∏
j=1

(
1− FL

γ j
(τ)

)w j
, 1−

k∏
j=1

(
1− FU

γ j
(τ)

)w j





⊗


[(

TL
γ j
(τ)

)wz+1
,
(
TU
γz+1

(τ)
)wz+1

]
,
[
1−

(
1− IL

γz+1
(τ)

)wz+1
, 1−

(
1− IU

γz+1
(τ)

)wz+1
]
,[

1−
(
1− FL

γz+1
(τ)

)wz+1
, 1−

(
1− FU

γz+1
(τ)

)wz+1
] 

= ∪

γ1∈̃h1,γ2∈̃h2,...,γz+1∈̃hz+1




z+1∏
j=1

(
TL
γ j
(τ)

)w j
,
z+1∏
j=1

(
TU
γ j
(τ)

)w j

, 1− z+1∏
j=1

(
1− IL

γ j
(τ)

)w j
, 1−

z+1∏
j=1

(
1− IU

γ j
(τ)

)w j

,1− z+1∏
j=1

(
1− FL

γ j
(τ)

)w j
, 1−

z+1∏
j=1

(
1− FU

γ j
(τ)

)w j





(13)

It follows that if (10) holds for n = z, then it holds for n = z + 1. Because it is also true for n = 1,
according to the method of mathematical inductive reasoning, Equation (10) holds for all natural
numbers N and Theorem 2 is proven.

Herein, we define the generalized dynamic interval-valued neutrosophic hybrid weighted
averaging (GDIVNHWA) operator to combine the effects of attribute weight vector and the positional
weight vector, which are mentioned in Definitions 6 and 7.

Definition 8. Let λ > 0 and h̃ j( j = 1, 2, . . . , n) be a collection of GDIVNEs. Generalized dynamic
interval-valued neutrosophic hybrid weighted averaging (GDIVNHWA) operator is defined as,

DIVHNWG
(̃
h1, h̃2, . . . , h̃n

)
=

 n∑
j=1

w j̃hλj


1
λ

= ∪

γ1∈̃h1,γ2∈̃h2,...,γn∈̃hn






1−

n∏
j=1

(
1−

(
TL
γ j
(τ)

)λ)w j


1
λ

,

1−
n∏

j=1

(
1−

(
TU
γ j
(τ)

)λ)w j


1
λ

,1−
1−

n∏
j=1

(
1−

(
1− IL

γ j
(τ)

)λ)w j


1
λ

, 1−

1−
n∏

j=1

(
1−

(
1− IU

γ j
(τ)

)λ)w j


1
λ

,1−
1−

n∏
j=1

(
1−

(
1− FL

γ j
(τ)

)λ)w j


1
λ

, 1−

1−
n∏

j=1

(
1−

(
1− FU

γ j
(τ)

)λ)w j


1
λ







(14)

Theorem 3. Let h̃ j( j = 1, 2, . . . , n) be the collection of GDIVNEs. The result aggregated from GDIVNHWA
operator is still a GDIVNE.

Proof. The Equation (14) can be proved by mathematical inductive reasoning method. �

We first prove that (15) is a collection of GDIVNEs,

n∑
j=1

w j̃hλj = ∪

γ1∈̃h1,γ2∈̃h2,...,γn∈̃hn





1− n∏
j=1

(
1−

(
TL
γ j
(τ)

)λ)w j
, 1−

n∏
j=1

(
1−

(
TU
γ j
(τ)

)λ)w j
,1− n∏

j=1

(
1−

(
1− IL

γ j
(τ)

)λ)w j
, 1−

n∏
j=1

(
1−

(
1− IU

γ j
(τ)

)λ)w j
,1− n∏

j=1

(
1−

(
1− FL

γ j
(τ)

)λ)w j
, 1−

n∏
j=1

(
1−

(
1− FU

γ j
(τ)

)λ)w j





(15)
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When n = 1, Equation (15) is true because it simplifies to the trivial outcome, which is
obviously GDIVNE,

w1h̃λ1 =



[
1−

(
1−

(
TL
γ1
(τ)

)λ)w1
, 1−

(
1−

(
TU
γ1
(τ)

)λ)w1
]
,[

1−
(
1−

(
1− IL

γ1
(τ)

)λ)w1
, 1−

(
1−

(
1− IU

γ1
(τ)

)λ)w1
]
,[

1−
(
1−

(
1− FL

γ1
(τ)

)λ)w1
, 1−

(
1−

(
1− FU

γ1
(τ)

)λ)w1
]

 (16)

Let us assume that (15) is true for n = z,

z∑
j=1

w j̃hλj = ∪

γ1∈̃h1,γ2∈̃h2,...,γz∈̃hz





1− z∏
j=1

(
1−

(
TL
γ j
(τ)

)λ)w j
, 1−

z∏
j=1

(
1−

(
TU
γ j
(τ)

)λ)w j
,1− z∏

j=1

(
1−

(
1− IL

γ j
(τ)

)λ)w j
, 1−

z∏
j=1

(
1−

(
1− IU

γ j
(τ)

)λ)w j
,1− z∏

j=1

(
1−

(
1− FL

γ j
(τ)

)λ)w j
, 1−

z∏
j=1

(
1−

(
1− FU

γ j
(τ)

)λ)w j





(17)

When n = z + 1,

z+1∑
j=1

w j̃hλj =
z∑

j=1
w j̃hλj ⊕wz+1h̃λz+1

= ∪

γ1∈̃h1,γ2∈̃h2,...,γz∈̃hz





1− z∏
j=1

(
1−

(
TL
γ j
(τ)

)λ)w j
, 1−

z∏
j=1

(
1−

(
TU
γ j
(τ)

)λ)w j
,1− z∏

j=1

(
1−

(
1− IL

γ j
(τ)

)λ)w j
, 1−

z∏
j=1

(
1−

(
1− IU

γ j
(τ)

)λ)w j
,1− z∏

j=1

(
1−

(
1− FL

γ j
(τ)

)λ)w j
, 1−

z∏
j=1

(
1−

(
1− FU

γ j
(τ)

)λ)w j





⊕





[
1−

(
1−

(
TL
γz+1

(τ)
)λ)wz+1

, 1−
(
1−

(
TU
γz+1

(τ)
)λ)wz+1

]
,[

1−
(
1−

(
1− IL

γz+1
(τ)

)λ)wz+1
, 1−

(
1−

(
1− IU

γz+1
(τ)

)λ)wz+1
]
,[

1−
(
1−

(
1− FL

γz+1
(τ)

)λ)wz+1
, 1−

(
1−

(
1− FU

γz+1
(τ)

)λ)wz+1
]





= ∪

γ1∈̃h1,γ2∈̃h2,...,γk+1∈̃hk+!





1− k+1∏
j=1

(
1−

(
TL
γ j
(τ)

)λ)w j
, 1−

k+!∏
j=1

(
1−

(
TU
γ j
(τ)

)λ)w j
,1− k+1∏

j=1

(
1−

(
1− IL

γ j
(τ)

)λ)w j
, 1−

k+1∏
j=1

(
1−

(
1− IU

γ j
(τ)

)λ)w j
,1− k+1∏

j=1

(
1−

(
1− FL

γ j
(τ)

)λ)w j
, 1−

k+1∏
j=1

(
1−

(
1− FU

γ j
(τ)

)λ)w j






(18)

It follows that if (15) holds for n = z, then it holds for n = z + 1. Because it is also true for n = 1,
according to the method of mathematical inductive reasoning, Equation (15) holds for natural numbers
N. According to Equation (15) and Definition 4, we have,
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DIVHNWG
(̃
h1, h̃2, . . . , h̃n

)
=

 n∑
j=1

w j̃hλj


1
λ

= ∪

γ1∈̃h1,γ2∈̃h2,...,γn∈̃hn






1−

n∏
j=1

(
1−

(
TL
γ j
(τ)

)λ)w j


1
λ

,

1−
n∏

j=1

(
1−

(
TU
γ j
(τ)

)λ)w j


1
λ
,1−

1−
n∏

j=1

(
1−

(
1− IL

γ j
(τ)

)λ)w j


1
λ

, 1−

1−
n∏

j=1

(
1−

(
1− IU

γ j
(τ)

)λ)w j


1
λ
,1−

1−
n∏

j=1

(
1−

(
1− FL

γ j
(τ)

)λ)w j


1
λ

, 1−

1−
n∏

j=1

(
1−

(
1− FU

γ j
(τ)

)λ)w j


1
λ





Thus, Theorem 3 is proven.

4. Dynamic TOPSIS Method

Based on the theory of GDVINS, the dynamic decision-making model is proposed to deal with
the change of criteria, alternatives, and decision-makers during time.

For each period t = {t1, t2, . . . , ts}, assume Ã(tr) =
{
A1, A2, . . . , Avr

}
and C̃(tr) =

{
C1, C2, . . . , Cnr

}
and D̃(tr) =

{
D1, D2, . . . , Dhr

}
being the sets of alternatives, criteria, and decision-makers at period rth,

r = {1, 2, . . . , s}. For a decision-maker Dq; q = 1, . . . , hr, the evaluation of an alternative Am; m = 1, . . . , vr,
on a criteria Cp; p = 1, . . . , nr, in time sequence τ =

{
τ1, τ2, . . . , τkr

}
is represented by the Neutrosophic

decision matrix<q(tr) =
(
ξ

q
mp(τ)

)
vr×nr

; l = 1, 2, . . . , kr. where

ξ
q
mp(τ) =

〈
xq

dmp
(τ),

(
Tq

(
dmp, τ

)
, Iq

(
dmp, τ

)
, Fq

(
dmp, τ

))〉
;

taken by GDIVNSs evaluated by decision maker Dq.
Step 1. Calculate aggregate ratings at period rth.
Let xmpq(τl) =

{[
TL

mpq

(
xτl

)
, TU

mpq

(
xτl

)]
,
[
IL
mpq

(
xτl

)
, IU

mpq

(
xτl

)]
,
[
FL

mpq

(
xτl

)
, FU

mpq

(
xτl

)]}
be the

appropriateness rating of alternative Am for criterion Cp by decision-maker Dq in time sequence
τl, where: m = 1, . . . , vr; p = 1, . . . , nr; q = 1, . . . , hr; l = 1, . . . , kr. The averaged appropriateness rating

xmp =
{[

TL
mp(x), TU

mp(x)
]
,
[
IL
mp(x), IU

mp(x)
]
,
[
FL

mp(x), FU
mp(x)

]}
can be evaluated as:

xmp =
1

hr × kr
×

〈
1−

1−

1−
hr∑

q=1
TL

pmq

(
xτl

)
1
hr


1
kr

, 1−

1−

1−
h∑

q=1
TU

pmq

(
xτl

)
1
hr


1
kr
,

 h∑
q=1

IL
pmq

(
xτl

)
1

hr×kr

,

 h∑
q=1

IU
pmq

(
xτl

)
1

hr×kr
,

 h∑
q=1

FL
pmq

(
xτl

)
1

hr×kr

,

 h∑
q=1

FU
pmq

(
xτl

)
1

hr×kr


〉
(19)

Step 2. Calculate importance weight aggregation at period rth.
Let ypq(τl) =

{[
TL

pq

(
yτl

)
, TU

pq

(
yτl

)]
,
[
IL
pq

(
yτl

)
, IU

pq

(
yτl

)]
,
[
FL

pq

(
yτl

)
, FU

pq

(
yτl

)]}
be the weight of Dq to

criterion Cp in time sequence τl, where: p = 1, . . . , nr; q = 1, . . . , hr; l = 1, . . . , k. The average weight

wp =
{[

TL
p (y), TU

p (y)
]
,
[
IL
p (y), IU

p (y)
]
,
[
FL

p(y), FU
p (y)

]}
can be evaluated as:
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wp =
1

hr × kr
×

〈
1−

1−

1−
hr∑

q=1
TL

pq

(
yτl

)
1
hr


1
kr

, 1−

1−

1−
h∑

q=1
TU

pq

(
yτl

)
1
hr


1
kr
,

 hr∑
q=1

IL
pq

(
yτl

)
1

hr×kr

,

 hr∑
q=1

IU
pq

(
yτl

)
1

hr×kr
,

 hr∑
q=1

FL
pq

(
yτl

)
1

hr×kr

,

 hr∑
q=1

FU
pq

(
yτl

)
1

hr×kr


〉
, (20)

Step 3. Evaluation for aggregate ratings of alternatives with history data.
Using Equation (21), evaluate aggregate ratings and importance weight aggregation.

Ã(t∗r) =
{
A1, A2, . . . , Avr

}
∪ Ã(tr−1)

x∗mp =



xr
mp i f


Am ∈ Ã(tr)\Ã(tr−1)&Cp ∈ C̃(tr)\C̃(tr−1)

or Am ∈ Ã(tr−1)\Ã(tr)&Cp ∈ C̃(tr)\C̃(tr−1)

or Am ∈ Ã(tr)\Ã(tr−1)&Cp ∈ C̃(tr−1)\C̃(tr)


xr

mp ⊕ xr−1
mp i f Am ∈ Ã(tr)∩ Ã(tr−1)&Cp ∈ C̃(tr)∩ C̃(tr−1)

xr−1
mp i f Am ∈ Ã(tr−1)\Ã(tr)&Cp ∈ C̃(tr−1)\C̃(tr)

(21)

Step 4. Evaluation for importance weight aggregation of criteria with history data.
Using Equation (22), evaluate aggregate ratings and importance weight aggregation.

C̃(t∗r) =
{
C1, C2, . . . , Cnr

}
∪ C̃(tr−1)

w∗p =


wr

p i f Cp ∈ C̃(tr)\C̃(tr−1)

wr
p ⊕wr−1

p i f Cp ∈ C̃(tr)∩ C̃(tr−1)

wr−1
p i f Cp ∈ C̃(tr−1)\C̃(tr)

(22)

Step 5. Calculate the average weighted ratings at period rth.
The average weighted ratings of alternatives at period tr, can be calculated by:

Θm =
1
n∗r

n∗r∑
p=1

x∗mp ∗w∗p; m = 1, . . . , v∗r; p = 1, . . . , n∗r; (23)

Step 6. Determination of A+
r , A−r and d+r , d−r at period rth.

Interval-valued neutrosophic positive ideal solution (PIS, A+
r ) and interval-valued neutrosophic

negative ideal solution (NIS, A−r ) are:

A+
r =

{
x,

{
([1, 1], [0, 0], [0, 0])1, ([1, 1], [0, 0], [0, 0])2, . . . , ([1, 1], [0, 0], [0, 0])n∗r

}}
(24)

A−r =
{
x,

{
([0, 0], [1, 1], [1, 1])1, ([0, 0], [1, 1], [1, 1])2, . . . , ([0, 0], [1, 1], [1, 1])n∗r

}}
(25)

The distances of each alternative Am, m = 1, 2, . . . , n∗ from A+
r and A−r at period tr, are calculated as:

d+m =

√(
Θm −A+

r

)2
(26)
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d−m =

√
(Θm −A−r )

2 (27)

where d+m and d−m respectively represent the shortest and farthest distances of Am.
Step 7. Determination the closeness coefficient.
The closeness coefficient at period tr, is calculated in Equation (28), where an alternative that

is close to interval-valued neutrosophic PIS and far from interval-valued neutrosophic NIS, has
high value:

BCm =
d−m

d+m + d−m
(28)

Step 8. Rank the alternatives.
The alternatives are ranked by their closeness coefficient values. See Figure 1 for illustration.
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5. Applications

5.1. ASK Model for Ranking Students

Human resources recruitment plays a pivotal role in any enterprise as it exerts tremendous impact
on its sustainable development. Thus, the selection of competent and job-relevant staff will lay the
solid foundation for the successful performance of an enterprise. Notably, every year most of the
businesses invest a large sum of money for job vacancy advertisements (on newspapers, websites,
and in job fairs) and recruitment activities including application screening and interview. However,
to recruit new graduated student the organizations are likely to encounter high potential risks as
there are definitely inevitable employee turnovers or the selected candidates fall short of employers’
expectation [22]. Mis-assessment of candidate’s competence might be rooted from assessors’ criteria
and model for new graduated student evaluation.

The above problems underline the need for making the right assessment of potential employees.
Currently, ASK model (attitude, skill and knowledge) has been widely used by many organizations
because of its comprehensive assessment. This model was initially proposed by Bloom [11] with
three factors including knowledge which is acquired through education, comprehension, analysis,
and application skills which are the ability to process the knowledge to perform activities or
tasks, and attitude which is concerned with feeling, emotions, or motivation toward employment.
These elements are given divergent weights in the assessment model according to positions and
requirements of the job. ASK is applicable to evaluate tertiary students’ performance to give more
information that support employers besides a set of university exit benchmark. It also facilitates
students to make proper self-adjustments and pursue appropriate professional orientation for their
future career [23,24]. Ranking students based on attributes of ASK model requires a dynamic
multi-criteria decision-making model that is able to combine the estimations of different lecturers in
different periods. The proposed DTOPSIS completely fit to this complex task, and the application
model is depicted bellow.

5.2. Application Model

As mentioned above, the proposed method is applied to rank students of Thuongmai University,
Hanoi, Vietnam. In this research, the datasets were surveyed through three consecutive semesters
under three criteria (attitudes-skills-knowledge). Each student will be surveyed at the beginning
of semester and by the end of semester. With the model assessing student competence, it will be
conducted over semesters and over school years. This is the way of setting the time period in the
decision-making model of this research.

Figure 2 shows the ASK model for ranking students where three lectures i.e., D1, D2, D3 are chosen.
According to the language labels shown in Tables 1 and 2, rating of five students and criteria’ weights
are done by the lectures based on fourteenth criteria in three groups: attitude, skill, and knowledge.
The attitude group includes five criteria [25], the skill group includes six criteria [26], and the knowledge
group includes three criteria [23].

The criteria used for ranking Thuongmai university’s students contain 14 criteria divided into
three groups (attitudes-skills-knowledge) in the ASK model. In the early stage of each semester,
the knowledge criteria will not cause many impacts on student competency assessment so that we
only pay attention to 11 criteria in the two remaining groups: attitudes and skills. In the following
semesters, the knowledge criterion shall be supplemented that why all 14 criteria in three group shall
be conducted.

(1) Period t1 (the first semester): the decision-maker provides assessments of three students
A1, A2, A3 according to 11 criteria in two groups: attitude, skill. Tables 3 and 4 show the steps of the
model at time t1 and Table 5 shows the ranking order as A1 � A2 � A3. Thus, the best student is A1.
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Table 1. Appropriateness ratings.

Language Labels Values

Very Poor ([0.1, 0.26], [0.4, 0.5], [0.63, 0.76])
Poor ([0.26, 0.38], [0.47, 0.6], [0.51, 0.6])

Medium ([0.38, 0.5], [0.4, 0.61], [0.44, 0.55])
Good ([0.5, 0.65], [0.36, 0.5], [0.31, 0.48])

Very Good ([0.65, 0.8], [0.1, 0.2], [0.12, 0.2])

Table 2. The importance of criteria.

Language Labels Values

Unimportant ([0.1, 0.19], [0.32, 0.47], [0.64, 0.8])
Slightly Important ([0.2, 0.38], [0.46, 0.62], [0.36, 0.55])

Important ([0.45, 0.63], [0.41, 0.53], [0.2, 0.42])
Very Important ([0.66, 0.8], [0.3, 0.39], [0.22, 0.32])

Absolutely Important ([0.8, 0.94], [0.18, 0.29], [0.1, 0.2])

Table 3. Aggregated ratings at period t1.

Criteria
Students

A1 A2 A3

C1
([0.463, 0.606], [0.018, 0.054],

[0.014, 0.044])
([0.38, 0.5], [0.022, 0.082],

[0.029, 0.059])
([0.43, 0.577], [0.021, 0.053],

[0.017, 0.048])

C2
([0.488, 0.632], [0.005, 0.025],

[0.008, 0.021])
([0.419,0.578], [0.011,0.037],

[0.011,0.026])
([0.419,0.578], [0.011,0.037],

[0.011,0.026])

C3
([0.463, 0.606], [0.018, 0.054],

[0.014, 0.044])
([0.463, 0.606], [0.018, 0.054],

[0.014, 0.044])
([0.423, 0.556], [0.02, 0.066],

[0.02, 0.051])

C4
([0.423, 0.556], [0.02, 0.066],

[0.02, 0.051])
([0.463, 0.606], [0.018, 0.054],

[0.014, 0.044])
([0.388, 0.523], [0.023, 0.065],

[0.024, 0.056])

C5
([0.523, 0.673], [0.005, 0.021],

[0.005, 0.018])
([0.423, 0.556], [0.02, 0.066],

[0.02, 0.051])
([0.43, 0.577], [0.021, 0.053],

[0.017, 0.048])

C6
([0.43, 0.577], [0.021, 0.053],

[0.017, 0.048])
([0.38, 0.5], [0.022, 0.082],

[0.029, 0.059])
([0.342, 0.463], [0.026, 0.081],

[0.034, 0.065])

C7
([0.38, 0.5], [0.022, 0.082],

[0.029, 0.059])
([0.388, 0.523], [0.023, 0.065],

[0.024, 0.056])
([0.342, 0.463], [0.026, 0.081],

[0.034, 0.065])

C8
([0.26, 0.38], [0.036, 0.078],

[0.046, 0.078])
([0.38, 0.5], [0.022, 0.082],

[0.029, 0.059])
([0.38, 0.5], [0.022, 0.082],

[0.029, 0.059])

C9
([0.463, 0.606], [0.018, 0.054],

[0.014, 0.044])
([0.523, 0.673], [0.005, 0.021],

[0.005, 0.018])
([0.463, 0.606], [0.018, 0.054],

[0.014, 0.044])

C10
([0.5, 0.65], [0.016, 0.044],

[0.01, 0.038])
([0.38, 0.5], [0.022, 0.082],

[0.029, 0.059])
([0.43, 0.577], [0.021, 0.053],

[0.017, 0.048])

C11
([0.463, 0.606], [0.018, 0.054],

[0.014, 0.044])
([0.302, 0.423], [0.03, 0.079],

[0.04, 0.071])
([0.38, 0.5], [0.022, 0.082],

[0.029, 0.059])

Table 4. Aggregated weights at period t1.

Criteria Importance Aggregated Weights

C1 ([0.963, 0.996], [0.022, 0.06], [0.004, 0.027])
C2 ([0.908, 0.968], [0.041, 0.094], [0.017, 0.056])
C3 ([0.758, 0.89], [0.077, 0.174], [0.014, 0.097])
C4 ([0.648, 0.816], [0.087, 0.204], [0.026, 0.127])
C5 ([0.604, 0.794], [0.06, 0.154], [0.046, 0.185])
C6 ([0.963, 0.992], [0.022, 0.06], [0.004, 0.027])
C7 ([0.834, 0.925], [0.069, 0.149], [0.008, 0.074])
C8 ([0.758, 0.89], [0.077, 0.174], [0.014, 0.097])
C9 ([0.758, 0.89], [0.077, 0.174], [0.014, 0.097])
C10 ([0.936, 0.975], [0.037, 0.081], [0.01, 0.043])
C11 ([0.897, 0.959], [0.05, 0.11], [0.009, 0.056])
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Table 5. Weighted ratings at period t1.

Students Weighted Ratings

A1 ([0.368, 0.409], [0.069, 0.168], [0.03, 0.114])
A2 ([0.34, 0.382], [0.071, 0.181], [0.035, 0.12])
A3 ([0.338, 0.377], [0.072, 0.178], [0.035, 0.121])

(2) Period t2 (the second semester): At this stage, a new student A4 is added with new criteria in
knowledge group. The steps are shown in Tables 6–12. Finally, the ranking is obtained: A1 � A2 �

A3 � A4. Thus, the best student is A1.

Table 6. The distance of each student from A+
t1

and A−t1
at period t1.

Students d+
t1

d−t1

A1 0.364193 0.773329
A2 0.380989 0.763987
A3 0.382736 0.763579

Table 7. Closeness coefficient at period t1.

Students Closeness Coefficients Ranking Order

A1 0.679837 1
A2 0.667251 2
A3 0.666116 3

Table 8. Aggregated ratings at period t2.

Criteria
Students

A1 A2 A3 A4

C1
([0.699, 0.83], [0.001, 0.005],

[0, 0.002])
([0.566, 0.75], [0.001, 0.009],

[0.001, 0.003])
([0.637, 0.759], [0.001, 0.007],

[0.001, 0.003])
([0.5, 0.6], [0.022, 0.046],

[0.009, 0.022])

C2
([0.707, 0.852], [0.001, 0.007],

[0, 0.002])
([0.686, 0.834], [0.001, 0.008],

[0, 0.003])
([0.72, 0.862], [0.001, 0.006],

[0, 0.002])
([0.498, 0.6], [0.023, 0.049],

[0.009, 0.023])

C3
([0.709, 0.848], [0.003, 0.016],

[0, 0.005])
([0.643, 0.783], [0.003, 0.018],

[0, 0.006])
([0.603, 0.767], [0.003, 0.019],

[0.001, 0.006])
([0.56, 0.669], [0.008, 0.029],

[0.004, 0.016])

C4
([0.598, 0.766], [0.004, 0.022],

[0.001, 0.007])
([0.639, 0.782], [0.004, 0.021],

[0.001, 0.007])
([0.634, 0.793], [0.004, 0.02],

[0.001, 0.008])
([0.506, 0.643], [0.009, 0.034],

[0.006, 0.021])

C5
([0.721, 0.866], [0.002, 0.012],

[0.001, 0.015])
([0.651, 0.823], [0.002, 0.013],

[0.002, 0.016])
([0.616, 0.765], [0.002, 0.014],

[0.002, 0.017])
([0.461, 0.604], [0.013, 0.042],

[0.009, 0.035])

C6
([0.685, 0.81], [0.001, 0.005],

[0, 0.002])
([0.623, 0.803], [0.001, 0.007],

[0, 0.002])
([0.546, 0.72], [0.001, 0.009],

[0.001, 0.004])
([0.3, 0.5], [0.022, 0.08],

[0.022, 0.044])

C7
([0.62, 0.802], [0.002, 0.013],

[0, 0.004])
([0.618, 0.769], [0.002, 0.013],

[0.001, 0.005])
([0.543, 0.72], [0.002, 0.015],

[0.001, 0.006])
([0.438, 0.569], [0.024, 0.061],

[0.012, 0.03])

C8
([0.491, 0.648], [0.005, 0.025],

[0.002, 0.013])
([0.686, 0.862], [0.004, 0.02],

[0, 0.006])
([0.499, 0.709], [0.005, 0.025],

[0.001, 0.009])
([0.43, 0.567], [0.026, 0.071],

[0.012, 0.033])

C9
([0.702, 0.847], [0.004, 0.021],

[0, 0.007])
([0.761, 0.891], [0.004, 0.019],

[0, 0.006])
([0.682, 0.828], [0.004, 0.022],

[0, 0.007])
([0.488, 0.598], [0.026, 0.062],

[0.009, 0.027])

C10
([0.687, 0.8], [0.002, 0.01],

[0, 0.003])
([0.663, 0.836], [0.001, 0.008],

[0, 0.003])
([0.718, 0.842], [0.001, 0.008],

[0, 0.003])
([0.534, 0.636], [0.012, 0.032],

[0.006, 0.018])

C11
([0.608, 0.751], [0.001, 0.009],

[0.001, 0.003])
([0.557, 0.722], [0.001, 0.01],

[0.001, 0.006])
([0.565, 0.75], [0.001, 0.011],

[0.001, 0.004])
([0.499, 0.6], [0.023, 0.048],

[0.009, 0.023])

C12
([0.36, 0.533], [0.043, 0.12],

[0.021, 0.06])
([0.4, 0.516], [0.049, 0.11],

[0.023, 0.065])
([0.463, 0.606], [0.033, 0.089],

[0.012, 0.047])
([0.258, 0.439], [0.049, 0.133],

[0.037, 0.087])

C13
([0.229, 0.373], [0.05, 0.119],

[0.055, 0.108])
([0.229, 0.373], [0.05, 0.119],

[0.055, 0.108])
([0.43, 0.568], [0.038, 0.095],

[0.017, 0.047])
([0.43, 0.568], [0.038, 0.095],

[0.017, 0.047])

C14
([0.284, 0.408], [0.083, 0.167],

[0.046, 0.123])
([0.284, 0.408], [0.083, 0.167],

[0.046, 0.123])
([0.269, 0.486], [0.071, 0.179],

[0.03, 0.098])
([0.431, 0.592], [0.061, 0.137],

[0.017, 0.076])
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Table 9. Aggregated weights at period t2.

Criteria Importance Aggregated Weights

C1 ([0.999, 1], [0, 0.003], [0, 0.001])
C2 ([0.997, 1], [0.001, 0.006], [0, 0.002])
C3 ([0.985, 0.998], [0.003, 0.014], [0, 0.004])
C4 ([0.978, 0.997], [0.003, 0.016], [0, 0.005])
C5 ([0.959, 0.993], [0.002, 0.011], [0.001, 0.015])
C6 ([0.999, 1], [0, 0.003], [0, 0.001])
C7 ([0.993, 0.999], [0.002, 0.009], [0, 0.002])
C8 ([0.975, 0.997], [0.004, 0.019], [0, 0.005])
C9 ([0.975, 0.997], [0.004, 0.019], [0, 0.005])
C10 ([0.996, 1], [0.001, 0.006], [0, 0.002])
C11 ([0.998, 1], [0.001, 0.005], [0, 0.001])
C12 ([0.963, 0.996], [0.022, 0.06], [0.004, 0.027])
C13 ([0.977, 0.998], [0.016, 0.044], [0.005, 0.02])
C14 ([0.897, 0.973], [0.05, 0.11], [0.009, 0.056])

Table 10. Weighted ratings at period t2.

Students Weighted Ratings

A1 ([0.605, 0.76], [0.004, 0.02], [0.001, 0.009])
A2 ([0.594, 0.761], [0.004, 0.02], [0.001, 0.009])
A3 ([0.581, 0.744], [0.004, 0.021], [0.001, 0.009])
A4 ([0.458, 0.588], [0.022, 0.058], [0.011, 0.031])

Table 11. The distance of each student from A+
t2

and A−t2
at period t2.

Students d+
t2

d−t2

A1 0.188874 0.901553
A2 0.192392 0.900405
A3 0.200641 0.896588
A4 0.279475 0.848118

Table 12. Closeness coefficient at period t2.

Students Closeness Coefficients Ranking Order

A1 0.826789 1
A2 0.823945 2
A3 0.817138 3
A4 0.752149 4

(3) Period t3 (the third semester): At this stage, a new student A5 is considered and an existing
student A2 is discarded. The criteria remain the same as in the previous period t2. Tables 13–17 show
the steps of this stage. Finally, the ranking is obtained: A5 � A4 � A2 � A1 � A3. Thus, the best student
is A5.

5.3. Comparison with the Related Methods

The proposed dynamic TOPSIS method has superior features compared to the method in [14].
In Table 18, the ranking order of five students in three periods are presented. We can observe that at
period t1, the results of the both methods are the same i.e., A1 � A2 � A3.
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Table 13. Aggregated ratings at period t3.

Criteria
Students

A1 A2 A3 A4 A5

C1
([0.794, 0.9], [0, 0],

[0, 0])
([0.51, 0.75],

[0, 0.006], [0, 0.002])
([0.764, 0.893],
[0, 0], [0, 0])

([0.711, 0.822],
[0, 0.003], [0, 0.001])

([0.441, 0.569], [0.022, 0.053],
[0.012, 0.027])

C2
([0.871, 0.951],
[0, 0], [0, 0])

([0.675, 0.818],
[0, 0.002], [0, 0.001])

([0.881, 0.96], [0, 0],
[0, 0])

([0.788, 0.891],
[0, 0.001], [0, 0])

([0.441, 0.569], [0.022, 0.053],
[0.012, 0.027])

C3
([0.829, 0.918],

[0, 0.001], [0, 0])

([0.608, 0.785],
[0.001, 0.005],

[0, 0.001])

([0.728, 0.884],
[0, 0.001], [0, 0])

([0.817, 0.91],
[0, 0.001], [0, 0])

([0.569, 0.67], [0.005, 0.016],
[0.004, 0.012])

C4
([0.711, 0.875],

[0, 0.001], [0, 0])

([0.608, 0.785],
[0.001, 0.005],

[0, 0.001])

([0.816, 0.922],
[0, 0.001], [0, 0])

([0.663, 0.795],
[0, 0.002], [0, 0.001])

([0.569, 0.67], [0.005, 0.016],
[0.004, 0.012])

C5
([0.81, 0.912],

[0, 0.001], [0, 0.001])
([0.635, 0.804],

[0, 0.003], [0, 0.001])
([0.777, 0.889],

[0, 0.001], [0, 0.001])
([0.751, 0.872],

[0, 0.001], [0, 0.001])
([0.48, 0.608], [0.011, 0.032],

[0.008, 0.021])

C6
([0.832, 0.923],
[0, 0], [0, 0])

([0.608, 0.785],
[0, 0.004], [0, 0.001])

([0.744, 0.902],
[0, 0], [0, 0])

([0.482, 0.69],
[0.001, 0.006],
[0.001, 0.003])

([0.536, 0.637], [0.011, 0.026],
[0.006, 0.016])

C7
([0.689, 0.86],

[0, 0.001], [0, 0])

([0.591, 0.759],
[0.001, 0.004],

[0, 0.002])

([0.682, 0.86],
[0, 0.001], [0, 0])

([0.586, 0.733],
[0.001, 0.004],
[0.001, 0.002])

([0.441, 0.569], [0.022, 0.053],
[0.012, 0.027])

C8
([0.751, 0.898],

[0, 0.001], [0, 0])
([0.662, 0.822],

[0, 0.003], [0, 0.001])
([0.732, 0.89],

[0, 0.001], [0, 0])
([0.699, 0.83],

[0, 0.004], [0, 0.001])
([0.268, 0.441], [0.027, 0.079],

[0.033, 0.062])

C9
([0.874, 0.95],

[0, 0.002], [0, 0])
([0.749, 0.861],

[0, 0.002], [0, 0.001])
([0.889, 0.963],

[0, 0.002], [0, 0])
([0.743, 0.853],

[0, 0.003], [0, 0.001])
([0.418, 0.578], [0.011, 0.039],

[0.011, 0.026])

C10
([0.757, 0.891],
[0, 0], [0, 0])

([0.636, 0.804],
[0, 0.003], [0, 0.001])

([0.837, 0.926],
[0, 0], [0, 0])

([0.712, 0.818],
[0, 0.002], [0, 0.001])

([0.5, 0.6], [0.022, 0.044],
[0.009, 0.022])

C11
([0.753, 0.88], [0, 0],

[0, 0])

([0.521, 0.71],
[0.001, 0.005],
[0.001, 0.003])

([0.696, 0.875],
[0, 0.001], [0, 0])

([0.651, 0.769],
[0.001, 0.004],

[0, 0.002])

([0.569, 0.67], [0.005, 0.015],
[0.004, 0.012])

C12

([0.753, 0.884],
[0.001, 0.007],

[0, 0.002])

([0.53, 0.662],
[0.002, 0.011],
[0.001, 0.007])

([0.778, 0.903],
[0.001, 0.007],

[0, 0.002])

([0.544, 0.72],
[0.002, 0.013],
[0.001, 0.005])

([0.534, 0.636], [0.012, 0.032],
[0.006, 0.018])

C13
([0.677, 0.845],

[0, 0.002], [0, 0.001])

([0.338, 0.521],
[0.001, 0.006],
[0.003, 0.009])

([0.759, 0.881],
[0, 0.002], [0, 0])

([0.699, 0.83],
[0.001, 0.004],

[0, 0.001])

([0.374, 0.536], [0.022, 0.065],
[0.016, 0.035])

C14

([0.688, 0.837],
[0.001, 0.005],

[0, 0.001])

([0.407, 0.555],
[0.002, 0.008],
[0.002, 0.008])

([0.777, 0.916],
[0.001, 0.005],

[0, 0.001])

([0.699, 0.826],
[0.001, 0.007],

[0, 0.002])

([0.44, 0.569], [0.023, 0.057],
[0.012, 0.029])

Table 14. Aggregated weights at period t3.

Criteria Importance Aggregated Weights

C1 ([0.99999, 1], [0, 0.00009], [0, 0.00001])
C2 ([0.99995, 1], [0.00001, 0.00019], [0, 0.00002])
C3 ([0.99964, 1], [0.00005, 0.00062], [0, 0.00009])
C4 ([0.99912, 0.99998], [0.00009, 0.00097], [0, 0.00018])
C5 ([0.99776, 0.99995], [0.00004, 0.00077], [0.00001, 0.00053])
C6 ([0.99999, 1], [0, 0.00006], [0, 0])
C7 ([0.99985, 1], [0.00003, 0.00039], [0, 0.00005])
C8 ([0.99907, 0.99999], [0.00009, 0.00114], [0, 0.00015])
C9 ([0.99842, 0.99996], [0.00014, 0.00154], [0, 0.00024])
C10 ([0.99991, 1], [0.00002, 0.00029], [0, 0.00004])
C11 ([0.99997, 1], [0.00001, 0.00016], [0, 0.00001])
C12 ([0.99615, 0.99988], [0.00112, 0.00657], [0.00004, 0.00152])
C13 ([0.99969, 1], [0.00016, 0.00145], [0.00001, 0.00026])
C14 ([0.99762, 0.99993], [0.00082, 0.00483], [0.00004, 0.00116])

Table 15. Weighted ratings at period t3.

Students Weighted Ratings

A1 ([0.78, 0.901], [0, 0.001], [0, 0])
A2 ([0.589, 0.759], [0.001, 0.004], [0, 0.002])
A3 ([0.785, 0.91], [0, 0.001], [0, 0])
A4 ([0.693, 0.822], [0, 0.003], [0, 0.001])
A5 ([0.476, 0.599], [0.014, 0.037], [0.009, 0.022])
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Table 16. The distance of each student from A+
t3

and A−t3
at period t3.

Students d+
t3

d−t3

A1 0.37844 0.776416
A2 0.352522 0.752181
A3 0.381797 0.777005
A4 0.358066 0.764391
A5 0.325366 0.738391

Table 17. Closeness coefficient at period t3.

Students Closeness Coefficients Ranking Order

A1 0.672305 4
A2 0.680890 3
A3 0.670525 5
A4 0.680998 2
A5 0.694135 1

Table 18. The dynamic rankings obtained at periods.

Time Period The Method in [14] The Proposed Method

t1 A1 � A2 � A3 A1 � A2 � A3
t2 A4 � A2 � A3 � A1 A1 � A2 � A3 � A4
t3 A5 � A3 � A4 � A1 A5 � A4 � A2 � A1 � A3

At period t2, the method in [14] and the proposed method show difference in ranking order of A1

and A4. In this period, A2 � A3 according to both methods, and the method in [14] ranks A4 at the top,
meanwhile, A1 is ranked at the top by the proposed method. The reason is that A4 is evaluated at the
first time and it has not appeared while A1 has historical data, particularly A1 were ranked at the top
in the previous period. In this circumstance, the proposed model better utilizes the effect of historical
data on the alternatives A1 and A4. The result of the dynamic TOPSIS model is time-dependent and
combines the effect of current and historical data.

At period t3, the result shows difference in the number of ranked alternatives and in their
preferential order. In this period, the alternative A2 is not evaluated by decision-makers and it has only
historical data. The method in [14] could not process alternative A2, meanwhile the proposed model
could. Moreover, the alternative A5 is highly ranked by both methods. However, there is a change in
the relative order of A3 and A4. The method in [14] ranks A3 � A4, but the proposed method ranks
A4 � A3.

The comparison between the methods again illustrates the effect of historical data over the output
of the proposed decision-making model. If an alternative is considered and it has good evaluation in
the previous periods, this alternative will have high potential to reach high order. From that point of
view, the proposed model presents good compliance with the perceived dynamic rules. It illustrates
the advantage and applicability of the model.

6. Conclusions

The proposed dynamic TOPSIS (DTOPSIS) model in dynamic interval-valued neutrosophic sets
presents its advantages to cope with dynamic and indeterminate information in decision-making
model. DTOPSIS model handles historical data including the change of criteria, alternatives,
and decision-makers during periods. The concepts of generalized dynamic interval-valued
neutrosophic set, GDIVNS, and their mathematical operators on GDIVNSs have been proposed.
Distance and weighted aggregation operators are used to construct a framework of DTOPSIS in DIVNS
environment. The proposed DTOPSIS fulfills the requirement of an issue that is evaluates tertiary
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students’ performance based on the attributes of ASK model. Data of Thuongmai University students
were used to illustrate the proper of DTOPSIS model which opened the potential application in larger
scale also. For the future works, we will extend generalized dynamic interval-valued neutrosophic sets
for some other real-world applications [27–35]. Furthermore, we hope to apply GDIVNS for dealing
with the unlimited time problems in decision-making model in dynamic neutrosophic environment
based on the idea in [36,37].

Funding: This research is funded by the Ministry of Education and Training and Thuongmai University under
grant number B2019-TMA-02.
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Abstract: The foremost broadly utilized strategy for the valuation of the overall performance
of a set of identical decision-making units (DMUs) that use analogous sources to yield related
outputs is data envelopment analysis (DEA). However, the witnessed values of the symmetry or
asymmetry of different types of information in real-world applications are sometimes inaccurate,
ambiguous, inadequate, and inconsistent, so overlooking these conditions may lead to erroneous
decision-making. Neutrosophic set theory can handle these occasions of data and makes an imitation
of the decision-making procedure with the aid of thinking about all perspectives of the decision.
In this paper, we introduce a model of DEA in the context of neutrosophic sets and sketch an
innovative process to solve it. Furthermore, we deal with the problem of healthcare system evaluation
with inconsistent, indeterminate, and incomplete information using the new model. The triangular
single-valued neutrosophic numbers are also employed to deal with the mentioned data, and the
proposed method is utilized in the assessment of 13 hospitals of Tehran University of Medical Sciences
of Iran. The results exhibit the usefulness of the suggested approach and point out that the model has
practical outcomes for decision-makers.

Keywords: single-valued neutrosophic set; triangular neutrosophic number; data envelopment
analysis; healthcare systems; performance evaluation

1. Introduction

As a strong analytical tool for benchmarking and efficiency evaluation, DEA (data envelopment
analysis) is a technique for evaluating the relation efficiency of decision-making units (DMUs),
developed initially by Charens et al. [1] on a printed paper named the Charnes, Cooper, and Rhodes
(CCR) model. They extended the nonparametric method introduced by Farrell [2] to gauge DMUs
with multiple inputs and outputs. The Banker, Charnes, and Cooper (BCC) model is an extension of
the previous model under the assumption of variable returns-to-scale (VRS) [3]. With this technique,
managers can obtain the relative efficiency of a set of DMUs. In time, many theoretical and empirical
studies have applied DEA to several fields of science and engineering, such as healthcare, agriculture,
banking supply chains, and financial services, among others. For more details, the reader is referred to
the studies of [4–14].

Conventional DEA models require crisp information that may not be permanently accessible in
real-world applications. Nevertheless, in numerous cases, data are unstable, uncertain, and complicated;
therefore, they cannot be accurately measured. Zadeh [15] first proposed the theory of fuzzy sets (FSs)
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against certain logic. After this work, many researchers studied this topic; details of some approaches
can be observed in [16–20]. Several researchers also proposed some models of DEA under a fuzzy
environment [21–25].

However, Zadeh’s fuzzy sets consider only the membership function and cannot deal with other
parameters of vagueness. To overcome this lack of information, Atanassov [26] introduced an extension
of FSs called intuitionistic fuzzy sets (IFSs). There are also several models of DEA with intuitionistic
fuzzy data: see [27–30].

Although the theory of IFSs can handle incomplete information for various real-world issues,
it cannot address all types of uncertainty such as inconsistent and indeterminate evidence. Therefore,
Smarandache [31,32] established the neutrosophic set (NS) as a robust overall framework that
generalizes classical and all kinds of fuzzy sets (FSs and IFSs).

NSs can accommodate indeterminate, ambiguous, and conflicting information where the
indeterminacy is clearly quantified, and define three kinds of membership function independently.

In the past years, some versions of NSs such as interval neutrosophic sets [33,34], bipolar
neutrosophic sets [35,36], single-valued neutrosophic sets [37–39], and neutrosophic linguistic sets [40]
have been presented. In addition, in the field of neutrosophic sets, logic, measure, probability, statistics,
pre-calculus and calculus, and their applications in multiple areas have been extended: see [41–44].

In real circumstances, some data in DEA may be uncertain, indeterminate, and inconsistent,
and considering truth, falsity, and indeterminacy membership functions for each input/output of
DMUs in the neutrosophic sets help decision-makers to obtain a better interpretation of information.
In addition, by using the NS in DEA, analysts can better set their acceptance, indeterminacy, and rejection
degrees regarding each datum. Moreover, with NSs, we can obtain a better depiction of reality through
seeing all features of the decision-making procedure. Therefore, the NS can embrace imprecise,
vague, incomplete, and inconsistent evidence powerfully and efficiently. Although there are several
approaches to solve various problems under neutrosophic environments, there are not many studies
that have dealt with DEA under NSs.

The utilization of neutrosophic logic in DEA can be traced to Edalatpanah [45]. Kahraman et al. [46]
proposed a hybrid algorithm based on a neutrosophic analytic hierarchy process (AHP) and DEA for
bringing a solution to the efficiency of private universities. Edalatpanah and Smarandache [47], based
on some operators and natural logarithms, proposed an input-oriented DEA model with simplified
neutrosophic numbers. Abdelfattah [48], by converting a neutrosophic DEA into an interval DEA,
developed a new DEA model under neutrosophic numbers. Although these approaches are interesting,
some restrictions exist. One of them is that these methods have high running times, mainly when
we have many inputs and outputs. Furthermore, the main flaw of [48] is the existence of several
production frontiers in the steps of efficiency measure, and this leads to the lack of comparability
between efficiencies.

Therefore, in this paper, we design an innovative simple model of DEA in which all inputs and
outputs are triangular single-valued neutrosophic numbers (TSVNNs), and establish a new efficient
strategy to solve it. Furthermore, we use the suggested technique for the performance assessment of
13 hospitals of Tehran University of Medical Sciences (TUMS) of Iran.

The paper unfolds as follows: some basic knowledge, concepts, and arithmetic operations on NSs
and TSVNNs are discussed in Section 2. In Section 3, some concepts of DEA and the CCR model are
reviewed. In Section 4, we establish the mentioned model of DEA under the neutrosophic environment
and propose a method to solve it. In Section 5, the suggested model is utilized for a case study of
TUMS. Lastly, conclusions and future directions are presented in Section 6.

2. Preliminaries

In this section, we discuss some basic definitions related to neutrosophic sets and single-valued
neutrosophic numbers, respectively.
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Smarandache put forward an indeterminacy degree of membership as an independent component
in his papers [31,32], and since the principle of excluded middle cannot be applied to new
logic, he combines non-standard analysis with three-valued logic, set theory, probability theory,
and philosophy. As a result, neutrosophic means “neutral thinking knowledge.” Given this meaning
and the use of the term neutral, along with the components of truth (membership) and falsity
(non-membership), its distinction is marked by fuzzy sets and intuitionistic fuzzy sets. Here, it is
appropriate to give a brief explanation of the non-standard analysis.

In the early 1960s, Robinson developed non-standard analysis as a form of analysis and a branch
of logic in which infinitesimals are precisely defined [49]. Formally, x is called an infinitesimal number
if and only if for any non-null positive integer n we have |x| ≤ 1

n . Let ε > 0 be an infinitesimal number;
then, the extended real number set is an extension of the set of real numbers that contains the classes of
infinite numbers and the infinitesimal numbers. If we consider non-standard finite numbers 1+ = 1+ ε
and −0 = 0− ε, where 0 and 1 are the standard parts and ε is the non-standard part, then ]−0, 1+[ is
a non-standard unit interval. It is clear that 0, 1, as well as the non-standard infinitesimal numbers
that are less than zero and infinitesimal numbers that are more than one belong to this non-standard
unit interval. Now, let us define a neutrosophic set:

Definition 1 ([31,32,41]) (neutrosophic set). A neutrosophic set in universal U is defined by three membership
functions for the truth, indeterminacy, and falsity of x in the real non-standard ]−0, 1+[, where the summation of
them belongs to [0, 3].

Definition 2 ([34]). If the three membership functions of a NS are singleton in the real standard [0, 1], then a
single-valued neutrosophic set (SVNS) ψ is denoted by:

ψ =
{(

x, τψ(x), ιψ(x), νψ(x)
)∣∣∣∣x ∈ U

}
,

which satisfies the following condition:

0 ≤ τψ(x) + ιψ(x) + νψ(x) ≤ 3.

Definition 3 ([38]). A TSVNN Aℵ =
〈(

al, am, au
)
,
(
bl, bm, bu

)
,
(
cl, cm, cu

)
〉 is a particular single-valued

neutrosophic number (SVNN) whose τAℵ (x), ιAℵ (x), and νAℵ (x) are presented as follows:

τ
Aℵ
(x) =



(x−al)
(am−al)

al
≤ x < am,

1 x = am,
(au
−x)

(au−am)
am < x ≤ au,

0 otherwise.

,

ι
Aℵ
(x) =



(bm
−x)

(bm−bl)
bl
≤ x < bm,

0 x = bm,
(x−bm)
(bu−bm)

bm < x ≤ bu,

1 otherwise.

,

ν
Aℵ
(x) =



(cm
−x)

(cm−cl)
cl
≤ x < cm,

0 c = cm,
(x−cm)
(cu−cm)

cm < x ≤ cu,

1 otherwise.

,
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Definition 4 ([38]). Let Aℵ =
〈(

al, am, au
)
,
(
bl, bm, bu

)
,
(
cl, cm, cu

)〉
and Bℵ =

〈(
dl, dm, du

)
,(

el, em, eu
)
,
(

f l, f m, f u
)〉

be two TSVNNs, where their elements are in [L1, U1]. Then, Equations (1) to (3)
are true:

(i)Aℵ ⊕ Bℵ =
〈(

min(al + dl, U1
)
, min(am + dm, U1), min(au + du, U1);(

min(bl + el, U1
)
, min(bm + em, U1), min(bu + eu, U1);(

min(cl + f l, U1
)
, min(cm + f m, U1), min(cu + f u, U1)

〉
,

(1)

(ii) −Aℵ =
〈(
−au,−am,−al

)
,
(
−bu,−bm,−bl

)
,
(
−cu,−cm,−cl

)
〉, (2)

(iii)λAℵ =
〈(
λal,λam,λau

)
,
(
λbl,λbm,λbu

)
,
(
λcl,λcm,λcu

)
〉, λ > 0. (3)

Definition 5 ([38]). Consider Aℵ =
〈(

al, am, au
)
,
(
bl, bm, bu

)
,
(
cl, cm, cu

)
〉 as a TSVNN. Then, the ranking

function of Aℵ can be defined with Equation (4):

ξ
(
Aℵ

)
=

(
al + bl + cl

)
+ 2(am + bm + cm) + (au + bu + cu)

12
(4)

Definition 6 ([20]). Suppose Pℵ and Qℵ are two TSVNNs, then:

(i) Pℵ ≤ Qℵ if and only if ξ
(
Pℵ

)
≤ ξ

(
Qℵ

)
,

(ii) Pℵ < Qℵ if and only if ξ
(
Pℵ

)
< ξ

(
Qℵ

)
.

3. Data Envelopment Analysis

Let a set of n DMUs, with each DMUj ( j = 1, 2, . . . , n) using m inputs pi j (i = 1, 2, . . . , m) produce
s outputs qrj(r = 1, 2, . . . , s). If DMUo is under consideration, then the input-oriented CCR multiplier
model for the relative efficiency is computed on the basis of Equation (5) [1]:

θo
∗ = max

∑s
r=1 vrqro∑m
i=1 uipio

(5)

s.t: ∑s
r=1 vrqrj∑m
i=1 uipi j

≤ 1, j = 1, 2, . . . , n

vr, ui ≥ 0r = 1, . . . , s, i = 1, . . . , m.

where vr and ui are the related weights. The above nonlinear programming may be converted as
Equation (6) to simplify the computation:

θo
∗ = max

s∑
r=1

vrqro (6)

s.t:
m∑

i=1
uipio = 1

s∑
r=1

vrqrj −
m∑

i=1
uipi j ≤ 0, j = 1, 2, . . . , n

vr, ui ≥ 0r = 1, . . . , s, i = 1, . . . , m.

The DMUo is efficient if θo
∗ = 1; otherwise, it is inefficient.
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4. Neutrosophic Data Envelopment Analysis

Like every other model, DEA has been the subject of evolution. One of the critical improvements
in this field is related to circumstances where the information of DMUs is characterized and measured
beneath conditions of uncertainty and indeterminacy. Indeed, one of the traditional DEA models’
assumptions is their crispness of inputs and outputs.

However, it seems questionable to assume the data and observations are crisp in situations
where uncertainty and indeterminacy are inevitable features of a real environment. In addition, most
management decisions are not made based on known calculations, and there is a lot of uncertainty,
indeterminacy, and ambiguity in decision-making problems. The DEA under a neutrosophic
environment is more advantageous than a crisp DEA because a decision-maker, in the preparation of the
problem, is not obliged to make a subtle formulation. Furthermore, because of a lack of comprehensive
knowledge and evidence, precise mathematics are not sufficient to model a complex system. Therefore,
the approach based on neutrosophic logic seems fit for such problems [31,32]. In this section, we
establish DEA under a neutrosophic environment.

Consider the input and output for the jth DMU as follows:

...
p i j =

〈
aipi j,

bipi j,
cipi j

〉
=

〈
[
a1p i j,

a2p i j,
a3p i j] , [

b1p i j,
b2p i j,

b3p i j], [
c1p i j,

c2p i j,
c3p i j]

〉
,

...
q rj =

〈
aiqrj ,

biqrj,
ciqrj

〉
=

〈
[
a1q rj,

a2q rj,
a3q rj] , [

b1q rj,
b2q rj,

b3q rj], [
c1q rj,

c2q rj,
c3q rj]

〉
,

which are TSVNNs. Then, the triangular single-valued neutrosophic CCR model called TSVNN-CCR
is defined as follows:

θℵ
∗

o = max
s∑

r=1

vr
...
q ro (7)

s.t:
m∑

i=1
ui

...
p io = 1

s∑
r=1

vr
...
q rj −

m∑
i=1

ui
...
p i j ≤ 0, j = 1, 2, . . . , n

vr, ui ≥ 0r = 1, . . . , s, i = 1, . . . , m.

Next, to solve Model (7), we propose the following algorithm:
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Algorithm 1. The solution of TSVNN-CCR Model

Step 1. Construct the problem based on Model (8).
Step 2. Using Definition 3 (ii, iii), transform the TSVNN-CCR model of Step 1 into
Model (8):

θℵ
∗

o = max
s∑

r=1

〈
[vr

a1q ro, vr
a2q ro, vr

a3q ro], [vr
b1q ro, vr

b2q ro, vr
b3q ro], [vr

c1q ro, vr
c2q ro, vr

c3q ro]
〉

(8)

s.t:
m∑

i=1

〈
[ui

a1p io, ui
a2p io, ui

a3p io] , [ui
b1p io, ui

b2p io, ui
b3p io], [ui

c1p io, ui
c2p io, ui

c3p io]
〉
= 1

s∑
r=1

〈
[vr

a1q rj, vr
a2q rj, vr

a3q rj] , [vr
b1q rj, vr

b2q rj, vr
b3q rj], [vr

c1q rj, vr
c2q rj, vr

c3q rj]
〉
⊕

m∑
i=1

〈
[−ui

a3p i j,−ui
a2p i j,−ui

a1p i j] , [−ui
b3p i j,−ui

b2p i j,−ui
b1p i j],− [ui

c3p i j,−ui
c2p i j,−ui

c1p i j]
〉
≤ 0,

vr, ui ≥ 0r = 1, . . . , s, i = 1, . . . , m.
Step 3. Transform Model (8) into the following model:

θℵ
∗

o = max
〈(

s∑
r=1

vr
a1q ro,

s∑
r=1

vr
a2q ro,

s∑
r=1

vr
a3q ro

)
,
(

s∑
r=1

vr
b1q ro,

s∑
r=1

vr
b2q ro,

s∑
r=1

vr
b3q ro

)
,
(

s∑
r=1

vr
c1q ro,

s∑
r=1

vr
c2q ro,

s∑
r=1

vr
c3q ro

)
〉 (9)

s.t:〈(
m∑

i=1
ui

a1p io,
m∑

i=1
ui

a2p io,
m∑

i=1
ui

a3p io

)
,
(

m∑
i=1

ui
b1p io,

m∑
i=1

ui
b2p io,

m∑
i=1

ui
b3p io

)
,
(

m∑
i=1

ui
c1p io,

m∑
i=1

ui
c2p io,

m∑
i=1

ui
c3p io

)
〉 = 1〈(

s∑
r=1

vr
a1q rj ⊕

m∑
i=1
−ui

a3p i j,
s∑

r=1
vr

a2q rj ⊕
m∑

i=1
−ui

a2p i j,
s∑

r=1
vr

a3q rj ⊕
m∑

i=1
−ui

a1p i j

)
,(

s∑
r=1

vr
b1q rj ⊕

m∑
i=1
−ui

b3p i j,
s∑

r=1
vr

b2q rj ⊕
m∑

i=1
−ui

b2p i j,
s∑

r=1
vr

b3q rj ⊕
m∑

i=1
−ui

b1p i j

)
,(

s∑
r=1

vr
c1q rj ⊕

m∑
i=1
−ui

c3p i j,
s∑

r=1
vr

c2q rj ⊕
m∑

i=1
−ui

c2p i j,
s∑

r=1
vr

c3q rj ⊕
m∑

i=1
−ui

c1p i j

)
〉 ≤ 0,

vr, ui ≥ 0r = 1, . . . , s, i = 1, . . . , m.
Step 4. Based on Definitions 4–5, convert TSVNN-CCR Model (9) into crisp Model (10):
θo
∗
≈ ξ

(
θℵ

∗

o

)
=

max
s∑

r=1
ξ
(〈
[vr

a1q ro, vr
a2q ro, vr

a3q ro] , [vr
b1q ro, vr

b2q ro, vr
b3q ro], [vr

c1q ro, vr
c2q ro, vr

c3q ro]
〉) (10)

s.t:
m∑

i=1
ξ
(〈
[ui

a1p io, ui
a2p io, ui

a3p io] , [ui
b1p io, ui

b2p io, ui
b3p io], [ui

c1p io, ui
c2p io, ui

c3p io]
〉)

= 1

s∑
r=1

ξ
(〈
[vr

a1q rj, vr
a2q rj, vr

a3q rj], [vr
b1q rj, vr

b2q rj, vr
b3q rj] , [vr

c1q rj, vr
c2q rj, vr

c3q rj]
〉)
⊕

m∑
i=1

ξ
(〈[
−ui

a3p ii,−ui
a2p i j,−ui

a1p i j

]
,
[
−ui

b3p i j,−ui
b2p i j,−ui

b1p i j

]
,
[
−ui

c3p i j,−ui
c2p i j,−ui

c1p i j

]
〉

)
≤ 0,

vr, ui ≥ 0r = 1, . . . , s, i = 1, . . . , m.
Step 5. Run Model (10) and get the optimal efficiency of each DMU.

5. Numerical Experiment

In this section, a case study of a DEA problem under a neutrosophic environment is used to reveal
the validity and usefulness of the proposed model.

Case Study: The Efficiency of the Hospitals of TUMS

Performance assessments in healthcare frameworks are a noteworthy worry of policymakers
so that reforms to improve performance in the health sector are on the policy agenda of numerous
national governments and worldwide agencies. In the related literature, various methods such as
least squares and simple ratio analysis have been applied to assess the performance of healthcare
systems (see for instance: [50–52]). Nonetheless, due to the applicability of DEA in the solution of
problems with multiple inputs and outputs, it is most commonly used in healthcare systems [53].
The utilizations of DEA in the healthcare sector can be found in several works of literature, including for
crisp data [54–56], fuzzy data [57,58], and intuitionistic fuzzy data [59]. To the best of our knowledge,
none of these current works assessed the efficiency of healthcare organizations with neutrosophic sets.
Therefore, to assess the efficiency of the mentioned systems under a neutrosophic environment, we
used the proposed model to evaluate 13 hospitals of TUMS. It is worth emphasizing that due to privacy
policies, the names of these hospitals are not shared. Furthermore, for the selection of the most suitable
and acceptable items of the healthcare system, which are commonly used for measuring efficiency
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in the literature, we considered two inputs, namely the number of doctors and number of beds, and
three outputs, namely the total yearly days of hospitalization of all patients, number of outpatient
department visits, and overall patient satisfaction.

For each hospital, we gathered the related data from the medical records unit of the hospitals,
Center of Statistics of the University of Medical Sciences, the reliable library, online resources, and the
judgments of some experts. After collecting data, we found that the information was sometimes
inconsistent, indeterminate, and incomplete. The investigation revealed that several reforms by the
mentioned hospitals and other issues have led to considerable uncertainty and indeterminacy about
the data. As a result, we identified them as triangular single-valued neutrosophic numbers (TSVNNs).
For example, for “Patient Satisfaction,” we collected data in terms of “satisfaction,” “dissatisfaction,”
and “abstention,” and for each term, the related data was expressed by a triangular fuzzy number.
In addition, each triangular fuzzy number was constructed based on min, average, and max. All data
were expressed by using TSVNNs, and can be found in Tables 1 and 2.

Table 1. Input information of the nominee hospitals.

DMU Inputs 1
Number of Doctors

Inputs 2
Number of Beds

1
〈
[404, 540, 674] , [350, 440, 560], [420, 645, 700]〉

〈
[520, 530, 535] , [520, 525, 530], [532, 534, 540]〉

2
〈
[119, 136, 182] , [122, 125, 137], [125, 178, 200]〉

〈
[177, 180, 188] , [173, 175, 179], [185, 189, 195]〉

3
〈
[139, 145, 158] , [139, 140, 147], [146, 155, 167]〉

〈
[208, 214, 218] , [195, 209, 215], [210, 217, 230]〉

4
〈
[86, 93, 151] , [83, 85, 87], [89, 138, 160]〉

〈
[114, 116, 118] , [114, 115, 117], [116, 118, 125]〉

5
〈
[84, 93, 143] , [84, 89, 120], [90, 140, 155]〉

〈
[110, 117, 121] , [105, 112, 120], [113, 119, 128]〉

6
〈
[101, 113, 170] , [110, 112, 115], [112, 120, 177]〉

〈
[101, 107, 111] , [95, 100, 104], [108, 112, 115]〉

7
〈
[561, 694, 864] , [510, 640, 750], [582, 857, 930]〉

〈
[492, 495, 508] , [492, 494, 500 ], [493, 506, 520]〉

8
〈
[123, 179, 199] , [122, 125, 130], [195, 200, 205]〉

〈
[66, 68, 73] , [63, 67, 69], [68, 70, 78]〉

9
〈
[101, 153, 155] , [140, 145, 150], [145, 149, 167]〉

〈
[192, 195, 198] , [185, 193, 197], [194, 196, 205]〉

10
〈
[147, 164, 170] , [147, 160, 167], [165, 169, 180]〉

〈
[333, 340, 357] , [335, 338, 350], [338, 347, 364]〉

11
〈
[130, 158, 192] , [110, 144, 173], [146, 177, 205]〉

〈
[96, 100, 114] , [97, 99, 103], [99, 110, 129]〉

12
〈
[128, 137, 187] , [128, 133, 164], [134, 184, 199]〉

〈
[213, 220, 224] , [208, 215, 223], [216, 222, 231]〉

13
〈
[151, 160, 210] , [151, 156, 187], [157, 207, 222]〉

〈
[320, 327, 331] , [315, 322, 330], [323, 329, 338]〉

Next, we used Algorithm 1 to solve the performance valuation problem. For example, Algorithm 1
for DMU1 can be used as follows:

First, we construct a DEA model with the mentioned TSVNNs:

max θ̃1 ≈
〈
[121.13, 139.24, 140.04] , [138.64, 139.14, 139.81], [139.14, 140.02, 141.17]〉v1⊕〈

[38, 41, 45] , [38, 40, 43], [41, 44, 49]〉v2⊕〈
[104.23, 114.04, 278.51] , [102.37, 109.15, 235.72], [104.81, 275.25, 279.88]〉v3

s.t: 〈
[404, 540, 674] , [350, 440, 560], [420, 645, 700]〉u1

⊕
〈
[520, 530, 535] , [520, 525, 530], [532, 534, 540]〉u2 = 1,

(
〈
[121.13, 139.24, 140.04] , [138.64, 139.14, 139.81], [139.14, 140.02, 141.17]〉v1 ⊕

〈
[38, 41, 45] , [38, 40, 43],

[41, 44, 49]〉v2 ⊕
〈
[104.23, 114.04, 278.51] , [102.37, 109.15, 235.72], [104.81, 275.25, 279.88]〉v3)−

(
〈
[404, 540, 674] , [350, 440, 560], [420, 645, 700]〉u1 ⊕

〈
[520, 530, 535] , [520, 525, 530], [532, 534, 540]〉u2) ≤ 0,

(
〈
[31.54, 34.93, 38.89] , [31.54, 34.15, 38.27], [34.86, 38.15, 39.83]〉v1 ⊕

〈
[40, 44, 47] , [35, 52, 45],

[41, 46, 50]〉v2 ⊕
〈
[34.54, 36.98, 54.82 ] , [36.45, 36.80, 41.57], [47.61, 54.25, 55.35] > v3

〉
)−

(
〈
< [109, 126, 172] , [112, 115, 127], [115, 168, 190]〉u1 ⊕ [〈177, 180, 188 ], [173, 175, 179], [185, 189, 195]〉u2) ≤ 0,
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(
〈
[81.62, 82.07, 85.51] , [81.41, 81.94, 83.35], [81.78, 85.49, 88.16]〉v1 ⊕

〈
[18, 20, 29] , [19, 21, 23],

[28, 30, 35]〉v2 ⊕ [〈157.75, 177.57, 264.52 ], [157.75, 176.68, 250.75], [180.29, 263.98, 272.16]〉v3)−

(
〈
[139, 145, 158] , [139, 140, 147], [146, 155, 167]〉u1 ⊕

〈
[208, 214, 218] , [195, 209, 215], [210, 217, 230]〉u2) ≤ 0,

(
〈
[19.54, 20.41, 20.59] , [20.15, 20.25, 20.32], [20.54, 20.58, 20.70]〉v1 ⊕

〈
[18, 21, 25] , [15, 19, 23],

[20, 24, 30]〉v2 ⊕
〈
[32.89, 35.56, 87.74 ] , [35.25, 35.50, 35.61], [87.50, 87.94, 88.30]〉v3)−

(
〈
[86, 93, 151] , [83, 85, 87], [89, 138, 160]〉u1 ⊕

〈
[114, 116, 118] , [114, 115, 117], [116, 118, 125]〉u2) ≤ 0,

(
〈
[23.89, 24.60, 26.09] , [23.56, 23.60, 23.68], [25.97, 26.35, 26.72]〉v1 ⊕

〈
[30, 36, 41] , [34, 35, 37],

[35, 40, 57]〉v2 ⊕
〈
[63.23, 69.58, 120.73 ] , [63, 65.17, 94.93], [64.47, 118.75, 124.75 ]〉v3)−

(
〈
[84, 93, 143] , [84, 89, 120], [90, 140, 155]〉u1 ⊕

〈
[110, 117, 121] , [105, 112, 120], [113, 119, 128]〉u2) ≤ 0,

(
〈
[21.33, 21.49, 23.31] , [20.94, 24.25, 22.68 ], [21.38, 23.14, 23.94 ]〉v1 ⊕

〈
[50, 55, 60] , [50, 53, 57],

[56, 59, 70]〉v2 ⊕
〈
[72.84, 82.84, 94.18 ] , [82.15, 82.68, 84.89 ], [85.75, 93.50, 97.18 ]〉v3)−

(
〈
[101, 113, 170] , [110, 112, 115], [112, 120, 177]〉u1 ⊕

〈
[101, 107, 111] , [95, 100, 104], [108, 112, 115]〉u2) ≤ 0,

(
〈
[145.77, 148.28, 169.01], [145.77, 147.16, 168.31], [150.69, 168.95, 175.18]

〉
v1 ⊕

〈
[40, 44, 46], [42, 43, 45],

[43, 44, 55]
〉
v2 ⊕

〈
[147.59, 150.37, 227.12 ], [147.30, 147.45, 148. 25], [218.24, 224.61, 229.63]

〉
v3)−

(
〈
[561, 694, 864], [510, 640, 750], [582, 857, 930]

〉
u1 ⊕

〈
[492, 495, 508], [492, 494, 500 ], [493, 506, 520]

〉
u2) ≤ 0,

(
〈
[11.56, 11.74, 12.96] , [11.42, 11.61, 11.98], [11.58, 12.64, 13.16]〉v1 ⊕

〈
[60, 75, 80] , [55, 60, 62],

[78, 83, 85]〉v2 ⊕
〈
[189.37, 202.08, 284.99 ] , [189.37, 200.52, 281.63], [270.16, 284.55, 289.12]〉v3)−

(
〈
[123, 179, 199] , [122, 125, 130], [195, 200, 205]〉u1 ⊕

〈
[66, 68, 73] , [63, 67, 69], [68, 70, 78]〉u2) ≤ 0,

(
〈
[57.55, 62.67, 63.03] , [62.15, 62.50, 62.93], [62.50, 62.97, 63.61]〉v1 ⊕

〈
[32, 35, 38] , [32, 33, 35],

[34, 36, 45]〉v2 ⊕
〈
[14.63, 14.85, 29.40] , [14.70, 14.75, 15.25], [24.75, 28.36, 32.64]〉v3)−

(
〈
[101, 153, 155] , [140, 145, 150], [145, 149, 167]〉u1 ⊕

〈
[192, 195, 198] , [185, 193, 197], [194, 196, 205]〉u2) ≤ 0,

(
〈
[73.21, 76.03, 81.90 ] , [75.76, 76.05, 76.25], [81.67, 82.27, 82.64]〉v1 ⊕

〈
[22, 25, 40] , [20, 24, 27],

[23, 25, 29]〉v2 ⊕
〈
[96.77, 97.27, 110.39] , [96.77, 96.89, 105.14], [99.76, 108.62, 115.27]〉v3)−

(
〈
[147, 164, 170] , [147, 160, 167], [165, 169, 180]〉u1 ⊕

〈
[333, 340, 357] , [335, 338, 350], [338, 347, 364]〉u2) ≤ 0,

(
〈
[22.90, 27.71, 35.56] , [22.90, 26.45, 31.28], [27.92, 34.62, 39.41]〉v1 ⊕

〈
[20, 23, 26] , [21, 22, 24],

[22, 25, 30]〉v2 ⊕
〈
[171.53, 182.46, 384.99 ] , [171.12, 178.65, 210.34], [175.59, 270.65, 400.12]〉v3)−

(
〈
[130, 158, 192] , [110, 144, 173], [146, 177, 205]〉u1 ⊕

〈
[96, 100, 114] , [97, 99, 103], [99, 110, 129]〉u2) ≤ 0,

(
〈
[58.41, 59.12, 60.61], [58.08, 58.12, 58.20],

〈
[60.49, 60.87, 61.24 ]

〉
v1 ⊕

〈
[25, 31, 37] , [29, 30, 32],〈

[30, 35, 52]
〉
v2 ⊕

〈
[59.87, 66.22, 117.37 ], [59.64, 61.81, 91.57], [61.11, 115.39, 121.39 ]

〉
v3)−

(
〈
[128, 137, 187], [128, 133, 164], [134, 184, 199]〉u1 ⊕

〈
[213, 220, 224] , [208, 215, 223], [216, 222, 231]

〉
u2) ≤ 0,

(
〈
[66.97, 67.68, 69.17] , [66.64, 66.68, 66.76], [69.05, 69.43, 69.80]〉v1 ⊕

〈
[20, 27, 31] , [23, 26, 28],

[24, 30, 46]〉v2 ⊕
〈
[96.97, 103.32, 154.47 ] , [96.74, 98.91, 128.67], [98.21, 152.49, 158.50 ]〉v3)−

(
〈
[151, 160, 210] , [151, 156, 187], [157, 207, 222]〉u1 ⊕

〈
[320, 327, 331] , [315, 322, 330], [323, 329, 338]〉u2) ≤ 0,

vr, ui ≥ 0, r = 1, 2, 3, i = 1, 2.
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Table 2. Output information of the nominee hospitals.

DMU
Outputs 1

Days of Hospitalization
(in Thousands)

Outputs 2
Patient Satisfaction (%)

Outputs 3
Number of Outpatients

(in Thousands)

1

〈
[121.13, 139.24, 140.04] ,
[138.64, 139.14, 139.81],
[139.14, 140.02, 141.17]〉

〈
[38, 41, 45] ,
[38, 40, 43],
[41, 44, 49]〉

〈
[104.23, 114.04, 278.51] ,
[102.37, 109.15, 235.72],
[104.81, 275.25, 279.88]〉

2

〈
[31.54, 34.93, 38.89] ,〈
[31.54, 34.15, 38.27] ,〈
[34.86, 38.15, 39.83]

〉
〈
[40, 44, 47] ,
[35, 42, 45],
[41, 46, 50]〉

〈
[34.54, 36.98, 54.82 ] ,
[36.45, 36.80, 41.57],
[47.61, 54.25, 55.35]〉

3

〈
[81.62, 82.07, 85.51] ,
[81.41, 81.94, 83.35],
[81.78, 85.49, 88.16]〉

〈
[18, 20, 29] ,
[19, 21, 23],
[28, 30, 35]〉

〈
[157.75, 177.57, 264.52 ] ,
[157.75, 176.68, 250.75],
[180.29, 263.98, 272.16]〉

4

〈
[19.54, 20.41, 20.59] ,
[20.15, 20.25, 20.32],
[20.54, 20.58, 20.70]〉

〈
[18, 21, 25] ,
[15, 19, 23],
[20, 24, 30]〉

〈
[32.89, 35.56, 87.74 ] ,
[35.25, 35.50, 35.61],
[87.50, 87.94, 88.30]〉

5

〈
[23.89, 24.60, 26.09] ,
[23.56, 23.60, 23.68],
[25.97, 26.35, 26.72 ]〉

〈
[30, 36, 41] ,
[34, 35, 37],
[35, 40, 57]〉

〈
[63.23, 69.58, 120.73 ] ,
[63, 65.17, 94.93],

[64.47, 118.75, 124.75 ]〉

6

〈
[21.33, 21.49, 23.31] ,
[20.94, 24.25, 22.68 ],
[21.38, 23.14, 23.94 ]〉

〈
[50, 55, 60] ,
[50, 53, 57],
[56, 59, 70]〉

〈
[72.84, 82.84, 94.18 ] ,
[82.15, 82.68, 84.89 ],
[85.75, 93.50, 97.18 ]〉

7

〈
[145.77, 148.28, 169.01] ,
[145.77, 147.16, 168.31],
[150.69, 168.95, 175.18]〉

〈
[40, 44, 46] ,
[42, 43, 45],
[43, 44, 55]〉

〈
[147.59, 150.37, 227.12 ] ,
[147.30, 147.45, 148.25],
[218.24, 224.61, 229.63]〉

8
〈
[11.56, 11.74, 12.96] ,
[11.42, 11.61, 11.98],
[11.58, 12.64, 13.16]〉

〈
[60, 75, 80] ,
[55, 60, 62],
[78, 83, 85]〉

〈
[189.37, 202.08, 284.99 ] ,
[189.37, 200.52, 281.63],
[270.16, 284.55, 289.12]〉

9

〈
[57.55, 62.67, 63.03 ] ,
[62.15, 62.50, 62.93 ],
[62.50, 62.97, 63.61]〉

〈
[32, 35, 38] ,
[32, 33, 35],
[34, 36, 45]〉

〈
[14.63, 14.85, 29.40 ] ,
[14.70, 14.75, 15.25 ],
[24.75, 28.36, 32.64 ]〉

10

〈
[73.21, 76.03, 81.90 ] ,
[75.76, 76.05, 76.25],
[81.67, 82.27, 82.64]〉

〈
[22, 25, 40] ,
[20, 24, 27],
[23, 25, 29]〉

〈
[96.77, 97.27, 110.39 ] ,
[96.77, 96.89, 105.14],
[99.76, 108.62, 115.27]〉

11

〈
[22.90, 27.71, 35.56 ] ,
[22.90, 26.45, 31.28],
[27.92, 34.62, 39.41]〉

〈
[20, 23, 26] ,
[21, 22, 24],
[22, 25, 30]〉

〈
[171.53, 182.46, 384.99 ] ,
[171.12, 178.65, 210.34],
[175.59, 270.65, 400.12]〉

12

〈
[58.41, 59.12, 60.61] ,
[58.08, 58.12, 58.20],
[60.49, 60.87, 61.24 ]〉

〈
[25, 31, 37] ,
[29, 30, 32],
[30, 35, 52]〉

〈
[59.87, 66.22, 117.37 ] ,
[59.64, 61.81, 91.57],

[61.11, 115.39, 121.39 ]〉

13

〈
[66.97, 67.68, 69.17] ,
[66.64, 66.68, 66.76],
[69.05, 69.43, 69.80]〉

〈
[20, 27, 31] ,
[23, 26, 28],
[24, 30, 46]〉

[96.97, 103.32, 154.47 ],
[96.74, 98.91, 128.67],〈
[98.21, 152.49, 158.50 ]

〉
Finally, based on Definition 4, we convert the above model to the following model:

max θ̃1 ≈ 138.0608v1+42v2 + 175.2v3
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s.t:
529.8333u1 + 529.5833u2 = 1,

138.0608v1+42v2 + 175.2v3 −529.8333u1− 529.5833u2 ≤ 0,
35.7792v1 + 43.5v2 + 43.8667v3 −146.9167u1− 182.0833u2 ≤ 0,

83.4025v1 + 24.5v2 + 209.9733v3 −148u1− 213u2 ≤ 0,
20.36v1 + 21.5833v2 + 57.1075v3 −104.3333u1− 116.8333u2 ≤ 0,

24.9175v1+38v2 + 86.5092v3 −110u1− 116.0833u2 ≤ 0,
22.6117v1 + 56.4167v2 + 86.2525v3 −122.9167u1− 106u2 ≤ 0,

156.9592v1 + 44.4167v2 + 180.2492v3 −714.9167u1− 499.5833u2 ≤ 0,
12.0533v1 + 71.3333v2 + 239.9117v3 −165.1667u1− 68.9167u2 ≤ 0,

62.3375v1 + 35.3333v2 + 20.6075v3 −146u1− 194.9167u2 ≤ 0,
78.3442v1 + 25.75v2 + 102.4717v3 −163.5u1− 343.9167u2 ≤ 0,

29.7942v1 + 23.5833v2 + 231.4342v3 −159.5u1− 104.6667u2 ≤ 0,
59.4375v1 + 33.0833v2 + 83.1492v3 −154u1− 219.0833u2 ≤ 0,
67.9975v1 + 28.1667v2 + 120.25v3 −177u1− 326.0833u2 ≤ 0,

vr, ui ≥ 0, r = 1, 2, 3, i = 1, 2.

After computations with Lingo, we obtained θ∗1 = 0.6673 for DMU1. Similarly, for the other
DMUs, we reported the results in Table 3. From these results, we can see that DMUs 3, 6, 8, and 11 are
efficient and others are inefficient.

Table 3. The efficiencies of the decision-making units (DMUs) by the triangular single-valued
neutrosophic number-Charnes, Cooper, and Rhodes (TSVNN-CCR) model.

DMUs Efficiency Ranking

1 0.6673 9
2 0.8057 6
3 1.00 1
4 0.5950 10
5 0.8754 4
6 1.00 1
7 0.7024 7
8 1.00 1
9 0.9116 2

10 0.8751 3
11 1.00 1
12 0.8536 5
13 0.7587 8

To authenticate the suggested efficiencies, these efficiencies were compared with the efficiencies
obtained by the crisp CCR (Model (6)), and are given in Figure 1. In this figure, the efficiencies of
DMUs are found to be smaller for TSVNN-CCR compared to crisp CCR.

It is interesting that DMU 12 is efficient in crisp DEA, but it is inefficient with an efficiency score
of 0.8536 using TSVNN-CCR. Therefore, TSVNN-CCR is more realistic than crisp CCR. In addition,
crisp CCR and TSVNN-CCR may give the same efficiencies for certain data. However, the crisp CCR
model does not deal with the uncertain, indeterminate, and incongruous information. Therefore,
TSVNN-CCR is more realistic than crisp CCR.
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Abbreviations: List of Acronyms

DEA
DMU
CCR model
BCC model
CRS
VRS
AHP
TUMS
FS
IFS
NS
SVNS
TSVNN

Data Envelopment Analysis
Decision-Making Units
Charnes, Cooper, Rhodes model
Banker, Charnes, Cooper model
Constant Returns-to-Scale
Variable Returns-to-Scale
Analytic Hierarchy Process
Tehran University of Medical Sciences
Fuzzy Set
Intuitionistic Fuzzy Set
Neutrosophic Set
Single-Valued Neutrosophic Set
Triangular Single-Valued Neutrosophic number
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Abstract: This paper introduces Single Valued Refined Neutrosophic Set (SVRNS) which is a
generalized version of the neutrosophic set. It consists of six membership functions based on
imaginary and indeterminate aspect and hence, is more sensitive to real-world problems. Membership
functions defined as complex (imaginary), a falsity tending towards complex and truth tending
towards complex are used to handle the imaginary concept in addition to existing memberships in the
Single Valued Neutrosophic Set (SVNS). Several properties of this set were also discussed. The study
of imaginative pretend play of children in the age group from 1 to 10 years was taken for analysis
using SVRNS, since it is a field which has an ample number of imaginary aspects involved. SVRNS
will be more apt in representing these data when compared to other neutrosophic sets. Machine
learning algorithms such as K-means, parallel axes coordinate, etc., were applied and visualized for a
real-world application concerned with child psychology. The proposed algorithms help in analysing
the mental abilities of a child on the basis of imaginative play. These algorithms aid in establishing a
correlation between several determinants of imaginative play and a child’s mental abilities, and thus
help in drawing logical conclusions based on it. A brief comparison of the several algorithms used is
also provided.

Keywords: neutrosophic sets; Single Valued Refined Neutrosophic Set; applications of Neutrosophic
sets; k-means algorithm; clustering algorithms

1. Introduction

Neutrosophy is an emerging branch in modern mathematics. It is based on philosophy and was
introduced by Smarandache and deals with the concept of indeterminacy [1]. Neutrosophic logic is a
generalization of fuzzy logic proposed by Zadeh [2]. A proposition in Neutrosophic logic is either true
(T), false (F) or indeterminate (I). This inclusion of indeterminacy makes the neutrosophic logic capable
of analyzing uncertainty in datasets. Hence, it can be used to logically represent the uncertain and often
inconsistent information in the real world problems. Single Valued Neutrosophic Sets (SVNS) [3] are
an instance of a neutrosophic set which can be used in real scientific and engineering applications such
as Decision-making problems [4–11], Image Processing [12–14], Social Network Analysis [15], Social
problems [16,17] and psychology [18]. The distance and similarity measures have found practical
applications in the fields of psychology for comparing different behavioural and cognitive patterns.

Imaginative or pretend play is one of the fascinating topics in child psychology. It begins around
the age of 1 year or so. It is at its most prominent during the preschool years when children begin
to interact with other children of their own age and begin to access more toys. It is crucial in child
development as it helps in the development of language (sometimes the child language which cannot
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be deciphered by everyone) and also helps nurture the imagination of tiny-tots. However, the factors
determining the level of imaginative play in children are varied and complicated and a study of
them would help one to assess their mental development. It is here that fuzzy neutrosophic logic
comes into play. In this paper, we propose a new notion of Single Valued Refined Neutrosophic Sets
(SVRNS) which is a model structured on indeterminate and imaginary notions, coupled with machine
learning techniques such as heat maps, clustering, parallel axes coordinate, etc., to study the factors
that determine and influence imaginative play in children and how it differs in children with different
abilities and skills.

Every child is born different. The personality and behaviour of children is an interplay of several
different factors. Psychology is a complicated and varied science and open to subjective interpretations.
The study of child psychology in an objective manner can help one uncover several aspects of child
behaviour and also result in early detection of certain mental disorders. One of the key motivations of
this research is to uncover the factors that determine the mental abilities of a child and the extent of their
imagination which helps in predicting their academic and overall performance in later stages. Machine
Learning is slowly but steadily becoming one of the hot topics of computer science. Amalgamation
of machine learning algorithms and psychology on the basis of complex and neutrosophic logic is
certainly exciting and will help to cover new bounds.

This study primarily focuses on the analysis of imaginative play in children on the basis of
neutrosophic logic and draws conclusions on the same with the help of clustering algorithms.
The approach is initialized by generating a finite number of complex and neutrosophic sets determined
by several cognitive, psychological and biological factors that affect imaginative play in the mentioned
age group. The primary advantage here is the ability of such sets to deal with the uncertainty,
imagination and indeterminacy present in the study of pretend play in children in the age group from
1 to 10 years. With the help of this study, we aim to distinguish the contribution of several factors of
imaginative play in children and conclude from the study whether the child has any mental disorders
or not and about the general cognitive skills coupled with imagination. This model will also help in
identifying factors which may contribute to potential psychological disorders in young children at an
early stage and predict the academic performance of the child.

In this research, a new complex fuzzy neutrosophic set is defined which will be used as a model to
study the imaginary and indeterminate behaviour in young children in the age group from 1 to 10 years
by giving them suitable stimuli for imaginary play. The data were collected from different sources with
the help of a questionnaire, observations, recorded sessions and interviews, and after transforming the
data into the proposed new neutrosophic logic, they were fitted into the newly constructed model and
conclusions were drawn from them using a child psychologist as an expert. This model attempts to
discover the extent to which several factors contribute to imaginative play in children of the specified
age group and to detect possibilities of mental disorders such as autism and hyperactivity in young
children on the basis of the trained model.

The paper is organized into seven major sections which are further divided into a few subsections.
Section one is introductory in nature. A detailed analysis of the works related to neutrosophy and its
applications to a few relevant fields are presented in section two. It also provides the gaps that have
been identified in those works. Section 3 introduces Single Valued Refined Neutrosophic Sets (SVRNS)
along with their properties, such as distance measures and related algorithms. It also introduces and
discusses several machine learning techniques used for assessment. The description of the dataset
used for the application of algorithms such as K-means clustering, heat maps, parallel axes coordinate
is given in section four. It also includes the approach involved in processing the data obtained
appropriately into SVRNSs. Section 5 provides an illustrative example of the methods described in
the preceding section. Section 6 details the results obtained from the application of the discussed
algorithms and their respective visualizations. Section 7 discusses the conclusions based on our study
and its future scope.
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2. Related Works

Fink [19] explored the role of imaginative play in the attainment of conservation and perspectivism
with the help of a training study paradigm. Kindergarten children were assigned to certain conditions
such as free play in the presence of an experimenter and a control group. The method of their data
collection was observation. The results indicate that imaginative play can result in new cognitive
structures. The relationship between different types of play experiences and the construction of certain
physical or social concepts were also discussed, along with educational implications.

Udwin [20] studied a group of children who had been removed from harmful family backgrounds
and placed in institutional care. These children were exposed to imaginative play training sessions.
These subjects showed an increase in imaginative behaviour. Age, non-verbal intelligence and fantasy
predisposition were determinants of the subjects’ response to the training programme, with younger,
high-fantasy and high-IQ children being most susceptible to the influence of the training exercises.

Huston-Stein [21] attempted to establish a relationship between social structure and child
psychology by employing methods of direct observations of field experiments. The behaviour was
then categorised on the basis of a set of defined behavioural categories and evaluated on the basis of
suitable metrics. The results focus on establishing correlations between these behavioural categories
and classroom structure and draw conclusions on how such social structures impact imaginative play.

Bodrova [22] related another important parameter, namely academic performance, to imaginative
play. They have established imaginative play as a necessary prerequisite and one of the major sources
of child development. They deduced how imaginative play scenarios require a certain knowledge of
environmental setting and how it affects the academic excellence of a child.

Seja [23] explored another important factor in child psychology—emotions. They attempted to
determine how imaginative play helps to understand the emotional integration of children. The source
of data collected in this study is elementary school children who were tested on verbal intelligence
and by standard psychological tests. Conclusions were drawn on the basis of an extensive statistical
analysis which also attempted to investigate gender differences.

Neutrosophy has given importance to the imprecision and complexity of data. This is an important
reason behind using neutrosophic logic in real life applications. Dhingra et al. [24] attempted to
classify a given leaf as diseased or healthy based on the membership functions of the neutrosophic sets.
Image segmentation into true, false and indeterminate regions after preprocessing was used to extract
features and several classifiers were used to arrive at a classification. A comparative analysis of these
classifiers was also provided.

Several researchers [25–30] dealt with algebraic structures of neutrosophic duplets, which are a
special case of neutrality. Single Valued Neutrosophic Sets (SVNS), which is particular cases of triplet
following the fuzzy neutrosphic membership concepts in their mathematical properties and operations
are dealt by Haibin [31].

Haibin [31] gave the notion of Single Valued Neutrosophic Sets (SVNS) along with their
mathematical properties and set operations. Properties such as inclusion, complement and union were
defined on SVNS. They also gave examples of how such sets can be used in practical engineering
applications. SVNS has found a major application in medical diagnosis. Shehzadi [32] presented the
use of Hamming distance and similarity measures of given SVNSs to diagnose a patient as having
Diabetes, Dengue or Tuberculosis. The three membership functions (truth, falsity and indeterminacy)
were assigned suitable values and distance and similarity measures were applied on them. These
measures were then used to provide a medical diagnosis. Smarandache and Ali [33] provided the
notion of complex neutrosophic sets (CNS). Membership values given to them were of the form a+bi.
Several properties of these sets were defined. These sets find applications in electrical engineering and
decision-making fields. Neutrosophic Refined Sets where defined in [34].

A more refined and precise view of indeterminacy is provided by Kandasamy [35].
The indeterminacy membership function was further categorized as indeterminacy tending towards
truth and indeterminacy tending towards false. Hence, resulting in Double-Valued Neutrosophic
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Set (DVNS). Their properties, such as complement, union and equality were also discussed and
distance measures were also defined on them. On the basis of these properties, minimum spanning
trees and clustering algorithms were described [36]. Dice measures on DVNS were proposed in [37].
The importance given to the indeterminacy of incomplete and imprecise data, as often found in the
real world, is a major advantage of the DVNS and hence, is more apt for several engineering and
medical applications.

The model of Triple Refined Indeterminate Neutrosophic Set (TRINS) was also introduced by
Kandasamy and Smarandache [38]. It categorizes indeterminacy membership function as leaning
towards truth and leaning towards false in addition to the traditional three membership functions of
neutrosophic sets. After defining the several properties and distance measures, the TRINS was used
for personality classification. The personality classification using TRINS has been found to be more
accurate and realistic as compared to SVNS and DVNS. Indeterminate Likert scaling using five point
scale was introduced in [39] and a sentiment analysis using Neutrosophic refined sets was conducted
in [40,41].

To date, the study of imaginative play in children has not been analysed using neutrosophy
coupled with an imaginary concept; thus, to cover this unexplored area, the new notion of Single
Valued Refined Neutrosophic Sets (SVRNS) that represent imaginary and indeterminate memberships
individually were defined. A study of imaginative play in children using Neutrosophic Cognitive
Maps (NCM) model was carried out in [42].

3. Single Valued Refined Neutrosophic Set (SVRNS) and Its Properties

This section presents the definition of Single Valued Refined Neutrosophic Set (SVRNS). These sets
are based on the essential concepts of real, complex and neutrosophic values which takes membership
from the fuzzy interval [0,1]. In a way this can be realized as a mixture of refined neutrosophic sets
coupled with real membership values for imaginary aspect. However SVRNS are different from
traditional neutrosophic sets. The neutrosophic logic is powerful and can model concepts of arbitrary
complexity covering incomplete and imprecise data. Children’s behaviour is one such complicated
and the imprecise branch that can be modelled as objectively as possible by coupling imaginary or
complex nature of data with its indeterminacy.

The concept of SVRNS are defined, developed and described in the following.

3.1. Single Valued Refined Neutrosophic Set (SVRNS)

Definition 1. Let X be a space of points (objects), with a generic element in X denoted by x. A neutrosophic set
A in X is characterised by a truth membership function TA (x), a true tending towards complex membership
function TCA (x), a complex membership function CA (x), a false tending towards complex membership function
FCA (x), an indeterminacy membership function IA (x), and a falsity membership function FA (x). For each
point x in X, there are TA (x), TCA (x), CA (x), FCA (x), IA (x), FA (x) ∈ [0, 1] and 0 ≤ TA(x) + TCA(x) +
CA(x)+FCA(x)+ IA(x)+FA(x) ≤ 6. Therefore, a Single Valued Refined Neutrosophic Set (SVRNS) A can be
represented by

A =
{
〈TA (x) , TCA (x) ,CA (x) ,FCA (x) , IA (x) , FA (x)〉|x ∈ X

}
.

3.2. Distance Measures of SVRNS

The distance measures of SVRNSs are defined in this section and the related algorithm for
determining the distance is given.

Definition 2. Consider two SVRNSs A and B in a universe of discourse, X = x1, x2, . . . , xn, which are
denoted by

A =
{
〈TA (xi) , TCA (xi) ,CA (xi) ,FCA (xi) , IA (xi) , FA (xi)〉|xi ∈ X

}
,
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and
B =

{
〈TB (xi) , TCB (xi) ,CB (xi) ,FCB (xi) , IB (xi) , FB (xi)〉|xi ∈ X

}
,

where TA (xi), TCA (xi), CA (xi), FCA (xi), IA (xi), FA (xi) , TB (xi), TCB (xi), CB (xi), FCB (xi), IB (xi),
FB (xi) ∈ [0, 1] for every xi ∈ X. Let wi (i = 1, 2, . . . , n) be the weight of an element xi (i = 1, 2, . . . , n), with
wi ≥ 0 (i = 1, 2, . . . , n) and

∑n
i=1 wi = 1. Then, the generalised SVRNS weighted distance is defined as follows:

dλ(A,B) = {
1
6

n∑
i=1

wi[|TA(xi)−TB(xi)|
λ+ |TCA(xi)−TCB(xi)|

λ+ |CA(xi)−CB(xi)|
λ+

|FCA(xi)−FCB(xi)|
λ+ |IA(xi)− IB(xi)|

λ+ |FA(xi)−FB(xi)|
λ]}

1
λ

where λ > 0.
The above equation reduces to the SVRNS weighted Hamming distance and the SVRNS weighted Euclidean
distance, when λ = 1, 2, respectively. The SVRNS weighted Hamming distance is given as

dλ(A,B) = {
1
6

n∑
i=1

wi[|TA(xi)−TB(xi)|+ |TCA(xi)−TCB(xi)|+ |CA(xi)−CB(xi)|+

|FCA(xi)−FCB(xi)|+ |IA(xi)− IB(xi)|+ |FA(xi)−FB(xi)|]}

where λ = 1.
The SVRNS weighted Euclidean distance is given as

dλ(A,B) = {
1
6

n∑
i=1

wi[|TA(xi)−TB(xi)|
2 + |TCA(xi)−TCB(xi)|

2 + |CA(xi)−CB(xi)|
2+

|FCA(xi)−FCB(xi)|
2 + |IA(xi)− IB(xi)|

2 + |FA(xi)−FB(xi)|
2]}

1
2

where λ = 2.

The algorithm to obtain the generalized SVRNS weighted distance dλ(A,B) between two SVRNS
A and B is given in Algorithm 1.

Algorithm 1: Generalized SVRNS weighted distance dλ(A,B)
Input: X = xl,x2, . . . ,xn, SVRNS A,B where

A =
{
〈TA (xi) , TCA (xi) ,CA (xi) ,FCA (xi) , IA (xi) , FA (xi)〉|xi ∈ X

}
,

B =
{
〈TB (xi) , TCB (xi) ,CB (xi) ,FCB (xi) , IB (xi) , FB (xi)〉|xi ∈ X

}
, wi(i = 1,2, . . . ,n)

Output: dλ(A,B)
begin

dλ← 0
for i = 1 to n do

dλ← dλ+
n∑

i=1

wi[|TA(xi)−TB(xi)|
λ+ |TCA(xi)−TCB(xi)|

λ+

|CA(xi)−CB(xi)|
λ+ |FCA(xi)−FCB(xi)|

λ+

|IA(xi)− IB(xi)|
λ+ |FA(xi)−FB(xi)|

λ]

end
dλ← dλ /6

dλ← d
{

1
λ }

λ

end
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The related flowchart is given in Figure 1.

Figure 1. Flow Chart for Generalized SVRNS weighted distance d(λ).

The generalised SVRNS weighted distance dλ (A, B) for λ > 0 satisfies the following properties:

1. dλ (A, B) ≥ 0
2. dλ (A, B) = 0 if and only if A = B
3. dλ (A, B) = dλ (B, A)
4. If A ⊆ B ⊆ C, C is a SVRNS in X, then dλ (A, C) ≥ dλ (A, B) and dλ (A, C) ≥ dλ (B, C)

3.3. K-Means Algorithm

The K-means algorithm for SVRNS is given in Algorithm 2.
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Algorithm 2: K-means algorithm for clustering SVRNS values
Input: Al, A2, . . . , An SVRNS, K—Number of Clusters
Output: K Clusters
begin

Step 1: Choose K different SVRNS A j as the initial centroids, denoted as α j, j = 1, . . . , K
Step 2: Initialize β j← 0, j = 1, . . . , K; // 0 is a vector with all 0’s
Step 3: Initialize n j← 0, j = 1, . . . , K; // n j is the number of points in cluster j
Step 4: Creation of Clusters repeat

for i = 1 to n do

j← argmin
j∈{1,...,K}

dλ
(
Ai, α j

)
// From Algorithm 1

assign Ai to cluster j
β j← β j + a
n j← n j + 1

end

α j←
β j

n j
, j = 1, . . . , K

until Clusters do not change
end

The related flowchart is given in Figure 2.

Figure 2. Flow Chart for k means clustering of SVRNS values.
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We used the following machine learning techniques in this paper after obtaining and processing
the data.

3.4. Other Machine Learning Techniques

The Elbow method is a technique used to find the value of appropriate value of K(Number of
clusters) in K-means clustering. It makes the cluster analysis design consistent. A heat map is a
data visualization technique used to show correlation between two attributes in the form of a matrix
where each value is represented as colours. The Principal Component Analysis (PCA) makes use
of orthogonal transformation to convert a set of observations of variables which might be possibly
correlated, into a set of values of linearly uncorrelated variables called principal components. It is a
widely used statistical technique. Parallel coordinates (also known as Parallel Axes Chart (PAC)) are
highly used for the visualization of multi-dimensional geometry and analysis of multivariate data.
Easy visualization of multiple dimensions is an innate feature of PAC plot, making it simple to analyse
attributes which are associated with other attributes in a similar manner.

4. Dataset Description

Imaginative play is defined as “a form of symbolic play where children use objects, actions or
ideas to represent other objects, actions, or ideas using their imaginations to assign roles to inanimate
objects or people”. During the early stage, “toddlers begin to develop their imaginations, with sticks
becoming boats and brooms becoming horses. Their play is mostly solitary, assigning roles to inanimate
objects like their dolls and teddy bears”. It has proven to be highly beneficial as it results in early
use of language and proper use of tenses and adjectives. It gives the children a sense of freedom and
allows them to be creative in their own space. It helps children make sense of the physical world and
also their inner selves. It can develop with the help of the most basic tools such as a toy mobile or a
cardboard tube.

The data regarding imaginative play in children were collected from the local school and an
orphanage in Vellore, India.

A child psychologist was present throughout the sessions, analyzed and suggested the various
parameters and recorded the observations about each session. The session at each of these places began
with the expert talking to the child about general things and everyday life as an ice-breaker exercise.
This included talking about his/her favourite subjects, parents and treating him/her with biscuits or
chocolates. The surroundings were made as comfortable as possible. The child was then asked to
conduct an imaginary phone call in whichever way he/she liked. The imaginary conversation was
then recorded as video on a phone. The expert made observations that were recorded on paper in a
running hand description. This signified the end of the session.

Overall, 10 such sessions were conducted at the school and 2 were conducted at the orphanage.
The children belonged to the age group of 6 to 8 years. Additionally, in order to make the dataset
diverse as suggested by the expert, 7 videos were taken from the internet in which children conducted
imaginary conversations over the phone. The running hand description thus collected was used by
this expert to assign values to the six membership functions based on which the SVRNS is constructed.

Table 1 provides the parameters which have been used to study imaginative play along with their
description. The parameters 1 to 11 are available in [19] and the other 4 parameters from 12 to 15 are
introduced by us.

Florentin Smarandache (ed.) Collected Papers, VII

849



Table 1. Parameter Description.

S.No Parameter Name Description

1 Imaginative Theme (IT) The theme of the imaginative play is assumed by the child and can be based on
a real or imaginative situation and/or setting.

2 Physical Movements (PM)
The movements a child may make while s/he conducts the imaginative play are
also an important determinant of the child’s cognitive patterns. They are the
ways in which the child uses his/her body during the play.

3 Gestures (G)
They are the ways in which the child moves a part of the body in order to
express an idea or some meaning. They are the non-verbal means of
communication using hands, head, etc.

4 Facial Expressions (FE) The movement of facial muscles for non-verbal communication and also convey
the emotions experienced by the child.

5 Nature and Length of Social
Interaction (NoI/LoI)

The time duration during which the child engages in the imaginative play
activity can determine the extent of his/her imagination. The nature of any form
of interaction which may take place during the imaginative play be day-to-day,
meaningful in some way, etc. and even the combination of the two.

6 Play Materials Used (PMU)
They are the objects provided to the child to conduct an imaginative play
activity. The play material used here was a play mobile phone to conduct an
imaginary talk.

7 Way Play Materials were
Used (WPMwu)

The child’s approach to using the play material provided can give an insight
into his/her imaginative capabilities.

8 Verbalisation (V) It is the way in which the child is expressing his/her feelings or emotions during
the imaginative play activity.

9 Tone of Voice (ToI)
It is an important aspect that child’s mood and state of mind as in if the child is
happy, sad or nervous. For example, a high pitched voice may indicate
happiness or excitement.

10 Role Identification (RI) It is the role a child assumes during the imaginative play and the role s/he
assigns to other people.

11 Engagement Level (EL) It is the extent to which the child involves in the activity of imaginative play.

12 Eye Reaction (ER) It refers to the movement of the eyes during the imaginative play activity. It can
give insight into the child’s emotions during the play.

13 Cognitive Response (CR) It is the mental process by which the child forms association between things.

14 Grammar and Linguistics
(GaL)

It refers to the ability of a child to make grammatically correct sentences with
proper sentence structure and syntax.

15 Coherence (C) Whether the child is making sense of the talks, i.e., if the sentences formed are
related to one another is called coherence.

Method of Evaluation

The running hand description of the above-mentioned parameters was transformed into a complex
fuzzy neutrosophic sets by the expert/child psychologist, for applying machine learning algorithms
discussed in the earlier section. The methods of evaluation for each parameter as suggested by the
expert are discussed below.

1. Imaginative Theme: An imaginative theme that is based on the real situation will result in the
increase in the truth membership function and otherwise if the theme is entirely imaginative.
However, since there is always a degree of complex and indeterminacy in this parameter, the
complex and indeterminate membership functions was also assigned certain values from [0,1].

2. Physical Movements: If physical movements are made, the value of truth membership function will
increase else the falsity membership function will increase. Complex and indeterminacy values
from [0,1] shall be assigned values if movements are difficult to interpret properly or happened to
be imaginary.

3. Gestures: Similar to physical movements, any gestures made in accordance with the imaginative
activity will result in an increase in the truth membership value and in falsity value otherwise.
Any indeterminate or complex feature will result in values being assigned to indeterminate and
complex respectively from [0,1].

4. Facial Expressions: Any facial expressions made in accordance with the imaginative activity
conducted will lead to an increase in the truth membership and in falsity membership function
otherwise. Complex and indeterminacy membership functions shall be assigned values if facial
expressions are difficult to interpret properly.
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5. Nature and Length of Social Interaction: Any interaction that is made in accordance with the play
activity will result in an increase in truth membership functions and in falsity membership
functions otherwise. Indeterminate and complex membership functions shall be assigned values
if the interactions are difficult to interpret properly.

6. Play Materials Used: These are nouns and need not be translated to SVRNS.
7. Way Play Materials were Used: Any usage of play materials in a realistic manner will lead to an

increase in the truth membership and in falsity membership function otherwise. Complex
and indeterminacy membership functions shall be assigned values if usage is difficult to
interpret properly.

8. Verbalisation: Any verbalisation that is made in accordance with the play activity will result in an
increase in truth membership functions and in falsity membership functions otherwise. Complex
and indeterminacy membership functions shall be assigned values if the verbalization is difficult
to interpret properly.

9. Tone of Voice: If the tone of voice is in accordance with the situation of play activity and high, it
will result in an increase in truth membership functions and in falsity membership functions
otherwise. Complex and indeterminacy membership functions shall be assigned values if the
interactions are difficult to interpret properly.

10. Role Identification: Any role identification that is realistic will lead to an increase in the truth
membership and in falsity membership function otherwise. Complex and indeterminacy
membership functions shall be assigned values if role identification is difficult to interpret properly.

11. Engagement Level: If the engagement level is high but the theme and role identification are realistic,
truth membership function value increases. If the engagement level is high but the theme and role
identification are imaginative, falsity membership function value increases. Other combinations
of engagement level, theme and role identification will result in assigning values to the other
membership functions.

12. Eye Reaction: Any eye reaction that is made in accordance with the play activity will result in an
increase in truth membership functions and in falsity membership functions otherwise. Complex
and indeterminacy membership functions shall be assigned values if the eye reaction is difficult
to interpret properly.

13. Cognitive Response: Any cognitive response that is made in accordance with the play activity
will result in an increase in truth membership functions and in falsity membership functions
otherwise. Complex and indeterminacy membership functions shall be assigned values if the
cognitive is difficult to interpret properly.

14. Grammar and Linguistics: If the grammar, sentence structure and syntax are correct, the value of
truth membership function will increase. Any error in grammar, syntax or sentence structure will
lead to an increase in the value of falsity membership function. If, however, the linguistics are
difficult to comprehend, indeterminate and complex membership functions’ value will increase.

15. Coherence: If the sentences made are related to one another, the value of truth membership function
will increase. Any incoherence, i.e., making sentences are not related to one another will lead to
an increase in the value of falsity membership function. If, however, the coherence of sentences is
difficult to comprehend, indeterminate and complex membership functions’ value will increase.

5. Illustrative Example

This section provides an example on processing of the data obtained as a running hand description.
On the basis of this description, the expert estimated and evaluated the child. The following example
is based on a video of 3-year-old child and the following observations given by the expert are made in
form of running hand descriptions of the 15 parameters given in Table 2.
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Table 2. Parameter Description for Example.

S.No Parameter Name Description

1 Imaginative Theme The child talks to Mickey Mouse over the phone. The child attempts to discuss
something she describes “gross”.

2 Physical Movements The child does not use a lot of her body during the conversation.
3 Gestures The child does not use any significant gestures during the conversation.

4 Facial Expressions
The child is cheerful, serious and astonished when she initiates the conversation,
asks something to the receiver and when comes to know about something
“gross” respectively.

5 Nature and Length of Social
Interaction

The child engages in the conversation for about a minute. The interaction is
mostly day-to-day and the child is rather expressive of her emotions.

6 Play Materials Used The child uses a toy mobile to conduct an imaginative conversation between
herself and Mickey Mouse.

7 Way Play Materials were
Used The child uses the mobile in a very realistic way.

8 Verbalisation The child makes sound and noises in accordance with the mood of the
conversation.

9 Tone of Voice The tone of the child’s voice is high-pitched. She is very expressive.

10 Role Identification The child does not assume any role other than herself. However, she does
imagine herself to be a friend of Mickey Mouse.

11 Engagement Level The child’s engagement level is high and she is attentive throughout the play
activity.

12 Eye Reaction The child’s eyes widen and narrow during different points of the play activity.
13 Cognitive Response The cognitive response is direct, quick and coherent.

14 Grammar and Linguistics The child makes grammatically correct sentences except she does skip
supportive verbs like “will”.

15 Coherence The sentences made are coherent and in sync with the imaginative conversation.

Table 2 depicts a running hand description of the discussed parameters. These parameters are
then assigned real values by the expert. These values are discussed in Table 3.

Table 3. SVRNS for Example.

S.No Parameter Description SVRNS

1 IT Entirely imaginative theme though the conversation was
realistic 〈0.75, 0, 0, 0, 0.25, 0〉

2 PM Not a lot 〈0, 0, 0, 0, 0.25, 0.75〉
3 G Not a lot 〈0, 0, 0, 0, 0.25, 0.75〉
4 FE Cheerful, confident, serious 〈0, 0.75, 0.25, 0, 0, 0〉
5 NoI/LoI 1 minute; day-to-day, verbal 〈0.5, 0.25, 0.25, 0, 0, 0〉
6 PMU Mobile NA
7 WPMwu Realistic 〈0.75,0,0,0,0.25〉
8 V In accordance with imaginative play 〈0.5, 0.25, 0.25, 0, 0, 0〉
9 ToI In accordance with imaginative play; high pitched 〈0.5, 0.25, 0.25, 0, 0, 0〉
10 RI Self 〈0.5, 0, 0.25, 0, 0.25, 0〉
11 EL High 〈0.5, 0.25, 0.25, 0, 0, 0〉
12 ER Widening, narrowing; In accordance with imaginative play 〈0, 0, 0.5, 0, 0.5, 0〉
13 CR Direct; In accordance with imaginative play 〈0.75, 0, 0, 0, 0.25, 0〉
14 GaL Partially correct; In accordance with imaginative play 〈0.75, 0, 0.25, 0, 0, 0〉
15 C In accordance with imaginative play 〈0.75, 0, 0, 0.25, 0, 0〉

Likewise the SVRNS tuples for the other data sets was done with the help of the expert. Then
these SVRNS sets are used for analysis using machine learning algorithms.
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6. Results and Discussions

Several libraries such as pandas, numpy, matplotlib, sklearn, seaborn and pylab associated
with Python were used for data visualization. Programming was carried out using python for the
visualization of the previous discussed algorithms, based on the result of elbow curve, K-means
clustering was done. Logical conclusions have been drawn from these visualizations and the role several
determinants play in determining the imaginative capabilities of the child has also been highlighted.

Heat map, which strongly demonstrates the factors of correlation and associativity, has a colour
scale in which lighter shades signify positive correlation and darker shades signify a negative correlation.
Correlation between any two parameters signifies their associated relation. Positive correlation happens
when an increase in one attribute shows an increase in another attribute as well. Negative correlation
happens when an increase in one attribute shows a decrease in another attribute. The heat map, which
strongly demonstrates the factors of correlation and associativity, has a colour scale in which lighter
shades signify positive correlation and darker shades signify a negative correlation. For example,
in Figure 3, which is a heat map for feature T, Grammar and Coherence show extremely positive
correlation whereas Eye Reaction and Role Identification show a negative correlation.

The results from the Figure 3 shows the heatmap for feature T (Truth membership).

Figure 3. Heat map for feature T.

An elbow curve was plotted to determine the optimal number of clusters for K-means and PCA
K-means clustering. Figure 4 shows our elbow curve for feature T where we can see that the sharp
bend comes at k = 4, thus, 4 clusters are optimal.

In Figure 5, while testing K-means on feature T for the parameters ‘Facial Expression’ on the
y-axis against ‘Imaginative Theme’ on the x-axis, it was found that higher concentration of points lies
near x = 0.5 and y = 0.2.
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Figure 4. Elbow curve for feature T.

Figure 5. K-means for feature T.

Then, the data was resolved along its principal components, thus giving a new spatial arrangement
of the feature, which was then clustered again using K-Means. Figure 6 shows the output for PCA
K-Means Clustering for T. A significant deviation of the spatial arrangement of data points is seen
in the figure. Now, the higher concentration of points shift to x = 0.2, y = 0.08. ‘Tone of Voice’
and ‘Engagement Level’ are similarly associated with ‘Role Identification’ as the co-ordinate axis is
symmetrical about it, as shown in Figure 7.

Figure 6. PCA K-means for feature T.
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Figure 7. PAC for feature T.

The comparative analysis in Table 4 focuses on five common factors between the four algorithms.
The correlation between any two parameters signifies their associated relation. A positive correlation
happens when an increase in one attribute shows an increase in another attribute as well. A negative
correlation happens when an increase in one attribute shows a decrease in another attribute. The heat
map, which strongly demonstrates the factors of correlation and associativity, has a colour scale in which
lighter shades signify positive correlation and darker shades signify a negative correlation. For example,
in Figure 3, which is a heat map for feature T, Grammar and Coherence show extremely positive
correlation whereas Eye Reaction and Role Identification show a negative correlation. The visibility of
data points is best observed in the PAC graph while the least was observed in the Heat Map, which
focused more on their associativity. Associativity, the reverse of this happened in PAC Graphs and Heat
Maps where associativity in the former decreased due to conflict of interest in the arrangement of axes.
The dynamicity of PAC, unlike for all other graphs, is the highest because the axes can be rearranged
to see which arrangement gives us the best results. However, in K-Means, PCA K-Means and Heat
map, the axes are static and rearranging them does not show any significant change. Scalability is a
measure of how many data points can be represented in the same graph without the loss of visibility.
This was found to be strongest in K-Means and PCA K-means as each point could be seen uniquely on
a 2D Cartesian space.

Table 4. Comparative Analysis.

Factors Heat Map K-Means PCA K-Means PAC Graph

Correlation Strong Weak Weak Weak
Visibility Weak Medium Medium Strong
Associativity Strong Strong Strong Medium
Dynamicity Medium Strong Strong Very Strong
Scalability Medium Strong Strong Medium

7. Conclusions and Future Work

The authors have defined the new concept of Single Valued Refined Neutrosophic Sets (SVRNS)
which is a generalized version of neutrosophic sets which functions using six memberships values.
Furthermore, these SVRNS make use of imaginary values for the memberships. This newly defined
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concept of SVRNS was used to study the imaginative play in children. The model proposed also
consists of distance measures such as Hamming distance and Euclidean distance for two given SVRNSs.

On the basis of expert opinion, the data was successfully transformed into SVRNS. These sets were
helpful in drawing clusters, heat maps, parallel axes coordinate and so on. The pictorial representation
of the results of these algorithms has helped to gain useful insight into the data collected. We were
able to objectively interpret, for instance, the role of factors such as grammar in imaginative play
in children.

On the basis of the data collected and processed to form SVRNSs, we will be able to successfully
develop an artificial neural network (ANN), decision trees and other supervised learning algorithms
in this domain for future research and they will be useful for drawing insights into the role of these
parameters by varying the values of the parameters. Other quality measures such as p-value, confusion
matrix and accuracy can also be drawn from it. Since the data under consideration were small, we
were not able to construct ANN.

For future work, we will study the mentally retarded children in this age group and perform a
comparative analysis with the normal children in this age group.

The model will help us in identifying children with autism and attention deficit hyperactivity
disorder (ADHD) and other psychological disorders. The detection of such disorders if any at an early
stage with the help of our model will help parents and doctors to use the necessary measures to treat
and control them quickly.

The model can be further used for other psychological studies like for modeling destructive
behaviours of alcoholics and bulimic children and/or adults.

With this given dataset, cross culture validation was not done. For future research, we shall
consider the study of cross culture among children and try to generate a variation from cross culture
and its effect or influence on the cognitive and language abilities of children.

Abbreviations

The following abbreviations are used in this manuscript:

SVNS Single Valued Neutrosophic Sets
SVRNS Single Valued Refined Neutrosophic Sets
CNS Complex Neutrosophic Sets
DVNS Double Valued Neutrosophic Sets
TRINS Triple Refined Indeterminate Neutrosophic Sets
NCM Neutrosophic Cognitive Maps
PCA Principal Component Analysis
PAC Parallel Axes Chart
ANN Artificial Neural Networks
ADHD Attention deficit hyperactivity disorder
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ABSTRACT In this paper we consider the concept of KM -fuzzy metric spaces and we introduce a novel
concept of KM -single valued neutrosophic metric graphs based on KM -fuzzy metric spaces. Then we
investigate the finite KM -fuzzy metric spaces with respect to KM -fuzzy metrics and we construct the KM -
fuzzy metric spaces on any given non-empty sets. We try to extend the concept of KM -fuzzy metric spaces
to a larger class of KM -fuzzy metric spaces such as union and product of KM -fuzzy metric spaces and in
this regard we investigate the class of products of KM -single valued neutrosophic metric graphs. In the final,
we define some operations such as tensor product, Cartesian product, semi-strong product, strong product,
union, semi-ring sum, suspension, and complement of KM -single valued neutrosophic metric graphs.

INDEX TERMS (Derivable) KM -single valued neutrosophic metric graph, KM -fuzzy metric space,
triangular-norm (conorm).

I. INTRODUCTION
Classical theory is a pure concept and without quality or
criteria, so it is not attractive to use in our world, that’s
why we use the neutrosophic sets theory as one of a gen-
eralizations of set theory in order to deal with uncertain-
ties, which is a key action in the contemporary world intro-
duced by Smarandache for the first time in 1998 [22] and
in 2005 [23]. This concept is a new mathematical tool for
handling problems involving imprecise, indeterminacy, and
inconsistent data. This theory describes an important role
in modeling and controlling unsure hypersystems in nature,
society and industry. In addition, fuzzy topological spaces as
a generalization of topological spaces, have a fundamental
role in construction of fuzzy metric spaces as an extension
of the concept of metric spaces. The theory of fuzzy metric
spaces works on finding the distance between two points
as non-negative fuzzy numbers, which have various appli-
cations. The structure of fuzzy metric spaces is equipped
with mathematical tools such as triangular norms and fuzzy
subsets depending on time parameter and on other vari-
ables. This theory has been proposed by different researchers
with different definitions from several points of views
([3]–[5], [12]), and that this study was applied to the notion of
KM-fuzzy metric space introduced in 1975 [4] by Kramosil

and Michalek. Fuzzy graphs, introduced by Rosenfeld, are
finding an increasing number of applications in modelling
real time systems where the level of information inher-
ent in the system varies with respect to different levels of
precision. Fuzzy models are becoming useful because of
their aim in reducing the difference between the traditional
numerical models used in engineering and sciences [19].
The generalization of the concept of a fuzzy graph is
noticed by some researchers on more subjects, such as fuzzy
graph based on t-norm, intuitionistic fuzzy threshold graphs,
m-polar fuzzy graphs and single-valued neutrosophic graphs.
Mordeson et al. [17] generalized the definition of a fuzzy
graph by replacing minimum in the basic definitions with an
arbitrary t-norm. They developed a measure on the suscepti-
bility of trafficking in persons for networks by using a t-norm
other than minimum [17]. Recently, F. Smarandache, intro-
duced a new concept as a generalization of hypergraphs to
n-SuperHypergraph, Plithogenic n-SuperHypergraph {with
super-vertices (that are groups of vertices) and hyper-edges
{defined on power-set of power-set. . . } that is the most gen-
eral form of graph as today}, and n-ary HyperAlgebra, n-ary
NeutroHyperAlgebra, n-ary AntiHyperAlgebra respectively,
which have several properties and are connected with the real
world [24]. Further materials regarding graphs, single-valued
neutrosophic metric graphs, hypergraphs, intuitionistic fuzzy
set, n-SuperHypergraph and Plithogenic n-SuperHypergraph,
and NeutroAlgebras {Smarandache generalized the classical
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algebraic structures to neutro algebraic structures (or Neu-
tro Algebras) [whose operations and axioms are partially
true, partially indeterminate, and partially false] as extensions
of PartialAlgebra, and to AntiAlgebraic structures (or Anti
Algebras) [whose operations and axioms are totally false],
and in general, he extended any classical structure, in no
matter what field of knowledge, to a Neutro structure and an
Anti structure}. All these are available in the literature too [2],
[7]–[10], [13], [18], [20], [21], [25]–[29].

Regarding these points, we introduce the concept of
KM-single valued neutrosophic metric graphs based on the
concept of KM-fuzzy metrics. One of the main motivations
of KM-single valued neutrosophic metric graphs is obtained
from the fuzzy graphs and so we want to use this concept
to model many decision making problems in uncertain envi-
ronment. We need to construct the KM-single valued neutro-
sophic metric graphs based on finite or infinite sets, so we
develop the concept of KM-fuzzy metric on any nonempty
set and prove that for every given set with respect to the
concept of C-graphable sets one can construct a KM-metric
space. It is a natural generalization of the fuzzy graphs to
the single-valued neutrosophic metric graphs, so it shows our
main motivation for introducing the notion of the KM-single
valued neutrosophic metric graphs. This notion is based on
one of the fundamental concepts of fuzzymathematics, which
includes tools such as t-norms, t-conorms, and fuzzy sub-
sets. We apply the notation of KM-fuzzy metric spaces to
generate the finite KM-single valued neutrosophic metric
graphs. We have extended some production operations on
the KM-fuzzy metric spaces to the KM-single valued neu-
trosophic metric graphs.

II. PRELIMINARIES
In this section, we recall some definitions and results, which
we use in what follows.
Definition 1 ( [11], [14]): Let G1 = (V1,E1), G2 =

(V2,E2) be simple graphs, (x1, x2), (y1, y2) ∈ V1×V2, where
V1 × V2 is the vertex set of the following graphs:

(i) categorical(tensor, direct, cardinal, Kronecker) product
graph G1 × G2:
E(G1×G2) = {(x1, x2)(y1, y2) | x1y1 ∈ E1 and x2y2 ∈ E2};
(ii) Cartesian product graph G1 ⊗ G2:
E(G1 ⊗ G2) = {(x1, x2)(y1, y2) | (x1 = y1 and x2y2 ∈

E2) or (x1y1 ∈ E1 and x2 = y2)};
(iii) semi-strong product graph G1 · G2:
E(G1 · G2) = {(x1, x2)(y1, y2) | (x1 = y1 and x2y2 ∈

E2) or (x1y1 ∈ E1 and x2y2 ∈ E2)};
(iv) strong product (symmetric composition) graph

G1 � G2:
E(G1 � G2) = E(G1 ⊗ G2) ∪ E(G1 × G2);
(v) lexicographic product (composition)graph G1 ◦

G2(G1.G2,G1[G2]):
E(G1 ◦ G2) = {(x1, x2)(y1, y2) | (x1y1 ∈ E1) or (x1 =

y1 and x2y2 ∈ E2)};
(vi) union graph G1 ∪ G2:

V (G1∪G2) = V (G1)∪V (G2); and E(G1∪G2) = E(G1)∪
E(G2);
(vii) join product graph G1 + G2:
E(G1 +G2) = E(G1)∪ E(G2)∪ E ′, where E ′ is the set of

all line joining V1 with V2.
Definition 2 [16]: A fuzzy graph G = (V , σ, µ) is an

algebraic structure of non-empty set V together with a pair
of functions σ : V → [0, 1] and µ : V × V → [0, 1] such
that for all x, y ∈ V , µ(x, y) ≤ σ (x) ∧ σ (y). It is called σ as
fuzzy vertex set and µ as fuzzy edge set of G.
Definition 3 [1]: A single valued neutrosophic graph

(SVN–G) is defined to be a form G = (V ,E,A,B) where
(i) V = {v1, v2, . . . , vn}, TA, IA,FA : V −→ [0, 1] denote

the degree of membership, degree of indeterminacy and
non–membership of the element vi ∈ V ; respectively,
and for every 1 ≤ i ≤ n, we have 0 ≤ TA(vi)+ IA(vi)+
FA(vi) ≤ 3.

(ii) E ⊆ V × V , TB, IB,FB : E −→ [0, 1] are called degree
of truth–membership, indeterminacy–membership and
falsity–membership of the edge (vi, vj) ∈ E respectively,
such that for any 1 ≤ i, j ≤ n, we have TB(vi, vj) ≤
min{TA(vi),TA(vj)}, IB(vi, vj) ≥ max{IA(vi), IA(vj)},
FB(vi, vj) ≥ max{FA(vi),FA(
vj)} and 0 ≤ TB(vi, vj)+ IB(vi, vj)+FB(vi, vj) ≤ 3. Also
A is called the single valued neutrosophic vertex set of V
and B is called the single valued neutrosophic edge set
of E .

Definition 4 [15]: A triplet (X , ρ,T ) is called a
KM -fuzzy metric space, if X is an arbitrary non–empty set,
T is a left-continuous t-norm and ρ : X2

× R≥0 → [0, 1]
is a fuzzy set, such that for each x, y, z,∈ X and t, s ≥ 0,
we have:

(i) ρ(x, y, 0) = 0,
(ii) ρ(x, x, t) = 1 for all t > 0,
(iii) ρ(x, y, t) = ρ(y, x, t)(commutative property),
(iv) T (ρ(x, y, t), ρ(y, z, s)) ≤ ρ(x, z, t + s)(triangular

inequality),
(vi) ρ(x, y,−) : R≥0→ [0, 1] is a left-continuous map,
(vii) lim

t→∞
ρ((x, y, t)) = 1,

(viii) ρ(x, y, t) = 1,∀ t > 0 implies that x = y.
If (X , ρ,T ) satisfies in conditions (i)–(vii), then it is called

KM -fuzzy pseudo metric space and ρ is called a KM -fuzzy
pseudo metric. a fuzzy version of the triangular inequality.
The value ρ(x, y, t) is considered as the degree of nearness
from
Theorem 1 [15]: Let (X , ρ,T ) be a KM -fuzzy metric

space. Then ρ(x, y,−) : R≥0 → [0, 1] is a non-decreasing
map.

Proof 1: See [15].

III. FINITE KM-FUZZY METRIC SPACE
In this section, we apply the concept of KM -fuzzy metric
spaces and construct a new class of KM -fuzzy metric spaces
under operation product and union of KM -fuzzy metric
spaces. In addition, for any given non-empty set we construct
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KM -fuzzy metric space with respect to α-discrete metric,
where α ∈ R+. From now on, for all x, y ∈ [0, 1] we
consider Tmin(x, y) = min{x, y}, Tpr (x, y) = xy,Tlu(x, y) =

max(0, x + y − 1),Tdo(x, y) =
xy

x + y− xy
and CT = {T :

[0, 1]× [0, 1]→ [0, 1] | T is a left-continuous t-norm}.
Theorem 2: If (X , ρ,Tmin) is aKM -fuzzymetric space and

T ∈ CT . Then (X , ρ,T ) is a KM -fuzzy metric space.
Proof 2: Let x, y, z ∈ X , r, s ∈ R≥0 and T ∈ CT .

Since for all x, y ∈ [0, 1],T (x, y) ≤ Tmin(x, y), we get
that T (ρ(x, y, t), ρ(y, z, s)) ≤ Tmin(ρ(x, y, t), ρ(y, z, s)) ≤
ρ(x, z, t + s). Hence (X , ρ,T ) is a KM -fuzzy metric space.

Let X be an arbitrary set and α ∈ R+. For all x, y ∈ X ,
define dα : X × X → R by dα(x, y) = 0, where x = y and
dα(x, y) = α, where x 6= y as an α-discrete metric. So we
have the following theorem.
Theorem 3: Let X be an arbitrary set and |X | ≥ 2. Then

there exists a fuzzy set ρ : X2
× R≥0 → [0, 1], such that

(X , ρ,Tmin) is a KM -fuzzy metric space.
Proof 3: Let |X | ≥ 2 and α ∈ R+ be a fixed element.

Clearly (X , dα) is a metric space, now for all x, y ∈ X , 0 6=
m, s, t ∈ R≥0, define ρ : X2

×R≥0→ [0, 1] by ρ(x, y, 0) =

0 and ρ(x, y, t > 0) =
ϕ(t)

ϕ(t)+ mdα(x, y)
, where ϕ : R≥0 →

R≥0 is an increasing continuous function and for all x, y ∈ X ,
we have ϕ(t)+mdα(x, y) 6= 0 and ϕ(t) −→ 0, whence t −→ 0.
Now, we show that (X , ρ,Tmin) is a KM -fuzzy metric space.
We prove only the triangular inequality and for all x, y, z ∈ X ,
consider the five cases x = y = z, x = y 6= z, x = z 6= y, x 6=
y = z and x 6= y 6= z. In all cases for 0 ∈ {t, s} is clear,
now for 0 6∈ {t, s} we investigate it. For x = y 6= z, since
ϕ(t + s) ≥ ϕ(s), we have ϕ(t + s)(ϕ(s) + mα) − ϕ(s)(ϕ(t +

s) + mα) ≥ 0 and so
ϕ(s)

ϕ(s)+ mα
≤

ϕ(t + s)
ϕ(t + s)+ mα

. If x 6=

y 6= z, then dα(x, y) = dα(z, y) = dα(x, z) = α. Since ϕ is
an increasing map, we get that mαϕ(t) ≤ mαϕ(t + s) and it
implies that ϕ(t)(ϕ(t+s)+mα) ≤ ϕ(t+s)(ϕ(t)+mα) and so
ϕ(t)

ϕ(t)+ mα
≤

ϕ(t + s)
ϕ(t + s)+ mα

, which means that ρ(x, y, t) ≤

ρ(x, z, t + s). By a similar way, ρ(z, y, s) ≤ ρ(x, z, t + s) and
so Tmin(ρ(x, y, t), ρ(z, y, s)) ≤ ρ(x, z, t + s).

The other cases, are proved in a similar way and so
(X , ρ,Tmin) is a KM -fuzzy metric space.
Corollary 1: Let X be an arbitrary set and |X | ≥ 2. Then

there exists a fuzzy set ρ : X2
× R≥0 → [0, 1], such that for

all T ∈ CT , (X , ρ,T ) is a KM -fuzzy metric space.

A. FINITE KM-FUZZY METRIC SPACE BASED ON METRIC
In this subsection, we apply the concept of finite metric
for constructing of KM -fuzzy metric space on any given
non-empty set.
Definition 5: Let X be a finite set. We say that X is a

C-graphable set, if G = (X ,E) is a connected graph, where
E ⊆ X ×X and G = (X ,E) is called an X -derived graph. Let
GX be the set of all connected graphs which are constructed
on X as the set of vertices, so we have the following results.

Let G = (X ,E) be a connected graph. For all
x, y ∈ X , define dg(x, y) = min{|Px,y| where Px,y is a
path between x, y}. Obviously, dg is a metric on X .
Theorem 4: Let X be a finite set and |X | ≥ 2. Then there

exists a non-discrete metric d on X such that (X , d) is a metric
space.

Proof 4: Let |X | ≥ 2. Clearly, X is a C-graphable set and
so there exists a graph G = (X ,E) ∈ GX . For all x, y ∈ X ,
define d(x, y) = dg(x, y). Clearly (X , dg) is a metric space.
Corollary 2: Let n ∈ N,X be a set and |X | = n.

(i) If G = (X ,E) ∼= Kn is the complete graph, then for
metric spaces (X , dg) and (X , d1), we have dg = d1.

(ii) If G = (X ,E) ∼= Cn is the cycle graph, then for metric
spaces (X , dg) and (X , d1), we have d1 ≤ dg ≤ dbnc

2

.

Theorem 5: Let X be a non-empty set. Then there exists a
fuzzy subset ρ : X2

× R≥0 → [0, 1], such that (X , ρ,Tpr ) is
a KM -fuzzy metric space.

Proof 5: Let |X | ≥ 2. Then clearly, X is a C-graphable
set and by Theorem 4, (X , dg) is a metric space. For all x, y ∈
X and for all 0 6= m, t ∈ R≥0, define ρ(x, y, 0) = 0 and

ρ(x, y, t > 0) =
ϕ(t)

ϕ(t)+ mdg(x, y)
, where ϕ : R≥0 → R≥0

is an increasing continuous function, ϕ(t) + mdg(x, y) 6= 0
and ϕ(t) −→ 0, whence t −→ 0. Now, we show that (X , ρ,Tpr )
is a KM -fuzzy metric space and in this regard, only prove
triangular inequality property. Let x, y, z ∈ X . For 0 ∈ {t, s}
is clear, now for 0 6∈ {t, s} we investigate it. Since for all
s, t,m ∈ R+,

ϕ(t + s)ϕ(s)mdg(x, y)+ ϕ(t + s)ϕ(t)mdg(y, z)

≥ ϕ(t)ϕ(s)mdg(x, y)+ ϕ(s)ϕ(t)mdg(y, z)

≥ ϕ(s)ϕ(t)mdg(x, z),m2dg(y, z)dg(y, z)ϕ(t + s) > 0,

we get that Tpr (
ϕ(t)

ϕ(t)+ mdg(x, y)
,

ϕ(s)
ϕ(s)+ mdg(y, z)

) ≤

ϕ(t + s)
ϕ(t + s)+ mdg(x, z)

.

It follows that Tpr (ρ(x, y, t), ρ(y, z, s)) ≤ ρ(x, z, t+ s) and
so (X , ρ,Tpr ) is a KM -fuzzy metric space.
Corollary 3: Let X be a non-empty set. Then there exists

a fuzzy subset ρ : X2
× R≥0 → [0, 1], such that for all

left-continuous t-norm T ≤ Tpr , (X , ρ,T ) is a KM -fuzzy
metric space.

B. OPERATIONS ON KM-FUZZY METRIC SPACES
In this subsection, we extend KM -fuzzy metric spaces
to union and product of KM -fuzzy metric spaces. Let
(X1, ρ1,T ) and (X2, ρ2,T ) be KM -fuzzy metric spaces,
(x1, y1), (x2, y2) ∈ X1 × X2 and t ∈ R≥0. For an arbitrary
T ∈ CT , define T (ρ) : (X1 × X2)2 × R≥0 → [0, 1]
by T (ρ)

(
(x1, y1), (x2, y2), t

)
= T (ρ1(x1, x2, t), ρ2(y1, y2, t)).

So we have the following theorem.
Theorem 6: Let (X1, ρ1,T ) and (X2, ρ2,T ) be KM -fuzzy

metric spaces. Then (X1 × X2,Tmin(ρ),T ) is a KM -fuzzy
metric space.
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Proof 6: Let (x1, y1), (x2, y2), (x3, y3) ∈ X1 × X2 and
t, s ∈ R≥0.

(i) Since for all x1, x2 ∈ X1, y1, y2 ∈ X2, ρ1(x1, x2, 0) = 0
and ρ2(y1, y2, 0) = 0, have Tmin(ρ)

(
(x1, y1), (x2, y2), 0

)
= 0.

(ii) Tmin(ρ)
(
(x1, y1), (x2, y2), t

)
= 1 if and only

if Tmin(ρ1(x1, x2, t), ρ2(y1, y2, t)) = 1 if and only if
ρ1(x1, x2, t) = ρ2(y1, y2, t) = 1 if and only if (x1, y1) =
(x2, y2).

(iii) It is clear that Tmin(ρ) is a commutative map.
(iv)

T
(
Tmin(ρ)((x1, y1), (x2, y2), t),Tmin(ρ)((x2, y2), (x3, y3), s)

)
= T

(
Tmin(ρ1(x1, x2, t), ρ2(y1, y2, t)),

Tmin(ρ1(x2, x3, s), ρ2(y2, y3, s))
)
≤ Tmin(T

(
ρ1(x1,

x2, t), ρ1(x2, x3, s)
)
,T
(
ρ2(y1, y2, t), ρ2(y2, y3, s)

)
))

≤ Tmin(ρ1(x1, x3, t + s), ρ2(y1, y3, t + s))

= Tmin(ρ)((x1, y1), (x3, y3), t + s).

(v) Since ρ1, ρ2 are left-continuous maps, we get that ρ is
a left-continuous map.

(vi) Clearly lim
t→∞

Tmin(ρ1(x1, x2, t), ρ2(y1, y2, t)) =

Tmin( lim
t→∞

ρ1(x1, x2, t), lim
t→∞

ρ2(y1, y2, t)) = Tmin(1, 1) = 1.
Thus (X1 × X2,Tmin(ρ),T ) is a KM -fuzzy metric space.
is easy to check that (X1, ρ1,Tlu) and (X2, ρ2,Tlu) are KM -

fuzzymetric spaces and by Theorem 6, (X1×X2,Tmin(ρ),Tlu)
is a KM -fuzzy metric space.

where ρ1(x, y, t) =
min(x, y)+ t
max(x, y)+ t

and ρ2(x, y, t) =

min(x, y)
max(x, y)

. Applying Theorem 6, (R≥0 × N, ρ,Tpr ) is a

KM -fuzzy metric space, where ρ((x1, y1), (x2, y2), t) =

min{
min(x1, x2)+ t
max(x1, x2)+ t

,
min(y1, y2)
max(y1, y2)

}.

Let X1 ∩ X2 = ∅, (X1, ρ1,T ) and (X2, ρ2,T ) be KM -
fuzzy metric spaces, x, y ∈ X1 ∪ X2 and t ∈ R≥0. Consider
ε(x, y, t) =

∧
x,u∈X1 y,v∈X2

(ρ1(x, u, t) ∧ ρ2(y, v, t))), define

ρ1 ∪ ρ2 : (X1 ∪ X2)2 × R≥0→ [0, 1] by

(ρ1 ∪ ρ2)(x, y, t) =


ρ1(x, y, t) if x, y ∈ X1,
ρ2(x, y, t) if x, y ∈ X2,
ε(x, y, t) if x ∈ X1, y ∈ X2, .

So we have the following theorem.
Theorem 7: Let (X1, ρ1,T ) and (X2, ρ2,T ) be KM -fuzzy

metric spaces. Then (X1∪X2, ρ1∪ρ2,T ) is aKM -fuzzymetric
space, where X1 ∩ X2 = ∅.

Proof 7: Let x, y, z ∈ X1 ∪ X2 and t, s ∈ R≥0. We only
prove the triangular inequality property and other cases are
immediate. Let x, y ∈ X1(for x, y ∈ X2, one can prove in a
similar way), then T

(
(ρ1 ∪ ρ2)(x, y, t), (ρ1 ∪ ρ2)(y, z, s)

)
=

T
(
ρ1(x, y, t), (ρ1 ∪ ρ2)(y, z, s)

)
. If z ∈ X1, then T

(
(ρ1 ∪

ρ2)(x, y, t), (ρ1 ∪ ρ2)(y, z, s)
)
= T

(
ρ1(x, y, t), ρ1(y, z, s)

)
≤

ρ1(x, z, t + s) = (ρ1 ∪ ρ2)(x, z, t + s). If z ∈ X2, then
T
(
(ρ1 ∪ ρ2)(x, y, t), (ρ1 ∪ ρ2)(y, z, s)

)
= T

(
ρ1(x, y, t), ε

)
≤

ε = (ρ1 ∪ ρ2)(x, z, t + s). Let x ∈ X1, y ∈ X2.

Then T
(
(ρ1 ∪ ρ2)(x, y, t), (ρ1 ∪ ρ2)(y, z, s)

)
= T

(
ε, (ρ1 ∪

ρ2)(y, z, s)
)
. If z ∈ X2, since x ∈ X1 and y ∈ X2, we get that

(ρ1 ∪ ρ2)(x, z, t + s) = ε and so T
(
ε, (ρ1 ∪ ρ2)(y, z, s)

)
=

T
(
ε, ρ2(y, z, s)

)
≤ ε = (ρ1 ∪ ρ2)(x, z, t + s). If z ∈ X1, since

x ∈ X1 and y ∈ X2, we get that (ρ1 ∪ ρ2)(x, z, t + s) 6= ε and
so T

(
ε, (ρ1∪ρ2)(y, z, s)

)
= T

(
ε, ε

)
≤ ε ≤ ρ1(x, z, t+ s)

)
=

(ρ1 ∪ ρ2)(x, z, t + s). It follows that (X1 ∪ X2, ρ1 ∪ ρ2,T ) is
a KM -fuzzy metric space.

IV. KM-SINGLE VALUED NEUTROSOPHIC METRIC GRAPH
In this section, we introduce a novel concept as KM -single
valued neutrosophic metric graphs and analyse some their
properties.
Definition 6: Let (V , ρ,T ) be a fuzzy metric space

and G∗ = (V ,E) be a simple graph. Then G =(
X = (TV , IV ,FV ),Y = (TE , IE ,FE ), ρ,T , S

)
is called

a KM -single valued neutrosophic metric graph (a strong
KM -single valued neutrosophic metric graph) on G∗, if there
exists some time t ∈ R≥0 (for t = 0, we call starting time)
such that for all xy ∈ E , we have

(i) the functions TV : V → [0, 1], IV : V →

[0, 1] and FV : V → [0, 1] represent the degree
of truth-membership, indeterminacy-membership and
falsity-membership of the element x ∈ V , respectively.
There is no restriction on the sum of TV (x), IV (x) and
FV (x), therefore 0 ≤ TV (x)+ IV (x)+ FV (x) ≤ 3 for all
x ∈ V .

(ii) the functions TE : E ⊆ V × V → [0, 1], IE :
E ⊆ V × V → [0, 1] and FE : E ⊆ V × V →
[0, 1] are defined by T

(
TE (xy),T (TV (x),TV (y))

)
≤

ρ(x, y, t)
(
T (TE (xy),T (TV (x),TV (y)) = ρ(x, y, t)

)
),

S
(
IE (xy), S(IV (x), IV (y))

)
≥ ρ(x, y, t)(

S
(
IE (xy), S(IV (x), IV (y))

)
= ρ(x, y, t)

)
and S

(
FE (xy),

S(FV (x),FV (y))
)
≥ ρ(x, y, t)(

S
(
FE (xy), S(FV (x),FV (y))

)
= ρ(x, y, t)

)
, where S is a

triangular conorm as a dual of triangular norm T , via a
negation η.

We call X as a KM -single valued neutrosophic metric vertex
set of G and Y is KM -single valued neutrosophic edge set
of G.

In definition of KM -single valued neutrosophic metric
graph, if t → ∞, then for all x, y ∈ V , ρ(x, y, t) → 1
and so it follows that FE (xy) = S(FV (x),FV (y)) = IE (xy) =
S(IV (x), IV (y)) = ρ(x, y, t) and TE (xy),T (TV (x),TV (y)) can
be any given fuzzy values. The concept of KM -single valued
neutrosophic metric graph is a generalization of KM -fuzzy
metric graph, where is introduced by M. Hamidi et.al [6].
Theorem 8: Let (V , ρ,T ) be a fuzzymetric space andG =

(X ,Y , ρ,T , S) be a KM -single valued neutrosophic metric
graph on G∗ = (V ,E). Then for starting time:

(i) for all xy ∈ E, TE (xy) = 0 or TV (x) = 0 or TV (y) = 0.
(ii) |Range(IE ))| = |Range(IV ))| = |Range(FE ))| =
|Range(FV ))| = |[0, 1]|.

Proof 8: (i) Let xy ∈ E . Since G = (X ,Y , ρ,T , S) is a
KM -single valued neutrosophic metric graph G∗ = (V ,E),
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we get that T
(
TE (xy),T (TV (x),TV (y))

)
≤ ρ(x, y, 0). Hence

T
(
TE (xy),T (TV (x),TV (y))

)
= 0 and so TE (xy) = 0 or

TV (x) = 0 or TV (y) = 0.
(ii) It is immediate by Definition.
Example 1: Let V = {1, 2, 3, 4} and x, y ∈ X . Con-

sider a fuzzy subset ρ(x, y, 0) = 0 and ρ(x, y, t >

0) =
min{x, y} + t
max{x, y} + t

. We take the negation η(m) = 1 −

m(m ∈ [0, 1]) and obtain a KM -single valued neutro-
sophic metric graph G = (V ,

(
X = (TV , IV ,FV ),Y =

(TE , IE ,FE ), ρ,Tmin, Smax
)
) on the cycle graph C4 for t = 1,

in Figure 1.

FIGURE 1. KM-single valued neutrosophic metric graph
G = (X ,Y , ρ, Tmin,Smax ).

Let (V , ρ,T ) be a fuzzy metric space and G =

(X ,Y , ρ,T , S) be a KM -single valued neutrosophic metric
graph on G∗ = (V ,E) and α, β, γ ∈ [0, 1]. Define T αV =
{x ∈ V | TV (x) ≥ α}, IβV = {x ∈ V | IV (x) ≤ β},
FγV = {x ∈ V | FV (x) ≤ γ }, T

α
E = {xy ∈ E | TE (x) ≥ α},

IβE = {xy ∈ E | IE (x) ≤ β}, F
γ
E = {xy ∈ E | FE (x) ≤ γ },

X (α,β,γ )
= {x ∈ V | TV (x) ≥ α, IV (x) ≤ β,FV (x) ≤ γ } and

Y (α,β,γ )
= {xy ∈ E | TE (x) ≥ α, IE (x) ≤ β,FE (x) ≤ γ }.

Theorem 9: Let (V , ρ,T ) be a fuzzymetric space andG =
(X ,Y , ρ,T , S) be a KM -single valued neutrosophic metric
graph on G∗ = (V ,E) and α, β, γ ∈ [0, 1]. Then X (α,β,γ )

=

T αV ∩ I
β
V ∩ F

γ
V and Y (α,β,γ )

= T αE ∩ I
β
E ∩ F

γ
E .

Proof 9: Let x ∈ X (α,β,γ ). Then TV (x) ≥ α, IV (x) ≤ β
and FV (x) ≤ γ implies that x ∈ T αV ∩I

β
V ∩F

γ
V and conversely.

In similar a way, one can see that Y (α,β,γ )
= T αE ∩ I

β
E ∩ F

γ
E .

Let G = (X ,Y , ρ,T , S) be a KM -single valued
neutrosophic metric graph on G∗ = (V ,E). Con-
sider αmin =

∧
xy∈E

T
(
TE (xy),T (TV (x),TV (y))

)
, βmax =∨

xy∈E

S
(
IE (xy), S(IV (x), IV (y))

)
, γmax =

∨
xy∈E

S
(
FE (xy),

S(FV (x),FV (y))
)
. Thus we have the following theorem.

Theorem 10: Let (V , ρ,T ) be a fuzzy metric space and
G = (X ,Y , ρ,T , S) be a KM -single valued neutrosophic
metric graph on G∗ = (V ,E). Then For any α ≤ αmin, β ≥
βmax , γ ≥ γmax ,G(α,β,γ )

=
(
X (α,β,γ ),Y (α,β,γ )

)
is a subgraph

of G∗ = (X ,Y ). parameters of R+.

Proof 10: Let xy ∈ E . Since T
(
TE (xy),T (TV (x),

TV (y))
)
≤ Tmin

(
TE (xy),T (TV (x),TV (y))

)
, we get that

TE (xy) ≥ αmin ≥ α. So for any α ≤ αmin, TEα ⊆ E . Also
since S

(
IE (xy), S(IV (x), IV (y))

)
≥ Smax

(
IE (xy), S(IV (x), IV

(y))
)
, we get that IE (xy) ≤ βmax ≤ β. So for any β ≥ βmax ,

IEβ ⊆ E . In a similar way, can see that FEβ ⊆ E . Using The-
orem 9, Y (α,β,γ )

⊆ E and so G(α,β,γ )
=
(
X (α,β,γ ),Y (α,β,γ )

)
is a subgraph of G∗ = (X ,Y ).
Theorem 11: Let (V , ρ,T ) be a KM -fuzzy metric space

and G∗ = (V ,E) be a simple graph.
(i) If TE ≤ ρ, IE ≥ ρ and FE ≥ ρ then G =

(X ,Y , ρ,T ) is a KM -single valued neutrosophic met-
ric graph on G∗.

(ii) If G = (X ,Y , ρ,Tmin, Smax) is a KM -single valued
neutrosophic metric graph on G∗ and TE > ρ, IE < ρ

and FE < ρ, then G = (X ,Y ) is not a single valued
neutrosophic graph on G∗.

(iii) If G = (X ,Y , ρ,Tmin, Smax) is a strong KM -single
valued neutrosophic metric graph on G∗, then G =
(X ,Y ) is a KM -single valued neutrosophic graph on
G∗ if and only if ρ(x, y, t) ≥ TE (xy), ρ(x, y, t) ≤
IE (xy) and ρ(x, y, t) ≤ FE (xy).

Proof 11: Let x, y ∈ V . Then for some t ∈ R≥0:
(i) Since T

(
TE (xy),T (TV (x),TV (y))

)
≤ TE (xy), S

(
IE (xy),

S(IV (x), IV (y))
)
≥ IE (xy) and S

(
FE (xy), S(FV (x),FV (y))

)
≥

FE (xy) then TE ≤ ρ, IE ≥ ρ and FE ≥ ρ imply that
T
(
TE (xy),T (TV (x),TV (y))

)
≤ ρ(x, y, t), S

(
IE (xy), S(IV (x),

IV (y))
)
≥ ρ(x, y, t) and S

(
FE (xy), S(FV (x),FV (y))

)
≥

ρ(x, y, t). So G = (X ,Y , ρ,T ) is a KM -single valued neu-
trosophic graph metric graph on G∗.
(ii) Let G = (X ,Y ) be a single valued neutrosophic graph

on G∗. For all xy ∈ E, since G = (X ,Y , ρ,Tmin, Smax) is
a KM -single valued neutrosophic metric graph on G∗, using
TE (xy) ≤ Tmin(TV (x),TV (y)), IE (xy) ≥ Smax(IV (x), IV (y))
and FE (xy) ≥ Smax(FV (x),FV (y)), we get that TE (xy) = Tmin(
TE (xy),Tmin(TV (x),TV (y))

)
≤ ρ(x, y, t), IE (xy) = Smax(

IE (xy), Smax(IV (x), IV (y))
)
≥ ρ(x, y, t) and FE (xy) =

Smax
(
FE (xy), Smax(FV (x),FV (y))

)
≥ ρ(x, y, t) which it is a

contradiction.
(iii) G = (X ,Y ) is a single valued neutrosophic

graph on G∗ if and only if for all xy ∈ E,
TE (xy) ≤ Tmin(TV (x),TV y)), IE (xy) ≥ Smax(IV (x), IV (y))
and FE (xy) ≥ Smax(FV (x),FV (y)). Then G =

(X ,Y ) is a KM -single valued neutrosophic graph on G∗

if and only if Tmin(TE (xy)(xy),Tmin(TV (x),TV (y))) =

TE (xy), Smax(IE (xy)(xy), Smax(IV (x), IV (y))) = IE (xy) and
Smax(FE (xy)(xy), Smax(FV (x),FV (y))) = FE (xy) if and
only if ρ(x, y, t) ≥ TE (xy), ρ(x, y, t) ≤ IE (xy) and
ρ(x, y, t) ≤ FE (xy).
Corollary 4: Let G = (X ,Y , ρ,T , S) be a KM -fuzzy

metric connected graph on G∗ = (V ,E). Then for starting
time G = (X ,Y ) is not a single valued neutrosophic graph
on G∗.
Theorem 12: Let (V , ρ,T ) be a KM -fuzzy metric space,

G∗ = (V ,E) be a simple graph and xy ∈ E . Then for
TV , IV ,FV : V → [0, 1] and TE , IE ,FE : E → [0, 1],
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(i) If TV (x) + TV (y) ≤ 1, IV (x) + IV (y) = 1 and FV (x) +
FV (y) = 1 then G = (X ,Y , ρ,Tlu, Slu) is a KM -single
valued neutrosophic metric graph on G∗.

(ii) If TE (xy) + 1 ≤ TV (xy) + TV (x) + TV (y) ≤ 2, IV (x) +
IV (y) = FV (x)+FV (y) = 1, thenG = (X ,Y , ρ,Tlu, Slu)
is a KM -single valued neutrosophic metric graph onG∗.
Proof 12: Let x, y ∈ V . Then for some t ∈ R≥0:

(i) W have

Tlu(TE (xy),Tlu(TV (x),TV (y))

= max
(
0,TE (xy)+ Tlu(TV (x),TV (y))− 1

)
= max

(
0,TE (xy)+max(0,TV (x)+ TV (y)− 1)− 1

)
.

If TV (x) + TV (y) ≤ 1, then Tlu(TE (xy),Tlu(TV (x),TV (y)) =
max

(
0,TE (xy) − 1

)
= 0, since for all x, y ∈ V we have

TE (xy) ≤ 1. It concludes that for any time t ∈ R≥0 get
that Tlu(TE (xy),Tlu(TV (x),TV (y)) ≤ ρ(x, y, t). In addition,
IV (x)+ IV (y) = 1, implies that

Slu(IE (xy), Slu(IV (x), IV (y))

= min
(
1, IE (xy)+ Slu(IV (x), IV (y))

)
= min

(
1, IE (xy)+min(1, IV (x)+ IV (y))

)
= min

(
1, IE (xy)+ 1

)
= 1 ≥ ρ(x, y, t).

In a similar way, one can prove that Slu(FE (xy), Slu(FV (x),
FV (y)) ≥ ρ(x, y, t) and so G = (X ,Y , ρ,Tlu, Slu) is a
KM -single valued neutrosophic metric graph on G∗.
(ii) Because TE (xy) + 1 ≤ TE (xy) + TV (x) + TV (y) ≤

2, we get that TV (x) + TV (y) ≥ 1 and by item (i), have
Tlu(TE (xy),Tlu(TV (x),TV (y)) = Tlu(0,TE (xy) + TV (x) +
TV (y) − 2) = 0. Moreover, IV (x) + IV (y) = FV (x)+
FV (y) = 1, implies that

Slu(FE (xy), Slu(FV (x),FV (y))

= min
(
1,FE (xy)+ Slu(FV (x),FV (y))

)
= min

(
1,FE (xy)+min(1,FV (x)+ FV (y))

)
= min

(
1,FE (xy)+ 1

)
= 1 ≥ ρ(x, y, t).

KM -fuzzy metric graph on G∗. It follows that G =

(X ,Y , ρ,Tlu, Slu) is a KM -single valued neutrosophic metric
graph on G∗.

A. OPERATIONS ON KM-FUZZY METRIC GRAPHS
In this section, for any given two KM -single valued
neutrosophic metric graphs, define some product opera-
tions and show that the product of KM -single valued
neutrosophic metric graphs is a KM -fuzzy metric graph.
From now on, we consider G1 = (X1 = (T (1)

V , I (1)V ,

F (1)
V ),Y1 = (T (1)

E , I (1)E ,F (1)
E ), ρ1,T , S), G2 = (X2 =

(T (2)
V , I (2)V ,F (2)

V ),Y2 = (T (2)
E , I (2)E ,F (2)

E ), ρ2,T , S) as KM -
single valued neutrosophic metric graphs on simple graphs
G∗1 = (V1,E1) and G∗2 = (V2,E2), respectively.
Definition 7: Let G1, G2 be KM -single valued neutro-

sophic metric graphs on simple graphs G∗1 and G∗2, respec-
tively. Define the categorical product (tensor product) of

fuzzy subsets X1 × X2 = (T (1)
V × T (2)

V , I (1)V × I (2)V ,F (1)
V ×

F (2)
V ),Y1×Y2 = (T (1)

E ×T
(2)
E , I (1)E × I

(2)
E ,F (1)

E ×F
(2)
E ), where

T (1)
V ×T

(2)
V , I (1)V × I

(2)
V ,F (1)

V ×F
(2)
V : V (G

∗

1×G
∗

2)→ [0, 1] by

(T (1)
V × T

(2)
V )(x1, x2) = Tmin(T

(1)
V (x1),T

(2)
V (x2)),

(I (1)V × I
(2)
V )(x1, x2) = Smax(I

(1)
V (x1), I

(2)
V (x2)),

(F (1)
V × F

(2)
V )(x1, x2) = Smax(F

(1)
V (x1),F

(2)
V (x2)),

and T (1)
E ×T

(2)
E , I (1)E ×I

(2)
E ,F (1)

E ×F
(2)
E : E(G

∗

1×G
∗

2)→ [0, 1]
by

(T (1)
E × T

(2)
E )((x1, x2)(y1, y2)) = Tmin(T

(1)
E (x1y1),

T (2)
E (x2y2)), (I

(1)
E × I

(2)
E )((x1, x2)(y1, y2)) = Smax

(I (1)E (x1y1), I
(2)
E (x2y2), (F

(1)
E × F

(2)
E )((x1, x2)(y1, y2))

= Smax(F
(1)
E (x1y1),F

(2)
E (x2y2).

Theorem 13: Let G1 and G2 be KM -single valued neutro-
sophic metric graphs on simple graphs G∗1 and G∗2, respec-
tively. Then G1 × G2 = (X1 × X2,Y1 × Y2,Tmin(ρ),T , S) is
a KM -single valued neutrosophic metric graph on G∗1 × G

∗

2.
Proof 13: Firstly, by Theorem 6, (V1×V2,Tmin(ρ),T ) is

a KM -fuzzy metric space. Let (x1, x2)(y1, y2) ∈ E(G∗1 ×G
∗

2).
SinceG1 is aKM -single valued neutrosophic metric graph on
G∗1 and G2 is a KM -single valued neutrosophic metric graph
on G∗2, for some t1, t2 ∈ R≥0, we get that

T
(
(T (1)
E × T

(2)
E )((x1, x2)(y1, y2)),T

(
(T (1)
V × T

(2)
V )

(x1, x2), (T
(1)
V × T

(2)
V )(y1, y2)

)
= T

(
Tmin(T

(1)
E (x1y1),

T (2)
E (x2y2)),T

(
(Tmin(T

(1)
V (x1),T

(1)
V (x2)), (Tmin

(T (1)
V (y1),T

(2)
V (y2))

))
≤ T

(
T (1)
E (x1 y1),T

(
T (1)
V (x1),

T (1)
V (y1)

))
≤ ρ1(x1, y1, t1) and

T
(
(T (1)
E × T

(2)
E )((x1, x2)(y1, y2)),T

(
(T (1)
V × T

(2)
V )

(x1, x2), (T
(1)
V × T

(2)
V )(y1, y2)

)
= T

(
Tmin(T

(1)
E (x1y1),

T (2)
E (x2y2)),T

(
(Tmin(T

(1)
V (x1),T

(2)
V (x2)), (Tmin(T

(1)
V

(y1),T
(2)
V (y2))

))
≤ T

(
T (2)
E (x2 y2),T

(
T (2)
V (x2),

T (2)
V (y2)

))
≤ ρ2(x2, y2, t2).

Consider t = max{t1, t2}, so by Theorem 1, we obtain

T
(
(T (1)
E × T

(2)
E ((x1, x2)(y1, y2)),

T
(
(T (1)
V × T

(2)
V )(x1, x2), (T

(1)
V × T

(2)
V )(y1, y2)

)
≤ Tmin

(
ρ1(x1, y1, t1), ρ2(x2, y2, t2)

)
≤ Tmin(ρ)((x1, x2), (y1, y2), t).

I addition,

S
(
(I (1)E × I

(2)
E )((x1, x2)(y1, y2)),

S
(
(I (1)V × I

(2)
V )(x1, x2), (I

(1)
V × I

(2)
V )(y1, y2)

)
= S

(
Smax(I

(1)
E (x1y1), I

(2)
E (x2y2)), S

(
(Smax(I

(1)
V (x1),

I (1)V (x2)), (Smax(I
(1)
V (y1), I

(2)
V (y2))

))
≥ S

(
I (1)E (x1 y1), S

(
I (1)V (x1), I

(1)
V (y1)

))
≥ ρ1(x1, y1, t1)
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and S
(
(I (1)E × I

(2)
E )((x1, x2)(y1, y2)), S

(
(I (1)V × I

(2)
V )

(x1, x2), (I
(1)
V × I

(2)
V )(y1, y2)

)
= S

(
Smax(I

(1)
E (x1y1),

I (2)E (x2y2)), S
(
(Smax(I

(1)
V (x1), I

(2)
V (x2)), (Smax(I

(1)
V

(y1), I
(2)
V (y2))

))
≥ S

(
I (2)E (x2 y2), S

(
I (2)V (x2), I

(2)
V (y2)

))
≥ ρ2(x2, y2, t2).

Consider t = min{t1, t2}, so by Theorem 1, we obtain

S
(
(I (1)E × I

(2)
E ((x1, x2)(y1, y2)),

S
(
(I (1)V × I

(2)
V )(x1, x2), (I

(1)
V × I

(2)
V )(y1, y2)

)
≥ Smax

(
ρ1(x1, y1, t1), ρ2(x2, y2, t2)

)
≥ Smax(ρ)((x1,

x2), (y1, y2), t).

In a similar way, can see that S
(
(F (1)

E ×F
(2)
E ((x1, x2)(y1, y2)),

S
(
(F (1)

V × F (2)
V )(x1, x2), (F

(1)
V × F (2)

V )(y1, y2)
)
≥ Smax

(ρ)((x1, x2), (y1, y2), t). Thus G1 × G2 = (X1 × X2,Y1 ×
Y2,Tmin(ρ),T , S) is a KM -single valued neutrosophic metric
graph on G∗1 × G

∗

2.
Definition 8: Let G1, G2 be KM -single valued neutro-

sophic metric graphs on simple graphs G∗1 and G∗2, respec-
tively. Define the Cartesian product (or product) fuzzy subsets
X1 ⊗ X2 = (T (1)

V ⊗ T (2)
V , I (1)V ⊗ I (2)V ,F (1)

V ⊗ F (2)
V ),Y1 ⊗

Y2 = (T (1)
E ⊗ T (2)

E , I (1)E ⊗ I (2)E ,F (1)
E ⊗ F (2)

E ), where T (1)
V ⊗

T (2)
V , I (1)V ⊗ I (2)V ,F (1)

V ⊗ F (2)
V : V (G∗1 × G∗2) → [0, 1]

by (T (1)
V ⊗ T (2)

V )(x1, x2) = Tmin(T
(1)
V (x1),T

(2)
V (x2)), (I

(1)
V ⊗

I (2)V )(x1, x2) = Smax(I
(1)
V (x1), I

(2)
V (x2)), (F

(1)
V ⊗F

(2)
V )(x1, x2) =

Smax(F
(1)
V (x1),F

(2)
V (x2)), and T (1)

E ⊗ T (2)
E , I (1)E ⊗ I (2)E ,

F (1)
E ⊗ F (2)

E : E(G∗1 × G∗2) → [0, 1] by (T (1)
E ⊗ T (2)

E )
((x, x2)(x, y2)) = Tmin(T

(1)
V (x),T (2)

E (x2y2)), (T
(1)
E ⊗ T (2)

E )
((x1, y)(y1, y)) = Tmin(T

(2)
V (y),T (1)

E (x1y1)), (I
(1)
E ⊗I

(2)
E )((x, x2)

(x, y2)) = Smax(I
(1)
V (x), I (2)E (x2y2)), (I

(1)
E ⊗ I (2)E )((x1, y)(y1,

y)) = Smax(I
(2)
V (y), I (1)E (x1y1)), (F

(1)
E ⊗ F

(2)
E )((x, x2)(x, y2)) =

Smax(F
(1)
V (x),F (2)

E (x2y2)), (F
(1)
E ⊗F

(2)
E )((x1, y)(y1, y)) = Smax

(F (2)
V (y),F (1)

E (x1y1)).
Example 2: Consider the KM -fuzzy metric spaces

(V1 = {1, 2}, ρ1,Tmin), (V2 = {3, 4, 5}, ρ2,Tmin), where
ρ1(1, 1, t > 0) = 1, ρ1(2, 2, t > 0) = 1, ρ1(1, 2, t > 0) =
1+ t
2+ t

, ρ1(x, y, 0) = 0, x, y ∈ V1 and for all x, y ∈ {3, 4, 5},

ρ2(x, y, t) =


min{x, y} + t
max{x, y} + t

if t > 0

0 if t = 0

. We take the negation η(m) = 1− m(m ∈ [0, 1]) and obtain
the KM -single valued neutrosophic metric graphs G1 =

(V1,
(
X = (TV , IV ,FV ),Y = (TE , IE ,FE ), ρ1,Tmin, Smax

)
)

in unit time t1 = 1 and G2 = (V2,
(
X = (TV , IV ,FV ),Y =

(TE , IE ,FE ), ρ2,Tmin, Smax
)
) in unit time t2 = 1 on G∗1

and G∗2 in Figure 2, where A = (0.6, 0.4, 0.2),B =

(0.5, 0.1, 0.3),C = (0.3, 0.5, 0.7),D = (0.5, 0.6, 0.2),E =
(0.1, 0.2, 0.5),AB = (0.5, 0.97, 0.95),CE = (0.1, 0.96,
0.91) ,ED = (0.5, 0.98, 0.99) and DC = (0.3, 0.93, 0.96).
Now, we obtain the KM -fuzzy metric graph G1 × G2 in

FIGURE 2. KM-single valued neutrosophic metric graphs G1 and G2 for
t = 1.

FIGURE 3. KM-single valued neutrosophic metric graph G1 ⊗G2 for t = 1.

Figure 3, where a = (0.1, 0.4, 0.5), b = (0.1, 0.4, 0.5),
c = (0.5, 0.6, 0.2), d = (0.5, 0.6, 0.3), e = (0.3, 0.5, 0.7),
f = (0.3, 0.5, 0.7), ab = (0.1, 0.97, 0.95), dc = (0.5, 0.97,
0.95), ef = (0.3, 0.97, 0.95), bd = (0.5, 0.98, 0.99), df =
(0.3, 0.93, 0.96), ac = (0.5, 0.98, 0.99), ce = (0.3, 0.93,
0.96), bf = (0.1, 0.96, 0.961) and ae = (0.1, 0.96, 0.91).
Theorem 14: Let G1 and G2 be KM -single valued neu-

trosophic metric graphs on simple graphs G∗1 and G∗2,
respectively.
(i) If (G∗1 ⊗G

∗

2,T (ρ),T ) is a KM -fuzzy metric space, then
T (ρ) = ρ1 or T (ρ) = ρ2, where T ∈ CT .

(ii) G1 ⊗ G2 = (X1 ⊗ X2,Y1 ⊗ Y2,Tmin(ρ),T , S) is a
KM -single valued neutrosophic metric graph on
G∗1 ⊗ G

∗

2.
Proof 14: (i) Let (x1, x2), (y1, y2) ∈ E(G∗1 ⊗ G∗2).

Then x1 = y1 and x2y2 ∈ E(G∗2) or x2 = y2 and
x1y1 ∈ E(G∗1). If x1 = y1 and x2y2 ∈ E(G∗2), then
T (ρ)

(
(x1, x2), (x1, y2), t

)
= T (ρ1(x1, x1, t), ρ2(x2, y2, t)) =

T (1, ρ2(x2, y2, t)) = ρ2(x2, y2, t). If x2 = y2 and
x1y1 ∈ E(G∗1), then T (ρ)

(
(x1, x2), (y1, x2), t

)
=

T (ρ1(x1, y1, t), ρ2(x2, x2, t)) = T (ρ1(x1, y1, t), 1) =

ρ1(x1, y1, t).
(ii) Firstly, by Theorem 6, (V1 × V2,Tmin(ρ),T ) is a KM -

fuzzy metric space. Let (x1, x2), (y1, y2) ∈ E(G∗1⊗G
∗

2). Since
G1 is a KM -single valued neutrosophic metric graph on G∗1
and G2 is a KM -single valued neutrosophic metric graph on
G∗2, for some t1, t2 ∈ R≥0, give t = max{t1, t2}, so by item
(i) and Theorem 1, we get that

T
(
(T (1)
E ⊗ T

(2)
E )((x, x2)(x, y2)),T

(
(T (1)
V ⊗ T

(2)
V )(x,

x2), (T
(1)
V ⊗ T

(2)
V )(x, y2)

)
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= T
(
Tmin(T

(1)
V (x),T (2)

E (x2y2)),T
(
Tmin(T

(1)
V (x),T (2)

V

(x2)),Tmin(T
(1)
V (x),T (2)

V (y2))
))

≤ T
(
T (2)
E (x2 y2),T

(
T (2)
V (x),T (2)

V (y2)
))
≤ ρ2(x2, y2, t2)

≤ Tmin(ρ)((x, x2)(x, y2), t) and

T
(
(T (1)
E ⊗ T

(2)
E )((x1, y)(y1, y)),T

(
(T (1)
V ⊗ T

(2)
V )(x1, y),

(T (1)
V ⊗ T

(2)
V )(y1, y)

)
= T

(
Tmin(T

(2)
V (y),T (1)

E (x1y1)),T
(
Tmin(T

(1)
V (x1),T

(2)
V

(y)),Tmin(T
(1)
V (y1),T

(2)
V (y))

))
≤ T

(
T (1)
E (x1y1),T

(
T (1)
V (x1),T

(1)
V (y1)

))
≤ ρ1(x1, y1, t1)

≤ Tmin(ρ)((x1, y)(y1, y), t)

Now, give t = min{t1, t2}, so by item (i) and Theorem 1,
we get that

S
(
(I (1)E ⊗ I

(2)
E )((x, x2)(x, y2)),

S
(
(I (1)V ⊗ I

(2)
V )(x, x2), (I

(1)
V ⊗ I

(2)
V )(x, y2)

)
= S

(
Smax(I

(1)
V (x), I (2)E (x2y2)), S

(
Smax(I

(1)
V (x), I (2)V (x2)),

Smax(I
(1)
V (x), I (2)V (y2))

))
≥ S

(
I (2)E (x2 y2), S

(
I (2)V (x), I (2)V (y2)

))
≥ ρ2(x2, y2, t2)

≥ Smax(ρ)((x, x2)(x, y2), t) andS
(
(I (1)E ⊗I

(2)
E )((x1, y)(y1, y)),

S
(
(T (1)
V ⊗ I

(2)
V )(x1, y), (T

(1)
V ⊗ I

(2)
V )(y1, y)

)
= S

(
Smax(I

(2)
V (y), I (1)E (x1y1)),T

(
Smax(I

(1)
V (x1), I

(2)
V (y)),

Smax(I
(1)
V (y1), I

(2)
V (y))

))
≥ S

(
I (1)E (x1y1), S

(
I (1)V (x1), I

(1)
V (y1)

))
≥ ρ1(x1, y1, t1)

≥ Smax(ρ)((x1, y)(y1, y), t).

In a similar way, can see that S
(
(F (1)

E ⊗F
(2)
E ((x1, x2)(y1, y2)),

S
(
(F (1)

V ⊗ F (2)
V )(x1, x2), (F

(1)
V ⊗ F (2)

V )(y1, y2)
)
≥ Smax(ρ)

((x1, x2), (y1, y2), t). Thus G1 ⊗ G2 = (X1 ⊗ X2,Y1 ⊗
Y2,Tmin(ρ),T , S) is a KM -single valued neutrosophic metric
graph on G∗1 ⊗ G

∗

2.
Definition 9: Let G1, G2 be KM -single valued neu-

trosophic metric graphs on simple graphs G∗1 and G∗2,
respectively.
Define the semi-strong product of fuzzy subsets X1 ·

X2 = (T (1)
V · T (2)

V , I (1)V · I (2)V ,F (1)
V · F (2)

V ),Y1 · Y2 =
(T (1)
E · T

(2)
E , I (1)E · I

(2)
E ,F (1)

E · F
(2)
E ), where T (1)

V · T
(2)
V , I (1)V ·

I (2)V ,F (1)
V · F

(2)
V : V (G∗1 × G∗2) → [0, 1] by (T (1)

V · T
(2)
V )

(x1, x2) = Tmin(T
(1)
V (x1),T

(2)
V (x2)), (I

(1)
V · I (2)V )(x1, x2) =

Smax(I
(1)
V (x1), I

(2)
V (x2)), (F

(1)
V · F

(2)
V )(x1, x2) = Smax(F

(1)
V (x1),

F (2)
V (x2)), and T (1)

E · T
(2)
E , I (1)E · I

(2)
E ,F (1)

E · F
(2)
E : E(G∗1 ×

G∗2) → [0, 1] by (T (1)
E · T (2)

E )((x, x2)(x, y2)) = Tmin
(T (1)
V (x),T (2)

E (x2y2)), (T
(1)
E · T (2)

E )((x1, x2)(y1, y2)) = Tmin
(T (1)
E (x1y1)),T

(2)
E (x2y2)), (I

(1)
E · I

(2)
E )((x, x2)(x, y2)) = Smax

(I (1)V (x), I (2)E (x2y2)), (I
(1)
E · I

(2)
E )(x1, x2)(y1, y2)) = Smax(I

(1)
E

(x1y1)), I
(2)
E (x2y2)), (F

(1)
E ·F

(2)
E )((x, x2)(x, y2))=Smax(F

(1)
V (x),

F (2)
E (x2y2)), (F

(1)
E · F

(2)
E )((x1, x2)(y1, y2)) = Smax(F

(1)
E (x1y1),

F (2)
E (x2y2)).

Example 3: Consider the KM -single valued neutrosophic
metric graphs G1 and G2 in Example 2. So we obtain
the KM -fuzzy metric graph G1 · G2 in Figure 4, where
a = (0.1, 0.4, 0.5), b = (0.1, 0.4, 0.5), c = (0.5, 0.6, 0.2),
d = (0.5, 0.6, 0.3), e = (0.3, 0.5, 0.7), f = (0.3, 0.5, 0.7),
be = (0.1, 0.97, 0.95), bc = (0.5, 0.98, 0.99), af = (0.1,
0.97, 0.95), bd = (0.5, 0.98, 0.99), df = (0.3, 0.93, 0.96),
ac = (0.5, 0.98, 0.99), ce = (0.3, 0.93, 0.96), bf = (0.1,
0.96, 0.961), cf = (0.3, 0.97, 0.96), de = (0.3, 0.97, 0.96),
ad = (0.5, 0.98, 0.99) and ae = (0.1, 0.96, 0.91).

FIGURE 4. KM-single valued neutrosophic metric graph G1 · G2 for t = 1.

Theorem 15: Let G1 and G2 be KM -single valued neutro-
sophic metric graphs on simple graphs G∗1 and G∗2, respec-
tively. Then G1 · G2 = (X1 · X2,Y1 · Y2,Tmin(ρ),T , S) is a
KM -single valued neutrosophic metric graph on G∗1 · G

∗

2.
Proof 15: It is similar to Theorems 13 and 14.

Definition 10: Let G1, G2 be KM -single valued neu-
trosophic metric graphs on simple graphs G∗1 and G∗2,
respectively. Define the strong product of fuzzy subsets
X1 � X2 = (T (1)

V � T (2)
V , I (1)V � I (2)V ,F (1)

V � F (2)
V ),Y1 �

Y2 = (T (1)
E � T (2)

E , I (1)E � I (2)E ,F (1)
E � F (2)

E ), where T (1)
V �

T (2)
V , I (1)V � I (2)V ,F (1)

V � F (2)
V : V (G∗1 × G∗2) → [0, 1]

by (T (1)
V � T (2)

V )(x1, x2) = Tmin(T
(1)
V (x1),T

(2)
V (x2)), (I

(1)
V �

I (2)V )(x1, x2) = Smax(I
(1)
V (x1), I

(2)
V (x2)), (F

(1)
V �F

(2)
V )(x1, x2) =

Smax(F
(1)
V (x1),F

(2)
V (x2)), and T

(1)
E � T (2)

E , I (1)E � I (2)E ,F (1)
E �

F (2)
E : E(G∗1 × G∗2) → [0, 1] by (T (1)

E � T (2)
E )

((x, x2)(x, y2)) = Tmin(T
(1)
V (x),T (2)

E (x2y2)), (T
(1)
E �T

(2)
E )((x1,

y)(x2, y)) = Tmin(T
(2)
V (y),T (1)

E (x1y1)), (T
(1)
E � T (2)

E )((x1, x2)
(y1, y2)) = Tmin(T

(1)
E (x1y1)),T

(2)
E (x2y2)), (I

(1)
E � I (2)E )((x, x2)

(x, y2)) = Smax(I
(1)
V (x), I (2)E (x2y2)), (I

(1)
E � I (2)E )((x1, y)(x2,

y)) = Tmin(I
(2)
V (y), I (1)E (x1y1)), (I

(1)
E � I (2)E )(x1, x2)(y1, y2)) =

Smax(I
(1)
E (x1y1)), I

(2)
E (x2y2)), (F

(1)
E � F (2)

E )((x, x2)(x, y2)) =
Smax(F

(1)
V (x),F (2)

E (x2y2)), (F
(1)
E �F

(2)
E )((x1, y)(x2, y)) = Tmin

(F (2)
V (y),F (1)

E (x1y1))(F
(1)
E � F (2)

E )((x1, x2)(y1, y2)) = Smax
(F (1)

E (x1y1),F
(2)
E (x2y2)).

Example 4: Consider the KM -fuzzy metric spaces (V1 =
{1, 2}, ρ1,Tmin), (V2 = {3, 4, 5}, ρ2,Tmin), where for all
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x, y ∈ {1, 2}, ρ1(x, y, 0) = 0, ρ1(x, y, t > 0) =
min{x, y} + t
max{x, y} + t

and for all x, y ∈ {3, 4, 5},

ρ2(x, y, 0) = 0, ρ2(x, y, t > 0) =

1 if x = y
5+ t
10+ t

if x 6= y.

We take the negation η(m) = 1 − m(m ∈ [0, 1]) and obtain
the KM -single valued neutrosophic metric graphs G1 =

(V1,
(
X = (TV , IV ,FV ),Y = (TE , IE ,FE ), ρ1,Tmin, Smax

)
)

in unit time t1 = 2 and G2 = (V2,
(
X = (TV , IV ,FV ),Y =

(TE , IE ,FE ), ρ2,Tmin, Smax
)
) in unit time t2 = 1 on G∗1

and G∗2 in Figure 5, where A = (0.1, 0.5, 0.4),B =

(0.2, 0.3, 0.3),C = (0.3, 0.4, 0.5),D = (0.4, 0.6, 0.5),E =
(0.5, 0.2, 0.1),AB = (0.5, 0.97, 0.95),DE = (0.5, 0.98,
0.99) and DC = (0.3, 0.93, 0.96). Now, we obtain the

FIGURE 5. KM-single valued neutrosophic metric graphs G1,G2 for
t1 = 2, t2 = 1.

KM -single valued neutrosophic metric graph G1 � G2 in
Figure 6, where a = (0.1, 0.5, 0.5), b = (0.1, 0.6, 0.5), c =
(0.1, 0.5, 0.4), d = (0.2, 0.4, 0.5), e = (0.2, 0.6, 0.5), f =
(0.2, 0.3, 0.3), ab = (0.1, 0.93, 0.96), bc= (0.1, 0.98, 0.99),
de = (0.2, 0.93, 0.96), ef = (0.2, 0.98, 0.99), ad =

(0.3, 0.97, 0.95), be = (0.4, 0.97, 0.95), cf = (0.5, 0.97,
0.95), ae = (0.3, 0.97, 0.96), bf = (0.5, 0.98, 0.99), bd =
(0.3, 0.97, 0.96), ce = (0.5, 0.98, 0.99).

FIGURE 6. KM-single valued neutrosophic G1 � G2 for t = 2.

Theorem 16: Let G1 and G2 be KM -single valued neutro-
sophic metric graphs on simple graphs G∗1 and G∗2, respec-
tively. Then G1 �G2 = (X1 � X2,Y1 � Y2,Tmin(ρ),T , S) is
a KM -single valued neutrosophic metric graph on G∗1 � G

∗

2.
Proof 16: It is similar to Theorems 13 and 14.

Definition 11: Let G1, G2 be KM -single valued neutro-
sophic metric graphs on simple graphs G∗1 and G∗2, respec-
tively. Define the union of fuzzy subsets X1 ∪ X2 = (T (1)

V ∪

T (2)
V , I (1)V ∪ I (2)V ,F (1)

V ∪ F (2)
V ),Y1 ∪ Y2 = (T (1)

E ∪ T (2)
E ,

I (1)E ∪ I (2)E ,F (1)
E ∪ F (2)

E ), where T (1)
V ∪ T (2)

V , I (1)V ∪ I (2)V ,

F (1)
V ∪ F

(2)
V : (V1 ∪ V2)→ [0, 1] by

(T (1)
V ∪ T

(2)
V ) (x1, x2)

=


T (1)
V (x) if x ∈ V1 \ V2
T (2)
V (x) if x ∈ V2 \ V1
Tmin(T

(1)
V (x),T (2)

V (x)) if x ∈ V2 ∩ V1,

(I (1)V ∪ I
(2)
V )(x1, x2)

=


I (1)V (x) if x ∈ V1 \ V2
I (2)V (x) if x ∈ V2 \ V1
Smax(I

(1)
V (x), I (2)V (x)) if x ∈ V2 ∩ V1,

(F (1)
V ∪ F

(2)
V )(x1, x2)

=


F (1)
V (x) if x ∈ V1 \ V2
F (2)
V (x) if x ∈ V2 \ V1
Smax(F

(1)
V (x),F (2)

V (x)) if x ∈ V2 ∩ V1

and T (1)
E ∪T

(2)
E , I (1)E ∪I

(2)
E ,F (1)

E ∪F
(2)
E : (E1∪E2)→ [0, 1], by

(T (1)
E ∪ T

(2)
E )(xy)

=


T (1)
E (xy) if xy ∈ E1 \ E2
T (2)
E (xy) if xy ∈ E2 \ E1
Tmin(T

(1)
E (xy),T (2)

E (xy)) if xy ∈ E2 ∩ E1,

(I (1)E ∪ I
(2)
E )(xy)

=


I (1)E (xy) if xy ∈ E1 \ E2
I (2)E (xy) if xy ∈ E2 \ E1
Smax(I

(1)
E (xy), I (2)E (xy)) if xy ∈ E2 ∩ E1,

(F (1)
E ∪ F

(2)
E )(xy)

=


F (1)
E (xy) if xy ∈ E1 \ E2
F (2)
E (xy) if xy ∈ E2 \ E1
Smax(F

(1)
E (xy),F (2)

E (xy)) if xy ∈ E2 ∩ E1.

Example 5: Consider the KM -single valued neutrosophic
metric graphs G1 and G2 in Example 4. It is easy to see that
KM -single valued neutrosophic metric metric graph G1 ∪G2
with t = 2 in Figure 4.
Theorem 17: Let G1 = (X1,Y1, ρ1,T , S), G2 =

(X2,Y2, ρ2,T , S) be KM -single valued neutrosophic metric
graphs on simple graphs G∗1 = (V1,E1) and G∗2 = (V2,E2),
respectively. If G∗1 = (V1,E1) and G∗2 = (V2,E2) are two
simple graphs, where V1 ∩ V2 = ∅, then G1 ∪ G2 = (X1 ∪
X2,Y1∪Y2, ρ1∪ρ2,T , S) is aKM -single valued neutrosophic
metric graph on G∗1 ∪ G

∗

2.
Proof 17: Firstly, by Theorem 7, (V1 ∪ V2,Tmin(ρ),T )

is a KM -fuzzy metric space. Let xy ∈ E(G∗1 ∪ G
∗

2). Since
G∗1 = (V1,E1) and G∗2 = (V2,E2) are two simple graphs,
xy ∈ E1 \ E2 implies that (x, y ∈ V1 \ V2) and xy ∈ E2 \ E1
implies that (x, y ∈ V2 \V1). Since G1 is a KM -single valued
neutrosophic metric graph on G∗1 and G2 is a KM -single val-
ued neutrosophic metric graph on G∗2, for some t1, t2 ∈ R≥0,
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take t = max{t1, t2} so by Theorems 1 and 7, if xy ∈ E1 \E2,
we have

T
(
(T (1)
E ∪ T

(2)
E )(xy),T

(
(T (1)
V ∪ T

(2)
V )(x), (T (1)

V ∪ T
(2)
V )(y)

)
= T

(
T (1)
V (xy),T

(
T (1)
V (x),T (1)

V (y)
)

≤ ρ1(x, y, t) ≤ (ρ1 ∪ ρ2)(x, y, t).

In a similar way, if xy ∈ E2 \ E1, one can see that
Tmin

(
(T (1)
E ∪T

(2)
E (xy),Tmin

(
(T (1)
V ∪T

(2)
V )(x), (T (1)

V ∪T
(2)
V )(y)

)
≤

ρ2(x, y, t) = (ρ1 ∪ ρ2)(x, y, t). Other cases is similar to.
Now consider t = min{t1, t2} so by Theorems 1 and 7,

if xy ∈ E1 \ E2, we have

S
(
(I (1)E ∪ I

(2)
E )(xy), S

(
(I (1)V ∪ I

(2)
V )(x), (I (1)V ∪ I

(2)
V )(y)

)
= S

(
I (1)V (xy),T

(
I (1)V (x), I (1)V (y)

)
≥ ρ1(x, y, t) ≥ (ρ1 ∪ ρ2)(x, y, t).

In a similar way, if xy ∈ E2 \ E1, one can see that S
(
(I (1)E ∪

T (2)
E (xy), S

(
(I (1)V ∪ I

(2)
V )(x), (I (1)V ∪ I

(2)
V )(y)

)
≥ ρ2(x, y, t) =

(ρ1 ∪ ρ2)(x, y, t). Other cases is similar to and in a sim-
ilar way, we can prove that S

(
(F (1)

E ∪ F
(2)
E )(xy), S

(
(F (1)

V ∪

F (2)
V )(x), (F (1)

V ∪F
(2)
V )(y)

)
≥ (ρ1∪ρ2)(x, y, t). ThusG1∪G2 =

(X1 ∪ X2,Y1 ∪ Y2, ρ1 ∪ ρ2,T , S) is a KM -single valued
neutrosophic metric graph on G∗1 ∪ G

∗

2.
Definition 12: Let G1, G2 be KM -single valued neutro-

sophic metric graphs on simple graphs G∗1 and G∗2, respec-
tively. Define the semi-ring sum of fuzzy subsets X1 � X2 =
(T (1)
V � T (2)

V , I (1)V + I (2)V ,F (1)
V � F (2)

V ),Y1 � Y2 = (T (1)
E �

T (2)
E , I (1)E + I (2)E ,F (1)

E + F (2)
E ), where T (1)

V � T (2)
V , I (1)V �

I (2)V ,F (1)
V � F (2)

V : (V1 � V2) → [0, 1] by (T (1)
V � T (2)

V )
(x1, x2) = (T (1)

V ∪ T
(2)
V )(x1, x2) , (I

(1)
V � I

(2)
V )(x1, x2) = (I (1)V ∪

I (2)V )(x1, x2) , (F
(1)
V � F (2)

V )(x1, x2) = (F (1)
V ∪ F

(2)
V )(x1, x2)

and T (1)
E � T (2)

E , I (1)E � I (2)E ,F (1)
E � F (2)

E : (E1 � E2) →
[0, 1], by

(T (1)
E � T

(2)
E )(xy) =


T (1)
E (xy) if xy ∈ E1 \ E2
T (2)
E (xy) if xy ∈ E2 \ E1

0 if xy ∈ E2 ∩ E1,

(I (1)E � I
(2)
E )(xy) =


I (1)E (xy) if xy ∈ E1 \ E2
I (2)E (xy) if xy ∈ E2 \ E1
1 if xy ∈ E2 ∩ E1,

(F (1)
E � F

(2)
E )(xy) =


F (1)
E (xy) if xy ∈ E1 \ E2
F (2)
E (xy) if xy ∈ E2 \ E1

1 if xy ∈ E2 ∩ E1.

Theorem 18: Let G1 and G2 be KM -single valued neutro-
sophic metric graphs on simple graphs G∗1 and G∗2, respec-
tively. IfG∗1 andG

∗

2 are two simple graphs, whereV1∩V2 = ∅,
then G1 � G2 = (X1 � X2,Y1 � Y2, ρ1 ∪ ρ2,T , S) is a
KM -single valued neutrosophic metric graph on G∗1 ∪ G

∗

2.
Proof 18: It is similar to Theorem 17.

Definition 13: Let G1, G2 be KM -single valued neutro-
sophic metric graphs on simple graphs G∗1 and G∗2, respec-
tively. Define the join(or suspension) of fuzzy subsets

X1 + X2 = (T (1)
V + T (2)

V , I (1)V + I (2)V ,F (1)
V + F (2)

V ),Y1 +
Y2 = (T (1)

E + T (2)
E , I (1)E + I (2)E ,F (1)

E + F (2)
E ), where T (1)

V +

T (2)
V , I (1)V + I (2)V ,F (1)

V + F (2)
V : (V1 � V2) → [0, 1] by

(T (1)
V + T (2)

V )(x1, x2) = (T (1)
V ∪ T (2)

V )(x1, x2) , (I
(1)
V �

I (2)V )(x1, x2) = (I (1)V ∪ I
(2)
V )(x1, x2) , (F

(1)
V � F (2)

V )(x1, x2) =
(F (1)

V ∪ F
(2)
V )(x1, x2) and T

(1)
E + T

(2)
E , I (1)E + I

(2)
E ,F (1)

E + F
(2)
E :

(E1 � E2)→ [0, 1], by

(T (1)
E + T

(2)
E )(xy)

=

{
T (1)
E (xy) ∪ T (2)

E (xy) if xy ∈ E1 ∪ E2
(ρ1 ∪ ρ2)(x, y, t) if xy ∈ E ′(x ∈ V1, y ∈ V2),

(I (1)E + I
(2)
E )(xy)

=

{
I (1)E (xy) ∪ I (2)E (xy) if xy ∈ E1 ∪ E2
(ρ1 ∪ ρ2)(x, y, t) if xy ∈ E ′(x ∈ V1, y ∈ V2),

(F (1)
E + F

(2)
E )(xy)

=

{
F (1)
E (xy) ∪ F (2)

E (xy) if xy ∈ E1 ∪ E2
(ρ1 ∪ ρ2)(x, y, t) if xy ∈ E ′(x ∈ V1, y ∈ V2),

where E ′ is the set of all edges joining the vertices of V1 and
V2 and t ∈ R≥0.
Theorem 19: Let G1 and G2 be KM -single valued neutro-

sophic metric graphs on simple graphs G∗1 and G∗2, respec-
tively. IfG∗1 andG

∗

2 are two simple graphs, whereV1∩V2 = ∅,
then G1 + G2 = (X1 + X2,Y1 + Y2, ρ1 ∪ ρ2,T , S) is a
KM -single valued neutrosophic metric graph on G∗1 + G

∗

2.
Proof 19: Let xy ∈ E(G∗1 + G∗2). Then xy ∈ E1 \

E2, xy ∈ E2 \ E1 or xy ∈ E ′. We only consider xy ∈ E ′

and other cases are similar to Theorem 17. Since xy ∈ E ′,
we get that (x ∈ V1 \ V2, y ∈ V2 \ V1) or (y ∈ V1 \
V2, x ∈ V2 \ V1). If x ∈ V1 \ V2, y ∈ V2 \ V1(y ∈
V1 \ V2, x ∈ V2 \ V1 is proved in a similar way), for some
t1, t2 ∈ R≥0, take t = max{t1, t2} so by Theorem 1, we have
T
(
(T (1)
E + T

(2)
E )(xy),T

(
(T (1)
V + T

(2)
V )(x), (T (1)

V + T
(2)
V )(y)

)
≤

T
(
(ρ1 ∪ ρ2)(x, y, t),T

(
T (1)
V (x),T (1)

V (y)
)
≤ (ρ1 ∪ ρ2)(x, y, t).

Now, consider t = min{t1, t2} so by Theorem 1, we have
S
(
(I (1)E + I (2)E )(xy), S

(
(I (1)V + I (2)V )(x), (I (1)V + I (2)V )(y)

)
≥

S
(
(ρ1∪ρ2)(x, y, t), S

(
I (1)V (x), I (1)V (y)

)
≥ (ρ1∪ρ2)(x, y, t) and

S
(
(F (1)

E + F (2)
E )(xy), S

(
(F (1)

V + I (2)V )(x), (F (1)
V + F (2)

V )(y)
)
≥

S
(
(ρ1 ∪ ρ2)(x, y, t), S

(
F (1)
V (x),F (1)

V (y)
)
≥ (ρ1 ∪ ρ2)(x, y, t).

It follows thatG1+G2 = (X1+X2,Y1+Y2, ρ1∪ρ2,T , S) is
a KM -single valued neutrosophic metric graph on G∗1 + G

∗

2.
Definition 14: Let (V , ρ,T ) be a KM -single valued neu-

trosophic metric space and G∗ = (V ,E) be a simple
graph. If G = (X ,Y , ρ,T , S) is a KM -fuzzy met-
ric graph on G∗, then define the complement of fuzzy
subsets X = (TV , IV ,FV ),Y = (TE , IE ,FE ), where
TV , IV ,FV : V → [0, 1] and TE , IE ,FE : E → [0, 1]
by TV (x) = TV (x), IV (x) = IV (x),FV (x) = FV (x) and
TE (xy) = ρ(x, y, t) − T

(
TE (xy),T (TV (x),TV (y))

)
, IE (xy) =

S
(
IE (xy), S(IV (x), IV (y))

)
,FE (xy) = S

(
FE (xy), S(FV (x),

FV (y))
)
, where x, y ∈ V . We will denote the comple-

ment of a KM -single valued neutrosophic metric graph
G = (X ,Y , ρ,T , S), by G = (X ,Y , ρ,T , S).
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Theorem 20: Let (V , ρ,T ) be a KM -fuzzy metric space
and G∗ = (V ,E) be a simple graph. If G = (X ,Y , ρ,T , S)
is a KM -single valued neutrosophic metric graph on G∗, then
G = (X ,Y , ρ,T , S) is a KM -single valued neutrosophic
metric graph.

Proof 20: Let x, y ∈ V . Since G is a KM -single valued
neutrosophic metric graph on G∗, for some t ∈ R≥0,

T
(
TE (xy),T

(
TV (x),TV (y))

)
= T

(
ρ(x, y, t)− T

(
TE (xy),T (TV (x),TV (y))

)
,T
(
TV (x),

TV (y))
)
≤ ρ(x, y, t)− T

(
TE (xy),T (TV (x),TV (y))

)
≤ ρ(x, y, t).

In addition,

S
(
IE (xy), S

(
IV (x), IV (y))

)
= S

(
S
(
IE (xy), S(IV (x), IV (y))

)
, S
(
IV (x), IV (y))

)
≥ S

(
IE (xy), S(IV (x), IV (y))

)
≥ ρ(x, y, t).

In a similar way, it is easy to see that S
(
FE (xy), S

(
FV (x),

FV (y))
)
≥ ρ(x, y, t). It follows that G = (X ,Y , ρ,T , S) is a

KM -single valued neutrosophic metric graph.
Example 6: Consider the KM -single valued neutrosophic-

metric graph G in Example 1. So obtain a KM -single valued
neutrosophic metric graph G on the cycle graph C4 for t = 1,
in Figure 7.

FIGURE 7. KM-single valued neutrosophic metric graph G.

V. CONCLUSION
The current paper has introduced a novel concept fuzzy
algebra as KM -single valued neutrosophic metric graph and
a new generalization of graphs based on KM -fuzzy metric
spaces. This work extended and obtained some properties
in KM -fuzzy metric spaces. Also it showed that every non
empty set converted to a KM -fuzzy metric space, the product
and union of KM -fuzzy metric spaces is a KM -fuzzy metric
space, the extended KM -fuzzy metric spaces are constructed
using the some algebraic operations on KM -fuzzy metric
spaces, the concept of complement of KM -single valued
neutrosophic metric graph is defined and investigated some
its properties. We hope that these results are helpful for
further studies in theory of graphs. In our future studies,
we hope to obtain more results regarding intuitionistic met-
ric graphs, neutrosophic metric graphs, KM -single valued

neutrosophic metric hypergraphs, bipolar KM -single valued
neutrosophic metric graphs, automorphism KM -single val-
ued neutrosophic metric graphs and their applications.
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a b s t r a c t

This article deals with an Economic Production Quantity (EPQ) deteriorating inventory model for
non-random uncertain environment. It includes rework process, screening of imperfect items and
partial backlogging. The items are partially serviceable, because at the time of production some items
are found to be defective which cannot be recoverable or serviceable. At first, we develop a cost
minimization problem under several assumptions related to imperfect items and rework process under
certain linear constraints. We solve the crisp model (primal nonlinear problem) first, and then we
convert this model into equivalent game problem taking the help of the theories related to strong
and weak duality theorem. However, this game problem consists of the Lagrangian function that
correspond a nonlinear objective function subject to some linear constraints. The main objective
of the study is to develop a solution procedure of the problem associated to an imperfect process
where all unit cost components might increase or decrease neutrosophically. Thus, according to the
experiences gained by the decision maker (DM) we fuzzify all cost components as sub-neutrosophic
offset. To defuzzify the model we have utilized the sine cuts of neutrosophic fuzzy numbers followed
by a solution procedure developed in solving the matrix game exclusively. To validate the model, a
numerical example is studied then we have compared the optimal results among the original problem,
the equivalent game problem and the game problem under neutrosophic environment explicitly. Our
findings reveal that under negative α-cuts the value of the objective function assumes lower and higher
values. Finally, sensitivity analysis, graphical illustrations, conclusions and scope of future works have
been discussed.

1. Introduction

In real world scenario, the defectiveness and deterioration
of the items are the major concern of any kind of production
process which is unavoidable. Some of these items are basically
reworkable and the rests are disposed of. For this reason, a situa-
tion may come when backlogging of items are partially applied
to the production plant for customers’ satisfaction. Tradition-
ally, researchers were involved to optimize the items of good
quality order quantity, optimum cycle time, optimum screening
time, optimum rework time, optimum inventory run time to
control imperfect production process. In the literature numerous
research articles are available along these directions. Wee et al.

[1] developed optimal inventory model for items with imperfect
quality and shortage backordering. Cardenas-Barron [2] studied
economic production quantity with rework process at a single-
stage manufacturing system with planned backorders. Tai [3]
developed economic production quantity models for deteriorat-
ing/imperfect products and service with rework. Hsu and Hsu [4]
developed two backorder EPQ models with imperfect production
processes, inspection errors and sales returns. Ruidas et al. [5,6,7]
studied on production inventory model for imperfect production
system with rework of regular production, shortages and sales
return via particle swarm optimization. A single-stage manu-
facturing system with rework and backorder options was also
studied by Kang et al. [8] and Sanjai and Periyasamy [9]. Li et al.
[10] developed an EPQ model for deteriorating reworkable items.
A manufacturing model of imperfect reworkable items and ran-
dom breakdown under abort/resume policy has been studied by
Chiu et al. [11,12]. Kuzyutin et al. [13] implemented a cooperative
multistage multicriteria game problem and its solution proce-
dure. Recently, the production system having synchronous and
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asynchronous flexible rework rates was analysed by Muhammad
Al-Salamah [14]. The concept of advertisement cost dependent
demand was introduced by Khara et al. [15] and it has been solved
by utilizing branch and bound technique which is another kind of
extension in imperfect production process.

However, to capture the non-random uncertainty of the real-
world phenomenon Zadeh [16] invented the concept of ‘Fuzzy
sets’. After that several research articles have been developed by
the numerous eminent researchers by implementing fuzzy sets
in various decision-making problems. Researchers like De [17]
studied an economic order quantity (EOQ) model with natural
idle time and wrongly measured demand rate using intuitionis-
tic fuzzy set. De and Sana [18,19] discussed backlogging model
under fuzzy environment considering promotional effort and sell-
ing price sensitive demand. The application of dense fuzzy set
into a pollution sensitive production model was developed by
Karmakar et al. [20]. The application of embedded fuzzy logic
controller for positive and negative pressure control in pneumatic
soft robots was wisely introduced by Oguntosin et al. [21]. In
addition, De [22]) introduced first time the concept of fuzzy lock
sets which is solely based on learning experiences and studied a
new defuzzification method after extending the triangular dense
fuzzy lock sets into m × n lock fuzzy matrices. Karmakar et al.
[23] applied the fuzzy lock set and its corresponding defuzzifi-
cation method to analyse a pollution sensitive remanufacturing
model with waste items. De and Mahata [24] implemented cloudy
fuzzy set and new defuzzification approach in developing EOQ
model for imperfect-quality items with allowable proportionate
discounts.

Moreover, the concept of game theory was introduced by
Karlin [25] through various mathematical methods. Preda [26]
extensively analysed convex optimization with nested maxima
and consider corresponding matrix game problem. In 1994, he
applied matrix game theory in nonlinear programming problem
also. Some notable research articles over game theory incorpo-
rating linear programming problem under fuzzy environment
may be discussed over here. Researchers like Chinchuluun et al.
[27] applied game theory in supply chain management problem.
Nayak and Pal [28] discussed bi-matrix games with intuitionistic
fuzzy goals. Seikh et al. [29] studied matrix games with intu-
itionistic fuzzy pay-offs. Wu [30] and Metzger and Rieger [31]
extensively analysed interval valued dominance cores and non-
cooperative games with prospect theory players and dominated
strategies respectively.

The concept of neutrosophic fuzzy set is coined by Smaran-
dache [32] in his new book Neutrosophy which is the new branch
of Philosophy. In 2005, he also able to discovered that the neu-
trosophic set is nothing but a generalization of intuitionistic fuzzy
set. On the basis of the fundamental concept on neutrosophic set
De and Beg [33,34] analysed new defuzzification procedure for
triangular dense fuzzy sets and triangular dense fuzzy neutro-
sophic sets. Through its long journey, the neutrosophic set itself
has been classified into several sub neutrosophic sets in various
truth values generated from the basic philosophy of science.
Smarandache [35] invented neutrosophic overset, neutrosophic
underset, and neutrosophic offset to characterize the special class
of decision making in different production sectors based on be-
havioural science and ability to each individual associated in a
particular production process. The subject neutrosophic set has
also been extended to neutrosophic vague sets with the help of
Hashim et al. [36] recently.

From the above study, it is seen that not a single article
has been developed yet which includes neutrosophic fuzzy set
through solving game theory in imperfect and reworkable pro-
duction inventory system in which the positive and negative
membership degree of neutrosophic fuzzy numbers acts simul-
taneously for describing the learning experiences of the DM.

Therefore, in this study we develop a cost minimization problem
of an imperfect production process through the extension of Tai
[3]’s model by incorporating all cost components as neutrosophic
fuzzy set and we solve the problem utilizing fuzzy game theory
in which the concept of lock fuzzy set and a solution algorithm
have been employed. We organize the article as follows: Section 1
includes a brief literature review highlighting major research
works, Section 2 discusses preliminaries of some basic definitions
and theorems which have been used in developing the pro-
posed model, Section 3 includes notations and assumptions of the
model, Section 4 defines the formulation of EPQ model followed
by four subsections; Section 4.1 gives model formulation over
game theory, 4.2 gives solution procedure of the game problem,
4.3 gives neutrosophic fuzzy model and 4.4 gives methodology
to solve the neutrosophic model. Section 5 includes numerical
illustrations, Section 6 includes sensitivity analysis, Section 7
expresses graphical illustrations and finally Section 8 gives the
conclusion.

Indeed, we include a chronological literature review on some
major articles for imperfect production process with game theory,
crisp and fuzzy environment are included in Table 1 to show the
novelty of this article also.

2. Preliminaries

2.1. Single valued Neutrosophic Offset (Smarandache [35])

Definition 1. Let U be a universe of discourse and the neu-
trosophic set A ⊂ U . Let T (x), I(x), F (x) be the functions that
describe the degrees of membership, indeterminate-membership
and non-membership respectively, of a generic element x ∈ U ,
with respect to the set A: T (x), I(x), F (x):U → [Ψ ,Ω] where
Ψ < 0 < 1 < Ω , and Ψ is called underlimit, while Ω is called
overlimit, T (x), I(x), F (x) ∈ [Ψ ,Ω].

A Single-Valued Neutrosophic Offset A is defined as: A =

{(x, ⟨T (x), I(x), F (x)⟩) , x ∈ U}, such that there exist some ele-
ments in A that have at least one neutrosophic component that
is > 1, and at least another neutrosophic component that is < 0.

2.2. Fuzzy subset of sub-neutrosophic offset

Definition 2. In Neutrosophic set theory the component triplets
⟨T (x), I(x), F (x)⟩ has specific meaning in any kind of decision
theory. Now if we wish to draw the subsets of subneutrosophic
sets that correspond any one of these components taking one or
more at a time then it is called Subsets of Sub-Neutrosophic set.
If these subsets satisfy the properties of Neutrosophic offset then
we call such subsets as Sub-Neutrosophic offset.

In fuzzy set theory, the membership function and its corre-
sponding α-cuts are always belonging to [0, 1]. But to get a fuzzy
sub-Neutrosophic offset we may consider the membership value
of the fuzzy set which belongs to [−1, 1]. To do this we may take
the help of sine-cut of fuzzy membership which itself lies within
[−1, 1].

Definition 3. Let Ã = ⟨x, µ(x)⟩ is a fuzzy sub-Neutrosophic offset
defined in the universal set x ∈ X ⊆ R then the sine-cuts of µ(x)
is obtained from µ(x) ≥ sin(αp), (p>0 is the shape parameter of
control parameter of the decision maker). In other words, α ≤
1
p sin−1 [µ(x)] ∈ [−1, 1]

Definition 4. Let B̃ = ⟨(x, TB(x), IB(x), FB(x)) : x ∈ X ⊆ R⟩ be a
Neutrosophic set where TB(x), IB(x) and FB(x) refer the true mem-
bership function, Indeterminacy membership and falsity mem-
bership function respectively. Then the sine-cuts of the corre-
sponding membership functions are given by TB(x) ≥ sin(αp),
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Table 1
Literature review on recent major imperfect production process.
Authors Model Assumption Demand Cost

compo-
nent

Fuzzy/Crisp Solution procedure

Chiu et al. [11] EPQ Rework, random breakdown
(Poisson)

Constant Finite Crisp Cost minimization,
Convex optimization

Chan and
Prakash [37]

EPQ Reliability, maintenance
policy, capital cost

Linguistic fuzzy Linguistic
fuzzy

Triangular
Fuzzy Number,
Trapezoidal
Fuzzy Number

Profit maximization,
MCDM, Proximity
ratio

Manna et al.
[38]

Three-layer
supply chain

Two storage facility,
Rework, Transportation

Stock
dependent
fuzzy rough

Nonran-
dom
uncertain

Fuzzy rough set Profit maximization,
Convex optimization

Li et al. [10] EPQ Deterioration, system
rework, backlog,
maintenance, no lost sale

Constant Finite Crisp Cost minimization,
Convex optimization

Jauhari et al.
[39]

EPQ Inspection error (Type I, II),
warranty, transportation,
partial backorder,
vender–buyer

Fuzzy
stochastic
demand

Finite Fuzzy Cost minimization,
Convex optimization

Khanna et al.
[40]

EPQ Inspection error (Type I, II),
sales return, rework,
random imperfect item

Constant Finite Crisp Profit maximization,
Convex optimization

Nobil et al. [41] EPQ Rework (delayed &
immediate), Without
shortage, Inspection

Constant Finite Crisp Cost minimization,
Convex optimization

Taleizadeh
et al. [42]

EPQ Two warranty policy,
returns, shortages,
maximum budget

Random
(Normal
distribution)

Random Crisp Cost minimization,
Metaheuristic,
Non-Dominated
Sorting Genetic
Algorithm

Tayyab et al.
[43]

EPQ Rework, Inspection, n- stage
production system

Triangular
fuzzy demand

Finite Fuzzy Cost minimization,
Centre of Gravity,
Convex optimization

Kuzyutin et al.
[13]

EPQ Backorder, rework,
inspection, Multi criteria
multi stage game

Constant Finite Crisp Profit maximization,
Unique Pareto
Efficient solution

Khedlekar and
Tiwari [44]

EPQ Discount rate, random
imperfect quality item,
customers’ impatient
function, partial backorder

Demand is a
function of
selling price
and discount
rate

Finite Crisp Profit maximization,
Convex optimization

This Paper EPQ Rework, inspection, learning
experience, deterioration,
partial backorder

Constant Neutro-
sophic
fuzzy,
lock
fuzzy

Neutrosophic
fuzzy, lock
fuzzy

Primal–dual problem,
Lagrangian, Matrix
game, Algorithm

Fig. 1. Neutrosophic fuzzy membership function with sine-cuts.

IB(x) ≥ sin(βq) and FB(x) ≥ sin(γ r) where α ∈ [−1, 1], β ∈

[−1, 1] and γ ∈ [−1, 1], p, q, r > 0 such that −3 ≤ α+ β + γ ≤

+3 ⇒ −3 ≤
1
p sin−1 TB(x) +

1
q sin−1 IB(x) +

1
r sin

−1 FB(x) ≤ +3.
The following diagram shows Fig. 1 the basic nature of sine-cut
(degree of subset of sub-neutrosophic offset).

2.3. Concept of game theory

The subject of game theory is strongly associated with two or
more than competitors (players) who are competing to gain more
profit in one side and to achieve minimum loss from another
side. In the literature, several definitions have been found but we
put two formal definitions stated below which have been used to
develop our proposed model.

Definition 5. A game is described by a set of players and their
possibilities to play the game according to some rules, that is,
their set of strategies. It is situational (time dependent) where
the result for a particular player does not depend only on his own
decisions, but also on the behaviour of the other players.

Definition 6. A game G consists of a set of players (lead-
ers/agents) M = {1, 2, . . . ,m}, an action set denoted by Ωi (also
referred to as a set of strategies Si) available for each player i
and an individual payoff (utility) Ui or cost function Fi for each
player i ∈ M . Here, each player individually takes an optimal
action which optimizes its own objective function and each
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player’s success in making decisions depends on the decisions of
the others. We define a non-co-operative game G as an object
specified by (M, S,Ω, F ), where S = S1 × S2 × · · · × Sm is known
as the strategy space,Ω = Ω1×Ω2×· · ·×Ωm is the action space,
and F :Ω → Rm, defined as F (u) = [F1(u), F2(u), . . . , Fm(u)]T , u ∈

Ω is the vector of objective functions associated to each of the
m players, or agents participating in the game. In some cases,
a graph notation might be more appropriate than the set M
notation. Conventionally F represents a vector of cost functions
to be minimized by the agents.

2.4. Mixed Strategy Game with Linear Constraints (Preda [45])

Let us consider the linearly constrained non-linear program-
ming problem (P) together with its Mond–Weir dual problem (D),
as follows:

(P)
⏐⏐⏐⏐ min f (x)
subject to: A(x) ≥ b, x ≥ 0;

(D)

⏐⏐⏐⏐⏐⏐
max g(x, u) = f (x) − uT (Ax − b)
subject to:∇f (x) − ATu ≥ 0
xT

[
∇f (x) − ATu

]
≤ 0, u ≥ 0,

(1)

where x ∈ Rn, b ∈ Rm, u ∈ Rm, A = (aij) is an m × n real matrix,
the symbol T denotes the transpose, f :Rn

→ R is differentiable
and ∇f (x) denotes the gradient (column) vector of f at x.

Now we consider the matrix game associated with the follow-
ing (n + 1) × (m + 1) matrix M1(x) (depending on x), given by

M1(x) =

(
AT

∇f (x)
−bT xT∇f (x)

)
(2)

Theorem 1. Let P0
=

(
x0

z01

)
,Q 0

=

(
u0

z02

)
, x = x0/z01, u = u0/z02 ,

with z01 , z
0
2 > 0. Let (P0,Q 0) solve the matrix game M1(x) and

P0TM1(x)Q 0
= 0. Then x and (x, u) are feasible solution to (P)

and (D) respectively with f (x) = g(x, u). In addition, if there exists
weak duality between (P) and (D) then x and (x, u) are optimal to
respective problems.

Proof. We know that if the value of the game (in random exten-
sion) is zero then (P0,Q 0) is the equilibrium point of the given
problem. Then we write: M1(x)Q 0

≤ 0 and M1(x)TP0
≥ 0; which

gives⎧⎪⎪⎪⎨⎪⎪⎪⎩
ATu0

− z01∇f (x) ≤ 0

−bTu0
+ z01x

T
∇f (x) ≤ 0

Ax0 ≥ z02b

−x0T∇f (x)+ z02x
T
∇f (x) ≥ 0

(3)

But we are given x0 ≥ 0, u0
≥ 0, z01 > 0, z02 > 0 and therefore

from above we get⎧⎪⎪⎨⎪⎪⎩
ATu − ∇f (x) ≤ 0

−bTu + xT∇f (x) ≤ 0
Ax ≥ b

−xT∇f (x)+ xT∇f (x) ≥ 0

(4)

The above relations reduce to xT∇f (x) ≤ bTu ≤ xTATu ≤

xT∇f (x)

⇒ bTu = xTATu = xT∇f (x) (5)

Now, g(x, u) = f (x)−uT (Ax−b) = f (x). Thus using (3)–(5) we
have: xT

[
∇f (x)− ATu

]
= 0. Hence x, (x, u) are feasible solution

for (P) and (D) respectively. When a weak duality exists between
(P) and (D) then x is optimal for (P) and (x, u) is optimal for (D).

Theorem 2. Let x and (x, u) be the feasible solutions to (P) and (D)
respectively, such that uT (Ax− b) = 0. We define z01 = 1/(1+

∑n
i=1 xi),

z02 = 1/
(
1+

∑m
j=1 uj

)
, P0

=

(
xz01
z01

)
and Q 0

=

(
uz02
z02

)
. Then (P0,Q 0)

solves the matrix game M1(x) and the value of this game is zero.

Proof. Taking the equilibrium point (P0,Q 0) over matrix game
M1(x) we have

P0TM1 (x)Q 0

=
(
z01x

TAT
− z01b

T ,−z01x
T
∇f (x)+ z01x

T
∇f (x)

) (
uz02
z02

)
= z01z

0
2

[
xTATu − bTu − xT∇f (x)+ xT∇f (x)

]
= z01z

0
2u

T (Ax − b) = 0.

Since, x and (x, u) are feasible solutions to (P) and (D) respec-
tively, and uT (Ax − b) = 0, we obtain

xTATu = xT∇f (x) = bTu (6)

Now utilizing weak duality theorem and the condition (6) we
have

M1 (x)Q 0
= z02

(
ATu − ∇f (x)

−bTu + xT∇f (x)

)
≤ 0 and P0TM1 (x) =

z01
(
xTAT

− b,−xT∇f (x)+ xT∇f (x)
)

≥ 0.
Thus (P0,Q 0) solves the matrix game M1 (x) and the value of

the game is zero.

3. Assumption and notations

The following notations and assumptions are used to develop
the model.

Notations
p Production rate per unit time
pr Rate of rework process per unit time
α′ Percentage of good quality items produced
αr Percentage of imperfect quality items recovered
λ Demand rate per unit time
β Percentage of customers who accept backlogging
θ Percentage of items deteriorated per unit time
γ Percentage of deteriorated items screened out from the inven-
tory
Ib Unfilled order backlogged
Is Inventory level of serviceable items
Im Maximum inventory level of serviceable items
Ic Maximum inventory level of imperfect quality items
K Setup cost per cycle ($)
C Deterioration cost per unit time per unit item ($)
Cd Penalty cost of selling deteriorated items to customers per unit
item ($)
Cp Cost of unrecoverable perfect quality items per unit time ($)
Cs Shortage cost per unit item per unit time ($)
Cu Unsatisfied demands penalty cost per unit time ($)
hs Holding cost of serviceable items per unit item per unit time
($)
hr Holding cost of imperfect quality items per unit item per unit
time ($)
T1 Recover time of backlogged items (year)
T2 Screening of serviceable item (year)
T3 Duration of recovering serviceable items (year)
T4 Normal inventory time after the production stops (year)
T5 Duration of backlogging time (year)
T Inventory cycle time (year)
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Assumption

i. The imperfect production system involves single period
and single item.

ii. Rework is processed instantly and all defective items are
recovered to good quality items.

iii. Only good and serviceable items are deteriorating with
constant rate θ .

iv. Shortages are partially backlogged and the rests are treated
as unsatisfied demand.

v. Backlogged demands are meet up at the beginning of each
cycle.

vi. Deteriorated items and unrecoverable imperfect quality
items are disposed of.

vii. For fuzzy model, all cost parameters are assumed to be
neutrosophic fuzzy number.

4. Formulation of EPQ model

We consider the above assumptions and notations for devel-
oping an imperfect production process studied by Tai [3], the
schematic diagram of the production flow in given in Fig. 2 and
subsequently the average inventory cost function of the proposed
model is discussed as follows

TC = [Holding cost for (serviceable items + imperfect items)
+ Deterioration cost + Shortage cost + Penalty cost
+ Unsatisfied cost + Unrecoverable cost + Setup cost]/
Total cycle time

TC =
1
T

[
η1T 2

4 + η2T 2
3 + K + η3T 2

2 + 2η3T2T3 + η4T 2
3 + η5T 2

4

+ η6T3 + η7 (T − T2 − T3 − T4)2 + η8 (T − T2 − T3 − T4)
]

where⎧⎪⎪⎪⎨⎪⎪⎪⎩
η1 =

λθ [γ C+(1−γ )Cd]
2 , η2 =

hr
[
p2r +(1−α′)p.pr

]
2(1−α′)p , η3 =

hs(α′p−λ)
2

η4 =
hs(αrpr−λ)

2 , η5 =
hsλ
2 , η6 = Cp(1 − αr )pr

η7 =
Csβλ(α′p−λ)
2(α′p−β ′λ) , η8 =

Cuβ ′λ(α′p−λ)
2(α′p−β ′λ)

(7)

Therefore, our given problem can be developed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min TC(T , T4) = f (T , T4)

= ψ1T − ψ2T4 + ψ3
T24
T − ψ5

T4
T +

K
T + ψ4

Subject to,

⎡⎢⎣ a11 −a12

−a21 a22

⎤⎥⎦
⎡⎢⎣ T

T4

⎤⎥⎦ =

⎡⎢⎣T1

T2

⎤⎥⎦
q = (a11 − a21) pT − (a12 − a22) pT4

(8)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ1 = η2a231 + η3a221 − 2η3a21a31 + η4a231 + η7 (1 + a21 − a31)2

ψ2 = −2 (η2a31a32 + η3a21a22 + η3a21a32 + η3a22a31
+η4a31a32 − η7 (1 + a21 − a31) (1 + a22 + a32))

ψ3 = η1 + η2a232 + η3a222 + 2η3a22a32
+η4a232 + η5 + η7(1 + a22 + a32)2

ψ4 = η6a31 + η8 (1 + a21 − a31)
ψ5 = −η6a32 + η8 (1 + a22 + a32)

(9)

and the other relations are given below:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T3 = a31T4 + a32T

T5 =
(α′p−λ)
βλ

T1

ω = βλ+
(α′p−β ′λ)pr

(1−α′)p⎡⎢⎢⎣
a11 −a12

−a21 a22

a31 a32

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
βλ(1−a21−a31)
(α′p−β ′λ)

−βλ(1+a22+a32)
(α′p−β ′λ)

−
βλ−a31ω
(α′p−λ)

a32ω+βλ

(α′p−λ)
βλ

ω+αrpr−λ
β ′λ

ω+αrpr−λ

⎤⎥⎥⎥⎦
(10)

4.1. Formulation of EPQ model under game theory

Let us consider the objective function, to be minimized as

f (T , T4) = ψ1T − ψ2T4 + ψ3
T 2
4

T
− ψ5

T4
T

+
K
T

+ ψ4

Subject to the constraint
[

a11 −a12
−a21 a22

][
T
T4

]
=

[
T1
T2

]
Rewriting the fundamental decision variables (T , T4) in terms

of (x, y) and replacing the coefficient matrix by A, the decision
variable by X and the requirement time vector by B; then the
given problem reduces to{
min f (x, y) = ψ1x − ψ2y + ψ3

y2
x − ψ5

y
x +

K
x + ψ4

Subject to, AX = B
(11)

where

A =

[
a11 −a12

−a21 a22

]
, X =

[
x
y

]
and B =

[
T1
T2

]
(12)

Utilizing the Section 2.4 the equivalent game problem can be
defined as follows

(P)
⏐⏐⏐⏐min f (X)
subject to: AX ≥ B, X ≥ 0

(13)

(D)

⏐⏐⏐⏐⏐⏐⏐
max g(X,U) = f (X) − UT (AX − B)

subject to:∇f (X) − ATU ≥ 0
XT

[
∇f (X) − ATU

]
≤ 0,U ≥ 0

(14)

where X, B,U ∈ R2, A =
(
aij

)
2×2 real matrix, U denotes the

Lagrangian multiplier vector defined by U = [ζ1, ζ2]T , the symbol
T denotes the usual transpose operator.

4.2. Solution procedure of the game problem

To solve (13) and (14) we shall proceed as follows:
Step 1: Take the gradient vector of f at X , defined by ∇f =[
ψ1 − ψ3

y2

x2
+ ψ5

y
x2

−
K
x2

−ψ2 + 2ψ3
y
x −

ψ5
x

]
Step 2: Construct the matrix game utilizing the relations (11)–

(12) as

M(X) =

⎡⎢⎣ a11 −a21 ψ1 − ψ3
y2

x2
+ ψ5

y
x2

−
K
x2

−a12 a22 −ψ2 + 2ψ3
y
x −

ψ5
x

−T1 −T2 ψ1x − ψ2y + ψ3
y2
x −

K
x

⎤⎥⎦
Step 3 Let (P∗,Q ∗) solve the matrix game M

(
X
)
, such that

P∗TM
(
X
)
Q ∗

= 0 then calculate X and
(
X,U

)
such that they are

the feasible solutions of (P) and (D) respectively with f
(
X
)

=

g
(
X,U

)
where P∗

=
(
X∗, z∗

1

)T
=

(
x∗, y∗, z∗

1

)T
,Q ∗

=
(
U∗, z∗

2

)T
=(

ζ ∗

1 , ζ
∗

2 , z
∗

2

)T , X =

(
x∗
z∗1
,

y∗
z∗1

)T
and U =

(
ζ∗
1
z∗2
,
ζ∗
2
z∗2

)T
. Utilizing the
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Fig. 2. Imperfect production flow over time.

condition P∗TM(X)Q ∗
= 0 the nonlinear functional satisfies the

equation

ζ1 {a11x + a12y − z1 (a11x − a12y)}
+ ζ2 {a21x + a22y − z1 (−a21x + a22y)}

+ 2z2

{
ψ1x − ψ2y + ψ3

y2

x
−

Kz21
x

}
= 0

Step 4: Find X∗ and f (X∗) satisfying the matrix inequality
M(X)Q ∗

≤ 0 that is⎡⎢⎢⎢⎢⎣
a11ζ1 − a21ζ2 + ψ1z2 − ψ3

y2z2
x2

+ ψ5
yz1z2
x2

−
Kz21 z2

x

−a12ζ1 + a22ζ2 − ψ2z2 + 2ψ3
yz2
x − ψ5

z1z2
x

−a11ζ1x + a12ζ1y + a21ζ2x − a22ζ2y

+ψ1
xz2
z1

− ψ2
yz2
z1

+ ψ3
y2z2
xz1

−
Kz1z2

x

⎤⎥⎥⎥⎥⎦ ≤ 0

and M(X)TP∗
≥ 0 that is

⎡⎢⎣ a11x − a12y − z1a11x + z1a12y
−a21x + a22y + z1a21x − z1a22y

2ψ1x − 2ψ2y + 2ψ3
y2
x −

Kz21
x

⎤⎥⎦ ≥ 0.

4.3. Formulation of fuzzy neutrosophic EPQ model

Let all the cost components associated with the imperfect
production process behave as fuzzy sub-Neutrosophic offset by
means of interval valued lock fuzzy number. The basic charac-
teristic of the lock fuzzy number is, it refers the special class
of α-cuts namely sine-cuts as developed in Section 2.2. If κ
be the learning parameter over the cycle time T, then we may
assume the degree of learning achieved by α = sin(κT ). Let the
fuzzy intervals are of the form [xi1, xi1 + δi] if δi > 0 and it is
[xi1 + δi, xi1] if δi < 0 for i = 0, 1, 2, . . . ., with interval length
(tolerance parameter) δi. Now we may define the membership
function of the cost parameter given in (15)

µx̃i (x) =

⎧⎪⎨⎪⎩
1 for x ≤ x0
x−xi1
δi

for xi1 ≤ x ≤ xi1 + δi

0 for x ≥ xi1 + δi

(15)

along with its graphical representation shown in Fig. 3.
Let the cost components may vary according to the learning

experiences (gain or loss) designed by the decision maker. Thus,

we may assign the cost vector as fuzzy sub-Neutrosophic offset
and the given problem can be stated as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

m̃inf̃ (T , T4)=̃ψ̃1T − ψ̃2T4 + ψ̃3
T24
T − ψ̃5

T4
T +

K̃
T + ψ̃4

subject to:

⎡⎣ a11 −a12

−a21 a22

⎤⎦⎡⎣ T

T4

⎤⎦ =

⎡⎣T1

T2

⎤⎦
q = (a11 − a21) pT − (a12 − a22) pT4

(16)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ̃1=̃η̃2a231 + η̃3a221 − 2η̃3a21a31 + η̃4a231 + η̃7 (1 + a21 − a31)2

ψ̃2=̃ − 2 (η̃2a31a32 + η̃3a21a22 + η̃3a21a32 + η̃3a22a31

+η̃4a31a32 − η̃7 (1 + a21 − a31) (1 + a22 + a32))

ψ̃3=̃η̃1 + η̃2a232 + η̃3a222 + 2η̃3a22a32 + η̃4a232
+η̃5 + η̃7(1 + a22 + a32)2

ψ̃4=̃η̃6a31 + η̃8 (1 + a21 − a31)

ψ̃5=̃ − η̃6a32 + η̃8 (1 + a22 + a32)

η̃1=̃
λθ

[
γ C̃+(1−γ )C̃d

]
2 , η̃2=̃

h̃r
[
p2r +(1−α′)p.pr

]
2(1−α′)p , η̃3=̃

h̃s(α′p−λ)
2

η̃4=̃
h̃s(αrpr−λ)

2 , η̃5=̃
h̃sλ
2 , η̃6=̃C̃p(1 − αr )pr

η̃7=̃
C̃sβλ(α′p−λ)
2(α′p−β ′λ) , η̃8=̃

C̃uβ ′λ(α′p−λ)
2(α′p−β ′λ)

(17)

4.4. Methodology to solve the neutrosophic fuzzy problem

To defuzzify the proposed neutrosophic fuzzy problem we
shall use sine-cut approach as stated in Section 2.2. Now taking
the sine-cut of the objective function (16), the equivalent de-
terministic problem of fuzzy neutrosophic model can be written
as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min(−α)
α = sin (κT )

Subject to fα(T , T4, κ) ≥ ψ1αT − ψ2αT4

+ψ3α
T24
T − ψ5α

T4
T +

K
T + ψ4α

(18)
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Fig. 3. Nature of membership value of the cost vector.

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ1α = η2αa231 + η3αa221 − 2η3αa21a31 + η4αa231

+η7α (1 + a21 − a31)2

ψ2α = −2 (η2αa31a32 + η3αa21a22 + η3αa21a32 + η3αa22a31

+ η4αa31a32 − η7α (1 + a21 − a31) (1 + a22 + a32))

ψ3α = η1α + η2αa232 + η3αa222 + 2η3αa22a32 + η4αa232

+η5α + η7α(1 + a22 + a32)2

ψ4α = η6αa31 + η8α (1 + a21 − a31)

ψ5α = −η6αa32 + η8α (1 + a22 + a32)

η1α =
λθ[γ Cα+(1−γ )Cdα ]

2 , η2α =
hrα

[
p2r +(1−α′)p.pr

]
2(1−α′)p ,

η3α =
hsα (α

′p−λ)
2

η4α =
hsα (αrpr−λ)

2 , η5α =
hsα λ
2 , η6α = Cpα (1 − αr )pr

η7α =
Csα βλ(α

′p−λ)
2(α′p−β ′λ) , η8α =

Cuα β
′λ(α′p−λ)

2(α′p−β ′λ)

Cα = C0 + δ1 sin (κT ) , Cdα = Cd0 + δ2 sin (κT ) ,

hrα = hr0 + δ3 sin (κT )

hsα = hs0 + δ4 sin (κT ) , Cpα = Cp0 + δ5 sin (κT ) ,

Csα = Cs0 + δ6 sin (κT )

Cuα = Cu0 + δ7 sin (κT ) , Kα = K0 + δ8 sin (κT )

(19)

where δi(i = 1, 2, . . . , 8) represents tolerance level of the cost
components of the cost vector

{
C, Cd, hr , hs, Cp, Cs, Cu, K

}
and the

elements with 0 suffix indicates their initial values and taking the
constraints used in Eqs. (10) and (16).

Now we may construct a schematic diagram of the solution
procedure (shown in Fig. 4) and compute the numerical results
using the solution algorithm developed in Section 4.2.

5. Numerical illustration

For numerical computation, we assume the imperfect pro-
duction system parameter values p = 6000, pr = 4000, λ =

1000, α′
= 0.9, αr = 0.7, γ = 0.6, θ = 0.1, β = 0.6 and the

costs parameter values C = $0.4, Cd = $100, Cp = $30, Cs =

$20, Cu = $6, hs = $2.5, hr = $1.5 and K = $300. For
Neutrosophic Game Model we also use the neutrosophic learning

parameter κ = 3.5 and obtain the result which is shown in
Table 2.

Table 2 reveals the optimum cost of the proposed imperfect
rework model under various approaches like crisp, game and
neutrosophic fuzzy respectively. For the crisp model the average
inventory cost is $2505.73 with respect to the cycle time 0.41
year and the order quantity is 314.213 units. Here also we see
the backlog recovery time requires 0.01 year while the inven-
tory exhaust time reaches to 0.27 year approximately. The game
model gives the average inventory cost value to $2506.41 which
is $0.68 more (∼ +0.03%) with respect to the crisp value. But
with the application of learning theory the neutrosophic model
giving the cost value $2438.25 (which is 2.7% less) with respect
to the learning parameter κ = 3.5 with α cut value −0.946 over
the cycle time 1.252 years where the inventory run time getting
maximum at 0.72 year.

6. Sensitivity analysis

Table 3 shows the optimum solution of the proposed neutro-
sophic game model while the changes of the learning parameter
κ on and from −20% to +20% are performed. At 5% reduction of
κ , the average inventory cost gets negligible change. But at −15%
and +10% changes the inventory cost becomes slightly change by
+8% and −8% respectively. For the change of −10%, +5% and +20%
the objective function gets more than double values (> 100%) with
respect to crisp solution. The other cases correspond moderately
sensitive. Throughout the whole study it is also observe that the
cycle time gets the range [0.32, 4] years with respect to the
order quantity range [308, 4231] units. The optimum backlogging
recovery time (T ∗

1 ) gets a range [0.005, 0.166] year, the screening
time (T ∗

2 ) has the bound [0.046, 0.539] year, the rework time (T ∗

3 )
gets the range [0.008, 0.107] year, normal inventory run time
(T ∗

4 ) after production stops gets the range [0.217, 2.565] year and
finally the inventory backlogging time duration (T ∗

5 ) assumes the
range [0.041, 1.273] year exclusively.

7. Graphical illustration

Fig. 5 shows the comparative study of the total average inven-
tory cost under different methodologies.

It is clear that the cost value of the problem under neutro-
sophic fuzzy environment assumes minimum with respect to
other two cases namely crisp and game problem. The crisp model
as well as game model assume values of the objective function
more than $2500 while the neutrosophic fuzzy model assumes
value nearly $2440 which is approximately reduced by −2.7%
with respect to the other models.

Fig. 6 indicates the variation and deviation of several time
(10−2) components of the model under crisp, game and neutro-
sophic fuzzy environment. The times of recovery of backlogging
items (T1) due to crisp and game model is very much closer
to that of the neutrosophic fuzzy model. If we consider the
screening completion time (T2), the backlogging duration time
(T5) and the normal inventory run time (T4) then we see that
their deviation of the values obtained from neutrosophic fuzzy
game problem with respect to the other two models keep an
ascending order. However, it is also be noted that the rework
time (T3) for serviceable items gets almost same values for all
the cases (models). Although the total cycle time is very much
larger (the time gap approximately 10.15 months) to the neu-
trosophic fuzzy model with respect to the other models. Fi-
nally the time bounds for each task completion has the ranges
T1[0, 10], T2[5, 15], T3[0, 5], T4[25, 72], T5[5, 35] and T [40, 125]
respectively.
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Fig. 4. Schematic overview of solution procedure.

Table 2
Optimal solutions of various models.
Model T ∗

1 T ∗

2 T ∗

3 T ∗

4 T ∗

5 T ∗ Q ∗ α∗ f ∗ RE

Crisp Model 0.0097 0.0576 0.0101 0.2695 0.0708 0.4177 314.213 . . . 2505.73 . . .
Game Model 0.0089 0.0572 0.0100 0.2698 0.0705 0.4171 396.811 . . . 2506.41 +0.03%
Neutrosophic Model 0.0404 0.1512 0.0290 0.7177 0.3115 1.2519 1149.801 −0.946 2438.25 −2.69%

Note: RE =
f ∗−f∗
f∗

× 100% is the relative percentage error where f∗ indicates the crisp value.

Table 3
Optimal solution for the change of the learning parameter κ from −20% to +20%.
Change in κ T ∗

1 T ∗

2 T ∗

3 T ∗

4 T ∗

5 T ∗ Q ∗ α∗ TC∗ % change

−20% 0.005 0.046 0.008 0.217 0.041 0.318 307.999 +0.777 3274.39 30.64
−15% 0.048 0.175 0.034 0.829 0.368 1.456 1334.48 −0.928 2699.67 7.71
−10% 0.12 0.398 0.079 1.892 0.922 3.417 3108.216 −0.973 5093.22 103.21
−5% 0.043 0.158 0.03 0.751 0.329 1.313 1205.176 −0.941 2515.66 0.37
+5% 0.166 0.539 0.107 2.565 1.273 4.658 4231.108 −0.987 6641.26 164.97
+10% 0.037 0.139 0.027 0.66 0.282 1.146 1053.521 −0.955 2306.06 −7.99
+15% 0.035 0.134 0.026 0.634 0.269 1.099 1011.398 −0.959 2249.33 −10.26
+20% 0.145 0.473 0.094 2.25 1.11 4.077 3705.614 −0.988 5902.41 135.49

Fig. 7 expresses the trend studies of the required task com-
pletion time duration over the % changes of learning parameter
κ . The backlog recovery time (T1) and rework time (T3) keep
almost same value for any kind of changes of the learning pa-
rameter (κ) within ±20%. The rework time (T3) and the backlog
generation time (T5) have remarkable gap and they have the

bounds within 130(10−2) years throughout. The other time pa-
rameters like inventory exhaust time (T4) and total cycle time (T )
are easily separable and interpretable within the real time zone
[20, 460](10−2) years. Moreover, it is observed that if we wish to
change the learning parameter (κ) at −20%, −5%, +10% and +15%
then we see that the time curves get ‘V’ shape for all the task
completion independently. But if we wish to change the learning

Florentin Smarandache (ed.) Collected Papers, VII

878



Fig. 5. Inventory cost under several approaches.

Fig. 6. Task completion time in year under several approaches.

Fig. 7. Tasks completion time under variation of learning parameter (κ)

parameter (κ) at −10%, +5% and +20% then the task completion
time curves get ‘

⋀
’ shape independently. Whenever the learning

parameter changes from −20% to −15% then the curves generates
family of non-intersecting straight lines with different slopes. In
addition, when the learning parameter changes from +10% to
+15% then the curves becomes almost horizontal non intersecting
straight lines having significant distances.

Fig. 8 shows the variation of total average inventory cost with
the variation of cycle time. It is observed that the average inven-
tory cost is minimum if it assumes value between [1.099, 1.456]
years. Beyond this the total average inventory cost increases. The
inventory cost has a paradigm shift up to $6641 approximately
within the cycle time range [1.456, 4.7] years alone. Having ‘S’
shaped cycle time curve, the tail of ‘S’ indicates the average cost
of the inventory $3274 with cycle time 0.318 year that appears
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Fig. 8. Variation of average inventory cost with variation of cycle time.

Fig. 9. Variation of order quantity with variation of cycle time.

Fig. 10. Variation of average inventory cost with respect to learning parameter k.

due to positive α cut (α = +0.777) for the neutrosophic fuzzy

model.

Fig. 9 shows the variation of order quantity with respect to

the variation of cycle time. As the cycle time increases the order

quantity is also increases. A sudden jump of order quantity has

been viewed at the cycle time duration [1.5, 3.417] years approx-
imately. The curve looks like a continuous monotonic increasing
function.

Fig. 10 indicates the variation of average inventory cost with
a zigzag path like (saw tooth) over the percentage change of
the key vector of the fuzzy lock κ (learning parameter). The
average inventory cost assume increasing value for the change
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Fig. 11. Variation of order quantity with respect to the learning parameter κ .

Fig. 12. Variation of average inventory cost with variation of T4 and T .

of the lock parameter within the change zone [−15%, −10%],
[−5%, +5%], [+15%, +20%] and it is decreasing for the change
interval [−20%, −15%], [−10%, −5%], [+5%, +15%] exclusively.
Throughout the whole figure the average inventory cost gets a
bound $[2100, 6600] approximately which is the maximum range
of the objective function of neutrosophic fuzzy model.

Fig. 11 indicates the variation of order quantity with respect
to the % change of learning parameter κ . The order quantity has
modal(maximum) values at the changes of the learning parame-
ter κ at −10%, 5% and 20% respectively. Also, at the changes in
−20%, −5%, 10% and 15% the values of the order quantity get
minimum keeping the values within 1205 units. However, the
highest peak of the order quantity curve arises at 4231 units
whenever the learning parameter κ increases to +5%.

Fig. 12 reveals the variation of total average inventory cost
with respect to inventory exhaust time and cycle time simultane-
ously. As cycle time increase, cost value increases with step size.
On the other hand, the cost value decreases with the decrease
of inventory exhaust time within time limit (0.5 ∼ 2.5) years
but if inventory exhaust time assumes value within 0.5 years the
inventory cost refers little more value.

Fig. 13 expresses the variation of order quantity with respect
to the variation of inventory exhaust time and variation of cycle
time simultaneously. As cycle time increases, order quantity is
also increasing with step size. On the other hand, the order

Fig. 13. Variation of order quantity with variation of T4 and T .

quantity decreases with the increase of inventory exhaust time
within time limit (0.5 ∼ 2.5) years but if the inventory exhaust
time assumes value within 0.5 years the order quantity refers
lesser value. The order quantity reaches its maximum value (4231
units) at the cycle time duration 4.7 years approximately.

Fig. 14 expresses the nature of average inventory cost curve
under different negative α cuts. We see that at α = −0.959
the cost curve reaches minimum point. As α increases the curve
slowly goes up following almost a straight line, but the curve
gets a sudden jump in the left side of minimum point, reaching
a highest peak at α = −0.987 and then began to fall down
whenever the values of α goes towards −1. Moreover, the curve
also indicates the range of average inventory cost assumes values
$ [2249, 6641] whenever we are experiencing with negative α
cuts throughout.

8. Conclusion

In this study, we have developed an imperfect and rework-
able deteriorating production inventory model under fuzzy sub-
neutrosophic offset environment. Here, the decision maker has
several options to change the real-time managerial strategies so
as to reduce (control) several cost components associated with
the production inventory problem. Simultaneously, the DM might
be able to control the several time parameters as (s)he wishes.
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Fig. 14. Variation of inventory cost with the change of α cuts.

The basic merit of this article by using neutrosophic off set is
that the DM might be able to get enough time at each and every
stages of imperfect production process namely the time duration
of backlogs meet up, the screening time, the rework time, the
normal inventory exhaust time and the partial backorder time by
utilizing lower minimum average inventory cost with respect to
other approaches. However, for defuzzification we have utilized
α-cuts by means of sine-cuts of neutrosophic fuzzy parameters
(several cost components) and then employed game theoretic
approach for its solution to primal–dual problem. Our findings re-
veal that decision making under neutrosophic fuzzy environment
is much economical, comfortable and easily applicable even for
less qualified decision maker in any kind of management system.
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ABSTRACT
Fuzzy graph models are present everywhere from natural to artificial structures, embodying the dynamic processes in physical,
biological, and social systems. As real-life problems are often uncertain on account of inconsistent and indeterminate informa-
tion, it seems very demanding for an expert to model those problems using a fuzzy graph. To deal with the uncertainty associated
with the inconsistent and indeterminate information of any real-world problems, a neutrosophic graph can be applied, where
fuzzy graphs may not bear any fruitful results. The past definitions limitations in fuzzy graphs have directed us to present new
definitions in single-valued neutrosophic graph (SVNG). A SVNG has several applications in the fields of physics, bio and con-
nectivity of socialism. It has been an advantageous scope in the recent times for providing such information which is incomplete
or uncertain accounting in real problems that gives the direction to describe the relationship between nodes. Operations are
conveniently used in many combinatorial applications. In various situations, they present a suitable construction means; there-
fore, the current study, seeks to present and explore the key features of new operations, including: rejection, maximal product,
symmetric difference, and residue product of SVNG. We have discuss the concept of maximal product on two strong-(SVNGS)
and maximal product of connected-SVNG with examples. This research article presents the notions of degree of a vertex and
total degree of a vertex in SVNG. Moreover, this study summarizes the specific conditions needed for obtaining vertices degrees
in SVNG under the operations of maximal product, symmetric difference, residue product, and rejection. In addition, an appli-
cation was illustrated in the food and agriculture organization with an algorithm to emphasize the contributions of this research
article in practical applications.

1. INTRODUCTION

Graph theory is an exceptionally advantageous device in tack-
ling combinatorial issues in different regions including calculation,
variable-based math, number hypothesis, geography, and social
frameworks. A graph is chiefly a model of relations, and it is applied
to speak to the genuine issues including connections between
objects. The vertices and edges of the graph are utilized to con-
note the articles and the relations between objects, individually. In
numerous improvement issues, the current data is vague or loose for
different reasons, for example, the loss of data, the absence of proof,
flawed measurable information, and inadequate data. By and large,
the vulnerability, in actuality, issues may show up in the data that
characterizes the issue. Fuzzy chart models are important numerical
apparatuses for treating the combinatorial issues of different areas

enveloping exploration, streamlining, variable-based math, figur-
ing, ecological science, and geography. Fuzzy graphical models are
observably more helpful than graphical models due to the com-
mon presence of unclearness and equivocalness. Initially, fuzzy set
hypothesis is needed to manage numerous perplexing issues includ-
ing inadequate data. Zadeh [32], firstly exemplified the idea of the
set known as the fuzzy set. He described the fuzzy set characterized
by true membership function value ranging from closed interval
[0, 1]. Fuzzy set theory serves as a very powerful mathematical tool
for solving approximate reasoning related problems. These notions
effectively illustrate complex phenomena, which are not precisely
described by classical mathematics.

The fuzzy graphs idea and concept are discussed by Smarandache
and Rosenfeld [27]. The fuzzy graphs application has been extended
in few years and it has a scope from 19th century [4,5,10,11,15,16].
It is not necessarily true membership degree of 1, also, the
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nonmembership degree and indeterminacy occur. Nonmember-
ship degree is presented by Atanassove [3] in an intuitionistic fuzzy
set. Shao et al. [31] labeled new concepts of bondage number in
intuitionistic fuzzy graph. Rashmanlou et al. [20–26] introduced
new concepts in bipolar fuzzy graph and interval-valued fuzzy
graphs. Krishna et al. [13,14] analyzed the concept of vague set
and vague graph. Devi et al. [8] investigated new ways in intu-
itionistic fuzzy labeling graph. Pythagorean fuzzy set also known
as IF-set of type-2 [1] is the extension of intuitionistic fuzzy set
(IF-set). Parvathi and Karunambigai [19] studied about Intuitionis-
tic fuzzy graphs. After while, Smarandache [31] included the inde-
terminacy concept in a neutrosophic set. Neutrosophy is the kind
of philosophy which analyzes the nature and scope of neutralities.
Neutrosophic set is the speculation of fuzzy set and furthermore
neutrosophic rationale is the expansion of fuzzy rationale. Smaran-
dache gives the possibility of a neutrosophic set due to introduc-
ing the vulnerability in the issues of different fields like clinical
science and financial aspects and so forth. He portrayed signifi-
cant classifications [29] of neutrosophic diagrams from which two
classifications are relied upon the strict indeterminacy and other
two classes depended [7] on its (t, i, f ) parts. Malik and Hassan
[12] presented the classification of bipolar single-valued neutro-
sophic graph (SVNG) classification. Later Malik and Naz et al. [17]
described new operations on SVNG. Naz et al. [17] discussed opera-
tions on single-valued neutrosophic graphs with application. Malik
et al. [18] also investigated some properties of bipolar SVNG. Prod-
uct operations have applications in different branches, such as cod-
ing theory, network designs, chemical graph theory, and others.
Many scholars discussed product operations on various generalized
FGs. Mordeson and Peng [16] defined some of these product oper-
ations on FGs and some new fuzzy models are discussed in [33–38].

In this research, some new properties, including maximal product,
symmetric difference, residue product, and rejection of SVNG are
presented. Also, the examples of these operations are discussed. We
found the degree and the total degree of SVNG. Finally, an appli-
cation was illustrated in the food and agriculture organization with
an algorithm to highlight the contributions of this research article
in practical applications.

2. PRELIMINARIES

In this section, the key preliminary notions and definitions that are
used in this current research study will be introduced.

Definition 1. [9] A graph G = (V, E) is an ordered pair of set of
vertices and set of edges.

Definition 2. [30] Suppose that X is a space of points with generic
element in X denoted by x. Then, the neutrosophic set M (NS-M)
is defined as M = < x : TM(x), IM(x), FM(x) >, x ∈ X which obey 0
⩽ {TM(x) + IM(x) + FM(x)} ⩽ 3. TM : V → [0, 1], IM: V → [0, 1], and
FM : V → [0, 1] represents the degree of true membership function,
degree of indeterminacy membership function, and degree of false
membership function of the element x ∈ X, respectively.

Definition 3. [27] A SVNG G = (M, N) with underlying set of V
is defined to be a pair of G = (V, E) which is defined as (i) TM : V
→ [0, 1], FM : V [0, 1] and IM : V → [0, 1] represents the degree of
true membership function, degree of false membership function,

and degree of indeterminacy membership function of the element
m∈V, respectively, where 0⩽TM(m) +IM(m)+FM(m)⩽ 3, ∀m∈V.

(ii) The function TN : E → [0, 1], IN : E → [0, 1] and FN : E → [0, 1]
are defined by

TN(mn) ⩽ min
{
TM(m),TM(n)

}
IN(mn) ⩾ max

{
IM(m), IM(n)

}
FN(mn) ⩾ max

{
FM(m), FM(n)

}
.

It is free of any restriction so 0 ⩽ TN(mn)+IN(mn)+FN(mn) ⩽ 3.

Example 1. Consider the Figure 1 such that V = {a, b, c}, E = {ab,
bc, ca}, M =<

(
a

0.3
, b

0.2
, c

0.4

)
,
(

a
0.6
, b

0.4
, c

0.5

)
,
(

a
0.2
, b

0.2
, c

0.1

)
>, and

N =<
(

ab
0.1
, bc

0.1
, ac

0.2

)
,
(

ab
0.7
, bc

0.6
,
(

ac
0.8

)
,
(

ab
0.3
, bc

0.2
, ac

0.3

)
> .

By routine computations, it is easy to show that G is a SVNG.

Definition 4. A SVNG G is said to be strong if TN(mn) =
min(TM(m), TM(n)), IN(mn) = max(IM(m), IM(n)) and FN(mn) =
max(FM(m), FM(n)), for all mn in V.

Definition 5. A SVNG G is said to be complete if TN(mn) =
min(TM(m), TM(n)), IN(mn) = max(IM(m), IM(n)) and FN(mn) =
max(FM(m), FM(n)), for all m, n in E.

Definition 6. A SVNG G is said to be connected if T∞
N
(
mimj

)
>

0, I∞N
(
mimj

)
< 1, F∞N

(
mimj

)
< 1, for all mi, mj ∈V. Also, we have

T∞
N (mn) = sup

{
TN

(
mn1

)
∧ TN

(
n1n2

)
∧ TN

(
n2n3

)
∧

... ∧ TN
(
nk−1n

)
∣ m, n1, n2,⋯ , nk−1, n ∈ V

}
,

I∞N (mn) = inf
{
IN

(
mn1

)
∨ IN

(
n1n2

)
∨ IN

(
n2n3

)
∨⋯∨

IN
(
nk−1n

)
∣ m, n1, n2,⋯ , nk−1, n ∈ V

}
.

and

FT∞
N (mn) = inf

{
FN

(
mn1

)
∨ FN

(
n1n2

)
∨ FN

(
n2n3

)
∨⋯∨

FN
(
nk−1n

)
∣ m, n1, n2,⋯ , nk−1, n ∈ V

}
.

3. OPERATIONS ON SVNGs

In this section, we define four new kinds of operations on (SVNGs)
including maximal product, residue product, rejection, and sym-
metric difference. We show that maximal product, residue product,
and rejection of two (SVNGs) are a SVNG.

Definition 7. The maximal productG1 ∗G2 = (M1 ∗M2,N1∗N2)
of two (SVNGs) G1 = (M1, N1) and G2 = (M2, N2) is defined as

Figure 1 SVNG(G).
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(i)
(
TM1

∗ TM2

) ((
m1,m2

))
= max

{
TM1

(
m1

)
,TM2

(
m2

)}(
IM1

∗ IM2

) ((
m1,m2

))
= min

{
IM1

(
m1

)
, IM2

(
m2

)}(
FM1

∗ FM2

) ((
m1,m2

))
= min

{
FM1

(
m1

)
, FM2

(
m2

)}
∀ (m1, m2) ∈ (V1 × V2),

(ii)
(
TM1

∗ TM2

) ((
m,m2

) (
m, n2

))
= max

{
TM1

(m),TN2

(
m2n2

)}(
IM1

∗ IM2

) ((
m,m2

) (
m, n2

))
= min

{
IM1

(m), IN2

(
m2n2

)}(
FM1

∗ FM2

) ((
m,m2

) (
m, n2

))
= min

{
FM1

(m), FN2

(
m2n2

)}
∀m ∈ V1 and m2n2 ∈ E2.

(iii)
(
TM1

∗ TM2

) ((
m1, z

) (
n1, z

))
= max

{
TN1

(
m1n1

)
,TM2

(z)
}(

IM1
∗ IM2

) ((
m1, z

) (
n1, z

))
= min

{
IN1

(
m1n1

)
, IM2

(z)
}(

FM1
∗ FM2

) ((
m1, z

) (
n1, z

))
= min

{
FN1

(
m1n1

)
, FM2

(z)
}

∀ z ∈ V2 and m1n1 ∈ E1.

Example 2. Consider two (SVNGs) G1 = (M1, N1) and G2 = (M2,
N2), as shown in Figures 2 and 3. Their maximal product G1 ∗ G2
is shown in Figure 4.

For vertex (e, a), we find membership value, indeterminacy and
nonmembership value as follows:(

TM1
∗ TM2

)
((e, a)) = max

{
TM1

(e),TM2
(a)

}
= max {0.3, 0.1} = 0.3,(

IM1
∗ IM2

)
((e, a)) = min

{
IM1

(e), IM2
(a)

}
= min {0.4, 0.3} = 0.3,(

FM1
∗ FM2

)
((e, a)) = min

{
FM1

(e), FM2
(a)

}
= min {0.5, 0.4} = 0.4,

for e ∈ V1 and a ∈ V2. For edge (e, a)(e, b), we find membership
value, indeterminacy, and nonmembership value.(

TM1
∗ TM2

)
((e, a)(e, b)) = max

{
TM1

(e),TN2
(ab)

}
= max {0.3, 0.1} = 0.3,(

IM1
∗ IM2

)
((e, a)(e, b)) = min

{
IM1

(e), IN2
(ab)

}
= min {0.4, 0.4} = 0.4,(

FM1
∗ FM2

)
((e, a)(e, b)) = min

{
FM1

(e), FN2
(ab)

}
= min {0.5, 0.4} = 0.4,

Figure 2 G1.

Figure 3 G2.

for e ∈ V1 and ab ∈ E2. Now, for edge (e, a)(f, a) we have:(
TM1

∗ TM2

)
((e, a)(f, b)) = max

{
TN1

(ef),TM2
(a)

}
= max {0.3, 0.1} = 0.3,(

IM1
∗ IM2

)
((e, a)(f, b)) = min

{
IN1

(ef), IM2
(a)

}
= min {0.5, 0.3} = 0.3,(

FM1
∗ FM2

)
((e, a)(f, b)) = min

{
FN1

(ef), FM2
(a)

}
= min {0.5, 0.4} = 0.4,

for a ∈ V2 and ef ∈ E1.

Similarly, we can find membership, indeterminacy, and nonmem-
bership value for all remaining vertices and edges.

Proposition 1. The maximal product of two (SVNGs) G1and G2,
is a SVNG.

Proof. Let G1 = (M1, N1) and G2 = (M2, N2) be two (SVNGs) on
crisp graphs G1 = (V1, E1) and G2 = (V2, E2), respectively and ((m1,
m2)(n1, n2)) ∈ E1 × E. Then, by Definition 7, we have two cases:

(i) If m1 = n1 = m

(TN1
∗ TN2

)((m,m2)(m, n2))
= max

{
TM1

(m),TN2
(m2n2)

}
⩽ max

{
TM1

(m),min
{
TM2

(m2),TM2
(n2)

}}
= min

{
max

{{
TM1

(m),TM2
(m2)

}
,

max
{{

TM1
(m),TM2

(n2)
}}

= min
{
(TM1

∗ TM2
)(m,m2), (TM1

∗ TM2
)(m, n2)

}
,

(IN1
∗ IN2

)((m,m2)(m, n2))
= min

{
IM1

(m), IN2
(m2n2)

}
⩾ min

{
IM1

(m),max
{
IM2

(m2), IM2
(n2)

}}
= max

{
min

{{
IM1

(m), IM2
(m2)

}
,

min
{{

IM1
(m), IM2

(n2)
}}

= max
{
(IM1

∗ IM2
)(m,m2), (IM1

∗ IM2
)(m, n2)

}
,

(FN1
∗ FN2

)((m,m2)(m, n2))
= min

{
FM1

(m), FN2
(m2n2)

}
⩾ min

{
FM1

(m),max
{
FM2

(m2), FM2
(n2)

}}
= max

{
min

{{
FM1

(m), FM2
(m2)

}
,

min
{{

FM1
(m), FM2

(n2)
}}

= max
{
(FM1

∗ FM2
)(m,m2), (FM1

∗ FM2
)(m, n2)

}
.

(ii) If m2 = n2 = z(
TN1

∗ TN2

) ((
m1, z

) (
n1, z

))
= max

{
TN1

(
m1n1

)
,TM2

(z)
}

⩽ max
{

min{TN1

(
m1n1

)
,TM2

(z)
}

= min
{

max{{TN1

(
m1

)
,TM2

(z)
}
,

max
{
{TM1

(
n1
)
,TM2

(z)
}

= min
{(

TM1
∗ TM2

) (
m1, z

)
,
(
TM1

∗ TM2

) (
n1, z

)}
,
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Figure 4 G1 * G2.

(
IN1

∗ IN2

) ((
m1, z

) (
n1, z

))
= min

{
IN1

(
m1n1

)
, IM2

(z)
}

⩾ min
{

max{IN1

(
m1n1

)
, IM2

(z)
}

= max
{

min{{IM1

(
m1

)
, IM2

(z)
}
,

min
{{

IM1

(
n1
)
, IM2

(z)
}}

= max
{(

IM1
∗ IM2

) (
m1, z

)
,
(
IM1

∗ IM2

) (
n1, z

)}
,

(
FN1

∗ FN2

) ((
m1, z

) (
n1, z

))
= min

{
FN1

(
m1n1

)
, FM2

(z)
}

⩾ min
{

max{FN1

(
m1n1

)
, FM2

(z)
}

= max
{

min{{FM1

(
m1

)
, FM2

(z)
}
,

min
{{

FM1

(
n1
)
, FM2

(z)
}}

= max
{(

FM1
∗ FM2

) (
m1, z

)
,
(
FM1

∗ FM2

) (
n1, z

)}
.

Therefore, G1∗ G2 is a SVNG. ☐

Theorem 2. The maximal product of two strong-(SVNGS) G1and
G2, is a strong-SVNG.

Proof. Let G1 = (M1, N1) and G2 = (M2, N2) be two strong-
(SVNGS) on crisp graphs G1 = (V1, E1) and G2 = (V2, E2), respec-
tively and ((m1, m2)(n1, n2)) ∈ E1 × E2. Then by Proposition 1, G1∗
G2 is a SVNG. Now we have two cases:

(i) If m1 = n1 = m(
TN1

∗ TN2

) ((
m,m2

) (
m, n2

))
= max

{
TM1

(m),TN2

(
m2n2

)}
= max

{
TM1

(m),min
{
TM2

(
m2

)
,TM2

(
n2
)}}

= min
{

max{{TM1
(m),TM2

(
m2

)}
max

{{
TM1

(m),TM2

(
n2
)}}

= min
{(

TM1
∗ TM2

) (
m,m2

)
,
(
TM1

∗ TM2

) (
m, n2

)}
,

(
IN1

∗ IN2

) ((
m,m2

) (
m, n2

))
= min

{
IM1

(m), IN2

(
m2n2

)}
= min

{
IM1

(m),max
{
IM2

(
m2

)
, IM2

(
n2
)}}

= max
{

min{{IM1
(m), IM2

(
m2

)}
,

min
{{

IM1
(m), IM2

(
n2
)}}

= max
{(

IM1
∗ IM2

) (
m,m2

)
,
(
IM1

∗ IM2

) (
m, n2

)}
,

(
FN1

∗ FN2

) ((
m,m2

) (
m, n2

))
= min

{
FM1

(m), FN2

(
m2n2

)}
= min

{
FM1

(m),max
{
FM2

(
m2

)
, FM2

(
n2
)}}

max
{

min
{
{FM1

(m), FM2

(
m2

)}
,min

{{
FM1

(m), FM2

(
n2
)}}

= max
{(

FM1
∗ FM2

) (
m,m2

)
,
(
FM1

∗ FM2

) (
m, n2

)}
.

(ii) If m2 = n2 = z(
TN1

∗ TN2

) ((
m1, z

) (
n1, z

))
= max

{
TN1

(
m1n1

)
,TM2

(z)
}

= max
{

min{TN1

(
m1n1

)
,TM2

(z)
}

= min
{

max{{TN1

(
m1

)
,TM2

(z)
}
,

max
{{

TM1

(
n1
)
,TM2

(z)
}}

= min
{(

TM1
∗ TM2

) (
m1, z

)
,
(
TM1

∗ TM2

) (
n1, z

)}
,

(
IN1

∗ IN2

) ((
m1, z

) (
n1, z

))
= min

{
IN1

(
m1n1

)
, IM2

(z)
}

= min
{

max{IN1

(
m1n1

)
, IM2

(z)
}

= max
{

min{{IM1

(
m1

)
, IM2

(z)
}
,

min
{{

IM1

(
n1
)
, IM2

(z)
}}

= max
{(

IM1
∗ IM2

) (
m1, z

)
,
(
IM1

∗ IM2

) (
n1, z

)}
,
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(
FN1

∗ FN2

) ((
m1, z

) (
n1, z

))
= min

{
FN1

(
m1n1

)
, FM2

(z)
}

= min
{

max{FN1

(
m1n1

)
, FM2

(z)
}

= max
{

min{{FM1

(
m1

)
, FM2

(z)
}
,

min
{{

FM1

(
n1
)
, FM2

(z)
}}

= max
{(

FM1
∗ FM2

) (
m1, z

)
,
(
FM1

∗ FM2

) (
n1, z

)}
.

Therefore, G1 * G2 is a strong-SVNG. ☐

Example 3.Consider the strong-(SVNGS)G1 andG2 as in Figure 5.

It is easy to see that G1 * G2 is a strong-SVNG, too.

Remark 1. If the maximal product of two (SVNGs)G1 = (M1,N1)
and G2 = (M2, N2) is strong, then G1 = (M1, N1) and G2 = (M2, N2)
need not to be strong, in general.

Example 4. Consider the (SVNGs) G1 and G2 as in Figures 6 and 7.
We can see that the maximal product of two (SVNGs) G1 and G2,
that is G1 * G2 in Figure 8.

Then G1 and G1 * G2 are strong-(SVNGS), but
G2 is not strong. Since TN2

(
m2, n2

)
= 0.1, but

Figure 5 Single-valued neutrosophic graphs.

Figure 6 G1.

Figure 7 G2.

Figure 8 G1 * G2.

min{TM2

(
m2

)
,TM2

(n2 = min {0.2, 0.2} = 0.2. Hence,
TN2

(
m2, n2

) ≠ min{TM2

(
m2

)
,TM2

(n2.

Theorem 3. The maximal product of two connected-(SVNGs) is a
connected-SVNG.

Proof. Let G1 = (M1, N1) and G2 = (M2, N2) be two connected-
(SVNGs) on crisp graphs G1 = (V1, E1) and G2 = (V2, E2), respec-
tively, where V1 = {m1, m2, ⋯ mk} and V2 = {n1, n2, ⋯ ns}. Then
T∞
N1

(
mimj

)
> 0, for all mi, mj ∈ V1 and T∞

N2

(
ninj

)
> 0, for all ni,

nj ∈ V2 (or I∞N1

(
mimj

)
< 1, for all mi, mj ∈ V1 and I∞N2

(
ninj

)
< 1,

for all ni, nj ∈ V2 (or F∞N1

(
mimj

)
< 1, for all mi, mj ∈ V1 and

F∞N2

(
ninj

)
< 1, for allni,nj ∈V2. The maximal product ofG1 = (M1,

N1) and G2 = (M2, N2) can be taken as G = (M, N). Now, consider
the ‘k’ subgraphs of G with the vertex set {(mi, n1),(mi, n2),⋯,(mi,
ns)}, for i = 1, 2, ⋯, k. Each of these subgraphs of G is connected,
since the m′

is are the same and since G2 is connected, each niis adja-
cent to at least one of the vertices in V2. Also, since G1 is connected,
each xi is adjacent to at least one of the vertices in V1.

Hence, there exists at least one edge between any pair of the above
“k” subgraphs. Thus we have T∞

N
((
mi, nj

) (
mm, nn

))
> 0 or

I∞N
((
mi, nj

) (
mm, nn

))
< 1 ( or F∞N

((
mi, nj

) (
mm, nn

))
< 1) for all

((mi, nj)(mm, nn))∈E. Hence,G is a connected-SVNG. ☐

Remark 2. The maximal product of two complete-(SVNGs) is not
a complete-SVNG, in general. Because we do not include the case
(m1, m2) ∈ E1 and (n1, n2) ∈ E2 in the definition of the maximal
prod-uct of two (SVNGs).

Remark 3. The maximal product of two complete-(SVNGS) is a
strong-SVNG.

Example 5. Consider the complete-(SVNGs) G1 and G2 as in
Figure 5. A simple calculation concludes that G1*G2 is a strong-
SVNG.

Definition 8. Let G1 = (M1, N1) and G2 = (M2, N2) be two
(SVNGs). ∀(m1, m2) ∈ V1×V2:(

dT
)
G1∗G2

(
m1,m2

)
=

∑
(m1,m2)(n1,n2)∈E1×E2.

(
TN1

∗ TN2

) ((
m1,m2

) (
n1, n2

))
=

∑
m1=n1,m2n2∈E2

max
{
TM1

(
m1

)
,TN2

(
m2n2

)}
+

∑
m1n1∈E1,m2=n2

max
{
TN1

(
m1n1

)
,TM2

(
m2

)}
,

(
dI
)
G1∗G2

(
m1,m2

)
=

∑
(m1,m2)(n1,n2)∈E1×E2.

(
IN1

∗ IN2

) ((
m1,m2

) (
n1, n2

))
=

∑
m1=n1 ,m2n2∈E2

min
{
IM1

(
m1

)
, IN2

(
m2n2

)}
+

∑
m1n1∈E1,m2=n2

min
{
IN1

(
m1n1

)
, IM2

(
m2

)}
,
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(
dF
)
G1∗G2

(
m1,m2

)
=

∑
(m1 ,m2)(n1 ,n2)∈E1×E2.

(
FN1

∗ FN2

) ((
m1,m2

) (
n1, n2

))
=

∑
m1=n1,m2n2∈E2

min
{
FM1

(
m1

)
, FN2

(
m2n2

)}
+

∑
m1n1∈E1 ,m2=n2

min
{
FN1

(
m1n1

)
, FM2

(
m2

)}
.

Theorem 4. LetG1 = (M1, N1) andG2 = (M2, N2) are two (SVNGs).
If TM1

⩾ TN2
, IM1

⩽ IN2
, FM1

⩽ FN2
and TM2

⩾ TN1
, IM2

⩽
IN1

, FM2
⩽ FN1

then for every (m1, m2) ∈ V1 × V2 we have:

(
dT
)
G1∗G2

(
m1,m2

)
= (d)G2

(
m2

)
TM1

(
m1

)
+(d)G1

(
m1

)
TM2

(
m2

)
,(

dI
)
G1∗G2

(
m1,m2

)
= (d)G2

(
m2

)
IM1

(
m1

)
+(d)G1

(
m1

)
IM2

(
m2

)
,(

dF
)
G1∗G2

(
m1,m2

)
= (d)G2

(
m2

)
FM1

(
m1

)
+(d)G1

(
m1

)
FM2

(
m2

)
.

Proof.

(
dT
)
G1∗G2

(
m1,m2

)
=∑

(m1,m2)(n1,n2)∈E1×E2.

(
TN1

∗ TN2

) ((
m1,m2

) (
n1, n2

))
=

∑
m1=n1,m2n2∈E2

max
{
TM1

(
m1

)
,TN2

(
m2n2

)}
+

∑
m1n1∈E1,m2=n2

max
{
TN1

(
m1n1

)
,TM2

(
m2

)}
=

∑
m2n2∈E2,m1=n1

TN2

(
m2n2

)
+

∑
m1n1∈E1,m2=n2

TN1

(
m1n1

)
= (d)G2

(
m2

)
TM1

(
m1

)
+ (d)G1

(
m1

)
TM2

(
m2

)
,

(
dI
)
G1∗G2

(
m1,m2

)
=∑

(m1,m2)(n1,n2)∈E1×E2.

(
IN1

∗ IN2

) ((
m1,m2

) (
n1, n2

))
=

∑
m1=n1,m2n2∈E2

min
{
IM1

(
m1

)
, IN2

(
m2n2

)}
+

∑
m1n1∈E1,m2=n2

min
{
IN1

(
m1n1

)
, IM2

(
m2

)}
=

∑
m2n2∈E2,m1=n1

IN2

(
m2n2

)
+

∑
m1n1∈E1 ,m2=n2

IN1

(
m1n1

)
= (d)G2

(
m2

)
IM1

(
m1

)
+ (d)G1

(
m1

)
IM2

(
m2

)
,

(
dF
)
G1∗G2

(
m1,m2

)
=∑

(m1,m2)(n1,n2)∈E1×E2.

(
FN1

∗ FN2

) ((
m1,m2

) (
n1, n2

))
=

∑
m1=n1,m2n2∈E2

min
{
FM1

(
m1

)
, FN2

(
m2n2

)}
+

∑
m1n1∈E1,m2=n2

min
{
FN1

(
m1n1

)
, FM2

(
m2

)}
=

∑
m2n2∈E2,m1=n1

FN2

(
m2n2

)
+

∑
m1n1∈E1,m2=n2

FN1

(
m1n1

)
= (d)G2

(
m2

)
FM1

(
m1

)
+ (d)G1

(
m1

)
FM2

(
m2

)
.

Example 6.Consider the (SVNGs)G1,G2, andG1*G2 as in Figure 9.
Since TM1

⩾ TN2
, IM1

⩽ IN2
, FM1

⩽ FN2
,TM2

⩾ TN1
IM2

⩽ IN1
and

FM2
⩽ FN1

by Theorem 4, we have

(
dT
)
G1∗G2

(a, c) = (d)G2
(c)TM1

(a) + (d)G1
(a)TM2

(c)

= 1 ⋅ (0.3) + 1 ⋅ (0.2) = 0.5,(
dI
)
G1∗G2

(a, c) = (d)G2
(c)IM1

(a) + (d)G1
(a)IM2

(c)

= 1 ⋅ (0.4) + 1 ⋅ (0.3) = 0.7,(
dF
)
G1∗G2

(a, c) = (d)G2
(c)FM1

(a) + (d)G1
(a)FM2

(c)

= 1 ⋅ (0.4) + 1 ⋅ (0.3) = 0.7.

(
dT
)
G1∗G2

(a, d) = (d)G2
(d)TM1

(a) + (d)G1
(a)TM2

(d)

= 1 ⋅ (0.3) + 1 ⋅ (0.3) = 0.6,(
dI
)
G1∗G2

(a, d) = (d)G2
(d)IM1

(a) + (d)G1
(a)IM2

(d)

= 1 ⋅ (0.4) + 1 ⋅ (0.4) = 0.8,(
dF
)
G1∗G2

(a, d) = (d)G2
(d)FM1

(a) + (d)G1
(a)FM2

(d)

= 1 ⋅ (0.4) + 1 ⋅ (0.4) = 0.8.

(
dT
)
G1∗G2

(b, c) = (d)G2
(c)TM1

(b) + (d)G1
(b)TM2

(c)

= 1 ⋅ (0.2) + 1 ⋅ (0.2) = 0.4,(
dI
)
G1∗G2

(b, c) = (d)G2
(c)IM1

(b) + (d)G1
(b)IM2

(c)

= 1 ⋅ (0.3) + 1 ⋅ (0.3) = 0.6,(
dF
)
G1∗G2

(b, c) = (d)G2
(c)FM1

(b) + (d)G1
(b)FM2

(c)

= 1 ⋅ (0.3) + 1 ⋅ (0.3) = 0.6.

(
dT
)
G1∗G2

(b, d) = (d)G2
(d)TM1

(b) + (d)G1
(b)TM2

(d)

= 1 ⋅ (0.2) + 1 ⋅ (0.3) = 0.5,(
dI
)
G1∗G2

(b, d) = (d)G2
(d)IM1

(b) + (d)G1
(b)IM2

(d)

= 1 ⋅ (0.3) + 1 ⋅ (0.4) = 0.7,(
dF
)
G1∗G2

(b, d) = (d)G2
(d)FM1

(b) + (d)G1
(b)FM2

(d)

= 1 ⋅ (0.3) + 1 ⋅ (0.4) = 0.7.
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Figure 9 Single-valued neutrosophic graphs.

By direct calculations:(
dT
)
G1∗G2

(a, c) = 0.3 + 0.2 = 0.5,(
dI
)
G1∗G2

(a, c) = 0.4 + 0.3 = 0.7,(
dF
)
G1∗G2

(a, c) = 0.4 + 0.3 = 0.7,(
dT
)
G1∗G2

(a, d) = 0.3 + 0.3 = 0.6,(
dI
)
G1∗G2

(a, d) = 0.4 + 0.4 = 0.8,(
dF
)
G1∗G2

(a, d) = 0.4 + 0.4 = 0.8,(
dT
)
G1∗G2

(b, c) = 0.2 + 0.2 = 0.4,(
dI
)
G1∗G2

(b, c) = 0.3 + 0.3 = 0.6,(
dF
)
G1∗G2

(b, c) = 0.3 + 0.3 = 0.6,(
dT
)
G1∗G2

(b, d) = 0.3 + 0.2 = 0.5,(
dI
)
G1∗G2

(b, d) = 0.3 + 0.4 = 0.7,(
dF
)
G1∗G2

(b, d) = 0.3 + 0.4 = 0.7.

It is clear from the above calculations that the degrees of vertices cal-
culated by using the formula of the above theorem and by directed
method are the same.

Definition 9. Let G1 = (M1, N1) and G2 = (M2, N2) be two
(SVNGs). For any vertex (m1, m2) ∈ V1 × V2 we have(

tdT
)
G1∗G2

(
m1,m2

)
=

∑
(m1,m2)(n1,n2)∈E1×E2.

(
TN1

∗ TN2

) ((
m1,m2

) (
n1, n2

))
+
(
TM1

∗ TM2

(
m1,m2

)
=

∑
m1=n1,m2n2∈E2

max
{
TM1

(
m1

)
,TN2

(
m2n2

)}
+

∑
m1n1∈E1,m2=n2

max
{
TN1

(
m1n1

)
,TM2

(
m2

)}
+ max

{
TM1

(
m1

)
,TM2

(
m2

)}
,

(
tdI

)
G1∗G2

(
m1,m2

)
=∑

(m1,m2)(n1,n2)∈E1×E2.

(
IN1

∗ IN2

) ((
m1,m2

) (
n1, n2

))
+(

IM1
∗ IM2

(
m1,m2

)
=

∑
m1=n1,m2n2∈E2

min
{
IM1

(
m1

)
, IN2

(
m2n2

)}
+

∑
m1n1∈E1,m2=n2

min
{
IN1

(
m1n1

)
, IM2

(
m2

)}
+ min

{
IM1

(
m1

)
, IM2

(
m2

)}
,

(
tdF

)
G1∗G2

(
m1,m2

)
=∑

(m1,m2)(n1,n2)∈E1×E2.

(
FN1

∗ FN2

) ((
m1,m2

) (
n1, n2

))
+(

FM1
∗ FM2

(
m1,m2

)
=

∑
m1=n1,m2n2∈E2

min
{
FM1

(
m1

)
, FN2

(
m2n2

)}
+

∑
m1n1∈E1,m2=n2

min
{
FN1

(m1n1, FM2

(
m2

)}
+ min

{
FM1

(
m1

)
, FM2

(
m2

)}
.

Theorem 5. LetG1 = (M1, N1) andG2 = (M2, N2) be two (SVNGs).
If TM1

⩾ TN2
, IM1

⩽ IN2
, FM1

⩽ FN2
and TM2

⩾ TN1
, IM2

⩽
IN1

, FM2
⩽ FN1

, then for every
(
m1,m2

)
∈ V1 × V2 we have

(
tdT

)
G1∗G2

(
m1,m2

)
= (d)G2

(
m2

)
TM1

(
m1

)
+ (d)G1

(
m1

)
TM2

(
m2

)
+max

{
TM1

(
m1

)
,TM2

(
m2

)}
,(

tdI
)
G1∗G2

(
m1,m2

)
= (d)G2

(
m2

)
IM1

(
m1

)
+ (d)G1

(
m1

)
IM2

(
m2

)
+min

{
IM1

(
m1

)
, IM2

(
m2

)}
,(

tdF
)
G1∗G2

(
m1,m2

)
= (d)G2

(
m2

)
FM1

(
m1

)
+ (d)G1

(
m1

)
FM2

(
m2

)
+min

{
FM1

(
m1

)
, FM2

(
m2

)}
.
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Proof.(
tdT

)
G1∗G2

(
m1,m2

)
=

∑
(m1,m2)(n1,n2)∈E1×E2.

(
TN1

∗ TN2

) ((
m1,m2

) (
n1, n2

))
+

(
TM1

∗ TM2

) (
m1,m2

)
=

∑
m1=n1,m2n2∈E2

max
{
TM1

(
m1

)
,TN2

(
m2n2

)}
+

∑
m1n1∈E1,m2=n2

max
{
TN1

(
m1n1

)
,TM2

(
m2

)}
+max

{
TM1

(
m1

)
,TM2

(
m2

)}
=

∑
m2n2∈E2,m1=n1

TN2

(
m2n2

)
+

∑
m1n1∈E1,m2=n2

TN1

(
m1n1

)
+max

{
TM1

(
m1

)
,TM2

(
m2

)}
= (d)G2

(
m2

)
TM1

(
m1

)
+ (d)G1

(
m1

)
TM2

(
m2

)
+

max
{
TM1

(
m1

)
,TM2

(
m2

)}
.

(
tdI

)
G1∗G2

(
m1,m2

)
=∑

(m1,m2)(n1,n2)∈E1×E2.

(
IN1

∗ IN2

) ((
m1,m2

) (
n1, n2

))
+(

IM1
∗ IM2

) (
m1,m2

)
=

∑
m1=n1,m2n2∈E2

min
{
IM1

(
m1

)
, IN2

(
m2n2

)}
+

∑
m1n1∈E1 ,m2=n2

min
{
IN1

(
m1n1

)
, IM2

(
m2

)}
+min

{
IM1

(
m1

)
, IM2

(
m2

)}
=

∑
m2n2∈E2,m1=n1

IN2

(
m2n2

)
+

∑
m1n1∈E1 ,m2=n2

IN1

(
m1n1

)
+min

{
IM1

(
m1

)
, IM2

(
m2

)}
= (d)G2

(
m2

)
IM1

(
m1

)
+ (d)G1

(
m1

)
IM2

(
m2

)
+min

{
IM1

(
m1

)
, IM2

(
m2

)}
.

(
tdF

)
G1∗G2

(
m1,m2

)
=∑

(m1,m2)(n1,n2)∈E1×E2.

(
FN1

∗ FN2

) ((
m1,m2

) (
n1, n2

))
+(

FM1
∗ FM2

) (
m1,m2

)
=

∑
m1=n1,m2n2∈E2

min{FM1

(
m1

)
, FN2

(
m2n2

)
+

∑
m1n1∈E1,m2=n2

min
{
FN1

(
m1n1

)
, FM2

(
m2

)}
+min

{
FM1

(
m1

)
, FM2

(
m2

)}
=

∑
m2n2∈E2,m1=n1

FN2

(
m2n2

)
+

∑
m1n1∈E1,m2=n2

FN1

(
m1n1

)
+min

{
FM1

(
m1

)
, FM2

(
m2

)}
= (d)G2

(
m2

)
FM1

(
m1

)
+ (d)G1

(
m1

)
FM2

(
m2

)
+min

{
FM1

(
m1

)
, FM2

(
m2

)}
.

Example 7. Consider the (SVNGs) G1, G1, and G1∗G2 as in
Figures 2–4. We find the total degree of vertices in maximal prod-
uct. Hence, we choose vertex (e,a).

(
tdT

)
G1∗G2

(e, a) = (d)G2
(e)TM1

(a) + (d)G1
(a)TM2

(e)

+max
{
TM1

(e),TM2
(a)

}
= 1(0.1) + 3(0.3) + max(0.1, 0.3)

= 0.1 + 0.9 + 0.3 = 1.3(
tdI

)
G1∗G2

(e, a) = (d)G2
(e)IM1

(a) + (d)G1
(a)IM2

(e)

+min
{
IM1

(e), IM2
(a)

}
= 1(0.3) + 3(0.4) + min(0.3, 0.4)

= 0.3 + 1.2 + 0.3 = 1.8(
tdF

)
G1∗G2

(e, a) = (d)G2
(e)FM1

(a) + (d)G1
(a)FM2

(e)

+min
{
FM1

(e), FM2
(a)

}
= 1(0.4) + 3(0.5) + min(0.4, 0.5)
= 0.4 + 1.5 + 0.4 = 2.3.

In the same way we can find the total degree for all remaining
vertices.

Definition 10. The rejection G1|G2 = (M1|M2, N1|N2) of two
(SVNGs) G1 = (M1, N1) and G2 = (M2, N2) is defined as

(i)
(
TM1

∣ TM2

) ((
m1,m2

))
= min

{
TM1

(
m1

)
,TM2

(
m2

)}
(
IM1

∣ IM2

) ((
m1,m2

))
= max

{
IM1

(
m1

)
, IM2

(
m2

)}
(
FM1

∣ FM2

) ((
m1,m2

))
= max

{
FM1

(
m1

)
, FM2

(
m2

)}
∀
(
m1,m2

)
∈
(
V1 × V2

)
,

(ii)
(
TN1

∣ TN2

) ((
m,m2

) (
m, n2

))
= min{TM1

(m),

TM2

(
m2

)
, TM2

(
n2
)}(

IN1
∣ IN2

) ((
m,m2

) (
m, n2

))
= max{IM1

(m),

IM2

(
m2

)
, IM2

(
n2
)}(

FN1
∣ FN2

) ((
m,m2

) (
m, n2

))
= max{FM1

(m),{
FM2

(
m2

)
, FM2

(
n2
)}

∀m ∈

V2 and m2n2 ∉ E2,

(iii)
(
TN1

∣ TN2

) ((
m,m2

) (
m, n2

))
= min{TM1

(m),

TM2

(
m2

)
,TM2

(
n2
)}

(
IN1

∣ IN2

) ((
m,m2

) (
m, n2

))
= max{IM1

(m),

IM2

(
m2

)
, IM2

(
n2
)}

(
FN1

∣ FN2

) ((
m,m2

) (
m, n2

))
= max{FM1

(m),

FM2

(
m2

)
, FM2

(
n2
)}

∀z ∈

V2 and m1n1 ∉ E1,
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Figure 10 G1.

(iv)
(
TN1

∣ TN2

) ((
m1,m2

) (
n1, n2

))
= min

{
TM1

(
m1

)
,TM1

(
n1
)
,

TM2

(
m2

)
,TM2

(
n2
)}

(
IN1

∣ IN2

) ((
m1,m2

) (
n1, n2

))
= max

{
IM1

(
m1

)
, IM1

(
n1
)
,

IM2

(
m2

)
, IN2

(
n2
)}

(
FN1

∣ FN2

) ((
m1,m2

) (
n1, n2

))
= max

{
FM1

(
m1

)
, FM1

(
n1
)
,

FM2

(
m2

)
, FM2

(
n2
)}

∀m1n1 ∉ E1 and m2n2 ∉ E2.

Example 8. Consider the (SVNGs) G1 and G2 as in Figures 10
and 11. We can see that the rejection of two (SVNGs) G1 and G2,
that is G1|G2 in Figure 12.

For vertex (e, a), we find true membership value, indeterminacy,
and false membership value as follows:(

TM1
∣ TM2

)
((e, a)) = min

{
TM1

(e),TM2
(a)

}
= min {0.3, 0.1} = 0.1,(

IM1
∣ IM2

)
((e, a)) = max

{
IM1

(e), IM2
(a)

}
= max {0.2, 0.2} = 0.2,(

FM1
∣ FM2

)
((e, a)) = max

{
FM1

(e), FM2
(a)

}
= max {0.4, 0.3} = 0.4,

for a ∈ V1 and e ∈ V2. For edge (e, c)(e, a), we calculate true mem-
bership value, indeterminacy, and false membership value, also.(

TN1
∣ TN2

)
((e, c)(e, a)) = min

{
TM1

(e),TM2
(c),TM2

(a)
}

= min {0.3, 0.1, 0.1} = 0.1,(
IN1

∣ IN2

)
((e, c)(e, a)) = max

{
IM1

(e), IM2
(c), IM2

(a)
}

= max {0.2, 0.2, 0.2} = 0.2,(
FN1

∣ FN2

)
((e, c)(e, a)) = max

{
FM1

(e), FM2
(c), FM2

(a)
}

= max {0.4, 0.4, 0.3} = 0.4,

for e ∈ V2 and ac ∉ E1.

Similarly, we can find both membership and non-membership
value for all remaining vertices and edges.

Proposition 6. The rejection of two (SVNGs)G1andG2, is a SVNG.

Proof. Let G1 = (M1, N1) and G2 = (M2, N2) be two (SVNGs) on
crisp graphs G1 = (V1, E1) and G2 = (V2, E2), respectively and (m1,
m2)(n1, n2)) ∈ E1 × E2. Then by Definition 10, we have(

IN1
∣ IN2

) ((
m1,m2

) (
n1, n2

))
=

max
{
IM1

(
m1

)
, IM1

(
n1
)
, IM2

(
m2

)
, IM2

(
n2
)}

= max
{

max{IM1

(
m1

)
, IM2

(
m2

)}
,

max
{
IM1

(
n1
)
, IM2

(
n2
)}}

= max
{(

IM1
∣ IM2

) (
m1,m2

)
,
(
IM1

∣ IM2

) (
n1, n2

)}
,

(
FN1

∣ FN2

) ((
m1,m2

) (
n1, n2

))
=

max
{
FM1

(
m1

)
, FM1

(
n1
)
, FM2

(
m2

)
, FM2

(
n2
)}

= max
{

max{FM1

(
m1

)
, FM2

(
m2

)}
,

max
{
FM1

(
n1
)
, FM2

(
n2
)}}

= max
{(

FM1
∣ FM2

) (
m1,m2

)
,
(
FM1

∣ FM2

) (
n1, n2

)}
.

(i) If m1 = n1, m2n2 ∉ E2(
TN1

∣ TN2

) ((
m1,m2

) (
n1, n2

))
=

min
{
TM1

(
m1

)
,TM2

(
m2

)
,TM2

(
n2
)}

= min
{

min{TM1

(
m1

)
,TM2

(
m2

)}
,

min
{{

TM1

(
n1
)
,TM2

(
n2
)}}

= min
{(

TM1
∣ TM2

) (
m1,m2

)
,
(
TM1

∣ TM2

) (
n1, n2

)}
,

(
IN1

∣ IN2

) ((
m1,m2

) (
n1, n2

))
=

max
{
IM1

(
m1

)
, IM2

(
m2

)
, IM2

(
n2
)}

= max
{

max{IM1

(
m1

)
, IM2

(
m2

)}
,

max
{
IM1

(
n1
)
, IM2

(
n2
)}}

= max
{(

IM1
∣ IM2

) (
m1,m2

)
,
(
IM1

∣ IM2

) (
n1, n2

)}
,

(
FN1

∣ FN2

) ((
m1,m2

) (
n1, n2

))
=

max{FM1

(
m1

)
, FM2

(
m2

)
, FM2

(
n2
)

= max{max{FM1

(
m1

)
, FM2

(
m2

)
,

max{FM1

(
n1
)
, FM2

(
n2
)

= max{
(
FM1

∣ FM2

) (
m1,m2

)
,
(
FM1

∣ FM2

) (
n1, n2

)
.

(ii) If m2 = n2, m1n1 ∉ E1(
TN1

∣ TN2

) ((
m1,m2

) (
n1, n2

))
=

min
{
TM1

(
m1

)
,TM1

(
n1
)
,TM2

(
m2

)}
= min

{
min{TM1

(
m1

)
,TM2

(
m2

)}
,

min
{
TM1

(
n1
)
,TM2

(
n2
)}}

= min
{(

TM1
∣ TM2

) (
m1,m2

)
,
(
TM1

∣ TM2

) (
n1, n2

)}
,
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Figure 11 G2.

Figure 12 G1|G2.

(
IN1

∣ IN2

) ((
m1,m2

) (
n1, n2

))
= max

{
IM1

(
m1

)
, IM1

(
n1
)
, IM2

(
m2

)}
= max

{
max{IM1

(
m1

)
, IM2

(
m2

)}
max

{{
IM1

(
n1
)
, IM2

(
n2
)}}

= max
{(

IM1
∣ IM2

) (
m1,m2

)
,
(
IM1

∣ IM2

) (
n1, n2

)}

(
FN1

∣ FN2

) ((
m1,m2

) (
n1, n2

))
= min

{
FM1

(
m1

)
, FM1

(
n1
)
, FM2

(
m2

)}
= min

{
min{FM1

(
m1

)
, FM2

(
m2

)}
,

min
{
FM1

(
n1
)
, FM2

(
n2
)}}

= min
{(

FM1
∣ FM2

) (
m1,m2

)
,
(
FM1

∣ FM2

) (
n1, n2

)}
,
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(iii) If m1n1 ∉ E1and m2n2 ∉ E2(
TN1

∣ TN2

) ((
m1,m2

) (
n1, n2

))
= min

{
TM1

(
m1

)
,TM1

(
n1
)
,TM2

(
m2

)
,TM2

(
n2
)}

= min
{

min{TM1

(
m1

)
,TM2

(
m2

)}
,

min
{
TM1

(
n1
)
,TM2

(
n2
)}}

= min
{(

TM1
∣ TM2

) (
m1,m2

)
,
(
TM1

∣ TM2

) (
n1, n2

)}
,

(
IN1

∣ IN2

) ((
m1,m2

) (
n1, n2

))
=

max
{
IM1

(
m1

)
, IM1

(
n1
)
, IM2

(
m2

)
, IM2

(
n2
)}

= max
{

max{IM1

(
m1

)
, IM2

(
m2

)}
,

max
{
IM1

(
n1
)
, IM2

(
n2
)}}

= max
{(

IM1
∣ IM2

) (
m1,m2

)
,
(
IM1

∣ IM2

) (
n1, n2

)}
,

(
FN1

∣ FN2

) ((
m1,m2

) (
n1, n2

))
=

max
{
FM1

(
m1

)
, FM1

(
n1
)
, FM2

(
m2

)
, FM2

(
n2
)}

= max
{

max{FM1

(
m1

)
, FM2

(
m2

)}
,

max
{
FM1

(
n1
)
, FM2

(
n2
)}}

= max
{(

FM1
∣ FM2

) (
m1,m2

)
,
(
FM1

∣ FM2

) (
n1, n2

)}
,

Therefore, G1|G2 = (M1|M2, N1|N2) is a SVNG. ☐

Remark 4. The rejection of two complete (SVNGs) G1 = (M1, N1)
and G2 = (M2, N2) is a complete-SVNG.

Definition 11. Let G1 = (M1, N1) and G2 = (M2, N2) be two
(SVNGs). For any vertex (m1, m2) ∈ V1×V2 we have(

dT
)
G1∣G2

(
m1,m2

)
=∑

(m1,m2)(n1,n2)∈E1×E2.

(
TN1

∣ TN2

) ((
m1,m2

) (
n1, n2

))
=

∑
m1=n1,m2n2∉E2

min
{
TM1

(
m1

)
,TM2

(
m2

)
∣,TM2

(
n2
)}

+
∑

m2=n2,m1n1∉E1

min
{
TM1

(
m1

)
,TM1

(
n1
)
,TM2

(
m2

)}
+

∑
m1n1∉E1andm2n2∉E2

min
{
TM1

(
m1

)
,TM1

(
n1
)
,

TM2

(
m2

)
,TM2

(
n2
)}

,

(
dI
)
G1∣G2

(
m1,m2

)
=∑

(m1 ,m2)(n1 ,n2)∈E1×E2.

(
IN1

∣ IN2

) ((
m1,m2

) (
n1, n2

))
=

∑
m1=n1,m2n2∉E2

max
{
IM1

(
m1

)
, IM2

(
m2

)
, IM2

(
n2
)}

+
∑

m2=n2,m1n1∉E1

max
{
IM1

(
m1

)
, IM1

(
n1
)
, IM2

(
m2

)}
+

∑
m1n1∉E1 and m2n2∉E2

max
{
IM1

(
m1

)
, IM1

(
n1
)
,

IM2

(
m2

)
, IM2

(
n2
)}

,

(
dF
)
G1∣G2

(
m1,m2

)
=∑

(m1,m2)(n1,n2)∈E1×E2.

(
FN1

∣ FN2

) ((
m1,m2

) (
n1, n2

))
=

∑
m1=n1,m2n2∉E2

max
{
FM1

(
m1

)
, FM2

(
m2

)
, FM2

(
n2
)}

+
∑

m2=n2,m1n1∉E1

max
{
FM1

(
m1

)
, FM1

(
n1
)
, FM2

(
m2

)}
+

∑
m1n1∉E1 and m2n2∉E2

max
{
FM1

(
m1

)
, FM1

(
n1
)
,

FM2

(
m2

)
, FM2

(
n2
)}

.

Definition 12. Let G1 = (M1, N1) and G2 = (M2, Y2) be two
(SVNGs). ∀(m1, m2) ∈ V1×V2(

tdT
)
G1∣G2

(
m1,m2

)
=∑

(m1,m2)(n1,n2)∈E1×E2 .

(
TN1

∣ TN2

) ((
m1,m2

) (
n1, n2

))
+(

TM1
∣ TM2

) (
m1,m2

)
=

∑
m1=n1 ,m2n2∉E2

min
{
TM1

(
m1

)
,TM2

(
m2

)
,TM2

(
n2
)}

+
∑

m2=n2,m1n1∉E1

min
{
TM1

(
m1

)
,TM1

(
n1
)
,TM2

(
m2

)}
+

∑
m1n1 .∈E1 and m2n2∈E2

min
{
TM1

(
m1

)
,TM1

(
n1
)
,

TM2

(
m2

)
,TM2

(
n2
)}

,

(
tdI

)
G1∣G2

(
m1,m2

)
=∑

(m1,m2)(n1,n2)∈E1×E2.

(
IN1

∣ IN2

) ((
m1,m2

) (
n1, n2

))
+(

IM1
∣ IM2

) (
m1,m2

)
=

∑
m1=n1,m2n2∉E2

max
{
IM1

(
m1

)
, IM2

(
m2

)
, IM2

(
n2
)}

+
∑

m2=n2,m1n1∉E1

max
{
IM1

(
m1

)
, IM1

(
n1
)
, IM2

(
m2

)}
+

∑
m1n1∉E1 and m2n2∉E2

max
{
IM1

(
m1

)
, IM1

(
n1
)
,

IM2

(
m2

)
, IM2

(
n2
)}

,

(
tdF

)
G1∣G2

(
m1,m2

)
=∑

(m1,m2)(n1,n2)∈E1×E2.

(
FN1

∣ FN2

) ((
m1,m2

) (
n1, n2

))
+(

FM1
∣ FM2

) (
m1,m2

)
=

∑
m1=n1,m2n2∉E2

max
{
FM1

(
m1

)
, FM2

(
m2

)
, FM2

(
n2
)}

+
∑

m2=n2 ,m1n1∉E1

max
{
FM1

(
m1

)
, FM1

(
n1
)
, FM2

(
m2

)}
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+
∑

m1n1∉E1 and m2n2∉E2

max
{
FM1

(
m1

)
, FM1

(
n1
)
,

FM2

(
m2

)
, FM2

(
n2
)}

.

Example 9. In this example we find the degree and the total degree
of vertex (d, a) in Example 8.

(dT)G1∣G2
(d, a) = min

{
TM2

(d),TM1
(a),TM1

(c)
}
+

min
{
TM2

(d),TM1
(a),TM2

(f),TM1
(c)

}
+min

{
TM2

(d),TM1
(a),TM2

(g),TM1
(c)

}
= min {0.2, 0.1, 0.1} + min {0.2, 0.1, 0.4, 0.1}+

min {0.2, 0.1, 0.1, 0.1} = 0.1 + 0.1 + 0.1 = 0.3,

(
dI
)

G1∣G2
(d, a) = max{IM2

(d), IM1
(a), IM1

(c)+

max
{
IM2

(d), IM1
(a), IM2

(f), IM1
(c)

}
+max

{
IM2

(d), IM1
(a), IM2

(g), IM1
(c)

}
= max {0.3, 0.2, 0.3} + max {0.3, 0.2, 0.3, 0.2}+

max {0.3, 0.2, 0.4, 0.2} = 0.3 + 0.3 + 0.4 = 1.0,

(
dF
)
G1∣G2

(d, a) = max
{
FM2

(d), FM1
(a), FM1

(c)
}
+

max
{
FM2

(d), FM1
(a), FM2

(f), FM1
(c)

}
+max

{
FM2

(d), FM1
(a), FM2

(g), FM1
(c)

}
= max {0.4, 0.3, 0.4} + max {0.4, 0.3, 0.2, 0.4}+

max {0.4, 0.3, 0.5, 0.4} = 0.4 + 0.4 + 0.5 = 1.3.

Hence, dG1∣G2
(a, c) = (0.3, 1.0, 1.3).

In addition, by definition of total vertex degree in rejection,(
tdT

)
G1∣G2

(d, a) = min
{
TM2

(d),TM1
(a),TM1

(c)
}
+

min
{
TM2

(d),TM1
(a),TM2

(f),TM1
(c)

}
+min

{
TM2

(d),TM1
(a),TM2

(g),TM1
(c)

}
+

min{TM2
(d),TM1

(a)

= min {0.2, 0.1, 0.1} + min {0.2, 0.1, 0.4, 0.1}+

min {0.2, 0.1, 0.1, 0.1}+

min {0.2, 0.1} = 0.1 + 0.1 + 0.1 + 0.1 = 0.4,

(
tdI

)
G1∣G2

(d, a) = max
{
IM2

(d), IM1
(a), IM1

(c)
}
+

max
{
IM2

(d), IM1
(a), IM2

(f), IM1
(c)

}
+max

{
IM2

(d), IM1
(a), IM2

(g), IM1
(c)

}
+

max
{
IM2

(d), IM1
(a)

}
= max {0.3, 0.2, 0.3} + max {0.3, 0.2, 0.3, 0.3}+
max {0.3, 0.2, 0.4, 0.3} + max {0.3, 0.2}
= 0.3 + 0.3 + 0.4 + 0.3 = 1.3,(
tdF

)
G1∣G2

(d, a) = max
{
FM2

(d), FM1
(a), FM1

(c)
}
+

max
{
FM2

(d), FM1
(a), FM2

(f), FM1
(c)

}
+max

{
FM2

(d), FM1
(a), FM2

(g), FM1
(c)

}
+

max
{
FM2

(d), FM1
(a)

}
= max {0.4, 0.3, 0.4} + max {0.4, 0.3, 0.2, 0.4}+
max {0.4, 0.3, 0.5, 0.4} + max {0.4, 0.3}
= 0.4 + 0.4 + 0.5 + 0.4 = 1.7.

So, tdG1∣G2
(a, c) = (0.4, 1.3, 1.7).

Similarly, we can find the degree and the total degree of all vertices
in G1|G2.

Definition 13. The symmetric difference G1 ⊕ G2 = (M1 ⊕ M2,
N1 ⊕ N2) of two (SVNGs) G1 = (M1, N1) and G2 = (M2, N2) is
defined as

(i)
(
TM1

⊕ TM2

) ((
m1,m2

))
= min

{
TM1

(
m1

)
,TM2

(
m2

)}
(
IM1

⊕ IM2

) ((
m1,m2

))
= max

{
IM1

(
m1

)
, IM2

(
m2

)}
(
FM1

⊕ FM2

) ((
m1,m2

))
= max

{
FM1

(
m1

)
, FM2

(
m2

)}
∀(m1, m2) ∈ (V1×V2),

(ii)
(
TN1

⊕ TN2

) ((
m,m2

) (
m, n2

))
= min

{
TM1

(m),TN2

(
m2n2

)}
(
IN1

⊕ IN2

) ((
m,m2

) (
m, n2

))
= max

{
IM1

(m), IN2

(
m2n2

)}
(
FN1

⊕ FN2

) ((
m,m2

) (
m, n2

))
= max

{
FM1

(m), FN2

(
m2n2

)}
∀m∈ V1and m2n2∈ E2,

(iii)
(
TN1

⊕ TN2

) ((
m1, z

) (
n1, z

))
= min

{
TN1

(
m1n1

)
,TM2

(z)
}

(
IN1

⊕ IN2

) ((
m1, z

) (
n1, z

))
= max

{
IN1

(
m1n1

)
, IM2

(z)
}

(
FN1

⊕ FN2

) ((
m1, z

) (
n1, z

))
= max

{
FN1

(
m1n1

)
, FM2

(z)
}

∀z∈V2 and m1n1 ∈ E1,

(iv) (TN1 ⊕ TN2)((m1, m2)(n1, n2)) = min{TM1(m1), TM1(n1),
TN2(m2n2)} forall m1n1 ∉ E1and m2n2 ∈ E2
or
= min{TM2(m2), TM2(n2), TN1(m1n1)}
forall m1n1∈ E1and m2n2 ∉ E2,
(IN1 ⊕ IN2)((m1, m2)(n1, n2)) = max{IM1(m1), IM1(n1),
IN2(m2n2)} forall m1n1 ∉ E1and m2n2∈ E2
or
= max{IM2(m2), IM2(n2), IN1(m1n1)}
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Figure 13 G1.

Figure 14 G2.

forall m1n1∈ E1and m2n2∉ E2,

(
FN1

⊕ FN2

) ((
m1,m2

) (
n1, n2

))
= max

{
FM1

(
m1

)
, FM1

(
n1
)
,

FN2

(
m2n2

)}
for all m1n1 ∉ E1 and m2n2 ∈ E2

or

= max
{
FM2

(
m2

)
, FM2

(
n2
)
, FN2

(
m1n1

)}
for all m1n1 ∈ E1 and m2n2 ∉ E2.

Example 10. Consider the (SVNGs) G1 and G2 as in Figures 13 and
14. We can see the symmetric difference of two (SVNGs) G1 and
G2, that is G1 ⊕ G2 in Figure 15.

For vertex (a, f ), we find the true membership value, indeterminacy,
and the false membership value as follows:(

TM1
⊕ TM2

)
((a, f)) = min

{
TM1

(a),TM2
(f)
}

= min {0.2, 0.4} = 0.2,(
IM1

⊕ IM2

)
((a, f)) = max

{
IM1

(a), IM2
(f)
}

= max {0.3, 0.2} = 0.3,(
FM1

⊕ FM2

)
((a, f)) = max

{
FM1

(a), FM2
(f)
}

= max {0.4, 0.1} = 0.4,

for a ∈ V1 and f ∈ V2.

For edge (a, d) (a, e), we calculate the true membership value, inde-
terminacy, and the false membership value.(

TN1
⊕ TN2

)
((a, d)(a, e)) = min

{
TM1

(a),TN2
(de)

}
= min {0.2, 0.2} = 0.2,(

IN1
⊕ IN2

)
((a, d)(a, e)) = max

{
IM1

(a), IN2
(de)

}
= max {0.3, 0.3} = 0.3,(

FN1
⊕ FN2

)
((a, d)(a, e)) = max

{
FM1

(a), FN2
(de)

}
= max {0.4, 0.1} = 0.4.

,

for a ∈ V1 and de ∈ E2.

Now, for edge (a, d)(b, d) we have(
TN1

⊕ TN2

)
((a, d)(b, d)) = min

{
TN1

(ab),TM2
(d)

}
= min {0.2, 0.2} = 0.2,(

IN1
⊕ IN2

)
((a, d)(b, d)) = max

{
IN1

(ab), IM2
(d)

}
= max {0.4, 0.3} = 0.4,(

FN1
⊕ FN2

)
((a, d)(b, d)) = max

{
FN1

(ab), FM2
(d)

}
= max {0.4, 0.1} = 0.4,

for ab ∈ E1 and d ∈ V2.

Finally, for edge (a, c)(b, f ) we can find the true membership value,
indeterminacy, and the false membership value as follows:(

TN1
⊕ TN2

)
((a, c)(b, f)) = min{TM2

(c),TM2
(f).

TN1
(ab)

}
= min {0.1, 0.4, 0.2} = 0.1 ,(

IN1
⊕ IN2

)
((a, c)(b, f)) = max{IM2

(c), FM2
(f),

IN1
(ab)

}
= max {0.2, 0.2, 0.4} = 0.4,(

FN1
⊕ FN2

)
((a, c)(b, f)) = max{FM2

(c), FM2
(f),{

FN1
(ab)

}
= max {0.3, 0.4, 0.4} = 0.4,

for ab∈ E1 and cf ∉ E2. In the same way, we can find the true mem-
bership value, indeterminacy, and the false membership value for
all remaining vertices and edges.

Proposition 7. The symmetric difference of two (SVNGs) G1and
G2, is a SVNG.

Proof. Let G1 = (M1, N1) and G2 = (M2, N2) be two (SVNGs) on
crisp graphs G1 = (V1, E1) and G2 = (V2, E2), respectively and ((m1,
m2)(n1, n2)) ∈ E1 ×E2. Then by Definition 3.21 we have

(i) If m1 = n1 = m(
TN1

⊕ TN2

) ((
m,m2

) (
m, n2

))
= min

{
TM1

(m),TN2

(
m2n2

)}
⩽ min

{
TM1

(m),min
{
TM2

(
m2

)
,TM2

(
n2
)}}

= min
{

min
{{

TM1
(m),TM2

(
m2

)}
,min

{{
TM1

(m),TM2

(
n2
)} }

= min
{(

TM1
⊕ TM2

) (
m,m2

)
,
(
TM1

⊕ TM2

) (
m, n2

)}
,(

IN1
⊕ IN2

) ((
m,m2

) (
m, n2

))
= max

{
IM1

(m), IN2

(
m2n2

)}
⩾ max

{
IM1

(m),max
{
IM2

(
m2

)
, IM2

(
n2
)}}

= max
{

max
{{

IM1
(m), IM2

(
m2

) }
,max

{{
IM1

(m), IM2

(
n2
)}}

= max
{(

IM1
⊕ IM2

) (
m,m2

)
,
(
IM1

⊕ IM2

) (
m, n2

)}
,
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Figure 15 G1 ⊕ G2.

(
FN1

⊕ FN2

) ((
m,m2

) (
m, n2

))
= max

{
FM1

(m), FN2

(
m2n2

)}
⩾ max

{
FM1

(m),max
{
FM2

(
m2

)
, FM2

(
n2
)}}

= max
{

max
{{

FM1
(m), FM2

(
m2

) }
,max

{{
FM1

(m), FM2

(
n2
)}}

= max
{(

FM1
⊕ FM2

) (
m,m2

)
,
(
FM1

⊕ FM2

) (
m, n2

)}
.

(ii) If m2 = n2 = z(
TN1

⊕ TN2

) ((
m1, z

) (
n1, z

))
= min

{
TN1

(
m1n1

)
,TM2

(z)
}

⩽ min
{

min
{
TN1

(
m1n1

)
,TM2

(z)
}

= min
{

min
{{

TM1

(
m1

)
,TM2

(z)
}
,min

{{
TM1

(
n1
)
,TM2

(z)
}}

= min
{(

TM1
⊕ TM2

) (
m1, z

)
,
(
TM1

⊕ TM2

) (
n1, z

)}
,

(
IN1

⊕ IN2

) ((
m1, z

) (
n1, z

))
= max

{
IN1

(
m1n1

)
, IM2

(z)
}

⩾ max
{

max{IN1

(
m1n1

)
, IM2

(z)
}

= max
{

max
{{

IM1

(
m1

)
, IM2

(z)
}
,max

{{
IM1

(
n1
)
, IM2

(z)
}

= max
{(

IM1
⊕ IM2

) (
m1, z

)
,
(
IM1

⊕ IM2

) (
n1, z

)}
,

(
FN1

⊕ FN2

) ((
m1, z

) (
n1, z

))
= max

{
FN1

(
m1n1

)
, FM2

(z)
}

⩾ max
{

max{FN1

(
m1n1

)
,TM2

(z)
}

= max
{

max
{{

FM1

(
m1

)
, FM2

(z)
}
,max

{{
FM1

(
n1
)
, FM2

(z)
} }

= max
{(

FM1
⊕ FM2

) (
m1, z

)
,
(
FM1

⊕ FM2

) (
n1, z

)}
.

(iii) If m1n1 ∈ E1and m2n2 ∉ E2(
TN1

⊕ TN2

) ((
m1,m2

) (
n1, n2

))
= min

{
TM1

(
m1

)
,TM1

(
n1
)
,TN2

(
m2n2

)}
⩽ min

{
TM1

(
m1

)
,TM1

(
n1
)
,min

{
TM2

(
m2

)
TM2

(
n2
)}}

= min
{

min{TM1

(
m1

)
,TM2

(
m2

)}
,min{TM1

(
m1

)
,TM2

(
n2
)

= min
{(

TM1
⊕ TM2

) (
m1,m2

)
,
(
TM1

⊕ TM2

) (
n1, n2

)}
,(

IN1
⊕ IN2

) ((
m1,m2

) (
n1, n2

))
= max

{
IM1

(
m1

)
, IM1

(
n1
)
, IN2

(
m2n2

)}
⩾ max

{
IM1

(
m1

)
, IM1

(
n1
)
,max {IM2

(
m2

)
IM2

(
n2
)}

= max
{

max{IM1

(
m1

)
, IM2

(
m2

)}
,max{IM1

(
m1

)
, IM2

(
n2
)

= max
{(

IM1
⊕ IM2

) (
m1,m2

)
,
(
IM1

⊕ IM2

) (
n1, n2

)}
,(

FN1
⊕ FN2

) ((
m1,m2

) (
n1, n2

))
= max

{
FM1

(
m1

)
, FM1

(
n1
)
, FN2

(
m2n2

)}
⩾ max

{
FM1

(
m1

)
, FM1

(
n1
)
,max

{
FM2

(
m2

)
FM2

(
n2
)}}

= max
{

max
{
FM1

(
m1

)
, FM2

(
m2

)}
,max

{
FM1

(
m1

)
, FM2

(
n2
)}

= max
{(

FM1
⊕ FM2

) (
m1,m2

)
,
(
FM1

⊕ FM2

) (
n1, n2

)}
.

(iv) If m1n1 ∈ E1and m2n2 ∉ E2

(
TN1

⊕ TN2

) ((
m1,m2

) (
n1, n2

))
= min

{
TM2

(
m2

)
,TM2

(
n2
)
,TN1

(
m1n1

)}
⩽ min

{
TM2

(
m2

)
,TM2

(
n2
)
,min

{
TM1

(
m1

)
TM1

(
n1
)}}

= min
{

min
{
TM1

(
m1

)
,TM2

(
m2

)}
,min{TM1

(
n1
)
,TM2

(
n2
)}

= min
{(

TM1
⊕ TM2

) (
m1,m2

)
,
(
TM1

⊕ TM2

) (
n1, n2

)}
,
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(
IN1

⊕ IN2

) ((
m1,m2

) (
n1, n2

))
= max

{
IM2

(
m2

)
, IM2

(
n2
)
, IN1

(
m1n1

)}
⩾ max

{
IM2

(
m2

)
, IM2

(
n2
)
,max

{
IM1

(
m1

)
IM1

(
n1
)}}

= max
{

max
{
IM2

(
m2

)
, IM1

(
m1

)}
,

max
{
IM2

(
m2

)
, IM1

(
n1
)}}

= max
{(

IM1
⊕ IM2

) (
m1,m2

)
,
(
IM1

⊕ IM2

) (
n1, n2

)}
,

(
FN1

⊕ FN2

) ((
m1,m2

) (
n1, n2

))
= max

{
FM2

(
m2

)
, FM2

(
n2
)
, FN1

(
m1n1

)}
⩾ max

{
FM2

(
m2

)
, FM2

(
n2
)
,max

{
FM1

(
m1

)
FM1

(
n1
)}}

= max
{

max
{
FM2

(
m2

)
, FM1

(
m1

)}
,

max
{
FM2

(
m2

)
, FM1

(
n1
)}}

= max
{(

FM1
⊕ FM2

) (
m1,m2

)
,
(
FM1

⊕ FM2

) (
n1, n2

)}
.

Hence, G1 ⊕ G2 is a SVNG. ☐

Remark 5. The symmetric difference of two connected-(SVNGs)
G1 = (M1, N1) and G2 = (M2, N2) is connected. Because we include
the case (m1, m2) ∈ E1 and (n1, n2) ∈ E2 in the definition of the
symmetric difference of two (SVNGs).

Definition 14. Let G1 = (M1, N1) and G2 = (M2, N2) be two
(SVNGs). For any vertex (m1, m2) ∈ V1×V2 we have(
dT
)
G1⊕G2

(
m1,m2

)
=

∑
(m1 ,m2)(n1 ,n2)∈E1×E2 .

(
TN1

⊕ TN2

) ((
m1,m2

) (
n1, n2

))
=

∑
m1=n1 ,m2n2∈E2

min
{
TM1

(
m1

)
,TN2

(
m2n2

)}
+

∑
m1n1∈E1,m2=n2

min
{
TN1

(m1n1,TM2

(
m2

)}
+

∑
m1n1∉E1 andm2n2∈E2

min
{
TM1

(
m1

)
,TM1

(
n1
)
,TN2

(
m2n2

)}
+

∑
m1n1∉E1 andm2n2∈E2

min
{
TN1

(
m1n1

)
,TM1

(
m2

)
,TM2

(
n2
)}

,

(
dI
)
G1⊕G2

(
m1,m2

)
=

∑
(m1,m2)(n1,n2)∈E1×E2.

(
IN1

⊕ IN2

) ((
m1,m2

) (
n1, n2

))
=

∑
m1=n1,m2n2∈E2

min
{
IM1

(
m1

)
, IN2

(
m2n2

)}
+

∑
m1n1∈E1,m2=n2

min
{
IN1

(m1n1, IM2

(
m2

)}
+

∑
m1n1∉E1 andm2n2∈E2

min
{
IM1

(
m1

)
, IM1

(
n1
)
, IN2

(
m2n2

)}
+

∑
m1n1∈E1 andm2n2∉E2

min
{
IN1

(
m1n1

)
, IM1

(
m2

)
, IM2

(
n2
)}

,

(
dF
)
G1⊕G2

(
m1,m2

)
=∑

(m1,m2)(n1,n2)∈E1×E2

(
FN1

⊕ FN2

) ((
m1,m2

) (
n1, n2

))
=

∑
m1=n1,m2n2∈E2

max
{
FM1

(
m1

)
, FN2

(
m2n2

)}
+

∑
m1n1∈E1,m2=n2

max
{
FN1

(m1n1, FM2

(
m2

)}

+
∑

m1n1∉E1 and m2n2∈E2

max
{
FM1

(
m1

)
, FM1

(
n1
)
, FN2

(
m2n2

)}
+

∑
m1n1∈E1 andm2n2∉′

kE2

max
{
FN1

(
m1n1

)
, FM2

(
m2

)
, FM2

(
n2
)}

.

Theorem 8. LetG1 = (M1, N1) andG2 = (M2, Y2) be two (SVNGs).
If TM1

⩾ TN2
, IM1

⩽ IN2
, FM1

⩽ FN2
and TM2

⩾ TN1
, IM2

⩽
IN1

, FM2
⩽ FN1

, then for every (m1, m2) ∈ V1 × V2 we have

(d)G1⊕G2

(
m1,m2

)
= q(d)G1

(
m1

)
+ s(d)G2

(
m2

)
where s = |V1| −

(d)G1

(
m1

)
and q = |V2| − (d)G2

(
m2

)
.

Proof.(
dT
)
G1⊕G2

(
m1,m2

)
=∑

(m1,m2)(n1,n2)∈E1×E2

(
TN1

⊕ TN2

) ((
m1,m2

) (
n1, n2

))
=

∑
m1=n1,m2n2∈E2

min{TM1

(
m1

)
,TN2

(
m2n2

)
+

∑
m1n1∈E1,m2=n2

min{TN1

(
m1n1

)
,TM2

(
m2

)
+

∑
m1n1∉E1andm2n2∈E2

min{TM1

(
m1

)
,TM1

(
n1
)
,TN2

(
m2n2

)
+

∑
m1n1∈E1andm2n2∉E2

min
{
TN1

(
m1n1

)
,TM2

(
m2

)
,TM2

(
n2
)}

=
∑

m2n2∈E2

TN2

(
m2n2

)
+

∑
m1n1∈E1

TN1

(
m1n1

)
+

∑
m1n1∉E1andm2n2∈E2

TN2

(
m2n2

)}
+∑

m1n1∈E1 and m2n2∉E2

TN1

(
m1n1

)
= q

(
dT
)
G1

(
m1

)
+ s

(
dT
)
G2

(
m2

)
,

(
dI
)
G1⊕G2

(
m1,m2

)
=∑

(m1,m2)(n1,n2)∈E1×E2

(
IN1

⊕ IN2

) ((
m1,m2

) (
n1, n2

))
=

∑
m1=n1,m2n2∈E2

max
{
IM1

(
m1

)
, IN2

(
m2n2

)}
+

∑
m1n1∈E1 ,m2=n2

max
{
IN1

(
m1n1

)
, IM2

(
m2

)}
+

∑
m1n1∉E1andm2n2∈E2

max
{
IM1

(
m1

)
, IM1

(
n1
)
, IN2

(
m2n2

)}
+

∑
m1n1∈E1andm2n2∉E2

max
{
IN1

(
m1n1

)
, IM2

(
m2

)
, IM2

(
n2
)}

=
∑

m2n2∈E2

IN2

(
m2n2

)
+

∑
m1n1∈E1

IN1

(
m1n1

)
+

∑
m1n1∉E1andm2n2∈E2

IN2

(
m2n2

)
+∑

m1n1∈E1 and m2n2∉E2

IN1

(
m1n1

)
= q

(
dI
)
G1

(
m1

)
+ s

(
dI
)
G2

(
m2

)
,
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Figure 16 Symmetric difference.

(
dF
)
G1⊕G2

(
m1,m2

)
=

∑
(m1,m2)(n1,n2)∈E1×E2

(
FN1

⊕ FN2

) ((
m1,m2

) (
n1, n2

))
=

∑
m1=n1,m2n2∈E2

max
{
FM1

(
m1

)
, FN2

(
m2n2

)}
+

∑
m1n1∈E1,m2=n2

max
{
FN1

(
m1n1

)
, FM2

(
m2

)}
+

∑
m1n1∉E1andm2n2∈E2

max
{
FM1

(
m1

)
, FM1

(
n1
)
, FN2

(
m2n2

)}
+

∑
m1n1∈E1andm2n2∉E2

max
{
FN1

(
m1n1

)
, FM2

(
m2

)
, FM2

(
n2
)}

=
∑

m2n2∈E2

FN2

(
m2n2

)
+

∑
m1n1∈E1

FN1

(
m1n1

)
+

∑
m1n1∉E1andm2n2∈E2

FN2

(
m2n2

)
∑

m1n1∈E1 and m2n2∉E2

FN1

(
m1n1

)
= q

(
dF
)
G1

(
m1

)
+ s

(
dF
)
G2

(
m2

)
.

We conclude that (d)G1⊕G2

(
m1,m2

)
= q(d)G1

(
m1

)
+ s(d)G2

(
m2

)
where s = |V1| − (d)G1

(
m1

)
and q = |V2| − (d)G2

(
m2

)
.

☐

Example 11. In Figure 16, TM1
⩾ TN2

, FM1
⩽ FN2

,TM2
⩾ TN1

, and
FM2

⩽ FN1
. So, the total degree of vertex in symmetric difference is

calculated by using the following formula:

(
dT
)
G1⊕G2

(
m1,m2

)
= q

(
dT
)
G1

(
m1

)
+ s

(
dT
)
G2

(
m2

)
,(

dI
)
G1⊕G2

(
m1,m2

)
= q

(
dI
)
G1

(
m1

)
+ s

(
dI
)
G2

(
m2

)
,(

dF
)
G1⊕G2

(
m1,m2

)
= q

(
dF
)
G1

(
m1

)
+ s

(
dF
)
G2

(
m2

)
.

(
dT
)
G1⊕G2

(a, c) = 1 ⋅ (0.2) + 1 ⋅ (0.1) = 0.3,(
dI
)
G1⊕G2

(a, c) = 1 ⋅ (0.4) + 1 ⋅ (0.3) = 0.7,(
dF
)
G1⊕G2

(a, c) = 1 ⋅ (0.4) + 1 ⋅ (0.3) = 0.7,(
dT
)
G1⊕G2

(a, d) = 1 ⋅ (0.2) + 1 ⋅ (0.1 + 0.2) = 0.5,(
dI
)
G1⊕G2

(a, d) = 1 ⋅ (0.4) + 1 ⋅ (0.3 + 0.3) = 1.0,(
dF
)
G1⊕G2

(a, d) = 1 ⋅ (0.4) + 1 ⋅ (0.3 + 0.1) = 0.8.

Hence, (d)G1⊕G2
(a, c) = (0.3, 0.7, 0.7) and (d)G1⊕G2

(a, d) =
(0.5, 1.0, 0.8). In the same way, we can show that (d)G1⊕G2

(b, c) =
(d)G1⊕G2

(b, d) = (0.4, 0.9, 0.9). By direct calculations:

(
dT
)
G1⊕G2

(a, c) = 0.3,(
dI
)
G1⊕G2

(a, c) = 0.7,(
dF
)
G1⊕G2

(a, c) = 0.7,(
dT
)
G1⊕G2

(a, d) = 0.5,(
dI
)
G1⊕G2

(a, d) = 1.0,(
dF
)
G1⊕G2

(a, d) = 0.8,(
dT
)
G1⊕G2

(b, c) = 0.3,(
dI
)
G1⊕G2

(b, c) = 0.7,(
dF
)
G1⊕G2

(b, c) = 0.7,(
dT
)
G1⊕G2

(b, d) = 0.5,(
dI
)
G1⊕G2

(b, d) = 1.0,(
dF
)
G1⊕G2

(b, d) = 0.8.

It is obvious from the above calculations that the degrees of vertices
calculated by using the formula of the above theorem and by direct
method are the same.
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Definition 15. Let G1 = (M1, N1) and G2 = (M2, N2) be two
(SVNGs). For any vertex (m1, m2) ∈ V1 × V2 we have

(
tdT

)
G1⊕G2

(
m1,m2

)
=

∑
(m1 ,m2)(n1 ,n2)∈E1×E2.

(
TN1

⊕ TN2

) ((
m1,m2

) (
n1, n2

))
+(

TM1
⊕ TM2

(
m1,m2

)
=

∑
m1=n1,m2n2∈E2

min
{
TM1

(
m1

)
,TN2

(
m2n2

)}
+

∑
m1n1∈E1,m2=n2

min
{
TN1

(m1n1,TM2

(
m2

)}
+

∑
m1n1∉E1andm2n2∈E2

min
{
TM1

(
m1

)
,TM1

(
n1
)
,TN2

(
m2n2

)}
+

∑
m1n1∈E1andm2n2∉E2

min
{
TN1

(
m1n1

)
,TM2

(
m2

)
,TM2

(
n2
)}

+ min
{
TM1

(
m1

)
,TM2

(
m2

)}
,

(
tdI

)
G1⊕G2

(
m1,m2

)
=

∑
(m1,m2)(n1,n2)∈E1×E2.

(
IN1

⊕ IN2

) ((
m1,m2

) (
n1, n2

))
+

(IM1
⊕ IM2

(
m1,m2

)
=

∑
m1=n1,m2n2∈E2

max
{
IM1

(
m1

)
, IN2

(
m2n2

)}
+

∑
m1n1∈E1,m2=n2

max
{
IN1

(m1n1, IM2

(
m2

)}
+

∑
m1n1∉E1andm2n2∈E2

max
{
IM1

(
m1

)
, IM1

(
n1
)
, IN2

(
m2n2

)}
+

∑
m1n1∈E1andm2n2∉E2

max
{
IN1

(
m1n1

)
, IM2

(
m2

)
, IM2

(
n2
)}

+ max
{
IM1

(
m1

)
, IM2

(
m2

)}
,

(
tdF

)
G1⊕G2

(
m1,m2

)
=

∑
(m1,m2)(n1,n2)∈E1×E2.

(
FN1

⊕ FN2

) ((
m1,m2

) (
n1, n2

))
+

(
FM1

⊕ FM2

(
m1,m2

)
=

∑
m1=n1,m2n2∈E2

max
{
FM1

(
m1

)
, FN2

(
m2n2

)}
+

∑
m1n1∈E1,m2=n2

max
{
FN1

(m1n1, FM2

(
m2

)}
+

∑
m1n1∉E1andm2n2∈E2

max
{
FM1

(
m1

)
, FM1

(
n1
)
, FN2

(
m2n2

)}
+

∑
m1n1∈E1andm2n2∉E2

max
{
FN1

(
m1n1

)
, FM2

(
m2

)
, FM2

(
n2
)}

+max
{
FM1

(
m1

)
, FM2

(
m2

)}
.

Theorem 9. LetG1 = (M1, N1) andG2 = (M2, Y2) be two (SVNGs).

(i) If TM1
⩾ TN2

and TM2
⩾ TN1

, then ∀(m1, m2) ∈ V1 × V2:

(
tdT

)
G1⊕G2

(
m1,m2

)
= q

(
tdT

)
G1

(
m1

)
+ s

(
tdT

)
G2

(
m2

)
−(q − 1)TG1

(
m1

)
− max

{
TG1

(
m1

)
,TG1

(
m1

)}
.

(ii) If IM1
⩽ IN2

and IM2
⩽ IN1

, then ∀
(
m1,m2

)
∈ V1 × V2 ∶

(
tdI

)
G1⊕G2

(
m1,m2

)
= q

(
tdI

)
G1

(
m1

)
+ s

(
tdI

)
G2

(
m2

)
−(q − 1)IG1

(
m1

)
− min

{
IG1

(
m1

)
, IG1

(
m1

)}
.

(iii) If FM1
⩽ FN2

and FM2
⩾ FN1

, then ∀
(
m1,m2

)
∈ V1 × V2 ∶

(
tdF

)
G1⊕G2

(
m1,m2

)
= q

(
tdF

)
G1

(
m1

)
+ s

(
tdF

)
G2

(
m2

)
−(q − 1)FG1

(
m1

)
− min

{
FG1

(
m1

)
, FG1

(
m1

)}
.

∀
(
m1,m2

)
∈ V1 × V2, s = |V1| − (d)G1

(
m1

)
and q = |V2| −

(d)G2

(
m2

)
.

Proof. ∀(m1, m2) ∈ V1×V2 we have

(
tdT

)
G1⊕G2

(
m1,m2

)
=

∑
(m1,m2)(n1,n2)∈E1×E2

(
TN1

⊕ TN2

) ((
m1,m2

) (
n1, n2

))
+(

TM1
⊕ TM2

) (
m1,m2

)
=

∑
m1=n1 ,m2n2∈E2

min
{
TM1

(
m1

)
,TN2

(
m2n2

)}
+

∑
m1n1∈E1,m2=n2

min
{
TN1

(
m1n1

)
,TM2

(
m2

)}
+

∑
m1n1∉E1andm2n2∈E2

min
{
TM1

(
m1

)
,TM1

(
n1
)
,TN2

(
m2n2

)}
+

∑
m1n1∈E1andm2n2∉E2

min
{
TN1

(
m1n1

)
,TM2

(
m2

)
,TM2

(
n2
)}

+ max
{
TM1

(
m1

)
,TM2

(
m2

)}
=

∑
m2n2∈E2

TN2

(
m2n2

)
+

∑
m1n1∈E1

TN1

(
m1n1

)
+

∑
m1n1∈E1 and m2n2∉E2

TN2

(
m2n2

)}
+∑

m1n1∈E1andm2n2∉E2

TN1

(
m1n1

)
+ max

{
TM1

(
m1

)
,TM2

(
m2

)}
=

∑
m2n2∈E2

TN2

(
m2n2

)
+

∑
m1n1∈E1

TN1

(
m1n1

)
+∑

m1n1∉E1andm2n2∈E2

TN2

(
m2n2

)}
∑

m1n1∈E1andm2n2∉E2

TN1

(
m1n1

)
+ TM1

(
m1

)
+ TM2

(
m2

)
−

max
{
TM1

(
m1

)
,TM2

(
m2

)}
= q

(
tdT

)
G1

(
m1

)
+ s

(
tdT

)
G2

(
m2

)
−(q − 1)TG1

(
m1

)
− max

{
TG1

(
m1

)
,TG1

(
m1

)}
,
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(
tdI

)
G1⊕G2

(
m1,m2

)
=

∑
(m1,m2)(n1,n2)∈E1×E2.

(
IN1

⊕ IN2

) ((
m1,m2

) (
n1, n2

))
+
(
IM1

⊕ IM2

) (
m1,m2

)
=

∑
m1=n1,m2n2∈E2

max
{
IM1

(
m1

)
, IN2

(
m2n2

)}
+

∑
m1n1∈E1 ,m2=n2

max
{
IN1

(
m1n1

)
, IM2

(
m2

)}
+

∑
m1n1∉E1 andm2n2∈E2

max
{
IM1

(
m1

)
, IM1

(
n1
)
, IN2

(
m2n2

)}
+

∑
m1n1∈E1 andm2n2∉E2

max
{
IN1

(
m1n1

)
, IM2

(
m2

)
, IM2

(
n2
)}

+ min
{
IM1

(
m1

)
, IM2

(
m2

)}
=

∑
m2n2∈E2

IN2

(
m2n2

)
+

∑
m1n1∈E1

IN1

(
m1n1

)
+

∑
m1n1∉E1 and m2n2∈E2

IN2

(
m2n2

)
+∑

m1n1∈E1 andm2n2∉E2

IN1

(
m1n1

)
+ min

{
IM1

(
m1

)
, IM2

(
m2

)}
=

∑
m2n2∈E2

IN2

(
m2n2

)
+

∑
m1n1∈E1

IN1

(
m1n1

)

+
∑

m1n1∉E1andm2n2∈E2

IN2

(
m2n2

)}
+

∑
m1n1∈E1 andm2n2∉E2

IN1

(
m1n1

)
+ IM1

(
m1

)
+ IM2

(
m2

)
− min

{
IM1

(
m1

)
, IM2

(
m2

)}
= q

(
tdI

)
G1

(
m1

)
+ s

(
tdI

)
G2

(
m2

)
− (q − 1)IG1

(
m1

)
− min

{
IG1

(
m1

)
, IG1

(
m1

)}
,

(
tdF

)
G1⊕G2

(
m1,m2

)
=

∑
(m1,m2)(n1,n2)∈E1×E2.

(
FN1

⊕ FN2

) ((
m1,m2

) (
n1, n2

))
+
(
FM1

⊕ FM2

) (
m1,m2

)
=

∑
m1=n1 ,m2n2∈E2

max
{
FM1

(
m1

)
, FN2

(
m2n2

)}
+

∑
m1n1∈E1,m2=n2

max
{
FN1

(
m1n1

)
, FM2

(
m2

)}
+

∑
m1n1∉E1 and m2n2∈E2

max
{
FM1

(
m1

)
, FM1

(
n1
)
, FN2

(
m2n2

)}
+

∑
m1n1∈E1 and m2n2∉E2

max
{
FN1

(
m1n1

)
, FM2

(
m2

)
, FM2

(
n2
)}

+ min
{
FM1

(
m1

)
, FM2

(
m2

)}
=

∑
m2n2∈E2

FN2

(
m2n2

)
+

∑
m1n1∈E1

FN1

(
m1n1

)
+

∑
m1n1∉E1 and m2n2∈E2

FN2

(
m2n2

)}
+

∑
m1n1∈E1 and m2n2∉E2

FN1

(
m1n1

)
+ min

{
FM1

(
m1

)
, FM2

(
m2

)}
=

∑
m2n2∈E2

FN2

(
m2n2

)
+

∑
m1n1∈E1

FN1

(
m1n1

)
+

∑
m1n1∉E1 and m2n2∈E2

FN2

(
m2n2

)}
+

∑
m1n1∈E1 and m2n2∉E2

FN1

(
m1n1

)
+
{
FM1

(
m1

)
+ FM2

(
m2

)
− min

{
FM1

(
m1

)
, FM2

(
m2

)}

= q
(
tdF

)
G1

(
m1

)
+ s

(
tdF

)
G2

(
m2

)
− (q − 1)FG1

(
m1

)
− min

{
FG1

(
m1

)
, FG1

(
m1

)}
,

where s = |V1| − (d)G1

(
m1

)
and q = |V2| − (d)G2

(
m2

)
. □

Example 12. In this example, we calculate the total degree of ver-
tices in Example 10.(

dT
)
G1⊕G2

(a, e) = q
(
dT
)
G1

(a) + s
(
dT
)
G2

(e),

where s =∣ V1 ∣ −(d)G1
(a) and q = |V2| − (d)G2

(e).

s = |V1| − (d)G1
(a) = 2 − 1 = 1.

Similarly,

q = |V2| − (d)G2
(e) = 4 − 2 = 2.

(
tdT

)
G1⊕G2

(a, e) = q
(
tdT

)
G1

(a) + s
(
tdT

)
G2

(e)
− (s − 1)TG2

(e) − (q − 1)TG1
(a) − max

{
TG1

(a),TG2
(e)

}
= 2(0.2 + 0.2) + 1(0.3 + 0.3 + 0.2)

− (1 − 1)(0.3) − (2 − 1)(0.2) − max {0.2, 0.3}
= 2(0.4) + 0.8 − 0.2 − 0.3 = 1.1,(
tdI

)
G1⊕G2

(a, e) = q
(
tdI

)
G1

(a) + s
(
tdI

)
G2

(e)
− (s − 1)IG2

(e) − (q − 1)IG1
(a) − min

{
IG1

(a), IG2
(e)

}
= 2(0.3 + 0.4) + 1(0.2 + 0.2 + 0.3)

− (1 − 1)(0.2) − (2 − 1)(0.3) − min {0.3, 0.2}
= 2(0.7) + 0.7 − 0.3 − 0.2 = 1.6,

(
tdF

)
G1⊕G2

(a, e) = q
(
tdF

)
G1

(a) + s
(
tdF

)
G2

(e)
− (s − 1)FG2

(e) − (q − 1)FG1
(a) − min

{
FG1

(a), FG2
(e)

}
= 2(0.4 + 0.4) + 1(0.1 + 0.1 + 0.1)

− (1 − 1)(0.1) − (2 − 1)(0.4) − min {0.4, 0.1}
= 2(0.8) + 0.3 − 0.4 − 0.1 = 0.6,

and

(td)G1⊕G2
(a, e) = (1.1, 1.6, 0.6).

It is clear from the above calculations that total degrees of vertices
calculated by using the formula of the above theorem and by direct
method are same.

Definition 16. The residue productG1∙G2 =
(
M1 ∙M2,N1 ∙ N2

)
of two (SVNGs) G1 =

(
M1,N1

)
and G2 =

(
M2,N2

)
is defined as

(i)
(
TM1

∙ TM2

) ((
m1,m2

))
= max

{
TM1

(
m1

)
,TM2

(
m2

)}(
IM1

∙ IM2

) ((
m1,m2

))
= min

{
IM1

(
m1

)
, IM2

(
m2

)}(
FM1

∙ FM2

) ((
m1,m2

))
= min

{
FM1

(
m1

)
, FM2

(
m2

)}
∀
(
m1,m2

)
∈
(
V1 × V2

)
,
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Figure 17
G1.

Figure 18 G2.

(ii)
(
TN1

∙ TN2

) ((
m1,m2

) (
n1, n2

))
= TN1

(
m1n1

)(
IN1

∙ IN2

) ((
m1,m2

) (
n1, n2

))
= IN1

(
m1n1

)(
FN1

∙ FN2

) ((
m1,m2

) (
n1, n2

))
= FN1

(
m1n1

)
∀m1n1 ∈ E1,m2 ≠ n2.

Example 13. Consider the (SVNGs) G1 and G2 as in Figures 17 and
18. We can see the residue product of two (SVNGs) G1 and G2, that
is G1 ∙ G2 in Figure 19.

For vertex (b, e), we find the true membership value, indeterminacy,
and the false membership value as follows:(

TM1
∙ TM2

)
((b, e)) = max

{
TM1

(b),TM2
(e)

}
= max {0.2, 0.1} = 0.2,(

IM1
∙ IM2

)
((b, e)) = min

{
IM1

(b), IM2
(e)

}
= min {0.4, 0.2} = 0.2,(

FM1
∙ FM2

)
((b, e)) = min

{
FM1

(b), FM2
(e)

}
= min {0.4, 0.4} = 0.4,

for b ∈ V1 and e ∈ V2.

For edge (a, c) (b, d), we calculate the true membership value, inde-
terminacy, and the false membership value as follows:(

TN1
∙ TN2

)
((a, c)(b, d)) = TN1

(ab) = 0.1,(
IN1

∙ IN2

)
((a, c)(b, d)) = FN1

(ab) = 0.5,(
FN1

∙ FN2

)
((a, c)(b, d)) = FN1

(ab) = 0.4,

for ab ∈ E1 and c ≠ d.

Similarly, we can find the true membership value, indeterminacy,
and the false membership value for all remaining vertices and edges.

Proposition 10. The residue product of two (SVNGs) G1and G2, is
a SVNG.

Proof. Let G1 = (M1, N1) and G2 = (M2, N2) be two (SVNGs) on
crisp graphs G1 = (V1, E1) and G2 = (V2, E2), respectively and ((m1,
m2)(n1, n2)) ∈ E1 × E2. If m1n1 ∈ E1and m2 ≠ n2 then we have(

TN1
∙ TN2

) ((
m1,m2

) (
n1, n2

))
= TN1

(
m1n1

)
⩽ min

{
TM1

(
m1

)
,TM1

(
n1
)}

⩽ max
{

min{TM1

(
m1

)
,TM1

(
n1
)}

,

min
{
TM2

(
m2

)
,TM2

(
n2
)}}

= min
{

max
{
TM1

(
m1

)
,TM1

(
n1
)}

,

max
{
TM2

(
m2

)
,TM2

(
n2
)}}

= min
{(

TM1
∙ TM2

) (
m1,m2

)
,
(
TM1

∙ TM2

) (
n1, n2

)}
,

(
IN1

∙ IN2

) ((
m1,m2

) (
n1, n2

))
= IN1

(
m1n1

)
⩾ max

{
IM1

(
m1

)
, IM1

(
n1
)}

⩾ min
{

max{IM1

(
m1

)
, IM1

(
n1
)}

,

max
{
IM2

(
m2

)
, IM2

(
n2
)}}

= max
{

min{IM1

(
m1

)
, IM1

(
n1
)}

,

min
{
IM2

(
m2

)
, IM2

(
n2
)}}

= max
{(

IM1
∙ IM2

) (
m1,m2

)
,
(
IM1

∙ IM2

) (
n1, n2

)}
,

(
FN1

∙ FN2

) ((
m1,m2

) (
n1, n2

))
= FN1

(
m1n1

)
⩾ max

{
FM1

(
m1

)
, FM1

(
n1
)}

⩾ min{max
{
FM1

(
m1

)
, FM1

(
n1
)}

,

max
{
FM2

(
m2

)
, FM2

(
n2
)}}

= max
{

min{FM1

(
m1

)
, FM1

(
n1
)}

,

min
{
FM2

(
m2

)
, FM2

(
n2
)}}

= max
{(

FM1
∙ FM2

) (
m1,m2

)
,
(
FM1

∙ FM2

) (
n1, n2

)}
.

Definition 17. Let G1 = (M1, N1) and G2 = (M2, N2) be two
(SVNGs). For any vertex (m1, m2) ∈ V1 × V2 we have(

dT
)
G1∙G2

(
m1,m2

)
=∑

(m1,m2)(n1,n2)∈E1×E2.

(
TN1

∙ TN2

) ((
m1,m2

) (
n1, n2

))
=

∑
m1n1∈E1,m2≠n2

TN1

(
m1n1

)
=
(
dT
)
G1

(
m1

)
,

(
dI
)
G1∙G2

(
m1,m2

)
=∑

(m1,m2)(n1,n2)∈E1×E2.

(
IN1

∙ IN2

) ((
m1,m2

) (
n1, n2

))
=

∑
m1n1∈E1,m2≠n2

IN1

(
m1n1

)
=
(
dI
)
G1

(
m1

)
,
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Figure 19 G1 ⊕ G2.

(
dF
)
G1∙G2

(
m1,m2

)
=∑

(m1,m2)(n1,n2)∈E1×E2.

(
FN1

∙ FN2

) ((
m1,m2

) (
n1, n2

))
=

∑
m1n1∈E1 ,m2≠n2

FN1

(
m1n1

)
=
(
dF
)
G1

(
m1

)
.

Definition 18. Let G1 = (M1, N1) and G2 = (M2, N2) be two
(SVNGs). For any vertex(m1, m2) ∈ V1 × V2 we have

(
tdT

)
G1∙G2

(
m1,m2

)
=∑

(m1,m2)(n1,n2)∈E1×E2.

(
TN1

∙ TN2

) ((
m1,m2

) (
n1, n2

))
+
(
TM1

∙ TM2

) (
m1,m2

)

=
∑

m1n1∈E1,m2≠n2

TN1

(
m1n1

)
+ min

{
TM1

(
m1

)
,TM2

(
m2

)}
=

∑
m1n1∈E1,m2≠n2

TN1

(
m1n1

)
+ TM1

(
m1

)
+ TM2

(
m2

)
− max

{
TM1

(
m1

)
,TM2

(
m2

)}
=
(
tdT

)
G1

(
m1

)
+ TM2

(
m2

)
− max

{
TM1

(
m1

)
,TM2

(
m2

)}
,

(
tdI

)
G1∙G2

(
m1,m2

)
=∑

(m1,m2)(n1,n2)∈E1×E2 .

(
IN1

∙ IN2

) ((
m1,m2

) (
n1, n2

))
+
(
IM1

∙ IM2

(
m1,m2

))
=

∑
m1n1∈E1,m2≠n2

IN1

(
m1n1

)
+ max

{
IM1

(
m1

)
, IM2

(
m2

)}
=

∑
m1n1∈E1,m2≠n2

IN1

(
m1n1

)
+ IM1

(
m1

)
+ IM2

(
m2

)
− min

{
IM1

(
m1

)
, IM2

(
m2

)}
=
(
tdI

)
G1

(
m1

)
+ IM2

(
m2

)
− min

{
IM1

(
m1

)
, IM2

(
m2

)}
,

(
tdF

)
G1∙G2

(
m1,m2

)
=∑

(m1 ,m2)(n1 ,n2)∈E1×E2 .

(
FN1

∙ FN2

) ((
m1,m2

) (
n1, n2

))
+
(
FM1

∙ FM2

(
m1,m2

))
=

∑
m1n1∈E1,m2≠n2

FN1

(
m1n1

)
+ max

{
FM1

(
m1

)
, FM2

(
m2

)}
=

∑
m1n1∈E1,m2≠n2

FN1

(
m1n1

)
+ FM1

(
m1

)
+ FM2

(
m2

)
− min{FM1

(
m1

)
, FM2

(
m2

)
=
(
tdF

)
G1

(
m1

)
+ FM2

(
m2

)
− min

{
FM1

(
m1

)
, FM2

(
m2

)}
.

Example 14. In this example we find the degree and the total degree
of vertex (b, e) in Example 13.(

dT
)
G1∙G2

(b, e) =
(
dT
)
G1

(b) = 0.1,(
dI
)
G1∙G2

(b, e) =
(
dI
)
G1

(b) = 0.5,(
dF
)
G1∙G2

(b, e) =
(
dF
)
G1

(b) = 0.4.

Therefore,

(d)G1∙G2
(b, e) = (0, 1, 0, 5, 0, 7, 4) .

Also, total degree of vertex (a, e) is given by(
tdT

)
G1∙G2

(a, e)
=
(
tdT

)
G1

(a) + TM2
(e) − max

{
TM1

(a),TM2
(e)

}
= (0.2 + 0.1) + 0.1 − max(0.2, 0.1) = 0.2,

(
tdI

)
G1 ∙ G2(a, e)

=
(
tdI

)
G1

(a) + IM2
(e) − min

{
IM1

(a), IM2
(e)

}
= (0.4 + 0.5) + 0.2 − min(0.4, 0.2) = 0.9,

(
tdF

)
G1∙G2

(a, e)
=
(
tdF

)
G1

(a) + FM2
(e) − min

{
FM1

(a), FM2
(e)

}
= (0.4 + 0.4) + 0.4 − min(0.4, 0.4) = 0.8.
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Table 1 SVNPR of the exporter from Pakistan.
R1 b1 b2 b3 b4 b5
b1 <0.5, 0.5, 0.5> <0.2, 0.8, 0.1> <0.1, 0.6, 0.2> <0.2, 0.3, 0.6> <0.1, 0.2, 0.4>
b2 <0.1, 0.2, 0.2> <0.5, 0.5, 0.5> <0.2, 0.4, 0.7> <0.1, 0.4, 0.2> <0.9, 0.3, 0.4>
b3 <0.1, 0.4, 0.2> <0.7, 0.6, 0.2> <0.5, 0.5, 0.5> <0.6, 0.3, 0.2> <0.4, 0.2, 0.6>
b4 <0.6, 0.7, 0.1> <0.2, 0.6, 0.1> <0.2, 0.7, 0.6> <0.5; 0.5; 0.5> <0.3; 0.2; 0.7>
b5 <0.4, 0.8, 0.1> <0.4, 0.7, 0.9> <0.6, 0.8, 0.4> <0.7, 0.8, 0.3> <0.5; 0.5; 0.5>

Table 2 SVNPR of the exporter from India.
R2 b1 b2 b3 b4 b5
b1 <0.5, 0.5, 0.5> <0.4, 0.6, 0.3> <0.9, 0.4, 0.3> <0.2, 0.1, 0.6> <0.8, 0.3, 0.4>
b2 <0.3, 0.4, 0.4> <0.5, 0.5, 0.5> <0.4, 0.8, 0.2> <0.2, 0.1, 0.8> <0.6, 0.3, 0.4>
b3 <0.3, 0.6, 0.9> <0., 20.2, 0.4> <0.5, 0.5, 0.5> <0.4, 0.2, 0.6> <0.3, 0.2, 0.7>
b4 <0.6, 0.9, 0.2> <0.8, 0.9, 0.2> <0.6, 0.8, 0.4> <0.5, 0.5, 0.5> <0.2, 0.1, 0.6>
b5 <0.4, 0.7, 0.8> <0.4, 0.7, 0.6> <0.7, 0.8, 0.3> <0.6, 0.9, 0.2> <0.5, 0.5, 0.5>

Table 3 SVNPR of the exporter from America.
R3 b1 b2 b3 b4 b5
b1 <0.5, 0.5, 0.5> <0.6, 0.4, 0.3> <0.5, 0.3, 0.2> <0.4, 0.3, 0.9> <0.2, 0.1, 0.6>
b2 <0.3, 0.6, 0.6> <0.5, 0.5, 0.5> <0.4, 0.3, 0.2> <0.5, 0.1, 0.6> <0.2, 0.3, 0.1>
b3 <0.2, 0.7, 0.5> <0.2, 0.7, 0.4> <0.5, 0.5, 0.5> <0.4, 0.3, 0.9> <0.2, 0.6, 0.1>
b4 <0.9, 0.7, 0.4> <0.6, 0.9, 0.5> <0.9, 0.7, 0.4> <0.5, 0.5, 0.5> <0.4, 0.3, 0.6>
b5 <0.6, 0.9, 0.2> <0.1, 0.7, 0.2> <0.1, 0.4, 0.2> <0.6, 0.7, 0.4> <0.5, 0.5, 0.5>

Table 4 Collective SVNPR of all above individuals SVNPRs.
R b1 b2 b3 b4 b5
b1 <0.500, 0.5000, 0.5000> <0.4231, 0.5769, 0.2080> <0.6443, 0.4160, 0.2289> <0.2732, 0.2080, 0.6868> <0.4759, 0.1817, 0.4579>
b2 <0.2388, 0.3634, 0.3634> <0.5000, 0.5000, 0.5000> <0.3396, 0.4579, 0.3037> <0.2886, 0.1587, 0.4579> <0.6825, 0.3000, 0.2520>
b3 <0.2042, 0.5518, 0.4481> <0.4231, 0.4380, 0.3175> <0.5000, 0.5000, 0.5000> <0.4759, 0.2621, 0.4762> <0.3048, 0.2885, 0.3476>
b4 <0.7480, 0.7612, 0.2000> <0.6000, 0.7862, 0.2154> <0.6825, 0.7319, 0.4579> <0.5000, 0.5000, 0.5000> <0.3048, 0.1817, 0.6316>
b5 <0.4759, 0.7958, 0.2520> <0.3132, 0.7000, 0.4762> <0.5238, 0.6350, 0.2885> <0.6366, 0.7958, 0.2885> <0.5000, 0.5000, 0.5000>

Hence,

(td)G1∙G2
(a, e) = (0.2, 0.9, 0.8).

Similarly, the degree and the total degree of all vertices can be
defined in G1 ∙ G2.

4. APPLICATION OF SVNG IN GROUP
DECISION-MAKING

Definition 19. Let [2] Q = {q1, q2,… , qn be the set on which
single-valued neutrosophic preference relation (SVNPR) is defined.
It can be denoted by a matrix of R = (mst)n×n where mst = < qsqt,
T(qsqt), I(qsqt), F(qsqt) > for all s and t varies from 1 to n.

4.1. Food and Agriculture Organization of
United Nation Select a Most Suitable
Company

FAO is attempting to help in the disposal of yearning, food insta-
bility, and creation strength the executives. Objectives can be

accomplished when this association chooses the most reasonable
organization for formers and works together with it which can assist
Former with developing more food, offer types of assistance, and
suitable item. There are five organizations of Syngenta b1, Bay-
ers b2, Investment organization Institute (ICI) b3, Agria Corpora-
tion Company (ACC) b4, and Fazal Mahmood Company (FMC)
b5. Three exporters from various nations are welcome to partake in
the choice examination. One exporter is from Pakistan, the second
is from India, and the third is from America. These exporters use
SVNPRs Ri =

(
q(i)xy

)
5×5

SVNDGs Di comparing to SVNPRs Ri(i =
1, 2, 3) are given in Table 1–3.

By using the aggregation operator to find all SVNPRs Ri =(
qixy

)
5×5

, where i=1,2,3 into total SVNPR R = (qst)5 × 5 which
is shown in Table 4. For SVNPR, we use operator SVNWA

[6]. SVNWA
(
q(1)st , q

(2)
st ,… , q(k)st

)
=< 1 −

k∏
i=1

(
1 − T(i)

st

) 1
k , <

k∏
i=1

(
I(i)st

) 1
k ,

s∏
i=1

(
F(i)st

) 1
k >.
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Figure 20 Single-valued neutrosophic diagraph D1.

Figure 21 Single-valued neutrosophic diagraph D2.

Data is converted in digraphs which shown in Figures 20–22. We
can draw directed network corresponding to a collective SVNPR
above, which is already shown in Figure 23. Under some conditions,
Txy > 0.5, where x and y ranges from 1 to 5. Likewise, we have a
partial diagram of all fused SVNPR which shown in Figure 24.

We will find out the degrees which are denoted by out – dout – d (bx)
with x = 1,2,3,4,5 of the whole criteria in a partial directed network
as follows:

out – d(b1) = (0.0000, 0.0000, 0.0000)
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Figure 22 Single-valued neutrosophic diagraph D3.

Figure 23 Directed network of all fused SVNPR.

out – d(b2) = (0.6825, 0.3000, 0.2520)

out – d(b3) = (0.0000, 0.0000, 0.0000)

out – d(b4) = (2.0305, 2.2793, 0.6733)

out – d(b5) = (1.1604, 1.4308, 0.5770) according to the membership
degree rule of out – d(bx), x = 1, 2, 3, 4, 5, a ranking factors which
is given below is obtained

b4 ≻ b5 ≻ b2 ≻ b1 ∼ b3. So the ranking of b5 is higher and serves
as the best choice ACC b4. To discuss the application, we give an
algorithm as follows:

5. CONCLUSION

The adaptability and equivalence of neutrosophic models are higher
than fluffy models and intuitionistic fluffy models. A SVNG is
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Figure 24 Partial directed network of all fused SVNPR.

broadly utilized in clinical sciences, financial matters, and logical
designing. At the point when faltering happens in a genuine issue
then the SVNG has a fundamental part to investigate the vulner-
ability since chart and the fluffy diagram don’t think about the
vulnerability among the relationship of the articles. We have exam-
ined the new properties on a SVNG known as the buildup item,
maximal item, symmetric distinction, and dismissal of a chart. We
likewise examined the thought with guides to discover the degree
and absolute level of vertices of some specific charts. A few hypothe-
ses of these diagrams were recently settled by utilizing the idea
of degree and complete level of a vertex of a chart. Additionally,
the hypotheses which were identified with these properties were
demonstrated. Additionally, the fascinating and helpful use of a
SVNG was examined which was a choice of reasonable organization
by FAO. At last, a calculation which is the strategy of our application
was introduced. Next, our motivation in future work is to introduce
this idea on (1) complex bipolar-SVNG, (2) complex bipolar fuzzy
graph, and (3) complex interval-valued fuzzy graph with their con-
nected applications.
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In this paper, we introduce the concept of complex neutrosophic soft matrices. We define some basic operations including
complement, union, and intersection on these matrices. We extend the concept of complex neutrosophic soft sets to complex
neutrosophic soft matrices and prove related properties. Moreover, we develop an algorithm using complex neutrosophic soft
matrices and apply it in signal processing.

1. Introduction

)e models of real-life problems in almost every field of
science like mathematics, physics, operations research,
medical sciences, engineering, computer science, artificial
intelligence, and management sciences are mostly full of
complexities. Many theories have been developed to over-
come these uncertainties; one among those theories is fuzzy
set theory. Zadeh was the first who gave the concept of a
fuzzy set in 1965 [1]. Fuzzy sets are the generalizations or
extensions of crisps sets.

In order to add the concept of nonmembership term to
the definition of fuzzy set, the concept of an intuitionistic
fuzzy set was introduced by Atanassov in 1986 [2], where he
added the concept of nonmembership term to the definition
of fuzzy set. )e intuitionistic fuzzy set is characterized by a
membership function μ and a nonmembership function υ
with ranges [0, 1]. )e intuitionistic fuzzy set is the gen-
eralization of a fuzzy set. An intuitionistic fuzzy set can be
applied in several fields including modeling, medical diag-
nosis, and decision-making. [3] Molodtsov introduced the
concept of a soft set in 1999 and developed the fundamental
results related to this theory. Basic operations including
complement, union, and intersection are also defined on this
set. Molodtsov used soft sets for applications in games,

probability, and operational theories [3–6]. In 2018,
Smarandache generalized the soft set to the hypersoft set by
transforming the classical uniargument function F into a
multiargument function [7]. Maji et al. [8] introduced the
concept of fuzzy soft sets by combining soft sets and fuzzy
sets and applied them in decision-making problems [9]. In
[10], Cagman and Enginolu used soft matrix theory for
applications in decision-making problems.

)e concept of neutrosophy was introduced by Smar-
andache [11] in 1998. A neutrosophic set is characterized by
a truth membership function T, an indeterminacy function
I, and a falsity membership function F. A neutrosophic set is
a mathematical framework which generalizes the concept of
a classical set, fuzzy set, intuitionistic fuzzy set, and interval
valued fuzzy set [12]. In [13], Nabeeh introduced a method
that can promote a personal selection process by integrating
the neutrosophic analytical hierarchy process to show the
proper solution among distinct options with order prefer-
ence technique similar to an ideal solution (TOPSIS). In [14],
Baset introduced a concept of a neutrosophy technique
called type 2 neutrosophic numbers. By combining type 2
neutrosophic numbers and TOPSIS, they suggested a novel
method T2NN-TOPSIS which has a lot of applications in
group decision-making. )ey worked on a multicriteria
group decision-making technique of the analytical network
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process method and Visekriterijusmska Optmzacija I
Kommpromisno Resenje method under neutrosophic en-
vironment that deals high-order imprecision and incom-
plete information [15].

)e largest number set is a complex set which is in-
troduced by Gauss in 1795 and is the extension of a real
number set. According to same fashion, a complex fuzzy set
is extension to a fuzzy set as here the range set is extended
from interval [0, 1] to a closed disc of radius one in complex
plane. )e degree of membership a complex fuzzy set is not
restricted to a value in [0, 1]; it is extended to a complex
value lies in a disc of radius one in the complex plane.

Complex fuzzy sets are not simply a linear extension of
conventional fuzzy sets; complex fuzzy sets allow a natural
extension of fuzzy set theory to problems that are either very
difficult or impossible to address with one-dimensional
grades of membership. It is an obvious fact that uncertainty,
indeterminacy, inconsistency, and incompleteness in data
are periodic in nature. In order to address this difficulty, in
2002, Daniel Ramot was the first who gave the concept of a
complex fuzzy set. )e concept of a complex neutrosophic
set was introduced in [16].

)e complex fuzzy set C is described as membership
function, with range in closed unit disc in the complex plane.
)e complex-valued membership function ϕs(x) is defined
as ϕs(x) � ts(x)ei.ηs(x) that assigns a complex value of
membership to any x in U (universal set) such that ts(x) and
ηs(x) both are real-valued with ts(x) is fuzzy set and
i �

���
−1

√
, where ts(x) is called amplitude term and ηs(x) is

called phase term.
Physically the complex fuzzy set is used for representing

the complex fuzzy solar activity (solar maximum and solar
minimum) through the measurement of sunspot number
and is also used in signal processing. )e complex neu-
trosophic set is the generalization of a complex fuzzy set and
a neutrosophic set. )e complex neutrosophic set is char-
acterized by complex-valued truth membership function,
complex-valued indeterminate function, and complex-val-
ued falsehood function. In short, a complex neutrosophic set
is more generalized because it is not only the generalization
of all the current frameworks but also describes the infor-
mation in a complete and comprehensive way.

A fuzzy set with its generalizations, like intuitionistic
fuzzy sets, interval valued fuzzy sets, and cubic sets, rep-
resents uncertainties in models of the one-dimensional
phenomenon while a complex fuzzy set is the only
generalization of a fuzzy set which deals with the models of
real-life problems with the two-dimensional and periodic
phenomenon. A complex fuzzy set is more applicable
because of its nature and can be used more widely in all
branches of sciences. Since it is similar to that of a Fourier
transform, more explicitly it is a particular sort of Fourier
transform with the only restriction on the range which is a
complex unit disc. A Fourier transform is used in signals and
systems; that is, a Fourier transform is the mathematical tool
for representing both continuous and discrete signals.
Taking advantage of a complex fuzzy set, being a specific
form of Fourier transform, it can be used to represent signals
in a particular region of consideration. A neutrosophic set is

the generalization of a fuzzy set which deals with the
problems containing uncertainties of truthfulness, false-
hood, and neutrality. )e complex neutrosophic set has
three major parts, that is, truth, intermediate, and falsehood
membership functions. )e truth membership function is
totally the same as that of a complex fuzzy set while in-
termediate and falsehood membership functions are the new
additions to it. )us, a complex neutrosophic set can be
applied more widely compared with other fuzzy sets.

In the vast area of science and technology, matrices play
an important role. Classical matrix theory cannot solve all
models of the daily life problems. In order to overcome these
difficulties, Yang and Ji in [17] initiated a matrix repre-
sentation of a fuzzy soft set and successfully applied the
proposed notion of a fuzzy soft matrix in certain decision-
making problems.

)is work is basically the extension of the work of Ramot
et al. [18], Alkouri and Saleh [19], Cai [20, 21], and Zhang
et al. [22] to neutrosophic sets. Here, in this paper, we extend
the concept by defining the complex neutrosophic fuzzy soft
set and then the complex neutrosophic fuzzy soft matrix
(CNFSM). Further, we discuss some basic operations on
CNFSM and finally we develop an algorithm using these
matrices and apply it in signal processing.

Soft matrices are widely used in signals and systems,
decision-making problems, and medical diagnosis. )is
article has two aims. In the first part, we present theoretical
foundations of the complex neutrosophic fuzzy soft ma-
trices. )ese theoretical foundations provide basic notions
and operations on complex neutrosophic soft matrices such
as complex neutrosophic fuzzy soft zero matrix, complex
neutrosophic fuzzy soft universal matrix, complex neu-
trosophic fuzzy soft submatrices, union of complex neu-
trosophic fuzzy soft matrices, intersection of complex
neutrosophic fuzzy soft matrices, and complement of
complex neutrosophic fuzzy soft matrices. )en, we intro-
duce some fundamental results and discuss main strategies
for applications of this concept in signals and systems, as
well as a coherent discussion of the theory of complex
neutrosophic fuzzy soft matrices. )e aim of these new
concepts is to provide a modern method with mathematical
procedure to identify a reference signal out of large number
of signals received by a digital receiver. )e complex neu-
trosophic fuzzy soft matrix is the generalization of the fuzzy
soft matrix, complex fuzzy soft matrix, and Pythagorean
fuzzy soft matrix. )e degree of membership function,
nonmembership function, and phase terms are all applied to
each entry of the matrix which give more fruitful results for a
better choice in signals and systems along with other fields
such as decision-making problems, medical diagnosis, and
pattern recognition. )ese applied contexts provide solid
evidence of the wide applications of the complex neu-
trosophic fuzzy soft matrices approach to signals and sys-
tems and decision-making problems.

2. Preliminaries

Here, we begin with a numerical example of a complex
neutrosophic set which is already defined above.
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Example 1. Let X � x1, x2, x3  be a universe of discourse.
)en, the complex neutrosophic set S in X is given as

S �
0.6e

j0.3
, e

jπ/2
, 0.3e

j0.6
 

x1
+

0.4e
j0

, 0.9e
jπ/4

, 0.4e
jπ/4

 

x2
+

0.5e
j2π/3

, 0.2e
j0.2

, 0.7e
jπ/3

 

x3
. (1)

Definition 1 (fuzzy set (FS) [1]). Fuzzy set is defined by an
arbitrarymapping from a nonempty set X to the unit interval
[0, 1], i.e., f: X⟶ [0, 1]. )e set of all fuzzy subsets of X

is denoted by F(X), i.e., F(X) � f: f

is a function fromXinto [0, 1]}.
Soft set theory is a generalization of fuzzy set theory,

which was proposed by Molodtsov in 1999.

Definition 2 (soft set (SS) [3]). Let U be the universal set, E

be the set of parameters, and A⊆E and P(U) be the power
set of U, then a soft set FA is defined by a mapping.

fA: E⟶ P(U) such that fA(x) � ϕ if x ∉ A.
In other words, we can say that soft set FA over U is the

parameterized family of subsets of U, that is,
FA � (x, fA(x)): x ∈ E, fA(x) ∈ P(U) .

Definition 3 (fuzzy soft set (FSS) [8]). Let U be the universe
of discourse, E be the set of parameters, and A⊆E, then a
fuzzy soft set GA is defined by a mapping: gA: E⟶ P′(U)

where P′(U) is the collection of all fuzzy subsets of U, such
that gA(x) � ϕ if x ∉ A.

In other words, we can say that fuzzy soft set GA over U is
the parameterized family of fuzzy subsets of U, that is,
GA � (x, gA(x)): x ∈ E, gA(x) ∈ P′(U) .

Definition 4 (intuitionistic fuzzy set (IFS) [2]). An intui-
tionistic fuzzy set I on a nonempty set U (universal set) is
defined by the set of triplets given by

I � x, μI(x), cI(x)( : x ∈ U . (2)

Here, μI(x) and cI(x) both are functions from U to
[0, 1] as μI(x): U⟶ [0, 1] and cI(x): U⟶ [0, 1]. Here,
μI(x) represents the degree of membership and cI(x)

represents the degree of nonmembership of each element
x ∈ U to the set I, respectively, also 0≤ μI(x) + cI(x)≤ 2, for
all x ∈ U.

Definition 5 (complex fuzzy set (CFS) [18]). )e complex
fuzzy set S on universe of discourse X is described as
complex-valued membership function μS(x) that assigns
value of membership of the form rs(x)ejws(x) to any element
x ∈ X, where j �

���
−1

√
, μS(x) involves two real-valued rs(x)

and ws(x), with rs(x) ∈ [0, 1].

Mathematically, S � (x, μs(x)): x ∈ X .

Definition 6 (complex intuitionistic fuzzy set (CIFS) [19]).
)e complex intuitionistic fuzzy set CI on a nonempty set U

(universal set) is defined by the set of triplets given by
CI � (x, μCI(x), cCI(x)): x ∈ U . Here, μCI(x) �

rCI(x)ejwCI(x) and cCI(x) � lCI(x)ejmCI(x) both are functions
from U to closed unit disc in the complex plane and also
μCI(x) represents the degree of membership and cCI(x)

represents the degree of nonmembership of each element
x ∈ U to the set CI, respectively, and also
0≤ rCI(x) + lCI(x)≤ 2, for all x ∈ U.

Definition 7 (complex neutrosophic fuzzy set (CNFS) [16]).
)e complex neutrosophicfuzzy set N on a nonempty set U

(universal set) is defined by the set as N � (x,{

TN(x), IN(x), FN(x): x ∈ U)}. Here, TN(x) � rN(x)

ejwN(x), IN(x) � lN(x)ejmN(x), and FN(x) � pN(x)ejqN(x)

are the complex-valued functions from U to the closed unit
disc in the complex plane where TN(x) describes complex-
valued truth membership function, IN(x) describes com-
plex-valued indeterminate membership function, and
FN(x) describes complex-valued falsehood membership
function of each element x ∈ U to the set N, respectively,
and also 0≤ rN(x) + lN(x) + pN(x)≤ 3, for all x ∈ U.

3. Complex Neutrosophic Fuzzy Soft
Matrix Theory

In this section, we introduced a new concept of complex
neutrosophic fuzzy soft matrices. We defined the operations
of union, intersection, compliment, and submatrices. We
defined zero and universal matrices. Moreover, we proved
some related results.

Definition 8 (complex neutrosophic fuzzy soft matrix
(CNFSM)). Consider a universal set U � u1, u2, u3, . . . , um 

and set of parameters E � e1, e2, e3, . . . , en  such that A⊆E

and (cA, A) be a complex neutrosophic fuzzy soft set over
(U, E). )en, the CNFSS (cA, A) in matrix form is repre-
sented by Am×n � [aij]m×n or A. � [aij] where
i � 1, 2, 3, . . . , m and j � 1, 2, 3, . . . , n.

Here, aij �
μj ui( 



 � μT
j ui( 



, μ
I
j ui( 



, μ
F
j ui( 



 , if ej ∈ A,

(0, 0, 0) if ej ∉ A.

⎧⎪⎨

⎪⎩
(3)
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Now, (μT
j (ui), μI

j(ui), μF
j (ui)) represents degrees of

membership of truth, intermediate, and falsehood on ui.
)roughout this paper, we will use the abbreviation
CNFSMm×n for complex neutrosophic fuzzy soft matrix
over U. Following is the example of a complex neutrosophic
fuzzy soft matrix.

Example 2. Let U � u1, u2, u3  be a universal set repre-
senting the three firms, E � e1(costly), e2 (beautiful), e3
(luxurious)} be the parameters set, and A � e1, e2 ⊆E.
)en, CNFSS (cA, A) over the universal set U is given by

cA, A(  � cA e1(  � u1, 0.3e
jπ



, 0.6e
jπ/2



, e
jπ



    , u2, 0.7e
jπ/4



, 0.8e
jπ/4



, 0.5e
jπ/2



  , u3, 0.9e
jπ



, 0.1e
jπ/6



, 0.2e
jπ/2



  , cA e2( 

� u1, 0.1e
jπ/3



, 0.2e
jπ/6



, 0.1e
jπ



  , u2, 0.3e
jπ/2



, 0.9e
jπ/2



, 0.9e
jπ/4



  , u3, 0.5e
jπ/3



, 0.5e
jπ



, 0.6e
jπ/3



   .

(4)

Here,

0.3e
jπ

� 0.3(cos π + j sin π) � 0.3(−1 + 0) � −0.3

0.3e
jπ



 � |− 0.3| � 0.3 0.6

6e
jπ/2

� 0.6 cos
π
2

  + j sin
π
2

   � 0.6(0 + j) � 0.6j

0.6e
jπ/2



 � |0.6j| �
����
0.36

√
� 0.6

e
jπ

� cos π + j sin π � −1 + 0 � −1

e
jπ



 � |− 1| � 1, 0.7e
jπ/4

� 0.7 cos
π
4

  + j sin
π
4

   � 0.7
1
�
2

√ + j
1
�
2

√ 

� 0.7(0.707 + j0.707) � 0.494 + j0.494

0.7e
jπ/4



 � |0.494 + j0.494| �
�����������
0.244 + 0.244

√
� 0.69,

0.8e
jπ/4

� 0.8 cos
π
4

  + j sin
π
4

   � 0.8
1
�
2

√ + j
1
�
2

√ 

� 0.8(0.707 + j0.707) � 0.5656 + j0.5656,

|0.8e
jπ/4

| � |0.5656 + j0.5656| �
�����������
0.319 + 0.319

√
� 0.790.5

0.5e
jπ/2

� 0.5 cos
π
2

  + j sin
π
2

   � 0.5j

0.5e
jπ/2



 � |0.5j| �
����
0.25

√
� 0.5,

0.9e
jπ

� 0.9(cos π + j sin π) � 0.9(−1) � −0.9

0.9e
jπ



 � |− 0.9| � 0.9

0.1e
jπ/6

� 0.1 cos
π
6

  + j sin
π
6

   � 0.1(0.866 + j0.5) � 0.0866 + j0.05

0.1e
jπ/6



 � |0.0866 + j0.05| �
�������������
0.0074 + 0.0025

√
� 0.099,
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0.2e
jπ/2

� 0.2 cos
π
2

  + j sin
π
2

   � 0.2(0 + j) � 0.2j

0.2e
jπ/2



 � |0.2j| �
����
0.04

√
� 0.2,

0.1e
jπ/3

� 0.1 cos
π
3

  + j sin
π
3

   � 0.1(0.5 + j0.866) � 0.05 + j0.0866

0.1e
jπ/3



 � |0.05 + j0.0866| �
�������������
0.0025 + 0.0074

√
� 0.090.2e

jπ/6

� 0.2 cos
π
6

  + j sin
π
6

   � 0.2(0.866 + j0.5) � 0.1732 + j0.1

0.2e
jπ/6



 � |0.1732 + j0.1| �
����������
0.029 + 0.01

√
� 0.19,

0.1e
jπ

� 0.1(cos π + j sin π) � 0.1(−1 + 0) � −0.1

0.1e
jπ



 � |− 0.1| � 0.1,

0.3e
jπ/2

� 0.3 cos
π
2

  + j sin
π
2

   � 0.3j

0.3e
jπ/2



 � |0.3j| �
����
0.09

√
� 0.3

0.9e
jπ/2

� 0.9 cos π/2 + j sin
π
2

   � 0.9j

0.9e
jπ/2



 � |0.9j| �
����
0.81

√
� 0.9,

0.9e
jπ/4

� 0.9 cos
π
4

  + j sin
π
4

   � 0.9
1
�
2

√ + j
1
�
2

√ 

� 0.9(0.707 + j0.707) � 0.636 + j0.636

0.9e
jπ/4



 � |0.636 + j0.636| �
�����������
0.404 + 0.404

√
� 0.898,

0.5e
jπ/3

� 0.5 cos
π
3

  + j sin
π
3

   � 0.5(0.5 + j0.866) � 0.25 + j0.433

0.5e
jπ/3



 � |0.25 + j0.433| �
������������
0.0625 + 0.187

√
� 0.499

0.5e
jπ

� 0.5(cos π + j sin π) � 0.5(−1) � −0.5

0.5e
jπ



 � |− 0.5| � 0.5,

0.6e
jπ/3

� 0.6 cos
π
3

  + j sin
π
3

   � 0.6(0.5 + j0.866) � 0.3 + j0.519

0.6e
jπ/3



 � |0.3 + j0.519| �
����������
0.09 + 0.269

√
� 0.599.

(5)

Now, the abovementioned CNFSS (cA, A) in matrix
form is given by

A �

(0.3, 0.6, 1) (0.09, 0.19, 0.1) (0, 0, 0)

(0.69, 0.79, 0.5) (0.3, 0.9, 0.898) (0, 0, 0)

(0.9, 0.099, 0.2) (0.499, 0.5, 0.599) (0, 0, 0)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (6)

Definition 9 (complex neutrosophic fuzzy soft zero natrix).
Let [aij] ∈ CNFSMm×n, then [aij] is called complex neu-
trosophic fuzzy soft zero matrix if (aij, rij, lij) � (0, 0, 0), for
all i and j, and is denoted by [0].

Example 3

[0] �

(0, 0, 0) (0, 0, 0) (0, 0, 0)

(0, 0, 0) (0, 0, 0) (0, 0, 0)

(0, 0, 0) (0, 0, 0) (0, 0, 0)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (7)

Definition 10 (complex neutrosophic fuzzy soft universal
matrix). Let [aij] ∈ CNFSMm×n, then [aij] is called complex
neutrosophic fuzzy soft universal matrix if
(aij, rij, lij) � (1, 1, 1), for all i and j, and is represented by
[1].
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[1] �

(1, 1, 1) (1, 1, 1) (1, 1, 1)

(1, 1, 1) (1, 1, 1) (1, 1, 1)

(1, 1, 1) (1, 1, 1) (1, 1, 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (8)

Definition 11 (complex neutrosophic fuzzy soft
submatrices). Let Am×n and Bm×n be two CNFSMs, then

(i) Am×n is a CNFS submatrix of Bm×n and is denoted by
Am×n ⊑Bm×n if aij � (aij, aij

′ , aij
″ )≼ bij � (bij,

bij
′ , bij
″ ), that is, (aij ≼ bij, aij

″ ≼ bij
′ , aij
″ ≼ bij
″), for all

aij ∈ Am×n, bij ∈ Bm×n

(ii) Am×n is a proper CNFS submatrix of Bm×n and is
denoted by Am×n ⊏Bm×n if aij � (aij, aij

′ , aij
″ )≺bij �

(bij, bij
′ , bij
″), that is, (aij≺bij, aij

′ ≺ bij
′ , aij
″≺bij
″), for all

aij ∈ Am×n, bij ∈ Bm×n and for at least one entry
aij≺bij, that is, (aij≺bij, aij

′ ≺ bij
′ , aij
″ ≺ bij
″ )

(iii) Two CNFSMs Am×n and Bm×mn are equal and are
denoted by Am×n � Bm×n, if aij � (aij, aij

′ , aij
″ ) �

bij � (bij, bij
′ , bij
″ ), that is. (aij � bij, aij

′ �

bij
′ , aij
″ � bij
″ ), for all aij ∈ Am×n, bij ∈ Bm×n

Example 4. Let

A2×2 �
(0.2, 0.4, 0.1) (0.1, 0.5, 0.2)

(0.3, 0.7, 0.3) (0.5, 0.4, 0.4)
 ,

B2×2 �
(0.2, 0.4, 0.1) (0.3, 0.7, 0.9)

(0.3, 0.7, 0.3) (0.7, 0.5, 0.7)
 .

(9)

So, we can write that A2×2 ⊏B2×2. Moreover, A⊏B.

Definition 12. (union/intersection and compliment of
complex neutrosophic fuzzy soft matrices).

Let Am×n and Bm×n be two CNFSM, then the
CNFSMCm×n is called

(i) Union of Am×n and Bm×n and is denoted by
Am×n ⊔Bm×n if Cm×n � max Am×n, Bm×n , for all i

and j, that is, cij � (max(aij, bij), min(aij
′ , bij
′ ),

min(aij
″, bij
″)) where cij � (cij, cij

′, cij
″)

(ii) Intersection of Am×n and Bm×n is denoted by
Am×n ⊓Bm×n if Cm×n � min Am×n, Bm×n , for all i

and j, that is, cij � (min(aij, bij), max (aij
′ , bij
′ ),

max(aij
″, bij
″)), where cij � (cij, cij

′ , cij
″ )

(iii) Complement of Am×n is denoted by Am×n
′ if

Cm×n � 1 − Am×n, for all i and j, that is,
cij � (1 − aij, 1 − aij

′ , 1 − aij
″ ), where cij � (cij,

cij
′, cij
″)

Example 5. Assume that

A2×2 �
(0.3, 0.6, 1) (0.65, 0, 0.6)

(0.3, 0.9, 0) (0.8, 0.7, 0.9)
 ,

B2×2 �
(0.49, 0.5, 0.4) (0.2, 0, 0.3)

(0.1, 0.9, 0.3) (0, 0, 0)
 ,

then,

A2×2⊔B2×2 �
(0.49, 0.5, 0.4) (0.65, 0, 0.3)

(0.3, 0.9, 0) (0.8, 0, 0)
 ,

A2×2⊓B2×2 �
(0.3, 0.6, 1) (0.2, 0, 0.6)

(0.1, 0.9, 0.3) (0, 0.7, 0.9)
 ,

A2×2′ �
(0.7, 0.4, 0) (0.35, 1, 0.4)

(0.7, 0.1, 1) (0.2, 0.3, 0.1)
 .

(10)

Proposition 1. Let Am×n be a CNFSM, then

(i) Am×n( ′( ′ � Am×n,

(ii) [0]′ � [1].
(11)

Proof. It follows from definition. □

Proposition 2. Let Am×n, Bm×n, and Cm×n be three CNFSMs,
then

(i) Am×n � Bm×n andBm×n � Cm×n⟹Am×n � Cm×n,

(ii) Am×n ⊑Bm×n andBm×n ⊑Am×n⟹Am×n � Bm×n.

(12)

Proof. It follows from definition. □

Proposition 3. Let Am×n and Bm×n be two CNFSMs, then

Am×n ⊑Bm×n andBm×n ⊑Cm×n⟹Am×n ⊑Cm×n. (13)

Proof. It follows from definition. □

Proposition 4. Let Am×n and Bm×n be two CNFSMs, then

(i) Am×n⊔Bm×n � Bm×n⊔Am×n,

(ii) Am×n⊓Bm×n � Bm×n⊓Am×n,

(iii) Am×n⊔Bm×n( ⊔Cm×n � Am×n⊔ Bm×n⊔Cm×n( ,

(iv) Am×n⊓Bm×n( ⊓Cm×n � Am×n⊓ Bm×n⊓Cm×n( ,

(v) Am×n⊔ Bm×n⊓Cm×n(  � Am×n⊔Bm×n( ⊓ Am×n⊔Cm×n( ,

(vi) A⊓ Bm×n⊔Cm×n(  � Am×n⊓Bm×n( ⊔ Am×n⊓Cm×n( .

(14)
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Proof

(i) Am×n ⊔Bm×n � max Am×n, Bm×n( 

� max Bm×n, Am×n( 

� Bm×n⊔Am×n,

(ii) Am×n⊓Bm×n � min Am×n, Bm×n( 

� min Bm×n, Am×n( 

� Bm×n⊓Am×n,

(iii) Am×n⊔Bm×n( ⊔Cm×n � max Am×n⊔Bm×n( , Cm×n( 

� max max Am×n, Bm×n( , Cm×n( 

� max Am×n, max Bm×n, Cm×n( ( 

� max Am×n, Bm×n⊔Cm×n( ( 

� Am×n⊔ Bm×n⊔Cm×n( ,

(iv) Am×n⊓Bm×n( ⊓Cm×n � min Am×n⊓Bm×n( , Cm×n( 

� min min Am×n, Bm×n( , Cm×n( 

� min Am×n, min Bm×n, Cm×n( ( 

� min Am×n, Bm×n⊓Cm×n( ( 

� Am×n⊓ Bm×n⊓Cm×n( .

(v) Am×n⊔ Bm×n⊓Cm×n(  � max Am×n, Bm×n⊓Cm×n( ( 

� max Am×n, min Bm×n, Cm×n( ( 

� min max Am×n, Bm×n( , max Am×n, Cm×n( ( 

� min Am×n⊔Bm×n( , Am×n⊔Cm×n( ( 

� Am×n⊔Bm×n( ⊓ Am×n⊔Cm×n( ,

(vi) Am×n⊓ Bm×n ⊔Cm×n(  � min Am×n, Bm×n⊔Cm×n( ( 

� min Am×n, max Bm×n, Cm×n( ( 

� max min Am×n, Bm×n( , min Am×n, Cm×n( ( 

� max Am×n⊓Bm×n( , Am×n⊓Cm×n( ( 

� Am×n⊓Bm×n( ⊔ Am×n ⊓Cm×n( .

(15)

□

Proposition 5. Let Am×n and Bm×n be two CNFSMs, then the
De-Morgan laws are valid:

(i) Am×n⊔Bm×n( ′ � Am×n( ′⊓ Bm×n( ′

(ii) Am×n⊓Bm×n( ′ � Am×n( ′⊔ Bm×n( ′.
(16)

Proof.

(i) Am×n⊔Bm×n( ′ � max Am×n, Bm×n(  ′

� 1 − max Am×n, Bm×n(  

� min 1 − Am×n, 1 − Bm×n(  

� Am×n ′⊓ Bm×n ′,

Am×n⊓Bm×n( ′ � min Am×n, Bm×n(  ′

� 1 − min Am×n, Bm×n(  

� max 1 − Am×n, 1 − Bm×n(  

� Am×n ′⊔ Bm×n ′.

(17)

□

4. Complex Neutrosophic Fuzzy Soft Decision-
Making Method

Now, we are going to discuss real-life applications of newly
defined CNFSMm×n. We will show how our theoretical
concepts and results can be applied to the real-life phe-
nomenon. Specifically, we will show that CNFSMm×n ex-
plains how to get a better and clear signal for identification
with a given reference signal. Before moving towards the
algorithm, we will define the fuzzy soft (FS) max-min de-
cision-making method (FSMmDM) by using FS max-min
decision function and also define here the optimum FS on
universal set U.

Definition 13 (fuzzy soft (FS) max-min decision-making
function [10]). Let [cip] ∈ SMm×n2 , Ik � p: thereexisti,

cip ≠ 0, (k − 1)n<p≤ kn}, for all k ∈ I � 1, 2, 3, . . . , n{ }.
)en, soft max-min decision function, denoted Mm, is
defined as follows:

Mm: SMm×n2⟶ SMmm×1, Mm cip  � maxk∈I tk  ,

(18)

where

tk �
min
p∈Ik

cip , if Ik ≠ { },

0, if Ik � { }.

⎛⎝ ⎞⎠ (19)

)e one column soft matrix Mm[cip] is called max-min
soft decision-making matrix.

Definition 14 (see [10]). Let U � u1, u2, . . . , um  be a uni-
versal set and Mm[cip] � [di1]. )en, a subset of U can be
obtained by using [di1] as in the following way
opt[di1](U) � ui: ui ∈ U, di1 � 1 , which is called an opti-
mum set on U.

4.1. Decision-Making Algorithm

step 1. Suppose that M different signals S1(t′),
S2(t′), . . . , SM(t′) are detected and sampled by a receiver
and let U � S1(t′), S2(t′), . . . , SM(t′) . Each of these signals
is sampled N times. Let Sm(r′) denote the r/th sample
(1≤ r′ ≤N) of the mth signal (1≤m≤M). Now, we know
that each signal has its Fourier transform. So, each received
signal can be expressed as summation of its Fourier com-
ponents as

Sm r′(  �
1
N

  

N

n�1
Cm,ne

i2π(n− 1) r′− 1( )/N, then

Sm r′( 


 �
1
N

  

N

n�1
Cm,n


 · e

i2π(n− 1) r′− 1( )/N


,

(20)

where Cm,n(1≤ n≤N) represents complex Fourier coeffi-
cients of Sm. )e above expression can also be rewritten as
follows:
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|Sm(r′)| � (1/N) 
N
n�1 |Bm,n| · |ei(2π(n− 1)(r′− 1)+Nβm,n)/N|,

where Cm,n � Bm,neiβm,n , with Bm,n, βm,n real-valued and
Bm,n ≥ 0, for all n, where 1≤ n≤N.

step 2. )e above given signals are expressed as in matrix
form as A � [|Sm(r′)|]N×M, that is, express N samples of
each signal (total M signals) in columns:

A �

S
T
1 (1), S

I
1(1), S

F
1(1)  S

T
2 (1), S

I
2(1), S

F
2(1)  . . . S

T
M(1), S

I
M(1), S

F
M(1) 

S
T
1 (2), S

I
1(2), S

F
1(2)  S

T
2 (2), S

I
2(2), S

F
2(2)  . . . S

T
M(2), S

I
M(2), S

F
M(2) 

. . . . . .

S
T
1 (N), S

I
1(N) · S

F
1(N)  S

T
2 (N), S

I
2(N), S

F
2(N)  . . . S

T
M(N), S

I
M(N), S

F
M(N) 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (21)

step 3. Similarly, we will construct another matrix by the
signals S∗m(r).

B �

S
∗T
1 (1), S

∗ I
1 (1), S

∗F
1 (1)  S

∗T
2 (1), S

∗ I
2 (1), S

∗F
2 (1)  . . . S

∗T
M (1), S

∗ I
M (1), S

∗F
M (1) 

S
∗T
1 (2), S

∗ I
1 (2), S

∗F
1 (2)  S

∗T
2 (2), S

∗ I
2 (2), S

∗F
2 (2)  . . . S

∗T
M (2), S

∗ I
M (2), S

∗F
M (2) 

. . . . . .

S
∗T
1 (N), S

∗ I
1 (N), S

∗F
1 (N)  S

∗T
2 (N), S

∗ I
2 (N), S

∗F
2 (N)  . . . S

∗T
M (N), S

∗ I
M (N), S

∗F
M (N) 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (22)

step 4. Multiply matrices A and B using usual multiplication
of matrices. In this multiplication, the truth value of the
entry of the first matrix will be multiplied by the truth value
of the entry of the second matrix. )e intermediate and false
values of the entries are multiplied similarly.

step 5. )e complex neutrosophic fuzzy soft max-min de-
cision-making matrix (CNFSMmDM) is found by taking
minimum of truth, intermediate memberships, and maxi-
mum of falsehood membership values of each column, and
we will get a column matrix [di1], where 1≤ i≤M.

step 6. An optimum set optMm[AB](U) on U is found, that is,

max |S
T
j (i)| , max S

I
j ui( 



 , min S
F
j ui( 



 , for 1≤ j≤M and 1≤ i≤N . (23)

5. Applications

Step 1. Assume that u1, u2, and u3 be any three signals
received by a digital receiver from any source. Each signal is
a triplet of numbers. )e first number of triplet represents
the truth value, second represents the intermediate value,
and the third represents the false value corresponding to
each signal. Now, each of these signals is sampled three
times. Let R be the given known reference signal. Each signal
is compared with the reference signal in order to get the high
degree of resemblance with the reference signal R. Now, we
obtain the matrix A by setting the signals along column and
their three times sampling along row. Similarly, we will
obtain the matrix B.

step 2. Matrices A and B are given by

A �

(0.7, 0.4, 0.5) (0.6, 0.7, 1) (0.8, 1, 0.7)

(0.8, 0.5, 0.3) (0.2, 0, 0.9) (0.5, 0.8, 0.4)

(0.4, 0, 0.8) (0.8, 0.4, 0.6) (0, 0.3, 0.9)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (24)

step 3

B �

(0.4, 0.4, 0) (0.6, 0.7, 0.4) (0.1, 0.3, 0)

(0.3, 0.7, 0.7) (0.4, 0.9, 0.4) (0.1, 0.6, 0.4)

(0.2, 0.4, 0.5) (0.4, 0.5, 0.3) (0.8, 0.5, 0.8)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (25)

step 4. Now, we will calculate the product of above defined
matrices by usual multiplication of matrices. In this mul-
tiplication, the truth value of the entry of the first matrix will
be multiplied by the truth value of the entry of the second
matrix. Similarly, the intermediate and false values of the
entries are multiplied.

AB �

(0.62, 0.69, 0.42) (0.98, 0.96, 0.45) (0.77, 0.59, 0.6)

(0.48, 0.52, 0.83) (0.76, 0.75, 0.6) (0.5, 0.55, 0.68)

(0.4, 0.4, 0.87) (0.56, 0.51, 0.83) (0.12, 0.39, 0.96)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(26)

step 5. We calculate CNFSMmDM[AB] � [di1], for all
i � 1, 2, 3, where di1 is defined as di1 � min tk1  � min t11,

t21, t31} for all k � 1, 2, 3.
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d11 � min tk1  � min t11, t21, t31 

� min (0.62, 0.69, 0.42), (0.48, 0.52, 0.83), (0.4, 0.4, 0.87){ } � (0.4, 0.4, 0.42),

d21 � min tk2  � min t12, t22, t32 

� min (0.98, 0.96, 0.45), (0.76, 0.75, 0.6), (0.56, 0.51, 0.83){ } � (0.56, 0.51, 0.45),

d31 � min tk3  � min t13, t23, t33 

� min (0.77, 0.59, 0.6), (0.5, 0.55, 0.68), (0.12, 0.39, 0.96){ } � (0.12, 0.39, 0.6).

(27)

We obtain CNFSMmDM as follows:

CNFSMmDM[AB] � di1  �

(0.4, 0.4, 0.42)

(0.56, 0.51, 0.45)

(0.12, 0.39, 0.6)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (28)

Step 6. Finally, we find out an optimum set on U as follows:
optMm[AB](U) � u2. So, the signal which is identified as a
reference signal is the signal u2.

6. Conclusion

)is paper consists of CNFSM and different types of
complex neutrosophic soft matrices with examples. We
introduced some new operations on complex neutrosophic
fuzzy soft matrices and explore related properties. Further,
we constructed a complex neutrosophic soft decision-
making algorithm with the help of these matrices and used it
in signal processing. We hope that our finding will help in
enhancing the study on complex neutrosophic soft theory
and will open a new direction for applications especially in
decision sciences. In future, we will define some new op-
erations on complex neutrosophic fuzzy soft sets and will
introduce some new algorithms for signals and other related
decision-making in social sciences. Specifically, we will use
complex fuzzy sets and complex neutrosophic fuzzy sets in
signal processing for modeling of continuous signals.
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Abstract: This manuscript aims to propose a new extension of the EDAS method, adapted for usage
with single-valued neutrosophic numbers. By using single-valued neutrosophic numbers, the EDAS
method can be more efficient for solving complex problems whose solution requires assessment and
prediction, because truth- and falsity-membership functions can be used for expressing the level
of satisfaction and dissatisfaction about an attitude. In addition, the indeterminacy-membership
function can be used to point out the reliability of the information given with truth- and falsity-
membership functions. Thus, the proposed extension of the EDAS method allows the use of a smaller
number of complex evaluation criteria. The suitability and applicability of the proposed approach
are presented through three illustrative examples.

Keywords: neutrosophic set; single-valued neutrosophic set; EDAS; MCDM

1. Introduction

Multicriteria decision making facilitates the evaluation of alternatives based on a set
of criteria. So far, this technique has been used to solve a number of problems in various
fields [1–6].

Notable advancement in solving complex decision-making problems has been made
after Bellman and Zadeh [7] introduced fuzzy multiple-criteria decision making, based on
fuzzy set theory [8].

In fuzzy set theory, belonging to a set is shown using the membership function
µ(x) ∈ [0, 1]. Nonetheless, in some cases, it is not easy to determine the membership to the
set using a single crisp number, particularly when solving complex decision-making prob-
lems. Therefore, Atanassov [9] extended fuzzy set theory by introducing nonmembership
to a set ν(x) ∈ [0, 1]. In Atanassov’s theory, intuitionistic sets’ indeterminacy is, by default,
1− µ(x)− ν(x).

Smarandache [10,11] further extended fuzzy sets by proposing a neutrosophic set.
The neutrosophic set includes three independent membership functions, named the truth-
membership TA(x), the falsity-membership FA(x) and the indeterminacy-membership IA(x)
functions. Smarandache [11] and Wang et al. [12] further proposed a single-valued neutro-
sophic set, by modifying the conditions TA(x), IA(x) and FA(x) ∈ [0, 1] and
0 ≤ TA(x) + IA(x) + FA(x) ≤ 3, which are more suitable for solving scientific and engi-
neering problems [13].
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When solving some kinds of decision-making problems, such as problems related to
estimates and predictions, it is not easy to express the ratings of alternatives using crisp
values, especially in cases when ratings are collected through surveys. The use of fuzzy sets,
intuitionistic fuzzy sets, as well as neutrosophic fuzzy sets can significantly simplify the
solving of such types of complex decision-making problems. However, the use of fuzzy sets
and intuitionistic fuzzy sets has certain limitations related to the neutrosophic set theory.
By using three mutually independent membership functions applied in neutrosophic set
theory, the respondent involved in surveys has the possibility of easily expressing their
views and preferences. The researchers recognized the potential of the neutrosophic set
and involved it in the multiple-criteria decision-making process [14,15].

The Evaluation Based on Distance from Average Solution (EDAS) method was in-
troduced by Keshavarz Ghorabaee et al. [16]. Until now, this method has been applied
to solve various problems in different areas, such as: ABC inventory classification [16],
facility location selection [17], supplier selection [18–20], third-party logistics provider
selection [21], prioritization of sustainable development goals [22], autonomous vehicles
selection [23], evaluation of e-learning materials [24], renewable energy adoption [25],
safety risk assessment [26], industrial robot selection [27], and so forth.

Several extensions are also proposed for the EDAS method, such as: a fuzzy EDAS [19],
an interval type-2 fuzzy extension of the EDAS method [18], a rough EDAS [20], Grey
EDAS [28], intuitionistic fuzzy EDAS [29], interval-valued fuzzy EDAS [30], an extension
of EDAS method in Minkowski space [23], an extension of the EDAS method under q-rung
orthopair fuzzy environment [31], an extension of the EDAS method based on interval-
valued complex fuzzy soft weighted arithmetic averaging (IV-CFSWAA) operator and the
interval-valued complex fuzzy soft weighted geometric averaging (IV-CFSWGA) operator
with interval-valued complex fuzzy soft information [32], and an extension of the EDAS
equipped with trapezoidal bipolar fuzzy information [33].

Additionally, part of the EDAS extensions is based on neutrosophic environments,
such as refined single-valued neutrosophic EDAS [34], trapezoidal neutrosophic EDAS [35],
single-valued complex neutrosophic EDAS [36], single-valued triangular neutrosophic
EDAS [37], neutrosophic EDAS [38], an extension of the EDAS method based on mul-
tivalued neutrosophic sets [39], a linguistic neutrosophic EDAS [40], the EDAS method
under 2-tuple linguistic neutrosophic environment [41], interval-valued neutrosophic
EDAS [22,42], interval neutrosophic [43].

In order to enable the usage of the EDAS method for solving complex decision-making
problems, a novel extension that enables usage of single-valued neutrosophic numbers
is proposed in this article. Therefore, the rest of this paper is organized as follows: In
Section 2, some basic definitions related to the single-valued neutrosophic set are given. In
Section 3, the computational procedure of the ordinary EDAS method is presented, whereas
in Section 3.1, the single-valued neutrosophic extension of the EDAS method is proposed.
In Section 4, three illustrative examples are considered with the aim of explaining in detail
the proposed methodology. The conclusions are presented in the final section.

2. Preliminaries

Definition 1. Let X be the universe of discourse, with a generic element in X denoted by x. A
Neutrosophic Set (NS) A in X is an object having the following form [11]:

A = {x < TA(x), IA(x), FA(x) >: x ∈ X}, (1)

where: TA(x), IA(x), and FA(x) are the truth-membership function, the indeterminacy-membership
function and the falsity-membership function, respectively, TA(x), IA(x), FA(x) : X → ]−0, 1+[ ,
−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+, and ]−0, 1+[ denotes bounds of NS.
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Definition 2. Let X be a space of points, with a generic element in X denoted by x. A Single-Valued
Neutrosophic Set (SVNS) A over X is as follows [12]:

A = {x < TA(x), IA(x), FA(x) >|x ∈ X}, (2)

where: TA(x), IA(x) and FA(x) are the truth-membership function, the indeterminacy-membership
function and the falsity-membership function, respectively, TA(x), IA(x), FA(x) : X → [0, 1] and
0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

Definition 3. A Single-Valued Neutrosophic Numbera = 〈ta, ia, fa〉 is a special case of an SVNS
on the set of real numbers <, where ta, ia, fa ∈ [0, 1] and 0 ≤ ta + ia + fa ≤ 3 [12].

Definition 4. Let x1 = 〈t1, i1, f1〉 and x2 = 〈t2, i2, f2〉 be two SVNNs and λ > 0. The basic
operations over two SVNNs are as follows:

x1 + x2 =< t1 + t2 − t1t2, i1i2, f1 f2 >, (3)

x1 · x2 =< t1t2, i1 + i2 − i1i2, f1 + f2 − f1 f2 > . (4)

λx1 =< 1− (1− t1)
λ, iλ

1 , f λ
1 > . (5)

xλ
1 =< tλ

1 , iλ
1 , 1− (1− f1)

λ > . (6)

Definition 5. Let x =< ti, ii, fi > be an SVNN. The score function sx of x is as follows [44]:

si = (1 + ti − 2ii − fi)/2, (7)

where si ∈ [−1, 1].

Definition 6. Let aj ≤ tj, ij, fj > (j = 1, . . . , n) be a collection of SVNSs and W = (w1, w2, . . . , wn)
T

e an associated weighting vector. The Single-Valued Neutrosophic Weighted Average (SVNWA)
operator of aj is as follows [40]:

SVNWA(a1, a2, . . . , an) =
n

∑
j=1

wjaj =

(
1−

n

∏
j=1

(1− tj)
wj ,

n

∏
j=1

(ij)
wj ,

n

∏
j=1

( f j)
wj

)
, (8)

where: wj is the element j of the weighting vector, wj ∈ [0, 1] and ∑n
j=1 wj = 1.

Definition 7. Let x =< ti, ii, fi > be an SVNN. The reliability ri of x is as follows [45]:

ri =

{ |ti− fi |
ti+ii+ fi

ti + ii + fi 6= 0

0 ti + ii + fi = 0
. (9)

Definition 8. Let D be a decision matrix, dimension m x n, whose elements are SVNNs. The
overall reliability of the information contained in the decision matrix is as follows:

rd =
∑n

j=1 rij

∑m
i=1 ∑n

j=1 rij
. (10)

3. The EDAS Method

The procedure of solving a decision-making problem with m alternatives and n criteria
using the EDAS method can be presented using the following steps:

Florentin Smarandache (ed.) Collected Papers, VII

920



Step 1. Determine the average solution according to all criteria, as follows:

x∗j = (x1, x2, · · · , xn), (11)

with:

x∗j =
∑m

i=1 xij

m
. (12)

where: xij denotes the rating of the alternative i in relation to the criterion j.
Step 2. Calculate the positive distance from average (PDA) d+ij and the negative

distance from average (NDA) d−ij , as follows:

d+ij =


max(0,(xij−x∗j ))

x∗j
; j ∈ Ωmax

max(0,(x∗j −xij))

x∗j
; j ∈ Ωmin

, (13)

d−ij =


max(0,(x∗j −xij))

x∗j
; j ∈ Ωmax

max(0,(xij−x∗j ))
x∗j

; j ∈ Ωmin

, (14)

where: Ωmax and Ωmin denote the set of the beneficial criteria and the nonbeneficial criteria,
respectively.

Step 3. Determine the weighted sum of PDA, Q+
i , and the weighted sum of NDS, Q−i ,

for all alternatives, as follows:

Q+
i =

n

∑
j=1

wjd+ij , (15)

Q−i =
n

∑
j=1

wjd−ij , (16)

where wj denotes the weight of the criterion j.
Step 4. Normalize the values of the weighted sum of the PDA and NDA, respectively,

for all alternatives, as follows:

S+
i =

Q+
i

max
k

Q+
k

, (17)

S−i = 1−
Q−i

max
k

Q−k
, (18)

where: S+
i and S−i denote the normalized weighted sum of the PDA and the NDA, respec-

tively.
Step 5. Calculate the appraisal score Si for all alternatives, as follows:

Si =
1
2
(S+

i + S−i ). (19)

Step 6. Rank the alternatives according to the decreasing values of appraisal score.
The alternative with the highest Si is the best choice among the candidate alternatives.

3.1. The Extension of the EDAS Method Adopted for the Use of Single-Valued Neutrosophic
Numbers in a Group Environment

Let us suppose a decision-making problem that include m alternatives, n criteria and k
decision makers, where ratings are given using SVNNs. Then, the computational procedure
of the proposed extension of the EDAS method can be expressed concisely through the
following steps:
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Step 1. Construct the single-valued neutrosophic decision-making matrix for each
decision maker, as follows:

X̃k =


< tk

11, ik
11, f k

11 > < tk
12, ik

12, f k
12 > · · · < tk

1n, ik
1n, f k

1n >
< tk

21, ik
21, f k

21 > < tk
22, ik

22, f k
22 > · · · < tk

2n, ik
2n, f k

2n >
...

...
...

...
< tk

m1, ik
m1, f k

m1 > < tk
m2, ik

m2, f k
m2 > · · · < tk

mn, ik
mn, f k

mn >

 (20)

whose elements x̃ij =< tk
ij, ik

ij, f k
ij > are SVNNs.

Step2. Construct the single-valued neutrosophic decision making using Equation (8):

X̃ =


< t11, i11, f11 > < t12, i12, f12 > · · · < t1n, i1n, f1n >
< t21, i21, f21 > < t22, i22, f22 > · · · < t2n, i2n, f2n >

...
...

...
...

< tm1, im1, fm1 > < tm2, im2, fm2 > · · · < tmn, imn, fmn >

 (21)

Step 3. Determine the single-valued average solution (SVAS) x̃∗j according to all
criteria, as follows:

x̃∗j = (< t∗1 , i∗1 , f ∗1 >,< t∗2 , i∗2 , f ∗2 >, · · · ,< t∗n, i∗n, f ∗n >), (22)

where:

t∗j =
∑m

l=1 tij

m
(23)

i∗j =
∑m

l=1 iij
m

, and (24)

f ∗j =
∑m

l=1 fij

m
(25)

Step 4. Calculate a single-valued neutrosophic PDA (SVNPDA), d̃+ij =< t+ij , i+ij , f+ij >,

and a single-valued neutrosophic NDA (SVNNDA), d̃−ij =< t−ij , i−ij , f−ij >, as follows:

d̃+ij =< t+ij , i+ij , f+ij >=


〈

max(0,(tij−t∗j ))
x∗j

,
max(0,(iij−i∗j ))

x∗j
,

max(0,( fij− f ∗j ))
x∗j

〉
j ∈ Ωmax〈

max(0,(t∗j −tij))

x∗j
,

max(0,(i∗j −iij))
x∗j

,
max(0,( f ∗j − fij))

x∗j

〉
j ∈ Ωmin

(26)

d̃−ij =< t−ij , i−ij , f−ij >=


max(0,(t∗j −tij))

x∗j
,

max(0,(i∗j −iij))
x∗j

,
max(0,( f ∗j − fij))

x∗j
j ∈ Ωmax

max(0,(tij−t∗j ))
x∗j

,
max(0,(iij−i∗j ))

x∗j
,

max(0,( fij− f ∗j ))
x∗j

j ∈ Ωmin

(27)

where:

x∗j = max
(

∑m
i=1 tij

m
,

∑m
i=1 iij
m

,
∑m

i=1 fij

m

)
(28)

For a decision-making problem that includes only beneficial criteria, the SVNPDA
and SVNNDA can be determined as follows:

d̃+ij =< t+ij , i+ij , f+ij >=

〈
max(0, (tij − t∗j ))

x∗j
,

max(0, (iij − i∗j ))

x∗j
,

max(0, ( fij − f ∗j ))

x∗j

〉
(29)

d̃−ij =< t−ij , i−ij , f−ij >=

〈
max(0, (t∗j − tij))

x∗j
,

max(0, (i∗j − iij))

x∗j
,

max(0, ( f ∗j − fij))

x∗j

〉
(30)
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Step 5. Determine the weighted sum of the SVNPDA, Q̃+
i =< t+i , i+i , f+i >, and

the weighted sum of the SVNNDA, Q̃−i =< t−i , i−i , f−i >, for all alternatives. Based on
Equations (5) and (8) the weighted sum of the SVNPDA, Q̃+

i , and the weighted sum of the
SVNNDA, Q̃−i , can be calculated as follows:

Q̃+
i =

n

∑
j=1

wjd̃+ij =

〈
1−

n

∏
j=1

(1− t+ij )
wj ,

n

∏
j=1

(i+ij )
wj ,

n

∏
j=1

( f+ij )
wj

〉
, (31)

Q̃−i =
n

∑
j=1

wjd̃−ij =

〈
1−

n

∏
j=1

(1− t−ij )
wj ,

n

∏
j=1

(i−ij )
wj ,

n

∏
j=1

( f−ij )
wj

〉
. (32)

Step 6. In order to normalize the values of the weighted sum of the single-valued
neutrosophic PDA and the weighted sum of the single-valued neutrosophic NDA, these
values should be transformed into crisp values. This transformation can be performed
using the score function or similar approaches. After that, the following three steps remain
the same as in the ordinary EDAS method.

Step 7. Normalize the values of the weighted sum of the SVNPDA and the single-
valued neutrosophic SVNNDA for all alternatives, as follows:

S+
i =

Q+
i

max
k

Q+
k

, (33)

S−i = 1−
Q−i

max
k

Q−k
. (34)

Step 8. Calculate the appraisal score Si for all alternatives, as follows:

Si =
1
2
(S+

i + S−i ). (35)

Step 9. Rank the alternatives according to the decreasing values of the appraisal score.
The alternative with the highest Si is the best choice among the candidate alternatives.

4. A Numerical Illustrations

In this section, three numerical illustrations are presented in order to indicate the
applicability of the proposed approach. The first numerical illustration shows in detail
the procedure for applying the neutrosophic extension of the EDAS method. The second
numerical illustration shows the application of the proposed extension in the case of solving
MCDM problems that contain nonbeneficial criteria, while the third numerical illustration
shows the application of the proposed approach in combination with the reliability of the
information contained in SVNNs.

4.1. The First Numerical Illustration

In this numerical illustration, an example adopted from Biswas et al. [46] is used to
demonstrate the proposed approach in detail. Suppose that a team of three IT specialists
was formed to select the best tablet from four initially preselected tablets for university
students. The purpose of these tablets is to make university e-learning platforms easier to
use.

The preselected tablets are evaluated based on the following criteria: Features—C1,
Hardware—C2, Display—C3, Communication—C4, Affordable Price—C5, and Customer
care—C6. The ratings obtained from three IT specialists are shown in Tables 1–3.
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Table 1. The ratings of three tablets obtained from the first of three IT specialist.

C1 C2 C3 C4 C5 C6

A1 <1.0, 0.0, 0.0> <1.0, 0.2, 0.0> <1.0, 0.0, 0.0> <0.7, 0.3, 0.0> <0.8, 0.2, 0.2> <0.9, 0.1, 0.1>
A2 <1.0, 0.0, 0.0> <0.9, 0.0, 0.0> <1.0, 0.0, 0.0> <0.7, 0.0, 0.2> <1.0, 0.0, 0.0> <0.7, 0.0, 0.0>
A3 <0.9, 0.0, 0.0> <0.9, 0.0, 0.0> <0.7, 0.2, 0.3> <0.5, 0.0, 0.0> <0.9, 0.0, 0.0> <0.7, 2.0, 2.0>
A4 <0.7, 0.0, 0.3> <0.7, 0.3, 0.3> <0.6, 0.4, 0.2> <0.4, 0.0, 0.0> <0.9, 0.0, 0.0> <0.5, 0.0, 0.2>

Table 2. The ratings of three tablets obtained from the second of three IT specialist.

C1 C2 C3 C4 C5 C6

A1 <0.8, 0.2, 0.2> <1.0, 0.0, 0.1> <0.7, 0.3, 0.2> <0.7, 0.3, 0.2> <1.0, 0.0, 0.0> <0.8, 0.1, 0.1>
A2 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.2> <0.6, 0.0, 0.2> <1.0, 0.0, 0.0> <1.0, 0.1, 0.1>
A3 <0.7, 0.3, 0.2> <0.9, 0.0, 0.0> <0.7, 0.2, 0.3> <0.5, 0.0, 0.0> <0.9, 0.0, 0.0> <0.7, 0.2, 0.2>
A4 <0.7, 0.0, 0.3> <0.7, 0.3, 0.3> <0.6, 0.4, 0.2> <0.4, 0.0, 0.0> <0.9, 0.0, 0.0> <0.5, 0.1, 0.2>

Table 3. The ratings of three tablets obtained from the third of three IT specialist.

C1 C2 C3 C4 C5 C6

A1 <0.9, 1.0, 1.0> <0.9, 0.0, 0.2> <1.0, 0.0, 1.0> <0.7, 0.3, 0.2> <1.0, 0.0, 0.0> <0.9, 0.0, 0.1>
A2 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.9, 0.2, 0.1> <0.6, 0.0, 0.2> <1.0, 0.0, 0.0> <1.0, 0.1, 0.1>
A3 <0.6, 0.3, 0.2> <0.9, 0.0, 0.0> <0.5, 0.2, 0.2> <0.5, 0.3, 0.2> <0.9, 0.2, 0.4> <0.7, 0.0, 0.0>
A4 <0.6, 0.0, 0.3> <0.5, 0.3, 0.4> <0.4, 0.4, 0.2> <0.4, 0.0, 0.0> <0.9, 0.2, 0.3> <0.7, 0.0, 0.2>

After that, a group evaluation matrix, shown in Table 4, is calculated using Equation (8)
and wk = (0.33, 0.33, 0.33), where wk denotes the importance of k-th IT specialist.

Table 4. The group evaluation matrix.

C1 C2 C3 C4 C5 C6

A1 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.7, 0.3, 0.0> <1.0, 0.0, 0.0> <0.9, 0.0, 0.1>
A2 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.6, 0.0, 0.2> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0>
A3 <0.8, 0.0, 0.0> <0.9, 0.0, 0.0> <0.6, 0.2, 0.3> <0.5, 0.0, 0.0> <0.9, 0.0, 0.0> <0.7, 0.0, 0.0>
A4 <0.7, 0.0, 0.3> <0.6, 0.3, 0.3> <0.5, 0.4, 0.2> <0.4, 0.0, 0.0> <0.9, 0.0, 0.0> <0.6, 0.0, 0.2>

The SVNPDA and the SVNPDA, shown in Tables 5 and 6, are calculated using Equa-
tions (29) and (30).

Table 5. The SVNPDA.

C1 C2 C3 C4 C5 C6

A1 <0.2, 0.0, 0.0> <0.1, 0.0, 0.0> <0.3, 0.0, 0.0> <0.3, 0.4, 0.0> <0.1, 0.0, 0.0> <0.1, 0.0, 0.0>
A2 <0.2, 0.0, 0.0> <0.1, 0.0, 0.0> <0.3, 0.0, 0.0> <0.1, 0.0, 0.3> <0.1, 0.0, 0.0> <0.3, 0.0, 0.0>
A3 <0.0, 0.0, 0.0> <0.0, 0.0, 0.0> <0.0, 0.1, 0.2> <0.0, 0.0, 0.0> <0.0, 0.0, 0.0> <0.0, 0.0, 0.0>
A4 <0.0, 0.0, 0.2> <0.0, 0.3, 0.3> <0.0, 0.3, 0.1> <0.0, 0.0, 0.0> <0.0, 0.0, 0.0> <0.0, 0.0, 0.1>

Table 6. The SVNNDA.

C1 C2 C3 C4 C5 C6

A1 <0.0, 0.0, 0.1> <0.0, 0.1, 0.1> <0.0, 0.2, 0.1> <0.0, 0.0, 0.1> <0.0, 0.0, 0.0> <0.0, 0.0, 0.0>
A2 <0.0, 0.0, 0.1> <0.0, 0.1, 0.1> <0.0, 0.2, 0.2> <0.0, 0.1, 0.0> <0.0, 0.0, 0.0> <0.0, 0.0, 0.1>
A3 <0.1, 0.0, 0.1> <0.0, 0.1, 0.1> <0.2, 0.0, 0.0> <0.1, 0.1, 0.1> <0.1, 0.0, 0.0> <0.1, 0.0, 0.1>
A4 <0.2, 0.0, 0.0> <0.3, 0.0, 0.0> <0.3, 0.0, 0.0> <0.3, 0.1, 0.1> <0.1, 0.0, 0.0> <0.3, 0.0, 0.0>

The weighted sum of SVNPDA and the weighted sum of SVNNDA, shown in Table 7,
are calculated using Equations (31) and (32), as well as weighting vector wj = (0.19, 0.19,
0.18, 0.16, 0.14, 0.13). Before calculating the normalized weighted sums of the SVNPDA and
SVNNDA, using Equations (33) and (34), as well as appraisal score, using Equation (35),
the values of the weighted sum of SVNPDA and SVNNDA are transformed into crisp
values using Equation (7).
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Table 7. Computational details and ranking order of considered tablets.
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SVNN Score SVNN Score

A1 <0.168, 0.000, 0.000> 0.58 <0.000, 0.000, 0.000> 0.50 1.00 0.20 0.597 2
A2 <0.170, 0.000, 0.000> 0.59 <0.000, 0.027, 0.000> 0.47 1.00 0.24 0.620 1
A3 <0.003, 0.000, 0.000> 0.50 <0.096, 0.000, 0.000> 0.55 0.86 0.12 0.488 3
A4 <0.000, 0.000, 0.000> 0.50 <0.245, 0.000, 0.000> 0.62 0.85 0.00 0.427 4

The ranking order of considered alternatives is also shown in Table 7. As it can be
seen from Table 7, the most appropriate alternative is the alternative denoted as A2.

4.2. The Second Numerical Illustration

The second numerical illustration shows the application of the NS extension of the
EDAS method in the case of solving MCDM problems that include nonbeneficial criteria.

An example taken from Stanujkic et al. [47] was used for this illustration. In the
given example, the evaluation of three comminution circuit designs (CCDs) was performed
based on five criteria: Grinding efficiency—C1, Economic efficiency—C2, Technological
reliability—C3, Capital investment costs—C4, and Environmental impact—C5. The group
decision-making matrix, as well as the types of criteria, are shown in Table 8.

Table 8. Group decision-making matrix.

C1 C2 C3 C4 C5

Optimization Max Max Max Min Min

A1 <0.9, 0.1, 0.2> <0.7, 0.2, 0.3> <0.9, 0.1, 0.2> <0.9, 0.1, 0.2> <0.9, 0.1, 0.2>
A2 <0.8, 0.1, 0.3> <0.8, 0.1, 0.3> <0.8, 0.1, 0.3> <0.9, 0.1, 0.2> <0.8, 0.1, 0.3>
A3 <1.0, 0.1, 0.3> <0.9, 0.1, 0.2> <0.9, 0.1, 0.2> <0.7, 0.2, 0.5> <0.7, 0.2, 0.3>

Values of the SVNPDA and SVNPDA, calculated using Equations (26) and (27), are
shown in Tables 9 and 10.

Table 9. The SVNPDA.

C1 C2 C3 C4 C5

A1 <0.2, 0.0, 0.0> <0.1, 0.0, 0.0> <0.3, 0.0, 0.0> <0.3, 0.4, 0.0> <0.1, 0.0, 0.0>
A2 <0.2, 0.0, 0.0> <0.1, 0.0, 0.0> <0.3, 0.0, 0.0> <0.1, 0.0, 0.3> <0.1, 0.0, 0.0>
A3 <0.0, 0.0, 0.2> <0.0, 0.3, 0.3> <0.0, 0.3, 0.1> <0.0, 0.0, 0.0> <0.0, 0.0, 0.0>

Table 10. The SVNNDA.

C1 C2 C3 C4 C5

A1 <0.0, 0.0, 0.1> <0.0, 0.1, 0.1> <0.0, 0.2, 0.1> <0.0, 0.0, 0.1> <0.0, 0.0, 0.0>
A2 <0.0, 0.0, 0.1> <0.0, 0.1, 0.1> <0.0, 0.2, 0.2> <0.0, 0.1, 0.0> <0.0, 0.0, 0.0>
A3 <0.2, 0.0, 0.0> <0.3, 0.0, 0.0> <0.3, 0.0, 0.0> <0.3, 0.1, 0.1> <0.1, 0.0, 0.0>

The weighted sum of SVNPDA and the weighted sum of SVNNDA are shown in
Table 11. The calculation was performed using the following weighting vector wj = (0.24,
0.17, 0.24, 0.21, 0.14). The remaining part of the calculation procedure, carried out using
formulas Equations (33)–(35) is also summarized in Table 11.
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Table 11. Computational details and ranking order of considered GCDs.
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SVNN Score SVNN Score

A1 <0.009, 0.000, 0.000> 0.50 <0.057, 0.000, 0.000> 0.53 0.910 0.005 0.458 2
A2 <0.000, 0.000, 0.000> 0.50 <0.063, 0.000, 0.000> 0.53 0.902 0.000 0.451 3
A3 <0.109, 0.000, 0.000> 0.55 <0.000, 0.000, 0.000> 0.50 1.000 0.059 0.530 1

As can be seen from Table 11, by applying the proposed extension of the EDAS method,
the following ranking order of alternatives is obtained A3 > A1 > A2, i.e., the alternative A3
is selected as the most appropriate.

A similar order of alternatives was obtained in Stanujkic et al. [45] using the Neutro-
sophic extension of the MULTIMOORA method, where the following order of alternatives
was achieved A3 > A2 > A1.

4.3. The Third Numerical Illustration

The third numerical illustration shows the use of a newly proposed approach with an
approach that allows for determining the reliability of data contained in SVNNs, proposed
by Stanujkic et al. [43]. Using this approach, inconsistently completed questionnaires can
be identified and, if necessary, eliminated from further evaluation of alternatives.

In order to demonstrate this approach, an example was taken from Stanujkic et al. [48].
In this example, the websites of five wineries were evaluated based on the following five
criteria: Content—C1, Structure and Navigation—C2, Visual Design—C3, Interactivity—C4,
and Functionality—C5.

The ratings obtained from the three respondents are also shown in Tables 12–14.

Table 12. The ratings obtained from the first of three respondents.

C1 C2 C3 C4 C5

A1 <1.0, 0.0, 0.0> <1.0, 0.2, 0.0> <1.0, 0.0, 0.0> <0.7, 0.3, 0.0> <0.8, 0.2, 0.2>
A2 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.6, 0.0, 0.2> <1.0, 0.0, 0.0>
A3 <0.9, 0.0, 0.0> <0.9, 0.0, 0.0> <0.7, 0.2, 0.3> <0.5, 0.0, 0.0> <0.9, 0.0, 0.0>
A4 <0.7, 0.0, 0.3> <0.7, 0.3, 0.3> <0.6, 0.4, 0.2> <0.4, 0.0, 0.0> <0.9, 0.0, 0.0>
A5 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.7, 0.0, 0.2> <1.0, 0.0, 0.0>

Table 13. The ratings obtained from the second of three respondents.

C1 C2 C3 C4 C5

A1 <0.8, 0.2, 0.2> <1.0, 0.0, 0.0> <0.7, 0.3, 0.1> <0.7, 0.3, 0.2> <1.0, 0.0, 0.0>
A2 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.6, 0.0, 0.2> <1.0, 0.0, 0.0>
A3 <0.7, 0.3, 0.2> <0.9, 0.0, 0.0> <0.7, 0.2, 0.3> <0.5, 0.0, 0.0> <0.9, 0.0, 0.0>
A4 <0.7, 0.0, 0.3> <0.7, 0.3, 0.3> <0.6, 0.4, 0.2> <0.4, 0.0, 0.0> <0.9, 0.0, 0.0>
A5 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.7, 0.0, 0.2> <1.0, 0.0, 0.0>

Table 14. The ratings obtained from the third of three respondents.

C1 C2 C3 C4 C5

A1 <0.9, 1.0, 1.0> <0.9, 0.0, 0.2> <1.0, 0.0, 1.0> <0.7, 0.3, 0.2> <1.0, 0.0, 0.0>
A2 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.6, 0.0, 0.2> <1.0, 0.0, 0.0>
A3 <0.6, 0.3, 0.2> <0.9, 0.0, 0.0> <0.5, 0.2, 0.3> <0.5, 0.3, 0.3> <0.9, 0.3, 0.4>
A4 <0.6, 0.0, 0.3> <0.5, 0.3, 0.4> <0.4, 0.4, 0.2> <0.4, 0.0, 0.0> <0.9, 0.3, 0.3>
A5 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.7, 0.0, 0.2> <1.0, 0.0, 0.0>

The reliability of the collected information calculated using Equations (9) and (10) are
shown in Tables 15–17. In this case, the lowest value of overall reliability of information
was 0.61 which is why all collected questionnaires were used to evaluate alternatives.
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Table 15. The reliability of information obtained from the first of three respondents.

C1 C2 C3 C4 C5 Reliability

A1 1.00 0.83 1.00 0.70 0.50 0.81
A2 1.00 1.00 1.00 0.50 1.00 0.90
A3 1.00 1.00 0.33 1.00 1.00 0.87
A4 0.40 0.31 0.33 1.00 1.00 0.61
A5 1.00 1.00 1.00 0.56 1.00 0.91

Overall reliability 0.82

Table 16. The reliability of information obtained from the second of three respondents.

C1 C2 C3 C4 C5 Reliability

A1 0.50 1.00 0.55 0.42 1.00 0.69
A2 1.00 1.00 1.00 0.50 1.00 0.90
A3 0.42 1.00 0.33 1.00 1.00 0.75
A4 0.40 0.31 0.33 1.00 1.00 0.61
A5 1.00 1.00 1.00 0.56 1.00 0.91

Overall reliability 0.77

Table 17. The reliability of information obtained from the third of three respondents.

C1 C2 C3 C4 C5 Reliability

A1 0.03 0.64 0.00 0.42 1.00 0.42
A2 1.00 1.00 1.00 0.50 1.00 0.90
A3 0.36 1.00 0.20 0.18 0.31 0.41
A4 0.33 0.08 0.20 1.00 0.40 0.40
A5 1.00 1.00 1.00 0.56 1.00 0.91

Overall reliability 0.61

The group decision-making matrix formed on the basis of the ratings from Tables 12–14
is shown in Table 18, while the calculation details are summarized in Table 19, using the
following weight vector wj = (0.22, 0.20, 0.25, 0.18, 0.16).

Table 18. The group decision-making matrix.

C1 C2 C3 C4 C5

A1 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.7, 0.3, 0.0> <1.0, 0.0, 0.0>
A2 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.6, 0.0, 0.2> <1.0, 0.0, 0.0>
A3 <0.8, 0.0, 0.0> <0.9, 0.0, 0.0> <0.6, 0.2, 0.3> <0.5, 0.0, 0.0> <0.9, 0.0, 0.0>
A4 <0.7, 0.0, 0.3> <0.6, 0.3, 0.3> <0.5, 0.4, 0.2> <0.4, 0.0, 0.0> <0.9, 0.0, 0.0>
A5 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.7, 0.0, 0.2> <1.0, 0.0, 0.0>

Table 19. Computational details and ranking order of considered websites.
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SVNN Score SVNN Score

A1 <0.141, 0.000, 0.000> 0.57 <0.000, 0.000, 0.000> 0.50 1.00 0.21 0.61 3
A2 <0.110, 0.000, 0.000> 0.56 <0.000, 0.006, 0.000> 0.47 0.97 0.26 0.62 2
A3 <0.000, 0.000, 0.000> 0.50 <0.125, 0.000, 0.000> 0.56 0.88 0.11 0.49 4
A4 <0.000, 0.000, 0.000> 0.50 <0.269, 0.000, 0.000> 0.63 0.88 0.00 0.44 5
A5 <0.141, 0.000, 0.000> 0.57 <0.000, 0.006, 0.000> 0.47 1.00 0.26 0.63 1

From Table 15 it can be seen that the following order of ranking of alternatives
was achieved A5 > A2 > A1 > A3 > A4, which is similar to the order of alternatives
A5 = A2 > A1 > A3 > A4 given in Stanujkic et al. [48].
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5. Conclusions

A novel extension of the EDAS method based on the use of single-valued neutrosophic
numbers is proposed in this article. Single-valued neutrosophic numbers enable simultane-
ous use of truth- and falsity-membership functions, and thus enable expressing the level of
satisfaction and the level of dissatisfaction about an attitude. At the same time, using the
indeterminacy-membership function, decision makers can express their confidence about
already-given satisfaction and dissatisfaction levels.

The evaluation process using the ordinary EDAS method can be considered as simple
and easy to understand. Therefore, the primary objective of the development of this
extension was the formation of an easy-to-use and easily understandable extension of the
EDAS method. By integrating the benefits that can be obtained by using single-valued
neutrosophic numbers and simple-to-use and understandable computational procedures
of the EDAS method, the proposed extension can be successfully used for solving complex
decision-making problems, while the evaluation procedure remains easily understood
for decision makers who are not familiar with neutrosophy and multiple-criteria decision
making.

Finally, the usability and efficiency of the proposed extension is demonstrated on an
example of tablet evaluation.
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1. Karamaşa, Ç.; Demir, E.; Memiş, S.; Korucuk, S. WeIghtIng the factors affectıng logıstıcs outsourcıng. Decis. Mak. Appl. Manag.

Eng. 2021, 4, 19–33. [CrossRef]
2. Valipour, A.; Sarvari, H.; Tamošaitiene, J. Risk Assessment in PPP Projects by Applying Different MCDM Methods and Compara-

tive Results Analysis. Adm. Sci. 2018, 8, 80. [CrossRef]
3. Ferreira, F.A.; Ilander, G.O.P.-B.; Ferreira, J. MCDM/A in practice: Methodological developments and real-world applications.

Manag. Decis. 2019, 57, 295–299. [CrossRef]
4. Chen, Y.-C.; Lien, H.-P.; Tzeng, G.-H. Measures and evaluation for environment watershed plans using a novel hybrid MCDM

model. Expert Syst. Appl. 2010, 37, 926–938. [CrossRef]
5. Bakır, M.; Atalık, Ö. Application of fuzzy AHP and fuzzy MARCOS approach for the evaluation of e-service quality in the airline

industry. Decis. Mak. Appl. Manag. Eng. 2021, 4, 127–152. [CrossRef]
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Abstract

A short book by Dennis P. Allen, Jr, a senior mathematician, inspires this article, and henceforth it is dedicated to him. A good movie 
about S. Ramanujan, The Man who knew Infinity, also triggers this work. As a note, this is not a conventional math paper. Instead, 
its purpose is to dig deeper into how a mathematician or a scientist should deal with intuition and balance it with a logical thinking 
process. Literature exploration on important inventions in mathematics becomes the method of this study combined with analysis of 
Iain McGilchrist’s theory and Wittgenstein’s Philosophy of Language added with the Cognitive Language Theory. The findings show 
the absolutistic view of rationality or rational number will not suffice to give a h+olistic insight into reality. Such finding serves as a 
reminder concerning whom should be the Master and who should be the emissary in the path toward knowledge. Based on Neutro-
sophic Logic, the “intuilytics” which combines both parts of brain hemispheres might become the best contribute a holistic approach, 
something that hints that further exploration on the capacity of human brain or the essence of human beings is needed.. 

Keywords: Irrational Numbers; Intuition; Mathematics; Right-Left Brain; Logico Philosophico; Cognitive Linguistics Analysis; Neutro-
sophic Logic; Philosophical-Theological View of Human Beings, Intuilytic

Introduction

In the writing of Krishnaswami Alladi, he commented movie The Man who knew Infinity, which depicts a story on how Ramanujan, 
a great mathematician from India met with another great mathematician in Cambridge, Prof G. Hardy1. The movie is more than just an 
exciting introduction to Ramanujan's remarkable invention of partition theorem, and also the number 1729 (discovery inspired by a taxi-
cab number in London). It sharpens the contrasts between two significant figures in mathematics at their time. First is G. Hardy, who used 
a rigorous math-proving method, while the second, Ramanujan was intuitive in his approach.

While one can believe how things should work based on discovering new science and mathematics ideas from G. Hardy's famous book: 
A Mathematician's Apology, a more recent book by a psychiatrist Iain McGilchrist yields something fresh that might significantly shed 
light more holistically.

1Krishnaswami Alladi, review of the movie on the mathematical genius ramanujan (unknown date).
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Hardy's account on Hippasus story

A book was written by mathematician Dennis Allen, Jr, as a memoir of his long career in various diverse areas in science serves as 
this article point of departure [1]. Allen opens Chapter One of his book by quoting Thomas Phipp, Jr.'s remark on G. Hardy's book A 
Mathematician's Apology: "People like G.H. Hardy ('A Mathematician's Apology, Cambridge, 1969), who forms the chief role models for 
modern pure mathematicians, have charted just this regrettable course - with a cost to mathematics that can never be reckoned. Hardy 
incidentally uses the word 'significance' where I use 'fruitfulness'. His 'mathematician's apology' consists of dividing mathematics into 
two disjoint halves, one 'trivial' or 'useful' that he consigns to perdition, the other 'real', useless, and …on both aesthetic and moral 
grounds. Writing in 1940, he says that 'No one has yet discovered any warlike purpose to be served by the theory of numbers or relativity', 
and by such reasoning places ….subjects on the moral plane of the angels along with all 'real' mathematicians".

With those statements, such as the usefulness and real, beauty mathematics which serve for nothing, the 26-dimensional bosonic 
superstring theories or something to serve people in doing better to improve their life apparently, it is not just a problem of fancy 
mathematics is at stake. Those judgmental statements need deeper analysis as it brings forward absolute rationalism. 

Succinctly, this article posits the following questions: which is real mathematics? Is it "something with all glory and fanciness," or 
those which is "closer to realism?" If one call "realism" helpful in doing mathematics, does it mean that intuition in developing new ideas 
can play roles in the equations? Then, the main question is whether logical processes are the only method that humans should rely on 
or another possibility co-exists. Those questions could be related to the exploration of the essence of human beings and their capacity 
in perceiving reality. The hypothesis of this article is that the absolutistic logical or rational approach is insufficient to depict reality as it 
needs an intuitive approach to yield a holistic result together. The hypothesis roots in view concerning the essence of human beings with 
the complex features in their brain capacities.

The method of this explorative study is literature exploration. Thus it belongs to a qualitative methodology. This short article's foci are 
as follows: first of all, the discussion will be on the classic story of Hippasus' invention: irrational numbers versus the famous Pythagoreans' 
approach. Then, the exploration of McGilchrist's concept of the Right and left brain will follow [3,14]. The last is the analysis on Logico 
Philosophico of Wittgenstein and Lakoff's Cognitive Linguistic Theory to shed light on the issues.

Literature analysis

What happened between hippasus and pythagoreans rationalism

In discussing G. Hardy's discovery of irrational numbers, Allen continues: "Further, Hardy's philosophy as set forth in his above 
mentioned book is fanciful in other ways too, as for example in his (with Wright) "An Introduction to the Theory of Numbers" (fourth 
edition) on page 39, he ascribes the proof that the square root of two is irrational-this being the first irrational number to be discovered 
- to Pythagoras".

Peter Gainsford also wrote: "There is a widespread notion that the discovery of irrational numbers was a thing of horror to the ancient 
Greeks, especially for the school of Pythagoras. Pythagoras is best known today for a famous theorem about right-angled triangles, but 
in antiquity, his significant contribution lies in the fact that he was a semi-legendary guru who founded a philosophical-religious sect in 
southern Italy. No writings by Pythagoras himself survive (and it is unlikely he ever wrote any). The records about the sect sound bizarre 
at times such as the Pythagoreans conveyed their teachings only in a cave or they had weirdly specific beliefs about reincarnation, and 
they venerated unexpected plants like fava beans and mallow. The vast majority of this information is reported very late and is almost 
certainly false; the bits that are true (whichever ones they are) are difficult to understand out of context".

Gainsford went on with a quote from Kleine's book, discussing Hippasus: “In 1972, the mathematician Morris Kline wrote in his book 
Mathematical Thought from Ancient to Modern times (vol. 1, p. 32): Numbers to the Pythagoreans meant whole numbers only....Actual 
fractions... were employed in commerce, but such commercial uses of arithmetic were outside the pale of Greek mathematics proper. 
Hence, the Pythagoreans were startled and disturbed by the discovery that some ratios -- for example, the ratio of the hypotenuse of an 
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isosceles right triangle to an arm or the ratio of a diagonal to a side of a square -- cannot be expressed by whole numbers.…The discovery 
of incommensurable ratios is attributed to Hippasus of Metapontum (5th cent. B.C.). The Pythagoreans were supposed to have thrown 
Hippasus overboard for having produced an element in the universe which denied the Pythagorean doctrine that all phenomena in the 
universe can be reduced to whole numbers or their ratios".

In short, this bitter denial of irrational numbers for centuries can be attributed to a conviction or belief that all things should be 
rational, something that may be called Pythagoreanistic rationalism. Only in the last centuries that Georg Cantor and others investigated 
irrational numbers.

Weierstrass discussed the real numbers' completeness publicly in the lectures he gave at Berlin University in 1865. Weierstrass's 
construction of irrational numbers used infinite sets of positive rationals with bounded partial sums. In 1872, Kossak publicized this 
construction. Later, Pincherle in 1883 and Biermann in 1997 further expounded it. Weierstrass insisted on the foundational importance 
of the property that an infinite bounded set has a cluster point. Further, he added that a continuous function on a closed interval was 
bounded and attained its bounds. This statement is his invention.

The students of Weierstrass, notably H. A. Schwarz, who was a student in Berlin 1859-1861, and G. Cantor, a student in Berlin 1863-
1866, recognized the importance of Weierstrass's ideas and sought to present a more accessible construction of irrational numbers. 
In 1872, both Cantor and Heine (to whom Schwarz had been and whom Cantor was, an assistant at Halle) published constructions of 
irrational numbers as rational Cauchy sequences. 

Referring back to the question posited earlier in this article whether similar debate concerning intuition and logical processes in these 
modern days continue, regretfully, the answer is affirmative. The underlying reason behind such continuous debate brings this study to 
the concept of McGilchrist that might shed light on it.

Contribution of Iain McGilchrist's concept

After discussing the historical origin of the irrational number, the contribution of Iain McGilchrist needs attention. As a psychiatrist, 
his arguments on the Left and Right (divided) brain function mean that the left hemisphere, which usually processes in detailed manner 
any problem (logically), should not predominate the right brain, capturing holistic and spiritual process. McGilchrist might echo the 
words of Blaise Pascal, a great mathematician from 16th century: "The heart has its Logic, which reason cannot understand".

In that sense, the left brain function should and could not rule over the right brain. In other words, fro example, in the spirituality, 
especially in worshiping God, the emissary who is the logical process should not predominate the human's heart as its Master. It should 
be the other way around. 

This problem of choosing between Logic or going beyond Logic or rationality to go beyond rational thinking (intuition) can be traced 
back even to the classical history of mathematics. As discussed in the preceding section, Pythagoreans overly worshiped rationality and 
Logic in mathematics up to the point they could not absorb the shock when one of their disciples found an irrational number. The shock 
caused Pythagoreans to let the disciple get drown in the sea. In short, the Pythagoreans cannot fathom the contribution of the human 
brain’s right-sphere in pursuing truth. 

Similarly, in history, people cannot easily accept several mathematics inventions, such as transcendental numbers, complex numbers, 
transfinite set, Cantor sets, or non-Diophantine arithmetics.

Philosophy of language and cognitive linguistic theory

In 1918, the Austrian philosopher Ludwig Wittgenstein wrote the Tractatus Logico Philosophicus. Its content identified the relation-
ship between language and reality, even to formulate the boundaries of science. This work emerged because he was concerned about 
seeing the many languages of philosophy and science collide and confuse people. 
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In this first work, Wittgenstein makes seven propositions. One of which is: A proposition is a picture of reality: for if I understand a 
proposition, I know the situation that it represents. And I understand the proposition without having had its sense explained to me. A 
proposition show its sense. A proposition shows how things stand if it is true. And says that they do so stand2.

Thus, Wittgenstein stressed that the world is not an accumulation of things but facts. To clarify his proposition, he described the dif-
ferences between fact, forms, and substance3. Further, deviating from Immanuel Kant, for Wittgenstein, the substance only exists in the 
space of the world. The world consists of interrelated facts. Thus, humans make an effort to map or depict it. Language, whether it is oral, 
mathematical, artistic, or other kinds of symbols, are a human’s effort to make such maps or pictures, but it needs roles as it only serves 
as a projection of reality or the world4.

Wittgenstein also emphasizes that reality is complicated and ever-changing. Therefore, the effort to depict or map it needs more than 
the rational approach as human logic can be paradoxical5. Thus, mathematical language or symbol only serves essentially as symbols that 
interact and needs structure. 

In the second phase of his thought, Wittgenstein realized that all language as the projection of reality exists in societal contexts. In his 
second work, Philosophical Investigation, he formulated a Language Game Theory. His work is often multi-interpretable. His concept is 
pervasive and all inclusive. 

Some analysts view that Wittgenstein stayed away from any epistemological, metaphysical or theological discourse while other state 
that he included those dimensions in his writings implicitly, especially the essence of human beings which philosophically or theologically 
is loaded with the ability to create language6. Thus, he included theology which he coins as the grammar of God. Nevertheless, Wittgen-
stein often signified that he opened a room of intuition or irrationality in the process of language creation. It is the capacity of human 
beings rooted in their existence. The name Language Game indicates that there are rational rules in the game and intuitive ways and 
spontaneity. Later, in 1970, a further and applicable concept emerges with the philosophy of language from Wittgenstein as backbone. 

The spread of the Cognitive Linguistics theory shows dynamic energy that contributes to various frameworks for studying a natural 
language. This theory explores the meaning side of language. Thus, linguistic form and later symbols in their various forms become the 
focus to delve as the expressions of meaning7. According to the framework, meaning is not something that exists in isolation, but it con-
nects and integrates with the full spectrum of human experience-something that Wittgenstein has stated before. 

The basic concepts of Cognitive Linguistics encompass conceptual metaphor, image schemas, mental spaces, construction grammar, 
prototypicality and radial sets. The founding fathers of this theory are George Lakoff and Mark Johnson8. Basically, the theory states that 
there are the concrete domain of a language and an abstract concept that the concrete domain signifies. Whatever aspects one purposely 
emphasizes or downplays in the concrete form indicate the abstract concepts. Thus, if one states that reality is like a dance, the dance as 
a concrete experience that most people know means there are aspects of movement, beauty, and artistic sense in that concrete domain. 
Dance as such will indicate that life also has movement, beauty, and artistic dimension. Therefore, mathematical language and logic is 
insufficient to describe the complexities and dynamic of the abstract concepts. 

 
 
 
 

2Vsevolod Ladov, “Wittgenstein’s Tractatus Logico-Philosophicus and a Hierarchical Approach to Solving Logical Paradoxes,” Filosofija, 
Sociologija 30, no. 1 (2019): 4.021-4022, doi:10.6001/fil-soc.v30i1.3914.
3DAVID MILLER, “The Uniqueness of Atomic Facts in Wittgenstein’s Tractatus,” Theoria 43, no. 3 (1977): 174–85, 
doi:10.1111/j.1755-2567.1977.tb00786.x.
4Antonio Manuel Liz Gutiérrez, “ZALABARDO, José Luis (2015): Represention and Reality in Wittgenstein’s Tractatus. Oxford: Oxford Uni-
versity Press.,” Daímon, no. 75 (2018), doi:10.6018/daimon/346951.
5Ladov, “Wittgenstein’s Tractatus Logico-Philosophicus and a Hierarchical Approach to Solving Logical Paradoxes”.

6Tim Labron, Wittgenstein and Theology, Continuum, 2009 https://ndpr.nd.edu/reviews/wittgenstein-and-theology/

7Dirk Geeraerts, Cognitive Linguistics: Basic Readings, Cognitive Linguistics: Basic Readings, 2008.

8G. Lakoff and M. Johnson, “Conceptual Metaphor in Everyday Language,” in Shaping Entrepreneurship Research (Eds, Saras D. Sarasvathy, 
Nicholas Dew, Sankaran Venkatarama) (Abingdon on the Thames: Routledge, 2020), 475–504, doi:10.4324/9781315161921-21.
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The role of neutrosophic logic

Any effort to depict or map life or reality as an abstract substance needs to use real life or concrete experience to arrive at such an 
understanding. To choose the concrete experience and to connect it with the abstract domain, one needs intuition. 

As this work emphasizes [8]: “More “right brain” activity, based on direct experiences, leads to direct experiences of the Divine. Your 
“inner vision” (the “mind’s eye”) can help readers in this, and in many other ways. The inner vision is also the seat of many of the intuitive 
faculties, which are experiencable facts, not imaginings. That means the information obtained by the intuitive faculty is verifiable and 
reproducibly observable.

In order to do that, the Balanced Brain is the most efficacious way to function, as well as the most efficient, and the most comfortable.

To obtain the Balanced Brain, the person usually needs to spend a great deal of their spare time being receptive, being the “receiver”, 
being accepting and exploring, and not using the analytical intellect, but instead, spending time in the Now and in the Senses and 
Sensitivities. This is best enjoyed in Natural settings”.

Therefore, to reply to the question concerning how we can rectify the problem of overemphasizing rationality in mathematics 
and beyond, McGilchrist's concept and Conceptual Linguistics theory can shed light. From Neutrosophic Logic viewpoint, this article 
recommends that a combination of both the intuitive aspect of the right hemisphere and the analytical or logical thinking processes of the 
human’s left brain will be more adequate in creating a holistic approach. The article proposes a term: intuilytics to capture the essence 
of the Balanced Brain [8]. 

With regards to scientific discovery processes, the proposed scheme as outlined above hint toward a slightly different approach com-
pared to Popperian method or Kuhnian concept of paradigm change. See figure 1 below.

Figure 1: The role of intuition, analytical thinking, and empirical facts.

In other words, McGilchrist’s theme: the Master (right brain) governs the direction, and then the logical process keeps on finding the 
detailed answer or path indeed sheds light to the problem that this article struggles with.
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11R.D. Badgaiyan. Conscious Awareness and Brain processing. Elements (Que). 2005; 3(3): 8–12. url: https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC3007594/
12Ferris Jabr. Self-awareness with simple brain. Scientific American. Url: https://www.scientificamerican.com/article/self-awareness-
with-a-simple-brain/

Discussion: A few implications for definition of reality and consciousness

The aforementioned explanations concern how balanced brain functions are required for a realistic mathematics and sciences (may 
be called “evidence-based mathematics”).

Then, what is reality in this context? Yes, it seems that this is a simple question, but a complex topic to discuss. For some philosophers, 
there are real objects out there, but for others there are only perceived senses. Berkeley put it to the extreme that objective reality per 
se does not exist, everything can exist because of the mind which perceive it. This conviction has been put into succinct fiction story for 
instance by J.L. Borges, in his story: Tlon, Uqbar, Orbis Tertius9.

From Neutrosophic Logic perspective, whenever there are two opposite stances, then one can consider a middle ground or it can be 
called “dynamics of neutralities”. In the same way, between A= “everything are real objects” and B= “everything is perception,” we can 
find a middle ground, i.e. reality can been viewed as perceived objects, i.e. something which does exist independent of the observer, yet it 
must be perceived through human senses. In this way, this article rejects Mermin’s interpretation of quantum mechanics that “the moon 
is not there if nobody sees it”.

Such a discussion on the meaning of reality seems to be put aside into obscurity by recent trend in neuroscience. For instance it 
is known: “Modern neuroscience research generally shies away from such discussions, concentrating on what are called the neuronal 
correlates of consciousness, and actually their minimal number. All available evidence implicates neocortical tissue in generating feelings. 
On the other hand, brain activity originates in a broad set of cortical regions (parietal, occipital and temporal regions), the so- 
called posterior “hot zone””.

First of all, sensory perception needs consciousness, therefore, a rather pragmatic definition of what constitutes consciousness is 
needed. For instance: “The origin and nature of these experiences, sometimes referred to as qualia, have been a mystery from the earliest 
days of antiquity right up to the present. Many modern analytic philosophers of mind, most prominently perhaps Daniel Dennett of 
Tufts University, find the existence of consciousness such an intolerable affront to what they believe should be a meaningless universe 
of matter and the void that they declare it to be an illusion. That is, they either deny that qualia exist or argue that they can never be 
meaningfully studied by science”10.

Apart from such a qualia debate, a more “clinical” approach based on experiments has been presented as follows: “It has been 
speculated that frontal cortex and the extrastriate play a significant role in the expression of conscious awareness. The significance is 
not only because higher cognitive processing requires effective communication between frontal cortex and the posterior cortical areas 
that store domain specific information, but also because awareness requires construction of a multilevel symbolic interpretation of the 
information”11.

Others argue that most aspects of self-awareness happens in cerebral cortex, although in some cases that may be not true: “Numerous 
neuroimaging studies have suggested that thinking about ourselves, recognizing images of ourselves, and reflecting on our thoughts and 
feelings-that is, different forms of self-awareness-all involve the cerebral cortex, the outermost, intricately wrinkled part of the brain. The 
fact that humans have a particularly large and wrinkly cerebral cortex relative to body size supposedly explains why we seem to be more 
self-aware than most other animals. But new evidence is casting doubt on this idea”12.

9Jorge Luis Borges. Tlon, Uqbar, Orbis Tertius. Url: https://www.tlonprojects.org/content/6-about/_tuot-jorgeluisborges.pdf.

10Christof Koch, What is consciousness. Nature, May 2018. url: https://www.nature.com/articles/d41586-018-05097-x
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However, Ortinski and Meador argue of neuronal mechanism behind self-awareness13. Other emphasizes the role of thalamus in 
human consciousness14.

Last but not least, scientists from Max Planck Institute seem to figure out the seat of consciousness: “Scientists from the Max Planck 
Institute in Tübingen measured the activity of neurons in the brains of macaques while the animals observed images on a screen. The 
results show that neurons in one part of the frontal lobe of the cerebral cortex are active when the monkeys are aware of what they have 
seen. Therefore, this region of the brain appears to play a role in deciding which impressions reach our consciousness. Thus the content 
of consciousness is based in two different brain regions. The decision as to which sensory impressions will reach our consciousness is 
not made by a single region. Instead, neurons from different regions must cooperate for this purpose. With the help of the tests on the 
monkeys, it is possible to establish how consciousness arises. This knowledge could benefit people with impaired consciousness in the 
future”15.

Figure 2: Neurons in the lateral prefrontal cortex represent the content of consciousness.  
The red trace depicts neural activity (source: MPI for Biological Cybernetics)*.

Concluding Remarks

Returning to the "Man Who Knew Infinity" movie, the lesson learned is as follow: Ramanujan led the discovery of the partition theorem, 
then he tried to find the proof with his logical processes. The four analyses yield a result that the rational number, symbol, or approach 
is insufficient by itself. Human beings need a space for intuition (something parallel to irrational numbers in the frame of Pythagorean’s 
rationality doctrine) to pursue reality or truth without underestimating rational language contribution in mathematics or other domain 
of sciences. In the essence of human being lies richness and complexities that language and logics by itself cannot describe, especially by 
merely using rational number, symbol, or approach. 

14https://www.college-de-france.fr/media/en-stanislas-dehaene/UPL753837796513926252_Ward_4.pdf

15Original publication: Theofanis I. Panagiotaropoulos, Gustavo Deco, Vishal Kapoor & Nikos K. Logothetis
Visual Consciousness in the Lateral Prefrontal Cortex, Neuron, Volume 74, Issue 5, 924-935, June 7th, 2012, 10.1016/j.neu-
ron.2012.04.013

13P. Ortinski & K.J. Meador. Neuronal mechanism behind self-awareness. Neurological Review, 2004. url: https://jamanetwork.com/jour-
nals/jamaneurology/fullarticle/786070

*Source: https://www.mpg.de/8425992/seat-of-consciousness; see also :  https://www.mpg.de/5839948/conscious_perception
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Therefore, to rectify the overemphasizing rationality in mathematics and beyond, four concepts in agreement propose a significant 
contribution. The McGilchrist's concept, Wittgenstein’s view and the Conceptual Linguistics theory with the Neutrosophic approach 
recommend that a combination of both the intuitive aspect of the right hemisphere and the analytic or logical thinking processes of the 
left brain to create a holistic approach. The term can be: intuilytics. In other words, the Master (right brain) governs the direction, and 
then the logical process keeps on finding the detailed answer or paths.

Those theories implicitly signify the need of further journey to explore the essence of human beings with their brain capacities in deal-
ing with reality that they perceive as mathematicians, philosophers, and theologians have been studying continuously.
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Abstract 

In this short note we show that the newly introduced concept of Neutro-Intelligent Set (NIS) deserves attention in its 
applications to the human brain activity, and that NIS is a particular case of the Refined Neutrosophic Set. 

Keywords: Neutrosophic Logic, Physical Neutrosophy, gravitation, physics constants 

1. Introduction
In order to simplify the notations, we use Latin descriptive letters, instead of Greek letters, to denote by T the 
truth (or membership), by I the indeterminacy, and by F the falsehood (or nonmembership). 

2. Definition of Neutrosophic Set
Let U be a universe of discourse, and A be a non-empty neutrosophic subset of U, defined as follows: 

, where for all x U one has 

 

3. Definition of the Neutral Degree of the Neutrosophic Set
Sunny Raza Qureshi [1] has introduced the Neutral Degree ( ) of the Neutrosophic Set, defined as follows: 

 

4. Definition of the Neutro-Intelligent Set
It was a nice idea to extend the neutrosophic set from 3 to 4 components, where for all x U, the original 
components remain totally independent from each other, while the fourth component

is totally dependent of the first three components. 

( ) ( ) ( )A  {x,  T x ,  I x ,  F x ,  x U}A A A= < > Î Î

( ), ( ), ( ) [0,1],0 ( ) ( ) ( ) 3.A A A A A AT x I x F x T x I x F xÎ £ + + £

AN

( ) ( ) ( ): [0,1], ( ) 1 , .
3

A A A
A A

T x I x F xN U N x x U+ +
® = - Î

Î
( ) ( ) ( )T x ,  I x ,  F xA A A

( )AN x
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Then Sunny Raza Qureshi [1] introduced the Neutro-Intelligent Set (NIS) by adding the neutral Degree to each 
element, defined as follows: 

Let U be a universe of discourse, and be a non-empty subset of U, defined as follows: 

, where for all x U 

5. Example of Neutro-Intelligent Set
, because: 

T1 = 0.4, I1 = 0.2, F1 = 0.3, whence the neutral  

T2 = 0.7, I2 = 0.2, F2 = 0.3, whence the neutral  

6. Definition of the Refined Neutrosophic Set
In 2013 the neutrosophic theories were extended to the refined [n-valued] neutrosophic set,  refined 

neutrosophic logic, and refined neutrosophic probability respectively [2], i.e. the truth value T was refined/split into 
types of sub-truths such as T1, T2, …, Tp, similarly indeterminacy I was refined/split into types of sub-
indeterminacies I1, I2, …, Ir, and the falsehood F was refined/split into sub-falsehood F1, F2, …, Fs.   

Let U be a universe of discourse, and  be a non-empty subset of U, then the Refined Neutrosophic Set is 
defined as follows: 

 

where p, r, s are positive integers, and at least one of them is ≥ 2, 

also for all x U, 

. 

If one takes the particular case: p = 1, r = 2, s = 1, one gets T, I1, I2, F, with I1 = indeterminacy and I2 = neutrality, 
one gets the Neutro-Intelligent Set (NIS). The original part of the NIS is that I2 (neutrality) is taken as dependent 
from T, I, and F. 

7. Applications
The author [1] has introduced a neutrosophic model of the human brain, the Multi-Phase/State Neutrosophic Set and 
aggregated it to its Neutro-Intelligent Set forming a Final Phase Neutrosophic Set, to analyze the human mind 
uncertainty, especially the sentimental and emotional activities.  

NISA

( ) ( ) ( ){x,  T x ,  I x ,  N (x), F x ,  x U}NIS A A A AA = < > Î Î

( ), ( ), ( ), ( ) [0,1],0 ( ) ( ) ( ) 3,
( ) ( ) ( )( ) 1 .

3

A A A A A A A

A A A
A

T x I x N x F x T x I x F x
T x I x F xN x

Î £ + + £
+ +

= -

1 2{ (0.4,0.2,0.7,0.3), (0.7,0.2,0.6,0.3)}RNSA a a=

1 1 1 1
1

0.4 0.2 0.31 1 0.7.
3 3

T I FN + + + +
= - = - =

2 2 2 1
2

0.7 0.2 0.31 1 0.6.
3 3

T I FN + + + +
= - = - =

RNSA

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2{x,  T x ,  T x ,...,T x ; x ,  I x ,..., x ; x ,  F x ,..., x ,  x U},RNS A A pA A A rA A A sAA I I F F= < > Î

Î

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2T x ,  T x ,...,T x ; x ,  I x ,..., x ; x ,  F x ,..., x [0,1]A A pA A A rA A A sAI I F F Î
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Abstract. In this paper, we introduced the notions of Nm-α-open sets, α-interior and α-closure operators in
neutrosophic minimal structures. We investigate some basic propertiesof such notions. Also we introduced the
notion of Nm-α-continuous maps and study characterizations of Nm-α-continuous maps by using the α-interior
and α-closure operators. We introduced the classes of Nmlc-set, Nmαlc-sets and study some of its basic properties.
Finally, we introduced and studied Nmlc-continuous, Nmαlc-continuous map, Nmlc-irresolute map and Nmαlc-
irresolute map and investigate some properties of such concepts.

Keywords: Neutrosophic minimal structure spaces, Nm-α-closed, Nm-α-open, Nmlc-set, Nm-α-lc-set and Nm-
α-continuous.

1. INTRODUCTION

L. A. Zadeh’s [12] Fuzzy set laid the foundation of many theories such as intuitionistic fuzzy
set and neutrosophic set, rough sets etc. Later, researchers developed K. T. Atanassov’s [4]
intuitionistic fuzzy set theory in many fields such as differential equations, topology, computer
science and so on. F. Smarandache [10, 11] found that some objects have indeterminacy or
neutral other than membership and non-membership. So he coined the notion of neutrosophy.
The theories of neutrosophic set have achieved greater success in various areas such as medi-
cal diagnosis, database, topology, image processing and decision making problem. While the
neutrosophic set is a powerful tool to deal with indeterminate and inconsistent data, the the-
ory of rough set is a powerful mathematical tool to deal with incompleteness. Neutrosophic
sets and rough sets are two different topics, none conflicts the other. Valeiru Popa and Noiri
[8] introduced the notion of of minimal structure which is a generalization of a topology on a
given nonempty set. And they introduced the notion of M-continuous functions as functions
defined between minimal structures. M. Karthika et al [7] introduced and studied neutrosophic
minimal structure spaces. S. Ganesan [6] introduced and studied Nm-semi open sets. The main
objective of this study is to introduce a new hybrid intelligent structure called Nm-α-open sets
in neutrosophic minimal structure spaces. The significance of introducing hybrid structures is
that the computational techniques, based on any one of these structures alone, will not always
yield the best results but a fusion of two or more of them can often give better results. The rest
of this paper is organized as follows. Some preliminary concepts required in our work are briefly
recalled in section 2. In section 3, the concepts of Nm-α-open, Nm-α-closure, Nm-α-interior,
Nm-α-continuous is investigated.
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2. PRELIMINARIES

Definition 2.1. [8] A subfamily mx of the power set ℘(X) of a nonempty set X is called a
minimal structure (briefly, m-structure) on X if ∅ in mx and X ∈ mx. By (X, mx), we denote
a nonempty set X with a minimal structure mx on X and call it an m-space. Each member of
mx is said to be mx-open (or briefly, m-open) and the complement of an mx-open set is said to
be mx-closed (or briefly, m-closed).

Definition 2.2. [10, 11] A neutrosophic set (in short ns) K on a set X 6= ∅ is defined by K =
{≺ a, PK(a), QK(a), RK(a) � : a ∈ X} where PK : X → [0,1], QK : X → [0,1] and RK : X
→ [0,1] denotes the membership of an object, indeterminacy and non-membership of an object,
for each a ∈ X to K, respectively and 0 ≤ PK(a) + QK(a) + RK(a) ≤ 3 for each a ∈ X.

Definition 2.3. [9] Let K = {≺ a, PK(a), QK(a), RK(a) � : a ∈ X} be a ns. We must
introduce the ns 0∼ and 1∼ in X as follows:
0∼ may be defined as:

(1) 0∼ = {≺ x, 0, 0, 1 � : x ∈ X}
(2) 0∼ = {≺ x, 0, 1, 1 � : x ∈ X}
(3) 0∼ = {≺ x, 0, 1, 0 � : x ∈ X}
(4) 0∼ = {≺ x, 0, 0, 0 � : x ∈ X}

1∼ may be defined as:

(1) 1∼ = {≺ x, 1, 0, 0 � : x ∈ X}
(2) 1∼ = {≺ x, 1, 0, 1 � : x ∈ X}
(3) 1∼ = {≺ x, 1, 1, 0 � : x ∈ X}
(4) 1∼ = {≺ x, 1, 1, 1 � : x ∈ X}

Proposition 2.4. [9] For any ns S, then the following conditions are holds:

(1) 0∼ ≤ S, 0∼ ≤ 0∼.
(2) S ≤ 1∼, 1∼ ≤ 1∼.

Definition 2.5. [9] Let K = {≺ a, PK(a), QK(a), RK(a) � : a ∈ X} be a ns.

(1) A ns K is an empty set i.e., K = 0∼ if 0 is membership of an object and 0 is an
indeterminacy and 1 is an non-membership of an object respectively. i.e., 0∼ = {x, (0,
0, 1) : x ∈ X}

(2) A ns K is a universal set i.e., K = 1∼ if 1 is membership of an object and 1 is an
indeterminacy and 0 is an non-membership of an object respectively. 1∼ = {x, (1, 1, 0)
: x ∈ X}

(3) K1 ∪ K2 = {a, max {PK1(a), PK2(a)}, max {QK1(a), QK2(a)}, min {RK1(a), RK2(a)}
: a ∈ X}

(4) K1 ∩ K2 = {a, min {PK1(a), PK2(a)}, min {QK1(a), QK2(a)}, max {RK1(a), RK2(a)}
: a ∈ X}

(5) Kc = {≺ a, RK(a), 1 − QK(a), PK(a) � : a ∈ X}

Definition 2.6. [9] A neutrosophic topology (nt) in Salama’s sense on a nonempty set X is a
family τ of ns in X satisfying three axioms:

(1) Empty set (0∼) and universal set (1∼) are members of τ .
(2) K1 ∩ K2 ∈ τ where K1, K2 ∈ τ .
(3) ∪Kδ ∈ τ for every {Kδ : δ ∈ ∆} ≤ τ .
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Each ns in nt are called neutrosophic open sets. Its complements are called neutrosophic
closed sets.

Definition 2.7. [7] Let the neutrosophic minimal structure space over a universal set X be
denoted by Nm. Nm is said to be neutrosophic minimal structure space (in short, nms) over X
if it satisfying following the axiom: 0∼, 1∼ ∈ Nm. A family of neutrosophic minimal structure
space is denoted by (X, NmX).
Note that neutrosophic empty set and neutrosophic universal set can form a topology and itis
known as neutrosophic minimal structure space.
Each ns in nms is neutrosophic minimal open set. The complement of neutrosophic minimal
open set is neutrosophic minimal closed set.

Remark 2.8. [7] Each ns in nms is neutrosophic minimal open set.
The complement of neutrosophic minimal open set is neutrosophic minimal closed set.

Definition 2.9. [7] A is Nm-closed if and only if Nmcl(A) = A. Similarly, A is a Nm-open if
and only if Nmint(A) = A.

Definition 2.10. [7] Let Nm be any nms and A be any neutrosophic set. Then

(1) Every A ∈ Nm is open and its complement is closed.
(2) Nm-closure of A = min {F : F is a neutrosophic minimal closed set and F ≥ A} and it

is denoted by Nmcl(A).
(3) Nm-interior of A = max {F : F is a neutrosophic minimal open set and F ≤ A} and it

is denoted by Nmint(A).

In general Nmint(A) is subset of A and A is a subset of Nmcl(A).

Proposition 2.11. [7] Let R and S are any ns of nms Nm over X. Then

(1) Nc
m = {0, 1, Rci} where Rci is a complement of ns Ri.

(2) X − Nmint(S) = Nmcl(X − S).
(3) X − Nmcl(S) = Nmint(X − S).
(4) Nmcl(R

c) = (Nmcl(R))c = Nmint(R).
(5) Nm closure of an empty set is an empty set and Nm closure of a universal set is a

universal set. Similarly, Nm interior of an empty set and universal set respectively an
empty and a universal set.

(6) If S is a subset of R then Nmcl(S) ≤ Nmcl(R) and Nmint(S) ≤ Nmint(R).
(7) Nmcl(Nmcl(R)) = Nmcl(R) and Nmint(Nmint(R)) = Nmint(R).
(8) Nmcl(R ∨ S) = Nmcl(R) ∨ Nmcl(S).
(9) Nmcl(R ∧ S) = Nmcl(R) ∧ Nmcl(S).

Definition 2.12. [7] Let (X, NmX) be nms.

(1) Arbitrary union of neutrosophic minimal open sets in (X, NmX) is neutrosophic minimal
open. (Union Property).

(2) Finite intersection of neutrosophic minimal open sets in (X, NmX) is neutrosophic min-
imal open. (intersection Property).

Definition 2.13. [7] A map f : (X, NmX) → (Y, NmY ) is called neutrosophic minimal contin-
uous map if and only if f−1(V) ∈ NmX whenever V ∈ NmY .
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Definition 2.14. [6] Let (X, NmX) be a nms and A ≤ X. A subset A of X is called an Nm-
semi-open set if A ≤ Nmcl(Nmint(A)). The complement of an Nm-semi open set is called an
Nm-semi-closed set.

3. Nm-α-open sets

Definition 3.1. Let (X, NmX) be a nms and A ≤ X. A subset A of X is called an Nm-α-open set
if A ≤ Nmint(Nmcl(Nmint(A))). The complement of an Nm-α-open set is called an Nm-α-closed
set.

Remark 3.2. Let (X, T ) be a nt and A ≤ X. A is called an Nα-open set [3] if
A ≤ N int(N cl(N int(A))). If the nms NmX is a topology, clearly an Nm-α-open set is Nα-open.

Example 3.3. Let X = {a, b} with T = {0∼, A, B, C, D, 1∼} and T c = {1∼, F, G, H, I, 0∼}
where A = ≺ (0.5, 0.4, 0.5), (0.5, 0.6, 0.5)� ; B = ≺ (0.5, 0.6, 0.5), (0.5, 0.6, 0.6)� ; C = ≺
(0.6, 0.6, 0.5), (0.4, 0.4, 0.5)� ; D = ≺ (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)�. F = ≺ (0.5, 0.6, 0.5),
(0.5, 0.4, 0.5)� ; G = ≺ (0.5, 0.4, 0.5), (0.6, 0.4, 0.6)� ; H = ≺ (0.5, 0.4, 0.6), (0.5, 0.6,
0.4)� ; I = ≺ (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)�. Now we define the neutrosophic set as follows:
V = ≺ (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)�. Let X = {a, b} with Nm = {0∼, E, 1∼} and Nc

m =
{1∼, J, 0∼} where E = ≺ (0.4, 0.3, 0.6), (0.5, 0.4, 0.8)� ; J = ≺ (0.6, 0.7, 0.4), (0.8, 0.6,
0.5)�. We know that 0∼ = {≺ x, 0, 0, 1 � : x ∈ X}, 1∼ = {≺ x, 1, 1, 0 � : x ∈ X} and 0c∼ =
{≺ x, 1, 1, 0 � : x ∈ X}, 1c∼ = {≺ x, 0, 0, 1 � : x ∈ X}. Here, N int(V) = D, N cl(N int(V))
= N cl(D) = I, N int(N cl(N int(V))) = N int(I) = D. Therefore, V is a N α-open but it is not
Nm-α-open.

From Definition of 3.1, obviously the following statement are obtained.

Lemma 3.4. Let (X, NmX) be a nms. Then

(1) Every Nm-open set is Nm-α-open.
(2) A is an Nm-α-open set if and only if A ≤ Nmint(Nmcl(Nmint(A))).
(3) Every Nm-closed set is Nm-α-closed.
(4) A is an Nm-α-closed set if and only if Nmcl(Nmint(Nmcl(A))) ≤ A.

Theorem 3.5. Let (X, NmX) be a nms. Any union of Nm-α-open sets is Nm-α-open.

Proof. Let Aδ be an Nm-α-open set for δ ∈ ∆. From Definition 3.1 and Proposition 2.11(6),
it follows Aδ ≤ Nmint(Nmcl(Nmint(Aδ))) ≤ Nmint(Nmcl(Nmint(

⋃
Aδ))). This implies

⋃
Aδ ≤

Nmint(Nmcl(Nmint(
⋃

Aδ))). Hence
⋃

Aδ is an Nm-α-open set. �

Remark 3.6. Let (X, NmX) be a nms. The intersection of any two Nm-α-open sets may not
be Nm-α-open set as shown in the next example.

Example 3.7. Let X = {a, b} with Nm = {0∼, P, Q, R, S, 1∼} and Nc
m = {1∼, I, J, K, L,

0∼} where P = ≺ (0.4, 0.6, 0.5), (0.7, 0.3, 0.5)� ; Q = ≺ (0.3, 0.6, 0.8), (0.6, 0.3, 0.5)� ; R
= ≺ (0.3, 0.7, 0.8), (0.6, 0.5, 0.2)� ; S = ≺ (0.4, 0.7, 0.5), (0.6, 0.4, 0.2)� ; I = ≺ (0.5, 0.4,
0.4), (0.5, 0.7, 0.7)� ; J = ≺ (0.8, 0.4, 0.3), (0.5, 0.7, 0.6)� ; K = ≺ (0.8, 0.3, 0.3), (0.2,
0.5, 0.6)� ; L = ≺ (0.5, 0.3, 0.4), (0.2, 0.6, 0.6)�. Now we define the two Nm-α-open sets as
follows : D = ≺ (0.5, 0.7, 0.5), (0.9, 0.4, 0.5)� ; E = ≺ (0.9, 0.8, 0.3), (0.6, 0.4, 0.1)�. Here
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Nmint(D) = P, Nmcl(Nmint(D)) = Nmcl(P) = 0c∼, Nmint(Nmcl(Nmint(D))) = Nmint(0c∼) =
1∼, Nmint(E) = S, Nmcl(Nmint(E)) = Nmcl(S) = 0c∼, Nmint(Nmcl(Nmint(E))) = Nmint(0c∼)
= 1∼. But D ∧ E = ≺ (0.5, 0.7, 0.5), (0.6, 0.4, 0.5)� is not a Nm-α-open set in X.

Proposition 3.8. Let (X, NmX) be a nms. Every Nm-α-open set is Nm-semi-open set.

Proof. The proof is straightforword from the definitions. �

Example 3.9. Let X = {a, b} with Nm = {0∼, A, 1∼} and Nc
m = {1∼, B, 0∼} where A =

≺ (0.4, 0.3, 0.7), (0.5, 0.4, 0.9)� ; B = ≺ (0.7, 0.7, 0.4), (0.9, 0.6, 0.5)�. Now we define
the neutrosophic set as follows: C = ≺ (0.5, 0.4, 0.6), (0.5, 0.5, 0.4)�. Here, Nmint(C) = A,
Nmcl(Nmint(C)) = Nmcl(A) = B, Nmint(Nmcl(Nmint(C))) = Nmint(B) = A. Therefore, C is
a Nm-semi-open but it is not Nm-α-open.

Definition 3.10. Let (X, NmX) be a nms. For a subset A of X, the Nm-α-closure of A and
the Nm-α-interior of A, denoted by Nm-αcl(A) and Nm-αint(A), respectively, are defined as the
following:

(1) Nm-α-closure of A = min {F : F is Nm-α-closed set and F ≥ A} and it is denoted by
Nm-αcl(A).

(2) Nm-α-interior of A = max {G : G is Nm-α-open set and G ≤ A} and it is denoted by
Nm-αint(A).

Theorem 3.11. Let (X, NmX) be a nms and A ≤ X. Then

(1) Nm-αint(A) ≤ A.
(2) If A ≤ B, then Nm-αint(A) ≤ Nm-αint(B).
(3) A is Nm-α-open if and only if Nm-αint(A) = A.
(4) Nm-αint(Nm-αint(A)) = Nm-αint(A).
(5) Nm-αcl(X − A) = X−Nm-αint(A) and Nm-αint(X− A) = X − Nm-αcl(A).

Proof. (1), (2) Obvious.
(3) It follows from Theorem 3.5.
(4) It follows from (3).
(5) For A ≤ X, X − Nm -αint(A) = X − max {U : U ≤ A, U is Nm - α-open } = min { X − U
: U ≤ A, U is Nm - α-open } = min { X − U : X − A ≤ X − U, U is Nm-α-open} = Nm-αcl(X
− A). Similarly, we have Nm-αint(X − A) = X − Nm-αcl(A). �

Theorem 3.12. Let (X, NmX) be a nms and A ≤ X. Then

(1) A ≤ Nm-αcl(A).
(2) If A ≤ B, then Nm-αcl(A) ≤ Nm-αcl(B).
(3) F is Nm-α-closed if and only if Nm-αcl(F) = F.
(4) Nm-αcl(Nm-αcl(A)) = Nm-αcl(A).

Proof. It is similar to the proof of Theorem 3.11. �

Theorem 3.13. Let (X, NmX) be a nms and A ≤ X. Then

(1) x ∈ Nm-αcl(A) if and only if A ∩ V 6= ∅ for every Nm-α-open set V containing x.
(2) x ∈ Nm-αint(A) if and only if there exists an Nm-α-open set U such that U ≤ A.
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Proof. (1) Suppose there is an Nm-α-open set V containing x such that A ∩ V = ∅. Then X −
V is an Nm-α-closed set such that A ≤ X − V, x /∈ X − V. This implies x /∈ Nm-αcl(A).

The reverse relation is obvious.
(2) Obvious. �

Lemma 3.14. Let (X, NmX) be a nms and A ≤ X. Then

(1) Nmcl(Nmint(Nmcl(A))) ≤ Nmcl(Nmint(Nmcl(Nm-αcl(A)))) ≤ Nm-αcl(A).
(2) Nm-αint(A) ≤ Nmint(Nmcl(Nmint(Nm-αint(A)))) ≤ Nmint(Nmcl(Nmint(A))).

Proof. (1) For A ≤ X, by Theorem 3.12, Nm-αcl(A) is an Nm-α-closed set. Hence from Lemma
3.4, we have Nmcl(Nmint(Nmcl(A))) ≤ Nmcl(Nmint(Nmcl(Nm-αcl(A)))) ≤ Nm-αcl(A).
(2) It is similar to the proof of (1). �

Definition 3.15. A map f : (X, NmX) → (Y, NmY ) is called Nm-α-continuous map if and
only if f−1(V) ∈ Nm-α-open whenever V ∈ NmY .

Theorem 3.16. Every neutrosophic minimal continuous is Nm-α-continuous but the conversely.

Proof. The proof follows from Lemma 3.4 (1). �

Theorem 3.17. Let f : X → Y be a map on two nms (X, NmX) and (Y, NmY ). Then the
following statements are equivalent:

(1) f is Nm-α-continuous.
(2) f−1(V) is an Nm-α-open set for each Nm-open set V in Y.
(3) f−1(B) is an Nm-α-closed set for each Nm-closed set B in Y.
(4) f(Nm-αcl(A)) ≤ Nmcl(f(A)) for A ≤ X.
(5) Nm-αcl(f−1(B)) ≤ f−1(Nmcl(B)) for B ≤ Y.
(6) f−1(Nmint(B)) ≤ Nm-αint(f−1(B)) for B ≤ Y.

Proof. (1) ⇒ (2) Let V be an Nm-open set in Y and x ∈ f−1(V). By hypothesis, there exists an
Nm-α-open set Ux containing x such that f(U) ≤ V. This implies x ∈ Ux ≤ f−1(V) for all x ∈
f−1(V). Hence by Theorem 3.5, f−1(V) is Nm-α-open.
(2) ⇒ (3) Obvious.
(3)⇒ (4) For A ≤ X, f−1(Nmcl(f(A))) = f−1(min {F ≤ Y : f(A) ≤ F and F is Nm-closed}) = min
{f−1(F) ≤ X : A ≤ f−1(F) and F is Nm-α-closed} ≥ min {K ≤ X : A ≤ K and K is Nm-α-closed}
= Nm-αcl(A). Hence f(Nm-αcl(A)) ≤ Nmcl(f(A)).
(4) ⇒ (5) For A ≤ X, from (4), it follows f(Nm-αcl(f−1(A))) ≤ Nmcl(f(f−1(A))) ≤ Nmcl(A).
Hence we get (5).
(5)⇒ (6) For B ≤ Y, fromm Nmint(B) = Y − Nmcl(Y − B) and (5), it follows: f−1(Nmint(B)) =
f−1(Y − Nmcl(Y − B)) = X −f−1(Nmcl(Y − B)) ≤ X − Nm-αcl(f−1(Y − B)) = Nm-αint(f−1(B)).
Hence (6) is obtained.
(6) ⇒ (1) Let x ∈ X and V an Nm-open set containing f(x). Then from (6) and Proposition
2.11, it follows x ∈ f−1(V) = f−1(Nmint(V)) ≤ Nm-αint(f−1(V)). So from Theorem 3.13, we can
say that there exists an Nm-α-open set U containing x such that x ∈ U ≤ f−1(V). Hence f is
Nm-α-continuous. �

Theorem 3.18. Let f : X → Y be a map on two nms (X, NmX) and (Y, NmY ). Then the
following statements are equivalent:

(1) f is Nm-α-continuous.
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(2) f−1(V) ≤ Nmint(Nmcl(Nmint(f−1(V)))) for each Nm-open set V in Y.
(3) Nmcl(Nmint(Nmcl(f−1(F)))) ≤ f−1(F) for each Nm-closed set F in Y.
(4) f(Nmcl(Nmint(Nmcl(A)))) ≤ Nmcl(f(A)) for A ≤ X.
(5) Nmcl(Nmint(Nmcl(f−1(B)))) ≤ f−1(Nmcl(B)) for B ≤ Y.
(6) f−1(Nmint(B)) ≤ Nmint(Nmcl(Nmint(f−1(B)))) for B ≤ Y.

Proof. (1) ⇔ (2) It follows from Theorem 3.17 and Definition of Nm-α-open sets.
(1) ⇔ (3) It follows from Theorem 3.17 and Lemma 3.4.
(3)⇒ (4) Let A≤X. Then from Theorem 3.17(4) and Lemma 3.14, it follows Nmcl(Nmint(Nmcl(A)))
≤ Nm-αCl(A)) ≤ f−1(Nmcl(f(A))). Hence f(Nmcl(Nmint(Nmcl(A)))) ≤ Nmcl(f(A)).
(4) ⇒ (5) Obvious.
(5) ⇒ (6) From (5) and Proposition 2.11, it follows: f−1(Nmint(B)) = f−1(Y − Nmcl(Y − B))
= X −f−1(Nmcl(Y − B)) ≤ X − Nmcl(Nmint(Nmcl(f−1(Y − B))))
= Nmint(Nmcl(Nmint(f−1(B)))). Hence, (6) is obtained.
(6) ⇒ (1) Let V be an Nm-open set in Y. Then by (6) and Proposition 2.11, we have f−1(V) =
f−1(Nmint(V)) ≤ Nmint(Nmcl(Nmint(f−1(V)))). This implies f−1(V) is an Nm-α-open set. Hence
by (2), f is Nm-α-continuous. �

Definition 3.19. A subset A of an nms (X, NmX) is called an Nm-locally closed (briefly, Nmlc)
sets if A = S ∧ G, where S is Nm-open and N is Nm-closed (X, NmX). The class of all Nm-locally
closed sets in a nms (X, NmX) is denoted by NmLC(X).

Definition 3.20. A subset A of an nms (X, NmX) is called an Nm-α-locally closed (briefly,
Nmαlc) sets if A = S ∧ G, where S is Nm-α-open and N is Nm-α-closed (X, NmX). The class
of all Nm-α-locally closed sets in a nms (X, NmX) is denoted by NmαLC(X).

Proposition 3.21. Every Nm-closed (resp. Nm-open) set is Nmlc-set but not conversely.

Proof. It follows from Definition 3.19. �

Example 3.22. Let X = {a} with Nm = {0∼, A, 1∼} and N c
m = {1∼, G, 0∼} where A = ≺

(0.5, 0.6, 0.9)� ; G = ≺ (0.9, 0.4, 0.5)�. Then the collection of Nmlc-sets are 0∼ ∧ 1c∼ = ≺
(0, 0, 1)� ; 0∼ ∧ G = ≺ (0, 0, 1)� ; 0∼ ∧ 0c∼ = ≺ (0, 0, 1)� ; A ∧ 1c∼ = ≺ (0, 0, 1)� ; A ∧
G = ≺ (0.5, 0.4, 0.9)� ; A ∧ 0c∼ = ≺ (0.5, 0.6, 0.9)� ; 1∼ ∧ 1c∼ = ≺ (0, 0, 1)�; 1∼ ∧ G =
≺ (0.9, 0.4, 0.5)� ; 1∼ ∧ 0c∼ = ≺ (1, 1, 0)�. Here, G is Nmlc-set but it is not Nm-open and
A is Nmlc-set but it is not Nm-closed.

Proposition 3.23. Every Nm-α-closed (resp. Nm-α-open) set is Nmαlc-set but not conversely.

Proof. It follows from Definition 3.20. �

Example 3.24. Let X and Nm as in the Example 3.7. Then Nm-α-closed set are Dc = ≺ (0.5,
0.3, 0.5), (0.5, 0.6, 0.9)� ; Ec = ≺ (0.3, 0.2, 0.9), (0.1, 0.6, 0.6)�. Here, Dc is Nmαlc-set but
it is not Nm-α-open and D is Nmαlc-set but it is not Nm-α-closed.

Proposition 3.25. Every Nmlc-set is Nmαlc-set but not conversely.

Proof. It follows from Proposition 3.4(1), (3). �
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Definition 3.26. A map f : (X, NmX) → (Y, NmY ) is said to be Nm-locally closed-continuous
(briefly, NmLC-continuous) if f−1(V) is NmLC-set in (X, NmX) for every Nm-open set V of
(Y, NmY ).

Definition 3.27. A map f : (X, NmX)→ (Y, NmY ) is said to be Nm-α-locally closed-continuous
(briefly, NmαLC-continuous) if f−1(V) is NmαLC-set in (X, NmX) for every Nm-open set V of
(Y, NmY ).

Theorem 3.28. Let f : (X, NmX) → (Y, NmY ) be a map. Then

(1) If f is Nm-continuous, then it is NmLC-continuous.
(2) If f is Nm-continuous, then it is NmαLC-continuous.
(3) If f is NmLC-continuous, then it is NmαLC-continuous.

Proof. (1) It is an immediate consequence of Proposition 3.21.
(2) It is an immediate consequence of Proposition 3.21 and 3.25.
(3) It is an immediate consequence of Proposition 3.25. �

Definition 3.29. A map f : (X, NmX) → (Y, NmY ) is said to be NmLC-irresolute (resp.
NmαLC-irresolute) if f−1(V)is NmLC-set (resp. NmαLC-set) in (X, NmX) for every NmLC-set
(resp. NmαLC-set) V of (Y, NmY ).

Theorem 3.30. Let f : (X, NmX) → (Y, NmY ) be a map. The

(1) If f is NmLC-irresolute then it is NmLC-continuous.
(2) If f is NmαLC-irresolute then it is NmαLC-continuous.

Proof. (1) Let f : (X, NmX) → (Y, NmY ) be a NmLC-irresolute map. Let V be a Nm-open set
of (Y, NmY ). Since every Nm-open set is Nmlc-set [by the Proposition 3.21], V is NmLC-set of
(Y, NmY ). Since f is NmLC-irresolute, then f−1(V) is a NmLC-set of (X, NmX). Therefore f is
NmLC-continuous.

(2) Let f : (X, NmX)→ (Y, NmY ) be a NmαLC-irresolute map. Let V be a Nm-open set of (Y,
NmY ). Since every Nm-open set is Nmlc-set and every Nmlc-set is Nmαlc-set [by the Proposition
3.21 and Proposition 3.25], V is NmαLC-set of (Y, NmY ). Since f is NmαLC-irresolute, then
f−1(V) is a NmαLC-set of (X, NmX). Therefore f is Nm-αLC-continuous. �

Theorem 3.31. Let f : (X, NmX) → (Y, NmY ) and g : (Y, NmY ) → (Z, NmZ) be any two
maps. Then

(1) g ◦ f is NmLC-continuous if g is Nm-continuous and f is NmLC-continuous.
(2) g ◦ f is NmLC-irresolute if both f and g are NmLC-irresolute.
(3) g ◦ f is NmLC-continuous if g is NmLC-continuous and f is NmLC-irresolute.

Proof. (1) Since g is a Nm-continuous from (Y, NmY ) → (Z, NmZ), for any Nm-open set z as a
subset of Z, we get g−1(z) = G is a Nm-open set in (Y, NmY ) . As f is a NmLC-continuous map.
We get (g ◦ f)−1(z) = f−1(g−1(z)) = f−1(G) = S and S is a NmLC-set in (X, NmX), since every
Nm-open set is is Nmlc-set [by the Proposition 3.21]. Hence (g ◦ f) is a NmLC-continuous map.
(2) Consider two NmLC-irresolute maps, f : (X, NmX) → (Y, NmY ) and g : (Y, NmY ) → (Z,
NmZ) is a NmLC-irresolute maps. As g is consider to be a NmLC-irresolute map, by Definition
3.29, for every Nm-lc-set z ≤ (Z, NmZ), g−1(z) = G is a Nmlc-set in (Y, NmY ). Again since f
is NmLC-irresolute, (g ◦ f)−1(z) = f−1(g−1(z)) = f−1(G) = S and S is a Nmlc-set in (X, NmX).
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Hence (g ◦ f) is a NmLC-irresolute map.
(3) Let g be a NmLC-continuous map from (Y, NmY ) → (Z, NmZ) and z subset of Z be a Nm-
open set. Therefore g−1(z) = G is a Nmlc-set in (Y, NmY ), since every Nm-open set is Nmlc-set
[by the Proposition 3.21]. Also since f is NmLC-irresolute, we get (g ◦ f)−1(z)= f−1(g−1(z)) =
f−1(G) = S and S is a Nmlc-set in (X, NmX). Hence (g ◦ f) is a NmLC-continuous map. �

Theorem 3.32. Let f : (X, NmX) → (Y, NmY ) and g : (Y, NmY ) → (Z, NmZ) be any two
maps. Then

(1) g ◦ f is NmαLC-continuous if g is Nm-continuous and f is NmαLC-continuous.
(2) g ◦ f is NmαLC-irresolute if both f and g are NmαLC-irresolute.
(3) g ◦ f is NmαLC-continuous if g is NmαLC-continuous and f is NmαLC-irresolute.

Proof. (1) Since g is a Nm-continuous from (Y, NmY ) → (Z, NmZ), for any Nm-open set z as
a subset of Z, we get g−1(z) = G is a Nm-open set in (Y, NmY ) . As f is a NmαLC-continuous
map. We get (g ◦ f)−1(z) = f−1(g−1(z)) = f−1(G) = S and S is a NmαLC-set in (X, NmX), since
every Nm-open set is is Nmlc-set and every Nmlc-set is Nm-αlc-set [by the Propositions 3.21 and
3.25]. Hence (g ◦ f) is a NmαLC-continuous map.
(2) Consider two Nm-αLC-irresolute maps, f : (X, NmX) → (Y, NmY ) and g : (Y, NmY ) →
(Z, NmZ) is a NmαLC-irresolute maps. As g is consider to be a NmαLC-irresolute map, by
Definition 3.29, for every NmαLC-set z ≤ (Z, NmZ), g−1(z) = G is a NmαLC-set in (Y, NmY ).
Again since f is NmαLC-irresolute, (g ◦ f)−1(z) = f−1(g−1(z)) = f−1(G) = S and S is a NmαLC-
set in (X, NmX). Hence (g ◦ f) is a NmαLC-irresolute map.
(3) Let g be a NmαLC-continuous map from (Y, NmY ) → (Z, NmZ) and z subset of Z be a
Nm-open set. Therefore g−1(z) = G is a Nmαlc-set in (Y, NmY ), since every Nm-open set is
Nmlc-set and every Nmlc-set is Nmαlc-set [by the Propositions 3.21 and 3.25]. Also since f is
NmαLC-irresolute, we get (g ◦ f)−1(z)= f−1(g−1(z)) = f−1(G) = S and S is a Nmαlc-set in (X,
NmX). Hence (g ◦ f) is a NmαLC-continuous map. �

4. CONCLUSION

Neutrosophic set is a general formal framework, which generalizes the concept of classic set,
fuzzy set, interval valued fuzzy set, intuitionistic fuzzy set, and interval intuitionistic fuzzy set.
Since the world is full of indeterminacy, the neutrosophic minimal structure spaces found its place
into contemporary research world. Hence Nm-α-open can also be extended to a neutrosophic
spatial region. The results of this study may be help in many researches.
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Abstract
In this paper an innovative method of ranking neutrosophic number based on the notions 
of value and ambiguity of a single-valued neutrosophic number is being developed. The 
method is based on the convex combination of value and ambiguity of truth-membership 
function with the sum of values and ambiguities of indeterminacy-membership and falsity-
membership functions. This convex combination is also termed as an index of optimism. 
The index of optimism, � = 1 , is termed as optimistic decision-maker as it considers the 
value and the ambiguity of the truth-membership function, ignoring the contributions from 
indeterminacy-membership and falsity-membership functions. Similarly, the index of opti-
mism, � = 0 , is termed as pessimistic decision-maker as it considers the values and the 
ambiguities of the indeterminacy-membership and falsity-membership functions, ignoring 
the contribution from truth-membership function. Further, the index of optimism, � = 0.5 , 
is termed as moderate decision-maker as it considers the values and the ambiguities of 
all the membership functions. The approach is a novel as it completely oath to follow the 
reasonable properties of a ranking method. It is worth to mention that the current approach 
consistently ranks the single-valued neutrosophic numbers as well as their corresponding 
images.

Keywords Neutrosophic number · Ranking · Value · Ambiguity · Index of optimism

1 Introduction

Uncertainty due to vagueness is generally handled by the branch of mathematics called 
fuzzy set theory developed by Zadeh (1965). In such mathematics, the parameters involved 
are linguistic variables which in turn can be expressed as fuzzy numbers. There are vari-
ous generalizations of fuzzy numbers, one such generalization is intuitionistic fuzzy num-
ber (IFN) developed by Atanassov (1989, 1999, 2000) and octahedron sets developed by 
Lee et  al. (2020). The generalization of fuzzy number to IFN adds more information to 
the latter as it incorporates non-membership or incomplete information in a fuzzy number. 
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Another such generalization of fuzzy numbers, in fact IFNs are neutrosophic numbers, 
which incorporates indeterminacy-membership apart from the truth-membership and the 
falsity-membership functions. This generalization was initiated by Smarandache (1998, 
1999, 2006). This generalization has added various development in diverse filed, namely, 
graph theory (Karaaslan and Davvaz 2018) and structure theory (Edalatpanah 2020a), lin-
ear equations (Edalatpanah 2020b), etc. This generalization has been used in various fields 
of decision-making, namely, Ulucay et  al. (2018), Karaaslan (2018a), Giri et  al. (2018), 
Deli (2018), etc. Apart from these, various studies are performed by Karaaslan and Hunu 
(2020), Karaaslan and Hayat (2018), Jana et al. (2020) and Karaaslan (2018b) in multi-cri-
teria group decision making problems. Also, data envelopment analysis under neutrosophic 
environment are discussed by Yang et  al. (2020), Edalatpanah (2020), Edalatpanah and 
Smarandache (2019) and Mao et  al. (2020). Neutrosophic linear programming problems 
are also being discussed by Edalatpanah (2020). One of the tools in the decision-making 
process is ranking or ordering of neutrosophic numbers. Single-valued neutrosophic num-
ber (SVNN) is a particular type of neutrosophic number developed by Wang et al. (2010). 
In this work, an attempt to develop a robust method of ranking SVNNs will be made.

A very few works are available in ranking of SVNNs so far. An outranking approach was 
developed by Peng et al. (2014) and applied in multi-criteria decision-making problems. A 
outranking approach for multi-criteria decision making problems with neutrosophic multi-
sets was discussed by Ulucay et al. (2019). Ranking of neutrosophic sets based on score 
function was developed by Nancy and Garg (2016). The notions of the values and the ambi-
guities of truth-membership, indeterminacy-membership and falsity-membership functions 
was developed for ranking SVNNs by Deli and Subas (2017). The ranking done on by Deli 
and Subas (2017) is based on the values; and if the values are equal then the ordering is 
done by ambiguities, that is, if the ã and b̃ are SVNNs and ambiguity of ã is numerical 
greater than b̃ , then ã is ranked to be bigger than b̃ . This ordering is completely irrational, 
because the SVNN with more ambiguity should be ranked smaller. Aal et al. (2018) con-
cept of ranking SVNNs is similar to that of Deli and Subas (2017), hence their method 
retains the same drawback as that of Deli and Subas (2017). Evidently, Biswas et al. (2016) 
rectified the drawbacks of Deli and Subas (2017) and Aal et al. (2018), however in some 
situations their method fails to rank consistently the corresponding images of the SVNNs. 
Further, none of the existing method investigated the rationality validation of the methods 
developed. Intuitively, the existing methods of ranking SVNNs lacks rationality validation. 
As such these methods are not rich enough to be applied in the decision-making prob-
lems. Further, it has been observed that the ranking of SVNNs is in a very premature stage. 
Motivated by the chronology of the ranking method of SVNNs, it is being observed that a 
robust method of ranking SVNNs is unavailable. Hence, it is essential to develop a robust 
and logical methodology of ranking SVNNs for an appropriate decision-making process. 
In this work, such an attempt will be made to develop a rational and consistent method of 
ranking SVNNs. It was seen that the existing methods never investigated the ordering of 
the images of SVNNs. Hence, one objective is to see the consistency in ranking SVNNs 
with their corresponding images. Further, another objective is to check the robustness of 
the method by proving the reasonable properties of Wang and Kerre (2001a, 2001b).

The next section discusses various definitions and notations of SVNNs, which will be 
utilized in discussing the method and its properties. In Sect. 3, the definitions and notions 
of value and ambiguity of a SVNN are being discussed; and also the proposed method 
along with its properties are being discussed. In Sect.  4, the method is demonstrated 
through some numerical examples and compared with some existing methods. Finally, in 
Sect. 5 conclusions are made and the main features are highlighted.
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2  Preliminaries

In this section, a few definitions and notations are being discussed. This discussion will 
further help in the discussion of the proposed method.

Definition 2.1 A SVNN ã = ⟨�ã, �ã, �ã⟩ in the set of real numbers ℝ with truth-member-
ship function �ã , indeterminacy-membership function �ã and falsity-membership function 
�ã is defined as

,

and

respectively, where 0 ≤ �ã(x) + �ã(x) + �ã(x) ≤ 3 and ai, x0,i, y0,i, bi ∈ ℝ such that 
ai ≤ x0,i ≤ y0,i ≤ bi , i = 1, 2, 3 , and the functions fã, gã, lã,mã, hã, kã ∶ ℝ ⟶ [0, 1] are legs 
of truth-membership function �ã , indeterminacy-membership function �ã and falsity-mem-
bership function �ã . The functions fã , lã and kã are non-decreasing continuous functions 
and the functions hã , mã and gã are non-increasing continuous functions. Hence, the SVNN 
can also be denoted by ã = ⟨(a1, x0,1, y0,1, b1), (a2, x0,2, y0,2, b2), (a3, x0,3, y0,3, b3)⟩.

Definition 2.2 Let ã = ⟨(a1, x0,1, y0,1, b1), (a2, x0,2, y0,2, b2), (a3, x0,3, y0,3, b3)⟩ be a trapezoi-
dal SVNN where the real numbers are such that ai ≤ x0,i ≤ y0,i ≤ bi , i = 1, 2, 3 . Then truth-
membership function, indeterminacy-membership function and falsity-membership func-
tion are defined as

(1)�ã(x) =

⎧
⎪⎨⎪⎩

fã(x), if a1 ≤ x ≤ x0,1
1, if x0,1 ≤ x ≤ y0,1
gã(x), if y0,1 ≤ x ≤ b1
0, otherwise,

(2)�ã(x) =

⎧
⎪⎨⎪⎩

lã(x), if a2 ≤ x ≤ x0,2
0, if x0,2 ≤ x ≤ y0,2
mã(x), if y0,2 ≤ x ≤ b2
1, otherwise,

(3)�ã(x) =

⎧
⎪⎨⎪⎩

hã(x), if a3 ≤ x ≤ x0,3
0, if x0,3 ≤ x ≤ y0,3
kã(x), if y0,3 ≤ x ≤ b3
1, otherwise,

(4)�ã(x) =

⎧
⎪⎪⎨⎪⎪⎩

x−a1

x0,1−a1
, if a1 ≤ x ≤ x0,1

1, if x0,1 ≤ x ≤ y0,1
b1−x

b1−y0,1
, if y0,1 ≤ x ≤ b1

0, otherwise,
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and

respectively, where 0 ≤ �ã(x) + �ã(x) + �ã(x) ≤ 3.

As like IFN, the cut sets of SVNN can also be defined for truth-membership, indeter-
minacy-membership and falsity-membership functions. These definitions are being thor-
oughly discussed by Deli and Subas (2017). These definitions are being adopted in this 
study.

A ⟨�, � , �⟩-cut set, of a SVNN ã , is a crisp subset of ℝ , which is defined as

where 0 ≤ � + � + � ≤ 3 , �ã , �ã and �ã are truth-membership, indeterminacy-membership 
and falsity-membership functions of ã respectively.

A �-cut set is a crisp subset of ℝ , which is defined as ã
�
= {x|�ã(x) ≥ �} where

0 ≤ � ≤ 1 . Further, ã
�
 represents a closed interval, denoted by ã

�
=
[
L
�

ã
(�),R

�

ã
(�)

]
 . Now, 

for the truth-membership function defined in Eq. 4, the �-cut set is defined as

A �-cut set is also a crisp subset of ℝ , which is defined as ã
�
= {x|�ã(x) ≤ �} , where 

0 ≤ � ≤ 1 . Further, ã
�
 represents a closed interval, denoted by ã

�
=
[
L
�

ã
(�),R

�

ã
(�)

]
 . Also, for 

the falsity-membership function defined in Eq. 5, the �-cut set is defined as

A �-cut set is again a crisp subset of ℝ , which is defined as ã
�
= {x|�ã(x) ≤ �} , where 

0 ≤ � ≤ 1 . Further, ã
�
 represents a closed interval, denoted by ã

�
=
[
L�
ã
(�),R�

ã
(�)

]
 . Also, 

for the falsity-membership function defined in Eq. 6, the �-cut set is defined as

Another notion that are necessary for the discussion is the notions of the support of 
a SVNN. As a SVNN requires three types of functions to represent it. Hence, for each 
of these functions, the support can be defined. The supports of truth-membership, inde-
terminacy-membership and falsity-membership functions are denoted and defined as 
supp(𝜇

�a) = {x|𝜇
�a(x) > 0} , supp(𝜌

�a) = {x|𝜌
�a(x) < 1} and supp(𝜈

�a) = {x|𝜈
�a(x) < 1} respec-

tively. Further, the following notations will be used in the further discussion, that is, 

(5)�ã(x) =

⎧
⎪⎪⎨⎪⎪⎩

x−x0,2

a2−x0,2
, if a2 ≤ x ≤ x0,2

0, if x0,2 ≤ x ≤ y0,2
x−y0,2

b2−y0,2
, if y0,2 ≤ x ≤ b2

1, otherwise,

(6)�ã(x) =

⎧
⎪⎪⎨⎪⎪⎩

x−x0,3

a3−x0,3
, if a3 ≤ x ≤ x0,3

0, if x0,3 ≤ x ≤ y0,3
x−y0,3

b3−y0,3
, if y0,3 ≤ x ≤ b3

1, otherwise,

ã⟨�,� ,�⟩ = {x��ã(x) ≥ �, �ã(x) ≤ � , �ã(x) ≤ �}

(7)ã
�
=
[
L
�

ã
(�),R

�

ã
(�)

]
=
[
a1 + �(x0,1 − a1), b1 − �(b1 − y0,1)

]
.

(8)ã
�
=
[
L
�

ã
(�),R

�

ã
(�)

]
=
[
x0,2 + �(a2 − x0,2), y0,2 + �(b2 − y0,2)

]
.

(9)ã
�
=
[
L�
ã
(�),R�

ã
(�)

]
=
[
x0,3 + �(a3 − x0,3), y0,3 + �(b3 − y0,3)

]
.
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L
�

ã
(0) = inf supp(�ã),R

�

ã
(0) = sup supp(�ã) , L

�

ã
(1) = inf supp(�ã),R

�

ã
(1) = sup supp(�ã) , 

L�
ã
(1) = inf supp(�ã) and R�

ã
(1) = sup supp(�ã).

Let ã = ⟨�ã, �ã, �ã⟩ be a SVNN, then the image of ã is given by −ã = ⟨�−ã, �−ã, �−ã⟩ . 
Thus, if ã

�
=
[
L
�

ã
(�),R

�

ã
(�)

]
 , ã

�
=
[
L
�

ã
(�),R

�

ã
(�)

]
 and ã

�
=
[
L�
ã
(�),R�

ã
(�)

]
 be the cut sets 

of ã , then the cut set of −ã are −ã
�
=
[
−R

�

ã
(�),−L

�

ã
(�)

]
 , −ã

�
=
[
−R

�

ã
(�),−L

�

ã
(�)

]
 and 

−ã
�
=
[
−R�

ã
(�),−L�

ã
(�)

]
 . A SVNN ã is symmetric about y-axis, if −L�

ã
(�) = R

�

ã
(�) , 

−L
�

ã
(�) = R

�

ã
(�) and −L�

ã
(�) = R�

ã
(�).

2.1  Arithmetic of SVNNs

The arithmetic operations of IFNs was extensively studied by Chakraborty et al. (2015) using 
different methodology, namely, (�, �)-cut method, vertex method and extension principle 
method. As SVNN is an extension of IFN, these methodology of arithmetic of IFNs can be 
extended to arithmetic of SVNNs. The arithmetic of SVNNs are also discussed by Biswas 
et al. (2016) and Deli and Subas (2017) using the (�, � , �)-cut sets method. In this study, the 
arithmetic of SVNNs by the (�, � , �)-cut sets method is adopted. Let 
ã = ⟨(a1, x0,1, y0,1, b1), (a2, x0,2, y0,2, b2), (a3, x0,3, y0,3, b3)⟩ and
b̃ = ⟨(p1,m0,1,m0,1, q1), (p2,m0,2, n0,2, q2), (p3,m0,3, n0,3, q3)⟩ be two SVNNs. Let the �-cut, �
-cut and �-cut sets of truth-membership, indeterminacy-membership and falsity-membership 
functions of ã and b̃ be ã

�
= [L

�

ã
(�),R

�

ã
(�)] , ã

�
= [L

�

ã
(�),R

�

ã
(�)] and ã

�
= [L�

ã
(�),R�

ã
(�)] , and 

b̃
�
= [L

�

b̃
(�),R

�

b̃
(�)] , b̃

�
= [L

�

b̃
(�),R

�

b̃
(�)] and b̃

�
= [L�

b̃
(�),R�

b̃
(�)] respectively. Then the arith-

metic operations addition, subtraction and scalar multiplication are defined as

and

respectively. Eventually, these arithmetic operations on the (�, � , �)-cut are calculated to 
obtain the following expressions.

[ã + b̃]
�

= [L
�

ã
(�) + L

�

b̃
(�),R

�

ã
(�) + R

�

b̃
(�)], [ã + b̃]

�
= [L

�

ã
(�) + L

�

b̃
(�),R

�

ã
(�) + R

�

b̃
(�)],

[ã + b̃]
�
= [L�

ã
(�) + L�

b̃
(�),R�

ã
(�) + R�

b̃
(�)];

[ã − b̃]
�

= [L
�

ã
(�) − R

�

b̃
(�),R

�

ã
(�) − R

�

b̃
(�)], [ã − b̃]

�
= [L

�

ã
(�) − R

�

b̃
(�),R

�

ã
(�) − L

�

b̃
(�)],

[ã − b̃]
�
= [L�

ã
(�) − R�

b̃
(�),R�

ã
(�) − L�

b̃
(�)];

[𝜆�a]
𝛼
=

{ [
𝜆L

𝜇

�a
(𝛼), 𝜆R

𝜇

�a
(𝛼)

]
, if 𝜆 > 0,[

𝜆R
𝜇

�a
(𝛼), 𝜆L

𝜇

�a
(𝛼)

]
, if 𝜆 < 0,

;[𝜆�a]
𝛽
=

{ [
𝜆L𝜈

�a
(𝛽), 𝜆R𝜈

�a
(𝛽)

]
, if 𝜆 > 0,[

𝜆R𝜈

�a
(𝛽), 𝜆L𝜈

�a
(𝛽)

]
, if 𝜆 < 0,

;

[𝜆�a]
𝛽
=

{ [
𝜆L𝜈

�a
(𝛽), 𝜆R𝜈

�a
(𝛽)

]
, if 𝜆 > 0,[

𝜆R𝜈

�a
(𝛽), 𝜆L𝜈

�a
(𝛽)

]
, if 𝜆 < 0,

(10)

ã + b̃

= ⟨(a1 + p1, x0,1 + m0,1, y0,1 + n0,1, b1 + q1),

(a2 + p2, x0,2 + m0,2, y0,2 + n0,2, b2 + q2),

(a3 + p3, x0,3 + m0,3, y0,3 + n0,3, b3 + q3)⟩,
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The collection of the SVNNs that follows the above defined arithmetic operations with 
bounded supports and convex are denoted by the set NF  . The collection of SVNNs means 
Single-valued Neutrosophic Triangular Number, Single-valued Neutrosophic Trapezoidal 
Numbers, Single-valued Neutrosophic Polygonal Numbers, etc.

3  The proposed method of ranking SVNN

The notions of value and ambiguity are enormously discussed in various methodol-
ogy of ranking fuzzy numbers by Chutia (2017) and Chutia and Chutia (2017). Further, 
these quantities are also used in ranking IFNs by Chutia and Saikia (2018), and in rank-
ing Z-numbers by Chutia (2020). Although there are various notions of capturing informa-
tion which are being used in ranking methodologies, yet these two notions are reliable and 
robust. Hence, these notions are being used in the current methodology of ranking SVNNs. 
Thus, to move toward the development of the methodology, the following subsection will 
discuss the notions of value and ambiguity of a SVNN.

3.1  Definitions and notions essential for the discussion

In this subsection, the main definition that the proposed method of ranking SVNNs oath to 
stand is being discussed. Further, a few properties are also being discussed.

Definition 3.1 Let ã ∈ NF  and truth-membership function be �ã(x) , indeterminacy-
membership function be �ã(x) and falsity-membership function be �ã(x) as defined in 
Definition  2.1. Let ã

�
= [L

�

ã
(�),R

�

ã
(�)] be the �-cut sets of truth-membership func-

tion, ã
�
= [L

�

ã
(�),R

�

ã
(�)] be the �-cut sets of indeterminacy-membership function and 

ã
�
= [L�

ã
(�),R�

ã
(�)] be the �-cut sets of falsity-membership function of ã . Then, the quanti-

ties values and ambiguities of truth-membership, indeterminacy-membership and falsity-
membership functions are denoted as V(�ã) , V(�ã) , V(�ã) and A(�ã) , A(�ã) , A(�ã) , respec-
tively. Then, these quantities are defined as

(11)

ã − b̃

= ⟨(a1 − q1, x0,1 − n0,1, y0,1 − m0,1, b1 − p1),

(a2 − q2, x0,2 − m0,2, y0,2 − m0,2, b2 − p2),

(a3 − q3, x0,3 − n0,3, y0,3 − m0,3, b3 − p3)⟩,

(12)

𝜆�a

=

� ⟨(𝜆a1, 𝜆x0,1, 𝜆y0,1, 𝜆b1), (𝜆a2, 𝜆x0,2, 𝜆y0,2, 𝜆b2), (𝜆a3, 𝜆x0,3, 𝜆y0,3, 𝜆b3)⟩, if 𝜆 > 0,

⟨(𝜆b1, 𝜆y0,1, 𝜆x0,1, 𝜆a1), (𝜆b2, 𝜆y0,2, 𝜆x0,2, 𝜆a2), (𝜆b3, 𝜆y0,3, 𝜆x0,3, 𝜆a3)⟩, if 𝜆 < 0,

(13)

⎧⎪⎨⎪⎩

V(�ã) = ∫ 1

0
(R

�

ã
(r) + L

�

ã
(r))f (r)dr,

V(�ã) = ∫ 1

0
(R

�

ã
(r) + L

�

ã
(r))g(r)dr,

V(�ã) = ∫ 1

0
(R�

ã
(r) + L�

ã
(r))g(r)dr,
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where, the function f (�) is non-negative and non-decreasing function on the interval [0, 1] 
with f (0) = 0 , f (1) = 1 and ∫ 1

0
f (�)d� =

1

2
 ; the function g(�) is a non-negative and non-

increasing function on the interval [0, 1] with g(1) = 0 , g(0) = 1 and ∫ 1

0
g(�)d� =

1

2
.

Let ã = ⟨(a1, x0,1, y0,1, b1), (a2, x0,2, y0,2, b2), (a3, x0,3, y0,3, b3)⟩ be a trapezoidal SVNN 
defined in Definition 2.2. Let truth-membership, indeterminacy-membership and falsity-member-
ship functions denoted as �ã(x) , �ã(x) and �ã(x) as given in Eqs. 4, 5 and 6 , respectively. Let �
-cut, �-cut and �-cut sets of the truth-membership, the indeterminacy-membership and the falsity-
membership functions of ã be given by Eqs. 7, 8 and 9 , respectively. Choosing f (�) and g(�) 
as f (�) = � and g(�) = 1 − � , respectively. Then, values and ambiguities of truth-membership 
function, indeterminacy-membership function, falsity-membership function are V(�ã) , V(�ã) , 
V(�ã) and A(�ã) , A(�ã) , A(�ã) of ã can be derived using the definitions of values and ambiguities 
defined in the Definition 3.1 as

and

respectively.
Now, a few properties of the quantities values and ambiguities of truth-membership, indeter-

minacy-membership and falsity-membership functions are being discussed through a few proposi-
tions which will be essential for further discussion about the proposed methodology. The above 
Definition 3.1 of the values and the ambiguities are the basic definitions based on which the pro-
posed method of ranking SVNNs is being formulated.

Proposition 3.1 Let ã ∈ NF . Then the inequalities sup supp(�ã) ≥ V(�ã) ≥ inf supp(�ã)

, sup supp(�ã) ≥ V(�ã) ≥ inf supp(�ã) and sup supp(�ã) ≥ V(�ã) ≥ inf supp(�ã) hold, that is,
the value of truth-membership function lies in the support of truth-membership function, the value 
of indeterminacy-membership function lies in the support of indeterminacy-membership function 
and the value of falsity-membership function lies in the support of the falsity-membership function.

Proof Let ã ∈ NF  and ã
�
= [L

�

ã
(�),R

�

ã
(�)] be the �-cut sets of truth-membership 

function, ã
�
= [L

�

ã
(�),R

�

ã
(�)] be the �-cut sets of indeterminacy-membership func-

tion and ã
�
= [L�

ã
(�),R�

ã
(�)] be the �-cut sets of falsity-membership function. It is 

true that [L
𝜇

�a
(𝛼),R

𝜇

�a
(𝛼)] ⊆ supp(𝜇

�a) = [L
𝜇

�a
(0),R

𝜇

�a
(0)] . Therefore, it follows that 

R
�

ã
(0) ≥ R

�

ã
(�) ≥ L

�

ã
(�) ≥ L

�

ã
(0) , which implies that

(14)

⎧
⎪⎨⎪⎩

A(�ã) = ∫ 1

0
(R

�

ã
(r) − L

�

ã
(r))f (r)dr,

A(�ã) = ∫ 1

0
(R

�

ã
(r) − L

�

ã
(r))g(r)dr,

A(�ã) = ∫ 1

0
(R�

ã
(r) − L�

ã
(r))g(r)dr,

(15)

⎧⎪⎨⎪⎩

V(�ã) =
1

6
[a1 + 2(x0,1 + y0,1) + b1],

V(�ã) =
1

6
[a2 + 2(x0,2 + y0,2) + b2],

V(�ã) =
1

6
[a3 + 2(x0,3 + y0,3) + b3],

(16)

⎧⎪⎨⎪⎩

A(�ã) =
1

6
[b1 + 2(y0,1 − x0,1) − a1],

A(�ã) =
1

6
[b2 + 2(y0,2 − x0,2) − a2],

A(�ã) =
1

6
[b3 + 2(y0,3 − x0,3) − a3],

Florentin Smarandache (ed.) Collected Papers, VII

958



Thus, it implies that sup supp(�ã) ≥ V(�ã) ≥ inf supp(�ã) . Simi-
larly, [L

𝜌

�a
(𝛾),R

𝜌

�a
(𝛾)] ⊆ supp(𝜌

�a) = [L
𝜌

�a
(1),R

𝜌

�a
(1)] . Then, it follows that 

R
�

ã
(1) ≥ R

�

ã
(�) ≥ L

�

ã
(�) ≥ L

�

ã
(1) , which implies that

Thus, it implies that sup supp(�ã) ≥ V(�ã) ≥ inf supp(�ã) . Simi-
larly, [L𝜈

�a
(𝛽),R𝜈

�a
(𝛽)] ⊆ supp(𝜈

�a) = [L𝜈
�a
(1),R𝜈

�a
(1)] . So, it follows that 

R�

ã
(1) ≥ R�

ã
(�) ≥ L�

ã
(�) ≥ L�

ã
(1) , which implies that

Hence, it implies that sup supp(�ã) ≥ V(�ã) ≥ inf supp(�ã) . ◻

Proposition 3.2 Let ã, b̃ ∈ NF . Then

and

Proof Let ã, b̃ ∈ NF  , ã
�
= [L

�

ã
(�),R

�

ã
(�)] and b̃

�
= [L

�

b̃
(�),R

�

b̃
(�)] be the �-cut sets of 

truth-membership functions of ã and b̃ respectively, ã
�
= [L

�

ã
(�),R

�

ã
(�)] and 

b̃
�
= [L

�

b̃
(�),R

�

b̃
(�)] be the �-cut sets of indeterminacy-membership functions of ã and b̃

respectively, ã
�
= [L�

ã
(�),R�

ã
(�)] and b̃

�
= [L�

b̃
(�),R�

b̃
(�)] be the �-cut sets of falsity-mem-

bership functions of ã and b̃ , respectively. Then, it follows that

R
�

ã
(0) ≥ 1

2

[
L
�

ã
(�) + R

�

ã
(�)

] ≥ L
�

ã
(0)

or,R
�

ã
(0)�

1

0

f (r)dr ≥ 1

2 �
1

0

(
L
�

ã
(�) + R

�

ã
(�)

)
f (r)dr ≥ L

�

ã
(0)�

1

0

f (r)dr.

R
�

ã
(1) ≥ 1

2

[
L
�

ã
(�) + R

�

ã
(�)

] ≥ L
�

ã
(1)

or,R
�

ã
(1)�

1

0

g(r)dr ≥ 1

2 �
1

0

(
L
�

ã
(�) + R

�

ã
(�)

)
g(r)dr ≥ L

�

ã
(1)�

1

0

g(r)dr.

R�

ã
(1) ≥ 1

2

[
L�
ã
(�) + R�

ã
(�)

] ≥ L�
ã
(1)

or,R�

ã
(1)�

1

0

g(r)dr ≥ 1

2 �
1

0

(
L�
ã
(�) + R�

ã
(�)

)
g(r)dr ≥ L�

ã
(1)�

1

0

g(r)dr.

V(�ã+b̃) = V(�ã) + V(�
b̃
), V(�ã+b̃) = V(�ã) + V(�

b̃
), V(�ã+b̃) = V(�ã) + V(�

b̃
)

V(�ã−b̃) = V(�ã) − V(�
b̃
), V(�ã−b̃) = V(�ã) − V(�

b̃
), V(�ã−b̃) = V(�ã) − V(�

b̃
).
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Similarly, it can proved that the equalities V(�
ã−b̃

) = V(�ã) − V(�b̃) , 
V(�

ã−b̃
) = V(�ã) − V(�

b̃
) and V(�ã−b̃) = V(�ã) − V(�

b̃
) hold. ◻

Proposition 3.3 Let ã, b̃ ∈ NF . Then

and

Proof Let ã, b̃ ∈ NF  , ã
�
= [L

�

ã
(�),R

�

ã
(�)] and b̃

�
= [L

�

b̃
(�),R

�

b̃
(�)] be the �-cut sets of 

truth-membership functions of ã and b̃ , respectively, ã
�
= [L

�

ã
(�),R

�

ã
(�)] and 

b̃
�
= [L

�

b̃
(�),R

�

b̃
(�)] be the �-cut sets of indeterminacy-membership functions of ã and b̃ , 

respectively and ã
�
= [L�

ã
(�),R�

ã
(�)] and b̃

�
= [L�

b̃
(�),R�

b̃
(�)] be the �-cut sets of falsity-

membership functions of ã and b̃ , respectively. Then, it follows that

V(�
ã+b̃

) =∫
1

0

f (r)
[
(R

�

ã
(r) + R

�

b̃
(r)) + (L

�

ã
(r) + L

�

b̃
(r))

]
dr

=∫
1

0

f (r)(R
�

ã
(r) + L

�

ã
(r))dr + ∫

1

0

g(r)(R
�

b̃
(r) + L

�

b̃
(r))dr

=V(�ã) + V(�b̃),

V(�
ã+b̃

) =∫
1

0

g(r)
[
(R

�

ã
(r) + R

�

b̃
(r)) + (L

�

ã
(r) + L

�

b̃
(r))

]
dr

=∫
1

0

g(r)(R
�

ã
(r) + L

�

ã
(r))dr + ∫

1

0

g(r)(R
�

b̃
(r) + L

�

b̃
(r))dr

=V(�ã) + V(�
b̃
),

V(�
ã+b̃

) =∫
1

0

g(r)
[
(R�

ã
(r) + R�

b̃
(r)) + (L�

ã
(r) + L�

b̃
(r))

]
dr

=∫
1

0

g(r)(R�

ã
(r) + L�

ã
(r))dr + ∫

1

0

g(r)(R�

b̃
(r) + L�

b̃
(r))dr

=V(�ã) + V(�b̃).

A(�ã+b̃) = A(�ã) +A(�
b̃
), A(�ã+b̃) = A(�ã) +A(�

b̃
), A(�ã+b̃) = A(�ã) +A(�

b̃
)

A(�ã−b̃) = A(�ã) +A(�
b̃
), A(�ã−b̃) = A(�ã) +A(�

b̃
), A(�ã−b̃) = A(�ã) +A(�

b̃
).
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Similarly, it can proved that the equalities A(�
ã−b̃

) = A(�ã) +A(�b̃) , 
A(�

ã−b̃
) = A(�ã) +A(�

b̃
) and A(�

ã−b̃
) = A(�ã) +A(�

b̃
) hold. ◻

Proposition 3.4 Let ã ∈ NF , k ∈ ℝ − {0} be any real number. Then the values and 
the ambiguities of truth-membership, indeterminacy-membership and falsity-member-
ship functions hold the following equalities, that is, V(�kã) = kV(�ã), V(�kã) = kV(�ã), 
V(�kã) = kV(�ã) and

Proof Let ã ∈ NF  and ã
�
= [L

�

ã
(�),R

�

ã
(�)] be the �-cut sets of truth-membership 

function, ã
�
= [L

�

ã
(�),R

�

ã
(�)] be the �-cut sets of indeterminacy-membership func-

tion and ã
�
= [L�

ã
(�),R�

ã
(�)] be the �-cut sets of falsity-membership function. Now, 

for k(> 0) ∈ ℝ − {0} it follows immediately from the Definition  3.1 and the defini-
tion of scalar multiplication that V(�kã) = kV(�ã) , V(�kã) = kV(�ã) , V(�kã) = kV(�ã) and 
A(�kã) = kA(�ã) , A(�kã) = kA(�ã) , A(�kã) = kA(�ã) . Let k < 0 . Assume k = −m < 0 
Then it follows the Definition  3.1 and the definition of scalar multiplication that 
V(�−mã) = −mV(�ã) , V(�−mã) = −mA(�ã) , V(�−mã) = −mV(�ã) and A(�−mã) = mA(�ã) , 
A(�−mã) = mA(�ã) , A(�−mã) = mA(�ã) . Hence, the proposition holds.   ◻

Proposition 3.5 Let ã ∈ NF , −ã ∈ NF  be its image. Then V(�−ã) = −V(�ã), 
V(�−ã) = −V(�ã), V(�−ã) = −V(�ã) and A(�−ã) = A(�ã), A(�−ã) = A(�ã), A(�−ã) = A(�ã).

A(�
ã+b̃

) =∫
1

0

f (r)
[
(R

�

ã
(r) + R

�

b̃
(r)) − (L

�

ã
(r) + L

�

b̃
(r))

]
dr

=∫
1

0

f (r)(R
�

ã
(r) − L

�

ã
(r))dr + ∫

1

0

g(r)(R
�

b̃
(r) − L

�

b̃
(r))dr

=A(�ã) +A(�b̃),

A(�
ã+b̃

) =∫
1

0

g(r)
[
(R

�

ã
(r) + R

�

b̃
(r)) − (L

�

ã
(r) + L

�

b̃
(r))

]
dr

=∫
1

0

g(r)(R
�

ã
(r) − L

�

ã
(r))dr + ∫

1

0

g(r)(R
�

b̃
(r) − L

�

b̃
(r))dr

=A(�ã) +A(�
b̃
)

A(�
ã+b̃

) =∫
1

0

g(r)
[
(R�

ã
(r) + R�

b̃
(r)) − (L�

ã
(r) + L�

b̃
(r))

]
dr

=∫
1

0

g(r)(R�

ã
(r) − L�

ã
(r))dr + ∫

1

0

g(r)(R�

b̃
(r) − L�

b̃
(r))dr

=A(�ã) +A(�b̃).

A(𝜇k�a) =

{
kA(𝜇

�a) if k > 0

−kA(𝜇
�a) if k < 0

,

A(𝜈k�a) =

{
kA(𝜈

�a) if k > 0

−kA(𝜈
�a) if k < 0

,

A(𝜈k�a) =

{
kA(𝜈

�a) if k > 0

−kA(𝜈
�a) if k < 0

.
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Proof The proof is very trivial, as this proposition is a particular case of the above Proposi-
tion 3.4. Thus, the proof follows immediately taking k = −1 in its proof. ◻

Proposition 3.6 Let ã, b̃ ∈ NF , such that inf supp(𝜇
�a) > sup supp(𝜇�b), 

inf supp(𝜌
�a) > sup supp(𝜌�b) and inf supp(𝜈

�a) > sup supp(𝜈�b), then V(𝜇
�a) > V(𝜇�b), 

V(𝜌
�a) > V(𝜌�b) and V(𝜈

�a) > V(𝜈�b), respectively.

Proof Let ã, b̃ ∈ NF  , ã
�
= [L

�

ã
(�),R

�

ã
(�)] and b̃

�
= [L

�

b̃
(�),R

�

b̃
(�)] be the �-cut sets of 

truth-membership functions of ã and b̃ , respectively, ã
�
= [L

�

ã
(�),R

�

ã
(�)] and 

b̃
�
= [L

�

b̃
(�),R

�

b̃
(�)] be the �-cut sets of indeterminacy-membership functions of ã and b̃ , 

respectively and ã
�
= [L�

ã
(�),R�

ã
(�)] and b̃

�
= [L�

b̃
(�),R�

b̃
(�)] be the �-cut sets of falsity-

membership functions of ã and b̃ , respectively. Now, if inf supp(𝜇
�a) > sup supp(𝜇�b) , 

inf supp(𝜌
�a) > sup supp(𝜌�b) and inf supp(𝜈

�a) > sup supp(𝜈�b) , then L
𝜇

�a
(𝛼) > R

𝜇

�b
(𝛼) , 

L
𝜌

�a
(𝛾) > R

𝜌

�b
(𝛾)and L𝜈

�a
(𝛼) > R𝜈

�b
(𝛼) . Thus, it implies that R𝜇

�a
(𝛼) ≥ L

𝜇

�a
(𝛼) > R

𝜇

�b
(𝛼) ≥ L

𝜇

�b
(𝛼) , 

R
𝜌

�a
(𝛾) ≥ L

𝜌

�a
(𝛾) > R

𝜌

�b
(𝛾) ≥ L

𝜌

�b
(𝛾) and R𝜈

�a
(𝛽) ≥ L𝜈

�a
(𝛽) > R𝜈

�b
(𝛽) ≥ L𝜈

�b
(𝛽) . So, it follows immedi-

ately that

,

and

Hence, from the inequalities 17, 18 and 19 , the result follows immediately. ◻

Proposition 3.7 If ã ∈ NF  be a SVNN such that it is symmetric about the y-axis, then 
V(�ã) = 0, V(�ã) = 0 and V(�ã) = 0.

Proof Let ã ∈ NF  and ã
�
= [L

�

ã
(�),R

�

ã
(�)] be the �-cut sets of truth-membership func-

tion, ã
�
= [L

�

ã
(�),R

�

ã
(�)] be the �-cut sets of indeterminacy-membership function and 

ã
�
= [L�

ã
(�),R�

ã
(�)] be the �-cut sets of falsity-membership function. Since, ã is symmet-

ric about the y-axis, it follows that −L�
ã
(�) = R

�

ã
(�) , −L�

ã
(�) = R

�

ã
(�) and −L�

ã
(�) = R�

ã
(�) . 

Then, it is evident that V(�ã) = 0 , V(�ã) = 0 and V(�ã) = 0 .   ◻

Proposition 3.8 For an arbitrary SVNN ã ∈ NF  , A(�ã) ≥ 0, A(�ã) ≥ 0 and A(�ã) ≥ 0.

(17)

R
𝜇

�a
(𝛼) + L

𝜇

�a
(𝛼) > R

𝜇

�b
(𝛼) + L

𝜇

�b
(𝛼)

or, ∫
1

0

f (r)(R
𝜇

�a
(r) + L

𝜇

�a
(r))dr > ∫

1

0

f (r)(R
𝜇

�b
(r) + L

𝜇

�b
(r))dr

(18)

R
𝜌

�a
(𝛾) + L

𝜌

�a
(𝛾) > R

𝜌

�b
(𝛾) + L

𝜌

�b
(𝛾)

or, ∫
1

0

g(r)(R
𝜌

�a
(r) + L

𝜌

�a
(r))dr > ∫

1

0

g(r)(R
𝜌

�b
(r) + L

𝜌

�b
(r))dr

(19)

R𝜈

�a
(𝛽) + L𝜈

�a
(𝛽) > R𝜈

�b
(𝛽) + L𝜈

�b
(𝛽)

or, ∫
1

0

g(r)(R𝜈

�a
(r) + L𝜈

�a
(r))dr > ∫

1

0

g(r)(R𝜈

�b
(r) + L𝜈

�b
(r))dr
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Proof Let ã ∈ NF  . Then the �-cut sets, �-cut sets and the �-cut sets of truth-membership, 
indeterminacy-membership and falsity-membership functions of ã be ã

�
= [L

�

ã
(�),R

�

ã
(�)] , 

ã
�
= [L

�

ã
(�),R

�

ã
(�)] and ã

�
= [L�

ã
(�),R�

ã
(�)] , respectively. As R

�

ã
(�) − L

�

ã
(�) ≥ 0 , 

R
�

ã
(�) − L

�

ã
(�) ≥ 0 and R�

ã
(�) − L�

ã
(�) ≥ 0 , it follows that ∫ 1

0
f (r)(R

�

ã
(r) − L

�

ã
(r))dr ≥ 0 , 

∫ 1

0
g(r)(R

�

ã
(r) − L

�

ã
(r))dr ≥ 0 and ∫ 1

0
g(r)(R�

ã
(r) − L�

ã
(r))dr ≥ 0 . Hence, the result 

A(�ã) ≥ 0 , A(�ã) ≥ 0 and A(�ã) ≥ 0 . ◻

3.2  The proposed method

Let ã, b̃ ∈ NF  , ã
�
= [L

�

ã
(�),R

�

ã
(�)] and b̃

�
= [L

�

b̃
(�),R

�

b̃
(�)] be the �-cut sets of truth-

membership functions of ã and b̃ , respectively, ã
�
= [L

�

ã
(�),R

�

ã
(�)] and b̃

�
= [L

�

b̃
(�),R

�

b̃
(�)]

be the �-cut sets of indeterminacy-membership functions of ã and b̃ , respectively, 
ã
�
= [L�

ã
(�),R�

ã
(�)] and b̃

�
= [L�

b̃
(�),R�

b̃
(�)] be the �-cut sets of falsity-membership func-

tions of ã and b̃ , respectively. Let, V(�ã) , V(�ã) , V(�ã) and V(�b̃
) , V(�b̃) , V(�b̃) be the values 

of truth-membership, indeterminacy-membership and falsity-membership functions of ã 
and b̃ , respectively; and A(�ã) , A(�ã) , A(�ã) and A(�

b̃
) , A(�

b̃
) , A(�

b̃
) be the ambiguities of 

truth-membership, indeterminacy-membership, falsity-membership functions of ã and b̃ , 
respectively. Let � ∈ [0, 1] be the index of optimism. Then the ranking index R

�
 is defined 

as

where �1, �2, �2 ∶ NF → {0,−1, 1} are the ambiguity inclusion function of truth-member-
ship, indeterminacy-membership, falsity-membership functions such that

where t
�1
=

1

2
[L

�

ã
(0) + R

�

ã
(0)] or t

�1
=

1

2
[L

�

b̃
(0) + R

�

b̃
(0)] and t

�2
=

1

2
[L

�

ã
(1) + R

�

ã
(1)] or 

t
�2
=

1

2
[L

�

b̃
(1) + R

�

b̃
(1)] and t

�3
=

1

2
[L�

ã
(1) + R�

ã
(1)] or t

�3
=

1

2
[L�

b̃
(1) + R�

b̃
(1)].

The ordering of SVNNs, ã, b̃ ∈ NF  , based on the ranking index R
�
 for 0 ≤ � ≤ 1 is 

defined by relations ≻,≺ and ∼ as;

• �a ≻ �b if, and only if, R
𝜆
(�a, 𝜃1, 𝜃2, 𝜃3) > R

𝜆
(�b, 𝜃1, 𝜃2, 𝜃3);

• �a ≺ �b if, and only if, R
𝜆
(�a, 𝜃1, 𝜃2, 𝜃3) < R

𝜆
(�b, 𝜃1, 𝜃2, 𝜃3);

• ã ∼ b̃ if, and only if, R
�
(ã, �1, �2, �3) = R

�
(b̃, �1, �2, �3).

The order relations ⪰ and ⪯ are formulated as

(20)
R

�
(ã, �1, �2, �3) = �{V(�ã) + �1A(�ã)} + (1 − �){V(�ã) + �2A(�ã) + V(�ã) + �3A(�ã)}

𝜃1 =

⎧
⎪⎨⎪⎩

0, if V(𝜇
�a) ≠ V(𝜇�b)

−1, if V(𝜇
�a) = V(𝜇�b) and t𝜃1 ≥ 0

1, if V(𝜇
�a) = V(𝜇�b) and t𝜃1 < 0

𝜃2 =

⎧⎪⎨⎪⎩

0, if V(𝜌
�a) ≠ V(𝜌�b)

−1, if V(𝜌
�a) = V(𝜌�b) and t𝜃2 ≥ 0

1, if V(𝜌
�a) = V(𝜌�b) and t

𝜃2
< 0

𝜃3 =

⎧⎪⎨⎪⎩

0, if V(𝜈
�a) ≠ V(𝜈�b)

−1, if V(𝜈
�a) = V(𝜈�b) and t

𝜃3
≥ 0

1, if V(𝜈
�a) = V(𝜈�b) and t𝜃3 < 0
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• ã ⪰ b̃ if, and only if, �a ≻ �b or ã ∼ b̃.
• ã ⪯ b̃ if, and only if, �a ≺ �b or ã ∼ b̃.

The index of optimism �(0 ≤ � ≤ 1) represents the decision-maker’s attitude towards 
the uncertainty. An optimistic decision-maker (� = 1) ranks the SVNNs based on truth-
membership function without taking into account of indeterminacy-membership and 
falsity-membership functions. A pessimistic decision-maker (� = 0) ranks the SVNNs 
based on indeterminacy-membership and falsity-membership functions without tak-
ing into account of the truth-membership function. Finally, moderate decision-maker 
(� = 0.5) ranks the SVNNs taking into account of all the membership functions. Further, 
the �i ’s take care of the ranking index by deciding whether and how to include the ambi-
guities into the ranking index. If values are unequal, then the decision is based on val-
ues, in which case, �i = 0 . If values are equal, then the decision is based on ambiguities, 
in which case, �i = ±1 depending upon positivity or negativity of t

�i
’s.

Next theorem discusses the linearity property of the ranking index R
�
 . This linear-

ity property will be further helpful in discussing the properties of the current method of 
ordering SVNNs.

Theorem 3.1 Let ã, b̃ ∈ NF . Then

Hence, it follows that

Proof Let ã, b̃ ∈ NF  . Then it follows from the Propositions 3.2 and 3.3 that

and

Thus, the results follows as

So, using the Eqs.  21 and 22 in the above equality, it can be derived easily that 
R

�
(ã + b̃, �1, �2, �3) = R

�
(ã, �1, �2, �3) +R

�
(b̃, �1, �2, �3) . Eventually, it is true that 

R
�
(ã − b̃, �1, �2, �3) = R

�
(ã + (−b̃), �1, �2, �3) = R

�
(ã, �1, �2, �3) +R

�
(−b̃, �1, �2, �3) .  

◻

Next a few theorems are being discussed. Eventually, from these discussion it will be 
evident that the current ranking index abide by the reasonable properties of Wang and 
Kerre (2001a, 2001b). Further, these theorems will give some light to newer properties 
of ranking fuzzy numbers as well as SVNNs.

R
�
(ã + b̃, �1, �2, �3) = R

�
(ã, �1, �2, �3) +R

�
(b̃, �1, �2, �3).

R
�
(ã − b̃, �1, �2, �3) = R

�
(ã, �1, �2, �3) +R

�
(−b̃, �1, �2, �3).

(21)V(�ã+b̃) = V(�ã) + V(�
b̃
), V(�ã+b̃) = V(�ã) + V(�

b̃
), V(�ã+b̃) = V(�ã) + V(�

b̃
)

(22)
A(�ã+b̃) = A(�ã) +A(�

b̃
), A(�ã+b̃) = A(�ã) +A(�

b̃
), A(�ã+b̃) = A(�ã) +A(�

b̃
).

R
�
(ã + b̃, �1, �2, �3) =�{V(�ã+b̃

) + �1A(�
ã+b̃

)}

+ (1 − �){V(�
ã+b̃

) + �2A(�
ã+b̃

) + V(�
ã+b̃

) + �3A(�
ã+b̃

)}
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Theorem  3.2 Let ã, b̃, c̃ ∈ NF . Then the order relations ≻ and ∼ satisfy the following 
properties:

1.  The order relation is reflexive, that is, ã ⪰ ã.
2.  The order relation is transitive, that is, if �a ≻ �b and �b ≻ �c, then �a ≻ �c. The same holds

for the order relation ⪰.
3.  The order relation follows the law of trichotomy, that is, �a ≻ �b or b̃ ⪰ ã.
4.  ̃a = b̃ if and only if ã ∼ b̃.

The detailed proof of this theorem is available in Appendix A.1. This theorem estab-
lishes the reflexivity, transivity and the trichotomy properties of the current method.

Theorem 3.3 Let ã, b̃ ∈ NF  and inf supp(𝜇
�a) > sup supp(𝜇�b) , inf supp(𝜌�a) > sup supp(𝜌�b) 

and inf supp(𝜈
�a) > sup supp(𝜈�b) . Then ã ⪰ b̃.

Proof Let, inf supp(𝜇
�a) > sup supp(𝜇�b) , inf supp(𝜌

�a) > sup supp(𝜌�b) and 
inf supp(𝜈

�a) > sup supp(𝜈�b) . Then by the Propositions  3.1 and 3.6 , it is evident that 
V(𝜇

�a) > V(𝜇�b) , V(𝜌
�a) > V(𝜌�b) and V(𝜈

�a) > V(𝜈�b) . Thus, �i = 0 , which implies that 
R

𝜆
(�a, 0, 0, 0) > R

𝜆
(�b, 0, 0, 0) . So, it follows that �a ≻ �b , in fact by definition of ⪰ , ã ⪰ b̃ . 

◻

Theorem 3.4 Let ã, b̃ ∈ NF  and inf supp(𝜇
�a) > sup supp(𝜇�b), inf supp(𝜌�a) > sup supp(𝜌�b) 

and inf supp(𝜈
�a) > sup supp(𝜈�b) . Then �a ≻ �b.

Proof Let, inf supp(𝜇
�a) > sup supp(𝜇�b) , inf supp(𝜌

�a) > sup supp(𝜌�b) and 
inf supp(𝜈

�a) > sup supp(𝜈�b) . Then by the Propositions  3.1 and 3.6 , trivially it fol-
lows that V(𝜇

�a) > V(𝜇�b) and V(𝜈
�a) > V(𝜈�b) . Thus, �i = 0 , which implies that 

R
𝜆
(�a, 0, 0, 0) > R

𝜆
(�b, 0, 0, 0) . So, it follows that �a ≻ �b . ◻

Theorem 3.5 Let ã, b̃, c̃ ∈ NF . If ã ⪰ b̃, then ã + c̃ ⪰ b̃ + c̃.

The detailed proof of this theorem is available in Appendix A.2.

Theorem 3.6 Let ã, b̃, c̃ ∈ NF . If ã + c̃ ⪰ b̃ + c̃, then ã ⪰ b̃.

Proof Let ã, b̃, c̃ ∈ NF  and ã + c̃ ⪰ b̃ + c̃ . Then, it follows that 
R

�
(ã + c̃, �1, �2, �3) ≥ R

�
(b̃ + c̃, �1, �2, �3) . Thus, by the Theorem  3.1, it follows that 

R
�
(ã, �1, �2, �3) +R

�
(̃c, �1, �2, �3) ≥ R

�
(b̃, �1, �2, �3) +R

�
(̃c, �1, �2, �3) . Eventually, it 

leads to R
�
(ã, �1, �2, �3) ≥ R

�
(b̃, �1, �2, �3) . Hence, the result follows immediately.   ◻

Theorem 3.7 Let ã, b̃, c̃ ∈ NF . If �a ≻ �b, then �a +�c ≻ �b +�c.

Proof The proof is very trivial by taking into account ‘ ≻ ’ in the proof of the Theorem 3.5. 
◻

Theorem 3.8 Let ã, b̃, c̃ ∈ NF . If �a +�c ≻ �b +�c, then �a ≻ �b.
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Proof The proof is very trivial by taking into account ‘ ≻ ’ in the proof of the Theorem 3.6. 
◻

Theorem 3.9 Let ã, b̃ ∈ NF  and k ∈ ℝ − {0}. If ã ⪰ b̃, then kã ⪰ kb̃ if k > 0, and kã ⪯ kb̃ 
if k < 0.

The detailed proof of this theorem is available in Appendix A.3.

Theorem 3.10 Let ã, b̃ ∈ NF  and k ∈ ℝ − {0}. If kã ⪰ kb̃, then ã ⪰ b̃ if k > 0, and ã ⪯ b̃ 
if k < 0.

The detailed proof of this theorem is available in Appendix A.4.

Theorem  3.11 Let ã, b̃ ∈ NF  and k ∈ ℝ − {0}. If �a ≻ �b, then k�a ≻ k�b if k > 0, and 
k�a ≺ k�b if k < 0.

Proof The proof is very trivial by taking into account ‘ ≻ ’ in the proof of the Theorem 3.9. 
◻

Theorem 3.12 Let ã, b̃ ∈ NF  and k ∈ ℝ − {0}. If k�a ≻ k�b, then �a ≻ �b if k > 0, and �a ≺ �b 
if k < 0.

Proof The proof is very trivial by taking into account ‘ ≻ ’ in the proof of the Theo-
rem 3.10.   ◻

Theorem 3.13 Let ã, b̃, c̃ ∈ NF . If ã ⪰ b̃, then ã − c̃ ⪰ b̃ − c̃.

The detailed proof of this theorem is available in Appendix A.5.

Theorem 3.14 Let ã, b̃, c̃ ∈ NF . If �a ≻ �b, then �a −�c ≻ �b −�c.

Proof Taking into account the proof of the Theorem 3.13 and the definition of ⪰ , the result 
follows immediately.   ◻

Theorem 3.15 Let ã, b̃, c̃, d̃ ∈ NF . If �a ≻ �b and �c ≻ �d, then �a +�c ≻ �b + �d.

The detailed proof of this theorem is available in Appendix A.6.

Theorem 3.16 Let ã, b̃, c̃, d̃ ∈ NF . If ã ⪰ b̃ and c̃ ⪰ d̃, then ã + c̃ ⪰ b̃ + d̃.

Proof Taking into account the proof of the Theorem 3.14 and the definition of ⪰ , the result 
follows immediately.   ◻

Theorem 3.17 Let ã, b̃ ∈ NF  such that ã and b̃ are not symmetric about y-axis. If ã ⪰ b̃, 
then −ã ⪯ −b̃.

Proof The proof follows immediately, taking k = −1 in the Theorem 3.10. ◻
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Theorem 3.18 Let ã, b̃ ∈ NF  such that ã and b̃ are not symmetric about y-axis. If �a ≻ �b, 
then −�a ≺ −�b.

Proof Taking into account the proof of the Theorem 3.17 and the definition of ⪰ , the result 
follows immediately.   ◻

Theorem 3.19 Let ã, b̃ ∈ NF  and symmetric about y-axis. If ã ⪰ b̃, then −ã ⪰ −b̃.

Proof If ã, b̃ ∈ NF  be two symmetric SVNNs about the y-axis, then from the Proposi-
tion 3.7 it implies V(�ã) = 0 = V(�b̃) , V(�ã) = 0 = V(�b̃) and also V(�ã) = 0 = V(�b̃) . Since, 
ã ⪰ b̃ , then �i = −1 . Thus, it follows that R

�
(ã,−1,−1,−1) ≥ R

�
(b̃,−1,−1,−1) . This 

inequality leads to the fact −A(�ã) ≥ −A(�b̃) , −A(�ã) ≥ −A(�b̃) and −A(�ã) ≥ −A(�b̃) . 
Equivalently, −A(�−ã) ≥ −A(�

−b̃
) , −A(�−ã) ≥ −A(�

−b̃
) and −A(�−ã) ≥ −A(�

−b̃
) . So, it

is true that R
�
(−ã,−1,−1,−1) ≥ R

�
(−b̃,−1,−1,−1) . Hence, the result follows immedi-

ately.   ◻

Theorem 3.20 Let ã, b̃ ∈ F  and symmetric about y-axis. If �a ≻ �b, then −�a ≻ −�b.

Proof Taking into account the proof of the Theorem 3.19 and the definition of ⪰ , the result 
follows immediately.   ◻

3.3  Properties and validation of the proposed method

In this subsection, the properties that the present method follow are being stated. The 
properties includes the reasonable properties of Wang and Kerre (2001a, 2001b). Further, 
newer properties are also stated which can be considered as reasonable in developing a 
ranking method. The properties are as follows. Let ã, b̃, c̃, d̃ ∈ NF  . Then the order relation 
⪰ satisfies the following properties. 

�1:  ̃a ⪰ ã

�2: If ã ⪰ b̃ and ã ⪯ b̃ , then ã ∼ b̃.
�3: If ã ⪰ b̃ and b̃ ⪰ c̃ , then ã ⪰ c̃.
�4: If inf supp(𝜇

�a) > sup supp(𝜇�b) , inf supp(𝜌
�a) > sup supp(𝜌�b) and 

inf supp(𝜈
�a) > sup supp(𝜈�b) , then ã ⪰ b̃.

�
′
4
:  If inf supp(𝜇

�a) > sup supp(𝜇�b) , inf supp(𝜌
�a) > sup supp(𝜌�b) and 

inf supp(𝜈
�a) > sup supp(𝜈�b) , then �a ≻ �b.

�5:  Let NF  and NF
′ be two arbitrary finite sets of fuzzy quantities in which R

�
 can be 

applied and ã and b̃ are in NF ∩NF
� , then the ranking order �a ≻ �b by R

�
 on NF

′ if 
and only if �a ≻ �b by R

�
 on NF .

�6:  If ã ⪰ b̃ , then ã + c̃ ⪰ b̃ + c̃.
�6:  If ã + c̃ ⪰ b̃ + c̃ , then ã ⪰ b̃.
�

′
6
:  If �a ≻ �b , then �a +�c ≻ �b +�c.

�
′
6
:  If �a +�c ≻ �b +�c , then �a ≻ �b.

�7:  Let k ∈ ℝ − {0} . If ã ⪰ b̃ , then kã ⪰ kb̃ if k > 0 , and kã ⪯ kb̃ if k < 0.
�7:  Let k ∈ ℝ − {0} . If kã ⪰ kb̃ , then ã ⪰ b̃ if k > 0 , and ã ⪯ b̃ if k < 0.
�

′
7
:  Let k ∈ ℝ − {0} . If �a ≻ �b , then k�a ≻ k�b if k > 0 , and k�a ≺ k�b if k < 0.

�
′
7
:  Let k ∈ ℝ − {0} . If k�a ≻ k�b , then �a ≻ �b if k > 0 , and �a ≺ �b if k < 0.
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�8:  If ã ⪰ b̃ , then ã − c̃ ⪰ b̃ − c̃.
�
′
8
:  If �a ≻ �b , then �a −�c ≻ �b −�c.

�9:  If ã ⪰ b̃ and c̃ ⪰ d̃ , then ã + c̃ ⪰ b̃ + d̃.
�
′
9
:  If �a ≻ �b and �c ≻ �d , then �a +�c ≻ �b + �d.

�10:  If ã ⪰ b̃ , then −ã ⪯ −b̃ , provided ã and b̃ are not symmetric about y-axis.
�
′
10

:  If �a ≻ �b , then −�a ≺ −�b , provided ã and b̃ are not symmetric about y-axis.
�11:  Let ã, b̃ ∈ NF  and symmetric about y-axis; if ã ⪰ b̃ , then −ã ⪰ −b̃.
�
′
11

:  Let ã, b̃ ∈ NF  and symmetric about y-axis; if �a ≻ �b , then −�a ≻ −�b.

The proofs of the theorems stated and proved in the Sect. 3.2 depicts that the present 
method follows all these reasonable properties of a ranking method. Hence, it is claimed 
that the current method is reasonable and logical. Further, the consistency in ordering the 
images with the corresponding SVNNs is also depicted through these properties. However, 
it is to mentioned that the property �7 is a particular case of the property �7 of Wang and 
Kerre (2001a). This property �7 of Wang and Kerre (2001a) is not obeyed by the proposed 
method as V(�ã�b̃) ≠ V(�ã)V(�b̃) , V(�ã�b̃) ≠ V(�ã)V(�b̃) and V(�ã�b̃) ≠ V(�ã)V(�b̃) , and 
A(�ã�b̃) ≠ A(�ã)A(�b̃) , A(�ã�b̃) ≠ A(�ã)A(�b̃) and A(�ã�b̃) ≠ A(�ã)A(�b̃).

4  Numerical examples

In this section, the method is demonstrated by two numerical examples, which highlight its 
robustness.

Example 4.1 Consider the SVNNs ã = ⟨(2, 4, 4, 5), (0, 1, 4, 7), (1, 4, 4, 6)⟩ and 
b̃ = ⟨(2, 3, 3, 5), (0, 1, 4, 7), (1, 3, 3, 6)⟩ . Firstly, the values of truth-membership, indeter-
minacy-membership and falsity-membership of ã and b̃ are obtained as V(�ã) = 3.8333 , 
V(�ã) = 2.8333 and V(�ã) = 3.8333 , and V(�b̃) = 3.1667 , V(�b̃) = 2.8333 and 
V(�b̃) = 3.1667 respectively. Further, the ambiguities of truth-membership, indeterminacy-
membership and falsity-membership of ã and b̃ are obtained as A(�ã) = 0.5000 = A(�b̃) , 
A(�ã) = 2.1667 = A(�b̃) and A(�ã) = 0.8333 = A(�b̃) , respectively. Now, it is seen 
that V(�ã) ≠ V(�b̃) , V(�ã) = V(�b̃) and V(�ã) ≠ V(�b̃) . Then, �1 = 0 and �3 = 0 , however 
�2 = −1 . Thus,

and

So, for all decision-makers �a ≻ �b . Consider the images of ã and b̃ . Now, the val-
ues of truth-membership, indeterminacy-membership and falsity-membership of −ã 
and −b̃ are obtained as V(�−ã) = −3.8333 , V(�−ã) = −2.8333 and V(�−ã) = −3.8333 , 
and V(�

−b̃
) = −3.1667 , V(�

−b̃
) = −2.8333 and V(�

−b̃
) = −3.1667 , respectively by 

R
�
(ã, 0,−1, 0) = �{V(�ã) + 0 ⋅A(�ã)} + (1 − �){V(�ã) −A(�ã) + V(�ã) + 0 ⋅A(�ã)}

= �{3.8333} + (1 − �){2.8333 − 2.1666 + 3.8333}

= 4.5000 − 0.6667�,

R
�
(b̃, 0,−1, 0) = �{V(�b̃) + 0 ⋅A(�b̃)} + (1 − �){V(�b̃) −A(�b̃) + V(�b̃) + 0 ⋅A(�b̃)}

= �{3.1667} + (1 − �){2.8333 − 2.1666 + 3.1667}

= 3.8000 − 0.6667�.
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Proposition  3.5. Further, the ambiguities of truth-membership, indeterminacy-member-
ship and falsity-membership of −ã and −b̃ are obtained as A(�−ã) = 0.5000 = A(�

−b̃
) , 

A(�−ã) = 2.1667 = A(�
−b̃
) and A(�−ã) = 0.8333 = A(�

−b̃
) respectively by Proposition 3.5. 

Now, it is seen that V(�−ã) ≠ V(�
−b̃
) , V(�−ã) = V(�

−b̃
) and V(�−ã) ≠ V(�

−b̃
) . Then, �1 = 0

and �3 = 0 , however �2 = 1 . Thus,

and

So, for all decision-makers −�a ≺ −�b . This numerical example depicts that the current 
method consistently and logically ranks the SVNNs as well as their corresponding images.

For a comparative study, the current method is compared with the methods of Deli and 
Subas (2017) and Biswas et al. (2016). The results depicted in Table 1 of the methods by 
Deli and Subas (2017) and Biswas et al. (2016) are the value index. The current method 
tallies with the methods by Deli and Subas (2017) and Biswas et al. (2016).

Example 4.2 Consider the SVNNs ã = ⟨(−1, 0, 0, 1), (−1, 0, 0, 1), (−2, 0, 0, 2)⟩ and 
b̃ = ⟨(−2, 0, 0, 2), (−2, 0, 0, 2), (−3, 0, 0, 3)⟩ such that they are symmetric about the y-axis. 

R
�
(−ã, 0, 1, 0)

= �{V(�−ã) + 0 ⋅A(�−ã)} + (1 − �){V(�−ã) +A(�−ã) + V(�−ã) + 0 ⋅A(�−ã)}

= �{−3.8333} + (1 − �){−2.8333 + 2.1666 − 3.8333}

= −4.5000 + 0.6667�,

R
�
(−b̃, 0, 1, 0)

= �{V(�
−b̃
) + 0 ⋅A(�

−b̃
)} + (1 − �){V(�

−b̃
) +A(�

−b̃
) + V(�

−b̃
) + 0 ⋅A(�

−b̃
)}

= �{−3.1667} + (1 − �){−2.8333 + 2.1666 − 3.1667}

= −3.8000 + 0.6667�.

Table 1  Ranking of SVNNs in Examples 4.1

Methods ã b̃ −ã −b̃ Decision result

Deli and Subas (2017)’s value
  Optimistic � = 1.0 3.8333 3.1667 −3.8333 −3.1667 �a ≻ �b , −�a ≺ −�b

  Moderate � = 0.5 5.2500 4.5833 −5.2500 −4.5833 �a ≻ �b , −�a ≺ −�b

  Pessimistic � = 0.0 6.6667 6.0000 −6.6667 −6.0000 �a ≻ �b , −�a ≺ −�b

Biswas et al. (2016)’s value
  Optimistic � = 1.0 3.8333 3.1667 −3.8333 −3.1667 �a ≻ �b , −�a ≺ −�b

  Moderate � = 0.5 5.2500 4.5833 −5.2500 −4.5833 �a ≻ �b , −�a ≺ −�b

  Pessimistic � = 0.0 6.6667 6.0000 −6.6667 −6.0000 �a ≻ �b , −�a ≺ −�b

Current method
  Optimistic � = 1.0 3.8333 3.1667 −3.8333 −3.1667 �a ≻ �b , −�a ≺ −�b

  Moderate � = 0.5 4.1667 3.5000 −4.1667 −3.5000 �a ≻ �b , −�a ≺ −�b

  Pessimistic � = 0.0 4.5000 3.8333 −4.5000 −3.8333 �a ≻ �b , −�a ≺ −�b
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Then, by the Proposition 3.7, V(�ã) = 0 = V(�b̃) , V(�ã) = 0 = V(�b̃) and V(�ã) = 0 = V(�b̃) . 
Thus, �i = −1 . Further, the ambiguities of truth-membership, indeterminacy-membership 
and falsity-membership of ã and b̃ are obtained as A(�ã) = 0.3333 , A(�ã) = 0.3333 and 
A(�ã) = 0.6667 , and A(�ã) = 0.6667 , A(�ã) = 0.6667 and A(�ã) = 1.0000 , respectively. 
So,

and

Hence, it can be concluded that �a ≺ �b for all decision-makers. Consider the images of ã 
and b̃ , it can be seen that −ã = ã and −b̃ = b̃ . Therefore, by Theorem 3.20, it can be con-
cluded that −�a ≺ −�b for all decision-makers.

For a comparative study, the current method is compared with the methods of Deli and 
Subas (2017) and Biswas et al. (2016). The results depicted in Table 2 of the methods by 
Deli and Subas (2017) and Biswas et al. (2016) are the ambiguity index as the value index 
are equal. The current method tallies with the methods by Biswas et al. (2016). However, 
Deli and Subas (2017) depicts irrational results.

R
�
(ã,−1,−1,−1)

= �{V(�ã) −A(�ã)} + (1 − �){V(�ã) −A(�ã) + V(�ã) −A(�ã)}

= �{−0.3333} + (1 − �){−0.3333 − 0.6667}

= 1.0000 − 1.3333�

R
�
(b̃,−1,−1,−1)

= �{V(�b̃) −A(�b̃)} + (1 − �){V(�b̃) −A(�b̃) + V(�b̃) −A(�b̃)}

= �{−0.6667} + (1 − �){−0.6667 − 1.0000}

= −1.6667 + �.

Table 2  Ranking of SVNNs in Examples 4.2

Methods ã b̃ −ã −b̃ Decision result

Deli and Subas (2017)’s ambiguity
  Optimistic � = 1.0 0.3333 0.6667 0.3333 0.6667 �a ≺ �b , −�a ≺ −�b

  Moderate � = 0.5 0.6667 1.0000 0.6667 1.6667 �a ≺ �b , −�a ≺ −�b

  Pessimistic � = 0.0 1.0000 1.3333 1.0000 1.3333 �a ≺ �b , −�a ≺ −�b

Biswas et al. (2016)’s ambiguity
  Optimistic � = 1.0 0.3333 0.6667 0.3333 0.6667 �a ≻ �b , −�a ≻ −�b

  Moderate � = 0.5 0.6667 1.0000 0.6667 1.6667 �a ≻ �b , −�a ≻ −�b

  Pessimistic � = 0.0 1.0000 1.3333 1.0000 1.3333 �a ≻ �b , −�a ≻ −�b

Current method
  Optimistic � = 1.0 −0.3333 −0.6667 −0.3333 −0.6667 �a ≻ �b , −�a ≻ −�b

  Moderate � = 0.5 −0.6667 −1.1667 −0.6667 −1.1667 �a ≻ �b , −�a ≻ −�b

  Pessimistic � = 0.0 −1.0000 −1.6667 −1.0000 −1.6667 �a ≻ �b , −�a ≻ −�b
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Example 4.3 Consider the SVNNs ã = ⟨(1, 4, 4, 7), (0, 4, 4, 8), (1, 4, 4, 7)⟩ and 
b̃ = ⟨(2, 4, 4, 6), (1, 4, 4, 7), (2, 4, 4, 6)⟩ . For comparison the results of ranking index of 
the methods by Deli and Subas (2017), Biswas et al. (2016) and the current method are 
depicted in Table 3. Biswas et al. (2016) ordering of the SVNNs are logical as the ranking 
are based on the ambiguity index. The SVNN with low ambiguity is chosen to be greater in 
their approach. However, the ordering of the images of SVNNs in their approach is illogi-
cal. That is, their method depicts inconsistency in ordering the images of SVNNs in some 
situations. Deli and Subas (2017) method is illogical as the SVNN with low ambiguity is 
smaller. Further, it is to be mentioned and also evident from the Table 3 that the existing 
methods could not rank the corresponding images of the SVNNs consistently. The current 
approach is logical; further its rank consistently the corresponding images of the SVNNs.

The above numerical examples highlight the fact that the current method is more robust 
and reasonable. Thus, this methodology of ranking SVNNs will be reasonable to apply in 
various decision-making problems.

5  Discussions and conclusions

In this paper, an innovative method of ranking SVNNs has been developed based on the 
concept of values and ambiguities of truth-membership, indeterminacy-membership 
and falsity-membership functions. The index of optimism is also utilized which reflects 
the decision-makers attitude towards the uncertainty. That is, the convex combination of 
value and ambiguity of truth-membership function with the sum of values and ambigui-
ties of indeterminacy-membership and falsity-membership functions. The parameters �i ’s 
decides inclusion or exclusion of ambiguities in the decision-making process. An optimis-
tic decision-maker (� = 1) considers the value and �1 multiple of the ambiguity of truth-
membership function. A pessimistic decision-maker (� = 0) considers the values and �2 , �3 

Table 3  Ranking of SVNNs in Examples 4.3

Methods ã b̃ −ã −b̃ Decision result

Deli and Subas (2017)’s ambiguity
  Optimistic � = 1.0 1.0000 0.6667 1.0000 0.6667 �a ≻ �b , −�a ≻ −�b

  Moderate � = 0.5 1.6667 1.3333 1.6667 1.3333 �a ≻ �b , −�a ≻ −�b

  Pessimistic � = 0.0 2.3333 2.0000 2.3333 2.0000 �a ≻ �b , −�a ≻ −�b

Biswas et al. (2016)’s ambiguity
  Optimistic � = 1.0 1.0000 0.6667 1.0000 0.6667 �a ≺ �b , −�a ≺ −�b

  Moderate � = 0.5 1.6667 1.3333 1.6667 1.3333 �a ≺ �b , −�a ≺ −�b

  Pessimistic � = 0.0 2.3333 2.0000 2.3333 2.0000 �a ≺ �b , −�a ≺ −�b

Current method
  Optimistic � = 1.0 3.0000 3.3333 −3.0000 −3.3333 �a ≺ �b , −�a ≻ −�b

  Moderate � = 0.5 4.3333 4.8333 −4.3333 −4.8333 �a ≺ �b , −�a ≻ −�b

  Pessimistic � = 0.0 5.6667 6.3333 −5.6667 −6.3333 �a ≺ �b , −�a ≻ −�b
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multiples of the ambiguities of indeterminacy-membership and falsity-membership func-
tions respectively. Further, the moderate decision-maker considers the contributions from 
all the membership functions. It should be mentioned that the proofs of the Theorems 3.2 
and 3.15 are cut short. The proofs are very simple but very lengthy as it involves a discus-
sion of 8 × 8 cases, which will make this work lengthy. A shorter and logical proof can be 
a future study.

An attractive feature of the current method is that it completely comply with the reason-
able properties of Wang and Kerre (2001a) which were never investigated in the existing 
methods. This establishes the rationality validity of the current approach. Apart from it, 
newer properties are also be investigated in this study. Another way to establish the ration-
ality validity of a ranking method is to investigate the consistency in ordering the corre-
sponding images of the SVNNs. Apparently, the properties �10 − �

�
10

 establish this fact. 
It is to mentioned that the property �7 is a particular case of the property �7 of Wang and 
Kerre (2001a). This property �7 of Wang and Kerre (2001a) is not obeyed by the proposed 
method as V(�ã�b̃) ≠ V(�ã)V(�b̃) , V(�ã�b̃) ≠ V(�ã)V(�b̃) and V(�ã�b̃) ≠ V(�ã)V(�b̃) , and 
A(�ã�b̃) ≠ A(�ã)A(�b̃) , A(�ã�b̃) ≠ A(�ã)A(�b̃) and A(�ã�b̃) ≠ A(�ã)A(�b̃).

Proofs of the theorems

Proof of the Theorem 3.2

The proof of the above statements are as follows. 

1. The proof of this statement is followed immediately.
2. Consider the cases when �a ≻ �b happens, that is,

 Consider the cases when �b ≻ �c happens, that is, 

�a ≻ �b happens for

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

R
𝜆
(�a, 0, 0, 0) > R

𝜆
(�b, 0, 0, 0)

R
𝜆
(�a, 0, 0,±1) > R

𝜆
(�b, 0, 0,±1)

R
𝜆
(�a, 0,±1, 0) > R

𝜆
(�b, 0,±1, 0)

R
𝜆
(�a, 0,±1,±1) > R

𝜆
(�b, 0,±1,±1)

R
𝜆
(�a,±1, 0, 0) > R

𝜆
(�b,±1, 0, 0)

R
𝜆
(�a,±1, 0,±1) > R

𝜆
(�b,±1, 0,±1)

R
𝜆
(�a,±1,±1, 0) > R

𝜆
(�b,±1,±1, 0)

R
𝜆
(�a,±1,±1,±1) > R

𝜆
(�b,±1,±1,±1)

.

�b ≻ �c happens for

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

R
𝜆
(�b, 0, 0, 0) > R

𝜆
(�c, 0, 0, 0)

R
𝜆
(�b, 0, 0,±1) > R

𝜆
(�c, 0, 0,±1)

R
𝜆
(�b, 0,±1, 0) > R

𝜆
(�c, 0,±1, 0)

R
𝜆
(�b, 0,±1,±1) > R

𝜆
(�c, 0,±1,±1)

R
𝜆
(�b,±1, 0, 0) > R

𝜆
(�c,±1, 0, 0)

R
𝜆
(�b,±1, 0,±1) > R

𝜆
(�c,±1, 0,±1)

R
𝜆
(�b,±1,±1, 0) > R

𝜆
(�c,±1,±1, 0)

R
𝜆
(�b,±1,±1,±1) > R

𝜆
(�c,±1,±1,±1)
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 Now, to proof this property, it need to discuss these 8 × 8 cases, which will make 
the proof tedious. However, one can see the proof trivially, if following claims can be 
established. Claim 1: Let �i = 0 in ordering ã and b̃ , and �i = 0 in ordering b̃ and c̃ . 
Then �i = 0 in ordering ã and c̃ . The proof of this claim is as follows. Let �i = 0 in 
ordering ã and b̃ . Then V(�ã) ≠ V(�b̃) , V(�ã) ≠ V(�b̃) and V(�ã) ≠ V(�b̃) . Similarly, if
�i = 0 in ordering b̃ and c̃ , then V(�b̃) ≠ V(�c̃) , V(�b̃) ≠ V(�c̃) and V(�b̃) ≠ V(�c̃) . Thus, 
it follows that V(�ã) ≠ V(�c̃) , V(�ã) ≠ V(�c̃) and V(�ã) ≠ V(�c̃) . So, �i = 0 in ordering 
ã and c̃ . Claim 2: Let �i = ±1 in ordering ã and b̃ , and �i = ±1 in ordering b̃ and c̃ . 
Then �i = ±1 in ordering ã and c̃ . The proof of this claim is as follows. Let �i = ±1 
in ordering ã and b̃ . Then V(�ã) = V(�b̃) , V(�ã) = V(�b̃) and V(�ã) = V(�b̃) . Similarly, 
if �i = ±1 in ordering b̃ and c̃ , then V(�b̃) = V(�c̃) , V(�b̃) = V(�c̃) and V(�b̃) = V(�c̃) . 
Thus, it follows that V(�ã) = V(�c̃) , V(�ã) = V(�c̃) and V(�ã) = V(�c̃) . So, �i = ±1 in 
ordering ã and c̃ . Claim 3: Let �i = 0 in ordering ã and b̃ , and �i = ±1 in ordering b̃
and c̃ . then �i = 0 in ordering ã and c̃ . The proof of this claim is as follows. Let �i = 0 
in ordering ã and b̃ . Then V(�ã) ≠ V(�b̃) , V(�ã) ≠ V(�b̃) and V(�ã) ≠ V(�b̃) . Similarly, 
if �i = ±1 in ordering b̃ and c̃ , then V(�b̃) = V(�c̃) , V(�b̃) = V(�c̃) and V(�b̃) = V(�c̃) . 
Thus, it follows that V(�ã) ≠ V(�c̃) , V(�ã) ≠ V(�c̃) and V(�ã) ≠ V(�c̃) . So, �i = 0 in 
ordering ã and c̃ . Claim 4: Let �i = ±1 in ordering ã and b̃ , and �i = 0 in ordering 
b̃ and c̃ . Then �i = 0 in ordering ã and c̃ . The proof of this claim is as follows. Let 
�i = ±1 in ordering ã and b̃ . Then V(�ã) = V(�b̃) , V(�ã) = V(�b̃) and V(�ã) = V(�b̃) . 
Similarly, if �i = 0 in ordering b̃ and c̃ , then V(�b̃) ≠ V(�c̃) , V(�b̃) ≠ V(�c̃) and 
V(�b̃) ≠ V(�c̃) . Thus, it follows that V(�ã) ≠ V(�c̃) , V(�ã) ≠ V(�c̃) and V(�ã) ≠ V(�c̃) . 
So, �i = 0 in ordering ã and c̃ . From these four claims, it is trivial enough to show that 
if �a ≻ �b and �b ≻ �c , then �a ≻ �c . Further, from the definition of ⪰ , it follows that transi-
tivity also holds for the order relation ⪰.

3. This statement is followed immediately, as the order relations ≻ and ∼ particularly based
on order relation > and = of real numbers.

4. If ã = b̃ , then R
�
(ã, �1, �2, �3) = R

�
(b̃, �1, �2, �3) . Thus, the statement is followed.

Proof of the Theorem 3.5

The proof of this theorem, follows immediately if the invariance of �i in ordering ã , b̃ and 
ã + c̃ , b̃ + c̃ can be established. Hence, a claim has to be made. The claim is as follows.

Claim : The value of �i in ordering ã and b̃ are invariant in ordering ã + c̃ and b̃ + c̃ . 
The proof of the claim follows from the following eight cases: 

Case 1:  Let �i = 0 in ordering ã and b̃ . Then, V(�ã) ≠ V(�b̃) , V(�ã) ≠ V(�b̃) and
V(�ã) ≠ V(�

b̃
) . Thus, it follows that V(�ã+c̃) ≠ V(�

b̃+c̃
) , V(�ã+c̃) ≠ V(�

b̃+c̃
) and 

V(�ã+c̃) ≠ V(�b̃+c̃) . So, �i = 0 in ordering ã + c̃ and b̃ + c̃.
Case 2:  Let �1 = 0 , �2 = 0 and �3 = ±1 in ordering ã and b̃ . Then, V(�ã) ≠ V(�

b̃
) , 

V(�ã) ≠ V(�b̃) and V(�ã) = V(�b̃) . Thus, it follows that V(�ã+c̃) ≠ V(�b̃+c̃) , 
V(�ã+c̃) ≠ V(�

b̃+c̃
) and V(�ã+c̃) = V(�

b̃+c̃
) . So, �1 = 0 , �2 = 0 and �3 = ±1 in 

ordering ã + c̃ and b̃ + c̃.
Case 3:  Let �1 = 0 , �2 = ±1 and �3 = 0 in ordering ã and b̃ . Then, V(�ã) ≠ V(�

b̃
) , 

V(�ã) = V(�b̃) and V(�ã) ≠ V(�b̃) . Thus, it follows that V(�ã+c̃) ≠ V(�b̃+c̃) , 
V(�ã+c̃) = V(�

b̃+c̃
) and V(�ã+c̃) ≠ V(�

b̃+c̃
) . So, �1 = 0 , �2 = ±1 and �3 = 0 in

ordering ã + c̃ and b̃ + c̃.
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Case 4:  Let �1 = 0 , �2 = ±1 and �3 = ±1 in ordering ã and b̃ . Then, V(�ã) ≠ V(�
b̃
) , 

V(�ã) = V(�b̃) and V(�ã) = V(�b̃) . Thus, it follows that V(�ã+c̃) ≠ V(�b̃+c̃) , 
V(�ã+c̃) = V(�

b̃+c̃
) and V(�ã+c̃) = V(�

b̃+c̃
) . So, �1 = 0 , �2 = ±1 and �3 = ±1 in 

ordering ã + c̃ and b̃ + c̃.
Case 5:  Let �1 = ±1 , �2 = 0 and �3 = 0 in ordering ã and b̃ . Then, V(�ã) = V(�

b̃
) , 

V(�ã) ≠ V(�b̃) and V(�ã) ≠ V(�b̃) . Thus, it follows that V(�ã+c̃) = V(�b̃+c̃) ,
V(�ã+c̃) ≠ V(�

b̃+c̃
) and V(�ã+c̃) ≠ V(�

b̃+c̃
) . So, �1 = ±1 , �2 = 0 and �3 = 0 in

ordering ã + c̃ and b̃ + c̃.
Case 6:  Let �1 = ±1 , �2 = 0 and �3 = ±1 in ordering ã and b̃ . Then, V(�ã) = V(�

b̃
) , 

V(�ã) ≠ V(�b̃) and V(�ã) = V(�b̃) . Thus, it follows that V(�ã+c̃) = V(�b̃+c̃) , 
V(�ã+c̃) ≠ V(�

b̃+c̃
) and V(�ã+c̃) = V(�

b̃+c̃
) . So, �1 = ±1 , �2 = 0 and �3 = ±1 in 

ordering ã + c̃ and b̃ + c̃.
Case 7:  Let �1 = ±1 , �2 = ±1 and �3 = 0 in ordering ã and b̃ . Then, V(�ã) = V(�

b̃
) , 

V(�ã) = V(�b̃) and V(�ã) ≠ V(�b̃) . Thus, it follows that V(�ã+c̃) = V(�b̃+c̃) , 
V(�ã+c̃) = V(�

b̃+c̃
) and V(�ã+c̃) ≠ V(�

b̃+c̃
) . So, �1 = ±1 , �2 = ±1 and �3 = 0 in

ordering ã + c̃ and b̃ + c̃.
Case 8:  Let �i = ±1 in ordering ã and b̃ . Then, V(�ã) = V(�

b̃
) , V(�ã) = V(�

b̃
) and 

V(�ã) = V(�b̃) . Thus, it follows that V(�ã+c̃) = V(�b̃+c̃) , V(�ã+c̃) = V(�b̃+c̃) and 
V(�ã+c̃) = V(�

b̃+c̃
) . So, �i = ±1 in ordering ã + c̃ and b̃ + c̃.

 The above eight cases suggest that �1 and �2 are invariant in ordering ã , b̃ and ã + c̃ , b̃ + c̃ . 
Hence, the claim.

Now, by the Theorem 3.1 it follows that

and

Hence, if ã ⪰ b̃ , then it is obvious that R
�
(ã, �1, �2, �3) ≥ R

�
(b̃, �1, �2, �3) . This leads to 

the inequality R
�
(ã, �1, �2, �3) +R

�
(̃c, �1, �2, �3) ≥ R

�
(b̃, �1, �2, �3) +R

�
(̃c, �1, �2, �3) , 

which evidently follows the inequality R
�
(ã + c̃, �1, �2, �3) ≥ R

�
(b̃ + c̃, �1, �2, �3) . Thus, 

the result follows immediately.

Proof of the Theorem 3.9

Let ã ⪰ b̃ . Then R
�
(ã, �1, �2, �3) ≥ R

�
(b̃, �1, �2, �3) . Let k > 0 . Then using the Proposi-

tion 3.4, it follows that

R
�
(ã + c̃, �1, �2, �3) = R

�
(ã, �1, �2, �3) +R

�
(̃c, �1, �2, �3),

R
�
(b̃ + c̃, �1, �2, �3) = R

�
(b̃, �1, �2, �3) +R

�
(̃c, �1, �2, �3),

R
�
(kã, �1, �2, �3) =�{V(�kã) + �1A(�kã)}

+ (1 − �){V(�kã) + �2A(�kã) + V(�kã) + �3A(�kã)}

=k�{V(�ã) + �1A(�ã)}

+ k(1 − �){V(�ã) + �2A(�ã) + V(�ã) + �3A(�ã)}

=kR
�
(ã, �1, �2, �3).
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Thus, when ã ⪰ b̃ , it follows that R
�
(ã, �1, �2, �3) ≥ R

�
(b̃, �1, �2, �3) . Equivalently, it 

follows that kR
�
(ã, �1, �2, �3) ≥ kR

�
(b̃, �1, �2, �3) , which can be trivially expressed as 

R
�
(kã, �1, �2, �3) ≥ R

�
(kb̃, �1, �2, �3) . So, the result, kã ⪰ kb̃ , follows immediately.

Let k < 0 , assume k = −m < 0 , then the following cases arise. 

Case 1:  Let ã ⪰ b̃ for �i = 0 . Then V(�ã) ≠ V(�b̃) , V(�ã) ≠ V(�b̃) and V(�ã) ≠ V(�b̃) 
and R

�
(ã, 0, 0) ≥ R

�
(b̃, 0, 0) . Now, as ã ⪰ b̃ it follows that V(�ã) ≥ V(�

b̃
) , 

V(�ã) ≥ V(�b̃) and V(�ã) ≥ V(�b̃) . Clearly, V(�−mã) ≠ V(�
−mb̃

) , 
V(�−mã) ≠ V(�

−mb̃
) and V(�−mã) ≠ V(�

−mb̃
) . Thus, �i = 0 in ordering −mã

and −mb̃ . Further, it follows that V(�−mã) ≤ V(�
−mb̃

) , V(�−mã) ≤ V(�
−mb̃

) and 
V(�−mã) ≤ V(�

−mb̃
) . So, R

�
(−mã, 0, 0, 0) ≤ R

�
(−mb̃, 0, 0, 0) . Hence, the result 

−mã ⪯ −mb̃ follows immediately.
Case 2:  Let ã ⪰ b̃ for �1 = 0 , �2 = 0 and �3 = ±1 . Then V(�ã) ≠ V(�

b̃
) , 

V(�ã) ≠ V(�b̃) and V(�ã) = V(�b̃) and R
�
(ã, 0, 0,±1) ≥ R

�
(b̃, 0, 0,±1) . 

Now, as ã ⪰ b̃ it follows that V(�ã) ≥ V(�
b̃
) , V(�ã) ≥ V(�

b̃
) and 

V(�ã) ±A(�ã) ≥ V(�b̃) ±A(�b̃) . Clearly, V(�−mã) ≠ V(�
−mb̃

) , 
V(�−mã) ≠ V(�

−mb̃
) and V(�−mã) = V(�

−mb̃
) . Thus, �1 = 0 , �2 = 0 and �3 = ∓1 

in ordering −mã and −mb̃ . Further, it follows that V(�−mã) ≤ V(�
−mb̃

) , 
V(�−mã) ≤ V(�

−mb̃
) and V(�−mã) ∓A(�−mã) ≤ V(�

−mb̃
) ∓A(�−mã) . So, 

R
�
(−mã, 0, 0,∓1) ≤ R

�
(−mb̃, 0, 0,∓1) . Hence, the result −mã ⪯ −mb̃ follows 

immediately.
Case 3:  Let ã ⪰ b̃ for �1 = 0 , �2 = ±1 and �3 = 0 . Then V(�ã) ≠ V(�b̃) , V(�ã) = V(�b̃) 

and V(�ã) ≠ V(�
b̃
) and R

�
(ã, 0,±1, 0) ≥ R

�
(b̃, 0,±1, 0) . Now, as ã ⪰ b̃ it fol-

lows that V(�ã) ≥ V(�b̃) , V(�ã) ±A(�ã) ≥ V(�b̃) ±A(�b̃) and V(�ã) ≥ V(�b̃) . 
Clearly, V(�−mã) ≠ V(�

−mb̃
) , V(�−mã) = V(�

−mb̃
) and V(�−mã) ≠ V(�

−mb̃
) . 

Thus, �1 = 0 , �2 = ∓1 and �3 = 0 in ordering −mã and −mb̃ . Further, it fol-
lows that V(�−mã) ≤ V(�

−mb̃
) , V(�−mã) ∓A(�−mã) ≤ V(�

−mb̃
) ∓A(�

−mb̃
) and 

V(�−mã) ≤ V(�
−mb̃

) . So, R
�
(−mã, 0,∓1, 0) ≤ R

�
(−mb̃, 0,∓1, 0) . Hence, the 

result −mã ⪯ −mb̃ follows immediately.
Case 4:  Let ã ⪰ b̃ for �1 = 0 , �2 = ±1 and �3 = ±1 . Then V(�ã) ≠ V(�b̃) , 

V(�ã) = V(�
b̃
) and V(�ã) = V(�

b̃
) and R

�
(ã, 0,±1,±1) ≥ R

�
(b̃, 0,±1,±1) . 

Now, as ã ⪰ b̃ it follows that V(�ã) ≥ V(�b̃) , V(�ã) ±A(�ã) ≥ V(�b̃) ±A(�b̃) 
and V(�ã) ±A(�ã) ≥ V(�

b̃
) ±A(�

b̃
) . Clearly, V(�−mã) ≠ V(�

−mb̃
) , 

V(�−mã) = V(�
−mb̃

) and V(�−mã) = V(�
−mb̃

) . Thus, �1 = 0 , �2 = ∓1

and �3 = ∓1 in ordering −mã and −mb̃ . Further, it follows that 
V(�−mã) ≤ V(�

−mb̃
) , V(�−mã) ∓A(�−mã) ≤ V(�

−mb̃
) ∓A(�

−mb̃
) 

and V(�−mã) ∓A(�−mã) ≤ V(�
−mb̃

) ∓A(�
−mb̃

) . So, 
R

�
(−mã, 0,∓1,∓1) ≤ R

�
(−mb̃, 0,∓1,∓1) . Hence, the result −mã ⪯ −mb̃ fol-

lows immediately.
Case 5:  Let ã ⪰ b̃ for �1 = ±1 , �2 = 0 and �3 = 0 . Then V(�ã) = V(�b̃) , V(�ã) ≠ V(�b̃) 

and V(�ã) ≠ V(�
b̃
) and R

�
(ã,±1, 0, 0) ≥ R

�
(b̃,±1, 0, 0) . Now, as ã ⪰ b̃ it fol-

lows that V(�ã) ±A(�ã) ≥ V(�b̃) ±A(�b̃) , V(�ã) ≥ V(�b̃) and V(�ã) ≥ V(�b̃) . 
Clearly, V(�−mã) = V(�

−mb̃
) , V(�−mã) ≠ V(�

−mb̃
) and V(�−mã) ≠ V(�

−mb̃
) . 

Thus, �1 = ∓1 , �2 = 0 and �3 = 0 in ordering −mã and −mb̃ . Further, it fol-
lows that V(�−mã) ∓A(�−mã) ≤ V(�

−mb̃
) ∓A(�

−mb̃
) , V(�−mã) ≤ V(�

−mb̃
) and 

V(�−mã) ≤ V(�
−mb̃

) . So, R
�
(−mã,∓1, 0, 0) ≤ R

�
(−mb̃,∓1, 0, 0) . Hence, the 

result −mã ⪯ −mb̃ follows immediately.
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Case 6:  Let ã ⪰ b̃ for �1 = ±1 , �2 = 0 and �3 = ±1 . Then V(�ã) = V(�
b̃
) , V(�ã) ≠ V(�

b̃
) 

and V(�ã) = V(�b̃) and R
�
(ã,±1, 0,±1) ≥ R

�
(b̃,±1, 0,±1) . Now, as 

ã ⪰ b̃ it follows that V(�ã) ±A(�ã) ≥ V(�
b̃
) ±A(�

b̃
) , V(�ã) ≥ V(�

b̃
) and 

V(�ã) ±A(�ã) ≥ V(�b̃) ±A(�b̃) . Clearly, V(�−mã) = V(�
−mb̃

) , V(�−mã) ≠ V(�
−mb̃

) 
and V(�−mã) = V(�

−mb̃
) . Thus, �1 = ∓1 , �2 = 0 and �3 = ∓1 in ordering −mã 

and −mb̃ . Further, it follows that V(�−mã) ∓A(�−mã) ≤ V(�
−mb̃

) ∓A(�
−mb̃

) , 
V(�−mã) ≤ V(�

−mb̃
) and V(�−mã) ∓A(�−mã) ≤ V(�

−mb̃
) ∓A(�

−mb̃
) . So, 

R
�
(−mã,∓1, 0,∓1) ≤ R

�
(−mb̃,∓1, 0,∓1) . Hence, the result −mã ⪯ −mb̃ fol-

lows immediately.
Case 7:  Let ã ⪰ b̃ for �1 = ±1 , �2 = ±1 and �3 = 0 . Then V(�ã) = V(�b̃) , V(�ã) = V(�b̃) 

and V(�ã) ≠ V(�
b̃
) and R

�
(ã,±1,±1, 0) ≥ R

�
(b̃,±1,±1, 0) . Now, as ã ⪰ b̃ it

follows that V(�ã) ±A(�ã) ≥ V(�b̃) ±A(�ã) , V(�ã) ±A(�ã) ≥ V(�b̃) ±A(�ã) 
and V(�ã) ≥ V(�

b̃
) . Clearly, V(�−mã) = V(�

−mb̃
) , V(�−mã) = V(�

−mb̃
) and 

V(�−mã) ≠ V(�
−mb̃

) . Thus, �1 = ∓1 , �2 = ∓1 and �3 = 0 in ordering −mã and 
−mb̃ . Further, it follows that V(�−mã) ∓A(�−mã) ≤ V(�

−mb̃
) ∓A(�−mã) , 

V(�−mã) ∓A(�−mã) ≤ V(�
−mb̃

) ∓A(�−mã) and V(�−mã) ≤ V(�
−mb̃

) . So, 
R

�
(−mã,∓1,∓1, 0) ≤ R

�
(−mb̃,∓1,∓1, 0) . Hence, the result −mã ⪯ −mb̃ fol-

lows immediately.
Case 8:  Let ã ⪰ b̃ for �i = ±1 . Then V(�ã) = V(�

b̃
) , V(�ã) = V(�

b̃
) and V(�ã) = V(�

b̃
) 

and R
�
(ã,±1,±1,±1) ≥ R

�
(b̃,±1,±1,±1) . Now, as ã ⪰ b̃ it follows 

that V(�ã) ±A(�ã) ≥ V(�
b̃
) ±A(�ã) , V(�ã) ±A(�ã) ≥ V(�

b̃
) ±A(�ã)

and V(�ã) ±A(�ã) ≥ V(�b̃) ±A(�b̃) . Clearly, V(�−mã) = V(�
−mb̃

) , 
V(�−mã) = V(�

−mb̃
) and V(�−mã) = V(�

−mb̃
) . Thus, �i = ∓1 in ordering −mã 

and −mb̃ . Further, it follows that V(�−mã) ∓A(�−mã) ≤ V(�
−mb̃

) ∓A(�−mã) , 
V(�−mã) ∓A(�−mã) ≤ V(�

−mb̃
) ∓A(�−mã) and

V(�−mã) ∓A(�−mã) ≤ V(�
−mb̃

) ∓A(�
−mb̃

) . So, 
R

�
(−mã,∓1,∓1,∓1) ≤ R

�
(−mb̃,∓1,∓1,∓1) . Hence, the result −mã ⪯ −mb̃

follows immediately.

Proof of the Theorem 3.10

Let k > 0 and kã ⪰ kb̃ . Then R
�
(kã, �1, �2, �3) ≥ R

�
(kb̃, �1, �2, �3) . However, by 

Proposition  3.4, it follows that kR
�
(ã, �1, �2, �3) ≥ kR

�
(b̃, �1, �2, �3) . Thus, the 

result follows immediately. If k < 0 , let k = −m < 0 , then −mã ⪰ −mb̃ implies that 
R

�
(−mã, �1, �2, �3) ≥ R

�
(−mb̃, �1, �2, �3) . Now, eight cases arise. 

Case 1:  Let −mã ⪰ −mb̃ for �i = 0 . Then V(�−mã) ≠ V(�
−mb̃

) , V(�−mã) ≠ V(�
−mb̃

) 
and V(�−mã) ≠ V(�

−mb̃
) and R

�
(−mã, 0, 0, 0) ≥ R

�
(−mb̃, 0, 0, 0) . Now, as 

−mã ⪰ −mb̃ it follows that V(�−mã) ≥ V(�
−mb̃

) , V(�−mã) ≥ V(�
−mb̃

) and 
V(�−mã) ≥ V(�

−mb̃
) . Clearly, V(�ã) ≠ V(�b̃) , V(�ã) ≠ V(�b̃) and V(�ã) ≠ V(�b̃) . 

Thus, �i = 0 in ordering ã and b̃ . Further, it follows that V(�ã) ≤ V(�b̃) , 
V(�ã) ≤ V(�b̃)and V(�ã) ≤ V(�b̃) . So, R

�
(ã, 0, 0, 0) ≤ R

�
(b̃, 0, 0, 0) . Hence, the 

result ã ⪯ b̃ follows immediately.
Case 2:  Let −mã ⪰ −mb̃ for �1 = 0 , �2 = 0 and �3 = ±1 then 

V(�−mã) ≠ V(�
−mb̃

) , V(�−mã) ≠ V(�
−mb̃

) and V(�−mã) = V(�
−mb̃

) 
and R

�
(−mã, 0, 0,±1) ≥ R

�
(−mb̃, 0, 0,±1) . Now, as −mã ⪰ −mb̃

it follows that V(�−mã) ≥ V(�
−mb̃

) , V(�−mã) ≥ V(�
−mb̃

) and 
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V(�−mã) ±A(�−mã) ≥ V(�
−mb̃

) ±A(�
−mb̃

) . Clearly, V(�ã) ≠ V(�b̃) , 
V(�ã) ≠ V(�b̃) and V(�ã) = V(�b̃) . Thus, �1 = 0 , �2 = 0 and �3 = ∓1 in order-
ing ã and b̃ . Further, it follows that V(�ã) ≤ V(�b̃) , V(�ã) ≤ V(�b̃)and 
V(�ã) ∓A(�ã) ≤ V(�b̃) ∓A(�b̃) . So, R

�
(ã, 0, 0,∓1) ≤ R

�
(b̃, 0, 0,∓1) . Hence, the 

result ã ⪯ b̃ follows immediately.
Case 3:  Let −mã ⪰ −mb̃ for �1 = 0 , �2 = ±1 and �3 = 0 . Then 

V(�−mã) ≠ V(�
−mb̃

) , V(�−mã) = V(�
−mb̃

) and V(�−mã) ≠ V(�
−mb̃

) and 
R

�
(−mã, 0,±1, 0) ≥ R

�
(−mb̃, 0,±1, 0) . Now, as −mã ⪰ −mb̃ it follows 

that V(�−mã) ≥ V(�
−mb̃

) , V(�−mã) ±A(�−mã) ≥ V(�
−mb̃

) ±A(�
−mb̃

) and 
V(�−mã) ≥ V(�

−mb̃
) . Clearly, V(�ã) ≠ V(�b̃) , V(�ã) = V(�b̃) and V(�ã) ≠ V(�b̃) . 

Thus, �1 = 0 , �2 = ∓1 and �3 = 0 in ordering ã and b̃ . Further, it follows 
that V(�ã) ≤ V(�b̃) , V(�ã) ∓A(�ã) ≤ V(�b̃) ∓A(�b̃) and V(�ã) ≤ V(�b̃) . So, 
R

�
(ã, 0,∓1, 0) ≤ R

�
(b̃, 0,∓1, 0) . Hence, the result ã ⪯ b̃ follows immediately.

Case 4:  Let −mã ⪰ −mb̃ for �1 = 0 , �2 = ±1 and �3 = ±1 . Then 
V(�−mã) ≠ V(�

−mb̃
) , V(�−mã) = V(�

−mb̃
) and V(�−mã) = V(�

−mb̃
) and 

R
�
(−mã, 0,±1,±1) ≥ R

�
(−mb̃, 0,±1,±1) . Now, as −mã ⪰ −mb̃ it fol-

lows that V(�−mã) ≥ V(�
−mb̃

) , V(�−mã) ±A(�−mã) ≥ V(�
−mb̃

) ±A(�−mã) and
V(�−mã) ±A(�−mã) ≥ V(�

−mb̃
) ±A(�

−mb̃
) . Clearly, V(�ã) ≠ V(�b̃) , V(�ã) = V(�b̃) 

and V(�ã) = V(�b̃) . Thus, �1 = 0 , �2 = ∓1 and �3 = ∓1 in ordering ã and b̃ . 
Further, it follows that V(�ã) ≤ V(�b̃) , V(�ã) ∓A(�ã) ≤ V(�b̃) ∓A(�ã) and 
V(�ã) ∓A(�ã) ≤ V(�b̃) ∓A(�b̃) . So, R

�
(ã, 0,∓1,∓1) ≤ R

�
(b̃, 0,∓1,∓1) . Hence, 

the result ã ⪯ b̃ follows immediately.
Case 5:  Let −mã ⪰ −mb̃ for �1 = ±1 , �2 = 0 and �3 = 0 . Then 

V(�−mã) = V(�
−mb̃

) , V(�−mã) ≠ V(�
−mb̃

) and V(�−mã) ≠ V(�
−mb̃

) and 
R

�
(−mã,±1, 0, 0) ≥ R

�
(−mb̃,±1, 0, 0) . Now, as −mã ⪰ −mb̃ it follows 

that V(�−mã) ±A(�−mã) ≥ V(�
−mb̃

) ±A(�
−mb̃

) , V(�−mã) ≥ V(�
−mb̃

) and 
V(�−mã) ≥ V(�

−mb̃
) . Clearly, V(�ã) = V(�b̃) , V(�ã) ≠ V(�b̃) and V(�ã) ≠ V(�b̃) . 

Thus, �1 = ∓1 , �2 = 0 and �3 = 0 , in ordering ã and b̃ . Further, it follows 
that V(�ã) ∓A(�ã) ≤ V(�b̃) ∓A(�b̃) , V(�ã) ≤ V(�b̃)and V(�ã) ≤ V(�b̃) . So, 
R

�
(ã,∓1, 0, 0) ≤ R

�
(b̃,∓1, 0, 0) . Hence, the result ã ⪯ b̃ follows immediately.

Case 6:  Let −mã ⪰ −mb̃ for �1 = ±1 , �2 = 0 and �3 = ±1 . Then 
V(�−mã) = V(�

−mb̃
) , V(�−mã) ≠ V(�

−mb̃
) and V(�−mã) = V(�

−mb̃
) and 

R
�
(−mã,±1, 0,±1) ≥ R

�
(−mb̃,±1, 0,±1) . Now, as −mã ⪰ −mb̃ it fol-

lows that V(�−mã) ±A(�−mã) ≥ V(�
−mb̃

) ±A(�−mã) , V(�−mã) ≥ V(�
−mb̃

) and
V(�−mã) ±A(�−mã) ≥ V(�

−mb̃
) ±A(�

−mb̃
) . Clearly, V(�ã) = V(�b̃) , V(�ã) ≠ V(�b̃) 

and V(�ã) = V(�b̃) . Thus, �1 = ∓1 , �2 = 0 and �3 = ∓1 in ordering ã and b̃ . 
Further, it follows that V(�ã) ∓A(�ã) ≤ V(�b̃) ∓A(�ã) , V(�ã) ≤ V(�b̃) and 
V(�ã) ∓A(�ã) ≤ V(�b̃) ∓A(�b̃) . So, R

�
(ã,∓1, 0,∓1) ≤ R

�
(b̃,∓1, 0,∓1) . Hence, 

the result ã ⪯ b̃ follows immediately.
Case 7:  Let −mã ⪰ −mb̃ for �1 = ±1 , �2 = ±1 and �3 = 0 . Then 

V(�−mã) = V(�
−mb̃

) , V(�−mã) = V(�
−mb̃

) and V(�−mã) ≠ V(�
−mb̃

) and 
R

�
(−mã,±1,±1, 0) ≥ R

�
(−mb̃,±1,±1, 0) . Now, as −mã ⪰ −mb̃

it follows that V(�−mã) ±A(�−mã) ≥ V(�
−mb̃

) ±A(�−mã) , 
V(�−mã) ±A(�−mã) ≥ V(�

−mb̃
) ±A(�−mã) and V(�−mã) ≥ V(�

−mb̃
) . 

Clearly, V(�ã) = V(�b̃) , V(�ã) = V(�b̃) and V(�ã) ≠ V(�b̃) . Thus, 
�1 = ∓1 , �2 = ∓1 and �3 = 0 in ordering ã and b̃ . Further, it follows that 
V(�ã) ∓A(�ã) ≤ V(�b̃) ∓A(�ã) , V(�ã) ∓A(�ã) ≤ V(�b̃) ∓A(�ã) and 
V(�ã) ≤ V(�b̃) . So, R

�
(ã,∓1,∓1, 0) ≤ R

�
(b̃,∓1,∓1, 0) . Hence, the result ã ⪯ b̃

follows immediately.
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Case 8:  Let −mã ⪰ −mb̃ for �i = ±1 . Then V(�−mã) = V(�
−mb̃

) , V(�−mã) = V(�
−mb̃

) 
and V(�−mã) = V(�

−mb̃
) and R

�
(−mã,±1,±1,±1) ≥ R

�
(−mb̃,±1,±1,±1) . 

Now, as −mã ⪰ −mb̃ it follows that V(�−mã) ±A(�−mã) ≥ V(�
−mb̃

) ±A(�−mã) , 
V(�−mã) ±A(�−mã) ≥ V(�

−mb̃
) ±A(�−mã) and

V(�−mã) ±A(�−mã) ≥ V(�
−mb̃

) ±A(�
−mb̃

) . Clearly, V(�ã) = V(�b̃) , V(�ã) = V(�b̃) 
and V(�ã) = V(�b̃) . Thus, �i = ∓1 in ordering ã and b̃ . Further, it follows 
that V(�ã) ∓A(�ã) ≤ V(�b̃) ∓A(�ã) , V(�ã) ∓A(�ã) ≤ V(�b̃) ∓A(�ã) and 
V(�ã) ∓A(�ã) ≤ V(�b̃) ∓A(�b̃) . So, R

�
(ã,∓1,∓1,∓1) ≤ R

�
(b̃,∓1,∓1,∓1) . 

Hence, the result ã ⪯ b̃ follows immediately.

Proof of the Theorem 3.13

The proof of this theorem, follows immediately if the invariance of �1 and �2 in ordering 
ã , b̃ and ã − c̃ , b̃ − c̃ can be established. Hence, a claim has to be made. The claim is as 
follows.

Claim : The value of �1 and �2 in ordering ã and b̃ are invariant in ordering ã − c̃ and 
b̃ − c̃ . The proof of the claim follows from the following eight cases: 

Case 1:  Let �i = 0 in ordering ã and b̃ . Then, V(�ã) ≠ V(�b̃) , V(�ã) ≠ V(�b̃) and
V(�ã) ≠ V(�b̃) . Thus, it follows that V(�ã−c̃) ≠ V(�b̃−c̃) , V(�ã−c̃) ≠ V(�b̃−c̃) and 
V(�ã−c̃) ≠ V(�b̃−c̃) . So, �i = 0 in ordering ã − c̃ and b̃ − c̃.

Case 2:  Let �1 = 0 , �2 = 0 and �3 = ±1 in ordering ã and b̃ . Then, V(�ã) ≠ V(�b̃) , 
V(�ã) ≠ V(�b̃) and V(�ã) = V(�b̃) . Thus, it follows that V(�ã−c̃) ≠ V(�b̃−c̃) , 
V(�ã−c̃) ≠ V(�b̃−c̃) and V(�ã−c̃) = V(�b̃−c̃) . So, �1 = 0 , �2 = 0 and �3 = ±1 in 
ordering ã − c̃ and b̃ − c̃.

Case 3:  Let �1 = 0 , �2 = ±1 and �3 = 0 in ordering ã and b̃ . Then, V(�ã) ≠ V(�b̃) , 
V(�ã) = V(�b̃) and V(�ã) ≠ V(�b̃) . Thus, it follows that V(�ã−c̃) ≠ V(�b̃−c̃) , 
V(�ã−c̃) = V(�b̃−c̃) and V(�ã−c̃) ≠ V(�b̃−c̃) . So, �1 = 0 , �2 = ±1 and �3 = 0 in
ordering ã − c̃ and b̃ − c̃.

Case 4:  Let �1 = 0 , �2 = ±1 and �3 = ±1 in ordering ã and b̃ . Then, V(�ã) ≠ V(�b̃) , 
V(�ã) = V(�b̃) and V(�ã) = V(�b̃) . Thus, it follows that V(�ã−c̃) ≠ V(�b̃−c̃) , 
V(�ã−c̃) = V(�b̃−c̃) and V(�ã−c̃) = V(�b̃−c̃) . So, �1 = 0 , �2 = ±1 and �3 = ±1 in 
ordering ã − c̃ and b̃ − c̃.

Case 5:  Let �1 = ±1 , �2 = 0 and �3 = 0 in ordering ã and b̃ . Then, V(�ã) = V(�b̃) , 
V(�ã) ≠ V(�b̃) and V(�ã) ≠ V(�b̃) . Thus, it follows that V(�ã−c̃) = V(�b̃−c̃) , 
V(�ã−c̃) ≠ V(�b̃−c̃) and V(�ã−c̃) ≠ V(�b̃−c̃) . So, �1 = ±1 , �2 = 0 and �3 = 0 in
ordering ã − c̃ and b̃ − c̃.

Case 6:  Let �1 = ±1 , �2 = 0 and �3 = ±1 in ordering ã and b̃ . Then, V(�ã) = V(�b̃) , 
V(�ã) ≠ V(�b̃) and V(�ã) = V(�b̃) . Thus, it follows that V(�ã−c̃) = V(�b̃−c̃) , 
V(�ã−c̃) ≠ V(�b̃−c̃) and V(�ã−c̃) = V(�b̃−c̃) . So, �1 = ±1 , �2 = 0 and �3 = ±1 in 
ordering ã − c̃ and b̃ − c̃.

Case 7:  Let �1 = ±1 , �2 = ±1 and �3 = 0 in ordering ã and b̃ . Then, V(�ã) = V(�b̃) , 
V(�ã) = V(�b̃) and V(�ã) ≠ V(�b̃) . Thus, it follows that V(�ã−c̃) = V(�b̃−c̃) , 
V(�ã−c̃) = V(�b̃−c̃) and V(�ã−c̃) ≠ V(�b̃−c̃) . So, �1 = ±1 , �2 = ±1 and �3 = 0 in
ordering ã − c̃ and b̃ − c̃.

Case 8:  Let �i = ±1 in ordering ã and b̃ . Then, V(�ã) = V(�b̃) , V(�ã) = V(�b̃) and 
V(�ã) = V(�b̃) . Thus, it follows that V(�ã−c̃) = V(�b̃−c̃) , V(�ã−c̃) = V(�b̃−c̃) and 
V(�ã−c̃) = V(�b̃−c̃) . So, �i = ±1 in ordering ã − c̃ and b̃ − c̃.
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 The above eight cases suggest that �1 and �2 are invariant in ordering ã , b̃ and ã − c̃ , b̃ − c̃ . 
Hence, the claim.

Now, by the Theorem 3.1 it follows that it follows that

and

Then, if ̃a ⪰ b̃ , then it is obvious that R
�
(ã, �1, �2, �3) ≥ R

�
(b̃, �1, �2, �3) . Eventually, it leads to 

the inequality R
�
(ã, �1, �2, �3) +R

�
(−c̃, �1, �2, �3) ≥ R

�
(b̃, �1, �2, �3) +R

�
(−c̃, �1, �2, �3) . 

Thus, evidently it follows that R
�
(ã + (−c̃), �1, �2, �3) ≥ R

�
(b̃ + (−c̃), �1, �2, �3) . So, the 

result follows immediately.

Proof of the Theorem 3.15

Consider the cases when �a ≻ �b happens, that is,

Consider the cases when �c ≻ �d happens, that is,

Now, to proof this property, it need to discuss these 8 × 8 cases, which will make the proof 
tedious. However, one can see the proof trivially, if following claims can be established.

Claim 1: Let �i = 0 in ordering ã and b̃ , and �i = 0 in ordering c̃ and d̃ . Then �i = 0 
in ordering ã + c̃ and b̃ + d̃ . The proof of this claim is as follows. Let �i = 0 in ordering ã 
and b̃ . Then V(�ã) ≠ V(�b̃) , V(�ã) ≠ V(�b̃) and V(�ã) ≠ V(�b̃) . Similarly, if �i = 0 in order-
ing c̃ and d̃ . Then V(�c̃) ≠ V(�d̃) , V(�c̃) ≠ V(�d̃) and V(�c̃) ≠ V(�d̃) . Thus, it follows that 
V(�ã+c̃) ≠ V(�

b̃+d̃
) , V(�ã+c̃) ≠ V(�

b̃+d̃
) and V(�ã+c̃) ≠ V(�

b̃+d̃
) . So, �i = 0 in ordering ã + c̃

and b̃ + d̃.

R
�
(ã − c̃, �1, �2, �3) = R

�
(ã, �1, �2, �3) +R

�
(−c̃, �1, �2, �3),

R
�
(b̃ − c̃, �1, �2, �3) = R

�
(b̃, �1, �2, �3) +R

�
(−c̃, �1, �2, �3),

�a ≻ �b happens for

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

R
𝜆
(�a, 0, 0, 0) > R

𝜆
(�b, 0, 0, 0)

R
𝜆
(�a, 0, 0,±1) > R

𝜆
(�b, 0, 0,±1)

R
𝜆
(�a, 0,±1, 0) > R

𝜆
(�b, 0,±1, 0)

R
𝜆
(�a, 0,±1,±1) > R

𝜆
(�b, 0,±1,±1)

R
𝜆
(�a,±1, 0, 0) > R

𝜆
(�b,±1, 0, 0)

R
𝜆
(�a,±1, 0,±1) > R

𝜆
(�b,±1, 0,±1)

R
𝜆
(�a,±1,±1, 0) > R

𝜆
(�b,±1,±1, 0)

R
𝜆
(�a,±1,±1,±1) > R

𝜆
(�b,±1,±1,±1)

.

�c ≻ �d happens for

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

R
𝜆
(�c, 0, 0, 0) > R

𝜆
(�d, 0, 0, 0)

R
𝜆
(�c, 0, 0,±1) > R

𝜆
(�d, 0, 0,±1)

R
𝜆
(�c, 0,±1, 0) > R

𝜆
(�d, 0,±1, 0)

R
𝜆
(�c, 0,±1,±1) > R

𝜆
(�d, 0,±1,±1)

R
𝜆
(�c,±1, 0, 0) > R

𝜆
(�d,±1, 0, 0)

R
𝜆
(�c,±1, 0,±1) > R

𝜆
(�d,±1, 0,±1)

R
𝜆
(�c,±1,±1, 0) > R

𝜆
(�d,±1,±1, 0)

R
𝜆
(�c,±1,±1,±1) > R

𝜆
(�d,±1,±1,±1)
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Claim 2: Let �i = ±1 in ordering ã and b̃ , and �i = ±1 in ordering c̃ and d̃ . Then 
�i = ±1 in ordering ã + c̃ and b̃ + d̃ . The proof of this claim is as follows. Let �i = ±1 
in ordering ã and b̃ . Then V(�ã) = V(�b̃) , V(�ã) = V(�b̃) and V(�ã) = V(�b̃) . Similarly, if 
�i = ±1 in ordering c̃ and d̃ , then V(�c̃) = V(�d̃) , V(�c̃) = V(�d̃) and V(�c̃) = V(�d̃) . Thus, 
it follows that V(�ã+c̃) = V(�

b̃+d̃
) , V(�ã+c̃) = V(�

b̃+d̃
) and V(�ã+c̃) = V(�

b̃+d̃
) . So, �i = ±1 in 

ordering ã + c̃ and b̃ + d̃.
Claim 3: Let �i = 0 in ordering ã and b̃ , and �i = ±1 in ordering b̃ and c̃ . Then �i = 0 

in ordering ã + c̃ and b̃ + d̃ . The proof of this claim is as follows. Let �i = 0 in ordering ã 
and b̃ . Then V(�ã) ≠ V(�b̃) , V(�ã) ≠ V(�b̃) and V(�ã) ≠ V(�b̃) . Similarly, if �i = ±1 in order-
ing c̃ and d̃ , then V(�c̃) = V(�d̃) , V(�c̃) = V(�d̃) and V(�c̃) = V(�d̃) . Thus, it follows that 
V(�ã+c̃) ≠ V(�

b̃+d̃
) , V(�ã+c̃) ≠ V(�

b̃+d̃
) and V(�ã+c̃) ≠ V(�

b̃+d̃
) . So, �i = 0 in ordering ã + c̃

and b̃ + d̃.
Claim 4: Let �i = ±1 in ordering ã and b̃ , and �i = 0 in ordering c̃ and d̃ . Then �i = 0 

in ordering ã + c̃ and b̃ + d̃ . The proof of this claim is as follows. Let �i = ±1 in ordering ã 
and b̃ . Then V(�ã) = V(�b̃) , V(�ã) = V(�b̃) and V(�ã) = V(�b̃) . Similarly, if �i = 0 in order-
ing c̃ and d̃ , then V(�c̃) ≠ V(�d̃) , V(�c̃) ≠ V(�d̃) and V(�c̃) ≠ V(�d̃) . Thus, it follows that 
V(�ã+c̃) ≠ V(�

b̃+d̃
) , V(�ã+c̃) ≠ V(�

b̃+d̃
) and V(�ã+c̃) ≠ V(�

b̃+d̃
) . So, �i = 0 in ordering ã + c̃

and b̃ + d̃.
From these four claims, it is trivial enough to show that if �a ≻ �b and �b ≻ �c , then 

�a +�c ≻ �b + �d.
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Abstract: In the current paper, particular acheivments of single-valued neutrosophic continuity on a single-

valued neutrosophic topological space (�̃�, �̃��̃�, �̃��̃� , �̃��̃�) are introduced. Some necessary implications between 

them are illustrated. The theories of r-single-valued neutrosophic compact, r-single-valued neutrosophic ideal 

compact, r-single-valued neutrosophic quasi H-closed and r-single-valued neutrosophic compact modulo an 

single-valued neutrosophic ideal ℐ̃ are presented and investigated. 

Keywords: single-valued neutrosophic (almost; weakly) continuous mapping; single-valued neutrosophic 

ideal (compact; quasi H-closed) and r-single-valued neutrosophic compact modulo. 

1. Introduction

Using a fuzzy ideal ℐ̃ defined on a fuzzy topological space (FTS) (�̃�, �̃�), a fuzzy ideal topological space 

(FITS) (�̃�, �̃�, ℐ̃) is generated. It is a way of generalizing so many notions and results in (�̃�, �̃�). The main definition 

of fuzzy topology that is related to the results in this article was established by �̆�ostak in [1]. The notion of fuzzy 

ideal was created in [2]. Tripathy et al. in [3 - 6] introduced different valuble research studies on (FITS) and gave 

several forms of fuzzy continuities. Saber and others [7 - 11] have considered several r-fuzzy compactnesses in 

(FITS) (�̃�, �̃�, ℐ̃) and several types of fuzzy continuity. 

   Smarandache established the idea of the neutrosophic sets [12] in 1998. In terms of neutrosophic sets, there 

are a membership score (�̃�), an indeterminacy score (𝜂) and a non-membership score (𝜇) and a neutrosophic 

value is in the form (�̃�, 𝜂,𝜇). In other meaning, in explaining an event or finding of a solution to a problem, a 

condition is handled according to its truth, not truth and resolution. Hence, the study of neutrosophic sets and 

neutrosophic logic are useful for decision-making applications in neutrosophic theories and led to too many 

researches and studies in the field as in [12-25]. It also gives the opportunity to others to establish some 

approaches in decision-making for neutrosophic theory as in [26-31]. Wang et al, [32] and Kim et al, [33] 

presented the theory of the neutrosophoic equivalence relation single-valued. Single-valued neutrosophic 
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ideal (𝒮𝒱𝒩ℐ) aspects in single-valued neutrosophic topological spaces (𝒮𝒱𝒩𝒯𝒮), have been introduced and 

considered by several authors from diverse viewpoints such as in [34-37].  

In this research, we foreground the idea of r-single-valued neutrosophic (compact, ideal compact and quasi 

H-closed) in (𝒮𝒱𝒩𝒯𝒮) in the sense of S̆ostak. We are working on getting some of its important characteristics 

and results. Moreover, we investigate some properties of single-valued neutrosophic continuous 

mappings. Finally, some fascinating application of neutrosophic topology in reverse logistics arises 

could be found as in Abdel-Baset paper articles and others [38-41]. 

2. Preliminaries

Definition 2.1 [22] Suppose that �̃� is a non-empty set. We mean by a neutrosophic set (briefly, 𝒩𝒮) 𝐴 the objects 

having the form 

𝒮 = {〈𝜔, �̃�𝒮 , 𝜂𝒮 , 𝜇𝒮〉: 𝜔 ∈ �̃�}. 

Anywhere 𝜇𝒮 , 𝜂𝒮  𝑎𝑛𝑑 �̃�𝒮  indicate the degree of non-membership, the degree of indeterminacy, and the degree 

of membership, respectively of any element 𝜔 ∈ �̃� to the set 𝒮. 

Definition 2.2 [32] Suppose that �̃� is a universal set. For ∀𝜔 ∈ �̃�, 0 ≤ �̃�𝒮(𝜔) + 𝜂𝒮(𝜔) + 𝜇𝒮(𝜔) ≤ 3 , by the 

meanings �̃�𝒮: 𝒮 → [0.1], 𝜂𝒮 : 𝒮 → [0.1] and 𝜇𝒮: 𝒮 → [0.1], a single-valued neutrosophic set (briefly, 𝒮𝒱𝒩𝒮) on 

�̃� is defined by 

𝒮 = {〈𝜔, �̃�𝒮 , 𝜂𝒮 , 𝜇𝒮〉: 𝜔 ∈ �̃�}. 

Now, 𝜇𝒮  , 𝜂𝒮  and �̃�𝒮  are the degrees of falsity, indeterminacy and trueness of 𝜔 ∈ �̃�, respectively. We will 

convey the set of all 𝒮𝒱𝒩𝒮s  in 𝒮 as 𝐼�̃�.  

Definition 2.3 [32] The accompaniment of a 𝒮𝒱𝒩𝒮 𝒮 is indicated by 𝒮𝑐 and is cleared by 

�̃�𝒮𝑐(𝜔) = 𝜇𝒮(𝜔),    𝜂𝒮𝑐(𝜔) = 1 − 𝜂𝒮(𝜔) 𝑎𝑛𝑑  𝜇𝒮𝑐(𝜔) = �̃�𝒮(𝜔). 

for any 𝜔 ∈ �̃�, 

Definition 2.4 [41] Let 𝒮, ℰ ∈ 𝐼�̃�. Then, 

1. 𝒮 ⊆ ℰ, if, for every 𝜔 ∈ �̃�,

�̃�𝒮(𝜔) ≤ �̃�ℰ(𝜔), 𝜂𝒮(𝜔) ≥ 𝜂ℰ(𝜔), 𝜇𝒮(𝜔) ≥ 𝜇ℰ(𝜔) 

2. 𝒮 = ℰ if 𝒮 ⊆ ℰ and 𝒮 ⊇ ℰ.

3. 0̃ = 〈0,1,1〉 and 1̃ = 〈1,0,0〉

Definition 2.5 [42] Let 𝒮, ℰ ∈ 𝐼�̃�. Then, 

1. 𝒮 ∩ ℰ is a 𝒮𝒱𝒩𝒮 in �̃� defined as: 

𝒮 ∩ ℰ = (�̃�𝒮 ∩ �̃�ℰ ,  𝜂𝒮 ∪ 𝜂ℰ , 𝜇𝒮 ∪ 𝜇ℰ). 

 Where, (𝜇𝒮 ∪ 𝜇ℰ)(𝜔) = 𝜇𝒮(𝜔) ∪ 𝜇ℰ(𝜔) and (�̃�𝒮 ∩ �̃�ℰ)(𝜔) = �̃�𝒮(𝜔) ∩ �̃�ℰ(𝜔), for all 𝜔 ∈ �̃�, 

1. 𝒮 ∪ ℰ is an 𝒮𝒱𝒩𝒮 on �̃� defined as: 
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𝒮 ∪ ℰ = (�̃�𝒮 ∪ �̃�ℰ , 𝜂𝒮 ∩ 𝜂ℰ , 𝜇𝒮 ∩ 𝜇ℰ). 

Definition 2.6 [21]  Suppose that �̃� is a nonempty set and 𝒮 ∈ 𝐼�̃� is having the form 𝒮 = {〈𝜔, �̃�𝒮 , 𝜂𝒮 , 𝜇𝒮〉: 𝜔 ∈ �̃�} 

on �̃�. Then,   

1. (⋂𝐽∈△ 𝒮𝑗)(𝜔) = (⋂𝑗∈△ �̃�𝒮𝑗(𝜔),    ⋃𝑗∈△ 𝜂𝒮𝑗(𝜔),    ⋃𝑗∈△ 𝜇𝒮𝑗(𝜔)),

2. (⋃𝑗∈△ 𝒮𝑗)(𝜔) = (⋃𝑗∈△ �̃�𝒮𝑗(𝜔), ⋂𝑗∈△ 𝜂𝒮𝑗(𝜔), ⋂𝑗∈△ 𝜇𝒮𝑗(𝜔)).

Definition 2.7 [34] Let 𝑠, 𝑡, 𝑘 ∈ 𝐼0 and 𝑠 + 𝑡 + 𝑘 ≤ 3. A single-valued neutrosophic point (𝒮𝒱𝒩𝒫) 𝑥𝑠,𝑡,𝑘 of �̃� is 

the 𝒮𝒱𝒩𝒮 in 𝐼�̃� for every 𝜔 ∈ 𝒮, defined by  

𝑥𝑠,𝑡,𝑘(𝜔) = {
(𝑠, 𝑡, 𝑘),    𝑖𝑓  𝑥 = 𝜔,
(0,1,1),    𝑖𝑓  𝑥 = 𝜔.

  A 𝒮𝒱𝒩𝒫 𝑥𝑠,𝑡,𝑘 is supposed to belong to a 𝒮𝒱𝒩𝒮 𝒮 = {〈𝜔, �̃�𝒮 , 𝜂𝒮 , 𝜇𝒮〉: 𝜔 ∈ �̃�} ∈ 𝐼
�̃�, (notion: 𝑥𝑠.𝑡.𝑝 ∈ 𝒮 iff 𝑠 <

�̃�𝒮 , 𝑡 ≥ 𝜂𝒮  and 𝑘 ≥ 𝜇𝒮 ), and the set off all 𝒮𝒱𝒩𝒫  in �̃� indicated by 𝒮𝒱𝒩𝒫(�̃�).  𝑥𝑠,𝑡,𝑘 ∈ 𝒮𝒱𝒩𝒫(�̃�) quasi-

coincident with a 𝒮𝒱𝒩S 𝒮 ∈ 𝐼�̃� denoted by 𝑥𝑠,𝑡,𝑘𝑞𝒮, if 

𝑠 + �̃�𝒮 > 1, 𝑡 + 𝜂𝒮 ≤ 1 , 𝑘 + 𝜇𝒮 ≤ 1. 

 For every 𝒮, ℰ ∈ 𝐼�̃� 𝒮 is quasi-coincident with ℰ indicated by 𝒮qℰ, if there exists 𝑥𝑠,𝑡,𝑘 ∈ 𝐼
�̃� s.t 

�̃�ℰ + �̃�𝒮 > 1, 𝜂 ℰ + 𝜂𝒮 ≤ 1 and 𝜇 ℰ + 𝜇𝒮 ≤ 1. 

Definition 2.8 [25] Let �̃��̃�, �̃��̃� , �̃��̃�: 𝐼�̃� → 𝐼 be mappings satisfying the following conditions: 

1. �̃��̃�(0) = �̃��̃�(1) = 1 and �̃��̃�(0) = �̃��̃�(1) = �̃��̃�(0) = �̃��̃�(1) = 0,

2. 𝜏�̃�(𝒮 ∩ ℰ) ≥ �̃��̃�(𝒮) ∩ �̃��̃�(ℰ),  �̃��̃�(𝒮 ∩ ℰ) ≤ 𝜏�̃�(𝒮) ∪ �̃��̃�(ℰ) and  �̃��̃�(𝒮 ∩ ℰ) ≤ �̃��̃�(𝒮) ∪ �̃��̃�(ℰ), for every

𝒮, ℰ ∈ 𝐼�̃�,

3. �̃��̃�(∪𝑗∈Γ 𝒮𝑗) ≥∩𝑗∈Γ �̃�
�̃�(𝒮𝑗),  �̃��̃�(∪𝑖∈Γ 𝒮𝑗) ≤∪𝑗∈Γ 𝜏

�̃�(𝒮𝑗) and �̃��̃�(∪𝑗∈Γ 𝒮𝑗) ≤∪𝑗∈Γ �̃�
�̃�(𝒮𝑗), for every {𝒮𝑗 , 𝑗 ∈

Γ} ∈ 𝐼�̃�.

Then (�̃��̃�, �̃��̃� , �̃��̃�)  is called single valued neutrosophic topology 𝒮𝒱𝒩𝒯 . Usually, we will write �̃��̃��̃��̃�  for 

(�̃��̃�, �̃��̃� , �̃��̃�) and it will cause no indistinctness. 

Definition 2.9 [34] Let (�̃�, �̃��̃��̃��̃�) be an 𝒮𝒱𝒩𝒯𝒮. Then, for all 𝒮 ∈ 𝐼�̃� and 𝑟 ∈ 𝐼0, the single valued neutrosophic

)closure and interior( of 𝒮 are define by:  

𝐶�̃��̃��̃��̃�(𝒮. 𝑟) =⋂{ℰ ∈ 𝐼�̃�:  𝒮 ≤ ℰ , �̃��̃�(ℰ𝑐) ≥ 𝑟, �̃��̃�(ℰ𝑐) ≤ 1 − 𝑟, �̃��̃�(ℰ𝑐) ≤ 1 − 𝑟}

𝑖𝑛𝑡�̃��̃��̃��̃�(𝒮. 𝑟) =⋃{ℰ ∈ 𝐼�̃�:  𝒮 ≥ ℰ , �̃��̃�(ℰ) ≥ 𝑟, �̃��̃�(ℰ) ≤ 1 − 𝑟, �̃��̃�(ℰ) ≤ 1 − 𝑟}. 

Definition 2.10 [34] A mapping ℐ̃�̃�, ℐ̃�̃� , ℐ̃�̃�: 𝐼�̃� → 𝐼 is said to be 𝒮𝒱𝒩ℐ on �̃� if it satisfies the next three conditions 

for 𝒮, ℰ ∈ 𝐼�̃�: 

1. ℐ̃�̃�(0̃) = ℐ̃�̃�(0̃) = 0, ℐ̃�̃�(0̃) = 1,

2. If 𝒮 ≤ ℰ then ℐ̃�̃�(ℰ) ≥ ℐ̃�̃�(𝒮), ℐ̃�̃�(ℰ) ≥ ℐ̃�̃�(𝒮) and ℐ̃�̃�(ℰ) ≤ ℐ̃�̃�(𝒮).

3. ℐ̃�̃�(𝒮 ∪ ℰ) ≤ ℐ̃�̃�(ℰ) ∪ ℐ̃�̃�(ℰ), ℐ̃�̃�(𝒮 ∪ ℰ) ≤ ℐ̃�̃�(𝒮) ∪ ℐ̃�̃�(ℰ) and ℐ̃�̃�(𝒮 ∪ ℰ) ≥ ℐ̃�̃�(𝒮) ∩ ℐ̃�̃�(ℰ).

Then, (�̃�, �̃��̃��̃��̃�, ℐ̃�̃��̃��̃�) is said to be a single-valued neutrosophic ideal topological space (𝒮𝒱𝒩ℐ𝒯𝒮). 
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Definition 2.12 [36] A mapping 𝑓: (�̃�1, �̃�1
�̃��̃��̃�

) → (�̃�2, �̃�2
�̃��̃��̃�

) from an 𝒮𝒱𝒩𝒯𝒮 (�̃�1, �̃�1
�̃��̃��̃�

) into another 𝒮𝒱𝒩𝒯𝒮

(�̃�2, �̃�2
�̃��̃��̃�

)  is said to be single-valued neutrosophic continuous (briefly, 𝒮𝒱𝒩 -continuous) if and only if 

�̃�2
�̃�
(𝒮) ≤ �̃�1

�̃�
(𝑓−1(𝒮)), �̃�2

�̃�
(𝒮) ≥ �̃�1

�̃�
(𝑓−1(𝒮)) and �̃�2

�̃�
(𝒮) ≥ �̃�1

�̃�
(𝑓−1(𝒮)), for every 𝒮 ∈ 𝐼�̃�2. 

3. Single-Valued Neutrosophic (almost , weakly) Continuous Mappings

This section is dedicated to present the concepts of the single-valued neutrosophic (almost and weakly) 

mappings (briefly 𝒮𝒱𝒩 −  almost continuous, 𝒮𝒱𝒩 −  𝑤𝑒𝑎𝑘𝑙𝑦 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 ) mappings, respectively. It is also 

devoted to mark out the concepts of single-valued neutrosophic ( preopen , regular-open ) sets (briefly, 𝑟 −

𝑆𝑉𝑁𝑃𝑂, 𝑟 − 𝑆𝑉𝑁𝑅𝑂) sets, respectively.  

Definition 3.1. Let (�̃�, �̃��̃��̃��̃�) be an 𝒮𝒱𝒩𝒯𝒮 and 𝑟 ∈ 𝐼0. Then, 𝒮 ∈ 𝐼�̃� is said to be:

1. 𝑟 − 𝑆𝑉𝑁𝑃𝑂 𝑠𝑒𝑡 iff 𝒮 ≤ 𝑖𝑛𝑡�̃��̃��̃��̃�(𝐶�̃��̃��̃��̃�(𝒮, 𝑟), 𝑟),

2. 𝑟 − 𝑆𝑉𝑁𝑅𝑂 set if 𝒮 = 𝑖𝑛𝑡�̃��̃��̃��̃�(𝐶�̃��̃��̃��̃�(𝒮, 𝑟), 𝑟).

The complement of 𝑟 − 𝑆𝑉𝑁𝑃𝑂 (resp, 𝑟 − 𝑆𝑉𝑁𝑅𝑂) are said to be 𝑟 − 𝑆𝑉𝑁𝑃𝐶 (resp, 𝑟 − 𝑆𝑉𝑁𝑅𝐶), respectively. 

Remark 3.2. Let (�̃�, �̃��̃��̃��̃�) be an 𝒮𝒱𝒩𝒯𝒮 and 𝑟 ∈ 𝐼0, if 𝒮 is an 𝑟 − 𝑆𝑉𝑁𝑅𝑂 set, then 𝒮 is 𝑟 − 𝑆𝑉𝑁𝑃𝑂.

Example 3.3. Let �̃� = {𝑎, 𝑏}. Define ℰ1, ℰ2 ∈ 𝐼
�̃� as follows: 

ℰ1 = 〈(0 ∙ 5, 0.4,0 ∙ 5), (0 ∙ 5,0.4, 0 ∙ 5), (0 ∙ 5,0.5, 0 ∙ 5)〉, ℰ2 = 〈(0 ∙ 4, 0 ∙ 4,0.4), (0 ∙ 5, 0 ∙ 4,0.4), (0 ∙ 5. 0 ∙ 5, .4)〉. 

Define �̃��̃��̃��̃� ∶  𝐼�̃� → 𝐼 as follows: 

�̃��̃�(𝒮) =

{
 
 

 
 
1,   𝑖𝑓 𝒮 = 0̃,  

1,   𝑖𝑓 𝒮 = 1̃,  
1

2
,   𝑖𝑓 𝒮 = ℰ1,  

0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 �̃��̃�(𝒮) =

{
 
 

 
 
0,   𝑖𝑓 𝒮 = 0̃,  

0,   𝑖𝑓 𝒮 = 1̃,  
1

2
,   𝑖𝑓 𝒮 = {ℰ1, ℰ2},  

1,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

�̃��̃�(𝒮) =

{
 
 

 
 
0,   𝑖𝑓 𝒮 = 0̃,  

0,   𝑖𝑓 𝒮 = 1̃,  
1

2
,   𝑖𝑓 𝒮 = {ℰ1, ℰ2}, 

1,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

Let, ℰ3 = {〈𝜔, (0 ∙ 5,0.5, 0 ∙ 1), (0 ∙ 6,0.3, 0 ∙ 1), (0 ∙ 6,0.3, 0 ∙ 1)〉: 𝜔 ∈ �̃�} . Then, ℰ3  is 
1

2
− 𝑆𝑉𝑁𝑃𝑂  set but it is not 

1

2
− 𝑆𝑉𝑁𝑅𝑂 set because, ℰ3 ≠ 𝑖𝑛𝑡�̃��̃��̃��̃� (𝐶�̃��̃��̃��̃� (ℰ3,

1

2
) ,

1

2
) = 1̃.  

Lemma 3.4. Let 𝒮 be an 𝒮𝒱𝒩𝒮 in an 𝒮𝒱𝒩𝒯𝒮  (�̃�, �̃��̃��̃��̃�). Then, for each 𝑟 ∈ 𝐼0.

1. If 𝒮 is 𝑟 −  𝑆𝑉𝑁𝑅𝑂 set (resp, 𝑟 − 𝑆𝑉𝑁𝑅𝐶 𝑠𝑒𝑡), then [�̃��̃�(𝒮) ≥ 𝑟, �̃��̃�(𝒮) ≤ 1 − 𝑟 , �̃��̃�(𝒮) ≤ 1 − 𝑟] (resp,

[�̃��̃�(𝒮𝑐) ≥ 𝑟, �̃��̃�(𝒮𝑐) ≤ 1 − 𝑟, �̃��̃�(𝒮𝑐) ≤ 1 − 𝑟]),

2. 𝒮 is 𝑟 − 𝑆𝑉𝑁𝑅𝑂 set if and only if 𝒮𝑐 is 𝑟 − 𝑆𝑉𝑁𝑅𝐶 set.

 Proof. Follows directly from Definition 3.1. 

 Lemma 3.5. Let (�̃�, �̃��̃��̃��̃�) be an 𝒮𝒱𝒩𝒯𝒮. Then, 

1. the union of two 𝑟 − 𝑆𝑉𝑁𝑅𝐶 sets is 𝑟 − 𝑆𝑉𝑁𝑅𝐶,

2. the intersection of two 𝑟 − 𝑆𝑉𝑁𝑅𝑂 sets, is 𝑟 − 𝑆𝑉𝑁𝑅𝑂.
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Proof. (1) Let 𝒮, ℰ be any two 𝑟 − 𝑆𝑉𝑁𝑅𝐶 sets. By Lemma 3.4, [�̃��̃�(𝒮𝑐) ≥ 𝑟, �̃��̃�(𝒮𝑐) ≤ 1 − 𝑟, �̃��̃�(𝒮𝑐) ≤ 1 − 𝑟] and 

[�̃��̃�(ℰ𝑐) ≥ 𝑟,�̃��̃�(ℰ𝑐) ≤ 1 − 𝑟,   �̃��̃�(ℰ𝑐) ≤ 1 − 𝑟]. Then,  

�̃�∗�̃�(𝒮 ∪ ℰ ) ≥ �̃�∗�̃�(𝒮) ∩ �̃�∗�̃�(ℰ ), �̃�∗�̃�(𝒮 ∪ ℰ ) ≤ �̃�∗�̃�(𝒮) ∪ �̃�∗�̃�(ℰ ),  �̃�∗�̃�(𝒮 ∪ ℰ ) ≤ �̃�∗�̃�(𝒮) ∪ �̃�∗�̃�(ℰ ), 

but 𝑖𝑛𝑡�̃��̃��̃��̃�(𝒮 ∪ ℰ , r) ≤ 𝒮 ∪ ℰ, this suggests that

𝐶�̃��̃��̃��̃�(𝑖𝑛𝑡�̃��̃��̃��̃�(𝒮 ∪ ℰ , r), r) ≤ 𝐶�̃��̃��̃��̃�(𝒮 ∪ ℰ, 𝑟) = 𝒮 ∪ ℰ.

Now, 

𝒮 = 𝐶�̃��̃��̃��̃�(𝑖𝑛𝑡�̃��̃��̃��̃�(𝒮, r), r) ≤ 𝐶�̃��̃��̃��̃�(𝑖𝑛𝑡�̃��̃��̃��̃�(𝒮 ∪ ℰ , r), r),

and 

ℰ = 𝐶�̃��̃��̃��̃�(𝑖𝑛𝑡�̃��̃��̃��̃�(ℰ, r), r) ≤ 𝐶�̃��̃��̃��̃�(𝑖𝑛𝑡�̃��̃��̃��̃�(𝒮 ∪ ℰ , r), r).

Thus, 𝒮 ∪ ℰ ≤ 𝐶�̃��̃��̃��̃�(𝑖𝑛𝑡�̃��̃��̃��̃�(𝒮 ∪ ℰ , r), r). So, 𝒮 ∪ ℰ = 𝐶�̃��̃��̃��̃�(𝑖𝑛𝑡�̃��̃��̃��̃�(𝒮 ∪ ℰ , r), r). Hence, 𝒮 ∪ ℰ 𝑟 − 𝑆𝑉𝑁𝑅𝐶 set.

  (2) It can be ascertained by the same method. 

Theorem 3.6. Let (�̃�, �̃��̃��̃��̃�) be an 𝒮𝒱𝒩𝒯𝒮, Then, 

1. If 𝒮 ∈ 𝐼�̃� s.t, �̃��̃�(𝒮𝑐) ≥ 𝑟, �̃��̃�(𝒮𝑐) ≤ 1 − 𝑟, �̃��̃�(𝒮𝑐) ≤ 1 − 𝑟, then, 𝑖𝑛𝑡�̃��̃��̃��̃�(𝒮 , r) is 𝑟 − 𝑆𝑉𝑁𝑅𝑂 set,

2. If 𝒮 ∈ 𝐼�̃� s.t, �̃��̃�(𝒮) ≥ 𝑟, �̃��̃�(𝒮) ≤ 1 − 𝑟 and �̃��̃�(𝒮) ≤ 1 − 𝑟 , then, 𝐶�̃��̃��̃��̃�(𝒮 , r) is 𝑟 − 𝑆𝑉𝑁𝑅𝐶 set.

Proof. (1) Suppose that 𝒮 ∈ 𝐼�̃� such that, �̃��̃�(𝒮𝑐) ≥ 𝑟, �̃��̃�(𝒮𝑐) ≤ 1 − 𝑟, �̃��̃�(𝒮𝑐) ≤ 1 − 𝑟. Clearly, 

𝑖𝑛𝑡�̃��̃��̃��̃�(𝒮, r) ≤ 𝑖𝑛𝑡�̃��̃��̃��̃�(𝐶�̃��̃��̃��̃�(𝒮, r), r),

this denotes that, 𝑖𝑛𝑡�̃��̃��̃��̃�(𝒮, r) ≤ 𝑖𝑛𝑡�̃��̃��̃��̃�(𝐶�̃��̃��̃��̃�(𝑖𝑛𝑡�̃��̃��̃��̃�(𝒮, r), r), 𝑟). Now, since,

�̃��̃�(𝒮𝑐) ≥ 𝑟, �̃��̃�(𝒮𝑐) ≤ 1 − 𝑟, �̃��̃�(𝒮𝑐) ≤ 1 − 𝑟, 

 then 𝐶�̃��̃��̃��̃�(𝑖𝑛𝑡�̃��̃��̃��̃�(𝒮, r), r) ≤ 𝒮; therefore,

𝑖𝑛𝑡�̃��̃��̃��̃�(𝒮, r) ≥ 𝑖𝑛𝑡�̃��̃��̃��̃�(𝐶�̃��̃��̃��̃�(𝑖𝑛𝑡�̃��̃��̃��̃�(𝒮, r), r), 𝑟).

Then, 𝑖𝑛𝑡�̃��̃��̃��̃�(𝒮, r) = 𝑖𝑛𝑡�̃��̃��̃��̃�(𝐶�̃��̃��̃��̃�(𝑖𝑛𝑡�̃��̃��̃��̃�(𝒮, r), r), 𝑟). Hence, 𝑖𝑛𝑡�̃��̃��̃��̃�(𝒮, r) is 𝑟 − 𝑆𝑉𝑁𝑅𝑂 set.

  (2) Similar to the proof of (1). 

Definition 3.7. A mapping 𝑓: (�̃�1, �̃�1
�̃��̃��̃�

) → (�̃�2, �̃�2
�̃��̃��̃�

)  from an 𝒮𝒱𝒩𝒯𝒮 (�̃�1, �̃�1
�̃��̃��̃�

)  into another 𝒮𝒱𝒩𝒯𝒮 

(�̃�2, �̃�2
�̃��̃��̃�

) is called:

1. 𝑆𝑉𝑁 −  𝑎𝑙𝑚𝑜𝑠𝑡 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 iff �̃�1
�̃�
(𝑓−1(𝒮)) ≥ r, �̃�1

�̃�
(𝑓−1(𝒮)) ≤ 1 − 𝑟, �̃�1

�̃�
(𝑓−1(𝒮)) ≤ 1 − r, for each 𝑟 −

𝑆𝑉𝑁𝑅𝑂 set 𝒮 of �̃�2,

2. 𝑆𝑉𝑁 −  𝑤𝑒𝑎𝑘𝑙𝑦 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠  iff �̃�2
�̃�(𝒮) ≥ r , �̃�2

�̃�(𝒮) ≤ 1 − 𝑟  and �̃�2
�̃�(𝒮) ≤ 1 − r , implies �̃�1

�̃�
(𝑓−1(𝒮)) ≥ r , 

�̃�1
�̃�
(𝑓−1(𝒮)) ≤ 1 − 𝑟, �̃�1

�̃�
(𝑓−1(𝒮)) ≤ 1 − r, , for each 𝒮 ∈ 𝐼�̃�2. 

Remark 3.8. From Definition 3.7, it is clear that the next implications are correct for 𝑟 ∈ 𝐼0: 

𝑆𝑉𝑁 −  𝑎𝑙𝑚𝑜𝑠𝑡 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 

⇑ 

𝑆𝑉𝑁 −  𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 

⇓ 

𝑆𝑉𝑁 −  𝑤𝑒𝑎𝑘𝑙𝑦 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 

However, the one-sided suggestions are not correct in general, as presented by the next example. 
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Example 3.9. Suppose that �̃� = {𝑎, 𝑏, 𝑐}. Define ℰ1, ℰ2 ∈ 𝐼
�̃� as follows: 

ℰ1 = 〈(0 ∙ 5, 0.4,0 ∙ 5), (0 ∙ 5,0.4, 0 ∙ 5), (0 ∙ 5,0.5, 0 ∙ 5)〉, ℰ2 = 〈(0 ∙ 5, 0 ∙ 4,0.4), (0 ∙ 5, 0 ∙ 4,0.4), (0 ∙ 5, 0 ∙ 5, .4)〉, 

ℰ3 = 〈(0 ∙ 3, 0.6,0 ∙ 5), (0 ∙ 3, 0.6,0 ∙ 5), 0 ∙ 3, 0.6,0 ∙ 5〉,   ℰ4 = 〈(0 ∙ 4, 0 ∙ 4,0.4), (0 ∙ 5, 0 ∙ 4,0.4), (0 ∙ 5. 0 ∙ 5, .4)〉. 

We difine an �̃�1
�̃��̃��̃�

, �̃�2
�̃��̃��̃�

∶  𝐼�̃� → 𝐼 as follows: 

�̃�1
�̃�(𝒮) =

{
 
 

 
 1,   𝑖𝑓 𝒮 = 0̃,  

1,   𝑖𝑓 𝒮 = 1̃,  
1

2
,   𝑖𝑓 𝒮 = ℰ2, 

0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 �̃�2
�̃�(𝒮) =

{
 
 

 
 1,   𝑖𝑓 𝒮 = 0̃,  

1,   𝑖𝑓 𝒮 = 1̃,  
1

2
,   𝑖𝑓 𝒮 = {ℰ2, ℰ4}, 

0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

�̃�1
�̃�(𝒮) =

{
 
 

 
 
0,   𝑖𝑓 𝒮 = 0̃,  

0,   𝑖𝑓 𝒮 = 1̃,  
1

2
,   𝑖𝑓 𝒮 = {ℰ1, ℰ2},  

1,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 �̃�2
�̃�(𝒮) =

{
 
 

 
 
0,   𝑖𝑓 𝒮 = 0̃,  

0,   𝑖𝑓 𝒮 = 1̃,  
1

2
,   𝑖𝑓 𝒮 = {ℰ2, ℰ4}, 

1,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

�̃�1
�̃�(𝒮) =

{
 
 

 
 0,   𝑖𝑓 𝒮 = 0̃,  

0,   𝑖𝑓 𝒮 = 1̃,  
1

2
,   𝑖𝑓 𝒮 = {ℰ2, ℰ3}, 

1,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 �̃�2
�̃�(𝒮) =

{
 
 

 
 0,   𝑖𝑓 𝒮 = 0̃,  

0,   𝑖𝑓 𝒮 = 1̃,  
1

2
,   𝑖𝑓 𝒮 = {ℰ2, ℰ4}, 

1,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

Then, the identity mapping, 𝑓: (�̃�1, �̃�1
�̃��̃��̃�

) → (�̃�2, �̃�2
�̃��̃��̃�

)  is 𝒮𝒱𝒩 −  almost continuous , but it is not 𝒮𝒱𝒩 −

 continuou. Since, �̃�2
�̃�(ℰ4) =

1

2
 and ℰ4 is not 

1

2
− 𝑆𝑉𝑁𝑂 set in �̃�1, because, �̃�1

�̃�
(𝑓−1(ℰ4)) = 0 ≱

1

2
, �̃�1

�̃�
(𝑓−1(ℰ4)) =

1 ≰
1

2
and �̃�1

�̃�
(𝑓−1(ℰ4)) = 1 ≱

1

2
. Hence, [ �̃�2

�̃�(ℰ4) =
1

2
≰ 0 = �̃�1

�̃�
(𝑓−1(ℰ4)) , �̃�2

�̃�(ℰ4) =
1

2
≱ 1 = �̃�1

�̃�
(𝑓−1(ℰ4)) ,

�̃�2
�̃�(ℰ4)

1

2
≱ 1 = �̃�1

�̃�
(𝑓−1(ℰ4))].

Theorem 3.10. Let 𝑓: (�̃�1, �̃�1
�̃��̃��̃�

) → (�̃�2, �̃�2
�̃��̃��̃�

) be a mapping from an 𝒮𝒱𝒩𝒯𝒮 (�̃�1, �̃�1
�̃��̃��̃�

) into another 𝒮𝒱𝒩𝒯𝒮 

(�̃�2, �̃�2
�̃��̃��̃�

). Then the next statements are equivalent: 

1. 𝑓 is 𝒮𝒱𝒩 −  almost continuous,

2. �̃�1
�̃�
((𝑓−1(𝒮))

𝑐
) ≥ r, �̃�1

�̃�
((𝑓−1(𝒮))

𝑐
) ≤ 1 − 𝑟, �̃�1

�̃�
((𝑓−1(𝒮))

𝑐
) ≤ 1 − r, for any 𝑟 − 𝑆𝑉𝑁𝑅𝐶 set 𝒮 of �̃�2,

3. 𝑓−1(𝒮) ≤ 𝑖𝑛𝑡
�̃�1
�̃��̃��̃�(𝑓−1(𝑖𝑛𝑡

�̃�2
�̃��̃��̃�(𝐶

�̃�2
�̃��̃��̃�(𝒮, r), r)), 𝑟) , for any 𝒮  of �̃�2  such that �̃�2

�̃�(𝒮) ≥ r , �̃�2
�̃�(𝒮) ≤ 1 − 𝑟 

and �̃�2
�̃�(𝒮) ≤ 1 − r, 

4. 𝐶
�̃�1
�̃��̃��̃�(𝑓−1(𝐶

�̃�2
�̃��̃��̃�(𝑖𝑛𝑡

�̃�2
�̃��̃��̃�(𝒮, r), r)), 𝑟) ≤ 𝑓−1(𝒮), for any 𝒮 of �̃�2 such that �̃�2

�̃�(𝒮) ≥ r, �̃�2
�̃�(𝒮) ≤ 1 − 𝑟 and 

�̃�2
�̃�(𝒮) ≤ 1 − r. 

Proof. (1)⇒(2). Let 𝒮 be an 𝑟 − 𝑆𝑉𝑁𝑅𝐶 set of �̃�2 Then by Lemma 3.4, 𝒮c is 𝑟 − 𝑆𝑉𝑁𝑅𝑂 set in �̃�2. By (1),

we obtain 

�̃�1
�̃�(𝑓−1(𝒮𝑐)) = �̃�1

�̃�((𝑓−1(𝒮))𝑐) ≥ 𝑟, �̃�1
�̃�(𝑓−1(𝒮𝑐)) = �̃�1

�̃�((𝑓−1(𝒮))𝑐) ≤ 1 − 𝑟, 

�̃�1
�̃�(𝑓−1(𝒮𝑐)) = �̃�1

�̃�((𝑓−1(𝒮))𝑐) ≤ 1 − 𝑟. 

(2)⇒(1). It is analogous to the proof of (1)⇒(2). 

(1)⇒(3). Since, [ �̃�2
�̃�(𝒮) ≥ 𝑟 , �̃�2

�̃�(𝒮) ≤ 1 − 𝑟 , �̃�2
�̃�(𝒮) ≤ 1 − 𝑟], then, 𝒮 = 𝑖𝑛𝑡

�̃�2
�̃��̃��̃�(𝒮, 𝑟) ≤ 𝑖𝑛𝑡

�̃�2
�̃��̃��̃�(𝐶

�̃�2
�̃��̃��̃�(𝒮, 𝑟), 𝑟) , 

and hence, f−1(𝒮) = f−1(int
τ̃2
γ̃η̃μ̃(C

τ̃2
γ̃η̃μ̃(𝒮, r), r)), since 
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�̃�2
�̃�
([𝐶

�̃�2
�̃�(𝒮, 𝑟)]𝑐) ≥ 𝑟 ,   �̃�2

�̃�
([𝐶

�̃�2
�̃�(𝒮, 𝑟)]𝑐) ≤ 1 − 𝑟 ,   �̃�2

�̃�
([𝐶

�̃�2
�̃�(𝒮, 𝑟)]𝑐) ≤ 1 − 𝑟 ,

then by Theorem 3.6 𝑖𝑛𝑡
�̃�2
�̃��̃��̃�(𝐶

�̃�2
�̃��̃��̃�(𝒮, 𝑟), 𝑟) is 𝑟 − 𝑆𝑉𝑁𝑅𝑂 set. So, 

�̃�1
�̃�
(𝑓−1(𝑖𝑛𝑡

�̃�2
�̃�(𝐶

�̃�2
�̃�(𝒮, 𝑟), 𝑟))) ≥ 𝑟, �̃�1

�̃�
(𝑓−1(𝑖𝑛𝑡

�̃�2
�̃�(𝐶

�̃�2
�̃�(𝒮, 𝑟), 𝑟))) ≤ 1 − 𝑟, �̃�1

�̃�
(𝑓−1(𝑖𝑛𝑡

�̃�2
�̃�(𝐶

�̃�2
�̃�(𝒮, 𝑟), 𝑟))) ≤ 1 − 𝑟.

Therefore, 𝑓−1(𝒮) ≤  𝑓−1(𝑖𝑛𝑡
�̃�2
�̃��̃��̃�(𝐶

�̃�2
�̃�(𝒮, 𝑟), 𝑟)) = 𝑖𝑛𝑡

�̃�1
�̃��̃��̃�(𝑓−1(𝑖𝑛𝑡

�̃�2
�̃��̃��̃�(𝐶

�̃�2
�̃��̃��̃�(𝒮, 𝑟), 𝑟)). 

(3)⇒(1). Let 𝒮 be an 𝑟 − 𝑆𝑉𝑁𝑅𝑂 set of �̃�2. Then, we get 

𝑓−1(𝒮) ≤ 𝑖𝑛𝑡
�̃�1
�̃��̃��̃�(𝑓−1(𝑖𝑛𝑡

�̃�2
�̃��̃��̃�(𝐶

�̃�2
�̃��̃��̃�(𝒮, r), r)), 𝑟) = 𝑖𝑛𝑡

�̃�1
�̃��̃��̃�(𝑓−1(𝒮), r); 

this suggests that, 𝑓−1(𝒮) = 𝑖𝑛𝑡
�̃�1
�̃��̃��̃�(𝑓−1(𝒮), r), then 

�̃�1
�̃�(𝑓−1(𝒮)) = �̃�1

�̃�
(𝑖𝑛𝑡

�̃�1
�̃�(𝑓−1(𝒮), r)) ≥ 𝑟, �̃�1

�̃�(𝑓−1(𝒮)) = �̃�1
�̃�
(𝑖𝑛𝑡

�̃�1
�̃�(𝑓−1(𝒮), r)) ≤ 1 − 𝑟, 

�̃�1
�̃�(𝑓−1(𝒮)) = �̃�1

�̃�
(𝑖𝑛𝑡

�̃�1
�̃�(𝑓−1(𝒮), r)) ≤ 1 − 𝑟.

Therefore, 𝑓 is 𝒮𝒱𝒩 −  𝑎𝑙𝑚𝑜𝑠𝑡 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠. 

 (2)⇔(4). Can be proved similarly. 

Theorem 3.11. Let 𝑓: (�̃�1, �̃�1
�̃��̃��̃�

) → (�̃�2, �̃�2
�̃��̃��̃�

) be a map from an 𝒮𝒱𝒩𝒯𝒮 (�̃�1, �̃�1
�̃��̃��̃�

) into another 𝒮𝒱𝒩𝒯𝒮 (�̃�2,

�̃�2
�̃��̃��̃�

). Then the following are equivalent: 

1. 𝑓 is 𝒮𝒱𝒩 −  𝑤𝑒𝑎𝑘𝑙𝑦 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠,

2. 𝑓(𝐶
�̃�1
�̃��̃� �̃�(𝒮, r)) ≤  𝐶

�̃�2
�̃��̃��̃�(𝑓(𝒮), r) for each 𝒮 ∈ 𝐼�̃�1 

Proof. (1) ⇒ (2). : Let 𝒮 ∈ 𝐼�̃�1. Then, 

𝑓−1(𝐶
�̃�2
�̃��̃��̃�(𝑓(𝒮), r))) = 𝑓−1 [⋂{ℰ ∈ 𝐼�̃�2: �̃�2

�̃�(ℰ𝑐) ≥ 𝑟, �̃�2
�̃�(ℰ𝑐) ≤ 1 − 𝑟, �̃�2

�̃�(ℰ𝑐) ≤ 1 − 𝑟, ℰ ≥ 𝑓(𝒮)}] 

≥ 𝑓−1 [⋂{ℰ ∈ 𝐼�̃�2: �̃�1
�̃�
(𝑓−1(ℰ𝑐)) ≥ 𝑟, �̃�1

�̃�(𝑓−1(ℰ𝑐)) ≤ 1 − 𝑟, �̃�1
�̃�(𝑓−1(ℰ𝑐)) ≤ 1 − 𝑟, ℰ ≥ 𝑓(𝒮)}] 

≥ 𝑓−1 [⋂{ℰ ∈ 𝐼�̃�2: �̃�1
�̃�
((𝑓−1(ℰ))

𝑐
) ≥ 𝑟, �̃�1

�̃�
((𝑓−1(ℰ))

𝑐
) ≤ 1 − 𝑟, �̃�1

�̃�
((𝑓−1(ℰ))

𝑐
) ≤ 1 − 𝑟, ℰ ≥ 𝑓(𝒮)}] 

≥⋂{𝑓−1(ℰ) ∈ 𝐼�̃�1: �̃�1
�̃�
((𝑓−1(ℰ))

𝑐
) ≥ 𝑟, �̃�1

�̃�
((𝑓−1(ℰ))

𝑐
) ≤ 1 − 𝑟, �̃�1

�̃�
((𝑓−1(ℰ))

𝑐
) ≤ 1 − 𝑟, 𝑓−1(ℰ) ≥ 𝒮}

≥⋂{𝒟 ∈ 𝐼�̃�1: �̃�1
�̃�(𝒟𝑐) ≥ 𝑟, �̃�1

�̃�(𝒟𝑐) ≤ 1 − 𝑟, �̃�1
�̃�(𝒟𝑐) ≤ 1 − 𝑟,    𝒟 ≥ 𝒮} = 𝐶

�̃�1
�̃��̃��̃�(𝒮, r). 

Hence, 𝑓(𝐶
�̃�1
�̃��̃��̃�(𝒮, r)) ≤ 𝑓(𝑓−1(𝐶

�̃�2
�̃�𝜂 ̃�̃�(𝑓(𝒮), r))) ≤ 𝐶

�̃�2
�̃��̃� �̃�(𝑓(𝒮), r). 

(2)⇒(1). It is similar to that of (1)⇒(2). 

Corollary 3.12. Let 𝑓: �̃�1 → �̃�2 be an 𝒮𝒱𝒩 −  𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 mapping with respect to the 𝒮𝒱𝒩𝒯s �̃�1
�̃��̃��̃�

 and �̃�2
�̃��̃��̃�

respectively. Then , for each 𝒮 ∈ 𝐼�̃�1, 𝑓(𝐶
�̃�1
�̃��̃� �̃�(𝒮, r)) ≤  𝐶

�̃�2
𝛾 ̃�̃� �̃�(𝑓(𝒮), r). 

Theorem 3.13. Let 𝑓: �̃�1 → �̃�2 be an 𝒮𝒱𝒩 −  𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 mapping with respect to the 𝒮𝒱𝒩𝒯 �̃�1
�̃��̃��̃�

 and �̃�2
�̃��̃��̃�

, 

respectively. Then , for any 𝒮 ∈ 𝐼�̃�2, 𝐶
�̃�1
𝛾 ̃ �̃��̃�(𝑓−1(𝒮), r)) ≤  𝑓−1(𝐶

�̃�2
�̃�𝜂 ̃�̃�(𝒮), r)). 

Proof. Let 𝒮 ∈ 𝐼�̃�2. We get from Theorem 3.12, 𝐶
�̃�1
�̃��̃� �̃�(𝑓−1(𝒮), r)) ≤ 𝑓−1(𝑓(𝐶

�̃�1
�̃�𝜂 ̃�̃�(𝑓−1(𝒮), r)) ≤   𝑓−1(𝐶

�̃�2
�̃�𝜂 ̃�̃�(𝒮, r)). 
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Hence, 𝐶
�̃�1
�̃��̃��̃�(𝑓−1(𝒮), r)) ≤   𝑓−1(𝐶

�̃�2
�̃� �̃��̃�(𝒮, r)), for every 𝒮 ∈ 𝐼�̃�2. 

4. Compactness on Single-Valued Neutrosophic Ideal Topological Spaces

This section aims to establish new notions of r-single-valued neutrosophic aspects called (compact, ideal 

compact, ideal quasi H-closed, compact modulo an single-valued neutrosophic ideal) (briefly, 𝑟 − 𝒮𝒱𝒩 −

𝑐𝑜𝑚𝑝𝑎𝑐𝑡, 𝑟 − 𝒮𝒱𝒩ℐ − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡, 𝑟 − 𝒮𝒱𝒩ℐ −  𝑞𝑢𝑎𝑠𝑖 𝐻 − 𝑐𝑙𝑜𝑠𝑒𝑑, 𝑟 − 𝒮𝒱𝒩𝐶(ℐ) − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡) in 𝒮𝒱𝒩ℐ𝒯𝒮.  

Definition 4.1. Let (�̃�, �̃��̃��̃��̃�, ) be an 𝒮𝒱𝒩𝒯𝒮  and 𝑟 ∈ 𝐼0 . Then �̃� is called 𝑟 − 𝒮𝒱𝒩 − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 iff for every 

family {𝒮𝑗 ∈ 𝐼
�̃�: �̃��̃�(𝒮𝑗) ≥ 𝑟,  �̃�

�̃�(𝒮𝑗) ≤ 1 − 𝑟 , �̃�
�̃�(𝒮𝑗) ≤ 1 − 𝑟, 𝑗 ∈ Γ}  such that ⋃ 𝒮𝑗 = 1̃𝑗∈Γ , there exists a finite 

subset Γ0 ⊆ Γ such that ⋃ 𝒮𝑗 = 1̃𝑗∈Γ0 . 

Definition 4.2. Let (�̃�, �̃��̃��̃��̃�, ℐ̃�̃��̃��̃�) be an 𝒮𝒱𝒩ℐ𝒯𝒮 and 𝑟 ∈ 𝐼0. Then,

(1) �̃�  is called 𝑟 − 𝒮𝒱𝒩ℐ − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡  (resp., 𝑟 − 𝒮𝒱𝒩ℐ −  𝑞𝑢𝑎𝑠𝑖 𝐻 − 𝑐𝑙𝑜𝑠𝑒𝑑 ) iff every family, 

{𝒮𝑗 ∈ 𝐼
�̃�:  �̃��̃�(𝒮𝑗) ≥ 𝑟,  �̃��̃�(𝒮𝑗) ≤ 1 − 𝑟 , �̃��̃�(𝒮𝑗) ≤ 1 − 𝑟, 𝑗 ∈ Γ} such that ⋃ 𝒮𝑗 = 1̃𝑗∈Γ , there exists a finite

subse Γ0 ⊆ Γ  such that ℐ̃�̃�([⋃ 𝒮𝑗𝑗∈Γ0 ]
𝑐
) ≥ 𝑟,   ℐ̃�̃�([⋃ 𝒮𝑗𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟, ℐ̃�̃̃�([⋃ 𝒮𝑗𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟 (resp.,

ℐ̃�̃�([⋃ 𝐶�̃��̃�(𝒮𝑗 , 𝑟)𝑗∈Γ0 ]
𝑐
) ≥ 𝑟, ℐ̃�̃�([⋃ 𝐶�̃��̃�(𝒮𝑗𝑗∈Γ0 , 𝑟)]

𝑐
) ≤ 1 − 𝑟, ℐ̃�̃�([⋃ 𝐶�̃��̃�(𝒮𝑗𝑗∈Γ0 , 𝑟)]

𝑐
) ≤ 1 − 𝑟).

(2) �̃� is called 𝑟 − 𝒮𝒱𝒩𝐶(ℐ) − compact if for any  �̃��̃�(𝒮𝑐) ≥ 𝑟,  �̃��̃�(𝒮𝑐) ≤ 1 − 𝑟, �̃��̃�(𝒮𝑐) ≤ 1 − 𝑟 and every 

family {ℰ𝑗 ∈ 𝐼
�̃�: �̃� �̃�(ℰ𝑗) ≥ 𝑟,  �̃�

�̃�(ℰ𝑗) ≤ 1 − 𝑟 , �̃�
�̃�(ℰ𝑗) ≤ 1 − 𝑟, 𝑗 ∈ Γ} such that 𝒮 ≤ ⋃ ℰ𝑗𝑗∈Γ , there exists a

finite subse Γ0 ⊆ Γ  such that ℐ̃�̃�(𝒮 ∩ [⋃ 𝐶�̃��̃�(ℰ𝑗 , 𝑟)𝑗∈Γ0 ]
𝑐
) ≥ 𝑟 , ℐ̃�̃�(𝒮 ∩ [⋃ 𝐶�̃��̃�(ℰ𝑗𝑗∈Γ0 , 𝑟)]

𝑐
) ≤ 1 − 𝑟 ,

ℐ̃�̃�(𝒮 ∩ [⋃ 𝐶�̃��̃�(ℰ𝑗𝑗∈Γ0 , 𝑟)]
𝑐
) ≤ 1 − 𝑟.

Definition 4.3. Let (�̃�, �̃��̃��̃��̃�, ℐ̃�̃��̃��̃�) be an 𝒮𝒱𝒩ℐ𝒯𝒮 and 𝒮 ∈ 𝐼�̃�. Then 𝒮 is called 𝑟 − 𝒮𝒱𝒩ℐ − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 iff every 

family {ℰ𝑗 ∈ 𝐼
�̃�: �̃��̃�(ℰ𝑗) ≥ 𝑟,  �̃��̃�(ℰ𝑗) ≤ 1 − 𝑟 , �̃�

�̃�(ℰ𝑗) ≤ 1 − 𝑟, 𝑗 ∈ Γ}  such that 𝒮 ≤ ⋃ ℰ𝑗𝑗∈Γ , there exists a finite

subse Γ0 ⊆ Γ such that ℐ̃�̃�(𝒮 ∩ [⋃ ℰ𝑗𝑗∈Γ0 ]
𝑐
) ≥ 𝑟, ℐ̃�̃�(𝒮 ∩ [⋃ ℰ𝑗𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟,  ℐ̃�̃�(𝒮 ∩ [⋃ ℰ𝑗𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟.

Theorem 4.4. Let (�̃�, �̃��̃��̃��̃�, ℐ̃�̃��̃��̃�) be an 𝒮𝒱𝒩ℐ𝒯𝒮 and 𝑟 ∈ 𝐼0. Then,

(1) 𝑟 − 𝒮𝒱𝒩 − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡  ⇒ 𝑟 − 𝒮𝒱𝒩ℐ − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡, 

(2) 𝑟 − 𝒮𝒱𝒩ℐ − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 ⇒ 𝑟 − 𝒮𝒱𝒩𝐶(ℐ) − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡, 

(3) 𝑟 − 𝒮𝒱𝒩ℐ − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 ⇒ 𝑟 − 𝑆𝑉𝑁𝐼 −  𝑞𝑢𝑎𝑠𝑖 𝐻 − 𝑐𝑙𝑜𝑠𝑒𝑑. 

Proof. (1) For every family {𝒮𝑗 ∈ 𝐼
�̃�:  �̃��̃�(𝒮𝑗) ≥ 𝑟,  �̃�

�̃�(𝒮𝑗) ≤ 1 − 𝑟 , �̃�
�̃�(𝒮𝑗) ≤ 1 − 𝑟, 𝑗 ∈ Γ} such that ⋃ 𝒮𝑗 = 1̃𝑗∈Γ . 

By r − 𝒮𝒱𝒩 − compactness  of �̃� , there exists a finite subse Γ0 ⊆ Γ  such that ⋃ 𝒮𝑗 = 1̃𝑗∈Γ0 . Now, since 

[⋃ 𝒮𝑗𝑗∈Γ0 ]
𝑐
= 0̃, we have ℐ̃�̃�([⋃ 𝒮𝑗𝑗∈Γ0 ]

𝑐
) ≥ 𝑟, ℐ̃�̃�([⋃ 𝒮𝑗𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟, ℐ̃�̃̃�([⋃ 𝒮𝑗𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟.

(2) For every �̃��̃�(𝒮𝑐) ≥ 𝑟,  �̃��̃�(𝒮𝑐) ≤ 1 − 𝑟, �̃��̃�(𝒮𝑐) ≤ 1 − 𝑟 and evrey family {ℰ𝑗 ∈ 𝐼
�̃�:  �̃��̃�(ℰ𝑗) ≥ 𝑟, �̃�

�̃�(ℰ𝑗) ≤ 1 −

𝑟 , �̃��̃�(ℰ𝑗) ≤ 1 − 𝑟, 𝑗 ∈ Γ} such that 𝒮 ≤ ⋃ ℰ𝑗𝑗∈Γ . By r − 𝒮𝒱𝒩ℐ − compactness of 𝒮 , there exists a finite subse

Γ0 ⊆ Γ  such that ℐ̃�̃�(𝒮 ∩ [⋃ ℰ𝑗𝑗∈Γ0 ]
𝑐
) ≥ 𝑟 , ℐ̃�̃�(𝒮 ∩ [⋃ ℰ𝑗𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟 , ℐ̃�̃�(𝒮 ∩ [⋃ ℰ𝑗𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟 . Since,

𝒮 ∩ [⋃ ℰ𝑗𝑗∈Γ0 ]
𝑐
≥ 𝒮 ∩ [⋃ 𝐶�̃��̃��̃��̃�(ℰ𝑗 , 𝑟)𝑗∈Γ0 ]

𝑐
, we have

ℐ̃�̃� (𝒮 ∩ [⋃ 𝐶�̃��̃�(ℰ𝑗 , 𝑟)

𝑗∈Γ0

]

𝑐

) ≥ 𝑟, ℐ̃�̃� (𝒮 ∩ [⋃ 𝐶�̃��̃�(ℰ𝑗 , 𝑟)

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟 , ℐ̃�̃� (𝒮 ∩ [⋃ 𝐶�̃��̃�(ℰ𝑗 , 𝑟)

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟 
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Hence, �̃� is 𝑟 − 𝒮𝒱𝒩𝐶(ℐ) − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡. 

(3) Let {𝒮𝑗 ∈ 𝐼
�̃�: �̃��̃�(𝒮𝑗) ≥ 𝑟,  �̃��̃�(𝒮𝑗) ≤ 1 − 𝑟 , �̃�

�̃�(𝒮𝑗) ≤ 1 − 𝑟: 𝑗 ∈ Γ}  be a family such that ⋃ 𝒮𝑗 = 1̃𝑗∈Γ . By

𝑟 − 𝒮𝒱𝒩ℐ − compactness  of (�̃�, �̃��̃��̃��̃�, ℐ̃�̃��̃��̃�)̃ , there exists a finite subfamily Γ0 ⊆ Γ such that ℐ̃�̃�([⋃ 𝒮𝑗𝑗∈Γ0 ]
𝑐
) ≥ 𝑟,

 ℐ̃�̃�([⋃ 𝒮𝑗𝑗∈Γ0 ]
𝑐
) ≤ 1 − 𝑟, ℐ̃�̃̃�([⋃ 𝒮𝑗𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟. Since, [⋃ 𝒮𝑗𝑗∈Γ0 ]

𝑐
≥ [⋃ 𝐶�̃��̃��̃��̃�(𝒮𝑗𝑗∈Γ0 , 𝑟)]

𝑐
,  we have

ℐ̃�̃� ([⋃ 𝐶�̃��̃��̃��̃�(𝒮𝑗
𝑗∈Γ0

, 𝑟)]

𝑐

) ≥ 𝑟,  ℐ̃�̃� ([⋃ 𝐶�̃��̃��̃��̃�(𝒮𝑗
𝑗∈Γ0

, 𝑟)]

𝑐

) ≤ 1 − 𝑟, ℐ̃�̃̃� ([⋃ 𝐶�̃��̃��̃��̃�(𝒮𝑗
𝑗∈Γ0

, 𝑟)]

𝑐

) ≤ 1 − 𝑟 

Hence, �̃� is 𝑟 − 𝑆𝑉𝑁𝐼 −  𝑞𝑢𝑎𝑠𝑖 𝐻 − 𝑐𝑙𝑜𝑠𝑒𝑑. 

Theorem 4.5. The next statements are equivalent in an 𝒮𝒱𝒩ℐ𝒯𝒮 (�̃�, �̃��̃��̃��̃�, ℐ̃�̃��̃��̃�): 

(1) �̃� is r − 𝒮𝒱𝒩ℐ − compact, 

(2) For any family {𝒮𝑗 ∈ 𝐼
�̃�:  �̃��̃�(𝒮𝑗

𝑐) ≥ 𝑟, �̃��̃�(𝒮𝑗
𝑐) ≤ 1 − 𝑟 , �̃��̃�(𝒮𝑗

𝑐) ≤ 1 − 𝑟, 𝑗 ∈ Γ}  with ⋂ 𝒮𝑗𝑗∈Γ = 0̃, there 

exists a finite subset Γ0 ⊆ Γ with ℐ̃�̃�(⋂ 𝒮𝑗𝑗∈Γ0 ) ≥ 𝑟,  ℐ̃�̃�(⋂ 𝒮𝑗𝑗∈Γ0 ) ≤ 1 − 𝑟,  ℐ̃�̃�(⋂ 𝒮𝑗𝑗∈Γ0 ) ≤ 1 − 𝑟.

Proof. (1)⇒(2). For each family {𝒮𝑗 ∈ 𝐼
�̃�:  �̃��̃�(𝒮𝑗

𝑐) ≥ 𝑟, �̃��̃�(𝒮𝑗
𝑐) ≤ 1 − 𝑟 , �̃��̃�(𝒮𝑗

𝑐) ≤ 1 − 𝑟, 𝑗 ∈ Γ} with ⋂ 𝒮𝑗𝑗∈Γ = 0̃. 

Then, ⋃ 𝒮𝑗
𝑐

𝑗∈Γ = 1̃. By 𝑟 − 𝒮𝒱𝒩ℐ − compactness  of (�̃�, �̃��̃��̃��̃�, ℐ̃�̃��̃��̃�) , there exists a finite subse Γ0 ⊆ Γ such that

ℐ̃�̃�([⋃ 𝒮𝑗
𝑐

𝑗∈Γ0 ]
𝑐
) ≥ 𝑟, ℐ̃�̃�([⋃ 𝒮𝑗

𝑐
𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟, ℐ̃�̃̃�([⋃ 𝒮𝑗

𝑐
𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟, this implies that,

ℐ̃�̃� (⋂ 𝒮𝑗
𝑗∈Γ0

) ≥ 𝑟, ℐ̃�̃� (⋂ 𝒮𝑗
𝑗∈Γ0

) ≤ 1 − 𝑟, ℐ̃�̃̃� (⋂ 𝒮𝑗
𝑗∈Γ0

) ≤ 1 − 𝑟. 

(2)⇒(1). Let {𝒮𝑗 ∈ 𝐼
�̃�: �̃��̃�(𝒮𝑗) ≥ 𝑟,  �̃�

�̃�(𝒮𝑗) ≤ 1 − 𝑟 , �̃�
�̃�(𝒮𝑗) ≤ 1 − 𝑟, 𝑗 ∈ Γ} be a family such that ⋃ 𝒮𝑗 = 1̃𝑗∈Γ . Then, 

⋂ 𝒮𝑗
𝑐

𝑗∈Γ = 0̃ , by (2), there exists a finite subse Γ0 ⊆ Γ  such that ℐ̃�̃�(⋂ 𝒮𝑗
𝑐

𝑗∈Γ0 ) ≥ 𝑟 , ℐ̃�̃�(⋂ 𝒮𝑗
𝑐

𝑗∈Γ0 ) ≤ 1 − 𝑟 ,

ℐ̃�̃�(⋂ 𝒮𝑗
𝑐

𝑗∈Γ0 ) ≤ 1 − 𝑟  this implies that ℐ̃�̃�([⋃ 𝒮𝑗𝑗∈Γ0 ]
𝑐
) ≥ 𝑟 , ℐ̃�̃�([⋃ 𝒮𝑗𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟 ,  ℐ̃�̃̃�([⋃ 𝒮𝑗𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟 .

Therefore (�̃�, �̃��̃��̃��̃�, ℐ̃�̃��̃��̃�)  is 𝑟 − 𝒮𝒱𝒩ℐ − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡. 

Remark 4.6. Let (�̃�, �̃��̃��̃��̃�, ℐ̃�̃��̃��̃�)  be an 𝒮𝒱𝒩ℐ𝒯𝒮. The simplest 𝒮𝒱𝒩ℐ on �̃� is ℐ̃0
�̃��̃��̃�

: 𝐼�̃� ⟶ 𝐼, where 

ℐ̃0
�̃�(𝒮) = {

1, 𝑖𝑓  𝒮 = 0̃      
0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

      ℐ̃0
�̃�(𝒮) = {

0, 𝑖𝑓  𝒮 = 0̃
1,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

ℐ̃0
�̃�(𝒮) = {

0, 𝑖𝑓  𝒮 = 0̃
1,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

If ℐ̃�̃��̃��̃� = ℐ̃0
�̃��̃��̃�

 then 𝑟 − 𝒮𝒱𝒩 − compact and 𝑟 − 𝒮𝒱𝒩ℐ − compact are equivalent 

Definition 4.7. An 𝒮𝒱𝒩𝒯𝒮 (�̃�, �̃��̃��̃��̃�) is said to be r-single-valued neutrosophic regular (𝑟 − 𝒮𝒱𝒩 − regular) iff 

for every �̃��̃�(𝒮) ≥ 𝑟, �̃��̃�(𝒮) ≤ 1 − 𝑟 , �̃��̃�(𝒮) ≤ 1 − 𝑟 and 𝑟 ∈ 𝐼0,

𝒮 =⋃{ℰ ∈  𝐼�̃�: �̃��̃�(ℰ) ≥ 𝑟,  �̃��̃�(ℰ) ≤ 1 − 𝑟 , �̃��̃�(ℰ) ≤ 1 − 𝑟, 𝐶�̃��̃��̃��̃�(ℰ, r) = 𝒮}.

Theorem 4.8. Let (�̃�, �̃� �̃��̃��̃�, ℐ̃�̃��̃��̃�)  be an 𝑟 − 𝒮𝒱𝒩ℐ −  quasi H − closed  and 𝑟 − 𝒮𝒱𝒩 − regular . Then 

(�̃�, �̃��̃��̃��̃�, ℐ̃�̃��̃��̃�) is 𝑟 − 𝒮𝒱𝒩ℐ − compact. 

Proof.  For every family {𝒮 ∈ 𝐼�̃�: �̃��̃�(𝒮𝑗) ≥ 𝑟,  �̃�
�̃�(𝒮𝑗) ≤ 1 − 𝑟 , �̃��̃�(𝒮𝑗) ≤ 1 − 𝑟, 𝑗 ∈ Γ} such that ⋃ 𝒮𝑗 = 1̃𝑗∈Γ . By 

𝑟 − 𝒮𝒱𝒩 − regularity of (�̃�, �̃��̃��̃��̃�, ℐ̃�̃��̃��̃�),  for any �̃��̃�(𝒮𝑗) ≥ 𝑟,  �̃��̃�(𝒮𝑗) ≤ 1 − 𝑟, �̃��̃�(𝒮𝑗) ≤ 1 − 𝑟, we have
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𝒮𝑗 = ⋃ {𝒮𝑗∆:   �̃�
�̃�(𝒮𝑗∆) ≥ 𝑟,  �̃��̃�(𝒮𝑗∆) ≤ 1 − 𝑟 , �̃��̃�(𝒮𝑗∆) ≤ 1 − 𝑟, 𝐶�̃��̃��̃��̃�(𝒮𝑗∆ , r) ≤ 𝒮𝑗}

𝑗∆∈∆𝑗

. 

Thus, ⋃ (⋃ 𝒮𝑗∆𝑗∆∈∆𝑗 ) = 1̃𝑗∈Γ . Since (�̃�, �̃��̃��̃��̃�, ℐ̃�̃��̃��̃�) is 𝑟 − 𝒮𝒱𝒩ℐ- quasi H-closed, there exists a finite subset 𝐾 × ∆𝐾

such that 

ℐ̃�̃� ([⋃( ⋃ 𝐶�̃��̃�(𝒮𝑘∆ , 𝑟

𝑘∆∈∆𝑘

))

𝑘∈𝐾

]

𝑐

) ≥ 𝑟,  ℐ̃�̃� ([⋃( ⋃ 𝐶�̃��̃�(𝒮𝑘∆ , 𝑟

𝑘∆∈∆𝑘

))

𝑘∈𝐾

]

𝑐

) ≤ 1 − 𝑟, ℐ̃�̃̃� ([⋃( ⋃ 𝐶�̃��̃�(𝒮𝑘∆ , 𝑟

𝑘∆∈∆𝑘

))

𝑘∈𝐾

]

𝑐

) ≤ 1 − 𝑟. 

For each 𝑘 ∈ 𝐾, since ⋃ 𝐶�̃��̃��̃��̃�(𝒮𝑘∆ , 𝑟𝑘∆∈∆𝑘 ) ≤ 𝒮𝑘. It implies that [⋃ (⋃ 𝐶�̃��̃��̃��̃�(𝒮𝑘∆ , 𝑟𝑘∆∈∆𝑘 ))𝑘∈𝐾 ]
𝑐
≥ [⋃  𝒮𝑘𝑘∈𝐾 ]𝑐 . Thus,

ℐ̃�̃� ([⋃  𝒮𝑘
𝑘∈𝐾

]

𝑐

) ≥ ℐ̃�̃� ([⋃( ⋃ 𝐶�̃��̃�(𝒮𝑘∆ , 𝑟

𝑘∆∈∆𝑘

))

𝑘∈𝐾

]

𝑐

) ≥ 𝑟, ℐ̃�̃� ([⋃  𝒮𝑘
𝑘∈𝐾

]

𝑐

) ≤ ℐ̃�̃� ([⋃( ⋃ 𝐶�̃��̃�(𝒮𝑘∆ , 𝑟

𝑘∆∈∆𝑘

))

𝑘∈𝐾

]

𝑐

) ≤ 1 − 𝑟 

ℐ̃�̃̃� ([⋃  𝒮𝑘
𝑘∈𝐾

]

𝑐

) ≤ ℐ̃�̃̃� ([⋃( ⋃ 𝐶�̃��̃�(𝒮𝑘∆ , 𝑟

𝑘∆∈∆𝑘

))

𝑘∈𝐾

]

𝑐

) ≤ 1 − 𝑟. 

Hence, (�̃�, �̃��̃��̃��̃�, ℐ̃�̃��̃��̃�) is 𝑟 − 𝒮𝒱𝒩ℐ − compact. 

Definition 4.9. A family {𝒮𝑗}𝒋∈Γ in �̃� has the finite intersection property (𝑰 − 𝑭𝑰𝑷) iff the intersection of no 

finite sub-family Γ0 ⊆ Γ s.t ℐ̃�̃�(⋂ 𝒮𝑗𝑗∈Γ0 ) ≥ 𝑟, ℐ̃�̃�(⋂ 𝒮𝑗𝑗∈Γ0 ) ≤ 1 − 𝑟, ℐ̃�̃̃�(⋂ 𝒮𝑗𝑗∈Γ0 ) ≤ 1 − 𝑟.

Theorem 4.10. An 𝒮𝒱𝒩ℐ𝒯𝒮  (�̃�, �̃��̃��̃��̃�, ℐ̃�̃��̃��̃�)  is r − 𝒮𝒱𝒩ℐ − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 , iff every family {𝒮𝑗 ∈ 𝐼
�̃�: �̃��̃�(𝒮𝑗

𝑐) ≥ 𝑟,

 �̃��̃�(𝒮𝑗
𝑐) ≤ 1 − 𝑟 , �̃��̃�(𝒮𝑗

𝑐) ≤ 1 − 𝑟, 𝑗 ∈ Γ}  having the finite intersection property (𝑰 − 𝑭𝑰𝑷)  has a non-empty

intersection.  

Proof.  Obvious. 

Theorem 4.11. Suppose that (�̃�, �̃��̃��̃��̃�, ℐ̃�̃��̃��̃�)  is an 𝒮𝒱𝒩ℐ𝒯𝒮 , 𝒮  is 𝑟 − 𝒮𝒱𝒩ℐ − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 . Then for every 

collection {ℰ𝑗 ∈ 𝐼
�̃�:  ℰ𝑗 ≤ 𝑖𝑛𝑡�̃��̃��̃��̃�(𝐶�̃��̃��̃��̃�(ℰ𝑗 , 𝑟), 𝑟), 𝑗 ∈ Γ} with 𝒮 ≤ ⋃ ℰ𝑗𝑗∈Γ , there exists a finite subset Γ0 ⊆ Γ s.t, 

ℐ̃�̃� (𝒮 ∩ [⋃ 𝑖𝑛𝑡�̃��̃�(𝐶�̃��̃��̃��̃�(ℰ𝑗 , 𝑟), 𝑟)

𝑗∈Γ0

]

𝑐

) ≥ 𝑟, ℐ̃�̃� (𝒮 ∩ [⋃ 𝑖𝑛𝑡�̃��̃��̃��̃�(𝐶�̃��̃�(ℰ𝑗 , 𝑟), 𝑟)

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟 

ℐ̃�̃� (𝒮 ∩ [⋃ 𝑖𝑛𝑡�̃��̃�(𝐶�̃��̃��̃��̃�(ℰ𝑗 , 𝑟), 𝑟)

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟. 

Proof. Let {ℰ𝑗 ∈ 𝐼
�̃�:  ℰ𝑗 ≤ 𝑖𝑛𝑡�̃��̃��̃��̃�(𝐶�̃��̃��̃��̃�(ℰ𝑗 , 𝑟), 𝑟), 𝑗 ∈ Γ} with 𝒮 ≤ ⋃ ℰ𝑗𝑗∈Γ .Then, 𝒮 ≤ ⋃ 𝑖𝑛𝑡�̃��̃��̃��̃�(𝐶�̃��̃��̃��̃�(ℰ𝑗 , 𝑟), 𝑟)𝑗∈Γ , 

[�̃��̃� (𝑖𝑛𝑡�̃��̃�(𝐶�̃��̃�(ℰ𝑗 , 𝑟), 𝑟)) ≥ 𝑟,  �̃��̃� (𝑖𝑛𝑡�̃��̃�(𝐶�̃��̃�(ℰ𝑗 , 𝑟), 𝑟)) ≤ 1 − 𝑟 , �̃��̃� (𝑖𝑛𝑡�̃��̃�(𝐶�̃��̃�(ℰ𝑗 , 𝑟), 𝑟)) ≤ 1 − 𝑟] . By r − 𝒮𝒱𝒩ℐ 

−𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 of 𝒮, there exists a finite subset Γ0 ⊆ Γ s.t, 

ℐ̃�̃� (𝒮 ∩ [⋃ 𝑖𝑛𝑡�̃��̃�(𝐶�̃��̃��̃��̃�(ℰ𝑗 , 𝑟), 𝑟)

𝑗∈Γ0

]

𝑐

) ≥ 𝑟, ℐ̃�̃� (𝒮 ∩ [⋃ 𝑖𝑛𝑡�̃��̃��̃��̃�(𝐶�̃��̃�(ℰ𝑗 , 𝑟), 𝑟)

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟 
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ℐ̃�̃� (𝒮 ∩ [⋃ 𝑖𝑛𝑡�̃��̃�(𝐶�̃��̃��̃��̃�(ℰ𝑗 , 𝑟), 𝑟)

𝑗∈Γ0

]

𝑐

) ≤ 1− 𝑟. 

Definition 4.12. Let (�̃�, �̃��̃��̃��̃�) be an 𝒮𝒱𝒩𝒯𝒮 and 𝒮 ∈ 𝐼�̃�. Then 𝒮 is called r-single-valued neutrosophic locally 

closed iff 𝒮 = ℰ ∩ 𝒟 where [�̃��̃�(ℰ) ≥ 𝑟,  �̃��̃�(ℰ) ≤ 1 − 𝑟 , �̃��̃�(ℰ) ≤ 1 − 𝑟], [�̃��̃�(𝒟𝑐) ≥ 𝑟,  �̃��̃�(𝒟𝑐) ≤ 1 − 𝑟 , �̃��̃�(𝒟𝑐) ≤

1 − 𝑟].  

Lemma 4.13. Let (�̃�, �̃��̃��̃��̃�)  be an 𝒮𝒱𝒩𝒯𝒮  and 𝒮 ∈ 𝐼�̃� . Then �̃��̃�(𝒮) ≥ 𝑟, �̃��̃�(𝒮) ≤ 1 − 𝑟 , �̃��̃�(𝒮) ≤ 1 − 𝑟  iff 𝒮 

both r-single-valued neutrosophic locally closed and 𝑟 − 𝑆𝑉𝑁𝑃𝑂 set.  

Proof.  It is trivial. 

Lemma 4.14. If 𝒮  is 𝑟 − 𝒮𝒱𝒩ℐ − compact, then for every collection {ℰ𝑗 ∈ 𝐼
�̃�:  ℰ𝑗 𝑖𝑠  𝑏𝑜𝑡ℎ 𝑟 − 𝑆𝑉𝑁𝑃𝑂 𝑎𝑛𝑑 𝑟 −

𝑠𝑖𝑛𝑔𝑙𝑒 − 𝑣𝑎𝑙𝑢𝑒𝑑 𝑛𝑒𝑢𝑡𝑟𝑜𝑠𝑜𝑝ℎ𝑖𝑐 𝑙𝑜𝑐𝑎𝑙𝑙𝑦 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑒𝑡𝑠, 𝑗 ∈ Γ}  with  𝒮 ≤ ⋃ (ℰ𝑗)𝑗∈Γ , there exists a finite subfamily 

Γ0 ⊆ Γ such that ℐ̃�̃�(𝒮 ∩ [⋃ ℰ𝑗𝑗∈Γ0 ]
𝑐
) ≥ 𝑟, ℐ̃�̃�(𝒮 ∩ [⋃ ℰ𝑗𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟, ℐ̃�̃�(𝒮 ∩ [⋃ ℰ𝑗𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟.

Proof. Follows from Lemma 4.13. 

Theorem 4.15. Let (�̃�, �̃��̃��̃��̃�, ℐ̃�̃��̃��̃�) be an 𝒮𝒱𝒩ℐ𝒯𝒮 , 𝒮1  and 𝒮2  are r − 𝒮𝒱𝒩ℐ − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 . Then, 𝒮 ∪ ℰ  is r −

𝒮𝒱𝒩ℐ − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 subset relative to �̃�. 

Proof. Let {ℰ𝑗 ∈ 𝐼
�̃�: �̃��̃�(ℰ𝑗) ≥ 𝑟,  �̃�

�̃�(ℰ𝑗) ≤ 1 − 𝑟 , �̃�
�̃�(ℰ𝑗) ≤ 1 − 𝑟, 𝑗 ∈ Γ} be a family such that 𝒮1 ∪ 𝒮2 ≤ ⋃ ℰ𝑗𝑗∈Γ .

Then 𝒮1 ≤ ⋃ ℰ𝑗𝑗∈Γ  and  𝒮2 ≤ ⋃ ℰ𝑗𝑗∈Γ . Since 𝒮1  and 𝒮2  are 𝑟 − 𝒮𝒱𝒩ℐ − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 , there exists a finite subset 

Γ0 ⊆ Γ such that  

ℐ̃�̃� (𝒮𝑘 ∩ [⋃ ℰ𝑗
𝑗∈Γ0

]

𝑐

) ≥ 𝑟, ℐ̃�̃� (𝒮𝑘 ∩ [⋃ ℰ𝑗
𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟, ℐ̃�̃� (𝒮𝑘 ∩ [⋃ ℰ𝑗
𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟, 

for 𝑘 = 1,2, since (𝒮1 ∩ [⋃ ℰ𝑗𝑗∈Γ0 ]
𝑐
) ∪ (𝒮2 ∩ [⋃ ℰ𝑗𝑗∈Γ0 ]

𝑐
) = (𝒮1 ∪ 𝒮2) ∩ [⋃ ℰ𝑗𝑗∈Γ0 ]

𝑐
. Then,

ℐ̃�̃� ((𝒮1 ∪ 𝒮2) ∩ [⋃ ℰ𝑗
𝑗∈Γ0

]

𝑐

) ≥ 𝑟,  ℐ̃�̃�((𝒮1 ∪ 𝒮2) ∩ [⋃ ℰ𝑗
𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟, ℐ̃�̃� ((𝒮1 ∪ 𝒮2) ∩ [⋃ ℰ𝑗
𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟. 

This shown that (𝒮1 ∪ 𝒮2) is 𝑟 − 𝒮𝒱𝒩ℐ − compact. 

Theorem 4.16. Suppose (�̃�, �̃��̃��̃��̃�, ℐ̃�̃��̃��̃�) be an 𝒮𝒱𝒩ℐ𝒯𝒮, 𝑟 ∈ 𝐼0. Then the next statements are equivalent:

(1) (�̃�, �̃��̃��̃��̃�, ℐ̃�̃��̃��̃�) is 𝑟 − 𝒮𝒱𝒩ℐ −  𝑞𝑢𝑎𝑠𝑖 𝐻 − 𝑐𝑙𝑜𝑠𝑒𝑑, 

(2) For every collection {𝒮𝑗 ∈ 𝐼
�̃�:  �̃��̃�(𝒮𝑗

𝑐) ≥ 𝑟,   �̃��̃�(𝒮𝑗
𝑐) ≤ 1 − 𝑟 ,    �̃��̃�(𝒮𝑗

𝑐) ≤ 1 − 𝑟,   𝑗 ∈ Γ} with ⋂ 𝒮𝑗𝑗∈Γ = 0̃, 

there exists Γ0 ⊆ Γ  such that ℐ̃�̃�(⋂ 𝑖𝑛𝑡�̃��̃�(𝒮𝑗 , 𝑟)𝑗∈Γ0 ) ≥ 𝑟 , ℐ̃�̃�(⋂ 𝑖𝑛𝑡�̃��̃�(𝒮𝑗 , 𝑟)𝑗∈Γ0 ) ≤ 1 − 𝑟 , 

ℐ̃�̃�(⋂ 𝑖𝑛𝑡�̃��̃�(𝒮𝑗 , 𝑟)𝑗∈Γ0 ) ≤ 1 − 𝑟,

(3) ⋂ 𝒮𝑗𝑗∈Γ ≠ 0̃ , holds for any collection {𝒮𝑗 ∈ 𝐼
�̃�:  �̃��̃�(𝒮𝑗

𝑐) ≥ 𝑟,   �̃��̃�(𝒮𝑗
𝑐) ≤ 1 − 𝑟 ,    �̃��̃�(𝒮𝑗

𝑐) ≤ 1 − 𝑟,   𝑗 ∈ Γ}

such that {𝑖𝑛𝑡�̃��̃��̃��̃�(𝒮𝑗 , 𝑟): �̃�
�̃�(𝒮𝑗

𝑐) ≥ 𝑟,   �̃��̃�(𝒮𝑗
𝑐) ≤ 1 − 𝑟 ,    �̃��̃�(𝒮𝑗

𝑐) ≤ 1 − 𝑟,   𝑗 ∈ Γ} has the 𝑰 − 𝑭𝑰𝑷,

(4) For any collection {𝒮𝑗 ∈ 𝐼
�̃�: 𝒮𝑗  is 𝑟 − 𝑆𝑉𝑁𝑅𝑂 𝑠𝑒𝑡𝑠,   𝑗 ∈ Γ} such taht ⋃ 𝒮𝑗 = 1̃𝑗∈Γ , there exists Γ0 ⊆ Γ 

such that ℐ̃�̃�([⋃ 𝐶�̃��̃�(𝒮𝑗 , 𝑟)𝑗∈Γ0 ]
𝑐
) ≥ 𝑟,  ℐ̃�̃�([⋃ 𝐶�̃��̃�(𝒮𝑗𝑗∈Γ0 , 𝑟)]

𝑐
) ≤ 1 − 𝑟,  ℐ̃�̃�([⋃ 𝐶�̃��̃�(𝒮𝑗𝑗∈Γ0 , 𝑟)]

𝑐
) ≤ 1 − 𝑟,
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(5) For every collection {𝒮𝑗 ∈ 𝐼
�̃�: 𝒮𝑗 is 𝑟 − 𝑆𝑉𝑁𝑅𝐶 𝑠𝑒𝑡,   𝑗 ∈ Γ}  such taht ⋂ 𝒮𝑗𝑗∈Γ = 0̃ , there exists Γ0 ⊆ Γ 

such that ℐ̃�̃�(⋂ 𝑖𝑛𝑡�̃��̃�(𝒮𝑗 , 𝑟)𝑗∈Γ0 ) ≥ 𝑟, ℐ̃�̃�(⋂ 𝑖𝑛𝑡�̃��̃�(𝒮𝑗 , 𝑟)𝑗∈Γ0 ) ≤ 1 − 𝑟, ℐ̃�̃�(⋂ 𝑖𝑛𝑡�̃��̃�(𝒮𝑗 , 𝑟)𝑗∈Γ0 ) ≤ 1 − 𝑟, 

(6) ⋂ 𝒮𝑗𝑗∈Γ ≠ 0̃ , holds for every collection {𝒮𝑗 ∈ 𝐼
�̃�:  𝒮𝑗 is 𝑟 − 𝑆𝑉𝑁𝑅𝐶 𝑠𝑒𝑡,   𝑗 ∈ Γ}  such taht 

{𝑖𝑛𝑡�̃��̃��̃��̃�(𝒮𝑗 , 𝑟):  𝒮𝑗 is 𝑟 − 𝑆𝑉𝑁𝑅𝐶 𝑠𝑒𝑡,   𝑗 ∈ Γ} has the 𝑰 − 𝑭𝑰𝑷. 

Proof. (1)⇒(2). Let {𝒮𝑗 ∈ 𝐼
�̃�:  �̃��̃�(𝒮𝑗

𝑐) ≥ 𝑟,   �̃��̃�(𝒮𝑗
𝑐) ≤ 1 − 𝑟 ,    �̃��̃�(𝒮𝑗

𝑐) ≤ 1 − 𝑟,   𝑗 ∈ Γ} be a family with ⋂ 𝒮𝑗𝑗∈Γ = 0̃. 

Then, ⋃ 𝒮𝑗
𝑐

𝑗∈Γ = 1̃ . Since, (�̃�, �̃��̃��̃��̃�, ℐ̃�̃��̃��̃�)  is 𝑟 − 𝒮𝒱𝒩ℐ −  𝑞𝑢𝑎𝑠𝑖 𝐻 − 𝑐𝑙𝑜𝑠𝑒𝑑 , there exists Γ0 ⊆ Γ  such that

ℐ̃�̃�([⋃ 𝐶�̃��̃�(𝒮𝑗
𝑐 , 𝑟)𝑗∈Γ0 ]

𝑐
) ≥ 𝑟 , ℐ̃�̃�([⋃ 𝐶�̃��̃�(𝒮𝑗

𝑐
𝑗∈Γ0 , 𝑟)]

𝑐
) ≤ 1 − 𝑟 , ℐ̃�̃�([⋃ 𝐶�̃��̃�(𝒮𝑗

𝑐
𝑗∈Γ0 , 𝑟)]

𝑐
) ≤ 1 − 𝑟 . Since,

[⋃ 𝐶�̃��̃��̃��̃�(𝒮𝑗
𝑐 , 𝑟)𝑗∈Γ0 ]

𝑐
= ⋂ 𝑖𝑛𝑡�̃��̃��̃��̃�(𝒮𝑗 , 𝑟)𝑗∈Γ0 , we have 

ℐ̃�̃� (⋂ 𝑖𝑛𝑡�̃��̃�(𝒮𝑗 , 𝑟)

𝑗∈Γ0

) ≥ 𝑟, ℐ̃�̃� (⋂ 𝑖𝑛𝑡�̃��̃�(𝒮𝑗 , 𝑟)

𝑗∈Γ0

) ≤ 1 − 𝑟, ℐ̃�̃� (⋂ 𝑖𝑛𝑡�̃��̃�(𝒮𝑗 , 𝑟)

𝑗∈Γ0

) ≤ 1 − 𝑟. 

(2)⇒(1). Let {𝒮𝑗 ∈ 𝐼
�̃�: �̃��̃�(𝒮𝑗) ≥ 𝑟,  �̃�

�̃�(𝒮𝑗) ≤ 1 − 𝑟 , �̃�
�̃�(𝒮𝑗) ≤ 1 − 𝑟, 𝑗 ∈ Γ}  be a family s.t ⋃ 𝒮𝑗 = 1̃𝑗∈Γ . Then, 

⋂ 𝒮𝑗
𝑐

𝑗∈Γ = 0̃ and by hypothesis, there exists Γ0 ⊆ Γ s.t, ℐ̃�̃�(⋂ 𝑖𝑛𝑡�̃��̃�(𝒮𝑗
𝑐 , 𝑟)𝑗∈Γ0 ) ≥ 𝑟, ℐ̃�̃�(⋂ 𝑖𝑛𝑡�̃��̃�(𝒮𝑗

𝑐 , 𝑟)𝑗∈Γ0 ) ≤ 1 −

𝑟, ℐ̃�̃�(⋂ 𝑖𝑛𝑡�̃��̃�(𝒮𝑗
𝑐 , 𝑟)𝑗∈Γ0 ) ≤ 1 − 𝑟. Since, ⋂ 𝑖𝑛𝑡�̃��̃��̃��̃�(𝒮𝑗

𝑐 , 𝑟)𝑗∈Γ0 = [⋃ 𝐶�̃��̃��̃��̃�(𝒮𝑗 , 𝑟)𝑗∈Γ0 ]
𝑐
,

ℐ̃�̃� ([⋃ 𝐶�̃��̃�(𝒮𝑗 , 𝑟)

𝑗∈Γ0

]

𝑐

) ≥ 𝑟, ℐ̃�̃� ([⋃ 𝐶�̃��̃�(𝒮𝑗 , 𝑟)

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟, ℐ̃�̃� ([⋃ 𝐶�̃��̃�(𝒮𝑗 , 𝑟)

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟. 

Thus, (�̃�, �̃��̃��̃��̃�, ℐ̃�̃��̃��̃�) is 𝑟 − 𝒮𝒱𝒩ℐ- quasi H-closed, 

(1) ⇒ (3). For any family {𝒮𝑗 ∈ 𝐼
�̃�:  �̃��̃�(𝒮𝑗

𝑐) ≥ 𝑟,   �̃��̃�(𝒮𝑗
𝑐) ≤ 1 − 𝑟 ,    �̃��̃�(𝒮𝑗

𝑐) ≤ 1 − 𝑟,   𝑗 ∈ Γ}  such that

{𝑖𝑛𝑡�̃��̃��̃��̃�(𝒮𝑗 , 𝑟):  �̃�
�̃�(𝒮𝑗

𝑐) ≥ 𝑟,   �̃��̃�(𝒮𝑗
𝑐) ≤ 1 − 𝑟 ,    �̃��̃�(𝒮𝑗

𝑐) ≤ 1 − 𝑟,   𝑗 ∈ Γ}  has the 𝑰 − 𝑭𝑰𝑷 . If ⋂ 𝒮𝑗𝑗∈Γ = 0̃ , then 

⋃ 𝒮𝑗
𝑐 = 1̃𝑗∈Γ . Since (�̃�, �̃��̃��̃��̃�, ℐ̃�̃��̃��̃�) is 𝑟 − 𝒮𝒱𝒩ℐ- quasi H-closed, there exists a finite subset Γ0 ⊆ Γ such that

ℐ̃�̃� ([⋃ 𝐶�̃��̃�(𝒮𝑗
𝑐 , 𝑟)

𝑗∈Γ0

]

𝑐

) ≥ 𝑟, ℐ̃�̃� ([⋃ 𝐶�̃��̃�(𝒮𝑗
𝑐 , 𝑟)

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟, ℐ̃�̃� ([⋃ 𝐶�̃��̃�(𝒮𝑗
𝑐 , 𝑟)

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟. 

Since, [⋃ 𝐶�̃��̃��̃��̃�(𝒮𝑗
𝑐 , 𝑟)𝑗∈Γ0 ]

𝑐
= ⋂ 𝑖𝑛𝑡�̃��̃�(𝒮𝑗 , 𝑟)𝑗∈Γ0 , we have 

ℐ̃�̃� (⋂ 𝑖𝑛𝑡�̃��̃�(𝒮𝑗 , 𝑟)

𝑗∈Γ0

) ≥ 𝑟, ℐ̃�̃� (⋂ 𝑖𝑛𝑡�̃��̃�(𝒮𝑗 , 𝑟)

𝑗∈Γ0

) ≤ 1 − 𝑟, ℐ̃�̃� (⋂ 𝑖𝑛𝑡�̃��̃�(𝒮𝑗 , 𝑟)

𝑗∈Γ0

) ≤ 1 − 𝑟. 

Which is a contradiction. 

(3)⇒ (1). For any family {𝒮𝑗 ∈ 𝐼
�̃�: �̃��̃�(𝒮𝑗) ≥ 𝑟, �̃�

�̃�(𝒮𝑗) ≤ 1 − 𝑟 , �̃�
�̃�(𝒮𝑗) ≤ 1 − 𝑟, 𝑗 ∈ Γ}  such that ⋃ 𝒮𝑗 = 1̃𝑗∈Γ , 

with the property that for no finite Γ0 ⊆ Γ such that ℐ̃�̃�([⋃ 𝐶�̃��̃�(𝒮𝑗 , 𝑟)𝑗∈Γ0 ]
𝑐
) ≥ 𝑟, ℐ̃�̃�([⋃ 𝐶�̃��̃�(𝒮𝑗 , 𝑟)𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟,

 ℐ̃�̃�([⋃ 𝐶�̃��̃�(𝒮𝑗 , 𝑟)𝑗∈Γ0 ]
𝑐
) ≤ 1 − 𝑟.  Since,

[⋃ 𝐶�̃��̃��̃��̃�(𝒮𝑗 , 𝑟)

𝑗∈Γ0

]

𝑐

= ⋂ 𝑖𝑛𝑡�̃��̃��̃��̃�(𝒮𝑗
𝑐 , 𝑟)

𝑗∈Γ0

. 

The family {𝑖𝑛𝑡�̃��̃��̃��̃�(𝒮𝑗
𝑐 , 𝑟): �̃��̃�(𝒮𝑗) ≥ 𝑟,   �̃�

�̃�(𝒮𝑗) ≤ 1 − 𝑟 ,    �̃�
�̃�(𝒮𝑗) ≤ 1 − 𝑟,   𝑗 ∈ Γ}  has the 𝑰 − 𝑭𝑰𝑷 .By (3).

⋂ 𝒮𝑗
𝑐

𝑗∈Γ ≠ 0̃, Then, ⋃ 𝒮𝑗 ≠ 1̃𝑗∈Γ . It is a contradiction. 

(1)⇒(4). Let {𝒮𝑗} 𝑗∈Γ be a family of 𝑟 − 𝑆𝑉𝑁𝑅𝑂 set such that ⋃ 𝒮𝑗 = 1̃𝑗∈Γ . Then, ⋃ 𝑖𝑛𝑡�̃��̃��̃��̃�(𝐶�̃��̃��̃��̃�(𝒮𝑗 , 𝑟), r) = 1̃𝑗∈Γ , 

since, �̃��̃�(𝑖𝑛𝑡�̃��̃�(𝐶�̃��̃�(𝒮𝑗 , 𝑟), r)) ≥ 𝑟,  �̃�
�̃�(𝑖𝑛𝑡�̃��̃�(𝐶�̃��̃�(𝒮𝑗 , 𝑟), r)) ≤ 1 − 𝑟 , �̃��̃�(𝑖𝑛𝑡�̃��̃�(𝐶�̃��̃�(𝒮𝑗 , 𝑟), r)) ≤ 1 − 𝑟  and �̃�  is 𝑟 −

𝒮𝒱𝒩ℐ- quasi H-closed, there exists a finite subset Γ0 ⊆ Γ such that 
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ℐ̃�̃� ([⋃ 𝐶�̃��̃�(𝑖𝑛𝑡�̃��̃�(𝐶�̃��̃�(𝒮𝑗 , 𝑟), r), 𝑟)

𝑗∈Γ0

]

𝑐

) ≥ 𝑟, ℐ̃�̃� ([⋃ 𝐶�̃��̃� (𝑖𝑛𝑡�̃��̃�(𝐶�̃��̃�(𝒮𝑗 , 𝑟), r))

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟, 

ℐ̃�̃� ([⋃ 𝐶�̃��̃�(𝑖𝑛𝑡�̃��̃�(𝐶�̃��̃�(𝒮𝑗 , 𝑟), r), 𝑟)

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟. 

Since, for �̃��̃�(𝒮𝑗) ≥ 𝑟, �̃�
�̃�(𝒮𝑗) ≤ 1 − 𝑟 , �̃�

�̃�(𝒮𝑗) ≤ 1 − 𝑟  we have 𝐶�̃��̃��̃��̃�(𝑖𝑛𝑡�̃��̃��̃��̃�(𝐶�̃��̃��̃��̃�(𝒮𝑗 , 𝑟), r), 𝑟) = 𝐶�̃��̃��̃��̃�(𝒮𝑗 , 𝑟) . 

Hence, ℐ̃�̃�([⋃ 𝐶�̃��̃�(𝒮𝑗 , 𝑟)𝑗∈Γ0 ]
𝑐
) ≥ 𝑟, ℐ̃�̃�([⋃ 𝐶�̃��̃�(𝒮𝑗 , 𝑟)𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟, ℐ̃�̃�([⋃ 𝐶�̃��̃�(𝒮𝑗 , 𝑟)𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟.

  (4)⇒(5). Let {𝒮𝑗 ∈ 𝐼
�̃�:   𝑗 ∈ Γ} be a family of 𝑟 − 𝑆𝑉𝑁𝑅𝐶 sets such that ⋂ 𝒮𝑗𝑗∈Γ = 0̃. Then, ⋃ 𝒮𝑗

𝑐
𝑗∈Γ = 1̃, and 

{𝒮𝑗
𝑐 ∈ 𝐼�̃�:   𝑗 ∈ Γ}  is a family of 𝑟 − 𝑆𝑉𝑁𝑅𝑂 sets . By (4), there will be a finite subset Γ0 ⊆ Γ  such that

ℐ̃�̃�([⋃ 𝐶�̃��̃�(𝒮𝑗
𝑐 , 𝑟)𝑗∈Γ0 ]

𝑐
) ≥ 𝑟, ℐ̃�̃�([⋃ 𝐶�̃��̃�(𝒮𝑗

𝑐
𝑗∈Γ0 , 𝑟)]

𝑐
) ≤ 1 − 𝑟, ℐ̃�̃�([⋃ 𝐶�̃��̃�(𝒮𝑗

𝑐
𝑗∈Γ0 , 𝑟)]

𝑐
) ≤ 1 − 𝑟, Thus,

ℐ̃�̃� (⋂ 𝑖𝑛𝑡�̃��̃�(𝒮𝑗 , 𝑟)

𝑗∈Γ0

) ≥ 𝑟, ℐ̃�̃� (⋂ 𝑖𝑛𝑡�̃��̃�(𝒮𝑗 , 𝑟)

𝑗∈Γ0

) ≤ 1 − 𝑟, ℐ̃�̃� (⋂ 𝑖𝑛𝑡�̃��̃�(𝒮𝑗 , 𝑟)

𝑗∈Γ0

) ≤ 1 − 𝑟. 

(5)⇒(1). Let {𝒮𝑗 ∈ 𝐼
�̃�: �̃��̃�(𝒮𝑗) ≥ 𝑟, �̃�

�̃�(𝒮𝑗) ≤ 1 − 𝑟 , �̃�
�̃�(𝒮𝑗) ≤ 1 − 𝑟,   𝑗 ∈ Γ}  be a family such that ⋃ 𝒮𝑗 = 1̃𝑗∈Γ . 

Then, ⋃ 𝑖𝑛𝑡�̃��̃��̃��̃�(𝐶�̃��̃��̃��̃�(𝒮𝑗 , 𝑟), r)𝑗∈Γ = 1̃ . Thus, ⋂ 𝐶�̃��̃��̃��̃�(𝑖𝑛𝑡�̃��̃��̃��̃�(𝒮𝑗
𝑐 , 𝑟), r)𝑗∈Γ = 0̃  and 𝐶�̃��̃��̃��̃�(𝑖𝑛𝑡�̃��̃��̃��̃�(𝒮𝑗

𝑐 , 𝑟), r)  is

𝑟 − 𝑆𝑉𝑁𝑅𝐶. For the hypothesis, there exists Γ0 ⊆ Γ such that 

ℐ̃�̃� (⋂ 𝑖𝑛𝑡�̃��̃�(𝐶�̃��̃�(𝑖𝑛𝑡�̃��̃�(𝒮𝑗
𝑐 , 𝑟), r), 𝑟)

𝑗∈Γ0

) ≥ 𝑟, ℐ̃�̃� (⋂ 𝑖𝑛𝑡�̃��̃�(𝐶�̃��̃�(𝑖𝑛𝑡�̃��̃�(𝒮𝑗
𝑐 , 𝑟), r), 𝑟)

𝑗∈Γ0

) ≤ 1 − 𝑟, 

ℐ̃�̃� (⋂ 𝑖𝑛𝑡�̃��̃�(𝐶�̃��̃�(𝑖𝑛𝑡�̃��̃�(𝒮𝑗
𝑐 , 𝑟), r), 𝑟)

𝑗∈Γ0

) ≤ 1 − 𝑟 

Since, for �̃��̃�(𝒮𝑗) ≥ 𝑟, �̃�
�̃�(𝒮𝑗) ≤ 1 − 𝑟 , �̃�

�̃�(𝒮𝑗) ≤ 1 − 𝑟  we have 𝐶�̃��̃��̃��̃�(𝑖𝑛𝑡�̃��̃��̃��̃�(𝐶�̃��̃��̃��̃�(𝒮𝑗 , 𝑟), r), 𝑟) = 𝐶�̃��̃��̃��̃�(𝒮𝑗 , 𝑟) , 

and hence, ⋂ 𝑖𝑛𝑡�̃��̃��̃��̃�(𝐶�̃��̃��̃��̃�(𝑖𝑛𝑡�̃��̃��̃��̃�(𝒮𝑗
𝑐 , 𝑟), r), 𝑟)𝑗∈Γ0 = [⋃ 𝐶�̃��̃��̃��̃�(𝒮𝑗 , 𝑟)𝑗∈Γ0 ]𝑐 . Therefore, ℐ̃�̃�([⋃ 𝐶�̃��̃�(𝒮𝑗 , 𝑟)𝑗∈Γ0 ]

𝑐
) ≥ 𝑟,

ℐ̃�̃�([⋃ 𝐶�̃��̃�(𝒮𝑗𝑗∈Γ0 , 𝑟)]
𝑐
) ≤ 1 − 𝑟 , ℐ̃�̃�([⋃ 𝐶�̃��̃�(𝒮𝑗𝑗∈Γ0 , 𝑟)]

𝑐
) ≤ 1 − 𝑟 ). Hence, (�̃�, �̃��̃��̃��̃�, ℐ̃�̃��̃��̃�)  is 𝑟 − 𝒮𝒱𝒩ℐ −

 𝑞𝑢𝑎𝑠𝑖 𝐻 − 𝑐𝑙𝑜𝑠𝑒𝑑, 

  (6)⇔(4) is proved similarly like (3)⇔(1). 

Theorem 4.17.  Let (�̃�, �̃��̃��̃��̃�, ℐ̃�̃��̃��̃�) be an 𝒮𝒱𝒩ℐ𝒯𝒮 and 𝑟 ∈ 𝐼0, Then the next statements are equivalent:

(1) (�̃�, �̃��̃��̃��̃�, ℐ̃�̃��̃��̃�) is 𝑟 − 𝒮𝒱𝒩ℐ −  𝑞𝑢𝑎𝑠𝑖 𝐻 − 𝑐𝑙𝑜𝑠𝑒𝑑, 

(2) For any family {𝒮𝑗 ∈ 𝐼
�̃�: 𝒮𝑗 ≤ 𝑖𝑛𝑡�̃��̃��̃��̃�(𝐶�̃��̃��̃��̃�(𝒮𝑗 , r), r)} with ⋃ 𝒮𝑗𝑗∈Γ = 1̃, there exists a finite subset Γ0 ⊆ Γ 

such that ℐ̃�̃�([⋃ 𝐶�̃��̃�(𝒮𝑗 , 𝑟)𝑗∈Γ0 ]
𝑐
) ≥ 𝑟, ℐ̃�̃�([⋃ 𝐶�̃��̃�(𝒮𝑗𝑗∈Γ0 , 𝑟)]

𝑐
) ≤ 1 − 𝑟 ,  ℐ̃�̃�([⋃ 𝐶�̃��̃�(𝒮𝑗𝑗∈Γ0 , 𝑟)]

𝑐
) ≤ 1 − 𝑟),

(3) For any family {𝒮𝑗 ∈ 𝐼
�̃�:  �̃��̃�(𝒮𝑗

𝑐) ≥ 𝑟,   �̃��̃�(𝒮𝑗
𝑐) ≤ 1 − 𝑟 ,    �̃��̃�(𝒮𝑗

𝑐) ≤ 1 − 𝑟,   𝑗 ∈ Γ} such that ⋂ 𝒮𝑗𝑗∈Γ = 0̃, 

there exists a finite subset Γ0 ⊆ Γ such that ℐ̃�̃�(⋂ 𝑖𝑛𝑡�̃��̃�(𝒮𝑗 , 𝑟)𝑗∈Γ0 ) ≥ 𝑟, ℐ̃�̃�(⋂ 𝑖𝑛𝑡 �̃��̃�(𝒮𝑗 , 𝑟)𝑗∈Γ0 ) ≤ 1 − 𝑟 , 

 ℐ̃�̃�(⋂ 𝑖𝑛𝑡 �̃��̃�(𝒮𝑗 , 𝑟)𝑗∈Γ0 ) ≤ 1 − 𝑟). 

Proof. Obvious. 

Theorem 4.18. Let (�̃�, �̃��̃��̃��̃�, ℐ̃�̃��̃��̃�) be an 𝒮𝒱𝒩ℐ𝒯𝒮 and 𝑟 ∈ 𝐼0, Then the next statements are equivalent:
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(1) (�̃�, �̃��̃��̃��̃�, ℐ̃�̃��̃��̃�) is 𝑟 − 𝒮𝒱𝒩𝐶(ℐ) − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡, 

(2) For each family {ℰ𝑗 ∈ 𝐼
�̃�: �̃��̃�(ℰ𝑗

𝑐) ≥ 𝑟, �̃��̃�(ℰ𝑗
𝑐) ≤ 1 − 𝑟 , �̃��̃�(ℰ𝑗

𝑐) ≤ 1 − 𝑟,   𝑗 ∈ Γ} and every  �̃��̃�(𝒮𝑐) ≥ 𝑟,

�̃��̃�(𝒮𝑐) ≤ 1 − 𝑟 , �̃��̃�(𝒮𝑐) ≤ 1 − 𝑟  with ⋂ ℰ𝑗𝑗∈Γ �̅�𝒮 , there exists a finite subset Γ0 ⊆ Γ  such that

ℐ̃�̃�(𝒮 ∩ ⋂ 𝑖𝑛𝑡�̃��̃�(ℰ𝑗 , 𝑟)𝑗∈Γ0 ) ≥ 𝑟,   ℐ̃�̃�(𝒮 ∩ ⋂ 𝑖𝑛𝑡�̃��̃�(ℰ𝑗 , 𝑟)𝑗∈Γ0 ) ≤ 1 − 𝑟, ℐ̃�̃�(𝒮 ∩ ⋂ 𝑖𝑛𝑡�̃��̃�(ℰ𝑗 , 𝑟)𝑗∈Γ0 ) ≤ 1 − 𝑟. 

(3) ⋂ ℰ𝑗𝑗∈Γ 𝑞𝒮  holds for each family {ℰ𝑗 ∈ 𝐼
�̃�:  �̃��̃�(ℰ𝑗

𝑐) ≥ 𝑟, �̃��̃�(ℰ𝑗
𝑐) ≤ 1 − 𝑟 , �̃��̃�(ℰ𝑗

𝑐) ≤ 1 − 𝑟,   𝑗 ∈ Γ}  and

any  �̃��̃�(𝒮𝑐) ≥ 𝑟, �̃��̃�(𝒮𝑐) ≤ 1 − 𝑟 , �̃��̃�(𝒮𝑐) ≤ 1 − 𝑟 with {𝑖𝑛𝑡�̃��̃��̃��̃�(ℰ𝑗 , 𝑟) q𝒮,  𝑗 ∈ Γ} has the 𝑰 − 𝑭𝑰𝑷, 

(4) For each family {ℰ𝑗 ∈ 𝐼
�̃�: ℰ𝑗 𝑖𝑠 𝑟 − 𝑆𝑉𝑁𝑅𝑂 , 𝑗 ∈ Γ} and any �̃��̃�(𝒮𝑐) ≥ 𝑟, �̃��̃�(𝒮𝑐) ≤ 1 − 𝑟. �̃��̃�(𝒮𝑐) ≤ 1 − 𝑟

with 𝒮 ≤ ⋃ ℰ𝑗𝑗∈Γ , there exists a finite subset Γ0 ⊆ Γ such that, 

ℐ̃�̃� (𝒮 ∩ [⋃ 𝐶�̃��̃�(ℰ𝑗 , 𝑟)

𝑗∈Γ0

]

𝑐

) ≥ 𝑟, ℐ̃�̃� (𝒮 ∩ [⋃ 𝐶�̃��̃�(ℰ𝑗
𝑗∈Γ0

, 𝑟)]

𝑐

) ≤ 1 − 𝑟, ℐ̃�̃� (𝒮 ∩ [⋃ 𝐶�̃��̃�(ℰ𝑗
𝑗∈Γ0

, 𝑟)]

𝑐

) ≤ 1 − 𝑟. 

(5) For each family {ℰ𝑗 ∈ 𝐼
�̃�: ℰ𝑗 is r − 𝑆𝑉𝑁𝑅𝐶,   𝑗 ∈ Γ} and any  �̃��̃�(𝒮𝑐) ≥ 𝑟, �̃��̃�(𝒮𝑐) ≤ 1 − 𝑟, �̃��̃�(𝒮𝑐) ≤ 1 − 𝑟 ,

with ⋂ ℰ𝑗𝑗∈Γ �̅�𝒮, there exists Γ0 ⊆ Γ such that, 

ℐ̃�̃� (⋂ 𝑖𝑛𝑡�̃��̃�(ℰ𝑗 , 𝑟)

𝑗∈Γ0

∩ 𝒮) ≥ 𝑟, ℐ̃�̃� (⋂ 𝑖𝑛𝑡�̃��̃�(ℰ𝑗 , 𝑟) ∩ 𝒮

𝑗∈Γ0

) ≤ 1 − 𝑟, ℐ̃�̃� (⋂ 𝑖𝑛𝑡�̃��̃�(ℰ𝑗 , 𝑟) ∩ 𝒮

𝑗∈Γ0

) ≤ 1 − 𝑟, 

(6) ⋂ ℰ𝑗𝑗∈Γ 𝑞𝒮 holds for each family {ℰ𝑗 ∈ 𝐼
�̃�: ℰ𝑗 𝑖𝑠 𝑟 − 𝑆𝑉𝑁𝑅𝐶,   𝑗 ∈ Γ} and any �̃� �̃�(𝒮𝑐) ≥ 𝑟, �̃��̃�(𝒮𝑐) ≤ 1 − 𝑟,

�̃��̃�(𝒮𝑐) ≤ 1 − 𝑟 such taht {𝑖𝑛𝑡�̃��̃��̃��̃�(ℰ𝑗 , 𝑟) ∩ 𝒮:  𝑗 ∈ Γ} has the  𝑰 − 𝑭𝑰𝑷. 

Proof. (1)⇒(2). Let {ℰ𝑗 ∈ 𝐼
�̃�: �̃��̃�(ℰ𝑗

𝑐) ≥ 𝑟, �̃��̃�(ℰ𝑗
𝑐) ≤ 1 − 𝑟 , �̃��̃�(ℰ𝑗

𝑐) ≤ 1 − 𝑟, 𝑗 ∈ Γ}and �̃� �̃�(𝒮𝑐) ≥ 𝑟, �̃��̃�(𝒮𝑐) ≤ 1 − 𝑟

with ⋂ ℰ𝑗𝑗∈Γ �̅�𝒮 . Then, �̃�⋂ ℰ𝑗𝑗∈Γ
+ �̃�𝒮 ≤ 1 , 𝜂⋂ ℰ𝑗𝑗∈Γ

+ 𝜂𝒮 ≥ 1 , 𝜇⋂ ℰ𝑗𝑗∈Γ
+ 𝜇𝒮 ≥ 1 . It implies that 𝒮 ≤ ⋃ ℰ𝑗

𝑐
𝑗∈Γ . By

𝑟 − 𝒮𝒱𝒩𝐶(ℐ) − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠  of (�̃�, �̃��̃��̃��̃�, ℐ̃�̃��̃��̃�), there exists a finite subset Γ0 ⊆ Γ such that,

ℐ̃�̃� (𝒮 ∩ [⋃ 𝐶�̃��̃�(ℰ𝑗
𝑐 , 𝑟)

𝑗∈Γ0

]

𝑐

) ≥ 𝑟, ℐ̃�̃� (𝒮 ∩ [⋃ 𝐶�̃��̃�(ℰ𝑗
𝑐

𝑗∈Γ0

, 𝑟)]

𝑐

) ≤ 1 − 𝑟, ℐ̃�̃� (𝒮 ∩ [⋃ 𝐶�̃��̃�(ℰ𝑗
𝑐

𝑗∈Γ0

, 𝑟)]

𝑐

) ≤ 1 − 𝑟. 

 Since, 𝒮 ∩ [⋃ 𝐶�̃��̃�(ℰ𝑗
𝑐

𝑗∈Γ0 , 𝑟)]
𝑐
= 𝒮 ∩ ⋂ 𝑖𝑛𝑡�̃��̃��̃��̃�(ℰ𝑗 , 𝑟)𝑗∈Γ0 . Then 

ℐ̃�̃� (𝒮 ∩ ⋂ 𝑖𝑛𝑡�̃��̃�(ℰ𝑗 , 𝑟)

𝑗∈Γ0

) ≥ 𝑟, ℐ̃�̃� (𝒮 ∩ ⋂ 𝑖𝑛𝑡�̃��̃�(ℰ𝑗 , 𝑟)

𝑗∈Γ0

) ≤ 1 − 𝑟, ℐ̃�̃� (𝒮 ∩ ⋂ 𝑖𝑛𝑡�̃��̃�(ℰ𝑗 , 𝑟)

𝑗∈Γ0

) ≤ 1 − 𝑟. 

  (2)⇒(3). It is trivial. 

(3) ⇒ (1). Let {ℰ𝑗 ∈ 𝐼
�̃�: �̃��̃�(ℰ𝑗) ≥ 𝑟, �̃�

�̃�(ℰ𝑗) ≤ 1 − 𝑟 , �̃�
�̃�(ℰ𝑗) ≤ 1 − 𝑟,   𝑗 ∈ Γ}  be a family and �̃��̃�(𝒮𝑐) ≥ 𝑟 ,

 �̃��̃�(𝒮𝑐) ≤ 1 − 𝑟 ,  �̃��̃�(𝒮𝑐) ≤ 1 − 𝑟  such that 𝒮 ≤ ⋃ ℰ𝑗𝑗∈Γ  with property that for no finite subfamily Γ0  of Γ

one has, ℐ̃�̃�(𝒮 ∩ [⋃ 𝐶�̃��̃�(ℰ𝑗 , 𝑟)𝑗∈Γ0 ]
𝑐
) ≥ 𝑟, ℐ̃�̃�(𝒮 ∩ [⋃ 𝐶�̃��̃�(ℰ𝑗𝑗∈Γ0 , 𝑟)]

𝑐
) ≤ 1 − 𝑟, ℐ̃�̃�(𝒮 ∩ [⋃ 𝐶�̃��̃�(ℰ𝑗𝑗∈Γ0 , 𝑟)]

𝑐
) ≤ 1 − 𝑟 .

Since, 𝒮 ∩ [⋃ 𝐶�̃��̃�(ℰ𝑗 , 𝑟)𝑗∈Γ0 ]
𝑐
= ⋂ {𝑖𝑛𝑡�̃��̃��̃��̃�(ℰ𝑗

𝑐 , 𝑟)𝑗∈Γ0 ∩ 𝒮 , the family {⋂ {𝑖𝑛𝑡�̃��̃��̃��̃�(ℰ𝑗
𝑐 , 𝑟)𝑗∈Γ ∩ 𝒮 ,  𝑗 ∈ Γ}  has the  

𝑰 − 𝑭𝑰𝑷, By (3), ⋂ ℰ𝑗
𝑐

𝑗∈Γ 𝑞𝒮 implies that ⋃ ℰ𝑗𝑗∈Γ ≤ 𝒮. It is a contradiction. 

(1)⇒(4). Let {ℰ𝑗 ∈ 𝐼
�̃�:   𝑗 ∈ Γ} be a family of 𝑟 − 𝑆𝑉𝑁𝑅𝑂 𝑠𝑒𝑡𝑠 and  �̃��̃�(𝒮𝑐) ≥ 𝑟, �̃��̃�(𝒮𝑐) ≤ 1 − 𝑟, �̃��̃�(𝒮𝑐) ≤ 1 − 𝑟

with 𝒮 ≤ ⋃ ℰ𝑗𝑗∈Γ . Then, 𝒮 ≤ ⋃ 𝑖𝑛𝑡�̃��̃��̃��̃�(𝐶�̃��̃��̃��̃�(ℰ𝑗 , 𝑟), 𝑟)𝑗∈Γ . By 𝑟 − 𝒮𝒱𝒩𝐶(ℐ) − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠  of (�̃�, �̃��̃��̃��̃�, ℐ̃�̃��̃��̃�) ,

there exists a finite subset Γ0 ⊆ Γ such that,  

ℐ̃�̃� (𝒮 ∩ [⋃ 𝐶�̃��̃�(𝑖𝑛𝑡�̃��̃�(𝐶�̃��̃�(ℰ𝑗 , 𝑟), 𝑟), 𝑟)

𝑗∈Γ0

]

𝑐

) ≥ 𝑟, ℐ̃�̃� (𝒮 ∩ [⋃ 𝐶�̃��̃�(𝑖𝑛𝑡�̃��̃�(𝐶�̃��̃�(ℰ𝑗 , 𝑟), 𝑟)

𝑗∈Γ0

, 𝑟)]

𝑐

) ≤ 1 − 𝑟, 
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ℐ̃�̃� (𝒮 ∩ [⋃ 𝐶�̃��̃�(𝑖𝑛𝑡�̃��̃�(𝐶�̃��̃�(ℰ𝑗 , 𝑟), 𝑟)

𝑗∈Γ0

, 𝑟)]

𝑐

) ≤ 1 − 𝑟 

Since, for �̃��̃�(ℰ𝑗) ≥ 𝑟, �̃�
�̃�(ℰ𝑗) ≤ 1 − 𝑟 , �̃�

�̃�(ℰ𝑗) ≤ 1 − 𝑟, 𝐶�̃��̃��̃��̃�(𝑖𝑛𝑡�̃��̃��̃��̃�(𝐶�̃��̃��̃��̃�(ℰ𝑗 , 𝑟), r), 𝑟) = 𝐶�̃��̃��̃��̃�(ℰ𝑗 , 𝑟). Therefore, 

ℐ̃�̃�(𝒮 ∩ [⋃ 𝐶�̃��̃�(ℰ𝑗 , 𝑟)𝑗∈Γ0 ]
𝑐
) ≥ 𝑟, ℐ̃�̃�(𝒮 ∩ [⋃ 𝐶�̃��̃�(ℰ𝑗 , 𝑟)𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟, ℐ̃�̃�(𝒮 ∩ [⋃ 𝐶�̃��̃�(ℰ𝑗 ,𝑗∈Γ0 𝑟)]

𝑐
) ≤ 1 − 𝑟.

  (4)⇒(1). It is trivial. 

(4)⇒(5). Let {ℰ𝑗}𝑗∈Γ be a family of 𝑟 − 𝑆𝑉𝑁𝑅𝐶 sets and every �̃��̃�(𝒮𝑐) ≥ 𝑟, �̃��̃�(𝒮𝑐) ≤ 1 − 𝑟 �̃��̃�(𝒮𝑐) ≤ 1 − 𝑟 such

that ⋂ ℰ𝑗𝑗∈Γ �̅�𝒮. Then, 𝒮 ≤ ⋃ ℰ𝑗
𝑐

𝑗∈Γ and {ℰ𝑗
𝑐 ∈ 𝐼�̃�:  𝑗 ∈ Γ} be a family of 𝑟 − 𝑆𝑉𝑁𝑅𝑂 sets. By (4), there exists a

finite subset Γ0 ⊆ Γ  such that ℐ̃�̃�(𝒮 ∩ [⋃ 𝐶�̃��̃�(ℰ𝑗
𝑐 , 𝑟)𝑗∈Γ0 ]

𝑐
) ≥ 𝑟, ℐ̃�̃�(𝒮 ∩ [⋃ 𝐶�̃��̃�(ℰ𝑗

𝑐
𝑗∈Γ0 , 𝑟)]

𝑐
) ≤ 1 − 𝑟 ,

 ℐ̃�̃�(𝒮 ∩ [⋃ 𝐶�̃��̃�(ℰ𝑗
𝑐

𝑗∈Γ0 , 𝑟)]
𝑐
) ≤ 1 − 𝑟 implies that

ℐ̃�̃� (𝒮 ∩ ⋂ 𝑖𝑛𝑡�̃��̃�(ℰ𝑗 , 𝑟)

𝑗∈Γ0

) ≥ 𝑟, ℐ̃�̃� (𝒮 ∩ ⋂ 𝑖𝑛𝑡�̃��̃�(ℰ𝑗 , 𝑟)

𝑗∈Γ0

) ≤ 1 − 𝑟, ℐ̃�̃� (𝒮 ∩ ⋂ 𝑖𝑛𝑡�̃��̃�(ℰ𝑗 , 𝑟)

𝑗∈Γ0

) ≤ 1 − 𝑟. 

(5)⇒(6). Let {ℰ𝑗}𝑗∈Γ   be a family of 𝑟 − 𝑆𝑉𝑁𝑅𝐶 𝑠𝑒𝑡𝑠 and every �̃��̃�(𝒮𝑐) ≥ 𝑟, �̃��̃�(𝒮𝑐) ≤ 1 − 𝑟, �̃��̃�(𝒮𝑐) ≤ 1 − 𝑟

such taht {𝑖𝑛𝑡�̃��̃��̃��̃�(ℰ𝑗 , 𝑟) ∩ 𝒮:  𝑗 ∈ Γ} has the  𝑰 − 𝑭𝑰𝑷. If ⋂ ℰ𝑗𝑗∈Γ �̅�𝒮 . By (5), there exists a finite subset Γ0 ⊆ Γ 

such that ℐ̃�̃�(⋂ 𝑖𝑛𝑡�̃��̃�(ℰ𝑗 , 𝑟)𝑗∈Γ0 ∩ 𝒮) ≥ 𝑟, ℐ̃�̃�(⋂ 𝑖𝑛𝑡�̃��̃�(ℰ𝑗 , 𝑟) ∩ 𝒮𝑗∈Γ0 ) ≤ 1 − 𝑟,  ℐ̃�̃�(⋂ 𝑖𝑛𝑡�̃��̃�(ℰ𝑗 , 𝑟) ∩ 𝒮𝑗∈Γ0 ) ≤ 1 − 𝑟. It

is a contradiction. 

  (6)⇒(4). It is trivial. 

Theorem 4.19. Let (�̃�1, �̃�1
�̃��̃��̃�

, ℐ̃1
�̃��̃��̃�

) , (�̃�2, �̃�2
�̃��̃��̃�

, ℐ̃2
�̃��̃��̃�

)  be two 𝒮𝒱𝒩ℐ𝒯𝒮′𝑠  and 𝑓: �̃�1 ⟶ �̃�2  a surjective  𝒮𝒱𝒩 - 

continuous. If (�̃�1, �̃�1
�̃��̃��̃�

, ℐ̃1
�̃��̃��̃�

)  is 𝑟 − 𝒮𝒱𝒩ℐ1 − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 and ℐ̃1
�̃�
(𝒮) ≤ ℐ̃2

�̃�
(𝑓(𝒮)) , ℐ̃1

�̃�
(𝒮) ≥ ℐ̃2

�̃�
(𝑓(𝒮)) , ℐ̃1

�̃�
(𝒮) ≥

ℐ̃2
�̃�
(𝑓(𝒮)). Then, (�̃�2, �̃�2

�̃��̃��̃�
, ℐ̃2
�̃��̃��̃�

) is 𝑟 − 𝒮𝒱𝒩ℐ2 − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡. 

Proof. Let {ℰ𝑗 ∈ 𝐼
�̃�: �̃�2

�̃�
(ℰ𝑗) ≥ 𝑟, �̃�2

�̃�
(ℰ𝑗) ≤ 1 − 𝑟 , �̃�2

�̃�
(ℰ𝑗) ≤ 1 − 𝑟, 𝑗 ∈ Γ} be a family such that ⋃ ℰ𝑗 = 1̃𝑗∈Γ . Then, 

⋃ 𝑓−1(ℰ𝑗) = 1̃𝑗∈Γ . Since, 𝑓  is 𝒮𝒱𝒩 −  𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 , for each 𝑗 ∈ Γ , �̃�1
�̃�
(𝑓−1(ℰ𝑗)) ≥ 𝑟, �̃�1

�̃�
(𝑓−1(ℰ𝑗)) ≤ 1 − 𝑟 ,

�̃�1
�̃�
(𝑓−1(ℰ𝑗)) ≤ 1 − 𝑟 . By 𝑟 − 𝒮𝒱𝒩ℐ1 − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠  of (�̃�1, �̃�1

�̃��̃��̃�
, ℐ̃1
�̃��̃��̃�

), there exists a finite Γ0 ⊆ Γ such that 

ℐ̃1
�̃�
([⋃ 𝑓−1(ℰ𝑗)𝑗∈Γ0 ]

𝑐
) ≥ 𝑟 , ℐ̃1

�̃�
([⋃ 𝑓−1(ℰ𝑗)𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟 , ℐ̃1

�̃�
([⋃ 𝑓−1(ℰ𝑗)𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟 . Since ℐ̃1

�̃�
(𝒮) ≤ ℐ̃2

�̃�
(𝑓(𝒮)) ,

ℐ̃1
�̃�
(𝒮) ≥ ℐ̃2

�̃�
(𝑓(𝒮)), ℐ̃1

�̃�
(𝒮) ≥ ℐ̃2

�̃�
(𝑓(𝒮)), for 𝑗 ∈ Γ0 , ℐ̃2

�̃�
(𝑓([⋃ 𝑓−1(ℰ𝑗)𝑗∈Γ0 ]

𝑐
)) ≥ 𝑟 , ℐ̃2

�̃�
(𝑓([⋃ 𝑓−1(ℰ𝑗)𝑗∈Γ0 ]

𝑐
)) ≤ 1 − 𝑟 ,

ℐ̃2
�̃�
(𝑓([⋃ 𝑓−1(ℰ𝑗)𝑗∈Γ0 ]

𝑐
)) ≤ 1 − 𝑟. From the surjectively of 𝑓 we obtain 𝑓([⋃ 𝑓−1(ℰ𝑗)𝑗∈Γ0 ]

𝑐
) = [⋃ ℰ𝑗𝑗∈Γ0 ]

𝑐
. Hence,

ℐ̃2
�̃�
([⋃ ℰ𝑗𝑗∈Γ0 ]

𝑐
) ≥ 𝑟, ℐ̃2

�̃�
([⋃ ℰ𝑗𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟, ℐ̃2

�̃�
([⋃ ℰ𝑗𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟. Thus, (�̃�2, �̃�2

�̃��̃��̃�
, ℐ̃2
�̃��̃��̃�

)  is 𝑟 − 𝒮𝒱𝒩ℐ2 −

𝑐𝑜𝑚𝑝𝑎𝑐𝑡. 

Theorem 4.20. Let (�̃�1, �̃�1
�̃��̃��̃�

, ℐ̃1
�̃��̃��̃�

) , (�̃�2, �̃�2
�̃��̃��̃�

, ℐ̃2
�̃��̃��̃�

)  be two 𝒮𝒱𝒩ℐ𝒯𝒮′𝑠  and 𝑓: �̃�1 ⟶ �̃�2  a surjective  𝒮𝒱𝒩 - 

continuous. If (�̃�1, �̃�1
�̃��̃��̃�

, ℐ̃1
�̃��̃��̃�

) is 𝑟 − 𝒮𝒱𝒩𝐶(ℐ)1 − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 and ℐ̃1
�̃�
(𝒮) ≤ ℐ̃2

�̃�
(𝑓(𝒮)), ℐ̃1

�̃�
(𝒮) ≥ ℐ̃2

�̃�
(𝑓(𝒮)), ℐ̃1

�̃�
(𝒮) ≥

ℐ̃2
�̃�
(𝑓(𝒮)). Then, (�̃�2, �̃�2

�̃��̃��̃�
, ℐ̃2
�̃��̃��̃�

) is 𝑟 − 𝒮𝒱𝒩𝐶(ℐ)2 − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡. 

Proof. Let �̃�2
�̃�(𝒮) ≥ 𝑟, �̃�2

�̃�(𝒮) ≤ 1 − 𝑟 , �̃�2
�̃�(𝒮) ≤ 1 − 𝑟  and every family {ℰ𝑗 ∈ 𝐼

�̃�: �̃�2
�̃�
(ℰ𝑗) ≥ 𝑟 ,  �̃�2

�̃�
(ℰ𝑗) ≤ 1 − 𝑟} 

with 𝒮 ≤ ⋃ ℰ𝑗𝑗∈Γ . Then, 𝑓−1(𝒮) ≤ ⋃ 𝑓−1(ℰ𝑗)𝑗∈Γ . Since, 𝑓 is 𝒮𝒱𝒩- continuous for each 𝑗 ∈ Γ, �̃�1
�̃�
(𝑓−1(ℰ𝑗)) ≥ 𝑟,

�̃�1
�̃�
(𝑓−1(ℰ𝑗)) ≤ 1 − 𝑟, �̃�1

�̃�
(𝑓−1(ℰ𝑗)) ≤ 1 − 𝑟. By 𝑟 − 𝒮𝒱𝒩𝐶(ℐ)1 − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 of (�̃�1, �̃�1

�̃��̃��̃�
, ℐ̃1
�̃��̃��̃�

), there exists a 

finite Γ0 ⊆ Γ such that 
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ℐ̃1
�̃�
(𝑓−1(𝒮) ∩ [⋃ 𝐶

�̃�1
�̃�(𝑓−1(ℰ𝑗), r)

𝑗∈Γ0

]

𝑐

) ≥ 𝑟, ℐ̃1
�̃�
(𝑓−1(𝒮) ∩ [⋃ 𝐶

�̃�1
�̃�(𝑓−1(ℰ𝑗), r)

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟, 

ℐ̃1
�̃�
(𝑓−1(𝒮) ∩ [⋃ 𝐶

�̃�1
�̃�(𝑓−1(ℰ𝑗), r)

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟. 

Since, 𝑓  is 𝒮𝒱𝒩 - continuous mapping, 𝐶
�̃�1
�̃��̃��̃�(𝑓−1(𝒮𝑗 , r) ≤ 𝑓

−1(𝐶
�̃�2
�̃��̃��̃�(𝒮𝑗 , r))  for every 𝒮 ∈ 𝐼�̃�2 . Therefore, 

𝑓−1(𝒮) ∩ [⋃ 𝐶
�̃�1
�̃��̃��̃�(𝑓−1(ℰ𝑗 , r)𝑗∈Γ0 ]

𝑐
= 𝑓−1(𝒮) ∩ [⋃ 𝑓−1(𝐶

�̃�2
�̃��̃��̃�(ℰ𝑗 , r))𝑗∈Γ0 ]

𝑐
. Hence, 

ℐ̃1
�̃�
(𝑓−1(𝒮𝑗) ∩ [⋃ 𝑓−1(𝐶

�̃�2
�̃�(𝒮, r))

𝑗∈Γ0

]

𝑐

) ≥ 𝑟, ℐ̃1
�̃�
(𝑓−1(𝒮𝑗) ∩ [⋃ 𝑓−1(𝐶

�̃�2
�̃�(𝒮, r))

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟, 

ℐ̃1
�̃�
(𝑓−1(𝒮𝑗) ∩ [⋃ 𝑓−1(𝐶

�̃�2
�̃�(𝒮, r))

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟. 

Since, ℐ̃1
�̃�
(𝒮) ≤ ℐ̃2

�̃�
(𝑓(𝒮)), ℐ̃1

�̃�
(𝒮) ≥ ℐ̃2

�̃�
(𝑓(𝒮)), ℐ̃1

�̃�
(𝒮) ≥ ℐ̃2

�̃�
(𝑓(𝒮)), for each 𝑗 ∈ Γ0 we have, 

ℐ̃2
�̃�
(𝑓[𝑓−1(𝒮𝑗) ∩ [⋃ 𝑓−1 (𝐶

�̃�2
�̃�(𝒮, r))

𝑗∈Γ0

]

𝑐

]) ≥ 𝑟, ℐ̃2
�̃�
(𝑓[𝑓−1(𝒮𝑗) ∩ [⋃ 𝑓−1 (𝐶

�̃�2
�̃�(𝒮, r))

𝑗∈Γ0

]

𝑐

]) ≤ 1 − 𝑟, 

ℐ̃2
�̃�
(𝑓[𝑓−1(𝒮𝑗) ∩ [⋃ 𝑓−1 (𝐶

�̃�2
�̃�(𝒮, r))

𝑗∈Γ0

]

𝑐

]) ≤ 1 − 𝑟. 

Since, 𝑓 is surjective, 

ℐ̃2
�̃�
(𝒮𝑗 ∩ [⋃ 𝐶

�̃�2
�̃�(𝒮, r)

𝑗∈Γ0

]

𝑐

) ≥ 𝑟, ℐ̃2
�̃�
(𝒮𝑗 ∩ [⋃ 𝐶

�̃�2
�̃�(𝒮, r)

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟, ℐ̃2
�̃�
(𝒮𝑗 ∩ [⋃ 𝐶

�̃�2
�̃�(𝒮, r)

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟. 

Thus, (�̃�2, �̃�2
�̃��̃��̃�

, ℐ̃2
�̃��̃��̃�

) is 𝑟 − 𝒮𝒱𝒩(ℐ)2 − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡. 

Theorem 4.21. The image of an 𝑟 − 𝒮𝒱𝒩ℐ1 − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 under a surjective 𝒮𝒱𝒩 − 𝑎𝑙𝑚𝑜𝑠𝑡 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 mapping 

and ℐ̃1
�̃�
(𝒮) ≤ ℐ̃2

�̃�
(𝑓(𝒮)), ℐ̃1

�̃�
(𝒮) ≥ ℐ̃2

�̃�
(𝑓(𝒮)), ℐ̃1

�̃�
(𝒮) ≥ ℐ̃2

�̃�
(𝑓(𝒮)) is  𝑟 − 𝒮𝒱𝒩𝐶(ℐ)2 − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡.

Proof. Let 𝒮 ∈ I�̃�1 be an 𝑟 − 𝒮𝒱𝒩ℐ1 − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡  in (�̃�1, �̃�1
�̃��̃��̃�

, ℐ̃1
�̃��̃��̃�

)  and 𝑓: (�̃�1, �̃�1
�̃��̃��̃�

, ℐ̃1
�̃��̃��̃�

) → (�̃�2, �̃�2
�̃��̃��̃�

, ℐ̃2
�̃��̃��̃�

)

a surjective 𝒮𝒱𝒩 − 𝑎𝑙𝑚𝑜𝑠𝑡 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠. If �̃�2
�̃�(𝒮𝑐) ≥ 𝑟, �̃�2

�̃�(𝒮𝑐) ≤ 1 − 𝑟 , �̃�2
�̃�(𝒮𝑐) ≤ 1 − 𝑟 and each family {ℰ𝑗 ∈ 𝐼

�̃�:

�̃�2
�̃�
(ℰ𝑗) ≥ 𝑟, �̃�2

�̃�
(ℰ𝑗) ≤ 1 − 𝑟 , �̃�2

�̃�
(ℰ𝑗) ≤ 1 − 𝑟}  with 𝑓(𝒮) ≤ ⋃ ℰ𝑗𝑗∈Γ , then 𝑓(𝒮) ≤ ⋃ 𝑖𝑛𝑡

�̃�2
�̃��̃��̃�(𝐶

�̃�2
�̃��̃��̃�(ℰ𝑗 , 𝑟), 𝑟)𝑗∈Γ  and

since for 𝑗 ∈ Γ, 

𝑖𝑛𝑡
�̃�2
�̃��̃��̃�(𝐶

�̃�2
�̃��̃��̃�(𝑖𝑛𝑡

�̃�2
�̃��̃��̃�(𝐶

�̃�2
�̃��̃��̃�(ℰ𝑗 , 𝑟), 𝑟), 𝑟), r) = 𝑖𝑛𝑡�̃�2

�̃��̃��̃�(𝐶
�̃�2
�̃��̃��̃�(ℰ𝑗 , 𝑟), 𝑟). 

By 𝒮𝒱𝒩 − 𝑎𝑙𝑚𝑜𝑠𝑡 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 of 𝑓 we have 𝒮 ≤ ⋃ 𝑓−1(𝑖𝑛𝑡
�̃�2
�̃��̃��̃�(𝐶

�̃�2
�̃��̃��̃�(ℰ𝑗 , 𝑟), 𝑟)𝑗∈Γ ) and 

�̃�1
�̃�
(𝑓−1(𝑖𝑛𝑡

�̃�2
�̃�(𝐶

�̃�2
�̃�(ℰ𝑗 , 𝑟), 𝑟))) ≥ 𝑟, �̃�2

�̃�
(𝑓−1(𝑖𝑛𝑡

�̃�2
�̃�(𝐶

�̃�2
�̃�(ℰ𝑗 , 𝑟), 𝑟))) ≤ 1 − 𝑟, 
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 �̃�1
�̃�
(𝑓−1(𝑖𝑛𝑡

�̃�2
�̃�(𝐶

�̃�2
�̃�(ℰ𝑗 , 𝑟), 𝑟))) ≤ 1 − 𝑟.

By  𝑟 − 𝒮𝒱𝒩ℐ1 − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 of 𝒮 in (�̃�1, �̃�1
�̃��̃��̃�

, ℐ̃1
�̃��̃��̃�

), there exists a finite Γ0 ⊆ Γ such that 

ℐ̃1
�̃�
(𝒮𝑗 ∩ [⋃ 𝑓−1(𝑖𝑛𝑡

�̃�2
�̃�(𝐶

�̃�2
�̃�(ℰ𝑗 , 𝑟), 𝑟))

𝑗∈Γ0

]

𝑐

) ≥ 𝑟, ℐ̃1
�̃�
(𝒮𝑗 ∩ [⋃ 𝑓−1(𝑖𝑛𝑡

�̃�2
�̃�(𝐶

�̃�2
�̃�(ℰ𝑗 , 𝑟), 𝑟))

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟, 

ℐ̃1
�̃�
(𝒮𝑗 ∩ [⋃ 𝑓−1(𝑖𝑛𝑡

�̃�2
�̃�(𝐶

�̃�2
�̃�(ℰ𝑗 , 𝑟), 𝑟))

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟. 

Since ℐ̃1
�̃�
(𝒮) ≤ ℐ̃2

�̃�
(𝑓(𝒮)), ℐ̃1

�̃�
(𝒮) ≥ ℐ̃2

�̃�
(𝑓(𝒮)), ℐ̃1

�̃�
(𝒮) ≥ ℐ̃2

�̃�
(𝑓(𝒮)), we have 

ℐ̃2
�̃�
(𝑓(𝒮𝑗 ∩ [⋃ 𝑓−1(𝑖𝑛𝑡

�̃�2
�̃�(𝐶

�̃�2
�̃�(ℰ𝑗 , 𝑟), 𝑟))

𝑗∈Γ0

]

𝑐

)) ≥ 𝑟, ℐ̃2
�̃�
(𝑓(𝒮𝑗 ∩ [⋃ 𝑓−1(𝑖𝑛𝑡

�̃�2
�̃�(𝐶

�̃�2
�̃�(ℰ𝑗 , 𝑟), 𝑟))

𝑗∈Γ0

]

𝑐

)) ≤ 1 − 𝑟, 

ℐ̃2
�̃�
(𝑓(𝒮𝑗 ∩ [⋃ 𝑓−1(𝑖𝑛𝑡

�̃�2
�̃�(𝐶

�̃�2
�̃�(ℰ𝑗 , 𝑟), 𝑟))

𝑗∈Γ0

]

𝑐

)) ≤ 1 − 𝑟. 

By surjectively of 𝑓, 𝑓(𝒮𝑗 ∩ [⋃ 𝑓−1(𝑖𝑛𝑡
�̃�2
�̃��̃��̃�(𝐶

�̃�2
�̃��̃��̃�(ℰ𝑗 , 𝑟), 𝑟))𝑗∈Γ0 ]

𝑐
) = 𝑓(𝒮𝑗) ∩ [⋃ (𝐶

�̃�2
�̃��̃��̃�(ℰ𝑗 , 𝑟)𝑗∈Γ0 ]

𝑐
. Thus, 

ℐ̃2
�̃�
(𝑓(𝒮𝑗) ∩ [⋃(𝐶

�̃�2
�̃�(ℰ𝑗 , 𝑟)

𝑗∈Γ0

]

𝑐

) ≥ 𝑟, ℐ̃2
�̃�
(𝑓(𝒮𝑗) ∩ [⋃(𝐶

�̃�2
�̃�(ℰ𝑗 , 𝑟)

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟, 

ℐ̃2
�̃�
(𝑓(𝒮𝑗) ∩ [⋃(𝐶

�̃�2
�̃�(ℰ𝑗 , 𝑟)

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟. 

and hence, 𝑓(𝒮) is  r − 𝒮𝒱𝒩𝐶(ℐ)2 − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡. 

Theorem 4.22. The image of an 𝑟 − 𝒮𝒱𝒩ℐ1 − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 under a surjective 𝒮𝒱𝒩 −𝑤𝑒𝑎𝑘𝑙𝑦 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 mapping 

and ℐ̃1
�̃�
(𝒮) ≤ ℐ̃2

�̃�
(𝑓(𝒮)), ℐ̃1

�̃�
(𝒮) ≥ ℐ̃2

�̃�
(𝑓(𝒮)), ℐ̃1

�̃�
(𝒮) ≥ ℐ̃2

�̃�
(𝑓(𝒮)), is  𝑟 − 𝒮𝒱𝒩ℐ2 −quasi H-closed.

Proof. Similar to proof of Theorem 4.21. 

5. Conclusions

In the current research paper, we found some results of single-valued neutrosophic continuous mappings

called almost continuous and weakly continuous. These instances are kinds of some generalizations of fuzzy 

continuity in view of the definition of �̃�ostak. We brought counterexamples whenever such properties fail to be 

preserved. We also introduced and studied several kinds of r-single-valued neutrosophic compactness defined 

on the single-valued neutrosophic ideal topological spaces. 
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