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A FUNCTION IN THE NUMBER THEORY 

 
Florentin Smarandache 

The University of New Mexico 
Department of Mathematics 

Gallup, NM 87301, USA 
 

Abstract: 
In this paper I shall construct a function11 η having the following properties: 

(1) ≤ n ε Z, n ≠ 0, (η(n))! = M n (multiple of n). 
 

(2) η(n) is the smallest natural number satisfying property (1). 
 
MSC: 11A25, 11B34. 
 
Introduction: 
We consider: 
 
N = { 0 , 1 , 2 , 3 , . . . } and N* = {1, 2, 3, ... }. 
 
Lemma 1. ≤ k, p ε N*, p ≠ 1, k is uniquely written 
 
in the form: k = t1an(1)

(p) + . . . + tl an(l)
(p) where  

                 
               pn(i) - 1 
an(i)

(p) =              , i = 1, l,  n1 > n2 > .  .  . nl > 0 and 1 ≤ tj   ≤ p – 1, j = 1, l – 1,  1  ≤ tl  ≤ p, ni , ti ε N,  
                p - 1 
 
i = 1, l  , l ε N*. 
 
Proof. 
The string ( an

(p))nεN consists of strictly increasing infinite natural numbers and  
 
an+1

(p) – 1 = p * an
(p), "n ε N*, p is fixed, 

 
a1

(p) = 1, a2
(p) = 1 + p, a3

(p) = 1 + p + p2, . . .  .  Therefore:  
 
N* =   U     ([ an

(p) , an+1
(p)] ∩ N* ) where ( an

(p) , an+1
(p)) ∩  (an+1

(p), an+2
(p)) = 0 

        nε N*  
 
because  an

(p) < an+1
(p) < an+2

(p) . 
 
Let k ε N* , N* = U  (( an

(p), an+1
(p) ) ∩ N* ),  

 
therefore ≥! n1 ε  N* : k ε (  an(1)

(p), an(1)+1
(p) ) , therefore  k is uniquely written under the form  

 
              k 
  k =                 an(1)

(p) + r1 (integer division theorem). 
             a(p) 
               n1 
                                                           
1 This function has been called the Smarandache function.  Over one hundred articles, notes, problems and 
a dozen of books have been written about it. 
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We note 
 
 
              k 
  k =                      = t1 → k = t1 an(1)

(p) + r1, r1 < an(1)
(p) . 

             a(p) 
                n1 
 
If r1 = 0, as an(1)

(p) ≤ k ≤ an(1)+1
(p) – 1  →  1 ≤ t1 ≤ p and Lemma 1 is proved.  

 
If r1 ≠ 0, then ≥ ! n2 ε N* : r1 ε   an(2)

(p), an(2)+1
(p)     ; 

 
an(1)

(p) > r1 involves n1 > n2, r1 ≠ 0 and an(1)
(p) ≤ k ≤ an(1)+1

(p) – 1 involves 1 ≤ t1 ≤ p – 1 because we have  
 
t1 ≤ ( an(1)+1

(p)  - 1 – r1 ) : an
(p)  < p1 . 

 
The procedure continues similarly. After a finite number of steps l, we achieve rl = 0, as k = finite, k ε N*  
 
and k > r1 > r2 > . . . > rl  = 0 and between 0 and k there is only a finite number of distinct natural numbers.  
 
Thus: 
 
k is uniquely written: k = t1 an(1)

(p) + r1 , 1 ≤ t1 ≤ p – 1, 
 
r is uniquely written: r1 = t2 * an(2)

(p) + r2, n2 < n1, 
 
                                  1 ≤ t2 ≤ p-1,   
 
rl-1 is uniquely written: rl-1 = tl * an(l)

(p) + rl,  and rl = 0, 
 
                                    nl < nl-1 ,  1 ≤ tl ≤ p,   
 
 
thus k is uniquely written under the form  
 
k = t1 an(1)

(p) + . . . + tl an(l)
(p) 

 
with n1 > n2 > . . . > nl > 0, because nl ε N*, 1 ≤ tj ≤ p-1, j = 1, l – 1,  1 ≤ tl ≤ p, l ≥ 1. 
 
Let k ε N*, k = t1an(1)

(p) + . . . + tlan(l)
(p) with  

 
                  pni - 1          
an(i)

(p)   =                   , 
                   p - 1      
 
 
i = 1,  l , l ≥ 1, ni, ti ε N*, i = 1, l , n1 > n2 > . . . > nl > 0 
 
 
1 ≤ tj ≤ p – 1, j = 1, l – 1 , 1 ≤ tl ≤ p. 
 
 I construct the function ηp, p = prime > 0, ηp: N* → N thus: 
 
≤ n ε N* ηp(an

(p) ) = pn , 
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   ηp( t1an(1)
(p) + . . . + tl an(l)

(p) ) = t1 ηp(an(1)
(p)) + . . . + tl ηp(an(l)

(p)). 
 
NOTE 1. The function ηp is well defined for each natural number.  
Proof 
 
LEMMA 2.   ≤ k ε N*,  k is uniquely written as k = t1an1

(p) + . . . + tl anl
(p) with the conditions from Lemma  

 
1, thus ≥! t1pn(1) + . . . +  tl pn(l)  = ηp (t1an(1)

(p) + . . . + tl an(l)
(p) ) and  t1pn(1) + . . . +  tl pn(l)  ε N* . 

 
LEMMA 3. ≤ k ε N* , ≤ p ε N, p = prime then k = t1an(1)

(p) + . . . + tl an(l)
(p) with the conditions from Lemma 

2 thus ηp(k) = t1pn(1) + . . . +  tl pn(l)   
 
It is known that  
 
  a1 + . . . + an                                a1                                   an 
                                  ≥                             +  .   .   .  +                           ≤ ai , b ε N* where through [α ] we  
           b                                          b                                    b 
 
have written the integer side of the number α. I shall prove that p’s powers sum from the natural numbers 
which make up the result factors  
 
( t1pn(1) + . . . +  tl pn(l)  ) ! is ≥ k; 
 
 
 
 t1pn(1) + . . . +  tl pn(l)                 t1pn(1)                             tl pn(l)   
                                        ≥                        +  .  .  .   +                     = 
             p                                      p                                    p        
 
 
 t1pn(1)-1 + . . . +  tl pn(l) –1 
 
 
t1pn(1) + . . . +  tl pn(l)                   t1pn(1)                            tl pn(l)   
                                      ≥                        +  .  .  .   +                    = 
             pn                                    pn(l)                               pn(l) 
 
 
t1pn(1) – n(l) + . . . +  tl p0 
 
   
 
t1pn(1) + . . . +  tl pn(l)                   t1pn(1)                           tl pn(l)   
                                      ≥                        +  .  .  .   +                    = 
             pn(1)                                 pn(1)                              pn(1) 
 
 
                        tl pn(l)   
t1p0 + . . . +                    . 
                         pn(1) 
 
Adding → p’s powers the sum is ≥ t1(pn(1)-1 + . . . + p0) + . . . +  tl(pn(l)-1 + . . . + p0)  =   
 
t1 an(1)

(p) + . . . + tlan(l)
(p) = k. 

 
Theorem 1. The function np, p = prime, defined previously, has the following properties: 
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(1) ≥ k ε N*, (np(k))! = M pk. 
 

(2) ηp(k) is the smallest number with the property (1). 
 

Proof 
 
(1) Results from Lemma 3. 

 
(2) ≤ k ε N*, p ≥ 2 one has k = t1 an(1)

(p) + . . . + tlan(l)
(p)  

 
(by Lemma 2) is uniquely written, where: 
 
ni, ti ε N*, n1 > n2 > . . . nl > 0,  
 
                pn(i) - 1           
an(i)

(p) =                  ε N*, 
                  p – 1 
  
i = 1, l ,  1 ≤ tj ≤ p – 1,   j = 1, l – 1 , 1 < tl < p. 
 
→ ηp(k) = t1pn(1) + . . . + tlpn(l) . I note: z = t1pn(1) + . . . + tlpn(l). 
 
Let us prove that z is the smallest natural number with the property (1). I suppose by the method of 
reductio ad absurdum that ≥ γ ε N, γ < z: 
 
γ! = M pk; 
 
γ < z → γ ≤ z – 1 → (z-1)! = M pk. 
 
z – 1 = z = t1pn(1) + . . . + tlpn(l) – 1; n1 > n2 > . . . nl  ≥ 1 and 
 

       nj ε N, j = 1, l   ; 
 
 z – 1                                                                                 -1 
                  = t1pn(1)-1 + . . . + tl-1

n(l-1)-1 + tlpn(l)-1  - 1 as                  = -1 because p ≥ 2, 
    p                                                                                     p 

 
 
  z – 1                                                                                          -1 
                 = t1pn(1) - n(l) + . . . + tl – 1pn(l – 1) – n(l)  + tl p0 – 1 as                   = -1 
   pn(l)                                                                                               pn(l)  
 
as p ≥ 2, nl  ≥ 1,  
 
  z – 1                                                                             tlpn(l) - 1           
                 = t1pn(1) - n(l) -1 + . . . + tl – 1pn(l – 1) – n(l) -1 +                               = 
   pn(l)+1                                                                                  pn(l) + 1              
 
 
t1pn(1) - n(l) -1 + . . . + tl – 1pn(l – 1) – n(l) –1  because  
 
0 < tlpn(l) – 1 ≤ p*pn(l) – 1< pn(l) + 1 as tl < p; 
 
     z – 1                                                                 tlpn(l) - 1 
                       =  t1pn(1) - n(l-1)  + . . . + tl – 1p0  +                           =  
    pn(l – 1)                                                                   pn(l-1) 
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t1pn(1) - n(l-1)  + . . . + tl – 1p0  as nl – 1  > nl ,  
 
 
       z  - 1                          t2pn(2) + . . . + tlpn(l) - 1 
                        =  t1p0 +                                               =  t1p0 . 
        pn(1)                                       pn(1) 

 
Because 0 < t2pn(2) + . . . + tlpn(l) – 1 ≤ (p – 1)pn(2) + . . . + (p – 1)pn(l-1) + p*pn(l) – 1  ≤ 
 
                    n2 

(p – 1) *     Σ pi + pn(l) + 1 – 1 ≤ 
                i=n(l – 1) 
 
 
                          pn(2)+1 
        (p – 1)                     = pn(2)+1 – 1 < pn(1) – 1 < pn(1)  therefore 
                           p - 1         
 
 
                 t2pn(2) + . . . + tlpn(l) – 1 
                                                           =  0  
                             pn(1)    
 
 
           z – 1                      t1pn(1) + . . . + tlpn(l) – 1 
                               =                                                    = 0 because: 
          pn(1) + 1                                     pn(1) + 1     
 
 
 
0 <  t1pn(1) + . . . + tlpn(l) – 1 < pn(1) + 1 – 1 < pn(1)+1 according to a reasoning similar to the previous one.  
 
 Adding one gets p’s powers sum in the natural numbers which make up the product factors (z – 1)! is: 
 
t1 (pn(1) – 1 + . . . + p0) + . . . + tl – 1 (pn(l – 1) – 1  + . . . + p0 ) + tl  (pn(l ) – 1  + . . . + p0 )  whence 
 
1*nl = k or nl < k or 1 < k because 
 

nl > 1 one has (z – 1)! ≠ M pk, this contradicts the supposition made.  
 
Whence ηp(k) is the smallest natural number with the property ( ηp(k))! = M pk. 
 
I construct a new function η: Z\{0} → N defined as follows: 
 
                              
           η( ±1) = 0. 
 
           " n = ε p1

α(1) .  .  . ps
α(s) with ε = ±1, pi prime,  

 
            pi = pj for i ≠ j, αi ≥ 1, i = 1, s, η(n) = max { η (  αi) }. 
                                                                       i=1,…,s   pi 
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Note 2. η is well defined all over. 
 
Proof 
 

(a) ≤ n ε Z, n ≠ 0, n ≠ ±1, n is uniquely written, abstraction of the order of the factors, under the form:  
 
n = ε p1

α(1) .  .  .  ps
α(s) with ε = ±1, where pi = prime, pi  ≠ pj , αi ≥ 1 (decomposed into  

 
prime factors in Z, which is a factorial ring). 
 
Then ≥! η(n) = max { ηp(i)(αi) } as s = finite and ηp(i)(αi) ε N* 
                     i=1,s 
 
and ≥ max {ηp(i)(αi) } 
           i=1,…,s 
 
(b) n = ± 1 → E! η(n) = 0. 
 
Theorem 2. The function η previously defined has the following properties: 
 

(1) (η(n))! = M n, ≤ n ε Z\{0}; 
 

(2) η(n) is the smallest natural number with this property. 
 
Proof 
 

(a) η(n) =  max { ηp(i)(αi) }, n = ε * p1
α(1) . . . ps

α(s)    (n ≠ ± 1), 
                                           i=1,…,s 
 
(ηp(1) (α1))! = M p1

α(1),  
 
(ηp(s) (αs))! = M ps

α(s). 
 
Supposing max  { ηp(i)(a1) } = ηp  (αi(0)) → (ηp  ( αi(0)) ) ! =  
                    i=1,…,s                         i0                     i0 
          αi(0) 
M pi(0)  ,     ηp   (αi  )  ε N* and because (pi, pj) = 1, i ≠ j, 
                     i0      0 

 
then (ηp  (αi  )) !  = M pj

α(j) , j = 1,s . 
             i0    0 

 
Also (ηp  (αi  ))! = M p1

α(1) . . . ps
α(s) . 

              i0    0 
 
(b) n = ± 1 → η(n) = 0; 0! = 1, 1 = M ε * 1 = M n. 
 
(2) (a) n ≠ ± 1 → n = p1

α(1) . . . ps
α(s)  hence η(n) = max ηp(i) 

                                                                                i=1,2 
 
Let max { ηp(i)(αi) } = ηp  (αi  ), 1 ≤ i ≤ s; 
      i=1,s                         i0    0 

 
ηp   (αi  )is the smallest natural number with the property: 
   i0     0 
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                              αi(0) 
(ηp   ( αi  ))!  = M pi   → "γ ε N, γ < ηp   (αi  )   whencw 
    i0       0                 0                            i0      0 

 
             αi0                               αi       αi0      αs      
γ! ≠ M pi     then  γ! ≠ M ε * p1 . . . pi . . . ps    = M n  whence  
                      0                                                     0       
 
η    (α   ) is the smallest natural number with the property.  
  pi0   i0 
 
(b) n = ± 1 → η(n) = 0 and it is the smallest natural number → 0 is the smallest natural number with the 
property 0! = M (± 1). 
 
NOTE 3. The functions ηp are increasing, not injective, on N* → { pk | k = 1, 2, 3, . . . } they are surjective.  
 

 
 The function η is increasing, it is not injective, it is surjective on Z \ {0} → N \ {1}. 
 
CONSEQUENCE. Let n ε N*, n > 4. Then n = prime involves η(n) = n. 
 
Proof 
 
“→”   
n = prime and n ≥ 5 then η(n) = ηn(1) = n. 
 
“←” 
 
Let η(n) = n and assume by reduction ad absurdum that n ≠ prime. Then 
 

(a) n = p1
α(1) . . . ps

α(s) with s ≥ 2, αi ε N*,  i = 1,s ,  
 
η(n) = max { ηp(i) (αi) } =  ηp  (αi  ) < αi   pi  < n 
           i=1,s                           i0    0              0      0 

 
contradicting the assumption. 
 

(b) n = p1
α(1) with α1 ≥ 2 involves η(n) = ηp(1)(α1) ≤ p1 * α1 < p1

α(1) = n 
 
because α1 ≥ 2 and n > 4, which contradicts the hypothesis. 
 
Application 
 

1. Find the smallest natural number with the property: 
 
n! = M(± 231 * 327 * 713). 
 
Solution 
 
η(± 231 * 327 * 713) = max { η2(31), η3(27), η7(13) }. 
 
Let us calculate η2(31); we make the string  
 
(an

(2))nεN
* = 1, 3, 7, 15, 31, 63, . . .  

 
31 = 1*31 → η2(1*31) = 1 * 25 = 32. 
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Let’s calculate η3(27) by making the string 
 
(an

(3))nεN
* = 1, 4, 13, 40, . . . ; 27 = 2*13 + 1 involves η3(27) = η3(2*13+1*1 ) = 

 
2* η3(13) + 1* η3(1) = 2*33 + 1 * 31 = 54 + 3 = 57. 
 
Let’s calculate η7(13); making the string 
 
(an

(7))nεN
* = 1, 8, 57, . . . ; 13 = 1*8 + 5*1 → η7(13) = 1 * η7(8) + 5* η7(1) = 

 
1*72 + 5*71 = 49 + 35 = 84 → η(± 231 * 327 * 713) = max { 32, 57, 84} = 84 involves 84! = 
 
M(± 231 * 327 * 713) and 84 is the smallest number with this property.  
 
2. What are the numbers n where n! ends with 1000 zeros? 
 
Solution: 
 
n = 101000, (η(n))! = M 101000 and it is the smallest number with this property.  
 
η(101000) = η(21000*51000) = max{ η2(1000), η5(1000) } = η5(1000) = 
 
 η5(1*781 + 1*156 + 2*31 + 1) = 1*55 + 1*54 + 2*53 + 1*57 = 4005, 4005 is the smallest 
 
number with this property. 4006, 4007, 4008, 4009 also satisfy this property, but 4010 does not because 
4010! = 4009! * 4010 which has 1001 zeros.  
 
Florentin Smarandache                                                 17.11.1979 
University of Craiova                             
Natural Science Faculty 
Romania 
 
[Published in “An. Univ. Timisoara”, Seria St. Matematice, Vol. XVIII, Fasc. 1, pp. 79-88, 1980; see 
Mathematical Reviews: 83c : 10008.] 
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