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Abstract

In this paper we recall our concepts of nth-Power
Set of a Set, SuperHyperOperation, SuperHyperAxiom,
SuperHyperAlgebra, and their corresponding Neutro-
sophic SuperHyperOperation, Neutrosophic SuperHyper-
Axiom and Neutrosophic SuperHyperAlgebra. In gen-
eral, in any field of knowledge, one actually encoun-
ters SuperHyperStructures (or more accurately (m,n)-
SuperHyperStructures).
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1 Introduction

One recalls the SuperHyperAgebra and Neutrosophic SuperHyperAlgebra introduced and devel-
oped by Smarandache [16, 18, 19] between 2016–2022.

1. Definition of classical HyperOperations:

Let U be a universe of discourse and H be a non-empty set, H ⊂ U .
A classical Binary HyperOperation ◦∗2 is defined as follows:

◦∗2 : H2 → P∗(H),

where H is a discrete or continuous set, and P∗(H) is the powerset of H without the empty-set ∅,
or P∗(H) = P (H) \ {∅}.
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A classical m-ary HyperOperation ◦∗m is defined as:

◦∗m : Hm → P∗(H),

for integer m ≥ 1. For m = 1 one gets a Unary HyperOperation.
The classical HyperStructures are structures endowed with classical HyperOperations.
The classical HyperOperations and classical HyperStructures were introduced by F . Marty [12] in
1934.

2. Definition of the nth-Power Set of a Set:
The nth-Powerset of a Set was introduced in [16, 18, 19] in the following way:
Pn(H), as the nth-Powerset of the Set H, for integer n ≥ 1, is recursively defined as:
P 2(H) = P (P (H)), P 3(H) = P (P 2(H)) = P (P (P (H))), · · · ,
Pn(H) = P (P (n−1)(H)), where P ◦(H)

def
= H, and P 1(H)

def
= P (H).

The nth-Powerset of a Set better reflects our complex reality, since a set H (that may represent
a group, a society, a country, a continent, etc.) of elements (such as: people, objects, and in general
any items) is organized onto subsets P (H), and these subsets are again organized onto subsets of
subsets P (P (H)), and so on. That’s our world.

3. Neutrosophic HyperOperation and Neutrosophic HyperStructures [12]:

In the classical HyperOperation and classical HyperStructures, the empty-set ∅ does not belong
to the power set, or P∗(H) = P (H) \ {∅}.
However, in the real world we encounter many situations when a HyperOperation ◦ is indetermi-
nate, for example a ◦ b = ∅ (unknown, or undefined),
or partially indeterminate, for example: c ◦ d = {[0.2, 0.3], ∅}.
In our everyday life, there are many more operations and laws that have some degrees of indeter-
minacy (vagueness, unclearness, unknowingness, contradiction, etc.), than those that are totally
determinate.
That’s why in 2016 we have extended the classical HyperOperation to the Neutrosophic Hyper-
Operation, by taking the whole power P (H) (that includes the empty-set ∅ as well), instead of
P∗(H) (that does not include the empty-set ∅), as follows.

3.1 Definition of Neutrosophic HyperOperation:

Let U be a universe of discourse and H be a non-empty set, H ⊂ U .
A Neutrosophic Binary HyperOperation ◦2 is defined as follows:

◦2 : H2 → P (H),

where H is a discrete or continuous set, and P (H) is the powerset of H that includes the empty-set
∅.

A Neutrosophic m-ary HyperOperation ◦m is defined as:

◦m : Hm → P (H),

for integer m ≥ 1. Similarly, for m = 1 one gets a Neutrosophic Unary HyperOperation.
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3.2 Neutrosophic HyperStructures:

A Neutrosophic HyperStructure is a structured endowed with Neutrosophic HyperOperations.

4. Definition of SuperHyperOperations:

We recall our 2016 concepts of SuperHyperOperation, SuperHyperAxiom, SuperHyperAlgebra,
and their corresponding Neutrosophic SuperHyperOperation Neutrosophic SuperHyperAxiom and
Neutrosophic SuperHyperAlgebra [16].

Let Pn
∗ (H) be the nth-powerset of the set H such that none of P (H), P 2(H), · · · , Pn(H)

contain the empty set ∅.

Also, let Pn(H) be the nth-powerset of the set H such that at least one of the P (H), P 2(H),· · · ,
Pn(H) contain the empty set ∅.

The SuperHyperOperations are operations whose codomain is either Pn
∗ (H) and in this case

one has classical-type SuperHyperOperations, or Pn(H) and in this case one has Neutro-
sophic SuperHyperOperations, for integer n ≥ 2.

4.1 A classical-type Binary SuperHyperOperation ◦∗(2,n) is defined as follows:

◦∗(2,n) : H
2 → Pn

∗ (H),

where Pn
∗ (H) is the nth-power set of the set H, with no empty-set.

4.2 Examples of classical-type Binary SuperHyperOperation:

1) Let H = {a, b} be a finite discrete set; then its power set, without the empty-set ∅, is:
P (H) = {a, b, {a, b}}, and:

P 2(H) = P (P (H)) = P ({a, b, {a, b}}) = {a, b, {a, b}, {a, {a, b}}, {b, {a, b}}, {a, b, {a, b}}},

◦∗(2,2) : H
2 → P 2

∗ (H).

◦∗(2,2) a b

a {a, {a, b}} {b, {a, b}}
b a {a, b, {a, b}}

Table 1: Example 1 of classical-type Binary SuperHyperOperation

2) Let H = [0, 2] be a continuous set.
P (H) = P ([0, 2]) = {A | A ⊆ [0, 2], A = subset},
P 2(H) = P (P ([0, 2])).
Let c, d ∈ H.

◦∗(2,2) : H
2 → P 2

∗ (H).
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◦∗(2,2) c d

c {[0, 0.5], [1, 2]} {0.7, 0.9, 1.8}
d {2.5} {(0.3, 0.6), {0.4, 1.9}, 2}

Table 2: Example 2 of classical-type Binary SuperHyperOperation

4.2Classical-type m-ary SuperHyperOperation (or a more accurate denomination (m,n)-
SuperHyperOperation)

Let U be a universe of discourse and a non-empty set H, H ⊂ U . Then:

◦∗(m,n) : H
m → Pn

∗ (H),

where the integers m,n ≥ 1,

Hm = H ×H × · · · ×H︸ ︷︷ ︸
m times

,

and Pn
∗ (H) is the nth-powerset of the set H that includes the empty-set.

This SuperHyperOperation is an m-ary operation defined from the set H to the nth-powerset
of the set H.

4.3 Neutrosophic m-ary SuperHyperOperation (or more accurate denomination Neu-
trosophic (m,n)-SuperHyperOperation):

Let U be a universe of discourse and a non-empty set H, H ⊂ U . Then:

◦(m,n) : H
m → Pn(H),

where the integers m,n ≥ 1,
and Pn(H) is the n-th powerset of the set H that includes the empty-set.

5. SuperHyperAxiom:

A classical-type SuperHyperAxiom or more accurately a (m,n)-SuperHyperAxiom is
an axiom based on classical-type SuperHyperOperations.

Similarly, a Neutrosophic SuperHyperAxiom (or Neutrosphic (m,n)-SuperHyperAxiom)
is an axiom based on Neutrosophic SuperHyperOperations.

There are:

• Strong SuperHyperAxioms, when the left-hand side is equal to the right-hand side as in
non-hyper axioms,

• and Week SuperHyperAxioms, when the intersection between the left-hand side and the
right-hand side is non-empty.
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For examples, one has:

• Strong SuperHyperAssociativity, when (x ◦ y) ◦ z = x ◦ (y ◦ z), for all x, y, z ∈ Hm, where the
law ◦∗(m,n) : H

m → Pn
∗ (H);

• and Week SuperHyperAssociativity, when [(x ◦ y) ◦ z]∩ [x ◦ (y ◦ z)] ̸= ∅, for all x, y, z ∈ Hm.

6. SuperHyperAlgebra and SuperHyperStructure:

A SuperHyperAlgebra or more accurately (m − n)-SuperHyperAlgebra is an algebra
dealing with SuperHyperOperations and SuperHyperAxioms.

Again, a Neutrosophic SuperHyperAlgebra (or Neutrosphic (m,n)-SuperHyperAlgebra)
is an algebra dealing with Neutrosophic SuperHyperOperations and Neutrosophic SuperHyperAx-
ioms.

In general, we have SuperHyperStructures (or (m− n)-SuperHyperStructures), and corre-
sponding Neutrosophic SuperHyperStructures.

For example, there are SuperHyperGrupoid, SuperHyperSemigroup, SuperHyperGroup, Su-
perHyperRing, SuperHyperVectorSpace, etc.

7. Distinction between SuperHyperAlgebra vs. Neutrosophic SuperHyperAlgebra:

i. If none of the power sets P k(H), 1 ≤ k ≤ n, do not include the empty set ∅, then one has a
classical-type SuperHyperAlgebra;

ii. If at least one power set, P k(H), 1 ≤ k ≤ n, includes the empty set ∅, then one has a
Neutrosophic SuperHyperAlgebra.

8. SuperHyperGraph (or n-SuperHyperGraph):

The SuperHyperAlgebra resembles the n-SuperHyperGraph [17, 18, 19], introduced by Smaran-
dache in 2019, defined as follows:

8.1 Definition of the n-SuperHyperGraph:

Let V = {v1, v2, · · · , vm}, for 1 ≤ m ≤ ∞, be a set of vertices, that contains Single Vertices
(the classical ones), Indeterminate Vertices (unclear, vague, partially known), and Null Vertices
(totally unknown, empty).

Let P (V ) be the power of set V , that includes the empty set ∅, too.
Then Pn(V ) be the n-powerset of the set V , defined in a recurent way, i.e.:
P (V ), P 2(V ) = P (P (V )), P 3(V ) = P (P 2(V )) = P (P (P (V ))), · · · ,

Pn(V ) = P (P (n−1)(V )), for 1 ≤ n ≤ ∞, where by definition P 0(V )
def
= V .
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Then, the n-SuperHyperGraph (n-SHG) is an ordered pair:

n-SHG = (Gn, En),

where Gn ⊆ Pn(V ), and En ⊆ Pn(V ), for 1 ≤ n ≤ ∞.
Gn is the set of vertices, and En is the set of edges.

The set of vertices Gn contains the following types of vertices:

� Singles Vertices (the classical ones);

� Indeterminate Vertices (unclear, vagues, partially unkwnown);

� Null Vertices (totally unknown, empty);
and:

� SuperVertex (or SubsetVertex), i.e. two ore more (single, indeterminate, or null) vertices put
together as a group (organization).

� n-SuperVertex that is a collection of many vertices such that at least one is a (n − 1)-
SuperVertex and all other r-SuperVertices into the collection, if any, have the order r ≤ n− 1.

The set of edges En contains the following types of edges:

� Singles Edges (the classical ones);

� Indeterminate Edges (unclear, vague, partially unknown);

� Null Edges (totally unknown, empty);
and:

� HyperEdge (connecting three or more single vertices);

� SuperEdge (connecting two vertices, at least one of them being a SuperVertex);

� n-SuperEdge (connecting two vertices, at least one being an n-SuperVertex, and the other of
order r-SuperVertex, with r ≤ n);

� SuperHyperEdge (connecting three or more vertices, at least one being a SuperVertex);

� n-SuperHyperEdge (connecting three or more vertices, at least one being an n-SuperVertex,
and the other r-SuperVertices with r ≤ n;

� MultiEdges (two or more edges connecting the same two vertices);

� Loop (and edge that connects an element with itself).
and:
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� Directed Graph (classical one);

� Undirected Graph (classical one);

� Neutrosophic Directed Graph (partially directed, partially undirected, partially indeterminate
direction).

2 Conclusion

We recalled the most general form of algebras, called SuperHyperAlgebra (or more accurate de-
nomination (m,n)-SuperHyperAlgebra) and the Neutrososophic SuperHyperAlgebra, and their ex-
tensions to SuperHyperStructures and respectively Neutrosophic SuperHyperAlgebra in any field
of knowledge.

They are based on the nth-Powerset of a Set, which better reflects our complex reality, since a
set H (that may represent a group, a society, a country, a continent, etc.) of elements (such as:
people, objects, and in general any items) is organized onto subsets P (H), and these subsets are
again organized onto subsets of subsets P (P (H)), and so on. That’s our world.

Hoping that this new field of SuperHyperAlgebra will inspire researchers to studying several
interesting particular cases, such as the SuperHyperGroupoid, SuperHyperMonoid, SuperHyper-
Semigroup, SuperHyperGroup, SuperHyperRing, SuperHyperVectorSpace, etc.
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