Neutrosophic Sets and Systems

Volume 36 Article 6

9-23-2020

Neutrosophic \aleph-interior ideals in semigroups

K. Porselvi
B. Elavarasan
F. Smarandache

Follow this and additional works at: https://digitalrepository.unm.edu/nss_journal

Recommended Citation

This Article is brought to you for free and open access by UNM Digital Repository. It has been accepted for inclusion in Neutrosophic Sets and Systems by an authorized editor of UNM Digital Repository. For more information, please contact amywinter@unm.edu, lsloane@salud.unm.edu, sarahrk@unm.edu.
Neutrosophic \aleph–interior ideals in semigroups

K. Porselvi 1, B. Elavarasan 2*, F. Smarandache 3

$^1, 2$Department of Mathematics, Karunya Institute of Technology and Sciences, Coimbatore - 641 114, Tamilnadu, India.
E-mail: porselvi94@yahoo.co.in; porselvi@karunya.edu.
E-mail: belavarasan@gmail.com; elavarasan@karunya.edu.

3Mathematics Department, University of New Mexico, 705 Gurley Ave., Gallup, NM 87301, USA.
E-mail: fsmarandache@gmail.com; smarand@unm.edu.

* Correspondence: belavarasan@gmail.com

Abstract: We define the concepts of neutrosophic \aleph-interior ideal and neutrosophic \aleph–characteristic interior ideal structures of a semigroup. We infer different types of semigroups using neutrosophic \aleph-interior ideal structures. We also show that the intersection of neutrosophic \aleph-interior ideals and the union of neutrosophic \aleph-interior ideals is also a neutrosophic \aleph-interior ideal.

Keywords: Semi group, neutrosophic \aleph–ideals, neutrosophic \aleph-interior ideals, neutrosophic \aleph–product.

1. Introduction

Nowadays, the theory of uncertainty plays a vital role to manage different issues relating to modelling engineering problems, networking, real-life problem relating to decision making and so on. In 1965, Zadeh[24] introduced the idea of fuzzy sets for modelling vague concepts in the globe. In 1986, Atanassov [1] generalized fuzzy set and named as Intuitionistic fuzzy set. Also, from his viewpoint, there are two degrees of freedom in the real world, one a degree of membership to a vague subset and the other is a degree of non-membership to that given subset.

Smarandache generalized fuzzy set and intuitionistic fuzzy set, and named as neutrosophic set (see [4, 7, 8, 14, 19, 22-23]). These sets are characterized by a truth membership function, an indeterminacy membership function and a falsity membership function. These sets are applied to many branches of mathematics to overcome the complexities arising from uncertain data. A Neutrosophic set can distinguish between absolute membership and relative membership. Smarandache used this in non-standard analysis such as the result of sports games (winning/defeating/tie), decision making and control theory, etc. This area has been studied by several authors (see [3, 11, 12, 16-18]).

For more details on neutrosophic set theory, the readers visit the website http://fs.gallup.unm.edu/FlorentinSmarandache.htm

In [2], Abdel Basset et al. designed a framework to manage scheduling problems using neutrosophic theory. As the concept of time-cost tradeoffs and deterministic project scheduling disagree with the real situation, some data were changed during the implementation process. Here fuzzy scheduling and time-cost tradeoffs models assumed only truth-membership functions dealing
with uncertainties of the project and their activities duration which were unable to treat indeterminacy and inconsistency.

In [6], Abdel Basset et al. evaluated the performance of smart disaster response systems under uncertainty. In [5], Abdel Basset et al. introduced different hybrid neutrosophic multi-criteria decision-making framework for professional selection that employed a collection of neutrosophic analytical network process and order preference by similarity to the ideal solution under bipolar neutrosophic numbers.

In [21], Prakasam Muralikrishna1 et al. presented the characterization of MBJ – Neutrosophic δ – Ideal of δ – algebra. They analyzed homomorphic image, pre–image, cartesian product and related results, and these concepts were explored to other substructures of a δ – algebra. In [9], Chalapathi et al. constructed certain Neutrosophic Boolean rings, introduced Neutrosophic complement elements and mainly obtained some properties satisfied by the Neutrosophic complement elements of Neutrosophic Boolean rings.

In [14], M. Khan et al. presented the notion of neutrosophic ℵ-subsemigroup in semigroup and explored several properties. In [11], Gulistan et al. have studied the idea of complex neutrosophic subsemigroups and introduced the concept of the characteristic function of complex neutrosophic sets, direct product of complex neutrosophic sets.

In [10], B. Elavarasan et al. introduced the notion of neutrosophic ℵ-ideal in semigroup and explored its properties. Also, the conditions for neutrosophic ℵ-structure to be neutrosophic ℵ-ideal are given, and discussed the idea of characteristic neutrosophic ℵ-structure in semigroups and obtained several properties. In [20], we have introduced and discussed several properties of neutrosophic ℵ-product and the intersection of neutrosophic ℵ-ideals were identical for regular semigroups. In this paper, we define and discuss the concepts of neutrosophic ℵ-interior ideal and neutrosophic ℵ-characteristic interior ideal structures of a semigroup.

Throughout this paper, X denotes a semigroup. Now, we present the important definitions of semigroup that we need in sequel.

Recall that for any $X_1, X_2 \subseteq X$, $X_1X_2 = \{ab | a \in X_1 \text{ and } b \in X_2\}$, multiplication of X_1 and X_2.

Let X be a semigroup and $\emptyset \neq X_1 \subseteq X$. Then

(i) X_1 is known as subsemigroup if $X_1X_1 \subseteq X_1$.

(ii) A subsemigroup X_1 is known as left (resp., right) ideal if $X_1X \subseteq X_1$ (resp., $XX_1 \subseteq X_1$).

(iii) X_1 is known as ideal if X_1 is both a left and a right ideal.

(iv) X is known as left (resp., right) regular if for each $r \in X$, there exists $i \in X$ such that $r = ir^2$ (resp., $r = r^2i$) [13].

(v) X is known as regular if for each $b_1 \in X$, there exists $i \in X$ such that $b_1 = b_1ib_1$.

(vi) X is known as intra-regular if for each $x_1 \in X$, there exist $i, j \in X$ such that $x_1 = ix_1j$ [15].

2. Definitions of neutrosophic ℵ - structures

We present definitions of neutrosophic ℵ-structures namely neutrosophic ℵ-subsemigroup, neutrosophic ℵ-ideal, neutrosophic ℵ-interior ideal of a semigroup X.

K. Porsevi, B. Elavarasan and F. Smarandache, Neutrosophic ℵ–interior ideals in semigroups
The set of all the functions from X to $[-1, 0]$ is denoted by $\mathcal{Z}(X, [-1, 0])$. We call that an element of $\mathcal{Z}(X, [-1, 0])$ a \mathcal{K}-function on X. A \mathcal{K}-structure means an ordered pair (X, g) where X is a neutrosophic sets and g is a neutrosophic function on X.

Definition 2.1.[14] A neutrosophic \mathcal{K}-structure of X is defined to be the structure:

$$X_M := \frac{x}{(T_M, I_M, F_M)} = \left\{ r \in X \mid r \in X \right\},$$

where T_M, I_M, and F_M are the negative truth, negative indeterminacy and negative falsity membership functions on X (\mathcal{K}-functions).

It is evident that $-3 \leq T_M(r) + I_M(r) + F_M(r) \leq 0$ for all $r \in X$.

Definition 2.2.[14] A neutrosophic \mathcal{K}-structure X_M of X is called a neutrosophic \mathcal{K}-subsemigroup of X if the following assertion is valid:

$$\forall g_i, h_j \in X \left(T_M(g_i, h_j) \leq T_M(g_i) \lor T_M(h_j) \lor I_M(g_i) \land I_M(h_j) \land F_M(g_i, h_j) \leq F_M(g_i) \lor F_M(h_j) \right).$$

Let X_M be a neutrosophic \mathcal{K}-structure and $y, \delta, \varepsilon \in [-1, 0]$ with $-3 \leq y + \delta + \varepsilon \leq 0$. Consider the sets:

$$T_M^r = \{ r_i \in X | T_M(r_i) \leq y \},$$

$$I_M^r = \{ r_i \in X | I_M(r_i) \geq \delta \},$$

$$F_M^r = \{ r_i \in X | F_M(r_i) \leq \varepsilon \}.$$

The set $X_M(y, \delta, \varepsilon) := \{ r_i \in X | T_M(r_i) \leq y, I_M(r_i) \geq \delta, F_M(r_i) \leq \varepsilon \}$ is known as (y, δ, ε)-level set of X_M. It is easy to observe that $X_M(y, \delta, \varepsilon) = T_M^r \cap I_M^r \cap F_M^r$.

Definition 2.3.[10] A neutrosophic \mathcal{K}-structure X_M of X is called a neutrosophic \mathcal{K}-ideal (resp., right) ideal of X if

$$\forall g_i, h_j \in X \left(T_M(g_i, h_j) \leq T_M(h_j) \lor T_M(g_i) \lor I_M(g_i, h_j) \lor I_M(h_j) \lor F_M(g_i, h_j) \leq F_M(g_i) \lor F_M(h_j) \right).$$

X_M is neutrosophic \mathcal{K}-ideal of X if X_M is neutrosophic \mathcal{K}-left and \mathcal{K}-right ideal of X.

Definition 2.4. A neutrosophic \mathcal{K}-subsemigroup X_M of X is known as a neutrosophic \mathcal{K}-interior ideal if

$$\forall x, a, y \in X \left(T_M(xa) \leq T_M(a) \lor I_M(xa) \leq I_M(a) \lor F_M(xa) \leq F_M(a) \right).$$

It is easy to observe that every neutrosophic \mathcal{K}-ideal is neutrosophic \mathcal{K}-interior ideal, but neutrosophic \mathcal{K}-interior ideal need not be a neutrosophic \mathcal{K}-ideal, as shown by an example.

Example 2.5. Let X be the set of all non-negative integers except 1. Then X is a semigroup with usual multiplication.

Let $X_M = \begin{cases} \theta & \text{if } x \in (-0.9, -0.1, 0.7), \\ 2 & \text{if } x \in (-0.4, -0.6, -0.5), \\ 5 & \text{if } x \in (-0.3, -0.8, -0.3), \\ 10 & \text{if } x \in (-0.7, -0.4, -0.6), \\ \text{otherwise} & \end{cases}$. Then X_M is neutrosophic \mathcal{K}-interior ideal, but not neutrosophic \mathcal{K}-ideal with $T_M(2.5) = -0.3 \leq T_M(2)$.

Definition 2.6.[14] For any $E \in X$, the characteristic neutrosophic \mathcal{K}-structure is defined as

$$X_E(X_M) = \frac{X}{(X_E(T_M^r), X_E(I_M^r), X_E(F_M^r))}$$

K. Porselvi, B. Elavarasan and F. Smarandache, Neutrosophic \mathcal{K}-interior ideals in semigroups
where

\[
X_E(T)_M: X \to [-1, 0], \ r \to \begin{cases} 1 & \text{if } r \in E \\ 0 & \text{otherwise} \end{cases},
\]

\[
X_E(I)_M: X \to [-1, 0], \ r \to \begin{cases} 0 & \text{if } r \in E \\ 1 & \text{otherwise} \end{cases},
\]

\[
X_E(F)_M: X \to [-1, 0], \ r \to \begin{cases} 1 & \text{if } r \in E \\ 0 & \text{otherwise}. \end{cases}
\]

Definition 2.7.[14] Let \(X_N := \frac{x}{(T_N, I_N, F_N)} \) and \(X_M := \frac{x}{(T_M, I_M, F_M)} \) be neutrosophic \(\aleph \)—structures of \(X \). Then

(i) \(X_N \) is called a neutrosophic \(\aleph \)—substructure of \(X_M \), denote by \(X_M \subseteq X_N \), if \(T_M(r) \geq T_N(r), I_M(r) \leq I_N(r), F_M(r) \geq F_N(r) \) for all \(r \in X \).

(ii) If \(X_N \subseteq X_M \) and \(X_M \subseteq X_N \), then we say that \(X_N = X_M \).

(iii) The neutrosophic \(\aleph \)—product of \(X_N \) and \(X_M \) is defined to be a neutrosophic \(\aleph \)—structure of \(X \),

\[
X_N \odot X_M := \frac{x}{(T_{N \odot M}, I_{N \odot M}, F_{N \odot M})} = \left\{ h \in X \right\},
\]

where

\[
(T_{N \odot M}, I_{N \odot M}, F_{N \odot M}) = \left\{ \begin{cases} \bigwedge_{h=rs} (T_N(r) \lor T_M(s)) & \text{if } \exists r, s \in X \text{ such that } h = rs \\ 0 & \text{otherwise}, \end{cases} \right. \]

\[
(I_{N \odot M}, I_{N \odot M}) = \left\{ \begin{cases} \bigvee_{h=rs} (I_N(r) \land I_M(s)) & \text{if } \exists u, v \in X \text{ such that } h = rs \\ -1 & \text{otherwise}, \end{cases} \right. \]

\[
(F_{N \odot M}, F_{N \odot M}) = \left\{ \begin{cases} \bigwedge_{h=rs} (F_N(r) \lor F_M(s)) & \text{if } \exists u, v \in X \text{ such that } h = rs \\ 0 & \text{otherwise}. \end{cases} \right. \]

For \(i \in X \), the element \(\frac{i}{(T_{N \odot M}(i), I_{N \odot M}(i), F_{N \odot M}(i))} \) is simply denoted by \((X_N \odot X_M)(i) = (T_{N \odot M}(i), I_{N \odot M}(i), F_{N \odot M}(i)). \)

(iii) The union of \(X_N \) and \(X_M \), a neutrosophic \(\aleph \)—structure over \(X \) is defined as

\[
X_N \uplus X_M = X_{N \uplus M} = \left(X; T_{N \uplus M}, I_{N \uplus M}, F_{N \uplus M} \right),
\]

where

\[
(T_{N \uplus M}, I_{N \uplus M}, F_{N \uplus M}) = \left\{ \begin{cases} T_N(h_i) \lor T_M(h_i) & \text{if } h_i \in X \text{ such that } h_i = rs \\ I_N(h_i) \land I_M(h_i) & \text{if } h_i \in X \text{ such that } h_i = rs \\ F_N(h_i) \lor F_M(h_i) & \text{if } h_i \in X \text{ such that } h_i = rs \end{cases} \right. \]

(iv) The intersection of \(X_N \) and \(X_M \), a neutrosophic \(\aleph \)—structure over \(X \) is defined as

\[
X_N \cap X_M = X_{N \cap M} = \left(X; T_{N \cap M}, I_{N \cap M}, F_{N \cap M} \right),
\]

where

\[
(T_{N \cap M}, I_{N \cap M}, F_{N \cap M}) = \left\{ \begin{cases} T_N(h_i) \land T_M(h_i) & \text{if } h_i \in X \text{ such that } h_i = rs \\ I_N(h_i) \lor I_M(h_i) & \text{if } h_i \in X \text{ such that } h_i = rs \\ F_N(h_i) \land F_M(h_i) & \text{if } h_i \in X \text{ such that } h_i = rs \end{cases} \right. \]

3. Neutrosophic \(\aleph \)—interior ideals

We study different properties of neutrosophic \(\aleph \)—interior ideals of \(X \). It is evident that neutrosophic \(\aleph \)—ideal is a neutrosophic \(\aleph \)—interior ideal of \(X \), but not the converse. Further, for a regular and for an intra-regular semigroup, every neutrosophic \(\aleph \)—interior ideal is neutrosophic \(\aleph \)—ideal.
All throughout this part, we consider X_M and X_N are neutrosophic \mathbb{K}–structures of X.

Theorem 3.1. For any $L \subseteq X$, the equivalent assertions are:

(i) L is an interior ideal,

(ii) The characteristic neutrosophic \mathbb{K}–structure $\chi_L(X_N)$ is a neutrosophic \mathbb{K}–interior ideal.

Proof: Suppose L is an interior ideal and let $x, a, y \in X$.

If $a \in L$, then $xay \in L$, so $\chi_L(T)_N(xay) = -1 = \chi_L(T)_N(a)$, $\chi_L(I)_N(xay) = 0 = \chi_L(I)_N(a)$ and $\chi_L(F)_N(xay) = -1 = \chi_L(F)_N(a)$.

If $a \notin L$, then $\chi_L(T)_N(xay) \leq 0 = \chi_L(T)_N(a)$, $\chi_L(I)_N(xay) \geq -1 = \chi_L(I)_N(a)$ and $\chi_L(F)_N(xay) \leq 0 = \chi_L(F)_N(a)$.

Therefore $\chi_L(X_N)$ is a neutrosophic \mathbb{K}–interior ideal.

Conversely, assume that $\chi_L(X_N)$ is a neutrosophic \mathbb{K}–interior ideal. Let $u \in L$ and $x, y \in X$. Then

$$\chi_L(T)_N(xay) \leq \chi_L(T)_N(u) = -1,$$

$$\chi_L(I)_N(xay) \geq \chi_L(I)_N(u) = 0,$$

$$\chi_L(F)_N(xay) \leq \chi_L(F)_N(u) = -1 .$$

So $xay \in L$. □

Theorem 3.2. If X_M and X_N are neutrosophic \mathbb{K}–interior ideals, then $X_{M\cap N}$ is neutrosophic \mathbb{K}–interior ideal.

Proof: Let X_M and X_N be neutrosophic \mathbb{K}–interior ideals. For any $r, s, t \in X$, we have

$$T_{M\cap N}(rst) = T_M(rst) \cap T_N(rst) \leq T_M(s) \cap T_N(s) = T_{M\cap N}(s),$$

$$I_{M\cap N}(rst) = I_M(rst) \cap I_N(rst) \geq I_M(s) \cap I_N(s) = I_{M\cap N}(s),$$

$$F_{M\cap N}(rst) = F_M(rst) \cap F_N(rst) \leq F_M(s) \cap F_N(s) = F_{M\cap N}(s).$$

Therefore $X_{M\cap N}$ is neutrosophic \mathbb{K}–interior ideal. □

Corollary 3.3. The arbitrary intersection of neutrosophic \mathbb{K}–interior ideals is a neutrosophic \mathbb{K}–interior ideal.

Theorem 3.4. If X_M and X_N are neutrosophic \mathbb{K}–interior ideals, then $X_{M\cup N}$ is neutrosophic \mathbb{K}–interior ideal.

Proof: Let X_M and X_N be neutrosophic \mathbb{K}–interior ideals. For any $r, s, t \in X$, we have

$$T_{M\cup N}(rst) = T_M(rst) \cup T_N(rst) \leq T_M(s) \cup T_N(s) = T_{M\cup N}(s),$$

$$I_{M\cup N}(rst) = I_M(rst) \cup I_N(rst) \geq I_M(s) \cup I_N(s) = I_{M\cup N}(s),$$

$$F_{M\cup N}(rst) = F_M(rst) \cup F_N(rst) \leq F_M(s) \cup F_N(s) = F_{M\cup N}(s).$$

Therefore $X_{M\cup N}$ is neutrosophic \mathbb{K}–interior ideal. □

Corollary 3.5. The arbitrary union of neutrosophic \mathbb{K}–interior ideals is neutrosophic \mathbb{K}–interior ideal.

Theorem 3.6. Let X be a regular semigroup. If X_M is neutrosophic \mathbb{K}–interior ideal, then X_M is neutrosophic \mathbb{K}–ideal.
Proof: Assume that X_M is an interior ideal, and let $u, v \in X$. As X is regular and $u \in X$, there exists $r \in X$ such that $u = uru$. Now, $T_M(uv) = T_M(uruv) \leq T_M(u)$, $I_M(uv) = I_M(uruv) \geq I_M(u)$ and $F_M(uv) = F_M(uruv) \leq F_M(u)$. Therefore X_M is neutrosophic $\kappa -$ right ideal.

Similarly, we can show that X_M is neutrosophic $\kappa -$ left ideal and hence X_M is neutrosophic $\kappa -$ ideal. \square

Theorem 3.7. Let X be an intra-regular semigroup. If X_M is neutrosophic $\kappa -$ interior ideal, then X_M is neutrosophic $\kappa -$ ideal.

Proof: Suppose that X_M is neutrosophic $\kappa -$ interior ideal, and let $u, v \in X$. As X is intra regular and $u \in X$, there exist $s, t \in S$ such that $u = su^2t$. Now,

$$T_M(uv) = T_M(su^2tv) \leq T_M(u),$$
$$I_M(uv) = I_M(su^2tv) \geq I_M(u)$$
$$F_M(uv) = F_M(su^2tv) \leq F_M(u).$$

Therefore X_M is neutrosophic $\kappa -$ right ideal. Similarly, we can show that X_M is neutrosophic $\kappa -$ left ideal and hence X_M is neutrosophic $\kappa -$ ideal. \square

Definition 3.8. A semigroup X is left simple (resp., right simple) if it does not contain any proper left ideal (resp., right ideal) of X. A semigroup X is simple if it does not contain any proper ideal of X.

Definition 3.9. A semigroup X is said to be neutrosophic $\kappa -$simple if every neutrosophic $\kappa -$ ideal is a constant function

i.e., for every neutrosophic $\kappa -$ ideal X_M of X, we have $T_M(i) = T_M(j)$, $I_M(i) = I_M(j)$ and $F_M(i) = F_M(j)$ for all $i, j \in X$.

Notation 3.10. If X is a semigroup and $s \in X$, we define a subset, denoted by I_s as follows:

$$I_s = \{ i \in X \mid T_N(i) \geq T_N(s), \ I_N(i) \geq I_N(s) \ \text{and} \ F_N(i) \leq F_N(s) \}.$$

Proposition 3.11. If X_N is neutrosophic $\kappa -$ right (resp., $\kappa -$ left, $\kappa -$ ideal) ideal, then I_s is right (resp., left, ideal) ideal for every $s \in X$.

Proof: Let $s \in X$. Then it is clear that $s \neq I_s \subseteq X$. Let $u \in I_s$ and $x \in X$. Then $ux \in I_x$. Indeed; Since X_N is neutrosophic $\kappa -$ right ideal and $u, x \in X$, we get $T_N(ux) \leq T_N(u), I_N(ux) \geq I_N(u)$ and $F_N(ux) \leq F_N(u)$. Since $u \in I_s$, we get $T_N(u) \leq T_N(s), I_N(u) \geq I_N(s)$ and $F_N(u) \leq F_N(s)$ which imply $ux \in I_s$. Therefore I_s is a right ideal for every $s \in X$. \square

Theorem 3.12.[4] For any $L \subseteq X$, the equivalent assertions are:

(i) L is left (resp., right) ideal,

(ii) Characteristic neutrosophic $\kappa -$structure $\chi L(X_N)$ is neutrosophic $\kappa -$ left (resp., right) ideal.

Theorem 3.13. Let X be a semigroup. Then X is simple if and only if X is neutrosophic $\kappa -$simple.
Proof: Suppose X is simple. Let X_M be a neutrosophic \mathcal{K}-ideal and $u, v \in X$. Then by Proposition 3.11, I_u is an ideal of X. As X is simple, we have $I_u = X$. Since $v \in I_u$, we have $T_M(v) \leq T_M(u)$, $I_M(v) \geq I_M(u)$ and $F_M(v) \leq F_M(u)$.

Similarly, we can prove that $T_M(u) \leq T_M(v)$, $I_M(u) \geq I_M(v)$ and $F_M(u) \leq F_M(v)$. So we have $T_M(u) = T_M(v)$, $I_M(u) = I_M(v)$ and $F_M(u) = F_M(v)$. Hence X is neutrosophic \mathcal{K}-simple.

Conversely, assume that X is neutrosophic \mathcal{K}-simple and I is an ideal of X. Then by Theorem 3.12, $\chi(X_I)$ is a neutrosophic \mathcal{K}-ideal. We now claim that $X = I$. Let $w \in X$. Since X is neutrosophic \mathcal{K}-simple, we have $\chi(X_I)(w) = \chi(X_I)(y)$ for every $y \in X$. In particular, we have $\chi(T_N(w) = \chi(T_N)(d) = -1, \chi(I_N(w) = \chi(I_N)(d) = 0$ and $\chi(F_N(w) = \chi(F_N)(d) = -1$ for any $d \in I$ which implies $w \in I$. Thus $X \subseteq I$ and hence $X = I$. □

Lemma 3.14. Let X be a semigroup. Then X is simple if and only for every $t \in X$, we have $X = XtX$.

Proof: Suppose X is simple and let $t \in X$. Then $X(tX) \subseteq XtX$ and $(XtX)X \subseteq XtX$ imply that XtX is an ideal. Since X is simple, we have $XtX = X$.

Conversely, let P be an ideal and let $a \in P$. Then $X = XaX, XaX \subseteq XPX \subseteq P$ which implies $P = X$. Therefore X is simple. □

Theorem 3.15. Suppose X is a semigroup. Then X is simple if and only every neutrosophic \mathcal{K}-ideal of X is a constant function.

Proof: Suppose X is simple and $s, t \in X$. Let X_N be neutrosophic \mathcal{K}-ideal. Then by Lemma 3.14, we get $X = XsX = XtX$. As $s \in XsX$, we have $s = atb$ for $a, b \in X$. Since X_N is neutrosophic \mathcal{K}-ideal, we have $T_N(s) = T_N(atb) \leq T_N(t), I_N(s) = I_N(atb) \geq I_N(t)$ and $F_N(s) = F_N(atb) \leq F_N(t)$. Similarly, we can prove that $T_N(t) \leq T_N(s), I_N(t) \geq I_N(s)$ and $F_N(t) \leq F_N(s)$. So X_N is a constant function.

Conversely, suppose X_N is neutrosophic \mathcal{K}-ideal. Then X_N is neutrosophic \mathcal{K}-ideal. By hypothesis, X_N is a constant function and so X_N is neutrosophic \mathcal{K}-simple. By Theorem 3.13, X is simple. □

Theorem 3.16. Let X_M be neutrosophic \mathcal{K}-structure and let $\gamma, \delta, \varepsilon \in [-1, 0]$ with $-3 \leq \gamma + \delta + \varepsilon \leq 0$. If X_M is neutrosophic \mathcal{K}-ideal, then $(\gamma, \delta, \varepsilon)$-level set of X_M is neutrosophic \mathcal{K}-ideal whenever $X_M(\gamma, \delta, \varepsilon) \neq \emptyset$.

Proof: Suppose $X_M(\gamma, \delta, \varepsilon) \neq \emptyset$ for $\gamma, \delta, \varepsilon \in [-1, 0]$ with $-3 \leq \gamma + \delta + \varepsilon \leq 0$.

Let X_M be a neutrosophic \mathcal{K}-ideal and let $u, v, w \in X_M(\gamma, \delta, \varepsilon)$. Then $T_M(uvw) \leq T_M(v) \leq \alpha, I_M(uvw) \geq I_M(v) \geq \beta$ and $F_M(uvw) \leq F_M(v) \leq \gamma$ which imply $uvw \in X_M(\alpha, \beta, \gamma)$. Therefore $X_M(\gamma, \delta, \varepsilon)$ is a neutrosophic \mathcal{K}-ideal of X. □

Theorem 3.17. Let X_N be neutrosophic \mathcal{K}-structure with $\alpha, \beta, \gamma \in [-1, 0]$ such that $-3 \leq \alpha + \beta + \gamma \leq 0$. If T^a_N, I^b_N and F^c_N are ideal sets, then X_N is neutrosophic \mathcal{K}-ideal of X whenever it is non-empty.

Proof: Suppose that for $a, b, c \in X$ with $T_N(abc) > T_N(b)$. Then $T_N(abc) > T_N(b)$ for some $t_a \in [-1, 0]$. So $b \in T^a_N(b)$ but $abc \in T^a_N(b)$, a contradiction. Thus $T_N(abc) \leq T_N(b)$. □
Suppose that for \(a, b, c \in X \) with \(I_N(abc) < I_N(b) \). Then \(I_N(abc) < t_a \leq I_N(b) \) for some \(t_a \in [-1, 0) \). So \(b \in I_N^a(b) \) but \(abc \notin I_N^a(b) \), a contradiction. Thus \(I_N(abc) \geq I_N(b) \).

Suppose that for \(a, b, c \in X \) with \(F_N(abc) > F_N(b) \). Then \(F_N(abc) > t_a \geq F_N(b) \) for some \(t_a \in [-1, 0) \). So \(b \in F_N^a(b) \) but \(abc \notin F_N^a(b) \), a contradiction. Thus \(F_N(abc) \leq F_N(b) \).

Thus \(X_N \) is neutrosophic \(K \) – interior ideal.

\[\square \]

Theorem 3.18. Let \(X_M \) be neutrosophic \(K \) – structure over \(X \). Then the equivalent assertions are:

(i) \(X_M \) is neutrosophic \(K \) – interior ideal,

(ii) \(X_N \circ X_M \circ X_N \subseteq X_M \) for any neutrosophic \(K \) – structure \(X_N \).

Proof: Suppose \(X_M \) is neutrosophic \(K \) – interior ideal. Let \(x \in X \). For any \(u, v, w \in X \) such that \(x = uvw \). Then \(T_M(x) = T_M(uvw) \leq T_M(v) \leq T_M(u) \lor T_M(v) \lor T_N(w) \) which implies \(T_M(x) \leq T_{\mathcal{N}(M \circ N)}(x) \). Otherwise \(x \neq uvw \). Then \(T_M(x) = 0 = T_{\mathcal{N}(M \circ N)}(x) \). Similarly, we can prove that \(I_M(x) \geq I_{\mathcal{N}(M \circ N)}(x) \) and \(F_M(x) \leq F_{\mathcal{N}(M \circ N)}(x) \). Thus \(X_N \circ X_M \circ X_N \subseteq X_M \).

Conversely, assume that \(X_N \circ X_M \circ X_N \subseteq X_M \) for any neutrosophic \(K \) – structure \(X_N \).

Let \(u, v, w \in X \). If \(x = uvw \), then

\[
T_M(uvw) = T_M(x) \leq (\chi_X(T)_N \circ T_M \circ \chi_X(T)_N)(x) = \bigwedge_{x=uvw} \{ \chi_X(T)_N(u) \lor T_M(v) \lor \chi_X(T)_N(w) \}
\]

\[
= \bigwedge_{x=uvw} \{ \chi_X(T)_N(u) \lor (T_M(v) \lor \chi_X(T)_N(w)) \}
\]

\[
\leq \chi_X(T)_N(u) \lor T_M(v) \lor \chi_X(T)_N(w) = T_M(v),
\]

\[I_M(uvw) = I_M(x) \leq (\chi_X(I)_N \circ I_M \circ \chi_X(I)_N)(x) = \bigvee_{x=uvw} \{ \chi_X(I)_N \circ I_M(r) \land \chi_X(I)_N(w) \}
\]

\[
= \bigvee_{x=uvw} \{ \chi_X(I)_N \circ I_M(u) \land \chi_X(I)_N(w) \}
\]

\[
\geq \chi_X(I)_N(u) \land I_M(v) \land \chi_X(I)_N(w) = I_M(v),
\]

and

\[
F_M(uvw) = F_M(x) \leq (\chi_X(F)_N \circ F_M \circ \chi_X(F)_N)(x) = \bigwedge_{x=uvw} \{ \chi_X(F)_N \circ F_M(r) \lor \chi_X(F)_N(w) \}
\]

\[
= \bigwedge_{x=uvw} \{ \chi_X(F)_N \circ F_M(U) \lor \chi_X(F)_N(w) \}
\]

\[
\leq \chi_X(F)_N(u) \lor F_M(v) \lor \chi_X(F)_N(w) = F_M(v).
\]

Therefore \(X_M \) is neutrosophic \(K \) – interior ideal.

\[\square \]

Notation 3.19. Let \(X \) and \(Z \) be semigroups. A mapping \(g : X \to Z \) is said to be a homomorphism if \(g(uv) = g(u)g(v) \) for all \(u, v \in X \). Throughout this remaining section, we denote \(\text{Aut}(X) \), the set of all automorphisms of \(X \).

Definition 3.20. An interior ideal \(J \) of a semigroup \(X \) is called a characteristic interior ideal if \(h(J) = J \) for all \(h \in \text{Aut}(X) \).
Definition 3.21. Let X be a semigroup. A neutrosophic $\kappa -$ interior ideal X_M is called neutrosophic $\kappa -$ characteristic interior ideal if $T_N(h(u)) = T_N(u)$, $I_N(h(u)) = I_N(u)$ and $F_N(h(u)) = F_N(u)$ for all $u \in X$ and all $h \in Aut(X)$.

Theorem 3.22. For any $L \subseteq X$, the equivalent assertions are:

(i) L is characteristic interior ideal,

(ii) The characteristic neutrosophic $\kappa -$ structure $\chi_L(X_M)$ is neutrosophic $\kappa -$ characteristic interior ideal.

Proof: Suppose L is characteristic interior ideal and let $x \in X$. Then by Theorem 3.1, $\chi_L(X_M)$ is neutrosophic $\kappa -$ interior ideal. If $x \in L$, then $\chi_L(T_M(x)) = -1$, $\chi_L(I_M(x)) = 0$, and $\chi_L(F_M(x)) = -1$. Now, for any $h \in Aut(X)$, $h(x) \in h(L) = L$ which implies $\chi_L(T_M(h(x))) = -1$, $\chi_L(I_M(h(x))) = 0$, and $\chi_L(F_M(h(x))) = -1$. If $x \notin L$, then $\chi_L(T_M(x)) = 0$, $\chi_L(I_M(x)) = -1$, and $\chi_L(F_M(x)) = 0$. Now, for any $h \in Aut(X)$, $h(x) \in h(L)$ which implies $\chi_L(T_M(h(x))) = 0$, $\chi_L(I_M(h(x))) = -1$, and $\chi_L(F_M(h(x))) = 0$. Thus $\chi_L(T_M(h(x))) = \chi_L(T_M(x)), \chi_L(I_M(h(x))) = \chi_L(I_M(x))$, and $\chi_L(F_M(h(x))) = \chi_L(F_M(x))$ for all $x \in X$ and hence $\chi_L(X_M)$ is neutrosophic $\kappa -$ characteristic interior ideal.

Conversely, assume that $\chi_L(X_M)$ is neutrosophic $\kappa -$ characteristic interior ideal. Then by Theorem 3.1, L is an interior ideal. Now, let $h \in Aut(X)$ and $x \in L$. Then $\chi_L(T_M(x)) = -1$, $\chi_L(I_M(x)) = 0$, and $\chi_L(F_M(x)) = -1$. Since $\chi_L(X_M)$ is neutrosophic $\kappa -$ characteristic interior ideal, we have $\chi_L(T_M(h(x))) = \chi_L(T_M(x)), \chi_L(I_M(h(x))) = \chi_L(I_M(x))$, and $\chi_L(F_M(h(x))) = \chi_L(F_M(x))$ which imply $h(x) \in L$. So $h(L) \subseteq L$ for all $h \in Aut(X)$. Again, since $h \in Aut(X)$ and $x \in L$, there exists $y \in L$ such that $h(y) = x$.

Suppose that $y \notin L$. Then $\chi_L(T_M(y)) = 0$, $\chi_L(I_M(y)) = 1$, and $\chi_L(F_M(y)) = 0$. Since $\chi_L(T_M(h(y))) = \chi_L(T_M(y)), \chi_L(I_M(h(y))) = \chi_L(I_M(y))$, and $\chi_L(F_M(h(y))) = \chi_L(F_M(y))$, we get $\chi_L(T_M(h(y))) = 0$, $\chi_L(I_M(h(y))) = -1$, and $\chi_L(F_M(h(y))) = 0$ which imply $h(y) \notin L$, a contradiction. So $y \in L$ i.e., $h(y) \in L$. Thus $L \subseteq h(L)$ for all $h \in Aut(X)$ and hence L is characteristic interior ideal.

Theorem 3.23. For a semigroup X, the equivalent statements are:

(i) X is intra-regular,

(ii) For any neutrosophic $\kappa -$ interior ideal X_M, we have $X_M(w) = X_M(w^2)$ for all $w \in X$.

Proof: (i) \Rightarrow (ii) Suppose X is intra-regular, and X_M is neutrosophic $\kappa -$ interior ideal and $w \in X$.

Then there exist $r, s \in X$ such that $w = rw^2s$. Now $T_M(w) = T_M(rw^2s) \leq T_M(w^2) \leq T_M(w)$ and so $T_M(w) = T_M(w^2), I_M(w) = I_M(rw^2s) \geq I_M(w^2) \geq I_M(w)$ and so $I_M(w) = I_M(w^2)$, and $F_M(w) = F_M(rw^2s) \leq F_M(w^2) \leq F_M(w)$ and so $F_M(w) = F_M(w^2)$. Therefore $X_M(w) = X_M(w^2)$ for all $w \in X$.

(ii) \Rightarrow (i) Let (ii) holds and $s \in X$. Then $I(s^2)$ is an ideal of X. By Theorem 3.5 of [4], $\chi_{I(s^2)}(X_M)$ is neutrosophic $\kappa -$ ideal. By assumption, $\chi_{I(s^2)}(X_M)(s) = \chi_{I(s^2)}(X_M)(s^2)$. Since $\chi_{I(s^2)}(T_M(s^2)) = -1 = \chi_{I(s^2)}(F_M(s^2))$ and $\chi_{I(s^2)}(I_M(s^2)) = 0$, we get $\chi_{I(s^2)}(T_M(s)) = -1 = \chi_{I(s^2)}(F_M(s))$ and $\chi_{I(s^2)}(I_M(s^2)) = 0$ which imply $s \in I(s^2)$. Hence X is intra-regular.

Theorem 3.24. For a semigroup X, the equivalent statements are:

(i) X is left (resp., right) regular,

K. Porselvi, B. Elavarasan and F. Smarandache, Neutrosophic $\kappa -$ interior ideals in semigroups
(ii) For any neutrosophic $\mathbb{R} -$interior ideal X_M, we have $X_M(w) = X_M(w^2)$ for all $w \in X$.

Proof: (i) \Rightarrow (ii) Let X be left regular. Then there exists $y \in X$ such that $w = yw^2$. Let X_M be a neutrosophic $\mathbb{R} -$interior ideal. Then $T_M(w) = T_M(yw^2) \leq T_M(w)$ and so $T_M(w) = T_M(w^2)$. $I_M(w) = I_M(yw^2) \geq I_M(w)$ and so $I_M(w) = I_M(w^2)$, and $F_M(w) = F_M(yw^2) \leq F_M(w)$ and so $F_M(w) = F_M(w^2)$. Therefore $X_M(w) = X_M(w^2)$ for all $w \in X$.

(ii) \Rightarrow (i) Suppose (ii) holds and let X_M be neutrosophic $\mathbb{R} -$interior ideal. Then for any $w \in X$, $X_{L(w^2)}(T)_M(w) = X_{L(w^2)}(T)_M(w^2) = -1$, $X_{L(w^2)}(I)_M(w) = X_{L(w^2)}(I)_M(w^2) = 0$ and $X_{L(w^2)}(F)_M(w) = X_{L(w^2)}(F)_M(w^2) = -1$ which imply $w \in L(w^2)$. Thus X is left regular. □

Conclusions

In this paper, we have introduced the concepts of neutrosophic $\mathbb{R} -$interior ideals and neutrosophic $\mathbb{R} -$characteristic interior ideals in semigroups and studied their properties, and characterized regular and intra-regular semigroups using neutrosophic $\mathbb{R} -$interior ideal structures. We have also shown that R is a characteristic interior ideal if and only if the characteristic neutrosophic $\mathbb{R} -$structure $\chi_R(X_R)$ is neutrosophic $\mathbb{R} -$characteristic interior ideal. In future, we will define neutrosophic $\mathbb{R} -$prime ideals in semigroups and study their properties.

Reference

K. Porselvi, B. Elavarasen and F. Smarandache, Neutrosophic $\mathbb{R} -$interior ideals in semigroups
14. Khan, M. S.; Anis; Smarandache, F.; Jun,Y. B. Neutrosophic \aleph –structures and their applications in
16. Muhiuddin, G.; Ahmad, N.; Al-Kenani; Roh, E. H.; Jun, Y. B. Implicative neutrosophic quadruple
17. Muhiuddin, G.; Bordbar, H.; Smarandache, F.; Jun, Y. B. Further results on (2,2)-neutrosophic
19. Muhiuddin, G.; Smarandache, F.; Jun, Y. B. Neutrosophic quadruple ideals in neutrosophic
22. Smarandache, F. A. Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set,

Received: May 7, 2020. Accepted: September 23, 2020