University of New Mexico

[UNM Digital Repository](https://digitalrepository.unm.edu/)

[Branch Mathematics and Statistics Faculty and](https://digitalrepository.unm.edu/math_fsp)

Branch Academic Departments

1980

A Function in the Number Theory

Florentin Smarandache University of New Mexico, smarand@unm.edu

Follow this and additional works at: [https://digitalrepository.unm.edu/math_fsp](https://digitalrepository.unm.edu/math_fsp?utm_source=digitalrepository.unm.edu%2Fmath_fsp%2F540&utm_medium=PDF&utm_campaign=PDFCoverPages)

C Part of the [Mathematics Commons](https://network.bepress.com/hgg/discipline/174?utm_source=digitalrepository.unm.edu%2Fmath_fsp%2F540&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Smarandache, Florentin. "A Function in the Number Theory." An. Univ. Timisoara", Seria St. Matematice, Vol. XVIII, Fasc. 1, pp. 79-88, 1980; see Mathematical Reviews: 83c : 10008. (1980). [https://digitalrepository.unm.edu/math_fsp/540](https://digitalrepository.unm.edu/math_fsp/540?utm_source=digitalrepository.unm.edu%2Fmath_fsp%2F540&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Article is brought to you for free and open access by the Branch Academic Departments at UNM Digital Repository. It has been accepted for inclusion in Branch Mathematics and Statistics Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [disc@unm.edu.](mailto:disc@unm.edu)

A FUNCTION IN THE NUMBER THEORY

Florentin Smarandache The University of New Mexico Department of Mathematics Gallup, NM 87301, USA

Abstract:

In this paper I shall construct a function¹ η having the following properties: (1) \forall n \in Z, n \neq 0, (η (n))! = *M* n (multiple of n).

(2) η (n) is the smallest natural number satisfying property (1).

MSC: 11A25, 11B34.

Introduction: We consider:

 $N = \{ 0, 1, 2, 3, \dots \}$ and $N^* = \{1, 2, 3, \dots \}$.

Lemma 1. \forall k, p \in N^{*}, p \neq 1, k is uniquely written

in the form: $k = t_1 a_{n(1)}^{(p)} + \ldots + t_l a_{n(l)}^{(p)}$ where

$$
a_{n(i)}^{(p)} = \frac{p^{n(i)} - 1}{p - 1}, i = \overline{1, l}, n_1 > n_2 > ... n_l > 0 \text{ and } 1 \le t_j \le p - 1, j = \overline{1, 1 - l}, 1 \le t_l \le p, n_i, t_i \in N,
$$

\n
$$
i = \overline{1, l}, l \in N^*.
$$

Proof.

The string $(a_n^{(p)})_{n\in\mathbb{N}}$ consists of strictly increasing infinite natural numbers and

$$
a_{n+1}^{(p)} - 1 = p * a_n^{(p)}, \text{ on } \varepsilon \text{ N}^*, p \text{ is fixed,}
$$
\n
$$
a_1^{(p)} = 1, a_2^{(p)} = 1 + p, a_3^{(p)} = 1 + p + p^2, \dots. \text{ Therefore:}
$$
\n
$$
N^* = U \text{ ([} a_n^{(p)}, a_{n+1}^{(p)} \text{] } \cap \text{ N}^* \text{) where (} a_n^{(p)}, a_{n+1}^{(p)} \text{] } \cap \text{ (} a_{n+1}^{(p)}, a_{n+2}^{(p)} \text{]} = 0
$$

because $a_n^{(p)} < a_{n+1}^{(p)} < a_{n+2}^{(p)}$.

Let $k \in N^*$, $N^* = U$ $((a_n^{(p)}, a_{n+1}^{(p)}) \cap N^*)$,

therefore $\exists!$ $n_1 \in N^*$: k ε ($a_{n(1)}^{(p)}, a_{n(1)+1}^{(p)}$), therefore k is uniquely written under the form

$$
k = \left(\frac{k}{a^{(p)}}\right) a_{n(1)}^{(p)} + r_1 \text{ (integer division theorem).}
$$

¹ This function has been called the Smarandache function. Over one hundred articles, notes, problems and a dozen of books have been written about it.

We note

$$
k = \left(\begin{array}{c} k \\ \\ \hline a^{(p)} \\ n_1 \end{array} \right) \quad = t_1 \to k = t_1 \; a_{n(1)}^{(p)} + r_1, \, r_1 < a_{n(1)}^{(p)} \; .
$$

If $r_1 = 0$, as $a_{n(1)}^{(p)} \le k \le a_{n(1)+1}^{(p)} - 1 \rightarrow 1 \le t_1 \le p$ and Lemma 1 is proved.

If
$$
r_1 \neq 0
$$
, then $\exists ! n_2 \in N^* : r_1 \{ \varepsilon \ a_{n(2)}^{(p)}, a_{n(2)+1}^{(p)} \}$;

$$
a_{n(1)}^{(p)} > r_1 \text{ involves } n_1 > n_2, r_1 \neq 0 \text{ and } a_{n(1)}^{(p)} \le k \le a_{n(1)+1}^{(p)} - 1 \text{ involves } 1 \le t_1 \le p - 1 \text{ because we have}
$$

$$
t_1 \le (a_{n(1)+1}^{(p)} - 1 - r_1) : a_n^{(p)} < p_1.
$$

The procedure continues similarly. After a finite number of steps *l*, we achieve $r_l = 0$, as $k =$ finite, k ϵN^* and $k > r_1 > r_2 > ... > r_l = 0$ and between 0 and k there is only a finite number of distinct natural numbers. Thus:

k is uniquely written: $k = t_1 a_{n(1)}^{(p)} + r_1$, $1 \le t_1 \le p - 1$,

r is uniquely written: $r_1 = t_2 * a_{n(2)}^{(p)} + r_2, n_2 < n_1$,

 $1 \le t_2 \le p-1$,

 r_{l-1} is uniquely written: $r_{l-1} = t_l * a_{n(l)}^{(p)} + r_l$, and $r_l = 0$,

$$
n_l < n_{l-1}, \quad 1 \leq t_l \leq p,
$$

thus k is uniquely written under the form

$$
k = t_1 a_{n(1)}^{(p)} + \ldots + t_l a_{n(l)}^{(p)}
$$

with $n_1 > n_2 > \ldots > n_l > 0$, because $n_l \in N^*$, $1 \le t_j \le p-1$, $j = 1, l-1, 1 \le t_l \le p, l \ge 1$.
Let $k \in N^*$, $k = t_1 a_{n(1)}^{(p)} + \ldots + t_l a_{n(l)}^{(p)}$ with

$$
a_{n(i)}^{(p)} = \frac{p^{ni} - 1}{p - 1} ,
$$

$$
i = \overline{1, l}, l \ge 1, n_i, t_i \in N^*, i = \overline{1, l}, n_1 > n_2 > ... > n_l > 0
$$

$$
1 \le t_j \le p - 1, j = \overline{1, l - 1}, 1 \le t_l \le p.
$$

I construct the function η_p , $p = prime > 0$, η_p : $N^* \to N$ thus:

$$
\forall n \varepsilon N^* \eta_p(a_n^{(p)}) = p^n ,
$$

$$
\eta_p(\ t_1 a_{n(1)}^{(p)} + \ldots + t_l a_{n(l)}^{(p)}) = t_1 \eta_p(a_{n(1)}^{(p)}) + \ldots + t_l \eta_p(a_{n(l)}^{(p)}).
$$

NOTE 1. The function η_p is well defined for each natural number. Proof

LEMMA 2. \forall k ϵ N^{*}, k is uniquely written as k = t₁a_{n1}^(p) + . . . + t_la_n^(p) with the conditions from Lemma

1, thus
$$
\exists!
$$
 $t_1p^{n(1)} + ... + t_l p^{n(l)} = \eta_p (t_1a_{n(1)}^{(p)} + ... + t_l a_{n(l)}^{(p)})$ and $t_1p^{n(1)} + ... + t_l p^{n(l)} \in N^*$.

LEMMA 3. \forall k ϵ N^{*}, \forall p ϵ N, p = prime then k = t₁a_{n(1)}^(p) + . . . + t_ia_{n(i)}^(p) with the conditions from Lemma 2 thus $\eta_p(k) = t_1 p^{n(1)} + ... + t_l p^{n(l)}$

It is known that

$$
\left(\begin{array}{c} \frac{a_1 + \ldots + a_n}{b} \end{array}\right) \quad \geq \qquad \left(\begin{array}{c} \frac{a_1}{b} \end{array}\right) + \ldots + \left(\begin{array}{c} \frac{a_n}{b} \end{array}\right) \qquad \forall \ a_i, b \in N^* \text{ where through } [\alpha] \text{ we}
$$

have written the integer side of the number α. I shall prove that p's powers sum from the natural numbers which make up the result factors

$$
(t_1p^{n(1)} + ... + t_l p^{n(l)})
$$
! is $\geq k$;

$$
\left(\begin{array}{c} t_1p^{n(1)} + \ldots + t_l p^{n(l)} \\ p \end{array}\right) \ge \left(\begin{array}{c} t_1p^{n(1)} \\ p \end{array}\right) + \ldots + \left(\begin{array}{c} t_l p^{n(l)} \\ p \end{array}\right) =
$$

 $t_1p^{n(1)-1} + \ldots + t_l p^{n(l)-1}$

$$
\left(\frac{t_1p^{n(1)} + \ldots + t_l p^{n(l)}}{p^n}\right) \ge \left(\frac{t_1p^{n(1)}}{p^{n(l)}}\right) + \ldots + \left(\frac{t_l p^{n(l)}}{p^{n(l)}}\right) =
$$

 $t_1 p^{n(1)-n(l)} + \ldots + t_l p^0$

$$
\left(\frac{t_1p^{n(1)} + \ldots + t_l p^{n(l)}}{p^{n(1)}}\right) \ge \left(\frac{t_1p^{n(1)}}{p^{n(1)}}\right) + \ldots + \left(\frac{t_l p^{n(l)}}{p^{n(1)}}\right) =
$$

$$
t_1 p^0 + \ldots + \frac{t_l p^{n(l)}}{p^{n(1)}} \quad .
$$

Adding \rightarrow p's powers the sum is $\ge t_1(p^{n(1)-1} + ... + p^0) + ... + t_i(p^{n(l)-1} + ... + p^0) =$ $t_1 a_{n(1)}^{(p)} + \ldots + t_l a_{n(l)}^{(p)} = k.$

Theorem 1. The function n_p , $p = prime$, defined previously, has the following properties:

- (1) $\exists k \in N^*$, $(n_p(k))! = M p^k$.
- (2) $\eta_p(k)$ is the smallest number with the property (1).

Proof

- (1) Results from Lemma 3.
- (2) $\forall k \in N^*$, $p \ge 2$ one has $k = t_1 a_{n(1)}^{(p)} + \dots + t_l a_{n(l)}^{(p)}$
- (by Lemma 2) is uniquely written, where:

$$
n_{i}, t_{i} \in N^{*}, n_{1} > n_{2} > ... n_{l} > 0,
$$

\n
$$
a_{n(i)}^{(p)} = \frac{p^{n(i)} - 1}{p - 1} \varepsilon N^{*},
$$

\n
$$
i = \overline{1, l}, 1 \le t_{j} \le p - 1, j = \overline{1, l - 1}, 1 < t_{l} < p.
$$

\n
$$
\rightarrow \eta_{p}(k) = t_{1}p^{n(1)} + ... + t_{l}p^{n(l)}.
$$
 Inote: $z = t_{1}p^{n(1)} + ... + t_{l}p^{n(l)}.$

Let us prove that z is the smallest natural number with the property (1). I suppose by the method of reductio ad absurdum that $\exists \gamma \varepsilon N, \gamma \leq z$:

$$
\gamma! = M p^{k},
$$
\n
$$
\gamma < z \rightarrow \gamma \leq z - 1 \rightarrow (z - 1)! = M p^{k}.
$$
\n
$$
z - 1 = z = t_1 p^{n(1)} + \dots + t_l p^{n(l)} - 1; \quad n_1 > n_2 > \dots n_l \geq 1 \text{ and}
$$
\n
$$
n_j \in N, j = \overline{1, l};
$$
\n
$$
\left(\frac{z - 1}{p}\right) = t_1 p^{n(1) - 1} + \dots + t_{l-1}^{n(l-1) - 1} + t_l p^{n(l) - 1} - 1 \text{ as } \left(\frac{-1}{p}\right) = -1 \text{ because } p \geq 2,
$$
\n
$$
\left(\frac{z - 1}{p^{n(l)}}\right) = t_1 p^{n(1) - n(l)} + \dots + t_{l-1} p^{n(l-1) - n(l)} + t_l p^0 - 1 \text{ as } \left(\frac{-1}{p^{n(l)}}\right) = -1
$$
\n
$$
\text{as } p \geq 2, \quad n_l \geq 1,
$$
\n
$$
\left(\frac{z - 1}{p^{n(l)+1}}\right) = t_1 p^{n(1) - n(l) - 1} + \dots + t_{l-1} p^{n(l-1) - n(l) - 1} + \left(\frac{t_l p^{n(l)} - 1}{p^{n(l) + 1}}\right) =
$$

 $t_1p^{n(1) - n(l) - 1} + ... + t_{l-1}p^{n(l-1) - n(l) - 1}$ because

$$
0 < t_1 p^{n(l)} - 1 \le p^* p^{n(l)} - 1 < p^{n(l)+1} \text{ as } t_l < p;
$$
\n
$$
\left(\frac{z-1}{p^{n(l-1)}}\right) = t_1 p^{n(1)-n(l+1)} + \ldots + t_{l-1} p^0 + \left(\frac{t_l p^{n(l)} - 1}{p^{n(l-1)}}\right) =
$$

 $t_1 p^{n(1) - n(l-1)} + \ldots + t_{l-1} p^0$ as $n_{l-1} > n_l$,

$$
\left(\begin{array}{c}z-1\\p^{n(1)}\end{array}\right) \ = \ t_1 p^0 + \left(\begin{array}{c}t_2 p^{n(2)} + \ldots + t_i p^{n(i)} - 1 \\ p^{n(1)}\end{array}\right) \ = \ t_1 p^0 \ .
$$

Because $0 \lt t_2 p^{n(2)} + ... + t_i p^{n(i)} - 1 \le (p - 1)p^{n(2)} + ... + (p - 1)p^{n(i-1)} + p*p^{n(i)} - 1 \le$

$$
(p-1)*\sum_{i=n(\ell-1)}^{n_2}p_i+p^{n(\ell)+1}-1\leq
$$

$$
(p-1) \quad \frac{p^{n(2)+1}}{p-1} = p^{n(2)+1} - 1 < p^{n(1)} - 1 < p^{n(1)} \text{ therefore}
$$

$$
\left(\ \frac{ \ t_2 p^{n(2)} + \ \dots + \ t_l p^{n(l)} - 1}{p^{n(1)}} \ \right) \ = \ 0
$$

$$
\left(\frac{z-1}{p^{n(1)+1}}\right) = \left(\frac{t_1p^{n(1)} + \ldots + t_np^{n(l)} - 1}{p^{n(1)+1}}\right) = 0 \text{ because:}
$$

 $0 \lt t_1 p^{n(1)} + \ldots + t_i p^{n(i)} - 1 \lt p^{n(1)+1} - 1 \lt p^{n(1)+1}$ according to a reasoning similar to the previous one.

Adding one gets p's powers sum in the natural numbers which make up the product factors $(z - 1)!$ is:

$$
t_1 (p^{n(1)-1} + ... + p^0) + ... + t_{l-1} (p^{n(l-1)-1} + ... + p^0) + t_l (p^{n(l)-1} + ... + p^0)
$$
 whence

 $1 * n_l = k$ or $n_l < k$ or $1 < k$ because

 n_l > 1 one has $(z - 1)! \neq M p^k$, this contradicts the supposition made.

Whence $\eta_p(k)$ is the smallest natural number with the property ($\eta_p(k)$)! = *M* p^k. I construct a new function η: $Z\$ {0} \rightarrow N defined as follows:

$$
\begin{cases}\n\eta(\pm 1) = 0. \\
\alpha n = \epsilon p_1^{\alpha(1)} . . . p_s^{\alpha(s)} \text{ with } \epsilon = \pm 1, p_i \text{ prime}, \\
p_i = p_j \text{ for } i \neq j, \alpha_i \geq 1, i = 1, s, \eta(n) = \max \{ \eta \left(\alpha_i \right) \}. \\
i = 1, ..., s \quad p_i\n\end{cases}
$$

Note 2. η is well defined all over.

Proof

(a) \forall n \in Z, n \neq 0, n \neq ±1, n is uniquely written, abstraction of the order of the factors, under the form:

 $n = \varepsilon p_1^{\alpha(1)}$... $p_s^{\alpha(s)}$ with $\varepsilon = \pm 1$, where $p_i =$ prime, $p_i \neq p_j$, $\alpha_i \geq 1$ (decomposed into

prime factors in Z, which is a factorial ring).

```
Then \exists! \eta(n) = \max \{ \eta_{p(i)}(\alpha_i) \} as s = \text{finite} and \eta_{p(i)}(\alpha_i) \in N^*i=1,s
```
and \exists max $\{\eta_{p(i)}(\alpha_i)\}\$ $i=1,\ldots,s$

(b) $n = \pm 1 \rightarrow E! \eta(n) = 0$.

Theorem 2. The function η previously defined has the following properties:

(1) $(\eta(n))! = M n$, $\forall n \in \mathbb{Z} \setminus \{0\};$

(2) η (n) is the smallest natural number with this property.

Proof

(a)
$$
\eta(n) = \max \{ \eta_{p(i)}(\alpha_i) \}, n = \varepsilon * p_1^{\alpha(1)} \dots p_s^{\alpha(s)} \quad (n \neq \pm 1),
$$

i=1,...,s

 $(\eta_{p(1)}(\alpha_1))! = M p_1^{\alpha(1)},$

 $(\eta_{p(s)} (\alpha_s))! = M p_s^{\alpha(s)}.$

```
Supposing max \{\eta_{p(i)}(a_1)\} = \eta_p(\alpha_{i(0)}) \rightarrow (\eta_p(\alpha_{i(0)}))!
i=1,...,s i<sub>0</sub> i<sub>0</sub>
\alpha_{i(0)}M p_{i(0)}, \eta_p (\alpha_i) \epsilon N<sup>*</sup> and because (p_i, p_j) = 1, i \neq j,
i_0 0
then (\eta_p \ (\alpha_i))! = M p_j^{\alpha(j)}, \overline{j=1}, s.
i_0 \qquad \qquadAlso (\eta_p \ (\alpha_i))! = M p_1^{\alpha(1)} \dots p_s^{\alpha(s)}.
i_0 0
(b) n = \pm 1 \rightarrow \eta(n) = 0; 0! = 1, 1 = M \varepsilon * 1 = M n.
```
(2) (a)
$$
n \neq \pm 1 \rightarrow n = p_1^{\alpha(1)} \dots p_s^{\alpha(s)}
$$
 hence $\eta(n) = \max_{i=1,2} \eta_{p(i)}$

Let max $\{\eta_{p(i)}(\alpha_i)\} = \eta_p(\alpha_i)$, $1 \le i \le s$; $i=1, s$ i_0 0

 η_p (α_i) is the smallest natural number with the property: i_0 0

$$
(\eta_{p} (\alpha_{i}_{0}))! = M p_{i}_{0} \rightarrow \alpha \gamma \epsilon N, \gamma < \eta_{p} (\alpha_{i}_{0})
$$
 whenever
\n
$$
\alpha_{i_{0}} \qquad \
$$

η (α) is the smallest natural number with the property. p_{i0} i_0

(b) $n = \pm 1 \rightarrow \eta(n) = 0$ and it is the smallest natural number $\rightarrow 0$ is the smallest natural number with the property $0! = M (\pm 1)$.

NOTE 3. The functions η_p are increasing, not injective, on $N^* \to \{p^k \mid k = 1, 2, 3, \dots\}$ they are surjective.

The function η is increasing, it is not injective, it is surjective on $Z \setminus \{0\} \to N \setminus \{1\}$.

CONSEQUENCE. Let $n \in N^*$, $n > 4$. Then $n =$ prime involves $\eta(n) = n$.

Proof

^{"→"}
n = prime and n
$$
\geq
$$
 5 then $\eta(n) = \eta_n(1) = n$.

"←"

Let $\eta(n)$ = n and assume by reduction ad absurdum that $n \neq$ prime. Then

(a)
$$
n = p_1^{\alpha(1)} \dots p_s^{\alpha(s)}
$$
 with $s \ge 2$, $\alpha_i \in N^*$, $i = 1, s$,

$$
\eta(n) = \underset{i=1,s}{max} \{ \; \eta_{p(i)} \left(\alpha_i \right) \; \} = \; \eta_p \underbrace{\left(\alpha_i \right)}_{i_0} \! > \! \alpha_i \underset{0}{\left. p_i \right.} \! < n
$$

contradicting the assumption.

(b)
$$
n = p_1^{\alpha(1)}
$$
 with $\alpha_1 \ge 2$ involves $\eta(n) = \eta_{p(1)}(\alpha_1) \le p_1 \cdot \alpha_1 < p_1^{\alpha(1)} = n$

because $\alpha_1 \geq 2$ and $n > 4$, which contradicts the hypothesis.

Application

1. Find the smallest natural number with the property:

$$
n! = M(\pm 2^{31} * 3^{27} * 7^{13}).
$$

Solution

 $\eta(\pm 2^{31} * 3^{27} * 7^{13}) = \max \{ \eta_2(31), \eta_3(27), \eta_7(13) \}.$

Let us calculate $\eta_2(31)$; we make the string

$$
(a_n^{(2)})_{n \in \mathbb{N}}^*
$$
 = 1, 3, 7, 15, 31, 63, . . .
31 = 1*31 \rightarrow η_2 (1*31) = 1 * 2⁵ = 32.

Let's calculate $\eta_3(27)$ by making the string

$$
(a_n^{(3)})_{n \in \mathbb{N}}^*
$$
 = 1, 4, 13, 40, . . . ; 27 = 2*13 + 1 involves $\eta_3(27) = \eta_3(2*13+1*1)$ =

$$
2 \cdot \eta_3(13) + 1 \cdot \eta_3(1) = 2 \cdot 3^3 + 1 \cdot 3^1 = 54 + 3 = 57.
$$

Let's calculate $\eta_7(13)$; making the string

$$
(a_n^{(7)})_{n\in\mathbb{N}}^*=1,\,8,\,57,\,\ldots\,;\,13=1^*8+5^*1\rightarrow\eta_7(13)=1^*\,\eta_7(8)+5^*\,\eta_7(1)=
$$

$$
1*7^2 + 5*7^1 = 49 + 35 = 84 \rightarrow \eta(\pm 2^{31} * 3^{27} * 7^{13}) = \max \{32, 57, 84\} = 84
$$
 involves 84! =

 $M(\pm 2^{31} * 3^{27} * 7^{13})$ and 84 is the smallest number with this property.

2. What are the numbers n where n! ends with 1000 zeros?

Solution:

 $n = 10^{1000}$, $(\eta(n))! = M 10^{1000}$ and it is the smallest number with this property.

$$
\eta(10^{1000}) = \eta(2^{1000} * 5^{1000}) = \max\{\ \eta_2(1000), \ \eta_5(1000) \ \} = \eta_5(1000) =
$$

 $\eta_5(1*781 + 1*156 + 2*31 + 1) = 1*5^5 + 1*5^4 + 2*5^3 + 1*5^7 = 4005$, 4005 is the smallest

number with this property. 4006, 4007, 4008, 4009 also satisfy this property, but 4010 does not because $4010! = 4009! * 4010$ which has 1001 zeros.

Florentin Smarandache 17.11.1979 University of Craiova Natural Science Faculty Romania

[Published in "An. Univ. Timisoara", Seria St. Matematice, Vol. XVIII, Fasc. 1, pp. 79-88, 1980; see Mathematical Reviews: 83c: 10008.]