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Abstract: The newly identified Coronavirus pneumonia, subsequently termed COVID-19, is highly 

transmittable and pathogenic with no clinically approved antiviral drug or vaccine available for 

treatment. Technological developments like edge computing, fog computing, Internet of Things 

(IoT), and Big Data have gained importance due to their robustness and ability to provide diverse 

response characteristics based on target application. In this paper, we present a novel Health-Fog 

framework universal system to automatically assist the early diagnosis, treatment, and preventive 

of people with COVID-19 in an efficient manner. Achieving an empirical of the proposed framework 

which mix between deep learning and Neutrosophic classifiers in the task of classifying COVID-19. 

There are some proposed applications based on the proposed COVID-X framework such as smart 

mask, smart medical suit, safe spacer, and Medical Mobile Learning (MML) will be presented.  

Computer-aided diagnosis systems could assist in the early detection of COVID-19 abnormalities 

and help to monitor the progression of the disease, potentially reduce mortality rates.  

Keywords: Coronavirus Pneumonia; COVID-19; Intelligent Medical System; Fog Computing; Health-Fog; 
Neutrosophic; Deep Learning; Computer-Aided Diagnosis. 

 

 

1. Introduction 

The Coronavirus disease 2019-2020 pandemic (COVID-19) poses unprecedented challenges for 

governments and societies around the world. In addition to medical measures, non-pharmaceutical 

measures have proven to be critical for delaying and containing the spread of the virus. This includes 

(aggressive) testing and tracing, bans on large gatherings, school and university closures, 

international and domestic mobility restrictions and physical isolation, up to total lockdowns of 

regions and countries. However, effective and rapid decision-making during all stages of the 

pandemic requires reliable and timely data not only about infections, but also about human behavior, 

especially on mobility and physical co-presence of people [1]. There are growing privacy concerns 
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about the ways governments use data to respond to the COVID-19 crisis. As new technologies emerge 

that aim to collect, disseminate and use data in order to support the fight against COVID-19, we need 

to ensure they respect ethical best practices. Even in times of crisis, we need to comply with data 

privacy regulations and ensure that the data is used ethically. One way to do that is to establish 

independent ethical committees or data trusts. Their role will be to create data governance 

mechanisms to find the balance between competing public interests, while protecting individual 

privacy. Examples of such rules include setting up clear guidelines on the purpose and timeline for 

the use of the data, defining clear processes for the access, processing and termination of use of 

personal data at the end of the crisis. Tracking a patient from symptoms, lab results and treatments 

can help a hospital understand how a disease is progressing through a community, how effective 

treatments are and what isn’t working [0]. 

Technological developments like edge computing, fog computing, Internet of Things (IoT), and 

Big Data have gained importance due to their robustness and ability to provide diverse response 

characteristics based on target application. These emerging technologies provide storage, 

computation, and communication to edge devices, which facilitate and enhance mobility, privacy, 

security, low latency, and network bandwidth so that fog computing can perfectly match latency-

sensitive or real-time applications [3]. Healthcare is one of the prominent application areas that 

requires accurate and real-time results, and people have introduced Fog Computing in this field 

which leads to a positive progress. With Fog computing, we bring the resources closer to the users 

thus decreasing the latency and thereby increasing the safety measure. Getting quicker results implies 

fast actions for critical COVID- 19 patients. But faster delivery of results is not enough as with such 

delicate data we cannot compromise with the accuracy of the result [4]. One way to obtain high 

accuracies is by using state-of-the-art analysis software typically those that employ deep learning and 

their variants trained on a large dataset. Deep learning techniques showed in the last years promising 

results to accomplish radiological tasks by automatic analyzing multimodal medical images [5]. Deep 

convolutional neural networks (DCNNs) are one of the powerful deep learning architectures and 

have been widely applied in many practical applications such as pattern recognition and image 

classification in an intuitive way [6]. DCNNs are able to handle four manners as follow [7]: 1) training 

the neural network weights on very large available datasets; 2) fine-tuning the network weights of a 

pre-trained DCNN based on small datasets; 3) Applying unsupervised pre-training to initialize the 

network weights before putting DCNN models in an application; and 4) using pre-trained DCNN is 

also called an off-the-shelf CNN being used as a feature extractor. Convolutional neural networks are 

sensitive to unknown noisy condition in the test phase and so their performance degrades for the 

noisy data classification task including noisy recognition. In this research, a convolutional neural 

network (CNN) model with data uncertainty handling; referred as NCNN (Neutrosophic 

Convolutional Neural Network); is proposed for classification task. The Neutrosophic is a new view 

of Modeling , designed to effectively deal  underlying doubts in the real world, as it came to replace 

binary logic that recognized right and wrong by introducing a third neutral case which could be 

interpreted as non-specific or uncertain. Founded by Florentin Smarandache [8], he presented it in 

1999 as a generalization of fuzzy logic. As an extension of this, A. A.  Salama introduced the 

Neutrosophic crisp sets Theory as a generalization of crisp sets theory [9] and developed, inserted 

and formulated new concepts in the fields of mathematics, statistics, and computer science and 

information systems through Neutrosophic [10-12]. Neutrosophic has grown significantly in recent 

years through its application in measurement, sets and graphs and in many scientific and practical 

fields [13- 17]. 
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In this work, a proposed novel COVID- X framework was developed as universal Health-Fog 

system for automatic diagnosis, treatment, and preventive of people with COVID-19 in an efficient 

manner using deep learning, Neutrosophic and IoT. Health-Fog provides healthcare as a fog service 

and efficiently manages the data of COVID-19 patients which is coming from different IoT devices. 

Health-Fog provides this service by using the proposed framework and demonstrates application 

enablement and engineering simplicity for leveraging fog resources to achieve the same. 

In the following, the contributions of this paper are summarized:  

 Building altogether a novel framework universal system to automatically assist the early 

diagnosis, treatment, and preventive of people with COVID-19 in an efficient manner. 

 Proposed a generic system architecture for development of ensemble NCNN on fog 

computing 

 Achieving an empirical of the proposed framework which mix between deep learning and 

Neutrosophic classifiers in the task of classifying COVID-19.  

 The proposed COVID-X framework supports interdisciplinary researchers to continue 

developing advanced artificial intelligence techniques to fight the COVID-19 outbreak.  

 This study demonstrated the useful applications of deep learning models to classify COVID-

19 based on the proposed COVID-X framework such as smart mask, smart medical suit, safe 

spacer, and Medical Mobile Learning (MML). These applications are the next milestone of 

this research work. 

The rest of this paper is structured as follows. Section 2 presents the related works. Section 3 

gives a review on the state-of-the-art deep convolutional neural network models as image classifiers. 

Also, a detailed description of the COVIDX-Net framework is presented. Experimental results and 

comparative performance of the proposed deep learning classifiers are investigated and discussed in 

section 4. Finally, limitations and this study is concluded with the main prospects in sections 4, 5. 

2. Related Work 

Some studies have shown the use of imaging techniques such as X-rays or Computed 

Tomography (CT-scans) for finding characteristic symptoms of the novel corona virus in these 

imaging techniques. Hemdan et al. [18] developed a deep learning framework, COVIDX-Net, to 

diagnose COVID- 19 in X-Ray Images. A comparative study of different deep learning architectures 

including VGG19, DenseNet201, ResNetV2, InceptionV3, InceptionResNetV2, Xception and 

MobileNetV2 is provided by authors. Barstugan et al. [19] proposed a machine learning approach for 

COVID-19 classification from CT images. Kassani et al. [20] presented a feature extractor-based deep 

learning and machine learning classifier approach for computer-aided diagnosis (CAD) of COVID-

19 pneumonia. Loey et al. [21] presented a detection model based on GAN network with deep transfer 

learning for COVID-19 detection in limited chest X-ray images. Table 1 compares the proposed model 

(HealthFog) with existing models. Recent studies suggest the use of chest radiography in the 

epidemic areas for the initial screening of COVID-19 [22]. Therefore, the screening of radiography 

images can be used as an alternate to the PCR method, which exhibit higher sensitivity in some cases 

[23]. Nevertheless, the main bottleneck that the radiologists experience in analyzing radiography 

images is the visual scanning of the subtle insights. This entails the use of intelligent approaches that 

can automatically extract useful insights from the chest X-rays those are characteristics of COVID-19. 
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Work 
Fog 

Computing 
IoT Neutrosophic 

Deep 

Learning 
Dataset Diagnosis 

Healthcare 

applications 

Hemdan 

et al. [18] 
          

Barstugan 

et al. [19] 
          

Kassani et 

al. [20] 
          

Loey et al. 

[21] 
           

Proposed 

work 
              

3. Proposed COVID_X Description framework 

Fog and Cloud computing paradigms have emerged as a backbone of modern economy and 

utilize Internet to provide on-demand services to users [24]. Both of these domains have captured 

significant attention of industries and academia. In this section will proposed a new deep learning 

framework for automatically identifying the status of COVID-19 extend support to emerging 

application paradigms such as IoT, Fog computing, Edge, and Big Data through service and 

infrastructure. The data generated from Things layer can vary in size, for instance, the data sent from 

sensors. The diversity in data packages size influence the behavior of Fog node during the processing 

event, thus, data packages will require more time to process than light data packages. Therefore, in 

the proposed model, there is a distinction processing tasks. In addition, the fog nodes were adopted 

collaboration framework to achieve the minimal request processing time for heavy data packages. In 

Figure 1 the collaboration concept was elaborated and the distinction different processing tasks 

received from Things layer. In addition, in this framework the advance approach was adopted to 

identify the suitable treatment process, such as, Fog reputation to process specific type of data (e.g., 

health data). 

 

 

Table 1: Comparison of existing models 
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Figure 1. Proposed framework universal system for confrontation covid-19 

3.1 Edge Layer:  

The edge layer (perception layer), is the starting point of the IoT structure where data is been 

generated. This layer contains the networked Things (i.e., wireless sensors) such as heart-rate, blood-

oxygen and etc., which operate to feed the system with patient symptoms data. Each Thing 

device/object in this layer is facilitated with communication protocol (such as IEEE 802.15.4, WiFi, 

Bluetooth, MQTT, and etc.) in which permit the Thing node to transmit the generated data to Fog 
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nodes over the IoT network. In our proposed architecture, A TN denoted by Ƭ, is defined as a six-

tuple:  𝑇 = 〈 𝑇𝑖𝑑, 𝑇𝑠𝑡, 𝜏𝑖  , ℒ, ℋ, ℐ[𝑞] 〉  where, 𝑇𝑖𝑑  is an integer representing the unique ID of the TN, 

𝑇𝑠𝑡 = {0,1}, defines whether the node is in active state or not, (𝜏𝑖) indicates the type of event that a 

node senses. (ℒ) is refer to the geo-spatial location of a TN. (ℋ) is represented the specifications of an 

edge device. ℐ[𝑞] is a linear data structure, such as a 1-D array (with q elements) that stores the 

instance IDs of the application instances running on the device. These tuples are essential to represent 

the Thing node over the IoT network.  

3.1.1 Thermal Screen  

The smart helmet can also detect high body’s temperature in the crowds and send the measured 

data to be displayed on a phone application. Smart Helmet system work is presented in Figure 2. As 

the high body temperature of people is one of the very common symptoms, a real time monitoring 

system of the screening process that automatically appearing the thermal image of temperature of 

people is needed. So, the diagnosis of the screening process will be less time consuming and less 

human interactions that might cause the spreading of the coronavirus faster. It can be concluded that 

the remote sensing procedures, which provide an assortment of ways to identify, sense, and 

monitoring of coronavirus, give an awesome promise and potential in order to fulfil the demands 

from the healthcare system [25]. 

 
 
 
 
 
 
 
 

 
 
 
 

Figure 2. Smart Helmet system work 

3.1.2 Sensing Node 

Smart City and Intelligent Transportation System (ITS) as shown in Figure 3 offer a futuristic 

vision of smart, secure and safe experience to the end user, and at the same time efficiently manage 

the sparse resources and optimize the efficiency of city operations. However, outbreaks and 

pandemics like COVID-19 have revealed limitations of the existing deployments, therefore, 

architecture, applications and technology systems need to be developed for swift and timely 

enforcement of guidelines, rules and government orders to contain such future outbreaks. The 

proposed architecture and AI assisted applications discussed in the article can be used to effectively 

and timely enforce social distancing community measures, and optimize the use of resources in 

critical situations. It offers a conceptual overview and serves as a steppingstone to extensive research 

and deployment of automated data driven technologies in smart city and intelligent transportation 

systems [26]. 
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Figure 3. Smart City and ITS Architecture. 

3.1.3 Smart Mask 

Smart mask can be developed that can record air quality among other features. The Smart Mask 

is more than your average face mask, as its name suggests. Figure 4 shows the proposed Smart Mask, 

can record air quality information thanks to various sensors and electronics. Additionally, it can 

inform wearers of possible changes in lung capacity. While this may prove useful in areas of poor air 

quality, 

 
Figure 4. The proposed Smart Mask 

Specifications; Type: Head-mounted, rated voltage: DC 5V, rated power: 0.4W, Charging time: 

2 hours Standby time: 5~8 hours, Filtering effect: 95%, Protection level: KN95, Function: Dustproof, 

anti-haze, anti-pollen, anti-tail gas, etc. Feature; Unique ventilation design, a plurality of holes, 

excellent permeability, Exhale, the valve is opened without resistance, air breathing valve, air 

resistance is smaller, smooth breathing, uses efficient and low-resistance filter material, combined 

with the smart electric air supply module to provide fresh air into the mask. The edge is protected by 

3D sponge for effective sealing. best protection: The allergy mask separation of 98% of the dust, 

chemicals, smoke and particles, it can be used for dust, anti-vehicle exhaust, anti-pollen allergy, 

PM2.5, for cycling, hiking, skiing and other outdoor activities. High-performance breathing valve 
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that reduces heat and moisture build-up for smoother breathing. Built-in adjustable nose clip for a 

good fit and comfort with the face. Charge once for 5~8-hour endurance to ensure commuting. KN95 

industrial safety protection level. Low noise.one mask can be used for 5-8 days. Can be reused and 

Comfortable ear band made of soft cotton, easy to wear and remove ear loop design. 

3.1.4 Smart Medical Suit 

The nature of Health care workers job puts them health care at an increased risk of catching any 

communicable disease, including COVID-19. Where they spend a lot of time up close with the patient 

doing high risk activities, those high-risk activities include things like placing patients on ventilators 

or collecting samples of sputum from their lungs. That’s why it’s so important that they achieve the 

highest level of protective equipment. The proposed smart medical suits is showed in Figure 5. 

 

Figure 5. The proposed Smart Medical Suit. 

3.1.5 Mobile App. 

The new MobileDetect COVID-19 test kit in Figure 6 was planned to launch in April 2020. The 

currently available free MobileDetect App for Apple and Android smartphone and tablet platforms 

will be updated with the additional COVID-19 testing capability upon launch. Due to the novel 

design incorporating simplistic operation along with credible field-testing capability, the COVID-19 

test kits can be used by federal, state, local response, medical agencies and are also planned to be 

available to the general public [27]. 

 

 
 
 
 
 
 
 
 

Figure 6. MobileDetect Application. 
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3.1.6 X-ray and CT Images 

Medical imaging is also playing a critical in monitoring the progression of the disease and 

patient care. Extracting features from radiology modalities is an essential step in training machine 

learning models since the model performance directly depends on the quality of extracted features. 

Figure 7. Illustrates the visual features extracted by VGGNet architecture from an X-ray image of a 

COVID-19 positive patient. Motivated by the success of deep learning models in computer vision, 

the focus of this research is to provide an extensive comprehensive study on the classification of 

COVID-19 pneumonia in chest X-ray and CT imaging using features extracted by the state-of-the-art 

deep CNN architectures and trained on machine learning algorithms [20]. 

 
 
 
 
 
 
 
 
 
 

Figure 7. Framework of the method with VGGNet as feature extractor. 

3.1.7 Community Acquired Pneumonia on Chest CT 

In this study, a 3D deep learning framework was proposed for the detection of COVID-19 as 

shown in Figure 8. This framework is able to extract both 2D local and 3D global representative 

features. Deep learning has achieved superior performance in the field of radiology. RT-PCR is 

considered as the reference standard; however, it has been reported that chest CT could be used as a 

reliable and rapid approach for screening of COVID-19 [28] 

 

 

Figure 8. COVID-19 detection neural network (COVNet) architecture. 
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3.2 Fog Layer:  

The Fog layer contains number of decentralized nodes in each given location. This layer handles 

the primary refining, compute, and processing of data generated in the Things layer. Fog nodes aim 

to improve efficiency of IoT applications, thus, Fog has the potential to reduce the amount of data 

transmitted to the Cloud layer and minimizing the requests-response time for IoT applications. This 

is often required to enhance the Quality of Service (QoS), such as reducing latency and improve 

network bandwidth. For example, in reference to our scenario the Fog will receive patient’s data from 

their wearable, analyze the data according to predetermined artificial intelligent training, and make 

outcome available to caregiver over the dashboard and notify cloud with outcome for complex 

analysis. 

3.2.1 Data pre-processing 

Covid-19 tested data e.g. the images within the dataset were collected from multiple imaging 

clinics with different equipment and image acquisition parameters; therefore, considerable variations 

exist in images' intensity. The proposed method in this study avoids extensive pre-processing steps 

to improve the generalization ability of the convolution neural network (CNN) architecture. This 

helps to make the model more robust to noise, artifacts and variations in input images during feature 

extraction phase. Hence, we only employed two standard pre-processing steps in training deep 

learning models to optimize the training process [29]. 

3.2.2 Neutrosophic Classifier 

Neutrosophic classifier: a classifier that would use Neutrosophic logic principles and 

Neutrosophic sets for the classification. Neutrosophic classifier incorporates a simple, Neutrosophic 

rule based approach like: IF X and Y THEN Z, for solving problem rather than attempting to model 

a system mathematically similar to fuzzy classifier [30].  Designing of Neutrosophic classification 

inference system using fuzzy methodology is based on the principles of Mamdani fuzzy inference 

method [25]. Figure 9 gives the block diagram representation of a Neutrosophic classification system 

using fuzzy logic toolbox of Matlab. Values of T, I and F Neutrosophic components are independent 

of each other. So using fuzzy logic toolbox of Matlab, three FIS have been designed: one for 

Neutrosophic truth component, second for Neutrosophic indeterminacy component and third for 

Neutrosophic falsity component. Though the working of these components are independent of each 

other but a correlation is drawn between membership functions of Neutrosophic T, I and F 

components so as to capture the truthness, indeterminacy and falsity of the input as well as the 

output. 
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Figure 9. Block diagram for a Neutrosophic components 

Neutrosophic Rule-based Classification System (NRCS) which is a rule based system where 

Neutrosophic logic is used as a tool for representing different forms of knowledge about the problem 

at hand, as well as for modeling the interactions and relationships that exist between its variables 

[23]. The generic structure of a NRCSs shown in Figure 10. 

 

 

Figure 10. Basic structure of a Neutrosophic Rule-Based Classification System 

Let U be a universe of discourse and W is a set in U which composed of bright pixels. A 

Neutrosophic images 𝑃𝑁𝑆 is characterized by three sub sets T, I, and F. that can be defined as T is the 

degree of membership, I is the degree of indeterminacy, and F is the degree of non-membership. In 

the image, a pixel P in the image is described as P(T,I,F) that belongs to W by its t% is true in the 

bright pixel, i% is the indeterminate and f% is false where t varies in T, i varies in I, and f varies in F.  
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The pixelp(i,j)in the image domain, is transformed to 

𝑁𝐷𝑃𝑁𝑆(𝑖, 𝑗) = {𝑇(𝑖, 𝑗), 𝐼(𝑖, 𝑗), 𝐹(𝑖, 𝑗)} (1) 

Where belongs to white set, belongs to indeterminate set and belongs to non-white set. Which can be 

defined as [31]: 

𝑃𝑁𝑆(𝑖, 𝑗) = {𝑇(𝑖, 𝑗), 𝐼(𝑖, 𝑗), 𝐹(𝑖, 𝑗)}   (2) 

𝑇(𝑖, 𝑗) =
𝑔(𝑖, 𝑗)̅̅ ̅̅ ̅̅ ̅̅ − 𝑔̅𝑚𝑖𝑛

𝑔̅𝑚𝑎𝑥 − 𝑔̅𝑚𝑖𝑛

 (3) 

𝐼(𝑖, 𝑗) = 1 −
𝐻𝑜(𝑖, 𝑗) − 𝐻𝑜

𝐻𝑜𝑚𝑎𝑥
− 𝐻𝑜𝑚𝑖𝑛

 (4) 

𝐹(𝑖, 𝑗) = 1 − 𝑇(𝑖, 𝑗) (5) 

𝐻𝑜(𝑖, 𝑗) = 𝑎𝑏𝑠(𝑔(𝑖, 𝑗) − 𝑔(𝑖, 𝑗)̅̅ ̅̅ ̅̅ ̅̅  (6) 

Where 𝑔(𝑖, 𝑗)̅̅ ̅̅ ̅̅ ̅̅  represents the local mean value of the pixels of window size, and 𝐻𝑜(𝑖, 𝑗) which 

can be defined as the homogeneity value of T at (i,j), that described by the absolute value of difference 

between intensity 𝑔(𝑖, 𝑗) and its local mean value 𝑔(𝑖, 𝑗)̅̅ ̅̅ ̅̅ ̅̅ . 

The Content Based Image Retrieval (CBIR) goal is to retrieve images relevant to a query images 

which selected by a user. The image in CBIR is described by extracted low-level visual features, such 

as color, texture and shape. Retrieval System for images embedded in the Neutrosophic domain. In 

this first phase, extract a set of features to represent the content of each image in the training database. 

In the second phase, a similarity measurement is used to determine the distance between the image 

under consideration (query image), and each image in the training database, using their feature 

vectors constructed in the first phase. Hence, the N most similar images are retrieved. Several 

distance metrics were suggested for both content and texture image retrieval, respectively. In this 

paper, we are using a Neutrosophic version of the Euclidean distance, which was presented in [31]. 

For any two Neutrosophic Sets, the Content Based Image Retrieval (CBIR) goal is to retrieve images 

relevant to a query images which selected by a user. The image in CBIR is described by extracted 

low-level visual features, such as color, texture and shape. Retrieval System for images embedded in 

the Neutrosophic domain. In this first phase, extract a set of features to represent the content of each 

image in the training database. In the second phase, a similarity measurement is used to determine 

the distance between the image under consideration (query image), and each image in the training 

database, using their feature vectors constructed in the first phase. Hence, the N most similar images 

are retrieved. Several distance metrics were suggested for both content and texture image retrieval, 

respectively. In this paper, we are using a Neutrosophic version of the Euclidean distance, which was 

presented in [31]. For any two Neutrosophic Sets, 

𝐴 = {𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)), 𝑥 ∈ 𝑈} 𝑎𝑛𝑑  (7) 

𝐵 = {𝑇𝐵(𝑥), 𝐼𝐵(𝑥), 𝐹𝐵(𝑥)), 𝑥 ∈ 𝑈} 𝑖𝑛 (8) 

𝑈 = {𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑛} 𝑡ℎ𝑒𝑛 (9) 
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The Neutrosophic Euclidean distance is equal to 

𝑑(𝐴, 𝐵) = √∑ ((𝑇𝐴(𝑥𝑖) − 𝑇𝐵(𝑥𝑖))2 + ((𝐼𝐴(𝑥𝑖) − 𝐼𝐵(𝑥𝑖))2 + ((𝐹𝐴(𝑥𝑖) − 𝐹𝐵(𝑥𝑖))2
𝑛

𝑖=1
 (10) 

 

 

Figure 11. Neutrosophic COVID-19 image classifier Architecture 

The algorithm for the proposed system is given below which presented in Figure 11:  

1. Convert each image in the database from spatial domain to Neutrosophic domain.  

2. Create a database containing various COVID-19.  

3. Extract Texture feature of COVID-19 in the database.  

4. Construct a combined feature vector for T, I, F and Stored in another database called 

Featured Database.  

5. Find the distance between feature vectors of query COVID-19 and that of featured 

databases.  

6. Sort the distance and Retrieve the N-top most similar. 

The RNN structure replaces the traditional neuron by two neurons (lower neuron, upper neuron) to 

represent lower and upper approximations of each attribute in the CTG data set, its structure formed 

from 4 layers input, 2 hidden and output layers. The hidden layers have rough neurons, which 

overlap and exchange information between each other, While the input and output layers consists of 

traditional neurons as in Figure 12 [32]. 
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Figure 12. Rough Neural Network (RNN) structure. 

Input layer is composed of neuron for each data attribute. The output layer represents the three 

FHR classes, the hidden layers rough neurons are determined by the Baum-Haussler rule [33]. 

𝑁ℎ𝑛 =
𝑁𝑡𝑠 × 𝑇𝑒

𝑁𝑖 + 𝑁𝑜

 (11) 

Where 𝑁ℎ𝑛 is the number of hidden neurons, 𝑁𝑡𝑠 is the number of training samples, 𝑇𝑒 is the 

tolerance error, 𝑁𝑖  is the number of inputs (attributes or features), and 𝑁𝑜  is the number of the 

output.During training process, the normalized input data is multiplied by its weight and computed 

in sigmoid activation function. 

𝑓(𝑥) =
1

1 + 𝑒−𝜆𝑥
 (12) 

Step II: Training phase 

1. Initialize random (upper, lower) weights of network 

2. Feed forward of attribute values and multiply in both direction (Uw, Lw)  

3. Compute (IU, IL) of hidden layers by relations: 

𝐼𝐿𝑛 = ∑ 𝑊𝐿𝑛𝑗𝑂𝑛𝑗

𝑛

𝐽=1
 (13) 

𝐼𝑈𝑛 = ∑ 𝑊𝑈𝑛𝑗𝑂𝑛𝑗

𝑛

𝐽=1
 (14) 

 

4. Compute (OU, OL) of hidden layers by relations: 

𝑂𝐿𝑛 = 𝑀𝑖𝑛(𝑓(𝐼𝐿𝑛), 𝑓(𝐼𝑈𝑛)) (15) 

5. Check fetus according to comparing between actual output (T) and output value (O), 

where output represent by 

𝑂 = 𝑂𝐿𝑛 + 𝑂𝑈𝑛 (16) 
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6. If output is error, then use back propagation algorithm, and compute error. 

∆= 𝑇 − 𝑂 (17) 

7. Update (upper, lower) weights of network by derivation of activation function:  

New weight = old weight + (Δ * η *derivative* activation of (input)) (18) 

where η is learning rate of model 

 

8. Repeat 5, 6, 7, 8 and 8.1 until reduction error as possible as. 

Step III: Testing phase Classify new sample of objects and determine the accuracy rate of the 

model by using relation Accuracy = 1–absolute error, also calculate time consumption in model 

processing. The proposed model for neutrosophic algorithms and source codes based on the works 

presented in [34-37] and others. 

3.2.3 Classification Performance Analysis  

In order to evaluate the performance for each deep learning model in the COVID-X, different 

metrics have been applied in this study to measure the true and/or misclassification of diagnosed 

COVID-19 in the tested X-ray images as follow. First, the cross validation estimator was used and 

resulted in a confusion matrix as illustrated in Table 2. The confusion matrix has four expected 

outcomes as follows. True Positive (TP) is a number of anomalies and has been identified with the 

right diagnosis. True Negative (TN) is an incorrectly measured number of regular instances. False 

Positive (FP) is a collection of regular instances that are classified as an anomaly diagnosis FP. False 

Negative (FN) is a list of anomalies observed as an ordinary diagnosis [18]. 

Table 2. Confusion Matrix. 

 Predicted Positive Predicted Negative 

Actual Positive  True Positive (TP) False Negative (FN) 

Actual Negative  False Positive (FP) True Negative (TN) 

 
After calculating the values of possible outcomes in the confusion matrix, the following performance metrics 
can be calculated. 
A) Accuracy: Accuracy is the most important metric for the results of our deep learning classifiers, as given 

in (1). It is simply the summation of true positives and true negatives divided by the total values of 
confusion matrix components. The most reliable model is the best but it is important to ensure that there 
are symmetrical datasets with almost equal false positive values and false adverse values. Therefore, the 
above components of the confusion matrix must be calculated to assess the classification quality of our 
proposed COVIDX-Net framework.  

Accuracy(%) =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 100% (19) 

B) Precision: Precision is represented in (2) to give relationship between the true positive predicted values 
and full positive predicted values.  

Precision =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  (20) 
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C) Recall: In (3), recall or sensitivity is the ratio between the true positive values of prediction and the 
summation of predicted true positive values and predicted false negative values.  

Recall =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (21) 

D) F1-score: F1-score is an overall measure of the model’s accuracy that combines precision and recall, as 
represented in (4). F1-score is the twice of the ratio between the multiplication to the summation of 
precision and recall metrics.  

F1 − score = 2( 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
) (22) 

3.3 Cloud Layer:  

Cloud or data-centres layer is the top layer of the IoT architecture in which enabling 

omnipresent, convenient, and proper network access to shared resources (e.g., storage, and services) 

over the IoT network. Thus, Cloud perform the heavy services of healthcare data analysis and 

processing that Fog cannot perform. 

3.3.1 Covid-19 Tracer 

Interactive tracker offers users map and graphical displays for COVID-19 disease global spread, 

including total confirmed, active, recovered cases, and deaths. The live dashboard pulls data from 

the proposed framework as well as the centers for disease control to show all confirmed and 

suspected cases of COVID-19, along with recovered patients and deaths. The data is visualized 

through a real-time graphic information system (GIS) as shows in Figure 13 [38].  

 

  
 
 
 
 
 
 
 
 
 
 
 

Figure 13. COVID-19 Tracer 

3.3.2 Safe Spacer 

Limiting face-to-face contact with others is the best way to reduce the spread of coronavirus 

disease 2020 (COVID-19). Safe spacer, also called “social distancing,” means keeping space between 

yourself and other people outside of your home. The proposed safe spacer was showed in Figure 14.  

To practice social or physical distancing using Ultra-wideband technology, Safe Spacer runs 

wirelessly on a rechargeable battery and precisely senses when other devices come within 2m/6ft, 
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alerting wearers with a choice of visual, vibrating or audio alarm. Each device features a unique ID 

tag and built-in memory to optionally associate with workers' names for tracing any unintentional 

contact. To maintain high privacy standards, no data except the device's ID and proximity is stored. 

For advanced workplace use, an optional iOS/Android app allows human resources or safety 

departments to associate IDs to specific workers, log and export daily tracing without collecting 

sensitive data, configure the alarms, set custom distance/alert thresholds and more. 

 
 
 
 
 
 
 
 
 

Figure 14. The proposed safe spacer 

3.3.3 Health System Response Monitor  

The COVID-19 Health System Response Monitor (HSRM) assists healthcare organizations and 

governments assess patient risk profiles and connects them with virtual care capabilities. It has been 

designed in response to the COVID-19 outbreak to collect and organize up-to-date information 

responding to the crisis. It focuses primarily on the responses of health systems but also captures 

wider public health initiatives. It can be presented the main subsystem in medical system as 

following: 
 Medical analysis subsystem It records the results of the tests for the patients either manually 

or automatically by connecting the analytical devices to the system It provides a set of statistics 

such as: the number of analyzes required by a particular laboratory in a specific period and the 

number of analyzes that have already been done - analyzes of a particular patient divided 

according to his medical visits This system is linked to a database that includes all medical 

analyzes divided by type (chemistry - hematology - microbiology - immunology - pathology) 

and it is related to a set of applications that record the analyzes of each laboratory and the 

standard data for these analyzes (Normal Value) according to the kit used in the lab. 

 Radiology subsystem. It records the data of the examination staff, showing the type of radiation 

required for each of them, along with some clinical data about some of the rays, such as CT-

rays and records the radiology report. It contains a system Picture Archiving and 

Communication System (PACS) that links the radiology devices to the system so that the x-

rays are sent to the x-ray. It provides a set of statistics, such as: the number of radiation 

transferred to a particular x-ray department in a specific period, the number of radiation 

already done, and the number of x-rays sent. This system is linked to a database that includes 

all the rays divided by type (therapeutic - diagnostic) or (ultrasound - CT scan - resonance) and 

it is linked to a set of applications that record the radiation of each section and the standard 

report for each radiator, as well as determining the work schedule for each section rays. 

 Medical archive subsystem. It provides a set of statistics, such as: the numbers of patients 

attending a specific clinic in a specific period classified by type or age group or geographically 

distributed in the governorate, center or city. The system scans patient documents, whether 

paper documents or x-ray films, with scanners with special specifications. These documents 
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are stored as part of patient data on dedicated servers. The system contains the ability to record 

the type of document (x-rays-tests-good checks-surgeries -...) and the document history and 

some other data that can be used to create statistics for these documents can be added. The 

system contains a special viewer to display these documents with special capabilities for 

dealing with these images such as enlarging, reducing or rotating the images. The Digitizer can 

be used so that x-ray films are stored in the form of dicom files which is the same format that 

x-ray devices output so that they can be viewed through the PACS Viewer. 

3.3.4 Medical Mobile Learning subsystem 

Medical Mobile Learning (MML) is an unavoidable alternative during COVID-19. It developed 

to meet the needs of the education for medical sector, managing all aspects of providing educational, 

training and development programs with software that looks after administration, documentation, 

tracking, reporting and delivery. MML denote learning involving the use of a mobile device. It has 

several advantages and benefits. First, this teaching method can occur at anyplace, anytime, and 

anywhere and the learning process is not limited to one particular place. Besides, it allows doctors to 

personalize instruction and allow to self-regulate learning. Generally, mobile learning can helps 

doctors to develop technological skills, conversational skills, find answers to their questions for any 

update for COVID-19, develop a sense of collaboration, allow knowledge sharing, and hence leverage 

their learning. 

3.3.5 Robotics and Telehealth system 

Health systems broadly, to encompass the full continuum between public health (population-

based services) and medical care (delivered to individual patients). When we think about digital 

transformation in healthcare, we usually think about some new software doctors are using or a new 

medical imaging machine. However, since doctors are now scrambling to contain the COVID-19 

pandemic, they have to do so without endangering themselves as well. The proposed robotics and 

telehealth system shown in Figure 15. This is where robotics comes in instead of going into the room 

to see the patient, a robot goes in, and the doctors operate it via an iPad from the other side of the 

door—this digital innovation in healthcare currently being used in hospitals in Washington and other 

states. In fact, the robot even has a stethoscope to take the patients’ vitals [39].   

  

 
 
 
 
 
 
 
 
 
 

 

Figure 15. The proposed robotics and telehealth system 
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4. Limitations 

This research is interested in aspects related to Fog computing applied to the healthcare area. In 

this sense, this paper focuses on the characteristics of fog computing architectures directly related to 

healthcare, disregarding models. This research is limited in availability of data makes it difficult to 

process due to the limited hardware availability. Interoperability, data processing, CPU 

management, memory and disk resources, and big data issues are still weaknesses in architectures 

that require a large number of heterogeneous devices such as healthcare applications. 

5. Conclusion and Future Works 

Infectious COVID-19 disease shocked the world and is still threating the lives of billions of 

people. In this study, a new CVOID-X framework has been proposed to automatically identify or 

COVID-19 based on deep learning classifiers. Technological developments like edge computing, fog 

computing, IoT, and Big Data have gained importance due to their robustness. In this retrospective 

and multi-center study, a deep learning model, COVID-19 detection neural network using 

Neautrosophic classifier, was developed to extract visual features from volumetric exams for the 

detection of COVID-19. The proposed system facilitates communication between people and medical 

centers so that the appropriate COVID-19 patient can be reached just on time. It also integrates the 

information scattered among different medical centers and health organizations across the country 

to confrontation COVID-19 Stakeholders are able to use the confrontation as an applications installed 

on their smartphones or as wearable devices. So the diagnosis of the screening process will be less 

time consuming and less human interactions that might cause the spreading of the coronavirus faster. 

It can be concluded that the remote sensing procedures, which provide an assortment of ways to 

identify, sense, and monitoring of COVID-19, give an awesome promise and potential in order to 

fulfil the demands from the healthcare system. As part of the future work, the proposed framework 

can be stimulated and analysis the results for every Thing device/object in Edge layer presented in 

this work. Moreover, to obtain the most accurate feature which is an essential component of learning, 

MobileNet, DenseNet, Xception, ResNet, InceptionV3, InceptionRes- NetV2, VGGNet, NASNet will 

be applied amongst a pool of deep convolutional neural networks. Furthermore, the proposed 

framework can also be extended towards other important domains of healthcare such as diabetes, 

cancer and hepatitis, which can provide efficient services to corresponding patients. 
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Abstract: Paper aims to use the programming codes in calculating the values of neutrosophic 

grades and their representation in proving the certainty and uncertainty associated with the data 

of navigational projects development in the Suez Canal, Egypt. Added to, we reach a more 

descriptive of the data in terms of certainty and uncertainty, and that is through the neutrosophic 

representation of both the total revenue and the revenues of the Suez Canal from the transit 

carriers and ships. Finally, we will present a study of the decision-making process regarding the 

better investment in the Suez Canal. Is it investing in the oil tankers or investing in cargo ships, 

as this is done based on neutrosophic data. This will be done by studying optimistic, pessimistic, 

and remorse entrances to the neutrosophic data, to see which oil tankers or cargo ships offer 

better returns to the Canal.  

Keywords: Neutrosophic categories; neutrosophic analysis; Neutrosophic data; Suez Canal; 

Neutrosophic information models; Decision Making. 

 

 

1. Introduction 

   In real-life problems, the data associated are often imprecise, or non-deterministic. Not all real 

data can be precise because of their fuzzy nature. Imprecision can be of many types: non-

matching data values, imprecise queries, inconsistent data misaligned schemas, etc. The 

fundamental concepts of neutrosophic set, introduced by Smarandache in [2, 3] and Salama et al. 

in [2-19]. Decision-making method developed on the accuracy of the information resulting from 

the neutrosophic data processing. The data has converted from the classic situation using the 

neutrosophic technique, which helps in the process of decision-making. Thus, we can rank all 

alternatives and make a better choice according to the degrees of certainty, uncertainty, and 

impartiality. Paper is limited to the data for the ships crossing the Suez Canal Port, Egypt, such 

as the oil tankers, cargo ships, passenger ships and rescue ships from 1976 to 2019, because they 

are considered the most important main types that cross the Suez Canal, due to the nature and 

characteristics of each of them, and this requires special attention to that types of ships 

mailto:drsalama44@gmail.com
mailto:rafif.alhabib85@gmail.com
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 We recollect some relevant basic preliminaries, and in particular, the work of Smarandache in 

[2, 3] and Salama et al. [16]. The data was relied on the bulletins of the Suez Canal Authority 

Egypt, in [1]. 

2-  Proposed frameworks 
In 2014, Salama et al. [16] designed and implemented an object oriented programming [OOP] to 

deal with neutrosophic data operations. 

  The following are neutrosophic package class, some software algorithms and codes designed 

to generate neutrosophic data related to projects for the development of the navigation of the 

Suez Canal, Egypt: 

1)  The following diagram represent the neutrosophic structure. 

Neutrosophic 
structure 

Certainty

Uncertainty

Truth

Falsity

Ambiguity

Ignorance

Contradiction

Saturation

Neutrality

 

Figure 1. Neutrosophic Data Structure 

2)  The following diagram represent the neutrosophic Package 

 

 

 

 

 

 

 

Figure 2: Neutrosophic Package Class Diagram. 

3) The first input parameter to the neutrosophic variable has three-neutrosophic components membership 

function, indeterminacy and non-membership of data is illustrated in Figure 3. 

 

1.1 Preliminaries & Related Works 
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Figure 3: Neutrosophic Chart . 

4)  Some Neutrosophic codes 

   using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

namespace RibbonCustomize 

{ 

    class NeutrosophicValueException:Exception 

    { 

        public NeutrosophicValueException() 

            : base("Neutrosophic value must be between 0 and 1") 

        { 

        } 

    } 

    class NeutrosophicSet:List<Neutrosophic> 

    {         

        public NeutrosophicSet Complement1() 

        { 

            NeutrosophicSet complementSet = new NeutrosophicSet(); 

            foreach (Neutrosophic n in this) 

            { 

               complementSet.Add(n.Complement1()); 

            } 

            return complementSet; 

        } 

        public NeutrosophicSet Complement2() 

        { 

            NeutrosophicSet complementSet = new NeutrosophicSet(); 

            foreach (Neutrosophic n in this) 

            { 

               complementSet.Add(n.Complement2()); 

            } 

            return complementSet; 

        } 

        public NeutrosophicSet Complement3() 

        { 
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            NeutrosophicSet complementSet = new NeutrosophicSet(); 

            foreach (Neutrosophic n in this) 

            { 

                complementSet.Add(n.Complement3()); 

            } 

            return complementSet; 

        } 

        public Boolean  

 

BelongTo1(NeutrosophicSet nSet) 

        { 

            for (int i = 0; i < this.Count; i++) 

            { 

                if (!this[i].BelongTo1(nSet[i])) 

                    return false; 

            } 

            return true; 

        } 

        public Boolean BelongTo2(NeutrosophicSet nSet) 

        { 

            for (int i = 0; i < this.Count; i++) 

            { 

                if (!this[i].BelongTo2(nSet[i])) 

                    return false; 

            } 

            return true; 

        } 

      } 

 

    class Neutrosophic 

    { 

        double t, i, f; 

        

        public Neutrosophic(double t,double i,double f) 

        { 

            T = t; 

            I = i; 

            F = f; 

        } 

        public double T 

        { 

            get 

            {  

                return  Convert.ToDouble( Math.Round( t,4));  

            } 

            set  

            { 

                if (t < 0 || t > 1) 

                    throw new NeutrosophicValueException(); 

                t = value; 

            } 
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3- Neutrosophic Data Related to Projects for the Development of the Navigation 

Channel of the Suez Canal  

    In this section, software algorithms present the values of the neutrosophic grades 

(Membership, Indeterminacy, Non-membership) associated with the most important variables 

for the waterway development projects are introduced. Which in the future helps in the process 

of support and decision-making through the neutrosophic environment. The following tables 

represent for neutrosophic fuzzy data related to the development of Suez Canal projects. 

 

3-1 Neutrosophic construction for the revenue of the oil tankers 

         The following table shows the neutrosophic functions membership, indeterminacy 

and non-membership for the revenue from oil tankers 

 

membership indeterminacy non-membership 

 29.447820.0 2922840507 2920003.42. 

29..7380058 29222544024 29220834444 

29..5707.0 29225544348 292240702. 

29..8787230 29225300.. 29223030.8. 

29..4540507 292208045.3 29225457445 

29...0.83 2922285.084 292227233 

29..45702.0 2922000520. 29225404.24 

29..4434724 .9808E-05 292205850.0 

29..4023.50 29220243003 292257.8244 

29..4204343 29225550440 29225.40803 

29..44803.3 29220003480 29220537823 

29..707.44. 29220407428 29220402000 

29..70.2.04 29222...50 2922042.240 

29...2248. 29222042440 29222..530 

29..403...7 29220745444 29220482225 
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29..4403300 2922254.240 29220078844 

29...074..0 .970427E-05 2922240022. 

29..7447433 2922283.083 29220500583 

29..7823327 29220534374 292203.88.5 

29..4.034.3 292224.4470 29225278523 

29..4002500 894455E-05 2922077.444 

29..432730 292202.453 292208.084 

29...548574 29222045323 29222403408 

29...2.878. 29222500334 29222.23030 

29...004800 2922285405 29222745374 

29...445750 2922204048 29222504044 

29...040340 292225.0520 2922275485. 

29..4033045 29222.45230 29220488707 

29..478.300 29222.04284 29220032874 

29..7..24.8 29222357578 2922022.524 

29..7.22.83 292224244.4 292202..233 

29..480043 29222727755 2922034703 

29..4008745 29220077433 29220443007 

29..407833. 29220548433 29220703880 

29..4304758 2922244040. 29220845044 

29..403740. 29220404035 29220480040 

29..43.4233 29222784.07 29220825.83 
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29...00543. 5944043E-05 29222474580 

29...720048 29222020437 292220.4454 

3-2 Neutrosophic construction for the revenue of the casting cargo ships  

      The following table shows the neutrosophic functions membership, indeterminacy and 

non-membership for the revenue for casting cargo ships. 

membership indeterminacy non-membership 

29.7.3.7534 29200000833 29202820480 

29...773.4 292220.24.. 2922200820 

29.47480000 29200055.44 2920003477. 

29.447005.0 292283.8440 2920007742. 

29...2805.4 09.842.E-05 29222.37420 

29..4205483 2922530245. 29225.44533 

29..5503080 29220872073 29224448734 

29...044.00 29222407007 29222700244 

29..7042234 292200.8205 2922070..80 

29..745.474 292208583.0 29220042000 

29...505024 29222043403 292224444.0 

29..45.2005 29222808084 2922042.477 

29..4788304 0944420E-05 29220033848 

29..4443803 2922040.754 29225508343 

29...03..53 29222408544 29222482243 

29...54070. 29222403025 29222457040 

29..4004354 2922278473 29220440840 
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29...240054 292224850.4 29222.04740 

29..4747504 29222057700 29220050478 

29..4002800 2922253455 2922544.37. 

29..4008253 292204.3485 29225743.43 

29..7400348 29220774253 29220577804 

29..7.70384 29220735444 29220204838 

29..4023343 2922054.225 292257.8853 

29..754805 29220030474 2922040347 

29..757.05 2922244035 2922040277 

29...203.3 29222300048 29222.4823 

29..4744047 29220200324 29220055455 

29...370050 2922207.387 29222807744 

29...4083. 29222074434 2922254380 

29..44407 2922200087. 292205045 

29..4504834 2922243.88. 29220475380 

29..40454.5 292220.38.5 29220404027 

29...54004 29222534374 2922240470 

29...484200 29222584048 29222530.7. 

29..4304754 292223748.0 29220845048 

29..482.83 29222.03024 292203.233 

29..4.07054 494072.E-05 29220240448 
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29...80024. 098234.E-05 29222374.50 

3-3 Neutrosophic construction for the total revenue  

     The following table shows the neutrosophic functions membership, indeterminacy and 

non-membership for the total Revenue. 

membership indeterminacy non-membership 

0.99453 0.68563 0.00547 

0.994298 0.258039 0.005702 

0.999356 0.694458 0.000644 

0.998015 0.759271 0.001985 

0.998491 0.182653 0.001509 

0.99755 0.842113 0.00245 

0.999763 0.4457 0.000237 

0.99826 0.747169 0.00174 

0.999419 0.657663 0.000581 

0.997668 0.176678 0.002332 

0.999044 0.469494 0.000956 

0.998904 0.408643 0.001096 

0.999146 0.936579 0.000854 

0.999439 0.72134 0.000561 

0.998743 0.156889 0.001257 

0.999089 0.752516 0.000911 

0.999257 0.014837 0.000743 
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0.999994 0.553359 6.25E-06 

0.998467 0.60711 0.001533 

0.998461 0.670432 0.001539 

0.998631 0.026247 0.001369 

0.999688 0.585905 0.000312 

0.99864 0.069339 0.00136 

0.999698 0.843087 0.000302 

0.99874 0.135408 0.00126 

0.999383 0.682067 0.000617 

0.999497 0.336895 0.000503 

0.998713 0.076038 0.001287 

0.99899 0.042053 0.00101 

0.9991 0.299292 0.0009 

0.9996 0.725316 0.0004 

0.9998 0.08398 0.0002 

0.9999 0.040729 1E-04 

0.99994 0.497875 6E-05 

0.99997 0.528715 3E-05 

0.97811 0.4454 0.02189 

0.9888 0.390296 0.0112 

0.9999 0.715649 1E-04 
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0.99999 0.947433 1E-05 

0.99999 0.243405 1E-05 

0.999996 0.724688 4E-06 

0.999998 0.512305 2E-06 

0.999999 0.092309 1.5E-06 

3-4 Neutrosophic construction for the oil tankers load sizes 
      The following table shows the neutrosophic functions membership, indeterminacy and 

non-membership for the oil tanker load sizes. 

membership indeterminacy non-membership 

0.999999683 1.67646E-07 3.1713E-07 

0.999988666 4.86643E-06 1.13338E-05 

0.999986858 1.139E-05 1.31419E-05 

0.99999763 1.71931E-06 2.37026E-06 

0.999998331 7.01436E-08 1.66936E-06 

0.999994502 9.67939E-07 5.49785E-06 

0.999999965 8.26009E-09 3.45204E-08 

0.999995597 3.43245E-06 4.40344E-06 

0.999992593 2.66158E-06 7.40721E-06 

0.99999205 3.97483E-06 7.95034E-06 

0.999995382 2.24479E-06 4.61806E-06 

0.999996817 2.23691E-06 3.18252E-06 

0.999996942 1.23941E-06 3.05795E-06 

0.999994138 5.19437E-06 5.86174E-06 
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0.999994783 3.67107E-06 5.21695E-06 

0.999998407 1.42519E-06 1.59336E-06 

0.999999916 1.99228E-08 8.41154E-08 

0.999998438 1.13182E-06 1.5621E-06 

0.999994327 4.0787E-07 5.67272E-06 

0.999994318 6.75615E-07 5.68204E-06 

0.999988657 1.12072E-05 1.13432E-05 

0.999999955 3.06172E-08 4.47353E-08 

0.999997963 3.01945E-07 2.03699E-06 

0.999987344 1.14491E-05 1.26559E-05 

0.999995549 2.2139E-06 4.45134E-06 

0.999992198 5.62777E-08 7.80226E-06 

0.999994384 4.76185E-07 5.61551E-06 

0.999994926 4.56611E-06 5.07413E-06 

0.999994185 2.79521E-06 5.81518E-06 

0.999993616 7.78117E-07 6.3837E-06 

0.999995882 1.66929E-06 4.11835E-06 

0.999996945 2.47541E-06 3.05471E-06 

0.999993363 2.91819E-06 6.63674E-06 

0.999997621 1.61063E-06 2.3791E-06 

0.999994426 5.07718E-06 5.57402E-06 
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0.999994968 3.88646E-06 5.03216E-06 

0.99999355 3.73223E-06     6.44966E-06 

0.999998549 6.62626E-07 1.45134E-06 

0.999998329 3.01809E-07 1.67063E-06 

0.999996023 2.93175E-06 3.97664E-06 

0.999995523 2.20011E-07 4.47681E-06 

0.999995884 3.7598E-07 4.11594E-06 

0.999996923 2.20412E-06 3.07715E-06 

3-5 Neutrosophic construction for the sizes of tonnage of the cargo ships casting  

       The following table shows the neutrosophic functions membership, indeterminacy and 

non-membership of the sizes of tonnage for cargo ships casting. 

membership indeterminacy non-membership 

29....42424 0944548E-06 09.0.03E-05 

29....73030 4902.35E-06 0984847E-05 

29.....4..3 8904.3.E-07 09228.0E-06 

29.....3707 0945.35E-06 8907044E-06 

29....7.404 0984035E-05 0925400E-05 

29....44347 79343.4E-07 0908555E-05 

29....48007 09330.4E-05 0934707E-05 

29....44220 5973528E-06 090..74E-05 

29.....805  09.5805E-07 3974.48E-06 

29....40880 0934040E-05 0973374E-05 
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29......4.8 794.000E-08 0923774E-07 

29.....544  89.5007E-06 4950.34E-06 

29....4.030 7933705E-06 092787.E-05 

29.....5207 092.487E-06 49.703.E-06 

29.....4053 0930.08E-06 5944845E-06 

29.....8553 095424E-06   3944387E-06 

29.....403  09274.0E-06 5978.70E-06 

29.....4058 597040.E-06 5944450E-06 

29.....74.3 4978004E-07 0902874E-06 

29....44487 0983548E-06 0905355E-05 

29.....5407 0948743E-06 4907550E-06 

29.....5.23 09428.3E-06 492.304E-06 

29.....75.4 090847.E-06 094205E-06 

29.....0474 09007..E-06 4950803E-06 

29.....4545 0975.88E-06 594547.E-06 

29......8.  0947220E-07 3902038E-07 

29......408 09832.7E-07 5974537E-07 

29.....7578 59.4880E-07 094040.E-06 

29.....003. 4955507E-07 7978240E-06 

29.....833  3940.30E-07 3988.40E-06 

29......070  39.80.E-07   7904844E-07 
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29.....0725 3970023E-06 790.754E-06 

29......473 .94448.E-08 090834.E-07 

29.....2040 8950548E-06 .940747E-06 

29......484 49.4234E-08 5930.0E-07 

29.....557. 0942444E-06 494000E-06 

29.....5348 395287.E-06 498034E-06 

29.....4400 0903440E-06 0954404E-06 

3-6  Neutrosophic construction for the total transit ship sizes  

  The following table shows the neutrosophic functions membership, indeterminacy and non-

membership for the total transit ship sizes 

 

membership  indeterminacy non-membership 

29.....23.0 292403.3485 .982407E-06 

29.....5055 29470380.43 4974437E-06 

29.....7.4. 29.37.43047 09252.3E-06 

29.....40.4 29082440348 59720.7E-06 

29.....4005 2934400.43 5947700E-06 

29.....8454 294252443.7 3904085E-06 

29.....3720 29407.20484 890.7.4E-06 

29.....44. 29.27450487 0902.43E-06 

29.....4048 2983.077343 5945425E-06 

29.....3533 29024482704 894830E-06 

29.....3440 294243.480. 8900443E-06 
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29.....7377 29344457203 0980587E-06 

29......747 298345.4440 0955503E-07 

29.....400. 297570584.. 0944270E-06 

29.....4724 29200480878 590.058E-06 

29.....4473 29548005030 5900304E-06 

29.......34 29483353058 890087.E-08 

29.....3.30 2902.232243 89284.4E-06 

29.....8045 292.3.2725 3975704E-06 

29.....4443 29084.04440 0955840E-06 

29.....43.3 290780.5880 5982324E-06 

29.....470. 29..0.37..4 0904234E-06 

29.....3.35 290404223.0 8928700E-06 

29.....477. 294458.227. 090000E-06 

29......374 2903.533457 8905.83E-07 

29.....7204 29028500..4 09.485E-06 

29.....303. 2900400274. 8978233E-06 

29......44. 290.7440405 5902408E-07 

29......540 290557275.7 4954270E-07 

29......700 29272704555 0944584E-07 

29.....4704 29440544555 0904544E-06 

29......540 294532.4087 490.80.E-07 
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29......50 29874540344 4942050E-07 

29.....4004 29072335833 597480.E-06 

29.....7077 29052.24843 09700.3E-06 

29.....40.4 29457434730 09420.4E-06 

29.....4430 2975808844. 5958448E-06 

29......448 29478374447 5903373E-07 

4 - Graphic Representation for Data in the Neutrosophic Environment 

 4-1 Neutrosophic functions of the Suez Canal revenues 

     The following graph shows the neutrosophic functions membership, indeterminacy and 

non-membership of the Suez Canal revenues from oil tankers 

 

Fig.1, The neutrosophic functions of the Suez Canal revenue collected from oil tankers. (1976: 

2019) 

4 -2 Neutrosophic functions of the Suez Canal revenue collected from bulk cargo ships 

   The following graph shows the neutrosophic functions membership, indeterminacy and 

non-membership of the Suez Canal revenues received from bulk cargo ships. 
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Fig.2. Neutrosophic functions of the Suez Canal revenue collected from bulk cargo ships. 

(1976: 2019) 

4 -3 Neutrosophic functions of the Suez Canal revenue (total revenue) 

     The following graph shows the neutrosophic functions membership, indeterminacy and 

non-membership of the Suez Canal total revenue. 

 

 

 

 

 

 

 

 

 

Fig.4. Neutrosophic functions of the Suez Canal revenues in million dollars (total revenue). 

4 -4 Neutrosophic functions for volumes of shiploads 

       The following figure shows the neutrosophic functions membership, indeterminacy and 

non-membership of tonnage of tankers crossing the channel          
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Fig.5. Neutrosophic functions for the volumes of tonnage of tankers crossing the channel. 

4 - 5 Neutrosophic functions of tonnage of cargo vessels casting trans-channel  

    The following figure shows the neutrosophic functions membership, indeterminacy and non-

membership of the tonnage of cargo ships for casting trans-shipment vessels. 

 

Fig.6. Neutrosophic functions of tonnage of cargo vessels casting trans-channel. 

4 - 6 Neutrosophic functions of the tonnage of vessels transiting the channel  

       The following figure shows the neutrosophic functions membership, indeterminacy and 

non-membership of the sizes of tonnage of ships crossing the channel. 
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Fig.7. Neutrosophic functions of the sizes of tonnage of transit ships. 

5 Decision Making for Neutrosophic Environment 

 Here we will present a study of the decision-making process regarding the better 

investment in the Suez Canal. Is it investing in oil tankers or investing in cargo ships, as this is 

done based on the previous neutrosophic data. This will be done by studying optimistic, 

pessimistic, and remorse entrances to the neutrosophic data, to see which oil tankers or cargo 

ships offer better returns to the Canal. 

Study of entrances:   

i. The Optimistic entrance: 

We know that this entrance depends on evaluating the alternatives, in preparation for choosing 

the alternative that guarantees the best possible returns under optimistic natural states. Without 

any consideration for the pessimistic cases of this alternative. Which we express by the term 

(Max, Max). So that the first "Max" indicates the highest value, and the second "Max" denotes 

the optimistic natural state:  

Max Max  

Max (0.999701164,0.000102857, 0.000298836) 

 = 0.999701164 

oil tankers 

Max(0.99977598, 0.000190899, 0.00022402) 

= 0.99977598 
cargo ships 

Thus, according to the optimistic entrance, investing in the cargo ships is the best alternative 

considering that it includes the highest possible return, which is (0.99977598). 

ii. The conservative (pessimistic) entrance: 

We know that this entrance depends on evaluating alternatives. As a prelude to choosing the 

alternative, that guarantees the best possible returns in the light of pessimistic natural states. 
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Without regard for optimistic cases of that alternative. It is called the term (Max, Min), where 

"Max" means the highest value here, but it is related to the second part of the term "Min", which 

means the pessimistic natural state: 

Max Min  

Max (0.988740191 ,0.00461327, 0.011259809) 

 = 0.988740191 oil tankers 

Max(0.979597358, 0.011222455, 0.020402642) 

=0.979597358 cargo ships 

According to this entrance, investing in oil tankers is the best alternative, as it guarantees the 

highest possible return is (0.988740191). 

iii. The entrance to remorse: 

This entrance is not optimistic or pessimistic, but rather an intermediate entrance. It depends on 

the evaluation of the alternatives as a prelude to choosing the alternative that contains the least 

missed opportunities. 

Choosing the most appropriate alternative in the light of this entrance requires creating a new 

matrix, as follows, we replace the alternative that achieves the highest value with a value of 

zero, given that there are no missed opportunities for this alternative. 

 

Lowest neutrosophic  return Highest neutrosophic  return  

(0.988740191 ,0.00461327, 0.011259809) (0.999701164,0.000102857, 0.000298836) oil tankers 

(0.979597358, 0.011222455, 0.020402642) (0.99977598, 0.000190899, 0.00022402) cargo ships 

 

Lowest neutrosophic  return Highest neutrosophic  return  

(0,0,0) (0.000074816,0.000088042, -0.000074816) oil tankers 

(0.009142833, -0.006609185, -0.009142833) (0,0,0) cargo ships 

We subtract the highest value in the event of high return from the rest of the values present in 

this normal state. The same applies to the case of low return, and we subtract the highest value 

in the case of low return from the rest of the values found in this case. 

Then now we create a short matrix that includes the highest missed opportunity values for each 

alternative, as follows: 
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Missed opportunities  

(0.000074816, 0.000088042, -0.000074816) oil tankers 

(0.009142833, -0.006609185, -0.009142833) cargo ships 

Consequently, according to this entrance, the appropriate alternative is oil tankers as it contains 

the least missed opportunities. 

From the study of the previous three entrances in the light of the neutrosophic logic, we have 

different options for decision according to the entrances. This matter we can view positively as 

it enriches the decision-making process and is only a reflection of the circumstances of the 

decision-maker and the views that affect him. 

6. Conclusion and Future Work: 

  Neutrosophic techniques as a generalization of crisp and fuzzy techniques that may better 

model imperfect information, which is omnipresent in any conscious decision making. In 

neutrosophic system, each attack is determined by membership, indeterminacy and non-

membership degrees. In this paper, we have designed a program to generate neutrosophic 

grades for the most important variables of the waterway of the Suez Canal. In future studies we 

will design a statistical model to support and make decisions using the neutrosophic statistics. 

The future importance of the research paper is the use of neutrosophic in proposing a model for 

optimal decision-making in the neutrosophic environment.  

The study aims at the possibility of proposing a general framework to support decision-making 

to maximize the profitability of the Suez Canal Authority by crossing ships using the 

neutrosophic analysis of navigation traffic data.  

This is achieved through a set of objectives, as follows: 
1.  Neutrosophic analysis through the generation of organic functions with three degrees, 

for the navigation traffic in the Suez Canal. 
2.  Neutrosophic analysis of the numbers and volumes of tonnage of oil tankers transiting 

the Suez Canal through neutrosophic data. 
3.  Studying neutrosophic triple vehicles to predict future tanker and ship volumes. 
4.  Using the neutrosophic method to predict the value of revenues. 
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Abstract: Ineradicable hindrances of the existing mathematical models widespread from 

probabilities to soft sets. These difficulties made up way for the opening of “neutrosophic set 

model’. Set theory of ‘vague’ values is an already established branch of mathematics. Complex 

situations which arose in problem solving, demanded more accurate models. As a result, 

‘neutrosophic vague’ came into screen. At present, research works in this area are very few. But it 

is on the way of its moves. Algebra and topology are well connected, as algebra and geometry.                 

So, anything related to geometric topology is equally important in algebraic topology too. Separate 

growth of algebra and topology will slow down the development of each branch. And in one sense 

it is imperfect! In this paper a new algebraic structure, BCK/BCI is developed for ‘neutrosophic’ and 

to ‘neutrosophic vague’ concept with ‘single’ and ‘double’ universe. It’s sub-algebra, different kinds 

of ideals and cuts are developed in this paper with suitable examples where necessary. Several 

theorems connected to this are also got verified.                                                                          

Keywords: Vague H - ideal, neutrosophic vague binary BCK/BCI - algebra, neutrosophic vague binary 

BCK/BCI – subalgebra, neutrosophic vague binary BCK/BCI - ideal, neutrosophic vague binary BCK/BCI  

p- ideal, neutrosophic vague binary BCK/BCI  q - ideal, neutrosophic vague binary BCK/BCI  a-ideal, 

neutrosophic vague binary BCK/BCI  H - ideal, neutrosophic vague binary BCK/BCI - cut                                                         

  
Notations: NVBS : neutrosophic vague binary set, NVBSS : neutrosophic vague binary subset, NVBI : 

neutrosophic vague binary ideal, N BCK/BCI - algebra : neutrosophic BCK/BCI-algebra, NV BCK/BCI - 

algebra : neutrosophic vague BCK/BCI-algebra, NVB BCK/BCI - algebra : neutrosophic vague binary 

BCK/BCI - algebra, N BCK/BCI - subalgebra : neutrosophic BCK/BCI -  subalgebra, NV BCK/BCI - subalgebra 

: neutrosophic vague BCK/BCI - subalgebra, NVB BCK/BCI – subalgebra : neutrosophic vague binary 

BCK/BCI - subalgebra, N BCK/BCI - ideal : neutrosophic BCK/BCI –ideal, NV BCK/BCI - ideal : neutrosophic 

vague BCK/BCI - ideal , NVB BCK/BCI- ideal : neutrosophic vague binary BCK/BCI - ideal, NVB BCK/BCI              

p-ideal : neutrosophic vague binary BCK/BCI p-ideal, NVB BCK/BCI  q - ideal : neutrosophic vague 

binary BCK/BCI  q - ideal, NVB BCK/BCI  a - ideal : neutrosophic vague binary BCK/BCI  a - ideal, NVB 

BCK/BCI  H - ideal : neutrosophic vague binary BCK/BCI  H - ideal 

 

1. Introduction 

    Before 1990’s, mathematicians and researchers made use of different mathematical models 

for problem solving viz. , Probability theory, Hard set theory, Fuzzy set theory, Rough set theory, 

mailto:e-mail@e-mail.com
mailto:krish3thulasi@gmail.com


Neutrosophic Sets and Systems, Vol. 35, 2020     46  

 

 
Remya. P.B & Francina Shalini. A, Neutrosophic Vague Binary BCK/BCI-algebra     
 

Intuitionistic Fuzzy set theory etc., for problem solving. In 1993, W. L. Gau and D. J. Buehrer [16] 

introduced vague sets, with “truth and false” membership values as measurement tools. In 1995,  

Florentin Smarandache [13] introduced, “Neutrosophic set theory”, in which an additional data 

‘uncertainty’, is also got added besides ‘truth and false’. In 2015, Shawkat Alkhazaleh [45] introduced 

‘Neutrosophic Vague’ set theory, by inserting vague values, to each neutrosophic value –‘truth, 

uncertainty & false’. With its several operations, he gave a rich explanation about the concept, in his 

pioneer paper itself. Neutrosophic set’s main difference with Neutrosophic Vague is, with its outlook 

as an “interval” (imposed with certain conditions). An algebraic structure is a universal set with a set 

of operations applicable to that set, together with a set of axioms to be satisfied. BCK/BCI-logical 

algebra- is a new type of algebraic structure developed in 1966, by Yasuyuki Imai and Kiyoshi Is𝑒́ki 

[48]. It is now found to be an active research area. MV-algebras, Boolean algebras etc. are some            

t-related logical algebras which extend to BCK-algebra. BCK-algebra further extends to BCI-algebra. 

In 2015, Samy M. Mostafa and Reham Ghanem [42] gave cubic structures of medial ideal on                   

BCI- algebras. Paper introduced cubic medial – ideal, and it illustrates a relation between cubic 

medial – ideal and cubic medial BCI – ideal. Homomorphism and Cartesian product of this concept 

have been duly verified. In 2017, M. Kaviyarasu and K. Indira [22] gave a review on BCI/BCK-

algebras and its developmental scenario. In 1999, Khalid and Ahmad [25] introduced fuzzy H- ideals 

in BCI-algebras. In 2007, Kordi and Moussavi [26] gave a detailed study on fuzzy ideals of BCI- 

algebras. In 2012, Borumand Saeid. A, Prince Williams. D. R and Kuchaki Rafsanjani [10] gave a 

preliminary note on anti-fuzzy BCK/BCI-subalgebra. Paper mainly contributed on generalized notion 

of fuzzy BCK/BCI-algebra. In 2018, based on hyper fuzzy structure, Young Bae Jun, Seok-Zun Song 

and Seon Jeong Kim [50] introduced length - fuzzy subalgebras (length -k-fuzzy; k = 1≤ k≤ 4) in 

BCK/BCI- algebras. In 2018, Anas Al-Masarwah and Abd Ghafur Ahmad [4] discussed some 

properties of bipolar fuzzy H-ideals in BCK/BCI--algebra. In 2019, Anas Al-Masarwah, Abd Ghafur 

Ahmad [5] introduced m-Polar fuzzy subalgebras, m-polar fuzzy closed ideal and m-polar fuzzy 

commutative ideal of m-polar fuzzy sets. They also investigated their several characterizations and 

theorems. In 2019, Alcheikh. M & Anas Sabouh [3] proved several theorems connected to the already 

existing notions of fuzzy ideal, anti-fuzzy ideal and anti-fuzzy p-ideal of BCK-algebra. In 1983,                

Hu. Q. P and Li. X [19] defined BCH-algebra as a generalization of BCK/BCI-algebra. In 2001, 

Muhammad Anwar Chaudhary and Hafiz Fakhar-ud-din [34] studied some classes of BCH- algebras. 

In 1998, Jun. Y. B, Roh. E. H and Kim. H. S [21] introduced BH -algebra as a generalization of 

BCH/BCI/BCK-algebra and they discussed it’s ideals and homomorphisms. In 2001, Qun Zhang, 

Young Bae Jun and Eun Hwan Roh [41] studied the connection of BH- algebras with ‘BCH’ and 

‘BCK/BCI’-algebras. They defined BH1-algebra and normal BH - algebra. In 1996, Neggers. J and Kim. 

H. S [38] introduce d-algebras as a generalization of BCK-algebras and proved that oriented digraphs 

correspond to class of edge d-algebras. They also gave several notions of d-algebra with examples 

and also defined direct product and direct sum of d-algebras. In 1996, Stanley Gudder [46] introduced 

D-algebras as a generalization of D-poset (without assuming a partial order in D poset). He explained 

(interval) effect algebras, based on group structure and proved several lemmas and theorems 

regarding to this in a deep manner. In 2012, Muhammad Anwar Chaudhry and Faisal Ali [32] 

introduced multipliers in d-algebras. He remarked with example that every BCK-algebra is a                   

d-algebra but the converse does not hold, in general. He defined positive implicative d - algebra and 

proved related theorems. In 2005, Akram. M and Dar. K. H [2] defined Fuzzy d-algebras, Fuzzy                   

d-ideals, Fuzzy d-subalgebras, Fuzzy d-homomorphisms. In 2014, S. R. Barbhulya. K. Dutta. 

Choudhury [43] defined (ε, εvq)- fuzzy ideals of d - algebra, it’s cartesian product, homomorphism 

and also investigated a few theorems. In 2002, Neggers. J and Kim. H. S [39] introduced B – algebra 

which is closely related to BCH/BCI/BCK - algebras. Using a digraph on algebras, they gave a 

connection between B - algebras and groups. They also defined commutative B - algebras. In 2006, 

BM - algebras are introduced by Kim. C. B and Kim. H. S [24] as a specialization of B - algebras. They 

proved BM - algebra as a proper subclass of B - algebras. They showed that BM - algebra is equivalent 

to a 0 - commutative B - algebra. In 2011, A. Borumand Saeid and A. Zarandi [11] applied Vague Set 
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theory to BM - algebras and discussed its cuts, Artinian and Noetherian concepts. In 2017, Arsham 

Borumand Saeid, Hee Sik Kim and Akbar Rezaei [7] introduced BI - algebras as a generalization of 

(dual) implication algebra. They defined ideals and congruence relations in BI - algebras. In 2006, Hee 

Sik Kim and Young Hee Kim [18] studied a generalization of BCK – algebras known as BE - algebras. 

They discussed its filter and self - distributive property along with some theorems. Various structures 

formed within short periods of time, along with smaller or bigger changes are B, BE, BF, BF1, BF2, 

BG, BI , BL, BM, BN, BO, BP, BQ, BZ, CI, Coxeter - algebra, FL, FLew (bounded integral commutative 

residuated lattice), GK, HW, KU, PS, Q, QS, QP, RG, TM, TP, TU, BCC (or BIK), BCL, BBG, SB𝐿¬ , 

Smarandache BCH - algebra , SU, UP, Z etc. In 2006, group theory of vague sets is introduced by 

Hakimuddin Khan, Musheer Ahmad and Ranjit Biswas [17]. In 2008, Lee. K. J, So. K. S and Bang.             

K. S [27] introduced vague BCK/BCI- algebras with several theorems and propositions. It was one of 

the pioneer work in the area of BCK/BCI - algebraic structure with vague sets. Notion of vague ideals 

are introduced with properties. A condition for a vague set to become a vague ideal is also provided. 

Several characteristics for vague ideal are investigated and established. Arsham Borumand Saeid [6] 

also introduced vague BCK/BCI- algebras in 2008, but his work has been published in 2009. He 

discussed on cuts, subalgebras and their related theorems of vague BCK/BCI – algebra. In 2017, Jafari. 

A, Mariapresenti. L and Arockiarani. I [20] discussed on vague direct product in BCK- algebra.                  

In 2002, Neggers. J and Kim Hee Sik [40] introduced, β −algebra as generalization of BCK-algebras. 

In 2016, B. Nageswararao, N. Ramakrishna, T. Eswarlal [37] introduced vague β − algebras,                    

vague β −ideals, translation operators on vague β −algebras, translation operators on vague β − 

ideals, vague β −ideal extension of vague β −algebra etc. In 2013, Yun Sun Hwang and Sun Shin 

Ahn [52] developed vague p-ideals and vague a-ideals in BCI-algebras. In 2006, neutrosophic 

algebraic structures are introduced by Vasantha Kandasamy. W. B and Florentin Smarandache [47]. 

Neutrosophic group structure, neutrosophic ring structure etc., with lots of theorems and 

propositions are investigated. Based on this, in 2015, A. A. A. Agboola and B. Davvaz [1] introduced 

neutrosophic BCI/BCK- algebras and their elementary properties. In 2018, Young Bae Jun, Seok - Zun 

Song, Florentin Smarandache and Hashem Bordbar [51] discussed neutrosophic quadruple BCK/BCI-

algebras. Paper consists of the newly defined definition of neutrosophic quadruple BCK/BCI-number, 

neutrosophic quadruple BCK/BCI-ideals etc., with proper verification of inter-connected notions.               

In 2019, Muhiuddin. G, Smarandache. F, Young Bae Jun, [35] gave a new idea - neutrosophic 

Quadruple ideals in neutrosophic Quadruple BCI- algebras. In 2018, Seon Jeong Kim, Seok-Zun Song 

and Young Bae Jun [44] discussed generalizations of neutrosophic subalgebras in BCK/BCI--algebras 

based on neutrosophic points. In 2018, Muhammad Akram, Hina Gulzar, Florentin Smarandache and 

Saeid Broumi [34] defined single-valued neutrosophic topological K-algebras and investigated some 

of the properties like 𝐶5-connected, super-connected, compact and hausdorff. They also investigated 

the image and pre-image of these algebras under homomorphism. In 2018, Young Bae Jun, Florentin 

Smarandache, Mehmat AliÖztürk [49] introduced commutative falling neutrosophic ideals in BCK-

algebras. In 2017, Bijan Daavavaz, Samy M. Mostafa and Fatema F. Kareem [8] developed 

Neutrosophic ideals of neutrosophic KU - algebras. In 2018, Muhiuddin. G, Bordbar. H, 

Smarandache. F, Jun. Y. B, [36] gave certain results on (ε, ε) – neutrosophic subalgebras and ideals in 

BCK/BCI- algebras. They defined commutative (ε, ε) neutrosophic ideal and commutative falling 

neutrosophic ideal for a BCK-algebra. In 2019, Chul Hwan Park [12] developed neutrosophic ideals 

of subtraction algebras. Khadaeman. S, Zahedi. M. M, Borzooei. R. A, Jun. Y. B [23] developed 

neutrosophic hyper BCK-ideals in 2019. Neutrosophic sets handle uncertainty in a remarkable way. 

But its generalization named as plithogenic set handles uncertainty in a more powerful level than 

neutrosophic! Application works using plithogenic are very few as it is a recently introduced work  

in set theory.  But, in 2019, Mohamed Abdel-Basset and Rehab Mohamed [31], used a plithogenic 

TOPSIS-CRISIS method to sustainability supply chain risk management in telecommunication 

industry.  Problem is well and systematically explained with adequate assistance of diagrams like bar 

diagram, pie diagram etc. In 2019, Mohamed Abdel-Basset, Mai Mohamed, Mohamed Elhoseny,                  

Le Hoang Son, Francisco Chiclana, Abd El-Nasser H Zaied [28] pointed out some draw backs of   
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Dice and Jaccard similarity measures in bipolar neutrosophic set with examples. They provided a 

cosine similarity measure and weighted cosine similarity measure methods for ‘bipolar and interval-

valued bipolar’- neutrosophic set. They used the above method for diagnosing bipolar disorder 

diseases. A computational algorithm for MADM (Multi Attribute Decision Making) has also given in 

the paper. In 2019, using ‘neutrosophic sets’, Mohamed Abdel-Basset, Mumtaz Ali, Asma Atef [30] 

framed a resource levelling problem to construction projects. To improve work efficiency and to 

minimize cost were underlying principle. For calculating activity durations, trapezoidal neutrosophic 

numbers were used in this model. In 2019, Mohamed Abdel-Basset, Mumtaz Ali, Asma Atef [29] 

designed uncertainty assessments of linear Time-Cost Tradeoffs using neutrosophic sets. In 2020, 

Florentin Smarandache [14] introduced neutro - algebra as a generalization of partial algebra with 

examples and showed their differences. Points of odds between universal algebra, neutro - algebra 

and anti-algebra are well explained in the paper. Neutro - functions are more useful when range or 

domain is not clear. Several applications to neutro functions are given with a well explanation.              

In 2020, Bordbar. H, Mohseni Takallo. M, Borzooei. R. A, Young Bae Jun [9], defined BMBJ -

neutrosophic subalgebra in BCI/BCK – algebras. Authors introduced BMBJ neutrosophic set as a 

generalization of neutrosophic set. Its subalgebra, images, translations, S - extension and its 

application to BCI/BCK – algebra are defined and explained. Neutrosophic vague binary sets are 

developed by Francina Shalini. A and Remya. P. B [15] in 2019. Authors developed a neutrosophic 

vague set with 2 universes and discussed its properties. 

.   

In this paper, BCK/BCI-algebraic structure is introduced to neutrosophic vague binary sets and 

it is simply called as neutrosophic vague binary BCK/BCI - algebra. It’s ideal, neutrosophic vague 

binary BCK/BCI – ideal is also developed. Moreover, different neutrosophic vague binary BCK/BCI-

ideals like neutrosophic vague binary BCK/BCI p-ideal, neutrosophic vague binary BCK/BCI                      

q-ideal, neutrosophic vague binary BCK/BCI a-ideal and neutrosophic vague binary BCK/BCI           

H-ideal are also developed and compared. Neutrosophic vague binary BCK/BCI - subalgebra, 

neutrosophic vague binary BCK/BCI-cut and their relationships, properties and several theorems are 

also investigated and illustrated with examples.  

 

Without algebra we can’t even imagine mathematics. In one sense, geometry and algebra are 

equally important in mathematics. Even a layman can understand geometry because it deals with 

lines and shapes. It’s applicational use in day to day life can’t neglect. But algebra is like a silent 

player. In geometry, for finding out the solutions to lot of situations like, to get co-ordinates of 

centroid or to find out solution space to equations which represents lines, ellipse, hyperbolas, etc.                  

- common way is to adopt the method of algebra. Study of surfaces is the main concept behind 

topology. Topological objects can bend, twist or stretch but are not allowed to tear, since there it loses 

its continuity. As a result, topological objects will become non – topological! Automatically they 

admit lack of homeomorphism in these situations. Geometrical nature of topology needs the 

assistance of algebra in several circumstances. This inevitable need of a mixed strategy, produced a 

new branch of mathematics called ‘algebraic topology’. So developmental moments in any branch 

connected to topology from basic sets to neutrosophic sets via “fuzzy, rough, intuitionistic fuzzy, 

vague, interval mathematics, soft”- will equally demand the developments of it’s counterpart-

algebra. Thus both of them developed equally and produced vivid outputs like fuzzy BCK/BCI 

algebra, intuitionistic fuzzy BCK/BCI-algebra, rough BCK/BCI-algebra, vague BCK/BCI- algebra, soft 

BCK/BCI algebra and so on. So to stabilize neutrosophic branch, developments in various algebraic 

structures like BCK/BCI, BCH, BH etc are very critical and essential. This work will be important to 

neutrosophic due to its ‘easy way approach’ than [1] to reach to the same destination.  

 

Method given in [1] is equally good but the concept of generating element is a little bit 

perplexing. Since [1] is closely connected to [47], it will be helpful, to verify lot of deep ideas given in 

[47]. Neutrosophic ‘group and loop’ concepts are well defined with examples and explanations in 
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[47]. It is to be noted that, as per [47], neutrosophic group does not possess a direct group structure, 

but it always contains one! Neutrosophic vague is a mixed form of neutrosophic and vague. It draws 

every positives and negatives of both the aforementioned sets. Numerical calculations for 

‘neutrosophic’ are more than ‘vague’ due to its additional component - uncertainty. In real life 

problems, complex situations demand a more clear and easily accessible method to use with -

‘neutrosophic, neutrosophic vague or neutrosophic vague binary’- set values. In group theory or ring 

theory algebraic structure is formed in such a manner that it includes set itself as a first member of 

the structure, then provide various algebraic operations as example shows : (𝑍, +4), (mZ, +), (𝑅, +, . ) 

etc. Vague BCK/BCI algebraic-structure is defined as (U,∗, 0) by enclosing only universal set and by 

omitting the corresponding vague set A. But in this context, universal set and vague set are 

simultaneously essential and available: since problem is being to be checked for a ‘vague BCK/BCI-

algebra and not for mere BCK/BCI-algebra’ ! Our conclusion is that, being a core object in taking a 

decision to the question ‘vague BCK/BCI-algebra or not? ’ : inclusion of vague set, ‘inside the 

structure’ is important. It will avoid more confusions while doing theoretical work! Same thing is 

referable to fuzzy BCK/BCI-algebra, intuitionistic BCK/BCI-algebra, neutrosophic BCK/BCI-algebra 

and so on. This will be useful and applicable to all other existing structures like BCH, BH, B etc., with 

uncertain sets. 

         

          It is hoped that, when comparing to [1], concept developed in this paper, will be more 

useful to common people, since it uses values directly and hence easily accessible. This method 

depends on vague BCK/BCI paper [6]. In this paper our primary interest is to develop BCK/BCI-

algebraic concept to neutrosophic vague binary sets. For this neutrosophic BCK/BCI algebraic 

concept and neutrosophic vague BCK/BCI-algebraic concept are needed as a base. Since it is not 

developed yet, in this paper, those are also developed with neutrosophic vague binary!  An 

alternative structure approach, to vague BCK/BCI-algebra mentioned in [6] can be given as follows:  

A vague BCK/BCI-algebra is a structure 𝔅A = (A, U𝔅A = (U,∗, 0),∗, 0)=(A, U𝔅A,∗, 0) , where A is the 

vague set under consideration and U𝔅A  = (U,∗, 0) is the underlying BCK/BCI-algebraic structure    

for A with universal set U, binary operation “∗” and with constant “0”. Similarly, when A becomes 

fuzzy set, the structure got is fuzzy BCK/BCI-algebraic. For theoretical applications, new approach is 

found to be more helpful and clear. Throughout this paper, new structure is used for 

neutrosophic/neutrosophic vague/ neutrosophic vague binary BCK/BCI-algebra.    

       

          Primary objective of this work is to develop a BCK/BCI-algebraic structure to neutrosophic 

vague binary set. Along with, care is taken, to use this novel concept, in ‘theoretical applications’. 

Secondary objective is kept as the formation of various ideals to this new concept and their 

verification in theory part.                         

       

         Paper consists of 8 sections. 1st section, provides an introduction, in which literature review 

has given. 2nd paragraph gives a general format of the work. 3rd paragraph explains why this work is 

essential to neutrosophic branch. 4th paragraph, points out 2 limitations of existing approaches.            

5th paragraph mentions the alternative approaches to the limitations. 6th paragraph gives 2 objectives 

for the work. 7th paragraph, clearly explains how the paper is organized. 8th paragraph, summarizes 

all contributions of this paper in bullets. 2nd section of the paper describes materials for the work. In 

3rd, neutrosophic vague binary/ neutrosophic vague/ neutrosophic BCK/BCI -algebras are developed. 

In 4th, neutrosophic vague binary BCK/BCI-subalgebra and neutrosophic vague binary BCK/BCI- 

ideal are developed. In 5th section, various neutrosophic vague binary BCK/BCI-ideals are formed 
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and compared using a table. In 6th section, neutrosophic vague binary/ neutrosophic vague/ 

neutrosophic BCK/BCI - cuts are defined. In 7th section, propositions and lemmas related to this novel 

concept are discussed as a theoretical application. In 8th section, a conclusion to the paper is given.   

           

         Contributions in this paper are given in bullets below: 

 

 Vague H-ideal 

 Neutrosophic Vague Binary BCK/BCI-algebra 

 Neutrosophic Vague Binary BCK/BCI-subalgebra 

 Neutrosophic Vague Binary BCK/BCI-ideal 

 Neutrosophic Vague Binary BCK/BCI- p ideal                                                      

Neutrosophic Vague Binary BCK/BCI- q ideal 

Neutrosophic Vague Binary BCK/BCI- a ideal 

Neutrosophic Vague Binary BCK/BCI- H ideal 

 Neutrosophic vague binary BCK/BCI- cut 

 

2. Preliminaries  

Some preliminaries are given in this section 

Definition 2.1 [45] (Neutrosophic Vague Set) 

A neutrosophic vague set ANV  (NVS in short) on the universe of discourse X can be written as                  

ANV = {〈𝑥 ; T̂ANV(X) ; ÎANV(X), F̂ANV(X)〉; 𝑥 ∈ 𝑋} whose truth-membership, indeterminacy-membership 

and falsity-membership functions are defined as                                                                   

T̂ANV(x) = [T−, T+], ÎANV(x) = [I−, I+] and F̂ANV(x) = [F−, F+]                                                  

where (1) T+ = (1− F−) ; F+ = (1− T−) and                                                                       

       (2) − 0 ≤ T− + I− + F− ≤ 2+  

          − 0 ≤ T+ + I+ + F+ ≤ 2+ 

Definition 2.2 [15] (Neutrosophic Vague Binary Set) 

A neutrosophic vague binary set (NVBS in short) MNVB  over a common universe 

{U1 = {xj/ 1 ≤ j ≤ n}; U2 = {yk/1 ≤ k ≤ p}} is an object of the form                                                                                                                                                                                         

MNVB = {〈
T̂MNVB(xj),   ÎMNVB(xj),   F̂MNVB(xj)

xj
;  ∀ xj ∈ U1〉 〈

T̂MNVB(yk),   ÎMNVB(yk),   F̂MNVB(yk)

yk
;  ∀ yk ∈ U2〉}                      

is defined as, (∀ xj ∈ U1 & ∀ yk ∈ U2) 

T̂MNVB  (xj) = [T−(xj), T
+(xj)],  ÎMNVB(xj)= [I−(xj), I

+(xj)] and F̂MNVB(xj) = [F−(xj), F
+(xj)]  and  

T̂MNVB  (yk) = [T−(yk), T
+(yk)],  ÎMNVB(yk)= [I−(yk), I

+(yk)] and F̂MNVB(yk) = [F−(yk), F
+(yk)]  

where (1) T+(xj) = 1− F−(xj); F
+(xj) = 1− T−(xj) & T+(yk) = 1− F−(yk); F

+(yk) = 1− T−(yk)                                    

(2) − 0 ≤ T−(xj)+I
−(xj)+F

−(xj) ≤ 2
+; − 0 ≤ T−(yk)+I

−(yk)+F
−(yk) ≤ 2+ or – 0≤ T−(xj)+I

−(xj)+F
−(xj)+T

−(yk)+I
−(yk)+F

−(yk) ≤ 4+                                      
   − 0≤ T+(xj)+I

+(xj)+F
+(xj) ≤ 2+; − 0 ≤ T+(yk)+I

+(yk)+F
+(yk) ≤ 2

+or − 0 ≤ T+(xj)+I
+(xj)+F

+(xj)+T
+(yk)+I

+(yk)+F
+(yk) ≤ 4+ 

(3) T−(xj), I
−(xj), F

−(xj) : V(U1) ⟶ [0, 1] and T−(yk), I
−(yk), F

−(yk) : V(U2) ⟶ [0, 1] 

    T+(xj), I
+(xj), F

+(xj) : V(U1) ⟶ [0, 1] and T+(yk), I
+(yk), F

+(yk) : V(U2) ⟶ [0, 1] 

    Here V(U1), V(U2) denotes power set of vague sets on U1, U2 respectively                           

Definition 2.3 [48] (BCI-algebra)                                                                    

Let X be a non-empty set with a binary operation ∗ and a constant 0. Then (X, ∗, 0) is called a       

BCI-algebra if it satisfies the following conditions:                                                              

(i)   ((x∗y) ∗(x∗z)) ∗(z∗y) = 0                                                                           
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(ii)  ((x ∗ (x ∗ y)) ∗ y = 0                                                                                

(iii)  (x ∗ x) = 0                                                                                    

(iv)  (x ∗ y) = 0 and (y ∗ x) = 0 imply x = y, for all x, y , z ∈ X                                             

Remark 2.4 [48]                                                                                          

We can define a partial ordering ≤ by x ≤ y if and only if (x ∗ y) = 0                              

Remark 2.5 [48] (BCK – algebra)                                                                                              

If a BCI-algebra X satisfies (0 ∗ x) = 0 for all x ∈ X, then we say that X is a BCK- algebra             

Remark 2.6 [48]                                                                                           

A BCI-algebra X has the following properties:                                                            

(i)   (x ∗ 0) = x ; ∀ x ∈ X                                                                                                        

(ii)  (x ∗ y) ∗ z = (x ∗ z) ∗ y ;  ∀  x, y, z ∈ X                                                             

(iii)  0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y) ;  ∀ x, y ∈ X                                                                                         

(iv)  x ∗ (x ∗ (x ∗ y)) = (x ∗ y)    ; ∀ x, y ∈ X                                                          

(v)   x ≤ y ⇒ (x ∗ z) ≤ (y ∗ z)  ; (z ∗ y) ≤ (z ∗ x)  ;  ∀ x, y, z ∈ X                                               

(vi)  (x ∗ z) ∗ (y ∗ z) ≤ (x ∗ y)  ; ∀ x, y, z ∈ X                                                        

(vii)  0 ∗ (0 ∗ ((x ∗ z) ∗ (y ∗ z))) = ((0 ∗ y) ∗ (0 ∗ x))  ;  ∀ x, y, z ∈ X                                    

(viii)  0 ∗ (0 ∗ (x ∗ y)) = ((0 ∗ y) ∗ (0 ∗ x))  ; ∀  x, y ∈ X                                              

Definition 2.7 [2, 4, 6, 25, 52] (Sub-algebra, Ideal, p-ideal, q-ideal, a-ideal, H-ideal)                              

Any non-empty subset I of a BCK/BCI- algebra X is called,                                            

- subalgebra /ideal /p-ideal /q-ideal /a-ideal /H-ideal - of X, if it satisfies the axioms given table:                            

Remark 2.8 [6] (r min & r max)                                                                                         

Let D[0, 1] denote the family of all closed sub-intervals of [0, 1]. Now we define the refined minimum 

(briefly, r min) and an order “≤” on elements D1 = [a1, b1] and D2 = [a2, b2] of D[0, 1] as : r min (D1 , D2)  

= [min {a1, a2}, min{b1, b2}]. Similarly, we can define ≥, = and r max. Then the concept of r min and r 

max could be extended to define r inf and r sup of infinite number of elements of D [0, 1]. It is a 

known fact that L = {D [0, 1], r inf, r sup, ≤} is a lattice with universal bounds [0, 0] and [1, 1].                                                                                     

Definition 2.9 [6] (Vague–cuts)                                                                     

Let A be a vague set of a universe X with the true-membership function tA and false-membership 

function fA. The (α, β)-cut of the vague set A is a crisp subset A (α, β) of the set X given by                

 Condition 1 Condition 2   

Subalgebra of X Nil (x∗ 𝐲) ∈ I ;  ∀ x, y ∈ I   

BCK/BCI-subalgebra of X Nil (x∗ 𝐲) ∈ I ;  ∀ x, y ∈ I   

µ be a fuzzy BCK/BCI-algebra of X Nil µ (𝐱 ∗  𝐲) ≥ 𝐦𝐢𝐧{µ (𝐱) ∗ µ(𝐲)} ;   ∀ 𝐱, 𝐲 

∈  𝐗;  µ 𝐛𝐞 𝐚 𝐟𝐮𝐳𝐳𝐲 𝐬𝐞𝐭 𝐢𝐧 𝐚 𝐁𝐂𝐊/𝐁𝐂𝐈 –  𝐚𝐥𝐠𝐞𝐛𝐫𝐚 𝐗 

A be a vague BCK/BCI-algebra of X Nil 
{

𝐕𝐀 (𝐱 ∗ 𝐲) ≽  𝐫 𝐦𝐢𝐧 {𝐕𝐀(𝐱), 𝐕𝐀(𝐲)} ;   ∀  𝐱, 𝐲 ∈  𝐗 ;  

𝐢. 𝐞., 𝐭𝐀(𝐱 ∗  𝐲) ≥  𝐦𝐢𝐧 {𝐭𝐀(𝐱), 𝐭𝐀(𝐲)};  𝟏 − 𝐟𝐀(𝐱 ∗ 𝐲) ≥  𝐦𝐢𝐧 {𝟏 − 𝐟𝐀(𝐱), 𝟏 − 𝐟𝐀(𝐲)}

𝐀 𝐛𝐞 𝐚 𝐯𝐚𝐠𝐮𝐞 𝐬𝐞𝐭 𝐢𝐧 𝐚 𝐁𝐂𝐊/𝐁𝐂𝐈 –  𝐚𝐥𝐠𝐞𝐛𝐫𝐚 𝐗
                                     

 

Ideal of X 0 ∈ I        (x ∗ y) ∈ I  &  y ∈ I  ⇒ x ∈ 𝐈        ; ∀  𝐱 ∈ 𝐈,   ∀  𝐲 ∈ X 

µ be a fuzzy BCI- ideal of X µ (0) ≥ µ (x)                                                                                               µ (𝐱) ≥ 𝐦𝐢𝐧{µ (𝐱 ∗  𝐲), µ(𝐲)} ;  ∀  𝐱, 𝐲 ∈  𝐗 ;  µ 𝐛𝐞 𝐚 𝐟𝐮𝐳𝐳𝐲 𝐬𝐞𝐭 𝐢𝐧 𝐚  𝐁𝐂𝐈 –  𝐚𝐥𝐠𝐞𝐛𝐫𝐚 𝐗 

BCK/BCI - Ideal of X 0 ∈ I         (x ∗ y) ∈ I  &  y ∈ I ⇒ x ∈ 𝐈      ;  ∀  𝐱 ∈ 𝐈,   ∀  𝐲 ∈ X 

p - ideal of X 0 ∈ I  [(x ∗ z) ∗ (y ∗ z)] ∈ 𝐈  &  y ∈ 𝐈 ⇒ x ∈ 𝐈      ; ∀  𝐱, 𝐲, 𝐳  ∈ X  

q - ideal of X 0 ∈ I        [x ∗ (y ∗ z)] ∈ 𝐈  &  y ∈ 𝐈 ⇒ (x ∗ z) ∈ 𝐈 ; ∀  𝐱, 𝐲, 𝐳  ∈ X 

a - ideal of X 0 ∈ I [(x ∗ z) ∗ (0 ∗ y)] ∈ 𝐈  &  z ∈ 𝐈 ⇒ (y ∗ x) ∈ 𝐈 ; ∀  𝐱, 𝐲, 𝐳  ∈ X 

H - ideal of X 0 ∈ I        [x ∗ (y ∗ z)] ∈ 𝐈  &  y ∈ 𝐈 ⇒ (x ∗ z) ∈ 𝐈 ; ∀  𝐱, 𝐲, 𝐳  ∈ X 

µ be a fuzzy BCK/BCI-ideal of X µ (0) ≥ µ (x) µ (x) ≥ min {µ (x ∗ y), µ(y)};  ∀ x, y ∈ X; µ be a fuzzy set in a BCK/BCI – algebra X 

vague BCI-ideal of X VA (0) ≥ VA (x) VA(x)≥ r min { VA(x ∗ y), VA (y) }  ;  ∀ x, y ∈ X ; A- vague set in X 
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A(α, β) = {x ∈ X / VA(x) ≥ [α, β] } where α ≤ β. Clearly, A (0, 0) = X. The (α, β)-cuts are also called vague-

cuts of the vague set A. 

The α-cut of the vague set A is a crisp subset Aα of the set X given by Aα = A (α, α).                                

Note that 𝐀𝟎 = X and if α ≥ β then Aβ ⊆ Aα and A (β, α) = Aα.                                    

Equivalently, we can define the α-cut as Aα = {x ∈ X / 𝐭𝐀(𝐱) ≥ α}                                   

Definition 2.10 [50]                                                                                  

Given a non-empty set X, let BK(X) and BI(X) denote the collection of all BCK-algebras and all BCI-

algebras, respectively. Also, B(X): = BK(X) ∪ BI(X).                                                                             

For any (X, ∗, 0) ∈ B(X), a fuzzy structure (X, µ) over (X, ∗, 0) is called a   

 Fuzzy subalgebra of (X, ∗, 0) with type 1 (briefly, 1-fuzzy subalgebra of (X, ∗, 0) if                    

µ (x ∗ y) ≥ min {µ(x), µ(y)}; ∀  𝐱, 𝐲 ∈ X 

 Fuzzy subalgebra of (X, ∗, 0) with type 2 (briefly, 2 - fuzzy subalgebra of (X, ∗, 0) if                  

µ (x ∗ y) ≤ min {µ(x), µ(y)}; ∀  𝐱, 𝐲 ∈ X 

 Fuzzy subalgebra of (X, ∗, 0) with type 3 (briefly, 3-fuzzy subalgebra of (X, ∗, 0) if                 

µ (x ∗ y) ≥ max {µ(x), µ(y)}; ∀  𝐱, 𝐲 ∈ X 

 Fuzzy subalgebra of (X, ∗, 0) with type 4 (briefly, 4-fuzzy subalgebra of (X, ∗, 0)                 

µ (x ∗ y) ≤ max {µ(x), µ(y)}; ∀  𝐱, 𝐲 ∈ X                                                                      

3. Neutrosophic vague binary BCK/BCI-algebra                                                               

In this section neutrosophic BCK/BCI-algebra is developed first, based on paper [6]. Neutrosophic 

BCK/BCI-algebraic structure developed in this paper is a little bit different from the definition given 

in paper [1]. Concept is extended to neutrosophic vague sets and to neutrosophic vague binary sets.  

Definition 3.1 (Neutrosophic BCK/BCI-algebra)                                        

A neutrosophic BCK/BCI-algebra is a structure 𝔅MN= (MN, U
𝔅MN = (U,∗ ,0), ∗, 0) = (MN, U

𝔅MN, ∗, 0)                                                        

where,                                            

(1) MN is a non-empty neutrosophic set  

(2) U𝔅MN  = (U, ∗,  0) is the underlying BCK/BCI- algebraic structure, to the neutrosophic set 

MN with a universal set U, a binary operation “∗” & a constant “0” . It satisfies the following 

axioms : 

    (i) ((ux ∗ uy) ∗(ux ∗ uz)) ∗(uz ∗ uy) = 0  (ii) ((ux ∗ (ux ∗ uy)) ∗ uy = 0 (iii) (ux ∗ ux) = 0                

    (iv) (ux ∗ uy) = 0 and (uy ∗ ux) = 0 imply ux = uy, ∀ ux, uy , uz ∈ U (v) (0 ∗ ux) = 0 ∀ ux ∈ U 

(3) “∗” and “0” are taken as defined in (2) 

which satisfies the following condition,  

NMN(ux ∗ uy) ≽ r min {NMN(ux), NMN(uy)}   ;   ∀ ux,  uy ∈ U. That is,  

TMN
(ux ∗ uy) ≥  min {TMN

(ux), TMN
(uy)} ; IMN

(ux ∗ uy) ≤  max {IMN
(ux), IMN

(uy)}  ; FMN
(ux ∗ uy) ≤  max {FMN

(ux), FMN
(uy)}   

Definition 3.2. (Neutrosophic vague BCK/BCI-algebra)  

A neutrosophic vague BCK/BCI - algebra is a structure,                                              
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𝔅MNV = (MNV, U
𝔅MNV = (U, ∗,  0) , ∗, 0) =  (MNV, U

𝔅MNV, ∗, 0), where 

(1) MNV is a non-empty neutrosophic vague set                                      

(2) U𝔅MNV  = (U,  ∗,   0)  is the underlying BCK/BCI- algebraic structure to the neutrosophic 

vague set MNV with a universal set U, a binary operation “∗” & a constant “0” satisfies 

the following axioms: 

(i) ((ux ∗ uy) ∗(ux ∗ uz)) ∗(uz ∗ uy) = 0 (ii) ((ux ∗ (ux ∗ uy)) ∗ uy = 0 (iii) (ux ∗ ux) = 0                                                                                     

(iv) (ux ∗ uy) = 0 and (uy ∗ ux) = 0 imply ux = uy, ∀ ux, uy , uz ∈ U                      

(v) (0 ∗ ux) = 0 ∀ ux ∈ U                                                                                             

(3) “∗” and “0” are taken as defined in U𝔅MNV  

which satisfies the following condition,  

NVMNV(ux ∗ uy) ≽ r min {NVMNV(ux), NVMNV(uy)}   ;   ∀ ux,  uy ∈ U .  That is,  

T̂MNV
(ux ∗ uy) ≥  min {T̂MNV

(ux), T̂MNV
(uy)} ; ÎMNV

(ux ∗ uy) ≤  max {ÎMNV
(ux), ÎMNV

(uy)} ; F̂MNV
(ux ∗ uy) ≤  max {F̂MNV

(ux), F̂MNV
(uy)}   

General Outline                                                                                            

Let U  =  {0, up1 , up2 , up3 , ----, ----, upk , ----, ---- upi } be a universal set with algebraic structure                  

U𝔅MNV  = (U, ∗, 0) where ∗ is the given binary operation and 0 is the constant . Let U𝔅MNV  forms a BCK/BCI-

algebra. Corresponding Cayley table is given below:  

 
∗ 0 𝐮𝐩

𝟏 𝐮𝐩
𝟐 ---- ---- 𝐮𝐩

𝐤 ---- ---- 𝐮𝐩
𝐢  

0 0 0 0 0 0 0 ---- 0 0 

𝐮𝐩
𝟏 𝐮𝐩

𝟏 0 ---- ---- ---- ---- ---- ---- ---- 

𝐮𝐩
𝟐 𝐮𝐩

𝟐 ---- 0 ---- ---- ---- ---- ---- ---- 

---- ---- ---- ---- 0 ---- ---- ---- ---- ---- 

---- ---- ---- ---- ---- 0 ---- ---- ---- ---- 

𝐮𝐩
𝐤 𝐮𝐩

𝐤 ---- ---- ---- ---- 0 ---- ---- ---- 

---- ---- ---- ---- ---- ---- ---- 0 ---- ---- 

---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 

𝐮𝐩
𝐢  𝐮𝐩

𝐢  ---- ---- ---- ---- ---- ---- ----   0 

By taking U as underlying set, form a neutrosophic vague set 𝐌𝐍𝐕 with neutrosophic vague 

membership grades, for any 𝐮𝐩
𝐤 ∈ U,  

𝐓̂𝐌𝐍𝐕(𝐮𝐩
𝐤) = {

[𝛂𝟏, 𝛂𝟐] ;  𝐮𝐩
𝐤 = 𝟎

[𝛂𝟑, 𝛂𝟒] ;  𝐮𝐩
𝐤 ≠ 𝟎

   ;  𝐈̂𝐌𝐍𝐕(𝐮𝐩
𝐤) = {

[𝛃𝟏, 𝛃𝟐] ;  𝐮𝐩
𝐤 = 𝟎

[𝛃𝟑, 𝛃𝟒] ;  𝐮𝐩
𝐤 ≠ 𝟎

 ;  𝐅̂𝐌𝐍𝐕(𝐮𝐩
𝐤) = {

[𝛄𝟏, 𝛄𝟐] ;  𝐮𝐩
𝐤 = 𝟎

[𝛄𝟑, 𝛄𝟒] ;  𝐮𝐩
𝐤 ≠ 𝟎

 

 ∴ Corresponding neutrosophic vague set is,   

𝐌𝐍𝐕 = {〈
[𝛂𝟏,𝛂𝟐],[𝛃𝟏,𝛃𝟐],[𝛄𝟏,𝛄𝟐]

𝟎
,
[𝛂𝟑,𝛂𝟒],[𝛃𝟑,𝛃𝟒],[𝛄𝟑,𝛄𝟒]

𝐮𝐩
𝟏

,
[𝛂𝟑,𝛂𝟒],[𝛃𝟑,𝛃𝟒],[𝛄𝟑,𝛄𝟒]

𝐮𝐩
𝟐

, −−,
[𝛂𝟑,𝛂𝟒],[𝛃𝟑,𝛃𝟒],[𝛄𝟑,𝛄𝟒]

𝐮𝐩
𝐤

, − −,   
[𝛂𝟑,𝛂𝟒],[𝛃𝟑,𝛃𝟒],[𝛄𝟑,𝛄𝟒]

𝐮𝐩
𝐢

〉}                  

Algebraic structure 𝕭𝐌𝐍𝐕
= (𝐌𝐍𝐕, 𝐔

𝕭𝐌𝐍𝐕 , ∗, 0) is called a neutrosophic vague BCK/BCI-algebra if it 

satisfies, 𝐍𝐕𝐌𝐍𝐕(𝐮𝐩
𝐤 ∗ 𝐮𝐪

𝐤) ≽ 𝐫 𝐦𝐢𝐧 {𝐍𝐕𝐌𝐍𝐕(𝐮𝐩
𝐤), 𝐍𝐕𝐌𝐍𝐕(𝐮𝐪

𝐤)} ; ∀  𝐮𝐩
𝐤, 𝐮𝐪

𝐤  ∈ 𝐔 

Remark 3.3                                                                                       

Different neutrosophic vague membership grades are also applicable. It is explained in the general 

outline of definition 3.4  
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Definition 3.4 (Neutrosophic vague binary BCK/BCI- algebra) 

A neutrosophic vague binary BCK/BCI- algebra is a structure,                                         

𝔅MNVB
= (MNVB,  U

𝔅MNVB = (U, ∗,  0),  ∗,  0) = (MNVB,  U
𝔅MNVB,  ∗,  0), where 

(1) MNVB is a non-empty neutrosophic vague binary set                                               

(2) U𝔅MNVB  = (U = {U1 ∪ U2}, ∗,   0)  is the underlying BCK/BCI - algebraic structure to the    

neutrosophic vague binary set MNVB with a universal set U = {U1 ∪ U2} [where U1 and U2 are 

universes of MNVB  & “ ∪ ” is the usual set-theoretic union], a binary operation “ ∗ ”  &               

a constant “0”  satisfies the following axioms: 

    (i) ((ux ∗ uy) ∗(ux ∗ uz)) ∗(uz ∗ uy) = 0  (ii) ((ux ∗ (ux ∗ uy)) ∗ uy = 0 (iii) (ux ∗ ux) = 0                                                                                         

    (iv) (ux ∗ uy) = 0 and (uy ∗ ux) = 0 imply ux = uy ∀ ux, uy , uz ∈ U (v) (0 ∗ ux) = 0 ∀ ux ∈ U                                                                                         

(3) “∗” and “0” are same as defined in U𝔅MNVB  

which satisfies the following condition,  

       NVBMNVB(ux ∗ uy) ≽ r min {NVBMNVB(ux), NVBMNVB(uy)} , ∀  ux,  uy ∈ U = {U1 ∪ U2}  . That is, 

T̂MNVB
(ux ∗ uy) ≥  min {T̂MNVB

(ux), T̂MNVB
(uy)} ; ÎMNVB

(ux ∗ uy) ≤  max {ÎMNVB
(ux), ÎMNVB

(uy)} ; F̂MNVB
(ux ∗ uy) ≤  max {F̂MNVB

(ux), F̂MNVB
(uy)}   

 

Remark 3.5                                                                                             

(i) Every NVB BCK-algebra is NVB BCI–algebra too. Generally, converse not true! (proved: Theorem 7.3). 

So distinguishing between structures of these two are important! To denote NVB BCK-algebra, 

following structures can be used: 𝔅MNVB

BCK = (MNVB,  U
𝔅MNVB
BCK

,  ∗,  0)  or simply as 𝔅MNVB

K = (MNVB,  U
𝔅MNVB
K

,  ∗,  0) . 

Similarly, to denote NVB BCI – algebra, following structures can be used : 𝔅MNVB

BCI = (MNVB,  U
𝔅MNVB
BCI

,  ∗,  0) or simply 

as 𝔅MNVB

I = (MNVB,  U
𝔅MNVB
I

,  ∗,  0).  

(ii) For NVB BCK algebra, notation for NVB BCK/BCI – algebra, i.e., 𝔅MNVB
= (MNVB,  U

𝔅MNVB,  ∗,  0) is used in 

this paper instead of using, those given in remark 3.5 (i)  

(iii) Similarly structures for: 

 

Neutrosophic :                                          

N BCK – algebra : 𝔅MN

BCK = (MN,  U
𝔅MN
BCK

,  ∗,  0) or 𝔅MN

K = (MN,  U
𝔅MN
K

,  ∗,  0) or 𝔅MN
= (MN,  U

𝔅MN,  ∗,  0) 

N BCI – algebra : 𝔅MN

BCI = (MN,  U
𝔅MN
BCI

,  ∗,  0) or simply as 𝔅MN

I = (MN,  U
𝔅MN
I

,  ∗,  0) 

Neutrosophic vague: 

NV BCK – algebra : 𝔅MNV

BCK = (MNV,  U
𝔅MNV
BCK

,  ∗,  0) or 𝔅MNV

K = (MNV,  U
𝔅MNV
K

,  ∗,  0) or 𝔅MNV
= (MNV,  U

𝔅MNV,  ∗,  0)            

NV BCI – algebra : 𝔅MNV

BCI = (MNV,  U
𝔅MNV
BCI

,  ∗,  0) or simply as 𝔅MNV

I = (MNV,  U
𝔅MNV
I

,  ∗,  0) 

 

General Outline  

Let 𝐔𝟏 = {0, 𝐮𝐩
𝟏, 𝐮𝐩

𝟐, 𝐮𝐩
𝟑, ---------, 𝐮𝐩

𝐢 } and 𝐔𝟐 = {0, 𝐮𝐪
𝟏, 𝐮𝐪

𝟐, 𝐮𝐪
𝟑, ---------, 𝐮𝐪

𝐣
} be two universes under 

consideration. Let the combined universe U = {𝐔𝟏 ∪ 𝐔𝟐} = {0, 𝐮𝐩
𝟏, 𝐮𝐩

𝟐, 𝐮𝐩
𝟑, ----, 𝐮𝐩

𝐢 , 𝐮𝐪
𝟏, 𝐮𝐪

𝟐, 𝐮𝐪
𝟑, ----, 

𝐮𝐪
𝐣
} = {𝟎, 𝐮𝐫

𝟏, 𝐮𝐫
𝟐, 𝐮𝐫

𝟑, ---------, 𝐮𝐫
𝐤} (obtained by recording once, the common elements) be a set with a 

binary operation ∗ and constant 0 . Let 𝐔𝕭𝐌𝐍𝐕𝐁  = (U = {𝐔𝟏 ∪ 𝐔𝟐}, ∗, 0) forms a BCK/BCI-algebra. By 
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taking U = {𝐔𝟏 ∪ 𝐔𝟐}  as underlying set, form a neutrosophic vague binary set 𝐌𝐍𝐕𝐁 .                         

Let neutrosophic vague binary membership grades are as follows: 

for any 𝐮𝐩
𝐤 ∈ 𝐔𝟐 :  

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

𝐓̂𝐌𝐍𝐕𝐁(𝐮𝐩
𝐤) =

{
  
 

  
 
[𝜶𝟏

𝟎,𝜶𝟐
𝟎]  ; 𝐮𝐩

𝐤 = 𝟎

[𝜶𝟏
𝟏, 𝜶𝟐

𝟏] ; 𝐮𝐩
𝐤 = 𝐮𝐩

𝟏

[𝜶𝟏
𝟐, 𝜶𝟐

𝟐] ; 𝐮𝐩
𝐤 = 𝐮𝐩

𝟐

− − −− −
−−−−−

[𝜶𝟏
𝒊 , 𝜶𝟐

𝒊 ] ; 𝐮𝐩
𝐤 = 𝐮𝐩

𝐢

𝐈̂𝐌𝐍𝐕𝐁(𝐮𝐩
𝐤) =

{
  
 

  
 
[𝛃𝟏

𝟎, 𝛃𝟐
𝟎] ; 𝐮𝐩

𝐤 =  𝟎

[𝛃𝟏
𝟏, 𝛃𝟐

𝟏] ; 𝐮𝐩
𝐤 = 𝐮𝐩

𝟏

[𝛃𝟏
𝟐, 𝛃𝟐

𝟐] ; 𝐮𝐩
𝐤 =  𝐮𝐩

𝟐

− − − −−
−−−−−

[𝛃𝟏
𝒊 , 𝛃𝟐

𝒊 ] ; 𝐮𝐩
𝐤 = 𝐮𝐩

𝐢

𝐅̂𝐌𝐍𝐕𝐁(𝐮𝐩
𝐤) =

{
  
 

  
 
[𝛄𝟏
𝟎, 𝛄𝟐

𝟎] ; 𝐮𝐩
𝐤 =   𝟎

[𝛄𝟏
𝟏, 𝛄𝟐

𝟏] ; 𝐮𝐩
𝐤 = 𝐮𝐩

𝟏

[𝛄𝟏
𝟐, 𝛄𝟐

𝟐] ; 𝐮𝐩
𝐤 = 𝐮𝐩

𝟐

− − − −−
−−−−−

[𝛄𝟏
𝒊 , 𝛄𝟐

𝒊 ] ; 𝐮𝐩
𝐤 =  𝐮𝐩

𝐢

      &  for any 𝐮𝐪
𝐤 ∈ 𝐔𝟐 : 

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

𝐓̂𝐌𝐍𝐕𝐁(𝐮𝐪
𝐤) =

{
  
 

  
 
[𝛅𝟏
𝟎, 𝛅𝟐

𝟎]  ; 𝐮𝐪
𝐤 =  𝟎

[𝛅𝟏
𝟏, 𝛅𝟐

𝟏] ; 𝐮𝐪
𝐤 = 𝐮𝐪

𝟏

[𝛅𝟏
𝟐, 𝛅𝟐

𝟐] ; 𝐮𝐪
𝐤 = 𝐮𝐪

𝟐

− −− −−
−−−−−

[𝛅𝟏
𝒋
, 𝛅𝟐
𝒋
] ; 𝐮𝐪

𝐤 = 𝐮𝐪
𝐣

𝐈̂𝐌𝐍𝐕𝐁(𝐮𝐪
𝐤) =

{
  
 

  
 
[𝛒𝟏
𝟎, 𝛒𝟐

𝟎] ; 𝐮𝐪
𝐤 =  𝟎

[𝛒𝟏
𝟏, 𝛒𝟐

𝟏] ;  𝐮𝐪
𝐤 = 𝐮𝐪

𝟏

[𝛒𝟏
𝟐, 𝛒𝟐

𝟐] ;  𝐮𝐪
𝐤 = 𝐮𝐪

𝟐

− − −− −
−−−−−

[𝛒𝟏
𝒋
, 𝛒𝟐
𝒋
] ; 𝐮𝐪

𝐤 = 𝐮𝐪
𝐣

𝐅̂𝐌𝐍𝐕𝐁(𝐮𝐪
𝐤) =

{
  
 

  
 
[𝛝𝟏

𝟎, 𝛝𝟐
𝟎] ; 𝐮𝐪

𝐤 =   𝟎

[𝛝𝟏
𝟏, 𝛝𝟐

𝟏] ; 𝐮𝐪
𝐤 = 𝐮𝐪

𝟏

[𝛝𝟏
𝟐, 𝛝𝟐

𝟐] ; 𝐮𝐪
𝐤 = 𝐮𝐪

𝟐

− − −− −
−−−−−

[𝛝𝟏
𝒋
, 𝛝𝟐

𝒋
] ; 𝐮𝐪

𝐤 = 𝐮𝐪
𝐣

 

From this neutrosophic vague binary set 𝐌𝐍𝐕𝐁, form neutrosophic vague binary membership grade 

for U = {𝐔𝟏 ∪ 𝐔𝟐} = {𝟎, 𝐮𝐫
𝟏, 𝐮𝐫

𝟐, − − −, 𝐮𝐫
𝐤} as : 

for any 𝐮𝐫
𝐤 ∈ 𝐔 : 𝐍𝐕𝐁𝐌𝐍𝐕𝐁(𝐮𝐫

𝐤) =   

{
 
 

 
 
𝐍𝐕𝐁𝐌𝐍𝐕𝐁(𝐮𝐩

𝐤 = 𝟎) ∪ 𝐍𝐕𝐁𝐌𝐍𝐕𝐁(𝐮𝐪
𝐤 = 𝟎) ; 𝐮𝐫

𝐤 ∈  𝐔𝟏; 𝐮𝐫
𝐤 ∈ 𝐔𝟐 𝐮𝐫

𝐤 =  𝟎 

𝐍𝐕𝐁𝐌𝐍𝐕𝐁(𝐮𝐩
𝐤) ;  𝐮𝐫

𝐤 ∈  𝐔𝟏; 𝐮𝐫
𝐤 ∉  𝐔𝟐; 𝐮𝐫

𝐤 ≠ 𝟎

𝐍𝐕𝐁𝐌𝐍𝐕𝐁(𝐮𝐪
𝐤) ; 𝐮𝐫

𝐤 ∉  𝐔𝟏, 𝐮𝐫
𝐤 ∈  𝐔𝟐; 𝐮𝐫

𝐤 ≠ 𝟎

𝐍𝐕𝐁𝐌𝐍𝐕𝐁(𝐮𝐩
𝐤) ∪ 𝐍𝐕𝐁𝐌𝐍𝐕𝐁(𝐮𝐪

𝐤) ; 𝐮𝐫
𝐤 ∈  𝐔𝟏; 𝐮𝐫

𝐤 ∈ 𝐔𝟐 ; 𝐮𝐫
𝐤 ≠ 𝟎

 

i.e. , for any 𝐮𝐫
𝐤 ∈ 𝐔 :    

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝐓̂𝐌𝐍𝐕𝐁(𝐮𝐫
𝐤) =

{
 
 

 
 
𝐦𝐚𝐱{𝐓̂𝐌𝐍𝐕𝐁(𝐮𝐩

𝐤 = 𝟎), 𝐓̂𝐌𝐍𝐕𝐁(𝐮𝐪
𝐤 = 𝟎)} = 𝐦𝐚𝐱{[𝜶𝟏

𝟎, 𝜶𝟐
𝟎], [𝛅𝟏

𝟎, 𝛅𝟐
𝟎]} ; 𝐮𝐫

𝐤 ∈  𝐔𝟏; 𝐮𝐫
𝐤 ∈ 𝐔𝟐 𝐮𝐫

𝐤 =  𝟎 

𝐓̂𝐌𝐍𝐕𝐁(𝐮𝐩
𝐤) ; 𝐮𝐫

𝐤 ∈  𝐔𝟏; 𝐮𝐫
𝐤 ∉  𝐔𝟐; 𝐮𝐫

𝐤 ≠ 𝟎

𝐓̂𝐌𝐍𝐕𝐁(𝐮𝐪
𝐤) ; 𝐮𝐫

𝐤 ∉  𝐔𝟏, 𝐮𝐫
𝐤 ∈  𝐔𝟐; 𝐮𝐫

𝐤 ≠ 𝟎

𝐦𝐚𝐱{𝐓̂𝐌𝐍𝐕𝐁(𝐮𝐩
𝐤), 𝐓̂𝐌𝐍𝐕𝐁(𝐮𝐪

𝐤)} ; 𝐮𝐫
𝐤 ∈  𝐔𝟏; 𝐮𝐫

𝐤 ∈ 𝐔𝟐 ; 𝐮𝐫
𝐤 ≠ 𝟎

𝐈̂𝐌𝐍𝐕𝐁(𝐮𝐫
𝐤) =

{
 
 

 
 
𝐦𝐢𝐧{𝐈̂𝐌𝐍𝐕𝐁(𝐮𝐩

𝐤 = 𝟎), 𝐈̂𝐌𝐍𝐕𝐁(𝐮𝐪
𝐤 = 𝟎)} = 𝐦𝐚𝐱{[𝛃𝟏

𝟎, 𝛃𝟐
𝟎], [𝛒𝟏

𝟎, 𝛒𝟐
𝟎]} ; 𝐮𝐫

𝐤 ∈  𝐔𝟏; 𝐮𝐫
𝐤 ∈ 𝐔𝟐 𝐮𝐫

𝐤 =  𝟎

𝐈̂𝐌𝐍𝐕𝐁(𝐮𝐩
𝐤) ;  𝐮𝐫

𝐤 ∈  𝐔𝟏; 𝐮𝐫
𝐤 ∉  𝐔𝟐; 𝐮𝐫

𝐤 ≠ 𝟎

𝐈̂𝐌𝐍𝐕𝐁(𝐮𝐪
𝐤) ; 𝐮𝐫

𝐤 ∉  𝐔𝟏, 𝐮𝐫
𝐤 ∈  𝐔𝟐; 𝐮𝐫

𝐤 ≠ 𝟎

𝐦𝐢𝐧{𝐈̂𝐌𝐍𝐕𝐁(𝐮𝐩
𝐤), 𝐈̂𝐌𝐍𝐕𝐁(𝐮𝐪

𝐤)} ; 𝐮𝐫
𝐤 ∈  𝐔𝟏; 𝐮𝐫

𝐤 ∈ 𝐔𝟐 ; 𝐮𝐫
𝐤 ≠ 𝟎

𝐅̂𝐌𝐍𝐕𝐁(𝐮𝐫
𝐤) =

{
 
 

 
 
𝐦𝐢𝐧{𝐅̂𝐌𝐍𝐕𝐁(𝐮𝐩

𝐤 = 𝟎), 𝐅̂𝐌𝐍𝐕𝐁(𝐮𝐪
𝐤 = 𝟎)} = 𝐦𝐢𝐧{[𝛃𝟏

𝟎, 𝛃𝟐
𝟎], [𝛒𝟏

𝟎, 𝛒𝟐
𝟎]} ; 𝐮𝐫

𝐤 ∈  𝐔𝟏;𝐮𝐫
𝐤 ∈ 𝐔𝟐; 𝐮𝐫

𝐤 =  𝟎

𝐅̂𝐌𝐍𝐕𝐁(𝐮𝐩
𝐤) ;  𝐮𝐫

𝐤 ∈  𝐔𝟏; 𝐮𝐫
𝐤 ∉  𝐔𝟐; 𝐮𝐫

𝐤 ≠ 𝟎

𝐅̂𝐌𝐍𝐕𝐁(𝐮𝐪
𝐤) ; 𝐮𝐫

𝐤 ∉  𝐔𝟏, 𝐮𝐫
𝐤 ∈  𝐔𝟐; 𝐮𝐫

𝐤 ≠ 𝟎

𝐦𝐢𝐧{𝐅̂𝐌𝐍𝐕𝐁(𝐮𝐩
𝐤), 𝐅̂𝐌𝐍𝐕𝐁(𝐮𝐪

𝐤)} ; 𝐮𝐫
𝐤 ∈  𝐔𝟏; 𝐮𝐫

𝐤 ∈ 𝐔𝟐 ; 𝐮𝐫
𝐤 ≠ 𝟎

 

Corresponding Cayley table is given by:   

∗ 0 𝐮𝐫
𝟏 𝐮𝐫

𝟐 --- 𝐮𝐫
𝐤 

0 0 0 0 0 0 

𝐮𝐫
𝟏 𝐮𝐫

𝟏 0 --- --- --- 

𝐮𝐫
𝟐 𝐮𝐫

𝟐 --- 0 --- --- 

--- --- --- --- 0 --- 

𝐮𝐫
𝐤 𝐮𝐫

𝐤 --- --- --- 0 

Algebraic structure 𝕭𝐌𝐍𝐕𝐁
 = (𝐌𝐍𝐕𝐁,  𝐔

𝕭𝐌𝐍𝐕𝐁 ,  ∗,  𝟎) is called a NVB BCK/BCI-algebra, if it satisfies:                             

𝐍𝐕𝐁𝐌𝐍𝐕𝐁(𝐮𝐫
𝐤 ∗ 𝐮𝐬

𝐤) ≽  𝐫𝐦𝐢𝐧{𝐍𝐕𝐁𝐌𝐍𝐕𝐁(𝐮𝐫
𝐤), 𝐍𝐕𝐁𝐌𝐍𝐕𝐁(𝐮𝐬

𝐤)} ;  ∀  𝐮𝐫
𝐤, 𝐮𝐬

𝐤 ∈ 𝐔                      

𝐓̂𝐌𝐍𝐕𝐁
(𝐮𝐫

𝐤 ∗ 𝐮𝐬
𝐤) ≥   𝐦𝐢𝐧 {𝐓̂𝐌𝐍𝐕𝐁

(𝐮𝐫
𝐤), 𝐓̂𝐌𝐍𝐕𝐁

(𝐮𝐬
𝐤)} ; 𝐈̂𝐌𝐍𝐕𝐁

(𝐮𝐫
𝐤 ∗ 𝐮𝐬

𝐤) ≤  𝐦𝐚𝐱 {𝐈̂𝐌𝐍𝐕𝐁
(𝐮𝐫

𝐤), 𝐈̂𝐌𝐍𝐕𝐁
(𝐮𝐬

𝐤)} ; 𝐅̂𝐌𝐍𝐕𝐁
(𝐮𝐫

𝐤 ∗ 𝐮𝐬
𝐤) ≤  𝐦𝐚𝐱 {𝐅̂𝐌𝐍𝐕𝐁

(𝐮𝐫
𝐤), 𝐅̂𝐌𝐍𝐕𝐁

(𝐮𝐬
𝐤)} 
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Remark 3.6                                                                                        

(i) Neutrosophic vague binary membership grade of common elements of 𝐔𝟏 and 𝐔𝟐 is got by 

taking their neutrosophic vague binary union.                                                       

For eg., let 𝐔𝟏= {𝟎, 𝟏} and 𝐔𝟐 = {𝟎, 𝟏, 𝟐} be two universes; ∴ {𝐔𝟏 ∪ 𝐔𝟐} = {𝟎, 𝟏, 𝟐}; 𝐔𝟏 ∩ 𝐔𝟐 = {𝟎, 𝟏}                                                                                           

∴ 𝐍𝐕𝐁𝐌𝐍𝐕𝐁(𝟎) = 𝐍𝐕𝐁𝐌𝐍𝐕𝐁
𝐔𝟏 (𝟎) ∪ 𝐍𝐕𝐁𝐌𝐍𝐕𝐁

𝐔𝟐 (𝟎) ; 𝐍𝐕𝐁𝐌𝐍𝐕𝐁
𝐔𝟏 (𝟎) is the neutrosophic vague binary 

membership grade of 0 in universe 1. Similarly, to other common elements.                                                                                                   

(ii) It is to be noted that, neutrosophic vague binary membership grade of 0 is not same in 𝐔𝟏, 𝐔𝟐 

generally. Similarly, to other common elements!                                                      

Example 3.7                                                                                                   

Let 𝐔𝟏 = {𝟎, 𝐚} and let 𝐔𝟐 = {𝟎, 𝟏, 𝟐} be the universes under consideration. Combined universe 

𝐔 = {𝐔𝟏 ∪ 𝐔𝟐} = {𝟎, 𝐚, 𝟏, 𝟐} with (𝐔𝟏 ∩ 𝐔𝟐) = {0}. Cayley table to the binary operation ∗ for U is 

given as: 

∗ 0 a 1 2 

0 0 0 0 0 

a a 0 0 1 

1 1 a 0 1 

2 2 2 2 0 

Clearly, 𝐔𝕭𝐌𝐍𝐕𝐁  = (𝐔 = {𝐔𝟏 ∪ 𝐔𝟐}, ∗, 𝟎) is a BCK/BCI-algebra. Let a non-empty neutrosophic 

vague binary set 𝐌𝐍𝐕𝐁 with underlying set 𝐔, is given as:  

𝐌𝐍𝐕𝐁 = {〈
[𝟎.𝟑,𝟎.𝟖],[𝟎.𝟏,𝟎.𝟑],[𝟎.𝟐,𝟎.𝟕]

𝟎
,
[𝟎.𝟐,𝟎.𝟑],[𝟎.𝟐,𝟎.𝟓],[𝟎.𝟕,𝟎.𝟖]

𝐚
〉 , 〈

[𝟎.𝟏,𝟎.𝟕],[𝟎.𝟕,𝟎.𝟖],[𝟎.𝟑,𝟎.𝟗]

𝟎
,
[𝟎.𝟐,𝟎.𝟔],[𝟎.𝟓,𝟎.𝟕],[𝟎.𝟒,𝟎.𝟖]

𝟏
,
[𝟎.𝟐,𝟎.𝟔],[𝟎.𝟓,𝟎.𝟕],[𝟎.𝟒,𝟎.𝟖]

𝟐
〉}                                  

⇒   ∀  𝐮𝐩
𝐤 ∈ 𝐔𝟏 and ∀  𝐮𝐪

𝐤 ∈ 𝐔𝟐 , 

𝐓̂𝐌𝐍𝐕𝐁(𝐮𝐩
𝐤) = {

[𝟎. 𝟑, 𝟎. 𝟖]      𝐢𝐟  𝐮𝐩
𝐤 = 𝟎          

[𝟎. 𝟐, 𝟎. 𝟑]     𝐢𝐟  𝐮𝐩
𝐤 = 𝐚  𝐨𝐫   𝐮𝐩

𝐤 ≠ 𝟎     
; 𝐈̂𝐌𝐍𝐕𝐁(𝐮𝐩

𝐤) =  {
[𝟎. 𝟏, 𝟎. 𝟑]      𝐢𝐟  𝐮𝐩

𝐤 = 𝟎             

[𝟎. 𝟐, 𝟎. 𝟓]     𝐢𝐟   𝐮𝐩
𝐤 = 𝐚  𝐨𝐫   𝐮𝐩

𝐤 ≠ 𝟎            
; 𝐅̂𝐌𝐍𝐕𝐁(𝐮𝐩

𝐤) = {
[𝟎. 𝟐, 𝟎. 𝟕]    𝐢𝐟    𝐮𝐩

𝐤 = 𝟎          

[𝟎. 𝟕, 𝟎. 𝟖]    𝐢𝐟   𝐮𝐩
𝐤 = 𝐚  𝐨𝐫   𝐮𝐩

𝐤 ≠ 𝟎          
    

𝐓̂𝐌𝐍𝐕𝐁(𝐮𝐪
𝐤) = {

[𝟎. 𝟏, 𝟎. 𝟕];  𝐢𝐟  𝐮𝐪
𝐤  = 𝟎

[𝟎. 𝟐, 𝟎. 𝟔];   𝐢𝐟  𝐮𝐪
𝐤 = {𝟏, 𝟐}  𝐨𝐫   𝐮𝐪

𝐤 ≠ 𝟎
 ; 𝐈̂𝐌𝐍𝐕𝐁(𝐮𝐪

𝐤) = {
[𝟎. 𝟕, 𝟎. 𝟖];  𝐢𝐟  𝐮𝐪

𝐤  = 𝟎

[𝟎. 𝟓, 𝟎. 𝟕];   𝐢𝐟  𝐮𝐪
𝐤 = {𝟏, 𝟐}  𝐨𝐫   𝐮𝐪

𝐤 ≠ 𝟎
 ; 𝐅̂𝐌𝐍𝐕𝐁(𝐮𝐪

𝐤) = {
[𝟎. 𝟑, 𝟎. 𝟗];  𝐢𝐟  𝐮𝐪

𝐤  = 𝟎

[𝟎. 𝟒, 𝟎. 𝟖];   𝐢𝐟  𝐮𝐪
𝐤 = {𝟏, 𝟐}  𝐨𝐫   𝐮𝐪

𝐤 ≠ 𝟎
 

∴ 𝐍𝐕𝐁𝐌𝐍𝐕𝐁(𝟎) = ([𝟎. 𝟑, 𝟎. 𝟖], [𝟎. 𝟏, 𝟎. 𝟑], [𝟎. 𝟐, 𝟎. 𝟕]) ∪ ([𝟎. 𝟏, 𝟎. 𝟕], [𝟎. 𝟕, 𝟎. 𝟖], [𝟎. 𝟑, 𝟎. 𝟗]) =
([𝟎. 𝟑, 𝟎. 𝟖], [𝟎. 𝟏, 𝟎. 𝟑], [𝟎. 𝟐, 𝟎. 𝟕]) 

𝐍𝐕𝐁𝐌𝐍𝐕𝐁(𝐚) = ([𝟎. 𝟐, 𝟎. 𝟑], [𝟎. 𝟐, 𝟎. 𝟓], [𝟎. 𝟕, 𝟎. 𝟖])   [since a is not a common element]          

𝐍𝐕𝐁𝐌𝐍𝐕𝐁(𝟏) = 𝐍𝐕𝐁𝐌𝐍𝐕𝐁(𝟐) = ([𝟎. 𝟐, 𝟎. 𝟔], [𝟎. 𝟓, 𝟎. 𝟕], [𝟎. 𝟒, 𝟎. 𝟖]); [since 1 and 2 are not a common element]                                           

⇒ 𝐍𝐕𝐁𝐌𝐍𝐕𝐁(𝐮𝐫
𝐤) = {

[𝟎. 𝟑, 𝟎. 𝟖], [𝟎. 𝟏, 𝟎. 𝟑], [𝟎. 𝟐, 𝟎. 𝟕] ;   𝐮𝐫
𝐤
= 𝟎

[𝟎. 𝟐, 𝟎. 𝟑], [𝟎. 𝟐, 𝟎. 𝟓], [𝟎. 𝟕, 𝟎. 𝟖] ;   𝐮𝐫
𝐤 = {𝐚} 𝐚𝐧𝐝 𝐮𝐫

𝐤 ≠ 𝟎

[𝟎. 𝟐, 𝟎. 𝟔], [𝟎. 𝟓, 𝟎. 𝟕], [𝟎. 𝟒, 𝟎. 𝟖] ;   𝐮𝐫
𝐤 = {𝟏, 𝟐} 𝐚𝐧𝐝 𝐮𝐫

𝐤 ≠ 𝟎

        ; (for any 𝐮𝐫
𝐤 ∈ U)         

It is clear after verification that, 𝕭𝐌𝐍𝐕𝐁
= (𝐌𝐍𝐕𝐁, 𝐔

𝕭𝐌𝐍𝐕𝐁 , ∗, 𝟎) is a NVB BCK/BCI- algebra.    

Remark. 3.8                                                                                               

(1) If 𝐔𝟏 ⊆ 𝐔𝟐 then 𝐔 = 𝐔𝟐 (2) If 𝐔𝟐 ⊆ 𝐔𝟏 then 𝐔 = 𝐔𝟏                                            

(2) The symbols ≽ and ⋡ does not imply our usual ≥ or ≱                                                 

(3) In a Cayley table,                                                                                   

(i) principal diagonal elements of a BCK/BCI-algebra U is always zero, since (𝐱 ∗ 𝐱) = 𝟎, ∀ 𝐱 ∈ 𝐔        

(ii) Using the property (𝐱 ∗ 𝟎) = 𝐱 ; ∀ 𝐱 ∈ 𝐔 of BCI- algebra, it is clear that (𝟎 ∗ 𝟎) = 𝟎               

Every BCK-algebra is a BCI-algebra. Hence the above is true for BCK-algebra also                                

(iii) Body of first column of Cayley table for a BCI- algebra will be an exact copy of column of  

operands, by using the property (𝐱 ∗ 𝟎) = 𝐱 ∀ 𝐱 ∈ 𝐔. But 𝟏𝐬𝐭 row need not be!                       
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(iv) Above is true for a BCK- algebra also, since every BCK- algebra is a BCI-algebra. In addition, for 

a BCK- algebra, body of first row takes only 0, using the property (𝟎 ∗ 𝐱) = 𝟎 ; ∀ 𝐱 ∈ 𝐔  

Binary Operation ∗ Row of operands (Elements of 𝐔) 

Column of operands (Elements of 𝐔)         Body of Cayley table (occupy with elements got after binary operation taken via column vise row operations) 

4. Neutrosophic vague binary BCK/BCI-subalgebra & Neutrosophic vague binary BCK/BCI-ideal 

In this section N/NV/NVB BCK/BCI- subalgebra (neutrosophic/neutrosophic vague/neutrosophic 

vague binary BCK/BCI – subalgebra) & N/NV/NVB BCK/BCI– ideal (neutrosophic/neutrosophic 

vague/neutrosophic vague binary BCK/BCI – ideal) are developed. Priority is given for developing 

sub-algebraic and ideal concepts to neutrosophic vague binary BCK/BCI- algebra [NVB BCK/BCI- 

algebra]. For neutrosophic and neutrosophic vague, things are similar.  

Definition 4.1 (Neutrosophic vague binary BCK/BCI-subalgebra)  

A NVBSS 𝐏𝐍𝐕𝐁  of a NVB BCK/BCI-algebra 𝕭𝐌𝐍𝐕𝐁 = (𝐌𝐍𝐕𝐁,  𝐔
𝕭𝐌𝐍𝐕𝐁 = (𝐔, ∗,  𝟎),  ∗,  𝟎)  is called  

NVB- BCK/BCI - subalgebra of 𝕭𝐌𝐍𝐕𝐁
 if,                                           

                𝐍𝐕𝐁𝐏𝐍𝐕𝐁(𝐮𝐱 ∗ 𝐮𝐲) ≽ 𝐫 𝐦𝐢𝐧 {𝐍𝐕𝐁𝐏𝐍𝐕𝐁(𝐮𝐱), 𝐍𝐕𝐁𝐏𝐍𝐕𝐁(𝐮𝐲)}    ;  ∀  𝐮𝐱, 𝐮𝐲 ∈ 𝐔             

𝐓̂𝐏𝐍𝐕𝐁(𝐮𝐱 ∗ 𝐮𝐲) ≥ 𝐦𝐢𝐧{𝐓̂𝐏𝐍𝐕𝐁(𝐮𝐱), 𝐓̂𝐏𝐍𝐕𝐁(𝐮𝐲)} ; 𝐈̂𝐏𝐍𝐕𝐁(𝐮𝐱 ∗ 𝐮𝐲) ≤ 𝐦𝐚𝐱{𝐈̂𝐏𝐍𝐕𝐁(𝐮𝐱), 𝐈̂𝐏𝐍𝐕𝐁(𝐮𝐲)}; 𝐅̂𝐏𝐍𝐕𝐁(𝐮𝐱 ∗ 𝐮𝐲) ≤ 𝐦𝐚𝐱{𝐅̂𝐏𝐍𝐕𝐁(𝐮𝐱), 𝐅̂𝐏𝐍𝐕𝐁(𝐮𝐲)}                                                                             

Definition 4.2 (Neutrosophic vague binary BCK/BCI- Ideal)                                              

A non-empty NVBSS 𝐏𝐍𝐕𝐁 of a NVB BCK/BCI-algebra, 𝕭𝐌𝐍𝐕𝐁 = (𝐌𝐍𝐕𝐁,  𝐔
𝕭𝐌𝐍𝐕𝐁 ,  ∗,  𝟎)  is called a 

NVB BCK/BCI- ideal of 𝕭𝐌𝐍𝐕𝐁
 if  

(i) 𝐍𝐕𝐁𝐏𝐍𝐕𝐁(𝟎) ≽ 𝐍𝐕𝐁𝐏𝐍𝐕𝐁(𝐮𝐤) ; for any 𝐮𝐤 ∈ 𝐔                                                    

i.e. ,  𝐓̂𝐏𝐍𝐕𝐁(𝟎) ≥ 𝐓̂𝐏𝐍𝐕𝐁(𝐮𝐤);  𝐈̂𝐏𝐍𝐕𝐁(𝟎) ≤ 𝐈̂𝐏𝐍𝐕𝐁(𝐮𝐤); 𝐅̂𝐏𝐍𝐕𝐁(𝟎) ≤ 𝐅̂𝐏𝐍𝐕𝐁(𝐮𝐤)    

(ii) 𝐍𝐕𝐁𝐏𝐍𝐕𝐁(𝐮𝐚) ≽ 𝐫 𝐦𝐢𝐧 {𝐍𝐕𝐁𝐏𝐍𝐕𝐁(𝐮𝐚 ∗ 𝐮𝐛), 𝐍𝐕𝐁𝐏𝐍𝐕𝐁(𝐮𝐛)} ; for any 𝐮𝐚, 𝐮𝐛 ∈ 𝐔                      

 𝐓̂𝐏𝐍𝐕𝐁(𝐮𝐚) ≥  𝐦𝐢𝐧{𝐓̂𝐏𝐍𝐕𝐁(𝐮𝐚 ∗ 𝐮𝐛), 𝐓̂𝐏𝐍𝐕𝐁(𝐮𝐛)}; 𝐈̂𝐏𝐍𝐕𝐁(𝐮𝐚) ≤  𝐦𝐚𝐱 {𝐈̂𝐏𝐍𝐕𝐁(𝐮𝐚 ∗ 𝐮𝐛), 𝐈̂𝐏𝐍𝐕𝐁(𝐮𝐛)} ; 𝐅̂𝐏𝐍𝐕𝐁(𝐮𝐚) ≤  𝐦𝐚𝐱{𝐅̂𝐏𝐍𝐕𝐁(𝐮𝐚 ∗ 𝐮𝐛), 𝐅̂𝐏𝐍𝐕𝐁(𝐮𝐛)}                               

Remark 4.3                                                                                         

For NVB BCK – ideal underlying structure will confine to BCK -algebra and for NVB BCI – ideal        

it will confine to BCK -algebra. For different ideals mentioned in definition 5.2, the same principle 

follows.                                                                                            

Remark 4.4                                                                                    

Similarly, for neutrosophic and neutrosophic vague. Only difference is with sets 𝐏𝐍, 𝐏𝐍𝐕 instead of 

𝐏𝐍𝐕𝐁 in above definitions taken in order. It is trivial. Moreover, instead of 𝐔 = {𝐔𝟏 ∪ 𝐔𝟐}, for both 

of them U is applied. 

5. Various neutrosophic vague binary BCK/BCI-ideals  

In this section vague H-ideal is developed first. Then p-ideal, q-ideal, a-ideal and H-ideal are 

developed for NVB BCK/BCI-algebra 𝕭𝐌𝐍𝐕𝐁
= (𝐌𝐍𝐕𝐁, 𝐔

𝕭𝐌𝐍𝐕𝐁 = (𝐔 = {𝐔𝟏 ∪ 𝐔𝟐}, ∗,  𝟎) , ∗, 𝟎)    

Definition 5.1 (Vague 𝐇-ideal)                                                                           

A vague set A of X is called a vague H - ideal of a BCI – algebra X if it satisfies  

(i) 𝐕𝐀(𝟎) ≽  𝐕𝐀(𝐱)   (∀ 𝐱 ∈ 𝐗)  ;                                                                 
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i.e., {
𝐭𝐀(𝟎) ≥  𝐭𝐀(𝐱)

𝟏 − 𝐟𝐀(𝟎) ≥  𝟏 − 𝐟𝐀(𝐱)
      i.e.,     {

𝐭𝐀(𝟎) ≥  𝐭𝐀(𝐱)

𝐟𝐀(𝟎) ≤  𝐟𝐀(𝐱)
     and                           

(ii) 𝐕𝐀(𝐱 ∗ 𝐳) ≽ 𝐫 𝐦𝐢𝐧{𝐕𝐀(𝐱 ∗ (𝐲 ∗ 𝐳)), 𝐕𝐀(𝐲)} ; (∀ 𝐱, 𝐲, 𝐳 ∈ 𝐗); i.e., {
𝐭𝐀(𝐱 ∗ 𝐳) ≥  𝐦𝐢𝐧 {𝐭𝐀(𝐱 ∗ (𝐲 ∗ 𝐳)), 𝐭𝐀(𝐲)}

𝟏 − 𝐟𝐀(𝐱 ∗ 𝐳) ≥ 𝐦𝐢𝐧{𝟏 − 𝐟𝐀(𝐱 ∗ (𝐲 ∗ 𝐳)), 𝟏 − 𝐟𝐀(𝐲)}
 

  

Definition 5.2 (Comparison of different NVB BCK/BCI- ideals)                                      

Let 𝕭𝐌𝐍𝐕𝐁
= (𝐌𝐍𝐕𝐁, 𝐔

𝕭𝐌𝐍𝐕𝐁 = (𝐔 = {𝐔𝟏 ∪ 𝐔𝟐}, ∗,  𝟎) , ∗, 𝟎) be a NVB BCK/BCI-algebra. Conditions 

for a non-empty NVBSS 𝐏𝐍𝐕𝐁 of 𝕭𝐌𝐍𝐕𝐁  to become a neutrosophic vague binary BCK/BCI - p ideal, 

neutrosophic vague binary BCK/BCI - q ideal, neutrosophic vague binary BCK/BCI - a ideal and 

neutrosophic vague binary BCK/BCI - H ideal are given in the table below:  

 Condition (1) ; (∀  𝐮𝐤 ∈ 𝐔)                                                                 Condition (2) ;  (for any 𝐮𝐚, 𝐮𝐛, 𝐮𝐜 ∈ 𝐔) 

NVB BCK/BCI 𝐩-ideal 𝐍𝐕𝐁𝐏𝐍𝐕𝐁(𝟎) ≽ 𝐍𝐕𝐁𝐏𝐍𝐕𝐁(𝐮𝐤)                                                                         𝐍𝐕𝐁𝐏𝐍𝐕𝐁(𝐮𝐚) ≽ 𝐫 𝐦𝐢𝐧{𝐍𝐕𝐁𝐏𝐍𝐕𝐁((𝐮𝐚 ∗ 𝐮𝐜) ∗ (𝐮𝐛 ∗ 𝐮𝐜)), 𝐍𝐕𝐁𝐏𝐍𝐕𝐁(𝐮𝐛)} 

NVB BCK/BCI 𝐪-ideal 𝐍𝐕𝐁𝐏𝐍𝐕𝐁(𝟎) ≽ 𝐍𝐕𝐁𝐏𝐍𝐕𝐁(𝐮𝐤)                                                                            𝐍𝐕𝐁𝐏𝐍𝐕𝐁(𝐮𝐚 ∗ 𝐮𝐜) ≽ 𝐫 𝐦𝐢𝐧 {𝐍𝐕𝐁𝐏𝐍𝐕𝐁 ((𝐮𝐚 ∗ (𝐮𝐛 ∗ 𝐮𝐜))) , 𝐍𝐕𝐁𝐏𝐍𝐕𝐁(𝐮𝐛)} 

NVB BCK/BCI 𝐚-ideal 𝐍𝐕𝐁𝐏𝐍𝐕𝐁(𝟎) ≽ 𝐍𝐕𝐁𝐏𝐍𝐕𝐁(𝐮𝐤)                                                                      𝐍𝐕𝐁𝐏𝐍𝐕𝐁(𝐮𝐛 ∗ 𝐮𝐚) ≽ 𝐫 𝐦𝐢𝐧 {𝐍𝐕𝐁𝐏𝐍𝐕𝐁 (((𝐮𝐚 ∗ 𝐮𝐜) ∗ (𝟎 ∗ 𝐮𝐛))) , 𝐍𝐕𝐁𝐏𝐍𝐕𝐁(𝐮𝐜)} 

NVB BCK/BCI  𝐇-ideal 𝐍𝐕𝐁𝐏𝐍𝐕𝐁(𝟎) ≽ 𝐍𝐕𝐁𝐏𝐍𝐕𝐁(𝐮𝐤)                                                                        𝐍𝐕𝐁𝐏𝐍𝐕𝐁(𝐮𝐚 ∗ 𝐮𝐜) ≽ 𝐫 𝐦𝐢𝐧 {𝐍𝐕𝐁𝐏𝐍𝐕𝐁 ((𝐮𝐚 ∗ (𝐮𝐛 ∗ 𝐮𝐜))) , 𝐍𝐕𝐁𝐏𝐍𝐕𝐁(𝐮𝐛)} 

6. Neutrosophic vague binary BCK/BCI - cuts 

In this section N BCK/BCI-cut, NV BCK/BCI-cut and NVB BCK/BCI-cut are developed 

Definition 6.1 (Neutrosophic BCK/BCI-(𝛂, 𝛃, 𝛄) − cut or Neutrosophic BCK/BCI-cut) 

Let the neutrosophic set MN is a N BCK/BCI-algebra with algebraic structure 𝔅MN = (MN, U
𝔅MN,∗ ,0). 

Truth membership function, indeterminacy membership function and false membership function of 

MN are TMN, IMN, FMN respectively. A neutrosophic BCK/BCI (α, β, γ) - cut of 𝔅MN is a crisp subset 

MN(α,β,γ) of the neutrosophic set MN given by: 

MN(α,β,γ) = {uk ∈ U ∕ NMN(uk) ≽ (α, β, γ) ;  with α, β, γ ∈ [0, 1] }  

        = {uk ∈ U TMN(uk)⁄ ≥ α ;   IMN(uk) ≤ β ;    FMN(uk) ≤ γ  ;   with α, β, γ ∈ [0, 1] }  

Definition 6.2 (Neutrosophic Vague BCK/BCI ([𝜶𝟏, 𝜶𝟐], [𝜷𝟏, 𝜷𝟐], [𝜸𝟏, 𝜸𝟐]) - cut or Neutrosophic Vague BCK/BCI- cut) 

Let the neutrosophic vague set MNV  is a NV BCK/BCI-algebra with algebraic structure                

𝔅MNV = (MNV,  U
𝔅MNV = (U ,∗, 0),  ∗,  0) . Truth membership function, indeterminacy membership 

function and false membership function of MNV are T̂MNV , ÎMNV , F̂MNVrespectively. A neutrosophic 

vague BCK/BCI ([α1, α2], [β1, β2], [γ1, γ2]) - cut of 𝔅MNV  is a crisp subset MNV([α1,α2],[β1,β2],[γ1,γ2])
 of 

the neutrosophic vague set MNV given by :  
MNV([α1,α2],[β1,β2],[γ1,γ2])

 

= {uk ∈ U ∕ NVMNV
(uk) ≽ ([α1, α2], [β1, β2], [γ1, γ2]) ;  where α1 ≤ α2 , β1 ≤ β2, γ1 ≤ γ2;   with  α1,  α2, β1, β2, γ1, γ2 ∈ [0, 1]}                                                                                               

= {uk ∈ U    T̂MNV(uk)⁄ ≥ [α1,α2]  ; ÎMNV(uk) ≤ [β1, β2];  F̂MNV(uk) ≤ [γ1, γ2] } ; 

i.e., T−(uk) ≥ α1 and T+(uk) ≥ α2 ; I−(uk) ≤ β1 and I+(uk) ≤ β2 ; F−(uk) ≤ γ1 and F+(uk) ≤ γ2  

Definition 6.3 (Neutrosophic Vague Binary BCK/BCI 〈([𝜶𝟏, 𝜶𝟐], [𝜷𝟏, 𝜷𝟐], [𝜸𝟏, 𝜸𝟐]), ([𝜹𝟏, 𝜹𝟐], [𝝆𝟏, 𝝆𝟐], [𝝑𝟏, 𝝑𝟐])〉 - cut   

                or Neutrosophic Vague Binary BCK/BCI- cut)  

Let the NVBS MNVB is a NVB BCK/BCI-algebra with algebraic structure,                                

𝔅MNVB
= (MNVB,  U

𝔅MNVB = (U = {U1 ∪ U2} ,∗, 0),  ∗,  0). Truth membership function, indeterminacy 

membership function and false membership function of MNVB are T̂MNVB , ÎMNVB , F̂MNVBrespectively. 

A neutrosophic vague binary BCK/BCI 〈([α1, α2], [β1, β2], [γ1, γ2]), ([δ1, δ2], [ρ1, ρ2], [ϑ1, ϑ2])〉 - cut of 

𝔅MNVB  is a crisp subset MNVB〈([α1,α2],[β1,β2],[γ1,γ2]),([δ1,δ2],[ρ1,ρ2],[ϑ1,ϑ2])〉
 of the NVBS MNVB given by :  

 

MNVB〈([α1,α2],[β1,β2],[γ1,γ2]),([δ1,δ2],[ρ1,ρ2],[ϑ1,ϑ2])〉
 = {uk ∈ U/ NVBMNVB

(uk)  ≽ {

[α1, α2], [β1, β2], [γ1, γ2]  ;  if uk  ∈  U1
[δ1, δ2], [ρ1, ρ2], [ϑ1, ϑ2]  ;  if uk  ∈  U2

           [χ1, χ2], [ϕ1,ϕ2], [π1, π2]  ;  if uk  ∈  U1⋂U2

  

max{[α1, α2], [δ1, δ2]} = [𝜒1, 𝜒2] (say); min[β1, β2], [ρ1, ρ2]} = [𝜙
1
, 𝜙

2
] (say); min{[γ1, γ2], [ϑ1, ϑ2] = [𝜋1, 𝜋2] (say) ; 
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with α1,  α2, β1, β2, γ1, γ2, δ1, δ2, ρ1, ρ2, ϑ1, ϑ2, χ1, χ2, ϕ1, ϕ2, π1, π2  ∈ [0, 1]  

and α1 ≤ α2,   β1 ≤ β2 ,   γ1 ≤ γ2  ;  δ1 ≤ δ2 ,  ρ1 ≤ ρ2 ,   ϑ1 ≤ ϑ2 , χ1 ≤ χ2 , ϕ1 ≤ ϕ2 ;   π1 ≤ π2                                             

  

i.e.,  T̂MNVB(uk) ≥ [α1, α2] ;     ÎMNVB(uk) ≤ [β1, β2] ;       F̂MNVB(uk) ≤ [γ1, γ2] 

     T̂MNVB(uk) ≥ [δ1, δ2]  ;     ÎMNVB(uk) ≤ [ρ1, ρ2] ;       F̂MNVB(uk) ≤ [ϑ1, ϑ2] 

       T̂MNVB(uk) ≥ [χ1, χ2] ;     ÎMNVB(uk) ≤ [ϕ1, ϕ2] ;      F̂MNVB(uk) ≤ [π1, π2] 

 

i.e., T−(uk) ≥ α1 and T+(uk) ≥ α2 ;  I−(uk) ≤ β1 and I+(uk) ≤ β2 ; F−(uk) ≤ γ1 and F+(uk) ≤ γ2 

    T−(uk) ≥ δ1  and T+(uk) ≥ δ2 ;  I−(uk) ≤ ρ1 and I+(uk) ≤ ρ2  ; F−(uk) ≤ ϑ1 and F+(uk) ≤ ϑ2 

    T−(uk) ≥ χ1 and T+(uk) ≥ χ2 ;  I−(uk) ≤ ϕ1 and I+(uk) ≤ ϕ2  ; F−(uk) ≤ π1 and F+(uk) ≤ π2 

Remark 6.4                                                                                           

(i) (a) MNVB([0,0], [1,1], [1,1]) = U  

(b) MNVB〈([0,0], [1,1], [1,1]), ([0,0], [1,1], [1,1])〉 = U = {U1 ∪ U2}              

(ii) If [α1, α2] and [δ1, δ2] coincides; [β1, β2] and [ρ1, ρ2]coincides; [γ1, γ2] and [ϑ1, ϑ2]    

           coincides, then (〈[α1, α2], [β1, β2], [γ1, γ2]〉, 〈[δ1, δ2], [ρ1, ρ2], [ϑ1, ϑ2]〉) − cuts are called    

           (〈[α1, α2], [β1, β2], [γ1, γ2]〉, 〈[α1, α2], [β1, β2], [γ1, γ2]〉) - cuts and is denoted by   

           MNVB([α1,α2],[β1,β2],[γ1,γ2],[δ1,δ2])
 instead of MNVB(〈[α1,α2],[β1,β2],[γ1,γ2]〉,〈[α1,α2],[β1,β2],[γ1,γ2]〉)

             

(iii) If (〈[α1∗ , α2∗], [β1∗, β2∗ ], [γ1∗ , γ2∗ ]〉, 〈[δ1∗ , δ2∗ ], [ρ1∗, ρ2∗ ], [ϑ1∗, ϑ2∗ ]〉) ≥ (〈[α1, α2], [β1, β2], [γ1, γ2]〉, 〈[δ1, δ2], [ρ1, ρ2], [ϑ1, ϑ2]〉)                                         

then MNVB(〈[α1,α2],[β1,β2],[γ1,γ2]〉,〈[δ1,δ2],[ρ1,ρ2],[ϑ1,ϑ2]〉)
⊆ MNVB(〈[α1

∗ ,α2
∗],[β

1
∗ ,β

2
∗],[γ1

∗ ,γ2
∗]〉,〈[δ1

∗ ,δ2
∗],[ρ

1
∗ ,ρ

2
∗],[ϑ1

∗ ,ϑ2
∗]〉)  

7. Application 

In this section theoretical application of NVB BCK/BCI algebra is developed. Various theorems and 

propositions are found good to this concept.                                                           

Lemma 7.1                                                                                                

Every NVB BCI – algebra 𝔅MNVB
BCI  of a BCI -algebra U𝔅MNVB

BCI

  satisfies:                         

NVBMNVB(0) ≽ NVBMNVB(uk) ; ∀ uk ∈ U = {U1 ∪ U2} 

Proof                                                                                                            

For a 𝔅MNVB
BCI , underlying BCI - algebraic structure satisfies, (uk ∗ uk) = 0, ∀ uk ∈ U     

                                                                  [By property (iii)of definition 2.3]                          
⇒ ∀ uk ∈ U, NVBMNVB(0) = NVBMNVB(uk ∗ uk) ≽ r min{NVBMNVB(uk), NVBMNVB(uk)} = NVBMNVB(uk)                                              

                                                                [By definition 3.4]                                                          

Lemma 7.2                                                                                                   

Every 𝔅MNVB
BCK  satisfies NVBMNVB(0) ≽ NVBMNVB(uk) ; ∀ uk ∈ U                                                         

Proof                                                                                                     

For a 𝔅MNVB
BCK , underlying BCK- algebraic structure satisfies, an additional condition,                           

(0∗ uk) = 0,∀uk ∈ U besides (uk ∗ uk) = 0, ∀ uk ∈ U   ;     [By remark 2.5]                        

⇒ Additional to, NVBMNVB(0) ≽ NVBMNVB(uk) ; ∀ uk ∈ U [by lemma 7.1], we get,                                                                

NVBMNVB(0) = NVBMNVB(0 ∗ uk) ≽ r min{NVBMNVB(0), NVBMNVB(uk)} ;  ∀ uk ∈ U                               

⇒ NVBMNVB(0) ≽ r min{NVBMNVB(0), NVBMNVB(uk)} ; ∀ uk ∈ U, for 𝔅MNVB
BCK                                      

   & r min{NVBMNVB(0), NVBMNVB(uk)} will depend upon the given NVBS MNVB 

⇒ NVBMNVB(0) ≽ NVBMNVB(uk) and NVBMNVB(0) ≽ r min{NVBMNVB(0), NVBMNVB(uk)} 

Even if r min{NVBMNVB(0), NVBMNVB(uk)}  will depend upon the given NVBS, using lemma 7.1, 

NVBMNVB(0) ≽ r min{NVBMNVB(0), NVBMNVB(uk)} will become NVBMNVB(0) ≽ NVBMNVB(uk) 

⇒ NVBMNVB(0) ≽ NVBMNVB(uk) and NVBMNVB(0) ≽ NVBMNVB(uk) ∀ uk ∈ U 

So, combining both, for a 𝔅MNVB
BCK  too,  NVBMNVB(0) ≽ NVBMNVB(uk) ; ∀ uk ∈ U                                 

Remark 7.3                                                                                                         

Every 𝔅MNVB
BCK / 𝔅MNVB

BCI  satisfies: NVBMNVB(0) ≽ NVBMNVB(uk) ; ∀ uk ∈ U                                                   

i.e., Every NVB BCK/BCI – algebra satisfies: NVBMNVB(0) ≽ NVBMNVB(uk) ; ∀ uk ∈ U                      



Neutrosophic Sets and Systems, Vol. 35, 2020     60  

 

 
Remya. P.B & Francina Shalini. A, Neutrosophic Vague Binary BCK/BCI-algebra     
 

Theorem 7.4                                                                                          

Every 𝔅MNVB
BCK  is a 𝔅MNVB

BCI . But converse not true, generally. i.e., every 𝔅MNVB
BCI is not a 𝔅MNVB

BCK  generally.                                                                               

Proof                                                                                                

For a fixed universal set U, underlying BCK – algebraic structure of 𝔅MNVB
BCK consists the underlying 

BCI – structure of 𝔅MNVB
BCI  ⇒ Every 𝔅MNVB

BCK  is 𝔅MNVB
BCI . But converse does not hold. It is illustrated with 

the case (i) of remark 7.5. 

Remark 7.5                                                                                                                    

Following example illustrates both the cases:                                                             

Let U𝟏 = {0}  and let U𝟐 = {0, 1}  be the universes under consideration. Combined universe              

U = {U1 ∪ U2} = {0, 1} with (U1 ∩ U2) = {0}.   

∴ Cayley table to the binary operation ∗ for U is given as: 

 

∗ 0 1 

0 0 1 

1 1 0 

                  BCI-algebra [fig (i)]     

 

∗ 0 1 

0 0 0 

1 1 0 

 BCK/BCI-algebra[fig(ii)] 

 

Clearly, 𝐔𝕭𝐌𝐍𝐕𝐁
𝐁𝐂𝐈

 = (𝐔 = {𝐔𝟏 ∪ 𝐔𝟐}, ∗ , 𝟎) is a BCI-algebra [fig (i)].                                     

𝐔𝕭𝐌𝐍𝐕𝐁
𝐁𝐂𝐊

 = (𝐔 = {𝐔𝟏 ∪ 𝐔𝟐}, ∗ , 𝟎) is a BCI-algebra [fig (ii)]. 

Case (i) : Example for a 𝔅MNVB

BCI  which is a 𝔅MNVB

BCK                                                                          

Let MNVB be a non-empty NVBS with U𝔅MNVB
BCI

 as underlying algebraic structure:                                               

MNVB = {〈
[0.1,0.8],[0.1,0.5],[0.2,0.9]

0
〉 , 〈

[0.3,0.7],[0.2,0.4],[0.3,0.7]

0
,
[0.1,0.4],[0.3,0.5],[0.6,0.9]

1
〉}  ; Here, (U1 ∩ U2) = {0} 

NVBMNVB(0) = ([0.1, 0.8], [0.1, 0.5], [0.2, 0.9]) ∪ ([0.3, 0.7], [0.2, 0.4], [0.3, 0.7]) = [0.3, 0.8], [0.1, 0.4], [0.2, 0.7] 

After verification, clearly MNVB is a 𝔅MNVB
BCI . Next question is that, - “whether 𝔅MNVB

BCI  is a 𝔅MNVB
BCK  or 

not “ ? ∴ Additional condition to be satisfied is that, for a BCK-algebra is, (0 ∗ 1) = 0 from Cayley 

table fig (ii). Correspondingly,                                                                                          

NVBMNVB
(0–1) ≽ r min {NVBMNVB

(0), NVBMNVB
(1)} ⇒ NVBMNVB

(0) ≽ r min {NVBMNVB
(0), NVBMNVB

(1)}                        

⇒ [0.3, 0.8], [0.1, 0.4], [0.2, 0.7] ≽ r min {[0.3, 0.8], [0.1, 0.4], [0.2, 0.7], [0.1, 0.4], [0.3, 0.5], [0.6, 0.9]}                                    
⇒ [0.3, 0.8], [0.1, 0.4], [0.2, 0.7] ≽ [0.1, 0.4], [0.3, 0.5], [0.6, 0.9]                                                                         
Since additional condition got satisfied, 𝔅MNVB

BCI  is clearly a 𝔅MNVB
BCK .                                      

Case (ii) : Example for a 𝕭𝐏𝐍𝐕𝐁
𝐁𝐂𝐈  which is not a 𝕭𝐏𝐍𝐕𝐁

𝐁𝐂𝐊                                                     

Take binary operation and Cayley table as taken in Case (i).                                                            

Consider another NVBS 𝐏NVB with same conditions as in case (i)                                   

𝐏NVB = {〈
[𝟎.𝟏,𝟎.𝟓],[𝟎.𝟐,𝟎.𝟓],[𝟎.𝟓,𝟎.𝟗]

𝟎
〉 , 〈

[𝟎.𝟏,𝟎.𝟔],[𝟎.𝟑,𝟎.𝟑],[𝟎.𝟒,𝟎.𝟗]

𝟎
,
[𝟎.𝟏,𝟎.𝟕],[𝟎.𝟑,𝟎.𝟒],[𝟎.𝟑,𝟎.𝟗]

𝟏
〉}        

NVBPNVB(0) = ([0.1, 0.5], [0.2, 0.5], [0.5, 0.9]) ∪ ([0.1, 0.6], [0.3, 0.3], [0.4, 0.9]) = [0.1, 0.6], [0.2, 0.3], [0.4, 0.9] 

By verification PNVB is a 𝔅PNVB
BCI .  But in this case, additional condition not got satisfied: 

NVBPNVB(0 ∗ 1) ⋡ r min {NVBPNVB(0), NVBPNVB(1)} [Since, NVBPNVB(0) ⋡ r min {NVBPNVB(0), NVBPNVB(1)}. 

Since, [0.1, 0.6], [0.2, 0.3], [0.4, 0.9] ⋡ r min {[0.1, 0.8], [0.2, 0.3], [0.2, 0.9], [0.1, 0.7], [0.3, 0.4], [0.3, 0.9]} 

Since, [0.1, 0.6], [0.2, 0.3], [0.4, 0.9] ⋡ [0.1, 0.7], [0.3, 0.4], [0.3, 0.9]] 

In this case, clearly, 𝔅PNVB
BCI  is not a 𝔅PNVB

BCK                                                            

Theorem 7.6                                                                                        

Intersection of two NVB BCK/BCI -algebra remains as a NVB BCK/BCI-algebra itself. 

Proof                                                                                                 

Let MNVB and PNVB be two NVB BCK/BCI -algebras with structures 𝔅MNVB
 = (MNVB,  U

𝔅MNVB ,∗,  0) 
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and 𝔅PNVB  = (PNVB,  U
𝔅PNVB ,∗,  0)  respectively, with same universal sets U1  and U2 .                         

So, ∀ u1, u2 ∈ U, NVB(MNVB∩PNVB)(u1 ∗ u2) = r min{NVBMNVB(u1 ∗ u2), NVB𝐏NVB(u1 ∗ u2)}                                      

≽ r min{rmin{NVBMNVB(u1), NVBMNVB(u2)} , rmin{NVBPNVB(u1), NVBPNVB(u2)}}                                         

= r min {NVB(MNVB∩PNVB)(u1), NVB(MNVB∩PNVB)(u2) }                                               

Therefore, NVB(MNVB∩PNVB)(u1 ∗ u2) ≽ r min {NVB(MNVB∩PNVB)(u1), NVB(MNVB∩PNVB)(u2) }                   

⇒ (MNVB ∩ PNVB) is also a NVB BCK/BCI - algebra                         

Proposition 7.7 

Every NVB BCI - ideal PNVB of a 𝔅MNVB
BCI  satisfies:                                                               

(i) ua ≤ ub ⇒ NVBPNVB(ua) ≽ NVBPNVB(ub) ; (∀ ua , ub  ∈ U)                                                       

(ii) NVBPNVB(ua ∗ uc) ≽ r min {NVBPNVB((ua ∗ ub) ∗ uc), NVBPNVB(ub)}; ∀  ua, ub, uc ∈ U 

Proof 

(i) Let ua, ub ∈ U be such that ua ≤ ub.  

Since PNVB is a NVB BCI - ideal of 𝔅MNVB
BCI  

⇒ NVBPNVB(ua) ≽ rmin{NVBPNVB(ua ∗ ub), NVBPNVB(ub)}, [By condition (2) of definition 4.2] 

                  = r min {NVBPNVB(0), NVBPNVB(ub)} , take (ua ∗ ub) = 0               

                    = NVBPNVB((ub))  [By lemma 7.1] 

⇒ NVBPNVB(ua) ≽ NVBPNVB(ub)  

(ii) Let PNVB be a NVB BCI - ideal of 𝔅MNVB
BCI                                          

⇒  NVBPNVB(ua) ≽ rmin{NVBPNVB(ua ∗ ub), NVBPNVB(ub) } ; ∀ ua, ub ∈ U                                     

⇒  NVBPNVB(ua ∗ uc) ≽ rmin{NVBPNVB((ua ∗ uc) ∗ ub), NVBPNVB(ub) } ;                                          

                                                      [by putting ua = (ua ∗ uc); ∀ ua, ub, uc ∈ U]                                                                  

⇒  NVBPNVB(ua ∗ uc) ≽ rmin{NVBPNVB((ua ∗ ub) ∗ uc), NVBPNVB(ub)};[By property (ii)of remark 2.6] 

Lemma 7.8 

Let PNVB be a NVB BCI-ideal of 𝔅MNVB
BCI . Then, NVBPNVB(0 ∗ (0 ∗ uk)) ≽ NVBPNVB(uk); ∀ uk ∈ U 

Proof 

NVBPNVB(ua) ≽ r min{NVBPNVB(ua ∗ ub), NVBPNVB(ub)} ; for any ua, ub ∈ U [ By definition 4.2] 

Let ua = (0 ∗ (0 ∗ uk)) and ub = uk. 

∴ For any uk ∈ U, NVBPNVB(0 ∗ (0 ∗ uk)) ≽ r min {NVBPNVB ((0 ∗ (0 ∗ uk)) ∗ uk) , NVBPNVB(uk)}   

   =  r min{NVBPNVB((0 ∗ uk) ∗ (0 ∗ uk)), NVBPNVB(uk)};    [By property (ii)of remark 2.6] 

   =  r min{NVBPNVB(0 ∗ (uk ∗ uk)), NVBPNVB(uk)};          [By property (iii)of remark 2.6] 

   =  r min{NVBPNVB(0 ∗ 0), NVBPNVB(uk)};             [By condition (iii)of definition 2.3] 

   =  r min{NVBPNVB(0), NVBPNVB(uk)};                     [By property (i)of remark 2.6] 

   = NVBPNVB(uk)                                                        [By lemma 7.1] 

∴ It is concluded that, NVBMNVB(0 ∗ (0 ∗ uk)) ≽ NVBMNVB(uk) ; ∀  uk  ∈ U 

Proposition 7.9 

If the NVBS RNVB of 𝔅MNVB
BCI  is a NVB BCI - ideal of 𝔅MNVB

BCI , then it satisfies: for any ua, ub, uc ∈ U ; 

(ua ∗ ub) ≤ uc ⇒ NVBRNVB(ua) ≽ rmin{NVBRNVB(ub), NVBRNVB(uc)}  

Proof 

Let RNVB be a NVB BCI - ideal of 𝔅MNVB
BCI  with (ua ∗ ub) ≤ uc where ua, ub, uc ∈ U 

                                      ⇒ NVBRNVB(ua ∗ ub) ≽ NVBRNVB(uc) [By proposition 7.7] 

Since RNVB be a NVB BCI - ideal of 𝔅MNVB
BCI   

⇒  NVBRNVB(ua) ≽ r min {NVBRNVB(ua ∗ ub),  NVBRNVB(ub)} for any ua, ub ∈ U 

                 ≽ r min {NVBRNVB(uc),  NVBRNVB(ub)} = r min {NVBRNVB(ub),  NVBRNVB(uc)} 

⇒  NVBRNVB(ua) ≽ r min {NVBRNVB(ub),  NVBRNVB(uc)} for any ua, ub, uc ∈ U 

Proposition 7.10 

If the NVBS RNVB of 𝔅MNVB
BCI  is a NVB BCI - algebra 𝔅RNVB

BCI  of then it satisfies for any ux, uy, uz ∈ U 

(ua ∗ ub) ≤ uc ⇒ NVBRNVB(ua) ≽ r min {NVBRNVB(ub),  NVBRNVB(uc)}  

Proof 

Let RNVB be a NVBS of 𝔅MNVB
BCI with (ua ∗ ub) ≤ uc  ⇒ NVBRNVB(uc) ≽ NVBRNVB(ua ∗ ub) 
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RNVB is a 𝔅RNVB
BCI   ⇒ NVBRNVB(ua ∗ ub) ≽ rmin{NVBRNVB(ua), NVBRNVB(ub)} 

⇒ NVBRNVB(uc) ≽ NVBRNVB(ua ∗ ub) ≽ rmin{NVBRNVB(ua), NVBRNVB(ub)} 

⇒ NVBRNVB(uc) ≽ rmin{NVBRNVB(ua), NVBMNVB(ub) }  

⇒ NVBRNVB(ua) ≽ rmin{NVBRNVB(uc), NVBRNVB(ub)}; [By putting uc = ua &ua = uc]                                 

⇒ NVBRNVB(ua) ≽ rmin{NVBRNVB(ub), NVBRNVB(uc)}; 

Theorem 7.11 

Let SNVB be both a NVB BCI–algebra 𝔅SNVB
BCI  and a NVB BCI-ideal of a NVB BCI - algebra 𝔅SNVB

BCI .             

Then NVBSNVB(0 ∗ uk) ≽ NVBSNVB(uk) for all uk ∈ U 

Proof 

Let SNVB be a NVB BCI- algebra 𝔅SNVB
BCI     

⇒ NVBSNVB(ua ∗ ub) ≽ r min{NVBSNVB(ua), NVBSNVB(ub)}; for all ua, ub ∈ U 

⇒ NVBSNVB(0 ∗ ub) ≽ r min{NVBSNVB(0), NVBSNVB(ub)}; [By putting ua = 0 ]  

⇒ NVBSNVB(0 ∗ ub) ≽ NVBSNVB(ub)   [By definition 4.2 (i)]   

⇒ NVBSNVB(0 ∗ uk) ≽ NVBSNVB(uk) [By putting ub= uk] 

∴ For any uk ∈ U, NVBSNVB(0 ∗ uk) ≽ NVBSNVB(uk)                                                                    

Proposition 7.12 

Let TNVB be a NVB BCI - ideal of a NVB BCI -algebra 𝔅MNVB
BCI .                                                    

If TNVB satisfies NVBTNVB(ua ∗ ub) ≽ NVBTNVB((ua ∗ uc) ∗ (ub ∗ uc)) for all ua, ub, uc ∈ U,                               

then TNVB is a NVB BCI p - ideal of 𝔅MNVB
BCI  

Proof 

TNVB be a NVB BCI - ideal of a NVB BCI - algebra 𝔅MNVB
BCI . 

⇒ NVBTNVB(ua) ≽ r min{NVBTNVB(ua ∗ ub), NVBTNVB(ub)} for all ua, ub, uc ∈ U 

⇒ NVBTNVB(ua) ≽ r min{NVBTNVB((ua ∗ uc) ∗ (ub ∗ uc)), NVBMNVB(ub)} for all ua, ub, uc ∈ U 

                                                                       [From given condition] 

⇒ TNVB is a NVB BCI – p ideal of 𝔅MNVB
BCI                                [By definition 5.2] 

Proposition 7.13 

Any NVB BCI - ideal DNVB of a NVB BCI -algebra 𝔅MNVB
BCI  is a NVB BCI -p ideal                           

⇔ NVBDNVB(ua) ≽ NVBDNVB(0 ∗ (0 ∗ ua)) ; for all ua ∈ U 

Proof 

Let DNVB be a NVB BCI - ideal of a NVB BCI -algebra 𝔅MNVB
BCI . Also let DNVB is a NVB BCI -p ideal.  

∴ NVBDNVB(ua) ≽ r min{NVBDNVB((ua ∗ uc) ∗ (ub ∗ uc)), NVBDNVB(ub)} for all ua, ub, uc ∈ U 

                                                       [By definition 5.2 of NVB BCI −  p  ideal] 

Put uc = ua and ub = 0 in the above, 

∴ NVBDNVB(ua) ≽ r min{NVBDNVB((ua ∗ ua) ∗ (0 ∗ ua)), NVBDNVB(0)} for all ua, ub, uc ∈ U 

⇒ NVBDNVB(ua) ≽ r min{NVBDNVB(0 ∗ (0 ∗ ua)), NVBDNVB(0)} for all ua, ub ∈ U 

                                                               [By condition (iii)of definition 2.3] 

                          = NVBDNVB(0 ∗ (0 ∗ ua)) for all ua ∈ U              [By lemma 7.1] 

⇒ NVBDNVB(ua) ≽ NVBDNVB(0 ∗ (0 ∗ ua)) ; for all ua ∈ U 

Conversely, let a NVB BCI - ideal DNVB of a NVB BCI - algebra 𝔅MNVB
BCI  satisfies the given condition, 

NVBDNVB(ua) ≽ NVBMNVB(0 ∗ (0 ∗ ua)) ; for all ua ∈ U. By lemma 7.8,  

“ Let PNVB be a NVB BCI-ideal of 𝔅MNVB
BCI . Then, NVBPNVB(0 ∗ (0 ∗ uk)) ≽ NVBPNVB(uk); ∀ uk ∈ U” 

⇒ NVBDNVB((ua ∗ uc) ∗ (ub ∗ uc)) ≼ NVBMNVB (0 ∗ (0 ∗ ((ua ∗ uc) ∗ (ub ∗ uc)))) 

                                        [By putting uk = (ua ∗ uc) ∗ (ub ∗ uc) in lemma 7.8]                                  

                                = NVBDNVB((0 ∗ ub) ∗ (0 ∗ ua))  [By property (vii)of remark 2.6] 

                               = NVBDNVB (0 ∗ (0 ∗ (ua ∗ ub))) ; [By property (viii) of remark 2.6]                                                        

                                =  NVBDNVB(0 ∗ (ua ∗ ub)) ; [By property (i) of remark 2.6]           

                                = NVBDNVB(ua ∗ ub) ; [By property (i) of remark 2.6]                                        

         ⇒ NVBDNVB(ua ∗ ub) ≽ NVBDNVB((ua ∗ uc) ∗ (ub ∗ uc))  
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         ⇒ NVBDNVB  is a NVB BCI - p ideal [ By proposition 7.12] 

Theorem 7.14 

Every NVB BCI - p ideal of a NVB BCI - algebra 𝔅MNVB
BCI  is a NVB BCI - ideal of 𝔅MNVB

BCI .               

Proof 

Let MNVB be a NVB BCI - p ideal of a NVB BCI - algebra 𝔅MNVB
BCI . By definition, 

NVBMNVB(ux) ≽ r min {NVBMNVB ((ux ∗ uz) ∗ (uy ∗ uz)) , NVBMNVB(uy)} for all ux, uy, uz ∈ U 

Put uz = 0 then the above becomes, 

NVBMNVB(ux) ≽ r min {NVBMNVB ((ux ∗ 0) ∗ (uy ∗ 0)) , NVBMNVB(uy)} for all ux, uy ∈ U 

               = r min{NVBMNVB(ux ∗ uy), NVBMNVB(uy)} for all ux, uy ∈ U                                                              

                                             [By property (iii)of 2.3 &By property (i)of remark 2.6] 
⇒ NVBMNVB(ux) ≽ r min{NVBMNVB(ux ∗ uy), NVBMNVB(uy)} for all ux, uy ∈ U 

Obviously, MNVB is a NVB BCI - ideal  

Converse of this statement need not be true and it can be verified with an example and is trivial. 

Theorem 7.15 

Every NVB BCK/BCI H - ideal of a NVB BCK/BCI - algebra 𝔅MNVB  acts both as  

(i) NVB BCK/BCI - ideal of 𝔅MNVB
 (ii) NVB BCK/BCI - subalgebra 𝔅MNVB

                                                   

Proof  

Let INVB be a NVB BCK/BCI- H ideal of a NVB BCK/BCI – algebra 𝔅MNVB  

(i) From definition of NVB BCK/BCI- H ideal,  

   NVBINVB(ua ∗ uc) ≽ min{NVBINVB(ua ∗ (ub ∗ uc)), NVBINVB(ub)} for all ua, ub, uc ∈ U 

   Put uc = 0  

   NVBINVB(ua ∗ 0) ≽ min{NVBINVB(ua ∗ (ub ∗ 0)), NVBMNVB(ub)} for all ua, ub, uc ∈ U 

   ⇒ NVBINVB(ua) ≽ min{NVBINVB(ua ∗ ub), NVBMNVB(ub)} for all ua, ub, uc ∈ U                                                                   

                                                               [Using property (i)of remark 2.6] 

   Since INVB is a NVB BCK/BCI- H ideal ⇒ NVBINVB(0) ≽ NVBINVB(uk) ; for any uk ∈ U   

   ∴ INVB is a NVB BCK/BCI - ideal of 𝔅MNVB                   [By definition 4.2]                                       

(ii) Let INVB be a NVB BCK/BCI- H ideal of 𝔅MNVB  

   ∴ NVBINVB(ua ∗ uc) ≽ r min{NVBINVB(ua ∗ (ub ∗ uc)), NVBINVB(ub)};  for all ua, ub, uc ∈ U 

   ⇒ NVBINVB(ua ∗ ub) ≽ r min{NVBINVB(ua ∗ (ub ∗ ub)), NVBINVB(ub)}; [By putting uc = ub] 

   ⇒ NVBINVB(ua ∗ ub) ≽ r min{NVBINVB(ua ∗ 0), NVBINVB(ub)}; [By condition (iii)of definition 2.3] 

   ⇒ NVBINVB(ua ∗ ub) ≽ r min{NVBINVB(ua), NVBINVB(ub)};       [By condition (i)of remark 2.6] 

   ⇒ INVB be a NVB BCK/BCI - subalgebra of 𝔅MNVB  

Theorem 7.16  

PNVB be a NVBS of a NVB BCK/BCI - algebra 𝔅MNVB . Then PNVB is a NVB BCK/BCI -ideal of 𝔅MNVB  

⟺ it satisfies the following conditions: 

(i) NVBPNVB(ua ∗ ub) ≽ NVBPNVB(ub) ; (∀ ua, ub ∈ U)  

(ii) NVBPNVB (ua ∗ ((ua ∗ um) ∗ un)) ≽ r min {NVBPNVB(um), NVBPNVB(un) } ;   (∀ ua, um, un ∈ U) 

Proof 

Let PNVB be NVB BCK/BCI - ideal of 𝔅MNVB . By definition, 

NVBPNVB(ua) ≽ rmin{NVBPNVB(ua ∗ ub), NVBPNVB(ub) } ; ∀ ua, ub ∈ U 

(i) Put ua = (ua ∗ ub) and ub = ua in the above, 

NVBPNVB(ua ∗ ub) ≽ rmin{NVBPNVB((ua ∗ ub) ∗ ua), NVBPNVB(ua) } 

⇒ NVBPNVB(ua ∗ ub) ≽ rmin{NVBPNVB((ua ∗ ua) ∗ ub), NVBPNVB(ua) } ;   [By property (ii)of remark 2.6] 

⇒ NVBPNVB(ua ∗ ub) ≽ rmin{NVBPNVB(0 ∗ ub), NVBPNVB(ua) } ;           [By condition (iii)of definition 2.3] 

⇒ NVBPNVB(ua ∗ ub) ≽ rmin{NVBPNVB(0 ∗ ub), NVBPNVB(ub) };             [By assumption ua = ub] 

⇒ NVBPNVB(ua ∗ ub) ≽ rmin{NVBPNVB(0), NVBPNVB(ub) } ;                         [By remark 2.5] 

⇒ NVBPNVB(ua ∗ ub) ≽ NVBPNVB(ub)                                            [Using lemma 7.1] 

(ii) Consider, (ua ∗ ((ua ∗ um) ∗ un)) ∗ um  

        = (ua ∗ um) ∗ ((ua ∗ um) ∗ un) ≤ un 
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[
 
 
 By condition (ii)of remark 2.3,   (x ∗  (x ∗  y)) ∗  y =  0   ⇒   x ∗  (x ∗  y)  ≤ y, by remark 2.4

𝐻𝑒𝑟𝑒, (𝑢𝑎 ∗ ((𝑢𝑎 ∗ 𝑢𝑚) ∗ 𝑢𝑛)) ∗ 𝑢𝑚  =   (𝑢𝑎 ∗ 𝑢𝑚) ∗ ((𝑢𝑎 ∗ 𝑢𝑚) ∗ 𝑢𝑛)  =  ((𝑢𝑎 ∗ 𝑢𝑚) ∗  (𝑢𝑎 ∗ 𝑢𝑚))  ∗ 𝑢𝑛  =  0 ∗  𝑢𝑛  =  0.  𝑆𝑜 𝑟𝑒𝑚𝑎𝑟𝑘 2.4 𝑖𝑠 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑐𝑎𝑠𝑒

Since (𝑢𝑎 ∗ 𝑢𝑚) ∗ ((𝑢𝑎 ∗ 𝑢𝑚) ∗ 𝑢𝑛) = 0  𝑤𝑒 ℎ𝑎𝑣𝑒 (𝑢𝑎 ∗ 𝑢𝑚) ∗ ((𝑢𝑎 ∗ 𝑢𝑚) ∗ 𝑢𝑛) ≤ 𝑢𝑛 ]
 
 
 
                               

Above can be written as, (ua ∗ ((ua ∗ um) ∗ un)) ∗ um ≤ un 

⇒ NVBPNVB ((ua ∗ ((ua ∗ um) ∗ un)) ∗ um ) ≽ NVBPNVB(un)                    [By proposition 7.7] 

PNVB is a NVB BCK/BCI -ideal of 𝔅MNVB
⇒ NVBPNVB(ua) ≽ rmin{NVBPNVB(ua ∗ ub), NVBPNVB(ub)} 

Put ua = (ua ∗ ((ua ∗ um) ∗ un)) & ub= um in above,   

NVBPNVB (ua ∗ ((ua ∗ um) ∗ un)) ≽ rmin {NVBPNVB ((ua ∗ ((ua ∗ um) ∗ un)) ∗ um) ,NVBPNVB(um)} 

                                = r min {NVBPNVB(un), NVBPNVB(um)} [proved above] 

                       ≽ r min {NVBPNVB(um), NVBPNVB(un)} 

⇒ NVBMNVB (ua ∗ ((ua ∗ um) ∗ un)) ≽ r min {NVBPNVB(um), NVBPNVB(un)} ; [∀ ua, um, un ∈ U ] 

Conversely, 

Let PNVB be a NVBS of a NVB BCK/BCI – algebra 𝔅MNVB  satisfying, the given conditions,  

(i) NVBPNVB(ua ∗ ub) ≽ NVBPNVB(ua) ; [∀ ua, ub ∈ U ] 

(ii) NVBPNVB (ua ∗ ((ua ∗ um) ∗ un)) ≽ r min {NVBPNVB(um), NVBPNVB(un)} ;                                                                

                                                                [∀ ua, um, un ∈ U ] 

To prove condition (1) of a NVB BCK/BCI - ideal, take ub = ua in (i) and (ii) respectively, 

(i) ⇒ NVBPNVB(ua ∗ ua) ≽ NVBPNVB(ua) ⇒ NVBPNVB(0) ≽ NVBPNVB(ua); 

                                                               [By property (iii)of definition 2.3] 

To prove condition (2) of a NVB BCK/BCI - ideal, 

take, NVBPNVB(ua) = NVBPNVB(ua ∗ 0) [By property(i)of remark 2.6]  

                    = NVBPNVB (ua ∗ ((ua ∗ ub) ∗ (ua ∗ ub)))   ; [By property (iii)of definition 2.3] 

                   = NVBPNVB (ua ∗ ((ua ∗ (ua ∗ ub)) ∗ ub))   ; [By property (ii) of remark 2.6] 

             = NVBPNVB (ua ∗ ((ua ∗ um) ∗ un))    ;     [By putting (ua ∗ ub) = um and ub = un]  

             ≽ r min {NVBPNVB(um), NVBPNVB(un)} ; [By condition (ii) in the assumption] 

             = r min {NVBPNVB(ua ∗ ub),  NVBPNVB(ub)}; [By putting (ua ∗ ub) = um and ub = un]  

⇒ NVBPNVB(ua)  ≽ r min {NVBPNVB(ua ∗ ub),  NVBPNVB(ub)}  

∴ PNVB is a NVB BCK/BCI - ideal of 𝔅MNVB  

Theorem 7.17 

Let MNVB  be a NVB BCK/BCI - algebra 𝔅MNVB . Then any NVB BCK/BCI - cut of MNVB  is a crisp  

NVB BCK/BCI - subalgebra of 𝔅MNVB  

Proof 

Let for any α1, α2, β1, β2, γ1, γ2, δ1, δ2, ρ1, ρ2, ϑ1, ϑ2 ∈ [0, 1],     

MNVB([α1,α2],[β1,β2],[γ1,γ2]),([δ1,δ2],[ρ1,ρ2],[ϑ1,ϑ2])
 be a NVB BCK/BCI -cut of MNVB.      

Assume ux, uy ∈ MNVB([α1,α2],[β1,β2],[γ1,γ2]),([δ1,δ2],[ρ1,ρ2],[ϑ1,ϑ2])
 

⇒ NVBMNVB(ux) ≥ [α1, α2], [β1, β2], [γ1, γ2] & NVBMNVB(ux) ≥ ([δ1, δ2], [ρ1, ρ2], [ϑ1, ϑ2]) 

   NVBMNVB(uy) ≥ [α1, α2], [β1, β2], [γ1, γ2] & NVBMNVB(uy) ≥ ([δ1, δ2], [ρ1, ρ2], [ϑ1, ϑ2]) 

⇒ T̂MNVB(ux) ≥ [α1, α2] ;   ÎMNVB(ux) ≤ [β1, β2] ;   F̂MNVB(ux) ≤ [γ1, γ2] &  

   T̂MNVB(ux) ≥ [δ1, δ2] ;   ÎMNVB(ux) ≤ [ρ1, ρ2] ;   F̂MNVB(ux) ≤ [ϑ1, ϑ2]             

   T̂MNVB(uy) ≥ [α1, α2] ;   ÎMNVB(uy) ≤ [β1, β2] ;   F̂MNVB(uy) ≤ [γ1, γ2]      

   T̂MNVB(uy) ≥ [δ1, δ2] ;   ÎMNVB(uy) ≤ [ρ1, ρ2] ;   F̂MNVB(uy) ≤ [ϑ1, ϑ2] 

MNVB is a NVB BCK/BCI -algebra 𝔅MNVB  ⇒ NVBMNVB(ux ∗ uy) ≽ r min{NVBMNVB(ux), NVBMNVB(uy)} 

⇒ T̂MNVB
(ux ∗ uy) ≥ min {T̂MNVB

(ux), T̂MNVB
(uy)} ; ÎMNVB

(ux ∗ uy) ≤ max {ÎMNVB
(ux), ÎMNVB

(uy)} ;  F̂MNVB
(ux ∗ uy) ≤ max {F̂MNVB

(ux), F̂MNVB
(uy)}  

⇒ (ux ∗ uy) ∈ MNVB([α1,α2],[β1,β2],[γ1,γ2]),([δ1,δ2],[ρ1,ρ2],[ϑ1,ϑ2])
 

⇒ NVB BCK/BCI - cut MNVB([α1,α2],[β1,β2],[γ1,γ2]),([δ1,δ2],[ρ1,ρ2],[ϑ1,ϑ2])
 of MNVB is a crisp NVB BCK/BCI - 

subalgebra of 𝔅MNVB
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8. Conclusions 

In this paper, two logical algebras viz., BCK and BCI are developed for neutrosophic vague binary 

sets. It’s subalgebra, ideal and cuts are also got discussed. Different kinds of ideals like p ideal, q 

ideal, a ideal, H ideal for neutrosophic vague binary BCK/BCI -algebra have been investigated. 

Theorems and propositions related to this concept are verified. In this paper BCK/BCI-algebra for 

neutrosophic sets are firstly developed. Then it is extended to neutrosophic vague and to 

neutrosophic vague binary. Work can be further extended to higher concepts like its group, rings, 

filter, near-rings etc. Behavior differences of these two algebras in different algebraic notions have to 

be addressed more deeply and properly to get a correct vision. This area demands some more notice 

and filtering to find out its correct drawbacks. Further investigations will make it, to balance its moves 

to the correct direction. Medial BCI -algebra, commutative BCK-algebra, Associative BCI – algebra, 

BCK/BCI- homomorphisms, bounded commutative BCI-algebra are a few points have to be 

addressed and have to be analyzed more. 
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Abstract: Neutrosophic Graphs are graphs that follow three-valued logic. They may be considered 

a fuzzy graph, although in some cases, it is difficult to optimize and model them using fuzzy graphs. 

In this paper, the first and second Zagreb indices, the Harmonic index, the Randic’ index and the 

Connectivity index for these graphs are investigated and some of the theorems related to these 

indices are discussed and proven. These indices are also calculated for some specific types of 

Neutrosophic Graphs, such as regular Neutrosophic Graphs and regular complete Neutrosophic 

Graphs. 

Keywords: Neutrosophic Graphs; Zagreb indices; Harmonic index; Randic’ index; Connectivity 

index 

 

 

1. Introduction 

Graph theory has many applications for modeling problems in various fields of computer 

science such as systems analysis, computer networks, transportation, operations research and 

economics. The vertices and edges of the graphs are used to represent objects and the relationships 

between them, respectively. Many of the optimization issues are caused by inaccurate information 

due to factors like lack of evidence, incomplete statistical data, and lack of sufficient information; this 

creates uncertainty in various issues. Classical Graphic Theory uses the basic concept of classical set 

theory, as proposed by Contour. In a classic graph, for each vertex or edge, there are two possibilities: 

either in the graph or not in the graph. Therefore, classical graphs cannot model uncertain 

optimization problems. Real-life issues are often unclear, making modeling by classical graphs 

difficult. Zadeh introduced the degree of membership/truth (T) in 1965 and defined the fuzzy set. 

Atanassov [14] introduced the degree of nonmembership/falsehood (F) in 1983 and defined the 

intuitionistic fuzzy set. Smarandache [15] introduced the degree of indeterminacy/neutrality (I) as an 

independent component in 1995 and defined the neutrosophic set on three components (T, I, F) [4]. 

Fuzzy set [1] is a generalized version of the classical set in which objects have different 

membership degrees. A fuzzy set gives the degree of different members between zero and one. Much 

work has already been done on fuzzy graphs, including the calculation of various topology indices, 

indicators such as Zagreb index, Randic’, harmonic, and so on. However, there is another class of 

graphs that is a broad case of fuzzy graphs. In this type of graph, known as neutrosophic graphs, in 

addition to the degree of accuracy of each membership function, the degree of its membership is 

uncertain, as well as its inaccuracy. So in many cases, it may be more logical to use this model than 

graphs in real-world problems. 
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Since that neutrosophic graphs are more efficient than fuzzy graphs for modeling real problems. 

Therefore, in this paper, we try for the first time to calculate some topological indices for this type of 

graph.  

 
2. Preliminaries 

This section, provides some definitions and theorems needed.  

Definition 1. [13] Let 𝐺 = (𝑁, 𝑀)  be a single-valued Neutrosophic graph, where 𝑁  is a 

Neutrosophic set on 𝑉 and, 𝑀 is a Neutrosophic set on 𝐸, which satisfy the following 

 

𝑇𝑀(𝑢, 𝑣) ≤ 𝑚𝑖𝑛(𝑇𝑁(𝑢), 𝑇𝑁(𝑣)), 

𝐼𝑀(𝑢, 𝑣) ≥ 𝑚𝑎𝑥(𝐼𝑁(𝑢), 𝐼𝑁(𝑣)), 

𝐹𝑀(𝑢, 𝑣) ≥ 𝑚𝑎𝑥(𝐹𝑁(𝑢), 𝐹𝑁(𝑣)), 

 

Where 𝑢 and 𝑣 are two vertices of 𝐺, and (𝑢, 𝑣) ∈  𝐸 is an edge of 𝐺. 

 

Definition 2. [2] Let 𝐺 = (𝑁, 𝑀) be a Single-Valued Neutrosophic Graph and 𝑃 is a path in 𝐺. 𝑃 is 

a collection of different vertices, 𝑣0, 𝑣1, 𝑣2, … , 𝑣𝑛 such that (𝑇𝑀(𝑣𝑖−1, 𝑣𝑖), 𝐼𝑀(𝑣𝑖−1, 𝑣𝑖), 𝐹𝑀(𝑣𝑖−1, 𝑣𝑖)) > 0 

for 0 ≤ 𝑖 ≤ 𝑛. 𝑃 is a Neutrosophic cycle if 𝑣0 = 𝑣𝑛 and 𝑛 ≥ 3. 

 

Definition 3. [2] Suppose 𝐺 = (𝑁, 𝑀) a single-valued Neutrosophic graph. 𝐺 is a connected Single-

Valued Neutrosophic Graph if there exists no isolated vertex in 𝐺. (𝑣 ∈ 𝑉𝐺  is isolated vertex, if there 

exists no incident edge to the vertex 𝑣.) 

 

Definition 4. [2] Let 𝐺 = (𝑁, 𝑀) be a Single-Valued Neutrosophic Graph, and 𝑣 ∈ 𝑉 is vertex of 𝐺. 

The degree of vertex 𝑣 is the sum of the truth membership values, the sum of the indeterminacy 

membership values, and the sum of the falsity membership values of all the edges that are adjacent 

to vertex 𝑣. And is denoted by 𝑑(𝑣), that 

𝑑(𝑣) = (𝑑𝑇(𝑣), 𝑑𝐼(𝑣), 𝑑𝐹(𝑣)) = (∑ 𝑇𝑀(𝑣, 𝑢)
𝑣∈𝑉
𝑣≠𝑢

, ∑ 𝐼𝑀(𝑣, 𝑢)
𝑣∈𝑉
𝑣≠𝑢

, ∑ 𝐹𝑀(𝑣, 𝑢)
𝑣∈𝑉
𝑣≠𝑢

). 

 

Definition 5. [2] Let 𝐺 = (𝑁, 𝑀) be a Single-Valued Neutrosophic Graph, and the 𝑑𝑚–degree of any 

vertex 𝑣 in 𝐺 is denoted as 𝑑𝑚(𝑣) where 

𝑑𝑚(𝑣) = ( ∑ 𝑇𝑀
𝑚(𝑢, 𝑣)

𝑢≠𝑣∈𝑉

, ∑ 𝐼𝑀
𝑚(𝑢, 𝑣)

𝑢≠𝑣∈𝑉

, ∑ 𝐹𝑀
𝑚(𝑢, 𝑣)

𝑢≠𝑣∈𝑉

) 

Here, the path 𝑣 = 𝑣0𝑣1 𝑣2  … 𝑣𝑛 = 𝑢 is the shortest path between the vertices 𝑣 and 𝑢, when the 

length of this path is 𝑚. 

 

Definition 6. [2] Let 𝐺 = (𝑁, 𝑀)  be a Single-Valued Neutrosophic Graph, 𝐺  is a regular 

neutrosophic graph if it satisfies the following, 

∑ 𝑇𝑀(𝑣, 𝑢)
𝑣≠𝑢

= 𝑐, ∑ 𝐼𝑀(𝑣, 𝑢)
𝑣≠𝑢

= 𝑐, ∑ 𝐹𝑀(𝑣, 𝑢)
𝑣≠𝑢

= 𝑐, 

Where 𝑐 is a constant value. 

3. Topological Indices in Neutrosophic Graphs 

In the section, we introduce Topological Indices in Neutrosophic Graphs and provide a number 

of examples. We define Zagreb indices, Harmonic index, and Randic’ index, and in finally 

Connectivity index on the neutrosophic graphs. 
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3.1. Zagreb index of First and Second Kind in Neutrosophic Graphs 

Definition 8. Let 𝐺 = (𝑁, 𝑀) be the Neutrosophic Graph whit non-empty vertex set. The first Zagreb 

index is denoted by 𝑀(𝐺) and defined as 

𝑀(𝐺) = ∑(𝑇𝑁 (𝑢𝑖), 𝐼𝑁(𝑢𝑖), 𝐹𝑁(𝑢𝑖))𝑑2(𝑢𝑖),            ∀

𝑛

𝑖=1

 𝑢𝑖 ∈  𝑉. 

Example 1. Consider the Neutrosophic Graph 𝐺 = (𝑁, 𝑀) as shown in figure 1, with the vertex set 

𝑉 = {𝑎, 𝑏, 𝑐}  such that (𝑇𝑁, 𝐼𝑁, 𝐹𝑁)(𝑎) = (0.3, 0.6, 0.7), (𝑇𝑁, 𝐼𝑁, 𝐹𝑁)(𝑏) = (0.3, 0.5, 0.6),  and 

(𝑇𝑁, 𝐼𝑁, 𝐹𝑁)(𝑐) = (0.4, 0.5, 0.6), The edge set contains (𝑇𝑀, 𝐼𝑀, 𝐹𝑀)(𝑎, 𝑏) = (0.2, 0.6, 0.8), 

(𝑇𝑀, 𝐼𝑀, 𝐹𝑀)(𝑏, 𝑐) = (0.2, 0.6, 0.7), and (𝑇𝑀, 𝐼𝑀, 𝐹𝑀)(𝑎, 𝑐)  =  (02, 0.8, 0.9). We have, 

 

 

 

 

 

 

 

Figure 1. A neutrosophic graph with 𝑉 = {𝑎, 𝑏, 𝑐} 

 

The first Zagreb index is 

𝑑(𝑎) = (0.2 + 0.2, 0.6 + 0.8, 0.8 + 0.9) = (0.4, 1.4, 1.7), 

𝑑(𝑏) = (0.2 + 0.2, 0.6 + 0.6, 0.8 + 0.7) = (0.4, 1.2, 1.5), 

𝑑(𝑐) = (0.2 + 0.2, 0.8 + 0.6, 0.9 + 0.7) = (0.4, 1.4, 1.6). 

Now, we have 

𝑑2(𝑎) = (0.04 + 0.04, 0.36 + 0.64, 0.64 + 0.81) = (0.08, 1, 1.45), 

𝑑2(𝑏) = (0.04 + 0.04, 0.36 + 0.36, 0.64 + 0.49) = (0.08, 0.72, 1.13), 

𝑑2(𝑐) = (0.04 + 0.04, 0.64 + 0.36, 0.81 + 0.49) = (0.08, 1, 1.3). 

𝑀(𝐺) = ∑(𝑇𝑁 (𝑢𝑖), 𝐼𝑁(𝑢𝑖), 𝐹𝑁(𝑢𝑖))𝑑2(𝑢𝑖)

4

𝑖=1

= (0.3, 0.6, 0.7)(0.08, 1, 1.45) + (0.3, 0.5, 0.6)(0.08, 0.72, 1.13)

+ (0.4, 0.5, 0.6)(0.08, 1. 1.3)

= (0.024 + 0.6 + 1.015) + (0.024 + 0.36 + 0.678) + (0.032 + 0.5 + 0.78) = 4.013. 

 

Definition 9. The second Zagreb index is denoted by 𝑀∗(𝐺) and defined as 

𝑀∗(𝐺) =
1

2
∑[(𝑇𝑁(𝑢𝑖), 𝐼𝑁(𝑢𝑖), 𝐹𝑁(𝑢𝑖))𝑑(𝑢𝑖)][(𝑇𝑁(𝑣𝑗), 𝐼𝑁(𝑣𝑗), 𝐹𝑁(𝑣𝑗))𝑑(𝑣𝑗)],    ∀𝑖 ≠ 𝑗 𝑎𝑛𝑑 (𝑢𝑖, 𝑣𝑗) ∈ 𝐸.  

 

Example 2. If 𝐺 is the same Neutrosophic Graph as example 1, we have 
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𝑀∗(𝐺) =
1

2
[(0.3, 0.6, 0.7). (0.4, 1.4, 1.7) × (0.3, 0.5, 0.6). (0.4, 1.2, 1.5) + (0.3, 0.6, 0.7). (0.4, 1.4, 1.7)

× (0.4, 0.5, 0.6). (0.4, 1.4, 1.6) + (0.3, 0.5, 0.6). (0.4, 1.2, 1.5)

× (0.4, 0.5, 0.6). (0.4, 1.4, 1.6)]

=
1

2
[(0.12 + 0.84 + 1.19) × (0.12 + 0.6 + 0.9) + (0.12 + 0.84 + 1.19)

× (0.16 + 0.7 + 0.96) + (0.12 + 0.6 + 0.9) × (0.16 + 0.7 + 0.96)

=
1

2
[(2.15)(1.62) + (2.15)(1.82) + (1.62)(1.82)] =

1

2
(10.3444) = 5.1722. 

Note 1. As we have seen, the value of 𝑀∗(𝐺) is less than the value of 𝑀(𝐺), and this is always the 

case. 

Theorem 1. Let 𝐺 is the Neutrosophic Graph and 𝐻 is the Neutrosophic sub graph of 𝐺 such that 

𝐻 = 𝐺 − 𝑢 then 𝑀(𝐻) < 𝑀(𝐺) and 𝑀∗(𝐻) < 𝑀∗(𝐺). 

 

Proof. Given that by omitting a vertex of 𝐺, a positive value, the sum is lost, so the proof is obvious. 

   

Theorem 2. Let 𝐺 be the regular neutrosophic graph. Then, we have 

𝑀(𝐺) = 𝑐2 × ∑(𝑇𝑁 (𝑢𝑖) +  𝐼𝑁(𝑢𝑖)+ 𝐹𝑁(𝑢𝑖)),            ∀

𝑛

𝑖=1

 𝑢𝑖 ∈  𝑉. 

Where ∑ 𝑇𝑀(𝑣, 𝑢)𝑣≠𝑢 = 𝑐,   ∑ 𝐼𝑀(𝑣, 𝑢)𝑣≠𝑢 = 𝑐,   ∑ 𝐹𝑀(𝑣, 𝑢)𝑣≠𝑢 = 𝑐. 

 

Proof. Given the degree of definition of each vertex,  

𝑑(𝑣) = (𝑑𝑇(𝑣), 𝑑𝐼(𝑣), 𝑑𝐹(𝑣)) = (∑ 𝑇𝑀(𝑣, 𝑢)
𝑣∈𝑉
𝑣≠𝑢

, ∑ 𝐼𝑀(𝑣, 𝑢)
𝑣∈𝑉
𝑣≠𝑢

, ∑ 𝐹𝑀(𝑣, 𝑢)
𝑣∈𝑉
𝑣≠𝑢

). 

On the other hand, for regular neutrosophic graphs, we know that  

 

∑ 𝑇𝑀(𝑣, 𝑢)

𝑣≠𝑢

= 𝑐, ∑ 𝐼𝑀(𝑣, 𝑢)

𝑣≠𝑢

= 𝑐, ∑ 𝐹𝑀(𝑣, 𝑢)

𝑣≠𝑢

= 𝑐, 

Therefore 

𝑑(𝑣) = (𝑑𝑇(𝑣), 𝑑𝐼(𝑣), 𝑑𝐹(𝑣)) = (𝑐, 𝑐, 𝑐). 

 

Now, by embedding the formula in the first Zagreb index, we will get the desired result. The 

proof is complete. 

 

Theorem 3. Let 𝐺 be the regular neutrosophic graph. Then, we have 

𝑀∗(𝐺) =
1

2
(𝑐2) ∑[𝑇𝑁(𝑢𝑖) + 𝐼𝑁(𝑢𝑖) + 𝐹𝑁(𝑢𝑖)][𝑇𝑁(𝑣𝑗) +  𝐼𝑁(𝑣𝑗) +  𝐹𝑁(𝑣𝑗)],  

∀𝑖 ≠ 𝑗 𝑎𝑛𝑑 (𝑢𝑖, 𝑣𝑗) ∈ 𝐸, 

Where ∑ 𝑇𝑀(𝑣, 𝑢)𝑣≠𝑢 = 𝑐,   ∑ 𝐼𝑀(𝑣, 𝑢)𝑣≠𝑢 = 𝑐,   ∑ 𝐹𝑀(𝑣, 𝑢)𝑣≠𝑢 = 𝑐. 

 

Proof. Assume 𝐺 is a regular neutrosophic graph, using the second Zagreb index formula for 𝐺, we 

have ∀ 𝑖 ≠ 𝑗 𝑎𝑛𝑑 (𝑢𝑖, 𝑣𝑗) ∈ 𝐸, 
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𝑀∗(𝐺) =
1

2
∑[(𝑇𝑁(𝑢𝑖), 𝐼𝑁(𝑢𝑖), 𝐹𝑁(𝑢𝑖))𝑑(𝑢𝑖)][(𝑇𝑁(𝑣𝑗), 𝐼𝑁(𝑣𝑗), 𝐹𝑁(𝑣𝑗))𝑑(𝑣𝑗)]  

=
1

2
∑[(𝑇𝑁 (𝑢𝑖), 𝐼𝑁(𝑢𝑖), 𝐹𝑁(𝑢𝑖))𝑑(𝑑𝑇(𝑢𝑖), 𝑑𝐼(𝑢𝑖), 𝑑𝐹(𝑢𝑖))]

× [(𝑇𝑁 (𝑣𝑗), 𝐼𝑁(𝑣𝑗), 𝐹𝑁(𝑣𝑗))𝑑 (𝑑𝑇(𝑣𝑗), 𝑑𝐼(𝑣𝑗), 𝑑𝐹(𝑣𝑗))]

=  
1

2
∑[(𝑇𝑁(𝑢𝑖), 𝐼𝑁(𝑢𝑖), 𝐹𝑁(𝑢𝑖)). (𝑐, 𝑐, 𝑐)][(𝑇𝑁 (𝑣𝑗), 𝐼𝑁(𝑣𝑗), 𝐹𝑁(𝑣𝑗)). (𝑐, 𝑐, 𝑐)]

=
1

2
∑[𝑐. 𝑇𝑁(𝑢𝑖) +  𝑐. 𝐼𝑁(𝑢𝑖) +  𝑐. 𝐹𝑁(𝑢𝑖)][𝑐. 𝑇𝑁 (𝑣𝑗) + 𝑐. 𝐼𝑁(𝑣𝑗) +  𝑐. 𝐹𝑁(𝑣𝑗)]

=
1

2
∑ 𝑐[𝑇𝑁(𝑢𝑖) + 𝐼𝑁(𝑢𝑖) + 𝐹𝑁(𝑢𝑖)]. c[𝑇𝑁(𝑣𝑗) + 𝐼𝑁(𝑣𝑗) + 𝐹𝑁(𝑣𝑗)]  

=
1

2
𝑐2 ∑[𝑇𝑁(𝑢𝑖) + 𝐼𝑁(𝑢𝑖) + 𝐹𝑁(𝑢𝑖)][𝑇𝑁(𝑣𝑗) + 𝐼𝑁(𝑣𝑗) +  𝐹𝑁(𝑣𝑗)] . 

 

The desired result was obtained. 

 

3.2. Harmonic index in Neutrosophic Graphs 

Definition 10. The Harmonic index of Neutrosophic Graph 𝐺 is defined as 

𝐻(𝐺) = ∑
1

(𝑇𝑁 (𝑢𝑖), 𝐼𝑁(𝑢𝑖), 𝐹𝑁(𝑢𝑖))𝑑(𝑢𝑖) + (𝑇𝑁(𝑣𝑗), 𝐼𝑁(𝑣𝑗), 𝐹𝑁(𝑣𝑗))𝑑(𝑣𝑗) 
,     ∀𝑖 ≠ 𝑗 𝑎𝑛𝑑 (𝑢𝑖, 𝑣𝑗) ∈ 𝐸. 

 

Example 3. We have the previous example, 

𝐻(𝐺) =
1

(0.3, 0.6, 0.7)(0.4, 1.4, 1.7) + (0.3, 0.5, 0.6)(0.4, 1.2, 1.5)

+
1

(0.3, 0.6, 0.7)(0.4, 1.4, 1.7) + (0.4, 0.5, 0.6)(0.4, 1.4, 1.6)

+
1

(0.3, 0.5, 0.6)(0.4, 1.2, 1.5) + (0.4, 0.5, 0.6)(0.4, 1.4, 1.6)

=
1

2.15 + 1.62
+

1

2.15 + 1.82
+

1

1.62 + 1.82
=

1

3.77
+

1

3.97
+

1

3.44
= 0.8078. 

 

3.3. Randic’ index in Neutrosophic Graphs 

Definition 11. The Randic’ index of Neutrosophic Graph 𝐺 is defined as  

𝑅(𝐺) = ∑((𝑇𝑁(𝑢𝑖), 𝐼𝑁(𝑢𝑖), 𝐹𝑁(𝑢𝑖))𝑑(𝑢𝑖)(𝑇𝑁(𝑣𝑗), 𝐼𝑁(𝑣𝑗), 𝐹𝑁(𝑣𝑗))𝑑(𝑣𝑗))
−1
2   ,   ∀𝑖 ≠ 𝑗 𝑎𝑛𝑑 (𝑢𝑖, 𝑣𝑗) ∈ 𝐸. 

 

Example 3. For above example, by simple calculations, it is easy to see that 

𝑅(𝐺) =
1

√(0.3, 0.6, 0.7). (0.4, 1.4, 1.7) × (0.3, 0.5, 0.6). (0.4, 1.2, 1.5)

+
1

√(0.3, 0.6, 0.7). (0.4, 1.4, 1.7) × (0.4, 0.5, 0.6). (0.4, 1.4, 1.6)

+
1

√(0.3, 0.5, 0.6). (0.4, 1.2, 1.5) × (0.4, 0.5, 0.6). (0.4, 1.4, 1.6)

=
1

√2.15 × 1.62
+

1

√2.15 × 1.82
+

1

√1.62 × 1.82
= 1.6237. 

 

3.4. Connectivity index in Neutrosophic Graphs 

Connectivity index is an important parameter in the graph. Using it, we can study and study 

some of the features of graph models. 

 

Definition 12. Let 𝐺 = (𝑁, 𝑀) be the Neutrosophic Graph. The connectivity index of 𝐺 is defined by 
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𝐶𝐼(𝐺) = ∑ (𝑇𝑁 (𝑢𝑖), 𝐼𝑁(𝑢𝑖), 𝐹𝑁(𝑢𝑖))(𝑇𝑁 (𝑣𝑗), 𝐼𝑁(𝑣𝑗), 𝐹𝑁(𝑣𝑗)) × 𝐶𝑂𝑁𝑁𝐺(𝑢𝑖, 𝑣𝑗)

𝑢𝑖,𝑣𝑗∈𝑉

. 

Where 𝐶𝑂𝑁𝑁𝐺(𝑢𝑖, 𝑣𝑗) is the strength of connectedness between 𝑢𝑖 and 𝑣𝑗. 

 

Definition 13. The strength of connectedness between 𝑢𝑖 and 𝑣𝑗 is defined as 

 

𝐶𝑂𝑁𝑁𝑃(𝑢𝑖, 𝑣𝑗) = ( min
𝑒∈𝑃𝑢𝑖𝑣𝑗

𝑇𝑀 (𝑒) , max
𝑒∈𝑃𝑢𝑖𝑣𝑗

𝐼𝑀(𝑒) , max
𝑒∈𝑃𝑢𝑖𝑣𝑗

𝐹𝑀(𝑒)), 

 

Where 𝑃𝑢𝑖𝑣𝑗
 is the path between 𝑢𝑖 and 𝑣𝑗. 

 

|𝐶𝑂𝑁𝑁𝑃(𝑢𝑖, 𝑣𝑗)| = 2 ( min
𝑒∈𝑃𝑢𝑖𝑣𝑗

𝑇𝑀(𝑒)) − ( max
𝑒∈𝑃𝑢𝑖𝑣𝑗

𝐼𝑀(𝑒)) − ( max
𝑒∈𝑃𝑢𝑖𝑣𝑗

𝐹𝑀(𝑒)), 

 

Then 

𝐶𝑂𝑁𝑁𝐺(𝑢𝑖, 𝑣𝑗) = max
𝑃

{|𝐶𝑂𝑁𝑁𝑃(𝑢𝑖, 𝑣𝑗)|}. 

 

Example 4. For example, in the above figure, the strength of connectedness between: 

𝑎 and 𝑏 from the direct path 𝑃1 = 𝑎𝑏 is  

 
𝐶𝑂𝑁𝑁𝑃1

(𝑎, 𝑏) =  𝑀𝑎𝑏 = (0.2, 0.6, 0.8), 

From path 𝑃2 = 𝑎𝑐𝑏 is 

 
𝐶𝑂𝑁𝑁𝑃2

(𝑎, 𝑏) = (𝑚𝑖𝑛{0.2, 0.2}, 𝑚𝑎𝑥{0.8, 0.6}, 𝑚𝑎𝑥{0.9, 0.7}) = (0.2, 0.8, 0.9); 

 

𝑎 and 𝑐 from the direct path 𝑃1 = 𝑎𝑐 is 

 
𝐶𝑂𝑁𝑁𝑃1

(𝑎, 𝑐) =  𝑀𝑎𝑐 = (0.2, 0.8, 0.9), 

From path 𝑃2 = 𝑎𝑏𝑐 is  

 

𝐶𝑂𝑁𝑁𝑃2
(𝑎, 𝑐) = (𝑚𝑖𝑛{0.2, 0.2}, 𝑚𝑎𝑥{0.6, 0.6}, 𝑚𝑎𝑥{0.8, 0.7}) = (0.2, 0.6, 0.8); 

 

𝑏 and 𝑐 from the direct path 𝑃1  = 𝑏𝑐 is 

 
𝐶𝑂𝑁𝑁𝑃1

(𝑏, 𝑐) =  𝑀𝑏𝑐 = (0.2, 0.6, 0.7), 

From path 𝑃2 = 𝑏𝑎𝑐 is 

 
𝐶𝑂𝑁𝑁𝑃2

(𝑏, 𝑐) = (𝑚𝑖𝑛{0.2, 0.2}, 𝑚𝑎𝑥{0.6, 0.8}, 𝑚𝑎𝑥{0.8, 0.9}) = (0.2, 0.8, 0.9). 

 

Then, we have for 𝑎 and 𝑏 

 
|𝐶𝑂𝑁𝑁𝑃1

(𝑎, 𝑏)| =  2 × (0.2) − 0.6 − 0.8 =  −1, 

 |𝐶𝑂𝑁𝑁𝑃2
(𝑎, 𝑏)| = 2 × (0.2) − 0.8 − 0.9 =  −1.3. 

For 𝑎 and 𝑐, 
|𝐶𝑂𝑁𝑁𝑃1

(𝑎, 𝑐)| = 2 × (0.2) − 0.8 − 0.9 =  −1.3, 

|𝐶𝑂𝑁𝑁𝑃2
(𝑎, 𝑐)|  =  2 × (0.2) − 0.6 − 0.8 =  −1. 

 

For 𝑏 and 𝑐, 
|𝐶𝑂𝑁𝑁𝑃1

(𝑏, 𝑐)| = 2 × (0.2) − 0.6 − 0.7 =  −0.9, 

|𝐶𝑂𝑁𝑁𝑃2
(𝑏, 𝑐)| = 2 × (0.2) − 0.8 − 0.9 =  −1.3. 
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Since we have 

𝐶𝑂𝑁𝑁𝐺(𝑎, 𝑏) =  −1;   𝐶𝑂𝑁𝑁𝐺(𝑎, 𝑐) =  −1;    𝐶𝑂𝑁𝑁𝐺(𝑏, 𝑐) =  −0.9. 
 

Then 𝐶𝐼(𝐺) is calculated as follows 

 

𝐶𝐼(𝐺) = ∑ (𝑇𝑁(𝑢𝑖), 𝐼𝑁(𝑢𝑖), 𝐹𝑁(𝑢𝑖))(𝑇𝑁 (𝑣𝑗), 𝐼𝑁(𝑣𝑗), 𝐹𝑁(𝑣𝑗)) × 𝐶𝑂𝑁𝑁𝐺(𝑢𝑖, 𝑣𝑗)

𝑢𝑖,𝑣𝑗∈𝑉

= (0.3, 0.6, 0.7). (0.3, 0.5, 0.6) × (−1) + (0.3, 0.6, 0.7). (0.4, 0.5, 0.6) × (−1)

+ (0.3, 0.5, 0.6). (0.4, 0.5, 0.6) × (−0.9)

= (0.09 + 0.3 + 0.42)(−1) + (0.12 + 0.3 + 0.42)(−1) + (0.12 + 0.25 + 0.36)(−0.9)

= (0.81)(−1) + (0.84)(−1) + (0.73)(−0.9) = −2.307. 
 

The connectivity index of 𝐺 is equal -2.307, which the negative sing indicates the high level of 

false and indeterminacy information in the problem. 

 

Theorem 4. Let 𝐺  and 𝐻  be the two Neutrosophic Graphs are isomorphic, then the topological 

indices values of two Neutrosophic Graphs are equal. 

 

Proof. To prove, let 𝐺 = (𝑉𝐺 , 𝑁𝐺, 𝑀𝐺)  and 𝐻 = (𝑉𝐻, 𝑁𝐻, 𝑀𝐻) be isomorphic Neutrosophic Graphs. 

Hence there is an identity function 𝜇𝑁: 𝑁𝐺(𝑢) → 𝑁𝐻(𝑢∗), for all 𝑢 ∈ 𝑉𝐺  there exist 𝑢∗ ∈ 𝑉𝐻  as well as 

𝜇𝑀: 𝑀𝐺(𝑢, 𝑣) → 𝑀𝐻(𝑢∗, 𝑣∗), then each vertex of 𝐺  corresponds to an vertex in 𝐻 , with the same 

membership value and the same edges. Hence, the Neutrosophic graph structure may differ but 

collection of vertices and edges are same gives the equal topological indices value. 

 

Theorem 5. Let 𝐺 = (𝑉𝐺, 𝑁𝐺, 𝑀𝐺), is a neutrosophic Graph and 𝐻 is the neutrosophic sub graph of 𝐺, 

Such that 𝐻 is made by removing edge 𝑢𝑣 ∈ 𝑀𝐺 from 𝐺. Then, we have, 𝐶𝐼(𝐻) < 𝐶𝐼(𝐺) iff 𝑢𝑣 is 

a bridge. 

 

Proof. To prove the first side of the theorem we consider two cases: 

 

Case 1. Let 𝑢𝑣 be an edge with all three components having the least value, Therefore the edge 𝑢𝑣 

will have no effect on the result. Then we have 𝐶𝐼(𝐻) = 𝐶𝐼(𝐺). 

 

Case 2. Now suppose that 𝑢𝑣 is an edge that has maximum components, so they will have an effect 

on 𝐶𝑂𝑁𝑁𝐺(𝑢, 𝑣). Therefore, by removing edge 𝑢𝑣, the value of 𝐶𝑂𝑁𝑁𝐺(𝑢, 𝑣) will decrease, then we 

have 𝐶𝐼(𝐻) < 𝐶𝐼(𝐺).  Since the bridge is called the edge that has its deletion reducing the 

𝐶𝑂𝑁𝑁𝐺(𝑢, 𝑣), However, 𝑢𝑣 is a bridge. 
Conversely, given that 𝑢𝑣 is a bridge. According to the definition of bridge we have, for the 

edge 𝑢𝑣, 𝐶𝑂𝑁𝑁𝐺(𝑢, 𝑣) > 𝐶𝑂𝑁𝑁𝐺−𝑢𝑣(𝑢, 𝑣), So we conclude that, 𝐶𝐼(𝐻) < 𝐶𝐼(𝐺). 

 

4. Applications 

Fuzzy set theory and intuitionistic fuzzy set theory are useful models for modelling problems in 

real life. But they may not be sufficient in modelling of indeterminate and inconsistent information 

encountered in real word. In cases where our information is incomplete or part of our information is 

incompatible with each other, depending on the features of the neutrosophic graphs, we can use them 

for modeling. However, neutrosophic graphs have many application in real life. For example, social 

network model, detection of a safe root for an Airline journey and military problems are application 

neutrosophic graph theory [4]. Note that to many applications that neutrosophic graphs have, 

obtaining topological indices can be a way to compare the different problems that are modeled by 
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neutrosophic graphs. For example, by obtaining different indicators for the two social networks 

Telegram and Whatsapp, we can analyze some of the features of the network and their impact. 

To see more applications of the neutrosophic graphs, you can refer to [5-12]. 

Here we refer to one of the applications of the connectivity index for an example of [4].  

 

4.1. Optimal flight path for weather emergency landing 

In this application, we use the concept of rough neutrosophic digraph for decision-making in 

real-life problems [4]. There, provided a formula for obtaining the desired result, and after 

performing the calculations, reached the desired result.  

Now, using the connectivity index for different paths, it is possible to predict the optimal path 

for flying in weather emergency landing. 

Suppose 𝑉 = {𝐶ℎ𝑖𝑐𝑎𝑔𝑜(𝐶𝐻), 𝐵𝑒𝑖𝑗𝑖𝑛𝑔(𝐵𝐽), 𝐿𝑎ℎ𝑜𝑟𝑒(𝐿𝐻), 𝑃𝑎𝑟𝑖𝑠(𝑃𝐴), 𝐼𝑠𝑡𝑎𝑛𝑏𝑢𝑙(𝐼𝑆)} , be the set of 

cities under consideration and R an equivalence relation on V, where equivalence classes represent 

cities having same characteristics. 

Assume that a flight Boeing 747 of Pakistan International Airways (PIA) travels to these cities. 

In case of bad weather, the flight will be directed to the city with good weather condition among the 

cities under consideration. 

Let 

 𝑁 = {𝐶𝐻, 0.1, 0.2, 0.8), (𝐵𝐽, 0.9, 0.7, 0.5), (𝐿𝐻, 0.8, 0.4, 0.3), (𝑃𝐴, 0.6, 0.5, 0.4), (𝐼𝑆, 0.2, 0.4, 0.6)}, 

And 

𝑀 = {((𝐵𝐽, 𝐶𝐻), 0.1, 0.1, 0.3), ((𝐿𝐻, 𝐶𝐻), 0.1, 0.2, 0.3), ((𝐵𝐽, 𝐿𝐻), 0.1, 0.3, 0.2), 

 ((𝐼𝑆, 𝐵𝐽), 0.2, 0.1, 0.1), ((𝑃𝐴, 𝐵𝐽), 0.1, 0.1, 0.4), ((𝑃𝐴, 𝐿𝐻), 0.2, 0.2, 0.3)}. 

 

Now, we obtain the connectivity index for all paths. 

The direct path 𝐵𝐽 _ 𝐶𝐻 

𝐶𝑂𝑁𝑁𝑃(𝐵𝐽, 𝐶𝐻) = 2(0.1) − 0.1 − 0.3 =  −0.2 , 
The direct path 𝐵𝐽 _ 𝐿𝐻 

𝐶𝑂𝑁𝑁𝑃(𝐵𝐽, 𝐿𝐻) = 2(0.1) − 0.3 − 0.2 =  −0.3,  
The direct path 𝐿𝐻 _ 𝐶𝐻 

𝐶𝑂𝑁𝑁𝑃(𝐿𝐻, 𝐶𝐻) = 2(0.1) − 0.2 − 0.3 =  −0.3,  
The direct path 𝐼𝑆 _ 𝐵𝐽 

𝐶𝑂𝑁𝑁𝑃(𝐼𝑆, 𝐵𝐽) = 2(0.2) − 0.1 − 0.1 =  0.2,  
The direct path 𝑃𝐴 _ 𝐵𝐽 

𝐶𝑂𝑁𝑁𝑃(𝐵𝐽, 𝐶𝐻) = 2(0.1) − 0.1 − 0.4 =  −0.3,  
The direct path 𝑃𝐴 _ 𝐿𝐻 

𝐶𝑂𝑁𝑁𝑃(𝑃𝐴, 𝐿𝐻) = 2(0.2) − 0.2 − 0.3 =  −0.1.  

 
Hence, as expected from [4], the weather condition between Beijing and Istanbul is good, and 

Boeing 747 can use this path in case of weather emergency. We were able to achieve the desired result 

with much shorter calculations. Also, if needed, we can calculate the connectivity index for indirect 

paths and finally for neutrosophic graph. 

For connectivity index of 𝐺 we have, 
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𝐶𝐼(𝐺) = ∑ (𝑇𝑁(𝑢𝑖), 𝐼𝑁(𝑢𝑖), 𝐹𝑁(𝑢𝑖))(𝑇𝑁(𝑣𝑗), 𝐼𝑁(𝑣𝑗), 𝐹𝑁(𝑣𝑗)) × 𝐶𝑂𝑁𝑁𝐺(𝑢𝑖, 𝑣𝑗)

𝑢𝑖,𝑣𝑗∈𝑉

= (0.63)(−0.2) + (0.76)(−0.3) + (0.4)(−0.3) + (1.09)(−0.3) + (0.8)(−0.1)

+ (0.76)(0.2) + (0.5)(−0.3) + (0.58)(−0.2) + (0.8)(−0.5) + (0.48)(−0.3)

+ (0.58)(−0.4) + (0.48)(−0.5)

=  −0.126 − 0.228 − 0.12 − 0.327 − 0.08 + 0.152 − 0.15 − 0.116 − 0.4 − 0.144

− 0.232 − 0.24 =  −1.783. 

 

As you can see, the negative numerical connectivity index was obtained, which means that our 

incorrect information was less than our correct information. 

 

Conclusion 

In this paper, for the first time, some topological indices for neutrosophic graphs are defined. 

This topic has a lot of work to do, and it can also be used for its results on various issues related to 

this category of graphs. In the rest of our research and in future articles, we will address more of these 

theorems and their applications.   
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Abstract: Sustainability of sheep and goat production systems is a significant task for any 

organization that aims for long term goals. Housing and feeding selection for goat farming is the 

most important factor that should be considered before setting out the goat farm. The decision 

framework of housing selection should include environmental, social and human impact for the 

long term, rather than on short-term gains. In the selection process, various parameters are 

involved such as housing materials, area to prevent water stagnation, ventilation, enough space for 

the pen and run system, space for feeders and water troughs. Those parameters highlight the quality 

of housing in relation to aspects of traditional breeding provided by the organizations. However, the 

process of housing selection is often led by hands on experience which contains vague, ambiguous 

and uncertain decisions. To overcome this issue it is necessary to frame an efficient algorithm which 

could remove the entire barrier in the decision making process. In this paper we propose a 

neutrosophic multi-criteria decision making framework that combines the TODIM method with the 

SD- HNWA operator. The resulting multi-criteria decision analytical MCDM framework is then 

applied in selecting the best system in housing and feeding of goats at a mixed farming agrofarm in 

India. The proposed approach allows us to establish the neutrosophic based value function that 

measures the degree to which one alternative is superior to others by calculating accurate number of 

information in pair wise comparison in terms of gain and loss. The outcomes of the proposed 

method are compared with the use of the TOPSIS method to prove its efficiency and validate the 

results. 

 

Keywords: MCDM, Hexagonal Neutrosophic numbers, Similarity Degree, Aggregated Weights,      

             TODIM, TOPSIS. 

 

1. Introduction 

Live stock management is considered as one of the most important study topic as it plays a vital 

role in self employment for the younger generation with higher level of educational qualifications in 

a country like India, with a traditionally high rate of population growth. It is also considered as an 
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employment intervention strategy for the younger generation for the self employment of the youth. 

Goats are among the main meat producing animal in India where it has huge domestic demand. As a 

result, goat production system in India is shifting to intensive system of management.The goat 

rearing using improved management practices concentrates on maximization of the returns from the 

view of the entrepreneur.  

However, without any systematic study it is difficult to assess the economic viability of the goat 

farming, as the whole system is built upon nature. The good management practice in livestock 

management is the key for the resilience, social, economical and ecological sustainability and 

preservation of bio-diversity in pastoral eco-systems, especially in the rural areas where goat 

production plays a relevant role in the livehood for farmers. For example, Shalander [25] has 

proposed a multi-disciplinary project on transfer of technology for sustainable goat production in 

which he indicates that lack of technical knowledge in housing and feeding management system per 

capita income in goat rearing is not being up to the expected margin of the goat farmers. Biswas et al. 

[9] shows that the growth rate of goat feeder with supplements by additional concentrate with 

grazing was more when compared with the normal grazing goats. 

In the real world, just like other decision making problem such as supplier selection or 

candidate selection, the challenge of uncertainty in the process of housing and feeding selection in 

live-stock management is inevitable owing to the fact that the consequences of events are not 

precisely known. In addition human judgmental analysis also contributes to its intricacy in the 

decision making analysis. To overcome this vagueness and intricacy in decision making this study 

aims to propose an integrated framework under neutrosophic environment to evaluate alternative 

choices in terms of management system of housing and feeding.  

In this research the TODIM and TOPSIS methods will be applied in the processing of selecting 

such alternatives. The TODIM method (an acronym for Interactive Multi-Criteria Decision Making 

in Portuguese) is a discrete multi-criteria method founded on prospect theory which underlies a 

psychological theory in it, while in practice all other discrete multi-criteria methods assume that the 

decision maker always looks for the solution corresponding to the maximum of some global 

measure. In this way, the method is based on a descriptive theory, proved by empirical evidence, of 

how people effectively make decisions when they are under risk. The mathematical structure of 

TODIM allows measuring the degree to which one alternative is superior to others and then ranking 

the alternatives by computing the global value of each alternative. That structure is embedded in the 

paradigm of prospect theory. Gomes and Lima [18] first applied TODIM in its classical formulation 

as a tool for ranking projects based on the environmental impacts of alternative road standards in 

Brazil. A number of other applications of TODIM has appeared in the literature since then as it is 

commented in the section 2.2. Similarly, the TOPSIS method [23] is used to weight and compare 

alternatives against a set of criteria and then select the best one. The application of both TODIM and 

TOPSIS are then compared one against the other. The novelty of this framework lies in studying the 

behavioral risk analysis under neutrosophic environment as pointed out in the above paragraph. 

     The main contribution of this article is as follows 
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 A framework is designed that emphasizes the importance of shelter and feeding system for 

sustainable and productive goat farming.   

 Two well established Multi-Criteria Decision Making (MCDM) methods dealing with 

imprecise information are applied to a quite important problem in India and compared.  

 Relevant criteria and sub-criteria are defined for the alternatives to maintain accuracy and 

consistency in selecting the alternatives.  

2. Literature review 

2.1. Commercial goat farming 

      Raising animals lie upon a set of activities that are dependent upon biotic and socio-economic 

factors. Choudhary et al. [35] highlights that India is the rich in its repository of goat genetic resource 

with 28 recognized breeds with higher proportion of non-descriptive or mixed breeds. A study was 

undertaken by Patil et al. [28] to compare the grazing system and stall feeding system in goats in 

Gulbarga District in Karnataka which highlighted that in stall feeding system of goat rearing, goats 

are found healthier and weight gain was much faster than grazing system. Kumar [26] investigated 

on commercial goat farming in India and presented that planned management and technology 

based system would help in increasing the goat productivity in goat farming and bridge the 

demand-supply gap. Argüello [8] has presented a review on trends in goat research which talks 

about the pathology, reproduction, milk and cheese production and quality, production systems, 

nutrition, hair production, drugs knowledge and meat production. 

2.2. Multi Criteria Decision Making  

 Zadeh [42] put forward the concept of fuzzy sets in 1965. Later the theory of fuzzy sets 

gradually developed in the further years. The theory of ‘intuitionistic fuzzy set’ [IFS] was proposed 

by Atanassov [10] in 1986. Intuitionistic fuzzy set [IFS] was extended to ‘Interval intuitionistic fuzzy 

sets’ [IIFS] by Atanassov and Gargov [11]. A number of researchers have contributed their research 

to the study of MCDM and a commendable accomplishment has been obtained in fuzzy sets. 

Smarandache [36] proposed neutrosophic set based on Neutrosophy in 1998. The neutrosophic 

theory takes into account the dynamic features of all limitations to handle uncertain, indeterminate 

situations. Abdel-Basset et al. [2] proposed uncertainty assessments of linear time-cost tradeoffs 

using neutrosophic set considering the neutrosophic activity duration of time-cost tradeoffs in 

project management such as the tradeoffs between the project completion time and the cost and the 

uncertain conditions of environment of projects. Abdel-Basset [6] developed and applied a novel 

decision making model for sustainable supply chain under uncertainty environment.  

     Wang et al. [38] developed ‘Single Valued Neutrosophic Set’ (SVNS) and proposed various 

properties of set-theoretic operators to deal with uncertain, indeterminate and inconsistent data. Ye 

[40] proposed trapezoidal neutrosophic number an extension from SVNS and trapezoidal fuzzy 

number and defined its score and accuracy function with aggregating operators in [41]. 

Smarandache [37] introduced the plithogenic set as generalization of crisp, fuzzy, intuitionistic fuzzy 

and neutrosophic sets whose elements are characterized by many attribute values which have 
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corresponding contradiction degree values between each attribute value and the dominant attribute 

value. Abdel-Basset [1] developed an evaluation framework based on plithogenic set theory for 

smart disaster response systems in uncertainty environment that deals more effectively with 

disaster by the effective communication of the information provided by the sensors with the 

response teams.  

 Decision making situations in real life are much complicated when the decision makers (DMs) 

have to fit in the best alternatives with respect to the given multiple criteria. Biswas et al. [14] 

established TOPSIS strategy for (MCDM) in trapezoidal neutrosophic environment using the 

maximum deviation strategy and also developed an optimization model to obtain the weight of the 

attributes which are incompletely known or completely unknown. Abdel-Basset [5] proposed a 

decision making problem to solve a supply chain problem of inventory location using the best-worst 

method based on a novel plithogenic model.  

Pramanik and Mallick [30] proposed a VIKOR method for group Decision Making Problem 

involving trapezoidal neutrosophic number and they adapted a problem of Investment Company 

from [16] and provided a comparative analysis. Mondal and Pramanik [29] proposed MCDM 

approach for teacher recruitment in higher education with unknown weights based on score and 

accuracy function, hybrid score and accuracy functions under simplified neutrosophic environment. 

Biswas et al. [12,13] developed a new methodology for neutrosophic MCDM with unknown weight 

information and a Cosine similarity measure based MCDM with trapezoidal fuzzy neutrosophic 

numbers. Abdel-Basset [3] designed resource levelling problem to minimize the cost of daily 

resource fluctuation in construction projects under neutrosophic environment to overcome the 

ambiguity caused by real world problems. 

 Based on observations of human behaviour, studies have found that human decision making is 

not completely rational under practical decision situations. After undertaking a number of surveys 

and experiments, Kahneman and Tversky [24] proposed Prospect theory partially the subject of the 

Nobel Prize for Economics awarded in 2002, which belongs to the field of cognitive psychology and 

describes how people make decision under conditions of risk.    

 Gomes and Lima [20] used the TODIM method in order to show how human judgements in 

practical multi-criteria analysis fit in to the framework of Prospect Theory and additive difference 

model. Gomes et al. [19] used the classical TODIM formulation to recommend alternatives for 

destination of natural gas reserves recently discovered in Santos Basin in Brazil. Gomes et al. [22] 

proposed a behavioural multi-criteria decision analysis by using the TODIM method with criteria 

interactions. Gomes and Rangel [21] developed a novel approach using TODIM method on rental 

evaluation of residential properties carried out together with real estate agents in the city of Volta 

Redonda, Brazil which has made many successful applications in selection problems. Zindani et al. 

[44] proposed a material selection approach using the TODIM method and applied it to find the best 

suited materials for two products, engine flywheel and metallic gear.Duarte [7] proposed the use of 

multi criteria decision analysis to valuation of six Brazilian banks by applying the fuzzy TODIM 

method.   
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  Sang and Liu [34] developed the IT2 FSs-based TODIM method to green supplier selection for 

automobile manufacturers by introducing a new distance computing method. Wang et al. [39] 

proposed a likehood-based TODIM approach on multi-hesitant fuzzy linguistic information 

(MHFLSs) which is an extension of (HFLSs) for selection and evaluation of contractors in logistics 

outsourcing. Chakraborty and Chakraborty [15] used TODIM in identifying the most attractive and 

affordable under-construction housing project in the city of Kolkata in India. Rangel et al. [32] used 

TODIM a multi-criteria decision aiding method in the evaluation of the various types of access to the 

broadband internet available in Volta Redonda, Brazil. Candidate selection is a significant task for 

any organization that aims to select the most appropriate candidates who lead the firm forward 

through his strong organizational skill. To overcome this tough task Abdel-Basset [4] proposed a 

bipolar neutrosophic multi criteria decision making framework for professional selection that 

employs a collection of neutrosophic analytical network process and TOPSIS under bipolar 

neutrosophic numbers.  

 Lourenzutti and Krohling [27] combined TOPSIS and TODIM methods to propose the 

Hellinger distance in MCDM which serves as an illustration to both methods. Fan et al. [17] 

proposed an extension of TODIM (H-TODIM) to solve the hybrid MCDM problem in which 

attribute values have three forms crisp number, interval number and fuzzy number. Ren et al. [33] 

proposed a Pythagorean fuzzy TODIM approach to analyse MCDM problem. Qin et al. [31] 

proposed generalizing of the TODIM method under triangular intuitionistic fuzzy environment.  

Zhang et al. [43] proposed an extended multiple attribute group decision making based on the 

TODIM method to solve the MCDM problem in which the attribute values are expressed with 

neutrosophic number.  

3. Preliminaries 
3.1. Hexagonal Neutrosophic Weighted Aggregated Operator (HNWA) 

     Let   )(),(),( 1111111111111111111
~ z,y,x,w,v,ur,q,p,n,m,lf,e,d,c,b,= aA be a collection of 

hexagonal neutrosophic numbers, then the HNWA:  n is defined as follows  

jjn A
n

AAA
j

HNWA ~)~.,.........~,~(
1

21 


  
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3.2. Distance between two Hexagonal Neutrosophic numbers 

     Let  )(),(),( 1111111111111111111
~ zyxwvurqpnmlfedbaA ,,,,,,,,,,,,,,,= c  

  )(),(),( 2222222222222222222
~ zyxwvurqpnmlfedbaA ,,,,,,,,,,,,,,,= c be two 

hexagonal neutrosophic numbers then the weighted distance between 21
~~ AandA  is defined as 

follows. 
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3.3. Similarity Degree between two Hexagonal Neutrosophic numbers

       
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   be two hexagonal neutrosophic numbers and let 

   )],,,,,(),1,1,1,1,1,1(),[~
2222222222222222222 fedcbarqpnmlz,y,x,w,v,(uAC   be the  

complement of 2
~A then the Degree of Similarity between  21

~~ AandA is defined as follows. 
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3.4. Hexagonal Neutrosophic Decision Matrix 

     Let nmijrR  )~(~
  .If  all ijr~  are hexagonal  neutrosophic  number then  
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           ijijijijijijijijijijijijijijijijijijij zyxwvurqpnmlfedcbarR ~,~,~,~,~,~,~,~,~,~,~,~,~,~,~,~,~,~~~
   

 is a hexagonal neutrosophic decision matrix. 
3.5. Aggregated Hexagonal Neutrosophic Decision Matrix  

     Let nm
k

ij
k rR  )~(~ )()(  ),......3,2,1( tk   be a‘t’ neutrosophic decision matrix evaluated  

 by the decision makers ).....3,2,1( mdDM d   respectively, then the aggregated hexagonal 

neutrosophic decision matrix nmijrR  )~(~
is defined as  
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3.6. Degree of Similarity 

     Let nm
k

ij
k rR  )~(~ )()(  ),......3,2,1( tk   be a‘t’ neutrosophic decision matrix and          

     nmijrR  )~(~  be their aggregated hexagonal neutrosophic decision matrix then  
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is called the degree of similarity between )(~ kR and R~
 

3.7. Determine the weight of experts using Degree of Similarity: 

     If the hexagonal neutrosophic decision matrix ),.......2,1,()~(~ )()( tknmrR k
ij

k   are 

non-identical,then the weight vectors of the experts are expressed as follows.  
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4. A Comparative Analysis of TODIM and TOPSIS Methods. 
4.1. TODIM  
    To solve the MCDM problem with hexagonal neutrosophic information’s we propose a 
hexagonal neutrosophic aggregation TODIM method based on prospect theory under the decision 
maker’s behavioral risk and arithmetic mean operator. 

Let ),....,( 21 mi AAAA   be the alternatives, and },.......,,{ 21 nj CCCC  be the criteria. 
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 Let ),....,( 21 nwwww  be the weights of ,10,  jj wC and .1
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be a hexagonal  neutrosophic decision matrix, where ),,(~
ijijijij FITr   is an attribute value  

given by the experts for the alternatives iA  with the criteria jC , ]1,0[],1,0[],1,0[  ijijij FIT , 

30  ijFijIijT  ),....,2,1(),,......,2,1( njmi   

    The proposed method is presented as follows. 
Stage 1. 
 Step 1. Construct a decision matrix of dimension nm  by using the information provided by the 

decision maker for the alternatives iA under the criteria jC . The thm  hexagonal neutrosophic decision 

matrix denoted by the decision maker is defined as follows. 
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Step 2: Find the aggregated hexagonal neutrosophic decision matrix of all the three decision 

makers..The aggregated hexagonal neutrosophic decision matrix nmijrR 
 )~(~ is defined as given 

below.       
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Step 3.  Calculate the normalized hamming distance for each )~,~( RR  using the equation (2) 

Step 4.  Calculate the Degree of Similarity between 21 AandA   using equation (3) and (4) 
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Step 5.  Calculate the weight vector )(kw  using equation (5)      

  
Step 6. Using equation (1) calculate HNWA operator 
 
Step 7.  Calculate the score value using the equation 
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Step 8.  Calculate the normalized hamming distance for the aggregated decision matrix using (2) 

Step 9.  When the aggregated matrix is brought into expression (7), matrix ),( pi AA  will be 

derived .The function ),( pi AA  is used to represent the degree to which alternative i is better than j. 

 pij AA ,  is the sum of the sub-function where nj ....,1 . Sub-function   pij AA ,  indicates the 

degree to which i is better than j when a particular criteria c is given 
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The parameter   shows the dilution factor of the loss. If 0~~ pjij rr  then  pij AA ,  

represents the gain and if 0~~ pjij rr  then  pij AA ,  represents the loss. 

Step 10.  On the basics of the above equation the overall dominance degree is obtained as 
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Step 11. Calculate the aggregated dominance matrix 
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Step 12. Calculate the overall dominance degree matrix nmpi AA  )],([   

Step 13. Then the overall value of each iA can be calculated using the equation  
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Step 14. Rank all alternatives and select the most desirable one in accordance with  .iA The 
alternative with maximum value is the best one. 
4.2. TOPSIS 
Stage 2: Applying the information’s derived from step 1 to 6 in stage 1, move on to step 7 of stage 2 

Step 7: Let 1B  be the set of benefit attributes and 2B  be the set of cost attributes, of the alternatives 

respectively. Let  B  be the hexagonal neutrosophic positive ideal solution and B be the 

hexagonal neutrosophic negative ideal solution. Then B  and B are defined as follows. 

   21 )1,1,1,1,1,1(),1,1,1,1,1,1(),0,0,0,0,0,0(,)0,0,0,0,0,0(),0,0,0,0,0,0(),1,1,1,1,1,1( BjrBjrB jj  

   21 )0,0,0,0,0,0(),0,0,0,0,0,0(),1,1,1,1,1,1(,,)1,1,1,1,1,1(),1,1,1,1,1,1(),0,0,0,0,0,0( BjrBjrB jj    

Step 8:  Calculate the separation measures, 
ii SandS of each alternative from the hexagonal 

neutrosophic positive ideal solution and the hexagonal neutrosophic negative ideal solution as 
follows. 

          

)11(),
1

(1

)10(),
1

(1















jijji

jijji

r
n

j
rdw

n
S

r
n

j
rdw

n
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Step 9: Calculate the relative closeness coefficient of the hexagonal neutrosophic ideal solution. The 

relative closeness coefficient of the alternative iA  is given as follows. 

                   )12(10, 







i
ii

i
i C

SS
SC  

Step 10: Make a decision for selecting the preference alternative by ranking the closeness 

coefficient in the descending order of iC  to select the best choice. 

5. Case Analysis: 
In this section, a case study is represented for the proposed multi-criteria group decision-making 

method. This is related to assessing the best system of housing and feeding of goats in the existing 
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Goat farm rearing in which goats grow healthier, gain better body weight, and are safer on health 
grounds. A group of three decision-makers (D1, D2 and D3) are requested to assess the four 
alternatives (A1to A4) with respect to the four criteria’s, (C1 to C4) defined by this group of 
decision-makers to appraise the alternatives. These criteria and their definitions are represented as 
follows: 
Alternatives: 

1A -  Stall feeding system with normal flooring (intensive system)  

2A  -  Grazing system (extensive system) 

3A   - Elevated floor shed with rotational grazing system 

4A  -  A part of both extensive and intensive grazing system 
  The consideration of the criteria and sub criteria’s after a brief study on the previous literature    
  review and discussion with the experts are stated below.  

Criteria: 
1C -   Floor space requirements 

      (Covered area, Open area, Ventilation, Bedding, Confinement, Site location) 
2C -  Feeding (Feeder) and watering space requirement  

      (Feeder size, Fodder type, Quantity, Food Schedule, immunization feeder, feed storage room) 
3C -  Maintenance of health and sanitization 

      (Nutritional ratio, Vaccination, Climate pattern, Temperature, Supplementary feeding,    
       Cleanliness) 

4C - Productivity 
    (Capital, Typologies of farms, Technology integration, Agro climatic characteristics, Market    
    value, Place of selling) 

     A questionnaire is prepared and handed over to the domain experts. These experts further   
graded the degree of the statement as given below. 
 
Statement Very 

high 
High Fair Average Medium Satisfactory Low Very  

low 
Not 
 sure 

Score  0.9  0.8  0.7   0.6   0.5     0.4 0.3 0.2 0.1 
                         Table 5.1. Rating scale used by experts 
Solution. 

Step 1. The judgment of the three decision makers for the alternatives iA under the four criteria were 

presented using hexagonal neutrosophic number as shown in Table 5.2 . 
                           Criteria 

DMs Alternatives C1 C2 C3 C4 

 
 
 

A1 

)]9,.9,.8,.7,.6,.5(.
),1,.1,.1,.1,.1,.1(.

),6,.5,.4,.3,.2,.1[(.  
)]9,.9,.8,.7,.6,.5(.

),1,.1,.1,.1,.1,.1(.
),6,.5,.4,.3,.2,.1[(.  

)]1,.1,.1,.1,.1,.1(.
),8,.7,.6,.5,.4,.3(.
),9,.9,.8,.8,.8,.8[(.  

)]7,.7,.6,.6,.5,.5(.
),3,.3,.3,.2,.2,.1(.
),7,.6,.5,.4,.3,.2[(.  
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D1 

A2 

)]8,.8,.8,.7,.6,.6(.
),6,.5,.5,.4,.3,.2(.
),8,.7,.6,.5,.4,.3[(.  

)]8,.8,.7,.7,.6,.6(.
),8,.8,.8,.7,.6,.5(.
),2,.2,.2,.2,.2,.2[(.  

)]2,.2,.2,.2,.1,.1(.
),5,.4,.3,.3,.3,.2(.
),9,.9,.9,.8,.8,.8[(.  

)]7,.7,.6,.6,.5,.5(.
),3,.3,.3,.2,.2,.1(.
),7,.6,.5,.4,.3,.2[(.  

A3 

)]2,.2,.2,.2,.2,.2(.
),8,.7,.6,.4,.3,.2(.
),9,.8,.7,.6,.5,.4[(.  

)]6,.6,.5,.5,.4,.4(.
)8,.7,.6,.5,.4,.3(.,

)1,.1,.1,.1.1,.1[(.
 

)]6,.6,.6,.5,.5,.5(.
.)9,.8,.5,.4,.3,.3(.
),7,.6,.5,.3,.2..1[(.  

)]7,.6,.5,.4,.4,.3(.
)6,.5,.4,.3,.2,.1(.
)9,.9,.9,.9,.9,.9[(.  

A4 

)],9,.8,.7,.6,.5,.4(.
)5,.5,.3,.3,.2,.2(.,
)3,.3,.3,.2,.2,.1[(.  

)]6,.6,.6,.5,.5,.5(.
)4,.4,.3,.2,.2,.1(.
),5,.4,.4,.4,.3,.3[(.

 
)]6,.6,.5,.5,.4,.3(.
)6,.6,.6,.4,.3,.3(.,
)6,.5,.4,.3,.2,.1[(.
 

)]3,.3,.3,.3,.2,.2(.
)6,.6,.6,.5,.5,.5(.
),8,.7,.7,.6,.6,.6[(.  

 
 
 
 
 
 
D2 

A1 

)]5,.5,.4,.4,.4,.3(.
)5,.4,.3,.3,.2,.1(.
),9,.9,.9,.8,.7,.6[(.  

)]9,.8,.7,.6,.5,.4(.
)7,.6,.5,.4,.3,.2(.,
)8,.7,.6,.5,.4,.3[(.
 

)]5,.5,.5,.5,.4,.4(.
)2,.2,.2,.2,.2,.2(.,
)4,.4,.4,.4,.4,.3[(.  

)]5,.4,.4,.3,.3,.2(.
)4,.4,.3,.3,.2,.2(.,
)8,.8,.8,.8,.8,.8[(.
 

A2 

)]5,.5,.5,.5,.5,.5(.
),7,.6,.5,.4,.3,.2(.
),5,.5,.5,.5,.5,.5[(.  

)]7,.6,.5,.4,.3,.2(.
),4,.4,.4,.3,.3,.3(.
),8,.8,.7,.6,.5,.4[(.  

)]8,.8,.7,.6,.5,.5(.
),7,.6,.6,.5,.4,.3(.
),8,.7,.7,.6,.6,.5[(.  

)]5,.4,.4,.3,.3,.2(.
),4,.4,.3,.3,.2,.2(.
),9,.9,.9,.9,.8,.8[(.  

A3 

)]5,.4,.3,.2,.2,.2(.
),6,.6,.6,.6,.6,.6(.
),7,.6,.5,.4,.3,.2[(.  

)]5,.5,.5,.4,.4,.4(.
),4,.4,.4,.4,.4,.3(.
),9,.9,.8,.7,.6,.5[(.  

)]6,.6,.6,.5,.5,.4(.
),3,.3,.3,.3,.3,.3(.
),4,.4,.3,.3,.3,.1[(.  

)]6,.6,.5,.5,.4,.4(.
),6,.5,.4,.3,.2,.1(.
),8,.8,.8,.7,.7,.6[(.  

A4 

)]6,.5,.4,.3,.2,.1(.
),2,.2,.2,.1,.1,.1(.
),6,.5,.5,.4,.4,.3[(.  

)]5,.4,.4,.3,.2,.1(.
),4,.4,.3,.3,.2,.2(.
),7,.7,.6,.5,.4,.4[(.  

)]1,.1,.1,.1,.1,.1(.
),3,.3,.2,.2,.1,.1(.
),9,.9,.9,.9,.9,.8[(.  

)]7,.6,.5,.4,.3,.3(.
),3,.3,.3,.2,.2,.2(.
),7,.6,.6,.5,.5,.5[(.

 

 
 
 
 
 
D3 

A1 

)]7,.7,.7,.7,.6,.5(.
),4,.3,.2,.1,.1,.1(.
),3,.3,.2,.2,.2,.1[(.  

)]5,.5,.5,.4,.4,.3(.
),7,.7,.6,.6,.5,.4(.
),8,.7,.6,.5,.4,.4[(.  

)]6,.6,.6,.6,.5,.4(.
),5,.4,.4,.3,.3,.3(.
),9,.9,.8,.8,.7,.6[(.  

)]6,.5,.5,.4,.4,.3(.
),9,.8,.7,.6,.5,.4(.
),5,.4,.4,.4,.3,.3[(.  

A2 

)]9,.8,.7,.6,.5,.4(.
)7,.6,.6,.5,.4,.4(.,
)7,.6,.6,.5,.5,.4[(.
 

)]6,.6,.5,.5,.4,.4(.
),6,.6,.6,.6,.6,.5(.
),8,.8,.8,.7,.7,.7[(.  

)]7,.6,.5,.4,.3,.2(.
),7,.6,.6,.5,.5,.4(.
),8,.8,.8,.7,.7,.6[(.  

)]8,.7,.6,.5,.5,.4(.
),5,.4,.3,.2,.2,.2(.
),3,.3,.3,.2,.2,.2[(.  

A3 

)]6,.6,.5,.5,.4,.3(.
),8,.8,.7,.7,.6,.5(.
),9,.9,.8,.7,.7,.6[(.  

)]6,.5,.4,.3,.2,.1(.
),8,.8,.8,.7,.7,.7(.
),9,.8,.7,.6,.5,.4[(.  

)]5,.4,.4,.3,.3,.2(.
),7,.7,.6,.6,.5,.5(.
),9,.9,.9,.8,.8,.8[(.  

)]3,.3,.3,.2,.2,.2(.
),1,.1,.1,.1,.1,.1(.

),9,.8,.8,.7,.7,.6[(.  

A4 

)]6,.5,.5,.5,.5,.4(.
),7,.7,.6,.6,.5,.4(.
),7,.7,.7,.6,.6,.6[(.  

)]5,.5,.5,.4,.4,.3(.
),4,.4,.4,.4,.4,.4(.
),9,.9,.9,.8,.8,.8[(.  

)]8,.7,.6,.5,.5,.4(.
),5,.5,.5,.5,.5,.5(.
),8,.7,.6,.5,.4,.3[(.

 
)]9,.9,.9,.8,.8,.8(.
),7,.7,.7,.6,.6,.6(.
),4,.4,.3,.3,.3,.2[(.  

                    Table 5.2 Opinion of decision makers on performance values  

Step 2.  Normalize the hexagonal neutrosophic decision matrix nm
k

ij
k rR  )~(~

 given by the 

experts )3,2,1( kDk  to get the matrix nmijrR  )~(~
 

Criteria 
Alternative C1 C2 C3 C4 
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1A   
 

)]7,.7,.6,.6,.5,.4(.

),3,.3,.2,.2,.1,.1(.

),7,.7,.6,.5,.4,.3[(.  

)]7,.7,.7,.6,.5,.4(.

),6,.6,.5,.4,.4,.3(.

),7,.6,.5,.4,.3,.3[(.  

]

[

)4,.4,.4,.4,.3,.3(.

),5,.4,.4,.3,.3,.3(.

),7,.7,.7,.7,.6,.6(.  

])6,.5,.5,.4,.4,.4(.

),4,.4,.4,.3,.3,.2(.

),7,.6,.6,.5,.5,.4[(.  

2A   

 )]7,.7,.7,.6,.5,.5(.
),7,.6,.5,.4,.3,.3(.
),7,.6,.6,.5,.5,.4(.  

)]7,.6,.6,.5,.4,.4(.
),6,.6,.6,.5,.5,.4(.
),6,.6,.6,.5,.5,.4[(.  

)]6,.5,.5,.4,.3,.3(.
),7,.6,.5,.4,.4,.3(.
),8,.8,.8,.7,.7,.6[(.  

)]6,.5,.4,.3,.3,.2(.
),4,.4,.3,.3,.2,.2(.
).7,.6,.6,.6,.5,.5[(.  

3A   

)]4,.4,.3,.3,.3,.2(.
),7,.6,.6,.5,.5,.4(.
),8,.8,.7,.6,.5,.4[(.  

)]6,.5,.5,.4,.3,.3(.
),7,.6,.6,.5,.5,.4(.
),6,.6,.5,.5,.4,.3[(.  

)]6,.5,.5,.4,.4,.3(.
),6,.6,.5,.4,.4,.4(.
),7,.6,.6,.5,.4,.3[(.  

)]5,.5,.4,.4,.3,.3(.
),4,.4,.3,.2,.2,.1(.
),9,.8,.8,.8,.8,.7[(.  

4A   

)]7,.6,.6,.5,.4,.3(.
),5,.5,.4,.3,.3,.2(.
),5,.5,.5,.4,.4,.3[(.  

)]5,.5,.5,.4,.4,.3(.
),4,.4,.3,.3,.3,.2(.
),7,.7,.6,.6,.5,.5[(.  

 

)]5,.4,.4,.3,.3,.3(.
),5,.5,.4,.4,.3,.3(.
),8,.7,.6,.6,.5,.4[(.  

)]6,.6,.6,.5,.4,.4(.
),5,.5,.5,.4,.4,.4(.
),6,.6,.5,.5,.5,.4[(.  

                    Table 5.3 Normalized hexagonal neutrosophic decision matrix 
 
Step 3. 
Once the decision makers provide the decision matrix we calculate the relative weight of each 

criterion jC   Consider the weight of each criterion as  50.0,20.0,15.0,15.0w  

 

50.0
50.0,20.0,15.0,15.0max

},.....2,1/max{







rw
rw

njjwrw
 

Since 50.0rw  then 4C is the reference criterion and the reference criterion weight is 0.50. Then 

calculate the relative weights of the criterion )4,3,2,1( jC j  as 

1,4.0,3.0,3.0
50.0
15.0

432
1

1  rrr
r

r www
w
w

w  

The parameter    the dilution factor of the loss is  

214.03.03.0
4

1





j jrw  

Step 4. Consider the alternative 1A of 1DM and the criteria 1C  

 Calculate the distance between 11111 , DMofAandAAandA C                   

)9.6(
18
1),(),2.2(

18
1),()]6,.6,.5,.4,.4,.3(.)7,.7,.8,.8,.9,.9(.)7,.7,.6,.6,.5,.4[(.

)]7,.7,.6,.6,.5,.4(.)3,.3,.2,.2,.1,.1(.),6,.6,.5,.4,.4,.3[(.)],9,.9,.8,.7,.6,.5(.)1,.1,.1,.1,.1,.1(.),6,.5,.4,.3,.2,.1[(.

11111

11





CC CCdCCdC

CC  

 Step 5.  The Degree of Similarity between AandA 1 is defined as follows. 
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 

76.0
)9.62.2(

18
1

)9.6(
18
1

,),(
),(),(

1111

11
11 





















C

C

CCdCCd
CCdCC  

Continuing the above process for all decision makers the consolidated Degree of Similarity is 
tabulated below. 
 
Degree of 

Similarity 

A1 of 

DM1 

A2 of 

DM1 

A3 of 

DM1 

A4 of 

DM1 

A1 of 

DM2 

A2 of 

DM2 

A3 of 

DM2 

A4 of 

DM2 

A1 of 

DM3 

A2 of 

DM3 

A3 of 

DM3 

A4 of 

DM3 

),( 11 CC   0.76 0.70 0.76 0.68 0.56 0.69 0.66 0.51 0.77 0.77 0.66 0.42 

),( 21 CC   0.68 0.53 0.53 0.57 0.74 0.56 0.50 0.81 0.45 0.57 0.59 0.72 

),( 33 CC   0.66 0.61 0.60 0.48 0.54 0.61 0.38 0.65 0.72 0.83 0.56 0.45 

),( 44 CC   0.62 0.57 0.81 0.50 0.68 0.78 0.80 0.51 0.44 0.54 0.80 0.45 

         Table 5.4 Degree of Similarity between the alternatives compared with the criteria  

 
Step 6.  Calculate the weight vectors of the decision makers using degree of similarity  


 





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i

n

j
ij

k
ij

k rr
nm

RR
1 1

)()( )~,~(1)~,~(             
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9000.9)~,~(,8814.0

12
097..10)~,~(,877.

12
524.10)~,~( )3()2()1(  RRRRRR           
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Step 7.  Using equation (1) HNWA the aggregated decision matrix is as follows.  
Criteria 

Alternative C1 C2 C3 C4 

1A  

)]1,.1,.1,.1,.1,.1(.
),5,.4,.3,.2,.1,.0(

),9,.8,.7,.6,.5,.4[(.  

)]7,.6,.5,.4,.3,.2(.
)5,.4,.3,.2,.1,.0(
)5,.4,.3,.2,.1,.0[(  

)]1,.1,.1,.1,.1,.1(.
),5,.4,.3,.2,.1,.0(

),8,.7,.6,.5,.4,.3[(.  

)]6,.5,.4,.3,.2,.1(.
),1,.1,.1,.1,.1,.1(.

),8,.7,.6,.5,.4,.3[(.  

2A  

)]2,.2,.1,.1,.1,.0(
),3,.3,.2,.2,.1,.1(.
),8,.7,.6,.5,.4,.3[(.  

)]2,.2,.1,.1,.1,.0(
),3,.3,.2,.1,.1,.0(

),6,.5,.4,.3,.2,.1[(.  

)]8,.7,.7,.6,.6,.5(.
),1,.1,.1,.1,.1,.1(.
),2,.2,.2,.1,.1,.0[(  

)]1,.1,.1,.1,.1,.1(.
),1,.1,.1,.1,.0,0(

),6,.6,.5,.5,.4,.3[(.  
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3A  

)]6,.6,.5,.5,.4,.4(.
),3,.3,.2,.2,.2,.2(.
),2,.2,.1,.1,.1,.1[(.  

)]9,.8,.7,.6,.5,.4(.
),3,.3,.2,.2,.1,.0(

),3,.3,.3,.2,.2,.2[(.  

)]3,.3,.2,.2,.2,.1(.
),5,.4,.3,.2,.1,.0(

),8,.7,.6,.5,.4,.3[(.  

)]9,.8,.7,.6,.5,.4(.
),2,.2,.2,.2,.2,.2(.
),6,.5,.4,.3,.2,.1[(.  

4A  

)]4,.4,.2,.2,.1,.1(.
),4,.2,.1,.1,.1,.0(

),6,.5,.4,.3,.2,.1[(.  

)]2,.2,.1,.1,.1,.1(.
),5,.4,.4,.3,.3,.2(.
),5,.5,.5,.5,.5,.5[(.  

)]4,.4,.4,.3,.2,.1(.
),1,.1,.1,.1,.1,.1(.

),8,.7,.6,.5,.5,.4[(.  

)]8,.7,.6,.6,.5,.5(.
),3,.3,.2,.1,.1,.0(
),1,.1,.1,.1,.1,.1[(.  

              Table. 5.5 Aggregated decision matrix 
Step 8 .  Calculate the score value using the equation (6)             

                        























54.067.064.055.0
73.056.054.058.0
66.065.047.049.0
62.048.048.059.0
4321

4
3
2
1

)(

CCCC

A
A
A
A

AS      

Step 9. Using the score function we check for the conditions and find 














pjrijrd ,  

Here we consider 4,3,2,14,3,2,1,1  pandij and check for the conditions in (7) 

4,3,2,114,3,2,1~~)3~~)2~~)1  pandjiforpjrijrorpjrijrorpjrijr  

      






































02111.0111.01055.0
2111.001666.02266.0
111.01666.001222.0

1055.02266.01222.00
4321

4
3
2
1

,

CCCC

A
A
A
A

nmpjrijrd  

To construct the dominance matrix we check for )~,~( pjrtoorisijr   

 Since we have 

)1111( rr  , 0)1,1(1 AA   and as )2111( rr    11055.0
4

1

)21,11(1)2,1(1 







j
jrw

rrdrw
AA  

    and  )1121( rr   ,  4401.0
1121

)1,2(1 1

),(
4

1





rw

rrd
j jrw

AA  

Using equation (7) calculate the dominance matrix  pAiA ,1 as follows. 

 

































05810.01053.04108.0
1452.001290.06523.0
4214.05155.004401.0

1027.01632.01105.00
4321

4
3
2
1

,1

CCCC

A
A
A
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Similarly for the values 4,3,2,14,3,2,1,2  pandij , 

4,3,2,14,3,2,1,3  pandij and 4,3,2,14,3,2,1,4  pandij the dominance 

matrix are calculated.  











































01624.01900.01971.0
2598.001235.01624.0
3040.01977.002229.0
3154.02508.01393.00
4321

4
3
2
1

,
2

CCCC

A
A
A
A

nmpAiA


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





































01440.01440.02598.0
2665.002598.02858.0
2304.01624.002529.0

1624.01786.01581.00
4321

4
3
2
1

,
3

CCCC

A
A
A
A

nmpAiA  

Step 10. On the basics of the above equation the overall dominance degree is obtained as 

             ),.....2,1,(,),(),(
1

mpiAAAA
n

j
pijpi  



          

































08454.02133.0656.0
0963.001927.05598.0
7298.07508.007789.0
1656.01331.0238.00


 

Now mpiAA
j

pij ,.....2,1,(,),(
4

1




  are  (0.2363,-2.2266,-0.4654,-1.000) 

Step 12. Then the overall value of each iA can be calculated using the equation (9) 

4980.0)4(,7150.0)3(,0)2(,000.1)1(  AAAA   

Step 13. Ranking the values of all alternatives )( iA and selecting the most desirable alternatives in 

accordance with  iA , among the four alternatives 1A  is the best choice and the ranking order is   

2431 AAAA   

Stage 2. 
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Step 7.  Floor space requirement 1C , Feeding (Feeder) and watering space requirement 2C  are 

benefiting type criteria 211 ,CCB  . Maintenance of health and sanitization 3C  and Productivity 

4C are cost type 432 ,CCB  .The hexagonal neutrosophic positive-ideal solution B and 

hexagonal neutrosophic negative-ideal solution B are obtained as follows 

   

    






















)0,0,0,0,0,0)(0,0,0,0,0,0)(1,1,1,1,1,1(,)0,0,0,0,0,0)(0,0,0,0,0,0)(1,1,1,1,1,1(,
)1,1,1,1,1,1)(1,1,1,1,1,1)(0,0,0,0,0,0(),1,1,1,1,1,1)(1,1,1,1,1,1)(0,0,0,0,0,0(

)1,1,1,1,1,1)(1,1,1,1,1,1)(0,0,0,0,0,0(,)1,1,1,1,1,1)(1,1,1,1,1,1)(0,0,0,0,0,0(
),0,0,0,0,0,0)(0,0,0,0,0,0)(1,1,1,1,1,1(),0,0,0,0,0,0)(0,0,0,0,0,0)(1,1,1,1,1,1(

B

B
 

Step 8. The vector of the attribute weight is )50.0,20.0,15.0,15.0(w . By using equation (10)  

calculate the separation measure 
iS of the each alternative from the hexagonal neutrosophic 

 positive ideal solution where ),( 
jij rrd is calculated using equation (2).  

The calculated values are as follows 

1164.01370.01408.01482.0 4321   SSSS  

By using equation (11) calculate the separation measure 
iS of the each alternative from the 

hexagonal neutrosophic negative ideal solution. The calculated values are as follows 

1335.01129.01094.00989.0 4321   SSSS  

Step 9. Using equation (12) calculate the relative closeness coefficient of the hexagonal neutrosophic 
ideal solution. The  relative closeness coefficient values are as follows   

5342.04517.04372.04002.0 4321  CCCC  

Step 10. Rank the alternatives in the decreasing order of closeness coefficient values. 

         1234 AAAA    
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                   Figure 6.1 Ranking of the four alternatives using TODIM and TOPSIS  

 The ranking results of TODIM show that 1A  is the best alternative with maximum global 

value 1)1( A and the least global value is 0)( 2 A  The ranking of the four 

alternatives using TODIM is 2431 AAAA   

 The ranking result using TOPSIS shows that 4A is the best suited alternative as it ranking is 

in  first position and 1A  is considered to be last as it takes fourth position in ranking . 

 The ranking of the four alternatives using TOPSIS is 1234 AAAA  .  

 In both the methods 3A  take the same position and 4A  is in the third level in TODIM 

which is nearest to the ranking of TOPSIS. Similarly, 2A  is in the fourth level in TODIM 

which is very close to the ranking of TOPSIS. 
 
 Both the MCDM ranking results shows that they are similar by large percentage which 

provides decision maker to increase the flexibility in choosing the optimal alternative. 
 

Conclusion 
The research presented in this article is an assessment study of the sustainability of commercial 

goat farming and its recent impact on self-employment for youth has been carried out in a context 
characterized by two MCDM methods, TODIM and TOPSIS. Using those methods  the social, 
economic and ecological sustainability in housing and feeding systems of goat farming are evaluated 
by three experts and the evaluation was considered as hexagonal neutrosophic numbers in order to 
remove the ambiguity and increase the accuracy in the decision making process. Using the TODIM 
approach which is able to distinguish between risks based alternative and definite alternative in 

6. Graphical Representation of the Comparative study 
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uncertain circumstances is analyzed .At the same time, by using the TOPSIS method the ranking is 
performed based on distance of each alternatives to its positive and negative ideal solutions. The 
ranking results of TODIM show a large percentage of similarity with ranking resulting from 
TOPSIS.The result shows that stall feeding system with normal flooring and a part with both 
intensive and extensive grazing system are best suited for sustainable commercial goat farming. This 
study may be applied in several other fields like livestock management systems with technology 
adaptation as well as in the economics of goat farming and other livestock sectors..  
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1. Introduction 

Zadeh [21, 22] first presented the idea of Fuzzy Set by which shown a meaningful application in 

many fields and this theory is welcomed to handle the uncertainty. As a generalization of fuzzy set 

Atanassov [7, 11] introduced Intuitionistic Fuzzy Set which assigns a pair with membership degree 

and non – membership degree. The Interval Valued Fuzzy Set [6, 10, 12] represents the membership 

degree with interval values to reflect the uncertainty in assigning membership degree.  As an 

extension for all elements in any set, Neutrosophic Fuzzy Set  provides with truth, intermediate and 

false membership function by Smarandache, F [16, 17, 18] and is further developed to                      

MBJ – Neutrosophic fuzzy set [19, 20] with truth membership function, intermediate interval valued 

membership function and false membership function.  

 

Neggers and Kim [18] brought a new structure of algebra called 𝛽 – algebra and Jun [17] dealt some 

related topics on 𝛽 – algebra.  The fusion of fuzzy with algebra and the notion was initiated by    

Rosenfeld [15].  Further many researchers correlated some algebras with fuzzy sets.  Ansari [5, 8] 

initialized the fuzzy  𝛽  – subalgebra of 𝛽  – algebra and also introduced fuzzy 𝛽  – ideal of             

𝛽  – algebra.  With these inspirations, this paper extends to MBJ – Neutrosophic 𝛽  – ideal of                

𝛽 – algebra and analyzed some result. 

2. Preliminaries  

In this section, some definitions and examples of 𝛽 – algebra and fuzzy set are discussed. 

2.1 Definition: [5, 8, 14]  A non-empty set (𝑋, +, −, 0) is called a 𝛽 – algebra if  

i. 𝑥 − 0 = 𝑥 

ii. (0 − 𝑥) + 𝑥 = 0 

mailto:pmkrishna@rocketmail.com
mailto:suryamano95@gmail.com
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iii. (𝑥 − 𝑦) − 𝑧 = 𝑥 − (𝑧 + 𝑦)   ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

 

2.2 Example: [9] The following Cayley’s table is formed using a set 𝑋 = { 0, 1, 2, 3, 4, 5 } with a 

constant 0 and two binary operations + and – 

 

          

 

 

 

 

 

                           

 

 

∴  The set 𝑋 is a 𝛽 – algebra. 

 

2.3 Definition: [5] A non – empty subset S  of a  𝛽  – algebra ( 𝑋, +, −, 0 )  is known as                

𝛽 – subalgebra if  

i. 𝑥 − 𝑦 ∈ 𝑆 

ii. 𝑥 + 𝑦 ∈ 𝑆    ∀ 𝑥, 𝑦 ∈ 𝑆 

 

2.4 Example: Let 𝑈1 = { 0 , 2 }  and 𝑈2 = { 0 , 1 }  be any two subset of a 𝛽  – algebra                   

𝑋 = { ( 0, 1, 2, 3, 4, 5), +, −, 0 } .  Here  𝑈1  is a 𝛽  – subalgebra of 𝑋  where as 𝑈2  is not a                

𝛽 – subalgebra of 𝑋. 

 

2.5 Definition: [8]  A non – empty subset 𝐼 of a 𝛽 – algebra is said to be 𝛽 – ideal of ( X, +, −, 0 ) if 

it has the following conditions  

i. 0 ∈ 𝐼  

ii. 𝑥 + 𝑦 ∈ 𝐼 

iii. 𝑥 − 𝑦  and 𝑦 ∈ 𝐼 then 𝑥 ∈ 𝐼  ∀ 𝑥, 𝑦 ∈ 𝑋 

2.6 Exercise: [12]  Consider a 𝛽 – algebra( 𝑋, +, −, 0 ) in the Cayley’s table  

 

 

  

 

 

              

The subset 𝐼1 = { 0 , 3 } of 𝑋 is a 𝛽 – ideal of 𝑋. 

2.7 Definition: [5] A mapping 𝑓 ∶ 𝑋 → 𝑌 is said to be a 𝛽 – homomorphism where 𝑋 and 𝑌 are 

two 𝛽 – algebras with constant 0 and two binary operations + and – if  

i. 𝑓(𝑥 + 𝑦) =  𝑓(𝑥) +  𝑓(𝑦) 

+ 0 1 2 3 4 5 

0 0 1 2 3 4 5 

1 1 0 4 5 2 3 

2 2 5 0 4 3 1 

3 3 4 5 0 1 2 

4 4 3 1 2 5 0 

5 5 2 3 1 0 4 

- 0 1 2 3 4 5 

0 0 1 2 3 5 4 

1 1 0 4 5 3 2 

2 2 5 0 4 1 3 

3 3 4 5 0 2 1 

4 4 3 1 2 0 5 

5 5 2 3 1 4 0 

+ 0 1 2 3 

0 0 1 2 3 

1 1 2 3 0 

2 2 3 0 1 

3 3 0 1 2 

- 0 1 2 3 

0 0 3 2 1 

1 1 0 3 2 

2 2 1 0 3 

3 3 2 1 0 
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ii. 𝑓(𝑥 − 𝑦) =  𝑓(𝑥) −  𝑓(𝑦) ∀ 𝑥, 𝑦 ∈ 𝑋. 

 

2.8 Definition: [22] A Fuzzy Set in 𝑋 is a mapping,  𝜌 ∶ 𝑋 → [0,1] for each 𝑥 in 𝑋, 𝜌(𝑥) is called 

the membership value of 𝑥 ∈ 𝑋. 

 

2.9 Definition: [7] A non – empty set 𝑋 is said to be Intuitionistic Fuzzy Set and is defined by       

𝐴 = { < 𝑥, 𝜌(𝑥), 𝜂(𝑥) >/𝑥 ∈ 𝑋}  where 𝜌𝐴 ∶ 𝑋 → [0,1]  is a membership function of 𝐴  and           

𝜂𝐴 ∶ 𝑋 → [0,1] is a non – membership function of 𝐴 with 0 ≤ 𝜌𝐴(𝑥) + 𝜂𝐴 ≤  1. 

 

2.10 Definition: [6] An Interval Valued Fuzzy Set on 𝑋  is represented as                            

𝐴 = {(𝑥, 𝜌̅𝐴(𝑥))} 𝑥 ∈ 𝑋   where  𝜌̅𝐴 ∶ 𝑋 → 𝐷[0,1]  where 𝐷[0,1] is the family of all closed 

subintervals of [0,1].  Also 𝜌̅𝐴(𝑥) = [ 𝜌𝐴
𝐿(𝑥) ,  𝜌𝐴

𝑈(𝑥)]  where 𝜌𝐴
𝐿  and 𝜌𝐴

𝑈  are two fuzzy sets in 𝑋 

such that 𝜌𝐴
𝐿(𝑥)  ≤  𝜌𝐴

𝑈(𝑥) ∀ 𝑥 ∈ 𝑋. 

 

Remark: Now let us illustrate refined minimum (𝑟𝑚𝑖𝑛) and refined maximum (𝑟𝑚𝑎𝑥) of two 

elements in 𝐷[0,1].  Also characterized the symbols ≤ , ≥ , = in case of two elements in 𝐷[0,1]. 

Let 𝐷1 = [𝑎1, 𝑏1]  &  𝐷2 = [𝑎2, 𝑏2]   ∈ 𝐷[0,1] then                                    

𝑟𝑚𝑖𝑛(𝐷1 , 𝐷2) = [min(𝑎1, 𝑎2) , min(𝑏1, 𝑏2)]     

𝑟𝑚𝑎𝑥(𝐷1 , 𝐷2) = [max(𝑎1, 𝑎2) , max(𝑏1, 𝑏2)].         

For 𝐷𝑖 = [𝑎𝑖, 𝑏𝑖]  ∈ 𝐷[0,1] for 𝑖 = 1, 2, 3, …. 

𝑟𝑠𝑢𝑝𝑖(𝐷𝑖) = [𝑠𝑢𝑝𝑖(𝑏𝑖), 𝑠𝑢𝑝𝑖(𝑏𝑖)]  &   𝑟𝑖𝑛𝑓𝑖(𝐷𝑖) = [𝑖𝑛𝑓𝑖(𝑏𝑖), 𝑖𝑛𝑓𝑖(𝑏𝑖)]  

Now  𝐷1   ≥  𝐷2 if and only if  𝑎1  ≥   𝑎2 ,  𝑏1  ≥   𝑏2.  Likewise, for 𝐷1   ≤  𝐷2 and 𝐷1   =  𝐷2 are 

defined. 

 

2.11 Definition: [6] The representation of an Interval Valued Intuitionistic Fuzzy Set 𝐴 on 𝑋 is       

𝐴 = { < 𝑥, 𝜌̅𝐴(𝑥), 𝜂̅𝐴(𝑥) >/𝑥 ∈ 𝑋}  where 𝜌̅𝐴 ∶ 𝑋 → 𝐷[0,1]   and 𝜂̅𝐴: 𝑋 → 𝐷[0,1]  where             

𝜌̅𝐴(𝑥) = [ 𝜌𝐴
𝐿(𝑥) ,  𝜌𝐴

𝑈(𝑥)] and  𝜂̅𝐴(𝑥) = [ 𝜂𝐴
𝐿 (𝑥) , 𝜂𝐴

𝑈(𝑥)] with the condition that 0 ≤ 𝜌𝐴
𝐿(𝑥) + 𝜂𝐴

𝐿 ≤  1  

and 0 ≤ 𝜌𝐴
𝑈(𝑥) + 𝜂𝐴

𝑈 ≤  1. 

 

2.12 Definition: [16, 17] The definition of an Neutrosophic Fuzzy Set 𝐴 on 𝑋 is characterized by a 

Truth – membership function 𝜌𝑇  , an indeterminacy membership function  𝜉𝐼 , and a                

falsity – membership function 𝜂𝐹 where 𝜌𝑇,  𝜉𝐼, 𝜂𝐹 are subsets of [0,1] that is 𝜌𝑇,  𝜉𝐼, 𝜂𝐹 ∶ 𝑋 → [0,1]. 

Thus, the Neutrosophic Set is defined as  𝐴 = { < 𝑥, 𝜌𝑇(𝑥),  𝜉𝐼(𝑥),   𝜂𝐹(𝑥) >/𝑥 ∈ 𝑋}. 

 

2.13 Definition: [19,20] The structure 𝐴 = { < 𝑥, 𝜌𝑇(𝑥), 𝜉𝐼̅(𝑥),   𝜂𝐹(𝑥) >/𝑥 ∈ 𝑋}  is called              

MBJ – Neutrosophic Set in 𝑋  where 𝜌𝑇 , 𝜂𝐹 ∶ 𝑋 → [0,1] and  𝜉𝐼̅ ∶ 𝑋 → 𝐷[0,1] with  𝜌𝑇(𝑥) denotes 

the truth membership function ,  𝜉𝐼̅(𝑥)  denotes an intermediate  interval valued membership 

function and 𝜂𝐹(𝑥) denotes an false membership function.  

 

2.14 Definition: An Fuzzy set is said to have a supremum property for any subset 𝑊 of 𝑋 there 

exists  𝑥0  ∈ 𝑊 such that 𝜌𝐴(𝑥0) =  𝑠𝑢𝑝𝑥 ∈𝑊𝜌𝐴(𝑥). 
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2.15 Definition: An Intuitionistic Fuzzy Set 𝐴 is said to have a 𝑠𝑢𝑝 − 𝑖𝑛𝑓 property for any subset 

𝑊 of 𝑋, there exists 𝑥0  ∈  𝑊 such that 𝜌𝐴(𝑥0) =  𝑠𝑢𝑝𝑥 ∈𝑊𝜌𝐴(𝑥) and 𝜂𝐴(𝑥0) =  𝑖𝑛𝑓𝑥 ∈𝑊𝜂𝐴(𝑥). 

 

2.16 Definition: An Interval Valued Intuitionistic Fuzzy Set 𝐴  in any set 𝑋  is said to have        

𝑟𝑠𝑢𝑝 − 𝑟𝑖𝑛𝑓  property if for subset 𝑊  of 𝑋  there exists 𝑥0  ∈ 𝑊  such that                          

𝜌̅𝐴(𝑥0) =  𝑟𝑠𝑢𝑝𝑥 ∈𝑊𝜌̅𝐴(𝑥)   and   𝜂̅𝐴(𝑥0) =  𝑟𝑖𝑛𝑓𝑥 ∈𝑊𝜂̅𝐴(𝑥). 

 

2.17 Definition: [19] An MBJ – Neutrosophic Fuzzy Set 𝐴 in 𝑋 has 𝑠𝑢𝑝 − 𝑟𝑠𝑢𝑝 − 𝑖𝑛𝑓 property if 

for subset 𝑊  of 𝑋  there exists 𝑥0  ∈ 𝑊  such that 𝜌𝐴(𝑥0) =  𝑠𝑢𝑝𝑥 ∈𝑊𝜌𝐴(𝑥)  ;                      

𝜉𝐴̅(𝑥0) =  𝑟𝑠𝑢𝑝𝑥 ∈𝑊 𝜉𝐴̅(𝑥); 𝜂𝐴(𝑥0) =  𝑖𝑛𝑓𝑥 ∈𝑊 𝜂𝐴(𝑥) respectively. 

 

2.18 Definition: [12] An Interval Valued Fuzzy Set 𝐴 = {< 𝑥, 𝜌̅𝐴(𝑥) >/𝑥 ∈ 𝑋} in 𝑋 is said to be 

Interval Valued Fuzzy 𝛽 – ideal of 𝑋  if  

i. 𝜌̅𝐴(0) ≥  𝜌̅𝐴(𝑥) 

ii. 𝜌̅𝐴(𝑥 + 𝑦)  ≥ 𝑟min {𝜌̅𝐴(𝑥), 𝜌̅𝐴(𝑦)} 

iii. 𝜌̅𝐴(𝑥) ≥ rmin{𝜌̅𝐴(𝑥 − 𝑦), 𝜌̅𝐴(𝑦)} ∀ 𝑥 , 𝑦 ∈ 𝑋. 

 

2.19 Definition: An Intuitionistic Fuzzy Set 𝐴 = { < 𝑥, 𝜌(𝑥), 𝜂(𝑥) >/𝑥 ∈ 𝑋}  in 𝑋  is known as 

Intuitionistic Fuzzy 𝛽 - ideal of 𝑋  if 

i. 𝜌𝐴(0) ≥  𝜌𝐴(𝑥)            ; 𝜂𝐴(0) ≤  𝜂𝐴(𝑥)   

ii. 𝜌𝐴(𝑥 + 𝑦)  ≥ min {𝜌𝐴(𝑥), 𝜌𝐴(𝑦)} ; 𝜂𝐴(𝑥 + 𝑦)  ≤ max {𝜂𝐴(𝑥), 𝜂𝐴(𝑦)} 

iii. 𝜌𝐴(𝑥) ≥ min{𝜌𝐴(𝑥 − 𝑦), 𝜌𝐴(𝑦)}   ; 𝜂𝐴(𝑥) ≤ max{𝜂𝐴(𝑥 − 𝑦), 𝜂𝐴(𝑦)} 

 

2.20 Definition: [19] Let 𝑋  be a 𝛽  – algebra and an MBJ Neutrosophic Set                                

𝐴 = { 𝜌𝐴, 𝜉𝐴̅, 𝜂𝐴 } is called an MBJ – Neutrosophic 𝛽 – subalgebra of 𝑋 if it satisfies  

i. 𝜌𝐴(𝑥 + 𝑦)  ≥ min {𝜌𝐴(𝑥), 𝜌𝐴(𝑦)}     ;         𝜌𝐴(𝑥 − 𝑦)  ≥ min {𝜌𝐴(𝑥), 𝜌𝐴(𝑦)} 

ii. 𝜉𝐴̅(𝑥 + 𝑦)  ≥ 𝑟min {𝜉𝐴̅(𝑥), 𝜉𝐴̅(𝑦)}    ;        𝜉𝐴̅(𝑥 − 𝑦)  ≥ 𝑟min {𝜉𝐴̅(𝑥), 𝜉𝐴̅(𝑦)} 

iii. 𝜂𝐴(𝑥 + 𝑦)  ≤ max {𝜂𝐴(𝑥), 𝜂𝐴(𝑦)}    ;         𝜂𝐴(𝑥 − 𝑦)  ≤ max {𝜂𝐴(𝑥), 𝜂𝐴(𝑦)} 

 

3 MBJ – Neutrosophic  𝜷 – Ideal of 𝜷 – Algebra  

This part frames the structure of MBJ – Neutrosophic 𝛽 – Ideal of 𝛽 – Algebra and studied the 

related results.  

 

3.1 Definition: Let (𝑋, +, −, 0) be a β – algebra.  An MBJ – Neutrosophic Set  𝐾 = { 𝜌𝐾, 𝜉𝐾̅, 𝜂𝐾 } in 

𝑋 is called an MBJ – Neutrosophic 𝛽 – Ideal of 𝑋 if it satisfies the following conditions: 

 

i. 𝜌𝐾(0) ≥ 𝜌𝐾(𝑥)                     

           𝜌𝐾(𝑥 + 𝑦) ≥ min { 𝜌𝐾(𝑥) , 𝜌𝐾(𝑦)}        

           𝜌𝐾(𝑥) ≥ min{ 𝜌𝐾(𝑥 − 𝑦) , 𝜌𝐾(𝑦)}         
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ii.  𝜉𝐾̅(0) ≥ 𝜉𝐾̅(𝑥)  

        𝜉𝐾̅(𝑥 + 𝑦) ≥ 𝑟min { 𝜉𝐾̅(𝑥) , 𝜉𝐾̅(𝑦)}  

        𝜉𝐾̅(𝑥) ≥ 𝑟min { 𝜉𝐾̅(𝑥 − 𝑦) , 𝜉𝐾̅(𝑦)}  

iii.   𝜂𝐾(0) ≤ 𝜂𝐾(𝑥) 

  𝜂𝐾(𝑥 + 𝑦) ≤ max { 𝜂𝐾(𝑥) , 𝜂𝐾(𝑦)}  

  𝜂𝐾(𝑥) ≤ max{𝜂𝐾(𝑥 − 𝑦) , 𝜂𝐾(𝑦)}  ∀𝑥 , 𝑦 ∈ 𝑋      

3.2 Example : A β – algebra 𝑋 in example 2.6 defines a MBJ – Neutrosophic set as 𝜌𝐴 ∶ 𝑋 → [0,1] ; 

𝜉𝐴̅ ∶ 𝑋 → 𝐷[0,1] and  𝜂𝐴 ∶ 𝑋 → [0,1] such that    

𝜌𝐴(𝑥) =  {
0.4 ,           𝑥 = 0
0.2 ,        𝑥 = 1,3 
0.3 ,           𝑥 = 2 

                

𝜉𝐾̅𝐴
(𝑥) =  {

[0.3 , 0.7]           𝑥 = 0

[0.1 , 0.5]        𝑥 = 1,3 

[0.2 , 0.6]           𝑥 = 2 
  

𝜂𝐴(𝑥) =  {
0.1 ,           𝑥 = 0
0.4 ,        𝑥 = 1,3 
0.5 ,           𝑥 = 2 

   is an MBJ – Neutrosophic  𝛽 – Ideal of 𝑋. 

3.3 Theorem: The intersection of any two MBJ – Neutrosophic 𝛽 – Ideal of a  𝛽 – algebra is also an   

MBJ – Neutrosophic 𝛽 – Ideal. 

Proof:  Let  𝐾1& 𝐾2 be two MBJ – Neutrosophic 𝛽 – Ideal of 𝑋. 

Now,   (𝜌𝐾1∩𝐾2
)(0) ≥ min { 𝜌𝐾1

(0),  𝜌𝐾2
(0) }  

  = min { 𝜌𝐾1
(𝑥),  𝜌𝐾2

(𝑥) } 

  =  (𝜌𝐾1∩𝐾2
)(𝑥) 

(𝜌𝐾1∩𝐾2
)(𝑥 + 𝑦) ≥ min { 𝜌𝐾1

(𝑥 + 𝑦),  𝜌𝐾2
(𝑥 + 𝑦) }  

      = min  {min {  𝜌𝐾1
(𝑥) ,  𝜌𝐾1

(𝑦) } , min {  𝜌𝐾2
(𝑥) ,  𝜌𝐾2

(𝑦)} } 

      = min  {min  {  𝜌𝐾1
(𝑥) ,  𝜌𝐾2

(𝑥) } , min  {  𝜌𝐾1
(𝑦) ,  𝜌𝐾2

(𝑦) } } 

      = min  { 𝜌𝐾1∩𝐾2
(𝑥) , 𝜌𝐾1∩𝐾2

(𝑦)} 

𝜌𝐾1∩𝐾2
(𝑥)  ≥  min { 𝜌𝐾1

(𝑥),  𝜌𝐾2
(𝑥) }  

 = min  {min {  𝜌𝐾1
(𝑥 − 𝑦) ,  𝜌𝐾1

(𝑦) } , min {  𝜌𝐾2
(𝑥 − 𝑦) ,  𝜌𝐾2

(𝑦)} } 

           = min  {min {  𝜌𝐾1
(𝑥 − 𝑦) ,  𝜌𝐾2

(𝑥 − 𝑦)  } , min {  𝜌𝐾1
(𝑦) ,  𝜌𝐾2

(𝑦)} } 

 = min  {min  { 𝜌𝐾1∩𝐾2
(𝑥 − 𝑦) , 𝜌𝐾1∩𝐾2

(𝑦)} }  

(𝜉𝐾̅1∩𝐾2
)(0) ≥ 𝑟min {𝜉𝐾̅1

(0), 𝜉𝐾̅2
(0) }  

 = 𝑟min {𝜉𝐾̅1
(𝑥), 𝜉𝐾̅2

(𝑥) } 

 =  (𝜉𝐾̅1∩𝐾2
)(𝑥) 

(𝜉𝐾̅1∩𝐾2
)(𝑥 + 𝑦) ≥ 𝑟min {𝜉𝐾̅1

(𝑥 + 𝑦), 𝜉𝐾̅2
(𝑥 + 𝑦) }  

     = rmin  {rmin { 𝜉𝐾̅1
(𝑥) , 𝜉𝐾̅1

(𝑦) } , rmin { 𝜉𝐾̅2
(𝑥) , 𝜉𝐾̅2

(𝑦)} } 

    = rmin  {rmin  { 𝜉𝐾̅1
(𝑥) , 𝜉𝐾̅2

(𝑥) } , rmin  { 𝜉𝐾̅1
(𝑦) , 𝜉𝐾̅2

(𝑦) } } 

       = rmin  { 𝜉𝐾̅1∩𝐾2
(𝑥) , 𝜉𝐾̅1∩𝐾2

(𝑦)} 

𝜉𝐾̅1∩𝐾2
(𝑥)  ≥  𝑟min {𝜉𝐾̅1

(𝑥), 𝜉𝐾̅2
(𝑥) }  
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          = rmin  { rmin { 𝜉𝐾̅1
(𝑥 − 𝑦) , 𝜉𝐾̅1

(𝑦) } , rmin { 𝜉𝐾̅2
(𝑥 − 𝑦) , 𝜉𝐾̅2

(𝑦)} }  

          = rmin  { rmin { 𝜉𝐾̅1
(𝑥 − 𝑦) , 𝜉𝐾̅2

(𝑥 − 𝑦)  } , rmin { 𝜉𝐾̅1
(𝑦) , 𝜉𝐾̅2

(𝑦)} }  

 = rmin  { rmin  {  𝜉𝐾̅1∩𝐾2
(𝑥 − 𝑦) , 𝜉𝐾̅1∩𝐾2

(𝑦)} }  

   (𝜂𝐾1∩𝐾2
)(0) ≤ max { 𝜂𝐾1

(0),  𝜂𝐾2
(0) }  

 = max { 𝜂𝐾1
(𝑥),  𝜂𝐾2

(𝑥) } 

 =  (𝜂𝐾1∩𝐾2
)(𝑥) 

(𝜂𝐾1∩𝐾2
)(𝑥 + 𝑦) ≤ max { 𝜂𝐾1

(𝑥 + 𝑦),  𝜂𝐾2
(𝑥 + 𝑦) }  

    = max  {max {  𝜂𝐾1
(𝑥) ,  𝜂𝐾1

(𝑦) } , max {  𝜂𝐾2
(𝑥) ,  𝜂𝐾2

(𝑦)} } 

    = max  {max  {  𝜂𝐾1
(𝑥) ,  𝜂𝐾2

(𝑥) } , max  {  𝜂𝐾1
(𝑦) ,  𝜂𝐾2

(𝑦) } } 

    = max  { 𝜂𝐾1∩𝐾2
(𝑥) , 𝜂𝐾1∩𝐾2

(𝑦)} 

 

𝜂𝐾1∩𝐾2
(𝑥)  ≤  max { 𝜂𝐾1

(𝑥),  𝜂𝐾2
(𝑥) }  

          = max  {max {  𝜂𝐾1
(𝑥 − 𝑦) ,  𝜂𝐾1

(𝑦) } , max {  𝜂𝐾2
(𝑥 − 𝑦) ,  𝜂𝐾2

(𝑦)} }  

          = max  {max {  𝜂𝐾1
(𝑥 − 𝑦) ,  𝜂𝐾2

(𝑥 − 𝑦)  } , max {  𝜂𝐾1
(𝑦) ,  𝜂𝐾2

(𝑦)} }  

          = max  {max  {  𝜂𝐾1∩𝐾2
(𝑥 − 𝑦) , 𝜂𝐾1∩𝐾2

(𝑦)} }   

Hence 𝐾1 ∩  𝐾2 is an MBJ – Neutrosophic β – Ideal of 𝑋. 

 

3.4 Theorem: The intersection of any set of MBJ – Neutrosophic β – Ideal of a β – Algebra 𝑋 is also 

an MBJ – Neutrosophic β – Ideal. 

 

3.5 Theorem: Let 𝐾 = { 𝜌𝐾 , 𝜉𝐾̅ , 𝜂𝐾 }  be an MBJ – Neutrosophic β – Ideal.  If     𝑥 ≤  𝑦  then   

𝜌𝐾(𝑥)  ≥  𝜌𝐾(𝑦) ;  𝜉𝐾̅(𝑥) ≥  𝜉𝐾̅(𝑦)  and  𝜂𝐾(𝑥) ≤  𝜂𝐾(𝑦). 

Proof: For any 𝑥 , 𝑦 ∈ 𝑋 , 𝑥 ≤ 𝑦 ⟹ 𝑥 − 𝑦 = 0  . 

𝜌𝐾(𝑥) ≥ min  { 𝜌𝐾(𝑥 − 𝑦) , 𝜌𝐾(𝑦) }  

      = min  { 𝜌𝐾(0) , 𝜌𝐾(𝑦) }  

      = 𝜌𝐾(𝑦)  

𝜌𝐾(𝑥)  ≥  𝜌𝐾(𝑦)  

𝜉𝐾̅(𝑥) ≥ rmin  { 𝜉𝐾̅(𝑥 − 𝑦) , 𝜉𝐾̅(𝑦) }  

      = rmin  { 𝜉𝐾̅(0) , 𝜉𝐾̅(𝑦) }  

      = 𝜉𝐾̅(𝑦)  

𝜉𝐾̅(𝑥)  ≥  𝜉𝐾̅(𝑦)  

𝜂𝐾(𝑥) ≤ max  { 𝜂𝐾(𝑥 − 𝑦) , 𝜂𝐾(𝑦) }  

      = max  { 𝜂𝐾(0) , 𝜂𝐾(𝑦) }  

      = 𝜂𝐾(𝑦)  

𝜂𝐾(𝑥)  ≤  𝜂𝐾(𝑦). 

 

3.6 Theorem: Let 𝐾 be an MBJ –  Neutrosophic 𝛽 – Ideal of 𝑋 whenever      𝑥 ≤ 𝑧 + 𝑦  then 

𝜌𝐾(𝑥) ≥ min { 𝜌𝐾(𝑧) , 𝜌𝐾(𝑦)}  ; 𝜉𝐾̅(𝑥) ≥ 𝑟min { 𝜉𝐾̅(𝑧) , 𝜉𝐾̅(𝑦)}  and                              

𝜂𝐾(𝑥) ≤ max { 𝜂𝐾(𝑧) , 𝜂𝐾(𝑦)} 

Proof: For 𝑥 , 𝑦 , 𝑧 ∈ 𝑋 

𝜌𝐾(𝑥) ≥ min  { 𝜌𝐾(𝑥 − 𝑦) , 𝜌𝐾(𝑦) }  

      = min  { min  { 𝜌𝐾((𝑥 − 𝑦) − 𝑧) , 𝜌𝐾(𝑧) } , 𝜌𝐾(𝑦) }  
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      = min  { min  { 𝜌𝐾(𝑥 − (𝑧 +  𝑦)) , 𝜌𝐾(𝑧) } , 𝜌𝐾(𝑦) }  

      = min  { min  { 𝜌𝐾(0) , 𝜌𝐾(𝑧) } , 𝜌𝐾(𝑦) }  

      ≥ min { 𝜌𝐾(𝑧) , 𝜌𝐾(𝑦)}  

𝜉𝐾̅(𝑥) ≥ rmin  { 𝜉𝐾̅(𝑥 − 𝑦) , 𝜉𝐾̅(𝑦) }  

      = rmin  { rmin  { 𝜉𝐾̅((𝑥 − 𝑦) − 𝑧) , 𝜉𝐾̅(𝑧) } , 𝜉𝐾̅(𝑦) }  

      = rmin  { rmin  { 𝜉𝐾̅(𝑥 − (𝑧 +  𝑦)) , 𝜉𝐾̅(𝑧) } , 𝜉𝐾̅(𝑦) }  

      = rmin  { rmin  { 𝜉𝐾̅(0) , 𝜉𝐾̅(𝑧) } , 𝜉𝐾̅(𝑦) }  

      ≥ 𝑟min { 𝜉𝐾̅(𝑧) , 𝜉𝐾̅(𝑦)}  

𝜂𝐾(𝑥) ≤ max  { 𝜂𝐾(𝑥 − 𝑦) , 𝜂𝐾(𝑦) }  

      = max  { max  { 𝜂𝐾((𝑥 − 𝑦) − 𝑧) , 𝜂𝐾(𝑧) } , 𝜂𝐾(𝑦) }  

      = max  { max  { 𝜂𝐾(𝑥 − (𝑧 +  𝑦)) , 𝜂𝐾(𝑧) } , 𝜂𝐾(𝑦) }  

      = max  { max  { 𝜂𝐾(0) , 𝜂𝐾(𝑧) } , 𝜂𝐾(𝑦) }  

      ≤ max { 𝜂𝐾(𝑧) , 𝜂𝐾(𝑦)}  

 

3.7 Theorem: Let 𝐾 = { 𝜌𝐾 , 𝜉𝐾̅ , 𝜂𝐾 }  be an MBJ – Neutrosophic β  – Ideal of 𝑋 , then sets           

𝑋𝜌𝐾
= { 𝑥 ∈ 𝑋 ∶  𝜌𝐾(𝑥) = 𝜌𝐾(0)}  ;  𝑋𝜉̅𝐾

= { 𝑥 ∈ 𝑋 ∶  𝜉𝐾̅(𝑥) = 𝜉𝐾̅(0)}   and                          

𝑋𝜂𝐾
= { 𝑥 ∈ 𝑋 ∶  𝜂𝐾(𝑥) = 𝜂𝐾(0)} are β – ideals of 𝑋. 

Proof:  Since 𝜌𝐾(𝑥) = 𝜌𝐾(0)  ⟹ 0 ∈  𝑋𝜌𝐾
 

If 𝑥 − 𝑦 , 𝑦 ∈ 𝑋𝜌𝐾
 

⟹ 𝜌𝐾(𝑥 − 𝑦) = 𝜌𝐾(0) ;  𝜌𝐾(𝑦) = 𝜌𝐾(0)  

Now, 𝜌𝐾(𝑥) ≥ min  { 𝜌𝐾(𝑥 − 𝑦) , 𝜌𝐾(𝑦) } 

             =  min  { 𝜌𝐾(0) , 𝜌𝐾(0) }  

 = 𝜌𝐾(0) 

𝜌𝐾(𝑥) ≥ 𝜌𝐾(0)  

But 𝜌𝐾(𝑥) ≤ 𝜌𝐾(0) implies 𝜌𝐾(𝑥) = 𝜌𝐾(0) 

⟹ 𝑥 ∈  𝑋𝜌𝐾
  

𝑥 − 𝑦 , 𝑦 ∈  𝑋𝜌𝐾
⟹ 𝑥 ∈  𝑋𝜌𝐾

  

∴  𝑋𝜌𝐾
  is an β – Ideal of 𝑋 

𝜉𝐾̅(𝑥) = 𝜉𝐾̅(0)  ⟹ 0 ∈  𝑋𝜉̅𝐾
  

If 𝑥 − 𝑦 , 𝑦 ∈ 𝑋𝜉̅𝐾
 

⟹ 𝜉𝐾̅(𝑥 − 𝑦) = 𝜉𝐾̅(0) ;  𝜉𝐾̅(𝑦) = 𝜉𝐾̅(0)  

Now, 𝜉𝐾̅(𝑥) ≥ rmin  { 𝜉𝐾̅(𝑥 − 𝑦) , 𝜉𝐾̅(𝑦) } 

                         =  rmin  { 𝜉𝐾̅(0) , 𝜉𝐾̅(0) }  

             = 𝜉𝐾̅(0)  

𝜉𝐾̅(𝑥) ≥ 𝜉𝐾̅(0)  

But 𝜉𝐾̅(𝑥) ≤ 𝜉𝐾̅(0) implies 𝜉𝐾̅(𝑥) = 𝜉𝐾̅(0) 

⟹ 𝑥 ∈  𝑋𝜉̅𝐾
  

𝑥 − 𝑦 , 𝑦 ∈  𝑋𝜉̅𝐾
⟹ 𝑥 ∈  𝑋𝜉̅𝐾

  

∴  𝑋𝜉̅𝐾
  is an  β – Ideal of 𝑋. 

Similarly, 𝑋𝜂𝐾
  is also an β – Ideal of 𝑋. 
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3.8 Theorem:  Suppose 𝐽 is subset of 𝑋. An MBJ – Neutrosophic set 𝐾 = { 𝜌𝐾 , 𝜉𝐾̅ , 𝜂𝐾 } such that 

𝜌𝐾 = {
𝑡, 𝑥 ∈ 𝐽
𝑠, 𝑥 ∉ 𝐽

  ; 𝜉𝐾̅ = {
𝑡̅, 𝑥 ∈ 𝐽
𝑠̅, 𝑥 ∉ 𝐽

  and  𝜂𝐾 = {
𝛼, 𝑥 ∈ 𝐽
𝛽, 𝑥 ∉ 𝐽

 where  𝑡 , 𝑠 , 𝛼 , 𝛽 ∈ [ 0 , 1 ]  and           

𝑡̅ , 𝑠̅ ∈ 𝐷[ 0 , 1 ]  with [𝑡0, 𝑡1]  ≥ [𝑠0 , 𝑠1].  Then the MBJ – Neutrosophic set 𝐾 = { 𝜌𝐾 , 𝜉𝐾̅ , 𝜂𝐾 } is an 

MBJ – Neutrosophic  𝛽 – ideal of 𝑋 if and only if 𝐽 𝑖𝑠 𝑎𝑛 𝛽 – ideal of 𝑋. 

Proof: Consider an MBJ – Neutrosophic set 𝐾 = { 𝜌𝐾 , 𝜉𝐾̅ , 𝜂𝐾 } is an MBJ - Neutrosophic 𝛽 – ideal of 

𝑋 

i) 𝑎)  𝜌𝐾(0) ≥  𝜌𝐾(𝑥)    ∀ 𝑥 ∈ 𝑋 

       𝜌𝐾(0) = 𝑡  ⟹ 0 ∈ 𝐽  

𝑏)  For 𝑥 , 𝑦 ∈ 𝐽 

       ⟹  𝜌𝐾(𝑥) = 𝑡 =  𝜌𝐾(𝑦)  

      ∴  𝜌𝐾(𝑥 + 𝑦) ≥ min{𝜌𝐾(𝑥) , 𝜌𝐾(𝑦)}  

                     = min{ 𝑡 , 𝑡 } 

      𝜌𝐾(𝑥 + 𝑦) = 𝑡  

      ⟹ 𝑥 + 𝑦 ∈ 𝐽 

𝑐)  For 𝑥 , 𝑦 ∈ 𝐽 if 𝑥 −  𝑦  𝑎𝑛𝑑 𝑦 ∈ 𝐽 

      ⟹  𝜌𝐾(𝑥 − 𝑦) = 𝑡 =   𝜌𝐾(𝑦)  

      ∴  𝜌𝐾(𝑥) ≥ min{𝜌𝐾(𝑥 − 𝑦) , 𝜌𝐾(𝑦)}  

                       = min{ 𝑡 , 𝑡 } = 𝑡  

       𝜌𝐾(𝑥) = 𝑡   

      ⟹ 𝑥 ∈ 𝐽 

ii) 𝑎)  𝜉𝐾̅(0) ≥  𝜉𝐾̅(𝑥)    ∀ 𝑥 ∈ 𝑋 

     𝜉𝐾̅(0) = [𝑡0, 𝑡1]   ⟹ 0 ∈ 𝐽  

𝑏)  For 𝑥 , 𝑦 ∈ 𝐽 

      ⟹  𝜉𝐾̅(𝑥) = [𝑡0, 𝑡1] =  𝜉𝐾̅(𝑦)  

      ∴  𝜉𝐾̅(𝑥 + 𝑦) ≥ rmin{𝜉𝐾̅(𝑥) , 𝜉𝐾̅(𝑦)}  

            = rmin{ [𝑡0, 𝑡1] , [𝑡0, 𝑡1] } 

  𝜉𝐾̅(𝑥 + 𝑦) = [𝑡0, 𝑡1] 

      ⟹ 𝑥 + 𝑦 ∈ 𝐽 

𝑐)  For 𝑥 , 𝑦 ∈ 𝐽 if 𝑥 −  𝑦  𝑎𝑛𝑑 𝑦 ∈ 𝐽 

       ⟹  𝜉𝐾̅(𝑥 − 𝑦) = [𝑡0, 𝑡1] =   𝜉𝐾̅(𝑦)  

      ∴  𝜉𝐾̅(𝑥) ≥ rmin{𝜉𝐾̅(𝑥 − 𝑦) , 𝜉𝐾̅(𝑦)}  

                       = rmin{ [𝑡0, 𝑡1] , [𝑡0, 𝑡1] } = [𝑡0, 𝑡1]  

     𝜉𝐾̅(𝑥) = [𝑡0, 𝑡1]  

      ⟹ 𝑥 ∈ 𝐽 

iii) 𝑎)  𝜂𝐾(0) ≤ 𝜂𝐾(𝑥)    ∀ 𝑥 ∈ 𝑋 

   𝜂𝐾(0) = 𝛼  ⟹ 0 ∈ 𝐽  

𝑏)  For 𝑥 , 𝑦 ∈ 𝐽 

      ⟹  𝜂𝐾(𝑥) = 𝛼 =  𝜂𝐾(𝑦)  

      ∴  𝜂𝐾(𝑥 + 𝑦) ≤ max{𝜂𝐾(𝑥) , 𝜂𝐾(𝑦)}  

                    = max{ 𝛼 , 𝛼 } 

     𝜂𝐾(𝑥 + 𝑦) = 𝛼 
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       ⟹ 𝑥 + 𝑦 ∈ 𝐽 

𝑐)  For 𝑥 , 𝑦 ∈ 𝐽 if 𝑥 −  𝑦  𝑎𝑛𝑑 𝑦 ∈ 𝐽 

      ⟹  𝜂𝐾(𝑥 − 𝑦) = 𝛼 =   𝜂𝐾(𝑦)  

      ∴  𝜂𝐾(𝑥) ≤ max {𝜂𝐾(𝑥 − 𝑦) , 𝜂𝐾(𝑦)}  

                       = max{ 𝛼 , 𝛼 } = 𝛼  

      𝜂𝐾(𝑥) = 𝛼  

    ⟹ 𝑥 ∈ 𝐽 

     ∴   𝐽 is an  𝛽 – ideal of 𝑋 

  Conversely, assuming  𝐽  is an  𝛽 – ideal of  𝑋. Then  

i) 𝑎)  If 0 ∈ 𝐽 

    Implies  𝜌𝐾(0) = 𝑡   

    Also ∀ 𝑥 ∈ 𝑋 , 𝐼𝑚 ( 𝜌𝐾) = [𝑡 , 𝑠 ] & 𝑡 > 𝑠 

    ⟹   𝜌𝐾(0) ≥  𝜌𝐾(𝑥)  ∀ 𝑥 ∈ 𝑋  

𝑏)   For any 𝑥 , 𝑦 ∈ 𝐽 

       ⟹ 𝑥 + 𝑦 ∈ 𝐽  

       ⟹  𝜌𝐾(𝑥) = 𝜌𝐾(𝑥 + 𝑦) = 𝑡 =   𝜌𝐾(𝑦)  

                          = min{ 𝜌𝐾(𝑥) , 𝜌𝐾(𝑦)}  

      ∴  𝜌𝐾(𝑥 + 𝑦) ≥ min{𝜌𝐾(𝑥) , 𝜌𝐾(𝑦)}  

c)   For any 𝑥 , 𝑦 ∈ 𝐽 

      If 𝑥 −  𝑦  𝑎𝑛𝑑 𝑦 ∈ 𝐽 ⟹ 𝑥 ∈ 𝐽 

     𝜌𝐾(𝑥) = 𝑡 = min[ 𝑡, 𝑡] = min { 𝜌𝐾(𝑥 − 𝑦) , 𝜌𝐾(𝑦) }   

ii) 𝑎)  If 0 ∈ 𝐽 

      Implies 𝜉𝐾̅(0) = 𝑡 ̅

      Also ∀ 𝑥 ∈ 𝑋 , 𝐼𝑚 (𝜉𝐾̅) = [𝑡̅ , 𝑠 ̅]  &  𝑡̅ > 𝑠̅ 

      ⟹  𝜉𝐾̅(0) ≥ 𝜉𝐾̅(𝑥)  ∀ 𝑥 ∈ 𝑋  

𝑏)   For any 𝑥 , 𝑦 ∈ 𝐽 

      ⟹ 𝑥 + 𝑦 ∈ 𝐽  

           ⟹  𝜉𝐾̅(𝑥) = 𝜉𝐾̅(𝑥 + 𝑦) = 𝑡̅ =   𝜉𝐾̅(𝑦)  

                          = rmin{ 𝜉𝐾̅(𝑥) , 𝜉𝐾̅(𝑦)}  

      ∴  𝜉𝐾̅(𝑥 + 𝑦) ≥ rmin{𝜉𝐾̅(𝑥) , 𝜉𝐾̅(𝑦)}  

c)   For any 𝑥 , 𝑦 ∈ 𝐽 

     If 𝑥 −  𝑦  𝑎𝑛𝑑 𝑦 ∈ 𝐽 ⟹ 𝑥 ∈ 𝐽 

     𝜉𝐾̅(𝑥) = 𝑡̅ = rmin[𝑡̅, 𝑡̅] = rmin { 𝜉𝐾̅(𝑥 − 𝑦) , 𝜉𝐾̅(𝑦) }   

iii) 𝑎)  If 0 ∈ 𝐽 

    Implies  𝜂𝐾(0) = 𝛼   

    Also ∀ 𝑥 ∈ 𝑋 , 𝐼𝑚 ( 𝜂𝐾) = [𝛼 , 𝛽 ]&  𝛼 <  𝛽 

    ⟹   𝜂𝐾(0) ≤  𝜂𝐾(𝑥)  ∀ 𝑥 ∈ 𝑋  

𝑏)   For any 𝑥 , 𝑦 ∈ 𝐽 

    ⟹ 𝑥 + 𝑦 ∈ 𝐽  

       ⟹  𝜂𝐾(𝑥) = 𝜂𝐾(𝑥 + 𝑦) = 𝛼 =   𝜂𝐾(𝑦)  

                       = max { 𝜂𝐾(𝑥) ,  𝜂𝐾(𝑦)}  

      ∴  𝜂𝐾(𝑥 + 𝑦) ≤ max{𝜂𝐾(𝑥) ,  𝜂𝐾(𝑦)}  
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c)   For any 𝑥 , 𝑦 ∈ 𝐽 

     If 𝑥 −  𝑦  𝑎𝑛𝑑 𝑦 ∈ 𝐽 ⟹ 𝑥 ∈ 𝐽 

     𝜂𝐾(𝑥) = 𝛼 = max[ 𝛼, 𝛼] = max { 𝜂𝐾(𝑥 − 𝑦) , 𝜂𝐾(𝑦) }   

∴ 𝐾  is an MBJ – 𝛽 – Ideal of 𝑋.  

3.9 Definition: Let 𝐾 = { < 𝑥, 𝜌𝐾(𝑥), 𝜉𝐾̅(𝑥), 𝜂𝐾(𝑥) >/𝑥 ∈ 𝑋 } be an MBJ- Neutrosophic Set in 𝑋 

and 𝑓 ∶ 𝑋 →  𝑌  be a mapping then the image of 𝐾  under 𝑓 , 𝑓(𝐾)  is defined as                                                         

𝑓(𝐾) = { < 𝑥, 𝑓𝑠𝑢𝑝(𝜌𝐾), 𝑓𝑟𝑠𝑢𝑝(𝜉𝐾̅), 𝑓𝑖𝑛𝑓𝜂𝐾(𝑥) >/𝑥 ∈ 𝑌} where    𝑓𝑠𝑢𝑝(𝜌𝐾)(𝑦) =  𝑠𝑢𝑝𝑥 ∈ 𝑓−1(𝑦)𝜌𝐾(𝑥)  ; 

𝑓𝑟𝑠𝑢𝑝(𝜉𝐾̅)(𝑦) =  𝑟𝑠𝑢𝑝𝑥 ∈ 𝑓−1(𝑦)𝜉𝐾̅(𝑥) and   𝑓𝑖𝑛𝑓(𝜂𝐾)(𝑦) =  𝑖𝑛𝑓𝑥 ∈ 𝑓−1(𝑦)𝜂𝐾(𝑥) 

 

3.10 Definition: Let 𝑓 ∶ 𝑋 → 𝑌  be a function and let 𝐾  and 𝐿  be two MBJ – Neutrosophic          

𝛽 – Ideal in 𝑋 & 𝑌  respectively then the preimage of 𝐿 under 𝑓  is defined by                     

𝑓−1(𝐿) = { 𝑥, 𝑓−1(𝜌𝐾(𝑥)), 𝑓−1(𝜉𝐾̅(𝑥)), 𝑓−1( 𝜂𝐾(𝑥)) >/𝑥 ∈ 𝑋 } such that  

𝑓−1(𝜌𝐾(𝑥)) =  𝜌𝐾 (𝑓(𝑥))  ; 𝑓−1 (𝜉𝐾̅(𝑥)) =  𝜉𝐾̅ (𝑓(𝑥)) and 𝑓−1(𝜂𝐾(𝑥)) =  𝜂𝐾 (𝑓(𝑥)). 

 

3.11 Theorem: Let 𝑓 ∶ 𝑋 → 𝑌   be an onto homomorphism of  𝛽  - algebra.  Suppose 𝐾  is an         

MBJ – Neutrosophic 𝛽  – Ideal of 𝑌 , then the preimage of 𝑓−1(𝐾) is an MBJ – Neutrosophic           

𝛽 – Ideal of 𝑋. 

Proof:  Suppose 𝐾 be an MBJ - Neutrosophic 𝛽 - ideal of 𝑌 

i) For 𝑥 ∈ 𝑋 

𝑓−1(𝜌𝐾(0)) =  𝜌𝐾 (𝑓(0))  

            =  𝜌𝐾 (0)  

           ≥  𝜌𝐾 (𝑥) 

For some 𝑥 , 𝑦 ∈ 𝑋 

𝑓−1(𝜌𝐾)(𝑥 + 𝑦) =  𝜌𝐾 (𝑓(𝑥 + 𝑦))  

            =  𝜌𝐾 (𝑓(𝑥) + 𝑓(𝑦)) 

                ≥ 𝑚𝑖𝑛 { 𝜌𝐾 (𝑓(𝑥)) , 𝜌𝐾 (𝑓(𝑦)) }  

                = min{ 𝑓−1(𝜌𝐾(𝑥)), 𝑓−1(𝜌𝐾(𝑦))}  

𝑓−1(𝜌𝐾)(𝑥) =  𝜌𝐾 (𝑓(𝑥))  

            ≥ 𝑚𝑖𝑛 { 𝜌𝐾 (𝑓(𝑥) − 𝑓(𝑦)) , 𝜌𝐾 (𝑓(𝑦)) }  

        = 𝑚𝑖𝑛 { 𝜌𝐾 (𝑓(𝑥 − 𝑦)) , 𝜌𝐾 (𝑓(𝑦)) } 

            = 𝑚𝑖𝑛 {  𝑓−1(𝜌𝐾(𝑥 − 𝑦)) , 𝑓−1(𝜌𝐾(𝑦)) } 

ii) 𝑓−1 (𝜉𝐾̅(0)) =  𝜉𝐾̅ (𝑓(0)) 

            =  𝜉𝐾̅ (0)  

            ≥  𝜉𝐾̅ (𝑥) 

For some 𝑥 , 𝑦 ∈ 𝑋 

𝑓−1(𝜉𝐾̅)(𝑥 + 𝑦) =  𝜉𝐾̅ (𝑓(𝑥 + 𝑦))  

            =  𝜉𝐾̅ (𝑓(𝑥) + 𝑓(𝑦)) 

                ≥ 𝑟𝑚𝑖𝑛 { 𝜉𝐾̅ (𝑓(𝑥)) , 𝜉𝐾̅ (𝑓(𝑦)) }  

                = rmin{ 𝑓−1 (𝜉𝐾̅(𝑥)) , 𝑓−1 (𝜉𝐾̅(𝑦))}  
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𝑓−1(𝜉𝐾̅)(𝑥) =  𝜉𝐾̅ (𝑓(𝑥))  

            ≥ 𝑟𝑚𝑖𝑛 { 𝜉𝐾̅ (𝑓(𝑥) − 𝑓(𝑦)) , 𝜉𝐾̅ (𝑓(𝑦)) }  

        = 𝑟𝑚𝑖𝑛 { 𝜉𝐾̅ (𝑓(𝑥 − 𝑦)) , 𝜉𝐾̅ (𝑓(𝑦)) } 

         = 𝑟𝑚𝑖𝑛 {  𝑓−1(𝜉𝐾̅(𝑥 − 𝑦)) , 𝑓−1(𝜉𝐾̅(𝑦)) } 

iii) 𝑓−1(𝜂𝐾(0)) =  𝜂𝐾 (𝑓(0)) 

            =  𝜂𝐾 (0)  

         ≤ 𝜂𝐾 (𝑥) 

For some 𝑥 , 𝑦 ∈ 𝑋 

𝑓−1(𝜂𝐾)(𝑥 + 𝑦) =  𝜂𝐾 (𝑓(𝑥 + 𝑦))  

            =  𝜂𝐾 (𝑓(𝑥) + 𝑓(𝑦)) 

                ≤ 𝑚𝑎𝑥 { 𝜂𝐾 (𝑓(𝑥)) , 𝜂𝐾 (𝑓(𝑦)) }  

                = max{ 𝑓−1(𝜂𝐾(𝑥)), 𝑓−1(𝜂𝐾(𝑦))}  

𝑓−1(𝜂𝐾)(𝑥) =  𝜂𝐾 (𝑓(𝑥))  

            ≤ 𝑚𝑎𝑥 {  𝜂𝐾 (𝑓(𝑥) − 𝑓(𝑦)) ,  𝜂𝐾 (𝑓(𝑦)) }  

        = 𝑚𝑎𝑥 { 𝜂𝐾 (𝑓(𝑥 − 𝑦)) , 𝜂𝐾 (𝑓(𝑦)) } 

         = 𝑚𝑎𝑥 {  𝑓−1(𝜂𝐾(𝑥 − 𝑦)) , 𝑓−1(𝜂𝐾(𝑦)) } 

Hence 𝑓−1(𝐾) is an MBJ – 𝛽 – Ideal of 𝑋. 

 

3.12 Theorem: Let 𝑓 ∶ 𝑋 → 𝑋  be an endomorphism on 𝑋 .  If 𝐾  is an  MBJ – Neutrosophic           

𝛽 – Ideal of 𝑋 then 𝑓(𝐾) =  { < 𝑥, 𝜌𝑓(𝑥) =  𝜌(𝑓(𝑥)) , 𝜉𝑓̅(𝑥) =  𝜉(̅𝑓(𝑥)), 𝜂𝑓(𝑥) = 𝜂(𝑓(𝑥)) >/𝑥 ∈ 𝑋 } is 

an MBJ – Neutrosophic  𝛽 – Ideal of 𝑋.  

Proof:  Suppose 𝐾 be an MBJ – Neutrosophic 𝛽 - ideal of X. Then, 

i) 𝜌𝑓(0) =  𝜌(𝑓(0)) 

      = 𝜌(0)  ≥  𝜌(𝑥)  ∀ 𝑥 ∈ 𝑋  

𝜌𝑓(𝑥 + 𝑦) =  𝜌(𝑓(𝑥 + 𝑦))  

       =  𝜌(𝑓(𝑥) + 𝑓(𝑦)) 

       = min  {   𝜌(𝑓(𝑥)) + 𝜌(𝑓(𝑦)) } 

       = min { 𝜌𝑓(𝑥) ,   𝜌𝑓(𝑦) }  ∀ 𝑥 , 𝑦 ∈ 𝑋 

Also, 𝜌𝑓(𝑥) =  𝜌(𝑓(𝑥))  

            ≥ min  {   𝜌(𝑓(𝑥) − 𝑓(𝑦)) , 𝜌(𝑓(𝑦))) } 

         = min  {   𝜌(𝑓(𝑥 − 𝑦)) , 𝜌(𝑓(𝑦)) } 

                      = min { 𝜌𝑓(𝑥 − 𝑦) ,   𝜌𝑓(𝑦) }   

 

ii) 𝜉𝑓̅(0) =  𝜉(̅𝑓(0)) 

      = 𝜉(̅0)  ≥  𝜉̅(𝑥)  ∀ 𝑥 ∈ 𝑋  

𝜉𝑓̅(𝑥 + 𝑦) =  𝜉(̅𝑓(𝑥 + 𝑦))  

       =  𝜉̅(𝑓(𝑥) + 𝑓(𝑦)) 

       = rmin  {  𝜉̅ (𝑓(𝑥)) + 𝜉(̅𝑓(𝑦)) } 

       = rmin { 𝜉𝑓̅(𝑥) ,   𝜉𝑓̅(𝑦) }  ∀ 𝑥 , 𝑦 ∈ 𝑋 

Also, 𝜉𝑓̅(𝑥) =  𝜉̅(𝑓(𝑥))  
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            ≥ rmin  {  𝜉̅ (𝑓(𝑥) − 𝑓(𝑦)) , 𝜉̅(𝑓(𝑦)) } 

            = rmin  {  𝜉̅ (𝑓(𝑥 − 𝑦)) , 𝜉̅(𝑓(𝑦)) } 

        = rmin { 𝜉𝑓̅(𝑥 − 𝑦) ,   𝜉𝑓̅(𝑦) }   

iii) 𝜂𝑓(0) =  𝜂(𝑓(0)) 

      = 𝜂(0)  ≤  𝜂(𝑥)  ∀ 𝑥 ∈ 𝑋  

𝜂𝑓(𝑥 + 𝑦) =  𝜂(𝑓(𝑥 + 𝑦))  

          =  𝜂(𝑓(𝑥) + 𝑓(𝑦)) 

       = max  {  𝜂(𝑓(𝑥)) + 𝜂(𝑓(𝑦)) } 

       = max { 𝜂𝑓(𝑥) ,   𝜂𝑓(𝑦) }  ∀ 𝑥 , 𝑦 ∈ 𝑋 

Also,  𝜂𝑓(𝑥) =  𝜂(𝑓(𝑥))  

                 ≤ max  {  𝜂(𝑓(𝑥) − 𝑓(𝑦)) , 𝜂(𝑓(𝑦))) } 

                  = max  {  𝜂(𝑓(𝑥 − 𝑦)) , 𝜂(𝑓(𝑦)) } 

                         = max { 𝜂𝑓(𝑥 − 𝑦) ,   𝜂𝑓(𝑦) }   

∴  𝑓(𝐾) is an MBJ – 𝛽 – Ideal of 𝑋.  

 

3.13 Theorem: Let 𝑓 ∶ 𝑋 → 𝑌  be a homomorphism of 𝛽  – algebra.  If 𝐾  is an                  

MBJ – Neutrosophic 𝛽 – Ideal of 𝑋, with sup – rsup – inf property and ker(𝑓) ⊆  𝑋𝐾 then the image 

of the set 𝐾 , 𝑓(𝐾) is an MBJ – Neutrosophic 𝛽 – ideal of 𝑌. 

Proof:  Suppose 𝐾 is an MBJ – Neutrosophic 𝛽 – Ideal of 𝑋, with sup – rsup – inf property and 

ker(𝑓) ⊆  𝑋𝐾 then  

i) 𝑓(𝜌𝐾)(0) =  𝑠𝑢𝑝𝑥 ∈ 𝑓−1(0){ 𝜌𝐾(𝑥) } 

             = 𝜌𝐾(0) 

             ≥ 𝜌𝐾(𝑥) ∀ 𝑥 ∈ 𝑋 

Hence, 𝑓(𝜌𝐾)(0) =  𝑠𝑢𝑝𝑥 ∈ 𝑓−1(0){ 𝜌𝐾(𝑥) } 

              = 𝑓(𝜌𝐾)(𝑦)  ∀ 𝑦 ∈ 𝑌 

Let  𝑦1, 𝑦2  ∈ 𝑌 

Then there exists 𝑥1, 𝑥2  ∈ 𝑋 such that 𝑓(𝑥1) =  𝑦1 , 𝑓(𝑥2) =  𝑦2. 

𝑓(𝜌𝐾)(𝑦1 + 𝑦2) = sup  { 𝜌𝐾(𝑥1 + 𝑥2) ∶ 𝑥 ∈  𝑓−1(𝑦1 + 𝑦2) }  

               ≥ sup  { 𝜌𝐾(𝑥1 + 𝑥2) ∶ 𝑥1  ∈  𝑓−1(𝑦1) & 𝑥2 ∈ 𝑓−1(𝑦2) } 

          ≥ sup{min{ 𝜌𝐾(𝑥1) , 𝜌𝐾(𝑥2)} , 𝑥1  ∈  𝑓−1(𝑦1), 𝑥2 ∈  𝑓−1(𝑦2)}  

          ≥ min{sup{ 𝜌𝐾(𝑥1) ∶ 𝑥1 ∈ 𝑓−1(𝑦1)} , sup{ 𝜌𝐾(𝑥2) ∶ 𝑥2 ∈  𝑓−1(𝑦2)}} 

         = min{ 𝑠𝑢𝑝𝑥1 ∈ 𝑓−1(𝑦1){ 𝜌𝐾(𝑥1) } , 𝑠𝑢𝑝𝑥2 ∈ 𝑓−1(𝑦2){ 𝜌𝐾(𝑥2) }  

         = min{ 𝑓(𝜌𝐾)(𝑦1) , 𝑓(𝜌𝐾)(𝑦2)}   

Suppose that for some 𝑦1 , 𝑦2  ∈ 𝑌 

Then 𝑓(𝜌𝐾)(𝑦1)  ≤  min{ 𝑓(𝜌𝐾)(𝑦1 −  𝑦2) , 𝑓(𝜌𝐾)(𝑦2)}  

Since 𝑓 is onto ∃ 𝑥1 ,  𝑥2  ∈ 𝑋 such that 𝑓(𝑥1) =  𝑦1 & 𝑓(𝑥2) =  𝑦2 

𝑓(𝜌𝐾)(𝑓(𝑥1))  < min{ 𝑓(𝜌𝐾)(𝑓(𝑥1) −  𝑓(𝑥2)) , 𝑓(𝜌𝐾)( 𝑓(𝑥2)) }   

           = min{ 𝑓(𝜌𝐾)(𝑓(𝑥1 − 𝑥2)) , 𝑓(𝜌𝐾)( 𝑓(𝑥2)) }  

           < min{ 𝑓−1(  𝑓(𝜌𝐾)) (𝑥1 − 𝑥2) , 𝑓−1( 𝑓(𝜌𝐾))(𝑥2)} 
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 𝜌𝐾(𝑥1)  < min{ 𝜌𝐾(𝑥1 − 𝑥2) ,  𝜌𝐾(𝑥2)} 

ii) 𝑓(𝜉𝐾̅)(0) =  𝑟𝑠𝑢𝑝𝑥 ∈ 𝑓−1(0){ 𝜉𝐾̅(𝑥) }  

        = 𝜉𝐾̅(0) 

        ≥ 𝜉𝐾̅(𝑥) ∀ 𝑥 ∈ 𝑋 

Hence, 𝑓(𝜉𝐾̅)(0) =  𝑟𝑠𝑢𝑝𝑥 ∈ 𝑓−1(0){ 𝜉𝐾̅(𝑥) } 

           = 𝑓(𝜉𝐾̅)(𝑦)  ∀ 𝑦 ∈ 𝑌 

Let 𝑓(𝑥1) =  𝑦1 , 𝑓(𝑥2) =  𝑦2. 

𝑓(𝜉𝐾̅)(𝑦1 + 𝑦2) = 𝑟 sup  { 𝜉𝐾̅(𝑥1 + 𝑥2) ∶ 𝑥 ∈  𝑓−1(𝑦1 + 𝑦2) }  

   ≥ rsup  { 𝜉𝐾̅(𝑥1 + 𝑥2) ∶ 𝑥1  ∈  𝑓−1(𝑦1) & 𝑥2 ∈ 𝑓−1(𝑦2) } 

   ≥ rsup{rmin{ 𝜉𝐾̅(𝑥1) , 𝜉𝐾̅(𝑥2)} , 𝑥1  ∈  𝑓−1(𝑦1), 𝑥2 ∈  𝑓−1(𝑦2)}  

    ≥ rmin{ rsup{ 𝜉𝐾̅(𝑥1) ∶  𝑥1  ∈  𝑓−1(𝑦1)} , rsup{ 𝜉𝐾̅(𝑥2) ∶  𝑥2  ∈  𝑓−1(𝑦2)}} 

     = rmin{ 𝑟𝑠𝑢𝑝𝑥1 ∈ 𝑓−1(𝑦1){ 𝜉𝐾̅(𝑥1) } , 𝑟𝑠𝑢𝑝𝑥2 ∈ 𝑓−1(𝑦2){ 𝜉𝐾̅(𝑥2) } } 

     = rmin{ 𝑓(𝜉𝐾̅)(𝑦1) , 𝑓(𝜉𝐾̅)(𝑦2)}   

For 𝑦1 , 𝑦2  ∈ 𝑌 

𝑓(𝜉𝐾̅)(𝑦1)  ≤  rmin{ 𝑓(𝜉𝐾̅)(𝑦1 −  𝑦2) , 𝑓(𝜉𝐾̅)(𝑦2)}  

𝑓(𝜉𝐾̅)(𝑓(𝑥1))  < rmin{ 𝑓(𝜉𝐾̅)(𝑓(𝑥1) −  𝑓(𝑥2)) , 𝑓(𝜉𝐾̅)( 𝑓(𝑥2)) }   

           = rmin{ 𝑓(𝜉𝐾̅)(𝑓(𝑥1 − 𝑥2)) , 𝑓(𝜉𝐾̅)( 𝑓(𝑥2)) }  

           < rmin{ 𝑓−1(  𝑓(𝜉𝐾̅)) (𝑥1 − 𝑥2) , 𝑓−1( 𝑓(𝜉𝐾̅))(𝑥2)} 

 𝜉𝐾̅(𝑥1)  < rmin{ 𝜉𝐾̅(𝑥1 − 𝑥2) ,  𝜉𝐾̅(𝑥2) }  

iii) 𝑓(𝜂𝐾)(0) =  𝑖𝑛𝑓𝑥 ∈ 𝑓−1(0){ 𝜂𝐾(𝑥) }  

          = 𝜂𝐾(0) 

          ≤ 𝜂(𝑥) ∀ 𝑥 ∈ 𝑋 

Hence, 𝑓(𝜂𝐾)(0) =  𝑖𝑛𝑓𝑥 ∈ 𝑓−1(0){ 𝜂𝐾(𝑥) } 

           = 𝑓(𝜂𝐾)(𝑦)  ∀ 𝑦 ∈ 𝑌 

Let 𝑓(𝑥1) =  𝑦1 , 𝑓(𝑥2) =  𝑦2. 

𝑓(𝜂𝐾)(𝑦1 + 𝑦2) = inf  { 𝜂𝐾(𝑥1 + 𝑥2) ∶ 𝑥 ∈  𝑓−1(𝑦1 + 𝑦2) }  

   ≤ inf  { 𝜂𝐾(𝑥1 + 𝑥2) ∶ 𝑥1  ∈  𝑓−1(𝑦1) & 𝑥2 ∈ 𝑓−1(𝑦2) } 

   ≤ inf {max{ 𝜂𝐾(𝑥1) , 𝜂𝐾(𝑥2)} , 𝑥1  ∈  𝑓−1(𝑦1), 𝑥2 ∈  𝑓−1(𝑦2)}  

                 ≤ max{ inf { 𝜂𝐾(𝑥1) ∶  𝑥1  ∈  𝑓−1(𝑦1)} , inf { 𝜂𝐾(𝑥2) ∶  𝑥2  ∈  𝑓−1(𝑦2)} } 

   = max{ 𝑖𝑛𝑓𝑥1 ∈ 𝑓−1(𝑦1){ 𝜂𝐾(𝑥1) } , 𝑖𝑛𝑓𝑥2 ∈ 𝑓−1(𝑦2){ 𝜂𝐾(𝑥2) }  

   = max{ 𝑓(𝜂𝐾)(𝑦1) , 𝑓(𝜂𝐾)(𝑦2)}   

For 𝑦1 , 𝑦2  ∈ 𝑌 

𝑓(𝜂𝐾)(𝑦1)  ≤ max{ 𝑓(𝜂𝐾)(𝑦1 − 𝑦2) , 𝑓(𝜂𝐾)(𝑦2)}  

𝑓(𝜂𝐾)(𝑓(𝑥1))  < max{ 𝑓(𝜂𝐾)(𝑓(𝑥1) −  𝑓(𝑥2)) , 𝑓(𝜂𝐾)( 𝑓(𝑥2)) }   

           = max{ 𝑓(𝜂𝐾)(𝑓(𝑥1 − 𝑥2)) , 𝑓(𝜂𝐾)( 𝑓(𝑥2)) }  

           < max{ 𝑓−1(  𝑓(𝜂)) (𝑥1 − 𝑥2) , 𝑓−1( 𝑓(𝜂𝐾))(𝑥2)} 

 𝜂𝐾(𝑥1)  < max{ 𝜂𝐾(𝑥1 − 𝑥2) ,  𝜂𝐾(𝑥2)} 

           Thus, 𝑓(𝐾) is an MBJ – 𝛽 – ideal of 𝑌. 
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3.14 Theorem: Let 𝑓 ∶ 𝑋 → 𝑌  be an onto homomorphism of 𝛽  – algebra.  If 𝐾  is an                 

MBJ – Neutrosophic 𝛽 – ideal of 𝑋, with ker(𝑓) ⊆  𝑋𝐾 then 𝑓−1(𝑓(𝐾)) =  𝐾. 

Proof:  To prove 𝑓−1(𝑓(𝐾)) =  𝐾. 

It’s necessary to prove 

  𝑓−1(𝑓(𝜌𝐾))(𝑥) = 𝜌𝐾(𝑥) ; 𝑓−1 (𝑓(𝜉𝐾̅)) (𝑥) = 𝜉𝐾̅(𝑥) and 𝑓−1(𝑓(𝜂𝐾))(𝑥) = 𝜂𝐾(𝑥). 

For  𝑥 ∈ 𝑋 ; 𝑓(𝑥) = 𝑦  

i) Now, 𝑓−1(𝑓(𝜌𝐾))(𝑥) = 𝑓(𝜌𝐾)(𝑓(𝑥))  

                     = 𝑓(𝜌𝐾)(𝑦) 

                     =  𝑠𝑢𝑝𝑥 ∈ 𝑓−1(𝑦){ 𝜌𝐾(𝑥) } 

For 𝑥′  ∈ 𝑋 , 𝑥′  ∈  𝑓−1(𝑦) ⟹ 𝑓( 𝑥′) = 𝑦  

 𝑓( 𝑥′) = 𝑓(𝑥) 

 ⟹ 𝑓( 𝑥′) − 𝑓(𝑥) = 0  

𝑓( 𝑥′ −  𝑥) = 0   

This implies 𝑥′ −  𝑥 ∈ 𝐾𝑒𝑟 𝑓 

𝑥′ −  𝑥 ∈ 𝑋𝜌𝐾
  

𝜌𝐾(𝑥′ −  𝑥) = 𝜌𝐾(0)   

𝜌𝐾(𝑥′) ≥ min{𝜌𝐾(𝑥′ −  𝑥) , 𝜌𝐾(𝑥)}   

       = min{𝜌𝐾(0) , 𝜌𝐾(𝑥)}   

       = 𝜌𝐾(𝑥) 

𝜌𝐾(𝑥′) ≥ 𝜌𝐾(𝑥)  and similarly, 𝜌𝐾(𝑥) ≥ 𝜌𝐾(𝑥′)   

Therefore, 𝜌𝐾(𝑥′) = 𝜌𝐾(𝑥)  

𝑓−1(𝑓(𝜌𝐾))(𝑥) = 𝑓(𝜌𝐾)(𝑓(𝑥))  

               = 𝑓(𝜌𝐾)(𝑓(𝑥′))  

           =  𝑠𝑢𝑝𝑥 ∈ 𝑓−1(𝑦){ 𝜌𝐾(𝑥′) }  

           = 𝜌𝐾(𝑥)  

𝑓−1(𝑓(𝜌𝐾))(𝑥) = 𝜌𝐾(𝑥)  

ii) 𝑓−1 (𝑓(𝜉𝐾̅)) (𝑥) = 𝑓(𝜉𝐾̅)(𝑓(𝑥))  

                = 𝑓(𝜉𝐾̅)(𝑦) 

                =  𝑟𝑠𝑢𝑝𝑥 ∈ 𝑓−1(𝑦){ 𝜉𝐾̅(𝑥) } 

For 𝑥′  ∈ 𝑋 , 𝑥′  ∈  𝑓−1(𝑦) ⟹ 𝑓( 𝑥′) = 𝑦  

 𝑓( 𝑥′) = 𝑓(𝑥) 

 ⟹ 𝑓( 𝑥′) − 𝑓(𝑥) = 0  

 𝑓( 𝑥′ −  𝑥) = 0   

This implies 𝑥′ −  𝑥 ∈ 𝐾𝑒𝑟 𝑓 

𝑥′ −  𝑥 ∈ 𝑋𝜉̅𝐾
  

𝜉𝐾̅(𝑥′ −  𝑥) = 𝜉𝐾̅(0)   

𝜉𝐾̅(𝑥′) ≥ rmin{𝜉𝐾̅(𝑥′ −  𝑥) , 𝜉𝐾̅(𝑥)}   

       = rmin{𝜉𝐾̅(0) , 𝜉𝐾̅(𝑥)}   

       = 𝜉𝐾̅(𝑥) 

𝜉𝐾̅(𝑥′) ≥ 𝜉𝐾̅(𝑥)  and similarly, 𝜉𝐾̅(𝑥) ≥ 𝜉𝐾̅(𝑥′)   
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Therefore, 𝜉𝐾̅(𝑥′) = 𝜉𝐾̅(𝑥)  

𝑓−1 (𝑓(𝜉𝐾̅)) (𝑥) = 𝑓(𝜉𝐾̅)(𝑓(𝑥))  

                = 𝑓(𝜉𝐾̅)(𝑓(𝑥′))  

             =  𝑟𝑠𝑢𝑝𝑥 ∈ 𝑓−1(𝑦){ 𝜉𝐾̅(𝑥′) }  

             = 𝜉𝐾̅(𝑥)  

𝑓−1 (𝑓(𝜉𝐾̅)) (𝑥) = 𝜉𝐾̅(𝑥)  

iii) Proceeding in the same way,  

𝑓−1(𝑓(𝜂𝐾))(𝑥) = 𝑓(𝜂𝐾)(𝑓(𝑥))   

               = 𝑓(𝜂𝐾)(𝑦) 

               =  𝑖𝑛𝑓𝑥 ∈ 𝑓−1(𝑦){ 𝜂𝐾(𝑥) } 

For 𝑥′  ∈ 𝑋 , 𝑥′  ∈  𝑓−1(𝑦) ⟹ 𝑓( 𝑥′) = 𝑦  

 𝑓( 𝑥′) = 𝑓(𝑥) 

 ⟹ 𝑓( 𝑥′) − 𝑓(𝑥) = 0  

𝑓( 𝑥′ −  𝑥) = 0   

This implies 𝑥′ −  𝑥 ∈ 𝐾𝑒𝑟 𝑓 

𝑥′ −  𝑥 ∈ 𝑋𝜂𝐾
  

𝜂𝐾(𝑥′ −  𝑥) = 𝜂𝐾(0)   

𝜂𝐾(𝑥′) ≤ max{𝜂𝐾(𝑥′ −  𝑥) , 𝜂𝐾(𝑥)}   

       = max{𝜂𝐾(0) , 𝜂𝐾(𝑥)}   

       = 𝜂𝐾(𝑥) 

𝜂𝐾(𝑥′) ≥ 𝜂𝐾(𝑥)  and similarly, 𝜂𝐾(𝑥) ≥ 𝜂𝐾(𝑥′)   

Therefore, 𝜂𝐾(𝑥′) = 𝜂𝐾(𝑥)  

𝑓−1(𝑓(𝜂𝐾))(𝑥) = 𝑓(𝜂𝐾)(𝑓(𝑥))  

                           = 𝑓(𝜂𝐾)(𝑓(𝑥′))  

           =  𝑖𝑛𝑓𝑥 ∈ 𝑓−1(𝑦){ 𝜂𝐾(𝑥′) }  

           = 𝜂𝐾(𝑥)  

𝑓−1(𝑓(𝜂𝐾))(𝑥) = 𝜂𝐾(𝑥)  

Therefore, all these conditions are proved and hence 𝑓−1(𝑓(𝐾)) =  𝐾. 

 

4 Cartesian Product of MBJ – Neutrosophic 𝛃 – Ideal 

This section introduces the cartesian product of MBJ – Neutrosophic  𝛽 – ideal and discusses few 

associated results.  

 

4.1.Definition: Let 𝐾 = { < 𝑥, 𝜌𝐾(𝑥), 𝜉𝐾̅(𝑥), 𝜂𝐾(𝑥) >/𝑥 ∈ 𝑋 }   and                                 

𝐿 = { < 𝑦, 𝜌𝐾(𝑦), 𝜉𝐾̅(𝑦), 𝜂𝐾(𝑦) >/𝑦 ∈ 𝑌 } be two MBJ – Neutrosophic sets 𝑋 & 𝑌 respectively.  The 

Cartesian product of 𝐾 𝑎𝑛𝑑 𝐿  is denoted by 𝐾 ×  𝐿  is defined as                                    

𝐾 × 𝐿 = { < (𝑥 , 𝑦 ) , 𝜌𝐾×𝐿(𝑥, 𝑦), 𝜉𝐾̅×𝐿(𝑥, 𝑦), 𝜂𝐾×𝐿(𝑥, 𝑦) >/(𝑥, 𝑦) ∈ 𝑋 × 𝑌}   where                     

𝜌𝐾×𝐿 ∶  𝑋 × 𝑌 → [0,1] ;  𝜉𝐾̅×𝐿 ∶  𝑋 × 𝑌 → 𝐷[0,1]   and   𝜂𝐾×𝐿: 𝑋 × 𝑌 → [0,1].  𝜌𝐾×𝐿(𝑥, 𝑦) =
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min{ 𝜌𝐾(𝑥) , 𝜌𝐿(𝑦)}   ;       𝜉𝐾̅×𝐿(𝑥, 𝑦) = rmin{ 𝜉𝐾̅(𝑥) , 𝜉𝐿̅(𝑦)}       and                         

𝜂𝐾×𝐿(𝑥, 𝑦) = max{ 𝜂𝐾(𝑥) , 𝜂𝐿(𝑦)} 

 

4.2 Theorem: If 𝐾 and 𝐿 be two MBJ – Neutrosophic 𝛽 – Ideal of 𝑋 & 𝑌 respectively then 𝐾 × 𝐿 is 

an MBJ – Neutrosophic 𝛽 – Ideal of  𝑋 × 𝑌. 

Proof:  Let  𝐾 = { < 𝑥, 𝜌𝐾(𝑥), 𝜉𝐾̅(𝑥), 𝜂𝐾(𝑥) >/𝑥 ∈ 𝑋 }  and  

𝐿 = { < 𝑦, 𝜌𝐾(𝑦), 𝜉𝐾̅(𝑦), 𝜂𝐾(𝑦) >/𝑦 ∈ 𝑌 } be two MBJ – Neutrosophic sets 𝑋 & 𝑌. 

Take (𝑥, 𝑦) ∈ 𝑋 × 𝑌 

i) 𝜌𝐾×𝐿(0,0) = min{ 𝜌𝐾(0,0) , 𝜌𝐿(0,0)}                             

  ≥ min {min{𝜌𝐾(0), 𝜌𝐾(0)} , min{𝜌𝐿(0), 𝜌𝐿(0)}}                                    

          = min {min{𝜌𝐾(𝑥), 𝜌𝐾(𝑦)} , min{𝜌𝐿(𝑥), 𝜌𝐿(𝑦)}}  

          = min {min{𝜌𝐾(𝑥), 𝜌𝐿(𝑥)} , min{𝜌𝐾(𝑦), 𝜌𝐿(𝑦)}} 

                       = min{ 𝜌𝐾×𝐿(𝑥) , 𝜌𝐾×𝐿(𝑦)} 

                       ≥  𝜌𝐾×𝐿(𝑥, 𝑦) 

           Take (𝑢, 𝑣)) ∈ 𝑋 × 𝑌 where 𝑢 = (𝑥1 , 𝑦1), 𝑣 =  (𝑥2 , 𝑦2)   

           𝜌𝐾×𝐿(𝑢 + 𝑣) =  𝜌𝐾×𝐿((𝑥1 , 𝑦1) + (𝑥2 , 𝑦2)) 

                       = 𝜌𝐾×𝐿((𝑥1 +  𝑥2), (𝑦1 +  𝑦2))  

                       = min { 𝜌𝐾(𝑥1 +  𝑥2), 𝜌𝐿(𝑦1 +  𝑦2)} 

                       ≥ min {min{ 𝜌𝐾(𝑥1), 𝜌𝐾(𝑥2)} , 𝑚𝑖𝑛{𝜌𝐿(𝑦1), 𝜌𝐿(𝑦2)}} 

                   = min {min{ 𝜌𝐾(𝑥1), 𝜌𝐿(𝑦1)} , 𝑚𝑖𝑛{(𝜌𝐾(𝑥2), 𝜌𝐿(𝑦2)}}                                           

                                      = min{ 𝜌𝐾×𝐿(𝑥1 , 𝑦1) , 𝜌𝐾×𝐿((𝑥2 , 𝑦2))} 

                       ≥ min{ 𝜌𝐾×𝐿(𝑢) , 𝜌𝐾×𝐿(𝑣)} 

           𝜌𝐾×𝐿(𝑢)  = 𝜌𝐾×𝐿(𝑥1 , 𝑦1)    

                    = min{ 𝜌𝐾×𝐿(𝑥1 ) , 𝜌𝐾×𝐿(𝑦1)}   

                    ≥ min {min{ 𝜌𝐾(𝑥1 − 𝑥2), 𝜌𝐾(𝑥2)} , 𝑚𝑖𝑛{𝜌𝐿(𝑦1 − 𝑦2), 𝜌𝐿(𝑦2)}} 

                    = min {min{ 𝜌𝐾(𝑥1 − 𝑥2), 𝜌𝐿(𝑦1 − 𝑦2))} , 𝑚𝑖𝑛{𝜌𝐿(𝑥2), 𝜌𝐿(𝑦2)}}                              

                                         = min{ 𝜌𝐾×𝐿((𝑥1 , 𝑦1) − (𝑥2 , 𝑦2)), 𝜌𝐾×𝐿(𝑥2 , 𝑦2)} 

                    ≥ min{ 𝜌𝐾×𝐿 (𝑢 − 𝑣), 𝜌𝐾×𝐿(𝑣)} 

ii) 𝜉𝐾̅×𝐿(0,0) = rmin{ 𝜉𝐾̅(0,0) , 𝜉𝐿̅(0,0)}                       

      ≥ 𝑟min {rmin{𝜉𝐾̅(0), 𝜉𝐾̅(0)} , rmin{𝜉𝐿̅(0), 𝜉𝐿̅(0)}}                                    

          = 𝑟min {rmin{𝜉𝐾̅(𝑥), 𝜉𝐾̅(𝑦)} , rmin{𝜉𝐿̅(𝑥), 𝜉𝐿̅(𝑦)}}  

          = 𝑟min {rmin{𝜉𝐾̅(𝑥), 𝜉𝐿̅(𝑥)} , rmin{𝜉𝐾̅(𝑦), 𝜉𝐿̅(𝑦)}} 

                     = rmin{ 𝜉𝐾̅×𝐿(𝑥) , 𝜉𝐾̅×𝐿(𝑦)} 

                     ≥  𝜉𝐾̅×𝐿(𝑥, 𝑦) 

         𝜉𝐾̅×𝐿(𝑢 + 𝑣) =  𝜉𝐾̅×𝐿((𝑥1 , 𝑦1) + (𝑥2 , 𝑦2)) 

                     = 𝜉𝐾̅×𝐿((𝑥1 +  𝑥2), (𝑦1 +  𝑦2))  

                     = 𝑟min { 𝜉𝐾̅(𝑥1 + 𝑥2), 𝜉𝐿̅(𝑦1 + 𝑦2)} 

                      ≥ 𝑟min {rmin{ 𝜉𝐾̅(𝑥1), 𝜉𝐾̅(𝑥2)} , 𝑟𝑚𝑖𝑛{𝜉𝐿̅(𝑦1), 𝜉𝐿̅(𝑦2)}} 

                     = 𝑟min {𝑟 min{ 𝜉𝐾̅(𝑥1), 𝜉𝐿̅(𝑦1)} , 𝑟𝑚𝑖𝑛{(𝜉𝐾̅(𝑥2), 𝜉𝐿̅(𝑦2)}}                           

                                          = rmin{ 𝜉𝐾̅×𝐿(𝑥1 , 𝑦1) , 𝜉𝐾̅×𝐿((𝑥2 , 𝑦2))} 

                     ≥ rmin{ 𝜉𝐾̅×𝐿(𝑢) , 𝜉𝐾̅×𝐿(𝑣)} 

 𝜉𝐾̅×𝐿(𝑢)  = 𝜉𝐾̅×𝐿(𝑥1 , 𝑦1)    
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                      = rmin{ 𝜉𝐾×𝐿(𝑥1 ) , 𝜉𝐾×𝐿(𝑦1)}   

                      ≥ 𝑟min {rmin{ 𝜉𝐾(𝑥1 − 𝑥2), 𝜉𝐾(𝑥2)} , 𝑟𝑚𝑖𝑛{𝜉𝐿(𝑦1 − 𝑦2), 𝜉𝐿(𝑦2)}} 

                      = 𝑟min {rmin{ 𝜉𝐾(𝑥1 − 𝑥2), 𝜉𝐿(𝑦1 − 𝑦2))} , 𝑟𝑚𝑖𝑛{𝜉𝐿(𝑥2), 𝜉𝐿(𝑦2)}} 

                      = rmin{ 𝜉𝐾×𝐿((𝑥1 , 𝑦1) − (𝑥2 , 𝑦2)), 𝜉𝐾×𝐿(𝑥2 , 𝑦2)} 

                      ≥ rmin{ 𝜉𝐾×𝐿 (𝑢 − 𝑣), 𝜉𝐾×𝐿(𝑣)} 

i) 𝜂𝐾×𝐿(0,0) = max{ 𝜂𝐾(0,0) , 𝜂𝐿(0,0)}                             

  ≤ max {max{𝜂𝐾(0), 𝜂𝐾(0)} , max{𝜂𝐿(0), 𝜂𝐿(0)}}                                    

                     = max {max{𝜂𝐾(𝑥), 𝜂𝐾(𝑦)} , max{𝜂𝐿(𝑥), 𝜂𝐿(𝑦)}}                 

                                       = max {max{𝜂𝐾(𝑥), 𝜂𝐿(𝑥)} , max{𝜂𝐾(𝑦), 𝜂𝐿(𝑦)}} 

                    = max{ 𝜂𝐾×𝐿(𝑥) , 𝜂𝐾×𝐿(𝑦)} 

                    ≤  𝜂𝐾×𝐿(𝑥, 𝑦) 

          𝜂𝐾×𝐿(𝑢 + 𝑣) =  𝜂𝐾×𝐿((𝑥1 , 𝑦1) + (𝑥2 , 𝑦2)) 

                      = 𝜂𝐾×𝐿((𝑥1 +  𝑥2), (𝑦1 +  𝑦2))  

                      = max { 𝜂𝐾(𝑥1 + 𝑥2), 𝜂𝐿(𝑦1 +  𝑦2)} 

                      ≤ max {max{ 𝜂𝐾(𝑥1), 𝜂𝐾(𝑥2)} , 𝑚𝑎𝑥{𝜂𝐿(𝑦1), 𝜂𝐿(𝑦2)}} 

                      = max {max{ 𝜂𝐾(𝑥1), 𝜂𝐿(𝑦1)} , 𝑚𝑎𝑥{(𝜂𝐾(𝑥2), 𝜂𝐿(𝑦2)}} 

                     = max{ 𝜂𝐾×𝐿(𝑥1 , 𝑦1) , 𝜂𝐾×𝐿((𝑥2 , 𝑦2))} 

                     ≤ max{ 𝜂𝐾×𝐿(𝑢) , 𝜂𝐾×𝐿(𝑣)} 

          𝜂𝐾×𝐿(𝑢)  = 𝜂𝐾×𝐿(𝑥1 , 𝑦1)    

                   = max{ 𝜂𝐾×𝐿(𝑥1 ) , 𝜂𝐾×𝐿(𝑦1)}   

                   ≤ max {max{ 𝜂𝐾(𝑥1 − 𝑥2), 𝜂𝐾(𝑥2)} , 𝑚𝑎𝑥{𝜂𝐿(𝑦1 − 𝑦2), 𝜂𝐿(𝑦2)}}                                        

                                       = max {max{ 𝜂𝐾(𝑥1 − 𝑥2), 𝜂𝐿(𝑦1 − 𝑦2))} , 𝑚𝑎𝑥{𝜂𝐿(𝑥2), 𝜂𝐿(𝑦2)}} 

                   = max{ 𝜂𝐾×𝐿((𝑥1 , 𝑦1) − (𝑥2 , 𝑦2)), 𝜂𝐾×𝐿(𝑥2 , 𝑦2)}                                

                                      ≤ max{ 𝜂𝐾×𝐿 (𝑢 − 𝑣), 𝜂𝐾×𝐿(𝑣)} 

         Hence 𝐾 × 𝐿 is an MBJ – Neutrosophic 𝛽 – Ideal of  𝑋 × 𝑌. 

 

4.3 Theorem: If  𝐾1 , 𝐾2 , … . . 𝐾𝑛 be an MBJ – Neutrosophic 𝛽 – Ideals of 𝑋1 , 𝑋2 , … 𝑋𝑛 respectively, 

then ∏ 𝐾𝑖
𝑛
𝑖=1  is also a MBJ – Neutrosophic 𝛽 – Ideal of  ∏ 𝑋𝑖

𝑛
𝑖=1  . 

Proof:  By induction on Theorem 4.2,  

i) ∏ 𝜌𝐾𝑖
(0) ≥ 𝑛

𝑖=1 ∏ 𝜌𝐾𝑖
(𝑥𝑖) 𝑛

𝑖=1  

∏ 𝜌𝐾𝑖
(𝑥𝑖 +  𝑦𝑖)  ≥ min { 𝑛

𝑖=1 ∏ 𝜌𝐾𝑖
(𝑥𝑖) 𝑛

𝑖=1 , ∏ 𝜌𝐾𝑖
(𝑦𝑖) }𝑛

𝑖=1   

∏ 𝜌𝐾𝑖
(𝑥𝑖) 𝑛

𝑖=1 ≥ min { ∏ 𝜌𝐾𝑖
(𝑥𝑖 − 𝑦𝑖) , ∏ 𝜌𝐾𝑖

(𝑦𝑖) }𝑛
𝑖=1  𝑛

𝑖=1   

ii) ∏ 𝜉𝐾̅𝑖
(0) ≥ 𝑛

𝑖=1 ∏ 𝜉𝐾̅𝑖
(𝑥𝑖) 𝑛

𝑖=1  

∏ 𝜉𝐾̅𝑖
(𝑥𝑖 +  𝑦𝑖)  ≥ 𝑟min { 𝑛

𝑖=1 ∏ 𝜉𝐾̅𝑖
(𝑥𝑖) 𝑛

𝑖=1 , ∏ 𝜉𝐾̅𝑖
(𝑦𝑖) }𝑛

𝑖=1   

∏ 𝜉𝐾̅𝑖
(𝑥𝑖) 𝑛

𝑖=1 ≥ 𝑟min { ∏ 𝜉𝐾̅𝑖
(𝑥𝑖 − 𝑦𝑖) , ∏ 𝜉𝐾̅𝑖

(𝑦𝑖) }𝑛
𝑖=1  𝑛

𝑖=1   

iii) ∏ 𝜂𝐾𝑖
(0) ≤ 𝑛

𝑖=1 ∏ 𝜂𝐾𝑖
(𝑥𝑖) 𝑛

𝑖=1  

∏ 𝜂𝐾𝑖
(𝑥𝑖 + 𝑦𝑖)  ≤ max { 𝑛

𝑖=1 ∏ 𝜂𝐾𝑖
(𝑥𝑖) 𝑛

𝑖=1 , ∏ 𝜂𝐾𝑖
(𝑦𝑖) }𝑛

𝑖=1   

∏ 𝜂𝐾𝑖
(𝑥𝑖) 𝑛

𝑖=1 ≤ max { ∏ 𝜂𝐾𝑖
(𝑥𝑖 − 𝑦𝑖) , ∏ 𝜂𝐾𝑖

(𝑦𝑖) }𝑛
𝑖=1  𝑛

𝑖=1   

Hence the proof is clear.  
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4.4 Theorem: For the MBJ – Neutrosophic subsets 𝐾 𝑎𝑛𝑑 𝐿  of 𝑋  & 𝑌  , if 𝐾 × 𝐿  is an                  

MBJ – Neutrosophic β – ideal of 𝑋 × 𝑌 then 

i)  𝜌𝐾(0) ≥ 𝜌𝐿(𝑦) & 𝜌𝐿(0) ≥ 𝜌𝐾(𝑥)  

ii) 𝜉𝐾̅(0) ≥ 𝜉𝐿̅(𝑦) &  𝜉𝐿̅(0) ≥ 𝜉𝐾̅(𝑥) 

iii) 𝜂𝐾(0) ≤ 𝜂𝐿(𝑦) & 𝜂𝐿(0) ≤ 𝜂𝐾(𝑥)  

Proof:  Let 𝐾 & 𝐿  be MBJ – Neutrosophic subsets of 𝑋 & 𝑌  with 𝐾 × 𝐿  is an                       

MBJ – Neutrosophic β – ideal of 𝑋 × 𝑌. 

Suppose 𝜌𝐿(𝑦) ≥ 𝜌𝐾(0) and 𝜌𝐾(𝑥) ≥ 𝜌𝐿(0) for some 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌. 

𝜌𝐾×𝐿(𝑥, 𝑦) = min {𝜌𝐾(𝑥) , 𝜌𝐿(𝑦)}  

 ≥ min{𝜌𝐿(0) , 𝜌𝐾(0)} 

 = 𝜌𝐾×𝐿(0,0) 

which is a contradiction.  

Thus, 𝜌𝐾(0) ≥ 𝜌𝐿(𝑦) & 𝜌𝐿(0) ≥ 𝜌𝐾(𝑥) 

Similarly, 𝜉𝐿̅(𝑦) ≥ 𝜉𝐾̅(0) and 𝜉𝐾̅(𝑥) ≥ 𝜉𝐿̅(0) for some 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌. 

𝜉𝐾̅×𝐿(𝑥, 𝑦) = 𝑟min {𝜉𝐾̅(𝑥) , 𝜉𝐿̅(𝑦)}  

          ≥ rmin{𝜉𝐿̅(0) , 𝜉𝐾̅(0)}  

          = 𝜉𝐾̅×𝐿(0,0)  

Now, 𝜂𝐿(𝑦) ≤ 𝜂𝐾(0) and 𝜂𝐾(𝑥) ≤ 𝜂𝐿(0) 

𝜂𝐾×𝐿(𝑥, 𝑦) = max {𝜂𝐾(𝑥) , 𝜂𝐿(𝑦)}  

                    ≤ max{𝜂𝐿(0) , 𝜂𝐾(0)}  

                    = 𝜂𝐾×𝐿(0,0)  

Hence the condition is satisfied.  

 

4.5 Theorem: Let 𝐾 & 𝐿 be two MBJ – Neutrosophic β – ideals of 𝑋 & 𝑌  such that 𝐾 × 𝐿 is an            

MBJ – Neutrosophic β – ideals of 𝑋 × 𝑌 .  Then, either 𝐾 is an      MBJ - β – ideals of 𝑋 or 𝐿 is 

an MBJ – Neutrosophic β – ideals of 𝑌. 

Proof:  By using the above theorem 

i) We consider  𝜌𝐾(0) ≥ 𝜌𝐿(𝑦) then 

𝜌𝐾×𝐿(0, 𝑦) ≥ min {𝜌𝐾(0) , 𝜌𝐿(𝑦)}     …… (1) 

Given  𝐾 × 𝐿  is an MBJ – Neutrosophic β – ideals of 𝑋 ×  𝑌 

𝜌𝐾×𝐿((𝑥1, 𝑦1), (𝑥2, 𝑦2)) ≥ min {𝜌𝐾×𝐿((𝑥1, 𝑦1) − (𝑥2, 𝑦2)) , 𝜌𝐾×𝐿(𝑥2, 𝑦2)}  

∵  𝜌𝐾×𝐿((𝑥1, 𝑦1) − (𝑥2, 𝑦2))  ≥ min  { 𝜌𝐾×𝐿(𝑥1, 𝑦1) , 𝜌𝐾×𝐿(𝑥2, 𝑦2) }   

𝜌𝐾×𝐿(𝑥1, 𝑦1)  ≥ min{ 𝜌𝐾×𝐿((𝑥1 −  𝑥2), (𝑦1 − 𝑦2)), 𝜌𝐾×𝐿(𝑥2, 𝑦2) }      ……. (2) 

Now,  

𝜌𝐾×𝐿((𝑥1 −  𝑥2), (𝑦1 −  𝑦2))  ≥ min{ 𝜌𝐾×𝐿(𝑥1, 𝑦1) , 𝜌𝐾×𝐿(𝑥2, 𝑦2) }     ……(3) 

Put 𝑥1 =  𝑥2 = 0  in Equation (2 & 3) 

𝜌𝐾×𝐿(0, 𝑦1)  ≥ min{ 𝜌𝐾×𝐿(0, (𝑦1 − 𝑦2)), 𝜌𝐾×𝐿(0, 𝑦2) }  and  

𝜌𝐾×𝐿(0 , (𝑦1 − 𝑦2)) ≥  min{ 𝜌𝐾×𝐿(0, 𝑦1) , 𝜌𝐾×𝐿(0, 𝑦2)}                ……..(4) 

From (1) & (4)  

𝜌𝐿(𝑦1)  ≥ min{ 𝜌𝐿(𝑦1 − 𝑦2) , 𝜌𝐿(𝑦2) }  and  

𝜌𝐿(𝑦1 − 𝑦2) ≥ min{ 𝜌𝐿(𝑦1) , 𝜌𝐿(𝑦2)}  
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ii) Consider  𝜉𝐾̅(0) ≥ 𝜉𝐿̅(𝑦) . Then 

𝜉𝐾̅×𝐿(0, 𝑦) ≥ 𝑟min {𝜉𝐾̅(0) , 𝜉𝐿̅(𝑦)}                      …… (5) 

𝜉𝐾̅×𝐿((𝑥1, 𝑦1), (𝑥2, 𝑦2)) ≥ 𝑟min {𝜉𝐾̅×𝐿((𝑥1, 𝑦1) − (𝑥2, 𝑦2)) , 𝜉𝐾̅×𝐿(𝑥2, 𝑦2)}  

∵  𝜉𝐾̅×𝐿((𝑥1, 𝑦1) − (𝑥2, 𝑦2))  ≥ rmin  { 𝜉𝐾̅×𝐿(𝑥1, 𝑦1) , 𝜉𝐾̅×𝐿(𝑥2, 𝑦2) }   

𝜉𝐾̅×𝐿(𝑥1, 𝑦1)  ≥ rmin{ 𝜉𝐾̅×𝐿((𝑥1 − 𝑥2), (𝑦1 − 𝑦2)), 𝜉𝐾̅×𝐿(𝑥2, 𝑦2) }        …….(6) 

Now,  

𝜉𝐾̅×𝐿((𝑥1 −  𝑥2), (𝑦1 −  𝑦2)) ≥ rmin{ 𝜉𝐾̅×𝐿(𝑥1, 𝑦1) , 𝜉𝐾̅×𝐿(𝑥2, 𝑦2) }         …(7) 

Put 𝑥1 =  𝑥2 = 0  in Equation (6 & 7) 

𝜉𝐾̅×𝐿(0, 𝑦1)  ≥ rmin{ 𝜉𝐾̅×𝐿(0, (𝑦1 − 𝑦2)), 𝜉𝐾̅×𝐿(0, 𝑦2) }  and  

𝜉𝐾̅×𝐿(0 , (𝑦1 − 𝑦2)) ≥  rmin{ 𝜉𝐾̅×𝐿(0, 𝑦1) , 𝜉𝐾̅×𝐿(0, 𝑦2)}                ……..(8) 

From (5) & (7)  

𝜉𝐿̅(𝑦1)  ≥ rmin{ 𝜉𝐿̅(𝑦1 − 𝑦2) , 𝜉𝐿̅(𝑦2) }  and  

𝜉𝐿̅(𝑦1 − 𝑦2) ≥ rmin{ 𝜉𝐿̅(𝑦1) , 𝜉𝐿̅(𝑦2)}  

iii) As in the same way if we proceed, we get  

𝜂𝐿(𝑦1)  ≤ max{ 𝜂𝐿(𝑦1 − 𝑦2) , 𝜂𝐿(𝑦2) }  and  

𝜂𝐿(𝑦1 − 𝑦2) ≤ max{ 𝜂𝐿(𝑦1) , 𝜂𝐿(𝑦2)}  

∴ B is an MBJ - β – ideals of 𝑌. 

5. Conclusion  

This paper presents the characterization of MBJ – Neutrosophic  𝛽 – Ideal of 𝛽 – algebra.  In 

depth, the study analysed the homomorphic image, pre – image, cartesian product and related 

results.  The concept can be explored to other substructures of a 𝛽 – algebra.  

  

References 

1. Abdel-Basset, Mohamed., Mai Mohamed, Mohamed Elhoseny., Francisco Chiclana., and Abd 

El-Nasser H. Zaied., Cosine similarity measures of bipolar neutrosophic set for diagnosis of bipolar 

disorder diseases, Artificial Intelligence in Medicine 101 (2019): 101735. 

2. Abdel-Basset, Mohamed., Mohamed El-hoseny, Abduallah Gamal, and Florentin Smarandache., A 

novel model for evaluation Hospital medical care systems based on plithogenic sets, Artificial 

intelligence in medicine 100 (2019): 101710. 

3. Abdel-Basset, Mohamed., Gunasekaran Manogaran., Abduallah Gamal., and Victor Chang., A Novel 

Intelligent Medical Decision Support Model Based on Soft Computing and IoT, IEEE Internet of 

Things Journal (2019). 

4. Abdel-Basset, Mohamed., Abduallah Gamal., Gunasekaran Manogaran., and Hoang Viet Long., A 

novel group decision making model based on neutrosophic sets for heart disease 

diagnosis, Multimedia Tools and Applications 1-26 (2019). 

5. Ansari, M. A. A., Chandramouleeswaran, M., Fuzzy 𝛽 – subalgebra of 𝛽 – algebras, Int. J. Math. 

Science Engineering Appl, 5(7), 239 – 249 (2013). 

6. Atanassov, K. T., Gargov, G., Interval Valued Intuitionistic Fuzzy Sets System, 31(1),       343 – 349 

(1989). 

7. Atanassov, K. T., Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, J. Math, Appl, 20(1), 87-96 (1986). 

8. Anasri, M. A. A., Chandramouleeswaran, M, Fuzzy 𝛽 – Ideals of  𝛽 – Algebras, Int. J. Math. Science 

and Engineering Appl, 5(1), 1 – 10 (2014). 

9. Borumand Saeid, A., Muralikrishna, P., Hemavathi, P., Bi – Normed Intuitionistic Fuzzy       𝛽 – 

Ideals of 𝛽 – Algebras, Journal of Uncertain Systems, 13(1), 42-55 (2019).  

10. Hemavathi, P., Muralikrishna, P., Palanivel, K., A Note on Interval Valued Fuzzy                      

𝛽 – subalgebras, Global. J. Pure Appl. Math, 11(4), 2553 – 2560 (2015). 



Neutrosophic Sets and Systems, Vol. 35, 2020     118  

 

 
Prakasam Muralikrishna and Surya Manokaran, MBJ – Neutrosophic 𝛽 – Ideal of 𝛽 – Algebra  
     

11. Hemavathi, P., Muralikrishna, P., Palanivel, K., On Interval Valued Intuitionistic Fuzzy     𝛽 – 

subalgebras, Afrika Mathematika, 29(1-2), 249 – 262 (2018).  

12. Hemavathi, P., Muralikrishna, P., Palanivel, K., i – v – f  𝛽 – algebras, IOP Conf. Series: Material 

Science and Engineering 263(2017) 042111. 

13. Jun, Y.B., Kim, 𝛽 – subalgebras and related topics, Communications Korean Math, Soc. 27(2), 243 – 

255 (2017).  

14. Neggers, J., and Kim, H.S., On 𝛽 – Algebra, Math. Slovaca, 52(5), 517 – 530, 2002.  

15. Rosenfeld, A., Fuzzy Groups, Journal of Mathematical Analysis and Applications, 35(3), 512-517 

(1971).  

16. Smarandache, F., A unifying fields in logics. Neutrosophy: Neutrosophic Probability, set and logic, 

Rehoboth: American Research Press (1999).  

17. Smarandache, F., Neutrosophic Set, A generalization of Intuitionistic Fuzzy Sets, International Journal 

of Pure and Applied Mathematics, 24(5), 287 – 297 (2005). 

18.  Song, S.Z., Smarandache, F., and Jim, Y.B., Neutrosophic Commutative N – ideals in              

BCK – algebra Information 8, 130 (2017).  

19. Surya, M., Muralikrishna, P., On MBJ – Neutrosophic 𝛽  – subalgebra, Neutrosophic Sets and 

Systems, 28, 216 – 227(2019).  

20. Talkalloo, M.M., Jun, Y.B., MBJ – Neutrosophic Structures and its applications in       BCK\BCI – 

Algebra, Neutrosophic Sets and System, 23, 72 – 84 (2018).  

21. Zadeh, L. A., The concept of a Linguistic Variable and its application to approximate reasoning, I. Inf. 

Sci. 8, 199 – 249 (1975). 

22. Zadeh, L.A., Fuzzy Sets, Information and Control, 8(3), 338 – 353 (1965). 
 

 

 

 

 
Received: Apr 16, 2020.  Accepted: July 6, 2020 

 



                                    Neutrosophic Sets and Systems, Vol. 35, 2020 
University of New Mexico  

 

Nidhi Singh, Avishek Chakraborty, Soma Bose Biswas, Malini Majumdar; A Study of Social Media linked MCGDM Skill under Pentagonal 

Neutrosophic Environment in the Banking Industry  

 
 

 

 

A Study of Social Media linked MCGDM Skill under Pentagonal 

Neutrosophic Environment in the Banking Industry  

 
Nidhi Singh1,2, Avishek Chakraborty3*, Soma Bose Biswas4, Malini Majumdar5 

 1Registrar, Narula Institute of Technology, Kolkata-700109, W.B, India. 

 2Department of Management, Maulana Abul Kalam Azad University of Technology, West Bengal, Haringhata, 

Nadia-741249, W.B, India. Email: nidhi.singh@jisgroup.org 
3Department of Basic Science & Humanities, Narula Institute of Technology, Kolkata-700109, W.B, India. 

Email:tirtha.avishek93@gmail.com 
4Heritage Business School, 994, Madurdaha,  Chowbaga Road, Anandapur, P.O. East Kolkata Township, Kolkata-700107, 

West Bengal, India. Email: somabbiswas@gmail.com 
5Army Institute of Management, Judges Court Road, Alipore, Kolkata 700027. Email: malini_majumdar@hotmail.com 

*Corresponding author email address: tirtha.avishek93@gmail.com 

 

ABSTRACT: 

Social media is a new observable fact in computer-based technology and neutrosophic theory. 

Researchers are now thinking of the power of social media in banks as it is the fastest expanding 

online noticeable fact and banks with poor presence in social media are facing identity crisis under 

uncertainty fields. Through social media we can share ideas and information through establishing 

virtual networks. Initially it was evident that people used it for personal interaction with friends and 

relatives but with changing time it is established that business houses and financial institutions 

including Banks are using this popular technology to reach out to the prospective customers. 

Especially in the banking industry digital communication is becoming most popular and powerful 

as here consumers' interface is obligatory. Online communication has become a powerful medium 

between banks and consumers. The power of social media is to connect and share information with 

people across globe. Social Media in Indian Bank is not only a medium of advertising but it also 

helps the Banks to be a part of their customers’ life as this relation involves conversation beyond 

business under neutrosophic environment. The aim of this study is to find out the best social media 

as per users’ preference and explore its impact on Banks’ business in pentagonal neutrosophic 

(PNN) arena by increasing customer satisfaction and augment customer relationship management 

in banking industry. 

 

Keywords: Social Media, Customer Relationship Management, Customer satisfaction, Banking 

Industry, PNN. 
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1. INTRODUCTION 

 

1.1 Social Media: 

The traditional marketing media consisting of radio, print, television etc offered a shotgun approach 

as they represent communication in One to Many modes which we may call as Passive Approach. 

However Social media marketing is following Many to Many mode, may be called Active Approach 

with the power of implementation of Word Of Mouth. They are interactive in nature and believe in 

peer to peer relationship [1] (Githa Heggde, 2018) 

 

 

The substantial and considerable use of social media for last few years has elucidated that it is 

amongst a few powerful weapons that has shown tremendous impacts on social life of human 

beings and has hastened the mingling of people with each other. Previously, it was an encumbrance 

for us to keep ourselves in touch with all those who were a little distant from us. Things have 

apparently changed and social networking sites can take every credit for this prodigious platform 

which enabled people to create their own identity. Whether it is about uploading personal posts, 

surfing across the globe, getting all the indispensable information or even if one wants to express 

their cavernous feelings then social media can act as a gullible platform for everyone. At times a few 

of our problematic situations, disturbing sentiments need to get some succor and support by our 

loved ones. At times only a single post of ours explains everything about what we are actually 

feeling. Social media and its comprehensive enhancement is undeniable reality in this modern era. 

Verily speaking social networking sites has made our socialization a bit easier with the rest of the 

world. Data and statistics distinctly show the massive use of social media. Social Media has grown 

tremendously due to increase in penetration of Internet Connectivity and easy availability of smart 

phones and mobile gadgets. The conventional use of social media has changed from mere 

entertainment to opportunities for trade and commerce. An estimate confirms that nearly two third 

of Internet users are active on social media as well and this number is expected to cross approx three 

billion by the end of 2020.  
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1.2 Social Media Platforms: 

 

Social Media is a blur of likes, tweets, shares, posts and contents. It has spread its wings in every 

corner of the world. The numbers are staggering. 70% of the total internet users are now using social 

media as per the research [2] (Bullas, 2014). In a research by Pew Research, 2014 [3] (DUGGAN, 2014) 

, it is established that globally people are getting addicted to social media regardless of age, gender 

and profession. 

 

There are a variety of technological driven services in social media like sharing of pictures, videos 

and audios, blogging, social games, social networking, business networks, reviews and much more. 

Social media consists of a variety of internet-based mediums that enable users to network, share 

content, interact with each other, and create communities around common interests.  Social media 

is therefore the media that we use to be sociable online and it can be divided into three main 

categories: 

• Messaging and communication, e,g. blogging and micro-blogging such as Twitter. 

• Communities and social groups, e.g. Facebook  

• Photo and video sharing, e.g. YouTube 

Statistically speaking, number of people using social media has considerably increased. The number 

of people across globe who uses social media has extended 3 billion. As per a report Face book 

reported 1.871, Whatsapp a billion and Instagram 600 million active users in January 2017 due to the 

intensified use of social media. 

 

1.3 Social Media in Bank: 

 

The bank with no social media marketing strategy is at a risk of being left behind its competitors as 

social media is playing a big role in marketing field. The tremendous growth and popularity of this 
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medium is forcing banks to learn different social media platforms available to them and their 

customers, different strategies to be adapted for proper selection of right social media channel so as 

to reach out to maximum customers and improve their business. [4] (L, 2010) Banks are opting social 

media channels due to the following main points: 

• To increase engagement with customers 

• To enhance their brand image by connecting with customers 

• To find out ways to distinguish themselves with competitors 

• To reduce cost as implementation of social media channels are less expensive in comparison 

to the traditional marketing methods and with higher results 

• To boost innovations as through proper market research through social media more 

customized products/services can be incorporated 

• To increase revenue as satisfies customers result in more business which in turn brings 

revenue 

The advancement faced by the banking sector today in the field of digitalization is an amalgamation 

of social media and the wise users of this powerful tool which helps innumerable people in their 

everyday work. With the help of digital feed people can access different social media sites like Face 

book, Twitter, YouTube, Instagram etc to expand required knowledge about different products and 

services offered by banks. 

Many people opined that the new generations with proper knowledge of digital technologies are 

more prone to use of social media but our response rate of seniors above 50 years was good. It was 

observed that this number is gradually on the rise. Customers are an integral part of Banking 

Industry and social media is an easiest and fastest way to reach to existing and prospective 

customers. All the leading banks worldwide are trying to create business opportunities through 

enhancing their creativity and innovative capacities. Through social media Banks can inform their 

customers about their product & services offered in a most unique, attractive and innovative way. It 

also helps the customers to consider sensibly about their investments and eradicate all the 

complexity involved with the traditional banking processes. Traditional banks focused on providing 

services to customers through different strategies such as advertising, direct mail or face to face 

whereas banks and other financial institutions' is focusing on establishing relations with customers 

through continue digital interaction vide different social media channels. By this continuous 

interaction through social media Banks can discover customers' interests, feelings and behavior. 

Customers of today look ahead to personalized services and they need to be heard and answered 

promptly. Banks may fulfill their expectations through different digital media platforms like face 

book, twitter and you tube instead of face to face interactions between customers and managers. 

Bank’s Monitoring centers may follow comments, posts and tweets on social Medias which can give 

a broad standpoint of customer insight about products and services banks can achieve an accurate 

perceptive of customers. Today Banks need to have an effective presence in social media due to the 

customers' anticipation and their obsession for the same. 

Now a day social media has become crucial tool for banks. Banks are using the platform to discover 

and keep up the relation with customers, motivating sales through advertisement and sales 
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endorsement, guess change in consumer behavior and follow their trends and finally providing 

customized services and support. Social media also helps in building customer relationships 

through its reliability programs. It is an emerging concept in marketing especially in relation to 

Banking Industry. Banks have now realized the influence of this medium over traditional form of 

marketing strategy as it is the fastest growing online trend. Its influence has increased to the power 

that the Banks with no social media connections are at a risk of being left out from competitors. 

 

 

         1.4 Survey of Uncertainty & Neutrosophic Theory: 

 

In this current epoch, vagueness theory plays a vital position in social sciences and management 

fields. Initially, it was discovered by prof. L.A Zadeh [5] & further, advancement of triangular [6], 

trapezoidal [7], pentagonal [8], hexagonal [9], heptagonal [10] fuzzy number are established by 

distinct researchers. It was extended by Prof. Attasonov [11] incorporating the idea of intuitionistic 

fuzzy & further by Prof. Smarandache [12] discovering the concept of neutrosophic set. Nowadays, 

researchers from distinct area are specializing in neutrosophic idea and advanced lots of exciting 

articles in this domain. Recently, categorization of triangular [13], trapezoidal [14], pentagonal 

[15-18] neutrosophic numbers has been developed by Chakraborty et.al. Recently, some MCGDM 

based articles [19-23] are established in this neutrosophic arena which plays an essential impact in 

this research domain.  
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2. Literature Review and Preliminaries: 

This study focuses on identifying the services provided by banks through social media and 

measuring its effect on customer satisfaction. The study also tries to find out the ways through 

which Bank support the customers with the help of social media and the problems faced by the 

customers to approach banks through social media. 

Different customer services that can be provided by banks are; 

• Sharing of financial offers and upcoming promotions 

• Posting of education information and financial guidance 

• Allow clients to post reviews, complaints and suggestions 

• Reward them for recommending them 

These virtual services are giving same level of personal interaction which was normally found in 

physical banking as well but the advantage is that clients need not physically visit the banks. The 

bank provides different services like Corporate banking, Investment banking, Asset Management, 

Treasury services, Retail Banking etc. With the growth of information technology and advent of 

Internet now banks are also using online banking. Internet banking is a convenient virtual banking 

activity that is available for all the customers of the banks with easy and secured access to their 

accounts. [2] Justified that now a day’s social media is being regularly accessed by almost 72% of the 

internet users. Social Media helps the customers in providing utmost customer satisfaction through 

obtaining real time comments, suggestions, complaints and addressing them instantly. 

 

2.1 Safety & Reliability as Social Media Attribute:  

Users’ Safety & Reliability is an important tool in consideration of social media channels. Data 

should be handled without breaching the users’ privacy and data protection should be enormously 

scrutinized. The most grounded measure that needs to be taken is to make undaunted quality of 

one’s privacy whoever has affiliated with the social media channel [24] (Senthil Kumar N*, 2016). 

Many a time’s users’ share their personal data intentionally and sometimes unknowingly. Often data 

are extracted from them extrinsically by offering them some payback , for e.g, Location-Based Social 

Network Services (LBSNS) like Google Latitude can trace the location of a person and his/her friends 

[25] (Paul Lowry, 2011). 

According to the safety analytics viewpoint, many people supervise the benefits and threats 

associated while unveiling their credentials. It is often observed that customers are ready to forego 

some privacy for a satisfactory range of danger. But reliability may be attacked significantly if 

personal information is not utilized rationally and unvaryingly [26] (Patrick Van Eecke, 2010). 

Proper implementation of security settings may improvise the Safety & Reliability of users’ data as 

per their will [27] (Gail-Joon Ahn, 2011). Hence the quality of services provided by the social media 

platforms, in terms of Safety & Reliability becomes an important criterion for its selection.  

 

2.2 Responsiveness & Effectiveness as Social Media Attribute:   

Responsiveness and Effectiveness of a social media site is measured by the internet speed, 

expediency, response time etc with which customers access and use bank’s social media sites. [28] 
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(Frederic Marimon, 2012). Efficiency of a bank’s social media is observed by timely and convenient 

completion of all required interaction [29] (Chung Tin Fah, 2012). Social media can enhance the 

conventional personnel–client bonding with an effective technological knowledge-based 

relationship [30] (Rahimi & Me, 2016) . 

Prompt responses can effectively be done in social media by providing customers relevant and quick 

information as & when required. It is surely required for enhancement of quick responses to 

customers’ queries for the improvement of e-services and improved customer satisfaction [31] 

(Chinedu-Okeke & Obi, 2016). Banks can provide unique banking experience to their clients by 

giving them services combined with technology [32] (Kalia, 2013). Banks may respond to its 

customers’ query effectively through its social media sites but it needs to carefully monitor its 

personnel’s’ response on social media sites to assess effectiveness of its response.  

 

2.3 Ease of Use & Customer’s Satisfaction as Social Media Attribute: 

Social media platform should fulfill the customers’ requirement and should be easy to be used with 

minimum response time. Customers generally choose the media which is easy to operate. By ease of 

use it means the service reliability and methods to use relevant information provided on a bank’s 

social media websites [33] (Emel Kursunluoglu, 2015). Customers need punctual response for 

acknowledgement of their complaints. The satisfaction dimension concentrates on evaluating the 

banks promptness in responding to customers’ requirements [34] (Ajimon George, 2013).  For 

getting customer loyalty the banks create user generated customized content for getting the 

customers’ satisfaction dimension [35] (Norman Gwangwava, 2014). Customer’s confidence on 

Bank’s social media platform to the extent their requirements are satisfied is termed as fulfillment 

or satisfaction. Recently, several articles are established [36-40] in this research arena which plays an 

essential role in research domain.  

Definition 2.4: Neutrosophic Set: A set  in the universal discourse , symbolically denoted by 

, it is called a neutrosophic set if , where 

 is said to be the true membership function, which has the degree of 

belongingness,  is said to be the indeterminacy membership, having  degree 

of uncertainty, and  is said to be the incorrect membership, which has the 

degree of non-belongingness of the decision maker. exhibits the 

following relation: 

. 
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Definition 2.5: Single Typed Neutrosophic Number: Single Typed Neutrosophic Number is 

denoted as  

where , where ,  and  is 

given as: 

 

 

 

2.6 Definition: Single-Valued Pentagonal Neutrosophic Number: A Single-Valued Pentagonal 

Neutrosophic Number  is defined 

as , 

where . The accuracy membership function , the indeterminacy 

membership function  and the falsity membership function  are 

given as: 
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2.7 Proposed Score Function: 

Score function of a PNN completely depends on the value of truth, falsity and hesitation 

membership indicator degree. The necessity of score function is to draw comparison or transfer a 

PNN into a crisp number. In this section we will generate a score function as follows. For any 

Pentagonal Single typed Neutrosophic Number (PSNN)  

 

We define the score function as   

 

2.7.1 Relationship between any two pentagonal neutrosophic fuzzy numbers: 

Let us consider any two pentagonal neutrosophic fuzzy number defined as follows 

,  

1)  

2)   

3)  

 

2.8 Basic Operations:  

Let = < ( , , , ); , , > and = < ( , , , ); , , > 

be two IPFNs and . Then the following operational relations hold: 

2.8.1 + = < ( + , + , + , + , + ); +  ,  

,   

2.8.2  = < ( , , , );  ,  

,  

2.8.3 = < , , , , );1 )  

2.8.4 = < ( , , ); ,   
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3. OBJECTIVE OF THE STUDY: 

 

• To understand the factors affecting acceptance of Social Media Banking Technology across 

Gender. 

• To understand the best suitable social media channel for Banking Industry as per 

customers’ preference.  

 

4. RESEARCH METHODOLOGY 

 

The data have been collected from various respondents working in different organizations 

categorized mainly as education sector, service sectors as banks, hospitals, etc. engineering works 

and Government and Public sector companies in the Kolkata metro area. The study consisted of 94 

respondents. A five point Likert scale is used where 5 indicates strongly agree, and 1 indicates 

strongly disagree. 40.43% respondents are female and 59.57% are male. Age wise respondents 

below the age <25 was 29.79 %, between 25 – 45 yrs was 52.13%, and >45 yrs was 18.08% 

Research Instrument: The questinnaire is mainly focussed on: Social Media platforms used by the 

banks and users adaptability of the same. 

  

TABLE 4.1 DEMOGRAPPHIC DETAILS OF RESPONDENTS 

CHARACTERISTICS   FREQUENCY % 

GENDER MALE 56 59.57 

FEMALE 38 40.43 

AGE <25 28 29.79 

25-45 49 52.13 

>45 17 18.08 

 

SOURCE: QUESTIONNAIRE 
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Table 4.2 Indicate acceptance of Online Banking Technology across Gender 

GEND

ER 
ATTRIBUTES 

Safety & Reliability 
Responsiveness & 

Effectiveness 

Ease of Use & Customer’s 

Satisfaction  

SD D N A SA SD D N A SA SD D N A SA 

M 

TWITTER 

5 20 28 34 7 3 18 39 28 6 6 24 29 29 6 

5.3

2 

21.2

8 

29.7

9 

36.1

7 
7.45 

3.1

9 

19.1

5 

41.4

9 

29.7

9 

6.3

8 

6.3

8 

25.5

3 

30.8

5 

30.8

5 

6.3

8 

FACEBOOK 

3 24 26 30 11 5 19 45 20 5 4 22 39 20 9 

3.1

9 

25.5

3 

27.6

6 

31.9

1 

11.7

0 

5.3

2 

20.2

1 

47.8

7 

21.2

8 

5.3

2 

4.2

6 

23.4

0 

41.4

9 

21.2

8 

9.5

7 

YOU TUBE 

5 18 23 39 9 7 15 42 26 4 5 22 29 31 7 

5.3

2 

19.1

5 

24.4

7 

41.4

9 
9.57 

7.4

5 

15.9

6 

44.6

8 

27.6

6 

4.2

6 

5.3

2 

23.4

0 

30.8

5 

32.9

8 

7.4

5 

F 

TWITTER 

9 31 26 24 4 9 21 44 16 4 3 26 38 21 6 

9.5

7 

32.9

8 

27.6

6 

25.5

3 
4.26 

9.5

7 

22.3

4 

46.8

1 

17.0

2 

4.2

6 

3.1

9 

27.6

6 

40.4

3 

22.3

4 

6.3

8 

FACEBOOK 

8 23 22 34 7 5 19 34 30 6 6 21 34 25 8 

8.5

1 

24.4

7 

23.4

0 

36.1

7 
7.45 

5.3

2 

20.2

1 

36.1

7 

31.9

1 

6.3

8 

6.3

8 

22.3

4 

36.1

7 

26.6

0 

8.5

1 

YOU TUBE 

7 32 20 29 6 4 30 31 24 5 7 27 28 25 7 

7.4

5 

34.0

4 

21.2

8 

30.8

5 
6.38 

4.2

6 

31.9

1 

32.9

8 

25.5

3 

5.3

2 

7.4

5 

28.7

2 

29.7

9 

26.6

0 

7.4

5 

 

Table 4.3 Indicate acceptance of Social Media in Online Banking Technology across Age Gap 

GENDER ATTRIBUTES 
Safety & 

Reliability 

Responsiveness 

& Effectiveness 

Ease of Use & 

Customer’s 

Satisfaction  

<25 

TWITTER 
16 6 6 

57.14 21.43 21.43 

FACEBOOK 
16 7 5 

57.14 25.00 17.86 

YOU TUBE 
17 5 6 

60.71 17.86 21.43 

25-45 
TWITTER 

29 11 8 

59.18 22.45 16.33 

FACEBOOK 29 14 6 
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59.18 28.57 12.24 

YOU TUBE 
31 12 8 

63.27 24.49 16.33 

>45 

TWITTER 
9 5 3 

52.94 29.41 17.65 

FACEBOOK 
8 4 5 

47.06 23.53 29.41 

YOU TUBE 
10 4 3 

58.82 23.53 17.65 

  

5. Multi-Criteria Group Decision Making Problem in Pentagonal Neutrosophic Environment 

In this current decade, researchers are very much interested in doing MCGDM problem in different 

fields. Its main goal of this problem is to find out the best option among finite number of different 

options in presence of distinct attributes, different decision maker’s choice and hesitation in human 

thinking.  

5.1 Illustration of the MCGDM problem 

Let  is the distinct alternative set and  

 is the distinct attribute set respectively. Let 

 be the weight set associated with the decision maker 

 and each 0 and also satisfies the relation . Also, 

weight vector of the attribute function is defined as  where each 

0 and also satisfies the relation . 

 

5.2 Normalisation Algorithm of MCGDM Problem: 

 

Step 1: Framework of Decision Matrices 

Here, we considered all decision matrices according to the decision maker’s choice related with 

finite alternatives and finite attribute functions. It is noted that the member’s  for each matrices 

are of triangular fuzzy numbers. Thus, the final matrix is defined as follows: 
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………………...(4.1) 

Step 2: Framework of Standardized Decision matrix  

We consider the following skill of normalization to obtain the standardized decision matrix where 

=  in which the entity  = ([ , , , , ]; , , )  is formulated as 

= ([ , , , , ]; ) where S= . 

Hence the new matrix becomes,  

………………...(5.2) 

 

Step 3: Framework of Single Decision matrix  

To formulate a single group decision matrix M we utilized these logical operations of PNN [2.8] 

are the weights of the decision makers for individual decision 

matrix So, the matrix becomes as follows: 

               ………………… (5.3) 

Step 4: Framework of Final matrix  

To make the final decision matrix we used the logical operation [2.8] for different weights of the 

attribute values and also finally operated  and converted the total 

matrix into a Colum matrix form, finally we get the decision matrix as, 



Neutrosophic Sets and Systems, Vol. 35, 2020   132 

 

 

Nidhi Singh, Avishek Chakraborty, Soma Bose Biswas, Malini Majumdar; A Study of Social Media linked MCGDM Skill under Pentagonal 

Neutrosophic Environment in the Banking Industry  

 
 

                   (5.4) 

Step 5: Ranking  

Now, by considering the Score value (2.7) and converting the matrix (5.3) into crisp form, so that we 

could evaluate the best alternative corresponding to the best attributes.  

5.3 Flowchart: 

 

Figure 5.3.1: Flowchart for the problem 

5.4 Illustrative Example: Here, we constructed a social media selection problem based on the 

questionnaire table from which we have three different social medias are available. The problem is 

to find out the best social media platform among these after computing the decision maker’s opinion 

and maintain the attribute weights properly for this problem. Generally, social media platforms are 

related with the attributes like safety & reliability, Responsiveness & Effectiveness, Ease of Use & 

Customer’s Satisfaction of the system. Keeping these points in mind decision maker’s (Male/Female) 

gives their opinion in hesitation arena and using verbal phrase we set the problem in pentagonal 

neutrosophic domain. According to their suggestions we constructed the distinct decision matrices 

in PNN environment as shows below:  

, ,  are the alternatives. 

, 
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, 

are the attributes. 

According to our problem there are two distinct decision makers are available in our environment, 

having weight distribution 

 and the weight vector related with the attribute function 

  

5.5 List of Verbal Phrase 

 

No. Quantitative Attributes  Verbal phrase 

1 
  

Strongly Agree (SA), Agree(A), 

Neutral(N),  Disagree(D), Strongly 

Disagree (SD) 

2 

 

Strongly Agree (SA), Agree(A), 

Neutral(N),  Disagree(D), Strongly 

Disagree (SD) 

3 

 

Strongly Agree (SA), Agree(A), 

Neutral(N),  Disagree(D), Strongly 

Disagree (SD) 

 

Step 1 

According to the decision maker’s opinion from the questionnaire table we constructed the decision 

matrices are as follows: 
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Step 2: Framework of Standardized decision matrix 

 

 

 

 

Step 3: Framework of weighted Single Decision matrix  

 

Step 4: Framework of Final Single Decision matrix  

       

 
Step 4: Ranking 

Now, we consider the established Score function (2.7), to convert the pentagonal neutrosophic 

numbers into crisp one, thus we get the final ideal decision matrix as  

 

Thus, ranking of the social media service is as . 

5.6 Results and Sensitivity Analysis 

To understand how the attribute weights of each criterion affecting the relative matrix and their 

ranking a sensitivity analysis is done. The below table is the evaluation table which shows the 

sensitivity results. 
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Decision Maker’s Weight Final Decision Matrix Ordering 

<( > 

 

 

<( > 

 

 

<( > 

 

 

<( > 

 

 

<( > 

 

 

 

 

 

Figure 5.6.1: Sensitivity analysis table on Decision Maker’s Weight. 
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Figure 5.6.2: Best Alternative Social Media Service Table 

5.7 Comparison Table 

We compared this proposed work with the established works proposed by the researchers to find 

the best social media and it is noticed that in each cases the alternative G2 becomes the best social 

media service. The comparative table given as follows: 

 

Approach Ranking 

(Chakraborty et al.) [18] 
 

             (Biswas et al.) [41] 

 

Our Proposed 
 

 

6. Implication: 

Different social media platforms are available for communication with customers and digital 

marketing like face book, twitter, Google plus, linked in, you tube etc. This study was primarily 

done to identify the best suited social media platform for Banking Industry especially for customers 

of West Bengal. We wanted to discover the right social media platform based on different attributes 

as desired by customers. The perception of neutrosophy plays a critical role in designing 
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mathematical calculations. In this research work, we set the MCGDM problem in PNN environment 

using the realistic data set. Applying the verbal phrases we formulate the MCGDM problem and 

hence applied our logical operations of PNN on it to get the best alternatives. Finally, sensitivity 

analysis is also performed here to which has a crucial impact in the ranking results. This novel 

thought will help the other researchers in doing MCGDM problem from realistic data in social 

media platform.  

There are a lot of researches already done in social media implementation in Banking Industry. 

However many results are still unknown. Our work is to explore the idea in the following points: 

• Defining the attributes necessary for social media platform for Banking Industry in West 

Bengal. 

• Discovering the best suitable social media site for Banking Industry in West Bengal as per 

customers’ preference. 

• Finding the best social media site which satisfies customers and generate revenue by 

increasing business. 

• The graphical representation of adaptation of social media platform based on its attributes. 

• Covert the problem into PNN environment using verbal phrases. 

• Apply proposed MCGDM method in PNN arena. 

• Sensitivity analysis for Ranking in different cases.  

    7. Discussion  

The main focus of this study was to find out the best social media platform for Banks. In total 94 

respondents were asked varied questions and their choices and preferences about use of social 

media in banks. Three parameters focusing their requirement were fixed as Safety, Efficiency and 

Ease of use. The study examined different social media platform like Messaging and 

communication, e,g. Twitter, Communities and social groups, e.g. Face book and Photo and video 

sharing, e.g. YouTube. Face book was found to be most preferred channels both by the male and 

female considering all the three factors. However other two channels have different opinion based 

on different factors. In the sample considered here men respondents are more than women; most of 

the respondents are under 45 years of age and they frequently uses social media. Both men and 

women are equally boasting the use of social media however the worldwide trend also applied here 

as it was observed that youngsters are dominating the social media sites. Social media mainly has 

not only impacted the life of youngsters but it has also become drastically momentous since last ten 

years across all age groups. It was also observed that awareness about the use of social media for 

banking transactions is comparatively low in this region. It is agreed that Banks must publicize the 

use of social media as an important tool for banking transactions. Social media has proven to be the 

fastest communication mode and banks may use it for satisfying the ever increasing customized 

needs of its customers. The more satisfied customers would result in more improved business for 

banks. Moreover in the long run these satisfied customers would foster the brand loyalty and 

customer loyalty would further result in improved customer relationship management.  

Quantification of social media quality and its effects has got very less attention in the state. It is 

accepted that the overall social media quality should be measured by banks to satisfy customers. 
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Long tern connectivity with banks will improve if the services experienced by customers are 

satisfactory. Better customer satisfaction in turn will bring customer loyalty. The objective of 

adaption of social media for banking sector is not merely for likes and shares but it goes beyond that. 

It is more of creating brand awareness and brand advocacy. Hence Banks should design their social 

media strategy focusing realistic goals. 

    8. Findings:  

Customers basically want three things from Banks like, better and responsive services, easier way to 

bank and most importantly they want to be understood. Customers do not want generic ads and 

offers, they want products and services tailored to them and will exchange data in order to receive 

this. All the above is possible if the banks implement social media methodically and keep a proper 

follow up for the same. As of now it is the best, easier and fastest responsive way to communicate 

with customers. The following findings were done: 

• Face book is most preferred social media medium in comparison to other options like you 

tube and twitter etc. considering all the three attributes 

• After applying pentagonal neutrosophic numbers into crisp one, we get the final ideal 

decision matrix which gives the ranking of the social media as follows, 

Facebook>Twitter>YouTube. 

• In spite of changing the weight age of attributes Face book remains the most preferred 

choice across gender. 

• The three different attributes like Security, Efficiency and Ease of use have a strong impact 

on overall customers’ satisfaction which resulted in selection of Bank’s social media 

platform 

• Banks profit margin would be boosted with the help of proper implementation of social 

media strategies. This will increase customers’ base without expansion of physical branches 

which will result in reduction in cost.. 

 

       9. Conclusions: 

It may be concluded that Social Medias can greatly influence and enhance the function which is 

being carried out in banks. This research found out that almost big banks in the state are using social 

media for banking operations. On the questionnaire received from respondents the main concern or 

obstacle for using social media was Security and privacy issues. Almost majority preferred social 

media in terms of its efficiency and ease of use. Face book was found to be most acceptable mode 

compare to any other media across gender and age. Majority of the respondents showed positive 

indications for use of social media for banking operations in case of higher security. Hence we can 

conclude that customers are willing to accept the social media for banking operations if Banks take 

complete care of their security and privacy of data.  Therefore for banks in West Bengal all 

conditions are met and it is up to the Banks’ policy of achieving the highest security in order to help 

the customers to adapt the transactional social media. Our forecast is that transactional social media 

will become more acceptable and popular in banking industry in coming years. 
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Our future study includes more questionnaire collection and feedback received from customers and 

banks to analysis the functionality of transactional social media and to suggest the ways to improve 

the same. 
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Abstract: In this article we have investigated some properties of netrosophic multiset topology. The 

behavior of compactness and connectedness in netrosophic multiset topology, continuous function 

on netrosophic multiset topology etc have been examined. Neutrosophic multiset is a generalization 

of multisets and neutrosophic sets. Several properties of neutrosophic topological space in view of 

neutrosophic multiset topological space have been studied. 
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1. Introduction 

In recent years, multisets and neutrosophic sets have become a subject of great interest for 

researchers. Mathematicians always like to solve a complicated problem in a simple way and to find 

out the most feasible solution. Neutrosophy has been introduced and studied by Smarandache [13, 

15] as a new branch of philosophy. Recently various papers published on neutrosophic topology and 

many researchers doing very well, neutrosophic decision making had been studied in [15, 17]. 

Algebraic properties of neutrosophic set studied in [9, 13], Neutrosophic Bipolar Vague Soft Set, and 

its property studied in [9]. Smarandache generalizes intuitionistic fuzzy sets (IFSs) and other kinds 

of sets to neutrosophic sets (NSs). In Smarandache [12, 13], some distinctions between NSs and IFSs 

are underlined. decision-making problem, algebraic property one can analysis by topological 

property connectedness and compactness property that property can help to take the decision into a 

more reliable way. Smarandache [13, 14, 15] also defined various notions of neutrosophic topologies 

on the non-standard interval. The logic of the neutrosophic set is very clear and its utilization on 

topology is very beneficial for many standard problems like diagnosis of bipolar disorder 

diseases group decision making and analytical property and evaluation Hospital medical care 

systems etc. [1, 9, 13]. The relation between the intuitionistic fuzzy topology (IFT) on an IFS and the 

neutrosophic topology are also analyzed by Smarandache.  

Multiset theory was introduced by Bilzard [3]. Later on multiset topological space was studied by 

many researcher Shravan and Tripathy [17, 18, 19]. The purpose of this paper is to construct a new 
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generalization of topological space called the neutrosophic multiset topological space. The possible 

application of neutrosophic multiset topological space has been studied. For the different types of 

behavior of objects in nature sometimes set theory and multiset theory fails to describe some 

particular situation. Sometimes it is observed that Neutrosophic Multiset can be described in an 

easier way to handle such cases. Neutrosophic set and topological space have been studied by 

Salama and Alblowi [10, 11]. The concept of multiset topological space has been applied for studying 

different properties of spatial objects. In this article we have used multiset neutrosophic topological 

space for studying various spatial topological properties, like closeness connectedness and the 

completeness property and its application further in various fields. 

 

2. Materials and Methods  

We procure some existing definitions in this paper, one may refer to Smarandache ([13], [15]) and S. 

Alias, et.al [2]. 

We define functions ,  and from X to [0, 1]. Where T is membership value, F fails membership 

value and I is the indeterminacy value.   

 

The definition of neutrosophic multiset was first define by Smarandache [12] as follows. 

 

Definition 2.1. [12] A Neutrosophic Multiset is a neutrosophic set where one or more elements are 

repeated with the same neutrosophic components, or with different neutrosophic components. 

 

 

Definition 2.2. The Empty neutrosophic multiset is denoted by N and define by 

N = {< > : xX} where x can be repeated. 

 

Definition 2.3. The Whole neutrosophic multiset is denoted by WX and define by 

WX = {< > : xX} where x can be repeated.  

 

The power set of neutrosophic multiset is denoted by P(X). 

 

The collection of all possible subsets of X is called the power set of the netrosophic multiset. 

 

Definition 2.4.  Let A = {(  ): xX} be a neutrosophic multiset on X then the 

compliment of A is denoted by Ac and define by  

Ac = {( ): xX}.  

Where x can be repeated based on its multiplicity and the corresponding T, F, I values may or may 

not be equal. 
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Definition 2.5. The intersection of NM sets are defined by A ∩B = {x: xA and xB}. 

 

Definition 2.6. The union of NM sets are defined by   A∪B= { x: xA or xB}. 

 

Definition 2.7. In the NM sets A⊂B if xA implies that xB. 

 

Definition 2.8. Cardinality of a NM set A is denote the number of elements in a set A which is define 

by card(A). 

 

Definition 2.9. The Cartesian product of two neutrosophic multiset is defined by A×B = {(x, y) : xA 

and yB}. 

 

Definition 2.10 The difference of two NM sets A and B is the collection of members such that all 

members belong to A but not in B.  

 

Now we introduce two new types of operation maximal union NM set and minimal intersection NM 

set. 

 

Definition 2.11. Let X be a non-empty set, and neutrosophic multiset A and B in the form A = {( 

): xX} and B = {( ): xX}, then the operations of maximal union 

and minimal intersection NM set relation are defined as follows: 

1.  (AB)max = {( : xX}, where  

= max{ , },  = min{ , } and  = 

min{ }. 

2. (AB)min = {( : xX}, where 

 = min{ , } and  = max{ , } and 

 = max{ }. 

 

 

Example 2.1. Let X = {x, y, z, t} and A =  { x<0.7, 0.2, 0.3>, x<0.7, 0.2, 0.3>, y<0.3, 0.2, 0.7>, y<0.9, 0.3, 0.1>, z<0.0, 1, 1>, t<0.5, 0.7, 0.5>}, 

B =  { x<0.7, 0.2, 0.3>, x<0.8, 0.5, 0.2>, y<0.3, 0.2, 0.7>, y<0.3, 0.2, 0.7>,  z<0.7, 0.8, 0.3>, t<0.0, 1, 1>} be neutrosophic multisets, then 

the maximal union and minimal intersection are  

 (A  B)Max = {x<0.8, 0.2, 0.2>, y<0.9, 0.2, 0.1>, z<0.7, 0.7, 0.3>, t<0.5, 0.7, 0.5>} and 



Neutrosophic Sets and Systems, Vol. 35, 2020     145  

 

 
Rakhal Das and Binod Chandra Tripathy, Neutrosophic Multiset Topological Space 

(A  B)Min = {x<0.7, 0.5, 0.3>, y<0.3, 0.3, 0.7>, z<0.0, 1, 1>, t<0.0, 1, 1>} 

 

We formulate the following results without proof. 

 

Result 2.1. Union of any family of neutrosophic multisets is always a neutrosophic multiset. 

 

Result 2.2. Intersection of any family of neutrosophic multisets is always a neutrosophic multiset. 

 

Result 2.3. The compliment of a neutrosophic multiset is always a neutrosophic multiset. 

 

Result 2.4. Every neutrosophic set is a neutrosophic multiset but not necessarily conversely. 

 

Example 2.2. Let A = {8〈0.6, 0.3, 0.2〉, 8〈0.6, 0.3, 0.2〉, 8〈0.4, 0.1, 0.3〉, 7〈0.2,0.7,0.0〉}. 

Here A is a neutrosophic multiset but not a neutrosophic set. 

 

Result 2.5. Let {Aj : j} be an arbitrary family of NM set in X , then the arbitrary maximal union and 

arbitrary minimal intersection is also a NM set. 

  

Remark 2.1. A neutrosophic multiset is a natural generalization of multiset as well as Cantor set. 

 

We introduced neutrosophic multiset topological space and study some of its properties. 

 

Definition 2.12. Let X be neutrosophic multiset and a non-empty family  subsets of WX is said to 

be neutrosophic multiset topological space if the following axioms hold: 

1. N, WX  . 

2. AB  , for A, B  . 

3.  , for {Ai :i}  

 

In this case the pair (WX, ) is called a neutrosophic multiset topological space (NMTS in short) and 

any neutrosophic multiset in  is known as open neuterosophic multiset (ONMS in short) in WX . 

The elements of  are called closed neutrosophic multisets, otherwise a neutrosophic set F is 

closed if and only if its complement  is an open neutrosophic multiset. 
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Definition 2.13. Let (WX, 1) and (WX, 2) be two neutrosophic multiset topological spaces on WX. 

Then 1 is said be contained in 2 that is if 1  2 i.e, A 2 for each A 1. In this case, we also say 

that 1 is coarser than 2. 

 

Definition 2.14. Let (WX, ) be a neutrosophic multiset topological space on WX. A non-empty 

family of subsets  of X is called neutrosophic multiset basis of the neutrosophic multiset topological 

space WX if any element of  can be express as the union of the element of .  

 

Remark 2.2. As usual, basis of a neutrosophic multiset topological space is not unique. 

 

Definition 2.15. Let (WX, ) be a neutrosophic multiset topological space with base . The interior of 

the neutrosophic multiset A is the union of basis element of  which is contained in A and it is 

denoted by NMintA, i.e, NMint (A) = { i : iA and i}. 

 

Definition 2.16. Let (WX, ) be a neutrosophic multiset topological space. The closure of the 

neutrosophic multiset A is the intersection of all closed neutrosophic multiset containing the set A it 

is denoted by NMCl(A), i.e, NMCl(A) = {Fi : AFi and   }. 

 In view of the definitions, we formulate the following result. 

 

Proposition 2.1. Let (WX, ) be a neutrosophic multiset topological space and A, B be two 

neutrosophic multiset on WX, then the following property hold: 

 

1. NMintAA. 

2. AB  NMint (A)  NMint (B). 

3. A NMCl(A). 

4. AB  NMCl(A)  NMCl(B) 

5. NMint (NMint (A)) = NMint(A). 

6. NMCl (NMCl(A)) = NMCl(A). 

7. NMCl(AB) = NMCl(A)NMCl(B). 

8. NMint(WX) = WX. 

9. NMCl(N) = N.  
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Definition 2.17. Let (WX, ) be a neutrosophic multiset topological space a non-empty set S is called 

a subbasis if the finite intersection of the elements of S can form a basis for . 

Definition 2.18. Let (WX, ) be a neutrosophic multiset topological space a point PA WX  is said 

to be a limit point of A if for every basis element  containing p contains one element of A other than 

p, i.e, A  N. 

3. Results  

3.1. Compactness, Connectedness and Continuous map. 

Definition 3.1.1. Let (WX, ) be a neutrosophic multiset topological space. A neutrosophic multiset 

A is said to be disjoint if  two neutrosophic multisubsets  B, C such that BC N and A = BC. 

Definition 3.1.2. Let (WX, ) be a neutrosophic multiset topological space. The space WX is said to be 

connected if WX cannot be express as the union of two disjoint neutrosophic multisets. 

Definition 3.1.3. Let (WX, ) be a neutrosophic multiset topological space. The space WX is said to be 

compact if every open cover of WX has a finite subcover. 

Proposition 3.1.1. Every finite neutrosophic multiset topological space is compact. 

Definition 3.1.4. Let (WX, 1) and (WX, 2) be two neutrosophic multiset topological space. The NMS 

function f : (WX, 1)  (WX, 2) is said to be continuous if for each open neutrosophic multiset V of 

2 the neutrosophic multiset  f -1 (V) is an open submset of 1. 

Proposition 3.1.2. Let f be a continuous function from a NMS topological space (WX, 1) to another 

NMS topological space (WX, 2), the function f is said to be a homomorphism if f(AB) = f(A)  f(B) 

where A, B 1 and f(A),  f(B) 2. 
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We have defined disjoint neutrosophic multiset, connectedness, compactness and the continuous 

image of neutrosophic multiset topological space. In this section we define separation axioms on 

NMS topological space.  

In the NMS a singleton set {p} is define by {p} = { : , when x = p otherwise = 

0,  -  -  for all xWX}. 

Where x can be occurs more than one times it’s depends on its multiplicity and then T, F, I value may 

or may not be equal. 

Definition 3.2.1. Let (WX, ) be a neutrosophic multiset topological space. If there exist only two 

open neutrosophic multiset in (WX, ) is called indiscrete NMS topological space. 

 

Definition 3.2.2. Let (WX, ) be a neutrosophic multiset topological space. If every singleton 

neutrosophic multiset is an open NMS set then (WX, ) is called discrete NMS topological space. 

 

Definition 3.2.3. Let (WX, ) be a neutrosophic multiset topological space. If for every two distinct 

NMS singleton sets, {x1}; {x2} then there exist V, U   such that{x1} V and {x2} V or {x2} U and 

{x1} U. Hence, (WX, ) is NMSTo-space. i.e., there exists -open NMS which contains one of them 

but not the other. 

 

Definition 3.2.4. Let (WX, ) be a neutrosophic multiset topological space. If for every two distinct 

NMS singleton sets, {x1}; {x2} then there exist V,U   such that{x1} V and {x2} V and {x2} U and 

{x1} U. Hence, (WX, ) is NMST1-space.  

 

Definition 3.2.5. Let (WX, ) be a neutrosophic multiset topological space. If for every two distinct 

NMS singleton sets, {x1}; {x2} then there exist V,U   such that{x1} V and {x2} V and {x2} U and 

{x1} U and U  V = N. Hence, (WX, ) is NMST2-space. 

 

3.2. Separation axioms on neutrosophic multiset.  
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Proposition 3.2.1. Every NMST2-space is NMST1-space but it is not necessarily conversely. 

 

Example 3.2.1. In co-finite neutrosophic multiset topological space is not a NMST2-space but when 

the space has the finite neutrosophic multiset topology then it is NMST1-space. 

 

So when we consider the infinite neutrosophic multiset topology we can get our desire result. 

 

Proposition 3.2.2. Every NMST1-space is NMST0-space but it is not necessarily conversely. 

 

Example 3.2.2. Let WX = {x<0.5, 0.7, 0.5>, x<0.5, 0.7, 0.5>, y<0.3, 0.4, 0.7>} and  = { WX, N, {y}}. 

 Here (WX, ) is a NMST0-space but it is not a NMST1. 

 

Proposition 3.2.3. Every NMST2-space is NMST0-space but it is not necessarily conversely. 

 

Example 3.2.3. Since every NMST0-space is not a NMST1-space and every NMST1-space is not a 

NMST2-space so every NMST0-space is not a NMST2-space. 

Proposition 3.2.4. Every discrete NMS topological space is NMST2-space. 

 

 

3.3. Distance function on NMS. 

 

In this section we are going to define a distance function on Neutrosophic set. Since in Neutrosophic 

set we have defined Neutrosophic elements, Neutrosophic subset so it is natural to ask, can we 

measure the distance between two Neutrosophic points or two Neutrosophic sets or is there any 

distance between a Neutrosophic point to a Neutrosophic set? 

 

The distance function between multiset points is defined by Shravan and Tripathy [12], based on the 

multiplicity and the elements. 

 

The Neutrosophic point p of a Neutrosophic multiset WX is define by p = {( ,  ): , 

when x=p, otherwise = 0, - -  for all xWX}.  

 

Note:  The Neutrosophic point p can have multiple time it’s depends on its multiplicity. 

  

Definition 3.3.1. Let x, y be two Neutrosophic points on a Neutrosophic set WX. The distance 

between the points is denoted by (x, y) and is define by (x, y) = sup{|x-y|, | |, 

| |, | |}, where the distance function  is define by, :WX R+{0}. 
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Definition 3.3.2. Let x be a Neutrosophic point  and A be a subset on a Neutrosophic set WX. The 

distance between the point x and set the A is denoted by (x, A) and is define by (x, B) 

=inf-sup{|x-yi |, | |, | |, | | : for all yiA}.  

 

Definition 3.3.3. Let A, B be two Neutrosophic subset of a Neutrosophic set WX the distance between 

the sets A and set B is denoted by (A, B) and is define by (A, B) =inf sup{|xi - yi |, | |, 

| |, | | : xiA, and yiB}. 

 

From the definition 5.1, 5.2 and 5.3 we can define another definition of matric space on a 

Neutrosophic multiset. 

 

Definition 3.3.4. A non-empty Neutrosophic set WX is said to be a Neutrosophic metric space with 

the distance function : WXXWX R+{0}, if WX satisfy following: 

1. 0, x, yWX. 

2. =0, iff x=y and , , . 

3. = ,x,yWX 

4.   + , x,y,zWX 

Theorem 3.3.1. If and  be two Neutrosophic metric spaces then  = max{ , } is also a 

Neutrosophic metric space. 

 

Theorem 3.3.2. If and  be two Neutrosophic metric space then  = min{ , } is not a 

Neutrosophic metric space. 

 

The proof of the above two theorem is obvious using the concept of general matric space.  

 

 4. Applications 

The work done in this paper is based on the application of neutrosophic sets in multiset topological 

space. These can be further applicable for the development of neutrosophic topology separation 

axioms on neutrosophic multiset topology and neutrosophic multisets. 

 5. Conclusions  
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In this paper we have established some properties of the neutrosophic multiset topological space 

such as compactness and connectedness, continuous function on netrosophic multiset topology, 

separation axioms on neutrosophic multiset topology. Also we have introduced the notion of the 

distance function in neutrosophic multiset and examined some properties. This paper can be useful 

for further development of neutrosophic multiset theory and neutrosophic topology. 
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Abstract: This paper aims to uncover the position of social media in customer relationship 

management (CRM) in banking industry in West Bengal (W.B) under neutrosophic environment. It 

also tries to identify the attributes that influence the adaptation of different social media platforms 

for marketing by Banks and finally its use in CRM approaches. The scope of this research is, 

however, limited to the West Bengal (India) state. In this study a qualitative in-depth questionnaire 

has been used in presence of impreciseness. Three case studies were developed, which explained the 

adaptation and implementation of social media in retail banks in W.B. The responses, gathered 

through in-depth interviews with top bank officials and estimated data from official web sites of the 

banks have been used for MCGDM and sensitivity analysis. Different attributes like Safety & 

Privacy, Effectiveness & Efficiency and Fulfillment & Responsiveness have a significant impact on 

the overall service quality perception for Banks using social media and its platforms. We have 

performed comparative analysis with the established method to find out the best social media 

platform under neutrosophic environment in WB’s banking Industry. Successful implementation of 

these platforms would then ensure Customer Loyalty and effective CRM. It was also noted that 

customers mainly refrain from Banking through social media due to safety and privacy concerns. 

The study was done to suggest betterment of social media marketing performance for banks in WB 

in presence of uncertainty. It recommended managers to continuously monitor the overall service 

quality of social media platforms as they lead to customer loyalty and CRM. 

 

Keywords: West Bengal, Social media, Customer loyalty, Service quality, Customer Relationship 

Management, Neutrosophic, CRM, Retail banking. 
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1. INTRODUCTION: 

1.1. SOCIAL MEDIA: Social Media is a communication platform that facilitates communication via 

virtual networks. It is a virtual medium which is designed to aid people to share contents, pictures, 

videos, and views swiftly and in real-time through websites and applications. The ability to share 

photos, opinions, events, etc instantaneously has transformed the way we communicate and, also, 

the way we do business. It provides the facility of continuously communicating with a large number 

of people at a time. The revolution of Social media and its increasing impact has transformed its old 

conventional image of amusement to an opportunity to work and trade. This vibrant use of social 

media has affected almost every business sectors either positively or negatively. It has changed the 

way business was done and Marketing has taken a new shift after this. Social media offers different 

ways to promote business either through organic marketing (free) or by paid marketing. Web 2.0 

technologies are the stage of Internet expansion where static web pages were converted to user 

generated content [1]. The business communication is enhanced to a new height via online mode 

through Social media [2]. According to [3] People share a lot of information about their personal 

lives, their needs and preferences on social media and it may assist the institutions to design their 

marketing policies. Based on the above data it can be said that the social media set-up facilitate in 

building virtual group for individuals with similar mind-set, hobbies, work culture etc [4]. 

Therefore, use of social networking could assist Banks build up their brand awareness and brand 

loyalty which ultimately help in customer acquirement and retention [5]. Communication between 

clients and Banks has improved a lot after successful implementation of Internet mainly because it 

has eliminated geographical hindrances [6]. Now it has almost become mandatory for all the banks 

to adapt social media for getting customer loyalty and effective CRM. 

1.2. Social media statistics in India: India is the 2nd largest country in the world in terms of 

Population with over 1.36 billion people.  

• India currently has a population of 1,369,566,180 - this is 17.1% of the world’s total 

population 

• Median age is 27.1 years - it’s a young country 

• Life expectancy is 69 years 

• Internet penetration is low in India - yet, in December 2018, 566 million users were online in 

India. Out of this - 493 million are regular users of the internet. (source: livemint). 

• At the end of 2018, the number of social media users in India stood at 326.1 million. (statista)  

• At the end of 2019, this number has been estimated to grow to 351.4 million. 

• On average, Indian users spend 2.4 hours on social media a day (slightly below the global 

average of 2.5 hours a day). (Source: The Hindu) 

• 290 million active social media users in India access social networks through their mobile 

devices. (Source: Hootsuite) 

https://www.livemint.com/industry/telecom/internet-users-exceed-500-million-rural-india-driving-growth-report-1552300847307.html
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India: social network penetration 2017-2023 

Based on customer’s requirement and rapid market the number of social media sites is increasing 

day by day to cater to the needs of different audience groups. Before choosing social media platform, 

it is essential for banks to realize the available social media platforms and location of their customer 

base in these Medias. Some of the social media categories are as follows: 

1.2.1 Communities and social groups: 

“We build technologies to give people the power to connect with friends and family, 

find communities and grow businesses”- face book 

These sites allow connecting people of similar interests and background. This is used to share 

information and events to large number of customers and building relationship by regular 

interaction. Banks may also pose their brand on social network as an expert information source. This 

may also be used for educating and training customers regarding different products and services 

provided by banks. 

Face book Statistics in India: 

• India ranks first in terms of face book users. Currently is has 269 million active users in India 

(Source: Investopedia) 

• The largest user group by age on Face book is 18-24 years, with a massive 97.2 million users. 
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Face book usage penetration in India from 2015 to 2023 

Messaging and communication: (e.g. blogging and micro-blogging such as Twitter): 

“Follow everything from breaking news and entertainment, to sports, politics, and everyday 

interests. Then, join the conversation”- Twitter 

 Blogging and Micro Blogging are used for creating online communities where customers can seek 

out information and answers to their questions. It is used to listen and resolve customer 

queries/issues in banking world. It creates a vast online, viral, and word of mouth, which is optimal 

for establishing brand loyalty and monitoring reputation.  

Twitter Statistics in India: 

• India has 7.75 million users on Twitter. (Source: statista) 

• 18% of social media users in India look at Twitter as a source of news. (Source: Reuters) 

• Twitter usage unlike other platforms is actually decreasing = 2.2% per quarter (Source: 

Digital 2019 report from Hootsuite) 

https://www.statista.com/statistics/242606/number-of-active-twitter-users-in-selected-countries/
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Content Communities: (Photo and video sharing, e.g. YouTube): 

“Enjoy the videos and music you love, upload original content, and share it all with friends, family, 

and the world” – YouTube. They are content specific. These could be used for brand promotion, 

engaging customer through sharing pictures, videos etc.  

You Tube statistics in India 

• As per Google announcement, as of August 2018, there were 245 million active You Tube 

users in India.  

• This figure is predicted to double over the next two years.  

• Online video accounts for 75% of data traffic in the country – and with 4G networks 

improving; this is likely to further increase. 

 

 

https://www.androidcentral.com/youtube-has-245-million-monthly-active-users-india
https://www.androidcentral.com/youtube-has-245-million-monthly-active-users-india
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The literature on the banking sector has abundant references to online and electronic services (e.g. 

e-banking), but has paid relatively little attention to the adoption and use of social media [7-9]. 

 

1.3. BANKING AND SOCIAL MEDIA 

 Banking sector is the backbone of any emerging economy. Banks are instrumental in implementing 

the economic reforms. Any revolution in the banking sector because of the acceptance of technology 

is bound to have a broad impact on an economy’s growth. These days, banks are seeking 

unconventional ways to provide and differentiate amongst their various services. Customers now 

demand a facility to conduct their banking activities at any time and place according to their 

convenience [10].   

Banking sector is the backbone of any emerging economy. Banks are instrumental in implementing 

the economic reforms. Any revolution in the banking sector because of the acceptance of technology 

is bound to have a broad impact on an economy’s growth. These days, banks are seeking 

unconventional ways to provide and differentiate amongst their various services. Customers now 

demand a facility to conduct their banking activities at any time and place according to their 

convenience [11]. 

Social media has changed the entire gamut of business and marketing and Banking Industry is no 

exception to this because here the Customer Interaction is a must. Today Social media is universal 

and pervasive, so banks can rely on it. Digital communication is becoming a strong communication 

medium between Banks and customers. This media is proving itself indispensable in connecting to 

the potential clients. By allowing transfer of money, getting credit and even simply opening a bank 

account, it has improved customer services which in turn are improving the customer relationship. 

Assessing people’s sentiments is a very significant and staggering job, particularly in case of service 

industry. Social media has a unique ability to create and sustain associations with customers, 

creating better Customer relations. Hence banks need to consider social media as an integral part of 

their overall marketing strategy [12].  

People use Face book, Twitter, YouTube, Instagram, LinkedIn etc to understand different 

information regarding the different products and services provided by banks only after 

understanding the facilities and prospects of various social media platforms. Banks are using this 

network to inform their customers about their products and upgrade them according to customers' 

feedback.  On the other hand, there is the talk of turnover in social networks. Also, purchases can be 

made through social networks.  

Physical Banking opted tactics like advertising, direct mail or face to face communication for 

customer interaction so far but now the approaches have changed from providing customer service 

to affiliation and long term relationship with customers. For doing it, banks need to diagnose 

customers’ interests, emotions and behavior and with help of social media this analysis are being 

done easily. Today, customers expect that they should be heard and answered and receive the 

services they need through social media. 

Social Medias can greatly affect the reputation and the brand image of the banks. Banks need a 

transparent understanding of the key elements in the development of social media and adopt a road 
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map and a strategy. The banks may use the following pathway in social media to listen to the 

customers. 

• As Is: Banks need to understand the customers’ requirements initially by analyzing their 

data in social networks.  

• Listen: The next step would be to analyze the data carefully. Then the bank should design 

and provide support as per their expectation, 

• Engage: Information can be collected through customers and through feedback taken Bank’s 

can fulfill the customers’ needs. 

• Optimize: In the last step bank should attract fans and increase the loyalty of existing 

customers by using customers' feedback and analyzing their interactions with each other. 

In a media landscape increasingly dominated by social media, Bank’s marketing strategy for 

these platforms can make or break its success as a brand. Banks need to hold their social media 

efforts to high standard, creating custom made strategies that build their brand, win customers, 

and yield high ROI. Therefore social media techniques have become essential communication 

tools for banks to communicate with people across globe. Banks are adapting social media 

because they are finding it difficult to fight with traditional banking methods such as interest 

rates and product differentiation to attract new clients and sustain the existing ones. In today’s 

aggressive atmosphere customer loyalty can be gained through allocation of finer service quality 

to ensure maximum customer satisfaction [13].The purpose of this study is thus, to explore the 

implication of social media on service quality perception and client loyalty in the banking 

industry of West Bengal. Social media service quality can be used to boost customers’ loyalty by 

Banks in the India banking industry [14]. There are limited studies on social media service 

quality and client loyalty for Indian Banking industry. This study will contribute towards 

reducing the knowledge gap between impact of social media on service quality and customers’ 

loyalty. These attributes so discussed would be able to improve the quality of social media 

performance. 

The article is structured as follows: The next section will provide a discussion on the use of social 

media in the Indian banking industry, followed by a discussion on the methodology that was 

used for data collection, and a presentation of the results. The last section provides the study’s 

findings and conclusion. 

2. Literature Review: Indian Banks have started using social media in their regular operations in 

various capacities a little lately and are at different stages of maturity. As of April 2013, some private 

banks provide regular updates on the latest offers and allow basic customer operations through 

popular social media sites. A large private bank in India hosted Face book application on its secure 

servers allowing balance amount check, cheque book request, stop payment, etc. Some of the private 

banks are using their social media websites to provide their customers, distinct offers, detailed 

product information and consumer care services. With some banks taking the lead by setting 
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example, the others also have started following their footsteps. In a survey by the Financial Brand 

newsletter in July 2013, it was established that ICICI, Axis and HDFC Banks are among the top 10 

Banks with Social Media presence. Of late public sector banks have also started using this media in a 

grand way. As per present scenario, Indian banks can no longer live in denial by avoiding and not 

using Social Media if they do not want threatening their own business. The Indian banking industry 

has envisaged some social media channels to attract tech-savvy clients and improve customer 

services to bring customer loyalty [15]. The use of social media in India has gained its importance. 

2.1 Social Media Safety & Privacy: Privacy refers to the extent by which the customers’ details are 

protected by bank’s social media platform [16].Banks need to give their customers enough 

confidence to use their social media accounts so that they may perceive that their personal 

information will be secured and not to be misused by banks [17].  Banks can build new healthy 

relationship with customers if the privacy is perceived positively by customers [18]. The information 

get disclosed and shared through social media so easily, that it has raised doubts about its privacy 

among the users [19]. Maintenance of privacy in bank’s social media channel has been a big 

challenge for the banking industry. The main challenge is to monitor and control the posts in these 

sites [20]. A proper privacy setting of social media site is very essential in banks because privacy 

invasion may lead to theft of personal identification and may lead to criminal proceedings.  In case 

of low security features hackers may hack the social media sites and/or may clone the original, 

befooling customers and duping them [21]. 

2.2 Social Media Efficiency & Effectiveness: Effectiveness refers to the ease of use, internet speed, 

expediency etc with which customers may access and use bank’s social media sites [22]. 

Effectiveness measures the efficiency of bank’s social media and it estimates the speed of accessing 

and working on the bank’s social media sites to ensure timely and convenient completion of all 

required interaction [23]. Social media can augment the conventional personnel–client bonding with 

an effective technological knowledge-based relationship [24].  

Today’s customers need prompt responses and it can effectively be done in social media by 

providing them relevant and quick information as & when required. It is surely required for 

enhancement of quick responses to customers’ queries for the improvement of e-services and clients’ 

improved customer satisfaction [25]. Banks can provide unique banking experience to their clients 

by giving them services combined with technology.  Hence the primary task of the bank is to find 

out and respond to customers’ queries effectively on Bank’s social media sites. By monitoring the 

response of bank personnel on social media sites, Banks need to assess the service quality. As per the 

above discussion we can make the following hypothesis: 

2.3 Social Media Fulfillment & Responsiveness: Fulfillment concentrate on the service truthfulness 

and ease of use of relevant information provided on a bank’s social media websites [26]. Customers 

need prompt response and acknowledgement of their complaints or suggestions. The fulfillment 

dimension concentrates on evaluating the banks promptness in responding to customers’ 

requirements [27]. For getting customer loyalty the banks create user generated customized content 
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for getting the Fulfillment dimension [28]. Hence Fulfillment refers to the customer’s confidence on 

Bank’s social media platform to the extent their requirements are fulfilled.  

 

2.4 Theory of Vagueness and Multi-Criteria Decision-Making Problem (MCDM): Due to the 

complication of detached things and hesitation in human thinking, [29] manifested a remarkable 

perception of neutrosophic set theory, which has been widely applied on disjunctive arenas of 

science and engineering. Recently, researchers developed pentagonal [30], Hexagonal [31], 

Heptagonal [32] fuzzy numbers in research domain. Researchers also established some useful 

techniques [33-35] which linked the hesitant number and the crisp number in real life scenario. In 

this era, MCDM is the paramount topic in decision scientific research. Recently, it is more essential in 

such problems where a group of criteria is apprised. For such problems involving multi-criteria 

group, decision-making problems (MCGDM) have come into existence. In this current epoch, 

several works has been already published in this arena. [36] Introduced MCDM skill in Pythagorean 

fuzzy set field, [37] focused on linguistic aggregation operators based on MCGDM problem, [38] 

surveyed intuitionistic interval fuzzy information and applied it in MCGDM problem, [39] derived 

MCGDM methodology using type-2 neutrosophic linguistic judgments, [40] manifested the idea of 

MCGDM in human resource development arena, [41]  developed MCGDM skill in thermal 

enovation of masonry buildings field,[42] introduced best-Worst-Method and ELECTRE Method 

using MCGDM, [43] applied MCGDM in garage location selection based civil engineering problems, 

[44] derived decision making method in intuitionistic neutrosophic environment, [45] utilized 

MCDM in bipolar neutrosophic set arena, [46] wielded MCGDM in entropy based problem, [47] 

used MCGDM in smart phone selection problem, [48] developed MCGDM in selection of advanced 

manufacturing technology in neutrosophic set, [49] derived attribute based MCDM in linguistic 

variable in intuitionistic fuzzy set.  

Motivated by Smarandache’s neutrosophic theory [52], researchers established several articles 

[53-62] in this domain and it is fruitfully applied in various field of mathematics. Also, a few new 

techniques are manifested in neutrosophic theory which can grab and solve MCDM, MCGDM 

problems in disjunctive domain. In this phenomenon, Vikor [63], TOPSIS [64], MOORA [65], GRA 

[66] skills are developed to solve decision making problems using some suitable and logical 

operators in neutrosophic theory. So, in case of social science related hesitant data, decision making 

problem becomes one of the key topics in neutrosophic ambient.      

In this research article, we consider a triangular neutrosophic based MCGDM technique to select the 

best social media for online marketing in banking sector. Here, we collect all the information’s from 

different banks based on their online marketing report. But, we observed that these data’s are 

fluctuating and filled with lots of hesitations. Now, due to the presence of impreciseness we need to 

improve our general established method. Thus, we have introduced triangular neutrosophic 

number to tackle this system for better results. Additionally, we also incorporate different weights in 

distinct attribute functions as well as decision maker’s choice. Finally, we performed a sensitivity 

analysis and comparative study which reflects different case studies in disjunctive scenario.    
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2.5 Preliminaries: 

Definition 2.5.1: Fuzzy Set: A set  F̃ , generally defined as  F̃ = {(α,μ
F̃
(α)) :α ∈ S,μ

F̃
(α) ∈ [0,1]} , 

denoted by the pair(α,μ
F̃
(α)), where 𝛼  belongs to the crisp set 𝐹  and μ

S̃
(α)  belongs to the 

interval[0, 1], then set S̃ is called a fuzzy set. 

 

Definition 2.5.2: Triangular Fuzzy Number: A triangular fuzzy number Ã = (s1, s2, s3) should 

satisfy the following condition 

(1) μ
Ã
(x) is a continuous function which is in the interval [0,1] 

(2) μ
Ã
(x) is strictly increasing and continuous function on the intervals [s1, s2]. 

(3) μ
Ã
(x) is strictly decreasing and continuous function on the intervals[s2, s3]. 

 

Definition 2.5.3: Linear Triangular Fuzzy Number (TFN): A linear triangular fuzzy number can be 

written as ÃTFN = (s1, s2, s3) whose membership function is defined as follows: 

 

  
Figure 2.5.3.1: Graphical Representation of Linear Triangular Fuzzy Number 

 

Definition 2.5.4: Neutrosophic Set: [52] A set 𝑛𝑒𝑢𝑆̃ in the universal discourse 𝑋, symbolically 

denoted by 𝑥, it is called a neutrosophic set if 𝑛𝑒𝑢𝑆̃ = {〈𝑥; [𝑇𝑛𝑒𝑢𝑆̃(𝑥), 𝐼𝑛𝑒𝑢𝑆̃(𝑥), F𝑛𝑒𝑢𝑆̃(𝑥)]〉 ⋮ 𝑥 ∈ 𝑋}, 

where 𝑇𝑛𝑒𝑢𝑆̃(𝑥): 𝑋 →] − 0,1 + [ is said to be the true membership function, which has the degree of 

belongingness, 𝐼𝑛𝑒𝑢𝑆̃(𝑥): 𝑋 →] − 0,1 + [ is said to be the indeterminacy membership, having  degree 

of uncertainty, and 𝐹𝑛𝑒𝑢𝑆̃(𝑥): 𝑋 →] − 0,1 + [ is said to be the incorrect membership, which has the 

degree of non-belongingness of the decision maker. 𝑇𝑛𝑒𝑢𝑆̃(𝑥), 𝐼𝑛𝑒𝑢𝑆̃(𝑥)& 𝐹𝑛𝑒𝑢𝑆̃(𝑥) exhibits the 

following relation: 

−0 ≤ 𝑆𝑢𝑝{𝑇𝑛𝑒𝑢𝑆̃(𝑥)} + 𝑆𝑢𝑝{𝐼𝑛𝑒𝑢𝑆̃(𝑥)} + 𝑆𝑢𝑝{𝐹𝑛𝑒𝑢𝑆̃(𝑥)} ≤ 3 +. 

 

2.5.5: Triangular Single Valued Neutrosophic number: [33] A Triangular Single Valued 

Neutrosophic number is defined as 𝐴̃𝑁𝑒𝑢 = (𝑝1, 𝑝2, 𝑝3; 𝑞1, 𝑞2, 𝑞3; 𝑟1, 𝑟2, 𝑟3) whose truth membership, 

indeterminacy and falsity membership is defined as follows: 
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        𝑇𝐴𝑁𝑒𝑢(𝑥) =

{
 
 

 
 

𝑥−𝑝1

𝑝2−𝑝1
𝑤ℎ𝑒𝑛 𝑝1 ≤ 𝑥 < 𝑝2

1          𝑤ℎ𝑒𝑛  𝑥 = 𝑝2
𝑝3−𝑥

𝑝3−𝑝2
 𝑤ℎ𝑒𝑛 𝑝2 < 𝑥 ≤ 𝑝3

0                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ,    𝐼𝐴𝑁𝑒𝑢(𝑥) =

{
 
 

 
 

𝑞2−𝑥

𝑞2−𝑞1
  𝑤ℎ𝑒𝑛 𝑞1 ≤ 𝑥 < 𝑞

2

0            𝑤ℎ𝑒𝑛  𝑥 = 𝑞2
𝑥−𝑞2

𝑞3−𝑞2
  𝑤ℎ𝑒𝑛 𝑞2 < 𝑥 ≤ 𝑞3

1                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐹𝐴𝑁𝑒𝑢(𝑥) =

{
 
 

 
 
𝑟2 − 𝑥

𝑟2 − 𝑟1
  𝑤ℎ𝑒𝑛 𝑟1 ≤ 𝑥 < 𝑟2

0             𝑤ℎ𝑒𝑛  𝑥 = 𝑟2
𝑥 − 𝑟2
𝑟3 − 𝑟2

  𝑤ℎ𝑒𝑛 𝑟2 < 𝑥 ≤ 𝑟3

1                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where, 0 ≤ 𝑇𝐴𝑁𝑒𝑢(𝑥) + 𝐼𝐴𝑁𝑒𝑢(𝑥) + 𝐹𝐴𝑁𝑒𝑢(𝑥) ≤ 3, 𝑥 ∈ 𝐴̃𝑁𝑒𝑢 

 

2.5.6: Score Function: [50] If 𝐴̃𝑁𝑒𝑢 = (𝑝1, 𝑝2, 𝑝3; 𝜋, 𝜌, 𝜎) be a triangular neutrosophic number then its 

score function is defined as 𝑆𝐶 =
1

8
(𝑝1 + 𝑝2 + 𝑝3) × (2 + 𝜋 − 𝜌 − 𝜎) and accuracy value is defined as, 

𝐴𝐶 =
1

8
(𝑝1 + 𝑝2 + 𝑝3) × (2 + 𝜋 − 𝜌 + 𝜎) 

3. Purpose/ Objectives of the Study: 

1. To understand the factors affecting the customers’ attitude towards acceptance of Social 

Media Channels, 

2. To help Banks understand the impact of Social Media Channels on customer satisfaction and 

customer loyalty.  

 

4. Research Methodology:  

The data have been collected from various respondents working in different organizations 

categorized mainly as education sector, service sectors as banks, hospitals, etc. engineering works 

and Government and Public sector companies in the Kolkata metro area. The study consisted of 234 

respondents whose income is above 15,000 per month as it is assumed that those people at least 

above Rs. 15000 earning/ month will be transacting more through online mode and can afford a 

smart phone. We have used a five point Likert scale where 5 indicates strongly agree, and 1 indicates 

strongly disagree. 64.9% respondents are male and 35.1% are female.    

Research Instrument: Demographic Profile is the independent variable in this paper. Technology 

acceptance model by Ajzen & Fishbein, 1980, Davis, 1989 and Ajzen, 1991 are used for validating 

questionnaire. The questionnaire is mainly focused on: Social Media platforms used by the banks 

and attributes affecting the users’ adaptability of the same.  

 

TABLE 4.1.1 DEMOGRAPPHIC DETAILS OF RESPONDENTS 

CHARACTERISTICS  TYPES FREQUENCY % 

 

GENDER 

MALE 135 57.69 

FEMALE 99 42.31 
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AGE 

<25 75 32.05 

25-40 154 65.81 

>40 5 02.14 

 

 

 

OCCUPATION 

EMPLOYED 92 39.32 

UNEMPLOYED 22 9.40 

PROFESSIONAL 14 5.98 

STUDENT 95 40.60 

BUSINESS 10 4.27 

OTHERS 1 0.43 

 

SOCIAL MEDIA PLATFORM 

FACEBOOK 132 56.41 

TWITTER 47 20.09 

YOUTUBE 55 23.50 

HOURS OF SURFING THROUGH SOCIAL MEDIA   DAILY 149 63.68 

WEEKLY 13 5.55 

MONTHLY 6 2.56 

VERY RARE 66 28.21 

 

 

Table 4.1.2 Indicate acceptance of Social Media based on various attributes 

BANK PLATFORM SAFETY & 

PRIVACY         (%) 

EFFICIENCY & 

EFFECTIVENESS 

(%) 

FULFILLMENT & 

RESPONSIVENESS 

(%) 

1 FACEBOOK 10 65 54 

TWITTER 6 16 50 

YOUTUBE 5 26 28 

2 FACEBOOK 15 76 56 

TWITTER 12 37 26 

YOUTUBE 21 24 15 

3 FACEBOOK 23 29 45 

TWITTER 13 15 16 

YOUTUBE 45 9 7 

 

4.1 Multi-Criteria Group Decision Making Problem in Triangular Neutrosophic Environment 
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One of the most dependable, logistical and widely used topic in this recent era is Multi criteria 

decision making problem. Its main objective is to find out the finest option among finite number of 

different alternatives based on finite unlike attribute values. Its execution process was quiet tough to 

estimate in triangular neutrosophic environment. To handle this MCGDM problem an algorithm 

was developed using some mathematical operator and de-fuzzification technique. 

4.1.1 Illustration of the MCGDM problem 

We consider the problem as follows: 

Let 𝑃 = { 𝑃1, 𝑃2, 𝑃3 ……… . . 𝑃𝑚} is the distinct alternative set and  𝑅 = { 𝑅1, 𝑅2, 𝑅3 ……… . . 𝑅𝑛} is the 

distinct attribute set respectively. Let 𝜔 = { 𝜔1, 𝜔2, 𝜔3 ……… . . 𝜔𝑛} be the weight set associated with 

the attributes R where each 𝜔 ≥0 and also satisfies the relation∑ 𝜔𝑖
𝑛
𝑖=1 = 1. We also consider the set 

of decision maker 𝐷 = { 𝐷1, 𝐷2, 𝐷3 ……… . . 𝐷𝐾} associated with alternatives whose weight vector is 

defined as ∆= {∆1, ∆2, ∆3 ……… . . ∆𝑘} where each ∆𝑖≥0 and also satisfies the relation ∑ ∆𝑖
𝑘
𝑖=1 = 1. 

4.1.2 Normalisation Algorithm of MCGDM Problem: 

Step 1: Framework of Decision Matrices 

Here, we considered all decision matrices according to the decision maker’s choice related with 

finite alternatives and finite attribute functions. It is noted that the member’s 𝑦𝑖𝑗 for each matrices 

are of triangular neutrosophic numbers. Thus, the final matrix is defined as follows: 

     𝑋𝐾 =

(

 
 
 
 

. 𝑅1 𝑅2 𝑅3 . . .   𝑅𝑛
𝑃1 𝑦11

𝑘 𝑦12
𝑘 𝑦13

𝑘 . . . . 𝑦1𝑛
𝑘

𝑃2 𝑦21
𝑘 𝑦22

𝑘 𝑦23
𝑘 . . . 𝑦2𝑛

𝑘

𝑃3
.
𝑃𝑚

.

..
𝑦𝑚1
𝑘

.

.
𝑦𝑚2
𝑘

.

.
𝑦𝑚3
𝑘

.

.

.

. . .

. . .

. . 𝑦𝑚𝑛
𝑘
)

 
 
 
 

………………...(4.1) 

Step 2: Framework of normalised matrix  

To formulate a single group decision matrix X we utilized this logical operation 𝑦𝑖𝑗
′ = {∑ 𝜔𝑖𝑋

𝑖𝑘
𝑖=1 } for 

individual decision matrix 𝑋𝑖. hence, the final matrix becomes as follows: 

               𝑋 =

(

 
 
 
 

. 𝑅1 𝑅2 𝑅3 . . .   𝑅𝑛

𝑃1 𝑦11
′ 𝑦12

′ 𝑦13
′ . . . . 𝑦1𝑛

′

𝑃2 𝑦21
′ 𝑦22

′ 𝑦23
′ . . . 𝑦2𝑛

′

𝑃3
.
𝑃𝑚

.

..
𝑦𝑚1
′

.

.
𝑦𝑚2
′

.

.
𝑦𝑚3
′

.

.

.

. . .

. . .

. . 𝑦𝑚𝑛
′
)

 
 
 
 

…………………(4.2) 

Step 3: Framework of Final matrix  

To formulate the final decision matrix we utilized the logical operation 𝑦𝑖𝑗
′′ = { ∑ ∆𝑖𝑦𝑐𝑖 

′𝑛
𝑖=1 , 𝑐 =

1,2… .𝑚} for each individual Colum and finally, we get the decision matrix as, 
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   𝑋 =

(

  
 

. 𝑅1
𝑃1 𝑦11

′′

𝑃2 𝑦21
′′

.     .
.

  𝑃𝑚

.
𝑦𝑚1
′′ )

  
 
…………………………(4.3) 

Step 4: Ranking  

Now, by considering the score and accuracy value (2.5.6) and converting the matrix (4.3) into crisp 

form, so that we could evaluate the best alternative corresponding to the best attributes.  

4.1.3 Flowchart: 

 

Figure 4.1.3.1: Flowchart for the problem 

4.1.4 Illustrative Example: 

Here, we constructed a social media selection problem in which we have considered three different 

social media services. Among these different social media platforms we want to select the best social 

media service in a logical way. Normally, social media services are fully dependent on the attributes 

like Safety & Privacy, efficiency & effectiveness and fulfilment & responsiveness of the system. 

Keeping these points in mind different banks provided some realistic information in which 

vagueness was present. Thus, we considered the data in the form of triangular neutrosophic number 

and according to their suggestions we constructed the distinct decision matrices in triangular 

neutrosophic environment as shows below: 𝑃1 = 𝐹𝑎𝑐𝑒𝑏𝑜𝑜𝑘, 𝑃2 = 𝑇𝑤𝑖𝑡𝑡𝑒𝑟, 𝑃3 = 𝑌𝑜𝑢𝑡𝑢𝑏𝑒 are the 

alternatives.𝑅1 =  𝑆𝑎𝑓𝑒𝑡𝑦 & 𝑃𝑟𝑖𝑣𝑎𝑐𝑦, 𝑅2 = 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 & 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑛𝑒𝑠𝑠 , 𝑅3 =

𝐹𝑢𝑙𝑓𝑖𝑙𝑙𝑚𝑒𝑛𝑡 & 𝑅𝑒𝑝𝑜𝑛𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠  are the attributes. 

Let us select four distinct decision makers from our environment, 𝐷1 = 𝐵𝑎𝑛𝑘 1, 𝐷2 = 𝐵𝑎𝑛𝑘 2, 𝐷3 =

𝐵𝑎𝑛𝑘 3 having weight distribution 𝐷 = { 0.35, 0.33, 0.32 } and the weight vector related with the 

attribute function ∆= {0.32,0.35,0.33}.  
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Step 1 

According to the decision maker’s opinion the decision matrices are shown as follows: 

𝐷1 = (

. 𝑅1 𝑅2 𝑅3
𝑃1 < 8.5,10,11; 0.8,0.5,0.4 > < 62,65,67; 0.7,0.4,0.5 > < 51,54,57; 0.6,0.5,0.5 >
𝑃2 < 3,6,8; 0.6,0.4,0.5 > < 13,16,18; 0.7,0.3,0.4 > < 47,50,54; 0.5,0.2,0.3 >
𝑃3 < 3,5,7; 0.5,0.3,0.2 > < 23,26,30; 0.6,0.3,0.4 > < 24,28,30; 0.4,0.6,0.7 >

) 

𝐵𝑎𝑛𝑘 1 𝑜𝑝𝑖𝑛𝑖𝑜𝑛  

𝐷2 = (

. 𝑅1 𝑅2 𝑅3
𝑃1 < 12,15,17; 0.6,0.4,0.3 > < 72,76,79; 0.5,0.6,0.4 > < 53,56,60; 0.6,0.4,0.5 >
𝑃2 < 10,12,15; 0.5,0.4,0.3 > < 35,37,39; 0.5,0.2,0.3 > < 24,26,29; 0.5,0.4,0.5 >
𝑃3 < 18,21,25; 0.5,0.6,0.4 > < 21,24,27; 0.5,0.3,0.4 > < 11,15,18; 0.8,0.5,0.4 >

) 

𝐵𝑎𝑛𝑘 2 𝑜𝑝𝑖𝑛𝑖𝑜𝑛  

𝐷3 = (

. 𝑅1 𝑅2 𝑅3
𝑃1 < 21,23,25; 0.6,0.4,0.5 > < 26,29,31; 0.6,0.4,0.5 > < 41,45,47; 0.7,0.3,0.2 >
𝑃2 < 10,13,17; 0.5,0.2,0.3 > < 12,15,19; 0.7,0.5,0.5 > < 14,16,18; 0.8,0.5,0.4 >
𝑃3 < 42,45,49; 0.6,0.4,0.5 > < 6,9,13; 0.6,0.4,0.5 > < 5,7,10; 0.4,0.2,0.3 >

) 

𝐵𝑎𝑛𝑘 3 𝑜𝑝𝑖𝑛𝑖𝑜𝑛  

Step 2: Framework of Normalised decision matrix 

𝑀

= (

. 𝑅1 𝑅2 𝑅3
𝑃1 < 13.65,15.81,17.46; 0.8,0.4,0.3 > < 53.78,57.11,59.44; 0.7,0.4,0.4 > < 48.46,51.78,54.79; 0.7,0.3,0.2 >
𝑃2 < 7.55,10.22,13.19; 0.6,0.2,0.3 > < 19.94,22.61,25.25; 0.7,0.2,0.3 > < 28.85,31.2,34.23; 0.8,0.2,0.3 >
𝑃3 < 20.43,23.08,26.38; 0.6,0.3,0.2 > < 16.9,19.9,23.57; 0.6,0.3,0.4 > < 13.63,16.99,19.64; 0.8,0.2,0.3 >

) 

                  

          Step 3: Framework of Final matrix  

𝑀 = (
< 39.18,42.13,44.47; 0.74,0.36,0.26 >
< 18.92,21.48,24.35; 0.68,0.2,0.3 >
< 16.95,19.96,23.17; 0.7,0.25,0.32 >

) 

Step 4: Ranking 

Now, we consider the score and Accuracy function technique (2.5.6), to convert the triangular 

neutrosophic numbers into crisp one, thus we get the final ideal decision matrix as  

 

𝑀 = (
< 33.34 >
< 17.65 >
< 16.01 >

) 

Thus, ranking of the social media service is as 𝑃1 > 𝑃2 > 𝑃3. 
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4.1.5 Results and Sensitivity Analysis 

To understand how the attribute weights of each criterion affecting the relative matrix and their 

ranking a sensitivity analysis is done. The basic idea of sensitivity analysis is to exchange weights of 

the attribute values keeping the rest of the terms are fixed. The below table is the evaluation table 

which shows the sensitivity results. 

Attribute Weight Final Decision Matrix Ordering 

<(𝟎. 𝟒, 𝟎. 𝟑, 𝟎. 𝟑)> 
(
< 28.26 >
< 15.56 >
< 14.42 >

) 
𝑃1 > 𝑃2 > 𝑃3 

<(𝟎. 𝟑, 𝟎. 𝟒, 𝟎. 𝟑)> 
(
< 31.45 >
< 16.42 >
< 16.20 >

) 
𝑃1 > 𝑃2 > 𝑃3 

<(𝟎. 𝟑, 𝟎. 𝟑, 𝟎. 𝟒)> 
(
< 30.54 >
< 16.44 >
< 17.30 >

) 
𝑃1 > 𝑃3 > 𝑃2 

<(𝟎. 𝟑𝟐, 𝟎. 𝟑𝟓, 𝟎. 𝟑𝟑)> 
(
< 33.34 >
< 17.65 >
< 16.01 >

) 
𝑃1 > 𝑃2 > 𝑃3 

<(𝟎. 𝟑𝟕, 𝟎. 𝟑𝟐, 𝟎. 𝟑𝟏)> 
(
< 35.62 >
< 16.23 >
< 15.45 >

) 
𝑃1 > 𝑃2 > 𝑃3 

 

 

 
Figure 4.1.5.1: Sensitivity analysis table on attribute function. 
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Figure 4.1.5.2: Best Alternative Social Media Service Table 

 

 

4.1.6 Comparison Table 

 We compared this proposed work with the established works proposed by the researchers to find 

the best social media and it is noticed that in each cases 𝑃1 (facebook) becomes the best social media 

service. The comparison table given as follows: 

 

 

Approach Ranking 

(Deli, Ali, & Smarandache, 2015) [51] 𝑃1 > 𝑃2 > 𝑃3 

             (H.Garg, 2016) [36] 𝑃1 > 𝑃3 > 𝑃2 

 

Our Proposed 𝑃1 > 𝑃2 > 𝑃3 

 

5. Implication: 

There are a lot of social media sites like face book, twitter, Google plus, linked in, you tube etc. 

available for online marketing. This study was primarily done to identify the impact of social media 

marketing especially in Banking Industry based on different social media attributes. We wanted to 

discover the right social media platform best suited for Banking Industry in West Bengal. The 

perception of vagueness plays a vital role in designing mathematical calculations. In this study we 

wanted to check the functionality of this system to find out the impact of different social media 
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attributes on its acceptance in Online banking system in WB. Later we pioneered some more 

fascinating outcome on score and exactness function.  

There are a lot of researches already done in social media implementation in Banking Industry. 

However many results are still unknown. Our work is to explore the idea in the following points: 

• Defining the attributes necessary for social media platform for Banking Industry in West 

Bengal. 

• Discovering the best suitable social media site for Banking Industry in West Bengal. 

• The graphical representation of adaptation of social media platform based on its attributes. 

• Application of Triangular neutrosophic number based MCGDM problem for selection of 

social media platforms. 

Discussion  

This study was done primarily to understand the perceptions of the people of West Bengal to use 

social media for their banking transactions. The study examined the three different types of websites 

i.e. Face book, Twitter and You Tube individually using three different attributes: Safety & Privacy, 

Efficiency & Effectiveness and Fulfillment & Responsiveness. 

The study yielded new viewpoints that are useful to both academicians and Banks. This study 

showed that the selection of social media for Banking depends on various attributes which differs 

based on customers’ perception. 

All the three social media considered in this paper is different in nature. Communications & Social 

groups like Face book, Messaging & Communication like Twitter, and Content & Communication 

like You tube.  Publicity in these three different social media sites differ both in content and context.    

 In the sample considered here men respondents are more than women; most of the respondents are 

under 40 years of age and they frequently uses social media. Like the worldwide trend here also it 

was observed that youngsters are dominating the social media sites. Social media mainly has 

impacted the life of youngsters. It has become radically significant since last ten years and it has 

attracted all age groups. 

In West Bengal banking industry very less attention has been given to the measurement of social 

media quality and its effects. It is agreed that Banks must consider the overall social media quality 

measurement to satisfy customers. If the services experienced by customers are satisfactory, then it 

will induce them for long tern connectivity with banks. Long term connectivity with improved 

customer satisfaction in turn will bring customer loyalty.  

Adaption of social media for banking industry is something beyond likes, comments and shares. The 

main aim of adaption of social media is brand awareness, creation of leads and ultimately 

conversions and finally brand advocacy.  Banks should design their social media strategy 

considering their pragmatic goals.  Once the goals are set it is important to find their KPIs (Key 

Performance Indicator) before implementing social media campaigns. A KPI is a quantifiable 

measurement to evaluate their campaign in relation to their defined goals.  The common social 

media KPIs for banks can include Leads generation (through email signups or fulfilling some contact 
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forms), Conversions (account sign ups, deposits), Referral traffic (from social media to website), 

Brand Advocacy (Like, comment and share) 

           

 

 

 

Figure 5.1: Example of Social Media KPI 

 

 

 

6. Findings:  

 

• All the three websites; Face book, Twitter and YouTube have gained attention among the 

social media users in India, but Face book is the widely used social media website.  

• Banks are mostly using all international brands of social media channels for their operations 

due to lack of availability of good national social media networks. There is a great chance of 

development of some social media channels locally by the Govt. 

• Bank’s Social media Privacy drastically influences the endorsement of social media platform 

in the banking industry of West Bengal. 

• Social media Efficiency appreciably control the acceptance of bank’s social media platform 

in the West Bengal Banking Industry. 

• Social media Fulfillment extensively influences the acceptance of social media platform in 

the West Bengal banking industry. 
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• Customers’ prefer a bank that proposes them an experience that comprises all their service 

needs. 

• All the three mentioned attributes have significant impact on overall customers’ satisfaction 

which resulted in selection of Bank’s social media platform 

• Social media privacy appreciably persuades overall customer decision in selecting Banks 

social media sites in West Bengal banking industry. The study findings discovered that 

customers worth the social media privacy highly in banking operations. 

• Face book is most preferred platform for all demography regardless of age, gender and 

occupation for all the Banks services. 

• For You Tube and Twitter websites, people have different perceptions and choices 

depending on different Banks. 

• Banks may augment their profit margin by increased customers’ base through 

implementing proper social media strategies and reduction in cost due to lesser no of 

physical branches. 

 

7. Conclusions: 

In this current era, the West Bengal Banking Industry has conventionally been a high contact service 

submission. As implementation of social media reduces direct human interaction, hence there arises 

the need of continuous evaluation of service quality offered by Banks’ social media sites and 

monitoring client’s perception on it. It was observed that clients were satisfied with the traditional 

banking; still their expectations have grown bigger after introduction of e-services including social 

media. 

This study concluded that the following attributes of social media like Safety & Privacy, efficiency & 

effectiveness and fulfillment & responsiveness have a significant influence on the service quality of 

social media in the West Bengal Banking Industry under neutrosophic environment. It was observed 

that customers mainly focuses on the attributes and service quality of Bank’s social media, hence it is 

suggested that West Bengal Banking sector may priorities social media factors in their marketing 

mixes. Additionally, comparison analysis is done with the established methods and sensitivity 

analysis is performed in MCGDM technique under triangular neutrosophic arena. Finally it was 

concluded that successful implementation of social media in banking industry generates customer 

satisfaction and long term association which in turn converts to customer loyalty. 

Further, researchers can apply this conception of triangular neutrosophic number in various fields 

like social business problem, diagnoses problem, mathematical modeling, pattern recognition 

problem, industrial problem, banking problem, marketing policy problem etc.   
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Abstract.The classical transportation problem and the solid transportation problem are special types of linear pro-

gramming problems which are very important in Operations Research. In this paper, a solid transportation model is 
described, where the total supply of goods is insufficient to fulfil the total demand of goods, due to which the supplier 
company tries to obtain the required remaining goods from another source. An expression is derived to determine the 
import plan. The parameters of the model are considered to be uncertain and imprecise and are taken as trapezoidal 
neutrosophic numbers. The paper gives a general formulation of such a model and an algorithm is proposed to solve 
the model. The main objective function of the model present in the manuscript is to minimize the total cost.  A for-
mula is provided to check the degree of sufficiency of such a solution. The model is elucidated with a numerical ex-
ample and its solution shows its efficiency and optimality in practical aspect. Finally, the paper provides a brief discus-
sion about the computational time and some relative points of research. 

 
 

Keywords: Solid Transportation Model, Insufficient supply, Trapezoidal Neutrosophic Number, Ranking function. 

 
1 Introduction 

Transportation is the movement of humans, animals, commodities, etc. from one location to anoth-
er. Modes of transport include air, land (rail and road), water cable, pipeline and space. The field can 
be divided into        infrastructure, vehicles and operations. Transportation is important because it en-
ables trade between people, which is essential for the development of civilizations. It is a key compo-
nent of growth and globalization. 

 
The transportation problem (TP) was first forwarded by Hitchcock [1] in 1941. It is a popular type 

of     problem in Operations Research where the decision maker wants to find the optimal way to 
transport goods from source warehouses to destination warehouses. So, there are two types of con-
straints, namely source constraints and demand constraints. But, real systems may contain other type 
of constraints too such as product type       constraints or transportation mode constraints. This gives a 
third dimension to the transportation problem and converts the classical transportation problem into 
the solid transportation problem (STP). 

 
The STP was first stated by Schell [2] in 1955 and later, in 1962, it was formally introduced by Ha-

ley [3]. In this paper, we consider that different types of conveyances are required for shipping goods 
and so, the third type of constraints here are the conveyance constraints. 

 
The classical theories of Mathematics cannot solve problems which simulate real life situations. 

The           information is imprecise and uncertain in nature. To deal with vague information, the fuzzy 
set theory was       introduced by Zadeh [4] in 1965. But, fuzzy sets cannot represent imprecise infor-
mation efficiently as they only consider the truth membership values of the data. Then, Atanassov [5, 
6] introduced the concept of intuitionistic fuzzy sets, where the data are represented by their member-
ship and non-membership values. But, they can only handle incomplete information, not indetermi-
nate or inconsistent information. 

 
Smarandache [8] proposed the concept of neutrosophic set theory by adding an independent inde-
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terminacy membership. The neutrosophic set theory generalizes the concepts of classical set theory, 
fuzzy set theory,       intuitionistic fuzzy set theory, and so on, since it considers all three aspects of de-
cision-making, viz. “agree”, “disagree” and “not sure”.Basset et al. [24] used Neutrosophic theory to 
solve transition difficulties of Internet of Things identifying some challenge affectingthe process by 
non-traditional methods.  In the article [26], an advance type of Neutrosophic set called type-2 Neu-
trosophic number are defined with TOPSIS method. A green supply chain model is developed incor-
porated with neutrosophic set and robust ranking technique and its performance is shown in decision 
making process [25]. 

Various researchers like Jiménez and Verdegay [7], Yang and Liu [9], Hussain and Kumar [10], 
Kundu et al. [11], Singh and Yadav [13], Das et al. [14], Giri et al. [16], Das et al. [18], Aggarwal and 
Gupta [19], etc. have    studied the classical and solid transportation models in different fuzzy and in-
tuitionistic fuzzy environments. A supply chain model is formulated based on some importance ma-
trices based on economic, environment, social aspect as well as information gathering [23]. A hybrid 
pliogenic decision making approach is developed in this regard. Basset et al. [22] developed an evalu-
ation model to show the performance and efficiency of medical care system with pliogenic set.    

In this paper, a mathematical model is developed for the solid transportation model. The model is 
considered in neutrosophic environment so that we can address the fact of truth, indeterminacy and 
falsity arises in the data due to factors like unawareness of the scale of the problem, imperfection in 
data, poor forecasting, etc. As the concept of neutrosophic set theory is relatively new, a few of article 
is available dealing the transportation or solid transportation models with neutrosophic parameters in 
literature. A few of them in this context are by Thamaraiselvi and Santhi [15], and Rizk-Allah et al. [21].   

 
The mathematical model present in this paperdescribes a transportation model shipping a homo-

geneous product from some source warehouses to some destination warehouses by means of hetero-
geneous conveyances. It is assumed that the conveyances have the necessary overall capacity to 
transport the whole demanded quantity of the commodity. In this research work, it is considered that 
the source warehouses do not have the sufficient quantity of goods to supply at a time and they fall 
short of some amount. At that time, the supplier decides to import the goods from another source. 
Again, if this new source does not have the requisite amount of goods, it imports the remaining 
amount from another source, and so on. This process is continued until the fulfilment of the total de-
mand. It terminates after a certain number of sources, since the total original demand of goods is a 
fixed quantity. The paper addresses the general notion of the situation and also the presence of uncer-
tainties in the data. 

The main contribution of the paper is to develop the mathematical model for solid transportation 
plan to satisfy the demand of customer with insufficient supply of source point.The main objective 
function of the model is to minimize the total cost. In this research work, parameters of the model are 
considered in neutrosophic environment. Consideration of neutrosophic number gives an ideal ap-
proach of a decision making process dealing the uncertainty with truth, false and in determinant state 
of information. In this regard, trapezoidal neutrosophic number is used in this STP model.  A proposi-
tion is provided to establish the relation between the import goods and the cost which define a degree 
of insufficiency.  Hereby, a solution algorithm is given in his manuscript. A numerical example is also 
shown to discuss the performance of the model. 
 

In this paper, Section 2 contains some preliminary definitions and concepts regarding the model. 
Section 3 describes the model and gives a general formulation of the model. Section 4 is all about the 
solution approach to the problem, concerned with the model and Section 5 helps in understanding the 
model with the help of a      numerical example and its solution by the given procedure. Finally, Sec-
tion 6 briefly discusses the model along with the computational time of the solution process, exempli-
fied by the numerical example. It also suggests some relative points of research and is followed by the 
conclusion. 

2 Preliminaries 

      In this section, we recall some important definitions and concepts. 
 

2.1 Single-valued neutrosophic set [20] 

Let X be a non-empty set. Then a single-valued neutrosophic (SVN) set Ã of X is defined as 
 

Ã= {⟨ x, 𝑇𝐴(x), I𝐴(x), 𝐹𝐴(x)⟩ | x ∈ X}, 
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where 𝑇𝐴(x), I𝐴(x), 𝐹𝐴(x) ∈[0, 1] and 0 ≤ 𝑇𝐴(x) + I𝐴(x) + 𝐹𝐴(x) ≤ 3, ∀ x ∈ X. 𝑇𝐴(x), I𝐴(x) and𝐹𝐴(x) respective-
ly represent truth membership, indeterminacy membership and falsity membership degrees of x in Ã. 

 

2.2 Trapezoidal neutrosophic number [20] 

A trapezoidal neutrosophic number (TNN) Ã is a neutrosophic set in R with the following truth,                 
indeterminacy and falsity membership functions: 
 
 

 

 

 
 
 
where𝛼𝐴, 𝜃𝐴 and 𝛽𝐴 represent the maximum degree of truthiness, minimum degree of indeterminacy 
and minimum degree of falsity respectively, 𝛼𝐴 , 𝜃𝐴 , 𝛽𝐴 ∈ [0, 1]. Also, 𝑎1

′′ ≤ 𝑎1 ≤ 𝑎1
′ ≤ 𝑎2 ≤ 𝑎3 ≤

𝑎4
′ ≤  𝑎4 ≤ 𝑎4

′′. 
 
The membership functions of trapezoidal neutrosophic number are shown in Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1: Truth, indeterminacy and falsity membership functions of trapezoidal neutrosophic number. 
 

2.3 Ranking function [20] 

A ranking function of neutrosophic numbers is a function ℜ : N(R) → R, where N(R) is a set of 
neutrosophic numbers defined on the set of real numbers, which convert each neutrosophic number 
into the real line. 
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Let Ã = ⟨(𝑎1 , 𝑎2 , 𝑎3 , 𝑎4 ); 𝛼𝐴 , 𝜃𝐴 , 𝛽𝐴 ⟩ and 𝐵̃  = ⟨(𝑏1 , 𝑏2 , 𝑏3 , 𝑏4 ); 𝛼𝐵̃ , 𝜃𝐵̃ , 𝛽𝐵̃ ⟩ betwo trapezoidal 
neutrosophic numbers. 

 If ℜ(𝐴̃) > ℜ(𝐵̃), then 𝐴̃ >̃ 𝐵̃, 

 If ℜ(𝐴̃) < ℜ(𝐵̃), then 𝐴̃ <̃ 𝐵̃, 

 If ℜ(𝐴̃) = ℜ(𝐵̃), then 𝐴̃ ≈ 𝐵̃. 

 

3 Description and formulation of model  

Real life situations regarding transportation of commodities are complex which give rise to various       
transportation models. This paper discusses one such situation where the primary “supplier” compa-
ny (say, Y1) has shortage of goods to meet the adequate demand of the primary “purchaser” company 
(say, Y0). 

 
It may happen that the total required amount of goods cannot be produced due to shortage of time 

or lack of raw materials or some other factors to fulfill the total demand. So, Company Y1 decides to 
import the remaining amount of goods from another company (say, Y2) and then transport the aggre-
gate amount to Company Y0. Again, it may happen that Company Y2 faces the same problem, where it 
is unable to fulfill the total demand of Company Y1. So, Company Y2 imports the remaining amount 
from another company (say, Y3). The chain     continues until Company YN (say) fulfills the total de-
mand of Company YN – 1 (say). The process surely           terminates, since the total original demand of 
Company Y0 is a finite quantity. Here, N is at least 2.  

 
While stating its demand, Company Y0 may not be sure about the exact quantity of goods it needs. 

This may be due to the nature of the commodities, uncertain market trend and business scope, etc. 
Similarly, due to      possible production and technical issues, the supply quantity of goods may be un-
certain. Also, uncertainty may arise in determining the costs of transportation and the exact capacities 
of the conveyances due to road issues, weather issues, etc. So, here, all of these parameters in all the N 
steps are considered as trapezoidal neutrosophic numbers. 

 
 

3.1 Assumptions 

 The total supply (in stock) of Company Yp from its origin warehouses is insufficient to fulfill 
the total   demand of the destination warehouses of Company Yp – 1 (p = 1, 2, …, N – 1). 

 Company Yp – 1 is indifferent to the arrangement of goods by Company Yp and Company Yp + 1 is            
indifferent to the use of the goods imported by Company Yp (p = 1, 2, …, N – 1). 

 Company Yp does not have any extra warehouse to import goods. It imports the remaining 
amount of goods to its existing warehouses (p = 1, 2, …, N – 1). 

 The warehouses of company Yp have the capacity to hold the remaining amount, but the whole 
amount cannot be stored in a single warehouse and is transported to each of the warehouses in 
parts (p = 1, 2, …,   N – 1). 

 The total conveyance capacity of Company Yp is greater than or equal to the total demand of 
Company     Yp – 1 (p = 1, 2, …, N). 

 Company YN can supply the remaining quantity of goods, demanded (required) by Company 
YN – 1, from its warehouses sufficiently. So, the model saturates in the Nth step and thus it is an 
N-step model. 
 

3.2  Notations 

           : Per unit cost of transportation from the ith origin warehouse to the jth destination warehouse by the 
kth conveyance in the pth step. 

           : Amount of goods to be transported from the ith origin warehouse to the jth destination warehouse 
by the kth conveyance in the pth step. 
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           : Amount by which the supply falls short in the pth step. 

           : Original amount of supply of the ith origin in the pth step. 

           : Total amount of supply of the ith origin in the pth step. 

           : Amount of demand of the jth destination in the pth step. 

           : Capacity of the kth conveyance in the pth step. 

           : Number of origin warehouses in the pth step. 

           : Number of destination warehouses in the pth step. 

           : Number of conveyances in the pth step. 

           : Average per unit cost of transportation from the ith origin in the pth step. 

           : Harmonic mean of            ’s ( i = 1, 2, …,       ) in the pth step. 

 

3.3 Formulation 
The model is formulated mathematically as follows: 
 

𝑀𝑖𝑛 𝑧(𝑝) = ∑ ∑ ∑ 𝑐𝑖𝑗𝑘
(𝑝)

𝑥𝑖𝑗𝑘
(𝑝)

     ;   𝑝 = 1,2, … . . , 𝑁
𝑘𝑝

𝑘=1

𝑚𝑝−1

𝑗=1

𝑚𝑝

𝑖=1
                               (1) 

            Subject to 

∑ ∑ 𝑥𝑖𝑗𝑘
(𝑝)

 ≤ 𝑎𝑖
(𝑝)

;     𝑝 = 1,2, … . . , 𝑁;          𝑖 = 1 ,2, … … . . , 𝑚𝑝
𝑘𝑝

𝑘=1

𝑚𝑝−1

𝑗=1
          (2) 

∑ ∑ 𝑥𝑖𝑗𝑘
(𝑝)

 ≥ 𝑏𝑗
(𝑝)

;      𝑝 = 1,2, … . . , 𝑁;          𝑗 = 1 ,2, … … . . , 𝑚𝑝−1
𝑘𝑝

𝑘=1

𝑚𝑝

𝑖=1
        (3) 

∑ ∑ 𝑥𝑖𝑗𝑘
(𝑝)

 ≤ 𝑒𝑘
(𝑝)

;      𝑝 = 1,2, … . . , 𝑁;          𝑘 = 1 ,2, … … . . , 𝑘𝑝
𝑚𝑝−1

𝑗=1

𝑚𝑝

𝑖=1
          (4)  

                                                      and   𝑥𝑖𝑗𝑘
(𝑝)

≥ 0    Ɏ p, i, j, k                                    (5) 

where 

𝑎𝑖
(𝑝)

= 𝐴𝑖
(𝑝)

+ 𝑏𝑖
(𝑝+1)

     𝑝 = 1,2, … … … . , 𝑛 − 1;       𝑖 = 1,2, … … … … , 𝑚𝑝      (6) 

𝑎𝑖
(𝑁)

= 𝐴𝑖
(𝑁)

𝑖 = 1,2, … … … … , 𝑚𝑁                                                        (7) 

𝑏𝑗
(𝑝)

= ⌊
𝑥𝑠

(𝑝−1)
𝐻(𝑝−1)

𝐴𝐶
𝑗
(𝑝−1)

𝑚𝑝−1

⌋ ;         𝑝 = 2,3, … … … … , 𝑁;           𝑗 = 1,2, … … 𝑚𝑝−1     (8)   

𝑥𝑠
(𝑝)

= ∑ 𝑏𝑗
(𝑝)

−
𝑚𝑝−1

𝑗=1
∑ 𝐴𝑖

(𝑝)
> 0;                  𝑝 = 1,2, … … . . 𝑁 − 1

𝑚𝑝

𝑖=1
                (9) 

 

𝐴𝐶𝑖
(𝑝)

= ∑ ∑ 𝑐𝑖𝑗𝑘
(𝑝)

 ;   𝑝 = 1,2, … . . , 𝑁 − 1;         𝑖 = 1 ,2, … … . . , 𝑚𝑝
𝑘𝑝

𝑘=1

𝑚𝑝−1

𝑗=1
 (10) 

𝐻(𝑝) =
𝑚𝑝

∑
1

𝐴𝐶
𝑖
(𝑝)

𝑚𝑝
𝑖=1

;         𝑝 = 1,2, … … . . 𝑁 − 1                                                          (11)       

As it can be seen, there are N objective functions in (1) for N steps (p = 1, 2, …, N) of the model. Here, the 
value of N is always a finite natural number greater than or equal to 2. (2), (3) and (4) are the supply, demand 
and conveyance constraints respectively. The non-negativity constraints (5) are must, since the quantity of goods 
is always non-negative. 



Neutrosophic Sets and Systems, Vol.35, 2020 

 

Nilabhra Paul, Deepshikha Sarma, Akash Singh and Uttam Kumar Bera, A Generalized Neutrosophic Solid Transportation 
Model with Insufficient SupplyN. Paul, D. Sarma, A. Singh and U.K. Bera. A Generalized NSTM with Insufficient Supply 

182 

 

 

 

Here, all the parameters and the decision variables𝑥𝑖𝑗𝑘
(𝑝)  are taken as trapezoidal neutrosophic numbers. But, 

𝑥𝑖𝑗𝑘
(𝑝)denote quantities of goods to be transported and in reality, any manager or decision maker would want to ob-

tain the crisp optimal solution of the problem through considering vague, imprecise and inconsistent information 
while defining the problem. 

 
Equation (8) is used to calculate bjb2’s (crisp values) after all the given parameters are converted into their 

corresponding crisp values by a suitable ranking function. So, (8) becomes 
 

      (12) 

 

Proposition 3.3.1 
If the import plan due to insufficient supply for each supplier Company Yp (p = 1, 2, …, N – 1) is –         

“import the highest quantity of goods from Yp + 1 to that warehouse jfrom which the average per unit cost of            
transportation of goods to Yp – 1 is minimum”, then the import plan (quantity of goods to be imported to each 
warehouse j) is mathematically given by: 
 

 
 
Proof: 
 

Here,  bbl ’s denote the demands of the destination warehouses in the pth step, which are also the origin 
warehouses in the (p – 1)th step. In the pth step, we want to import the highest quantity of goods to that         
warehouse jfrom which the average per unit cost of transportation of goods  A         is minimum. So,         is    in-
versely proportional to               , i.e., 
 

 
 
 
i.e.,              , 
 

where κ is the proportionality constant. 

Now,                                      total demand = 𝑥𝑠
(𝑝−1) 

i.e.,∑ 𝑏𝑗
(𝑝)

=
𝑚𝑝−1

𝑗=1
𝑥𝑠

(𝑝−1) 

i.e.,∑ 𝐾
1

𝐴𝐶𝑗
(𝑝−1)

𝑚𝑝−1

𝑗=1
= 𝑥𝑠

(𝑝−1) 

i.e.,   𝐾 =
𝑥𝑠

(𝑝−1)

∑
1

𝐴𝐶𝑗
(𝑝−1)

𝑚𝑝−1
𝑗=1

 

But,𝐻(𝑝−1) =
𝑚𝑝−1

∑
1

𝐴𝐶
𝑖
(𝑝−1)

𝑚𝑝−1
𝑖=1

=
𝑚𝑝−1

∑
1

𝐴𝐶
𝑗
(𝑝−1)

𝑚𝑝−1
𝑗=1

 

Therefore,                                          𝐾 =
𝑥𝑠

(𝑝−1)𝐻(𝑝−1)

𝑚𝑝−1
 

And so,                                                  𝑏𝑗
(𝑝)

=
𝑥𝑠

(𝑝−1)
𝐻(𝑝−1)

𝐴𝐶
𝑗
(𝑝−1)

𝑚𝑝−1

                                            (13) 
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Now, while calculating      l ’s using (13), rounding off their decimals may result in loss of significant quantity of 
a     a   ’s. So, we use the ceiling function and hence, obtain 
 

 
 
 

4 Solution approach 

An approach is suggested to find the optimal solution of such problems. The step by step procedure is as   
follows: 

Step I.    Collect the information  for a given problem as trapezoidal neutrosophic numbers from the decision 
makers with the information that we always want to maximize the truth degree and minimize the        
indeterminacy and falsity degrees of the data. 

Step II.    Construct the neutrosophic solid transportation table of the given problem for p = 1. 

Step III. Convert all the trapezoidal neutrosophic numbers into their equivalent crisp values by the use of the 
ranking function, proposed by M. Abdel-Basset et al. [20], which is given by: 

 

 

or mathematically, 

    (14) 

 
where Tã, Iã and Fãare respectively the truth, indeterminacy and falsity degrees of the trapezoidal  neu-
trosophic number ã = (al, au, am1, am2). Here, al, au, am1and am2are the lower bound, upper bound, first 
median and second median values of ã respectively, which can be obtained from the form            ã= 
(a1, a2, a3, a4) by the transformations: al = a2,   au = a3, am1 = a2 – a1 and am2 = a4 – a3. 

Step IV. Compute         for p = 1 using the crisp form of (9). 

Step V.    Calculate        ( ’s for p = 2 using (12). 

Step VI.    Construct the crisp solid transportation table for p = 2 using the ranking function (14) for the values 
of supply and conveyance capacity. 

Step VII. Repeat Steps (IV – VI) until some             (say, for p = N) is found, which can be totally satisfied by 
the next supplier company (YN). 

Step VIII. Calculate       ( ’s for p = N using (12). 

Step IX.    Construct the crisp solid transportation table for p = N using the ranking function (14) for the values 
of supply and conveyance capacity. 

Step X.    Solve the crisp solid transportation table for p = N using a standard method as used for solving a   
general crisp STP and obtain the optimal solution for this step. 

Step XI.    Compute the new crisp values of supply for p = N – 1 using the crisp form of (6) and similarly, 
solve the table for p = N – 1 as solved for p = N. 

Step XII. Repeat Step XI and similarly, solve the tables for p = N – 2, N – 3, …, 1. 

Step XIII. Conclude the solution with the degree of sufficiency η, which is defined as: 

 
  ,                                                          (15) 

 

 
where               (16) 
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The proposed solution approach in the paper is a first of its kind. The solution approach is depicted as follows: 

 
 

 
 
 
 

 
Transportation Possible if X ≥ Y 

 
 

Transportation Not Possible if X < Y 
 

 
The model proposed in the paper makes the transportation possible in the second case (shown above). 

5Numerical example 

Suppose, Company Y1 has to transport a commodity (e.g., wheat) to Company Y0. But, it falls short of some 
amount and wants to import the required amount from Company Y2. Similarly, Company Y2 does not have the 
sufficient amount of wheat to fulfill the total demand of Company Y1, so Company Y2 imports the required 
amount from Company Y3. It is assumed that Company Y3 has the right amount of wheat to fulfill the total    
demand of Company Y2.  

 
The neutrosophic data for the transportations Y1→ Y0, Y2→ Y1 and Y3 → Y2 are   given in Table 1, Table 2 

and Table 3 respectively. For the sake of simplicity, (Tã, Iã, Fã) is taken as (0.9, 0.1, 0.1) for all the trapezoidal 
neutrosophic numbers. The costs are considered in INR and the commodity is measured in kilograms. 

 

Table 1:Neutrosophic data table for Y1 → Y0. 

 
 

 
 

Y1 → Y0 

  Conveyance 
Capacity 

      (3150,4500,170,185) 

      (4100,5200,200,180) 

      (2900,3850,175,190) 

   Supply 

 (50,65,7,6) (40,60,7,7) (90,110,8,9) (80,100,6,8) (40,55,5,7) (55,70,4,3) (1300,1600,140,170) 

 (70,80,6,9) (80,95,6,4) (65,75,4,6) (30,45,7,5) (50,70,3,5) (65,85,6,7) (1650,2000,165,150) 

 (60,80,6,5) (45,60,4,5) (70,85,9,6) (60,85,6,7) (75,95,8,5) (95,115,7,4) (1050,1400,120,135) 

Demand (4500, 5700,250,230) (5000,6500,245,260)  

 
 

Y2 → Y1 

   Conveyance 
Capacity 

      (3400,4150,150,130) 

      (3250,3900,155,140) 

    Supply 

 (90,110,10,8) (50,70,4,6) (40,55,5,7) (70,85,9,6) (35,55,4,5) (75,85,8,6) (1000,1300,120,135) 

SOURCES 

(TOTAL      
AVAILABILITY = X)

CONVEYANCES

DESTINATION
S

(TOTAL 
REQUIREMENT = 

Y)

SOURCES 

(TOTAL     
AVAILABILITY = X)

CONVEYANCES

DESTINATION
S

(TOTAL 
REQUIREMENT = 

Y)
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Table 2:Neutrosophic data table for Y2 → Y1. 

 

Table 3:Neutrosophic data table for Y3 → Y2. 

 
The crisp tables are solved with LINGO 17.0 software. Table 4, Table 5 and Table 6 show the optimal crisp 

solutions for Y3 → Y2, Y2→ Y1 and Y1→ Y0 respectively. 
 
The minimum values of the objective functions are given below: 

 
z(1) : ₹308719.43 
z(2) : ₹216642.65 
z(3) : ₹90474.05 
 

The degree of sufficiency η is found out to be 0.00062. 
 

Table 4:Optimal solution table for Y3 → Y2. 

 
 
 

 (75,90,7,8) (65,80,6,5) (85,95,6,6) (50,60,4,3) (60,80,4,6) (60,85,9,7) (1250,1500,145,160) 

 (80,90,6,7) (90,105,9,8) (55,75,8,7) (75,90,5,5) (100,120,5,7) (40,55,6,5) (1000,1350,105,125) 

 (30,50,4,4) (70,85,5,6) (80,95,5,7) (60,80,4,6) (65,75,8,7) (50,65,4,3) (1200,1450,110,100) 

Demand (      ) (      ) (      )  

 
 

Y3 → Y2 

    Conveyance 
Capacity 

        (1650,1950,135,140) 

        (1800,2200,140,150) 

     Supply 

 (85,95,7,8) (35,50,4,5) (60,75,8,6) (70,80,9,7) (50,60,3,6) (50,70,4,6) (80,95,7,5) (30,50,4,6) (1150,1350,105,100) 

 (70,85,6,7) (45,60,6,5) (50,70,4,6) (40,60,4,5) (80,95,8,6) (60,70,4,6) (50,65,4,3) (85,95,8,7) (800,1100,90,95) 

 (50,70,5,4) (65,75,7,4) (85,95,7,7) (75,90,9,6) (45,60,5,4) (55,70,5,5) (35,55,4,5) (50,65,5,6) (1400,1700,115,135) 

Demand (      ) (      ) (      ) (      )  

 
 

Y3 → Y2 

    Conveyance 
Capacity 

        1388.2 

        1565.7 

     Supply 

 0 
(68.20) 

737 
(29.70) 

0 
(47.20) 

0 
(51.70) 

0 
(42.20) 

0 
(45.70) 

0 
(70.20) 

184.7 
(25.70) 

943.2 

 0 
(58.70) 

0 
(36.70) 

0 
(45.70) 

644 
(37.20) 

0 
(67.20) 

0 
(50.70) 

0 
(47.70) 

0 
(68.20) 

673.2 

 0 
(47.20) 

0 
(54.20) 

0 
(69.70) 

0 
(60.70) 

585 
(39.70) 

0 
(48.20) 

517.3 
(32.20) 

0 
(41.70) 

1175.7 

Demand 737 644 585 702  

 
 

Y2 → Y1 

   Conveyance 
Capacity 

      3355.7 

      3133.2 

    Supply (new) 

 0 
(73.70) 

0 
(45.70) 

1087.9 
(30.20) 

0 
(55.70) 

417.3 
(32.20) 

0 
(59.70) 

1505.2 

 0 507.3 0 1052.1 0 0 1562.2 
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Table 5:Optimal solution table for Y2 → Y1. 

 

Table 6:Optimal solution table for Y1 → Y0. 

6Discussion 

The model, discussed in this paper, is a very interesting solid transportation model, which can be 
useful in the business sector. It can be safely concluded that the problem of insufficient supply that 
arises in the model, is dealt with effectively, as the degree of sufficiency η is positive for the given ex-
ample and is very close to 0 (zero).         η should always be non-negative and the closer η is to zero, the 
more sufficient the solution is for the model. 

 
The numerical example given above is a 3-step model with fewer amounts of data. The computa-

tional time for this problem is not too high, but in real systems, the data is greater in amount and so, 
higher will be the           computational time. The computational time T for an N-step model may rough-
ly be given by the expression: 

 
T = Ca(n) + Co(n) + Sol(n), 

 
where  

Ca(n) is the total time component for calculation of      s  ’s, 
Co(n) is the total time component for conversion of the trapezoidal neutrosophic numbers into crisp 

values, 
Sol(n) is the total time component for solving the crisp data, 
and all these components depend on the amount of data n, each of them varying directly with n. 

 
Clearly, the amount of data n consists of N heterogeneous components. So, Ca(n)has N – 1 sub-
components, Co(n) has N sub-components and Sol(n) also has N sub-components. For the given numer-
ical example, Ca(n) has 2 components, while Co(n) and Sol(n) have 3 components each. 

 
 
Equation (12) is a key part of the solution method and a point of research for constructing a more ef-

ficient model. The degree of sufficiency η is evidently dependent on (12). The ranking function (14) 
converts the       trapezoidal neutrosophic numbers into their equivalent crisp values effectively by con-
sidering the degrees of all three aspects of decision, but efforts can be made to construct a better rank-
ing function to get more accurate crisp models and better results. The model may also be considered 
with a time constraint (along with some time       penalty) for each supplier. Also, as we know that the 
notion of neutrosophic set theory is relatively new and it broadly covers all the aspects of decision mak-

(60.70) (56.70) (72.70) (45.20) (55.70) (49.20) 

 0 
(66.20) 

0 
(72.70) 

0 
(43.20) 

0 
(68.20) 

0 
(92.70) 

1415.7 
(31.70) 

1415.7 

 1712.7 
(28.70) 

0 
(61.70) 

0 
(70.20) 

0 
(55.70) 

0 
(48.20) 

0 
(47.70) 

1712.7 

Demand 2220 2140 1833  

 
 

Y1 → Y0 

  Conveyance 
Capacity 

      3293.2 

      4080.7 

      2828.2 

   Supply (new) 

 0 
(38.70) 

1705.7 
(29.70) 

0 
(75.20) 

0 
(69.70) 

1500 
(30.20) 

0 
(52.70) 

3205.7 

 0 
(53.20) 

0 
(73.20) 

0 
(55.70) 

3293.2 
(20.20) 

0 
(48.70) 

200 
(56.20) 

3493.2 

 0 
(54.20) 

875 
(39.70) 

1800 
(55.70) 

0 
(53.70) 

0 
(66.20) 

0 
(89.20) 

2676.2 

Demand 4380.7 4993.2  
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ing, so there is a good potential for its extensive research and            applications in complex logistic sys-
tems. 

7 Conclusion and future scope 

The solid transportation problem is a significant problem in Operations Research, where the pri-
mary goal is to transport commodities from some source warehouses to some destination warehouses 
via different modes of conveyance. This paper formulates a model, where the source cannot fulfill the 
total demand and brings in the required amount from another source, which in turn, if unable to sup-
ply the necessary amount, brings in the    remaining amount from another source, and so on. An ex-
pression is derived to provide the distribution of       demand of the deficient quantity of goods among 
the importing warehouses. The paper also considers the       impreciseness and uncertainty that may 
exist in the data and takes the input as trapezoidal neutrosophic numbers. An approach is presented 
to solve the model and the quality of the solution is checked with the degree of         sufficiency. Also, 
the computational time is shown for the model and it is believed that the model is useful and has an 
interesting scope. 

In this manuscript, the mathematical model has considered the minimization of cost as an objective 
function. But it is very important to complete the fulfilment of demand of customers as early as possi-
ble. Therefore, for future research, one can consider the minimization of time as an objective function. 
In the business purpose, profit is essential to grow. In this regard, maximization of profit can be treat-
ed as an objective function for further study. In this manuscript, uncertainty is used in terms of trape-
zoidal neutrosophic number. But in the direction of future research, one can use different parameters 
e.g. uncertain number, fuzzy number, type-2 fuzzy number etc. To solve the problem, genetic algo-
rithm can be developed in future research. 
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1. Introduction 

At the beginning use of the concept of fuzzy sets "FS" was submitted by L. Zadeh's conference 

paper in 1965 [1] where each element had a degree of membership. Then many extension done by 

several studies. Intuitionistic fuzzy set "IFS" was one of the extension proved and known by K 

.Atanassov in 1983 [2- 4], when he has proved the degree of membership of an item of any set in"FS" 

and added a degree of non-membership in "IFS". Then many studies are being on the generalizations 

of the notion of "IFS", one of them proved was by F. Smarandache in 2005 [5,6], when he developed 

something else in membership and added indeterminacy membership between the last two 

membership and non-membership which were known in "IFS" and called it neutrosophic sets "NSs". 

After that, A Salama et.al. in 2014 [7,8] introduced neutrosophic topological spaces "NTSs".  

The term of neutrosophic sets "NSs" was defined with membership, non-membership not 

specified degree. In the last three year ago, Veereswari [9] submitted his paper in fuzzy neutrosophic 

topological spaces "FNTSs" to be the solution and representation of the problems different fields 

where he takes all values  between the closed interval 0 and 1 instead of the unitary non-standard 

interval ]-0,1+[ in NSs. 

In this work, as generalized of the work of R.K. Al-Hamido [10] and the last papers which 

studied by F. Mohammed [11-13], we have identified a new category of fuzzy neutrosophic sets 

mailto:dr.fatimahmahmood@tu.edu.iq
mailto:sarahwaad470@gmail.com
mailto:dr.fatimahmahmood@tu.edu.iq
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"FNSs" called fuzzy neutrosophic generalized b-closed sets in fuzzy neutrosophic bi-topological 

spaces. Finally, on the basis of our manster's we will discuss some new characteristics and apply it. 

Finally, there are many application of NSs in many fields see [14-19 ], so before we ended our work 

we added some applications based in our new sets via fuzzy neutrosophic bi-topological spaces.  

 

2. Preliminaries: 

In this part of our study, we will refer to some basic definitions and operations which are useful 

in our work.  

Definition 2.1 [9]: Let U be a  non-empty fixed set. The fuzzy neutrosophic set "FNS" µN is an object 

having the form µN ={˂ u, λµN(u), ɣµN(u), VµN(u) ˃ : uϵ U} where the  functions λµN(u), ɣµN(u),VµN(u): 

U→[0,1] denote the degree of  membership function (namely λµN(u)), the  degree of indeterminacy 

function (namely ɣµN(u)) and the degree of non-membership function (namely VµN(u)) respectively 

of each element uϵ U to the set µN and 0 ≤ λµN(u)+ ɣµN(u) +VµN(u) ≤ 3, for each u∈ U. 

    

Remark 2.2: FNS µN = {˂ u, λµN(u), σµN(u), VµN(u) ˃: u ∈U} can be identified to an ordered triple ˂ u, 

λµN, σµN, VµN ˃ in [0,1] on U. 

 

Lemma 2.3 [9]: Let U be a non-empty set and the "FNS" µN and ɣN be in the form µN = {˂ u, λµN, σµN, 

VµN ˃ } and  ɣN ={˂ u, λɣN, σɣN, VɣN ˃} on U. Then, 

i. µN ⊆ ɣN  iff λµN ≤ λɣN, σµN ≤ σɣN and VµN  ≥ VɣN, 

ii. µN = ɣN iff  µN ⊆ ɣN and ɣN ⊆ µN, 

iii. (µN)c ={˂ u, VµN, 1-σµN, λµN ˃}, 

iv. µN ∪ ɣN ={˂ u, Mx( λµN, λɣN ), Mx( σµN, σɣN ), Mn( VµN, VɣN ) ˃}, 

v. µN ∩ ɣN ={˂ u, Mn( λµN, λɣN ), Mn( σµN, σɣN ), Mx( VµN, VɣN ) ˃}, 

vi. 0N = {˂ u, 0, 0, 1˃} and  1N = { ˂ u, 1, 1, 0 ˃}. 

 

Definition 2.4 [9]: Fuzzy neutrosophic topology ( for short, FNT) on a non-empty set U is a family TN 

of fuzzy neutrosophic subset in U satisfying the following axioms: 

i. 0N, 1N ∈ TN, 

ii. µN1 ∩ µN2 ∈ TN ∀ µN1, µN2 ∈ TN,  

iii. ∪ µNj ∈ TN, ∀ { µNj : j ∈ J} ⊆ TN. 

 In this case the pair (U, TN) is called fuzzy neutrosophic topological space ( for short, FNTS ). 

The elements of TN are called fuzzy neutrosophic-open sets ( for short, FN-OS ). The complement of  

FN-OS in the FNTS ( U, TN ) is called fuzzy neutrosophic- closed set (for short, FN-CS). 

 

Definition 2.5 [9]: Let (U, TN ) is FNTS and µN = ˂ u, λµN, σµN, VµN ˃ is FNS in U. Then the fuzzy 

neutrosophic-closure (for short, FN-Cl ) and the fuzzy neutrosophic-interior (for short, FN-In) of µN 

are defined by:  

FN-Cl (µN ) = ∩ { ɣN : ɣN is FN-CS in U and µN ⊆ ɣN }, 
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FN-In ( µN ) = ∪ { ɣN : ɣN is FN-OS in U and ɣN ⊆ µN }. 

 Now, the FN-Cl (µN ) is FN-CS and FN-In(µN) is FN-OS in U. 

Further,  

i. µN is FN-CS in U iff  FN-Cl(µN) = µN, 

ii. µN is FN-OS in U iff  FN-In(µN) = µN. 

 

Definition 2.6: Let (UN, TN1, TN2) is FNTS and µN =˂ u, λµN, σµN, VµN ˃ is FNS in UN. Then the fuzzy 

neutrosophic semi-closure ( resp. fuzzy neutrosophic Pre-closure and fuzzy neutrosophic α-closure) 

of µN and denoted by FN-SCl (µN) (resp. FN-PCl( µN ) and FN-αCl ( µN ) are defined by:  

FN-SCl( µN ) = ∩ { ɣN : ɣN is FN-SCS set in U and µN ⊆ ɣN } = µN ∪ FN-In(FN-Cl(µN)), 

FN-PCl( µN ) = ∩ { ɣN : ɣN is FN-PCS set in U and µN ⊆ ɣN } = µN ∪ FN-Cl(FN-In(µN)), 

FN- α Cl( µN ) = ∩ { ɣN : ɣN is FN- αCS set in U and µN ⊆ ɣN } = µN ∪ FN-Cl (FN-In(FN-Cl(µN))), 

 

Definition 2.7 [11, 12]: FNS λN in FNTS (U, TN) is called: 

i. Fuzzy neutrosophic-regular open set (FN-ROS) if µN =FN-In(FN-Cl(µN)), 

ii. Fuzzy neutrosophic-regular closed set (FN-RCS) if µN = FN-Cl(FN-In(µN), 

iii. Fuzzy neutrosophic-semi open set (FN-SOS) if µN ⊆ FN-Cl(FN-In(µN)), 

iv. Fuzzy neutrosophic-semi closed set(FN-SCS) if  FN-In(FN-Cl(µN)) ⊆ µN, 

v. Fuzzy neutrosophic pre-open set(FN-POS) if µN ⊆ FN-In(FN-Cl(µN)), 

vi. Fuzzy neutrosophic pre-closed set( FN-PCS) if FN-Cl(FN-In(µN)) ⊆ µN, 

vii. Fuzzy neutrosophic-α-open set(FN-αOS) if µN ⊆ FN-In(FN-Cl(FN-In(µN))), 

viii. Fuzzy neutrosophic-α-closed set( FN-αCS) if FN-Cl(FN-In(FN-Cl(µN))) ⊆ µN, 

ix. Fuzzy neutrosophic generalized closed set ( FN-GCS ) if FN-Cl(K ⊆N ) whenever K ⊆ N and N is a 

FN-OS, 

x. Fuzzy neutrosophic generalized pre closed set ( FN-GPCS) if FN-PCl(K) ⊆ N, whenever K⊆ N and 

N is a FN-OS, 

xi. Fuzzy neutrosophic α generalized closed set (FN-αGCS) if FNα-Cl(K) ⊆N whenever K⊆ N and N 

is a FN-OS, 

xii. Fuzzy neutrosophic generalized semi closed set ( FN-GSCS) if FN-SCl(K) ⊆ N, whenever K⊆ N 

and N is a FN-OS. 

 

Definition 2.8 [13]: A fuzzy neutrosophic set K in FNTs (U, TN) is called fuzzy neutrosophic b-closed 

set (FN-b-CS) set if and only if FN-In(FN-Cl (K)) ⋁ FN-Cl(FN-In (K)) ≤ K. 

 

Definition 2.9 [13]: Let UN be a non-empty set and (U, TN1), (U, TN2) be two topological spaces then, 

the triple (UN, TN1, TN2) is a fuzzy neutrosophic bi-topological space ( for short, FN-bi-TS ). 
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3. Generalized b-Open Sets and Generalized b-Closed Sets in Fuzzy Neutrosophic bi- 

Topological Spaces 

In this section, we generalized our work [13] and study the concept of generalized b-closed sets 

and generalized b-open sets based of fuzzy neutrosophic bi- topological spaces and  introduced it 

after giving the definition of  fuzzy neutrosophic bi- topological spaces as follows:   

                                                                        

Definition 3. 1: Let U be a non-empty set and TN1, TN2 be two topologies on FNTS (U, TN), then the 

triple (U, TN1, TN2) is a fuzzy neutrosophic bi- topological space ( for short, FN-bi-TS). 

 

Definition 3.2: Let U be a non-empty set and TN1, TN2 be two topologies on FNTS (U, TN). A subset A 

of U is called fuzzy neutrosophic open set ( for short, FN-OS) set if A∈ TN1 ∪ TN2. A is called fuzzy 

neutrosophic closed set ( for short, FN-CS) if 1N-A  is FN-OS. 

Note: In this work we refer to TN1∪TN2 by TN. 

 

Example 3.3: Let U = { k1, k2}, TN1 ={0N, 1N}, TN2 = {0N, 1N, E1} and,                                                                                                                                         

TN ={ 0N, E1, 1N} be a FN-bi-TS on U, 

Where,  E1 = ˂ u, ( k1(0.2) , k1(0.5), k1(0.8) ), ( k2(0.3), k2(0.5), k2(0.7) ) ˃ .  

Then the neutrosophic set Z = ˂ u, (k1(0.7), k1(0.5), k1(0.3)), ( k2(0.6), k2(0.5), k2(0.4 )) ˃ is a FN-b-CS in U. 

 

Definition 3.4: Let (U, TN ) be any FN-bi-TS and µN = ˂ u, λµN, σµN, VµN ˃ be FNS in U. Then the fuzzy 

neutrosophic-b-closure (for short, FN-bCl ) and the fuzzy neutrosophic-b-interior (for short, FN-bIn) 

of µN are defined by:  

FN-bCl (µN ) = ∩ { ɣN : ɣN is FN-bCS in U and µN ⊆ ɣN }, 

FN-bIn ( µN ) = ∪ { ɣN : ɣN is FN-bOS in U and ɣN ⊆ µN }. 

 

Definition 3.5: Let (U,TN) be a FN-bi-TS, then, for each µ1, λ1 ∈ IU the fuzzy set µ1 is called fuzzy 

neutrosophic- generalized b-open set (for short, FN-gb-OS ) set if µ1 ≤ FN-bIn (λ1) such that µ1 ≤ λ1 

and µ1 is FN-CS. 

 

Theorem 3.6: A fuzzy neutrosophic set Z of FN-bi-TS ( U, TN ) is a FN-gb-OS iff N ⊆ FN-bIn( Z) 

whenever N is a FN-CS and N ⊆ Z.  

Proof: Necessity : Suppose Z is a FN-gb-OS in FN-bi-TS (U, TN) and let E be a FN-CS and N ⊆ Z. 

Then Hc = 1N-H is a FN-OS in U such that Zc  =1N-Z ⊆ Nc =1N-N  

⟹ 1N-Z is a FN-gb-CS and FN-bCl(1N-Z) ⊆ 1N-N , 

Hence, (1N-FN-bIn(Z)) ⊆ 1N-N  ⟹ N ⊆ FN-bIn(Z). 

Sufficiency: Let Z be any FNS of U and let N ⊆ FN-bIn(Z) whenever, N is a FN-CS and N ⊆ Z. 

 

Theorem 3.7: Let (U, TN) be FN-bi-TS, then: 
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(1) Every FN-CS is a FN-gb-CS, 

(2) Every FN-αCS is a FN-gb-CS, 

(3) Every FN-PCS is a FN-gb-CS, 

(4) Every FN-b-CS is a FN-gb-CS, 

(5) Every FN-RCS is a FN-gb-CS, 

(6) Every FN-GCS is a FN-gb-CS, 

(7) Every FN-αGCS is a FN-gb-CS, 

(8) Every FN-GPCS is a FN-gb-CS 

(9) Every FN-SCS is a FN-gb-CS. 

(10) Every FN-GSCS is FN-gb-CS. 

 

Proof : (1): Let Z ⊆ N and N be a FN-CS in FN-bi-TS (U, TN) with FN-bCl(Z) ⊆ FN-Cl(Z). 

But, FN-bCl(Z) = Z ⊆ N. Therefore, Z is a FN-gb-CS in FN-bi-TS (U, TN). 

 

(2): Let Z ⊆ N and N ∈ TN,⟹ Z is a FN-αCl(Z) = Z. Therefore, FN-bCl(Z) ⊆ FN-αCl(Z) = Z ⊆ N. 

Hence, Z is a FN-gb-CS in FN-bi-TS (U, TN). 

 

(3): Let Z ⊆  N and N ∈ TN . 

Since Z is a FN-PCS, and FN-Cl( FN-In(Z)) ⊆  Z. 

Therefore,  FNCl(FN-In(Z)) ∩ FN- In(FN-Cl(Z)) ⊆ FN-Cl(Z) ∩ FN-Cl(FN-In(Z)) ⊆ Z. 

⟹ FN-bCl(Z) ⊆ N. Hence,  Z is a FN-gb-CS in U. 

 

(4): Let Z ⊆ N and N be a FN-OS in FN-bi-TS (U, TN)  

⟹ Z is a FN-b-CS and FN-bCl(Z) = Z. 

Therefore, FN-bCl(Z) = Z ⊆ N. Hence, Z is a FN-gb-CS in FN-bi-TS (U, TN). 

 

(5): Let Z ⊆ N and N ∈ TN  and let Z be a FN-RCS. 

But, FN-Cl(FN-In(Z)) = Z ⟹ FN-Cl(Z) = FN-Cl(FN-In(Z)). Therefore, FN-Cl(Z) = Z. 

Hence, Z is a FN-CS in U. By  (1), we get Z is a FN- gb-CS in FN-bi-TS (U, TN). 

 

(6): Let Z ⊆  N and N ∈ TN ⟹ Z is a FN-GCS, FN-Cl(Z) ⊆ N.  

Therefore, FN-bCl(Z) ⊆ FN-Cl(Z). 

But, FN-bCl(Z) ⊆ N. Hence, Z is a FN-gb-CS in FN-bi-TS (U, TN). 

 

(7): Let Z ⊆ N and N ∈ TN ⟹ Z is a FN-αGCS. 

 But, FN-αCl(Z) ⊆ N. Therefore, FNbCl(Z) ⊆ FN-αCl(Z), 

 So, FN-bCl(Z) ⊆ N. Hence, Z is a FN-gb-CS in FN-bi-TS (U, TN).  

 

(8): Let Z ⊆ N and N ∈ TN ⟹ Z is a FN-gp-CS and FN-PCl(Z) ⊆ N. 

Therefore, FNbCl(Z) ⊆ FN-pCl(Z), so FN-bCl(Z) ⊆ N.  
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Hence,  Z is a FN-gb-clos. set in FN-bi-TS (U, TN).  

 

(9): Let Z ⊆ N and N ∈ TN ⟹ Z is a FN-SCS. 

But, FN-bCl(Z) ⊆ FN-SCl(Z) ⊆ N. Therefore, Z is a FN-gb-CS in FN-bi-TS (U, TN). 

(10): Obivious  

 

Proposition 3.8: The converse of theorem 3.7 is not true in general for all cases and we can see it in 

(Diagram 1.) 

 

 
 
                                                         
                                                         
                                                          
 
 
                                         
 
 
 

 

 

                                          

( Diagram 1) 

 

Example 3.9: (i):  Let U = { k1, k2 }, TN1 = { 0N, 1N}, TN2 = {0N, 1N, E1}. 

Then, TN = { 0N, E1, 1N } is a FN-bi-TS on U , 
1-  Take E1 = ˂ u, ( k1(0.3), k1(0.5), k1(0.6) ), ( k2(0.2), k2(0.5), k2(0.7) ) ˃.  

Then, the FNS  "Z" = ˂ u, ( k1(0.5), k1(0.5), k1(0.4) ), ( k2(0.6), k2(0.5), k2(0.3))  is a FN-gb-CS but, not a FN-CS in U 
⟹ FN-Cl("Z") = E1 ≠ "Z".  

                                    
2- Let E1 = ˂ u, ( k1(0.3), k1(0.5), k1(0.6)), (k2(0.2), k2(0.5), k2(0.8)) ˃ . Then, the FNS "Z" = ˂ u, ( k1(0.5), k1(0.5), 

k1(0.3)), (k2(0.6), k2(0.5), k2(0.3)) ˃ is a FN-αCS in U⟹ FN-Cl(FN-Cl(Z)) = 1N- E1⊈ "Z". 

3- Let E1 = ˂ u, (k1(0.9), k1(0.5), k1(0.8)),  (k2(0.3), k2(0.5), k2(0.7)) ˃.  

Then, the FNS  "Z" = ˂ u, (k1(0.4), k1(0.5), k1(0.6) ), ( k2(0.5), k2(0.5), k2(0.5)) ˃ is a FN-gb-CS but, not a 

FN-PCS in U ⟹ FN-Cl(FN-In("Z")) = E1 ⊈ "Z". 
4- Let  E1 = ˂ u, (k1(0.6), k1(0.5), k1(0.4) ), (k2(0.8),k2(0.5),k2(0.2)) ˃ . 

FN-PCS 

FN-αCS FN-CS FN-GSCS  

FN-SCS 

FN-b-CS 

FN-RCS 

FN-GPCS 

FN-αGCS 

FN-gb-CS  

FN-GCS 
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 Then, the FNS "Z" = ˂ u, (k1(0.8), k1(0.5), k1(0.2)), (k2(0.9), k2(0.5), k2(0.1)) ˃ is a FN-gb-CS but, not a FN-b-CS in 

FN-bi-TS (U, TN).⟹ FN-RCS is a FN-gb-CS but, not a FN-b-CS in FN-bi-TS (U, TN), 

 ⟹ FN-Cl(FN-In("Z")) ∩ FN-In(FN-Cl("Z")) = 1N ⊈ "Z". 
5- Let E1 = ˂ u, (k1(0.2), k1(0.5), k1(0.8)), (k2(0.4), k2(0.5), k2(0.6)) ˃ .  

Then, the FNS "Z" = ˂ u, (k1(0.7), k1(0.5), k1(0.3) ), (k2(0.5), k2(0.5), k2(0.5)) ˃ is a FN-gb-CS but, not a FN-RCS in 

FN-bi-TS (U, TN) ⟹ FN-Cl(FN-In("Z")) = 1N-E1
 ≠ "Z". 

6- Let E1 = ˂ u, (k1(0.2), k1(0.5), k1(0.8)), (k2(0.4), k2(0.5), k2(0.6)) ˃. 

 Then, the FNS "Z" = ˂ u, ( k1(0.1), k1(0.5), k1(0.8)), (k2(0.3), k2(0.5), k2(0.7)) ˃ is a FN-gb-CS but, not a FN-GCS in 

FN-bi-TS (U, TN). ⟹ FN-Cl("Z") = E1
c  ⊈ E1. 

7- Let  E1 = ˂ u, ( k1(0.5), k1(0.5), k1(0.4) ), ( k2(0.5), k2(0.5), k2(0.5) ) ˃ .  

Then, the FNS "Z" = ˂ u, ( k1(0.5), k1(0.5), k1(0.5) ), ( k2(0.3), k2(0.3), k2(0.7) ) ˃ is a FN-gb-CS but, not a FN-αGCS in 

FN-bi-TS (U, TN). ⟹ FN-Cl( FN-In( FN-Cl("Z"))) = 1N ⊈ E1. 

 
8-  Let E1 = ˂ u, ( k1(0.9), k1(0.5), k1(0.1) ), ( k2(0.7), k2(0.5), k2(0.2) ) ˃. 

 Then, the FNS "Z" = ˂ u, ( k1(0.7), k1(0.5), k1(0.3) ), ( k2(0.6), k2(0.5), k2(0.4) ) ˃ is a FN-gb-CS but, not a FN-SCS in 

FN-bi-TS (U, TN), ⟹ FN-In( FN-Cl("Z")) = 1N ⊈ "Z". 

 
9-  Let E1 = ˂ u, ( k1(0.8), k1(0.5), k1(0.6) ), ( k2(0.0), k2(0.5), k2(0.1) ) ˃. 

 Then, the FNS "Z" = ˂ u, ( k1(0.6), k1(0.5), k1(0.5) ), ( k2(0.2), k2(0.5), k2(0.3) ) ˃ is a FN-gb-CS but, not a FN-GSCS in 

FN-bi-TS (U, TN), ⟹ FN-In( FN-Cl("Z")) = 1N ⊈  "Z". 

 

10-  Let U = { k1, k2 },TN1 = {0N, E1}, TN2 = {0N,1N, E1, E2} = TN  be a FN-bi-TS on U. 

Where,  E1 = ˂ u, (k1(0.2), k1(0.5), k1(0.8) ), (k2(0.3), k2(0.5), k2(0.7) ) ˃ , 

         E2 = ˂ u, ( k1(0.4), k1(0.5), k1(0.6) ), ( k2(0.5), k2(0.5), k2(0.5) ) ˃. 

 Then, the FNS "Z" = ˂ u, ( k1(0.4), k1(0.5), k1(0.6)), ( k2(0.5), k2(0.5), k2(0.5) ) ˃ is a FN-gb-CS but, not a FN-GPCS in U 

⟹ FN-PCl( "Z) = 1N-E2  ⊈ E2. 

 

Theorem 3.10: The union of any two  FN-gb-CS need not be a FN-gb-CS in general as seen from the 

following example: 

 

Example 3.11: Let U = { k1, k2 },TN1 = { 0N, E1} and TN2 = { 0N, 1N, E1} = TN be a FNT on U, where  

E1 = ˂ u, ( k1(0.6), k1(0.5), k1(0.4)), ( k2(0.8), k2(0.5), k2(0.2)) ˃. 

Then, the FNS "Z" = ˂ u, ( k1(0.1), k1(0.5), k1(0.9)), ( k2(0.8), k2(0.5), k2(0.2)) ˃ ,  

M = ˂ u, ( k1(0.6), k1(0.5), k1(0.4)), ( k2(0.7), k2(0.5), k2(0.3) ) ˃ is a FN-gb-CS but,  Z ∩ M is not a FN-gb-CS in U 

 ⟹ FN-bCl( "Z"∩M )  = 1N ⊈E1. 
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Theorem 3.12: If Z is a FN-gb-CS in FN-bi-TS (U, TN) , such that Z ⊆ M ⊆ FN-bCl( Z ) then, M is a 
FN-gb-CS in (U, TN) 

Proof : Let M be any FNS in a FN-bi-TS (U, TN), such that M ⊆ N and N ∈ TN ⟹ Z ⊆ N , since Z is a 
FN-gb-CS and FN-bCl( Z) ⊆ N. 
By hypothesis, we have FN-bCl(M) ⊆ FNbCl( FN-bCl( Z )) = FN-bCl( Z ) ⊆ N.  
Hence, M is FN-gb-CS in U. 
 
Theorem 3.13: If Z is a FN-b-OS and FN-gb-CS in FN-bi-TS (U, TN), then Z is a FN-b-CS. 

Proof : Since Z is a FN-b-OS and FN-gb-CS in FN-bi-TS (U, TN) such that FN-bCl( Z ) ⊆  Z. 

But, Z ⊆ FN-bCl( Z ) .  

Thus, FN-bCl( Z ) = Z and  hence, Z is FN-b-CS in FN-bi-TS (U, TN). 

 

Definition 3.14: A fuzzy neutrosophic set Z is said to be  a fuzzy neutrosophic generalized b open set ( 

FN-gb-OS) in FN-bi-TS (U, TN). If the complement 1N-Z is a  FN-gb-CS in U. The family of all FN-gb-OS of  

FN-bi-TS (U, TN) is denoted by  FN-gb-O (U). 

 

Example 3.15: Let U = { k1, k2 },TN1 = {0N, E1}, TN2 = {0N, 1N, E1} = TN be FN-bi-TS on U, where  

E1 = ˂ u, ( k1(0.3), k1(0.5), k1(0.7)), ( k2(0.4), k2(0.5), k2(0.6) ) ˃.  

Then, the FNS Z = ˂ u, ( k1(0.4), k1(0.5), k1(0.6)), ( k2(0.5), k2(0.5), k2(0.5) ) ˃ is a FN-gb-OS in U. 

 
4. Some Applications of Generalized b-Closed Sets in Fuzzy Neutrosophic bi-Topological Spaces 

In  [14] they propose two models for solving Neutrosophic Goal  Programming  Problem (NGPP), and 

in [15-19], we can see many applications of neutrosophic so, we will try in our study to give some application of 

our new studies concepts. 

 

Definition 4.1: A FN-bi-TS (U, TN) is called: 

i. a fuzzy neutrosophic b
1

2
  space ( for short, FN-b

1

2
S) if every FN-bCS is a FN-CS. 

ii. a fuzzy neutrosophic gb
1

2
 space ( for short, FN-gb

1

2
S) if every FN-gb-CS is a FN-CS. 

iii. a fuzzy neutrosophic gbUb space ( FN-gbbS) if every FN-gb-CS is a FN-b-CS. 

Theorem 4.2: Every FN-gb
1

2
S is a FN-gbUb S in any FN-bi-TS (U, TN),. 

Proof : Let ( U, TN ) be a FN-gb
1

2
S and let Z be any FN-gb-CS in FN-bi-TS (U, TN), By hypothesis, Z is a 

FN-CS in U.  

Since every FN-CS is a FN-b-CS in U. Hence, ( U, TN) , is a FN-gbUb S. 

 

The converse of above  theorem need not be true in general as seen from the following example: 
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Example 4.3: Let U = { k1, k2 }, TN1 = TN = {0N, 1N, E1} and TN2 = { 0N, 1N} be a FNT on U, where,  

E1 = ˂ u, ( k1(0.9), k1(0.5), k1(0.9) ), ( k2(0.1), k2(0.5), k2(0.1) ) ˃. 

Then, the FNS "Z" = ˂ u, ( k1(0.2), k1(0.5), k1(0.3) ), ( k2(0.8), k2(0.5), k2(0.7) ) ˃ is a FN-gbUb S but, not a FN-gb
1

2
 S. 

Theorem 4.4: Let ( U, TN) be  a FN-bi-TS and  ( U, TN ). A FN-gb
1

2
S. Then we have the  following statement: 

i- Any union of FN-gb-CS is a FN-gb-CS. 

ii- Any intersection of any FN-gb-OS is a FN-gb-OS. 

Proof : (i ) Let {Ni }i ∈ J  be a collection  of  FN-gb-CS in a FN-gb
1

2
S, ( U, TN ).  

Therefore, every FN-gb-CS is a FN-CS.  

But, the union of FN-CS is a FN-CS. Hence, the union of FN-gb-CS is a FN-gb-CS in U. 

 

(ii) It can be proved by taking complement in (i). 

 

Theorem 4.5: A FN-bi-TS (U, TN) is a FN-gbUb S if and only if  FN-gb(U) = FNb-O (U) 

Proof : Necessity : Let "Z" be a FN-gb-OS in a FN-bi-TS (U, TN). Then, 1N-Z is  a FN-gb-CS. 

 By hypothesis , 1N-Z is a FN-b-CS in U. Therefore, Z is a FN-b-OS 

Hence, FN-gb-O(U) = FNb-O (U). 

Sufficiency : Let Z be a FN-gb-CS in any FN-bi-TS (U, TN). Then, 1N-Z is a FN-gb-OS in U. 

By hypothesis , 1N-Z is a FN-b-OS in U.  

Therefore, Z is a FN-b-CS in U. Hence, ( U, TN) is a FN-gbUbS. 

Theorem 4.8: A FN-bi-TS (U, TN) is a FN-gb
1

2
 if and only if  FN-gb-O(U) = FN-O(U). 

Proof : Necessity : Let Z be a FN-gb-OS in a FN-bi-TS (U, TN). Then 1N-Z is a FN-gb-CS in U. 

 By hypothesis, 1N-Z   is a FN-CS in U. Therefore, Z is a FN-OS in U. 

 Hence, FN-gb-O(U) = FN-O(U) 

Sufficiency : Let Z be a FN-gb-CS. Then, 1N-Z is a FN-gb-OS in U. By hypothesis, 1N-Z  is a FN-OS  

in U. Therefore, Z is a FN-CS in U. Hence, (U, TN) is a FN-gb
1

2
. 

5. Conclusions  

In this paper, the new concept of a new class of sets was studied and called fuzzy neutrosophic 

generalized b-closed sets and its complement fuzzy neutrosophic generalized b-open sets. We 

investigated the relations between fuzzy neutrosophic generalized b closed sets and other fuzzy 

neutrosophic sets such as α closed sets,  regular closed sets, semi closed sets  pre closed sets, 

generalized closed sets,  b closed sets, α generalized closed sets and  semi generalized closed sets 

based of fuzzy  neutrosophic bi-topological spaces and applied some new spaces to be applications 

of the new defined sets.  



Neutrosophic Sets and Systems, Vol. 35, 2020    197  

 

 
Fatimah M. Mohammed, and Sarah W. Raheem, Generalized b Closed Sets and Generalized b Open Sets in Fuzzy 

Neutrosophic bi-Topological Spaces 

 
 

6. Acknowledgements 

The authors would like to thanks the reviewers for their valuable suggestions to improve the 

paper and get it as in this design. 

 

References 

1. L. A. Zadeh (1965). Fuzzy sets. Information and Control, , 8(3), 338-353.. 
2. K. Atanassov and S. Stoeva (1983). Intuitionistic Fuzzy Sets, in: Polish Syrup. On Interval & Fuzzy 

Mathematics, Poznan, 23-26. 
3. K. Atanassov. Review and New Results on Intuitionistic Fuzzy Sets, Preprint IM- MFAIS, Sofia, 1988, pp. 

1-88. 
4. K. Atanassov (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87-96. 

5. F. Smarandache (2005). Neutrosophic set- a generalization of intuitionistic fuzzy sets. International Journal 

of Pure and Applied Mathematics, 24(3), 287-297. 

6. F. Smaradache (2010), Neutrosophic Set A Generalization of Intuitionistic Fuzzy set. Journal of Defense 

Resourses Management, Vol. 1, 107-114 
7. S. A. Alblowi, A. A. Salama and M. Eisa (2014). New concepts of neutrosophic sets. International Journal of 

Mathematics and Computer Applications Research, 4(1), 59-66. 

8. A. A. Salama and F. Smarandache (2014). Neutrosophic Crisp Set Theory. Neutrosophic Sets and Systems, 

Vol. 5, 27-35. 
9. Y. Veereswari (2017). An Introduction to Fuzzy Neutrosophic Topological Spaces, IJMA,,Vol.8, 144-149. 

10. R. K. Al-Hamido (2018). Neutrosophic Crisp Bi-Topological Spaces, Neutrosophic Sets and Systems, Vol. 21, 

66-73 

11. F. M. Mohammed and Sh. F. Matar (2018). Fuzzy Neutrosophic Alpha m- closed set in Fuzzy Neutrosophic 

Topological Spaces. Neutrosophic Set and Systems, Vol. 21, 56-65.  

12. F. M. Mohammed, A. A. Hijab and Sh. F. Matar (2018). Fuzzy Neutrosophic Weakly- Generalized closed 

set in Fuzzy Neutrosophic Topological Spaces. University of Anbar for Pure Science, Vol. 12, 63-73. 

13. F. M. Mohammed  & S.W. Raheem (2020). Weakly b-Closed Sets and Weakly b-Open Sets based of  Fuzzy 
Neutrosophic bi-Topological Spaces. (In Press). 

14. A., Mohamed, I. M. Hezam, and F. Smarandache (2016). Neutrosophic goal programming, Neutrosophic set 

and systems, Vol. 11, 112-118. 
15. Abdel-Basset, M., Mohamed, R., Elhoseny, M., & Chang, V. (2020). Evaluation framework for smart 

disaster response systems in uncertainty environment. Mechanical Systems and Signal Processing, 145, 

106941. 

16. Abdel-Basset, M., Ali, M., & Atef, A. (2020). Uncertainty assessments of linear time-cost tradeoffs using 

neutrosophic set. Computers & Industrial Engineering, 141, 106286. 

17. Abdel-Basset, M., Ali, M., & Atef, A. (2020). Resource levelling problem in construction projects under 

neutrosophic environment. The Journal of Supercomputing, 76(2), 964-988. 

18. Abdel-Basset, M., Gamal, A., Son, L. H., & Smarandache, F. (2020). A Bipolar Neutrosophic Multi Criteria 

Decision Making Framework for Professional Selection. Applied Sciences, 10(4), 1202. 

19. Abdel-Basset, M., Mohamed, R., Zaied, A. E. N. H., Gamal, A., & Smarandache, F. (2020). Solving the 

supply chain problem using the best-worst method based on a novel Plithogenic model. In Optimization 

Theory Based on Neutrosophic and Plithogenic Sets (pp. 1-19). Academic Press. 

 
 

 

Received: Apr 21, 2020.  Accepted: July 11, 2020 



                                    Neutrosophic Sets and Systems, Vol. 35, 2020 
University of New Mexico  

 
M. Riaz, F. Smarandache, F. Karaaslan M.R. Hashmi, I. Nawaz, Neutrosophic Soft Topology and its Applications to Multi-
Criteria Decision Making  

 

Neutrosophic Soft Rough Topology and its Applications to 
Multi-Criteria Decision-Making 

Muhammad Riaz 1, Florentin Smarandache 2, Faruk Karaaslan3, Masooma Raza Hashmi4, 

Iqra Nawaz5 

1 Department of Mathematics, University of the Punjab Lahore, Pakistan. E-mail: mriaz.math@pu.edu.pk 

2   Department of Mathematics, University of New Mexico, Gallup, NM 87301, USA. E-mail: smarand@unm.edu 
3 Department of Mathematics, Çankiri Karatekin University, Çankiri, Turkey. Email: fkaraaslan@karatekin.edu.tr 

4 Department of Mathematics, University of the Punjab, Lahore, Pakistan. E-mail: masoomaraza25@gmail.com 

5   Department of Mathematics, University of the Punjab, Lahore, Pakistan. E-mail: iqra.nawaz245@gmail.com 

  

Abstract: In this manuscript, we introduce the notion of neutrosophic soft rough topology (NSR-

topology) defined on neutrosophic soft rough set (NSR-set). We define certain properties of NSR-

topology including NSR-interior, NSR-closure, NSR-exterior, NSR-neighborhood, NSR-limit point, 

and NSR-bases. Furthermore, we aim to develop some multi-criteria decision-making (MCDM) 

methods based on NSR-set and NSR-topology to deal with ambiguities in the real-world problems. 

For this purpose, we establish algorithm 1 for suitable brand selection and algorithm 2 to determine 

core issues to control crime rate based on NSR-lower approximations, NSR-upper approximations, 

matrices, core, and NSR-topology. 

Keywords: Neutrosophic soft rough (NSR) set, NSR-topology, NSR-interior, NSR-closure, NSR-

exterior, NSR-neighborhood, NSR-limit point, NSR-bases, Multi-criteria group decision making.  

 

1. Introduction 

The limitations of existing research are recognized in the field of management, social sciences, 

operational research, medical, economics, artificial intelligence, and decision-making problems. 

These limitations can be dealt with the Fuzzy set [1], rough set [2, 3], neutrosophic set [4, 5], soft set 

[6], and different hybrid structures of these sets. Rough set theory was initiated by Pawlak [2], which 

is an effective mathematical model to deal with vagueness and imprecise knowledge. Its boundary 

region gives the concept of vagueness, which can be interpreted by using the vagueness of Frege's 

idea. He invented that vagueness can be dealt with the upper and lower approximations of precise 

set using any equivalence relation. In the real life, rough set theory has many applications in different 

fields such as social sciences, operational research, medical, economics, and artificial intelligence, etc. 

Many real-world problems have neutrosophy in their nature and cannot handle by using fuzzy or 

intuitionistic fuzzy set theory. For example, when we are dealing with conductors and non-

conductors there must be a possibility having insulators. For this purpose, Smarandache [4, 5] 

inaugurated the neutrosophic set theory as a generalization of fuzzy and intuitionistic fuzzy set 

theory. The neutrosophic set yields the value from real standard or non-standard subsets of ]−0, 1+[. 

It is difficult to utilize these values in daily life science and technology problems. Therefore, the 

concept of a single-valued neutrosophic set, which takes value from the subset of [0,1], as defined by 

Wang et al. [7]. The beauty of this set is that it gives the membership grades for truth, indeterminacy 

mailto:mriaz.math@pu.edu.pk
mailto:smarand@unm.edu
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mailto:masoomaraza25@gmail.com
mailto:iqra.nawaz245@gmail.com


Neutrosophic Sets and Systems, Vol. 35, 2020     199  

 

 
M. Riaz, F. Smarandache, F. Karaaslan M.R. Hashmi, I. Nawaz, Neutrosophic Soft Topology and its Applications to Multi-
Criteria Decision Making  

and falsity for the corresponding attribute. All the grades are independent of each other and provide 

information about the three shades of an arbitrary attribute. Smarandache [8] extended the 

neutrosophic set respectively to neutrosophic Overset (when some neutrosophic components are >

1), Neutrosophic Underset (when some neutrosophic components are < 0), and to Neutrosophic 

Offset (when some neutrosophic components are off the interval [0,1] , i.e. some neutrosophic 

components are > 1 and other neutrosophic components < 0). In 2016, Smarandache introduced 

the Neutrosophic Tripolar Set and Neutrosophic Multipolar Set, also the Neutrosophic Tripolar 

Graph and Neutrosophic Multipolar Graph [8]. 

The soft set is a mathematical model to deal ambiguities and imprecisions in parametric manners. 

This is another abstraction of the crisp set theory. In 1999, Molodtsov [9] worked on parametrizations 

of the universal set and invented a parameterized family of subsets of the universal set called soft set. 

In recent years, many mathematicians worked on different hybrid structures of the fuzzy and rough 

sets. Ali et al. [10, 11] established some novel operations in the soft sets, rough soft sets and, fuzzy 

soft set theory. Aktas and Çağman [12] introduced various results on soft sets and soft groups. Bakier 

et al. [13] introduced the idea of soft rough topology. Çağman et al. [14] introduced various results 

on soft topology. Chen [15] worked on parametrizations reduction of soft sets and gave its 

applications in decision-making. Feng et al. [16, 17] established various results on soft set, fuzzy set, 

rough set and soft rough sets with the help of illustrations. Hashmi et al. [18] introduced the notion 

of m-polar neutrosophic set and m-polar neutrosophic topology and their applications to multi-

criteria decision-making (MCDM) in medical diagnosis and clustering analysis. Hashmi and Riaz [19] 

introduced a novel approach to the census process by using Pythagorean m-polar fuzzy Dombi's 

aggregation operators. Kryskiewicz [20] introduced the rough set approach to incomplete 

information systems. Karaaslan and Çağman [21] introduced bipolar soft rough sets and presented 

their applications in decision-making. Kumar and Garg [22] introduced the TOPSIS method based on 

the connection number of set pair analyses under an interval-valued intuitionistic fuzzy set 

environment. Maji et al. [23, 24, 25] worked on some results of a soft set and gave its applications in 

decision-making problems. He also invented the idea of a neutrosophic soft set and gave various 

results to intricate the concept with numerous applications. Naeem et al. [26] introduced the novel 

concept of Pythagorean m-polar fuzzy sets and the TOPSIS method for the selection of advertisement 

mode. Peng and Garg [27] introduced algorithms for interval-valued fuzzy soft sets in emergency 

decision making based on WDBA and CODAS with new information measures. Peng and Yang [28] 

presented some results for Pythagorean fuzzy sets. Peng et al. [29] introduced Pythagorean fuzzy 

information measures and their applications. Peng et al. [30] introduced a Pythagorean fuzzy soft set 

and its application. Peng and Dai [31] introduced certain approaches to single-valued neutrosophic 

MADM based on MABAC, TOPSIS and, new similarity measure with score function. Marei [32] 

invented some more results on neutrosophic soft rough sets and worked on its modifications. Pei and 

Miao [33] worked on the information system using the idea of a soft set. Quran et al. [34] introduced 

a novel approach to neutrosophic soft rough set under uncertainty. Riaz et al. [35] introduced soft 

rough topology with its applications to group decision making. 
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Riaz and Hashmi [36] introduced the notion of linear Diophantine fuzzy Set (LDFS) and its 

applications towards the MCDM problem. Linear Diophantine fuzzy Set (LDFS) is superior to IFS, 

PFS and, q-ROFS. Riaz and Hashmi [37] introduced novel concepts of soft rough Pythagorean m-

Polar fuzzy sets and Pythagorean m-polar fuzzy soft rough sets with application to decision-making. 

Riaz and Tehrim [38] established the idea of cubic bipolar fuzzy ordered weighted geometric 

aggregation operators and, their application using internal and external cubic bipolar fuzzy data. 

They presented various illustrations and decision-making applications of these concepts by using 

different algorithms. Roy and Maji [39] introduced a fuzzy soft set-theoretic approach to decision-

making problems. Salama [40] investigated some topological properties of rough sets with tools for 

data mining. Shabir and Naz [41] worked on soft topological spaces and presented their applications. 

Thivagar et al. [42] presented some mathematical innovations of a modern topology in medical 

events. Xueling et al. [43] presented some decision-making methods based on certain hybrid soft set 

models. Zhang et al. [44, 45, 46] established fuzzy soft β-covering based fuzzy rough sets, fuzzy soft 

coverings based fuzzy rough sets and, covering on generalized intuitionistic fuzzy rough sets with 

their applications to multi-attribute decision-making (MADM) problems. Broumi et al. [47] 

established the concept of rough neutrosophic sets. Christianto et al. [48] introduced the idea about 

the extension of standard deviation notion with neutrosophic interval and quadruple neutrosophic 

numbers. Adeleke et al. [49, 50] invented the concepts of refined eutrosophic rings I and refined 

neutrosophic rings II. Parimala et al. [51] worked on 𝛼𝜔-closed sets and its connectedness in terms 

of neutrosophic topological spaces. Ibrahim et al. [52] introduced the neutrosophic subtraction 

algebra and neutrosophic subraction semigroup. 

The neutrosophic soft rough set and neutrosophic soft rough topology have many applications in 

MCDM problems. This hybrid erection is the most efficient and flexible rather than other 

constructions. It is constructed with a combination of neutrosophic, soft and, rough set theory. The 

interesting point in this structure is that by using this idea, we can deal with those type of models 

which have roughness, neutrosophy and, parameterizations in their nature. 

The motivation of this extended and hybrid work is presented step by step in the whole manuscript. 

This model is generalized form and use to collect data at a large scale and applicable in medical, 

engineering, artificial intelligence, agriculture and, other daily life problems. In the future, this work 

can be gone easily for other approaches and different types of hybrid structures. 

The layout of this paper is systematized as follows. Section 2, implies some basic ideas including soft 

set, rough set, neutrosophic set, neutrosophic soft set and, neutrosophic soft rough set. We elaborate 

on these ideas with the help of illustrations. In Section 3, we establish neutrosophic soft rough 

topology (NSR-topology) with some examples. We introduce some topological structures on NSR-

topology named NSR-interior, NSR-closure, NSR-exterior, NSR-neighborhood, NSR-limit point and, 

NSR-bases. In Section 4 and 5, we present multi-criteria decision-making problems by using two 

different algorithms on NSR-set and NSR-topology. We use the idea of upper and lower 

approximations for NSR-set and construct algorithms using NSR-sets and NSR-bases We discuss the 

optimal results obtained from both algorithms and present a comparitive analysis of proposed 

approach with some existing approaches. Finally, the conclusion of this research is summarized in 

section 6. 
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2. Preliminaries 

This section presents some basic definitions including soft set, rough set, neutrosophic soft set, and 

neutrosophic soft rough set .  

Definition 2.1 [18] 

Let U be the universal set. Let I(U) is collection of subsets of U. A pair (Θ, 𝔄) is said to be a soft set 

over the universe U, where 𝔄 ⊆ E and Θ:𝔄 → I(U) is a set-valued function. We denote soft set as 

(Θ, 𝔄) or Θ𝔄 and mathematically write it as 

 Θ𝔄 = {(ξ, Θ(ξ)): ξ ∈ 𝔄,Θ(ξ) ∈ I(U)}. 

For any ξ ∈ 𝔄, Θ(ξ) is ξ-approximate elements of soft set Θ𝔄.  

Definition 2.2 [21] 

Let U be the initial universe and Y ⊆ U. Then, lower, upper, and boundary approximations of Y are 

defined as  

 ℜå(Y) = ⋃g∈U {ℜ(g): ℜ(g) ⊆ Y}, 

 

 ℜå(Y) = ⋃g∈U {ℜ(g): ℜ(g) ∩ Y ≠ ∅}, 

and  

 Bℜ(Y) = ℜ
å(Y) − ℜå(Y), 

respectively. Where ℜ is an indiscernibility relation ℜ ⊆ U × U which indicates our information 

about elements of U. The set Y is said to be defined if ℜå(Y) = ℜå(Y). If ℜ
å(Y) ≠ ℜå(Y) i.e BR(Y) ≠

∅, the set Y is rough set w.r.t ℜ.  

Definition 2.3 [41] Let U be the initial universe. Then, a neutrosophic set N on the universe U is 

defined as  

 N = {< g, 𝔗N(g), ℑN(g), 𝔉N(g) >: g ∈ U}, where 

 

  −0 ≤ 𝔗N(g) + ℑN(g) + 𝔉N(g) ≤ 3
+,where 

 

 𝔗, ℑ, 𝔉: U →]−0, 1+[. 

Where 𝔗, ℑ and 𝔉 represent the degree of membership, degree of indeterminacy and degree of non-

membership for some g ∈ U, respectively.   

Definition 2.4 [16] Let U be an initial universe and E be a set of parameters. Suppose 𝔄 ⊂ E, and 

let ℐ(U) represents the set of all neutrosophic sets of U. The collection (Φ, 𝔄) is said to be the 

neutrosophic soft set over U, where Φ is a mapping given by  

 Φ:𝔄 → ℐ(U). 

The set containing all neutrosophic soft sets over U is denoted by NSU.   

Example 2.5  Consider U = {g1, g2, g3, g4, g5}  be set of objects and attribute set is given by 𝔄 =

{ξ1, ξ2, ξ3, ξ4} = E = 𝔄, where  

The neutrosophic soft set represented as Φ𝔄. Consider a mapping Φ:𝔄 → I(U) such that   

 

Φ(ξ1) = {< g1, 0.7,0.7,0.3 >,< g2, 0.5,0.7,0.7 >,< g3, 0.7,0.5,0.2 >,< g4, 0.7,0.4,0.4 >,< g5, 0.9,0.3,0.4 >},

Φ(ξ2) = {< g1, 0.9,0.5,0.4 >,< g2, 0.7,0.3,0.5 >,< g3, 0.9,0.2,0.4 >,< g4, 0.9,0.3,0.3 >,< g5, 0.9,0.4,0.3 >},

Φ(ξ3) = {< g1, 0.8,0.5,0.4 >,< g2, 0.7,0.5,0.4 >,< g3, 0.8,0.3,0.6 >,< g4, 0.6,0.3,0.7 >,< g5, 0.8,0.4,0.5 >},

Φ(ξ4) = {< g1, 0.9,0.7,0.5 >,< g2, 0.8,0.7,0.7 >,< g3, 0.8,0.7,0.5 >,< g4, 0.8,0.6,0.7 >,< g5, 1.0,0.6,0.7 >}.

 

The tabular representation of neutrosophic soft set K = (Φ,𝔄) is given in Table 1.   
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  (Φ, 𝔄)   g1  g2   g3   g4   g5 

ξ1   

(0.7,0.7,0.3)  

 

(0.5,0.7,0.7)  

 

(0.7,0.5,0.2)  

 

(0.7,0.4,0.4)  

 

(0.9,0.3,0.4)  

ξ2   

(0.9,0.5,0.4)  

 

(0.7,0.3,0.5)  

 

(0.9,0.2,0.4)  

 

(0.9,0.3,0.3)  

 

(0.9,0.4,0.3)  

ξ3   

(0.8,0.5,0.4)  

 

(0.7,0.5,0.4)  

 

(0.8,0.3,0.6)  

 

(0.6,0.3,0.7)  

 

(0.8,0.4,0.5)  

ξ4   

(0.9,0.7,0.5)  

 

(0.8,0.7,0.7)  

 

(0.8,0.7,0.5)  

 

(0.8,0.6,0.7)  

 

(1.0,0.6,0.7)  

Table 1: Neutrosophic soft set (Φ, 𝔄) 

    

Definition 2.6 Let (Φ, 𝔄) be a neutrosophic soft set on a universe U. For some elements g ∈ U, a 

neutrosophic right neighborhood, regarding ξ ∈ 𝔄 is interpreted as follows;  

 gξ = {gi ∈ U: 𝔗ξ(gi) ≥ 𝔗ξ(g), ℑξ(gi) ≥ ℑξ(g), 𝔉ξ(gi) ≤ 𝔉ξ(g)}. 

Definition 2.7 Let (Φ, 𝔄) be a neutrosophic soft set over a universe U. For some elements g ∈ U, a 

neutrosophic right neighborhood regarding all parameters 𝔄 is interpreted as follows;  

 g]𝔄 =∩ {gξi: ξi ∈ 𝔄}. 

Example 2.8 Consider Example 2.5 then we find the following neutosophic right neighborhood 

regarding all parameters 𝔄 as  

g1ξ1
= g1ξ2

= g1ξ3
= g1ξ4

= {g1}, g2ξ1
= g2ξ3

= {g1, g2}, g2ξ2
= {g1, g2, g4, g5}, g2ξ4

= {g1, g2, g3}, g3ξ1
= g3ξ4

= {g1, g3}, g3ξ2
= {g1, g3, g4, g5}, g3ξ3

= {g1, g3, g5}, g4ξ1
= {g1, g3, g4}, g4ξ2

= {g4, g5}, g4ξ3
= U, g4ξ4

= U, g5ξ1
= g5ξ2

= g5ξ4
= {g5}, g5ξ3

= {g1, g5}. 

It follows that, 

 g1]𝔄 = {g1}, 

 g2]𝔄 = {g1, g2}, 

 g3]𝔄 = {g1, g3}, 

 g4]𝔄 = {g4}, 

 g5]𝔄 = {g5}. 

Definition 2.9 Let (Φ, 𝔄) be a neutrosophic soft set over U. For any X ⊆ U, neutrosophic soft lower 

(aprNSR) approximation, neutrosophic soft upper (apr
NSR
) approximation, and neutrosophic soft 

boundary (BNSR) approximation of X are defined as 

 aprNSR(X) =∪ {g]𝔄: g ∈ U, g]𝔄 ⊆ X} 

 

 apr
NSR
(X) =∪ {g]𝔄: g ∈ U, g]𝔄 ∩ X ≠ ∅} 

 

 BNSR(X) = aprNSR(X) − aprNSR(X), 

respectively. If aprNSR(X) = aprNSR(X) then X is neutrosophic soft definable set.  

Example 2.10 Consider Example 2.5 , If X = {g1} ⊆ U , then aprNSR(X) = {g1}  and apr
NSR
(X) =

{g1, g2, g3}. Since its clear aprNSR(X) ≠ aprNSR(X), so X is neutrosophic soft rough set on U.  

 

 

3  Neutrosophic Soft Rough Topology 
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In this section, we introduce and study the idea of neutrosophic soft rough topology and its related 

properties. Concepts of (NSR)-open set, (NSR)-closed set, (NSR)-closure, (NSR)-interior, (NSR)-

exterior, (NSR)-neighborhood, (NSR)-limit point, and (NSR)-bases are defined. 

Definition 3.1 Let U  be the initial space, 𝔜 ⊆ U  and G = (U, K)  be a neutrosophic soft 

approximation space, where K = (Φ,𝔄)  is a neutrosophic soft set. The upper and lower 

approximations are calculated on the basis of neutrosophic soft approximation space and 

neighborhoods. Then, the collection  

 τNSR(𝔜) = {U, ∅, aprNSR(𝔜), aprNSR(𝔜), BNSR(𝔜)} 

is called neutrosophic soft rough topology (NSR-topology) which guarantee the following postulates:   

    • U and ∅ belongs to τNSR(𝔜).  

    • Union of members of τNSR(𝔜) belongs to τNSR(𝔜).  

    • Finite Intersection of members of τNSR(𝔜) belongs to τNSR(𝔜).  

 Then (U, τNSR(𝔜), E) is said to be NSR-topological space, if τNSR(𝔜) is Neutrosophic soft 

rough topology.  

Note that Neutrosophic soft rough topology is based on lower and upper approximations of 

neutrosophic soft rough set.  

Example 3.2  From Example 2.5 , if 𝔜 = {g2, g4} ⊆ U , we obtain aprNSR(𝔜) = {g4} , apr
NSR
(𝔜) =

{g1, g2, g4} and BNSR(𝔜) = {g1, g2}. Then,  

 τNSR(𝔜) = {U, ∅, {g4}, {g1, g2, g4}, {g1, g2}} 

is a NSR-topology.  

Definition 3.3 Let (U, τNSR(𝔜), E) be an NSR-topological space. Then, the members of τNSR(𝔜) are 

called NSR-open sets. An NSR-set is said to be an NSR-closed set if its complement belongs to 

τNSR(𝔜).  

Proposition 3.4 Consider (U, τNSR(𝔜), E) as NSR-space over U. Then,   

    • U and ∅ are NSR-closed sets.  

    • The intersection of any number of NSR-closed sets is an NSR-closed set over U.  

    • The finite union of NSR-closed sets is an NSR-closed set over U.  

Proof. The proof is straightforward.  

Definition 3.5 Let (U, τNSR(𝔜), E)  be an NSR-space over U  and τNSR(𝔜) = {U, ∅} . Then, τNSR  is 

called NSR-indiscrete topology on U  w.r.t 𝔜  and corresponding space is said to be an NSR-

indiscrete space over U.  

Definition 3.6 Let (U, τNSR(𝔜), E) is an NSR-topological space and A ⊆ B ⊆ U. Then, the collection 

τNSRA = {Bi ∩ A: Bi ∈ τNSR, i ∈ L ⊆ N}  is called NSR-subspace topology on A . Then, (A, τNSRA)  is 

called an NSR-topological subspace of (B, τNSR).  

Definition 3.7 Let (U, τNSR′(𝔜), E) and (U, τNSR(𝔛), E) be two NSR-topological spaces. τNSR′(𝔜) is 

finer than τNSR(𝔛), if τNSR′(𝔜) ⊇ τNSR(𝔛).  

Definition 3.8 Let (U, τNSR(𝔜), E)  be a NSR-topological space and βNSR ⊆ τNSR . If we can write 

members of τNSR  as the union of members of βNSR , then βNSR  is called NSR-basis for the NSR-

topology τNSR.  

Proposition 3.9 If τNSR(𝔜) is an NSR-topology on U w.r.t 𝔜 the the collection  

 βNSR = {U, aprNSR(𝔜), BNSR(𝔜)} 

is a base for τNSR(𝔜)  
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Theorem 3.10 Let (U, τNSR(𝔜), E) and (U, τNSR′(𝔜′), E) be two NSR-topological spaces w.r.t 𝔜 and 

𝔜′ respectively. Let βNSR and βNSR′ be NSR-bases for τNSR and τNSR′, respectively. If βNSR′ ⊆ βNSR 

then τNSR is finer than τNSR′ and τNSR′ is weaker than τNSR.  

Theorem 3.11 Let (𝑈, 𝜏𝑁𝑆𝑅(𝔜), 𝐸) be an NSR-topological space. If 𝛽𝑁𝑆𝑅  is an NSR-basis for 𝜏𝑁𝑆𝑅 . 

Then, the collection 𝛽𝑁𝑆𝑅𝐵 = {𝐴𝑖 ∩ 𝐵: 𝐴𝑖 ∈ 𝛽𝑁𝑆𝑅, 𝑖 ∈ 𝐼 ⊆ ℕ}  is an NSR-basis for the NSR-subspace 

topology on 𝐵.  

Proof. Consider 𝐴𝑖 ∈ 𝜏𝑁𝑆𝑅𝐵 . By definition of NSR-subspace topology, 𝐶 = 𝐷 ∩ 𝐵 ,where 𝐷 ∈ 𝜏𝑁𝑆𝑅 . 

Since 𝐷 ∈ 𝜏𝑁𝑆𝑅, it follows that 𝐷 = ⋃𝐴𝑖∈𝛽𝑁𝑆𝑅 𝐴𝑖. Therefore,  

 𝐶 = (⋃𝐴𝑖∈𝛽𝑁𝑆𝑅 𝐴𝑖) ∩ 𝐵 = ⋃𝐴𝑖∈𝛽𝑁𝑆𝑅 (𝐴𝑖 ∩ 𝐵).  

3.1  Main Results 

We present some results of neutrosophic soft rough topology including NSR-interior, NSR-exterior, 

NSR-closure, NSR-frontier, NSR-neighbourhood and NSR-limit point. These are some topological 

properties of NSR-topology and can be used to prove various results related to NSR-topological 

spaces. 

Definition 3.12 Let (𝑈, 𝜏𝑁S𝑅(𝔜), 𝐸)  be an NSR-topological space w.r.t 𝔜 , where 𝑇 ⊆ 𝑈  be an 

arbitrary subset. The NSR-interior of 𝑇 is union of all NSR-open subsets of 𝑇 and we denote it as 

𝐼𝑛𝑡𝑁𝑆𝑅(𝑇).  

We verify that 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇) is the largest NSR-open set contained by 𝑇.  

Theorem 3.13 Let (𝑈, 𝜏𝑁𝑆𝑅(𝔜), 𝐸) be a NSR-topological space over 𝑈 w.r.t 𝔜, 𝑆 and 𝑇 are NSR-

sets over 𝑈. Then   

    • 𝐼𝑛𝑡𝑁𝑆𝑅(∅) = ∅ and 𝐼𝑛𝑡𝑁𝑆𝑅(𝑈) = 𝑈,  

    • 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) ⊆ 𝑆,  

    • 𝑆 is NSR-open set ⇔ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) = 𝑆,  

    • 𝐼𝑛𝑡𝑁𝑆𝑅(𝐼𝑛𝑡𝑁𝑆𝑅(𝑆)) = 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆),  

    • 𝑆 ⊆ 𝑇 implies 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) ⊆ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇),  

    • 𝐼n𝑡𝑁𝑆𝑅(𝑆) ∪ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇) ⊆ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆 ∪ 𝑇),  

    • 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) ∩ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇) = 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆 ∩ 𝑇).  

Proof. (i) and (ii) are obvious. 

(iii) First, suppose that 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) = 𝑆. Since 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) is an NSR-open set, it follows that 𝑆 is NSR-

open set. For the converse, if 𝑆 is a NSR-open set, then the largest NSR-open set that is contained in 

𝑆 is 𝑆 itself. Thus, 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) = 𝑆. 

(iv) Since 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) is an NSR-open set, by part (iii) we get 𝐼𝑛𝑡𝑁𝑆𝑅(𝐼𝑛𝑡𝑁𝑆𝑅(𝑆)) = 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆). 

(v) Suppose that 𝑆 ⊆ 𝑇. By (ii) 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) ⊆ 𝑆. Then 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) ⊆ 𝑇. Since 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) is NSR-open set 

contained by 𝑇. So by definition of NSR-interior 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) ⊆ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇). 

(vi) By using (ii) 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) ⊆ 𝑆  and 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇) ⊆ 𝑇 . Then, 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) ∪ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇) ⊆ 𝑆 ∪ 𝑇 . Since 

𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) ∪ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇) is an NSR-open, it follows that 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) ∪ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇) ⊆ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆 ∪ 𝑇). 

(vii) By using (ii) 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) ⊆ 𝑆  and 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇) ⊆ 𝑇 . Then, 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) ∩ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇) ⊆ 𝑆 ∩ 𝑇 . Since 

𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) ∩ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇)  is NSR-open, it follows that 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) ∩ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇) ⊆ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆 ∩ 𝑇). For the 

converse, 𝑆 ∩ 𝑇 ⊆ 𝑆  also 𝑆 ∩ 𝑇 ⊆ 𝑇 . Then, 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆 ∩ 𝑇) ⊆ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆)  and 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆 ∩ 𝑇) ⊆

𝐼𝑛𝑡𝑁𝑆𝑅(𝑇). Hence 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆 ∩ 𝑇) ⊆ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) ∩ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇).  
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Definition 3.14 Let (𝑈, 𝜏𝑁𝑆𝑅(𝔜), 𝐸) be an NSR-topological space w.r.t 𝔜, where 𝔜 ⊆ 𝑈. Let 𝑇 ⊆ 𝑈. 

Then, NSR-exterior of 𝑇 is defined as 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇
𝑐), where 𝑇𝑐 is complement of 𝑇. NSR-exterior of 𝑇 

is denoted by 𝐸𝑥𝑡𝑁𝑆𝑅(𝑇).  

  

Definition 3.15 Let (𝑈, 𝜏𝑁𝑆𝑅(𝔜), 𝐸) be an NSR-topological space w.r.t 𝔜, where 𝔜 ⊆ 𝑈. Let 𝑇 ⊆ 𝑈. 

Then, NSR-closure of 𝑇 is defined to be intersection of all NSR-closed supersets of 𝑇 and is denoted 

by 𝐶𝑙𝑁𝑆𝑅(𝑇).  

Example 3.16 Consider the NSR-topology given in Example 3.2, taking 𝑇 = {𝑔1, 𝑔2, 𝑔3}, so 𝑇𝑐 =

{𝑔4, 𝑔5}. Then 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇) = {𝑔1, 𝑔2}, 𝐸𝑥𝑡𝑁𝑆𝑅(𝑇) = 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇
𝑐) = {𝑔4} and 𝐶𝑙𝑁𝑆𝑅(T) = {𝑔1, 𝑔2, 𝑔3, 𝑔5}.  

Theorem 3.17 Let (𝑈, 𝜏𝑁𝑆𝑅(𝔜), 𝐸) be a NSR-topological space over 𝑈 w.r.t 𝔜, 𝑆 and 𝑇 are NSR-

sets over 𝑈. Then   

    • 𝐶𝑙𝑁𝑆𝑅(∅) = ∅ and 𝐶𝑙𝑁𝑆𝑅(𝑈) = 𝑈,  

    • 𝑆 ⊆ 𝐶𝑙𝑁𝑆𝑅(𝑆),  

    • 𝑆 is NSR-closed set ⇔ 𝑆 = 𝐶𝑙𝑁𝑆𝑅(𝑆),  

    • 𝐶𝑙𝑁𝑆𝑅(𝐶𝑙𝑁𝑆𝑅(𝑆)) = 𝐶𝑙𝑁𝑆𝑅(𝑆),  

    • 𝑆 ⊆ 𝑇 implies 𝐶𝑙𝑁𝑆𝑅(𝑆) ⊆ 𝐶𝑙𝑁𝑆𝑅(𝑇),  

    • 𝐶𝑙𝑁𝑆𝑅(𝑆 ∪ 𝑇) = 𝐶𝑙𝑁𝑆𝑅(𝑆) ∪ 𝐶𝑙𝑁𝑆𝑅(𝑇),  

    • 𝐶𝑙𝑁𝑆𝑅(𝑆 ∩ T) ⊆ 𝐶𝑙𝑁𝑆𝑅(𝑆) ∩ 𝐶𝑙𝑁𝑆𝑅(𝑇).  

Proof. (i) and (ii) are straightforward. 

(iii) First, consider 𝑆 = 𝐶𝑙𝑁𝑆𝑅(𝑆). Since 𝐶𝑙𝑁𝑆𝑅(𝑆) is an NSR-closed set, so 𝑆 is an NSR-closed set over 

𝑈. For the converse, suppose that 𝑆 be an NSR-closed set over 𝑈. Then, 𝑆 is NSR-closed superset of 

𝑆. So that 𝑆 = 𝐶𝑙𝑁𝑆𝑅(𝑆). 

(iv) By definition 𝐶𝑙𝑁𝑆𝑅(𝑆) is always NSR-closed set. Therefore, by part (iii) we have  

       𝐶𝑙𝑁𝑆𝑅(𝐶𝑙𝑁𝑆𝑅(𝑆)) = 𝐶𝑙𝑁𝑆𝑅(𝑆). 

(v) Let 𝑆 ⊆ 𝑇. By (ii) 𝑇 ⊆ 𝐶𝑙𝑁𝑆𝑅(𝑇). Then, 𝑆 ⊆ 𝐶𝑙𝑁𝑆𝑅(𝑇). Since 𝐶𝑙𝑁𝑆𝑅(𝑇) is a NSR-closed superset of 

𝑆, it follows that 𝐶𝑙𝑁𝑆𝑅(𝑆) ⊆ 𝐶𝑙𝑁𝑆𝑅(𝑇). 

(vi) Since 𝑆 ⊆ 𝑆 ∪ 𝑇  and 𝑇 ⊆ 𝑆 ∪ 𝑇 , by part (v), 𝐶𝑙𝑁𝑆𝑅(𝑆) ⊆ 𝐶𝑙𝑁𝑆𝑅(𝑆 ∪ 𝑇)  and 𝐶𝑙𝑁𝑆𝑅(𝑇) ⊆

        𝐶𝑙𝑁𝑆𝑅(𝑆 ∪ 𝑇) . Hence 𝐶𝑙𝑁𝑆𝑅(𝑆) ∪ 𝐶𝑙𝑁𝑆𝑅(𝑆) ⊆ 𝐶𝑙𝑁𝑆𝑅(𝑆 ∪ 𝑇) .  For the converse, let   𝑆 ⊆

        𝐶𝑙𝑁𝑆𝑅(𝑆) and 𝑇 ⊆ 𝐶𝑙𝑁𝑆𝑅(𝑇). Then, 𝑆 ∪ 𝑇 ⊆ 𝐶𝑙𝑁𝑆𝑅(𝑆) ∪ 𝐶𝐿𝑁𝑆𝑅(𝑇). Since 𝐶𝑙𝑁𝑆𝑅(𝑆) ∪ 𝐶𝑙𝑁𝑆𝑅(𝑇) is a 

NSR-closed superset of 𝑆 ∪ 𝑇. Thus, 𝐶𝑙𝑁𝑆𝑅(𝑆 ∪ 𝑇) = 𝐶𝑙𝑁𝑆𝑅(𝑆) ∪ 𝐶𝑙𝑁𝑆𝑅(𝑇). 

(vii) Since 𝑆 ∩ 𝑇 ⊆ 𝑆  and 𝑆 ∩ 𝑇 ⊆ 𝑇 , by part(5) 𝐶𝑙𝑁𝑆𝑅(𝑆 ∩ 𝑇) ⊆ 𝐶𝑙𝑁𝑆𝑅(𝑆)  and 𝐶𝑙𝑁𝑆𝑅(𝑆 ∩  𝑇) ⊆

𝐶𝑙𝑁𝑆𝑅(𝑇). Thus, we obtain 𝐶𝑙𝑁𝑆𝑅(𝑆 ∩ 𝑇) ⊆ 𝐶𝑙𝑁𝑆𝑅(𝑆) ∩ 𝐶𝑙𝑁𝑆𝑅(𝑇).  

Definition 3.18 Let (𝑈, 𝜏𝑁𝑅(𝔜), 𝐸) be a NSR-topological space w.r.t 𝔜, where 𝔜 ⊆ 𝑈. Let 𝑇 ⊆ 𝑈. 

Then, NSR-frontier or NSR-boundary of 𝑇 is denoted by 𝐹𝑟𝑁𝑆𝑅(𝑇) or 𝑏𝑁𝑆𝑅(𝑇) and mathematically 

defined as  

 𝐹𝑟𝑁𝑆𝑅(𝑇) = 𝐶𝑙𝑁𝑆𝑅(𝑇) ∩ 𝐶𝑙𝑁𝑆𝑅(𝑇
𝑐). 

Clearly NSR-frontier 𝐹𝑟𝑁𝑆𝑅(𝑇) is an NSR-closed set.  

Example 3.19 Consider the NSR-topology given in Example 3.2, taking 𝑇 = {𝑔1, 𝑔2, 𝑔3}, so 𝑇𝑐 =

{𝑔4, 𝑔5}. Then, 𝐶𝑙𝑁𝑆𝑅(𝑇) = {𝑔1, 𝑔2, 𝑔3, 𝑔5} and 𝐶𝑙𝑁𝑆𝑅(𝑇
𝑐) = {𝑔3, 𝑔4, 𝑔5}.  

 𝐹𝑟𝑁𝑆𝑅(𝑇) = 𝐶𝑙𝑁𝑆𝑅(𝑇) ∩ 𝐶𝑙𝑁𝑆𝑅(𝑇
𝑐) = {𝑔3, 𝑔5} 

 

  



Neutrosophic Sets and Systems, Vol. 35, 2020     206  

 

 
M. Riaz, F. Smarandache, F. Karaaslan M.R. Hashmi, I. Nawaz, Neutrosophic Soft Topology and its Applications to Multi-
Criteria Decision Making  

Definition 3.20 Let (𝑈, 𝜏𝑁𝑅(𝔜), 𝐸) be an NSR-topological space. A subset 𝑋 of 𝑈 is said to be NSR-

neighborhood of 𝑔 ∈ 𝑈 if there exist an NSR-open set 𝑊𝑔 containing 𝑔 so that  

 𝑔 ∈ 𝑊𝑔 ⊆ 𝑋. 

Definition 3.21 The set of all the NSR-limit points of 𝑆 is known as NSR-derived set of 𝑆 and is 

denoted by 𝑆𝑁𝑆𝑅
𝑑 .  

4  NSR-set in multi-criteria decision-making 

In this section, we present an idea for multi-criteria decision-making method based on the 

neutrosophic soft rough sets 𝑁𝑆𝑅 − 𝑠𝑒𝑡. 

Let 𝑈 = {𝑔1, 𝑔2, 𝑔3, . . . , 𝑔𝑚} is the set of objects under observation, 𝐸 be the set of criteria to analyze 

the objects in 𝑈 . Let 𝔄 = {𝜉1, 𝜉2, 𝜉3, . . . , 𝜉𝑛} ⊆ 𝐸  and (𝛷, 𝔄)  be a neutrosophic soft set over 𝑈. 

Suppose that 𝐻 = {𝑃1, 𝑃2, . . . , 𝑃𝑘} be a set of experts, 𝔜1, 𝔜2, . . . , 𝔜𝑘 are subsets of 𝑈 which indicate 

results of initial evaluations of experts 𝑃1, 𝑃2, . . . , 𝑃𝑘, respectively and 𝔗1, 𝔗2, . . . 𝔗𝑟 ∈ 𝑁𝑆𝑈  are real 

results that previously obtained for same or similar problems in different times or different places.  

Definition 4.1 Let 𝑎𝑝𝑟𝑁𝑆𝑅𝔗𝑞(𝔜𝑗),𝑎𝑝𝑟𝑁𝑆𝑅𝔗𝑞
(𝔜𝑗) be neutrosophic soft lower and upper approximations 

of 𝔜𝑗(𝑗 = 1,2, . . . , 𝑘) related to 𝔗𝑞(𝑞 = 1,2, . . . , 𝑟). Then, 

 

 𝑎 =

(

 
 
𝑛1
1 𝑛2

1 ⋯ 𝑛𝑘
1

𝑛1
2 𝑛2

2 ⋯ 𝑛𝑘
2

⋮ ⋮ ⋱ ⋮
𝑛1
𝑟 𝑛2

𝑟 ⋯ 𝑛𝑘
𝑟

)

 
 

 (1) 

 

 

 𝑎 =

(

 
 
𝑛1
1
𝑛2
1
⋯ 𝑛𝑘

1

𝑛1
2
𝑛2
2
⋯ 𝑛𝑘

2

⋮ ⋮ ⋱ ⋮
𝑛1
𝑟
𝑛2
𝑟
⋯ 𝑛𝑘

𝑟

)

 
 

 (2) 

 are called neutrosophic soft lower and neutrosophic upper approximations matrices, respectively, 

and represented by 𝑎 and 𝑎. Here 

 

 𝑛𝑗
𝑞
= (𝑔1𝑗

𝑞
, 𝑔2𝑗
𝑞
, . . . , 𝑔𝑛𝑗

𝑞
) (3) 

  

 𝑛𝑗
𝑞
= (𝑔

1𝑗

𝑞
, 𝑔
2𝑗

𝑞
, . . . , 𝑔

𝑛𝑗

𝑞
) (4) 

 Where 

 

 𝑔𝑖𝑗
𝑞
= (

1, 𝑔𝑖 ∈ 𝑎𝑝𝑟𝑁𝑆𝑅𝔗𝑞(𝔜𝑗)

0, 𝑔𝑖 ∈ 𝑎𝑝𝑟𝑁𝑆𝑅𝔗𝑞(𝔜𝑗)
 

 and  

 𝑔
𝑖𝑗

𝑞
= (

1, 𝑔𝑖 ∈ 𝑎𝑝𝑟𝑁𝑆𝑅𝔗𝑞
(𝔜𝑗)

0, 𝑔𝑖 ∈ 𝑎𝑝𝑟𝑁𝑆𝑅𝔗𝑞
(𝔜𝑗)

  



Neutrosophic Sets and Systems, Vol. 35, 2020     207  

 

 
M. Riaz, F. Smarandache, F. Karaaslan M.R. Hashmi, I. Nawaz, Neutrosophic Soft Topology and its Applications to Multi-
Criteria Decision Making  

Definition 4.2 Let 𝑛 and 𝑛 be neutrosophic soft lower and neutrosophic upper approximations 

matrices based on 𝑎𝑝𝑟𝑁𝑆𝑅𝔗𝑞(𝔜𝑗, 𝑎𝑝𝑟𝑁𝑆𝑅𝔗𝑞
(𝔜𝑗  for 𝑞 = 1,2, . . . 𝑟 and 𝑗 = 1,2, . . . , 𝑘. Neutrosophic soft 

lower approximation vector represented by (𝑛) and neutrosophic soft upper approximation vector 

represented by (𝑛) are defined by, respectively, 

 

 𝑛 =⊕
𝑗=1

𝑘

⊕
𝑞=1

𝑟

𝑛𝑗
𝑞 (5) 

  

 𝑛 =⊕
𝑗=1

𝑘

⊕
𝑞=1

𝑟

𝑛𝑗
𝑞
 (6) 

 Here the operation ⊕  represents the vector summation.  

Definition 4.3 Let 𝑛  and 𝑛  be neutrosophic soft 𝔗𝑞 −  lower approximation vector and 

neutrosophic soft 𝔗𝑞 − upper approximation vector, respectively. Then, vector summation 𝑛 ⊕ 𝑛 =

(𝑤1, 𝑤2, . . . , 𝑤𝑛) is called decision vector.  

Definition 4.4 Let 𝑛 ⊕ 𝑛 = (𝑤1, 𝑤2, . . . , 𝑤𝑛) be the decision vector. Then, each 𝑤𝑖  is called a weighted 

number of 𝑔𝑖 ∈ 𝑈 and 𝑔𝑖 is called an optimum element of 𝑈 if it weighted number is maximum of 

𝑤𝑖∀𝑖 ∈ 𝐼𝑛. In this case, if there are more then one optimum elements of 𝑈, select one of them.  

Algorithm 1 for neutrosophic soft rough set: 

Input 

Step-1: Take initial evaluations 𝔜1,𝔜2, . . . , 𝔜𝑘 of experts 𝑃1, 𝑃2, . . . , 𝑃𝑘. 

Step-2: Construct 𝔗1, 𝔗2, . . . 𝔗𝑟 neutrosophic soft sets using real results. 

Step-3: Compute 𝑎𝑝𝑟𝑁𝑆𝑅𝔗𝑞(𝔜𝑗) and 𝑎𝑝𝑟
𝑁𝑆𝑅𝔗𝑞

(𝔜𝑗) for each 𝑞 = 1,2, . . . , 𝑟 and 𝑗 = 1,2, . . . , 𝑘. 

Step-4: Construct neutrosophic soft lower and neutrosophic soft upper approximations matrices 𝑎 

and 𝑎. 

Step-5: Compute 𝑛 and 𝑛, 

Step-6: Compute 𝑛 ⊕ 𝑛, 

Output  

Step-7: Select 𝑚𝑎𝑥𝑖∈𝐼𝑛𝑤𝑖.  

The flow chart of proposed algorithm 1 is represented in Figure.1 
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 Fig 1: Flow chart diagram of proposed algorithm 1 for NSR-set. 

Example 4.5 In finance company three finance experts 𝑃1, 𝑃2, 𝑃3 want to make investment one of the 

clothing brand  

 {𝑔1 = 𝐽𝑜𝑟, 𝑔2 = 𝐴𝑒𝑟𝑜, 𝑔3 = 𝐶ℎ𝑎𝑛, 𝑔4 = 𝐿𝑖, 𝑔5 = 𝑆𝑟𝑘}. 

The set of parameters include the following parameters  

 𝔄 = {𝜉1 = 𝑀𝑎𝑟𝑘𝑒𝑡 𝑆ℎ𝑎𝑟𝑒, 𝜉2 = 𝐴𝑐𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝑚𝑒𝑛𝑡, 𝜉3 = 𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠, 𝜉4 =

𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐𝑎𝑙 𝑀𝑎𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛} 

 

𝑆𝑡𝑒𝑝1: 𝔜1 = {𝑔1, 𝑔2, 𝑔4}, 𝔜2 = {𝑔1, 𝑔3, 𝑔5}, 𝔜3 = {𝑔2, 𝑔4, 𝑔5} are primary evaluations of experts 

𝑃1, 𝑃2, 𝑃3, respectively. 

𝑆𝑡𝑒𝑝2: Neutrosophic soft sets 𝔗1, 𝔗2, 𝔗3 are the actual results in individual three periods 

and tabular representations of these neutrosophic soft sets are given in Table 2, Table 3 and Table 4, 

respectively.  

  𝔗1   𝜉1   𝜉2   𝜉3   𝜉4 

𝑔1   (0.6,0.6,0.2)   (0.8,0.4.0.3)   (0.7,0.4,0.3)   (0.8,0.6,0.4)  

𝑔2   (0.4,0.6,0.6)   (0.6,0.2,0.4)   (0.6,0.4,0.3)   (0.7,0.6,0.6)  

𝑔3   (0.6,0.4,0.2)   (0.8,0.1,0.3)   (0.7,0.2,0.5)   (0.7,0.6,0.4)  

𝑔4   (0.6,0.3,0.3)   (0.8,0.2,0.2)   (0.5,0.2,0.6)   (0.7,0.5,0.6)  

𝑔5   (0.8,0.2,0.3)   (0.8,0.3,0.2)   (0.7,0.3,0.4)   (0.9,0.5,0.7)  

Table 2: Neutrosophic soft set 𝔗1 

  

  𝔗2   𝜉1   𝜉2   𝜉3   𝜉4 

𝑔1   (0.6,0.4,0.2)   (0.8,0.1,0.3)   (0.7,0.2,0.5)   (0.7,0.6,0.4)  

𝑔2   (0.4,0.6,0.6)   (0.6,0.2,0.4)   (0.6,0.4,0.3)   (0.7,0.6,0.6)  

𝑔3   (0.8,0.2,0.3)   (0.8,0.3,0.2)   (0.7,0.3,0.4)   (0.9,0.5,0.7)  

𝑔4   (0.6,0.3,0.3)   (0.8,0.2,0.2)   (0.5,0.2,0.6)   (0.7,0.5,0.6)  

𝑔5   (0.6,0.6,0.2)   (0.8,0.4.0.3)   (0.7,0.4,0.3)   (0.8,0.6,0.4)  
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Table 3: Neutrosophic soft set 𝔗2 

 

  𝔗3   𝜉1   𝜉2   𝜉3   𝜉4 

𝑔1   (0.6,0.6,0.2)   (0.8,0.4.0.3)   (0.7,0.4,0.3)   (0.8,0.6,0.4)  

𝑔2   (0.6,0.3,0.3)   (0.8,0.2,0.2)   (0.5,0.2,0.6)   (0.7,0.5,0.6)  

𝑔3   (0.6,0.4,0.2)   (0.8,0.1,0.3)   (0.7,0.2,0.5)   (0.7,0.6,0.4)  

𝑔4   (0.4,0.6,0.6)   (0.6,0.2,0.4)   (0.6,0.4,0.3)   (0.7,0.6,0.6)  

𝑔5   (0.8,0.2,0.3)   (0.8,0.3,0.2)   (0.7,0.3,0.4)   (0.9,0.5,0.7)  

Table 4: Neutrosophic soft set 𝔗3  

The tabular representation of the neutrosophic right neighborhoods of 𝔗1, 𝔗2, 𝔗3 are given in 

Table5, Table 6 and Table 7 respectively. 

 

 Neighborhoods of 𝔗1   

𝑔1]𝔄   {𝑔1}  

𝑔2]𝔄   {𝑔1, 𝑔2}  

𝑔3]𝔄   {𝑔1, 𝑔3} 

𝑔4]𝔄   {𝑔4} 

𝑔5]𝔄   {𝑔5} 

              Table 5: Neutrosophic right neighborhoods of 𝔗1 w.r.t set 𝔄  

  

  

  

  

 Neighborhoods of 𝔗2   

𝑔1]𝔄   {𝑔1, 𝑔5}  

𝑔2]𝔄   {𝑔2, 𝑔5}  

𝑔3]𝔄   {𝑔3} 

𝑔4]𝔄   {𝑔4} 

𝑔5]𝔄   {𝑔5} 

Table 6: Neutrosophic right neighborhoods of 𝔗2 w.r.t set 𝔄  

  

 Neighborhoods of 𝔗3   

𝑔1]𝔄   {𝑔1}  

𝑔2]𝔄   {𝑔2}  

𝑔3]𝔄   {𝑔1, 𝑔3} 

𝑔4]𝔄   {𝑔1, 𝑔4} 

𝑔5]𝔄   {𝑔5} 

Table 7: Neutrosophic right neighborhoods of 𝔗3 w.r.t set 𝔄  
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  𝑆𝑡𝑒𝑝3: Next we find 𝑎𝑝𝑟𝑁𝑆𝑅𝔗1  and 𝑎𝑝𝑟
𝑁𝑆𝑅𝔗1

 for each 𝔜𝑗, where 𝑗 = 1,2,3.  

 𝑎𝑝𝑟𝑁𝑆𝑅𝔗1(𝔜1) = {𝑔1, 𝑔2, 𝑔4}, 

 𝑎𝑝𝑟
𝑁𝑆𝑅𝔗1

(𝔜1) = {𝑔1, 𝑔2, 𝑔3, 𝑔4}, 

 𝑎𝑝𝑟𝑁𝑆𝑅𝔗1(𝔜2) = {𝑔1, 𝑔3, 𝑔5}, 

 𝑎𝑝𝑟
𝑁𝑆𝑅𝔗1

(𝔜2) = {𝑔1, 𝑔2, 𝑔3, 𝑔5}, 

 𝑎𝑝𝑟𝑁𝑆𝑅𝔗1(𝔜3) = {𝑔4, 𝑔5}, 

 𝑎𝑝𝑟
𝑁S𝑅𝔗1

(𝔜3) = {𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5} 

 Similarly we find 𝑎𝑝𝑟𝑁𝑆𝑅𝔗2 ,𝑎𝑝𝑟
𝑁𝑆𝑅𝔗2

 and 𝑎𝑝𝑟𝑁𝑆𝑅𝔗3 , 𝑎𝑝𝑟
𝑁𝑆𝑅𝔗3

 corresponding to each 𝔜𝑗, where 𝑗 =

1,2,3.  

 𝑎𝑝𝑟𝑁𝑆𝑅𝔗2(𝔜1) = {𝑔4}, 

 𝑎𝑝𝑟
𝑁𝑆𝑅𝔗2

(𝔜1) = {𝑔1, 𝑔2, 𝑔4, 𝑔5}, 

 𝑎𝑝𝑟𝑁𝑆𝑅𝔗2(𝔜2) = {𝑔1, 𝑔3, 𝑔5}, 

 𝑎𝑝𝑟
𝑁𝑆𝑅𝔗2

(𝔜2) = {𝑔1, 𝑔2, 𝑔3, 𝑔5}, 

 𝑎𝑝𝑟𝑁S𝑅𝔗2(𝔜3) = {𝑔4, 𝑔5}, 

 𝑎𝑝𝑟
𝑁𝑆𝑅𝔗2

(𝔜3) = {𝑔1, 𝑔2, 𝑔4, 𝑔5} 

 and  

 𝑎𝑝𝑟𝑁𝑆𝑅𝔗3(𝔜1) = {𝑔1, 𝑔2, 𝑔4}, 

 𝑎𝑝𝑟
𝑁𝑆𝑅𝔗3

(𝔜1) = {𝑔1, 𝑔2, 𝑔3, 𝑔4}, 

 𝑎𝑝𝑟𝑁𝑆𝑅𝔗3(𝔜2) = {𝑔1, 𝑔3, 𝑔5}, 

 𝑎𝑝𝑟
𝑁𝑆𝑅𝔗3

(𝔜2) = {𝑔1, 𝑔3, 𝑔4, 𝑔5}, 

 𝑎𝑝𝑟𝑁𝑆𝑅𝔗3(𝔜3) = {𝑔2, 𝑔5}, 

 𝑎𝑝𝑟
𝑁𝑆𝑅𝔗3

(𝔜3) = {𝑔1, 𝑔2, 𝑔4, 𝑔5} 

 𝑆𝑡𝑒𝑝4: Neutrosophic soft lower approximation matrix and neutrosophic soft upper approximation 

matrix are obtained as follows: 

 

 𝑎 = (

(1,1,0,1,0) (1,0,1,0,1) (0,0,0,1,1)
(0,0,0,1,0) (1,0,1,0,1) (0,0,0,1,1)

(1,1,0,1,0) (1,0,1,0,1) (0,1,0,0,0)
) (7) 

 

 

 𝑎 = (

(1,1,1,1,0) (1,1,1,0,1) (1,1,1,1,1)
(1,1,0,1,1) (1,1,1,0,1) (1,1,0,1,1)

(1,1,1,1,0) (1,0,1,1,1) (1,1,0,1,1)
) (8) 

 𝑆𝑡𝑒𝑝5: Using Eqs. 7 and 8, neutrosophic soft lower approximation vector and neutrosophic soft 

upper approximation vector are obtained as follows:  

 𝑛 = (5,3,3,5,5) 

 

 𝑛 = (9,8,6,7,7) 

𝑆𝑡𝑒𝑝6: Decision vector is obtained as 𝑛 ⊕ 𝑛 = (14,11,9,12,12). 

𝑆𝑡𝑒𝑝7: Since 𝑚𝑎𝑥𝑖∈𝐼𝑛𝑤𝑖 = 𝑤1 = 14, optimal clothing brand is 𝑔1 = 𝐽𝑜𝑟.  
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5  NSR-topology in multi-criteria decision-making 

In this section, we use the concept of NSR-topology in multi-criteria decision-making. The idea of 

core in the picking of attributes to the rough set was introduced by Thivagar in [45]. In the following 

definition, we develop this idea of core to the NSR-set.  

Definition 5.1 Let 𝑈 be the set of objects, 𝐾 = (𝛷,𝔄) is the neutrosophic soft set and 𝐺 = (𝑈, 𝐾) is 

the the corresponding neutrosophic soft approximation space. Let ℜ be an indiscernibility relation. 

Let 𝜏𝑁𝑆𝑅 be an NSR-topology on 𝑈 and 𝛽𝑁𝑆𝑅 be the basis defined for 𝜏𝑁𝑆𝑅. Let 𝔑 be the subset of 

𝔄, is said to be core of ℜ if 𝛽𝔑 ≠ 𝛽𝑁𝑆𝑅−(𝑠) for each '𝑠' in 𝔑. i.e. a core of ℜ is the subset of attributes 

with the condition that if we remove any element from 𝔑 it will affect the classification power of the 

attributes.  

Algorithm 2 for neutrosophic soft rough topology: 

Input 

Step-1: Consider initial universe 𝑈, set of attributes 𝔄 which can be classified into division 𝔻 of 

decision attributes, ℂ of condition attributes and an indiscernibility relation ℜ on 𝑈. Construct the 

neutrosophic soft set in tabular form corresponding to ℂ condition attributes and a subset 𝔜 of 𝑈. 

The columns indicate the elements of universe, rows represent the attributes and entries of table give 

attribute values. 

Output 

Step-2: Classify set 𝔜 and find the NSR-approximation subsets (ℜ𝐺(𝔜), ℜ𝐺(𝔜)) 𝑎𝑛𝑑 𝐵𝐺(𝔜)     

w.r.t ℜ.  

Step-3: Define Neutrosophic Soft Rough Topology 𝜏ℜ on 𝑈 and find basis 𝛽𝑁𝑆𝑅. 

Step-4: By removing an attribute 𝜉  from ℂ , find again the NSR-approximation subsets 

(ℜ𝐺(𝔜), ℜ𝐺(𝔜)), 𝐵𝐺(𝔜)) w.r.t ℜ𝑜𝑛ℂ − (𝜉). 

Step-5: Generate 𝑁𝑆𝑅 − 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦 𝜏𝑁𝑆𝑅−(𝜉) on 𝑈,define its basis 𝛽𝑁𝑆𝑅−(𝜉). 

Step-6: Repeat step 4 and step 5 for each attribute in ℂ. 

Step-7: The attributes for which 𝛽𝑁𝑆𝑅−(𝜉) ≠ 𝛽𝑁𝑆𝑅 gives the 𝑐𝑜𝑟𝑒(ℜ).   

The flow chart diagram of proposed algorithm 2 is represented as Figure 2. 
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 Fig 2: The flow chart diagram of algorithm 2 for NSR-topology. 

Example 5.2 Here we consider the problem of Crime rate in developing countries of Asia, Crime is 

an unlawful act punishable by a state or other authority. In other words, we can say that a crime is 

an act harmful not only to some individual but also to a community, society or the state. A developing 

country is a country with a less developed industrial base and a low Human Development Index 

(HDI) relative to other countries. Developing countries are facing so many issues including high 

crime rate. This is the fundamental reason of emerging questions in our mind, that why the crime 

rate is higher in developing countries? 

 We apply the concept of NSR-topology in Crime rate of developing countries of Asia. 

Consider the following information table which shows data about 5 developing countries. The rows 

of the table represent the objects(countries). Let 𝑈 = {𝑔1 = 𝐵𝑎𝑛𝑔𝑙𝑎𝑑𝑒𝑠ℎ, 𝑔2 = 𝐴𝑓𝑔ℎ𝑎𝑛𝑖𝑠𝑡𝑎𝑛, 𝑔3 =

𝑆𝑟𝑖𝐿𝑎𝑛𝑘𝑎, 𝑔4 = 𝑁𝑒𝑝𝑎𝑙, 𝑔5 = 𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛}  be the set of developing countries and 𝔄 = {𝜉1, 𝜉2, 𝜉3, 𝜉4} , 

where 𝜉1 stands for `corruption', 𝜉2 stands for `poverty ', 𝜉3 stands for `self actualization' and 𝜉4 

stands for `lack of education'. Let 𝐾 = (𝛷,𝔄) is the neutrosophic soft set over 𝑈 shown by Table 

8,corresponding soft approximation space 𝐺 = (𝑈, 𝐾).   

  

  𝐾   𝜉1   𝜉2   𝜉3   𝜉4   Crime Rate 

𝑔1   (0.6,0.6,0.2)   (0.8,0.4.0.3)   (0.7,0.4,0.3)   (0.8,0.6,0.4)   High  

𝑔2   (0.4,0.6,0.6)   (0.6,0.2,0.4)   (0.6,0.4,0.3)   (0.7,0.6,0.6)   Medium  

𝑔3   (0.6,0.4,0.2)   (0.8,0.1,0.3)   (0.7,0.2,0.5)   (0.7,0.6,0.4)   Medium  

𝑔4   (0.6,0.3,0.3)   (0.8,0.2,0.2)   (0.5,0.2,0.6)   (0.7,0.5,0.6)   High  

𝑔5   (0.8,0.2,0.3)   (0.8,0.3,0.2)   (0.7,0.3,0.4)   (0.9,0.5,0.7)   High  

                      Table 8: Neutrosophic soft set 𝐾 = (𝛷,𝔄) 

The tabular representation of neutrosophic right neighborhoods of 𝐾 w.r.t set 𝔄 is given Table 9.   

 Neighborhoods of 𝐾   

𝑔1]𝔄   {𝑔1}  

𝑔2]𝔄   {𝑔1, 𝑔2}  

𝑔3]𝔄   {𝑔1, 𝑔3} 
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𝑔4]𝔄   {𝑔4} 

𝑔5]𝔄   {𝑔5} 

Table 9: Neutrosophic right neighborhoods of 𝐾 w.r.t set 𝔄  

 For 𝔜 = {𝑔1, 𝑔3, 𝑔5}  and indiscernibility relation 'Crime rate' we have ℜ𝐺(𝔜) = {𝑔1, 𝑔3, 𝑔5} , 

ℜ𝐺(𝔜) = {𝑔1, 𝑔2, 𝑔3, 𝑔5} and 𝐵𝐺(𝔜) = {𝑔2}. 

So we define NSR-topology as 𝜏𝑁𝑆𝑅(𝔜) = {𝑈, ∅, {𝑔1, 𝑔3, 𝑔5}, {𝑔1, 𝑔2, 𝑔3, 𝑔5}, {g2}} and its basis 𝛽𝑁𝑆𝑅 =

{𝑈, {𝑔1, 𝑔3, 𝑔5}, {𝑔2}}. 

 If we remove the attribute `Corruption', then the tabular representation of neutrosophic 

right neighborhoods of 𝐾 w.r.t set 𝔄 − 𝜉1 is given Table 10.   

  

Neighborhoods of 𝐾  

𝑔1]𝔄−𝜉1  {𝑔1} 

𝑔2]𝔄−𝜉1  {𝑔1, 𝑔2} 

𝑔3]𝔄−𝜉1  {𝑔1, 𝑔3} 

𝑔4]𝔄−𝜉1  {𝑔4} 

𝑔5]𝔄−𝜉1  {𝑔5} 

Table 10: Neutrosophic right neighborhoods of 𝐾 w.r.t set 𝔄 − 𝜉1  

  

 we have  

 𝜏𝑁𝑆𝑅−𝜉1(𝔜) = {𝑈, ∅, {𝑔1, 𝑔3, 𝑔5}, {𝑔1, 𝑔2, 𝑔3, 𝑔5}, {𝑔2}} 

is a NSR-topology and its basis is  

 𝛽𝑁𝑆𝑅 − 𝜉1 = {𝑈, {𝑔1, 𝑔3, 𝑔5}, {𝑔2}} = 𝛽𝑁𝑆𝑅. 

 If we remove the attribute `poverty', then the tabular representation of neutrosophic right 

neighborhoods of 𝐾 w.r.t set 𝔄 − 𝜉2 is given Table 11.    

 Neighborhoods of 𝐾   

𝑔1]𝔄−𝜉2    {𝑔1}  

𝑔2]𝔄−𝜉2    {𝑔1, 𝑔2}  

𝑔3]𝔄−𝜉2    {𝑔1, 𝑔3} 

𝑔4]𝔄−𝜉2    {𝑔1, 𝑔3, 𝑔4} 

𝑔5]𝔄−𝜉2    {𝑔5} 

Table 11: Neutrosophic right neighborhoods of 𝐾 w.r.t set 𝔄 − 𝜉2  

We have an NSR-topology and its base as follows:  

 𝜏𝑁𝑆𝑅−𝜉2(𝑌) = {𝑈, ∅, {𝑔1, 𝑔3, 𝑔5}, {𝑔2, 𝑔4}} 

and  𝛽𝑁𝑆𝑅 − 𝜉2 = {𝑈, {𝑔1, 𝑔3, 𝑔5}, {𝑔2, 𝑔4}} ≠ 𝛽𝑁𝑆𝑅, 

respectively.  If we remove the attribute 'self actualization', then the tabular representation of 

neutrosophic right neighborhoods of 𝐾 w.r.t set 𝔄 − 𝜉3 is given Table 12.    

 Neighborhoods of 𝐾   

𝑔1]𝔄−𝜉3    {𝑔1}  

𝑔2]𝔄−𝜉3    {𝑔1, 𝑔2}  
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𝑔3]𝔄−𝜉3    {𝑔1, 𝑔3} 

𝑔4]𝔄−𝜉3    {𝑔4} 

𝑔5]𝔄−𝜉3    {𝑔5} 

Table 12: Neutrosophic right neighborhoods of 𝐾 w.r.t set 𝔄 − 𝜉3  

  

 We have an NSR-topology and its base as follows:  

 𝜏𝑁𝑆𝑅−𝜉3(𝑌) = {𝑈, ∅, {𝑔1, 𝑔3, 𝑔5}, {𝑔1, 𝑔2, 𝑔3, 𝑔5}, {𝑔2}} 

and  

 𝛽𝑁𝑆𝑅 − 𝜉3 = {𝑈, ∅, {𝑔1, 𝑔3, 𝑔5}, {𝑔2} = 𝛽𝑁𝑆𝑅}, 

respectively.  If we remove the attribute `lack of education', then the tabular representation of 

neutrosophic right neighborhoods of 𝐾 w.r.t set 𝔄 − 𝜉4 is given Table 13.    

 Neighborhoods of 𝐾   

𝑔1]𝔄−𝜉4    {𝑔1}  

𝑔2]𝔄−𝜉4    {𝑔1, 𝑔2}  

𝑔3]𝔄−𝜉4    {𝑔1, 𝑔3} 

𝑔4]𝔄−𝜉4    {𝑔4} 

𝑔5]𝔄−𝜉4    {𝑔5} 

Table  13: Neutrosophic right neighborhoods of 𝐾 w.r.t set 𝔄 − 𝜉4   

We have an NSR-topology and its base as follows:  

 𝜏𝑁𝑆𝑅−𝜉4(𝑌) = {𝑈, ∅, {𝑔1, 𝑔3, 𝑔5}, {𝑔1, 𝑔2, 𝑔3, 𝑔5}, {𝑔2}} 

and  

 𝛽𝑁𝑆𝑅 − 𝜉4 = {𝑈, ∅, {𝑔1, 𝑔3, 𝑔5}, {𝑔2} = 𝛽𝑁𝑆𝑅}, 

respectively. Thus, 𝐶𝑂𝑅𝐸(𝑁𝑆𝑅) = {𝜉2}, i.e., `poverty' is the deciding attributes of the Crime Rate in 

developing countries of Asia.  

Discussion and comparitive analysis 5.3 In this section, we discuss our results obtained from both 

numerical examples and present a comparative analysis of proposed topological space to some 

existing topological spaces. Table 14 describes the comparison of both proposed algorithms based on 

NSR-sets and NSR-topology. The algorithm 1 is used to find the optimal decision about the set of 

alternatives and establish the ranking order between them. We can choose the best and worst 

alternative from the given input information. While algorithm 2 is used to choose the most relevant 

and significant attribute to which one can observe the specific characteristic of the alternatives. This 

is called the CORE of the problem, which is an essential part of the decision-making difficulty. Both 

algorithms have their own merits and can be used to solve decision-making problems in medical, 

artificial intelligence, business, agriculture, engineering, etc. 

   

Proposed Algorithms Choice values Final Decision Selection criteria 

Algorithm 1 (NSR-sets) 𝑔1 ≻ 𝑔4 ≻ 𝑔5 ≻ 𝑔2 ≻ 𝑔3  𝑔1 Based on alternatives 

Algorithm 2 (NSR-topology) 𝐶𝑂𝑅𝐸(𝑁𝑆𝑅) = {𝜉2} 𝜉2 = poverty Based on attributes 

Table 14: Comparison of prooposed algorithms 

Now we present a soft comparative analysis of proposed approach with some existing approaches. 

In Table 15, we describe the comparison and discuss about their advantages and limitations. 
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Set theories 

 

Informa-

tion 

about 

Indeter-

minacy 

part 

Upper and 

lower 

approxi-

mations 

with 

boundary 

region 

Parameter-

izations 

Advantages Limitations 

Fuzzy sets [1] No No No Deal with the 

hesitations.  

Do not collect  any 

information about the 

indeterminacy of input 

data. 

Neutrosophic 

sets [4, 5] 

Yes No No Deal with the data 

having 

indeterminacy 

information. 

Do not deal with the 

roughness and 

parameterizations. 

Rough sets  

[2, 3] 

No Yes No Deal with the 

roughness of input 

information and 

create upper, lower 

and boundary 

regions. 

Do not give any 

information about the 

parameterizations. 

Soft sets [6] No No Yes Deal with the 

uncertainity with 

parameterizations. 

Do not provide 

information about the 

roughness of data. 

Soft rough sets 

[17] 

No Yes Yes Deal with 

uncertainities and 

roughness of data. 

Do not give information 

about the indeterminacy 

part of problem. 

Rough 

neutrosophic 

sets [47] 

Yes Yes No Deal with the 

roughness having 

indeterminacy 

information. 

Do not deal with the 

parameterizations. 

Neutrosophic 

soft rough sets 

and topology 

(proposed) 

Yes Yes Yes Provide the data of 

indeterminacy part 

and remove 

roughness under 

parameterizations 

without any loss of 

information. 

Effective but heavy 

calculations as 

compared to above 

existing theories. 

 Table 15: Comparitive analysis of proposed approach with some exsting theories. 
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6. Conclusion 

Most of the issues in decision-making problems are associated with uncertain, imprecise and, 

multipolar information, which cannot be tackled properly through the fuzzy set. So to overcome this 

particular deficiency rough set was introduced by Pawlak, which deals with the vagueness of input 

data. This research implies the novel approach of neutrosophic soft rough set (NSR-set) with 

neutrosophic soft rough topology (NSR-topology). We presented various topological structures of 

NSR-topology named as NSR-interior, NSR-closure, NSR-exterior, NSR-neighborhood, NSR-limit 

point and, NSR-bases with numerous examples. We established two novel algorithms to deal with 

multi-criteria decision-making (MCDM) problems under NSR-data. One is based on NSR-sets and 

the other is based on NSR-topology with NSR-bases. This research is more efficient and flexible than 

the other approaches. The proposed algorithms are simple and easy to understand which can be 

applied easily on whatever type of alternatives and measures. Both algorithms are flexible and easily 

altered according to the different situations, inputs and, outputs. In the future, we will extend our 

work to solve the MCDM problems by using TOPSIS, AHP, VIKOR, ELECTRE family and, 

PROMETHEE family using different hybrid structures of fuzzy and rough sets. 
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However, crisp graphs do not represent any system because the world is now full of imprecise data. 

The idea of fuzziness was used first to define the fuzzy graph [2] by Kaufmann (1973).  

Fuzzy graph [3] theory was developed by Rosenfeld (1975). In the same time, Yeh and Bang (1975) 

introduced various connectedness concepts in fuzzy graphs [4].  Also,          of a path and 

           in a fuzzy graph [3] was introduced by Rosenfeld (1975). Hence Bhattacharya (1987) 

introduced the idea of eccentricity and centre in the fuzzy graph [5] using           . Also, the 

properties of            [6] were developed by Sunitha and Vijayakumar (1998). Bhutani and 

Rosenfeld (2003) introduced the concepts of            in fuzzy graphs [7, 8] and eccentricity, 

centre etc. [9] were also developed. There were further studies on            [10] by Linda and 

Sunitha (2012).           

Day to day, there were developments on fuzzy graphs. Akram (2011) introduced bipolar fuzzy 

graphs [11]  and the interval-valued fuzzy graph [12] were introduced by Akram and Dudek (2011). 

Samanta and Pal (2013, 2015) introduced fuzzy k-competition graphs, p-competition graphs [13] and 

also introduced fuzzy planar graph [14]. Tom and Sunitha (2015) introduced a new definition of the 

length of a path and strong sum distance in fuzzy graphs [15]. There are many research works on 

fuzzy graphs.  But in all these fuzzy graphs, edge membership value is less than its vertex 

membership values. To remove this limitation, Samanta and Sarkar (2016) introduced a generalized 

fuzzy graph [16].  

As a generalization of fuzzy set and intuitionistic set theory, Smarandache (1998) introduced the 

concepts of neutrosophic set [17] that consist of a degree of truth membership, falsity membership 

and indeterminacy membership. In reality, every uncertainty has some possibility, some risk and 

some neutral factors. Neutrosophic graphs include all three notions properly. Thus any uncertainty/ 

ambiguity of networks can be represented by neutrosophic graphs. Broumi et al. (2016) introduced 

the notion of a single-valued neutrosophic graph [18] as a generalization of fuzzy graphs. After that, 

there are several research works on neutrosophic graphs [19,20]. Akram and Siddique (2017) 

introduced the neutrosophic competition graphs [21]. Hence Das et al. (2020) proposed generalized 

neutrosophic competition graphs [22] with applications to economic competitions among some 

countries.  

Abdel-Basset (2019) utilized the neutrosophic theory to solve the transition difficulties of IoT-based 

enterprises [23]. Also, there are many real-life applications including evaluation of the green supply 

chain management practices [24], evaluation Hospital medical care systems based on pathogenic sets 

[25], decision-making approach with quality function deployment for selecting supply chain 

sustainability metrics [26], intelligent medical decision support model based on soft computing and 

IoT [27]. Chakraborty (2020) introduced pentagonal neutrosophic number in shortest path problem 

[28] and a new score function of the pentagonal neutrosophic number and its application in 

networking problem [29].  Das and Edalatpanah (2020) proposed a new ranking function of the 

triangular neutrosophic number and its use in integer programming [30]. The remaining study can be 

found in [31-40].  

The rest of the paper is organized as follows. In Section 2, we discuss the contribution of the study. In 

section 3, we study some preliminaries related to graph theory.  In Section 4, we introduce the sum 

distance in a neutrosophic graph with some properties. In Section 5, we introduce eccentricity, radius 
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and diameter in a neutrosophic graph with properties. In Section 6, we discuss an application to a 

travelling salesman problem. In section 7, we conclude the study with future directions.  

 

The gist of contributions of authors (Table 1) are arranged below. 

            Authors  Year           Contributions  

Rosenfeld 1975 Introduce          of a path and   

        in a fuzzy graph. 

Bhattacharya 1987 Introduce eccentricity and centre in the fuzzy 

graph. 

Bhutani and Rosenfeld 2003            in fuzzy graphs and developed 

eccentricity, centre etc. 

Linda and Sunitha 2011 Studied on            in fuzzy graphs. 

Tom and Sunitha 2015 Introduce length of a path and strong sum 

distance in fuzzy graphs. 

Das et al. This 

paper 

Introduce sum distance in neutrosophic graph 

and eccentricity, radius etc. are studied. An 

application is illustrated. 

 

Table 1. Contributions of authors 

 

2. Major contributions of the study 

The neutrosophic graph is a generalization of the fuzzy graph. The contributions of the study are 

below. 

 This study introduces the concepts of the weight of edges of a neutrosophic graph and 

weighted sum distance in neutrosophic graph.  

 Also the eccentricity, diameter and radius are defined with some properties.  

 At last, an application of sum distance in the neutrosophic graph to a travelling salesman 

problem is illustrated.  

 

3. Preliminaries  

Definition 1.   A graph is an ordered pair (   ) such that   is the set of vertices and       is the 

set of edges between vertices. A path of length   is a sequence                 where   ,           

are distinct vertices and             are distinct edges. The distance between the vertices   and   is the 

minimum length of the path between   and  . The eccentricity of a vertex is the maximum distance to 

any vertex in the graph. The radius of a graph is the minimum eccentricities of all vertices, and the 

diameter of a graph is the maximum eccentricities of vertices. 
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Definition 2.[3] A fuzzy graph   is a triplet (     ) in which   is the set of vertices,     ,   - and  

      ,   - such that  (   )   ( )  ( ) where  ( ) represents the membership value of   and 

 (   ) represents the membership value of edge (   )  

Definition 3.[15] Length  ( ) of a path                    in a connected fuzzy graph   (     ) is 

given by   ( )  ∑  (  )
 
    where  (  ) represents membership values of edges   . 

Definition 4.[15] The strong sum distance between vertices         is the minimum length of all 

paths between vertices        .  

 

                                              Figure 1.  Example of a fuzzy graph 

Example 1. The fuzzy graph (Fig.1) has four vertices with five edges. There are three paths from 

vertex    to vertex   . The paths are                ,             ,            . Then 

 (  )       (  )       (  )         the strong sum distance between vertices    and    is      

Definition 5.[18] A graph    (V,  ) where       is said to be neutrosophic graph if 

i) there exist functions      ,   -      ,   -          ,   - such that  

    (  )    (  )    (  )    for all      (            ) 

where   (  )   (  )   (  ) denote the degree of true membership, degree of falsity membership and 

degree of indeterminacy membership of the vertex       respectively.   

 

ii)  there exist functions       ,   -      ,   -          ,   - such that  

  (     )      ,   (  )   (  )- 

  (     )     [  (  )   (  )- 

  (     )     [  (  )   (  )- 

and     (     )    (     )     (     )    for all (     )    

where   (     )   (     )   (     ) denote the degree of true membership, degree of falsity 

membership and degree of indeterminacy membership of the edge (     )    respectively.  
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Figure 2. A neutrosophic graph 

4. Weighted sum distance in the neutrosophic graph  

In the neutrosophic graph, membership values of edges are in neutrosophic nature. So we cannot 

compare among edges in a neutrosophic graph. To overcome it, we define weight function that maps 

from the membership value of edges to a crisp value lies between 0 and 1.   

Definition 6. Consider a function   ,   -  ,   -  ,   -  ,   - defined by  

 

   (     )     (   )      where             are the numbers  ,   -   

 

The weight of an edge (     ) in a neutrosophic graph is a number between 0 and 1 which is obtained 

from the image of the function   for corresponding membership value .  (     )   (     )   (     )/ 

of the edge and it is denoted by    .  

 

Note: This function indicates the overall impression of true , falsity and indeterminacy values. 

Suppose, in one network, generally predictions are always true of some facts. Then    must be higher 

value and close to 1. Similarly for the other cases.   

Example 2. Weight     of edge (     )  in the neutrosophic graph (Fig.2)      where    
 

 
 and 

   
 

 
 . 

 

Definition 7.  Let                    be any path in a neutrosophic graph    (V,  ). Then 

the length of the path   is the sum of the weights of the edges of the path   in    (V,  ). 

 

  ( )  ∑           
    

 ,  

where     is the weight of edge between vertices    and   .  

 

Example 3. Length of the path             in the neutrosophic graph (Fig.2) is     where    
 

 
 

and    
 

 
 .  

 

Definition 8. Let    (V,  ) be a neutrosophic graph and P be the collection of all paths between two 

nodes               P = *                +. Then the weighted distance between the nodes         

is denoted by   (   ) and is defined by  
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  (   )     *  (  )                   +,  

   where   (  ) is the length of the path   .  

 

Example 4. Sum distance between the nodes    and    in the neutrosophic graph (Fig.2)  

is                
 

 
        

 

 
    . 

 

Theorem 1. Let    (V, ) be a neutrosophic graph and   (   ) be weighted sum distance between 

any two nodes        . Then          

i)   (   )    

ii)   (   )                       

iii)   (   )    (   ) 

iv)   (   )    (   )    (   ).  

 

Proof. (i) It clears from the definition that   (   )   .  

 

(ii) It clears from the definition that   (   )                      . 

 

(iii)   (   )denotes the strong sum distance from   to    Then there exists a path whose length is 

minimum among all the path between   to  . Hence the length should be the same from   to  . So 

  (   )    (   ). 

 

(iv) Let   be a path     such that    ( )    (   )  and   be a path     such that   ( )  

  (   ). Then     is a walk and it is a strong path whose length is at most   (   )    (   ).  

Thus   (   )    (   )    (   ).  

 

 

5. Eccentricity, Radius and Diameter 

 

The parameters eccentricity, radius and diameter are crucial in graph theory. We studied these  

important parameters in neutrosophic graph considering the concepts of sum distance. The relations 

among radius, diameters, eccentricity and distance are studied as follows.   

 

Definition 9. The eccentricity   ( ) of a node,   is the distance from   to the furthest node in the 

neutrosophic graph  . Thus 
  ( )     *  (   )      +  

 

Example 5.  Consider a neutrosophic graph (Fig.3). The eccentricity   (  )of the vertex    is 

calculated by the following: 

 
  (  )     *  (     )   (     )   (     )+ 

    *              +       
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Fig. 3. An example of a neutrosophic graph 

 

 

Theorem 2.  Let    (V, ) be a connected neutrosophic graph and     be any two nodes of    Then 

|  ( )    ( )|    (   ). 

 

Proof. Let       be two nodes such that   ( )    ( )  and     be anode such that   ( )  

  (   ) . Then   (   )    (   )    (   ) , by theorem 3.7 (iv). Also   (   )    ( ) . Thus 

  ( )    (   )    (   )    ( ), this implies     ( )    ( )    (   )  Similarly, if we take 

  ( )    ( ), we will get     (   )    ( )    ( )  Thus |  ( )    ( )|    (   )  

 

Definition 10. The radius   ( ) of a neutrosophic graph,   is the minimum among all eccentricity of 

nodes. Thus  

  ( )     *  ( )     +. 

 

Example 6. Consider the neutrosophic graph (Fig. 3). The radius   ( ) of the graph   is calculated by 

the following: 
  ( )      *  (  )   (  )   (  )   (  )+ 

    *                   +       

 

 

Definition 11. The diameter   ( ) of a neutrosophic graph,  is the maximum among all eccentricity 

of nodes. Thus 

  ( )     *  ( )     +.  

 

Example 7. Consider the neutrosophic graph (Fig.3). The diameter   ( ) of graph   is calculated by 

the following:  
  ( )      *  (  )   (  )   (  )   (  )+ 

    *                   +       

 

Definition 12. A node in a neutrosophic graph is called a central node if its eccentricity is equal to the 

radius of the graph. Thus for a central node    

  ( )    ( ). 

 

Example 8. Consider the neutrosophic graph (Fig. 3). The node   is a central node, since 

the eccentricity   (  )               ( ) 
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Definition 13.  A node in a neutrosophic graph is called a peripheral node if its eccentricity is equal to 

the diameter of the graph. Thus for a peripheral node    

  ( )    ( ). 

 

Example 9. Consider the neutrosophic graph (Fig. 3). The nodes    and    are peripheral nodes, since 

the eccentricity   (  )                 ( )                      (  ). 

 

Theorem 3. Let    (V, ) be a connected neutrosophic graph with   ( ) and   ( ) be the radius and 

diameter respectively, then   ( )    ( )     ( )  

 

Proof. From the definition, it follows that   ( )    ( )  Let         such that   be central node 

i.e.   ( )    ( ) and     be peripheral node i.e.   ( )    ( )    ( ). Now   (   )    (   )  

  (   ) , by theorem (iv). This implies   ( )    ( )    ( )     ( )  Thus    ( )     ( )  

Therefore,    ( )    ( )     ( )  

 

6. Application to travelling salesman problem 

 

Suppose there are few places in a city and roads connect the places. Hence the places and roads 

together form a network. But the problem is to find a way that a salesman can visit all the planes once 

with the lowest travelling cost. Now the travelling cost is directly proportional to the road distance 

travel by salesman. But all the roads are not in the same smooth conditions to measure road distance 

in practical. So the real travelling distance with cost may be effected the bad road, non-pucca roads, 

water path etc. Thus to calculate the path distance, it is generally ignored the current condition of the 

paths. The true value indicates the expected distance on good road. The falcity indicates the current 

false parameter like general traffic on the routes, muddied on road. Indeterminacy includes delay due 

to road construction, political movement and any other factors like water path. Therefore Travelling 

salesman problem should be presented by neutrosophic environment. Hence the travelling distance 

between the places should be taken as neutrosophic value.  

 

6.1. Steps to find the sum distance of the travelling salesman problem.  

 

To find the minimum travelling cost in travelling salesman problem in the neutrosophic environment, 

all the necessary steps are given below as an algorithm. 

 

Step-1: Input all edge membership values between the places. 

 

Step-2: Evaluate the weight of edges. 

 

Step-3: Find all the Hamiltonian cycles between the requird places.  

 

Step-4: Evaluate length of the said cycles.  

 

Step-5: Find the minimum length among the cycles.  

 

 

 

6.2. Numerical example 
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Suppose there are four places and six roads are connecting the places in a city. A salesman wants to 

visit all the places once and returning back to the starting place. The problem is to find a cycle with 

minimum cost of travelling.  

 

The edge membership values (Table 2) between the places are given in the figure 4 where the 

membership value (           ) between two places    and    represent that distance of good road 

between    and    is    , distance of bad road between    and    is     and distance of non-

constructed road between    and    is     and similar for the other values.  

 

Places Distance between places 

      (           ) 

      (           ) 

      (           ) 

      (           ) 

      (           ) 

      (           ) 

 

Table 2. Distace between two places 

 
Figure 4: A graph among four cities.  

 

The weight     between the places    and    are given below: 

 

   (     )     ,            (     )   0.24, 

   (     )   0.44,             (     )      , 

   (     )      ,             (     )      .  

  

There are four  possible cycles to visit all the places once from starting point to that point. These 

cycles are: 
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The length   (  ) travelled by the salesman for the above cycles    are:  

  (  )      ,    (  )        ,   (  )      ,   (  )       

Since the value 1.48 is minimum length for the cycles    and   , hence these cycles give the minimum 

travelling cost to the salesman. 

7. Conclusions  

In this article, sum distance, eccentricity, radius etc. in a neutrosophic graph has been developed. 

Some definitions, examples and theorems give a clear idea about the proposed study. A neutrosophic 

graph is recently a very important topic. There are many scopes to research on that topic. One can 

develop this study to the generalized neutrosophic graph. The real application inthe travelling 

salesman problem has been illustrated with a numerical example. This idea also gives us to develop 

future research in neutrosophic graphs.  
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  Abstract: Neutrosophic sets are comprehensively used in decision making environment. The 

manifestation of neutrosophic sets in concentric hypergraphs is proposed in this research work. 

The intention of developing a decision making model using the combination of Fuzzy Cognitive 

Maps and concentric neutrosophic hypergraph is to rank the core factors of decision making 

problem and find the inter relational impacts. This proposed model is validated with the 

exploration of the causative factors of autoimmune diseases. The proposed model is highly 

compatible as it assists in determining the core factors and their inter association. This model will 

certainly benefit the decision maker at all managerial levels to design optimal decisions. 

 

Keywords: Autoimmune disease, fuzzy cognitive maps, neutrosophic hypergraphs, optimal decision making 

1. Introduction 

Westernization the cause of modernization has unlocked the portals of cultural, behavioural 

and environmental changes of the people which greatly influence the biological system of human 

and this also lays the core reason for the outbreak of novel diseases. Presently the people of the 

world are characterized by multicultural and multi technological adoption. The integration and the 

association between people of varied culture have brought diverse implications on the external and 

internal environment of the human. Not just the social interactions contribute to such modifications; 

also the technological advancement and the work space of an individual cause a varied range of 

changes in the mankind. The tendency of manhood repelling from indigenous practices is the 

gateway for several health woes. The health system of the human is getting affected by several 

factors and especially the vulnerable target group is the women. In recent days, the people are 

chained by diseases of various kinds, even the economy of the nation face huge falls due to the effect 

of epidemic diseases, amidst such miserable situations, the immunity of the human is the only 

armed force against these viruses, but if the immune system fails to be defensive in nature and if it 

joins hand with the external invaders the entire human health system collapses and it ends in 

fatality. This is the characterization of auto immune diseases and the women are greatly affected by 

these diseases. It is highly a dreadful circumstance to tackle the consequences of these self- 

destructing diseases. The autoimmune diseases predominantly affecting the women are Rheumatoid 

Arthritis, Multiple Sclerosis, Systemic lupus Erythematosus, Grave’s disease, Hashimoto’s 

thyroiditis and Myasthenia gravis. Presently the rate of occurrences of such diseases is at its pinnacle 

and the medical experts are investigating the ways and means of its mitigation. [1]  
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Generally the women are highly susceptible to these autoimmune diseases as the immune system 

gets weakened during pre and post pregnancy stages. This scenario has gained the medical concerns 

and medical researchers are on their study, to render support to it, this paper aims to underlie the 

core factors contributing to autoimmune diseases in women and to find the inter association 

between the core factors. Optimal decisions can be made by applying scientific methods in the 

process of decision making process. The entire scenario of decision making must be modeled based 

on decisive factors of the study. One of the realistic tools of decision making is fuzzy cognitive maps 

(FCM), introduced by Kosko [2], later several academicians extended this FCM tool based on the 

requirements. FCM is a directed graph representing the casual relationship between factors 

considered for study. The nodes and the edges of the graph represent the study factors and their 

association. The weights [-1,1] represent the nature of the association. The integration of FCM with 

other graphic structures was initiated by Nivetha and Pradeepa [3]. The hypergraphic and fuzzy 

hypergraphic approaches with FCM unlocked the construction of concentric fuzzy hypergraphs and 

its integration with FCM [4,5]. This field of integrated FCM with fuzzy hypergraphs has made the 

researchers explore by introducing various types of concentric fuzzy hypergraphs. 

In this research work, a fuzzy cognitive map with concentric neutrosophic hypergraphic approach is 

introduced. The notion of neutrosophic fuzzy sets and neutrosophic logic was first coined by 

Smarandache [6] and presently many researchers are highly interested to carry out their research  in 

this field, the concepts of neutrosophic is applied in almost all types of decision making tools. 

Neutrosophic sets, play significant role in making decisions in uncertain environment as it provides 

space for the pragmatic representation of the expert’s opinion. Abdel Basset et al [7]developed a 

decision making model for evaluating the framework for smart disaster response system in an 

uncertain environment, neutrosophic sets are used for uncertainty assessments of linear time-cost 

tradeoffs [8]; resource levelling problem[9] in construction project was modeled under neutrosophic 

environment. The concept of neutrosophic sets was extended to bipolar neutrosophic representation 

[10] and it is used in multi criteria decision making framework for professional selection. Das et al 

[11] developed neutrosophic fuzzy matrices and algebraic operation that had some utility in 

decision making. Plithogenic sets, the extension of neutrosophic sets are used in solving supply 

chain problem with the development of a novel plithogenic model [12]. Such massive applications of 

neutrosophic sets in decision making and its robust nature triggered the idea of integrating 

neutrosophic sets to concentric hypergraphs. To the best of our knowledge, the integration of 

neutrosophic concentric fuzzy hypergraphs with FCM has not been instituted and so this is a new 

arena of research towards optimal decision making. 

 Fuzzy Cognitive Maps are more useful in determining the association between study factors, if 

the number of study factors is less, FCM’s are highly compatible, but if the number of factors is 

more, then comparative analysis between the factors is difficult and tedious, to resolve such crisis, 

the core factors of the problem are to be decided and then the inter association between the core 

factors can be determined easily. To find the core factors, the intervention of various experts is 

mandatory, based on which the factors can be ranked and the core factors are decided based on the 

rank positions of the factors. This eases the process of making decisions as it helps in filtering the 

non- core factors. Generally in medicinal environment, the medical experts analyze the factors 

contributing to diseases, initially the causative factors taken for study will be more in number, but 

the factors have to drop at each stage of their research to find the prime causative factors. In the 

process of factor filtration, the expert’s opinions play a vital role. The role of each causative factor of 

a disease cannot be certainly express but representation using neutrosophic sets makes it possible 

and more meaningful. Thus the integration of FCM with concentric neutrosophic hypergraph will 

help to tackle the difficulties in handling large number of study factors. 
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The paper is structured as follows: section 2consists of the methodology in which the algorithm of 

finding optimal decision is presented; section 3 comprises of the adaptation of the proposed model 

to the decision making problem; section 4 discusses the results and the last section summarizes the 

research work. 

2. Methodology and its application  

The steps in making optimal decisions is presented as an algorithm as follows, 

Step 1: The expert’s opinion of the study factors are represented by concentric fuzzy hypergraphs 

with neutrosophic fuzzy sets representations of the envelope. 

Step 2: The score values of the neutrosophic fuzzy sets are determined. 

Step 3:   The factors are ranked based on the score values. 

Step 4:   The core factors are determined based on the ranking positions. 

Step5:   The inter association between the core factors is obtained based on the conventional FCM  

          procedure. 

The case histories of patients belonging to women gender suffering from autoimmune diseases are 

taken as the source of data collection and the factors contributing to the occurrence of auto immune 

disease in women [13] are presented below based on the medical expert’s opinion and data obtained 

from questionnaire.  

F1. Excess presence of VGLL3 (Vestigial Like Family Member 3) in skin cells 

F2. Changes in the gene system 

F3. Exposure to ultraviolet radiation from sunlight 

F4. Acquaintance with organic mercury 

F5. Alteration in food habits 

F6. Gene-Environment interface 

F7. Fluctuations in sex hormones 

F8. Modifications in Nutritional diet  

F9. Post pregnancy impacts 

F10. Genetic vulnerability 

F11. Genetic differences in immunity 

 

 

 

 

 

 

 

 

 

                            Fig.3.1.Concentric Neutrosophic Fuzzy Hypergraphic representation 
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The concentric neutrosophic fuzzy hyper envelopes with neutrosophic representations of the 

expert’s opinion are presented below in Table 3.1. 

                                 Table 3.1 Representations of Expert’s opinion 

Experts F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 

E1 (0.3,0.2, 

0.8) 

(0.5,0.2, 

0.3) 

(0.4,0.1, 

0.5) 

(0.3,0.4, 

0.6) 

(0.8,0.1, 

0.2) 

(0.7,0.2, 

0.3) 

(0.7,0.3, 

0.4) 

(0.7,0.2, 

0.3) 

(0.3,0.2, 

0.8) 

(0.5,0.2, 

0.3) 

(0.5,0.2, 

0.3) 

E2 (0.2,0.2, 

0.9) 

(0.4,0.3, 

0.5) 

(0.5,0.2, 

0.3) 

(0.2,0.2, 

0.9) 

(0.7,0.2, 

0.3) 

(0.6,0.2, 

0.3) 

(0.7,0.5, 

0.4) 

(0.6,0.2, 

0.3) 

(0.4,0.3, 

0.5) 

(0.6,0.2, 

0.3) 

(0.8,0.3, 

0.2) 

E3 (0.3,0.4, 

0.6) 

(0.3,0.5, 

0.6) 

(0.4,0.3, 

0.5) 

(0.3,0.2, 

0.8) 

(0.8,0.3, 

0.2) 

(0.9,0.2, 

0.3) 

(0.9,0.1, 

0.3) 

(0.6,0.2, 

0.3) 

(0.3,0.5, 

0.6) 

(0.7,0.3, 

0.4) 

(0.6,0.2, 

0.3) 

E4 (0.5,0.2, 

0.3) 

(0.2,0.2, 

0.9) 

(0.5,0.2, 

0.3) 

(0.4,0.4, 

0.6) 

(0.7,0.1, 

0.2) 

(0.7,0.3, 

0.4) 

(0.6,0.2, 

0.3) 

(0.7,0.1, 

0.2) 

(0.2,0.2, 

0.9) 

(0.6,0.2, 

0.3) 

(0.4,0.3, 

0.5) 

E5 (0.2,0.5 

,0.6) 

(0.3,0.2, 

0.8) 

(0.6,0.2, 

0.3) 

(0.5,0.2, 

0.3) 

(0.6,0.2, 

0.3) 

(0.8,0.1, 

0.2) 

(0.6,0.2, 

0.3) 

(0.9,0.2, 

0.3) 

(0.4,0.4, 

0.6) 

(0.5,0.2, 

0.3) 

(0.7,0.3, 

0.4) 

The score values of the factors are presented in Table 3.2 and it is represented graphically in Fig.3.2 

                               Table 3.2 Score values of the Factors 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 

0.571 0.571 0.546 0.538 0.667 0.783 0.756 0.573 0.445 0.636 0.667 

7 7 8 9 5 1 2 6 10 3 4 

0

0.2

0.4

0.6

0.8

1

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

Ranking of the Factors

 

         Fig.3.2 

 

Based on the scores, the following factors are considered as the core factors and their inter 

association is expressed as linguistic variables, which then later quantified by heptagonal fuzzy 

numbers. 

HP1. Alteration in food habits 

HP2. Gene-Environment interface 



Neutrosophic Sets and Systems, Vol. 35, 2020     236  

 

 
Nivetha et al Exploration of the Factors Causing Autoimmune Diseases using Fuzzy Cognitive Maps with Concentric 
Neutrosophic Hypergraphic Approach 
 

 
HP1 
 HP3 

HP2 
 

HP4 
 

HP5 
1 

HP3. Fluctuations in sex hormones 

HP4. Genetic vulnerability 

HP5. Genetic differences in immunity 

The connection matric between the factors, based on the expert’s opinion 

 

 

 

 

 

The modified matrix based on the values of quantification in Table 3.3 

 

 

 

 

 

 

 

 

The interrelationship between the factors is determined by the similar application of FCM 

methodology [9-10] and it is presented graphically in Fig 3.2 

 

 

 

 

 

 

 

 

 

                      Fig.3.2 FCM representation of the inter association of the core factors 

 

 HP1 HP2 HP3 HP4 HP5 

HP1 0 M H L L 

HP2 L 0 M H H 

HP3 L M 0 M L 

HP4 L M H 0 M 

HP5 L M M H 0 

Linguistic  

Variable 

Heptagonal Weight Membership 

value 

Low (0,0.1,0.2,0.3,0.35,0.4,0.45) 0.26 

Medium (0.4,0.45,0.5,0.55,0.6,0.65,0.7) 0.55 

High (0.65,0.7,0.8,0.9,1,1,1) 0.86 

 HP1 HP2 HP3 HP4 HP5 

HP1 0 0.55 0.86 0.26 0.26 

HP2 0.26 0 0.55 0.86 0.86 

HP3 0.26 0.55 0 0.55 0.26 

HP4 0.26 0.55 0.86 0 0.55 

HP5 0.26 0.55 0.55 0.86 0 
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4. Results and Discussion 

          Fig. 3.2 clearly states the factor, fluctuations in sex hormone is the core causative factor of auto 

immune diseases. The findings of this research will certainly assist the medical experts to ascertain 

the causes of the auto immune disease in women and give treatment in accordance to it. Hormonal 

imbalance is quite common in the life of the women as they undergo various stages of puberty, 

maternity, menopause, but still proper medications has to be given to avoid the risks of such fatal 

diseases. The representation of the imprecise data in the form neutrosophic sets is the pragmatic 

reflection of the expert’s opinion, as the factors contributing to the diseases are quite uncertain. The 

degree of truth values, indeterminacy and false values are indeed very essential in making optimal 

decisions. 

5. Conclusion 

The proposed decision making tool with the integration of FCM and concentric neutrosophic fuzzy 

hypergraphs is a highly feasible tool to obtain optimal decisions. The difficulty in handling several 

factors in FCM is reduced and this integrated approach facilitate the determination of inter 

association between the factors. This method of decision making can be extended to other kinds of 

concentric fuzzy hypergraphs with various representations. Plithogenic sets representation is the 

future extension of this proposed research work. 
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Abstract: Over the past few years, neutrosophy has gained an exponential growth and has attracted 

a good number of researchers especially those who focus on soft computing based uncertainty 

computation. This paper presents the various techniques in neutrosophy. The various techniques 

are discussed lucidly which help a naïve researcher in this field to understand the on-going 

researches and establish a strong base. We have summarized the previous work carried out in the 

field of neutrosophic logic, set, measure, and also classification techniques in neutrosophy and the 

relevant research work has been discussed. Further, various applications in the field of neutrosophy 

are elaborated. The major contributions of the existing research in neutrosophy is reviewed and 

presented from different perspectives. The development of newer algorithms for solving the 

problems of neutrosophy will provide impetus to the existing research in this field. 

Keywords: Neutrosophy, indeterminacy, neutrosophic logic 

1. Introduction 

Neutrosophy, having emerged as a generalization to fuzzy logic is being used in the research area 

in a number of fields like logics, set theory and others. Florentin Smarandache, in 1980, introduced 

this new field of philosophy which deals with the uncertainties and indeterminacy in the data. He 

defines neutrosophy as the science which deals with neutralities. This field takes into consideration 

the dawn, kind and scope of such neutralities and how they interact with various ideational spectra. 

The fundamentals of the study of the logic of neutrosophy, probability in neutrosophy, sets in 

neutrosophy and the statistics is given by neutrosophy. Various researchers have incorporated the 

idea of Neutrosophic Logic (NL), Neutrosophic Cognitive Maps (NCM) and other technologies in 

areas such as Information system application, IT, Decision Support System Application, Physics, 

Healthcare, Social Sciences etc. In 2019, F. Smarandache, introduced the concept of 

Neutrosociology[1], which is the amalgamation of sociology and neutrosophic methods. In [3], an 

improved method using clustering using k-means was incorporated for performing image 

segmentation using neutrosophic logic. In [4], the authors presented a way of correcting the 

uncertainties that arise in discursive analysis by applying Neutrosophy Theory in relation with 

sentiment analysis. In [5], the authors gave a framework to see how mental models could be 

analyzed using neutrosophic logic. In [6], [9], [10], [11], [15], [16] and [17], Neutrosophy was used 

to deal with the uncertainties and indeterminacy in situation analysis. In [25], the evaluation of the 

smart disaster response systems in times of ambiguity has been done using a framework. The 
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degrees of contradiction in the evaluation criteria have been addressed with the help of plithogenic 

set theory which checks the uncertainty environment. In [26], to tackle time scheduling in projects, 

a framework has been given to minimize the cost of projects in environments which are ambiguous. 

Neutrosophic theory has been used to consider the dynamic features of all parameters. In [29], a 

resource levelling model to minimize the costs of daily resource fluctuations is given, using 

neutrosophic set, with the aim of tackling the issues of uncertainty in the problems of the real 

world. In [30], the authors have given a framework for professional selection by making use of 

neutrosophic multi-criteria decision making, in an attempt to check the vagueness and ambiguity 

in the selection process. In [31], a case study of Thailand’s sugar industry has been done to validate 

the model proposed, using the plithogenic decision making perspective for evaluating supply 

chain sustainability. In this paper, we have reviewed the neutrosophic technologies that have been 

incorporated in various researches all over the world. The figure 1 depicts the workflow.  
 

 

 
Figure 1. Block diagram for the process of the research carried out in the manuscript 

 

2. Background Study  

Florentin Smarandache [2019] in his book, Introduction to Neutrosophic Sociology 

(Neutrosociology) discussed Sociological Forecasting, Neutrosophic Social norms and situations 

which cannot be solved in the classical way. He discussed neutrosophic Grand Theories to find 

abstract ideas about concrete facts in large social groups. He has also discussed Neutrosophic Big 

Data, IoT and Neutrosophic Microsociology in this book. [1] 

 

Aasim Zafar, Mohd Anas Wajid [2019] used the concept of neutrosophy to study the reasons of 

criminal behavior in Nigeria. They found that out of various factor taken by the researchers, some 

were excluded because they were found to be indeterminate. To show how such factors did actually 

contribute to the criminal behavior, they modelled the situation mathematically using FCM’s and 

NCM’s, where the former stands for Fuzzy cognitive Maps and the latter stands for Neutrosophic 



241 

 

 

A muzaffar, T Nafis, S S Sohail, Neutrosophy Logic and its Classification: An Overview 

Cognitive Maps. They further conclude how NCM is more effective than FCM in dealing with 

uncertainties and indeterminacy in situation analysis. They further concluded that if the 

indeterminate factors were taken, it could improve the efficiency and accuracy of the mathematical 

models using the concept of Neutrosophic Cognitive Maps. [6] 

 

V Christiano, F Smarandache [2019] reviewed the seven applications of Neutrosophic Logic. 

They have used logical analysis based on Neutrosophic Logic. They further suggest that NL theory 

could be applied in Psychology pertaining to different cultures, forming theories in the field of 

economics, resolution of conflicts, philosophy of science and other fields like applied mathematics, 

economics and physics. [7] 

 

Nancy El-Hefenawy, et al. [2016] reviewed the application of Neutrosophic Sets. They suggest 

that there exist a number of application in fields such as in decision making systems, IT, various 

information systems. This paper presented some important areas of neutrosophic sets, logic in 

neutrosophy, neutrosophy related measures and a neutrosophic set of a single value (SVNS). They 

further suggest that these could produce a new algorithm for tackling any neutrosophic problem. 

These can help also to solve any fuzzy problem using neutrosophic algorithm. [8] 

 

S Pramanik, S Chackrabarti [2013], studied the issues which were faced by the construction 

workers in West Bengal and used the technique- neutrosophic cognitive maps in order to find the 

solutions for it. They discussed the major problems faced by the workers and based on the opinions 

of the experts and after considering the indeterminacy factor, they formulated the NCM. [9] 

 

Anne-Laure Jousselme, et al. [2003], proposed a discussion on how uncertainty plays a role in 

situation analysis. They gave an overall understanding of the principal typologies of uncertainty 

which were found in the literature of the recent times. They discuss that besides richness and 

ambiguity of the language which is natural is the reason for varied uncertainty conceptions, it is also 

a result of the not-so-simple physical nature of the information. They further define some concepts 

to better understand uncertainty and the benefits that are sought. [10] 

 

Vasantha K, W. B.; Smarandache, Florentin [2004], used NCM to study and analyze the social 

aspects of laborers who had migrated from different place and were suffering from HIV/AIDS in the 

rural areas of Tamil Nadu. They made use of the Relational Maps in neutrosophy (NRM) and defined 

some new neutrosophic tools which they adopted in the study and analysis of this issue. They further 

gave a sketch of some sixty laborers who were infected with HIV/AIDS. [11] 

 

K Pérez-Teruel, M Leyva-Vázquez [2014], gave a structure with the help of which they analyzed 

the mental models and did their elicitation using neutrosophic logic. To show the applicability of the 

project, they showed an illustrative example. They discuss a framework for the processing of 

indeterminacy and uncertainty in mental models. [12] 

 

Mustafa Mamat et al. [2012], used an approach based on fuzzy linear programming for the 

planning of a balanced diet. They discussed the causes of disease-related lifestyle and eating 

disorders which are critical issues in the world. They calculated the nutrient amount in food to be 

taken by the Fuzzy Linear Programming Approach and considered it to estimate the nutritional 

requirements for an individual on a daily basis. They further suggest that this planning could help in 

preventing the eating disorders and certain disease-related lifestyle. [13]. 

Igor Bagány and Márta Takács [2017] discussed the correlations in a number of factors involved 

in education system in a way that the functionality could be modelled. They do so to examine the 

education system in an effective manner. They further employed the fuzzy cognitive map (FCM) 
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technology, because it helps in determination of qualitative description of the given parameters and 

relationships [14]. 

S No. Author Primary Contribution References 
 and Year    

1. Florentin   Sociological Forecasting, Neutrosophic Social norms [1] 

 Smarandache  Neutrosophic Grand Theories  

 (2019)   Neutrosophic Big Data, IoT and Neutrosophic  

   Microsociology.  

2. Victor Applications of neutrosophy in : [7] 

 Christiano and   Psychology with respect to cultures  

 F Smarandache   Forming theories in economics  

 (2019)  Resolving conflicts.  

3. Nancy   Decision support system, IT, information system [8] 

 El-Hefenawy et   Some important notions pertaining to Neutrosophy.  

 al. (2016)    

4. Aasim Zafar   NCM to model the criminal behavior in Nigeria. [6] 

 and Mohd   Indeterminate factors, if considered improve the  

 Anas Wajid  accuracy and efficiency of the model.  

 (2019)    

5. Surapati   NCM for the issues related to laborers in West [9] 

 Pramanik and  Bengal.  

 Sourendranath    

 Chackrabarti    

 (2013)    

6. Anne-Laure   Role of uncertainty in situation analysis [10] 

 Jousselme    

 (2003)    

7. Vasantha K, W.   Analyzing the social aspects, using NCM, of those [11] 

 B. and  laborers who had migrated and suffer from  

 Smarandache, F  HIV-AIDS.  

 (2004)    

8. KPTeruel and   A framework for the analysis of mental models [12] 

 ML Vázquez  based on NL (neutrosophic logic).  

 (2014)    

9. M Mamat et al.   An approach incorporating FLP for a balanced diet [13] 

 (2012)  planning.  

    

10. Igor Bagány   FCM for finding correlations in a number of factors [14] 

 and Márta  involved in education system in a way that the  

 Takács (2017)  functionality could be modelled.  

11. Shuqi Xue et al.   The information processing model which focuses on [15] 

 (2014)  the behavior of the human brain, with respect to  

   cognition.  

12. Dr.M.Albert   NCM for analyzing the risk factors for Breast Cancer [16] 

 William et al.    

 (2013)    

13. K Mondal and   NCM for analyzing the issues faced by Hijra [17] 

 S Pramanik  community in West Bengal. 
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14.  

 Abdel-Basset et al. 

(2020)  

 Smart disaster response systems in uncertainty 

environments 

 Plithogenic Decision Making approach (Supply Chain 

Sustainability) 

 Bipolar Neutrosophic Multi-Criteria Decision Making 

Framework (Professional Selection) 

 Neutrosophic Set for assessing uncertainty of linear  time-

cost tradeoffs 

 Resource levelling model based on neutrosophic set 

[25], [26], 

[29], [30], 

[31]. 

 

 

 

 

 

Shuqi Xue et al. [2014], described the information processing model which is based on the 

behavior of the human brain, with respect to cognition. They proposed that the two methods of 

modelling a situation cognitively are representing and reasoning about situation analysis with the 

help of Ontology and the use of FCM, in order to formulate a Situation analysis framework. The 

presented approach of FCM is for a systematic analysis of the Situation Analysis theory; it provides 

an understanding of how the working of its elements. [15] 

 

Dr.M.Albert William et al. [2013] analyzed the risk factors for breast cancer using NCMs. Based 

on the expert’s opinion, they had chosen certain factors as the main nodes for obtaining a 

neutrosophic directed graph. They had analyzed the risk factors and their solutions and discussed 

how certain factors are crucial for the development of the disease [16]. However few softcomputing 

approaches have been used in [27, 28] K Mondal and S Pramanik [2014] have studied the situation of 

the hijra community in West Bengal and addressed their issues using NCMs. On the basis of the 

experts’ opinion as well as the idea of indeterminacy, they have formulated the NCM [17]. 

.  

3. Classification of Neutrosophic Techniques:  

Various researchers have studied the concept of neutrosophy and applied various techniques to 

address different problems of indeterminacy. Some techniques are given below: 

a) Neutrosophic Cognitive Maps 

b) Neutrosophic Logic 

c) Neutrosophic Set 

d) Neutrosophic Measure 

e) Single Valued Neutrosophic Set 

3.1. Neutrosophic Cognitive Maps (NCM): 

Florentin Smarandache introduced the idea of NCM. They are considered to be an addendum 

of the Fuzzy Cognitive Maps with the difference being in the fact that, the values of indeterminacy 

are included. Various real life situations contain the factor of indeterminacy which cannot be modeled 

using existing methods. To show how indeterminacy affects the situation under consideration, NCMs 

have proven to be an important tool. 

Definition: 
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It is a directed graph which has concepts (as in, any policy/event) and causalities where the 

former is for nodes and the latter is for the edges. It is a representation of a relationship between 

concepts. A simple NCM can be defined as those which have edge weights or causalities from the set 

{-1, 0, 1, I}. 

 

Let the two nodes of the NCM be denoted by Ai and Aj. The effect of one node on the other is 

represented with the help of a directed edge from Ai to Aj, which is called connections. The weightage 

is assigned to each edge with a number in the set {-1, 1, 0, I}. We assume that eij is the weight assigned 

to the directed edge Ai Aj, eij belongs to {-1, 0, 1, I}. The following table II shows the value of eij and 

the effect it has on the corresponding edges: 

Table II: Value of eij and its effect on corresponding edges 

 

Many researchers have incorporated the concept of NCMs in their work. NCMs are an effective 

way to deal with uncertainties and indeterminacy in Situation Analysis. They have shown how 

indeterminate factors if taken into consideration could enhance the efficiency and accuracy of the 

mathematical models using the concept of Neutrosophic Cognitive Maps. 

Dr. M. Albert William et al. (2013) have analyzed the risk factors of Breast Cancer and their 

solutions with the help of Neutrosophic cognitive maps (NCMs). They have taken some twelve 

factors as the main nodes for their study. With the help of corresponding adjacency matrix related to 

the neutrosophic directed graph, they model the situation with the help of certain mathematical 

calculations. 

Dr A. Kalaichelvi and L. Gomathy (2011) have analyzed the issues that the girl students had to face who got 

married while studying, with the help of Neutrosophic Cognitive Maps (NCM’s). they collected the data 

from some hundred students in different courses in various colleges in Tamil Nadu, India. They 

identified certain factors on the basis of the generated opinions by those who were considered. In 

this way, they assessed what the effect of one factor would be on the other. 

 
Surapati Pramanik et al. studied the issues faced by the laborers in the construction industry 

in West Bengal on the basis of NCM’s. They identified some major problems and on the basis of 

the opinion of the expert and the factor of indeterminacy, they formulated the NCM. Then, they 

studied how the state vectors would affect the two matrices i.e; the connection matrix and 

neutrosophic adjacency matrix. 

 
Aasim Zafar and M Anas Wajid studied the various factors which led to criminal behavior in 

Nigeria. They analyzed the situation of crime there and found out that the prominent researchers 

who had been monitoring the situation there cited certain causes like family breakdown, 
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corruption, poverty etc as the reasons for criminal behavior. However, they do not take into account 

factors like inadequate equipment, NGOs, underemployment because these are considered to be 

indeterminate factors. They used NCMs to shows that these indeterminate factors were actually 

related to the crime in Nigeria. They further conclude that the accuracy and efficiency of 

mathematical models can be enhanced using NCMs if indeterminate factors are taken into 

consideration. 

 
3.2. Neutrosophic Logic (NL): 

 
It is also called Smarandache logic. The fuzzy logic is generalized on the basis of Neutrosophy 

and it gives rise to something called Neutrosophic logic. It says that a proposition could be take three 

values: true (t), false (f) and indeterminate (I) and each of these are the values from the range of [T, I, 

F]. There is an introduction of a certain idea of ‘indeterminacy’ because of the parameters which are 

not expected and therefore, concealed in some statements. NL is the analysis of the partition in a 

triad. It includes the membership degrees of truthfulness T, falsity F and indeterminacy I. Figure 2 

illustrates the following. 

 

Figure 2. Neutrosophic logic and its relationship with intuitionistic logic 

 

Florentin Smarandache in 2003 has written a paper to give an understanding of the Neutrosophic 

Logic (NL). He has also pointed out the differences between the Intuitionistic Fuzzy set and the 

neutrosophic set. [20] 

Karina Pérez-Teruel and Maikel Leyva-Vázquez have analyzed the mental models and did their 

elicitation using NL. To show the applicability of the project, they showed an illustrative example. 

They discuss a model for the understanding the effect of indeterminacy and uncertainty in such 

models. [5] 
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Florentin Smarandache and Luige Vlâdâreanu in 2011, have introduced the concept of NL and 

set operators. They have described the dynamics of a robot mathematically and how neutrosophic 

science is applicable to robotics [8]. 

3.3. Neutrosophic Set (NS): 

 

Neutrosophic set is defined as the area of neutrosophy that is associated with the study of the dawn, 

scope and type of neutralities, and how they interact with various analytical spectra. [8] 
 

Smarandache defined neutrosophic set as: Let the space of points be denoted by (Y). Let the 

general element in (Y) be denoted by (y). A NS (B) in (Y) has three membership functions (MF): 

truth MF -T B(y), an indeterminacy MF- I B(y) and a falsity MF- F B(y). The functions TB(y), I B(y), 

and F B(y) are real subsets of [0−, 1+] (they could be real standard or nonstandard).  
That is:  

 
 

 
There is no limiting condition on the sum of T B(y), I B(y) and F B(y), so 0− ≤ sup T B(y) +sup 

I B(y) +sup F B(y) ≤ 3+. 

 
Neutrosophic Sets have been used in various research works. Some examples are:  

F. Smarandache, in [7] wrote about the Schrödinger’s Cat Theory. He said that at one moment, the 

photon’s quantum state could be in more than one place. It meant that one particular element might 

or might not belong to a set or a place at one time. It also refers to the fact that an element (a 

quantum state) has a possibility of belonging to two contrasting sets (or places) at one time. 

 

In [26], to tackle time scheduling in projects, a framework has been given to minimize the cost 

of projects in environments which are ambiguous. Neutrosophic set theory has been used to 

consider the dynamic features of all parameters. 

 
In K. Atanassov, Fuzzy Sets and Systems (2005), neutrosophic sets could also be used to relate 

an image with information that is not certain, using a new tool; the information could have been 

applied to some technique wherein the processing of images takes place. The examples are in the 

field of image segmentation, thresholding and removing the noise. Neutrosophic sets find their real 

life example in terms of philosophical application. They could also be used to calculate the truth-

value in some theories of philosophy of Zen doctrine. 

 

3.4. Neutrosophic Measure (NM): 

 

The classical measure is generalized for such a case where the space has some factor of uncertainty 

or indeterminacy. The imprecise probabilities and the classical ones are generalized with the help of 

neutrosophic probability. There are a number of rules of the classical probability that are defined in 

the way that they are in unison with those of neutrosophy [8]. 
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Let an item be defined as <B>. <B> could be any thought, feature, hypothesis, concept etc. Let <anti 

B> be the inverse of <B>; while <neut B> be none of the two: <B> and <anti B>, having some sense of 

neutrality (or indeterminacy) in relation to <B>. For example, if <B> = rain, then <anti B>= no rain, 

while <neut B> = no idea. Let <B> represent the truth value of a notion, then <anti B> represents its 

falsehood, while <neut B> represents its degree of indeterminacy. 

If <B> = it will rain tomorrow, <anti B> = it will not rain tomorrow, while <neut B> = not knowing if 

it will rain or not/cloudy/humid day. We think of the measure to be null {m (anti B) =0} when the 

case does not prevail. When <neut B> does not prevail, the measure is written as null {m (neutB) = 

0} [8]. 

 

3.5. Single Valued Neutrosophic Sets (SVNS) : 

 

It is the instance of a NS which gives an additional possibility for the representation of uncertainty 

or indeterminacy, imprecision, incompleteness or inconsistency in some details which is present in 

the real world. The use of information that is not determinate and consistent could be suitably used 

in applications which include scientific and engineering domains. [9][10] 
 

Let X define the space of points (objects). Let the collective elements in X be denoted by x 

(Wang et al., 2010). A Single Valued Neutrosophic Set, A in X is described by three membership 

functions (MF): truth MF TA(x), falsity MF FA(x) and an indeterminacy MF IA(x).  
For every point x in X, the three MF’s: TA(x), IA(x), FA(x) belong to the interval [0, 1]. 

 
SVNS, when continuous is written mathematically as [9,10]:  

 
 
 
 
 
 
 
 
 

SVNS, when discrete is written mathematically as:  
 
 
 
 
 
 
 
 
 

Jun Ye, in [25], has presented the correlation and correlation coefficient of SVNSs, based on 

the extension of the connection of intuitionistic fuzzy sets (IFS’s). Further, the use of correlation 

coefficient or similarity measure in cosine (both weighted) is suggested for the decision-making 

method. The options are evaluated on the basis of the criteria with the help of the membership 

degrees of truth, falsehood and indeterminacy under the SVNS environment. 

 
M Abdel-Basset et al. in their paper, have analyzed the role of SVNS’s and rough sets in smart city. 

They have proposed a framework for dealing with information that is incomplete and imperfect with 

the help of theories of SVNS and rough set. This combination of these two sets will take into account 
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all aspects of uncertainty, imprecision of data and information and make lives of the citizens of the 

smart cities better with the introduction of services and decisions. They have focused mainly on 

making a framework of all kinds of imperfection that could possibly happen in smart cities [24]. 

 

4. Application Areas of Neutrosophy: 
 
 

1. Cultural Psychology  
2. Socio-economic theorizing 

3. Information System Application  
4. Decision Support Systems 

5. IT Application 

6. Healthcare and related areas  
7. Situation Analysis 

8. Sociological Forecasting 

9. Supply chain Sustainability 

10. Project Management 

 
• In cultural psychology, NL theory can be used to reconcile the issues in socio-economic 

theorizing (collectivism vs individualism). 
 

• In socio-economic theorizing, the conflicts arising out of human tensions could be 

reconciled, as in the conflicts between the two different perspectives i.e.; fermions and bosons, 

capitalism and socialism. 
 

• In the deep problem of philosophy of science, NL theory can be implemented wherein it 

suggests that whenever there are two sides which oppose each other, a choice is always there to 

find the part that is neutral, so that the two opposite sides could be reconciled. 
 

• In the field of cosmology, the NL analyses the underlying cause of changes of neutralities 

and opposites. It concludes that there is a possibility that there had been some start, in addition to 

some lasting background also, which they could be the ‘primordial fluid’. 
 

• In American football game, an attempt to score a goal involves an infinite sort of events 

that could happen. So, there is a possibility that NL could be expanded some states which could be 

more than three. 
 

• In gravitation, this perspective could help find a middle-course between the two kinds 

of forces (pull and push), by keeping in view the fact that both the forces are in action. [11] 

 
So, many fields of science are being improved with the help of the theory of neutrosophic 

logic. This theory is applicable in different research areas as well- in applied mathematics, 

social sciences, economics, and physics. 

 
More Applications: 

 
• In  Information  System  Application  (Neutrosophic  Database,  Analysis  of  the  

social  
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networks, systems which deal with e-learning, in finding the middle course in the information of 

financial markets). 

• In  Information  Technology  Application  (Neutrosophic  Security,  NCM’s  for  

Situation  
Analysis, In Robotics). 

 
• Decision Support System (in markets related to finances, management of risks, expert 

systems related to neutrosophy, linguistic variables in neutrosophy). 

 
In short, it has applications in any field related to science or even human-centered, where 

inconsistency, incompleteness, indeterminacy is present. In general terms, where <neut A> (i.e; 

sense of neutrality in relation to item <A>) occurs [11]. 

. 

5. Conclusion and Future work: 
 

Neutrosophy is an important field of research nowadays as it deals with uncertainties which cannot 

be taken into consideration using conventional modeling methods. There is indeterminacy in almost all 

aspects of this world; neutrosophy is doing its bit to make sense of the unknown. This paper presents 

a review of the technologies used in neutrosophy and the researches which have incorporated these 

concepts as well. Various applications of neutrosophy in many fields such as information system, 

information technology, decision support system and others are given. The future work holds the 

potential to develop newer algorithms for solving any problem of neutrosophy, which can also help 

in solving any fuzzy problems. The algorithms in the multi-criteria decision making problems which 

are based on neutrosophic theory are being used to solve practical applications in other areas such as 

medical diagnosis, financial market information, robotics, security, information fusion system, expert 

system and bioinformatics. 

Conflicts of Interest: “The authors declare no conflict of interest.” 
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Abstract: Although the single valued neutrosophic sets (SVNSs) are effective tool to express uncertain information and 

are superior to the fuzzy sets, intuitionistic fuzzy sets, Pythagorean fuzzy sets and  q-rung orthopair fuzzy sets, there is not yet 

reported an operation which can provide desirable generality and flexibility under single valued neutrosophic environment, 

although many operations have been developed earlier to meet above such eventualities.  So, the primary aim of this paper is 

to propose the concept of m-generalized q-neutrosophic sets (mGqNSs) as a further generalization of fuzzy sets, intuitionistic 

fuzzy sets, Pythagorean fuzzy sets and  q-rung orthopair fuzzy sets, single valued neutrosophic sets, n-hyperspherical 

neutrosophic sets and single valued spherical neutrosophic sets. Under the m-generalized q-neutrosophic environment, we 

develop some new operational laws and study their properties. Using these operations, we define m-generalized 

q-neutrosophic weighted aggregation operators. The distinguished features of these proposed weighted aggregation operators 

are studied in detail. Furthermore, based on these proposed operators, a MADM (multi-attribute decision making) approach is 

developed. Finally, an illustrative example is provided to show the feasibility and effectiveness of the proposed approach. 

 
Keywords: Single valued neutrosophic set, m-generalized q-neutrosophic set, m-generalized q-neutrosophic 
weighted averaging aggregation operator (mGqNWAA), m-generalized q-neutrosophic weighted geometric 
aggregation operator (mGqNWGA), score value, decision making. 
 
___________________________________________________________________________________________________

 
1. Introduction  

     Multi-attribute decision making (MADM) is basically a process of selecting an optimal alternative from a set 
of chosen ones. In our daily life, we come across various types of  multi-attribute decision making problems. 
Therefore, all of us need to learn the techniques to make decisions. The area of decision making problems has 
attracted the interest of many researchers. Many authors have worked in this field by utilizing various approaches. 
All the traditional decision making processes involve crisp data set but in many real life problems, data may not be 
in crisp form always. Fuzzy set theory is one such extremely useful tool that helps us to deal with non-crisp data. In 
1965, Lotfi A. Zadeh [1] first published the famous research paper on fuzzy sets that originated due to mainly the 
inclusion of vague human assessments in computing problems and it can deal with uncertainty, vagueness, 
partially trueness, impreciseness, Sharpless boundaries etc. Basically, the theory of fuzzy set is founded on the 
concept of relative graded membership which deals with the partial belongings of an element in a set in order to 
process inexact information. Later on, fuzzy sets have been generalized to intuitionistic fuzzy sets [2] by adding a 
non-membership function by Atanassov in 1986 in order to deal with problems that possess incomplete 
information.  In the context of fuzzy sets or intuitionistic fuzzy sets, it is known that the membership (or 
non-membership) value of an element in a set admits a unique value in the closed interval [0,1]. However, the 
application range of intuitionistic fuzzy set is narrow because it has the constraint that sum of membership degree 

mailto:abhijit84.math@gmail.com
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and non-membership degree of an element is not greater than one. But, in complex decision‐making problems, 
decision makers/experts may choose the preferences in such a way that the above condition gets violated. For 
instance, if an expert gives his preference with membership degree 0.8 and non-membership degree 0.7, then 
clearly their sum is 1.5, which is greater than 1. Therefore, this situation can’t be not properly handled by the 
intuitionistic fuzzy sets. To solve this problem, Yager [3, 4] introduced the nonstandard fuzzy set named as 
Pythagorean fuzzy sets with membership degree ζ and non-membership degree ϑ with the condition ζ2 + ϑ2 ≤ 1. 
Obviously, the Pythagorean fuzzy sets accommodate more uncertainties than the intuitionistic fuzzy sets. Yager 
[5] defined q-rung orthopair fuzzy sets (q-ROFSs) by enlarging the scope of Pythagorean fuzzy sets. The q-rung 
orthopair fuzzy sets allows the result of the qth power of the membership grade plus the qth power of the 
non-membership grade to be limited in interval [0,1]. If q=1, the q-rung orthopair fuzzy set transforms into the 
intuitionistic fuzzy set; if q=2, the q-rung orthopair fuzzy set transforms into the Pythagorean fuzzy set, which 
means that the q-rung orthopair fuzzy sets are extensions of intuitionistic fuzzy sets and Pythagorean fuzzy sets.  
          In 1999, Smarandache [6] introduced the notion neutrsophic set as a generalization of the classical set, 
fuzzy set, intuitionistic fuzzy set, Pythagorean fuzzy set and q-rung orthopair fuzzy set. The characterization of this 
neutrosophic set is explicitly done by truth-membership function, indeterminacy membership function and falsity 
membership function. The concept of single valued neutrosophic set was developed by Wang et al. [7] as an 
extension of fuzzy sets, Pythagorean fuzzy sets, q-rung orthopair fuzzy sets, intuitionistic fuzzy sets, single valued 
spherical neutrosophic sets [8], n-hyperspherical neutrosophic sets [8]. The possible applications of neutrosophic 
sets and single valued neutrosophic sets on image segmentation have been studied in Gou and Cheng [9], Gou and 
Sensur [10]. Also, we find their probable infliction on clustering analysis in Karaaslan [11] and on medical 
diagnosis problems in Ansari et al. [12] respectively. Furthermore, the subject of the neutrosophic set theory has 
been practiced in Wang et al. [13], Gou et al. [14], Ye [15], Sun et al. [16], Ye [17-19] and Abdel Basset et al. [20, 
21]. Some recent studies on this area can be found in [22-37].  
    The growing capacity of decision complexity induces the real-life decision-making problems that indulge 
both generality and flexibility of the operations used. Some of the basic operations of single valued spherical 
neutrosophic sets fail to generalize the basic operations of fuzzy sets, intuitionistic fuzzy sets, Pythagorean fuzzy 
sets and q-rung orthopair fuzzy sets. Getting inspired and provoked with this fact, in this paper, we have tried to 
propose a new concept called “m-generalized q-neutrosophic sets (mGqNSs)” and develop some aggregation 
operators in m-generalized q-neutrosophic environment to deal with MADM problems. The aims in this article 
are pursued below: 
  (1) To propose the concept of m-generalized q-neutrosophic sets (mGqNSs) as a further generalization of fuzzy 
sets, Pythagorean fuzzy sets, q-rung orthopair fuzzy sets, intuitionistic fuzzy sets, single valued neutrosophic sets, 
n-hyperspherical neutrosophic sets and single valued spherical neutrosophic sets. 
  (2) To define few operations between the m-generalized q-neutrosophic numbers. 
  (3) To develop the weighted aggregation operators such as m-generalized q-neutrosophic weighted averaging 
aggregation operator (mGqNWAA) and m-generalized q-neutrosophic weighted geometric aggregation operator 
(mGqNWGA) and study their properties. 
  (4) To propose a multi-attribute decision making method based on the m-generalized q-neutrosophic weighted 
aggregation operators.  
       To do so, the rest of the article is arranged as follows: 
       In section 2, we review some basic concepts. In Section 3, we first define m-generalized q-neutrosophic sets 
(mGqNSs) and m-generalized q-neutrosophic numbers (mGqNNs) and then propose few operations between the  
mGqNNs. Furthermore, we introduce the score of a mGqNN to ranking the mGqNNs. In section 4, we propose two 
types of m-generalized q-neutrosophic weighted aggregation operators to aggregate the m-generalized 
q-neutrosophic information. In section 5, based on the m-generalized q-neutrosophic weighted aggregation 
operators and score of mGqNNs, we develop a multi attribute decision making approach, in which the evaluation 
values of alternatives on the attribute are represented in terms of mGqNNs and the alternatives are ranked 
according to the values of the score of  mGqNNs to select the best (most desirable) one. Also, we present a 
practical example to demonstrate the application and effectiveness of the proposed method. In final section, we 
present the conclusion of the study. 

2. Preliminaries:  
In this section, first we recall some basic notions that are relevant to our study. 

2.1 Definition: [7] A single-valued neutrosophic set   on the universe set 𝑈 is given by  

{ , ( ), ( ), ( ) : }x x x x x U  
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where the functions , , : [0,1]U   satisfy the condition 0 ( ) ( ) ( ) 3x x x for every 
𝑥 ∈ 𝑈. The functions  ( ), ( ), ( )x x x  define the degree of truth-membership,  indeterminacy-membership 
and falsity-membership,  respectively of 𝑥 ∈ 𝑈 .    

2.2 Definition: [7] Suppose and  be two single-valued neutrosophic sets on 𝑈 and are given by  

{ , ( ), ( ), ( ) : }x x x x x U  and { , ( ), ( ), ( ) : }x x x x x U . Then 

(i) if andonlyif ( ) ( ), ( ) ( ), ( ) ( ) .x x x x x x x U  

(ii) { , ( ),1 ( ), ( ) : }c x x x x x U  

(iii) ={< ,max( ( ), ( )),min( ( ), ( )), min( ( ), ( )) : }.x x x x x x x x U  

(iv) ={< ,min( ( ), ( )),max( ( ), ( )), max( ( ), ( )) : }.x x x x x x x x U   

3. m-GENERALIZED q-NEUTROSOPHIC SETS: 

     In this section first we define a m-generalized q-neutrosophic set as a further generalization of fuzzy set, 

Pythagorean fuzzy set, q-rung orthopair fuzzy set, intuitionistic fuzzy set, single valued neutrosophic set, single 

valued n-hyperspherical neutrosophic set and single valued spherical neutrosophic set. Then we present few 

operations between the m-generalized q-neutrosophic numbers. 

3.1 Definition: Suppose U is a universe set and x U . A m-generalized q-neutrosophic set (mGqNs) in U is 
described as: 

{ , ( ), ( ), ( ) : }x x x x x U  

where , , : [0, ] (o 1)U r r  are functions such that 0 ( ), ( ), ( ) 1x x x and 

3 3 3 30 ( ( )) ( ( )) ( ( )) ( , 1)
qm qm qm

x x x m q
m

 . 

     Here ( ), ( ), ( )x x x represent m-generalized truth membership, m-generalized indeterminacy 

membership and m-generalized falsity membership respectively of x U . The triplet , ,  is 
termed as m-generalized q-neutrosophic number (mGqNN for short). 
In particular, 
(i) when m=r=1 and q=3,  reduces to a single valued neutrosophic set [7]. 

(ii)  when m=3, r=q=1 and ( ) 0x x U ,  reduces to an intuitionistic fuzzy set [2]. 

(iii) when m=3, r=q=1 and ( ) ( ) 0x x x U ,  reduces to a fuzzy set [1]. 

(iv) when m=3, r= 1 and ( ) 0x x U ,  reduces to a q-Rung orthopair fuzzy set [5].  

(v) when m=3, r= 1, q=2 and ( ) 0x x U ,  reduces to a Pythagorean fuzzy set [3, 4]. 

(vi) For 3nr , m=1 and q=3n ( 1)n ,  reduces to a single valued n-hyperspherical neutrosophic set [8].  

(vii) For 3r , m=1 and q=6,  reduces to a single valued spherical neutrosophic set [8]. 

   Next we define few operations between m-generalized q-neutrosophic numbers.  

3.2 Definition: Suppose 1 1 1 1, ,  and 2 2 2 2, , be two m-generalized q-neutrosophic 

numbers defined on U and  be any real number >0. We define 
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(i) 

3

3 3
1 2 1 2 1 2 1 2

3 3 3 , ,
qm qm qm

m m m
 

(ii) 

3 3

3 3 3 3
1 2 1 2 1 2 1 2

3 3 3 3 3 3, ,
qm qm qm qmqm qm

m m m m m m
 

(iii) 

3

3
1 1 1 1

3 3 , ,
qmqm

m m
 

(iv) 

3 3

3 3
1 1 1 1

3 3 3 3, ,
qm qmqm qm

m m m m
 

3.3 Theorem: Suppose 1 1 1 1, ,  and 2 2 2 2, , be two m-generalized q-neutrosophic 

numbers defined on U and 1 2, ,  be any three real numbers >0. Then 

(i) 1 2 2 1 

(ii) 1 2 2 1 

(iii) 1 2 1 2( ) ( ) ( )  

(iv) 1 2 1 2( ) ( ) ( )  

(v) 1 2 1 1 1 2 1( ) ( ) ( )  

(vi) 1 2 1 1 1 2 1( ) ( ) ( )  

Proof: (i), (ii) are straight forward. 

(iii) We have, 

3

3 3
1 2 1 2 1 2 1 2

3 3 3 , ,
qm qm qm

m m m
.  
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1 2
3

3 3
1 2 1 2 1 2

3 3
1 2

( )

3 3 3 3 3 , ( ) , ( )

3 3 3

qmqm qm

qm qm

m m m m m

m m m

3

1 2 1 2, ,
qm

 

On the other hand, we have, 

1 2
3 3

3 3
1 1 1 2 2 2

3
1

( ) ( )

3 3 3 3, , , ,

3 3 3 3 3 3

qm qmqm qm

qm

m m m m

m m m m m m

3

3
2 1 2 1 2

3 , ,
qmqm

m

 

3

3 3
1 2 1 2 1 2

3 3 3 , ,
qmqm qm

m m m
 

Thus, we get, 1 2 1 2( ) ( ) ( ) . 

(iv) Similar to (iii) 
(v) We have, 

1 2

1 2 1 2

3

3
1 2 1 1 1 1

3 3( ) , ,
qmqm

m m
 

On the other hand, 
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1 2

1 1 2 2

1

1 1 2 1
3 3

3 3
1 1 1 1 1 1

3
1

( ) ( )

3 3 3 3, , , ,

3 3 3 3

qm qmqm qm

qm

m m m m

m m m m

2

1 2 1 2

1 2

1 2 1 2

3

3
1 1 1 1 1

3

3
1 1 1

3 3 3 , ,

3 3 , ,

qmqm

qmqm

m m m

m m

 

Thus we get, 1 2 1 1 1 2 1( ) ( ) ( ) . 

(vi) Similar to (v). 

3.4 Definition: The score of the mGqNN , , is defined as:  
2( ) .

3
S  

The ranking method for ranking the mGqNNs is given below: 
If , , and , , be two mGqNNs, then  

(I) if ( ) ( )S S , then  

(II) if ( ) ( )S S , then  
 

4. m-GENERALIZED q-NEUTROSOPHIC WEIGHTED AGGREGATION OPERATORS: 

       In this section first we define m-generalized q-neutrosophic weighted averaging aggregation operator 
(mGqNWAA) and m-generalized q-neutrosophic weighted geometric aggregation operator (mGqNWGA) and study 
their basic properties. 

4.1 Definition: Suppose , , ( 1,2,3,......., )k k k k k n  be a collection of mGqNNs defined on 

the universe set U. Then a m-generalized q-neutrosophic weighted averaging aggregation operator (mGqNWAA for 

short) is given as : nmGqNWAA  and is defined as: 

1 2 3 1 22 3 31, , ,........, ) ( ) ( ) ......... ( )( ) (n nnmGqNWAA w w w w  

where  is the collection of all mGqNNs defined on the universe set U, 1 2 3( , , ,......., )T
nw w w w w  is the 

weight vector of 1 2 3, , ,........( ), n  such that 0( 1,2,3,...., )kw k n  and 
1

1
n

k
k

w . 

      On the basis of the operational rules of the mGqNNs, we can get the aggregation result as described as 
Theorem 4.2. 

4.2 Theorem: Suppose , , ( 1,2,3,......., )k k k k k n  be a collection of mGqNNs defined on the 

universe set U and 1 2 3( , , ,......., )T
nw w w w w  is the weight vector of 1 2 3, , ,........( ), n  such that 
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0( 1,2,3,...., )kw k n  and 
1

1
n

k
k

w . Then 1 2 3, , ,...... ,( . ). nmGqNWAA  is also a mGqNN. 

Moreover, we have, 
3

3
1 2 3

1 1 1

3 3, , ,....( )...., , ,
k

k k

w qmqmn n n
w w

n k k k
k k k

mGqNWA
m

A
m

. 

Proof:  
The first part of the theorem can be proved easily. To show the rest part, let us use the method of mathematical 
induction on n. 
Step-1: For n=1, the proof is straight forward. So first take n=2.  
Then, 

1 2

1 1 2 2

1 2

1 2
3 3

3 3
1 1 1 2 1 1

1 2

,
) ( )

3 3 3

( )

3, , , ,

(

w qm qmqm qm
w w w w

m

mGqN

m m

WA

m

A
w w  

1 2

1 2 1 2

3

3 3
1 2 1 1 1 1

3
1

3 3 3 3 3 3 3 , ,

3 3

w w qmqm qm
w w w w

qm

m m m m m m m

m m

1 2

1 2 1 2

3

3
2 1 1 1 1

3 , ,
w w qmqm

w w w w

m

 

3

2 2 2
3

1 1 1

3 3 , ,
k

k k

w qmqm
w w

k k k
k k km m

. 

Thus the result is true for n=2. 
Step-2: Suppose that the result is true for n=p i.e;  

3

3
1 2 3

1 1 1

3 3, , ,....( )...., , ,
k

k k

w qmqmp p p
w w

p k k k
k k k

mGqNWA
m

A
m

 

Step-3: Take n=p+1.Then we have, 
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1

1

1 2 3 1

1 2 3 1

3

3

1 1 1

2

1

1

3

3

, , ,........,

) ( ) ( ) ....

(

..... ( )) ( )

3 3

)

3

(

, ,

3

(

k

k k

p

p

p p

w qmqmp p p
w w

k k k
k k k

wqm

p

p p

mGqNWAA

w w

m

w

m

w

m

w

m
1 1

1

3

1 1

3

3 3
1

1

, ,

3 3 3 3 3 3 3

p p

k p

qm
w w

p p

w w qqm qmp

k p
km m m m m m m

1 1
1 1

1 1

,

,p pk k

m

p p
w ww w

p k p k
k k

 

1

1 1

3

3 3
1 1 1

1 1 1

3

1 1 1
3

1 1 1

3 3 3 , ,

3 3 , ,

k p

p pk k

k

k k

w w qmqm qmp p p
w ww w

k p p k p k
k k k

w qmqmp p p
w w

k k k
k k k

m m m

m m
 

Thus the result is true for n=p+1 also. Hence, by the method of induction, the result is true for all n. 
 
       Let us explore some more results related to mGqNWAA  operator in the form of theorems 4.3-4.6.  

4.3 Theorem: Suppose , , ( 1,2,3,......., )k k k k k n  be a collection of m-Gq-NNs defined on 

the universe set U and 1 2 3( , , ,......., )T
nw w w w w  is the weight vector of 1 2 3, , ,........( ), n  such 

that 0( 1,2,3,...., )kw k n  and 
1

1
n

k
k

w . Then for 0 0 0 0, , (where  is the 

collection of all mGqNNs defined on the universe set U), we have 

0 1 0 2 0 3 0 0 1 2 3, , ,.....( ) ( )..., , , ,........,n nmGqNWAA mGqNWAA
. 

Proof:  
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3

3 3
0 0 0 0

3 3 3 , , ( 1,2,3,........, )
qm qm qm

k k k k k n
m m m

 

0 1 0 2 0 3 0
3

3 3
0 0 0

1 1 1

3
0

, , ,........,

3 3 3 3 3 , ( ) , (

3

( )

)

3

k

k k

n

w qmqm qmn n n
w w

k k k
k k k

qm

m m m m m

mGqNWAA

m m
1

1 1

3

3
0 0

1 1 1

3

3 3
0 0

1 1

3 , ,

3 3 3 ,

n
n n

k k
k kk

k k k k

k

k

qm
w wqm w wn n n

w w
k k k

k k k

w qmqm qmn n
w

k k
k k

m

m m m 0
1

, k
n

w
k

k

 

On the other hand, 0 1 2 3, , ,........( , )nmGqNWAA  

3

3
0 0 0 1

1 1 1

3 3
0 1

1 1

3 3, , , ,

3 3 3 3 3

k

k k

k

w qmqmn n n
w w

k k
k k k

wqm qmn n

k k

m m

m m m m m

3

0 0
1 1

, ,k k

qm
n n

w w
k k

k k

 

3

3 3
0 0 0

1 1 1

3 3 3 , ,
k

k k

w qmqm qmn n n
w w

k k k
k k km m m

      

Hence, 

0 1 0 2 0 3 0 0 1 2 3, , ,.....( ) ( )..., , , ,........,n nmGqNWAA mGqNWAA
. 

4.4 Theorem: (Idempotency) Suppose , , ( 1,2,3,......., )k k k k k n  be a collection of 

m-Gq-NNs defined on the universe set U and 1 2 3( , , ,......., )T
nw w w w w  is the weight vector of 



Neutrosophic Sets and Systems,Vol. 35, 2020                                                                            261 
 

 
Abhijit Saha, Florentin Smarandache, Jhulaneswar Baidya and Debjit Dutta, MADM USING m-GENERALIZED 

q-NEUTROSOPHIC SETS 

 

1 2 3, , ,........( ), n  such that 0( 1,2,3,...., )kw k n  and 
1

1
n

k
k

w . If 

0 0 0 0, ,  (where  is the collection of all mGqNNs defined on the universe set U) such that 

0 1,2,3,.......,k k n , then we have 1 2 3 0, , ,........,( )nmGqNWAA . 

Proof: We have, 1 2 3, , ,...... ,( . ). nmGqNWAA  

1

3

3

1 1 1

3

3
0 0 0

1 1 1

3
0

3 3 , ,

3 3 , ,

3 3

k

k k

k

k k

n
k

k

w qmqmn n n
w w

k k k
k k k

w qmqmn n n
w w

k k k

wqm

m m

m m

m m
1 1

3

0 0
1

3

3
0 0 0 0 0 0 0

, ,

3 3 , , , ,

n n
k k

k k

qm
w wn

k

qm qm

m m  

4.5 Theorem: (Monotonocity) Suppose , , and , ,k k k k k k k k  

( 1,2,3,......., )k n be two collections of mGqNNs defined on the universe set U and 

1 2 3( , , ,......., )T
nw w w w w  is the weight vector of 1 2 3, , ,........( ), n  as well as 

1 2 3, , ,.......( )., n such that 0( 1,2,3,...., )kw k n  and 
1

1
n

k
k

w . If 

, , ( 1,2,3,......., )k k k k k k k n , then 1 2 3, , ,...( ....., )nmGqNWAA  

1 2 3, , ,........,( )nmGqNWAA . 

Proof: Since , , for allk k k k k k k ,  

so 3 3

1 1 1 1 1 1

3 3 , ,
k k

k k k k

w wqm qmn n n n n n
w w w w

k k k k k k
k k k k k km m
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3 3

3 3

1 1 1 1

1 1

3

1

3 3 3 3 , ,
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k k

k

w wqm qmqm qmn n n n
w w

k k k k
k k k k
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m m
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k k

wqm qmqmn n n
w w

k k k
k k k

n n
w w
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w qmqmn n
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k k k
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m m 1

3

3

1 1 1

1 2 3 1 2 3( ))

3

3 32

0
3

( , , ,........, ( , , ,........,( ))

k

k k

n

w qmqmn n n
w w

k k k
k k k

n n

m m

S SmGqNWAA mGqNWAA  

     Hence by definition of score value and ranking method, we have, 1 2 3, , ,...( ....., )nmGqNWAA  

1 2 3, , ,........,( )nmGqNWAA . 

4.6 Theorem: (Boundedness) Suppose , , ( 1,2,3,......., )k k k k k n  be a collection of 

mGqNNs defined on the universe set U and 1 2 3( , , ,......., )T
nw w w w w  is the weight vector of 

1 2 3, , ,........( ), n  such that 0( 1,2,3,...., )kw k n  and 
1

1
n

k
k

w . Let us define two mGqNNs 

by: 
1 1 11 1 1
min , max , max , max , min , mink k k k k kk n k n k nk n k n k n

 

Then, 1 2 3,( , ,... )....., nmGqNWAA . 

Proof: Suppose 1 2 3, , ,........,( ,) ,nmGqNWAA . 

Then we have, 3 3 3
11

3 3 3max min
qm qm qm

k k kk nk nm m m
 

3 3 3
11

3 3 3max min
k k kw w wqm qm qm

k k kk nk nm m m
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3 3 3

3 3 3
1 11 1 1

3
1

3 3 3 3 3 3min max

3 3 min

k k kw w wqm qm qmqm qm qmn n n

k k kk n k nk k k

qm

kk n

m m m m m m

m m
1 1

3 3

3
1

1 1

3 3 max

min max

n n
k k

k k

qm qm
w wqm

kk n

k kk n k n

m m
 

Again, 
1 11 1 1

( min ) ( max )k k k
n n n

w w w
k k kk n k nk k k

 

1 1
1 11 11

( min ) ( max ) min max

n n
k k

k k k
w wn

w
k k k k kk n k nk n k nk

 

Similarly, we can get, 
1 1
min maxk kk n k n

. 

Hence 
1 1 11 1 1
min max max max min mink k k k k kk n k n k nk n k n k n

 

1 1 11 1 1

1 2 3

2 min max max 2 max min min2
3 3 3

( ) ( , , ,........, ( )( ))

k k k k k kk n k n k nk n k n k n

nS mGqNWAAS S

 

   Therefore by definition of score value and ranking method, we have,

1 2 3,( , ,... )....., nmGqNWAA . 

4.7 Definition: Suppose , , ( 1,2,3,......., )k k k k k n  be a collection of mGqNNs defined on 

the universe set U. Then a m-generalized q-neutrosophic weighted geometric aggregation operator (mGqNWGA 

for short) is given as : nmGqNWGA  and is defined as: 

1 2 3 1 22 3 31, , ,........, ) ( ) ( ) ......... ( )( ) (n nnmGqNWGA w w w w  

where  is the collection of all mGqNNs defined on the universe set U, 1 2 3( , , ,......., )T
nw w w w w  is the 

weight vector of 1 2 3, , ,........( ), n  such that 0( 1,2,3,...., )kw k n  and 
1

1
n

k
k

w . 

      On the basis of the operational rules of the mGqNNs, we can get the aggregation result as described as 
Theorem 4.2. 

4.8 Theorem: Suppose , , ( 1,2,3,......., )k k k k k n  be a collection of mGqNNs defined on the 

universe set U and 1 2 3( , , ,......., )T
nw w w w w  is the weight vector of 1 2 3, , ,........( ), n  such that 

0( 1,2,3,...., )kw k n  and 
1

1
n

k
k

w . Then 1 2 3, , ,...... ,( . ). nmGqNWGA  is also a mGqNN. 

Moreover, we have, 1 2 3, , ,...... ,( . ). nmGqNWGA  
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3 3

3 3

1 1 1

3 3 3 3, ,
k k

k

w wqm qmqm qmn n n
w

k k k
k k km m m m

. 

Proof: Similar to theorem 4.2. 

4.9 Theorem: Suppose , , ( 1,2,3,......., )k k k k k n  be a collection of mGqNNs defined on the 

universe set U and 1 2 3( , , ,......., )T
nw w w w w  is the weight vector of 1 2 3, , ,........( ), n  such that 

0( 1,2,3,...., )kw k n  and 
1

1
n

k
k

w . Then for 0 0 0 0, ,  (where  is the 

collection of all mGqNNs defined on the universe set U), we have 

0 1 0 2 0 3 0 0 1 2 3, , ,.....( ) ( )..., , , ,........,n nmGqNWGA mGqNWGA . 

Proof: Similar to theorem 4.3.  

4.10 Theorem: (Idempotency) Suppose , , ( 1,2,3,......., )k k k k k n  be a collection of 

mGqNNs defined on the universe set U and 1 2 3( , , ,......., )T
nw w w w w  is the weight vector of 

1 2 3, , ,........( ), n  such that 0( 1,2,3,...., )kw k n  and 
1

1
n

k
k

w . If 

0 0 0 0, ,  (where  is the collection of all mGqNNs defined on the universe set U) such that 

0 1,2,3,.......,k k n , then we have 1 2 3 0, , ,........,( )nmGqNWGA . 

Proof: Similar to theorem 4.4. 

4.11 Theorem: (Monotonocity) Suppose , , and , ,k k k k k k k k  

( 1,2,3,......., )k n be two collections of mGqNNs defined on the universe set U and 

1 2 3( , , ,......., )T
nw w w w w  is the weight vector of 1 2 3, , ,........( ), n  as well as 

1 2 3, , ,.......( )., n such that 0( 1,2,3,...., )kw k n  and 
1

1
n

k
k

w . If  

, , ( 1,2,3,......., )k k k k k k k n , then 1 2 3, , ,...( ....., )nmGqNWGA  

1 2 3, , ,........,( )nmGqNWGA . 

Proof: Similar to theorem 4.5. 

4.12 Theorem: (Boundedness) Suppose , , ( 1,2,3,......., )k k k k k n  be a collection of 

mGqNNs defined on the universe set U and 1 2 3( , , ,......., )T
nw w w w w  is the weight vector of 

1 2 3, , ,........( ), n  such that 0( 1,2,3,...., )kw k n  and 
1

1
n

k
k

w . Let us define two mGqNNs 

by: 
1 1 11 1 1
min , max , max , max , min , mink k k k k kk n k n k nk n k n k n

 

Then 1 2 3,( , ,... )....., nmGqNWGA . 
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Proof: Similar to theorem 4.6. 

5. MULTI ATTRIBUTE DECISION MAKING:  

     Consider a multi-attribute decision making problem which consists of m different alternatives A1, A2, ........., 
Al  which are evaluated under the set of n different attributes C1, C2,

 
......, Cn. Assume that an expert evaluates the 

given alternatives ( 1,2,..., )iA i l under the attribute ( 1,2,..., )jC j n  and the evaluation result is presented 

by the form of m-generalized q-neutrosophic numbers
 

, ,ij ij ij ij    such that 0 , , 1ij ij ij    and 

     3 3 3 30
qm qm qm

ij ij ij m
       

where 1,2,..., ; 1,2,...,i l j n  . Further assume that 

( 1,2,..., )jw j n is the weight of the attribute such jC such that 0( 1,2,..., )jw j n   and 
1

1
n

j
j

w


 . 

Then to determine the most desirable alternative (s), the proposed operators are utilized to develop a multi-attribute 
decision making with m-generalized q-neutrosophic information, which involves the following steps:  

Step-1 Arrange the rating values of the expert in the form of decision matrix    , , .ij ij ij ijl n l n
D    

 
 

  
Step-2: Construct aggregated m-generalized q-neutrosophic decision matrix.  In order to do that, the proposed 
operators can be utilized as follows: 

Let  
1i l

R R



 
be the aggregated m-generalized q-neutrosophic decision matrix, where 

       1 2 1 1 2 2, ,....., ...........i i i in i i n inR mGqNWAA w w w              

OR 

       1 2 1 1 2 2, ,....., ...........i i i in i i n inR mGqNWGA w w w         
 

 

Step-3: Calculate the score values   ( 1,2,..., )iS R i l  of m-generalized q-neutrosophic numbers
 

( 1,2,..., )iR i m . 

  
Step-4: Rank all the alternatives ( 1,2,..., )iA i l  and hence select the most desirable alternative(s).  

 CASE STUDY: 

    We consider a multi attribute decision making problem adapted from [15, 17, 18, 19]  to demonstrate the 
application of the proposed decision making method. 
    “Suppose there is an investment company that wants to invest a sum of money in the best option available. 
There is a panel with four possible alternatives in which to invest the money: (i) A1 is a car company, (ii) A2 is a 
food company, (iii) A3 is a computer company and (iv) A4 is an arms company. The investment company must take 
a decision according to the following attributes: 
(1) C1 is the risk, 
(2) C2 is the growth and 
(3) C3 is the environmental impact. 
     The attribute weight vector is given as: w=(0.35, 0.25, 0.40)T. The four alternatives ( 1,2,3,4)iA i   are to 

be evaluated using the m-generalized q-neutrosophic information by some decision makers or experts under the 

attributes ( 1,2,3)jC j  ”. 
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Step-1: The rating values of the expert(s) are given in the form of the following decision matrix D :  

 𝑐1 𝑐2 𝑐3 

1A  <0.3, 0.1, 0.4> <0.5, 0.3, 0.4> <0.3, 0.2, 0.6> 

2A  <0.8, 0.2, 0.3> <0.7, 0.1, 0.3> <0.7, 0.2 0.2> 

3A  <0.5, 0.4, 0.3> <0.6, 0.3, 0.4> <0.5, 0.1, 0.3> 

4A  <0.6, 0.1, 0.2> <0.7, 0.1, 0.2> <0.3, 0.2, 0.3> 

 
Step-2: Using the operator mGqNWAA , we construct the aggregated m-generalized q-neutrosophic decision 

matrix R  given below (taking m=3 and q=3): 
  

  

1A  <0.374405104, 0.173657007, 0.470431609> 

2A  <0.741650663, 0.168179283, 0.2550849> 

3A  <0.529784239, 0.213796854, 0.322237098> 

4A  <0.56691263, 0.131950791, 0.235215805> 

 
Step-3: The score values of the alternatives are calculated as: 
                   S(A1)=0.5767, S(A2)=0.7727, S(A3)=0.6645, S(A4)=0.7332 

Step-4: The ranking order of the alternatives are: 2 4 3 1A A A A  which coincides with the ranking order 

determined by Jun Ye [15, 17, 18, 19]  and hence the most desirable alternative is 2A .  

     Now if we want to utilize the mGqNWGA  operator instead of mGqNWAA  operator, then the steps for 
solving the multi attribute decision making problem are as follows: 

Step-1: The rating values of the expert(s) are given in the form of the following decision matrix D :  

 𝑐1 𝑐2 𝑐3 

1A  <0.3, 0.1, 0.4> <0.5, 0.3, 0.4> <0.3, 0.2, 0.6> 

2A  <0.8, 0.2, 0.3> <0.7, 0.1, 0.3> <0.7, 0.2 0.2> 

3A  <0.5, 0.4, 0.3> <0.6, 0.3, 0.4> <0.5, 0.1, 0.3> 

4A  <0.6, 0.1, 0.2> <0.7, 0.1, 0.2> <0.3, 0.2, 0.3> 

 
Step-2: Using the operator mGqNWGA , we construct the aggregated m-generalized q-neutrosophic decision 

matrix R  given below (taking m=3 and q=3): 
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1A  <0.34086581, 0.2179417, 0.504033104> 

2A  <0.73349173, 0.184246871, 0.268903022> 

3A  <0.52331757, 0.310497774, 0.331365356> 

4A  <0.472580665, 0.156129905, 0.250101937> 

 
 Step-3: The score values of the alternatives are calculated as: 
             S(A1)=0.5396, S(A2)=0.7601, S(A3)=0.6271, S(A4)=0.6887 

Step-4: The ranking order of the alternatives are: 2 4 3 1A A A A  which also coincides with the ranking 

order determined by Jun Ye [15, 17, 18, 19] and hence the most desirable alternative is still 2A .  

6. CONCLUSIONS: 

     In this paper, the notion of m-generalized q- neutrosophic sets is proposed and the basic properties of 
m-generalized q- neutrosophic numbers (mGqNNs for short) are presented. Also, various types of operations 
between the mGqNNs are discussed. Then, two types of m-generalized q- neutrosophic weighted aggregation 
operators are proposed to aggregate the m-generalized q- neutrosophic information. Furthermore, score of a 
mGqNN is proposed to ranking the mGqNNs. Utilizing the m-generalized q- neutrosophic weighted aggregation 
operators and score of a mGqNN, a multi attribute decision making method is developed, in which the evaluation 
values of alternatives on the attribute are represented in terms of mGqNNs and the alternatives are ranked 
according to the values of the score of mGqNNs to select the most desirable one. Finally, a practical example for 
investment decision making is presented to demonstrate the application and effectiveness of the proposed method. 
The advantage of the proposed method is that it is more suitable for solving multi attribute decision making 
problems because m-generalized q-neutrosophic sets (mGqNSs) are extensions of fuzzy sets, Pythagorean fuzzy 
sets, q-rung orthopair fuzzy sets, intuitionistic fuzzy sets, single valued neutrosophic sets, n-hyperspherical 
neutrosophic sets and single valued spherical neutrosophic sets. 
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ABSTRACT: Hesitant neutrosophic sets can accomodate more uncertainty compare to hesitant fuzzy sets and hesitant 
intuitionistic sets. On the other hand, triangular neutrosophic numbers are often used by the decision makers to evaluate their 
opinion in multi-attribute group decision making problems. Based on the combination of triangular neutrosophic numbers and 
hesitant neutrosophic sets, in this paper, we propose hesitant triangular neutrosophic numbers. Also, we discuss various types 
of operations between them including some properties. Then, we propose various types of hesitant triangular neutrosophic 
weighted aggregation operators to aggregate the hesitant triangular neutrosophic information. Furthermore, we introduce 
score of hesitant triangular neutrosophic numbers to ranking the hesitant triangular neutrosophic numbers. Based on the 
hesitant triangular neutrosophic weighted aggregation operators and score of hesitant triangular neutrosophic numbers, we 
develop a multi attribute decision making (MADM) approach, in which the evaluation values of alternatives on the attribute 
are represented in terms of hesitant triangular neutrosophic numbers and the alternatives are ranked according to the values of 
the score of hesitant triangular neutrosophic numbers to select the most desirable one. Finally, we give a practical example, 
including a comparision study with the other existing method, for enterprise resource planning system selection to verify the 
application and effectiveness of the proposed method. 

 
Keywords: Neutrosophic sets, hesitant triangular neutrosophic numbers, aggregation operators, score value, decision  
making.
_____________________________________________________________________________________________________

1. INTRODUCTION  
     In our real life, most of the mathematical problems do not contain exact or complete information about the 
given mathematicalmodeling. Therefore, fuzzy set theory by introduced Zadeh [01] is a proper tool to process 
inexact information because it allows the partial belongings of an element in a set with a membership function. 
Atanassov [02] generalized fuzzy sets to intuitionistic fuzzy sets by adding a non-membership function to 
overcome problems that contain incomplete information. In case of fuzzy sets and intuitionistic fuzzy sets, the 
membership (or non-membership) value of an element in a set is a unique value in the closed interval [0, 1]. But 
since 2009, researchers begin to investigate, what if the membership (non-membership) value of an element in a 
set is a discrete finite subset of [0, 1]. In order to tackle this situation, Torra [03] proposed the concept of a 
hesitant fuzzy set, which as an extension of a fuzzy set arises from our hesitation among a few different values 
lying between the number 0 and 1. Thus the hesitant fuzzy set can more accurately reflect the people’s hesitancy 
in stating their preferences over objectives compared to the fuzzy set and its classical extensions. Beg and Rashid 
[04] introduced the concept of intuitionistic hesitant fuzzy sets by merging the concept of intuitionistic fuzzy sets 
and hesitant fuzzy sets.Various researchers have analyzed the decision making problems under fuzzy, hesitant 
fuzzy, intuitionistic fuzzy and intuitionistic hesitant fuzzy environment in Li [05], Ye [06], Xia and Xu [07], Xu 
and Xia [08], Wei et al. [09], Xu and Xia [10], Xu and Xia [11], Xu and Zhang [12], Chen et al. [13], Qian et al. 
[14], Yu [15], Yu [16], Ye [17], Shi et al. [18], Pathinathan and Johnson [19], Joshi and Kumar [20], Liu [21], 
Nehi [22], Zhang [23], Chen and Huang [24], Yang et al. [25], Lan et al. [26] and Zhang et al. [27]. 
     Although intuitionistic fuzzy sets naturally include hesitancy degree to handle uncertain information, it cannot 
manage indeterminate information properly because it is dependent on memebership and non-membership 
degrees. To handle this situation, Smarandache [28] introduced the neutrosophic set which is basically a 
powerful general formal framework that generalizes the concept of the classical set, fuzzy set, intuitionistic fuzzy 
set. A neutrosophic set is characterized explicitly by truth-membership function, indeterminacy-membership  
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function and falsity membership function and it has applications on image segmentation in Gou and Cheng [29], 
Gou and Sensur [30], on clustering analysis in Karaaslan [31], on medical diagnosis problem in Ansari et al. [32] 
etc.The neutrosophic set theory have also studied in Wang et al. [33], Wang et al. [34], Gou et al. [35], Ye [36], 
Sun et al. [37], Ye [38] and Abdel Basset et al. [39]. The neutrosophic set cannot represent uncertain, imprecise, 
incomplete and inconsistent information with a few different values assigned by truth-membership degree, 
indeterminacy-membership degree and falsity-membership degree due to doubts of decision maker. In such a 
situation, all the decision making algorithms based on neutrosophic sets are difficult to use for such a decision 
making problem with three kinds of hesitancy information that exists in the real world. To overcome this 
situation, Ye [40] introduced the concept of hesitant neutrosophic sets which is characterized by three 
membership degrees, namely-truth membership degrees, indeterminacy membership degrees and falsity 
membership degrees which is a few different values lying between the number 0 and 1. 
       Aggregation operators play a vital role in many fields such as decision making, supply chain, personnel 
evaluation and financial investment to solve multi-criteria group decision making problems. A series of 
aggregation operatorsin Xia et al. [41], Wang et al. [42], Zhao et al. [43], and Peng [44] were developed based 
on fuzzy and hesitant fuzzy information and those were applied in solving decision-making problems. Xu [45], 
Wan and Dong [46], Wan et al. [47] and Xu and Yager [48] presented an averaging and geometric aggregation 
operators for aggregating the different intuitionistic fuzzy sets based information. Wang and Liu [49] proposed 
some Einstein weighted geometric operators for intuitionistic fuzzy sets. Liu et al. [50] proposed some 
generalized neutrosophic number Hamacher aggregation operators. Liu and Wang [51] defined few neutrosophic 
normalized, weighted Bonferroni mean operators.Chen and Ye [52] used single-valued neutrosophic dombi 
weighted aggregation operators for solving a multiple attribute decision-making problem. Some more 
aggregation operators on neutrosophic environment can be found in Zhao et al. [53], Liu and Shi [54] and Liu 
and Tang [55]. 
       Since Smarandache put forward the concept of neutrosophic sets, the neutrosophic number is given by Şubaş 
[56] subsequently, and it has been made much deeper by many authors in Abdel-Basset [57]. As a special 
neutrosophic number,Şubaş gave two special forms of single valued neutrosophic numbers such as single valued 
trapezoidal neutrosophic numbers and single valued triangular neutrosophic numbers on the real number set R. 
Now the theory of neutrosphic number has become the fundamental of neutrosophic decision making. For 
example; Deli and Şubaş [58] introduced the concepts of cut sets of neutrosophic numbers and also they applied 
to single valued trapezoidal neutrosophic numbers and triangular neutrosophic numbers. Finally they presented a 
ranking method by defining the values and ambiguities ofneutrosophic numbers. Also, by using the value and 
ambiguity index, Biswas et al. [59] presented a multi-attribute decision making method. Broumi et al. [60] gave 
an application shortest path problem under triangular fuzzy neutrosophic numbers. Deli and Şubaş [61] 
developed an approach to handle multicriteriadecision making problems under the single valued triangular 
neutrosophic numbers. Also, they presented some new geometric operators including weighted geometric 
operator, ordered weighted geometric operator and ordered hybrid weighted geometric operator.  Ye [62], 
Biswas et al. [63] and Deli [64] proposed some weighted arithmetic operators and weighted geometric operators 
to present some multi attribute decision making methods. Karaaslan [65] introduced Gaussiansingle valued 
neutrosophic numbers and applied to a multi attribute decision making. Öztürk [66] and Deli and Öztürk [67, 68] 
initiated concept of distance measure based on cut sets, magnitude function, 1. and 2. centroid point and 1. and 2. 
score function. Deli [69] defined concept of centroid point based on single valued trapezoidal neutrosophic 
numbers and examine several useful properties. Also, he developed hamming ranking value and Euclidean 
ranking value of single valued trapezoidal neutrosophic numbers. Chakraborty et al. [70] presented a decision 
making method by introducing different forms of triangular neutrosophic numbers including de-
neutrosophication techniques. Fan et al. [71] defined linguistic neutrosophic number Einstein sum, linguistic 
neutrosophic number Einstein product, and linguistic neutrosophic number Einstein exponentiation operations 
based on the Einstein operation and used them to develop some MADM problems. Garg and Nancy [72] 
introduced some linguistic single valued neutrosophic power aggregation operators and presented their 
applications to group decision making process. Zhao et al. [73] developed induced choquet integral aggregation 
operators with single valued neutrosophic uncertain linguistic numbers. Recently, Deli and Karaaslan [74] 
defined generalized trapezoidal hesitant fuzzy numbers and Deli [75] presented a TOPSIS method formulti-
criteria decision making problems by using the numbers. Some more trapezoidal/triangular hesitant fuzzy 
numbers can be found in Zhang et al. [76] and Ye [77]. 
    Motivated by the idea of triangular neutrosophic number, hesitant neutrosophic set and aggregation operators, 
the aim of this present article is: 

(1) To present the idea of hesitant triangular neutrosophic numbers. 
(2) To define few operations between hesitant triangular neutrosophic numbers and study their basic 

properties. 
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(3) To develop a few weighted aggregation operators such as hesitant triangular neutrosophic weighted 
arithmetic aggregation operator of type-1, hesitant triangular neutrosophic weighted arithmetic aggregation 
operator of type-2, hesitant triangular neutrosophic weighted geometric aggregation operator of type-1 and 
hesitant triangular neutrosophic weighted geometric aggregation operator of type-2. 

(4) To propose a decision making method based on the hesitant triangular neutrosophic weighted 
aggregation operators to handle multicriteria decision making problems with hesitant triangular neutrosophic 
information. 
    To do so, the rest of the article is arranged as follows: 
In section 2, we review some basic concepts. In Section 3, we propose hesitant triangular neutrosophic number 
and illustrate it with an example. Also, we discuss various types of operations between them including some 
properties. In section 4, we propose various types of hesitant triangular neutrosophic weighted aggregation 
operators to aggregate the hesitant triangular neutrosophic information. Furthermore, we introduce the score of a 
hesitant triangular neutrosophic number to ranking the hesitant triangular neutrosophic numbers. In section 5, 
based on the hesitant triangular neutrosophic weighted aggregation operators and score of hesitant triangular 
neutrosophic numbers, we develop a multi attribute decision making approach, in which the evaluation values of 
alternatives on the attribute are represented in terms of hesitant triangular neutrosophic numbers and the 
alternatives are ranked according to the values of the score of hesitant triangular neutrosophic numbers to select 
the best (most desirable) one. Also, we present a practical example for enterprise resource planning system 
selection to demonstrate the application and effectiveness of the proposed method. Section 6 is devoted for 
comparative study. In final section, we present the conclusion of the study. 

2. PRELIMINARIES:  
   A neutrosophic set is a part of neutrosophy which studies the origin, nature and scope of neutralities as well as 
their interactions with different ideational spectra and is a powerful general formal framework that generalizes 
the traditional mathematical tools such as fuzzy sets and intuitionistic fuzzy sets. 

Definition 1: [34] A single-valued neutrosophic set A on universe set E is given by       

A =   x, TA x , IA x , FA x  : x ∈ E  

where TA : E →  0,1 ,  IA : E →  0,1 , and FA : E →  0,1   satisfy the condition 0 ≤ TA x + IA x + FA x ≤ 3, for 
every x ∈ E. The functions  TA ,  IA , and FA  define the degree of truth-membership function,  indeterminacy-
membership function and falsity-membership function,  respectively. 

Definition 2: [52] A =   x, TA x , IA x , FA x  : x ∈ E and B =   x, TB x , IB x , FB x  : x ∈ E  be two single-
valued neutrosophic sets and λ ≠ 0. Then, 
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1 1 1

1 1 14. { , , 1 , 1 : }

1 ( ) ( ) ( )
1 1 1

( ) 1 ( ) 1 ( )

p p pp p p
A A A

A A A

A x x E

T x I x F x
T x I x F x



  

     

               
            

                

 

        By combining single-valued neutrosophic sets and hesitant fuzzy sets, Ye (2015a) introduced the single-
valued neutrosophic hesitant fuzzy set as a further generalization of the concepts of fuzzy set, intuitionistic fuzzy 
set, single-valued neutrosophic set. He also developed single-valued neutrosophic hesitant fuzzy weighted 
averaging operator and single-valued neutrosophic hesitant fuzzy weighted geometric operator and applied them 
to solve a multiple-attribute decision- making problem.  

Definition 3: [40] A hesitant neutrosophicset on universe set E is given by  

N =   x, T N x , I N x , F N x  : x ∈ E  

in whichT N(x), I N(x)  and F N(x)are three sets of some values in [0,1], denoting the possible truth-membership 
hesitant degrees, indeterminacy-membership hesitant degrees, and falsity-membership hesitant degrees of the 
element x ∈ E to the set N, respectively, with the conditions 0 ≤ δ , γ , η ≤ 1and   0 ≤ δ++γ+ + η+ ≤ 3, 
where 
δ ∈ T N x ,     γ ∈ I N x , η ∈ F N x ,  δ+ ∈ T N

+ x =  δ∈T N  x max δ , γ+ ∈

I N
+(x) =  γ∈I N (x) max⁡{γ},  andη+ ∈ F N

+(x) =  η ∈F N (x) max⁡{η }, for x ∈ E.   

For N1 =   x, T N1
 x , I N1

 x , F N1
 x  : x ∈ E  and N2 =   x, T N2

 x , I N2
 x , F N2

 x  : x ∈ E  be two hesitant 
neutrosophicsets and λ ≠ 0. Then, 

1 2 1 2 1 2

1 2 1 2 1 21 2 1 2 1 2

1 1

1 2 1 2 1 2 1 2
( ), ( ), ( ), ( ), ( ), ( )

1. { , ( ) ( ), ( ) ( ), ( ) ( ) : }

{ ,{ . },{ . },{ } : }
N N N N N N

N N N N N N

T x T x I x I x F x F x

N N x T x T x I x I x F x F x x X

x x X
     

       
     

       

       

1 2 1 2 1 2

1 2 1 2 1 21 2 1 2 1 2

1 1

1 2 1 2 1 2 1 2 1 2
( ), ( ), ( ), ( ), ( ), ( )

2. { , ( ) ( ), ( ) ( ), ( ) ( ) : }

{ ,{ . },{ . },{ } : }
N N N N N N

N N N N N N

T x T x I x I x F x F x

N N x T x T x I x I x F x F x x X

x x X
     

        
     

       

       

 

1 1 11 1 1

1 1 1 1
( ), ( ), ( )

3. . { ,{1 (1 ) },{ },{ } : }( 0)
N N NT x I x F x

N x x X  

  

    
  

      
 

1 1 11 1 1

1 1 1 1
( ), ( ), ( )

4. { ,{ },{1 (1 ) },{1 (1 ) } : }( 0)
N N NT x I x F x

N x x X   

  

   
  

          

Definition 4: [56] Let 1 1 1a b c  such that 1 1 1, , .a b c R A triangular neutrosophic number 

1 1 1( , , ); , ,A A AA a b c w u y   is a special neutrosophic set on the real number set R, whose truth-membership 

function : 0,A AR w     ,  indeterminacy-membership function  : ,1A AR u      and falsity-

membership function : ,1A AR y      are given as follows; 

 

 

1 11
1 11 1

1 11 1

1 1 1
1 1 1 1

1 1 1 1

( )
,,

( )
( ) , , ( ) ,

0, 1,

AA

A A
A A

b x u x ax a w
a x ba x b

b ab a
c x w x b u c x

x b x c v x b x c
c b c b

otherwise otherwise



  
     

     
      

  
 
 
  
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 

 

1 1
1 1

1 1

1 1
1 1

1 1

,

( ) ,

1,

A

A
A

b x y x a
a x b

b a
x b y c x

x b x c
c b

otherwise



  
 


   

  






 

        Since triangular neutrosophic numbers ([56], [58])  is a special case of trapozidial neutrosophic numbers 
(Ye 2017), operations of trapozidial neutrosophic numbers (Ye 2015b, 2017) based on algebraic sum and 
algebraic product for triangular neutrosophic numbers can be given as;  

 1 1 1If , , ; , ,A A AA a b c w u y   and  2 2 2, , ; , ,B B BB a b c w u y     be two triangular neutrosophic numbers 
and γ ≠ 0, then we have 

 

 1 2 1 2 1 22. . , , ; . , . , .B B B B BA A A A AA B a a bb c c w w u u u u y y y y        

 1 1 13. , , ;1 (1 ) , ,A A AA a b c w u y          

 1 1 14. , , ; ,1 (1 ) ,1 (1 )A A AA a b c w u y             

Definition 5: [56] Let  , , ; , ,A A AA a b c w u y   be atriangular neutrosophic number. Then,score function of 

A , is denoted by SY A  , is defined as: 

SY A  =
1

8
 a + b + c ×  2 + μA − νA − γA   

Definition 6: [61] Let A j =   aj, bj , cj ,  ; wA j
, uA j

, yA j
  j = 1,2, … , n  be a collection of triangular neutrosophic 

numbers. Then,  

1. Triangular  neutrosophic weighted arithmetic operatoris defined as; 

  Nao  A 1, A 2, … , A n =  wjA j

n

j=1

 

2. Triangular  neutrosophic weighted geometric operatoris defined as; 

 Ngo  A 1, A 2, … , A n =  A j
wj

n

j=1

 

where, w =  w1, w2, … , wn T  is a weight vector associated with the  Nao or  Ngo  operator, for every j ( j =
1,2, … , n) and wj ∈  0,1 with wj = 1n

j=1 . 

 
3. HESITANT TRIANGULAR NEUTROSOPHIC NUMBERS:  

     In this section, the concept of a hesitant triangular neutrosophic number is presented on the basis of the 
combination of triangular neutrosophic numbers and hesitant fuzzy sets as a further generalization of the concep 
ttriangular neutrosophic numbers. A hesitant triangular neutrosophic number is a special hesitant neutrosophic 
set on the real number R, whose truth-membership function, indeterminacy-membership function and falsity-
membership function are expressed by several possible functions. 

Definition 7. Let 1 1 1a b c   such that 1 1 1, , ,a b c R [0,1]( {1, 2,..., }),i
a mw i I m  

[0,1]( {1,2,..., })i
a nu i I n   and [0,1]( {1,2,..., }).i

a ky i I k   A hesitant triangular neutrosophic 

number 1 1 1( , , );{ : },{ : },{ : }ji l
a m n a kaa b c w i I u j I y l Ia is a special hesitant neutrosophic set on the 

real number R, whose truth-membership functions : 0, ( ),i
a m

HTRI
a R w i I       indeterminacy-membership 

function : 0, ( )j
a n

HTRI
a R u j I      and falsity-membership function : 0, ( )l

a k
HTRI
a R y l I      are given as 

follows; 

 1 1 1 2 1 21. , , ; . , . , .B B B BA A A AA B a a b b c c w w w w u u y y        
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1 1

1

1 1

1 1
{ : { : }}

1

1 1
{ : { : }}

( ){ }

{ : { : }} ,
( ){ }

,

,

,

{0}, otherwise

i
a m

i
ma

i
ma

w i I

w i I

HTRI
a

x a
b a

i I
c x
c b

a x b

x b

b x c

w  

1 1

1 1

1 1

1 1

1 1

1 1

1 1
{ : { : }}

1

1 1
{ : { : }}

{ : { :

( ){ }

{ : { : }}
( ){ }

( ){ }

,

,

,

{1}, otherwise

j
a n

j
na

j
na

l
ka

u j I

u j I

y l I

HTRI
a

HTRI
a

b x x a
b a

j I
x b c x

c b

b x x a
b a

a x b

x b

b x c

u

1 1

1 1

1 1
}}

1

1 1
{ : { : }}

: { : }}
( ){ }

,

{ ,

,

{1}, otherwise

k

l
ka

l
a

y l I

l I
x b c x

c b

a x b

y x b

b x c

 

Example 8. (1,2,5);{0.8,0.9},{0.4,0.5,0.6},{0.4}a is a hesitant triangular neutrosophic number whose 
truth membership function, indeterminacy membership function and falsity membership functionare given 
respectively by: 

( ) , ( )(5 ) (5 )
3 3

( )

{0.8( 1), 0.9( 1)}, 1 2 {1.6 0.6 }, 1 2
{0.8,0.9}, 2 {0.4}, 2

{0.2 }, 2 3{0.8 ,0.9 }, 2 5
{1}, otherwise{0}, otherwise

{1.6 0

HTRI HTRI
a a

HTRI
a

x xx x

x

x x x x x
x x

x xx

0.6 5 0.5 0.4 1 2
3 3 3

.6 ,1.5 0.5 ,1.4 0.4 }, 1 2
{0.4,0.5,0.6}, 2

{ ,0. , }, 5

{1}, otherwise

x x x

x x x x
x

x

 

4. OPERATIONS ON HESITANT TRIANGULAR NEUTROSOPHIC NUMBERS:  
     In this section, we introduce various operations between hesitant triangular neutrosophic numbers and 
demonstrate their basic properties. 

Definition 9. Let
1 1 11 1 1( , , );{ : },{ : },{ : }ji l

a m n a kaa b c w i I u j I y l Ia and 

2 2 22 2 2( , , );{ : },{ : },{ : }ji l
m n kb bba b c w i I u j I y l Ib be two hesitant triangular neutrosophic numbers 

and 0 , then 

1 2

1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1. ( , , );{ : { : }, { : }},

{ : { : }, { : }}, { : { : }, { : }}

i i
a m mb

j j l l
n n a k ka bb

a a b b c c w i I w i I

u j I u j I y l I y l I

a b
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1 2

1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

( , , );{ : { : }, { : }},{ :

{ : }, { : }}, { : { : }, { : }}

2. i i
a m mb

j j l l
n n a k ka bb

a a b b c c w i I w i I

u j I u j I y l I y l I

a b

1 1 1
( , , ) { : } { : } { : };{1 (1 ) : },{ : },{ : }3. ji l

a m n a kaa b c w i I u j I y l Ia
 

1 1

1

( , , ) { : } { : }

{ : }

;{ : },{1 (1 ) : },

{1 (1 ) : }

4. ji
a m na

l
a k

a b c w i I u j I

y l I

a
 

Theorem 10. Let
1 1 11 1 1( , , );{ : },{ : },{ : }ji l

a m n a kaa b c w i I u j I y l Ia ,  

2 2 22 2 2( , , );{ : },{ : },{ : }ji l
m n kb bba b c w i I u j I y l Ib and 

3 3 33 3 3( , , );{ : },{ : },{ : }ji l
c m n c kca b c w i I u j I y l Ic be three hesitant triangular neutrosophic numbers 

and 1 2, 0, , then 

1 2 1

( )

( ) )

1.

2.

3. . ( )
4. ( )

5. ( ) ( ) ( )
6. ( ) ( ) ( )
7. ( ) ( ) ( )
8. ( ( ) (

a b b a

a b b a

a b c a b c
a b c a b c

a b a b
a b a b
a b a b

a a 2 )a

 

 

Proof:1-2 straight forward.    

2

3 2 3 2
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1 1 1 2 3 2 3 2 3 2 3 2 3 2

3 2 3 2 3 2 3 2
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1 2 3 1
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 Hence from eq. 1-2, we have, ( ) ( )a b c a b c . 
4. Proof is similar to 3 



Neutrosophic Sets and Systems, Vol. 35, 2020                                                                                                    276 

 

Abhijit Saha, Irfan Deli, and Said Broumi,   HESITANT Triangular Neutrosophic Numbers and Their Applications 

to MADM  

 

1 2

1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2

, , );{ : { : }, { : }},

{ : { : }, { : }}, { : { : }, { : }}

( ), ), ));{1 (1 (

(5. ( )

( ( (

i i
a m mb

j j l l
n n a k ka bb

a a b b c c w i I w i I

u j I u j I y l I y l I

a a b b c c

a b

1

2 1 2

1 2

1 2 1 2 1

2 1 2 1 2 1 2

1 2

)) : { : },

{ : }},{( ) : { : }, { : } }, {( ) :

{ : }, { : }}

i
a m

j ji
m n nab b

l l
a k kb

w i I

w i I u j I u j I

y l I y l I

 

1 2

1 2 1 2

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

( , , );{1 (1 ) (1 ) : { : }, { : }},

{ : { : }, { : }},{ : { : }, { : }} (3)

i i
a m mb

j j l l
a n n a k kbb

a a b b c c w i I w i I

u j I u j I y l I y l I
 

and 

1 1

1 2

2 2

1 1 1 1 1 1 1

1 1 2 2 2 2 2

2 2 2 2

1

( , , );{1 (1 ) : { : }},{ : { : }},

{ : { : }} ( , , );{1 (1 ) : { : }},

{ : { : }},{ : { : }}

(

( ) ( ) i j
a m a n

l i
a k mb

j l
n kbb

a b c w i I u j I

y l I a b c w i I

u j I y l I

a

a b

1 2

1 2 1 2

2 1 2 1 2 1 2

1 2 1 2 1 2 1

2 1 2 1 2

1 2 1

, , );{(1 (1 ) ) (1 (1 ) )

(1 (1 ) )(1 (1 ) ) : { : }, { : }},{ :

{ : }, { : }},{ : { : }, { : }}

( ,

i i
a m mb

j j l l
a n n a k kbb

a b b c c

w i I w i I

u j I u j I y l I y l I

a a b
1

2 1 2

1 2

2 1 2 1 2 1

2 1 2 1 2 1 2

1 2

, );{1 (1 ) (1 ) : { : },

{ : }}, { : { : }, { : }},{ :

{ : }, { : }} (4)

i
a m

i j j
m a n nb b

l l
a k kb

b c c w i I

w i I u j I u j I

y l I y l I

 

Hence from eq. 3-4, we have ( ) ( ) ( )a b a b . 
6.  Proof is similar to 5 
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Hencefrom eq. 5-6, we have 1 2 )( a = 1 2( ) ( )a a . 
8. Proof is similar to 7 

Definition 11. Let
1 1 11 1 1( , , );{ : },{ : },{ : }ji l

a m n a kaa b c w i I u j I y l Ia  and 

2 2 22 2 2( , , );{ : },{ : },{ : }ji l
m n kb bba b c w i I u j I y l Ib be two hesitant triangular neutrosophic numbers 

and 0 , then 
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Theorem 12. Let
1 1 11 1 1, , );{ : },{ : },{ : }( ji l

a m n a kaa b c w i I u j I y l Ia ,  

2 2 22 2 2( , , );{ : },{ : },{ : }ji l
m n kb bba b c w i I u j I y l Ib and 

3 3 33 3 3( , , );{ : },{ : },{ : }ji l
c m n c kca b c w i I u j I y l Ic be three hesitant triangular neutrosophic numbers 

and 1 2, 0, , then 
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Hence from eq. 7-8, we have, ( ) ( )a b c a b c . 
4. Proof is similar to 3. 
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6. Proof is similar to 5 
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8. Proof is similar to 7. 
 
5. HESITANT TRIANGULAR NEUTROSOPHIC WEIGHTED AGGREGATION OPERATORS:  

    This section deals with various types of hesitant triangular neutrosophic weighted aggregation operators along 
with their basic properties. 

Definition 13: Let ( , , );{ : },{ : },{ : }
j j j j j j

i r l
j j j j a m a n a ka b c w i I u r I y l Ia  (j=1, 2, 3,….., n) be a 

collection of hesitant triangular neutrosophic numbers. Then the hesitant triangular neutrosophic weighted 
arithmetic aggregation operator of type-1 (

1THTNWAAO  for short) is defined as: 
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where jw  is the weight of  ja  (j=1,2,3,……, n) such that 0jw  and 
1

1
n

j
j

w . 

Theorem 14: Let ( , , );{ : },{ : },{ : }
j j j j j j

i r l
j j j j a m a n a ka b c w i I u r I y l Ia  (j=1, 2, 3,….., n) be a 

collection of hesitant triangularneutrosophic numbers. Then 
1 1 2 3, , ,......,T nHTNWAAO a a a a  is a hesitant 

triangular neutrosophic number and 

1 1 2 3
1

1 1

1 1 1
( , , ,......, ) ( , , ),{1

{ : }},{ { : }},{ { : }}

(1 ) :

: :
j j j j j j

n
j

T n j j j j j j
j

n n
i r lj j

j a m j a n j a k
j j

n n n w
jk

j j j

w w
jm jrw i I u r I y l I

w w wHTNWAAO a a a a a b c

 



Neutrosophic Sets and Systems, Vol. 35, 2020                                                                                                    285 

 

Abhijit Saha, Irfan Deli, and Said Broumi,   HESITANT Triangular Neutrosophic Numbers and Their Applications 

to MADM  

 

where jw  is the weight of  ja  (j=1,2,3,……,n) such that 0jw  and 
1

1
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w . 

Proof: Let us prove the result using the method of mathematical induction. For n=2, 
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Thus the result is true for n=2. Let us assume that the result is true for n=s. Then 

1 1 2 3( , , ,......, )T sHTNWAO a a a a  

1 1

1

1 1 1
( , , );{1 { : }},{ { : }},

{ { : }}

(1 ) : :

:

j j j j

j j

s s
i rj j

j j j j j j j a m j a n
j j

s
lj

j a k
j

s s s w w
j j

j j j

w
j

w i I u r I

y l I

w w wa b c

Now for n=s+1, we have, 
1 1 2 3 1( , , ,......, )T sHTNWAO a a a a  

1 1

1 1
1

1

1 1 1

1 1 1

( , , );{1 { : }}, { { : }},

{ { : }} ( )

( , , ),{1 {

(1 ) : :

:

(1 ) :

j j j j

j j

j

s s
i r

j j j j j j j a m j a n
j j

s
l

j a k s s
j

s

j j j j j j j a
j

j j

j

j

s s s w w
j j

j j j

w
j

s s s w
j

j j j

w i I u r I

y l I

w

w w w

w

w w w

a b c

a

a b c

1 1
1 11 1 1 1 1

1

1 1 1

1 1 1 1 1 1 ( 1)
1

1

: }}, { : }},

{ { : }

{ : } { : } { :

:

{ } , , ;: {1 (1 ) :

}{ : },{ :

j j j

j j

s s
s ss s s s s

s
i r

m j a n
j

l
j a k

w wi r l
s a m a n as s

jw
j

s

s s s s s s s
j

j sw w
j

i I u r I

y l I

w i I u r I y l I

a b cw w w

1

1

1 1 1 1 1 1

( 1)
1

1

1 1 1

( 1)
1

( , , );

{(1 ) ( ) (1 (1 ) ): { : },(1 ) 1 (1 ) (1 (1 ) )

}}
s

s
j j

k

j j s s j j s s j j s s

s
w i

s j a m
j

j js

s s s

j j j
sw ww

j js
j

w a w b w c

w i I

w w wa b c

 



Neutrosophic Sets and Systems, Vol. 35, 2020                                                                                                    286 

 

Abhijit Saha, Irfan Deli, and Said Broumi,   HESITANT Triangular Neutrosophic Numbers and Their Applications 

to MADM  

 

11 1 1 1

1 11

1
1

1
1

1

1
1

{ : }},{( ) { : }, { : }},

) { : }, { :

:

{( }: }

j j ss s s s

j j s ss

s
i r r

s a m j a n a n
j

l l
j a k a k

j sw w
j s

s

j

j sw w
j s

w i I u r I u r I

y l I y l I

 

11 1 1 1

1 1 1 1 1 1
1

1
1

1

1

1
1 1 1

1

( , , );{1 (( ) ) : { : },

{ : }}, {( ) { : }, { : }},

)

(1 )

:

{(

j j

j j ss s s s

s
i

j j s s j j s s j j s s j a m
j

s
i r r

s a m j a n a n
j

j s

j s

s s s w w
j s

j j j

w w
j s

jw
j

w a w b w c w i I

w i I u r I u r I

w w wa b c

1 11

1 1

1 1

1
1 1 1

1 1 1
1

1

1
1 { : }, { :

( , , ),{1 : { : }},{ { : }},

{ : }

}

(1 ) :

{ }

: }

:

j j s ss

j j j j

j j

l l
j a k a k

s s
i r

j j j j j j j a m j a n
j j

l
j a k

j j

s

j
s s s w w

j j
j j j

s

j

s

j

w
s

w
j

y l I y l I

w i I u r I

y l I

w w wa b c

     
Thus the result is true for n=s+1 also. Hence by the principle of mathematical induction, the result is true for any 
natural number n.

 

Theorem 15: Let ( , , );{ : },{ : },{ : }
j j j j j j

i r l
j j j j a m a n a ka b c w i I u r I y l Ia  (j=1, 2, 3,….., n) be a 

collection of hesitant triangular neutrosophic numbers. Then for any hesitant triangular neutrosophic number , 
we have, 
(i) 

1 11 2 3 1 2 3, , ,......, , , ,......,T n T nHTNWAAO a a a a HTNWAAO a a a a  

(ii) 
1 1 2 3, , ,......, if for eachT n jHTNWAAO a a a a a j   

Proof: Straight Forward. 

Definition 16: Let ( , , );{ : },{ : },{ : }
j j j j j j

i r l
j j j j a m a n a ka b c w i I u r I y l Ia  (j=1, 2, 3,….., n) be a 

collection of hesitant triangular neutrosophic numbers. Then the hesitant triangular neutrosophic weighted 
geometric aggregation operator of type-1 (

1THTNWGAO  for short)  is defined as: 

1 1 2 3 1 1 2 2 3 3( , , ,......, ) ) ( ) ( ) ........ ( )(T n n nw w w wHTNWGAO a a a a a a a a  

where jw  is the weight of  ja  (j=1,2,3,……,n) such that 0jw  and 
1

1
n

j
j

w . 

Theorem 17: Let ( , , );{ : },{ : },{ : }
j j j j j j

i r l
j j j j a m a n a ka b c w i I u r I y l Ia  (j=1,2,3,…..,n) be a 

collection of hesitant triangularneutrosophic numbers. Then 
1 1 2 3( , , ,......, )T nHTNWGAO a a a a  is a hesitant 

triangular neutrosophic number and 
1 1 2 3( , , ,......, )T nHTNWGAO a a a a  

1 1 1 1 1

1

( , , ); { : }}, {1 ) { : }},

{1 ) { : }}

: (1 :
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n
l
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w
j

w i I u r I

y l I

a b c

 

where jw  is the weight of  ja  (j=1,2,3,……,n) such that 0jw  and 
1

1
n

j
j

w . 

Proof: Similar to the proof of Theorem 14. 

Theorem 18: Let ( , , );{ : },{ : },{ : }
j j j j j j

i r l
j j j j a m a n a ka b c w i I u r I y l Ia  (j=1, 2, 3,….., n) be a 

collection of hesitant triangular neutrosophic numbers. Then for any hesitant triangular neutrosophic number , 
we have, 
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(i) 
1 11 2 3 1 2 3, , ,......, , , ,......,T n T nHTNWGAO a a a a HTNWGAO a a a a  

(ii) 
1 1 2 3, , ,......, if for eachT n jHTNWGAO a a a a a j   

Proof: Straight forward . 

Definition 19: Let ( , , );{ : },{ : },{ : }
j j j j j j

i r l
j j j j a m a n a ka b c w i I u r I y l Ia  (j=1, 2, 3,….., n) be a 

collection of hesitant triangular  neutrosophic numbers. Then the hesitant triangular neutrosophic weighted 
arithmetic aggregation operator of type-2 is denoted by 

2 1 2 3( , , ,......, )T nHTNWAAO a a a a  and is defined by: 

2 1 2 3 1 1 2 2 3 3( , , ,......, ) ) ( ) ( ) ........ ( )(T n n nw w w wHTNWAAO a a a a a a a a  

where jw  is the weight of  ja  (j=1,2,3,……,n) such that 0jw  and 
1

1
n

j
j

w . 

Theorem 20: Let ( , , );{ : },{ : },{ : }
j j j j j j

i r l
j j j j a m a n a ka b c w i I u r I y l Ia  (j=1, 2, 3,….., n) be a 

collection of hesitant triangular neutrosophic numbers. Then 
2 1 2 3( , , ,......, )T nHTNWAAO a a a a  is a hesitant 

triangular neutrosophic number and 
2 1 2 3( , , ,......, )T nHTNWAAO a a a a  
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where jw  is the weight of  ja  (j=1,2,3,……,n) such that 0jw  and 
1

1
n

j
j

w . 

Proof:For n=2, we have, 
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Thus the result is true for n=2. Let us assume that the result is true for n=s. 
Then we have, 
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 Now for n=s+1, we have, 
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Thus the result is true for n=s+1 also. Hence by the principle of mathematical induction, the result is true for any 
natural number n. 

Theorem 21: Let ( , , );{ : },{ : },{ : }
j j j j j j

i r l
j j j j a m a n a ka b c w i I u r I y l Ia  (j=1, 2, 3,….., n) be a 

collection of hesitant triangular neutrosophic numbers. Then for any hesitant triangular neutrosophic number , 
we have, 

(i) 
2 21 2 3 1 2 3, , ,......, , , ,......,T n T nHTNWAAO a a a a HTNWAAO a a a a  

(ii) 
2 1 2 3, , ,......, if for eachT n jHTNWAAO a a a a a j   

Proof: Straight forward . 

Definition 22: Let ( , , );{ : },{ : },{ : }
j j j j j j

i r l
j j j j a m a n a ka b c w i I u r I y l Ia  (j=1, 2, 3,….., n) be a 

collection of hesitant triangular neutrosophic numbers. Then the hesitant triangular neutrosophicweighted 
geometric aggregation operator of type-2 is denoted by 

2 1 2 3( , , ,......, )T nHTNWGAO a a a a  and is defined by: 

2 1 2 3 1 1 2 2 3 3( , , ,......, ) ) ( ) ( ) ........ ( )(T n n nw w w wHTNWGAO a a a a a a a a  

where jw  is the weight of  ja  (j=1,2,3,……, n) such that 0jw  and 
1

1
n

j
j

w . 

Theorem 23: Let ( , , );{ : },{ : },{ : }
j j j j j j

i r l
j j j j a m a n a ka b c w i I u r I y l Ia  (j=1, 2, 3,….., n) be a 

collection of hesitant triangular neutrosophic numbers. Then 
2 1 2 3( , , ,......, )T nHTNWGAO a a a a  is a hesitant 

triangular neutrosophic number and 
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w

 

where jw  is the weight of  ja  (j=1,2,3,……,n) such that 0jw  and 
1

1
n

j
j

w .

 

Proof: Similar to the proof of Theorem 20. 
 
Theorem 24: Let ( , , );{ : },{ : },{ : }

j j j j j j
i r l

j j j j a m a n a ka b c w i I u r I y l Ia  (j=1, 2, 3,….., n) be a 

collection of hesitant triangular neutrosophic numbers. Then for any hesitant triangular neutrosophic number , 
we have, 
(i) 

2 21 2 3 1 2 3, , ,......, , , ,......,T n T nHTNWGAO a a a a HTNWGAO a a a a  

(ii) 
2 1 2 3, , ,......, if for eachT n jHTNWGAO a a a a a j   

Proof: Straight forward . 

Definition 25: Let 1 1 1( , , );{ : },{ : },{ : }ji l
a m n a kaa b c w i I u j I y l Ia  be a hesitant triangular 

neutrosophic number. Then the score of a  is defined by: 
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1 1 1
1 1 11 1 1

1 1 11 2
3 max{ , , }

( ) ( )
m n k

j j j
j j j

a b c
m n ka b c

S a  

Where { : }, { : }, { : }
j j j j j j

i r l
j a m j a n j a kw i I u r I y l I

 
( , , );{ : },{ : },{ : } ( 1,2)

j j j j j j
i r l

j j j j a m a n a ka b c w i I u r I y l I jIf a be two hesitant triangular 

neutrosophic numbers, then, the comparison method is given as; 

1 2 1 2

1 2 1 2

I. If ( ) ( ) then
II. If ( ) ( ) then

S a S a a a
S a S a a a



 
 

 

5. APPLICATION OF HESITANT TRAPEZOIDAL NEUTROSOPHIC NUMBERS: 

    In this section, we apply the weighted aggregation operators and the score function of hesitant triangular 
neutrosophic numbers to the multi-attribute decision-making problem with hesitant triangular neutrosophic 
information. 
    Let 1 2 3{ , , ,....., }mX A A A A  be a set of alternatives, 1 2 3{ , , ,....., }nA c c c c be a set of attributes and 

1 2 3{ , , ,....., }nw w w w w be a set of weights ( jw  is the weight of  attribute jc  (j=1,2,3,……,n) such that 

0jw  and 
1

1
n

j
jw .) In this case, the characteristic of the alternative ( 1,2,..., )iA i m on attribute

( 1, 2,..., )j njc is represented by the following form of a hesitant triangular neutrosophic number: 

( , , );{ : },{ : },{ : }
ij ij ij ij ijij

p r l
ij ij ij ij m a n a kaa b c w p I u r I y l IA . 

Now, we construct a multi-attribute decision making method by the following algorithm: 
 
 ALGORITHM: 

Step-1: Express the evaluation results of the expert based on the alternative ( 1,2,..., )i i mA on attribute 
cj (1,2, … , 𝑛) in terms of hesitant triangular neutrosophic numbers 𝑥𝑖𝑗  as a mn Table. 

Step-2: Compute the aggregation values ( 1, 2,..., ) ( 1, 2) ( 1, 2,..., ) ( 1, 2)
GA

k kTT
i ig i m k or g i m k  of 

( 1,2,..., )i i mA as; 

1 2( , ,..., ) ( 1,2,..., ) ( 1,2)
A

k
k

T
i T i i ing A A A i m kHTNWAAO

 
or 

1 2( , ,..., ) ( 1,2,..., ) ( 1,2)
G
k

k

T
i T i i ing A A A i m kHTNWGAO

 

Step-3: Calculate the score values of ( 1, 2,..., ) ( 1, 2) ( 1, 2,..., ) ( 1, 2)
GA

k kTT
i ig i m k or g i m k  of 

( 1,2,..., )i i mA  based on Definition 25. 
Step-4: Rank the alternatives by using definition 25. 
 
Example 22:  
     Let us consider a decision making problem adapted from Wei et al. (2017). Suppose an organisation plans to 
implement enterprise resource planning (ERP) system. The first step is to form a project team that consists of 
CIO and two senior representatives from user departments. By collecting all possible information about ERP 
vendors and systems, project team chooses five potential ERP systems Ai (i=1, 2, 3, 4, 5) as candidates. The 
company employs some external professional organizations (or experts) to aid this decision making. The project 
team selects four attributes to evaluate the alternatives: function and technology 𝑐1, strategic fitness 𝑐2 , vendor’s 
ability 𝑐3 and vendor’s reputation 𝑐4. The five possible ERP systems Ai (i=1, 2, 3, 4, 5) are to be evaluate during 
the hesitant triangular neutrosophic numbers by the decision makers under the above four attributes whose 
weighting vector is 𝑤 =  0.3, 0.3, 0.2, 0.2 . 
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Step-1: We express the initial evaluation results of the expertforfivepossiblealternativesbased on 
fourattributesbythe form of hesitant triangular neutrosophic numbers, as shownin Table 1. 
 

Table 1:The evaluation result by the expert is shown in the below table 

 

Step-2:We compute the aggregationvalues 1 ( 1, 2,..., 5)
AT

ig i  of ( 1,2,...,5)i iA  as; 

1
1 11 12 13 141 ( , , , )

<(0.30,0.51,0.52); {0.494124,0.522409, 0.526880, 0.553333}, {0.299254,0.308624,0.319973,0.329992,0.416080, 
0.429108, 0.444888,0.458818},{0.262529, 0.301566,0.278077,0.

AT
Tg A A A AHTNWAAO

319426, 0.323211, 0.371272, 
0.342353, 0.393260,0.310519,0.356693, 0.328909,0.377818,0.382294, 0.439141,0.412567,0.465148}>

 

1
1 21 22 23 242 ( , , , )

<(0.32,0.47,0.58); {0.468719,0.481089,0.617891,0.626787},{0.376740,0.393934, 0.399052,0.417264,0.416754,
{0.389321,0.447212,0.403779, 0.435774,0.441436,0.461583},0.4638

AT
Tg A A A AHTNWAAO

21,0.430672,0.494712, 0.446666,0.513085}>  

1
1 31 32 33 343 ( , , , )

<(0.39,0.44,0.51);{0.419636, 0.457406,0.434930,0.471704,0.467623,0.502270,0.481653, 0.515387,0.344568,
0.387223, 0.361840,0.403371,0.398762, 0.437891, 0.414606,0.452704}

AT
Tg A A A AHTNWAAO

,{0.456007,0.505058,0.494527, 
0.547722,0.497111, 0.550583, 0.539102,0.597092},{0.389321, 0.448274,0.479310,0.460489,
 0.416275,0.530219,0.403779, 0.464922,0.497111,0.477590, 0.431735,0.549910}>

 

1
1 41 42 43 444 ( , , , )

<(0.39,0.44,0.51);{0.398762,0.437891, 0.476592,0.510656,0.419636,0.457406, 0.494764,0.527644},{0.439833,
0.451737,0.505235,0.518910,0.520235,0.534315, 0.597593,0.613767

AT
Tg A A A AHTNWAAO

,0.496724,0.510168, 0.570586,0.586030,0.587525,
 0.603427, 0.674889,0.693156},{0.232461,0.267027,0.282842,0.246228,0.306007,0.351510, 0.372328,0.324130}>
1

15 51 52 53 54( , , , )

<(0.39,0.49,0.53);{0.365425,0.388147,0.427055, 0.447570,0.426353,0.446894,
0.482066,0.500612,0.463497,0.482708,0.515603,0.532948,0.515010, 0.532376,0.562112,0.577792},{

AT
Tg A A A AHTNWAAO

0.328749,
 0.356519,0.377634,0.409533,0.351510,0.381202,0.403779,0.437887,0.375847, 0.407595,0.431735,0.468204},

       {0.267027,0.275388,0.282842,0.332644,0.343059,0.352345,  0.301566,0.311008,0.319426,0.375670, 0.387433,
0.397920,0.328749,0.339042,0.348219, 0.409533,0.422356,0.433787,0.371272,0.382897, 0.393260,0.462505,
0.476986,0.489897}>

 



Neutrosophic Sets and Systems, Vol. 35, 2020                                                                                                    294 

 

Abhijit Saha, Irfan Deli, and Said Broumi,   HESITANT Triangular Neutrosophic Numbers and Their Applications 

to MADM  

 

Step-3: Wecalculate the score values of ( 1, 2,..., 5)
A

kT
ig i  of ( 1,2,...,5)i iA  as

1 0.494124 0.522409  0.526880  0.553333

0.299254 0.308624 0.319973 0.329992 0.416080 0.429108 0.444888 0.458818

0.262529 0.301566 0.278077 0.319426 0.323

1[2 ( )
4

1 ( )
8
1 ( 211 0

16

(0.30 0.51 0.52)
0.523

( )S A

.371272 0.342353 0.393260

0.310519 0.356693 0.328909 0.377818 0.382294 0.439141 0.412567 0.465 )

1.529

8

7,

14

2 0.524186 0.375842 0.3540481.33
1.56

  
Similarly, we have; 2 3 4 51.3244, 1.2687, 1.4110, 1.5235.( ) ( ) ( ) ( )S A S A S A S A  
 

Step-4: Since 1 5 4 2 3( ) ( ) ( ) ( ) ( )S A S A S A S A S A , So 1 5 4 2 3A A A A A .

 

    Thus we conclude that 1A  is the best (most desirable) ERP system. On the other hand, if we apply the other 

proposed weighted aggregation operators such as 
1THTNWGAO , 

2THTNWAAO , 
2THTNWGAO for 

computing the best alternative(s), then step 2 of the proposed approach has been executed for each weighted 

aggregation operators and hence their corresponding hesitant triangular neutrosophic number has been 

constructed. Finally, based on these, the score values of the aggregated hesitant triangular neutrosophic numbers 

are computed and ranking has been done which are summarized in table-2. We can conclude from table-2 that 

although the ranking orders of the alternatives are slightly different; the best (most desirable) alternative is still

1A in all cases. 

 
Table-2: Ranking order of alternatives 

 
 
6. COMPARATIVE STUDY: 

    In order to compare the performance of the proposed method with some existing methods (Ye 2013a, Ye 2014, 

Ye 2015a, Ye 2015b, Liu 2016, Abdel-Basset et al. 2017, Wei et al. 2017), a comparative study is presented and 

their corresponding final ranking are summarized in table 3. From table-3, it is clear that although the ranking 

order of the alternatives are slightly different, but the best (most desirable) alternative is the same as found in the 

existing approaches (Ye 2013a, Ye 2014, Ye 2015a, Ye 2015b, Liu 2016, Abdel-Basset et al. 2017). Thus, our 

proposed method can be suitably utilized to solve the multi attribute decision making problems than the other 

existing methods due to the fact that more fuzziness and uncertainties are involved in our proposed approach. 
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Table 3: Comparative study 

Existing 
approach 

Ranking Our proposed 
method 

Ranking Best 
alternative 

 
 
 
 

Ye [36] 

 
 
 

2 4 3 1A A A A  

1THTNWAAO  2 4 3 1A A A A  2A  

1THTNWGAO  2 3 4 1A A A A  2A  

2THTNWAAO  2 4 1 3A A A A  2A  

2THTNWGAO  2 1 4 3A A A A  2A  

 
 
 

Ye [17] 

 
 
 

2 4 3 1A A A A  

1THTNWAAO  2 4 3 1A A A A  2A  

1THTNWGAO  2 3 4 1A A A A  2A  

2THTNWAAO  2 4 1 3A A A A  2A  

2THTNWGAO  2 1 4 3A A A A  2A  

 
 
 
 

Ye [40] 

 
 
 

2 4 3 1A A A A  

1THTNWAAO  2 4 3 1A A A A  2A  

1THTNWGAO  2 3 4 1A A A A  2A  

2THTNWAAO  2 4 1 3A A A A  2A  

2THTNWGAO  2 1 4 3A A A A  2A  

 
 
 
 

Ye [38]  

 
 
 

4 2 3 1A A A A  

1THTNWAAO  4 2 3 1A A A A  4A  

1THTNWGAO  4 3 2 1A A A A  4A  

2THTNWAAO  4 2 1 3A A A A  4A  

2THTNWGAO  4 1 2 3A A A A  4A  

 
 
 

Liu [21] 

 
 

4 2 3 1A A A A  

1THTNWAAO  4 2 3 1A A A A  4A  

1THTNWGAO  4 3 2 1A A A A  4A  

2THTNWAAO  4 2 1 3A A A A  4A  

2THTNWGAO  4 1 2 3A A A A  4A  

 
 
 

Abdel-
Basset et al. 

[57] 

 
 
 

4 2 3 1A A A A  

1THTNWAAO  4 2 3 1A A A A  4A  

1THTNWGAO  4 3 2 1A A A A  4A  

2THTNWAAO  4 2 1 3A A A A  4A  

2THTNWGAO  4 1 2 3A A A A  4A  

 

7. CONCLUSION 

    In this paper, hesitant triangular neutrosophic numbers and their basic properties are presented. Also, various 
types of operations between the hesitant triangular neutrosophic numbers are discussed. Then, various types of 
hesitant triangular neutrosophic weighted aggregation operators are proposed to aggregate the hesitant triangular 
neutrosophic information. Furthermore, score of hesitant triangular neutrosophic numbers is proposed to ranking 
the hesitant triangular neutrosophic numbers.Based on the hesitant triangular neutrosophic weighted aggregation 
operators and score of hesitant triangular neutrosophic numbers, a multi attribute decision making method is 
developed, in which the evaluation values of alternatives on the attribute are represented in terms of hesitant 
triangular neutrosophic numbers and the alternatives are ranked according to the values of the score of hesitant 
triangular neutrosophic numbers to select the most desirable one. Finally, a practical example for enterprise 
resource planning (ERP) system selection is presented to demonstrate the application and effectiveness of the 
proposed method. The advantage of the proposed method is that it is more suitable for solving multi attribute 
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decision making problems with hesitant triangular neutrosophic information because hesitant triangular 
neutrosophic numbers can handle indeterminate and inconsistent information and are the extensions of hesitant 
triangular fuzzy numbers, hesitant triangular intuitionistic fuzzy numbersas well as triangular neutrosophic 
numbers. 
     In the future, we will develop another approach called linguistic hesitant triangular neutrosophic number as a 
further generalization of it and this will be applied in different practical problems. 
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Abstract: In this paper, we introduce the idea of neutrosophic cubic translation (NCT) and neutrosophic cubic 
multiplication (NCM) and provide entirely new type of conditions for neutrosophic cubic translation and 
neutrosophic cubic multiplication on BF-algebra. This is the new kind of approach towards translation and 
multiplication which involves the indeterminacy membership function. We also define neutrosophic cubic 
magnified translation (NCMT) on BF-algebra which handles the neutrosophic cubic translation and 
neutrosophic cubic multiplication at the same time on membership function, indeterminacy membership 
function and non-membership function. We present the examples for better understanding of neutrosophic cubic 
translation, neutrosophic cubic multiplication, and neutrosophic cubic magnified translation, and investigate 
significant results of BF-ideal and BF-subalgebra by applying the ideas of NCT, NCM and NCMT. Intersection 
and union of neutrosophic cubic BF-ideals are also explained through this new type of translation and 
multiplication. 

Keywords: BF-algebra, neutrosophic cubic translation, neutrosophic cubic multiplication, neutrosophic cubic 
BF ideal, neutrosophic cubic BF subalgebra, neutrosophic cubic magnified translation. 

 

 

1. Introduction 

Zadeh [1] presented the theory of fuzzy set in 1965. Fuzzy idea has been applied to different algebraic structures 
like groups, rings, modules, vector spaces and topologies. In this way, Iseki and Tanaka [2] introduced the idea 
of BCK-algebra in 1978. Iseki [3] introduced the idea of BCI-algebra in 1980 and it is obvious that the class of 
BCK-algebra is a proper sub class of the class of BCI-algebra. Lee et al. [4] studied the fuzzy translation, 
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(normalized, maximal) fuzzy extension and fuzzy multiplication of fuzzy subalgebra in BCK/BCI-algebra. Link 
among fuzzy translation, (normalized, maximal) fuzzy extension and fuzzy multiplication are also discussed. 
Ansari and Chandramouleeswaran [5] introduced the idea of fuzzy translation, fuzzy extension and fuzzy 
multiplication of fuzzy β ideal of β-algebra and investigated some of their properties. Satyanarayana [6] 
introduced the concepts of fuzzy ideals, fuzzy implicative ideals and fuzzy p-ideals in BF-algebras and 
investigate some of its properties. Andrzej [7] defined the BF-algebra. Lekkoksung [8] focused on fuzzy 
magnified translation in ternary hemirings, which is a extension of BCI / BCK/Q / KU / d-algebra. Senapati et 
al. [9] have done much work on intuitionistic fuzzy H-ideal in BCK/BCI-algebra. Jana et al. [10] wrote on 
intuitionistic fuzzy G-algebra. Senapati et al. [11] studied fuzzy translations of fuzzy H-ideals in BCK/BCI-
algebra. Atanassov [12] introduced the intuitionistic fuzzy sets. Senapati [13] investigated the relationship 
among intuitionistic fuzzy translation, intuitionistic fuzzy extension and intuitionistic fuzzy multiplication in 
B-algebra. Kim and Jeong [14] defined the intuitionistic fuzzy structure of B-algebra. Senapati et al. [15] 
introduced the cubic subalgebras and cubic closed ideals of B-algebras. Senapati et al. [16] discussed the fuzzy 
dot subalgebra and fuzzy dot ideal of B-algebras. Priya and Ramachandran [17] worked on fuzzy translation 
and fuzzy multiplication in PS-algebra. Chandramouleeswaran et al. [18] worked on fuzzy translation and fuzzy 
multiplication in BF/BG-algebra. Jana et al. [19] studied the cubic G-subalgebra of G-algebra. Smarandache 
[20,21] extended the intuitionistic fuzzy set, paraconsistent set, and intuitionistic set to the neutrosophic set 
through Several examples. Jun et al. [22] studied the Cubic set and apply the idea of cubic sets in group and 
gave the definition of cubic subgroups. Saeid and Rezvani [23] introduced and studied fuzzy BF-algebra, fuzzy 
BF-subalgebras, level subalgebras,fuzzy topological BF-algebra. Jun et al. [24] defined the neutrosophic cubic 
set introduced truth-internal and truth-external and discuss the many properties. Jun et al. [25] investigated the 
commutative falling neutrosophic ideals in BCK-algebra. C. H. Park [26] defined the neutrosophic ideal in 
subtraction algebra and studied it through several properties, he also discussed conditions for a neutrosophic set 
to be a neutrosophic ideal along with properties of neutrosophic ideal. Khalid et al. [27] investigated the 
neutrosophic soft cubic subalgebra through significant characteristic like P-union, R-intersection etc. Khalid et 
al. [28] interestinly investigated the intuitionistic fuzzy translation and multiplication through subalgebra and 
ideals. Khalid et al. [29] defined the T-neutrosophic cubic set and studied this set through ideals and subalgebras 
and investigated many results.  

The purpose of this paper is to introduce the idea of neutrosophic cubic translation (NCT), neutrosophic cubic 
multiplication (NCM) and neutrosophic cubic magnified translation (NCMT) on BF-algebra. In second section 
we discuss some fundamental definitions which are used to develop the paper. In third’s first subsection we 
discuss the neutrosophic cubic translation (NCT) and neutrosophic cubic multiplication (NCM) of BF 
subalgebra. In second subsection we discuss the neutrosophic cubic translation (NCT) and neutrosophic cubic 
multiplication (NCM) of BF ideal. In third subsection we discuss the neutrosophic cubic magnified translation 
(NCMT) of BF ideal and BF subalgebra. 

  

2 Preliminaries  
                                                                             
First we discuss some definitions which are used to present this paper.  
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Definition 2.1 [3] An algebra (Y,∗ ,0)  of type (2,0) is called a BCI-algebra if it satisfies the following 
conditions: 

i) (t1 ∗ t2) ∗ (t1 ∗ t3) ≤ (t3 ∗ t2), 

ii) t1 ∗ (t1 ∗ t2) ≤ t2, 

iii) t1 ≤ t1, 

iv) t1 ≤ t2 and t2 ≤ t1 ⇒ t1 = t2, 

v) t1 ≤ 0 ⇒ t1 = 0, where t1 ≤ t2 is defined by t1 ∗ t2 = 0, for all t1, t2, t3 ∈ Y.    

Definition 2.2 [1] An algebra (Y,∗ ,0)  of type (2,0) is called a BCK-algebra if it satisfies the following 
conditions: 

i) (t1 ∗ t2) ∗ (t1 ∗ t3) ≤ (t3 ∗ t2), 

ii) t1 ∗ (t1 ∗ t2) ≤ t2, 

iii) t1 ≤ t1, 

iv) t1 ≤ t2 and t2 ≤ t1 ⇒ t1 = t2, 

v) 0 ≤ t1 ⇒ t1 = 0, where t1 ≤ t2 is defined by t1 ∗ t2 = 0, for all t1, t2, t3 ∈ Y.    

Definition 2.3 [7] A nonempty set Y with a constant 0 and a binary operation ∗ is called BF–algebra when it 
fulfills these axioms. 

i) t1 ∗ t1 = 0 

ii) t1 ∗ 0 = 0 

iii) 0 ∗ (t1 ∗ t2) = t2 ∗ t1 for all t1, t2 ∈ Y. 

A BF-algebra is denoted by (Y,∗ ,0). 

Definition 2.4 [7] Let S be a nonempty subset of BF-algebra Y, then S is called a BF-subalgebra of Y if t1 ∗

t2 ∈ S, for all t1, t2 ∈ S.   

Definition 2.5 [6] Let Y ba a BF-algebra and I is a subset of Y, then I is called a BF ideal of Y if it satisfies 
the following conditions: 

i) 0 ∈ I, 

ii) t2 ∗ t1 ∈ I and t2 ∈ I → t1 ∈ I.   

Definition 2.6 [6] Let Y be a BF-algebra. A fuzzy set B of Y is called a fuzzy BF ideal of Y if it satisfies the 
following conditions: 

i) κ(0) ≥ κ(t1), 

ii) κ(t1) ≥ min{κ(t2 ∗ t1), κ(t2)}, for all t1, t2 ∈ Y.   

Definition 2.7 [1] Let Y be a group of objects denoted generally by t1. Then a fuzzy set B of Y is defined as 
B = {< t1, κB(t1) >  |t1 ∈ Y}, where κB(t1) is called the membership value of t1 in B and κB(t1) ∈ [0,1]. 

Definition 2.8 [23] A fuzzy set B of BF-algebra Y is called a fuzzy PS subalgebra of Y if κ(t1 ∗ t2) ≥

min{κ(t1), κ(t2)}, for all t1, t2 ∈ Y. 
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Definition 2.9 [4,5] Let a fuzzy subset B of Y and α ∈ [0,1 − sup{κB(t1)|t1 ∈ Y}]. A mapping (κB)α
T|Y ∈

[0,1] is said to be a fuzzy α translation of κB if it satisfies (κB)α
T(t1) = κB(t1) + α, for all t1 ∈ Y. 

Definition 2.9 [4,5] Let a fuzzy subset B of Y and α ∈ [0,1]. A mapping (κB)α
M: Y → [0,1] is said to be a 

fuzzy α multiplication of B if it satisfies (κB)α
M(t1) = α. (κB)(t1), for all t1 ∈ Y. 

Definition 2.10 [12] An intuitionistic fuzzy set (IFS) B  over Y  is an object having the form B =

{〈t1, κB(t1), υB(t1)〉|t1 ∈ Y},  where κB(t1): Y → [0,1]  and υB(t1)|Y → [0,1],  with the condition 0 ≤

κB(t1) + υB(t1) ≤ 1, for all t1 ∈ Y. κB(t1) and υB(t1) represent the degree of membership and the degree 
of non-membership of the element t1 in the set B respectively. 

Definition 2.11 [12] Let B = {〈t1, κB(t1), υB(t1)〉|t1 ∈ Y} and B = {〈t1, κB(t1), υB(t1)〉|t1 

∈ Y}  be two IFSs  on Y.  Then intersection and union of A  and B  are indicated by A ∩ B  and A ∪ B 
respectively and are given by  

A ∩ B = {〈t1, min(κA(t1), κB(t1)), max(υA(t1), υB(t1))〉|t1 ∈ Y}, 

A ∪ B = {〈t1, max(κA(t1), κB(t1)), min(υA(t1), υB(t1))〉|t1 ∈ Y}. 

Definition 2.12 [14] An IFS  B = {〈t1, κB(t1), υB(t1)〉|t1 ∈ Y} of Y is called an IFSU of Y if it satisfies these 
two conditions: 

(i) κB(t1 ∗ t2) ≥ min{κB(t1), κB(t2)}, 

(ii) υB(t1 ∗ t2) ≤ max{υB(t1), υB(t2)}, for all t1, t2 ∈ Y. 

Definition 2.13 An IFS B = {〈t1, κB(t1), υB(t1)〉|t1 ∈ Y} of Y is said to be an IFID of Y if it satisfies these 
three conditions: 

(i) κB(0) ≥ κB(t1), υB(0) ≤ υB(t1), 

(ii) κB(t1) ≥ min{κB(t1 ∗ t2), κB(t2)}, 

(iii) υB(t1) ≤ max{υB(t1 ∗ t2), υB(t2)}, for all t1, t2 ∈ Y. 

Definition 2.14 [8] Let κ be a fuzzy subset  of Y, α ∈ [0,T] and β ∈ [0,1]. A mapping κβ α
M T|Y →[0,1] is said 

to be a fuzzy magnified βα translation of κ if it satisfies: κβ α
M T(t1) = β. κ(t1) + α for all t1 ∈ Y. 

Jun et al. [22,24]introduced neutrosophic cubic set and investigated several properties.  

Definition 2.15 [24] Suppose X be a nonempty set. A neutrosophic cubic set in X is pair 𝒞 = (κ, σ) where 
κ = {〈t1; κE(t1), κI(t1), κN(t1)〉 |t1 ∈ X}  is an interval neutrosophic set in X  and σ =

{〈t1; σE(t1), σI(t1), σN(t1)〉 |t1 ∈ X} is a neutrosophic set in X.  

Definition 2.16 [15] Let C = {〈t1, κ(t1), σ(t1)〉} be a cubic set, where κ(t1) is an interval-valued fuzzy set in 
X, σ(t1) is a fuzzy set in X. Then C is cubic subalgebra under binary operation " ∗”, if following axioms are 
satisfied: 

i) κ(t1 ∗ t2) ≥ rmin{κ(t1), κ(t2)}, 
ii) σ(t1 ∗ t2) ≤ max{σ(t1), σ(t2)} ∀ t1, t2 ∈ X.  
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Definition 2.17 [28] Let A = (κA, υA) be an IFS of G-algebra and let α ∈ [0, ¥]. An object of the form Aα
T =

((κA)α
T, (υA)α

T) is called an intuitionistic fuzzy α-translation (IFAT) of A when (κA)α
T(t1) = κA(t1) + α and 

(υA)α
T(t1) = υA(t1) − α for all t1 ∈ Y. 

 

3 Translative and Multiplicative Interpretation of Neutrosophic Cubic Set  

For our simplicity, we use the notation B = (κT,I,F, υT,I,F) for the NCS B = {⟨t1, κT,I,F(t1), υT,I,F(t1)⟩|t1 ∈ Y}. 
In this paper, we used ℸ = [1,1] − rsup{κ{T,I}(t1)|t1 ∈ Y} , ¥ = rinf{κF(t1)|t1 ∈ Y} , Γ = 1 −

sup{υ{T,I}(t1)|t1 ∈ Y}, £ = inf{υF(t1)|t1 ∈ Y for any NCS B = (κT,I,F, υT,I,F) of Y. 

 
3.1  Translative and Multiplicative Interpretation of Neutrosophic Cubic Subalgebra 

 

Definition 3.1.1 Let B = (κT,I,F, υT,I,F)  be a NCS of Y  and for κT,I,F,  α, β ∈ [[0,0], ℸ]  and γ ∈ [[0,0], ¥], 
where for υT,I,F , α, β ∈ [0, Γ]  and γ ∈ [0, £].  An object of the form Bα,β,γ

T = ((κT,I,F)α,β,γ
T , (υT,I,F)α,β,γ

T )  is 
called a NCT of B,  when (κT)α

T(t1) = κB(t1) + α , (κI)β
T(t1) = κB(t1) + β , (κF)γ

T(t1) = κF(t1) − γ  and 
(υT)α

T(t1) = υT(t1) + α, (υI)β
T(t1) = υB(t1) + β, (υF)γ

T(t1) = υB(t1) − γ for all t1 ∈ Y.  

 

Example 3.1.1 Let Y = {0,1,2} be a BF-algebra with the following Cayley table:  

 

*   0   1   2  

0  0   1   2  

1  0   0   1  

2  0   2   0  

 

 Let B = (κT,I,F, υT,I,F) be a NCS of Y is defined as  

 κT(t1) = {
[0.1, 0.3]          if t1 = 0

    [0.4, 0.7]       if otherwise
 

 κI(t1) = {
[0.2, 0.4]          if t1 = 0

    [0.5, 0.7]       if otherwise
 

 κF(t1) = {
[0.4, 0.6]          if t1 = 0

    [0.3, 0.8]       if otherwise
 

 and  

 υT(t1) = {
0.1          if t1 = 0

    0.4       if otherwise
 

 υI(t1) = {
0.2          if t1 = 0

    0.3       if otherwise
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  υF(t1) = {
0.5          if t1 = 0

     0.7       if otherwise.
 

Then B is a neutrosophic cubic subalgebra. Here we choose for υT,I,F, α = 0.01, β = 0.02, γ = 0.03, and for 

κT,I,F, α = [0.1,0.2], β = [0.2,0.25], γ = [0.2,0.3] then the mapping BT: Y → [0,1] is given by 

 (κT)[0.1,0.2]
T (t1) = {

[0.2, 0.5]          if t1 = 0

    [0.5, 0.9]       if otherwise
 

    (κI)[0.2,0.25]
T (t1) = {

[0.4, 0.7]          if t1 = 0

      [0.7, 0.95]       if otherwise
 

 (κF)[0.2,0.3]
T (t1) = {

[0.2, 0.3]          if t1 = 0

    [0.1, 0.5]       if otherwise
 

 and  

 (υT)0.01
T (t1) = {

0.11          if t1 = 0
     0.41       if otherwise.

 

 (υI)0.02
T (t1) = {

0.22          if t1 = 0
     0.32       if otherwise.

 

 

 (υF)0.03
T (t1) = {

0.47          if t1 = 0
     0.67       if otherwise,

 

which imply (κT)[0.1,0.2]
T (t1) = κT(t1) + [0.1,0.2] , (κI)[0.2,0.25]

T (t1) = κI(t1) + [0.2,0.25 ] , 
(κF)[0.2,0.3]

T (t1) = κF(t1) − [0.2,0.3]  and (υT)0.01
T (t1) = υT(t1) + 0.01 , (υI)0.02

T (t1) = υI(t1) + 0.02 , 
(υF)0.03

T (t1) = υF(t1) − 0.03 for all t1 ∈ Y. Hence BT is a neutrosophic cubic translation. 

 

Theorem 3.1.1 Let B be a NCSU of Y and for κT,I,F, α, β ∈ [[0,0], ℸ] and γ ∈ [[0,0], ¥], where for υT,I,F, 
α, β ∈ [0, Γ] and γ ∈ [0, £]. Then NCT Bα,β,γ

T  of B is a NCSU of Y. 

Proof. Assume t1, t2 ∈ Y. Then  

 (κT)α
T(t1 ∗ t2) = κT(t1 ∗ t2) + α 

 ≥ rmin{κT(t1), κT(t2)} + α 

 = rmin{κT(t1) + α, κT(t2) + α} 

 (κT)α
T(t1 ∗ t2) = rmin{(κT)α

T(t1), (κT)α
T(t2)}, 

 (κI)β
T(t1 ∗ t2) = κI(t1 ∗ t2) + β 

 ≥ rmin{κI(t1), κI(t2)} + β 

 = rmin{κI(t1) + β, κI(t2) + β} 
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 (κI)β
T(t1 ∗ t2) = rmin{(κI)β

T(t1), (κI)β
T(t2)}, 

 (κF)γ
T(t1 ∗ t2) = κF(t1 ∗ t2) − γ 

 ≥ rmin{κF(t1), κF(t2)} − γ 

 = rmin{κF(t1) − γ, κF(t2) − γ} 

 (κF)γ
T(t1 ∗ t2) = rmin{(κF)γ

T(t1), (κF)γ
T(t2)} 

 and  

 (υT)α
T(t1 ∗ t2) = υT(t1 ∗ t2) + α 

 ≤ max{υT(t1), υT(t2)} + α 

 = max{υT(t1) + α, υT(t2) + α} 

 (υT)α
T(t1 ∗ t2) = max{(υT)α

T(t1), (υT)α
T(t2)}, 

 (υI)β
T(t1 ∗ t2) = υI(t1 ∗ t2) + β 

 ≤ max{υI(t1), υI(t2)} + β 

 = max{υI(t1) + β, υI(t2) + β} 

 (υI)β
T(t1 ∗ t2) = max{(υI)β

T(t1), (υI)β
T(t2)}, 

         (υF)γ
T(t1 ∗ t2) = υF(t1 ∗ t2) − γ 

 ≤ max{υF(t1), υF(t2)} − γ 

 = max{υF(t1) − γ, υF(t2) − γ} 

 (υF)γ
T(t1 ∗ t2) = max{(υF)γ

T(t1), (υF)γ
T(t2)}. 

Hence NCT Bα,β,γ
T  of B is a NCSU of Y.  

Theorem 3.1.2 Let B be a NCS of Y such that NCT Bα,β,γ
T  of B is a NCSU of Y for some κT,I,F, α, β ∈

[[0,0], ℸ] and γ ∈ [[0,0], ¥], where for υT,I,F, α, β ∈ [0, Γ] and γ ∈ [0, £]. Then B is a NCSU of Y. 

Proof. Let Bα,β,γ
T = ((κT,I,F)α,β,γ

T , (υT,I,F)α,β,γ
T )  be a NCSU of Y  for some κT,I,F,  α, β ∈ [[0,0], ℸ]  and γ ∈

[[0,0], ¥], where for υT,I,F, α, β ∈ [0, Γ] and γ ∈ [0, £] and t1, t2 ∈ Y. Then  

 κT(t1 ∗ t2) + α = (κT)α
T(t1 ∗ t2) 

 ≥ rmin{(κT)α
T(t1), (κT)α

T(t2)} 

 = rmin{κT(t1) + α, κT(t2) + α} 

 κT(t1 ∗ t2) + α = rmin{κT(t1), κT(t2)} + α, 
 

 κI(t1 ∗ t2) + β = (κI)β
T(t1 ∗ t2) 

 ≥ rmin{(κI)β
T(t1), (κI)β

T(t2)} 
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 = rmin{κI(t1) + β, κI(t2) + β} 

 κI(t1 ∗ t2) + β = rmin{κI(t1), κI(t2)} + β, 

  

 κF(t1 ∗ t2) − γ = (κF)γ
T(t1 ∗ t2) 

 ≥ rmin{(κF)γ
T(t1), (κF)γ

T(t2)} 

 = rmin{κF(t1) − γ, κF(t2) − γ} 

 κF(t1 ∗ t2) − γ = rmin{κF(t1), κF(t2)} − γ 

 and  

 υT(t1 ∗ t2) + α = (υT)α
T(t1 ∗ t2) 

 ≤ max{(υT)α
T(t1), (υT)α

T(t2)} 

 = max{υT(t1) + α, υB(t2) + α} 

 υT(t1 ∗ t2) + α = max{υT(t1), υT(t2)} + α, 

 

 υI(t1 ∗ t2) + β = (υI)β
T(t1 ∗ t2) 

 ≤ max{(υI)β
T(t1), (υI)β

T(t2)} 

 = max{υI(t1) + β, υB(t2) + β} 

 υI(t1 ∗ t2) + β = max{υI(t1), υI(t2)} + β, 

  

 υF(t1 ∗ t2) − γ = (υF)γ
T(t1 ∗ t2) 

 ≤ max{(υF)γ
T(t1), (υF)γ

T(t2)} 

 = max{υF(t1) − γ, υB(t2) − γ} 

 υF(t1 ∗ t2) − γ = max{υF(t1), υF(t2)} − γ, 

which imply κT(t1 ∗ t2) ≥ rmin{κT(t1), κT(t2)} , κI(t1 ∗ t2) ≥ rmin{κI(t1), κI(t2)} , κF(t1 ∗ t2) ≥

rmin{κF(t1), κF(t2)} , and υT(t1 ∗ t2) ≤ max{υT(t1), υT(t2)} , υI(t1 ∗ t2) ≤ max{υI(t1), υI(t2)} , υF(t1 ∗

t2) ≤ max{υF(t1), υF(t2)}, for all t1, t2 ∈ Y. Hence B is a NCSU of Y.  

Definition 3.1.2 Let B  be a NCS of Y  and δ  ∈  [0,1].  An object having the form Bδ
M =

(((κT)δ
M, (κI)δ

M, (κF)δ
M), ((υT)δ

M, (υI)δ
M, (υF)δ

M))  is called a NCM of B,  when (κT)δ
M(t1) =

δ. κT(t1) , (κI)δ
M(t1) = δ. κI(t1) , (κF)δ

M(t1) = δ. κF(t1)  and (υT)δ
M(t1) = δ. υT(t1) , (υI)δ

M(t1) =

δ. υI(t1),(υF)δ
M(t1) = δ. υF(t1) for all t1 ∈ Y.  

 

Example 3.1.2 Let Y = {0,1,2} be a BF-algebra with the following Cayley table:  

  



Neutrosophic Sets and Systems, Vol. 35, 2020                                                                        307 

 

 

Mohsin khalid,Florentin Smarandache,Neha Andaleeb khalid and Said Broumi, Translative And Multiplicative 

Interpretation of Neutrosophic Cubic Set 

 

*   0   1   2  

0  0   1   2  

1  0   0   1  

2  0   2   0  

 

Let B = (κT,I,F, υT,I,F) be a NCS of Y is defined as  

 κT(t1) = (
[0.1, 0.3] if t1 = 0

[0.4, 0.7] if otherwise
 

 κI(t1) = (
[0.2, 0.4] if t1 = 0

[0.5, 0.7] if otherwise
 

 κF(t1) = (
[0.4, 0.6] if t1 = 0

[0.3, 0.8] if otherwise
 

 and  

                             υT(t1) = (
0.1 if t1 = 0
0.4 if otherwise

 

                             υI(t1) = (
0.2 if  t1 = 0
0.3 if otherwise

 

                                     υF(t1) = (
0.5 if t1 = 0
0.7 if otherwise.

 

Then B is a neutrosophic cubic subalgebra, choose δ = 0.01 for υ and δ = [0.1,0.2] for κ then the mapping 

Bδ
M|Y → [0,1] is given by 

 

 (κT)[0.1,0.2]
M (t1) = (

[0.01, 0.06] if t1 = 1

[0.04, 0.14] if otherwise,
 

 (κI)[0.1,0.2]
M (t1) = (

[0.02, 0.08] if t1 = 1

[0.05, 0.14] if otherwise,
 

 (κF)[0.1,0.2]
M (t1) = (

[0.04,0.12] if t1 = 1

[0.03, 0.16] if otherwise
 

 and  

                           (υT)0.01
M (t1) = (

0.001 if t1 = 0
0.004 if otherwise,

 

                           (υI)0.01
M (t1) = (

0.002 if t1 = 0
0.003 if otherwise,

 

 (υF)0.01
M (t1) = (

0.005 if t1 = 0
0.007 if otherwise,
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which imply (κT)[0.1,0.2]
M (t1) = κT(t1). [0.1,0.2] , (κI)[0.1,0.2]

M (t1) = κI(t1). [0.1,0.2] , (κF)[0.1,0.2]
M (t1) =

κF(t1). [0.1,0.2]  and (υT)0.01
M (t1) = υT(t1). (0.01) , (υI)0.01

M (t1) = υI(t1). (0.01) , (υF)0.01
M (t1) =

υF(t1). (0.01) for all t1 ∈ Y. Hence Bδ
M is a neutrosophic cubic multiplication. 

 

Theorem 3.1.3 Let B be a NCS of Y such that NCM Bδ
M of B is a NCSU of Y for some δ ∈ [0,1]. Then B 

is a NCSU of Y. 

Proof. Assume Bδ
M of B is a NCSU of Y for some δ ∈ [0,1]. Now for all t1, t2 ∈ Y, we have  

 κT(t1 ∗ t2). δ = (κT)δ
M(t1 ∗ t2) 

 ≥ rmin{(κT)δ
M(t1), (κT)δ

M(t2)} 

 = rmin{κT(t1). δ, κT(t2). δ} 

 κT(t1 ∗ t2). δ = rmin{κT(t1), κT(t2)}. δ, 

  

 κI(t1 ∗ t2). δ = (κI)δ
M(t1 ∗ t2) 

 ≥ rmin{(κI)δ
M(t1), (κI)δ

M(t2)} 

 = rmin{κI(t1). δ, κI(t2). δ} 

 κI(t1 ∗ t2). δ = rmin{κI(t1), κI(t2)}. δ, 

  

 κF(t1 ∗ t2). δ = (κF)δ
M(t1 ∗ t2) 

 ≥ rmin{(κF)δ
M(t1), (κF)δ

M(t2)} 

 = rmin{κF(t1). δ, κF(t2). δ} 

 κF(t1 ∗ t2). δ = rmin{κF(t1), κF(t2)}. δ 

 and  

 υT(t1 ∗ t2). δ = (υT)δ
M(t1 ∗ t2) 

 ≤ max{(υT)δ
M(t1), (υT)δ

M(t2)} 

 = max{υT(t1). δ, υT(t2). δ} 

 υT(t1 ∗ t2). δ = max{υT(t1), υT(t2)}. δ, 

  

 υI(t1 ∗ t2). δ = (υI)δ
M(t1 ∗ t2) 

 ≤ max{(υI)δ
M(t1), (υI)δ

M(t2)} 

 = max{υI(t1). δ, υI(t2). δ} 

 υI(t1 ∗ t2). δ = max{υI(t1), υI(t2)}. δ, 

  

 υF(t1 ∗ t2). δ = (υF)δ
M(t1 ∗ t2) 
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 ≤ max{(υF)δ
M(t1), (υF)δ

M(t2)} 

 = max{υF(t1). δ, υF(t2). δ} 

 υF(t1 ∗ t2). δ = max{υF(t1), υF(t2)}. δ, 

which imply κT(t1 ∗ t2) ≥ rmin{κT(t1), κT(t2)} , κI(t1 ∗ t2) ≥ rmin{κI(t1), κI(t2)} , κF(t1 ∗ t2) ≥

rmin{κF(t1), κF(t2)}  and υT(t1 ∗ t2) ≤ max{υT(t1), υT(t2)} ,  υI(t1 ∗ t2) ≤ max {υI(t1), υI(t2)} , υF(t1 ∗

t2) ≤ max{υF(t1), υF(t2)} for all t1, t2 ∈ Y. Hence B is a NCSU of Y.  
 

Theorem 3.1.4 Let B be a NCSU of Y for δ ∈ [0,1]. Then NCM Bδ
M of B is a NCSU of Y. 

Proof. Assume t1, t2 ∈ Y. Then  

 (κT)δ
M(t1 ∗ t2) = δ. κT(t1 ∗ t2) 

 ≥ δ. rmin{(κT)(t1), (κT)(t2)} 

 = rmin{δ. κT(t1), δ. κT(t2)} 

 = rmin{(κT)δ
M(t1), (κT)δ

M(t2)} 

 (κT)δ
M(t1 ∗ t2) ≥ rmin{(κT)δ

M(t1), (κT)δ
M(t2)}, 

  

 (κI)δ
M(t1 ∗ t2) = δ. κI(t1 ∗ t2) 

 ≥ δ. rmin{(κI)(t1), (κI)(t2)} 

 = rmin{δ. κI(t1), δ. κI(t2)} 

 = rmin{(κI)δ
M(t1), (κI)δ

M(t2)} 

 (κI)δ
M(t1 ∗ t2) ≥ rmin{(κI)δ

M(t1), (κI)δ
M(t2)}, 

  

 (κF)δ
M(t1 ∗ t2) = δ. κF(t1 ∗ t2) 

 ≥ δ. rmin{(κF)(t1), (κF)(t2)} 

 = rmin{δ. κF(t1), δ. κF(t2)} 

 = rmin{(κF)δ
M(t1), (κF)δ

M(t2)} 

 (κF)δ
M(t1 ∗ t2) ≥ rmin{(κF)δ

M(t1), (κF)δ
M(t2)} 

 and  

 (υT)δ
M(t1 ∗ t2) = δ. υT(t1 ∗ t2) 

 ≤ δ. max{(υT)(t1), (υT)(t2)} 

 = max{δ. υT(t1), δ. υT(t2)} 

 = max{(κB)δ
M(t1), (κB)δ

M(t2)} 

 (υT)δ
M(t1 ∗ t2) ≤ max{(υT)δ

M(t1), (υT)δ
M(t2)}, 
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 (υI)δ
M(t1 ∗ t2) = δ. υI(t1 ∗ t2) 

 ≤ δ. max{(υI)(t1), (υI)(t2)} 

 = max{δ. υI(t1), δ. υI(t2)} 

 = max{(κB)δ
M(t1), (κB)δ

M(t2)} 

 (υI)δ
M(t1 ∗ t2) ≤ max{(υI)δ

M(t1), (υI)δ
M(t2)}, 

  

 (υF)δ
M(t1 ∗ t2) = δ. υF(t1 ∗ t2) 

 ≤ δ. max{(υF)(t1), (υF)(t2)} 

 = max{δ. υF(t1), δ. υF(t2)} 

 = max{(κB)δ
M(t1), (κB)δ

M(t2)} 

 (υF)δ
M(t1 ∗ t2) ≤ max{(υF)δ

M(t1), (υF)δ
M(t2)}, 

which imply κT(t1 ∗ t2) ≥ rmin{κT(t1), κT(t2)} , κI(t1 ∗ t2) ≥ rmin{κI(t1), κI(t2)} , κF(t1 ∗ t2) ≥

rmin{κF(t1), κF(t2)}  and υT(t1 ∗ t2) ≤ max{υT(t1), υT(t2)} , υI(t1 ∗ t2) ≤ max{υI(t1), υI(t2)} , υF(t1 ∗

t2) ≤ max{υF(t1), υF(t2)} for all t1, t2 ∈ Y. Hence Bδ
M is a NCSU of Y. 

 

3.2   Translative and Multiplicative Interpretation of Neutrosophic Cubic Ideal 

In this section, neutrosophic cubic translation of NCID, neutrosophic cubic multiplication of NCID, union and 
intersection of neutrosophic cubic translation of NCID are investigated through some results. 

Theorem 3.2.1 If NCT Bα,β,γ
T  of B is a neutrosophic cubic BF ideal, then it fulfills the conditions (κT)α

T(t1 ∗

(t2 ∗ t1)) ≥ (κT)α
T(t2) , (κI)β

T(t1 ∗ (t2 ∗ t1)) ≥ (κI)β
T(t2) ,(κF)γ

T(t1  ∗ (t2 ∗ t1)) ≥ (κF)γ
T(t2)  and (υT)α

T(t1 ∗

(t2 ∗ t1)) ≤ (υT)α
T(t2), (υI)β

T(t1 ∗ (t2 ∗ t1)) ≤ (υI)β
T(t2), (υF)γ

T(t1 ∗ (t2 ∗ t1)) ≤ (υF)γ
T(t2). 

 

Proof. Let NCT Bα,β,γ
T  of B be a neutrosophic cubic BF ideal. Then  

 (κT)α
T(t1 ∗ (t2 ∗ t1)) = κT(t1 ∗ (t2 ∗ t1)) + α 

 ≥ rmin{κT(t2 ∗ (t1 ∗ (t2 ∗ t1))) + α, κT(t2) + α} 

 = rmin{κT(0) + α, κT(t2) + α} 

 = rmin{(κT)α
T(0), (κT)α

T(t2)} 

 (κT)α
T(t1 ∗ (t2 ∗ t1)) = (κT)α

T(t2), 

  

 (κI)α
T(t1 ∗ (t2 ∗ t1)) = κI(t1 ∗ (t2 ∗ t1)) + β 

 ≥ rmin{κI(t2 ∗ (t1 ∗ (t2 ∗ t1))) + β, κI(t2) + β} 

 = rmin{κI(0) + β, κI(t2) + β} 
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                = rmin{(κI)β
T(0), (κI)β

T(t2)} 

               (κI)β
T(t1 ∗ (t2 ∗ t1)) = (κI)β

T(t2), 

  

 (κF)γ
T(t1 ∗ (t2 ∗ t1)) = κF(t1 ∗ (t2 ∗ t1)) − γ 

 ≥ rmin{κF(t2 ∗ (t1 ∗ (t2 ∗ t1))) − γ, κF(t2) − γ} 

 = rmin{κF(0) − γ, κF(t2) − γ} 

 = rmin{(κF)γ
T(0), (κF)γ

T(t2)} 

 (κF)γ
T(t1 ∗ (t2 ∗ t1)) = (κF)γ

T(t2) 

 and  

 (υT)α
T(t1 ∗ (t2 ∗ t1)) = υT(t1 ∗ (t2 ∗ t1)) + α 

 ≤ max{υT(t2 ∗ (t1 ∗ (t2 ∗ t1))) + α, υT(t2) + α} 

 = max{υT(0) + α, υT(t2) + α} 

 = max{(υT)α
T(0), (υT)α

T(t2)} 

 (υT)α
T(t1 ∗ (t2 ∗ t1)) = (υT)α

T(t2), 

  

             (υI)α
T(t1 ∗ (t2 ∗ t1)) = υI(t1 ∗ (t2 ∗ t1)) + β 

               ≤ max{υI(t2 ∗ (t1 ∗ (t2 ∗ t1))) + β, υI(t2) + β} 

             = max{υI(0) + β, υI(t2) + β} 

             = max{(υI)β
T(0), (υI)β

T(t2)} 

                (υI)β
T(t1 ∗ (t2 ∗ t1)) = (υI)β

T(t2), 

  

 (υF)γ
T(t1 ∗ (t2 ∗ t1)) = υF(t1 ∗ (t2 ∗ t1)) − γ 

 ≤ max{υF(t2 ∗ (t1 ∗ (t2 ∗ t1))) − γ, υF(t2) − γ} 

 = max{υF(0) − γ, υF(t2) − γ} 

 = max{(υF)γ
T(0), (υF)γ

T(t2)} 

 (υF)γ
T(t1 ∗ (t2 ∗ t1)) = (υF)γ

T(t2). 

Hence (κT)α
T(t1 ∗ (t2 ∗ t1)) ≥ (κT)α

T(t2) , (κI)β
T(t1 ∗ (t2 ∗ t1)) ≥ (κI)β

T(t2) , (κF)γ
T(t1 ∗ (t2 ∗ t1)) ≥

(κF)γ
T(t2)  and (υT)α

T(t1 ∗ (t2 ∗ t1)) ≤ (υT)α
T(t2) , (υI)β

T(t1 ∗ (t2 ∗ t1)) ≤ (υI)β
T(t2) , (υF)γ

T(t1 ∗ (t2 ∗

t1)) ≤ (υF)γ
T(t2). 

Theorem 3.2.2 Let B be a NCID of Y and for κT,I,F, α, β ∈ [[0,0], ℸ] and γ ∈ [[0,0], ¥], where for υT,I,F , 
α, β ∈ [0, Γ] and γ ∈ [0, £]. Then NCT Bα,β,γ

T  of B is a NCID of Y. 

Proof. Let B  be a NCID of Y  and for κT,I,F, α, β ∈ [[0,0], ℸ] and γ ∈ [[0,0], ¥], where for υT,I,F , α, β ∈

[0, Γ]  and γ ∈ [0, £].  Then (κT)α
T(0) = κT(0) + α ≥ κT(t1) + α = (κT)α

T(t1) , (κI)β
T(0) = κI(0) + β ≥
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κI(t1) + β = (κI)β
T(t1) , (κF)γ

T(0) = κF(0) − γ ≥ κF(t1) − γ = (κF)γ
T(t1)  and (υT)α

T(0) = υT(0) + α ≤

υT(t1) + α = (υT)α
T(t1) ,  (υI)β

T(0)  = υI(0) + β ≤ υI(t1) + β = (υI)β
T(t1) , (υF)γ

T(0) = υF(0) − γ ≤

υF(t1) − γ = (υF)γ
T(t1 ). So 

 

 (κT)α
T(t1) = κT(t1) + α 

 ≥ rmin{κT(t1 ∗ t2), κT(t2)} + α 

 = rmin{κT(t1 ∗ t2) + α, κT(t2) + α} 

 (κT)α
T(t1) = rmin{(κT)α

T(t1 ∗ t2), (κT)α
T(t2)}, 

 (κI)β
T(t1) = κI(t1) + β 

 ≥ rmin{κI(t1 ∗ t2), κI(t2)} + β 

 = rmin{κI(t1 ∗ t2) + β, κI(t2) + β} 

 (κI)β
T(t1) = rmin{(κI)β

T(t1 ∗ t2), (κI)β
T(t2)}, 

 (κF)α
T(t1) = κF(t1) − γ 

 ≥ rmin{κF(t1 ∗ t2), κF(t2)} − γ 

 = rmin{κF(t1 ∗ t2) − γ, κF(t2) − γ} 

 (κF)γ
T(t1) = rmin{(κF)γ

T(t1 ∗ t2), (κF)γ
T(t2)} 

 and  

 (υT)α
T(t1) = υT(t1) + α 

 ≤ max{υT(t1 ∗ t2), υT(t2)} + α 

 = max{υT(t1 ∗ t2) + α, υT(t2) + α} 

 (υT)α
T(t1) = max{(υT)α

T(t1 ∗ t2), (υT)α
T(t2)}, 

 (υI)β
T(t1) = υI(t1) + β 

 ≤ max{υI(t1 ∗ t2), υI(t2)} + β 

 = max{υI(t1 ∗ t2) + β, υI(t2) + β} 

 (υI)β
T(t1) = max{(υI)β

T(t1 ∗ t2), (υI)β
T(t2)}, 

 (υF)γ
T(t1) = υF(t1) − γ 

 ≤ max{υF(t1 ∗ t2), υF(t2)} − γ 

 = max{υF(t1 ∗ t2) − γ, υF(t2) − γ} 

 (υF)γ
T(t1) = max{(υF)γ

T(t1 ∗ t2), (υF)γ
T(t2)}, 
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for all t1, t2  ∈ Y and for κT,I,F, α, β ∈ [[0,0], ℸ] and γ ∈ [[0,0], ¥], where for υT,I,F , α, β ∈ [0, Γ] and γ ∈

[0, £]. Hence Bα,β,γ
T  of B is a NCID of Y.  

Theorem 3.2.3 Let B be a neutrosophic cubic set of Y such that NCT Bα,β,γ
T  of B is a NCID of Y for all 

κT,I,F, α, β ∈ [[0,0], ℸ] and γ ∈ [[0,0], ¥], where for υT,I,F, α, β ∈ [0, Γ] and γ ∈ [0, £]. Then B is a NCID of 
Y. 

Proof. Suppose Bα,β,γ
T  is a NCID of Y, where for κT,I,F, α, β ∈ [[0,0], ℸ] and γ ∈ [[0,0], ¥], and for υT,I,F, 

α, β ∈ [0, Γ] and γ ∈ [0, £] and t1, t2 ∈ Y. Then 

  

 κT(0) + α = (κT)α
T(0) ≥ (κT)α

T(t1) = κT(t1) + α, 

 κI(0) + β = (κI)β
T(0) ≥ (κI)β

T(t1) = κI(t1) + β, 

 κF(0) − γ = (κF)γ
T(0) ≥ (κF)γ

T(t1) = κF(t1) − γ, 

 and  

 υT(0) + α = (υT)α
T(0) ≤ (υT)α

T(t1) = υT(t1) + α, 

 υI(0) + β = (υI)β
T(0) ≤ (υI)β

T(t1) = υI(t1) + β 

 υF(0) − γ = (υF)γ
T(0) ≤ (υF)γ

T(t1) = υF(t1) − γ, 

which imply κT(0) ≥ κT(t1), κI(0) ≥ κI(t1), κF(0) ≥ κF(t1) and υT(0) ≤ υT(t1), υI(0) ≤ υI(t1), 

υF(0) ≤ υF(t1), now  

 κT(t1) + α = (κT)α
T(t1) ≥ rmin{(κT)α

T(t1 ∗ t2), (κT)α
T(t2)} 

 = rmin{κT(t1 ∗ t2) + α, κT(t2) + α} 

 κT(t1) + α = rmin{κT(t1 ∗ t2), κT(t2)} + α, 

  

 κI(t1) + β = (κI)β
T(t1) ≥ rmin{(κI)β

T(t1 ∗ t2), (κI)β
T(t2)} 

 = rmin{κI(t1 ∗ t2) + β, κI(t2) + β} 

 κI(t1) + β = rmin{κI(t1 ∗ t2), κI(t2)} + β, 

 

 κF(t1) − γ = (κF)γ
T(t1) ≥ rmin{(κF)γ

T(t1 ∗ t2), (κF)γ
T(t2)} 

 = rmin{κF(t1 ∗ t2) − γ, κF(t2) − γ} 

 κF(t1) − γ = rmin{κF(t1 ∗ t2), κF(t2)} − γ, 

 and  

 υT(t1) + α = (υT)α
T(t1) ≤ max{(υT)α

T(t1 ∗ t2), (υT)α
T(t2)} 

 = max{υT(t1 ∗ t2) + α, υT(t2) + α} 
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 υT(t1) + α = max{υT(t1 ∗ t2), υT(t2)} + α, 

 υI(t1) + β = (υI)β
T(t1) ≤ max{(υI)β

T(t1 ∗ t2), (υI)β
T(t2)} 

 = max{υI(t1 ∗ t2) + β, υI(t2) + β} 

 υI(t1) + β = max{υI(t1 ∗ t2), υI(t2)} + β, 

 

 υF(t1) − γ = (υF)γ
T(t1) ≤ max{(υF)γ

T(t1 ∗ t2), (υF)γ
T(t2)} 

 = max{υF(t1 ∗ t2) − γ, υF(t2) − γ} 

 υF(t1) − γ = max{υF(t1 ∗ t2), υF(t2)} − γ, 

which imply κT(t1) ≥ rmin{κT(t1 ∗ t2), κT(t2)}, κI(t1) ≥ rmin{κI(t1 ∗ t2), κI(t2)}, κF(t1) ≥ rmin{κF(t1 ∗

t2), κF(t2)}  and υT(t1) ≤ max{υT(t1 ∗ t2), υT(t2)} , υI(t1) ≤ max{υI(t1 ∗ t2), υI(t2)} , υF(t1) ≤

max{υF(t1 ∗ t2), υF(t2)} for all t1, t2 ∈ Y. Hence B is a NCID of Y.  

Theorem 3.2.4 Let B be a NCID of Y for some κT,I,F, α, β ∈ [[0,0], ℸ] and γ ∈ [[0,0], ¥], where for υT,I,F, 
α, β ∈ [0, Γ] and γ ∈ [0, £]. Then NCT Bα,β,γ

T  of B is a NCSU of Y. 

Proof. Assume t1, t2 ∈ Y. Then  

 (κT)α
T(t1 ∗ t2) = κT(t1 ∗ t2) + α 

 ≥ rmin{κT(t2 ∗ (t1 ∗ t2)), κT(t2)} + α 

 = rmin{κT(0), κT(t2)} + α 

 ≥ rmin{κT(t1), κT(t2)} + α 

 = rmin{κT(t1) + α, κT(t2) + α} 

 (κT)α
T(t1 ∗ t2) = rmin{(κT)α

T(t1), (κT)α
T(t2)} 

 (κT)α
T(t1 ∗ t2) ≥ rmin{(κT)α

T(t1), (κT)α
T(t2)}, 

  

 (κI)β
T(t1 ∗ t2) = κI(t1 ∗ t2) + β 

 ≥ rmin{κI(t2 ∗ (t1 ∗ t2)), κI(t2)} + β 

 = rmin{κI(0), κI(t2)} + β 

 ≥ rmin{κI(t1), κI(t2)} + β 

 = rmin{κI(t1) + β, κI(t2) + β} 

 (κI)β
T(t1 ∗ t2) = rmin{(κI)β

T(t1), (κI)β
T(t2)} 

 (κI)β
T(t1 ∗ t2) ≥ rmin{(κI)β

T(t1), (κI)β
T(t2)}, 

  

 (κF)γ
T(t1 ∗ t2) = κF(t1 ∗ t2) − γ 
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 ≥ rmin{κF(t2 ∗ (t1 ∗ t2)), κF(t2)} − γ 

 = rmin{κF(0), κF(t2)} − γ 

 ≥ rmin{κF(t1), κF(t2)} − γ 

 = rmin{κF(t1) − γ, κF(t2) − γ} 

 (κF)γ
T(t1 ∗ t2) = rmin{(κF)γ

T(t1), (κF)γ
T(t2)} 

 (κF)γ
T(t1 ∗ t2) ≥ rmin{(κF)γ

T(t1), (κF)γ
T(t2)} 

 and  

 (υT)α
T(t1 ∗ t2) = υT(t1 ∗ t2) + α 

 ≤ max{υT(t2 ∗ (t1 ∗ t2)), υT(t2)} + α 

 = max{υT(0), υT(t2)} + α 

 ≤ max{υT(t1), υT(t2)} + α 

 = max{υT(t1) + α, υT(t2) + α} 

 (υT)α
T(t1 ∗ t2) = max{(υT)α

T(t1), (υT)α
T(t2)} 

 (υT)α
T(t1 ∗ t2) ≤ max{(υT)α

T(t1), (υT)α
T(t2)}, 

  

 (υI)β
T(t1 ∗ t2) = υI(t1 ∗ t2) + β 

 ≤ max{υI(t2 ∗ (t1 ∗ t2)), υI(t2)} + β 

 = max{υI(0), υI(t2)} + β 

 ≤ max{υI(t1), υI(t2)} + β 

 = max{υI(t1) + β, υI(t2) + β} 

 (υI)β
T(t1 ∗ t2) = max{(υI)β

T(t1), (υI)β
T(t2)} 

 (υI)β
T(t1 ∗ t2) ≤ max{(υI)β

T(t1), (υI)β
T(t2)}, 

  

 (υF)γ
T(t1 ∗ t2) = υF(t1 ∗ t2) − γ 

 ≤ max{υF(t2 ∗ (t1 ∗ t2)), υF(t2)} − γ 

 = max{υF(0), υF(t2)} − γ 

 ≤ max{υF(t1), υF(t2)} − γ 

 = max{υF(t1) − γ, υF(t2) − γ} 

 (υF)γ
T(t1 ∗ t2) = max{(υF)γ

T(t1), (υF)γ
T(t2)} 

 (υF)γ
T(t1 ∗ t2) ≤ max{(υF)γ

T(t1), (υF)γ
T(t2)}. 

Hence Bα,β,γ
T  is a NCSU of Y.  
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Theorem 3.2.5 If NCT Bα,β,γ
T  of B is a NCID of Y for some κT,I,F, α, β ∈ [[0,0], ℸ] and γ ∈ [[0,0], ¥], and 

for υT,I,F, α, β ∈ [0, Γ] and γ ∈ [0, £]. Then B is a NCSU of Y. 

Proof. Suppose Bα,β,γ
T  of B is a NCID of Y. Then  

 (κT)(t1 ∗ t2) + α = (κT)α
T(t1 ∗ t2) 

 ≥ rmin{(κT)α
T(t2 ∗ (t1 ∗ t2)), (κT)α

T(t2)} 

 = rmin{(κT)α
T(0), (κT)α

T(t2)} 

 ≥ rmin{(κT)α
T(t1), (κT)α

T(t2)} 

 = rmin{κT(t1) + α, κT(t2) + α} 

 (κT)(t1 ∗ t2) + α = rmin{κT(t1), κT(t2)} + α, 

 

 (κI)(t1 ∗ t2) + β = (κI)β
T(t1 ∗ t2) 

 ≥ rmin{(κI)β
T(t2 ∗ (t1 ∗ t2)), (κI)β

T(t2)} 

 = rmin{(κI)β
T(0), (κI)β

T(t2)} 

 ≥ rmin{(κI)β
T(t1), (κI)β

T(t2)} 

 = rmin{κI(t1) + β, κI(t2) + β} 

 (κI)(t1 ∗ t2) + β = rmin{κI(t1), κI(t2)} + β, 

  

 (κF)(t1 ∗ t2) − γ = (κF)γ
T(t1 ∗ t2) 

 ≥ rmin{(κF)γ
T(t2 ∗ (t1 ∗ t2)), (κF)γ

T(t2)} 

 = rmin{(κF)γ
T(0), (κF)γ

T(t2)} 

 ≥ rmin{(κF)γ
T(t1), (κF)γ

T(t2)} 

 = rmin{κF(t1) − γ, κF(t2) − γ} 

 (κF)(t1 ∗ t2) − γ = rmin{κF(t1), κF(t2)} − γ 

⇒ κT(t1 ∗ t2) ≥ rmin{κT(t1), κT(t2)}, κI(t1 ∗ t2) ≥ rmin{κI(t1), κI(t2)} and κF(t1 ∗ t2) 

≥ rmin{κF(t1), κF(t2)} and now  

 (υT)(t1 ∗ t2) + α = (υT)α
T(t1 ∗ t2) 

 ≤ max{(υT)α
T(t2 ∗ (t1 ∗ t2)), (υT)α

T(t2)} 

 = max{(υT)α
T(0), (υT)α

T(t2)} 

 ≤ max{(υT)α
T(t1), (υT)α

T(t2)} 

 = max{υT(t1) + α, υT(t2) + α} 

 (υT)(t1 ∗ t2) + α = max{υT(t1), υT(t2)} + α, 
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 (υI)(t1 ∗ t2) + β = (υI)β
T(t1 ∗ t2) 

 ≤ max{(υI)β
T(t2 ∗ (t1 ∗ t2)), (υI)β

T(t2)} 

 = max{(υI)β
T(0), (υI)β

T(t2)} 

 ≤ max{(υI)β
T(t1), (υI)β

T(t2)} 

 = max{υI(t1) + β, υI(t2) + β} 

 (υI)(t1 ∗ t2) + β = max{υI(t1), υI(t2)} + β, 

  

 (υF)(t1 ∗ t2) − γ = (υF)γ
T(t1 ∗ t2) 

 ≤ max{(υF)γ
T(t2 ∗ (t1 ∗ t2)), (υF)γ

T(t2)} 

 = max{(υF)γ
T(0), (υF)γ

T(t2)} 

 ≤ max{(υF)γ
T(t1), (υF)γ

T(t2)} 

 = max{υF(t1) − γ, υF(t2) − γ} 

 (υF)(t1 ∗ t2) − γ = max{υF(t1), υF(t2)} − γ 

⇒ υT(t1 ∗ t2) ≤ max{υT(t1), υT(t2)}, υI(t1 ∗ t2) ≤ max{υI(t1), υI(t2)}  and υF(t1 ∗ t2) ≤

max{υF(t1), υF(t2)}. Hence B is a NCSU of Y.  

Theorem 3.2.6 Intersection of any two neutrosophic cubic translations of a neutrosophic cubic BF ideals B of 

Y is a neutrosophic cubic BF ideal of Y. 

Proof. Suppose Bα,β,γ
T  and Bα′,β′,γ′

T  are two neutrosophic cubic translations of neutrosophic cubic BF ideal B 

and C of Y respectively, where for Bα,β,γ
T , for κT,I,F,  α, β ∈ [[0,0], ℸ], γ ∈ [[0,0], ¥],  for υT,I,F, α, β ∈ [0, Γ], 

γ ∈ [0, £]  and for Bα′,β′,γ′
T , for κT,I,F  α′, β′ ∈ [[0,0], ℸ], γ′ ∈ [[0,0], ¥], for υT,I,F , α′, β′ ∈ [0, Γ], γ′ ∈ [0, £] 

and α ≤ α′, β ≤ β′, γ ≤ γ′ as we know that, Bα,β,γ
T  and Bα′,β′,γ′

T  are neutrosophic cubic BF ideals of Y. So  

 

 ((κT)α
T ∩ (κT)α′

T )(t1) = rmin{(κT)α
T(t1), (κT)α′

T (t1)} 

 = rmin{κT(t1) + α, κT(t1) + α′} 
 = κT(t1) + α 

 ((κT)α
T ∩ (κT)α′

T )(t1) = (κT)α
T(t1), 

  

 ((κI)β
T ∩ (κI)β′

T )(t1) = rmin{(κI)β
T(t1), (κI)β′

T (t1)} 

 = rmin{κI(t1) + β, κI(t1) + β′} 
 = κI(t1) + β 

 ((κI)β
T ∩ (κI)β′

T )(t1) = (κI)β
T(t1), 
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 ((κF)γ
T ∩ (κF)γ′

T )(t1) = rmin{(κF)γ
T(t1), (κF)γ′

T (t1)} 

 = rmin{κF(t1) − γ, κF(t1) − γ′} 
 = κF(t1) − γ′ 

 ((κF)γ
T ∩ (κF)γ′

T )(t1) = (κF)γ′
T (t1) 

 and  

 ((υT)α
T ∩ (υT)α′

T )(t1) = max{(υT)α
T(t1), (υT)α′

T (t1)} 

 = max{υT(t1) + α, υT(t1) + α′} 
 = υT(t1) + α′ 

 ((υT)α
T ∩ (υT)α′

T )(t1) = (υT)α′
T (t1), 

  

 ((υI)β
T ∩ (υI)β′

T )(t1) = max{(υI)β
T(t1), (υI)β′

T (t1)} 

 = max{υI(t1) + β, υI(t1) + β′} 
 = υI(t1) + β′ 

 ((υI)β
T ∩ (υI)β′

T )(t1) = (υI)β′
T (t1), 

  

 ((υF)γ
T ∩ (υF)γ′

T )(t1) = max{(υF)γ
T(t1), (υF)γ′

T (t1)} 

 = max{υF(t1) − γ, υF(t1) − γ′} 
 = υF(t1) − γ 

 ((υF)γ
T ∩ (υF)γ′

T )(t1) = (υF)γ
T(t1). 

Hence Bα,β,γ
T ∩ Bα′,β′,γ′

T  is a neutrosophic cubic BF ideal of Y.  

Theorem 3.2.7 Union of any two neutrosophic cubic translations of a neutrosophic cubic BF ideals B of Y is 
a neutrosophic cubic BF ideal of Y. 

Proof. Suppose Bα,β,γ
T  and Bα′,β′,γ′

T  are two neutrosophic cubic translations of neutrosophic cubic BF ideal B 
of Y respectively, where for Bα,β,γ

T , for κT,I,F,  α, β ∈ [[0,0], ℸ], γ ∈ [[0,0], ¥],  for υT,I,F , α, β ∈ [0, Γ], γ ∈

[0, £]  and for Bα′,β′,γ′
T , for κT,I,F  α′, β′ ∈ [[0,0], ℸ], γ′ ∈ [[0,0], ¥], for υT,I,F , α′, β′ ∈ [0, Γ], γ′ ∈ [0, £] and 

α ≥ α′, β ≥ β′, γ ≥ γ′ as we know that, Bα,β,γ
T  and Bα′,β′,γ′

T  are neutrosophic cubic BF ideals of Y. Then  

 

 ((κT)α
T ∪ (κT)α′

T )(t1) = rmax{(κT)α
T(t1), (κT)α′

T (t1)} 

 = rmax{κT(t1) + α, κT(t1) + α′} 

 = κT(t1) + α 

 ((κT)α
T ∪ (κT)α′

T )(t1) = (κT)α
T(t1), 

  

 ((κI)β
T ∪ (κI)β′

T )(t1) = rmax{(κI)β
T(t1), (κI)β′

T (t1)} 

 = rmax{κI(t1) + β, κI(t1) + β′} 

 = κI(t1) + β 

 ((κI)β
T ∪ (κI)β′

T )(t1) = (κI)β
T(t1), 
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 ((κF)γ
T ∪ (κF)γ′

T )(t1) = rmax{(κF)γ
T(t1), (κF)γ′

T (t1)} 

 = rmax{κF(t1) − γ, κF(t1) − γ′} 

 = κF(t1) − γ′ 

 ((κF)γ
T ∪ (κF)γ′

T )(t1) = (κF)γ′
T (t1) 

 and  

 ((υT)α
T ∪ (υT)α′

T )(t1) = min{(υT)α
T(t1), (υT)α′

T (t1)} 

 = min{υT(t1) + α, υT(t1) + α′} 

 = υT(t1) + α′ 

 ((υT)α
T ∪ (υT)α′

T )(t1) = (υT)α′
T (t1), 

  

 ((υI)β
T ∪ (υI)β′

T )(t1) = min{(υI)β
T(t1), (υI)β′

T (t1)} 

 = min{υI(t1) + β, υI(t1) + β′} 

 = υI(t1) + β′ 

 ((υI)β
T ∪ (υI)β′

T )(t1) = (υI)β
T(t1), 

  

 ((υF)γ
T ∪ (υF)γ′

T )(t1) = min{(υF)γ
T(t1), (υF)γ′

T (t1)} 

 = min{υF(t1) − γ, υF(t1) − γ′} 

 = υF(t1) − γ 

 ((υF)γ
T ∪ (υF)γ′

T )(t1) = (υF)γ
T(t1) 

 
 Hence Bα,β,γ

T ∪ Bα′,β′,γ′
T  is a neutrosophic cubic BF ideal of Y.  

Theorem 3.2.8 Let B be a NCS of Y such that NCM Bδ
M of B is a NCID of Y for δ ∈ (0,1] then B is a 

NCID of Y. 

Proof. Suppose that Bδ
M  is a NCID of Y  for δ  ∈  (0,1]  and t1, t2  ∈  Y.  Then δ. κT(0) = (κT)δ

M(0)  ≥

(κT)δ
M(t1) = δ. κT(t1), so κT(0) ≥ κT(t1),δ. κI(0) = (κI)δ

M(0) ≥ (κI)δ
M(t1) = δ. κI(t1), so κI(0) ≥ κI(t1), 

δ. κF(0) = (κF)δ
M(0)  ≥ (κF)δ

M(t1)  = δ. κF(t1), so κF(0) ≥ κF(t1)  and δ. υT(0) = (υT)δ
M(0)  ≤ (υT)δ

M(t1) 
= δ. υT(t1),  so υT(0) ≤ υT(t1) , δ. υI(0) = (υI)δ

M(0)  ≤ (υI)δ
M(t1)  = δ. υI(t1),  so υI(0) ≤ υI(t1) , 

δ. υF(0) = (υF)δ
M(0) ≤ (υF)δ

M(t1) = δ. υF(t1), so υF(0) ≤ υF(t1). Now  

 δ. κT(t1) = (κT)δ
M(t1) 

 ≥ rmin{(κT)δ
M(t1 ∗ t2), (κT)δ

M(t2)} 

 = rmin{δ. κT(t1 ∗ t2), δ. κT(t2)} 

 δ. κT(t1) = δ. rmin{κT(t1 ∗ t2), κT(t2)}, 

  

 δ. κI(t1) = (κI)δ
M(t1) 
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 ≥ rmin{(κI)δ
M(t1 ∗ t2), (κI)δ

M(t2)} 

 = rmin{δ. κI(t1 ∗ t2), δ. κI(t2)} 

 δ. κI(t1) = δ. rmin{κI(t1 ∗ t2), κI(t2)}, 

  

 δ. κF(t1) = (κF)δ
M(t1) 

 ≥ rmin{(κF)δ
M(t1 ∗ t2), (κF)δ

M(t2)} 

 = rmin{δ. κF(t1 ∗ t2), δ. κF(t2)} 

 δ. κF(t1) = δ. rmin{κF(t1 ∗ t2), κF(t2)}, 

so κT(t1) ≥ rmin{κT(t1 ∗ t2), κT(t2)}, κI(t1) ≥ rmin{κI(t1 ∗ t2), κI(t2)}  and κF(t1) ≥ rmin{κF(t1 ∗

t2), κF(t2)} and also  

 δ. υT(t1) = (υT)δ
M(t1) 

 ≤ max{(υT)δ
M(t1 ∗ t2), (υT)δ

M(t2)} 

 = max{δ. υT(t1 ∗ t2), δ. υT(t2)} 

 δ. υT(t1) = δ. max{υT(t1 ∗ t2), υT(t2)}, 

  

 δ. υI(t1) = (υI)δ
M(t1) 

 ≤ max{(υI)δ
M(t1 ∗ t2), (υI)δ

M(t2)} 

 = max{δ. υI(t1 ∗ t2), δ. υI(t2)} 

 δ. υI(t1) = δ. max{υI(t1 ∗ t2), υI(t2)}, 

  

 δ. υF(t1) = (υF)δ
M(t1) 

 ≤ max{(υF)δ
M(t1 ∗ t2), (υF)δ

M(t2)} 

 = max{δ. υF(t1 ∗ t2), δ. υF(t2)} 

 δ. υF(t1) = δ. max{υF(t1 ∗ t2), υF(t2)}, 

so υT(t1) ≤ max{υT(t1 ∗ t2), υT(t2)}, υI(t1) ≤ max{υI(t1 ∗ t2), υI(t2)}  and υF(t1) ≤ max{υF(t1 ∗

t2), υF(t2)}. Hence B is a NCID of Y.  

Theorem 3.2.9 If B is a NCID of Y, then NCM Bδ
M of B is a NCID of Y, for all δ ∈ (0,1]. 

Proof. Let B be a NCID of Y and δ ∈ (0,1]. Then we have (κT)δ
M(0) = δ. κT(0) ≥ δ. κT(t1) →(κT)δ

M(0) =

(κT)δ
M(t1),  (κI)δ

M(0) = δ. κI(0) ≥ δ. κI(t1) → (κI)δ
M(0) = (κI)δ

M ( t1),  (κF)δ
M(0) = δ. κF(0) ≥

δ. κF(t1) → (κF)δ
M(0) = (κF)δ

M(t1)  and (υT)δ
M(0) = δ. υT(0) ≤ δ. υT(t1) → (υT)δ

M(0) = (υT)δ
M(t1), 
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(υI)δ
M(0) = δ. υI(0) ≤ δ. υI(t1) → (υI)δ

M (0) = (υI)δ
M(t1),  (υF)δ

M(0) = δ. υF(0) ≤ δ. υF(t1) → (υF)δ
M(0) =

(υF)δ
M(t1). 

Now  

 (κT)δ
M(t1) = δ. κT(t1) 

 ≥ δ. rmin{κT(t1 ∗ t2), κT(t2)} 

 = rmin{δ. κT(t1 ∗ t2), δ. κT(t2)} 

 (κT)δ
M(t1) = rmin{(κT)δ

M(t1 ∗ t2), (κT)δ
M(t2)} 

 (κT)δ
M(t1) ≥ rmin{(κT)δ

M(t1 ∗ t2), (κT)δ
M(t2)}, 

  

 (κI)δ
M(t1) = δ. κI(t1) 

 ≥ δ. rmin{κI(t1 ∗ t2), κI(t2)} 

 = rmin{δ. κI(t1 ∗ t2), δ. κI(t2)} 

 (κI)δ
M(t1) = rmin{(κI)δ

M(t1 ∗ t2), (κI)δ
M(t2)} 

 (κI)δ
M(t1) ≥ rmin{(κI)δ

M(t1 ∗ t2), (κI)δ
M(t2)}, 

  

 (κF)δ
M(t1) = δ. κF(t1) 

 ≥ δ. rmin{κF(t1 ∗ t2), κF(t2)} 

 = rmin{δ. κF(t1 ∗ t2), δ. κF(t2)} 

 (κF)δ
M(t1) = rmin{(κF)δ

M(t1 ∗ t2), (κF)δ
M(t2)} 

 (κF)δ
M(t1) ≥ rmin{(κF)δ

M(t1 ∗ t2), (κF)δ
M(t2)} 

 and  

 (υT)δ
M(t1) = δ. υT(t1) 

 ≤ δ. max{υT(t1 ∗ t2), υT(t2)} 

 = max{δ. υT(t1 ∗ t2), δ. υT(t2)} 

 (υT)δ
M(t1) = max{(υT)δ

M(t1 ∗ t2), (υT)δ
M(t2)} 

 (υT)δ
M(t1) ≤ max{(υT)δ

M(t1 ∗ t2), (υT)δ
M(t2)}, 

  

 (υI)δ
M(t1) = δ. υI(t1) 

 ≤ δ. max{υI(t1 ∗ t2), υI(t2)} 

 = max{δ. υI(t1 ∗ t2), δ. υI(t2)} 

 (υI)δ
M(t1) = max{(υI)δ

M(t1 ∗ t2), (υI)δ
M(t2)} 

 (υI)δ
M(t1) ≤ max{(υI)δ

M(t1 ∗ t2), (υI)δ
M(t2)}, 
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 (υF)δ
M(t1) = δ. υF(t1) 

 ≤ δ. max{υF(t1 ∗ t2), υF(t2)} 

 = max{δ. υF(t1 ∗ t2), δ. υF(t2)} 

 (υF)δ
M(t1) = max{(υF)δ

M(t1 ∗ t2), (υF)δ
M(t2)} 

 (υF)δ
M(t1) ≤ max{(υF)δ

M(t1 ∗ t2), (υF)δ
M(t2)}. 

Hence Bδ
M of B is a NCID of Y, for all δ ∈ (0,1].  

Theorem 3.2.10 Let B be a NCID of Y and δ ∈ [0,1] then NCM Bδ
M of B is a NCSU of Y. 

Proof. Suppose t1, t2 ∈ Y. Then  

 (κT)δ
M(t1 ∗ t2) = δ. κT(t1 ∗ t2) 

 ≥ δ. rmin{κT(t2 ∗ (t1 ∗ t2)), κT(t2)} 

 = δ. rmin{κT(0), κT(t2)} 

 ≥ δ. rmin{κT(t1), κT(t2)} 

 = rmin{δ. κT(t1), δ. κT(t2)} 

 (κT)δ
M(t1 ∗ t2) = rmin{(κT)δ

M(t1), (κT)δ
M(t2)} 

 (κT)δ
M(t1 ∗ t2) ≥ rmin{(κT)δ

M(t1), (κT)δ
M(t2)}, 

  

 (κI)δ
M(t1 ∗ t2) = δ. κI(t1 ∗ t2) 

 ≥ δ. rmin{κI(t2 ∗ (t1 ∗ t2)), κI(t2)} 

 = δ. rmin{κI(0), κI(t2)} 

 ≥ δ. rmin{κI(t1), κI(t2)} 

 = rmin{δ. κI(t1), δ. κI(t2)} 

 (κI)δ
M(t1 ∗ t2) = rmin{(κI)δ

M(t1), (κI)δ
M(t2)} 

 (κI)δ
M(t1 ∗ t2) ≥ rmin{(κI)δ

M(t1), (κI)δ
M(t2)}, 

  

 (κF)δ
M(t1 ∗ t2) = δ. κF(t1 ∗ t2) 

 ≥ δ. rmin{κF(t2 ∗ (t1 ∗ t2)), κF(t2)} 

 = δ. rmin{κF(0), κF(t2)} 

 ≥ δ. rmin{κF(t1), κF(t2)} 

 = rmin{δ. κF(t1), δ. κF(t2)} 

 (κF)δ
M(t1 ∗ t2) = rmin{(κF)δ

M(t1), (κF)δ
M(t2)} 
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 (κF)δ
M(t1 ∗ t2) ≥ rmin{(κF)δ

M(t1), (κF)δ
M(t2)} 

 and  

 (υT)δ
M(t1 ∗ t2) = δ. υT(t1 ∗ t2) 

 ≤ δ. max{υT(t2 ∗ (t1 ∗ t2)), υT(t2)} 

 = δ. max{υT(0), υT(t2)} 

 ≤ δ. max{υT(t1), υT(t2)} 

 = max{δ. υT(t1), δ. υT(t2)} 

 (υT)δ
M(t1 ∗ t2) = max{(υT)δ

M(t1), (υT)δ
M(t2)} 

 (υT)δ
M(t1 ∗ t2) ≤ max{(υT)δ

M(t1), (υT)δ
M(t2)}, 

  

 (υI)δ
M(t1 ∗ t2) = δ. υI(t1 ∗ t2) 

 ≤ δ. max{υI(t2 ∗ (t1 ∗ t2)), υI(t2)} 

 = δ. max{υI(0), υI(t2)} 

 ≤ δ. max{υI(t1), υI(t2)} 

 = max{δ. υI(t1), δ. υI(t2)} 

 (υI)δ
M(t1 ∗ t2) = max{(υI)δ

M(t1), (υI)δ
M(t2)} 

 (υI)δ
M(t1 ∗ t2) ≤ max{(υI)δ

M(t1), (υI)δ
M(t2)}, 

  

 (υF)δ
M(t1 ∗ t2) = δ. υF(t1 ∗ t2) 

 ≤ δ. max{υF(t2 ∗ (t1 ∗ t2)), υF(t2)} 

 = δ. max{υF(0), υF(t2)} 

 ≤ δ. max{υF(t1), υF(t2)} 

 = max{δ. υF(t1), δ. υF(t2)} 

 (υF)δ
M(t1 ∗ t2) = max{(υF)δ

M(t1), (υF)δ
M(t2)} 

 (υF)δ
M(t1 ∗ t2) ≤ max{(υF)δ

M(t1), (υF)δ
M(t2)}. 

Hence Bδ
M is a NCSU of Y.  

Theorem 3.2.11 If the NCM Bδ
M of B is a NCID of Y, for δ ∈ (0,1]. Then B is a neutrosophic cubic BF-

subalgebra of Y. 

Proof. Assume Bδ
M of B is a NCID of Y. Then  

 δ. (κT)(t1 ∗ t2) = (κT)δ
M(t1 ∗ t2) 

 ≥ rmin{(κT)δ
M(t2 ∗ (t1 ∗ t2)), (κT)δ

M(t2)} 

 = rmin{(κT)δ
M(0), (κT)δ

M(t2)} 
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 ≥ rmin{(κT)δ
M(t1), (κT)δ

M(t2)} 

 = rmin{δ. κT(t1), δ. κT(t2)} 

 δ. (κT)(t1 ∗ t2) = δ. rmin{κT(t1), κT(t2)} 

 ⇒ κT(t1 ∗ t2) ≥ rmin{κT(t1), κT(t2)}, 

  

 δ. (κI)(t1 ∗ t2) = (κI)δ
M(t1 ∗ t2) 

 ≥ rmin{(κI)δ
M(t2 ∗ (t1 ∗ t2)), (κI)δ

M(t2)} 

 = rmin{(κI)δ
M(0), (κI)δ

M(t2)} 

 ≥ rmin{(κI)δ
M(t1), (κI)δ

M(t2)} 

 = rmin{δ. κI(t1), δ. κI(t2)} 

 δ. (κI)(t1 ∗ t2) = δ. rmin{κI(t1), κI(t2)} 

 ⇒ κI(t1 ∗ t2) ≥ rmin{κI(t1), κI(t2)}, 

  

 δ. (κF)(t1 ∗ t2) = (κF)δ
M(t1 ∗ t2) 

 ≥ rmin{(κF)δ
M(t2 ∗ (t1 ∗ t2)), (κF)δ

M(t2)} 

 = rmin{(κF)δ
M(0), (κF)δ

M(t2)} 

 ≥ rmin{(κF)δ
M(t1), (κF)δ

M(t2)} 

 = rmin{δ. κF(t1), δ. κF(t2)} 

 δ. (κF)(t1 ∗ t2) = δ. rmin{κF(t1), κF(t2)} 

 ⇒ κF(t1 ∗ t2) ≥ rmin{κF(t1), κF(t2)} 

 and  

 δ. (υT)(t1 ∗ t2) = (υT)δ
M(t1 ∗ t2) 

 ≤ max{(υT)δ
M(t2 ∗ (t1 ∗ t2)), (υT)δ

M(t2)} 

 = max{(υT)δ
M(0), (υT)δ

M(t2)} 

 ≤ max{(υT)δ
M(t1), (υT)δ

M(t2)} 

 = max{δ. υT(t1), δ. υT(t2)} 

 δ. (υT)(t1 ∗ t2) = δ. max{υT(t1), υT(t2)} 

 ⇒ υT(t1 ∗ t2) ≤ max{υT(t1), υT(t2)}, 

  

 δ. (υI)(t1 ∗ t2) = (υI)δ
M(t1 ∗ t2) 

 ≤ max{(υI)δ
M(t2 ∗ (t1 ∗ t2)), (υI)δ

M(t2)} 

 = max{(υI)δ
M(0), (υI)δ

M(t2)} 
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 ≤ max{(υI)δ
M(t1), (υI)δ

M(t2)} 

 = max{δ. υI(t1), δ. υI(t2)} 

 δ. (υI)(t1 ∗ t2) = δ. max{υI(t1), υI(t2)} 

 ⇒ υI(t1 ∗ t2) ≤ max{υI(t1), υI(t2)}, 

  

 δ. (υF)(t1 ∗ t2) = (υF)δ
M(t1 ∗ t2) 

 ≤ max{(υF)δ
M(t2 ∗ (t1 ∗ t2)), (υF)δ

M(t2)} 

 = max{(υF)δ
M(0), (υF)δ

M(t2)} 

 ≤ max{(υF)δ
M(t1), (υF)δ

M(t2)} 

 = max{δ. υF(t1), δ. υF(t2)} 

 δ. (υF)(t1 ∗ t2) = δ. max{υF(t1), υF(t2)} 

 ⇒ υF(t1 ∗ t2) ≤ max{υF(t1), υF(t2)}. 

Hence B is a NCSU of Y.  

Theorem 3.2.12 Intersection of any two neutrosophic cubic multiplications of a NCID B of Y is a NCID of 
Y. 

Proof. Suppose Bδ
M and Bδ′

M  are neutrosophic cubic multiplications of NCID B of Y, where δ, δ′ ∈ (0,1] 
and δ ≤ δ′, as we know that Bδ

M and Bδ′
M  are NCIDs of Y. Then  

 

 ((κT)δ
M ∩ (κT)δ′

M )(t1) = rmin{(κT)δ
M(t1), (κT)δ′

M (t1)} 

 = rmin{κT(t1). δ, κT(t1). δ′} 

 = κT(t1). δ 

 ((κT)δ
M ∩ (κT)δ′

M )(t1) = (κT)δ
M(t1), 

  

 ((κI)δ
M ∩ (κI)δ′

M )(t1) = rmin{(κI)δ
M(t1), (κI)δ′

M (t1)} 

 = rmin{κI(t1). δ, κI(t1). δ′} 

 = κI(t1). δ 

 ((κI)δ
M ∩ (κI)δ′

M )(t1) = (κI)δ
M(t1), 

  

 ((κF)δ
M ∩ (κF)δ′

M )(t1) = rmin{(κF)δ
M(t1), (κF)δ′

M (t1)} 

 = rmin{κF(t1). δ, κF(t1). δ′} 

 = κF(t1). δ 

 ((κF)δ
M ∩ (κF)δ′

M )(t1) = (κF)δ
M(t1) 

 and  
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 ((υT)δ
M ∩ (υT)δ′

M )(t1) = max{(υT)δ
M(t1), (υT)δ′

M (t1)} 

 = max{υT(t1). δ, υT(t1). δ′} 

 = υT(t1). δ′ 

 ((υT)δ
M ∩ (υT)δ′

M )(t1) = (υT)δ′
M (t1), 

  

 ((υI)δ
M ∩ (υI)δ′

M )(t1) = max{(υI)δ
M(t1), (υI)δ′

M (t1)} 

 = max{υI(t1). δ, υI(t1). δ′} 

 = υI(t1). δ′ 

 ((υI)δ
M ∩ (υI)δ′

M )(t1) = (υI)δ′
M (t1), 

  

 ((υF)δ
M ∩ (υF)δ′

M )(t1) = max{(υF)δ
M(t1), (υF)δ′

M (t1)} 

 = max{υF(t1). δ, υF(t1). δ′} 

 = υF(t1). δ′ 

 ((υF)δ
M ∩ (υF)δ′

M )(t1) = (υF)δ′
M (t1). 

Hence Bδ
M ∩ Bδ′

M  is NCID of Y.  

Theorem 3.2.13 Union of any two neutrosophic cubic multiplications of a NCID B of Y is a NCID of Y. 

Proof. Suppose Bδ
M and Bδ′

M  are neutrosophic cubic multiplications of NCID B of Y, where δ, δ′ ∈ (0,1] 
and δ ≤ δ′, as we know that Bδ

M and Bδ′
M  are NCIDs of Y. Then  

 

 ((κT)δ
M ∪ (κT)δ′

M )(t1) = rmax{(κT)δ
M(t1), (κT)δ′

M (t1)} 

 = rmax{κT(t1). δ, κT(t1). δ′} 

 = κT(t1). δ′ 

 ((κT)δ
M ∪ (κT)δ′

M )(t1) = (κT)δ′
M (t1), 

  

 ((κI)δ
M ∪ (κI)δ′

M )(t1) = rmax{(κI)δ
M(t1), (κI)δ′

M (t1)} 

 = rmax{κI(t1). δ, κI(t1). δ′} 

 = κI(t1). δ′ 

 ((κI)δ
M ∪ (κI)δ′

M )(t1) = (κI)δ′
M (t1), 

  

 ((κF)δ
M ∪ (κF)δ′

M )(t1) = rmax{(κF)δ
M(t1), (κF)δ′

M (t1)} 

 = rmax{κF(t1). δ, κF(t1). δ′} 

 = κF(t1). δ′ 

 ((κF)δ
M ∪ (κF)δ′

M )(t1) = (κF)δ′
M (t1) 
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 and  

 ((υT)δ
M ∪ (υT)δ′

M )(t1) = min{(υT)δ
M(t1), (υT)δ′

M (t1)} 

 = min{υT(t1). δ, υT(t1). δ′} 

 = υT(t1). δ 

 ((υT)δ
M ∪ (υT)δ′

M )(t1) = (υT)δ
M(t1), 

  

 ((υI)δ
M ∪ (υI)δ′

M )(t1) = min{(υI)δ
M(t1), (υI)δ′

M (t1)} 

 = min{υI(t1). δ, υI(t1). δ′} 

 = υI(t1). δ 

 ((υI)δ
M ∪ (υI)δ′

M )(t1) = (υI)δ
M(t1), 

 

 ((υF)δ
M ∪ (υF)δ′

M )(t1) = min{(υF)δ
M(t1), (υF)δ′

M (t1)} 

 = min{υF(t1). δ, υF(t1). δ′} 

 = υF(t1). δ 

 ((υF)δ
M ∪ (υF)δ′

M )(t1) = (υF)δ
M(t1). 

Hence Bδ
M ∪ Bδ′

M  is NCID of Y.   

3.3 Magnified Translative Interpretation of Neutrosophic Cubic Subalgebra and Neutrosophic Cubic 

Ideal 

In this section, we define the notion of neutrosophic cubic magnified translation NCMT and investigate some 

results.   

Definition 3.3.1 Let B = (κT,I,F, υT,I,F)  be a NCS of Y  and for κT,I,F,  α, β ∈ [[0,0], ℸ]  and γ ∈ [[0,0], ¥], 
where for υT,I,F , α, β ∈ [0, Γ]  and γ ∈ [0, £]  and for all δ ∈ [0,1].  An object having the form Bδ α,β,γ

M T =

{(κT,I,F)δ α,β,γ
M T , (υT,I,F)δ α,β,γ

M T } is said to be a NCMT of B, when (κT)δ α
M T(t1) = δ. κT(t1) + α,(κI)δ β

M T(t1) =

δ. κI(t1) + β , (κF)δ γ
M T(t1) = δ. κF(t1) -  γ  and (υT)δ α

M T(t1) = δ. υT(t1) + α , (υI)δ β
M T(t1) = δ. υI(t1) + β , 

(υF)δ γ
M T(t1) = δ. υF(t1)-γ for all t1 ∈ Y.     

Example 3.3.1 Let Y = {0,1,2} be a BF-algebra as defined in Example 3.2.1. A NCS B = (κT,I,F, υT,I,F) of Y 
is defined as 

 

 κT(t1) = (
[0.1, 0.3] if t1 = 0

[0.4, 0.7] if otherwise
 

 κI(t1) = (
[0.2,0.4] if t1 = 0

[0.5, 0.7] if otherwise
 

 κF(t1) = (
[0.4,0.6] if  t1 = 0

[0.5, 0.8] if otherwise
 

and 
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 υT(t1) = (
0.1 if t1 = 0
0.4 if otherwise

 

 υI(t1) = (
0.2 if t1 = 0
0.3 if otherwise

 

 υF(t1) = (
0.5 if t1 = 0
0.7 if otherwise.

 

Then B is a neutrosophic cubic subalgebra, for υT,I,F choose δ = 0.1, α = 0.02, β = 0.03, γ = 0.04 and for 
κT,I,F choose  δ = [0.1,0.4], α = [0.03,0.07], β = [0.04,0.08], γ = [0.02,0.06]  then the mapping 
B(0.1) (α,β,γ)

M T |Y → [0,1] is given by 

                      (κT)[0.1,0.4] [0.03,0.07]
M (t1) = (

[0.04, 0.19] if t1 = 1

[0.07, 0.35] if otherwise
 

 (κI)[0.1,0.4] [0.04,0.08]
M T (t1) = (

[0.06, 0.24] if t1 = 1

[0.09, 0.36] if otherwise
  

 (κF)[0.1,0.4] [0.02,0.06]
M T (t1) = (

[0.02, 0.18] if t1 = 1

[0.03, 0.26] if otherwise
 

 and  

 (υT)0.1,0.02
M (t1) = (

0.03 if t1 = 1
0.06 if otherwise

 

 (υI)0.1,0.03
M T (t1) = (

0.05 if t1 = 1
0.06 if otherwise

 

 (υF)0.1.0.04
M T (t1) = (

0.01 if t1 = 1
0.03 if otherwise,

 

which imply (κT)[0.1,0.4][0.03,0.07]
M T (t1) = [0.1,0.4]. κT(t1) + [0.03,0.07] , (κI)[0.1,0.4][0.04,0.08]

M T (t1) =

[0.1,0.4]. κT(t1) + [0.04,0.08] , (κF)[0.1,0.4][0.02,0.06]
M T (t1) = [0.1,0.4]. κF(t1) − [0.02,0.06]  and 

(υT)(0.1)(0.02)
M T (t1) = (0.1). υT(t1) + 0.02 , (υI)(0.1)(0.03)

M T (t1) = (0.1). υT(t1) + 0.03 , (νF)(0.1) (0.04)
M T (t1) =

(0.1). νF(t1) − 0.04 for all t1 ∈ Y. Hence BM T is a neutrosophic cubic magnified translation. 

Theorem 3.3.1 Let B  be a neutrosophic cubic subset of Y  such that for κT,I,F,  α, β ∈ [[0,0], ℸ] and γ ∈

[[0,0], ¥], where for υT,I,F, α, β ∈ [0, Γ] and γ ∈ [0, £] and δ ∈ [0,1] and a mapping Bδ α,β,γ
M T,I,F|Y → [0,1] be a 

NCMT of B. If B is NCSU of Y, then Bδ α,β,γ
M T,I,F is a NCSU of Y. 

Proof. Let B be a neutrosophic cubic subset of Y such that for κT,I,F, α, β ∈ [[0,0], ℸ] and γ ∈ [[0,0], ¥], 
where for υT,I,F, α, β ∈ [0, Γ] and γ ∈ [0, £] and δ ∈ [0,1] and a mapping Bδ α,β,γ

M T,I,F|Y → [0,1] be a NCMT of 
B.  Suppose B  is a NCSU of Y.  Then κT(t1 ∗ t2) ≥ rmin{κT(t1), κT(t2)}, κI(t1 ∗ t2) ≥

rmin{κI(t1), κI(t2)}, κF(t1 ∗ t2) ≥ rmin{κF(t1), κF ( t2 ) }  and υT(t1 ∗ t2) ≤ max{υT(t1), υT(t2)}, υI(t1 ∗

t2) ≤ max{υI(t1), υI(t2)}, υF(t1 ∗ t2) ≤ max{υF(t1), υF(t2)}. Now  

 (κT)δ α
M T(t1 ∗ t2) = δ. κT(t1 ∗ t2) + α 

 ≥ δ. rmin{κT(t1), κT(t2)} + α 
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 = rmin{δ. κT(t1) + α, δ. κT(t2) + α} 

 (κT)δ α
M T(t1 ∗ t2) = rmin{(κT)δ α

M T(t1), (κT)δ α
M T(t2)} 

 (κT)δ α
M T(t1 ∗ t2) ≥ rmin{(κT)δ α

M T(t1), (κT)δ α
M T(t2)}, 

  

 (κI)δ β
M T(t1 ∗ t2) = δ. κI(t1 ∗ t2) + β 

 ≥ δ. rmin{κI(t1), κI(t2)} + β 

 = rmin{δ. κI(t1) + β, δ. κI(t2) + β} 

 (κI)δ β
M T(t1 ∗ t2) = rmin{(κI)δ β

M T(t1), (κI)δ β
M T(t2)} 

 (κI)δ β
M T(t1 ∗ t2) ≥ rmin{(κI)δ β

M T(t1), (κI)δ β
M T(t2)}, 

  

 (κF)δ γ
M T(t1 ∗ t2) = δ. κF(t1 ∗ t2) − γ 

 ≥ δ. rmin{κF(t1), κF(t2)} − γ 

 = rmin{δ. κF(t1) − γ, δ. κF(t2) − γ} 

 (κF)δ γ
M T(t1 ∗ t2) = rmin{(κF)δ γ

M T(t1), (κF)δ γ
M T(t2)} 

 (κF)δ γ
M T(t1 ∗ t2) ≥ rmin{(κF)δ γ

M T(t1), (κF)δ γ
M T(t2)} 

 and  

 (υT)δ α
M T(t1 ∗ t2) = δ. υT(t1 ∗ t2) + α 

 ≤ δ. max{υT(t1), υT(t2)} + α 

 = max{δ. υT(t1) + α, δ. υT(t2) + α} 

 (υT)δ α
M T(t1 ∗ t2) = max{(υT)δ α

M T(t1), (υT)δ α
M T(t2)} 

 (υT)δ α
M T(t1 ∗ t2) ≤ max{(υT)δ α

M T(t1), (υT)δ α
M T(t2)}, 

  

 (υI)δ β
M T(t1 ∗ t2) = δ. υI(t1 ∗ t2) + β 

 ≤ δ. max{υI(t1), υI(t2)} + β 

 = max{δ. υI(t1) + β, δ. υI(t2) + β} 

 (υI)δ β
M T(t1 ∗ t2) = max{(υI)δ β

M T(t1), (υI)δ β
M T(t2)} 

 (υI)δ β
M T(t1 ∗ t2) ≤ max{(υI)δ β

M T(t1), (υI)δ β
M T(t2)}, 

  

 (υF)δ γ
M T(t1 ∗ t2) = δ. υF(t1 ∗ t2) − γ 

 ≤ δ. max{υF(t1), υF(t2)} − γ 

 = max{δ. υF(t1) − γ, δ. υF(t2) − γ} 

 (υF)δ γ
M T(t1 ∗ t2) = max{(υF)δ γ

M T(t1), (υF)δ γ
M T(t2)} 

 (υF)δ γ
M T(t1 ∗ t2) ≤ max{(υF)δ γ

M T(t1), (υF)δ γ
M T(t2)}. 
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Hence NCMT Bδ α,β,γ
M T  is a NCSU of Y.  

Theorem 3.3.2 Let B be a NCS of Y such that and for κT,I,F, α, β ∈ [[0,0], ℸ] and γ ∈ [[0,0], ¥], where for 
υT,I,F , α, β ∈ [0, Γ] and γ ∈ [0, £] and δ ∈ [0,1] and a mapping Bδ α,β,γ

M T : Y → [0,1] be a NCMT of B. If 
Bδ α,β,γ

M T  is NCSU of Y. Then B is a NCSU of Y. 

Proof. Let B  be a neutrosophic cubic subset of Y,  where α, β, γ  ∈  [0, ¥],  δ  ∈  [0,1]  and a mapping 

Bδ α,β,γ
M T : Y → [0,1] be a NCMT of B. Suppose Bδ α,β,γ

M T = {(κB)δ α,β,γ
M T,I,F, (υB)δ α,β,γ

M T,I,F} is a NCSU of Y, then  

 δ. κT(t1 ∗ t2) + α = (κT)δ α
M T(t1 ∗ t2) 

 ≥ rmin{(κT)δ α
M T(t1), (κT)δ α

M T(t2)} 

 = rmin{δ. κT(t1) + α, δ. κT(t2) + α} 

 δ. κT(t1 ∗ t2) + α = δ. rmin{κT(t2), κT(t1)} + α, 

 

 δ. κI(t1 ∗ t2) + β = (κI)δ β
M T(t1 ∗ t2) 

 ≥ rmin{(κI)δ β
M T(t1), (κI)δ β

M T(t2)} 

 = rmin{δ. κI(t1) + β, δ. κI(t2) + β} 

 δ. κI(t1 ∗ t2) + β = δ. rmin{κI(t2), κI(t1)} + β, 

  

 δ. κF(t1 ∗ t2) − γ = (κF)δ γ
M T(t1 ∗ t2) 

 ≥ rmin{(κF)δ γ
M T(t1), (κF)δ γ

M T(t2)} 

 = rmin{δ. κF(t1) − γ, δ. κF(t2) − γ} 

 δ. κF(t1 ∗ t2) − γ = δ. rmin{κF(t2), κF(t1)} − γ, 

 and  

 δ. υT(t1 ∗ t2) + α = (υT)δ α
M T(t1 ∗ t2) 

 ≤ max{(υT)δ α
M T(t1), (υT)δ α

M T(t2)} 

 = max{δ. υT(t1) + α, δ. υT(t2) + α} 

 δ. υT(t1 ∗ t2) + α = δ. max{υT(t2), υT(t1)} + α, 

  

 δ. υI(t1 ∗ t2) + β = (υI)δ β
M T(t1 ∗ t2) 

 ≤ max{(υI)δ β
M T(t1), (υI)δ β

M T(t2)} 

 = max{δ. υI(t1) + β, δ. υI(t2) + β} 

 δ. υI(t1 ∗ t2) + β = δ. max{υI(t2), υI(t1)} + β, 
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 δ. υF(t1 ∗ t2) − γ = (υF)δ γ
M T(t1 ∗ t2) 

 ≤ max{(υF)δ γ
M T(t1), (υF)δ γ

M T(t2)} 

 = max{δ. υF(t1) − γ, δ. υF(t2) − γ} 

 δ. υF(t1 ∗ t2) − γ = δ. max{υF(t2), υF(t1)} − γ, 

 

which imply κT(t1 ∗ t2) ≥ rmin{κT(t1), κT(t2)} , κI(t1 ∗ t2) ≥ rmin{κI(t1), κI(t2)} , κF(t1 ∗ t2) ≥

rmin{κF(t1), κF(t2)} and υT(t1 ∗ t2) ≤ max{υT(t1), υT(t2)},υI(t1 ∗ t2) ≤ max{υI(t1), υI(t2)},υF(t1 ∗ t2) ≤

max{υF(t1), υF(t2)} for all t1, t2 ∈ Y. Hence B is a NCSU of Y.  

Theorem 3.3.3 If B  is a NCID of Y. Then NCMT Bδ α,β,γ
M T  of B  is a NCID of Y  for all  κT,I,F, α, β ∈

[[0,0], ℸ] and γ ∈ [[0,0], ¥], where for υT,I,F, α, β ∈ [0, Γ] and γ ∈ [0, £] and δ ∈ (0,1]. 

Proof. Suppose B = (κT,I,F, υT,I,F) is a NCID of Y. Then  

 (κT)δ α
M T(0) = δ. κT(0) + α 

 ≥ δ. κT(t1) + α 

 (κT)δ α
M T(0) = (κT)δ α

M T(t1),  

 (κI)δ β
M T(0) = δ. κI(0) + β 

 ≥ δ. κI(t1) + β 

 (κI)δ β
M T(0) = (κI)δ β

M T(t1), 

 (κF)δ γ
M T(0) = δ. κF(0) − γ 

 ≥ δ. κF(t1) − γ 

 (κF)δ γ
M T(0) = (κF)δ γ

M T(t1) 

 and  

 (υT)δ α
M T(0) = δ. υT(0) + α 

 ≤ δ. υT(t1) + α 

 (υT)δ α
M T(0) = (υT)δ α

M T(t1), 

 (υI)δ β
M T(0) = δ. υI(0) + β 

 ≤ δ. υI(t1) + β 

 (υI)δ β
M T(0) = (υI)δ β

M T(t1), 

 (υF)δ γ
M T(0) = δ. υF(0) − γ 

 ≤ δ. υF(t1) − γ 

 (υF)δ γ
M T(0) = (υF)δ γ

M T(t1) 
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 Now  

 (κT)δ α
M T(t1) = δ. κT(t1) + α 

 ≥ δ. rmin{κT(t1 ∗ t2), κT(t2)} + α 

 = rmin{δ. κT(t1 ∗ t2) + α, δ. κT(t2) + α} 

 (κT)δ α
M T(t1) = rmin{(κT)δ α

M T(t1 ∗ t2), (κT)δ α
M T(t2)} 

 ⇒ (κT)δ α
M T(t1) ≥ rmin{(κT)δ α

M T(t1 ∗ t2), (κT)δ α
M T(t2)}, 

  

 (κI)δ β
M T(t1) = δ. κI(t1) + β 

 ≥ δ. rmin{κI(t1 ∗ t2), κI(t2)} + β 

 = rmin{δ. κI(t1 ∗ t2) + β, δ. κI(t2) + β} 

 (κI)δ β
M T(t1) = rmin{(κI)δ β

M T(t1 ∗ t2), (κI)δ β
M T(t2)} 

 ⇒ (κI)δ β
M T(t1) ≥ rmin{(κI)δ β

M T(t1 ∗ t2), (κI)δ β
M T(t2)}, 

  

 (κF)δ γ
M T(t1) = δ. κF(t1) − γ 

 ≥ δ. rmin{κF(t1 ∗ t2), κF(t2)} − γ 

 = rmin{δ. κF(t1 ∗ t2) − γ, δ. κF(t2) − γ} 

 (κF)δ γ
M T(t1) = rmin{(κF)δ γ

M T(t1 ∗ t2), (κF)δ γ
M T(t2)} 

 ⇒ (κF)δ γ
M T(t1) ≥ rmin{(κF)δ γ

M T(t1 ∗ t2), (κF)δ γ
M T(t2)} 

 and  

 (υT)δ α
M T(t1) = δ. υT(t1) + α 

 ≤ δ. max{υT(t1 ∗ t2), υT(t2)} + α 

 = max{δ. υT(t1 ∗ t2) + α, δ. υT(t2) + α} 

 (υT)δ α
M T(t1) = max{(υT)δ α

M T(t1 ∗ t2), (υT)δ α
M T(t2)} 

 ⇒ (υT)δ α
M T(t1) ≤ max{(υT)δ α

M T(t1 ∗ t2), (υT)δ α
M T(t2)}, 

  

 (υI)δ β
M T(t1) = δ. υI(t1) + β 

 ≤ δ. max{υI(t1 ∗ t2), υI(t2)} + β 

 = max{δ. υI(t1 ∗ t2) + β, δ. υI(t2) + β} 

 (υI)δ β
M T(t1) = max{(υI)δ β

M T(t1 ∗ t2), (υI)δ β
M T(t2)} 
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 ⇒ (υI)δ β
M T(t1) ≤ max{(υI)δ β

M T(t1 ∗ t2), (υI)δ β
M T(t2)}, 

  

 (υF)δ γ
M T(t1) = δ. υF(t1) − γ 

 ≤ δ. max{υF(t1 ∗ t2), υF(t2)} − γ 

 = max{δ. υF(t1 ∗ t2) − γ, δ. υF(t2) − γ} 

 (υF)δ γ
M T(t1) = max{(υF)δ γ

M T(t1 ∗ t2), (υF)δ γ
M T(t2)} 

 ⇒ (υF)δ γ
M T(t1) ≤ max{(υF)δ γ

M T(t1 ∗ t2), (υF)δ γ
M T(t2)}, 

for all t1, t2 ∈ Y and all for κT,I,F, α, β ∈ [[0,0], ℸ] and γ ∈ [[0,0], ¥], where for υT,I,F, α, β ∈ [0, Γ] and γ ∈

[0, £] and δ ∈ (0,1]. Hence Bδ α,β,γ
M T  of B is a NCID of Y.  

Theorem 3.3.3 If B is a neutrosophic cubic set of Y such that NCMT Bδ α,β,γ
M T  of B is a NCID of Y for all for 

κT,I,F, α, β ∈ [[0,0], ℸ] and γ ∈ [[0,0], ¥], where for υT,I,F , α, β ∈ [0, Γ] and γ ∈ [0, £] and δ ∈ (0,1], then 

B is a NCID of Y. 

Proof. Suppose NCMT Bδ α,β,γ
M T  is a NCID of Y for some κT,I,F, α, β ∈ [[0,0], ℸ] and γ ∈ [[0,0], ¥], where 

for υT,I,F, α, β ∈ [0, Γ] and γ ∈ [0, £] and δ ∈ (0,1] and t1, t2 ∈ Y. Then  

 δ. κT(0) + α = (κT)δ α
M T(0) 

 ≥ (κT)δ α
M T(t1) 

 δ. κT(0) + α = δ. κT(t1) + α, 

 δ. κI(0) + β = (κI)δ β
M T(0) 

 ≥ (κI)δ β
M T(t1) 

 δ. κI(0) + β = δ. κI(t1) + β, 

 δ. κF(0) − γ = (κF)δ γ
M T(0) 

 ≥ (κF)δ γ
M T(t1) 

 
 δ. κF(0) − γ = δ. κF(t1) − γ, 

 and  

 δ. υT(0) + α = (υT)δ α
M T(0) 

 ≤ (υT)δ α
M T(t1) 

 δ. υT(0) + α = δ. υT(t1) + α, 

 δ. υI(0) + β = (υI)δ β
M T(0) 

 ≤ (υI)δ β
M T(t1) 

 δ. υI(0) + β = δ. υI(t1) + β,  



Neutrosophic Sets and Systems, Vol. 35, 2020                                                                        334 

 

 

Mohsin khalid,Florentin Smarandache,Neha Andaleeb khalid and Said Broumi, Translative And Multiplicative 

Interpretation of Neutrosophic Cubic Set 

 

 δ. υF(0) − γ = (υF)δ γ
M T(0) 

 ≤ (υF)δ γ
M T(t1) 

 δ. υF(0) − γ = δ. υF(t1) − γ, 

which imply κT(0) ≥ κT(t1),κI(0) ≥ κI(t1),κF(0) ≥ κF(t1) and υT(0) ≤ υT(t1), υI(0) ≤ υI(t1), υF(0) ≤

υF(t1). Now, we have  

 δ. κT(t1) + α = (κT)δ α
M T(t1) 

 ≥ rmin{(κT)δ α
M T(t1 ∗ t2), (κT)δ α

M T(t2)} 

 = rmin{δ. κT(t1 ∗ t2) + α, δ. κT(t2) + α} 

 δ. κT(t1) + α = δ. rmin{κT(t1 ∗ t2), κT(t2)} + α, 

 δ. κI(t1) + β = (κI)δ β
M T(t1) 

 ≥ rmin{(κI)δ β
M T(t1 ∗ t2), (κI)δ β

M T(t2)} 

 = rmin{δ. κI(t1 ∗ t2) + β, δ. κI(t2) + β} 

 δ. κI(t1) + β = δ. rmin{κI(t1 ∗ t2), κI(t2)} + β, 

 δ. κF(t1) − γ = (κF)δ γ
M T(t1) 

 ≥ rmin{(κF)δ γ
M T(t1 ∗ t2), (κF)δ γ

M T(t2)} 

 = rmin{δ. κF(t1 ∗ t2) − γ, δ. κF(t2) − γ} 

 δ. κF(t1) − γ = δ. rmin{κF(t1 ∗ t2), κF(t2)} − γ 

 and  

 δ. υT(t1) + α = (υT)δ α
M T(t1) 

 ≤ max{(υT)δ α
M T(t1 ∗ t2), (υT)δ α

M T(t2)} 

 = max{δ. υT(t1 ∗ t2) + α, δ. υT(t2) + α} 

 δ. υT(t1) + α = δ. max{υT(t1 ∗ t2), υT(t2)} + α, 

          δ. υI(t1) + β = (υI)δ β
M T(t1) 

 ≤ max{(υI)δ β
M T(t1 ∗ t2), (υI)δ β

M T(t2)} 

 = max{δ. υI(t1 ∗ t2) + β, δ. υI(t2) + β} 

 δ. υI(t1) + β = δ. max{υI(t1 ∗ t2), υI(t2)} + β, 

 δ. υF(t1) − γ = (υF)δ γ
M T(t1) 

 ≤ max{(υF)δ γ
M T(t1 ∗ t2), (υF)δ γ

M T(t2)} 

 = max{δ. υF(t1 ∗ t2) − γ, δ. υF(t2) − γ} 
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 δ. υF(t1) − γ = δ. max{υF(t1 ∗ t2), υF(t2)} − γ 

which imply κT(t1) ≥ rmin{κT(t1 ∗ t2), κT(t2)} , κI(t1) ≥ rmin{κI(t1 ∗ t2), κI(t2)} , κF(t1) ≥ rmin{κF(t1 ∗

t2), κF(t2)} and υT(t1) ≤ max{υT(t1 ∗ t2), υT(t2)},υI(t1) ≤ max{υI(t1 ∗ t2), υI(t2)},υF(t1) ≤ max{υF(t1 ∗

t2), υF(t2)} for all t1, t2 ∈ Y. Hence B is a NCID of Y.  
 
Theorem 3.3.4 Intersection of any two NCMT of a NCID B of Y is a NCID of Y. 

Proof. Suppose Bδ α,β,γ
M T  and Bδ′α′,β′,γ′

M T  are two NCMTs of NCID B ofY, where for Bα,β,γ
M T  , for κT,I,F, α, β ∈

[[0,0], ℸ], γ ∈ [[0,0], ¥], for υT,I,F, α, β ∈ [0, Γ], γ ∈ [0, £]  and for Bα′,β′,γ′
T  , for κT,I,F α′, β′ ∈ [[0,0], ℸ], γ′ ∈

[[0,0], ¥], for υT,I,F, α′, β′ ∈ [0, Γ],  γ′ ∈ [0, £]. Assume α ≤ α′, β ≤ β′, γ ≤ γ′ and δ = δ′. Then by Theorem 
3.3.3, Bδ α,β,γ

M T  and Bδ′ α′,β′,γ′
M T  are NCIDs of Y. So  

 ((κT)δ α
M T ∩ (κT)δ′ α′

M T )(t1) = rmin{(κT)δ α
M T(t1), (κT)δ′ α′

M T (t1)} 

 = rmin{δ. κT(t1) + α, δ′. κT(t1) + α′} 

 = δ. κT(t1) + α 

 ((κT)δ α
M T ∩ (κT)δ′ α′

M T )(t1) = (κT)δ α
M T(t1), 

 

 ((κI)δ β
M T ∩ (κI)δ′ β′

M T )(t1) = rmin{(κI)δ β
M T(t1), (κI)δ′ β′

M T (t1)} 

 = rmin{δ. κI(t1) + β, δ′. κI(t1) + β′} 

 = δ. κI(t1) + β 

 ((κI)δ β
M T ∩ (κI)δ′ β′

M T )(t1) = (κI)δ β
M T(t1), 

 

 ((κF)δ γ
M T ∩ (κF)δ′ γ′

M T )(t1) = rmin{(κF)δ γ
M T(t1), (κF)δ′ γ′

M T (t1)} 

 = rmin{δ. κF(t1) − γ, δ′. κF(t1) − γ′} 

 = δ′. κF(t1) − γ′ 

 ((κF)δ γ
M T ∩ (κF)δ′ γ′

M T )(t1) = (κF),δ′ γ′
M T (t1) 

 and  

 ((υT)δ α
M T ∩ (υT)δ′ α′

M T )(t1) = max{(υT)δ α
M T(t1), (υT)δ′ α′

M T (t1)} 

 = max{δ. υT(t1) + α, δ′. υT(t1) + α′} 

 = δ′. υT(t1) + α′ 

 ((υT)δ α
M T ∩ (υT)δ′ α′

M T )(t1) = (υT)δ′α′
M T (t1), 

 

 ((υI)δ β
M T ∩ (υI)δ′ β′

M T )(t1) = max{(υI)δ β
M T(t1), (υI)δ′ β′

M T (t1)} 

 = max{δ. υI(t1) + β, δ′. υI(t1) + β′} 

 = δ′. υI(t1) + β′ 

 ((υI)δ β
M T ∩ (υI)δ′β′

M T )(t1) = (υI)δ′ β′
M T (t1), 
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 ((υF)δ γ

M T ∩ (υF)δ′ γ′
M T  )(t1) = max{(υF)δ γ

M T(t1), (υF)δ′ γ′
M T (t1)} 

 = max{δ. υF(t1) − γ, δ′. υF(t1) − γ′} 

 = δ. υF(t1) − γ 

 ((υF)δ γ
M T ∩ (υF)δ′ γ′

M T )(t1) = (υF)δ γ
M T(t1). 

 

 Hence Bδ α,β,γ
M T ∩ Bδ′α′,β′,γ′

M T  is NCID of Y.  

Theorem 3.3.5 Union of any two NCMT Bδ α,β,γ
M T  of a NCID B of Y is a NCID of Y.  

Proof. Suppose Bδ α,β,γ
M T  and Bδ′α′,β′,γ′

M T  are two NCMTs of NCID B of Y , where for Bα,β,γ
M T  , for κT,I,F, α, β ∈

[[0,0], ℸ], γ ∈ [[0,0], ¥], for υT,I,F, α, β ∈ [0, Γ], γ ∈ [0, £]  and for Bα′,β′,γ′
T  , for κT,I,F α′, β′ ∈ [[0,0], ℸ], γ′ ∈

[[0,0], ¥], for υT,I,F, α′, β′ ∈ [0, Γ],  γ′ ∈ [0, £]. Assume α ≥ α′, β ≥ β′, γ ≥ γ′ and δ = δ′. Then by Theorem 
3.3.3, Bδ α,β,γ

M T  and Bδ′ α′,β′,γ′
M T  are NCIDs of Y. So 

 ((κT)δ α
M T ∪ (κT)δ′ α′

M T )(t1) = rmax{(κT)δ α
M T(t1), (κT)δ′α′

M T (t1)} 

 = rmax{δ. κT(t1) + α, δ′. κT(t1) + α′} 

 = δ. κT(t1) + α 

 ((κT)δ α
M T ∪ (κT)δ′α′

M T )(t1) = (κT)δ α
M T(t1), 

 

 ((κI)δ β
M T ∪ (κI)δ′β′

M T )(t1) = rmax{(κI)δ β
M T(t1), (κI)δ′β′

M T (t1)} 

 = rmax{δ. κI(t1) + β, δ′. κI(t1) + β′} 

 = δ. κI(t1) + β 

 ((κI)δ β
M T ∪ (κI)δ′ β′

M T )(t1) = (κI)δ β
M T(t1), 

 

 ((κF)δ γ
M T ∪ (κF)δ′ γ′

M T )(t1) = rmax{(κF)δ γ
M T(t1), (κF)δ′ γ′

M T (t1)} 

 = rmax{δ. κF(t1) − γ, δ′. κF(t1) − γ′} 

 = δ′. κF(t1) − γ′} 

 ((κF)δ γ
M T ∪ (κF)δ′ γ′

M T )(t1) = (κF)δ′ γ′
M T (t1) 

 and  

 ((υT)δ α
M T ∪ (υT)δ′ α′

M T )(t1) = min{(υT)δ α
M T(t1), (υT)δ′ α′

M T (t1)} 

 = min{δ. υT(t1) + α, δ′. υT(t1) + α′} 

 = δ′. υT(t1) + α′ 

 ((υT)δ α
M T ∪ (υT)δ′ α′

M T )(t1) = (υT)δ′α′
M T (t1), 

  

 ((υI)δ β
M T ∪ (υI)δ′ β′

M T )(t1) = min{(υI)δ β
M T(t1), (υI)δ′ β′

M T (t1)} 

 = min{δ. υI(t1) + β, δ′. υI(t1) + β′} 

 = δ′. υI(t1) + β′ 
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 ((υI)δ β
M T ∪ (υI)δ′ β′

M T )(t1) = (υI)δ′β′
M T (t1), 

 

 ((υF)δ γ
M T ∪ (υF)δ′ γ′

M T )(t1) = min{(υF)δ γ
M T(t1), (υF)δ′ γ′

M T (t1)} 

 = min{δ. υF(t1) − γ, δ′. υF(t1) − γ′} 

 = δ. υF(t1) − γ 

 ((υF)δ γ
M T ∪ (υF)δ′ γ′

M T )(t1) = (υF)δ γ
M T(t1). 

 Hence Bδ α,β,γ
M T ∪ Bδ′ α′,β′,γ′

M T  is NCID of Y. 

 
4. Conclusion 

 

In this paper, we defined neutrosophic cubic translation,, neutrosophic cubic multiplication and neutrosophic 
cubic magnified translation for neutrosophic cubic set on BF-algebra. We provided the new sort of different 
conditions for neutrosophic cubic translation, neutrosophic cubic multiplication and neutrosophic cubic 
magnified translation and proved with examples.  Moreover, for better understanding we investigated many 
results for NCT, NCM and NCMT using the subalgebra and ideals. For future work, translation and 
multiplication can be applied on neutrosophic cubic soft set and T-neutrosophic cubic set. 
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Abstract: The idea of neutrosophic generalized homeomorphism is presented in neutrosophic 

topological spaces. In addition to this, neutrosophic generalized closed and open mappings are also 

presented. At the same time, their characterizations are discussed by establishing their related 

attributes. 
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1. Introduction 

     Neutrosophic sets were initially established as a generality of intuitionistic fuzzy sets [10] by 

Smarandache [18] such that the membership, the non-membership, and the indeterminacy degrees 

are considered. In analogy with more unsure philosophy, the neutrosophic set discharge agreement 

with an indeterminacy condition. The neutrosophic conception has a broad scope of real-time 

requests in the fields of [1-9] Artificial Intelligence, Computer Science, Information Systems, 

Decision Making, Uncertainty assessments of linear time-cost tradeoffs, Applied Mathematics, and 

solving the supply chain problem. Salama et al. [15, 16] adapted the notion of the neutrosophic set 

to operate in neutrosophic topological spaces (NTSs in short) and pioneered generalized 

neutrosophic set and topological spaces. In [11], generalized neutrosophic closed set (in short, 

GNCS) is defined and using this generalized neutrosophic continuous (GN-continuous), and 

generalized neutrosophic irresolute (in short, GN-irresolute) functions are defined. Recently in [12, 

13], the perception of generalized α-contra continuous and neutrosophic almost 

α-contra-continuous functions are introduced. Parimala M et al. [14] introduced and studied the 

thought of Neutrosophic homeomorphism and Neutrosophic αψ homeomorphism in Neutrosophic 

topological spaces. This paper aspires to overly enunciate the thought of neutrosophic generalized 

homeomorphism (in short, neutrosophic g-homeomorphism) in NTSs by utilizing GN-continuous 

function and study some of their properties. We have also provided the idea of generalized 

neutrosophic closed and open mappings by establishing some of their characterizations. Besides, 

neutrosophic g*-homeomorphism is also presented and establish its relation with the neutrosophic 

g-homeomorphism. 

2. Preliminaries 

Definition 2.1 [15]: A neutrosophic topology (in short,N-topology) on 𝑋 ≠ ∅ is a family 𝜉 of N-sets 

in 𝑋 satisfying the laws given below:   

(i) 0𝑁, 1𝑁 ∈ 𝜉,  

mailto:mb_page@kletech.ac.in
mailto:qays.imran@mu.edu.iq
mailto:qays.imran@mu.edu.iq
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(ii) 𝑊1⋂𝑊2 ∈ 𝜉 being 𝑊1, 𝑊2 ∈ 𝜉,  

(iii) ⋃𝑊𝑖 ∈ 𝜉 for arbitrary family {𝑊𝑖|𝑖 ∈ 𝛬} ⊆ 𝜉. 

In this situation the ordered pair (𝑋, 𝜉) or simply 𝑋 is termed as NTS and each NS in 𝜉 is named as 

neutrosophic open set (in short, NOS). The complement Λ of an N-open set Λ in 𝑋 is known as 

neutrosophic closed set (briefly, NCS) in 𝑋. 

 

Definition 2.2 [15]: Let Λ be an NS in an NTS (𝑋, 𝜉). Thereupon  

(i) 𝑁𝑖𝑛𝑡(Λ) = ⋃{𝐺|𝐺 is a NOS in 𝑋 and 𝐺 ⊆ Λ} is termed as neutrosophic interior (in brief 𝑁𝑖𝑛𝑡) 

of Λ; 

(ii) 𝑁𝑐𝑙(Λ) = ⋂{𝐺|𝐺 is an NCS in 𝑋 and 𝐺 ⊇ Λ} is termed as neutrosophic closure (shortly 𝑁𝑐𝑙) of 

Λ.  

 

Definition 2.3 [11]: Allow (𝑋, 𝜉) be a NTS. A NS Λ in (𝑋, 𝜉) is termed as generalized neutrosophic 

closed set (in short GNCS) if 𝑁𝑐𝑙(Λ) ⊆ Γ whenever Λ ⊆ Γ and Γ is a NOS. The complement of a 

GNCS is generalized neutrosophic open set (in short GNOS). 

 

Definition 2.4 [11]: Let (𝑋, 𝜉) be NTS and 𝐵 be a NS in 𝑋. Then neutrosophic generalized closure is 

defined as, 𝐺𝑁𝑐𝑙(𝐵) = ⋂{𝐺: 𝐺 is a GNCS in 𝑋 and 𝐵 ⊆ 𝐺}. 

 

Definition 2.5 [11, 17]: A map 𝜂: 𝑋 → 𝑌 is said to be 

(i) neutrosophic closed (in short, NC-map) if the image of every NCS in X is a NCS in Y. 

(ii) neutrosophic continuous (in short, N-continuous) if inverse image of every NCS in 𝑌 is a NCS 

i𝑛 𝑋. 

(iii) generalized neutrosophic continuous (in short, GN-continuous) if inverse image of every NCS 

in 𝑌 is a GNCS in 𝑋. 

(iv) generalized neutrosophic irresolute (in short, GN-irresolute) if inverse image of every GNCS in 

𝑌 is a GNCS in 𝑋. 

 

Definition 2.6 [14]: A bijection g: 𝑋 → 𝑌 is called a neutrosophic homeomorphism if g and g−1 are 

neutrosophic continuous. 

 

3. Neutrosophic Generalized Homeomorphism 

 

Definition 3.1: A bijection 𝜂: 𝑋 → 𝑌 is named as neutrosophic generalized homeomorphism (in 

short neutrosophic g-homeomorphism) if 𝜂 and 𝜂−1  are GN-continuous. 

 

Proposition 3.2: Every neutrosophic homeomorphism is a neutrosophic g-homeomorphism. 

Proof: Consider a bijection mapping 𝜂: 𝑋 → 𝑌 be a neutrosophic homeomorphism, in which 𝜂 as 

well as 𝜂−1 are N-continuous. We have each N-continuous mapping is GN-continuous, so 𝜂 and 

𝜂−1 are GN-continuous. Hence, 𝜂 is neutrosophic g-homeomorphism. 
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Remark 3.3: The next illustration makes clear that the opposite of the above proposition is not valid. 

 

Example 3.4: Let 𝑋 = {𝑝, 𝑞, 𝑟}, 𝜉 = {0𝑁, 𝒜1, 𝒜2, 𝒜3, 𝒜4, 1𝑁} be a N-topology on 𝑋. 

𝒜1 = 〈𝑥, (0.2,0.1,0.1), (0.2,0.1,0.1), (0.3,0.5,0.5)〉, 𝒜2 = 〈𝑥, (0.1,0.2,0.2), (0.4,0.3,0.3), (0.3,0.3,0.3)〉, 

𝒜3 = 〈𝑥, (0.2,0.2,0.2), (0.2,0.1,0.1), (0.3,0.3,0.3)〉, 𝒜4 = 〈𝑥, (0.1,0.1,0.1), (0.4,0.3,0.3), (0.3,0.5,0.5)〉, 

and let 𝑌 = {𝑝, 𝑞, 𝑟}, 𝜎 = {0𝑁, ℬ1, ℬ2, ℬ3, ℬ4, 1𝑁} be a neutrosophic topology on 𝑌. 

ℬ1 = 〈𝑦, (0.3,0.3,0.3), (0.2,0.1,0.1), (0.2,0.2,0.2)〉, ℬ2 = 〈𝑦, (0.2,0.2,0.2), (0.1,0.1,0.1), (0.3,0.3,0.3)〉, 

ℬ3 = 〈𝑦, (0.3,0.3,0.3), (0.1,0.1,0.1), (0.2,0.1,0.1)〉, ℬ4 = 〈𝑦, (0.2,0.2,0.2), (0.2,0.1,0.1), (0.3,0.3,0.3)〉. 

Define 𝜂: (𝑋, 𝜉) → (𝑌, 𝜎)  by 𝜂(𝑝) = 𝑝, 𝜂(𝑞) = 𝑞  and 𝜂(𝑟) = 𝑟 . Then 𝜂  is neutrosophic 

g-homeomorphism but not neutrosophic homeomorphism. 

Definition 3.5: A mapping 𝜂: 𝑋 → 𝑌 is generalized neutrosophic closed (in short, GNC-map) if the 

image 𝜂(𝑄) is GNCS in 𝑌 for every NCS 𝑄 in 𝑋. 

 

Definition 3.6: A mapping 𝜂: 𝑋 → 𝑌 is generalized neutrosophic open (in short, GNO-map) if the 

image 𝜂(𝑅) is GNOS in 𝑌 for every NOS 𝑅 in 𝑋. 

 

Proposition 3.7: Every NC-mapping is a GNC-mapping. 

Proof: Consider 𝜂: 𝑋 → 𝑌 is a NC-mapping, so as 𝑄 is an NCS in 𝑋. As 𝜂 is NC- mapping, 𝜂(𝑄) is 

NCS in 𝑌. Since each NCS is GNCS. Therefore, 𝜂(𝑄) is a GNCS in 𝑌. Hence, 𝜂 is GNC-mapping. 

 

Remark 3.8: The opposite of the above proposition is not valid as indicated. 

 

Example 3.9: Let 𝑋 = {𝑝, 𝑞, 𝑟}, 𝜉 = {0𝑁, 𝒜1, 𝒜2, 𝒜3, 𝒜4, 1𝑁} be a N-topology on 𝑋. 

𝒜1 = 〈𝑥, (0.2,0.1,0.1), (0.2,0.1,0.1), (0.3,0.5,0.5)〉, 𝒜2 = 〈𝑥, (0.1,0.2,0.2), (0.4,0.3,0.3), (0.3,0.3,0.3)〉, 

𝒜3 = 〈𝑥, (0.2,0.2,0.2), (0.2,0.1,0.1), (0.3,0.3,0.3)〉, 𝒜4 = 〈𝑥, (0.1,0.1,0.1), (0.4,0.3,0.3), (0.3,0.5,0.5)〉, 

and let 𝑌 = {𝑝, 𝑞, 𝑟}, 𝜎 = {0𝑁, ℬ1, ℬ2, ℬ3, ℬ4, 1𝑁} be a neutrosophic topology on 𝑌. 

ℬ1 = 〈𝑦, (0.3,0.3,0.3), (0.2,0.1,0.1), (0.2,0.2,0.2)〉, ℬ2 = 〈𝑦, (0.2,0.2,0.2), (0.1,0.1,0.1), (0.3,0.3,0.3)〉, 

ℬ3 = 〈𝑦, (0.3,0.3,0.3), (0.1,0.1,0.1), (0.2,0.1,0.1)〉, ℬ4 = 〈𝑦, (0.2,0.2,0.2), (0.2,0.1,0.1), (0.3,0.3,0.3)〉. 

Define 𝜂: (𝑋, 𝜉) → (𝑌, 𝜎)  by 𝜂(𝑝) = 𝑝, 𝜂(𝑞) = 𝑞  and 𝜂(𝑟) = 𝑟 . Then 𝜂  is GNC-mapping but not 

NC-mapping. 

 

Proposition 3.10: A map 𝜂: 𝑋 → 𝑌 is a GNC-mapping if the image of each NOS in 𝑋 is GNOS in 𝑌. 

Proof: Let 𝑅 be a NOS in 𝑋. Hence 𝑅 is a NCS in 𝑋. As 𝜂 is GNC-mapping, 𝜂(𝑅) is a GNCS in 𝑌. 

Since 𝜂(𝑅) = (𝜂(𝑅)), 𝜂(𝑅) is a GNOS in 𝑌. 

Proposition 3.11: Let 𝜂: 𝑋 → 𝑌 be a bijective mapping, then the next assertions are same: 

(i) 𝜂  is GNO-mapping. 

(ii) 𝜂 is GNC-mapping. 

(iii) 𝜂−1 is GN-continuous. 
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Proof: (𝑖) → (𝑖𝑖). Suppose that 𝜂 is GNO-mapping. Then, 𝑃 is a NOS in 𝑋, then image 𝜂(𝑃) is 

GNOS in 𝑌. Here, 𝑃 is NCS in 𝑋, then 𝑋 − 𝑃 is a NOS in 𝑋. By prediction, 𝜂(𝑋 − 𝑃) is a GNOS in 

𝑌. Hence, 𝑌 − 𝜂(𝑋 − 𝑃) is a GNCS in 𝑌. Hence, 𝜂 is a GNC-mapping. 

(𝑖𝑖) → (𝑖𝑖𝑖). Let 𝑅 be an NCS in 𝑋. By (ii), 𝜂(𝑅) is GNCS in 𝑌. Therefore, 𝜂(𝑅) = (𝜂−1)−1(𝑅), so 

𝜂−1 is a GNCS in 𝑌. Hence, 𝜂−1 is a GN-continuous. 

(𝑖𝑖𝑖) → (𝑖). Let 𝑄 be a NOS in 𝑋. By (iii), (𝜂−1)−1(𝑄) = 𝜂(𝑄) is GNO-mapping.  

 

Proposition 3.12: Let 𝜂: (𝑋, 𝜉) → (𝑌, 𝜎) be a bijective mapping. If 𝜂 is GN-continuous, thereupon 

the declarations are identical: 

(i) 𝜂 is GNC-mapping. 

(ii) 𝜂 is GNO-mapping. 

(iii) 𝜂−1 is neutrosophic g-homeomorphism. 

Proof:  (𝑖) → (𝑖𝑖) . Presume that 𝜂  is bijective as well as a GNC-mapping. So, 𝜂−1  is a 

GN-continuous mapping. As we have every NOS is GNOS in 𝑌. Hence, 𝜂 is GNO-mapping. 

(𝑖𝑖) → (𝑖𝑖𝑖). Consider a bijective NO-mapping 𝜂. Furthermore, 𝜂−1  is a GN-continuous mapping. 

Accordingly, 𝜂 and 𝜂−1 are GN-continuous. Hence, 𝜂 is neutrosophic g-homeomorphism.  

(𝑖𝑖𝑖) → (𝑖). Let 𝜂 be neutrosophic g-homeomorphism, then 𝜂 and 𝜂−1 are GN-continuous. As each 

NCS in 𝑋 is a GNCS in 𝑌, therefore 𝜂 is a GNC-mapping. 

 

Definition 3.13 [19]: Let (𝑋, 𝜉) be an NTS said to be a as neutrosophic-T1/2 (in short N-T1/2) space if 

every GNCS is NCS in 𝑋. 

 

Proposition 3.14: Let 𝜂: (𝑋, 𝜉) → (𝑌, 𝜎) be neutrosophic g-homeomorphism, then 𝜂 is neutrosophic 

homoemorphism if 𝑋 and 𝑌 are N-T1/2 space. 

Proof: Consider that 𝐷 is an NCS in 𝑌, then 𝜂−1(𝐷) is a GNCS in 𝑋 due to the assumption. Since 

𝑋  is N - T1/2 space, 𝜂−1(𝐷)  is NCS in 𝑋 . Then, 𝜂  is GN-continuous. By hypothesis 𝜂−1  is 

GN-continuous. Let 𝐻 be a NCS in 𝑋. (𝜂−1)−1(𝐻) = 𝜂(𝐻) is a NCS in 𝑌, by preassumption. As 𝑌 is 

N-T1/2  space, 𝜂(𝐻) is a NCS in 𝑌. Hence, 𝜂−1  is N-continuous. Therefore, 𝜂  is a neutrosophic 

homeomorphism. 

 

Proposition 3.15: Let 𝜂: 𝑋 → 𝑌 and 𝜇: 𝑌 → 𝑍 be GNC-mappings where 𝑋 and 𝑍 are NTSs and 𝑌 is 

N-T1/2 space, then (𝜇 𝑜 𝜂) is GNC-mapping. 

Proof: Let 𝑅 be a NCS in 𝑋. As 𝜂 is GNC-map and 𝜂(𝑅) is a GNCS in 𝑌, by assumption, 𝜂(𝑅) is a 

NCS in 𝑌. Since 𝜇 is GNC-map, then 𝜇(𝜂(𝑅)) is a GNCS in 𝑋 and 𝑍 and 𝜇(𝜂(𝑅)) = (𝜇 𝑜 𝜂)(𝑅). 

Therefore, (𝜇 𝑜 𝜂) is GNC-map. 

 

Proposition 3.16: Let 𝜇: 𝑋 → 𝑌 and 𝜆: 𝑌 → 𝑍 be NTSs, then the following hold:  

(i) If (𝜆 𝑜 𝜇) is GNO-map and 𝜇 is N-continuous, then 𝜆 is GNO-map. 

(ii) If (𝜆 𝑜 𝜇) is GNO-map and 𝜇 is GN-continuous, then 𝜆 is GNO-map. 
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Proof: (i) Let 𝐾  be NOS in 𝑌 . Then, 𝜇−1(𝐾)  is a NOS in 𝑋 . Since (𝜆 𝑜 𝜇)  GNO-map and 

(𝜆 𝑜 𝜇)𝜇−1(𝐾) = 𝜆 (𝜇(𝜇−1(𝐾))) = 𝜆(𝐾) is GN-open in 𝑍, hence 𝜆 is GN-open map. 

(ii) Let 𝐾 be NOS in 𝑋. Then, 𝜆 ( 𝜇(𝐾) ) is a NOS in 𝑍. Hence, 𝜆−1(𝜆 (𝜇(𝐾)) = 𝜇(𝐾) is GNOS in 𝑌. 

Therefore 𝜇 is GNO- map. 

 

4. Neutrosophic g*-Homeomorphism 

 

Definition 4.1: A bijection 𝜇: 𝑋 → 𝑌 is called neutrosophic g*-homeomorphism if 𝜇 and 𝜇−1 are 

GN-irresolute mappings. 

 

Proposition 4.2: Every neutrosophic g*-homeomorphism is a neutrosophic g-homeomorphism. 

Proof: A map 𝜇 is a neutrosophic g*-homeomorphism. Predict that 𝐾 is a NCS in 𝑌. So it is a 

GNCS in 𝑌. By pressumption, 𝜇−1(𝐾) is a GNCS in 𝑋. Accordingly, 𝜇 is GN-continuous mapping. 

Therefore, 𝜇  and 𝜇−1  are GN-continuous mappings. Henec, 𝜇  is a neutrosophic 

g-homeomorphism. 

 

Remark 4.3: The example is given to show that the reverese of the above proposition is not possible. 

 

Example 4.4: Let 𝑋 = {𝑝, 𝑞, 𝑟}, 𝜉 = {0𝑁, 𝒜1, 𝒜2, 𝒜3, 𝒜4, 1𝑁} be a N-topology on 𝑋. 

𝒜1 = 〈𝑥, (0.2,0.1,0.1), (0.2,0.1,0.1), (0.3,0.5,0.5)〉, 𝒜2 = 〈𝑥, (0.1,0.2,0.2), (0.4,0.3,0.3), (0.3,0.3,0.3)〉, 

𝒜3 = 〈𝑥, (0.2,0.2,0.2), (0.2,0.1,0.1), (0.3,0.3,0.3)〉, 𝒜4 = 〈𝑥, (0.1,0.1,0.1), (0.4,0.3,0.3), (0.3,0.5,0.5)〉, 

and let 𝑌 = {𝑝, 𝑞, 𝑟}, 𝜎 = {0𝑁, ℬ1, ℬ2, ℬ3, ℬ4, 1𝑁} be a neutrosophic topology on 𝑌. 

ℬ1 = 〈𝑦, (0.3,0.3,0.3), (0.2,0.1,0.1), (0.2,0.2,0.2)〉, ℬ2 = 〈𝑦, (0.2,0.2,0.2), (0.1,0.1,0.1), (0.3,0.3,0.3)〉, 

ℬ3 = 〈𝑦, (0.3,0.3,0.3), (0.1,0.1,0.1), (0.2,0.1,0.1)〉, ℬ4 = 〈𝑦, (0.2,0.2,0.2), (0.2,0.1,0.1), (0.3,0.3,0.3)〉. 

Define 𝜂: (𝑋, 𝜉) → (𝑌, 𝜎)  by 𝜂(𝑝) = 𝑝, 𝜂(𝑞) = 𝑞  and 𝜂(𝑟) = 𝑟 . Then 𝜂  is neutrosophic 

g-homeomorphism but not neutrosophic g*-homeomorphism. 

 

Proposition 4.5: If 𝜇: 𝑋 → 𝑌 and 𝜆: 𝑌 → 𝑍 are neutrosophic g*-homeomorphisms, then (𝜆 𝑜 𝜇) is a 

neutrosophic g*-homeomorphism. 

Proof: Consider  𝜇  and 𝜆  as neutrosophic g*-homeomorphisms. Predict 𝐾  is a GNCS in 𝑍 . 

Thereupon, by the presumption, 𝜆−1(𝐾) is a GNCS in 𝑌. Hence, by hypothesis, 𝜇−1(𝜆−1(𝐾)) is a 

GNCS in 𝑋. Hence, (𝜆 𝑜 𝜇) is a GN-irresolute mapping. Now, consider 𝐻 be a GNCS in 𝑋. Then, by 

the presumption,  𝜇(𝐻) is a GNCS in 𝑌. So, by hypothesis, 𝜆( 𝜇(𝐻)) is a GNCS in 𝑍. This implies 

that (𝜆 𝑜 𝜇) is a GN-irresolute mapping. Therefore, (𝜆 𝑜 𝜇) is neutrosophic g*-homeomorphism. 

 

Proposition 4.6: If 𝜇: 𝑋 → 𝑌  is a neutrosophic g*-homeomorophism, then 𝑁𝐺𝑐𝑙(𝜇−1(𝐾)) =

𝜇−1(𝑁𝐺𝑐𝑙(𝐾)) for each NS 𝐾 in 𝑌. 

Proof: As 𝜇 is neutrosophic g*-homeomorphism, then 𝜇 is GN-irresolute mapping. Let 𝐾 be a NS 

in 𝑌. Clearly, 𝑁𝐺𝑐𝑙(𝐾) is GNCS in 𝑋. This proves that 𝐺𝑁𝑐𝑙(𝐾) is GNCS in 𝑋. Since 𝜇−1(𝐾) ⊆
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𝜇−1(𝐺𝑁𝑐𝑙(𝐾)), then 𝐺𝑁𝑐𝑙(𝜇−1(𝐾)) ⊆ 𝐺𝑁𝑐𝑙 (𝜇−1(𝐺𝑁𝑐𝑙(𝐾))) = 𝜇−1(𝐺𝑁𝑐𝑙(𝐾)). Therefore, 

𝐺𝑁𝑐𝑙(𝜇−1(𝐾)) ⊆ 𝜇−1(𝐺𝑁𝑐𝑙(𝐾)). 

Let 𝜇 be neutrosophic g*-homeomorphism. 𝜇−1 is a GN-irresolute mapping. Consider NS 𝜇−1(𝐾) 

in 𝑋, which implies that 𝐺𝑁𝑐𝑙(𝜇−1(𝐾)) is GNCS in 𝑋. Therefore, 𝐺𝑁𝑐𝑙(𝜇−1(𝐾)) is a GNCS in 𝑋. 

This implies that (𝜇−1)−1(𝐺𝑁𝑐𝑙(𝜇−1(𝐾)) = 𝜇(𝐺𝑁𝑐𝑙(𝜇−1(𝐾))) is a GNCS in 𝑌. This proves that 𝐾 =

(𝜇−1)−1(𝜇−1(𝐾)) ⊆ (𝜇−1)−1 (𝐺𝑁𝑐𝑙(𝜇−1(𝐾))) = 𝜇(𝐺𝑁𝑐𝑙(𝜇−1(𝐾))) , since 𝜇−1  is GN-irresolute 

mapping. Hence, 𝜇−1(𝐺𝑁𝑐𝑙(𝐾)) ⊆ 𝜇−1 (𝜇 (𝐺𝑁𝑐𝑙(𝜇−1(𝐾)))) = 𝐺𝑁𝑐𝑙(𝜇−1(𝐾)).  

That is, 𝜇−1(𝐺𝑁𝑐𝑙(𝐾)) ⊆ 𝐺𝑁𝑐𝑙(𝜇−1(𝐾)). Hence, 𝐺𝑁𝑐𝑙(𝜇−1(𝐾)) = 𝜇−1(𝐺𝑁𝑐𝑙(𝐾)). 

  

5. Conclusions 

      We have introduced neutrosophic generalized homeomorphism in neutrosophic topological 

space using GN-contiuous functions. Some characterizations have been provided to illustrate how 

far topological structures are conserved by the new neutrosophic notion defined. Furthermore, 

neutrosophic g*-homeomorphism, neutrosophic generalized open and closed mappings are also 

studied. The study demonstrated neutrosophic g*-homeomorphisms and also proved some of their 

related attributes. Also, the relation between generalized neutrosophic closed mappings and other 

existed Neutrosophic closed mappings in Neutrosophic topological spaces were established and 

derived some of their related attributes. Examples are given wherever necessary. 

    In future, we can carry out the further rsearch on neutrosophic g-compactness, neutrosophic 

g-connectedness and neutrosophic almost g-contra continuous functions.  
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Abstract: An economic production quantity model with triangular neutrosophic environment has been 

developed for deteriorating items with ramp type demand rate and reliability dependent unit 

production. The main objective of this paper is to determine the most cost effective production to 

generate better quality items under time discounting. Additionally, it is considered that the deterioration 

function deals with three parameters Weibull's distribution under finite time horizon. Moreover, it also 

considered the effect of shortages which are partially backordered and partially lost in sale. Here the 

reliability of the production process along with the production period is considered as decision variables. 

A numerical example is studied in both crisp and neutrosophic environment and a comparative analysis 

is performed here. It is observed that the model performs better in triangular neutrosophic arena rather 

than crisp domain. Finally, a sensitivity analysis of optimal solution is observed for some parameters and 

some crucial decision is taken with managerial insight. 

    Keywords: Ramp-type demand, Finite time horizon, Time-value of money, Reliability, Triangular 

Neutrosophic number. 

 
1. Introduction 

In market economy system, for a single product, many items are produced by the different 

manufacturing companies. The manufacturers are trying to give wide variety of option to the customer to 

gain competitive advantages over their competitors. But customers choose those items which have high 

reliability i.e. better in quality, and lower in cost. The companies require advanced planning many years 

prior to the sale target date in order to minimize the total cost and maximize the profit. Thus the facts like 

variation in the reliability of the production process, demand rate of an item, deterioration and shortages 

are in growing interest. In case of classical EPQ model the basic assumptions are that the production 

set-up cost is fixed and the item produced are of perfect quality. All the manufacturing sectors want to 
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produce perfect quality item, but in reality the product quality are not always perfect because there may 

be machine breakdown, labor problem, etc. The product quality is directly affected by the reliability of 

production process. In addition to that, the classical models also consider an ideal case that the demand 

and quality of the items remains unaffected by time and replenishment is done instantaneously. 

However in reality these assumptions do not hold. The inventories are often replenished periodically at 

certain production rate. Even if the items are purchased it takes days to sell the item so the items 

remained stored and hence the item deteriorates and their value reduces with time. Cheng [1] proposed a 

general equation for relationship between production set up cost and process reliability and flexibility. 

Later it was used by (Leung [2]; Bag et al. [3]) in their respective models studied on fuzzy random 

demand with flexibility and reliability on production process. Sarkar [4] analyzed an EMQ model with 

reliability in an imperfect production process. Many researchers (like Gomez et al. [5]; Cai et al. [6]) 

worked for production quality, tracking production control, etc. Pan and Li [7] worked with stochastic 

production system for deteriorating item with some environmental constrains. Rathore [8] explored a 

production reliability model with advertisement related demand. The paper considers reliability in unit 

production cost in order to identify the product quality with minimum total cost. 

Traditionally in inventory models, the researchers have assumed constant demand pattern in their 

deterministic models, but in reality demand has specific patterns which depicts the real scenarios in 

market. There are various types of demand rates such as linear or quadratic function of time, 

exponentially increasing or decreasing, price and stock dependent, etc. If the demand is linearly 

dependent on time i.e., demand as well as the vending increases and decreases in growth and decline 

phase respectively. Researchers have manifested these demands in their respective papers (Hariga [9], 

Bose et al. [10], etc). Demand of the item depending on price and stocking amount of the items with 

optimal replenishment policy for non-instantaneous deteriorating items with partial backlogging was 

discussed by Wu et al. [11]. Alfares [12] worked on stock dependent demand. Chung and Wee [13] 

organized an inventory model for stock dependent selling rate with deterioration under replenishment 

plan. Pal et al. [14] has developed a inventory model with price and stock depended demand rate for 

deteriorating item under inflation and delay in payment. In this field, some remarkable researches were 

done by Yang et al. [15]. It was observed that for seasonal and fashionable products the nature of demand 

is increasing-steady-decreasing. But for newly launched fashion goods and cosmetics, garments, etc. the 

demand rate increases linearly with time and then it become constant. Thus to understand the concept of 

such a demand, the ramp type function of time was introduced. (Skouri et al. [16], Luo [17], Manna and 

Chaudhari [18]) worked with ramp type demand rate with time dependent deterioration. Pal et al. [19] 

considered the EOQ model with ramp type demand under finite time horizon. 

As the effect of deterioration cannot be ignored so many researchers worked on it (Skouri et al. [20], Jaggi 

et al. [21], etc.). Generally, deterioration means spoilage or damage obsolescence, etc. which cannot be 

used further for its original purpose. Medicine, blood banks, etc. are difficult to preserve and they have 

some expiry date i.e., products maximum life time is time bounded. Electronic products become obsolete 

as technology changes; new fashion depreciates the clothing value over time; all these are also considered 

as deterioration. It has been observed that the delinquency in the life expectancy drugs, deterioration of 
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roasted ground coffee, corn seeds, frozen food, pasteurized milk, refrigerated meat, ice creams, and 

leakage failure of the batteries can be expressed in terms of Weibull's distribution. Wu [22] presented an 

inventory model with ramp type demand and Weibull's distribution deterioration under partial 

backlogging. Many researcher such as Skouri et al. [23], Sharma and Chaudhury [24], etc. worked with 

this type of deterioration. Mandal [25] discussed an inventory model with Weibull's distributed 

deterioration with ramp type demand rate. A common characteristic in most of these models are that they 

does not allows shortages. Widyadana et al. [26] developed an EOQ model for deteriorating items with 

planned backorder level. Wee et al. al. [27] worked with shortages and finite time horizon for 

deteriorating items. Yang [28] developed an inventory model with deterioration as three parameter 

Weibull’s distribution in two ware house system. Recently Pal and Chakraborty [29] have worked on 

non- instantaneous deteriorating items under shortage, Rahaman et al. [30] worked on arbitrary ordered   

generalized EPQ model with and without deterioration. In this paper shortages is also considered where 

the part of the unsatisfied demand are backordered and part of the sales are lost. 

As the amount of the money available at the present time is worth more than that of the same amount in 

the future due to its potential earning capacity. So it is necessary to consider the effect of time value of 

money in today's inventory where forecasting is required. To consider the effect of time value of money, a 

finite time horizon for planning the replenishment cycle is considered. From the last few decades we have 

observed that the economic situation of most countries has changes so it would be unrealistic to ignore 

the effect of time value of money. Hariga [31] developed the effect of inflation and time value of money 

for time dependent demand. Hou [32] considered a model for deteriorating items and stock-dependent 

demand rate with shortages and time discounting. Dash et al. [33] worked on EPQ model for declined 

quadratic demand with time value of money and shortages. Thus the paper considers time value of 

money specially when investment and forecasting are considered. 

In this current century, vagueness theory plays a crucial role in different Öeld of mathematical modeling 

and engineering problems. The theory of impreciseness was first invented by Zadeh [34]. Difference 

between crisp set and fuzzy set is shown briefly in this article by considering membership gradation and 

its formulation. Demonstration of triangular [35], trapezoidal [36], pentagonal [37] fuzzy number has 

already been developed by the researchers. In 1983 and later in 1986 Attasonov [38, 39] manifested a 

remarkable idea of intuitionistic fuzzy set where membership and non-membership functions are both 

considered together. Further, triangular intuitionistic [40, 41], trapezoidal intuitionistic [42] number has 

been introduced in this intuitionistic fuzzy research arena. After that, in 1998 Smarandache [43] 

established an amazing concept of neutrosophic fuzzy set where three disjunctive kinds of membership 

functions has been considered namely i) truthness ii) falseness iii) indeterminacy. Due to the presence of 

hesitation factor in fuzzy arena, neutrosophic number becomes more logical and scientific significance in 

research work. In this current era, researchers from different arena are focusing on neutrosophic concept 

and developed lots of interesting articles in this domain. Illustration of triangular, trapezoidal 

neutrosophic number has been introduced day by day and recently in 2018 Chakraborty et.al [44, 45] 

classifies different form of triangular and trapezoidal neutrosophic number and de-neutrosophication 

technique for crispification. Further, bipolarization of triangular bipolar number has been developed by 
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Chakraborty et.al [46] and also Maity et.al [47] manifested the concept of heptagonal dense fuzzy number 

related EOQ based model in 2018. Recently, Mullai [48] introduced EOQ model in neutrosophic domain 

and Mondal et.al [49] manifested optimization of EOQ Model with limited storage capacity by 

neutrosophic Geometric Programming application. Also, Majumdar et.al [50] focused on EPQ Model of 

deteriorating Items under partial trade credit financing and demand declining market in neutrosophic 

environment. Some useful articles [51-58] are also developed by the researchers in the neutrosophic arena 

recently. As developments goes on, some researchers [59-62] have extended the idea of neutrosophic set 

into plithogenic set and applied it in MCDM, MADM and optimization technique supply chain based 

model. Currently, several researchers from distinct fields focused on triangular neutrosophic number 

related to operation research models. As uncertainty prevails in various parameters such as inflation, 

holding cost, purchase cost so we have developed an EPQ under ramp type demand and considered the 

hesitation in those parameters by considering those parameter as neutrosophic number. Finally we 

compare the model in crisp and neutrosophic domain and observe that the model works better in 

neutrosophic arena. 

Previously the researchers have worked on ramp type demand with two parameter Weibull’s 

distribution as deterioration. But in this paper we have considered ramp type demand with three 

parameter Weibull’s distribution. In addition the model assumes that the product qualities are never 

perfect and it is the function of reliability of the production process so the production of items depend on 

the reliability of the items i.e., if the items are highly reliable then there is more demand in the market and 

hence its production should be more in order to fulfill the demand. In this model we also have considered 

finite planning horizon to observe the effect of time value of money under shortage. The shortage items 

are partially backlogged or partially lost in sales, which cannot be ignored. Also under this complicated 

scenario no work has been done by considering holding cost, purchase cost and inflation as triangular 

neutrosophic number. 

The rest of the paper is organized as follows: In section 2 we have presented some assumptions and 

notations and some definition of neutrosophic number that we have used in this paper. In this section we 

have defined few terminologies related to triangular neutrosophic number and also have formulated the 

model. In section 3 we have analyzed and optimized of the model. In Section 4 we have discussed the 

de-neutrosophication of the triangular neutrosophic number. In section 5 we present the numerical 

example and its mathematical analysis which is shown graphically. It is observed that the model works 

better in neutrosophic domain. In section 6 we present sensitivity analysis of some parameters. Finally in 

section 7 a concluding remark is stated along with its future extension. 

 

2.  Mathematical formulation of the inventory model 

In this model we have considered ramp type demand with deterioration as three parameter Weibull 

distributions, shortages, lost in sales under the influence of time discounting in finite planning horizon. 

The finite time horizon has been considered to evaluate the effect of inflation on the total cost for a finite 

period. The paper also considered reliability in production of items. The proposed model is graphically 

shown in figure-1. 
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The production process starts from t=0 and ends t=t1. The production has occurred along with the 

demand in the market and at t=t1 the inventory level is maximum, Qm. From t=t1 to t=t2 the inventory level 

decreases and at time t=t2, the inventory level reaches zero. Now during [t2,t3] the model undergoes 

shortage with partial backlog and partial lost in sales. Only the backlogged items are replaced by the next 

replenishment. During [t3,T1] production resumes to overcome the shortage (i.e., for backlogged items). 

Thus the total number of backlogged items is replaced in the next replenishment and the cycle repeats. 

 

Notations 

 

    The notations used in this paper are as follows: 

    G     Demand rate, 

    P     Production rate, 

    p     Unit production cost, 

    ρ(t)   Time distribution for deterioration of the item, 

    k      Discount rate, 

    h      Inventory carrying cost per unit item per unit time, 

    d      Deterioration cost per unit per unit time, 

    S      Set-up cost for one replenishment cycle. 

    c1     Purchase cost per unit item, 

    c2     Shortage cost, 

    c3     Penalty cost of a lost sale including loss of profit, 

    r      Production process reliability (a decision variable) 

    B     Fraction of backorder (0<B≤1), 

    T     Replenishment cycle, 

    H    Finite Planning horizon, 

    m    No. of replenishment during the planning horizon i.e., m=(H/T), 

    Tj    Time between start and end of jth replenishment cycle i.e., T0=0,T1=T,T2=2T,....,Tm=mT=H, 

    Qm   Maximum quantity of inventory, 

    Qs   Maximum quantity of inventory after shortage. 
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Assumptions 

    The assumptions which are considered in this model are as follows. 

1. A ramp type demand rate G=f(t) is a function of time𝑓(𝑡) = 𝑅[𝑡 − (𝑡 − 𝜇)𝐻(𝑡 − 𝜇)], 𝑅 > 0 𝑎𝑛𝑑 𝐻(𝑡) 

is a Heaviside function 𝐻(𝑡 − 𝜇) = {
1 𝑖𝑓 𝑡 ≥ 𝜇
0 𝑖𝑓 𝑡 < 𝜇

 

2. A function of three parameter Weibull's distribution of time is used to represent deterioration of the 

item is 𝜌(𝑡) = 𝛼𝛽(𝑡 − 𝛾)𝛽−1, 0 < 𝛼 < 1, 𝛽 ≥ 1, −∞ < 𝛾 < ∞ actually in this model  𝑇𝑗 < 𝛾 < 𝑇𝑗+1, 𝑖 =

0,1,2, . . . , 𝑚, 𝑤ℎ𝑒𝑟𝑒 𝛼 (0 < 𝛼 < 1) is a scaling parameter, β is the shape parameter and γ is the location 

parameter i.e., items shelf-time and t is the time of deterioration. 

    3. Deterioration begins as it reaches the inventory. 

    4. One item is considered in the prescribed time cycle. 

    5. Demand during shortage is partially lost and partially backordered. 

    6. Time discounting effect is considered under finite time horizon. 

    7 Production rate is greater than demand rate so P=σf(t) is the production rate where σ >1. 

    8. μ is less than production time. 

    9. The unit production cost is inversely proportional to the demand rate (G) and directly proportional 

to production reliability (r), so the unit production cost is 𝑝 = 𝑎𝐺−𝑏𝑟𝑐 , where b(>1) is called price 

elasticity and a,c (>0) are scaling parameters. 

    10. The reliability r means, r% of all the item produced are of acceptable quality that can fulfill the 

demand. 

Few assumptions taken above are the basic assumption used in classical inventory model for 

deteriorating item with shortages. The first assumption states that the demand rate linearly increases 

with time when t<μ and then become steady i.e., constant at and after t≥μ. We can see this type of 

demand in newly launched items like fashionable products, electronic items, etc. The demand increases 

with time during the initial stage i.e., [0,μ]. After some time the demand become constant, this continues 

for some period i.e., in the time interval [μ,T1]. Then the cycle ends. Again the next cycle starts with 

another new brand item and it will follow the same pattern of demand and production i.e., increasing 

and then steady and then stops. The finite time horizon has been considered to evaluate the effect of the 

time value of money on the total cost. Thus to understand the concept of value of future money in present 

date (which actually decreases due to time discounting rate) we need to consider a finite time horizon 

where its effect will be observed. The last assumption is mainly based on the unit variable production 

which is dependent on demand and process reliability. When the demand of an item increases then the 

production/purchase cost per unit item decreases and hence the unit production cost reduces which is 

inversely proportional to demand. Again the reliability of the produced items increases by using high 

quality raw material, technologically advanced machinery, quality control inspections, etc. Thus to 

produce high reliable product the production cost per unit item increases. 
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3. Neutrosophic number and its De-neutrosophication technique 

Definition 3.1 (Neutrosophic Set [5]) A set 𝑆̃ in the universal discourse X, it is said to be a neutrosophic 

set if 𝑆̃ = {〈𝑥; [𝜋𝑆̃ (𝑥), 𝜃𝑆̃(𝑥), 𝜂𝑆̃(𝑥)]〉: 𝑥 ∈ 𝑋}, 𝑤ℎ𝑒𝑟𝑒 𝜋𝑆̃ (𝑥): 𝑋 →] − 0,1 + [ is called the truth membership 

function, 𝜃𝑆̃(𝑥): 𝑋 →] − 0,1 + [  is called the hesitation membership function, and 𝜂𝑆̃(𝑥): 𝑋 →] − 0,1 + [ 

is called the false membership function of the decision maker, where 𝜋𝑆̃ (𝑥), 𝜃𝑆̃(𝑥), 𝜂𝑆̃(𝑥) satisfies the 

following condition: 0 ≤ 𝑆𝑢𝑝{𝜋𝑆̃ (𝑥)} + 𝑆𝑢𝑝{𝜃𝑆̃(𝑥)} + 𝑆𝑢𝑝{𝜂𝑆̃(𝑥)} ≤ 3. 

 

Definition 3.2 (Single-Valued Neutrosophic Set) A Neutrosophic set 𝑆̃ in the above definition 2.1 is also 

known as single-Valued Neutrosophic Set sig(𝑆̃) if x is a single-valued independent variable.  

𝑠𝑖𝑔(𝑆̃) = {< 𝑥; [π𝑠𝑖𝑔(𝑆̃)(x), θ𝑠𝑖𝑔(𝑆̃)(x), η
𝑠𝑖𝑔(𝑆̃)

(x)]〉: x ∈ X}, where π𝑠𝑖𝑔(𝑆̃)(x), θ𝑠𝑖𝑔(𝑆̃)(x), η
𝑠𝑖𝑔(𝑆̃)

(x) represent the 

concept of truth, hesitation and falsity memberships function respectively. 

 

Definition 3.2.1: (Neutro-normal) Let us consider three points, for which p,q,r for which, π𝑠𝑖𝑔(𝑆̃)(p) = 1,

θ𝑠𝑖𝑔(𝑆̃)(q) = 1, η
𝑠𝑖𝑔(𝑆̃)

(r) = 1  then the sig(𝑆̃)  is defined as neutro-normal.  

 

Definition 3.2.2: (Neutro-convex) A sig(𝑆̃)  is called neutro-convex if the following condition holds:  

     (𝑖)𝜋𝑠𝑖𝑔(𝑆̃) (𝜆𝛼 + (1 − 𝜆)𝛽) ≥ 𝑚𝑖𝑛(𝜋𝑠𝑖𝑔(𝑆̃)(𝛼), 𝜋𝑠𝑖𝑔(𝑆̃)(𝛽)) 

          (𝑖𝑖)𝜃𝑠𝑖𝑔(𝑆̃)(𝜆𝛼 + (1 − 𝜆)𝛽) ≥ 𝑚𝑖𝑛(𝜃𝑠𝑖𝑔(𝑆̃)(𝛼), 𝜃𝑠𝑖𝑔(𝑆̃)(𝛽)), 

          (𝑖𝑖𝑖)𝜂𝑠𝑖𝑔(𝑆̃)(𝜆𝛼 + (1 − 𝜆)𝛽) ≥ 𝑚𝑖𝑛(𝜂𝑠𝑖𝑔(𝑆̃)(𝛼), 𝜂𝑠𝑖𝑔(𝑆̃)(𝛽)) 

    𝑤ℎ𝑒𝑟𝑒 𝛼, 𝛽 ∈ 𝑅, 𝑎𝑛𝑑 𝜆 ∈ [0,1]      

 

Definition 3.3 (Triangular Single Valued Neutrosophic Number) A triangular Single Valued Neutrosophic 

Number ( 𝑆̃ ) is defined as 𝑆̃ =< (𝑚₁, 𝑚₂, 𝑚₃: 𝜇), (𝑛₁, 𝑛₂, 𝑛₃: 𝜗), (𝑝₁, 𝑝₂, 𝑝₃: 𝜁) >, 𝑤ℎ𝑒𝑟𝑒 𝜇, 𝜗, 𝜁 ∈ [0,1].  Here the 

truth membership function𝜋𝑆̃: R → [0, μ], the hesitation membership function θ𝑆̃: R → [ϑ, 1] and the falsity 

membership function η
𝑆̃
: R → [ζ, 1] are defined as follows: 

 

𝜋𝑆̃(𝑥) = {

𝛿𝑆̃𝑙(𝑥),      𝑚1 ≤ 𝑥 < 𝑚2

𝜇,                          𝑥 = 𝑚2

𝛿𝑆̃𝑟(𝑥),     𝑚2 < 𝑥 ≤ 𝑚3

0,                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  𝜃𝑆̃(𝑥) = {

𝜀𝑆̃𝑙(𝑥), 𝑛₁ ≤ 𝑥 < 𝑛₂
𝜗,                    𝑥 = 𝑛₂
𝜀𝑆̃𝑟(𝑥), 𝑛₂ < 𝑥 ≤ 𝑛₃
1,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  η
𝑆̃
(𝑥) = {

𝑙𝑆̃𝑙(𝑥), 𝑝₁ ≤ 𝑥 < 𝑝₂
𝜗,                    𝑥 = 𝑝₂
𝑙𝑆̃𝑟(𝑥), 𝑝₂ < 𝑥 ≤ 𝑝₃
1,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

De-neutrosophication of triangular single valued neutrosophic number: In this model we have applied 

removal area technique to evaluate the de-neutrosophication value of triangular single valued neutrosophic 

number  

𝑆̃ =< (𝑚₁, 𝑚₂, 𝑚₃: 𝜇), (𝑛₁, 𝑛₂, 𝑛₃: 𝜗), (𝑝₁, 𝑝₂, 𝑝₃: 𝜁) > as done by (Chakraborty, et. al.). The de-neutrosophic form 

of 𝑆̃ is given as  𝑛𝑒𝑢𝐷𝑆̃ = (
𝑚1+2𝑚2+𝑚3+𝑛1+2𝑛2+𝑛3+𝑝1+2𝑝2+𝑝3

12
) 

4.   Proposed model 

Thus the inventory level for the proposed model at any time t over [0,T] is described mathematically by 

the following equations: 
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𝑑𝑄(𝑡)

𝑑𝑡
+ 𝜌(𝑡)𝑄(𝑡) = 𝑟𝑃 − 𝐺 = (𝑟𝜎 − 1)𝑅𝑡,     0 ≤ 𝑡 ≤ 𝜇       (1) 

𝑑𝑄(𝑡)

𝑑𝑡
+ 𝜌(𝑡)𝑄(𝑡) = (𝑟𝜎 − 1)𝑅𝜇,                  𝜇 ≤ 𝑡 ≤ 𝑡₁      (2) 

𝑑𝑄(𝑡)

𝑑𝑡
+ 𝜌(𝑡)𝑄(𝑡) = −𝐺 = −𝑅𝜇,                  𝑡₁ ≤ 𝑡 ≤ 𝑡₂      (3) 

𝑑𝑄(𝑡)

𝑑𝑡
= −𝐵𝐺 = −𝐵𝑅𝜇,                            𝑡2 ≤ 𝑡 ≤ 𝑡3        (4) 

𝑑𝑄(𝑡)

𝑑𝑡
= 𝑟𝑃 − 𝐺 = 𝑟𝐾 − 𝑅𝜇 = (𝑟𝜎 − 1)𝑅𝜇, 𝑡₃ ≤ 𝑡 ≤ 𝑇₁      (5) 

 

with boundary conditions 

    𝑄(0) = 0, 𝑄(𝜇) = 𝐼, 𝑄(𝑡₁) = 𝑄𝑚, 𝑄(𝑡₂) = 0, 𝑄(𝑡₃) = −𝑄𝑠 𝑎𝑛𝑑 𝑄(𝑇₁) = 0, 

    𝑤ℎ𝑒𝑟𝑒 𝐼 = (𝑟𝜎 − 1)𝑅[(
𝜇2

2
) + (

𝛼𝛾

𝛽 + 1
) (𝜇 − 𝛾)𝛽+1 + (

𝛼

𝛽 + 2
) (𝜇 − 𝛾)𝛽+2 +

(−1)𝛽𝛾𝛽+2

(𝛽 + 1)(𝛽 + 2)
] 

4.1 Mathematical Analysis of the proposed model  

From the above differential equations [1, 2, 3, 4, 5] and using the assumptions and the boundary conditions 

we obtain the inventory level of the proposed inventory model as follows: 

𝑄(𝑡) = (𝑟𝜎 − 1)𝑅[(
𝑡2

2
) − (

𝛼𝑡2

2
) (𝑡 − 𝛾)𝛽 + (

𝛼𝛾

𝛽 + 1
) (𝑡 − 𝛾)𝛽+1 + (

𝛼

𝛽 + 2
) (𝑡 − 𝛾)𝛽+2 + (

(−1){𝛽}𝛾𝛽+2

(𝛽 + 1)(𝛽 + 2)
)] 

𝑄(𝑡) = (𝑟𝜎 − 1)𝑅[𝑡𝜇 − (
𝜇2

2
) + 𝜇𝛼(𝑡 − 𝛾)𝛽 ((

𝑡−𝛾

𝛽+1
) − 𝑡 + (

𝜇

2
)) − (

𝛼

(𝛽+1)(𝛽+2)
) {(𝜇 − 𝛾)𝛽+2 − (−1)𝛽𝛾𝛽+2}]      (6) 

𝑄(𝑡) = 𝑅𝜇[𝑡₁ − 𝑡 + (
𝛼

𝛽+1
) {(𝑡1 − 𝛾)𝛽+1 − (𝑡 − 𝛾)𝛽+1} + 𝛼(𝑡 − 𝑡1)(𝑡 − 𝛾)𝛽] + 𝑄𝑚(1 − 𝛼(𝑡 − 𝛾)𝛽 + 𝛼(𝑡1 − 𝛾)𝛽), 𝑡₁ ≤ 𝑡 ≤ 𝑡₂      (7)  

𝑄(𝑡) = −𝐵𝑅𝜇(𝑡 − 𝑡₂),   𝑡₂ ≤ 𝑡 ≤ 𝑡₃                               (8) 

𝑄(𝑡) = (𝑟𝜎 − 1)𝑅𝜇(𝑡 − 𝑡₃) − 𝑄𝑠,    𝑡₃ ≤ 𝑡 ≤ 𝑇₁                            (9) 

Now using Q(t₂)=0 and eq.(6) we get the maximum amount inventory  Qm, 

𝑄𝑚 = 𝑅𝜇[𝑡₂ − 𝑡₁ + (
𝛼

𝛽+1
) (𝑡2 − 𝛾)𝛽+1 − 𝛼(𝑡1 − 𝛾)𝛽((

𝑡1−𝛾

𝛽+1
) + 𝑡₂ − 𝑡₁)]                           (10) 

    Now using eq.(8), eq.(9) and the relation Q(t₃)=-Qs we get the maximum shortages in the inventory level, 

 𝑄𝑠 = 𝐵𝑅𝜇(𝑡₃ − 𝑡₂)                             (11) 

Inventory carrying cost or holding cost: 

𝐻𝐶 = ℎ [∫  𝑄(𝑡)𝑑𝑡

𝜇

0

+ ∫  𝑄(𝑡)𝑑𝑡

𝑡1

𝜇

+ ∫  𝑄(𝑡)𝑑𝑡

𝑡2

𝑡1

] 

 

= ℎ[(𝑟𝜎 − 1)𝑅{(
𝜇4

6
) − (

𝛼𝛽𝜇(𝜇 − 𝛾)𝛽+3

2(𝛽 + 2)(𝛽 + 3)
) ((

𝛾(𝛽 + 5)

𝛽 + 1
) + 𝜇 + (

((−1)𝛽𝛼𝜇𝛾𝛽+2)

(𝛽 + 1)(𝛽 + 2)
) (𝜇 − (

𝛾

𝛽 + 3
))

+ (
𝛼𝜇𝛾2(𝜇 − 𝛾)𝛽+1

2(𝛽 + 1)
) + (

𝜇𝑡1

2
) (𝑡₁ − 𝜇) − (

𝛼𝛽𝜇(𝑡1 − 𝛾)𝛽+2

(𝛽 + 1)(𝛽 + 2)
) + 𝑅𝜇{− (

(𝑡2 − 𝑡1)2

2
) 
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+ (
𝛼𝜇((

𝜇

2
)−𝛾)

𝛽+1
) [(𝑡1 − 𝛾)𝛽+1 − (𝜇 − 𝛾)𝛽+1] + (

(𝛼(𝜇−𝛾)𝛽+2)

𝛽+2
) (𝜇 − (

𝑡1

𝛽+1
)) + (

(−1)𝛽𝛼𝛾(𝛽+2)

(𝛽+1)(𝛽+2)
) (𝑡₁ − 𝜇)} +

(
𝛼(𝑡1−𝛾)(𝑡2−𝛾)

𝛽+1
) [(𝑡1 − 𝛾)𝛽 − (𝑡2 − 𝛾)𝛽] + 𝑄𝑚 (𝑡2 − 𝑡1 − (

𝛼(𝑡2−𝛾)𝛽+1

𝛽+1
) + 𝛼(𝑡1 − 𝛾)𝛽 ((

𝑡1−𝛾

𝛽+1
) − 𝑡2 − 𝑡1))}] (12) 

Production cost: The unit production cost depends on demand and process reliability. When the demand of 

an item increases then the production/purchase cost of the item decreases hence the unit production cost 

reduces i.e., production / purchase cost varies inversely with demand. The process reliability level r means 

only r% of the produced items is of acceptable quality which can be used to meet demand. 

The unit production cost 𝑝 = 𝑎𝐷−𝑏𝑟𝑐 𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑏, 𝑐 > 0 𝑎𝑛𝑑 𝑏 ≠ 2. 

The cost of production in [𝑡, 𝑡 + 𝑑𝑡] 𝑖𝑠 𝐾𝑝𝑑𝑡 = 𝜎𝐷. 𝑎𝐷−𝑏𝑟𝑐𝑑𝑡 = (
𝜎𝑎𝑟𝑐

𝐷𝑏−1) 𝑑𝑡. 

 Since the production occurs [0,t₁] and [t₃,T₁] so the production cost (PDC) is given as follows. 

Production cost (PDC)= ∫ (
𝜎𝑎𝑟𝑐

𝐷𝑏−1) 𝑑𝑡
𝜇

0
+ ∫ (

𝜎𝑎𝑟𝑐

𝐷𝑏−1) 𝑑𝑡
𝑡1

𝜇
+ ∫ (

𝜎𝑎𝑟𝑐

𝐷𝑏−1) 𝑑𝑡
𝑇1

𝑡3
   

= 𝜎𝑎𝑟𝑐[∫ (𝑅𝑡)1−𝑏𝑑𝑡
𝜇

0
+ ∫ (𝑅𝜇)1−𝑏𝑑𝑡

𝑡1

𝜇
+ ∫ (𝑅𝜇)1−𝑏𝑑𝑡

𝑇1

𝑡3
]  

= (
𝜎𝑎𝑟𝑐𝑅1−𝑏

2−𝑏
) [(𝑏 − 1)𝜇2−𝑏 + (2 − 𝑏)𝜇1−𝑏(𝑡₁ + 𝑇₁ − 𝑡₃)], 𝑏 ≠ 2                           (13) 

Deterioration cost: The total no. of deteriorated items in [0,T₁] is same as deterioration in [0,t₂] as there is no 

deterioration of items during the period [t₂,T₁]. 

D₁=Total no. of deteriorated items in [0,t₂] 

    =r×Production in [0,μ]+r×Production in [μ,t₁]-Demand in [0,μ]-Demand in [μ,t₂] 

    = 𝑟𝜎 ∫ 𝑅𝑡𝑑𝑡 

𝜇

0

+ 𝑟𝜎 ∫ 𝑅𝜇𝑑𝑡 

𝑡1

𝜇

− ∫ 𝑅𝑡𝑑𝑡 

𝜇

0

 − ∫ 𝑅𝜇𝑑𝑡 

𝑡2

𝜇

 

    = (
1

2
) 𝑅𝑟𝜇𝜎(2𝑡₁ − 𝜇) − (

1

2
) 𝑅𝜇(2𝑡₂ − 𝜇) 

∴ 𝐷𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 (𝐷𝐶) = (𝑑𝐷₁) = (
𝑅𝜇𝑑

2
) (𝑟𝜎(2𝑡₁ − 𝜇) − (2𝑡₂ − 𝜇))    (14) 

Purchase cost: Since there is shortages in our model so the producer has to purchase raw material not only 

during [0,t₁] but also in [t₃, T₁]. So we have to calculate purchase cost during the above two period. 

𝑃𝐶 = 𝑐₁𝜎(∫ 𝑅𝑡𝑑𝑡 
𝜇

0
+ 𝑟𝜎 ∫ 𝑅𝜇𝑑𝑡 

𝑡1

𝜇
+ ∫ 𝑅𝜇𝑑𝑡

𝑇1

𝑡3
) = 𝑐₁𝜎𝑅𝜇(𝑡₁ + 𝑇₁ − 𝑡₃ − (

𝜇

2
))        (15) 

Shortage cost:  Since the model undergoes shortages so we observe shortages during [t₂, T₁]. 

    𝑆𝐶 = 𝑐₂ ∫ −𝑄(𝑡)𝑑𝑡
𝑡3

𝑡2
+ 𝑐₂ ∫ −𝑄(𝑡)𝑑𝑡

𝑇1

𝑡3
= (

𝑐2𝑅𝜇

2
) [𝐵(𝑡₃ − 𝑡₂)² + (𝑟𝜎 − 1)(𝑇₁ − 𝑡₃)²]  (16) 

Lost cost:  Due to urgency of demand the consumer opt to another shop so there is a chance for loss in sale 

during the shortages period [t₂, t₃]. Thus the lost cost for one replenishment interval is (LC). 

𝐿𝐶 = 𝑐₃(1 − 𝐵) ∫ 𝑅𝜇𝑑𝑡
𝑡3

𝑡2
= 𝑐₃(1 − 𝐵)𝑅𝜇(𝑡₃ − 𝑡₂)             (17) 
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The present value of total cost is (TC): 

    𝑇𝐶 = (𝐷𝐶 + 𝑃𝐶 + 𝐻𝐶 + 𝐿𝐶 + 𝑃𝐷𝐶 + 𝑆𝐶) ∑ 𝑒−(𝑖−1)𝑘𝑇

𝑚

𝑖=1

≈ (𝐷𝐶 + 𝑃𝐶 + 𝐿𝐶 + 𝑆𝐶 + 𝑃𝐷𝐶 + 𝐻𝐶) (
1 − 𝑒−𝑘𝑚𝑇

1 − 𝑒−𝑘𝑇
) 

= 𝑅𝜇 [(
𝑑

2
) (𝑟𝜎(2𝑡1 − 𝜇) − (2𝑡2 − 𝜇)) + 𝑐1𝜎 (𝑡1 + 𝑇1 – 𝑡3 −

𝜇

2
) + 𝑐3(1 − 𝐵)(𝑡3 − 𝑡2) + (

𝑐2

2
) [𝐵(𝑡3 − 𝑡2)2 +

(𝑟𝜎 − 1)(𝑇1 − 𝑡3)2] + (
𝜎𝑎𝑟𝑐𝑅−𝑏

2−𝑏
) [(𝑏 − 1)𝜇1−𝑏 + (2 − 𝑏)𝜇−𝑏(𝑡1 + 𝑇1 − 𝑡3)] + ℎ [(𝑟𝜎 − 1) {𝜉 + (

𝑡1

2
) (𝑡1 − 𝜇) −

(
𝛼{𝜇𝛽(𝑡1−𝛾)𝛽+2−𝑡1(𝜇−𝛾)𝛽+2+(−1)(𝛽)𝛼𝛾𝛽+2𝑡1}

𝜇(𝛽+1)(𝛽+2)
) +

(𝛼(
𝜇

2
−𝛾))(𝑡1−𝛾)𝛽+1

𝛽+1
} − (

(𝑡2−𝑡1)2

2
) + (

𝛼[(𝑡1−𝛾)𝛽+1(𝑡2−𝛾)−(𝑡1−𝛾)(𝑡2−𝛾)𝛽+1]

𝛽+1
) +

𝑄𝑚 (𝑡2 − 𝑡1 − (
𝛼(𝑡2−𝛾)𝛽+1

𝛽+1
) + 𝛼(𝑡1 − 𝛾)𝛽 ((

𝑡1−𝛾

𝛽+1
) − 𝑡2 − 𝑡1))]] (

1−𝑒−𝑘𝑚𝑇

1−𝑒−𝑘𝑇 )      (18) 

𝑊ℎ𝑒𝑟𝑒 

𝑏 ≠ 2, 𝜉 =
𝜇3

6
−

𝛼𝛽(𝜇 − 𝛾)𝛽+3

2(𝛽 + 2)(𝛽 + 3)
(

𝛾(𝛽 + 5)

𝛽 + 1
+ 𝜇) +

(−1)𝛽𝛼𝛾𝛽+2

(𝛽 + 1)(𝛽 + 2)
(𝜇 −

𝛾

𝛽 + 3
− 1)

+
𝛼(𝜇 − 𝛾)𝛽+1(𝛾2 + 2𝛾 − 𝜇)

2(𝛽 + 1)
+

𝛼(𝜇 − 𝛾)𝛽+2

𝛽 + 2
 

     

We observe that TC is a function of t₁,t₂,t₃ and m. But for the sake of simplicity we simplified t₂ and t₃ in terms 

of t₁ and r. 

Considering eq.(7), eq.(8) and the condition Q(t₁)=Qm we get t₂ in terms of t₁, and r. Expanding the 

exponential terms and neglecting the second and higher order terms of α and after simplifying the above two 

equations we get, 

𝑡₂ = (𝑟𝜎 − 1)[
𝜇

2
−

𝛼

𝜇(𝛽+1)(𝛽+2)
{(𝜇 − 𝛾)𝛽+2 − (−1)𝛽𝛾𝛽+2}] + 𝑟𝜎[𝑡₁ +

𝛼(𝑡1−𝛾)𝛽+1

𝛽+1
]               (19) 

Also considering (11), and Q(T₁)=0, we get t₃ in terms of t₁,and r. 

 

𝐵𝑃𝜇(𝑡₃ − 𝑡₂) = (𝛾 − 1)𝑅𝜇(𝑇₁ − 𝑡₃) 

      𝑡₃ =
1

𝐵+𝑟𝜎−1
((𝑟𝜎 − 1)𝑇₁ + 𝐵𝑡₂)                  (20) 

    Thus the total cost TC is function of t₁, r and m. 

Optimization process 

The following technique is derived to obtain the optimal value of t₁, r and m. 

    Step 1: Start by choosing a discrete value of m, a positive integer number. 

    Step 2: Take the partial derivative of total cost TC(t₁, r, m) with respect to t₁ and r and equate it to zero, 

the necessary condition for optimality is 
𝜕𝑇𝐶(𝑡1,𝑟,𝑚)

𝜕𝑡1
= 0  𝑎𝑛𝑑  

𝜕𝑇𝐶(𝑡1,𝑟,𝑚)

𝜕𝑟
= 0 . 
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    Step 3: For different values of m, Obtain the optimum value of the time taken t₁* and reliability r* from 

the above two equation. Then substituting the value of t₁*, r* and m in equation [18] and obtain TC(t₁*,r*,m) 

    Step 4: Repeat step 2 and step 3 for different values of m and obtain the TC(t₁*,r*,m). The minimum value 

of TC is obtained for optimum value of m*. Thus (t₁*,r*,m*) and TC(t₁*,r*,m*) are the optimal solution of our 

model. It satisfies the following condition: 

𝛥𝑇𝐶(t1
∗ , r∗, m∗ − 1)  <  0 <  𝛥𝑇𝐶(t1

∗, r∗, m∗ + 1) 

   Where 𝛥𝑇𝐶(t1
∗, r∗, m∗)  =  𝑇𝐶(t1

∗, r∗, m∗ + 1)  −  𝑇𝐶(t1
∗, r∗, m∗) 

    Step 5: To confirm that the objective function is convex, the derived value of TC(t1
∗ , r∗, m∗) must satisfy 

the sufficient condition: 

 

 (

𝜕2𝑇𝐶(𝑡1,𝑟)

𝜕𝑡1
2

𝜕2𝑇𝐶(𝑡1,𝑟)

𝜕𝑟𝜕𝑡1

𝜕2𝑇𝐶(𝑡1,𝑟)

𝜕𝑡1𝜕𝑟

𝜕2𝑇𝐶(𝑡1,𝑟)

𝜕𝑟2

) > 0 𝑎𝑛𝑑
𝜕2𝑇𝐶(𝑡1,𝑟)

𝜕𝑡1
2 > 0 𝑜𝑟 

𝜕2𝑇𝐶(𝑡1,𝑟)

𝜕𝑟2 > 0       (21) 

    Since TC* is very complicated with high powers so it is not possible to show the analytic validity of 

eq.(21). For this reason the above inequality is assessed by a numerical example. 

 

4.2    Effect of Neutrosophication of parameter in proposed inventory model 

 

    Neutrosophic number actually deals with the conception of three different kinds of membership 

function related with real life scenario. It consists of truth, hesitation and falseness of an imprecise number. 

In this model we have considered purchase cost (c₁), holding cost (h) and inflation (k) as neutrosophic fuzzy 

number since in reality all the parameters are uncertain and contains a dilemma in decision maker's mind. So 

we try to manifest the model by introducing neutrosophication in the above cost and rates, and thus observe 

the effect of the above by comparing it with crisp model. The neutrosophic form of holding cost, purchase 

cost and inflation are represented by ℎ̃, 𝑐₁̃ and 𝑘̃. Thus   

ℎ̃ = < (ℎ₁ − 𝜀₁, ℎ₁, ℎ₁ + 𝜀₂: 𝜇), (ℎ₂ − 𝜀₁, ℎ₂, ℎ₂ + 𝜀₂: 𝜗), (ℎ₃ − 𝜀₁, ℎ₃, ℎ₃ + 𝜀₂: 𝜁) > , 

𝑐₁̃ =< (𝑐₁₁ − 𝜀₁, 𝑐₁₁, 𝑐₁₁ + 𝜀₂: 𝜇), (𝑐₁₂ − 𝜀₁, 𝑐₁₂, 𝑐₁₂ + 𝜀₂: 𝜗), (𝑐₁₃ − 𝜀₁, 𝑐₁₃, 𝑐₁₃ + 𝜀₂: 𝜁) >, 

𝑘̃  =< (𝑘₁ − 𝜀₁, 𝑘₁, 𝑘₁ + 𝜀₂: 𝜇), (𝑘₂ − 𝜀₁, 𝑘₂, 𝑘₂ + 𝜀₂: 𝜗), (𝑘₃ − 𝜀₁, 𝑘₃, 𝑘₃ + 𝜀₂: 𝜁) > 

𝑤ℎ𝑒𝑟𝑒 𝜇, 𝜗, 𝜁 ∈ [0,1] 𝑎𝑛𝑑 0 < 𝜀₁, 𝜀₂ < 1. 

This neutrosophic fuzzy number is implemented in this model and thus the total cost obtain using this 

neutrosophic number is 

𝑇𝐶𝑛𝑒𝑢(ℎ̃, 𝑐₁̃, 𝑘̃) = 𝑅𝜇 [(
𝑑

2
) (𝑟𝜎(2𝑡1 − 𝜇) − (2𝑡2 − 𝜇)) + 𝑐₁̃𝜎 (𝑡1 + 𝑇1 – 𝑡3 −

𝜇

2
) + 𝑐3(1 − 𝐵)(𝑡3 − 𝑡2) +

(
𝑐2

2
) [𝐵(𝑡3 − 𝑡2)2 + (𝑟𝜎 − 1)(𝑇1 − 𝑡3)2] + (

𝜎𝑎𝑟𝑐𝑅−𝑏

2−𝑏
) [(𝑏 − 1)𝜇1−𝑏 + (2 − 𝑏)𝜇−𝑏(𝑡1 + 𝑇1 − 𝑡3)] + ℎ̃ [(𝑟𝜎 − 1) {𝜉 +

(
𝑡1

2
) (𝑡1 − 𝜇) − (

𝛼{𝜇𝛽(𝑡1−𝛾)𝛽+2−𝑡1(𝜇−𝛾)𝛽+2+(−1)(𝛽)𝛼𝛾𝛽+2𝑡1}

𝜇(𝛽+1)(𝛽+2)
) +

(𝛼(
𝜇

2
−𝛾))(𝑡1−𝛾)𝛽+1

𝛽+1
} − (

(𝑡2−𝑡1)2

2
) +
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(
𝛼[(𝑡1−𝛾)𝛽+1(𝑡2−𝛾)−(𝑡1−𝛾)(𝑡2−𝛾)𝛽+1]

𝛽+1
) + 𝑄𝑚 (𝑡2 − 𝑡1 − (

𝛼(𝑡2−𝛾)𝛽+1

𝛽+1
) + 𝛼(𝑡1 − 𝛾)𝛽 ((

𝑡1−𝛾

𝛽+1
) − 𝑡2 − 𝑡1))]] (

1−𝑒−𝑘̃𝑚𝑇

1−𝑒−𝑘̃𝑇
) 

                                                 (22) 

Using removal area technique (Chakraborty et. al. [3]) the de- neutrosophic numbers are 

ℎ𝑛𝑒𝑢𝐷̃ =
ℎ1 + ℎ2 + ℎ3

3
−

𝜀1 + 𝜀2

4
, (𝑐1)𝑛𝑒𝑢𝐷

̃ =
𝑐11 + 𝑐12 + 𝑐13

3
−

𝜀1 + 𝜀2

4
, 𝑎𝑛𝑑 𝑘𝑛𝑒𝑢𝐷̃ =

𝑘1 + 𝑘2 + 𝑘3

3
−

𝜀1 + 𝜀2

4
. 

    So we substitute the value of  hneuD, (c1)neuD and kneuD  and obtain the total cost in neutrosophic 

domain. 

    Thus by de-neutrosophication we get 

𝑇𝐶𝑛𝑒𝑢(ℎ̃, 𝑐1̃, 𝑘̃) = 𝑅𝜇 [(
𝑑

2
) (𝑟𝜎(2𝑡1 − 𝜇) − (2𝑡2 − 𝜇)) + (𝑐1)𝑛𝑒𝑢𝐷

̃ 𝜎 (𝑡1 + 𝑇1 – 𝑡3 −
𝜇

2
) + 𝑐3(1 − 𝐵)(𝑡3 − 𝑡2) + (

𝑐2

2
) [𝐵(𝑡3 −

𝑡2)2 + (𝑟𝜎 − 1)(𝑇1 − 𝑡3)2] + (
𝜎𝑎𝑟𝑐𝑅−𝑏

2−𝑏
) [(𝑏 − 1)𝜇1−𝑏 + (2 − 𝑏)𝜇−𝑏(𝑡1 + 𝑇1 − 𝑡3)] + ℎ𝑛𝑒𝑢𝐷̃ [(𝑟𝜎 − 1) {𝜉 + (

𝑡1

2
) (𝑡1 − 𝜇) −

(
𝛼{𝜇𝛽(𝑡1−𝛾)𝛽+2−𝑡1(𝜇−𝛾)𝛽+2+(−1)(𝛽)𝛼𝛾𝛽+2𝑡1}

𝜇(𝛽+1)(𝛽+2)
) +

(𝛼(
𝜇

2
−𝛾))(𝑡1−𝛾)𝛽+1

𝛽+1
} − (

(𝑡2−𝑡1)2

2
) + (

𝛼[(𝑡1−𝛾)𝛽+1(𝑡2−𝛾)−(𝑡1−𝛾)(𝑡2−𝛾)𝛽+1]

𝛽+1
) +

𝑄𝑚 (𝑡2 − 𝑡1 − (
𝛼(𝑡2−𝛾)𝛽+1

𝛽+1
) + 𝛼(𝑡1 − 𝛾)𝛽 ((

𝑡1−𝛾

𝛽+1
) − 𝑡2 − 𝑡1))]] (

1−𝑒−𝑘𝑛𝑒𝑢𝐷
̃ 𝑚𝑇

1−𝑒−𝑘𝑛𝑒𝑢𝐷
̃ 𝑇

)                      (23) 

5.  Numerical Example 

The model is illustrated by an example. A new brand item follows the demand rate as ramp type function of 

time where the produced items are directly affected by reliability(r) of production process. The manufacturer 

maintains the production rate 1.3 times the demand rate where demand factor is considered as 12 unit per 

cycle. Also the items deteriorate with time is in the form of αβ(t − γ)β−1, (where γ = 0.6 unit and α=0.001,β=1) 

which cost 1$ per unit time. The purchase cost of the raw material of the item is 3.5$ per unit item and 100$ is 

used for setting up for the production cycle. To hold the item in store the retailer has to pay 0.4$ per unit 

item. During shortages, which cost 3.2$, let 0.75 fraction of stock demand get backordered as the rest sales are 

lost. The cost for penalty (lost in sell) is 15$. The model is considered under 15 years of planning horizon with 

various replenishment cycle i.e., m=2,3,4,5 and discounting rate of inflation as 12%. 

Therefore, the data considered to illustrate the models are as follows: 

𝑐₁ = 3.5, 𝑐₂ = 3.2, 𝑐₃ = 15, ℎ = 0.4, 𝑑 = 1, 𝐵 = 0.75, 𝐻 = 15, 𝑇 = 𝐻/𝑚, 𝜇 = 1.2, 𝜎 = 1.3, 𝛼 = 0.001, 𝛽 = 1, 𝛾

= 0.6, 𝑎 = 3, 𝑏 = 0.8, 𝑐 = 2, 𝑘 = 0.12, 𝑅 = 12, 𝑆 = 100. 

Table 1: Optimal solution of inventory model for different replenishment 

m  T in year t1* in year  t2* in year t3* in year reliability (r*)     TC*   

2 7.5 7.175 7.452 7.454 0.799 806.54 

3 5 4.571 4.883 4.894 0.828 738.13 

4 3.75 3.249 3.579 3.603 0.864 717.58 

5* 3* 2.451* 2.789* 2.83* 0.909* 715.26* 
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From the table 1 it is observed that the optimal solution is obtained (i.e., total cost is minimum) if we consider 

short replenishment cycles. This is realistic because if we decrease the time of the production then it 

produces less items and hence the total cost of the inventory decreases. It is also observed the better quality 

items are produced at shorter replenishment cycle i.e., the reliability (r) of the items increases in shorter 

production or replenishment cycle. This occurs because if we take small cycle then at the end of each cycle 

their is maintenance in production system happens regularly and thus the reliability of the items increases. 

                          

Figure 2: Graphical presentation of production         Figure 3: Graphical presentation of reliability 

           cycle vs total cost                       vs total cost. 

We observe from the figure 2 that for smaller production cycle (i.e., for large value of m), the optimal total 

cost (TC) decreases with optimal cost at m = 5. 

In figure 3 we observe that the as reliability (r) increases then the total cost (TC) decreases. This holds because 

as reliability increases the demand of the item in the market increases as a result the cost per unit item 

decreases and hence the total cost decreases. 

The above result is desirable because in the competitive market the business strategies of the manufacturer is 

to work in small cycle and producing highly reliable items at less cost. 

 

Figure 4: Graphical representation of total cost vs reliability and production time 
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Figure 4 gives the 3-dimensional plot of the total cost, reliability and no. of replenishment cycle in crisp 

model. In this figure we observe that reliability (r) increases for large value of m where the total cost (TC) 

decreases, i.e., highly reliable items are produced during small replenishment cycle at less cost, which is 

desirable in producer-oriented EPQ model. This is obvious as, in small cycle, the machinery gets upgraded 

and ameliorated eventually at the end of each cycle, and hence better quality of items are produced at much 

faster rate and thus cost per unit items decreases and hence the total costing of the inventory decreases. 

In reality few parameters are uncertain and thus there is a dilemma in decision maker's mind. Thus instead 

of considering the model in crisp domain let us consider the model in neutrosophic domain and examine the 

same example as above. Here we have considered purchase cost (c₁), holding cost (h) and inflation (k) as 

triangular neutrosophic fuzzy number. Thus the neutrosophic numbers of the above parameters are     𝑘₁ =

0.125, 𝑘₂ = 0.118, 𝑘₃ = 0.132, ℎ₁ = 0.38, ℎ₂ = 0.4, ℎ₃ = 0.42, 𝑐₁₁ = 2.5, 𝑐₁₂ = 2.45. 𝑐₁₃ = 2.55, 𝜀₁ = 0.005, 𝜀₂ =

0.007. 

    𝑇ℎ𝑒𝑛, 𝑐₁̃  =< (2.495,2.5,2.507), (2.445,2.45,2.457), (2.545,2.55,2.557) >, 

    ℎ̃ =< (0.375,0.38,0.387), (0.395,0.4,0.407), (0.415,0.42,0.427) > 𝑎𝑛𝑑  

    𝑘̃ =< (0.12,0.125,0.132), (0.113,0.118,0.125), (0.127,0.132,0.139) >. 

Thus we obtained table 2 under neutrosophic arena for the optimal solution of the model for different 

replenishment cycle. 

Table 2: Optimal time and cost of inventory model under neutrosophic domain 

m  T in year t1* in year  t2* in year t3* in year reliability (r*)     TC*   

2 7.5 7.172 7.448 7.451 0.799 802.45 

3 5 4.569 4.886 4.897 0.829 733 

4 3.75 3.247 3.58 3.605 0.865 711.87 

5* 3* 2.449* 2.789* 2.83* 0.91* 709.11* 

Thus if we compare table 1 and table 2 it is observed that the total cost (TC) decreases if we consider the 

model in neutrosophic arena. This is desirable as few parameters has hesitation factor in decision maker's 

mind and thus this model under neutrosophic domain gives us better result. 

 

6.   Sensitivity Analysis 

 

The retailer should be aware of the effect in the total cost for any changes in the parameter. In order to 

examine the implications of these changes, the sensitivity analysis will be helpful for decision-making. Using 

the numerical example as given in the preceding section, we perform the sensitivity analysis by changing 

few crisp parameters by -10%, -5%, 5% and 10% by taking one parameter at time and keeping the other 

parameter fixed. As per Table 1 we observe that optimal solution is obtained when we consider small 

replenishment cycle. So we perform the sensitivity analysis for m=5. 
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Table 3. Sensitivity analysis of some parameters 

Parameters Change 

(%)  

t1* in year  t2*in year t3* in year reliability 

(r*) 

    TC*   % change   

of TC* 

 -10 2.642 2.933 2.44 0.878 677.95 -5.5 

c₁ -5 2.557 2.872 2.894 0.892 696.78 -2.65 

 5 2.313 2.677 2.748 0.932 733.29 2.46 

 10 2.122 2.517 2.64 0.968 750.71 4.72 

 -10 2.398 2.776 2.825 0.93 711.92 -0.47 

h -5 2.425 2.761 2.808 0.91 713.67 -0.22 

 5 2.475 2.796 2.834 0.9 716.7 0.2 

 10 2.498 2.803 2.838 0.892 718.01 0.38 

 -10 2.451 2.789 2.83 0.909 687.65 -4.02 

S -5 2.451 2.789 2.83 0.909 701.45 -1.97 

 5 2.451 2.789 2.83 0.909 729.06 1.89 

 10 2.451 2.789 2.83 0.909 742.87 3.72 

 -10 2.617 2.903 2.918 0.975 681.84 -4.9 

σ -5 2.533 2.844 2.871 0.939 698.61 -2.38 

 5 2.364 2.728 2.786 0.883 731.72 2.25 

 10 2.264 2.66 2.742 0.865 747.95 4.37 

 -10 2.398 2.771 2.819 0.923 681.47 -4.96 

μ -5 2.425 2.781 2.825 0.916 698.63 -2.38 

 5 2.475 2.798 2.836 0.903 731.35 2.2 

 10 2.498 2.805 2.841 0.897 746.92 4.24 

 -10 2.451 2.789 2.83 0.909 750.84 4.74 

k -5 2.451 2.789 2.83 0.909 732.63 2.37 

 5 2.451 2.789 2.83 0.909 698.69 -2.37 

 10 2.451 2.789 2.83 0.909 682.87 -4.74 

 -10 2.41 2.781 2.828 0.926 671.72 -6.48 

R -5 2.431 2.785 2.829 0.917 693.48 -3.14 

 5 2.471 2.794 2.832 0.901 737.05 2.96 

 10 2.49 2.799 2.834 0.894 758.86 5.74 

From the above table 3 it is observed that the model is highly sensitive to purchase cost, demand rate factor 

(R), moderately sensitive to setup cost, σ, μ, inflation (k) and less sensitive to holding cost. It is also noted 

that the model is insensitive to the shortage cost, lost in sale cost and deterioration cost. That means 

deterioration is not going to affect the model as much.   

(i) The model is highly sensitive to purchase cost i.e., if we increase purchase cost (c₁), the total cost increases. 

It is also noted that as the purchase cost increases, the reliability increases and production time decreases 

which means if we buy good quality raw material then we have better quality of finished good at less 

manufacturing time. Again the total cost TC increases with increase in demand factor R. This is obvious 
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because if demand increases means more items are produced and hence the production time and production 

cost also increases which leads to increase in total cost. 

(ii) The model is moderately sensitive to set up cost (S), σ, μ, inflation (k). Investing more money for 

upgradation of machineries, i.e., by increasing in set up cost (S), the total cost increases. It is noted that in our 

model the set up cost does not depends on reliability and production time. Again with the increase in 

production rate (σ) and production time (μ), the total cost increases. This is true because, if production time 

increases then more items are produced also if we increase the production rate then we have more finished 

good at less manufacturing time and thus in both the case the total cost increases. Also the toal cost decreases 

with increase in inflation (k). This is obvious because with the increase in inflation the time value of money 

increases and thus the total cost decreases in present day. 

(iii) It is noticed that as the holding cost (h) is a less sensitive parameter. With the increase in holding cost, the 

total cost increases. It is also observed that the production time also increases with increase in holding cost. It 

means that the items has to be held for longer time with high value of holding cost then obviously the total 

cost will increase. 

It has been observed that there are various parameters which are very less sensitive hence it is not included 

in the table.  

 

7.   Concluding remarks 

This paper developed an EPQ model for deteriorating item with reliability in production process and ramp 

type demand rate under crisp and neutrosophic domain. The model also considers shortages where part of 

the items gets backlogged and part of the sales are lost. The model coincides with practical situations since 

we have considered the effect of time value of money under finite time horizon. Also the model optimizes by 

considering the reliability of production process, as the reliability of production process increases, the total 

cost decreases. This model is cost effective because highly reliable items are obtained at less cost and which is 

desirable in managerial point of view. It is also observed that the highly reliable items are produced in small 

cycles. The paper also compares the model under two different environment, crisp and neutrosophic, and it 

is observed that the model works better in neutrosophic domain as compare to crisp environment. In this 

paper we have done sensitivity analysis in crisp environment to illustrate our example and we have noted 

that the minimum value of total cost is obtained for short replenishment cycle. This work could be extended 

by considering multi-layer supply chain lot sizing model with manufacturer end, retailer end under 

neutrosophic environment. Also we can extend this same model and can compare the model with 

neutrosophic number and hybrid plithogenic decision-making method. 

Further, in the forthcoming research, people can fruitfully execute and apply the idea of triangular 
neutrosophic into distinct research arenas like structural modeling, diagnostic problems, realistic 
modeling, recruitment based problems, pattern recognition etc. 
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Abstract: Neutrosophic graph is a mathematical tool to hold with imprecise and unspecified data. In 

this manuscript, the operations on neutrosophic vague graphs are introduced. Moreover, Cartesian 
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vague graphs are investigated. The proposed concepts are demonstrated with suitable examples. 
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1. Introduction 

In a classical graph, any vertex or edge have two situations, namely, it is either in the graph or it 

is not in the graph and it is not sufficient to model uncertain optimization problems. Therefore, 

real-life problems are not suitable to model using classical graphs. Hence the fuzzy set arises, which 

is an extension of classical set; here the objects have varying membership degrees. Vague sets are 

regarded as a special case of context-dependent fuzzy sets. At first, vague set theory was 

investigated by Gau and Buehrer [36] that is an extension of fuzzy set theory. The classical fuzzy set 

handles only the membership degree, but intuitionistic fuzzy handles independent membership 

degree and non-membership degree for any element with the only requirement is that the sum of 

non-membership and membership degree values is not greater than one [16].  

On the other hand, to hold this indeterminate and inconsistent information, the neutrosophic 

set is introduced by F. Smarandache and has been studied extensively (see [31]-[35]). Neutrosophic 

set and related notions have weird applications in many different fields. In the definition of 

neutrosophic set, the indeterminacy value is quantified explicitly and truth-membership, 

false-membership and indeterminacy-membership are stated as exactly independent provided sum 

of these values belonging to 0 and 3. Neutrosophic soft rough graphs with applications are 

established in [10]. Neutrosophic soft relations and neutrosophic refined relations with their 

properties are studied in [15, 20]. Single valued neutrosophic graph are studied in [17, 18]. Some 

types of neutrosophic graphs and co-neutrosophic graphs are discussed in [23]. Neutrosophic vague 

set is first initiated in [11]. Al-Quran and Hassan in [7] introduced the notion of neutrosophic vague 

soft expert set as a generalization of neutrosophic vague set and soft expert set in order to revise the 

application in decision-making in real-life problems. Intuitionistic bipolar neutrosophic set and its 

application to graphs are established in [28]. Further, neutrosophic vague graphs are investigated in 
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[27]. Motivated by the articles [11, 27, 28, 29], we introduce the concept of operations on 

neutrosophic vague graphs. The main contributions in this manuscript are given below:   

 Operations on neutrosophic vague graphs are established. In Section 2, basic definitions     

regarding to neutrosophic vague graphs are explained with an example.  

 In Section 3, Cartesian product, lexicographic product, cross product, strong product 

and composition of neutrosophic vague graph are illustrated with examples. Finally, a 

conclusion is elaborated with future direction. 

2. Preliminaries 

In this section, basic definitions and example are given, which is used to prove the main results.  

Definition 2.1 [36] A vague set 𝔸 on a non empty set 𝕏  is a pair (𝕋𝔸, 𝔽𝔸), where 𝕋𝔸: 𝕏 → [0,1] 

and 𝔽𝔸: 𝕏 → [0,1] are true membership and false membership functions, respectively, such that  

 0 ≤ 𝕋𝔸(x) + 𝔽𝔸(x) ≤ 1 for every x ∈ 𝕏.  

Let 𝕏 and 𝕐  be two non-empty sets. A vague relation R of 𝕏 to 𝕐  is a vague set R on 𝕏 × 𝕐 

that is R = (𝕋R, 𝔽R), where 𝕋R: 𝕏 × 𝕐 → [0,1],   𝔽R: 𝕏 × 𝕐 → [0,1] and satisfies the condition:  

 0 ≤ 𝕋R(x, y) + 𝔽R(x, y) ≤ 1 for any x, y ∈ 𝕏.  

Definition 2.2 [12] Let 𝔾∗ = (𝕍, 𝔼) be a graph. A pair 𝔾 = (𝕁, 𝕂) is called a vague graph on 𝔾∗, 

where 𝕁 = (𝕋𝕁, 𝔽𝕁) is a vague set on 𝕍 and 𝕂 = (𝕋𝕂, 𝔽𝕂) is a vague set on 𝔼 ⊆ 𝕍 × 𝕍 such that for 

each xy ∈ 𝔼,  

 𝕋𝕂(xy) ≤ min{𝕋𝕁(x), 𝕋𝕁(y)} and 𝔽𝕂(xy) ≥ max {𝔽𝕁(x), 𝔽𝕁 (y)}.  

Definition 2.3 [31] A Neutrosophic set 𝔸 is contained in another neutrosophic set 𝔹, (i.e) 𝔸 ⊆ 𝔹 if 

∀x ∈ 𝕏, 𝕋𝔸(x) ≤ 𝕋𝔹(x), 𝕀𝔸(x) ≥ 𝕀𝔹(x)and 𝔽𝔸(x) ≥ 𝔽𝔹(x).  

Definition 2.4 [20, 31] Let 𝕏 be a space of points (objects), with generic elements in 𝕏 denoted by x. 

A single valued neutrosophic set 𝔸 in 𝕏 is characterised by truth-membership function 𝕋𝔸(x), 

indeterminacy-membership function 𝕀𝔸(x) and falsity-membership-function 𝔽𝔸(x), 

For each point x in 𝕏, 𝕋𝔸(x), 𝕀𝔸(x), 𝔽𝔸(x) ∈ [0,1]. Also  

 𝔸 = {〈x, 𝕋𝔸(x), 𝕀𝔸(x), 𝔽𝔸(x)〉} and 0 ≤ 𝕋𝔸(x), +𝕀𝔸(x) + 𝔽𝔸(x) ≤ 3.  

Definition 2.5 [6, 18] A neutrosophic graph is defined as a pair 𝔾∗ = (𝕍, 𝔼)  where  

(i) 𝕍 = {v1, v2, . . , vn} such that 𝕋1 ∶ 𝕍 → [0,1], 𝕀1 ∶ 𝕍 → [0,1] and 𝔽1 ∶ 𝕍 → [0,1] denote the 

degree of truth-membership function, indeterminacy function and falsity-membership function, 

respectively, and  

 0 ≤ 𝕋1(v) + 𝕀1(v) + 𝔽1(v) ≤ 3,  

       (ii) 𝔼 ⊆ 𝕍 × 𝕍 where 𝕋2 ∶ 𝔼 → [0,1], 𝕀2 ∶ 𝔼 → [0,1] and 𝔽2 ∶ 𝔼 → [0,1] are such that  

 𝕋2(uv) ≤ min{𝕋1(u), 𝕋1(v)}, 

𝕀2(uv) ≤ min{𝕀1(u), 𝕀1(v)}, 

𝔽2(uv) ≤ max{𝔽1(u), 𝔽1(v)} 

and 0 ≤ 𝕋2(uv) + 𝕀2(uv) + 𝔽2(uv) ≤ 3, ∀uv ∈ 𝔼.  

Definition 2.6 [11] A Neutrosophic Vague Set 𝔸NV (NVS in short) on the universe of discourse 𝕏 

written as  

 𝔸NV = {〈x, 𝕋̂𝔸NV
(x), 𝕀̂𝔸NV

(x), 𝔽̂𝔸NV
(x)〉, x ∈ 𝕏},  

whose truth-membership, indeterminacy membership and falsity-membership function are defined 

as  
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 𝕋̂𝔸NV
(x) = [𝕋−(x), 𝕋+(x)], 𝕀̂𝔸NV

(x) = [𝕀−(x), 𝕀+(x)]and 𝔽̂𝔸NV
(x) = [𝔽−(x), 𝔽+(x)], 

where 𝕋+(x) = 1 − 𝔽−(x), 𝔽+(x) = 1 − 𝕋−(x), and 0 ≤ 𝕋−(x) + 𝕀−(x) + 𝔽−(x) ≤ 2.  

Definition 2.7 [11] The complement of NVS 𝔸NV is denoted by 𝔸NV
c  and it is defined by  

 𝕋̂𝔸NV

c (x) = [1 − 𝕋+(x),1 − 𝕋−(x)], 

 𝕀̂𝔸NV

c (x) = [1 − 𝕀+(x),1 − 𝕀−(x)], 

 𝔽̂𝔸NV

c (x) = [1 − 𝔽+(x),1 − 𝔽−(x)]. 

Definition 2.8 [11] Let 𝔸NV and 𝔹NV be two NVSs of the universe 𝕌. If for all ui ∈ 𝕌,  

 𝕋̂𝔸NV
(ui) ≤ 𝕋̂𝔹NV

(ui), 𝕀̂𝔸NV
(ui) ≥ 𝕀̂𝔹NV

(ui), 𝔽̂𝔸NV
(ui) ≥ 𝔽̂𝔹NV

(ui),  

then the NVS, 𝔸NV are included in 𝔹NV, denoted by 𝔸NV ⊆ 𝔹NV where 1 ≤ i ≤ n.  

Definition 2.9 [11] The union of two NVSs , 𝔸NV and 𝔹NV,  is a NVSs, 𝔻NV, written as 𝔻NV =

𝔸NV ∪ 𝔹NV whose truth-membership function, indeterminacy-membership function and 

false-membership function are related to those of 𝔸NV and 𝔹NV by  

 𝕋̂𝔻NV
(x) = [max(𝕋𝔸NV

− (x), 𝕋𝔹NV

− (x)), max(𝕋𝔸NV

+ (x), 𝕋𝔹NV

+ (x))] 

 𝕀̂𝔻NV
(x) = [min(𝕀𝔸NV

− (x), 𝕀𝔹NV

− (x)), min(𝕀𝔸NV

+ (x), 𝕀𝔹NV

+ (x))] 

 𝔽̂𝔻NV
(x) = [min(𝔽𝔸NV

− (x), 𝔽𝔹NV

− (x)), min(𝔽𝔸NV

+ (x), 𝔽𝔹NV

+ (x))]. 

Definition 2.10 [11] The intersection of two NVSs, 𝔸NV and 𝔹NV is a NVSs, 𝔻NV, written as 𝔻NV =

𝔸NV  ∩ 𝔹NV ,  whose truth-membership function, indeterminacy-membership function and 

false-membership function are related to those of 𝔸NV  and 𝔹NV  by  

𝕋̂𝔻NV
(x) = [min(𝕋𝔸NV

− (x), 𝕋𝔹NV

− (x)), min(𝕋𝔸NV

+ (x), 𝕋𝔹NV

+ (x))] 

     𝕀̂𝔻NV
(x) = [max(𝕀𝔸NV

− (x), 𝕀𝔹NV

− (x)), max(𝕀𝔸NV

+ (x), 𝕀𝔹NV

+ (x))] 

    𝔽̂𝔻NV
(x) = [max(𝔽𝔸NV

− (x), 𝔽𝔹NV

− (x)), max(𝔽𝔸NV

+ (x), 𝔽𝔹NV

+ (x))]. 

Definition 2.11 [27] Let G∗ = (R, S) be a graph. A pair 𝔾 = (𝔸, 𝔹) is called a neutrosophic vague 

graph (NVG) on G∗ or a neutrosophic vague graph where 𝔸 = (𝕋̂𝔸, 𝕀̂𝔸, 𝔽̂𝔸) is a neutrosophic vague 

set on R and 𝔹 = (𝕋̂𝔹, 𝕀̂𝔹, 𝔽̂𝔹)is a neutrosophic vague set S ⊆ R × R where  

 (1)     R = {v1, v2, . . . , vn} such that 𝕋𝔸
−: R → [0,1], 𝕀𝔸

−: R → [0,1], 𝔽𝔸
−: R → [0,1] which satisfies the 

condition 𝔽𝔸
− = [1 − 𝕋𝔸

+], 

𝕋𝔸
+: R → [0,1], 𝕀𝔸

+: R → [0,1], 𝔽𝔸
+: R → [0,1]  which satisfies the condition 𝔽𝔸

+ = [1 − 𝕋𝔸
−]  

denotes the degree of truth membership function, indeterminacy membership and falsity 

membership of the element vi ∈ R, and  

 0 ≤ 𝕋𝔸
−(vi) + 𝕀𝔸

−(vi) + 𝔽𝔸
−(vi) ≤ 2 

 0 ≤ 𝕋𝔸
+(vi) + 𝕀𝔸

+(vi) + 𝔽𝔸
+(vi) ≤ 2. 

(2) S ⊆ R × R where  

 𝕋𝔹
−: R × R → [0,1],  𝕀𝔹

−: R × R → [0,1],  𝔽𝔹
−: R × R → [0,1] 

 𝕋𝔹
+: R × R → [0,1],  𝕀𝔹

+: R × R → [0,1],  𝔽𝔹
+: R × R → [0,1] 

denotes the degree of truth membership function, indeterminacy membership and falsity 

membership of the element vivj ∈ S, respectively and such that,  

0 ≤ 𝕋𝔹
−(vivj) + 𝕀𝔹

−(vivj) + 𝔽𝔹
−(vivj) ≤ 2 

0 ≤ 𝕋𝔹
+(vivj) + 𝕀𝔹

+(vivj) + 𝔽𝔹
+(vivj) ≤ 2. 

 

 such that  
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𝕋𝔹
−(vivj) ≤ min{𝕋𝔸

−(vi), 𝕋𝔸
−(vj)} 

𝕀𝔹
−(vivj) ≤ min{𝕀𝔸

−(vi), 𝕀𝔸
−(vj)} 

𝔽𝔹
−(vivj) ≤ max{𝔽𝔸

−(vi), 𝔽𝔸
−(vj)} 

 and similarly  

𝕋𝔹
+(vivj) ≤ min{𝕋𝔸

+(vi), 𝕋𝔸
+(vj)} 

𝕀𝔹
+(vivj) ≤ min{𝕀𝔸

+(vi), 𝕀𝔸
+(vj)} 

𝔽𝔹
+(vivj) ≤ max{𝔽𝔸

+(vi), 𝔽𝔸
+(vj)}. 

Example 2.12 Consider a neutrosophic vague graph G = (R, S)  such that 𝔸 = {a, b, c} and 𝔹 =

{ab, bc, ca} are defined by 

â = T[0.5,0.6], I[0.4,0.3], F[0.4,0.5],        b̂ = T[0.4,0.6], I[0.7,0.3], F[0.4,0.6], 

ĉ = T[0.4,0.4], I[0.5,0.3], F[0.6,0.6] 

a− = (0.5,0.4,0.4), b− = (0.4,0.7,0.4), c− = (0.4,0.5,0.6) 

𝐚+ = (𝟎. 𝟔, 𝟎. 𝟑, 𝟎. 𝟓),  𝐛+ = (𝟎. 𝟔, 𝟎. 𝟑, 𝟎. 𝟔),  𝐜+ = (𝟎. 𝟒, 𝟎. 𝟑, 𝟎. 𝟔). 

 

 

 

 

 

  

 

 

 

𝐹𝑖𝑔𝑢𝑟𝑒 1: NEUTROSOPHIC VAGUE GRAPH  

3. Operations on Neutrosophic Vague Graphs 

In this section, the results on operations of neutrosophic vague graphs with example are established.  

Definition 3.1 The Cartesian product of two NVGs G1 and G2 is denoted by the pair G1 × G2 =

(R1 × R2, S1 × S2) and defined as  

 TA1×A2

− (kl) = TA1

− (k) ∧ TA2

− (l) 

 IA1×A2

− (kl) = IA1

− (k) ∧ IA2

− (l) 

 FA1×A2

− (kl) = FA1

− (k) ∨ FA2

− (l) 

 TA1×A2

+ (kl) = TA1

+ (k) ∧ TA2

+ (l) 

 IA1×A2

+ (kl) = IA1

+ (k) ∧ IA2

+ (l) 

 FA1×A2

+ (kl) = FA1

+ (k) ∨ FA2

+ (l), 
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 for all (k, l) ∈ R1 × R2. 

 

The membership value of the edges in G1 × G2 can be calculated as,  

 (1)  TB1×B2

− (kl1)(kl2) = TA1

− (k) ∧ TB2

− (l1l2) 

      TB1×B2

+ (kl1)(kl2) = TA1

+ (k) ∧ TB2

+ (l1l2), 

  

 (2)   IB1×B2

− (kl1)(kl2) = IA1

− (k) ∧ IB2

− (l1l2) 

     IB1×B2

+ (kl1)(kl2) = IA1

+ (k) ∧ IB2

+ (l1l2), 

  

 (3)   FB1×B2

− (kl1)(kl2) = FA1

− (k) ∨ FB2

− (l1l2) 

     FB1×B2

+ (kl1)(kl2) = FA1

+ (k) ∨ FB2

+ (l1l2), 

 for all k ∈ R1, l1l2 ∈ S2.  

 (4)  TB1×B2

− (k1l)(k2l) = TA2

− (l) ∧ TB2

− (k1k2) 

     TB1×B2

+ (k1l)(k2l) = TA2

+ (l) ∧ TB2

+ (k1k2), 

  

 (5)  IB1×B2

− (k1l)(k2l) = IA2

− (l) ∧ IB2

− (k1k2) 

     IB1×B2

+ (k1l)(k2l) = IA2

+ (l) ∧ IB2

+ (k1k2), 

  

 (6)   FB1×B2

− (k1l)(k2l) = FA2

− (l) ∨ FB2

− (k1k2) 

     FB1×B2

+ (k1l)(k2l) = FA2

+ (l) ∨ FB2

+ (k1k2), 

 for all k1k2 ∈ S1, l ∈ R2.  

 

Example 3.2 Consider G1 = (R1, S1) and G2 = (R2, S2) are two NVGs of G = (R, S), as represented 

in Figure 2, now we get G1 × G2 as follows see Figure 3. 

 

k̂1 = T[0.5,0.6], I[0.6,0.4], F[0.4,0.5], k̂2 = T[0.4,0.6], I[0.7,0.3], F[0.4,0.6], 

k̂3 = T[0.6,0.4], I[0.3,0.7], F[0.6,0.4],k̂4 = T[0.4,0.4], I[0.4,0.6], F[0.6,0.6] 

l̂1 = T[0.4,0.4], I[0.5,0.3], F[0.6,0.6], l̂2 = T[0.5,0.6], I[0.4,0.3], F[0.4,0.5], 

l̂3 = T[0.4,0.6], I[0.7,0.3], F[0.4,0.6] 

k1
− = (0.5,0.6,0.4), k2

− = (0.4,0.7,0.4), k3
− = (0.6,0.3,0.6),k4

− = (0.4,0.4,0.6) 

k1
+ = (0.6,0.4,0.5), k2

+ = (0.6,0.3,0.6), k3
+ = (0.4,0.7,0.4),k4

− = (0.4,0.6,0.6) 

l1
− = (0.4,0.5,0.6), l2

− = (05,0.4,0.4), l3
− = (0.4,0.7,0.4) 

𝐥𝟏
+ = (𝟎. 𝟒, 𝟎. 𝟑, 𝟎. 𝟔), 𝐥𝟐

+ = (𝟎. 𝟔, 𝟎. 𝟑, 𝟎. 𝟓), 𝐥𝟑
+ = (𝟎. 𝟔, 𝟎. 𝟑, 𝟎. 𝟔). 
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Figure 2: NEUTROSOPHIC VAGUE GRAPH 
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Figure 3: CARTESIAN PRODUCT OF NEUTROSOPHIC VAGUE GRAPH 

Theorem 3.3 The Cartesian product G1 × G2 = (R1 × R2, S1 × S2) of two NVG G1 and G2 is also the 

NVG of G1 × G2.  

Proof. We consider two cases. 

Case 1: for k ∈ R1, l1l2 ∈ S2,  

 T̂(B1×B2)((kl1)(kl2)) = T̂A1
(k) ∧ T̂B2

(l1l2) 

                    ≤ T̂A1
(k) ∧ [T̂A2

(l1) ∧ T̂A2
(l2)] 

                    = [T̂A1
(k) ∧ T̂A2

(l1)] ∧ [T̂A1
(k) ∧ T̂A2

(l2)] 

                    = T̂(A1×A2)(k, l1) ∧ T̂(A1×A2)(k, l2) 

  

 Î(B1×B2)((kl1)(kl2)) = ÎA1
(k) ∧ ÎB2

(l1l2) 

                            ≤ ÎA1
(k) ∧ [ÎA2

(l1) ∧ ÎA2
(l2)] 

                    = [ÎA1
(k) ∧ ÎA2

(l1)] ∧ [ÎA1
(k) ∧ ÎA2

(l2)] 

                       = Î(A1×A2)(k, l1) ∧ Î(A1×A2)(k, l2) 

  

 F̂(B1×B2)((kl1)(kl2)) = F̂A1
(k) ∨ F̂B2

(l1l2) 

                    ≤ F̂A1
(k) ∨ [F̂A2

(l1) ∨ F̂A2
(l2)] 

                     = [F̂A1
(k) ∨ F̂A2

(l1)] ∨ [F̂A1
(k) ∨ F̂A2

(l2)] 

                    = F̂(A1×A2)(k, l1) ∨ F̂(A1×A2)(k, l2) 

for all kl1, kl2 ∈ G1 × G2. 

Case 2: for k ∈ R2, l1l2 ∈ S1.  

 T̂(B1×B2)((l1k)(l2k)) = T̂A2
(k) ∧ T̂B1

(l1l2) 

                    ≤ T̂A2
(k) ∧ [T̂A1

(l1) ∧ T̂A1
(l2)] 

                         = [T̂A2
(k) ∧ T̂A1

(l1)] ∧ [T̂A2
(k) ∧ T̂A1

(l2)] 

                    = T̂(A1×A2)(l1, k) ∧ T̂(A1×A2)(l2, k) 

  

 Î(B1×B2)((l1k)(l2k)) = ÎA2
(k) ∧ ÎB1

(l1l2) 
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                      ≤ ÎA2
(k) ∧ [ÎA1

(l1) ∧ ÎA1
(l2)] 

                    = [ÎA2
(k) ∧ ÎA1

(l1)] ∧ [ÎA2
(k) ∧ ÎA1

(l2)] 

                    = Î(A1×A2)(l1, k) ∧ Î(A1×A2)(l2, k) 

  

 F̂(B1×B2)((l1k)(l2k)) = F̂A2
(k) ∨ F̂B1

(l1l2) 

                    ≤ F̂A2
(k) ∨ [F̂A1

(l1) ∨ F̂A1
(l2)] 

                    = [F̂A2
(k) ∨ F̂A1

(l1)] ∨ [F̂A2
(k) ∨ F̂A1

(l2)] 

                    = F̂(A1×A2)(l1, k) ∨ F̂(A1×A2)(l2, k) 

for all l1k, l2k ∈ G1 × G2 .  

Definition 3.4 The Cross product of two NVGs G1 and G2 is denoted by the pair G1 ⋆ G2 = (R1 ⋆

R2, S1 ⋆ S2) and is defined as  

 (i)TA1⋆A2

− (kl) = TA1

− (k) ∧ TA2

− (l) 

            IA1⋆A2

− (kl) = IA1

− (k) ∧ IA2

− (l) 

    FA1⋆A2

− (kl) = FA1

− (k) ∨ FA2

− (l) 

    TA1⋆A2

+ (kl) = TA1

+ (k) ∧ TA2

+ (l)  

    IA1⋆A2

+ (kl) = IA1

+ (k) ∧ IA2

+ (l) 

    FA1⋆A2

+ (kl) = FA1

+ (k) ∨ FA2

+ (l), 

 for all k, l ∈ R1 ⋆ R2.  

 (ii)T(B1⋆B2)
− (k1l1)(k2l2) = TB1

− (k1k2) ∧ TB2

− (l1l2) 

     I(B1⋆B2)
− (k1l1)(k2l2) = IB1

− (k1k2) ∧ IB2

− (l1l2) 

     F(B1⋆B2)
− (k1l1)(k2l2) = FB1

− (k1k2) ∨ FB2

− (l1l2) 

 (iii)T(B1⋆B2)
+ (k1l1)(k2l2) = TB1

+ (k1k2) ∧ TB2

+ (l1l2) 

     I(B1⋆B2)
+ (k1l1)(k2l2) = IB1

+ (k1k2) ∧ IB2

+ (l1l2) 

     F(B1⋆B2)
+ (k1l1)(k2l2) = FB1

+ (k1k2) ∨ FB2

+ (l1l2), 

 for all k1k2 ∈ S1, l1l2 ∈ S2.  

Example 3.5 Consider 𝐆𝟏 = (𝐑𝟏, 𝐒𝟏) and 𝐆𝟐 = (𝐑𝟐, 𝐒𝟐) as two NVG of 𝐆 = (𝐑, 𝐒) respectively, (see 

Figure 2). We obtain the cross product of 𝐆𝟏 ⋆ 𝐆𝟐 as follows (see Figure 4). 

 

 

 

 

 

 

 

Figure 4: CROSS PRODUCT OF NEUTROSOPHIC VAGUE GRAPH 
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Theorem 3.6 The cross product G1 ⋆ G2 = (R1 ⋆ R2, S1 ⋆ S2) of two NVG G1 and G2 is an the NVG 

of G1 ⋆ G2.  

Proof. For all k1l1, k2l2 ∈ G1 ⋆ G2  

 T̂(B1⋆B2)((k1l1)(k2l2)) = T̂B1
(k1k2) ∧ T̂B2

(l1l2) 

                      ≤ [T̂A1
(k1) ∧ T̂A1

(k2)] ∧ [T̂A2
(l1) ∧ T̂A2

(l2)] 

                      = [T̂A1
(k1) ∧ T̂A2

(l1)] ∧ [T̂A1
(k2) ∧ T̂A2

(l2)] 

                      = T̂(A1⋆A2)(k1l1) ∧ T̂(A1⋆A2)(k2, l2) 

  

 Î(B1⋆B2)((k1l1)(k2l2)) = ÎB1
(k1k2) ∧ ÎB2

(l1l2) 

                      ≤ [ÎA1
(k1) ∧ ÎA1

(k2)] ∧ [ÎA2
(l1) ∧ ÎA2

(l2)] 

                      = [ÎA1
(k1) ∧ ÎA2

(l1)] ∧ [ÎA1
(k2) ∧ ÎA2

(l2)] 

                      = Î(A1⋆A2)(k1l1) ∧ Î(A1⋆A2)(k2, l2) 

  

 F̂(B1⋆B2)((k1l1)(k2l2)) = F̂B1
(k1k2) ∨ F̂B2

(l1l2) 

                      ≤ [F̂A1
(k1) ∨ F̂A1

(k2)] ∨ [F̂A2
(l1) ∨ F̂A2

(l2)] 

                      = [F̂A1
(k1) ∨ F̂A2

(l1)] ∨ [F̂A1
(k2) ∨ F̂A2

(l2)] 

                      = F̂(A1⋆A2)(k1l1) ∨ F̂(A1⋆A2)(k2, l2). 

 This completes the proof.  

Definition 3.7 The lexicographic product of two NVGs G1 and G2 is denoted by the pair G1 • G2 =

(R1 • R2, S1 • S2) and defined as  

 (i)T(A1•A2)
− (kl) = TA1

− (k) ∧ TA2

− (l) 

    I(A1•A2)
− (kl) = IA1

− (k) ∧ IA2

− (l) 

    F(A1•A2)
− (kl) = FA1

− (k) ∨ FA2

− (l) 

    T(A1•A2)
+ (kl) = TA1

+ (k) ∧ TA2

+ (l) 

    I(A1•A2)
+ (kl) = IA1

+ (k) ∧ IA2

+ (l) 

    F(A1•A2)
+ (kl) = FA1

+ (k) ∨ FA2

+ (l), 

 for all kl ∈ R1 × R2  

 (ii)T(B1•B2)
− (kl1)(kl2) = TA1

− (k) ∧ TB2

− (l1l2) 

    I(B1•B2)
− (kl1)(kl2) = IA1

− (k) ∧ IB2

− (l1l2) 

    F(B1•B2)
− (kl1)(kl2) = FA1

− (k) ∨ FB2

− (l1l2) 

    T(B1•B2)
+ (kl1)(kl2) = TA1

+ (k) ∧ TB2

+ (l1l2) 

    I(B1•B2)
+ (kl1)(kl2) = IA1

+ (k) ∧ IB2

+ (l1l2) 

    F(B1•B2)
+ (kl1)(kl2) = FA1

+ (k) ∨ FB2

+ (l1l2), 

 for all k ∈ R1, l1l2 ∈ S2.  

 (iii)T(B1•B2)
− (k1l1)(k2l2) = TB1

− (k1k2) ∧ TB2

− (l1l2) 

       I(B1•B2)
− (k1l1)(k2l2) = IB1

− (k1k2) ∧ IB2

− (l1l2) 

     F(B1•B2)
− (k1l1)(k2l2) = FB1

− (k1k2) ∨ FB2

− (l1l2) 

     T(B1•B2)
+ (k1l1)(k2l2) = TB1

+ (k1k2) ∧ TB2

+ (l1l2) 

     I(B1•B2)
+ (k1l1)(k2l2) = IB1

+ (k1k2) ∧ IB2

+ (l1l2) 

     F(B1•B2)
+ (k1l1)(k2l2) = FB1

+ (k1k2) ∨ FB2

+ (l1l2),  for all k1k2 ∈ S1, l1l2 ∈ S2.  
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Example 3.8 The lexicographic product of NVG G1 = (R1, S1) and G2 = (R2, S2) shown in Figure 2 

is defined as G1 • G2 = (R1 • R2, S1 • S2) and is presented in Figure 5.  

 

 

 

Figure 5: LEXICOGRAPHIC PRODUCT OF NEUTROSOPHIC VAGUE GRAPH 
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Theorem 3.9 The lexicographic product G1 • G2 = (R1 • R2, S1 • S2) of two NVG G1 and G2 is the 

NVG of G1 • G2.  

Proof. We have two cases. 

Case 1: For k ∈ R1, l1l2 ∈ S2,  

 T̂(B1•B2)((kl1)(kl2)) = T̂A1
(k) ∧ T̂B2

(l1l2) 

                     ≤ T̂A1
(k) ∧ [T̂A2

(l1) ∧ T̂A2
(l2)] 

                    = [T̂A1
(k) ∧ T̂A2

(l1)] ∧ [T̂A1
(k) ∧ T̂A2

(l2)] 

                    = T̂(A1•A2)(k, l1) ∧ T̂(A1•A2)(k, l2) 

  

 Î(B1•B2)((kl1)(kl2)) = ÎA1
(k) ∧ ÎB2

(l1l2) 

                    ≤ ÎA1
(k) ∧ [ÎA2

(l1) ∧ ÎA2
(l2)] 

                    = [ÎA1
(k) ∧ ÎA2

(l1)] ∧ [ÎA1
(k) ∧ ÎA2

(l2)] 

                    = Î(A1•A2)(k, l1) ∧ Î(A1•A2)(k, l2) 

  

 F̂(B1•B2)((kl1)(kl2)) = F̂A1
(k) ∨ F̂B2

(l1l2) 

                    ≤ F̂A1
(k) ∨ [F̂A2

(l1) ∨ F̂A2
(l2)] 

                    = [F̂A1
(k) ∨ F̂A2

(l1)] ∨ [F̂A1
(k) ∨ F̂A2

(l2)] 

                    = F̂(A1•A2)(k, l1) ∨ F̂(A1•A2)(k, l2) 

for all kl1, kl2 ∈ S1 × S2. 

Case 2: For all k1l1 ∈ S1, k2l2 ∈ S2,  

 T̂(B1•B2)((k1l1)(k2l2)) = T̂B1
(k1k2) ∧ T̂B2

(l1l2) 

                      ≤ [T̂A1
(k1) ∧ T̂A1

(k2)] ∧ [T̂A2
(l1) ∧ T̂A2

(l2)] 

                      = [T̂A1
(k1) ∧ T̂A2

(l1)] ∧ [T̂A1
(k2) ∧ T̂A2

(l2)] 

                        = T̂(A1•A2)(k1l1) ∧ T̂(A1•A2)(k2, l2) 

  

 Î(B1•B2)((k1l1)(k2l2)) = ÎB1
(k1k2) ∧ ÎB2

(l1l2) 

                     ≤ [ÎA1
(k1) ∧ ÎA1

(k2)] ∧ [ÎA2
(l1) ∧ ÎA2

(l2)] 

                     = [ÎA1
(k1) ∧ ÎA2

(l1)] ∧ [ÎA1
(k2) ∧ ÎA2

(l2)] 

                     = Î(A1•A2)(k1l1) ∧ Î(A1•A2)(k2, l2) 

  

 F̂(B1•B2)((k1l1)(k2l2)) = F̂B1
(k1k2) ∨ F̂B2

(l1l2) 

                      ≤ [F̂A1
(k1) ∨ F̂A1

(k2)] ∨ [F̂A2
(l1) ∨ F̂A2

(l2)] 

                      = [F̂A1
(k1) ∨ F̂A2

(l1)] ∨ [F̂A1
(k2) ∨ F̂A2

(l2)] 

                      = F̂(A1•A2)(k1l1) ∨ F̂(A1•A2)(k2, l2) 

for all k1, l1 ∈ k2, l2 ∈ R1 • R2.  

Definition 3.10 The strong product of two NVG G1 and G2 is denoted by the pair G1 ⊠ G2 = (R1 ⊠

R2, S1 ⊠ S2) and defined as  

 (i)T(A1⊠A2)
− (kl) = TA1

− (k) ∧ TA2

− (l) 

    I(A1⊠A2)
− (kl) = IA1

− (k) ∧ IA2

− (l) 

    F(A1⊠A2)
− (kl) = FA1

− (k) ∨ FA2

− (l) 
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    T(A1⊠A2)
+ (kl) = TA1

+ (k) ∧ TA2

+ (l) 

    I(A1⊠A2)
+ (kl) = IA1

+ (k) ∧ IA2

+ (l) 

    F(A1⊠A2)
+ (kl) = FA1

+ (k) ∨ FA2

+ (l) 

 for all kl ∈ R1 ⊠ R2 

 

 (ii)T(B1⊠B2)
− (kl1)(kl2) = TA1

− (k) ∧ TB2

− (l1l2) 

    I(B1⊠B2)
− (kl1)(kl2) = IA1

− (k) ∧ IB2

− (l1l2) 

    F(B1⊠B2)
− (kl1)(kl2) = FA1

− (k) ∨ FB2

− (l1l2) 

    T(B1⊠B2)
+ (kl1)(kl2) = TA1

+ (k) ∧ TB2

+ (l1l2) 

    I(B1⊠B2)
+ (kl1)(kl2) = IA1

+ (k) ∧ IB2

+ (l1l2) 

    F(B1⊠B2)
+ (kl1)(kl2) = FA1

+ (k) ∨ FB2

+ (l1l2), 

 for all k ∈ R1, l1l2 ∈ S2.  

 (iii)TB1⊠B2

− (k1l)(k2l) = TA2

− (l) ∧ TB2

− (k1k2) 

     IB1⊠B2

− (k1l)(k2l) = IA2

− (l) ∧ IB2

− (k1k2) 

     FB1⊠B2

− (k1l)(k2l) = FA2

− (l) ∨ FB2

− (k1k2) 

     TB1⊠B2

+ (k1l)(k2l) = TA2

+ (l) ∧ TB2

+ (k1k2) 

             IB1⊠B2

+ (k1l)(k2l) = IA2

+ (l) ∧ IB2

+ (k1k2) 

           FB1⊠B2

+ (k1l)(k2l) = FA2

+ (l) ∨ FB2

+ (k1k2), 

 for all k1k2 ∈ S1, l ∈ R2.  

 (iv)T(B1⊠B2)
− (k1l1)(k2l2) = TB1

− (k1k2) ∧ TB2

− (l1l2) 

     I(B1⊠B2)
− (k1l1)(k2l2) = IB1

− (k1k2) ∧ IB2

− (l1l2) 

     F(B1⊠B2)
− (k1l1)(k2l2) = FB1

− (k1k2) ∨ FB2

− (l1l2) 

     T(B1⊠B2)
+ (k1l1)(k2l2) = TB1

+ (k1k2) ∧ TB2

+ (l1l2) 

     I(B1⊠B2)
+ (k1l1)(k2l2) = IB1

+ (k1k2) ∧ IB2

+ (l1l2) 

     F(B1⊠B2)
+ (k1l1)(k2l2) = FB1

+ (k1k2) ∨ FB2

N (l1l2), 

for all k1k2 ∈ S1, l1l2 ∈ S2.  

Example 3.11 The strong product of NVG G1 = (R1, S1) and G2 = (R2, S2) shown in Figure 2 is 

defined as G1 ⊠ G2 = (S1 ⊠ S2, T1 ⊠ T2) and is presented in Figure 6.  
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Figure 6: STRONG PRODUCT OF NEUTROSOPHIC VAGUE GRAPH 

 

Theorem 3.12 The strong product G1 ⊠ G2 = (R1 ⊠ R2, S1 ⊠ S2) of two NVG G1 and G2 is a NVG 

of G1 ⊠ G2.  

Proof. There are three cases: 

Case 1: for k ∈ R1, l1l2 ∈ S2,  

 T̂(B1⊠B2)((kl1)(kl2)) = T̂A1
(k) ∧ T̂B2

(l1l2) 

                     ≤ T̂A1
(k) ∧ [T̂A2

(l1) ∧ T̂A2
(l2)] 

                     = [T̂A1
(k) ∧ T̂A2

(l1)] ∧ [T̂A1
(k) ∧ T̂A2

(l2)] 

                     = T̂(A1⊠A2)(k, l1) ∧ T̂(A1⊠A2)(k, l2) 

  

 Î(B1⊠B2)((kl1)(kl2)) = ÎA1
(k) ∧ ÎB2

(l1l2) 

                    ≤ ÎA1
(k) ∧ [ÎA2

(l1) ∧ ÎA2
(l2)] 

                    = [ÎA1
(k) ∧ ÎA2

(l1)] ∧ [ÎA1
(k) ∧ ÎA2

(l2)] 

                       = Î(A1⊠A2)(k, l1) ∧ Î(A1⊠A2)(k, l2) 

  

 F̂(B1⊠B2)((kl1)(kl2)) = F̂A1
(k) ∨ F̂B2

(l1l2) 

                    ≤ F̂A1
(k) ∨ [F̂A2

(l1) ∨ F̂A2
(l2)] 

                    = [F̂A1
(k) ∨ F̂A2

(l1)] ∨ [F̂A1
(k) ∨ F̂A2

(l2)] 

                    = F̂(A1⊠A2)(k, l1) ∨ F̂(A1⊠A2)(k, l2), 

 for all kl1, kl2 ∈ R1 ⊠ R2. 

Case 2: for k ∈ R2, l1l2 ∈ S1,  

 T̂(B1⊠B2)((l1k)(l2k)) = T̂A2
(k) ∧ T̂B1

(l1l2) 
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                     ≤ T̂A2
(k) ∧ [T̂A1

(l1) ∧ T̂A1
(l2)] 

                       = [T̂A2
(k) ∧ T̂A1

(l1)] ∧ [T̂A2
(k) ∧ T̂A1

(l2)] 

                     = T̂(A1⊠A2)(l1, k) ∧ T̂(A1⊠A2)(l2, k) 

  

 Î(B1⊠B2)((l1k)(l2k)) = ÎA2
(k) ∧ ÎB1

(l1l2) 

                    ≤ ÎA2
(k) ∧ [ÎA1

(l1) ∧ ÎA1
(l2)] 

                    = [ÎA2
(k) ∧ ÎA1

(l1)] ∧ [ÎA2
(k) ∧ ÎA1

(l2)] 

                    = Î(A1⊠A2)(l1, k) ∧ Î(A1⊠A2)(l2, k) 

  

 F̂(B1⊠B2)((l1k)(l2k)) = F̂A2
(k) ∨ F̂B1

(l1l2) 

                     ≤ F̂A2
(k) ∨ [F̂A1

(l1) ∨ F̂A1
(l2)] 

                     = [F̂A2
(k) ∨ F̂A1

(l1)] ∨ [F̂A2
(k) ∨ F̂A1

(l2)] 

                     = F̂(A1⊠A2)(l1, k) ∨ F̂(A1⊠A2)(l2, k) 

for all l1k, l2k ∈ R1 ⊠ R2. 

Case 3: for k1, k2 ∈ S1, l1l2 ∈ S2  

 T̂(B1⊠B2)((k1l1)(k2l2)) = T̂B1
(k1k2) ∧ T̂B2

(l1l2) 

                      ≤ [T̂A1
(k1) ∧ T̂A1

(k2)] ∧ [T̂A2
(l1) ∧ T̂A2

(l2)] 

                      = [T̂A1
(k1) ∧ T̂A2

(l1)] ∧ [T̂A1
(k2) ∧ T̂A2

(l2)] 

                      = T̂(A1⊠A2)(k1l1) ∧ T̂(A1⊠A2)(k2, l2) 

  

 Î(B1⊠B2)((k1l1)(k2l2)) = ÎB1
(k1k2) ∧ ÎB2

(l1l2) 

                      ≤ [ÎA1
(k1) ∧ ÎA1

(k2)] ∧ [ÎA2
(l1) ∧ ÎA2

(l2)] 

                      = [ÎA1
(k1) ∧ ÎA2

(l1)] ∧ [ÎA1
(k2) ∧ ÎA2

(l2)] 

                      = Î(A1⊠A2)(k1l1) ∧ Î(A1⊠A2)(k2, l2) 

  

 F̂(B1⊠B2)((k1l1)(k2l2)) = F̂B1
(k1k2) ∨ F̂B2

(l1l2) 

                        ≤ [F̂A1
(k1) ∨ F̂A1

(k2)] ∨ [F̂A2
(l1) ∨ F̂A2

(l2)] 

                       = [F̂A1
(k1) ∨ F̂A2

(l1)] ∨ [F̂A1
(k2) ∨ F̂A2

(l2)] 

                       = F̂(A1⊠A2)(k1l1) ∨ F̂(A1⊠A2)(k2, l2), 

for all l1k1, l2k1 ∈ R1 ⊠ R2. 

Definition 3.13 The composition of two NVG G1 and G2 is denoted by the pair G1 ∘ G2 = (R1 ⊠

R2, S1 ∘ S2) and defined as  

 (i)T(A1∘A2)
− (kl) = TA1

− (k) ∧ TA2

− (l) 

    I(A1∘A2)
− (kl) = IA1

− (k) ∧ IA2

− (l) 

    F(A1∘A2)
− (kl) = FA1

− (k) ∨ FA2

− (l) 

    T(A1∘A2)
+ (kl) = TA1

+ (k) ∧ TA2

+ (l) 

                    I(A1∘A2)
+ (kl) = IA1

+ (k) ∧ IA2

+ (l) 

    F(A1∘A2)
+ (kl) = FA1

+ (k) ∨ FA2

+ (l) 

 for all kl ∈ R1 ∘ R2.  

 (ii)T(B1∘B2)
− (kl1)(kl2) = TA1

− (k) ∧ TB2

− (l1l2) 
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     I(B1∘B2)
− (kl1)(kl2) = IA1

− (k) ∧ IB2

− (l1l2) 

     F(B1∘B2)
− (kl1)(kl2) = FA1

− (k) ∨ FB2

− (l1l2) 

     T(B1∘B2)
+ (kl1)(kl2) = TA1

+ (k) ∧ TB2

+ (l1l2) 

      I(B1∘B2)
+ (kl1)(kl2) = IA1

+ (k) ∧ IB2

+ (l1l2) 

     F(B1∘B2)
+ (kl1)(kl2) = FA1

+ (k) ∨ FB2

+ (l1l2), 

 for all k ∈ R1, l1l2 ∈ S2.  

 (iii)TB1∘B2

− (k1l)(k2l) = TA2

− (l) ∧ TB2

− (k1k2) 

   IB1∘B2

− (k1, l)(k2, l) = IA2

− (l) ∧ IB2

− (k1k2) 

   FB1∘B2

− (k1, l)(k2, l) = FA2

− (l) ∨ FB2

− (k1k2) 

   TB1∘B2

+ (k1, l)(k2, l) = TA2

+ (l) ∧ TB2

+ (k1k2) 

   IB1∘B2

+ (k1, l)(k2, l) = IA2

+ (l) ∧ IB2

+ (k1k2) 

   FB1∘B2

+ (k1, l)(k2, l) = FA2

+ (l) ∨ FB2

+ (k1k2), 

 for all k1k2 ∈ S1, l ∈ R2.  

 (iv)T(B1∘B2)
− (k1l1)(k2l2) = TB1

− (k1k2) ∧ TA2

− (l1) ∧ TA2

− (l2) 

     I(B1∘B2)
− (k1l1)(k2l2) = IB1

− (k1k2) ∧ IA2

− (l1) ∧ IA2

− (l2) 

     F(B1∘B2)
− (k1l1)(k2l2) = FB1

− (k1k2) ∨ FA2

− (l1) ∨ FA2

− (l2) 

      T(B1∘B2)
+ (k1l1)(k2l2) = TB1

− (k1k2) ∧ TA2

+ (l1) ∧ TA2

+ (l2) 

      I(B1∘B2)
+ (k1l1)(k2l2) = IB1

+ (k1k2) ∧ IA2

+ (l1) ∧ IA2

+ (l2) 

      F(B1∘B2)
+ (k1l1)(k2l2) = FB1

+ (k1k2) ∨ FA2

+ (l1) ∨ FA2

+ (l2), 

 for all k1k2 ∈ S1, l1l2 ∈ S2.  

Example 3.14 The composition of NVG G1 = (R1, S1)  and G2 = (R2, S2)  shown in Figure 2 is 

defined as G1 ∘ G2 = (R1 ∘ R2, S1 ∘ S2) and is presented in Figure 7.  
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Figure 7: COMPOSITION OF NEUTROSOPHIC VAGUE GRAPH 

Theorem 3.15 Composition G1 ∘ G2 = (R1 ∘ R2, S1 ∘ S2) of two NVG G1 and G2 is the NVG of G1 ∘

G2.  

Proof. We divide the proof into three cases:  

Case:1 For k ∈ R1, l1l2 ∈ S2,  

 T̂(B1∘B2)((kl1)(kl2)) = T̂A1
(k) ∧ T̂B2

(l1l2) 

                     ≤ T̂A1
(k) ∧ [T̂A2

(l1) ∧ T̂A2
(l2)] 

                     = [T̂A1
(k) ∧ T̂A2

(l1)] ∧ [T̂A1
(k) ∧ T̂A2

(l2)] 

                     = T̂(A1∘A2)(k, l1) ∧ T̂(A1∘A2)(k, l2) 

  

  Î(B1∘B2)((kl1)(kl2)) = ÎA1
(k) ∧ ÎB2

(l1l2) 

                    ≤ ÎA1
(k) ∧ [ÎA2

(l1) ∧ ÎA2
(l2)] 

                    = [ÎA1
(k) ∧ ÎA2

(l1)] ∧ [ÎA1
(k) ∧ ÎA2

(l2)] 

                    = Î(A1∘A2)(k, l1) ∧ Î(A1∘A2)(k, l2) 

  

 F̂(B1∘B2)((kl1)(kl2)) = F̂A1
(k) ∨ F̂B2

(l1l2) 

                    ≤ F̂A1
(k) ∨ [F̂A2

(l1) ∨ F̂A2
(l2)] 

                    = [F̂A1
(k) ∨ F̂A2

(l1)] ∨ [F̂A1
(k) ∨ F̂A2

(l2)] 

                     = F̂(A1∘A2)(k, l1) ∨ F̂(A1∘A2)(k, l2) 

 for all kl1, kl2 ∈ R1 ∘ R2. 

Case 2: for k ∈ R2, l1l2 ∈ S1,  

 T̂(B1∘B2)((l1k)(l2k)) = T̂A2
(k) ∧ T̂B1

(l1l2) 

                    ≤ T̂A2
(k) ∧ [T̂A1

(l1) ∧ T̂A1
(l2)] 

                    = [T̂A2
(k) ∧ T̂A1

(l1)] ∧ [T̂A2
(k) ∧ T̂A1

(l2)] 

                    = T̂(A1∘A2)(l1, k) ∧ T̂(A1∘A2)(l2, k) 
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 Î(B1∘B2)((l1k)(l2k)) = ÎA2
(k) ∧ ÎB1

(l1l2) 

                       ≤ ÎA2
(k) ∧ [ÎA1

(l1) ∧ ÎA1
(l2)] 

                    = [ÎA2
(k) ∧ ÎA1

(l1)] ∧ [ÎA2
(k) ∧ ÎA1

(l2)] 

                    = Î(A1∘A2)(l1, k) ∧ Î(A1∘A2)(l2, k) 

  

 F̂(B1∘B2)((l1k)(l2k)) = F̂A2
(k) ∨ F̂B1

(l1l2) 

                    ≤ F̂A2
(k) ∨ [F̂A1

(l1) ∨ F̂A1
(l2)] 

                    = [F̂A2
(k) ∨ F̂A1

(l1)] ∨ [F̂A2
(k) ∨ F̂A1

(l2)] 

                    = F̂(A1∘A2)(l1, k) ∨ F̂(A1∘A2)(l2, k),  for all l1k, l2k ∈ R1 ∘ R2. 

Case 3: For k1k2 ∈ S1, l1, l2 ∈ R2 such that l1 ≠ l2,  

 T̂(B1∘B2)((k1l1)(k2l2)) = T̂B1
(k1, k2) ∧ T̂A2

(l1) ∧ T̂A2
(l2) 

                      ≤ [T̂A1
(k1) ∧ T̂A1

(k2)] ∧ [T̂A2
(l1) ∧ T̂A2

(l2)] 

                      = [T̂A1
(k1) ∧ T̂A2

(l1)] ∧ [T̂A1
(k2) ∧ T̂A2

(l2)] 

                      = T̂(A1∘A2)(k1l1) ∧ T̂(A1∘A2)(k2l2) 

  

 Î(B1∘B2)((k1l1)(k2l2)) = ÎB1
(k1, k2) ∧ ÎA2

(l1) ∧ ÎA2
(l2) 

                     ≤ [ÎA1
(k1) ∧ ÎA1

(k2)] ∧ [ÎA2
(l1) ∧ ÎA2

(l2)] 

                     = [ÎA1
(k1) ∧ ÎA2

(l1)] ∧ [ÎA1
(k2) ∧ ÎA2

(l2)] 

                     = Î(A1∘A2)(k1l1) ∧ Î(A1∘A2)(k2l2) 

  

 F̂(B1∘B2)((k1l1)(k2l2)) = F̂B1
(k1, k2) ∨ F̂A2

(l1) ∨ F̂A2
(l2) 

                      ≤ [F̂A1
(k1) ∨ F̂A1

(k2)] ∨ [F̂A2
(l1) ∨ F̂A2

(l2)] 

                      = [F̂A1
(k1) ∨ F̂A2

(l1)] ∨ [F̂A1
(k2) ∨ F̂A2

(l2)] 

                      = F̂(A1∘A2)(k1l1) ∨ F̂(A1∘A2)(k2l2),  for all k1l1, k2l2 ∈ R1 ∘ R2.  

Conclusion 

 Graph theory is an extremely useful tool in studying and modeling several applications in 

computer science, engineering, genetics, decision-making, economics, etc. An extension of 

intuitionistic fuzzy graph is regarded as a single-valued neutrosophic graph which is very useful to 

formulate the appropriate real life situation. In this research article, the operations on neutrosophic 

vague graphs have been established. Moreover, Cartesian product, lexicographic product, cross 

product, strong product and composition of neutrosophic vague graph have been investigated and 

the given concepts are demonstrated through examples. Furthermore, in future, we are able to 

investigate the domination number and isomorphic properties of the NVGs. 
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Abstract: With the rapid development of the Internet, information technology, and globalization of 

the economy, Some small and medium-sized companies know that they cannot compete with their 

limited capacity alone. As a result, they are beginning to seek collaboration and a collective 

approach to meet the dynamic needs of customers and increase their power for competition in the 

market. Virtual enterprise is a temporary platform for working with different companies that share 

their core tasks to meet customer’s demand. Partner selection is a major issue in the formation of a 

virtual organization. This is especially difficult due to the uncertainties regarding information, 

market dynamics, customer expectations, and rapidly changing technology, with highly random 

decision making. As a generalization of fuzzy sets and intuitionistic fuzzy sets, Neutrosophic sets 

are created to show the uncertain, and inconsistent information available in the real world. The 

main purpose of this paper is to identify and select partners in the formation of Virtual Enterprises 

under uncertainty and contradictory factors using the extended VIKOR group decision making 

technique using the Interval Neutrosophic fuzzy approach. For this purpose, after identifying the 

factors affecting partner selection, the factors are weighted using the Maximizing deviation method 

and the partners are ranked using this method. Finally, a sensitivity analysis for assessing the 

validity of the method is also presented. The results show that the Willingness to share information 

criterion is the most important partner selection criterion in this enterprise.  

Keywords: Virtual Enterprise, Partner Selection, Interval Neutrosophic Numbers, Group Decision 

Making, Uncertainty, VIKOR. 

 

1. Introduction 

With the globalization of the market and the economy, the rapid development of the use of the 

Internet and information technologies, faster product updates and market needs have become more 

uncertain and personalized [1]. Globally, companies are increasingly in need of the competence of 

other companies to meet growing customers’ demands [2]. Therefore, it is difficult to adapt the 

traditional business model to the new market environment. At the same time, companies need to 

maintain lower costs and shorter delivery cycles, that this challenges old organizational form [3]. In 

fact, a enterprise cannot meet the rapid market changes by integrating internal resources and 
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competencies alone [1]. As such, many companies are attracting partners to absorb opportunities in 

emerging markets to share costs, reduce development time, and utilize the effectiveness of design, 

production, and marketing skills within and outside companies [4]. With the rapid growth of 

competition in the global industry, a dynamic virtual enterprise (VE) approach will be needed to 

meet market needs for quality, responsiveness and customer satisfaction [5]. VE is created to address 

a specific opportunity in a fast-paced and simultaneous market, creating a collaborative work 

environment for managing and using a set of resources provided by companies. Business partners 

are all connected to share their skills, and take advantage of the rapidly changing opportunities in a 

dynamic network [6]. In fact, through the VE framework, each VE partner brings its expertise for 

implementing the original project, [7] and each partner focuses on its own core competence. This 

increases the ability of the organization to meet the unpredictable demands of customers [8]. 

Therefore, by maintaining the agility of the entire structure, this collaboration will deliver high 

quality products based on customer’s specific needs [7]. In this alliance, the links are made easier by 

computer technology, [4] and eventually when the market opportunity is over, the VE will be 

dissolved [5]. 

Compared to the traditional organizational form, VE is considered a low cost, high responsive and 

adaptive organization and members of this alliance can share cost, risk, technology, and key 

competition with each other, through which members can gain win-win policy. However, many 

issues arise throughout the life cycle of a VE, including how we can find the right partners, which is 

a key issue for the core enterprise in the VE development phase, and this issue has been considered 

by many researchers [3]. As the VE environment continues to grow in size and complexity, the 

importance of managing such complexities increases [5]. In a virtual enterprise (VE), choosing a 

partner is very important because of the short life of these organizations (temporary alliances) and 

the absence of formal mechanisms (contracts) to ensure participants' responsibility [9]. 

The complexity of the partner selection process is reinforced by the fact that there are several 

centralized internal and external organizational factors that have both tangible and intangible 

characteristics and should be incorporated into the decision analysis for this selection process [8]. 

Like all decision-making issues, partner selection involves tangible and intangible paradox 

specifications under conflicting or incomplete information [10]. Therefore, it is important to select 

the most appropriate companies while there may be dozens of volunteer companies involved in the 

project [7]. The multitude of factors that are considered when choosing partners for a business 

opportunity such as cost, quality, trust and delivery time cannot be expressed by the same size or 

scale [11]. In practice, partner selection should consider higher levels of uncertainty and risk as a 

way of addressing uncontrolled factors: such as price or demand fluctuations, lack of enough 

knowledge sharing among VE members, resource constraints, and incomplete information about 

candidates and their performance [12]. 

The multi-attribute group decision making (MAGDM) approach is to provide a comprehensive 

solution by evaluating and ranking alternatives based on contrasting features based on decision 

makers’ (DM) preferences [13]. Decision-making is often about the optimal choice between a set of 

options, considering the impact of many criteria. In the past five decades, Multi criteria decision 

making method (MCDM) has become one of the most important and key ways of solving complex 

decision problems, despite of various criteria and options. In MCDM problems, the characteristics of 
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dependence, opposition, and interaction are ambiguous between decision criteria, which obscures 

the degree of membership [14]. In fact, it is difficult for DMs due to the uncertainty of the 

information and the many constraints such as time pressure, lack of awareness, and problems of 

data extraction and so on to express their preferences numerically in many complex realities [15]. 

The fuzzy set theories or the intuitionistic fuzzy theories are used to overcome this obstacle. 

However, these sets are not always suitable [14]. The fuzzy set (FS) has only one member and cannot 

display complex information and the intuitionistic fuzzy set, which includes membership and 

non-membership degree, can only manage incomplete information, and cannot deal with 

inconsistent information, and degree of indeterminate membership at IFS has always been ignored 

[16]. Smarandache recommended Neutrosophic set (NS) by adding an indefinite membership 

function based on IFS. In NS, the degree of accuracy, lack of reliability, and the degree of inaccuracy 

are completely independent [17].  

The Neutrosophic set is becoming a scientific tool and has attracted the attention of many scientists 

and academic researchers to develop and improve the Neutrosophic method [14]. Abdel-Basset et al. 

(2020) considered inventory location problem, They applied the best-worst method (BWM) to find 

the weight of these criteria and propose a combination of plithogenic aggregation operations, and 

the BWM to solve MCDM problems [18]. Veerappan et al (2020) considered Multi-Aspect 

Decision-Making Process in Equity Investment Using Neutrosophic Soft Matrices [19]. Abdel-Basset 

and Mohamed (2020) proposed a combination of plithogenic multi-criteria decision-making 

approach based on the TOPSIS and Criteria Importance Through Inter-criteria Correlation (CRITIC) 

methods for sustainable supply chain risk management [20]. Abdel-Basset et al. (2020) provided a 

new hybrid neutrosophic MCDM framework that employs a collection of neutrosophic ANP, and 

TOPSIS under bipolar neutrosophic numbers for professional selection [21]. Edalatpanah and 

Smarandache proposed an input-oriented DEA model with simplified neutrosophic numbers and 

present a new strategy to solve it [22]. Abdel-Basset et al. (2020) applied a combination of quality 

function deployment (QFD) with plithogenic aggregation operations for Selecting Supply Chain 

Sustainability Metrics [23].  

 In this paper, we combine the Interval Neutrosophic Numbers (NS) set and the VIKOR method to 

select a partner in a virtual enterprise. One of the best ways to solve decision problems with 

inconsistent and unbelievable criteria is the VIKOR approach. VIKOR can be an effective tool for 

decision making when the decision maker is unable to identify and express the superiority of a 

problem at the time it is started and designed [24]. For this purpose, the criteria for selecting the 

partner were first identified by the experts and then their opinions about each of the candidate 

partners were collected according to the effective factors. Finally, partner rating and selection are 

performed using the VIKOR method, which is based on the concurrent planning of multivariate 

decision problems and evaluates issues with inappropriate, and incompatible criteria, in the Interval 

Neutrosophic environment. The innovation of this paper is that the Interval Neutrosophic set is used 

to express the evaluation of information, and partner selection in virtual enterprise will be 

implemented under an Interval Neutrosophic environment. Since the weight of the criteria varies 

with the mental state, and no specific information is available, in this paper the weight of the criteria 

is determined using the Maximizing deviation method under the Interval Neutrosophic 

environment. 
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2. Research literature and Related studies 

The widespread development of Internet technologies in the late twentieth century has led to the 

dramatic formation and enhancement of the virtual environment in the employment sector, and 

virtual enterprises, virtual sectors and a series of virtual businesses have expanded. Information on 

so-called virtual companies was first provided in the early 1990s by Steven L. Goldman, Rocer N. 

Nagel and David B. Greenberger, and William H. Davidow and Michael S. Malone. The innovative 

technology market enables companies to form temporary partnerships, and the creation of such 

links through the Internet leads to the formation of Virtual Enterprises [25]. Member companies in 

such a virtual enterprise, rather than being independent companies and focusing on their own 

business goals, work together to share their information about their capabilities, programs and cost 

structures, to improve their technical, logistical, financial and other activities in order to compete [4]. 

The short-term goal of a VE is primarily to increase productivity, reduce inventory and total cycle 

time. The long-term goal is to increase customer satisfaction, market share, and profit levels for all 

members. Failure to cooperate may result in a delay in delivery, poor customer service, and 

inventory creation, and so on [26]. The success of this mission depends on all the organizations that 

work together as a unit. Because everyone gives its own core strengths or competencies to the virtual 

enterprise. In other words, the competitive advantage gained by a virtual enterprise depends on 

each other and their ability to integrate with each other. The key factor in forming a virtual 

enterprise is choosing agile, competent and consistent partners [27]. The life cycle of a VE consists of 

four stages: creation, operation, evolution, and dissolution [28]. In the creation phase, when an 

organization wins a large contract project and is unable to complete it with its proper capacity, it 

seeks out potential partners and negotiates with them through its information infrastructures and 

VE will be created. At the operation stage, after signing contracts between the partners, VE manages 

the process of production or execution of the project. At the development stage, the VE is configured 

to meet the resource requirements when the project is changed, and at the dissolution stage, when 

the project is completed, the VE will be eventually dissolved [29]. Obviously, the first step, namely 

the selection of partners, is crucial to the success of the VE [30]. The main difference between a 

regular supplier selection issue and a partner selection issue in a VE is the expected duration of the 

relationship. In fact, companies in a VE rarely have the time to implement, and develop all the 

features needed for successful relationships. They therefore emphasize on the fact that partner 

selection is definitely an important step in VE development [12]. Determining the right criteria and 

evaluating all of the influencing factors in partner selection is difficult. There are many factors that 

must be considered during decision making. Some are qualitative, such as friendship, credibility, 

and reliability, and others are quantitative, such as cost, and delivery time. It is very costly and 

time-consuming to evaluate each partner and identify the most desirable ones [26]. 

There is an extensive literature on partner selection in VE, each offering a new approach for 

evaluating and selecting the most appropriate partners among the set of organizations. Sha and Che 

(2004) develop a partner selection and production distribution planning problem with a new partner 

selection Model based on Analytical Hierarchy Process (AHP), multi-attribute utility theory 

(MAUT), and integer programming (IP), for Virtual integration (VI) with multiple criteria. The AHP 

and MAUT methods are used to evaluate and weight each partner's candidate, and the IP model 
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applies this weigh to find the best potential partners and provide the right distribution plan for the 

selected partners [31]. Sarkis et al. (2007) present a practical paradigm that can be used by 

organizations to help form agile virtual companies using ANP method [8]. Ye and Li (2009) 

proposed two group decision models for spatial decision making to solve the problem of partner 

selection under incomplete information. The first model is a technique for preferring the order with 

similarity with ideal Solution (TOPSIS) for group decision making based on degree of deviation. The 

second approach is TOPSIS group decision-making based on risk factor [28]. Crispim and Sousa 

(2009) propose an exploratory process to help the decision maker to acquire knowledge about the 

network in order to identify the criteria and companies that provide the needs of a project very well. 

This process involves a multi-objective meta-heuristic search algorithm designed to find a good 

approximation of the PARETO front and a fuzzy TOPSIS algorithm to rank the configuration of VE 

options. Preliminary computational results clearly showed the potential of this approach for 

practical applications [9]. Ye (2010) investigated the problem of partner selection in partial and 

uncertain information environments and used the extended TOPSIS technique for group decision 

making with intuitive fuzzy numbers with interval values for problem solving [32]. 

Liu et al (2016) proposed a partner selection method based on distance multipliers preferences with 

approximate compatibility. In this paper, using a (n - 1) pairwise comparison, a new partner 

selection method is proposed, which introduces a new concept of approximate compatibility for 

multidimensional preferential relationships [27]. Nikghadam et al. (2016) designed a 

customer-based algorithm to select a partner in a virtual enterprise. In this study, customers were 

classified into three categories: passive, standard and assertive. Three different approaches; fuzzy 

logic-FAHP TOPSIS and ideal programming were used for each type of customer, respectively. The 

results confirm that adopting this algorithm not only helps VE to select the most appropriate 

partners based on customer preferences, but also adapts its model to each customer's attitude. As a 

result, the overall flexibility of the system significantly improves [7]. Polyantchikov et al. (2017) 

performed virtual enterprise formation in the context of a sustainable partner network using 

methodologies such as Analytical Hierarchy Process (AHP), fuzzy AHP approach and TOPSIS 

method [33]. Huang et al. (2018) studied the problem of partner selection for virtual production 

companies facing an uncertain environment and using the gray system theory studied uncertainty at 

the start of a project, in the completion time, in shipping time, and also studied the cost. They used 

the chaotic particle swarm optimization (CPSO) algorithm to solve the problem [30]. 

Meng et al. (2019) in their paper presented Interval Neutrosophic Preferred Relations and examined 

its application with numerical examples in virtual partner selection. The algorithm presented in this 

paper is based on group decision-making based on INPRs which can be applied to address 

incomplete and inconsistent INPRs [3]. Chen and Goh (2019) sought a cooperative partner selection 

mechanism from the perspective of dual-factor theory. They proposed a new framework for 

problem solving and cooperative partner selection. This framework uses the degree of compatibility 

of the triangular fuzzy soft set (TFSS) to measure the level of participation, and a broad TODIM 

based on TFSS to measure the degree of influence on the individual level [34]. Ionescu (2020) reviews 

the most prominent approaches to solving partner selection problems and discuss some of the most 

documented methods and algorithms for VO creation and reconfiguration [35]. Zhao et al. (2020) 
studied a multi-objective virtual enterprise partner selection model with relative superiority 
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parameter in fuzzy environment. In this paper, the completion time and delivery time were fuzzily 

processed [36] . Wan and Dong (2020) applied the group decision making (GDM) problems with 

interval-valued Atanassov intuitionistic fuzzy preference relations (IV-AIFPRs) and developed a 

novel method for solving a virtual enterprise partner selection problem [37]. 

These papers use different methods and techniques to select partners in virtual enterprises. Many of 

these studies make use of fixed weights of the criteria, and consider a limited set of uncertainties. 

They do not make sensitivity analysis to examine solutions, and are, in general, very 

time-consuming or too complex to be understood by the DM. However, in practice, there are 

multiple uncertainties in the VE partner selection problem and to assign precise weights to criteria 

becoming more critical when the number of criteria increases and when the VE life cycle is rather 

short. In this paper, the weight of the criteria is determined using the maximizing deviation method 

under the Interval Neutrosophic environment. and combine the Interval Neutrosophic Numbers 

(NS) set and the VIKOR method have considerable potential to this problem. Neutrosophic sets are 

very powerful and successful in overcoming situations and cases in uncertainty, vagueness, and 

imprecision. This model is easy to understand and use, and flexible, and tolerant with inconsistent 

and inaccurate information. Additionally, the procedure proposed in this work overcomes some of 

the shortcomings of decision-support tools and provides automatic sensitivity analysis on the 

results. 

On the other hand, many factors should be taken into consideration when selecting partners of a VE 

By studying the research literature, the most important factors influencing partner selection in 

Virtual Enterprises can be classified according to Table 1. These factors are the most popular and 

most influential factors in choosing a partner in a virtual enterprise. 

Table 1. Criteria for partner selection 

Reference  Criteria 

[28], [9], [32],[12], [4],[27], [30], [10], [38], [2], [39] Cost 

[28], [32], [12], [10], [2] Time 

[28], [32], [10], [34], [3] Trust 

[28], [32], [12], [9] ,[10], [40] Risk 

[28], [9], [33], [27], [10], [26], [38], [39], [6] Quality 

[9], [33], [7], [26], [2] Productivity & Performance history 

[9], [12] Market entrance capability  

[9], [33], [34] Knowledge and managerial experience 

[9], [12] Age of the organisation 

[9], [33], [3] Competency & technical expertise 

[9], [33] Information and communication 

technology resources 

[12], [33], [7], [26], [6] Price 

[12], [33], [7], [30], [26], [39] Delivery 

[12], [7], [27], [26], [38], [2], [6] Customer service 

[33], [26], [34] Geographical location 

[27], [34], [38], [6] The financial stability 
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[12], [34] Willingness to share information 

[4], [27] Tardiness penalty 

[34], [26], [38], [34], Technology capability 

[3], [26], [38], [33] Reputation and position in industry 

[38], [26] IT infrastructure 

3. Methedology 

This research is applied in terms of purpose and quantitative in terms of variables. In the partner 

selection process, decision makers are usually unsure of their preferences [41]. Because information 

about candidates and their performance is incomplete and unclear. In terms of data collection, 

selecting and evaluating partners is difficult due to the complex interactions between different 

entities, and because of their preferences they may be inaccessible based on incomplete or partial 

information. To address this issue under a multi-criteria perspective, several types of information 

(numerical, interval, qualitative and binary) are used to facilitate the expression of preferences or the 

evaluation of stakeholders in decision making [12]. In this paper, Interval Neutrosophic numbers are 

used to express the preferences of experts. In this regard, First, the effective criteria influencing the 

choice of partner are selected, and then experts express their opinion about candidates with the 

competence of linguistic terms according to the effectiveness criteria. After converting the experts' 

opinions to Interval Neutrosophic numbers, the weight of the criteria is calculated using the 

maximum deviation method. In the second step, expert opinions on each company integrate using 

the interval neutrosophic weighted average operator. Finally, rankings of companies perform by 

using the Vikor fuzzy interval neutrosophic method. The general framework of proposed method 

presented in Fig 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. A general framework of proposed method 

3.1. Interval Neutrosophic fuzzy set   

In the real world, decision information is often incomplete, uncertain, and inconsistent. In order to 

process this type of information, Smarandache introduced Neutrosophic set (NS) from a 

philosophical perspective by adding independent indeterminacy-membership, which is an 

Consider the criteria, alternatives and experts 

Determine linguistic preference of criteria and alternatives  

Aggregate DMs opinions using the interval neutrosophic weighted average 

operator 

Rank the alternatives using Vikor fuzzy interval neutrosophic 

method 

Calculate weight for each criteria using the maximum deviation method 

Convert DMs opinions to Interval Neutrosophic numbers 

Sensitivity analysis of the value β 
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extension of the fuzzy set (FS), the fuzzy set with interval values, the intuitionistic fuzzy set, and so 

on [42]. Smarandache believed that these types of sets not only had the degree of membership and 

the degree of non-membership, but also consider the degree of non-determination and lack of 

compatibility [16]. The new theory of Neutrosophic sets allows to work with the "Knowledge of 

neural thought". In fact, Neutrosophic sets are generalizations of fuzzy logic and allow to deal with 

more complex uncertainty models. In "classical" fuzzy sets, each element is defined by a degree of 

membership, and the available methods are controlled by fuzzy sets [43]. The fuzzy set cannot 

express neutral state, meaning neither support nor opposition. To overcome this defect, Atanassov 

introduced the concept of the Intuitionistic Fuzzy Set (IFS). Compared to The fuzzy set, the 

intuitionistic fuzzy set can simultaneously express three modes of support, opposition, and 

neutrality. Although the FS and IFS have been developed and publicized, they cannot address the 

uncertain and inconsistent issues of real decision-making. To solve this problem, Neutrosophic (NS) 

sets have been suggested [44]. Unlike The intuitionistic fuzzy sets, which depend on the degree of 

uncertainty on membership and non-membership, by the Neutrosophic logic the value of the 

indeterminate membership is independent of the degree of truth and falsehood [43]. Neutrosophic 

logic is flexible and tolerant with inconsistent and inaccurate data. This logic is based on natural 

language and is made up of specialized knowledge. The concept of the Neutrosophic set provides an 

alternative approach in the case of inaccuracies in the decisions made by deterministic sets or 

traditional fuzzy sets, and where the information provided is inadequate for finding it inaccurate 

[45]. Neutrosophic sets are powerful and successful in overcoming situations and in an inadequate 

information environment, uncertainty, ambiguity and inaccuracy [14]. A Neutrosophic set A with an 

A value in X is expressed by 1. 

(1)   {      )     )     ))|   } 

With Neutrosophic set logic, every aspect of the problem is represented by the degree of the truth 

membership (TA(x)), the degree of the indeterminate membership (IA(x)) and the degree of the false 

membership (FA(x)) according to 1.   

For each x,     )      )      )  [   ] and the sum of these memberships is less than or equal to 

three [46]. Thus, Neutrosophic sets provide a means of expressing DM preferences and priorities, 

and fully determine membership performance in situations where DM comments are subject to the 

indeterminate membership or lack of information [14]. 

(2)       )      )      )    

Sometimes the degree of truth, falsehood, and uncertainty of a particular sentence is not precisely 

defined in real terms, but is determined by several possible interval values [47]. Thus, the Interval 

Neutrosophic Set (INS) was introduced by Wang et al (2005). [48]. As a special case of Neutrosophic 

sets, the Interval Neutrosophic Set (INS) can be used to address uncertain and inconsistent 

information in decision making [3]. Wang et al showed Interval Neutrosophic (INS) assemblages 

with distance membership, the degree of non-membership, and degree of hesitant (The 

indeterminate membership) as follows. 

(3)    [     ] [     ] [     ]) 

The Interval Neutrosophic set can be simpler to express incomplete, uncertain, and contradictory 

information [49], and is flexible and practical for dealing with decision problems. Compared to other 
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fuzzy set expansions, INS has the following advantages. (A) Compared to The fuzzy set, INS can 

simultaneously express positive, negative, and hesitant judgments of DM using membership degree, 

non-membership degree, and degree of hesitation. (B) Compared with The Intuitionistic fuzzy sets, 

INS independently express the degree of positive, negative, and uncertain judgments. That DMs 

have more flexibility to express their uncertain and contradictory information [3]. 

3.2. Interval Neutrosophic Fuzzy VIKOR Method 

VIKOR is an effective decision making method that selects the optimal option with group utility 

maximization and individual regret minimization. And it is used as one of the applied MCDM 

techniques to solve a discrete decision problem with disproportionate criteria with different and 

conflicting units of measurement [50]. This method was proposed by Opricovic (1998) to solve the 

problem of multi-criteria decision making in an incompatible and inconsistent criteria environment 

[43]. VIKOR is an efficient tool for finding the compromise solution from a set of conflicting criteria. 

Where compromise means an agreement made with mutual concessions [51]. That can help decision 

makers to make a final decision [52]. The VIKOR method is based on the specific property of being 

close to the ideal solution. One of the features of this method is that the options are evaluated 

according to all defined criteria (performance matrix) and the stability analysis of the intervals 

shows the stability of the weight [53]. The effectiveness of this approach becomes more apparent 

when the decision maker is not able to express his/her preferences and uses agreed solutions to solve 

the problems. An agreed solution is a justified solution that is close to the ideal solution and that 

decision makers accept because of the maximum utility of the group [50].  

Suppose the rating of options    {          } is given as fij with respect to criteria of    

{           }.    {          } is the weight vector of the criteria. The formula for measuring 

distance on Pi options is based on equation (4).  

(4) 

     (∑(  

  
     

  
    

 )

  

   

)

 
 

                 

where   
          and  

          are the ideal and anti-ideal points, respectively [53]. 
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of Interval Neutrosophic Numbers,     .  

(5) [   
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(6)      
   )

    
   )

    
   )

     

(7)                               

The steps of the VIKOR method for multi-criteria group decision-making problems of the Interval 

Neutrosophic set are as follows [13]. 

Step 1. Convert Evaluation Information to the Interval Neutrosophic Number Set 
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Step 2. Calculate the weight of the criteria 

Since the weight of the benchmarks may be completely unknown, the benchmark weight is 

calculated using the Maximizing deviation method. According to this view, if the criterion values of 

all alternatives to a particular attribute are quantitative deviations, quantitative weight can be 

assigned to this criterion. Otherwise, the criterion that causes the deviation to be greater should be 

weightier. In particular, if the criterion values of all the different options are equal to a given 

property, the weight of such a criterion may be zero [49]. The weight of the criteria is thus calculated 

using the equation (8) [48]. 

(8) 
   

∑   ∑ ∑      
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∑ ∑   ∑ ∑      )
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Step 3. Using  ̃  and calculating the interval neutrosophic number weighted averaging (INNWA) 

operator [47] 
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Step 4. Define the solution of positive and negative ideals (R+ and R-) 
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For positive and incremental criteria 
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For negative and decreasing criteria 
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Step 5. Calculate the indicators of maximum group utility (Γi) and minimum individual regret (Zi) 

(17) 
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(18) 
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Step 6. Calculate VIKOR Index (Qi) 

(20) 
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Step 7. Rank the options based on Qi, Γi and Zi in accordance with the classic VIKOR ranking rule 

Step 8. The compromise solution must meet one of the following conditions: 

(A) Acceptable advantage in the sense that a compromise solution must be significantly different 

from its next solution:     )      )     
 

   
 Where    and    are the first and second 

choices in the ordered list and m is the number of options.    

(B) Acceptable consistency in the decision-making process means that the adaptive solution chosen 

must have Group utility maximization and at least individual impact: A1 should be the best rank in 

Γi and Zi. This is the compromise solution throughout the decision-making process. 

If the above conditions for a compromise solution are not met, a set of adaptation strategies is 

provided instead of one.   

Step 9. A set of compromise solutions is obtained if one of the conditions is not satisfied. 

   and    are compromise solutions if only condition 2 is not met. Or   ,    and ... AM are 

compromise solutions if condition 1 is not fulfilled, by the constraint     )      )     decides 

for maximum M [54].  

4. Case study 

A company in the online sales of various products has been selected as the numerical example of this 

research. The company supplies products to various suppliers and sends them to its customers. Due 

to limited resources and limited resources, the company cannot independently complete the entire 

project. Therefore, the company intends to select an optimal partner from the project candidates for 

the transport sector of the company and create a dynamic virtual enterprise alliance to collectively 

complete the entire project. In the issue of partner selection, first by studying the research literature, 

the most important criteria affecting partner selection in different domains were identified in 

accordance with Table (1). Then, 8 experts from the company with expertise in virtual enterprise and 

partner selection and with over 5 years' experience were selected 13 criteria of the most important 

partner selection criteria in the transport sector of the company according to Table (2). 

Table 2. Criteria linguistic assessments for partner selection by experts 
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Criteria Partner 1 Partner 2 

E1 E2 E3 E4 E1 E2 E3 E4 

Cost C1 VH H VH VH H VH VH VH 

Delivery C2 H L H M L M L M 

Trust C3 VH H VH M H H VH M 

Risk C4 L VL M VL M M M VL 

Quality C5 H H H VH H H VH H 

Reputation and position in 

industry 

C6 H VH VH H VH H VH VH 

Customer service C7 H M M VH H VH M VH 

Knowledge and managerial 

experience 

C8 H H M H H L M L 

Technology capability C9 M VL L VL M VL L L 

Information and 

communication technology 

resources 

C10 VH H VH H H VH VH H 

Willingness to share 

information 

C11 M M L VL M VL H L 

Competency & technical 

expertise 

C12 M H M M VH H VH H 

IT infrastructure C13 VH H H H VH M H M 

After defining effective criteria in the Partner selection of the transport sector, 4 experts of the 

company expressed their opinion about the 4 candidates with the competence of linguistic terms 

according to the effective criteria. Table (2) gives some examples of expert opinions. 

4.1. Findings 

After gathering the experts' opinions in the form of linguistic terms, they first converted to Interval 

Neutrosophic numbers using Table 3. 

Table 3. Transformations between numerical ratings and INSs 

INSs Linguistic terms 

{[0.9,1],[0,0.1],[0,0.1] VH 

{[0.75,0.85],[0.05,0.15],[0.15,0.25]} H 

{[0.55,0.65],[0.15,0.25],[0.35,0.45]} M 

{[0.35,0.45],[0.25,0.35],[0.55,0.65]} L 

{[0.15,0.25],[0.35,0.45],[0.75,0.85] VL 

Next, using these observations, the weighting of the criteria was calculated using the maximum 

deviation and correlation technique (8) according to Table (4). The results show that the Willingness 

to share information criterion with a weight of 0.113 is the most important partner selection criterion 

in this company. This illustrates the importance of the quality of information shared. As such, it is 

important for Virtual Enterprises to collaborate effectively with the information sharing 

organization for optimal collaboration. And keeping in touch with other partners, such as finding 
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out where and when to deliver the goods, and keeping the customer informed of the delivery and 

planning process of the company to ship other products will ultimately lead to better overall 

company performance. Competency & technical expertise is ranked second and reflects the 

importance of technical and practical expertise from the point of view of company experts in 

choosing a virtual partner. Reputation and position in the industry are of third importance for the 

company and the background, reputation and position of the company in the industry and among 

the competitors can be an effective choice. The notable point in this company is that the cost criterion 

(lowest-weighted) is the last priority. This indicates the importance of other criteria for cost, and the 

company tends to be more costly in choosing the optimal partner. 

Table 4. Weight of criteria 

C13 C12 C11 C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 Criteria 

0.071 0.098 0.113 0.067 0.056 0.085 0.084 0.096 0.049 0.086 0.051 0.095 0.048 Weight 

Given the group decision-making of choosing a virtual partner, it is necessary to integrate expert 

opinions on each company. For this purpose, using the Interval Neutrosophic Weighted Average 

Operator for each candidate company, the relation of 10 decision matrices of consensus of expert 

opinions is calculated. The Consensus Decision Matrix of Business Partner 1 is in the form of Interval 

Neutrosophic Numbers as shown in Table 5. The same applies to other business partners. 

Table 5. The decision matrix  ̃  

 T+ T- I+ I- F+ F- 

C1 0.874257 1 0 0.110668 0 0.125743 

C2 0.632293 0.743461 0.098399 0.210643 0.256539 0.367707 

C3 0.816858 1 0 0.139158 0 0.183142 

C4 0.321982 0.426361 0.260341 0.364845 0.573639 0.678018 

C5 0.801182 1 0 0.13554 0 0.198818 

C6 0.841886 1 0 0.122474 0 0.158114 

C7 0.733258 1 0 0.174982 0 0.266742 

C8 0.710427 0.81461 0.065804 0.170433 0.18539 0.289573 

C9 0.321982 0.426361 0.260341 0.364845 0.573639 0.678018 

C10 0.841886 1 0 0.122474 0 0.158114 

C11 0.421652 0.525878 0.210643 0.314985 0.474122 0.578348 

C12 0.611497 0.716813 0.113975 0.220028 0.283187 0.388503 

C13 0.801182 1 0 0.13554 0 0.198818 

 

Finally, the VIKOR fuzzy Interval Neutrosophic method and the equations of 10 to 23 rankings of 

the four transport companies were performed. After calculating the performance and distance from 

the ideal level of options and obtaining the indicators of maximum group utility (Gi) and minimum 

individual regret (Zi) and the value of VIKOR index (Qi), the final ranking of options was done 

according to Table 5. Accordingly, the least Q value is chosen as the best option.  

Table 6. Sorting results  
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The ranking order Partner 4 Partner 3 Partner 2 Partner 1 Partner  

P2>P1>P3> P4 0.666381 0.471911 0.355709 0.383959 Гi 

P2>P4> P1>P3 0.098186 0.113432 0.085379 0.100536 Zi 

P2>P1>P3> P4 0.728261 0.687017 0 0.31562 Qi 

 

Thus Business Partner 2 with Q2 = 0 is selected as the best virtual partner. This result is now 

examined by two conditions.              
 

   
        Hence the first condition is not 

applicable. Since option A2 has the best rank in Gi and Zi (β = 0.5), so the second condition holds. 

Since only the second condition is in place, the options are rated P2 ~ P1> P3> P4, and both A2 and A1 

are eventually selected and get top rankings. 

In the relationships of the Neutrosophic fuzzy VIKOR method, β is defined as the weight of most 

criteria strategy, or most group utility, and is usually considered to be 0.5. However, the β value may 

affect the value of the VIKOR index. For this purpose, calculations for different values of β are 

performed according to Table 7, and the applicability and stability of the proposed method are 

investigated. 

Table 6. Sensitivity analysis of the value β 

Rank order             𝛃 

P2> P4>P1>P3 0.456522 1 0 0.540309 0 

P2>P1 >P4>P3 0.565217 0.874807 0 0.450433 0.2 

P2>P1> P4>P3 0.673913 0.749613 0 0.360558 0.4 

P2>P1>P3> P4 0.728261 0.687017 0 0.31562 0.5 

P2>P1>P3> P4 0.782609 0.62442 0 0.270682 0.6 

P2>P1>P3> P4 0.891304 0.499227 0 0.180807 0.8 

P2>P1>P3> P4 1 0.374034 0 0.090931 1 

Weight sensitivity analysis of the majority (β) strategy indicates that the firm manager can select the 

appropriate group (β) value to reflect the decision maker priority. If the manager prefers to eliminate 

Group utility maximization, it supports β = 1 and uses the G marker. Conversely, if the decision 

maker pays more attention to regret thinking, then β = 0 and the value of Z is accepted. Figure (2) 

shows the effect of changing β on Qi. In different values of β, trading partner 2 and 1 are ranked first 

and second, respectively, with values below 0.5 third partner and values above 0.5 partner 4 last. 
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Fig 2. Sensitivity analysis of the value β for each alternative with INSs 

Figure 3 shows the spider diagram of the sensitivity analysis and the effect of the β parameter 

change on the VIKOR index. Partner rankings in this chart are centered outward, and Partner 2 in 

the chart is ranked first in all β values, and Partner 2 is not second only to value β = 0. This chart 

shows the gap between the partners. At point β = 0, business partner 4 ranks second. While in other 

values of β the first partner is at this rank. The spider diagram shows that the distance between these 

two partners is very small at this point, and the Q value of Partner 1 is only slightly different from 

Partner 4, and the stability of this ratio can be confirmed. But for the third and fourth partner the 

subject is slightly different and when the β value is greater than 0.5 the rating changes and the 

distance between the two graphs is noticeable indicating the influence of individual views of the 

group. Accordingly, when the group views are more important, the third partner is ranked third and 

in the smaller values of β the individual opinions are more important. The fourth partner ranks 

third. The impact of the importance of group versus individual views on this ranking is clearly 

illustrated by the decrease and increase in the distance between the third and fourth partner graphs 

in Figure 3. 

 

Fig 3. Spider chart of the value β for each alternative with INSs 

Sensitivity analysis showed that the value of the parameter β did not significantly influence the 

results of the selection of the best partner. Therefore, the ranking results obtained using the 

proposed method for INS are reliable and effective. 
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5. Conclusions  

In today's business environment, competition is focused on innovation, speed, and flexibility. A new 

business model is needed to help companies gain competitive benefit in the volatile market [55]. 

Increasing complexity has allowed any business to reconfigure itself to meet its needs, and 

opportunities and remain in a highly competitive environment, because they do not have all the 

skills and resources needed to meet new market demand. Virtual enterprise (VE) has been proposed 

as a new organizational approach to meet the requirements of low cost, high quality, fast 

responsiveness, and greater customer satisfaction to be adapted with this rapidly changing 

environment [56]. The criteria for choosing a partner in Virtual Enterprises vary depending on the 

type of activity. In this paper, firstly, by studying the research literature and using the experts' 

opinions, 13 criteria affecting the selection of a partner in the transport sector of virtual enterprise 

were identified. How to choose the right partners for success in Virtual Enterprises (VE) is very 

important and has received a great deal of attention from researchers and experts. Given the 

different types of uncertainty in the real environment, decision makers are usually not sure when 

choosing a partner because the information on the candidates is incomplete and unclear. In addition, 

some of the features of decision making are subjective and qualitative. In many cases decision 

makers are unable to express their decisions about candidates in precise quantities. For this purpose, 

in the second step, the partner selection problem with VIKOR method is used to form a VE under 

Interval Neutrosophic environment. The VIKOR method considers the boundary rationality of 

decision makers, and makes more rational decisions. Interval Neutrosophic Numbers are used to 

address problems with uncertain, incomplete and inconsistent information. This method helps to 

reduce the mentality of decision makers. In this paper, the method of weighting the maximum 

deviation in the Neutrosophic environment is used in the absence of benchmark information, which 

can be very useful in deciding issues with inconsistent and uncertain criteria. The Partner Selection 

Process In this paper, we have designed a new combination and comprehensive classification of 

partner evaluation criteria in the context of the virtual enterprise. The proposed approach can 

effectively reduce the subjectivity and uncertainty of the multi-criteria decision-making problem and 

rely on the underlying data to make the evaluation result more objective and reliable. Also, by 

improving the existing method of weight calculation, the Maximizing deviation method can 

effectively guarantee the consistency of the judgments and simplify the weighting function in cases 

where the information is incomplete or there is no metric weight information. Expanding the VIKOR 

method to Interval Neutrosophic numbers can effectively counteract uncertainty assessment 

information. Without increasing mental states, it retains more decision information and makes 

Partner selection in the virtual enterprise more scientific. The results of the weight sensitivity 

analysis of the group utility strategy (β) show that the business firm is selected as the best partner for 

all β values according to the identified effective factors. Ranked second in trading partner 1 for all 

values of β, with only zero for trading partner 4. The β parameter is determined by the degree of 

agreement of the decision maker, and the larger the β, the greater the group's views (too much 

agreement) and the smaller the β, the greater the individual's opinions (little agreement). In this 

paper, the rankings are slightly different for the smaller β values as illustrated in Fig. 2, with the 
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trading partner 4 being ranked second and the trading partner 3 last. But one still remains the top 

partner. 

In the actual decision making, there is much qualitative information that can be expressed by 

uncertain linguistic variables. Interval Neutrosophic numbers can easily express uncertain and 

contradictory information in the real world, and by combining multi-criteria decision-making 

techniques to make the paradoxical features more scientific and reasonable. In this paper, the VIKOR 

method is developed to deal with uncertain linguistic information in the Interval Neutrosophic 

environment. In this method, the criterion values are presented as Interval Neutrosophic numbers. 

Neutrosophic set with interval value is used to express incomplete knowledge of the expert group 

and to prevent loss of information. However, the approach proposed for selecting the best partner in 

Virtual Enterprises has advantages in terms of selection criteria. But the main limitation is the lack of 

quantitative data and the limited number of respondents in the study. With increasing awareness of 

Virtual Enterprises, effective benchmarks should be developed according to the field of business 

activity, and other weighting techniques such as AHP, ANP and artificial intelligence techniques can 

be used in combination with VIKOR. Other ranking methods such as AHP and TOPSIS can be used 

in combination with the Neutrosophic environment. Optimization techniques can also be applied to 

partner selection in Virtual Enterprises. The proposed model can be applied to other 

decision-making issues such as supplier selection, risk assessment. Also, comparison of model 

results with other uncertainty modeling techniques can be suggested. Finally, the robustness of the 

proposed model can be tested through scenario analysis and uncertainty analysis. 
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Abstract: The aim of this paper is to initiat formal study of hypersoft sets. We first, present basic 

operations like union, intersection and difference of hypersoft sets; basic ingrediants for topological 

structures on the collection of hypersoft sets. Moreover we introduce hypersoft points in different 

envorinments like fuzzy hypersoft set, intuitionistic fuzzy hypersoft set, neutrosophic hypersoft, 

plithogenic hypersoft set, and give some basic properties of hypersoft points in these 

envorinments. We expect that this will constitue an appropriate framework of hypersoft functions 

and the study of hypersoft function spaces. Examples are provided to explain the newly defined 

concepts. 

Keywords: soft set; hypersoft set; set operations on hypersoft sets; hypersoft point; fuzzy hypersoft 

set; intuitionistic fuzzy hypersoft set; neutrosophic hypersoft; plithogenic hypersoft set. 

1. Introduction 

Molodtsov [16] defined soft set as a mathematical tool to deal with uncertainties associated 

with real world problems. Soft set theory has application in decision making, demand analysis, 

forecasting, information sciences and other disciplines (see for example, [ 13, 14, 15, 17, 18, 19, 20, 21, 

22, 23]). Plithogenic and neutrosophic hypersoft sets theory is being applied successfully in decision 

making problems (see, [2, 3, 4, 5, 6, 7, 8, 9,10,11,12]). 

By definition, a soft set can be identified by a pair (𝐹, 𝐴), where 𝐹 stands for a multivalued 

function defined on the set of parameters 𝐴. 

Smarandache [1] extended the notion of a soft set to the hypersoft set by replacing the 

function 𝐹 with a multi-argument function defined on the Cartesian product of 𝑛 different set of 

parameters. This concept is more flexible than soft set and more suitable in the context of decision 

making problems. 

We expect the notion of hypersoft set will attract the attention of researchers working on soft 

set theory and its diverse applications. The purpose of this paper is to initiate a formal investigation 

in this new area of research. 

As a first step, we present the basic operations like union, intersection and difference of 

hypersoft sets. Moreover we introduce hypersoft points and some basic properties of these points 
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which may provide the foundation for the hypersoft functions and hence the hypersoft fixed point 

theory. 

2. Operations on hypersoft sets   

In this section, we define basic operations on hypersoft sets. Smarandache defined the 

hypersoft set in the following manner: 

 

Definition 1 [1] Let 𝑈 be a universe of discourse, 𝑃(𝑈) the power set 𝑈 and 𝐸1, 𝐸2, … , 𝐸𝑛 the pairwise 

disjoint sets of parameters. Let 𝐴𝑖 be the nonempty subset of 𝐸𝑖 for each 𝑖 = 1,2, . . . , 𝑛. A hypersoft set can be 

identified by the pair (𝐹, 𝐴1 × 𝐴2 × ⋯× 𝐴𝑛), where: 

 𝐹: 𝐴1 × 𝐴2 × ⋯× 𝐴𝑛 → 𝑃(𝑈). 

 For sake of simplicity, we write the symbols 𝐄 for 𝐸1 × 𝐸2 × ⋯× 𝐸𝑛, 𝐀 for 𝐴1 × 𝐴2 × ⋯× 𝐴𝑛 and 

𝛂 for an element of the set 𝐀. We also suppose that none of the set 𝐴𝑖 is empty. 

Definition 2 [1] A hypersoft set; 

on a crisp universe of discourse 𝑈𝐶  is called Crisp Hypersoft set (or simply "hypersoft set"); 

on a fuzzy universe of discourse 𝑈𝐹 is called Fuzzy Hypersoft set. 

on a Intuitionistic Fuzzy universe of discourse 𝑈𝐼𝐹 is called Intuitionistic Fuzzy Hypersoft set; 

on a Neutrosophic universe of discourse 𝑈𝑁 is called Neutrosophic Hypersoft Set; 

on a Plithogenic universe of discourse 𝑈𝑃 is called Plithogenic Hypersoft Set.  

 

The nature of 𝐹(𝛂) is determined by the nature of universe of discourse. Therefore 𝑃(𝑈) 

depends upon the nature of universe. We denote ℋ(𝑈∗, 𝐄) by the family of all *-hypersoft sets over 

(𝑈∗, 𝐄), where ∗ can take any value in the set {𝐶, 𝐹, 𝐼𝐹, 𝑁, 𝑃}, where symbols 𝐶, 𝐹, 𝐼𝐹, 𝑁, 𝑃 denote 

Crisp, Fuzzy, Intuitionistic Fuzzy, Neutrosophic, and Plithogenic sets, respectively. 

 

The following are the basic operations on *-hypersoft set. 

Definition 3 Let 𝑈∗ be a universe of discourse and 𝑨 a subset of 𝑬. Then (𝐹, 𝑨) is called 

1.  a null *-hypersoft set if for each parameter 𝜶 ∈ 𝑨, 𝐹(𝜶) is an 0∗. We will denote it by 𝛷𝑨. 

2.  an absolute *-hypersoft set if for each parameter 𝜶 ∈ 𝑨, 𝐹(𝜶) = 𝑈∗. We will denote it by 𝑈𝑨.  

  

Remark 1 We consider 0𝐶 = ⌀ for empty set, 0𝐹 = {
𝑥

0
, 𝑥 ∈ 𝑈𝐹} for null fuzzy set, 0𝐼𝐹 = {

𝑥

<0,1>
, 𝑥 ∈ 𝑈𝐼𝐹} 

for null intuitionistic fuzzy set, 0𝑁 = {
𝑥

<0,1,1>
, 𝑥 ∈ 𝑈𝑁}  for null neutrosophic set. However, in case of 

plithogenic set, we have the following notations: 

     • Null plithgenic crisp set  

 0𝑃𝐶 = {𝑥(0,0, . . . ,0), forall𝑥 ∈ 𝑈𝑃}. 

    • Universal plithgenic crisp set  

 1𝑃𝐶 = {𝑥(1,1, . . . ,1), forall𝑥 ∈ 𝑈𝑃}. 

Note that null plithgenic fuzzy set will be same as null plithgenic crisp set and universal plithgenic fuzzy set 

will be the same as universal plithgenic crisp set. 
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    • Null plithgenic intuitionistic fuzzy set  

 0𝑃𝐼𝐹 = {𝑥((0,1), (0,1), . . . , (0,1)), forall𝑥 ∈ 𝑈𝑃}. 

    • Universal plithgenic intuitionistic fuzzy set  

 1𝑃𝐼𝐹 = {𝑥((1,0), (1,0), . . . , (1,0)), forall𝑥 ∈ 𝑈𝑃}. 

    • Null plithgenic neutrosophic set  

 0𝑃𝑁 = {𝑥((0,1,1), (0,1,1), . . . , (0,1,1)), forall𝑥 ∈ 𝑈𝑃}. 

 

 

    • Universal plithgenic neutrosophic set  

 1𝑃𝑁 = {𝑥((1,0,0), (1,0,0), . . . , (1,0,0)), forall𝑥 ∈ 𝑈}. 

Definition 4 Let (𝐹, 𝑨) and (𝐺, 𝑩) be two *-hypersoft sets over 𝑈∗. Then union of (𝐹, 𝑨) and (𝐺, 𝑩) is 

denoted by (𝐻, 𝑪) = (𝐹, 𝑨) ∪̃ (𝐺, 𝑩)  with 𝑪 = 𝐶1 × 𝐶2 × ⋯× 𝐶𝑛,  where 𝐶𝑖 = 𝐴𝑖 ∪ 𝐵𝑖  for 𝑖 = 1,2, . . . , 𝑛 , 

and 𝐻 is defined by  

 𝐻(𝛂) = (

𝐹(𝛂), if𝛂 ∈ 𝐀 − 𝐁
𝐺(𝛂), if𝛂 ∈ 𝐁 − 𝐀

𝐹(𝛂) ∪∗ 𝐺(𝛂), if𝛂 ∈ 𝐀 ∩ 𝐁,
0∗, else,

 

where 𝛂 = (𝑐1, 𝑐2, . . . , 𝑐𝑛) ∈ 𝐶.  

 

Remark 2 Note that, in the case of union of two hypersoft sets the set of parameters is a Cartesian product of 

sets of parameters whereas in the case of union of two soft sets the set of parameter is just the union of sets of 

parameters.  

Definition 5 Let (𝐹, 𝑨) and (𝐺, 𝑩) be two *-hypersoft sets over 𝑈∗. Then intersection of (𝐹, 𝑨) and (𝐺, 𝑩) 

is denoted by (𝐻, 𝑪) = (𝐹, 𝑨) ∩̃ (𝐺, 𝑩) , where 𝑪 = 𝐶1 × 𝐶2 × ⋯× 𝐶𝑛  is such that 𝐶𝑖 = 𝐴𝑖 ∩ 𝐵𝑖  for 𝑖 =

1,2, . . . , 𝑛 and 𝐻 is defined as  

 𝐻(𝛂) = 𝐹(𝛂) ∩∗ 𝐺(𝛂), 

where 𝜶 = (𝑐1, 𝑐2, . . . , 𝑐𝑛) ∈ 𝑪. If 𝐶𝑖 is an empty set for some 𝑖, then (𝐹, 𝑨) ∩̃ (𝐺, 𝑩) is defined to be a null 

*-hypersoft set.  

Definition 6 Let (𝐹, 𝑨) and (𝐺, 𝑩) be two *-hypersoft sets over 𝑈∗. Then (𝐹, 𝑨) is called a *-hypersoft 

subset of (𝐺, 𝑩) if 𝑨 ⊆ 𝑩, and 𝐹(𝜶) ⊆∗ 𝐺(𝜶) for all 𝜶 ∈ 𝑨. We denote this by (𝐹, 𝑨) ⊆̃ (𝐺, 𝑩). Thus (𝐹, 𝑨) 

and (𝐺, 𝑩) are said to equal if (𝐹, 𝑨) ⊆̃ (𝐺, 𝑩) and (𝐹, 𝑨) ⊇̃ (𝐺, 𝑩).  

Definition 7 Let (𝐹, 𝑨) and (𝐺, 𝑩) be two *-hypersoft sets over 𝑈∗. Then *-hypersoft difference of (𝐹, 𝑨) 

and (𝐺, 𝑩), denoted by (𝐻, 𝑪) = (𝐹, 𝑨)\̃(𝐺, 𝑩), where 𝑪 = 𝐶1 × 𝐶2 × ⋯× 𝐶𝑛 is such that 𝐶𝑖 = 𝐴𝑖 ∩ 𝐵𝑖  for 

𝑖 = 1,2, . . . , 𝑛, and 𝐻 is defined by  

 𝐻(𝛂) = 𝐹(𝛂)\∗𝐺(𝛂), 

where 𝛂 = (𝑐1, 𝑐2, . . . , 𝑐𝑛) ∈ 𝐂. If 𝐶𝑖 is an empty set for some 𝑖 then (𝐹, 𝐀)\̃(𝐺, 𝐁) is defined to be 

(𝐹, 𝐀).  

Definition 8 The complement of a *-hypersoft set (𝐹, 𝑨) is denoted as (𝐹, 𝑨)𝑐 and is defined by (𝐹, 𝑨)𝑐 =

(𝐹𝑐, 𝑨) where 𝐹𝑐(𝜶) is the *-complemet of 𝐹(𝜶) for each 𝜶 ∈ 𝑨.  

 

Example 1  Let U = {x1, x2, x3, x4}. Define the attributes sets by: 
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 𝐸1 = {𝑎11, 𝑎12}, 𝐸2 = {𝑎21, 𝑎22}, 𝐸3 = {𝑎31, 𝑎32}. 

Suppose that  

 𝐴1 = {𝑎11, 𝑎12}, 𝐴2 = {𝑎21, 𝑎22}, 𝐴3 = {𝑎31}, and 

 𝐵1 = {𝑎11}, 𝐵2 = {𝑎21, 𝑎22}, 𝐵3 = {𝑎31, 𝑎32} 

 that is,. 𝐴𝑖, 𝐵𝑖 ⊆ 𝐸𝑖  for each 𝑖 = 1,2,3. 

Let the crisp hypersoft sets (𝐹, 𝐀) and (𝐺, 𝐁) be defined by 

 (𝐹, 𝐀) = {((𝑎11, 𝑎21, 𝑎31), {𝑥1, 𝑥2}), ((𝑎11, 𝑎22, 𝑎31), {𝑥2}), 

 ((𝑎12, 𝑎21, 𝑎31), {𝑥3, 𝑥4}), ((𝑎12, 𝑎22, 𝑎31), {𝑥1, 𝑥4})}. 

and 

 (𝐺, 𝐁) = {((𝑎11, 𝑎21, 𝑎31), {𝑥2, 𝑥3}), ((𝑎11, 𝑎22, 𝑎31), {𝑥2}), 

 ((𝑎11, 𝑎21, 𝑎32), {𝑥1, 𝑥4}), ((𝑎11, 𝑎22, 𝑎32), {𝑥3, 𝑥4})}. 

We have excluded those 𝛂 ∈ 𝐀 for which 𝐹(𝛂) is an empty set (similarly for those 𝛃 ∈ 𝐁 for which 

𝐺(𝛃) is an empty set). 

Then the union and intersections of (𝐹, 𝐀) and (𝐺, 𝐁) are given by: 

 (𝐹, 𝐀) ∪̃ (𝐺, 𝐁) = {((𝑎11, 𝑎21, 𝑎31), {𝑥1, 𝑥2, 𝑥3}), ((𝑎11, 𝑎22, 𝑎31), {𝑥2}), 

 ((𝑎12, 𝑎21, 𝑎31), {𝑥3, 𝑥4}), ((𝑎12, 𝑎22, 𝑎31), {𝑥1, 𝑥4}), 

 ((𝑎11, 𝑎21, 𝑎32), {𝑥1, 𝑥4}), ((𝑎11, 𝑎22, 𝑎32), {𝑥3, 𝑥4}), 

 ((𝑎12, 𝑎21, 𝑎32), 0𝐶), ((𝑎12, 𝑎22, 𝑎32), 0𝐶)}; 

and  

 (𝐹, 𝐀) ∩̃ (𝐺, 𝐁) = {((𝑎11, 𝑎21, 𝑎31), {𝑥2}), ((𝑎11, 𝑎22, 𝑎31), {𝑥2})}. 

 

The differences (𝐹, 𝐀)\̃(𝐺, 𝐁) and (𝐺, 𝐁)\̃(𝐹, 𝐀) are the following 

 (𝐹, 𝐀)\̃(𝐺, 𝐁) = {((𝑎11, 𝑎21, 𝑎31), {𝑥1}), ((𝑎11, 𝑎22, 𝑎31), 0𝐶)}; 

 (𝐺, 𝐁)\̃(𝐹, 𝐀) = {((𝑎11, 𝑎21, 𝑎31), {𝑥3}), ((𝑎11, 𝑎22, 𝑎31), 0𝐶)}. 

  

Example 2  Let U = {x1, x2, x3, x4}. Define the attributes sets by: 

 

 𝐸1 = {𝑎11, 𝑎12}, 𝐸2 = {𝑎21, 𝑎22}, 𝐸3 = {𝑎31, 𝑎32}. 

Suppose that  

 𝐴1 = {𝑎11, 𝑎12}, 𝐴2 = {𝑎21, 𝑎22}, 𝐴3 = {𝑎31}, and 

 𝐵1 = {𝑎11}, 𝐵2 = {𝑎21, 𝑎22}, 𝐵3 = {𝑎31, 𝑎32} 

are subsets of 𝐸𝑖 for each 𝑖 = 1,2,3, that is,. 𝐴𝑖, 𝐵𝑖 ⊆ 𝐸𝑖  for each 𝑖. 

Let the fuzzy hypersoft sets (𝐹, 𝐀) and (𝐺, 𝐁) be defined by 

 (𝐹, 𝐀) = {((𝑎11, 𝑎21, 𝑎31), {
𝑥1

0.5
,
𝑥2

0.7
}), ((𝑎11, 𝑎22, 𝑎31), {

𝑥2

0.3
}), 

 ((𝑎12, 𝑎21, 𝑎31), {
𝑥3

0.8
,
𝑥4

0.9
}), ((𝑎12, 𝑎22, 𝑎31), {

𝑥1

0.5
,
𝑥4

0.4
})}. 

and 

 (𝐺, 𝐁) = {((𝑎11, 𝑎21, 𝑎31), {
𝑥2

0.2
,
𝑥3

0.9
}), ((𝑎11, 𝑎22, 𝑎31), {

𝑥2

0.6
}), 

 ((𝑎11, 𝑎21, 𝑎32), {
𝑥1

0.4
,
𝑥4

0.7
}), ((𝑎11, 𝑎22, 𝑎32), {

𝑥3

0.2
,
𝑥4

0.8
})}. 

We have excluded those 𝛂 ∈ 𝐀 for which 𝐹(𝛂) is a null fuzzy set (similarly for those 𝛃 ∈ 𝐁 for 

which 𝐺(𝛃) is a null fuzzy set). 

Then the union and intersections of (𝐹, 𝐀) and (𝐺, 𝐁) are given by: 
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 (𝐹, 𝐀) ∪̃ (𝐺, 𝐁) = {((𝑎11, 𝑎21, 𝑎31), {
𝑥1

0.5
,
𝑥2

0.7
,
𝑥3

0.9
}), ((𝑎11, 𝑎22, 𝑎31), {

𝑥2

0.6
}), 

 ((𝑎12, 𝑎21, 𝑎31), {
𝑥3

0.8
,
𝑥4

0.9
}), ((𝑎12, 𝑎22, 𝑎31), {

𝑥1

0.5
,
𝑥4

0.4
}), 

 ((𝑎11, 𝑎21, 𝑎32), {
𝑥1

0.4
,
𝑥4

0.7
}), ((𝑎11, 𝑎22, 𝑎32), {

𝑥3

0.2
,
𝑥4

0.8
}), 

 ((𝑎12, 𝑎21, 𝑎32), 0𝐹), ((𝑎12, 𝑎22, 𝑎32), 0𝐹)}; 

and  

 (𝐹, 𝐀) ∩̃ (𝐺, 𝐁) = {((𝑎11, 𝑎21, 𝑎31), {
𝑥2

0.2
}), ((𝑎11, 𝑎22, 𝑎31), {

𝑥2

0.3
})}. 

 

The differences (𝐹, 𝐀)\̃(𝐺, 𝐁) and (𝐺, 𝐁)\̃(𝐹, 𝐀) are the following 

 (𝐹, 𝐀)\̃(𝐺, 𝐁) = {((𝑎11, 𝑎21, 𝑎31), {
𝑥1

0.5
,
𝑥2

0.5
}), ((𝑎11, 𝑎22, 𝑎31), 0𝐹)}; 

 (𝐺, 𝐁)\̃(𝐹, 𝐀) = {((𝑎11, 𝑎21, 𝑎31), {
𝑥3

0.9
}), ((𝑎11, 𝑎22, 𝑎31), {

𝑥2

0.3
})}. 

  

Example 3  Let U = {x1, x2, x3, x4}. Define the attributes sets by: 

 

 𝐸1 = {𝑎11, 𝑎12}, 𝐸2 = {𝑎21, 𝑎22}, 𝐸3 = {𝑎31, 𝑎32}. 

Suppose that  

 𝐴1 = {𝑎11, 𝑎12}, 𝐴2 = {𝑎21, 𝑎22}, 𝐴3 = {𝑎31}, and 

 𝐵1 = {𝑎11}, 𝐵2 = {𝑎21, 𝑎22}, 𝐵3 = {𝑎31, 𝑎32} 

 that is,. 𝐴𝑖, 𝐵𝑖 ⊆ 𝐸𝑖  for each 𝑖 = 1,2,3. 

Let the intuitionistic fuzzy hypersoft sets (𝐹, 𝐀) and (𝐺, 𝐁) be defined by 

 (𝐹, 𝐀) = {((𝑎11, 𝑎21, 𝑎31), {
𝑥1

<0.5,0.3>
,

𝑥2

<0.7,0.2>
}), ((𝑎11, 𝑎22, 𝑎31), {

𝑥2

<0.3,0.5>
}), 

 ((𝑎12, 𝑎21, 𝑎31), {
𝑥3

<0.8,0.1>
,

𝑥4

<0.1,0.5>
}), ((𝑎12, 𝑎22, 𝑎31), {

𝑥1

<0.5,0.3>
,

𝑥4

<0.4,0.2>
})}. 

and 

 (𝐺, 𝐁) = {((𝑎11, 𝑎21, 𝑎31), {
𝑥2

<0.2,0.6>
,

𝑥3

<0.8,0.1>
}), ((𝑎11, 𝑎22, 𝑎31), {

𝑥2

<0.6,0.3>
}), 

 ((𝑎11, 𝑎21, 𝑎32), {
𝑥1

<0.4,0.5>
,

𝑥4

<0.7,0.2>
}), ((𝑎11, 𝑎22, 𝑎32), {

𝑥3

<0.4,0.2>
,

𝑥4

<0.1,0.8>
})}. 

We have excluded all those 𝛂 ∈ 𝐀 for which 𝐹(𝛂) is a null intuitionistic fuzzy set (similarly for 

those 𝛃 ∈ 𝐁 for which 𝐺(𝛃) is a null intuitionistic fuzzy set). 

The union and intersections of (𝐹, 𝐀) and (𝐺, 𝐁) are given by: 

 (𝐹, 𝐀) ∪̃ (𝐺, 𝐁) 

 = {((𝑎11, 𝑎21, 𝑎31), {
𝑥1

<0.5,0.3>
,

𝑥2

<0.7,0.2>
,

𝑥3

<0.8,0.1>
}), ((𝑎11, 𝑎22, 𝑎31), {

𝑥2

<0.6,0.3>
}), 

 ((𝑎12, 𝑎21, 𝑎31), {
𝑥3

<0.8,0.1>
,

𝑥4

<0.1,0.5>
}), ((𝑎12, 𝑎22, 𝑎31), {

𝑥1

<0.5,0.3>
,

𝑥4

<0.4,0.2>
}), 

 ((𝑎11, 𝑎21, 𝑎32), {
𝑥1

<0.4,0.5>
,

𝑥4

<0.7,0.2>
}), ((𝑎11, 𝑎22, 𝑎32), {

𝑥3

<0.4,0.2>
,

𝑥4

<0.1,0.8>
}), 

 ((𝑎12, 𝑎21, 𝑎32), 0𝐼𝐹), ((𝑎12, 𝑎22, 𝑎32), 0𝐼𝐹)}; 

and  

 (𝐹, 𝐀) ∩̃ (𝐺, 𝐁) = {((𝑎11, 𝑎21, 𝑎31), {
𝑥2

<0.2,0.6>
}), ((𝑎11, 𝑎22, 𝑎31), {

𝑥2

<0.3,0.5>
})}. 
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The differences (𝐹, 𝐀)\̃(𝐺, 𝐁) and (𝐺, 𝐁)\̃(𝐹, 𝐀) are the following  

 (𝐹, 𝐀)\̃(𝐺, 𝐁) = {((𝑎11, 𝑎21, 𝑎31), {
𝑥1

<0.5,0.3>
,

𝑥2

<0.6,0.2>
}), ((𝑎11, 𝑎22, 𝑎31), {

𝑥2

<0.3,0.6>
})}; 

 (𝐺, 𝐁)\̃(𝐹, 𝐀) = {((𝑎11, 𝑎21, 𝑎31), {
𝑥2

<0.2,0.7>
,

𝑥3

<0.8,0.1>
}), ((𝑎11, 𝑎22, 𝑎31), {

𝑥2

<0.5,0.3>
})}. 

  

Example 4  Let U = {x1, x2, x3, x4}. Define the attributes sets by: 

 

 𝐸1 = {𝑎11, 𝑎12}, 𝐸2 = {𝑎21, 𝑎22}, 𝐸3 = {𝑎31, 𝑎32}. 

Suppose that  

 𝐴1 = {𝑎11, 𝑎12}, 𝐴2 = {𝑎21, 𝑎22}, 𝐴3 = {𝑎31}, and 

 𝐵1 = {𝑎11}, 𝐵2 = {𝑎21, 𝑎22}, 𝐵3 = {𝑎31, 𝑎32} 

that is,. 𝐴𝑖, 𝐵𝑖 ⊆ 𝐸𝑖  for each 𝑖 = 1,2,3. 

Let the neutrosophic hypersoft sets (𝐹, 𝐀) and (𝐺, 𝐁) be defined by 

 (𝐹, 𝐀) = {((𝑎11, 𝑎21, 𝑎31), {
𝑥1

<0.5,0.2,0.3>
,

𝑥2

<0.7,0.3,0.2>
}), ((𝑎11, 𝑎22, 𝑎31), {

𝑥2

<0.3,0.2,0.5>
}), 

 ((𝑎12, 𝑎21, 𝑎31), {
𝑥3

<0.8,0.4,0.1>
,

𝑥4

<0.1,0.5,0.5>
}), ((𝑎12, 𝑎22, 𝑎31), {

𝑥1

<0.5,0.2,0.3>
,

𝑥4

<0.4,0.3,0.2>
})}. 

and 

 (𝐺, 𝐁) = {((𝑎11, 𝑎21, 𝑎31), {
𝑥2

<0.2,0.5,0.6>
,

𝑥3

<0.8,0.6,0.1>
}), ((𝑎11, 𝑎22, 𝑎31), {

𝑥2

<0.6,0.2,0.3>
}), 

 ((𝑎11, 𝑎21, 𝑎32), {
𝑥1

<0.4,0.3,0.5>
,

𝑥4

<0.7,0.3,0.2>
}), ((𝑎11, 𝑎22, 𝑎32), {

𝑥3

<0.4,0.4,0.2>
,

𝑥4

<0.1,0.3,0.8>
})}. 

We have excluded those 𝛂 ∈ 𝐀 for which 𝐹(𝛂) is a null intuitionistic fuzzy set (similarly for those 

𝛃 ∈ 𝐁 for which 𝐺(𝛃) is a null intuitionistic fuzzy set). 

The union and intersections of (𝐹, 𝐀) and (𝐺, 𝐁) are given by: 

 (𝐹, 𝐀) ∪̃ (𝐺, 𝐁) 

 = {((𝑎11, 𝑎21, 𝑎31), {
𝑥1

<0.5,0.2,0.3>
,

𝑥2

<0.7,0.3,0.2>
,

𝑥3

<0.8,0.6,0.1>
}), ((𝑎11, 𝑎22, 𝑎31), {

𝑥2

<0.6,0.2,0.3>
}), 

 ((𝑎12, 𝑎21, 𝑎31), {
𝑥3

<0.8,0.4,0.1>
,

𝑥4

<0.1,0.5,0.5>
}), ((𝑎12, 𝑎22, 𝑎31), {

𝑥1

<0.5,0.2,0.3>
,

𝑥4

<0.4,0.3,0.2>
}), 

 ((𝑎11, 𝑎21, 𝑎32), {
𝑥1

<0.4,0.3,0.5>
,

𝑥4

<0.7,0.3,0.2>
}), ((𝑎11, 𝑎22, 𝑎32), {

𝑥3

<0.4,0.4,0.2>
,

𝑥4

<0.1,0.3,0.8>
}), 

 ((𝑎12, 𝑎21, 𝑎32), 0𝑁), ((𝑎12, 𝑎22, 𝑎32), 0𝑁)}; 

and  

 (𝐹, 𝐀) ∩̃ (𝐺, 𝐁) 

 = {((𝑎11, 𝑎21, 𝑎31), {
𝑥2

<0.2,0.5,0.6>
}), ((𝑎11, 𝑎22, 𝑎31), {

𝑥2

<0.3,0.2,0.5>
})}. 

The differences (𝐹, 𝐀)\̃(𝐺, 𝐁) and (𝐺, 𝐁)\̃(𝐹, 𝐀) are the following 

 (𝐹, 𝐀)\̃(𝐺, 𝐁) 
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 = {((𝑎11, 𝑎21, 𝑎31), {
𝑥1

<0.5,0.2,0.3>
,

𝑥2

<0.6,0.15,0.2>
}), ((𝑎11, 𝑎22, 𝑎31), {

𝑥2

<0.3,0.4,0.6>
})}; 

 (𝐺, 𝐁)\̃(𝐹, 𝐀) 

 = {((𝑎11, 𝑎21, 𝑎31), {
𝑥2

<0.2,0.15,0.7>
,

𝑥3

<0.8,0.6,0.1>
}), ((𝑎11, 𝑎22, 𝑎31), {

𝑥2

<0.5,0.4,0.3>
})}. 

  

Remark 3 There are four types of plithogenic hypersoft sets namely: plithogenic crisp hypersoft set, 

plithogenic fuzzy hypersoft set, plithogenic intuitionistic fuzzy hypersoft set, plithogenic neutrosophic 

hypersoft set. Here we discuss only plithogenic crisp hypersoft point whereas examples for other types of sets 

can be constructed in the similar way.  

 

Example 5  Let U = {x1, x2, x3, x4}. Define the attributes sets by: 

 

 𝐸1 = {𝑎11, 𝑎12}, 𝐸2 = {𝑎21, 𝑎22}, 𝐸3 = {𝑎31, 𝑎32}. 

Suppose that  

 𝐴1 = {𝑎11, 𝑎12}, 𝐴2 = {𝑎21, 𝑎22}, 𝐴3 = {𝑎31}, and 

 𝐵1 = {𝑎11}, 𝐵2 = {𝑎21, 𝑎22}, 𝐵3 = {𝑎31, 𝑎32} 

 that is,. 𝐴𝑖, 𝐵𝑖 ⊆ 𝐸𝑖  for each 𝑖 = 1,2,3. 

Let the plithogenic crisp hypersoft sets (𝐹, 𝐀) and (𝐺, 𝐁) be defined by 

 (𝐹, 𝐀) = {((𝑎11, 𝑎21, 𝑎31), {𝑥1(1,0,1), 𝑥2(1,1,1)}), ((𝑎11, 𝑎22, 𝑎31), {𝑥2(0,0,1)}), 

 ((𝑎12, 𝑎21, 𝑎31), {𝑥3(1,1,0), 𝑥4(1,1,1)}), ((𝑎12, 𝑎22, 𝑎31), {𝑥1(1,0,1), 𝑥4(0,1,0)})}. 

and 

 (𝐺, 𝐁) = {((𝑎11, 𝑎21, 𝑎31), {𝑥2(1,1,1), 𝑥3(1,1,0)}), ((𝑎11, 𝑎22, 𝑎31), {𝑥2(0,1,0)}), 

 ((𝑎11, 𝑎21, 𝑎32), {𝑥1(0,1,1), 𝑥4(1,1,1)}), ((𝑎11, 𝑎22, 𝑎32), {𝑥3(1,1,1), 𝑥4(1,1,1)})}. 

We have excluded all those 𝛂 ∈ 𝐀 for which 𝐹(𝛂) is a null plithogenic crisp set (similarly for those 

𝛃 ∈ 𝐁 for which 𝐺(𝛃) is a null plithogenic crisp set). 

The union and intersections of (𝐹, 𝐀) and (𝐺, 𝐁) are given by: 

 (𝐹, 𝐀) ∪̃ (𝐺, 𝐁) = {((𝑎11, 𝑎21, 𝑎31), {𝑥1(1,0,1), 𝑥2(1,1,1), 𝑥3(1,1,0)}), 

 ((𝑎11, 𝑎22, 𝑎31), {𝑥2(0,1,1)}), ((𝑎12, 𝑎21, 𝑎31), {𝑥3(1,1,0), 𝑥4(1,1,1)}), 

 ((𝑎12, 𝑎22, 𝑎31), {𝑥1(1,0,1), 𝑥4(0,1,0)}), 

 ((𝑎11, 𝑎21, 𝑎32), {𝑥1(0,1,1), 𝑥4(1,1,1)}), ((𝑎11, 𝑎22, 𝑎32), {𝑥3(1,1,1), 𝑥4(1,1,1)}), 

 ((𝑎12, 𝑎21, 𝑎32), 0𝑃𝐶), ((𝑎12, 𝑎22, 𝑎32), 0𝑃𝐶)}; 

and  

 (𝐹, 𝐀) ∩̃ (𝐺, 𝐁) = {((𝑎11, 𝑎21, 𝑎31), {𝑥2(1,1,1)}), ((𝑎11, 𝑎22, 𝑎31), 0𝑃𝐶)}. 

 

The differences (𝐹, 𝐀)\̃(𝐺, 𝐁) and (𝐺, 𝐁)\̃(𝐹, 𝐀) are the following 

 (𝐹, 𝐀)\̃(𝐺, 𝐁) = {((𝑎11, 𝑎21, 𝑎31), {𝑥1(1,0,1)}), ((𝑎11, 𝑎22, 𝑎31), {𝑥2(0,0,1)})}; 

 (𝐺, 𝐁)\̃(𝐹, 𝐀) = {((𝑎11, 𝑎21, 𝑎31), {𝑥3(1,1,0)}), ((𝑎11, 𝑎22, 𝑎31), {𝑥2(0,1,0)})}. 

  

Proposition 1 Let (𝐹, 𝑨) be a *-hypersoft set over 𝑈∗. Then the following holds; 

    1.  (𝐹, 𝐀) ∪̃ Φ𝐀 = (𝐹, 𝐀); 
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    2.  (𝐹, 𝐀) ∩̃ Φ𝐀 = Φ𝐀; 

    3.  (𝐹, 𝐀) ∪̃ 𝑈𝐀 = 𝑈𝐀; 

    4.  (𝐹, 𝐀) ∩̃ 𝑈𝐀 = (𝐹,𝐀); 

    5.  𝑈𝐀\̃(𝐹, 𝐀) = (𝐹, 𝐀)𝑐; 

 

    6.  (𝐹, 𝐀) ∪̃ (𝐹, 𝐀)𝑐 = 𝑈𝐀; 

    7.  (𝐹, 𝐀) ∩̃ (𝐹, 𝐀)𝑐 = Φ𝐀.  

 

Proof. We will prove only (i), (ii) and (v) and proofs of remaining are similar. 

 (i) By the definition of union, we have  

 (𝐹, 𝐀) ∪̃ Φ𝐀 = (𝐻, 𝐂), 

where 𝐂 = 𝐀 and 𝐻(𝛂) = 𝐹(𝛂) ∪∗ 0∗ = 𝐹(𝛂) for all 𝛂 ∈ 𝐂. Hence (𝐻, 𝐂) = (𝐹, 𝐀). 

 (ii) By the definition of intersection, we obtain that 

 (𝐹, 𝐀) ∩̃ Φ𝐀 = (𝐻, 𝐂), 

where 𝐂 = 𝐀 and 𝐻(𝛂) = 𝐹(𝛂) ∩∗ 0∗ = 0∗ for all 𝛂 ∈ 𝐂. Hence (𝐻, 𝐂) = Φ𝐀. 

 (v) By the definition of difference, we get 

 𝑈𝐀\̃(𝐹, 𝐀) = (𝐻, 𝐂), 

where 𝐂 = 𝐀 and 𝐻(𝛂) = 𝑈\∗𝐹(𝛂) = 𝐹𝑐(𝛂) for all 𝛂 ∈ 𝐂. Hence (𝐻, 𝐂) = (𝐹, 𝐀)𝑐.  

3. Hypersoft point  

In this section, we define hypersoft point in different frameworks and study some basic 

properties of such points in each setup. 

 

3.1  Crisp hypersoft point 

Definition 9 Let 𝑨 ⊆ 𝑬, 𝜶 ∈ 𝑨, and 𝑥 ∈ 𝑈. A hypersoft set (𝐹, 𝑨) is said to be a hypersoft point if 𝐹(𝜶′) is 

an empty set for every 𝜶′ ∈ 𝑨\{𝜶} and 𝐹(𝜶) is a singleton set. We will denote hypersoft point (𝐹, 𝑨) simply 

by 𝑃(𝜶,𝑥).  

Definition 10 A hypersoft set (𝐹, 𝑨) is said to be an empty hypersoft point if 𝐹(𝜶) is an empty set for each 

𝜶 ∈ 𝑨. We will denote an empty hypersoft set, corresponding to 𝜶, by 𝑃(𝜶,⌀).  

As a matter of fact if (𝐹, 𝐀) is a null hypersoft set then for every 𝛂 ∈ 𝐀 it may be regarded 

as empty hypersoft set 𝑃(𝛂,⌀). 

 

Definition 11 A hypersoft point 𝑃(𝜶,𝑥) is said to belong to a hypersoft set (𝐺, 𝑨) if 𝑃(𝜶,𝑥) ⊆̃ (𝐺, 𝑨). We write 

it as 𝑃(𝜶,𝑥) ∈̃ (𝐺, 𝑨).  

It is straightforward to check that the hypersoft union of hypersoft points of a hypersoft set 

(𝐺, 𝐀) returns the hypersoft set (𝐺, 𝐀), that is, 

 (𝐺, 𝐀) =∪̃ {𝑃(𝛂,𝑥): 𝑃(𝛂,𝑥) ∈̃ (𝐺, 𝐀)}. 

 

We illustrate the above observation through the following example. 
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Example 6 Let U = {x1, x2, x3, x4}, and (F, 𝐀) be as given in the example 1. Then the hypersoft points 

of (F, 𝐀) are the following:  

 𝑃1
((𝑎11,𝑎21,𝑎31),𝑥1) = {((𝑎11, 𝑎21, 𝑎31), {𝑥1})}; 

 𝑃2
((𝑎11,𝑎21,𝑎31),𝑥2) = {((𝑎11, 𝑎21, 𝑎31), {𝑥2})}; 

 𝑃3
((𝑎11,𝑎22,𝑎31),𝑥2) = {((𝑎11, 𝑎22, 𝑎31), {𝑥2})}; 

 𝑃4
((𝑎12,𝑎21,𝑎31),𝑥3) = {((𝑎12, 𝑎21, 𝑎31), {𝑥3})}; 

 𝑃5
((𝑎12,𝑎21,𝑎31),𝑥4) = {((𝑎12, 𝑎21, 𝑎31), {𝑥4})}; 

 𝑃6
((𝑎12,𝑎22,𝑎31),𝑥1) = {((𝑎12, 𝑎22, 𝑎31), {𝑥1})}; 

 𝑃7
((𝑎12,𝑎22,𝑎31),𝑥4) = {((𝑎12, 𝑎22, 𝑎31), {𝑥4})}. 

Moreover 

 (𝐹, 𝐀) = 𝑃1
((𝑎11,𝑎21,𝑎31),𝑥1) ∪̃ 𝑃2

((𝑎11,𝑎21,𝑎31),𝑥2) ∪̃ 𝑃3
((𝑎11,𝑎22,𝑎31),𝑥2) 

 ∪̃ 𝑃4
((𝑎12,𝑎21,𝑎31),𝑥3) ∪̃ 𝑃5

((𝑎12,𝑎21,𝑎31),𝑥4) ∪̃ 𝑃6
((𝑎12,𝑎22,𝑎31),𝑥1) ∪̃ 𝑃7

((𝑎12,𝑎22,𝑎31),𝑥4). 

 Proposition 2 Let (𝐹, 𝑨), (𝐹1, 𝑨) and (𝐹2, 𝑨) be hypersoft sets over 𝑈. Then the following hold: 

1.  If (𝐹, 𝑨) is not a null hypersoft set, then (𝐹, 𝑨) contains at least one nonempty hypersoft point. 

2.  (𝐹1, 𝑨) ⊆̃ (𝐹2, 𝑨) if and only if 𝑃(𝜶,𝑥) ∈̃ (𝐹1, 𝑨) implies that 𝑃(𝜶,𝑥) ∈̃ (𝐹2, 𝑨). 

3.  𝑃(𝜶,𝑥) ∈̃ (𝐹1, 𝑨) ∪̃ (𝐹2, 𝑨) if and only if 𝑃(𝜶,𝑥) ∈̃ (𝐹1, 𝑨) or 𝑃(𝜶,𝑥) ∈̃ (𝐹2, 𝑨). 

4.  𝑃(𝜶,𝑥) ∈̃ (𝐹1, 𝑨) ∩̃ (𝐹2, 𝑨) if and only if 𝑃(𝜶,𝑥) ∈̃ (𝐹1, 𝑨) and 𝑃(𝜶,𝑥) ∈̃ (𝐹2, 𝑨). 

5.  𝑃(𝜶,𝑥) ∈̃ (𝐹1, 𝑨)\̃(𝐹2, 𝑨) if and only if 𝑃(𝜶,𝑥) ∈̃ (𝐹1, 𝑨) and 𝑃(𝜶,𝑥) ∉̃ (𝐹2, 𝑨).  

  

Proof. We will prove (1), (2) and (3). Proofs of (4) and (5) are similar to that of (3). 

(1) Suppose that (𝐹, 𝐀) is not a null hypersoft set, that is, 𝐹(𝛂) ≠ ⌀ for some 𝛂 ∈ 𝐀. Now if 𝛂0 ∈ 𝐀 

is such that 𝐹(𝛂0) ≠ ⌀,  then for 𝑥 ∈ 𝐹(𝛂0),  there will be a hypersoft point 𝑃(𝛂0,𝑥)  such that 

𝑃(𝛂0,𝑥) ∈̃ (𝐹, 𝐀). 

(2) Suppose that (𝐹1, 𝐀) ⊆̃ (𝐹2, 𝐀) and 𝑃(𝛂,𝑥) ∈̃ (𝐹1, 𝐀). By the definition 11, we have  

 𝑃(𝛂,𝑥) ⊆̃ (𝐹1, 𝐀). 

Thus  

 𝑃(𝛂,𝑥) ⊆̃ (𝐹1, 𝐀) ⊆̃ (𝐹2, 𝐀) 

implies that 𝑃(𝛂,𝑥) ∈̃ (𝐹2, 𝐀). 

Conversely suppose that 𝑃(𝛂,𝑥) ∈̃ (𝐹1, 𝐀)  which implies that 𝑃(𝛂,𝑥) ∈̃ (𝐹2, 𝐀).  By the 

definition 11, we obtain that  

 𝑃(𝛂,𝑥) ⊆̃ (𝐹2, 𝐀)forall𝑃
(𝛂,𝑥) ∈̃ (𝐹1, 𝐀). 

Thus we have 

 (𝐹1, 𝐀) =∪̃ {𝑃(𝛂,𝑥): 𝑃(𝛂,𝑥) ∈̃ (𝐺, 𝐀)} ⊆̃ (𝐹2, 𝐀). 

(3) Suppose that 𝑃(𝛂,𝑥) ∈̃ (𝐹1, 𝐀) ∪̃ (𝐹2, 𝐀). It follows from the definition 11 that  

 𝑃(𝛂,𝑥) ⊆̃ (𝐹1, 𝐀) ∪̃ (𝐹2, 𝐀), 

which implies that 𝑥 ∈ 𝐹1(𝛂) ∪𝐶 𝐹2(𝛂). Thus 𝑥 ∈ 𝐹1(𝛂) or 𝐹2(𝛂). Hence we have  

 𝑃(𝛂,𝑥) ∈̃ (𝐹1, 𝐀)or𝑃
(𝛂,𝑥) ∈̃ (𝐹2, 𝐀). 

Conversely suppose that 𝑃(𝛂,𝑥) ∈̃ (𝐹1, 𝐀) or 𝑃(𝛂,𝑥) ∈̃ (𝐹2, 𝐀). This implies that 𝑥 ∈ 𝐹1(𝛂) or 𝐹2(𝛂). 

Thus 𝑥 ∈ 𝐹1(𝛂) ∪𝐶 𝐹2(𝛂) and so we have  

 𝑃(𝛂,𝑥) ⊆̃ (𝐹1, 𝐀) ∪̃ (𝐹2, 𝐀). 
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3.2  Fuzzy hypersoft point 

Definition 12 Let 𝑨 ⊆ 𝑬, 𝜶 ∈ 𝑨, and 𝑥 ∈ 𝑈𝐹. A fuzzy hypersoft set (𝐹, 𝑨) is said to be a fuzzy hypersoft 

point if 𝐹(𝜶′) is a null fuzzy set for every 𝜶′ ∈ 𝑨\{𝜶} and 𝐹(𝜶)(𝑦) = 0 for all 𝑦 ≠ 𝑥. We will denote 

(𝐹, 𝑨) simply by 𝐹𝑃(𝜶,𝑥).  

Definition 13 A fuzzy hypersoft set (𝐹, 𝑨) is said to be a null fuzzy hypersoft point if 𝐹(𝜶) is a null fuzzy 

set for each 𝜶 ∈ 𝑨. We denote a null fuzzy hypersoft set, corresponding to 𝜶, by 𝐹𝑃(𝜶,0𝐹).  

Note that if (𝐹, 𝐀) is a null fuzzy hypersoft set then for every 𝛂 ∈ 𝐀, it can be regarded as 

null fuzzy hypersoft set 𝐹𝑃(𝛂,0𝐹). 

Definition 14 A fuzzy hypersoft point 𝐹𝑃(𝜶,𝑥)  is said to belong to a fuzzy hypersoft set (𝐺, 𝑨)  if 

𝐹𝑃(𝜶,𝑥) ⊆̃ (𝐺, 𝑨). We write it as 𝐹𝑃(𝜶,𝑥) ∈̃ (𝐺, 𝑨).  

It is straightforward to check that the fuzzy hypersoft union of fuzzy hypersoft points of a 

fuzzy hypersoft set (𝐺, 𝐀) returns the fuzzy hypersoft set (𝐺, 𝐀), that is, 

 (𝐺, 𝐀) =∪̃ {𝐹𝑃(𝛂,𝑥): 𝐹𝑃(𝛂,𝑥) ∈̃ (𝐺, 𝐀)}. 

We illustrate this observation through the following example. 

Example 7 Let U = {x1, x2, x3, x4}, and (F, 𝐀) be as given in the example 2. Then some of the fuzzy 

hypersoft points of (F, 𝐀) are given as:  

 𝐹𝑃1
((𝑎11,𝑎21,𝑎31),𝑥1) = {((𝑎11, 𝑎21, 𝑎31), {

𝑥1

0.5
})} ; 

 𝐹𝑃2
((𝑎11,𝑎21,𝑎31),𝑥1) = {((𝑎11, 𝑎21, 𝑎31), {

𝑥1

0.2
})} ; 

 𝐹𝑃3
((𝑎11,𝑎21,𝑎31),𝑥2) = {((𝑎11, 𝑎21, 𝑎31), {

𝑥2

0.7
})} ; 

 𝐹𝑃4
((𝑎11,𝑎22,𝑎31),𝑥2) = {((𝑎11, 𝑎22, 𝑎31), {

𝑥2

0.3
})} ; 

 𝐹𝑃5
((𝑎12,𝑎21,𝑎31),𝑥3) = {((𝑎12, 𝑎21, 𝑎31), {

𝑥3

0.8
})} ; 

 𝐹𝑃6
((𝑎12,𝑎21,𝑎31),𝑥4) = {((𝑎12, 𝑎21, 𝑎31), {

𝑥4

0.6
})} ; 

 𝐹𝑃7
((𝑎12,𝑎21,𝑎31),𝑥4) = {((𝑎12, 𝑎21, 𝑎31), {

𝑥4

0.9
})} ; 

 𝐹𝑃8
((𝑎12,𝑎22,𝑎31),𝑥1) = {((𝑎12, 𝑎22, 𝑎31), {

𝑥1

0.5
})} ; 

 𝐹𝑃9
((𝑎12,𝑎22,𝑎31),𝑥4) = {((𝑎12, 𝑎22, 𝑎31), {

𝑥4

0.4
})}. 

Moreover we have  

 (𝐹, 𝐀) = 𝐹𝑃1
((𝑎11,𝑎21,𝑎31),𝑥1) ∪̃ 𝐹𝑃2

((𝑎11,𝑎21,𝑎31),𝑥1) ∪̃ 𝐹𝑃3
((𝑎11,𝑎21,𝑎31),𝑥2) 

 ∪̃ 𝐹𝑃4
((𝑎11,𝑎22,𝑎31),𝑥2) ∪̃ 𝐹𝑃5

((𝑎12,𝑎21,𝑎31),𝑥3) ∪̃ 𝐹𝑃6
((𝑎12,𝑎21,𝑎31),𝑥4) 

 ∪̃ 𝐹𝑃7
((𝑎12,𝑎21,𝑎31),𝑥4) ∪̃ 𝐹𝑃8

((𝑎12,𝑎22,𝑎31),𝑥1) ∪̃ 𝐹𝑃9
((𝑎12,𝑎22,𝑎31),𝑥4). 

 Proposition 3 Let (𝐹, 𝑨), (𝐹1, 𝑨) and (𝐹2, 𝑨) be fuzzy hypersoft sets over 𝑈. Then the following hold: 

1.  If (𝐹, 𝐀) is not a null fuzzy hypersoft set, then (𝐹, 𝐀) contains at least one nonnull fuzzy 

hypersoft point. 

2.  (𝐹1, 𝐀) ⊆̃ (𝐹2, 𝐀) if and only if 𝐹𝑃(𝛂,𝑥) ∈̃ (𝐹1, 𝐀) implies that 𝐹𝑃(𝛂,𝑥) ∈̃ (𝐹2, 𝐀). 
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3.  𝐹𝑃(𝛂,𝑥) ∈̃ (𝐹1, 𝐀) ∪̃ (𝐹2, 𝐀) if and only if 𝐹𝑃(𝛂,𝑥) ∈̃ (𝐹1, 𝐀) or 𝐹𝑃(𝛂,𝑥) ∈̃ (𝐹2, 𝐀). 

4.  𝐹𝑃(𝛂,𝑥) ∈̃ (𝐹1, 𝐀) ∩̃ (𝐹2, 𝐀) if and only if 𝐹𝑃(𝛂,𝑥) ∈̃ (𝐹1, 𝐀) and 𝐹𝑃(𝛂,𝑥) ∈̃ (𝐹2, 𝐀). 

 

5.  𝐹𝑃(𝛂,𝑥) ∈̃ (𝐹1, 𝐀)\̃(𝐹2, 𝐀) if and only if 𝐹𝑃(𝛂,𝑥) ∈̃ (𝐹1, 𝐀) and 𝐹𝑃(𝛂,𝑥) ∉̃ (𝐹2, 𝐀).  

The proof of above proposition is similar as in the case of crisp hypersoft point. 

 

3.3  Intuitionistic fuzzy hypersoft point 

Definition 15 Let 𝑨 ⊆ 𝑬, 𝜶 ∈ 𝑨, and 𝑥 ∈ 𝑈𝐼𝐹. An intuitionistic fuzzy hypersoft set (𝐹, 𝑨) is said to be an 

intuitionistic fuzzy hypersoft point if 𝐹(𝜶′) is a null intuitionistic fuzzy set for every 𝜶′ ∈ 𝑨\{𝜶} and 

𝐹(𝜶)(𝑦) =< 0,1 > for all 𝑦 ≠ 𝑥. We will denote (𝐹, 𝑨) simply by 𝐼𝐹𝑃(𝜶,𝑥).  

Definition 16 An intuitionistic fuzzy hypersoft set (𝐹, 𝑨) is said to be a null intuitionistic fuzzy hypersoft 

point if 𝐹(𝜶) is a null intuitionistic fuzzy set for each 𝜶 ∈ 𝑨. We will denote a null intuitionistic fuzzy 

hypersoft set, corresponding to 𝜶, by 𝐼𝐹𝑃(𝜶,0𝐼𝐹).  

     If (𝐹, 𝐀) is a null intuitionistic fuzzy hypersoft set, then for every 𝛂 ∈ 𝐀 it can be regarded as 

null intuitionistic fuzzy hypersoft set 𝐼𝐹𝑃(𝛂,0𝐼𝐹). 

Definition 17 An intuitionistic fuzzy hypersoft point 𝐼𝐹𝑃(𝜶,𝑥) is said to belong to an intuitionistic fuzzy 

hypersoft set (𝐺, 𝑨) if 𝐼𝐹𝑃(𝜶,𝑥) ⊆̃ (𝐺, 𝑨). We write it as 𝐼𝐹𝑃(𝜶,𝑥) ∈̃ (𝐺, 𝑨).  

     It is straightforward to check that the intuitionistic fuzzy hypersoft union of intuitionistic fuzzy 

hypersoft points of an intuitionistic fuzzy hypersoft set (𝐺, 𝐀)  gives the intuitionistic fuzzy 

hypersoft set (𝐺, 𝐀), that is, 

 (𝐺, 𝐀) =∪̃ {𝐼𝐹𝑃(𝛂,𝑥): 𝐼𝐹𝑃(𝛂,𝑥) ∈̃ (𝐺, 𝐀)}. 

We illustrate this observation through the following example. 

Example 8 Let U = {x1, x2, x3, x4}, and (F, 𝐀) be as given in the example 3 . Then some of the 

intuitionistic fuzzy hypersoft points of (F, 𝐀) are the following:  

 𝐼𝐹𝑃1
((𝑎11,𝑎21,𝑎31),𝑥1) = {((𝑎11, 𝑎21, 𝑎31), {

𝑥1

<0.5,0.3>
})} ; 

 𝐼𝐹𝑃2
((𝑎11,𝑎21,𝑎31),𝑥1) = {((𝑎11, 𝑎21, 𝑎31), {

𝑥1

<0.2,0.3>
})} ; 

 𝐼𝐹𝑃3
((𝑎11,𝑎21,𝑎31),𝑥2) = {((𝑎11, 𝑎21, 𝑎31), {

𝑥2

<0.7,0.2>
})} ; 

 𝐼𝐹𝑃4
((𝑎11,𝑎22,𝑎31),𝑥2) = {((𝑎11, 𝑎22, 𝑎31), {

𝑥2

<0.3,0.5>
})} ; 

 𝐼𝐹𝑃5
((𝑎12,𝑎21,𝑎31),𝑥3) = {((𝑎12, 𝑎21, 𝑎31), {

𝑥3

<0.8,0.1>
})} ; 

 𝐼𝐹𝑃6
((𝑎12,𝑎21,𝑎31),𝑥4) = {((𝑎12, 𝑎21, 𝑎31), {

𝑥4

<0.1,0.6>
})} ; 

 𝐼𝐹𝑃𝐼𝐼𝐼7
(𝑎12,𝑎21,𝑎31),𝑥4) = {((𝑎12, 𝑎21, 𝑎31), {

𝑥4

<0.1,0.5>
})} ; 

 𝐼𝐹𝑃8
((𝑎12,𝑎22,𝑎31),𝑥1) = {((𝑎12, 𝑎22, 𝑎31), {

𝑥1

<0.5,0.3>
})} ; 

 𝐼𝐹𝑃9
((𝑎12,𝑎22,𝑎31),𝑥4) = {((𝑎12, 𝑎22, 𝑎31), {

𝑥4

<0.4,0.2>
})}. 
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Moreover we have  

 (𝐹, 𝐀) = 𝐼𝐹𝑃1
((𝑎11,𝑎21,𝑎31),𝑥1) ∪̃ 𝐼𝐹𝑃2

((𝑎11,𝑎21,𝑎31),𝑥1) ∪̃ 𝐼𝐹𝑃3
((𝑎11,𝑎21,𝑎31),𝑥2) 

 ∪̃ 𝐼𝐹𝑃4
((𝑎11,𝑎22,𝑎31),𝑥2) ∪̃ 𝐼𝐹𝑃5

((𝑎12,𝑎21,𝑎31),𝑥3) ∪̃ 𝐼𝐹𝑃6
((𝑎12,𝑎21,𝑎31),𝑥4) 

 ∪̃ 𝐼𝐹𝑃7
((𝑎12,𝑎21,𝑎31),𝑥4) ∪̃ 𝐼𝐹𝑃8

((𝑎12,𝑎22,𝑎31),𝑥1) ∪̃ 𝐼𝐹𝑃9
((𝑎12,𝑎22,𝑎31),𝑥4). 

 Proposition 4 Let (𝐹, 𝑨), (𝐹1, 𝑨)  and (𝐹2, 𝑨)  be intuitionistic fuzzy hypersoft sets over 𝑈 . Then the 

following hold: 

1.  If (𝐹, 𝐀) is not a null intuitionistic fuzzy hypersoft set then (𝐹, 𝐀) contains at least one nonnull 

intuitionistic fuzzy hypersoft point. 

2.  (𝐹1, 𝑨) ⊆̃ (𝐹2, 𝑨) if and only if 𝐼𝐹𝑃(𝜶,𝑥) ∈̃ (𝐹1, 𝑨) implies that 𝐼𝐹𝑃(𝜶,𝑥) ∈̃ (𝐹2, 𝑨). 

3.  𝐼𝐹𝑃(𝜶,𝑥) ∈̃ (𝐹1, 𝑨) ∪̃ (𝐹2, 𝑨) if and only if 𝐼𝐹𝑃(𝜶,𝑥) ∈̃ (𝐹1, 𝑨) or 𝐼𝐹𝑃(𝜶,𝑥) ∈̃ (𝐹2, 𝑨). 

4.  𝐼𝐹𝑃(𝜶,𝑥) ∈̃ (𝐹1, 𝑨) ∩̃ (𝐹2, 𝑨) if and only if 𝐼𝐹𝑃(𝜶,𝑥) ∈̃ (𝐹1, 𝑨) and 𝐼𝐹𝑃(𝜶,𝑥) ∈̃ (𝐹2, 𝑨). 

5.  𝐼𝐹𝑃(𝜶,𝑥) ∈̃ (𝐹1, 𝑨)\̃(𝐹2, 𝑨) if and only if 𝐼𝐹𝑃(𝜶,𝑥) ∈̃ (𝐹1, 𝑨) and 𝐼𝐹𝑃(𝜶,𝑥) ∉̃ (𝐹2, 𝑨).  

 

The proof of above proposition is similar as in the case of crisp hypersoft point. 

 

3.4  Neutrosophic hypersoft point 

Definition 18 Let 𝑨 ⊆ 𝑬  and 𝜶 ∈ 𝑨 , 𝑥 ∈ 𝑈𝑁 . A neutrosophic hypersoft set (𝐹, 𝑨)  is said to be a 

neutrosophic fuzzy hypersoft point if 𝐹(𝜶′) is a null neutrosophic set for every 𝜶′ ∈ 𝑨\{𝜶} and 𝐹(𝜶)(𝑦) =<

0,1,1 > for all 𝑦 ≠ 𝑥. We will denote (𝐹, 𝑨) simply by 𝑁𝑃(𝜶,𝑥).  

Definition 19 A neutrosophic hypersoft set (𝐹, 𝑨) is said to be a null neutrosophic hypersoft point if 𝐹(𝜶) is 

a null neutrosophic set for each 𝜶 ∈ 𝑨. We will denote a null neutrosophic hypersoft set, corresponding to 𝜶, 

by 𝑁𝑃(𝜶,0𝑁).  

        Its a matter of fact that if (𝐹, 𝐀) is a null neutrosophic hypersoft set then for every 𝛂 ∈ 𝐀 it 

can be regarded as null neutrosophic hypersoft set 𝑁𝑃(𝛂,0𝑁). 

Definition 20 A neutrosophic hypersoft point 𝑁𝑃(𝜶,𝑥) is said to belong to a neutrosophic hypersoft set (𝐺, 𝑨) 

if 𝑁𝑃(𝜶,𝑥) ⊆̃ (𝐺, 𝑨). We write it as 𝑁𝑃(𝜶,𝑥) ∈̃ (𝐺, 𝑨).  

        It is straightforward to check that the neutrosophic hypersoft union of neutrosophic 

hypersoft points of a neutrosophic hypersoft set (𝐺, 𝐀) returns the neutrosophic hypersoft set 

(𝐺, 𝐀), that is, 

 (𝐺, 𝐀) =∪̃ {𝑁𝑃(𝛂,𝑥): 𝑁𝑃(𝛂,𝑥) ∈̃ (𝐺, 𝐀)}. 

 

We illustrate this observation through the following example. 

Example 9 Let U = {x1, x2, x3, x4}, and (F, 𝐀) be as given in the example 4. Some of the neutrosophic 

hypersoft points of (F, 𝐀) are the following:  

 𝑁𝑃1
((𝑎11,𝑎21,𝑎31),𝑥1) = {((𝑎11, 𝑎21, 𝑎31), {

𝑥1

<0.5,0.2,0.3>
})} ; 

 𝑁𝑃2
((𝑎11,𝑎21,𝑎31),𝑥1) = {((𝑎11, 𝑎21, 𝑎31), {

𝑥1

<0.2,0.2,0.3>
})} ; 

 𝑁𝑃3
((𝑎11,𝑎21,𝑎31),𝑥2) = {((𝑎11, 𝑎21, 𝑎31), {

𝑥2

<0.7,0.3,0.2>
})} ; 

 𝑁𝑃4
((𝑎11,𝑎22,𝑎31),𝑥2) = {((𝑎11, 𝑎22, 𝑎31), {

𝑥2

<0.3,0.2,0.5>
})} ; 
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 𝑁𝑃5
((𝑎12,𝑎21,𝑎31),𝑥3) = {((𝑎12, 𝑎21, 𝑎31), {

𝑥3

<0.8,0.4,0.1>
})} ; 

 𝑁𝑃6
((𝑎12,𝑎21,𝑎31),𝑥4) = {((𝑎12, 𝑎21, 𝑎31), {

𝑥4

<0.1,0.5,0.5>
})} ; 

 𝑁𝑃7
((𝑎12,𝑎22,𝑎31),𝑥1) = {((𝑎12, 𝑎22, 𝑎31), {

𝑥1

<0.5,0.2,0.3>
})} ; 

 𝑁𝑃8
((𝑎12,𝑎22,𝑎31),𝑥4) = {((𝑎12, 𝑎22, 𝑎31), {

𝑥4

<0.4,0.3,0.2>
})}. 

Moreover we have  

 (𝐹, 𝐀) = 𝑁𝑃1
((𝑎11,𝑎21,𝑎31),𝑥1) ∪̃ 𝑁𝑃2

((𝑎11,𝑎21,𝑎31),𝑥1) ∪̃ 𝑁𝑃3
((𝑎11,𝑎21,𝑎31),𝑥2) 

 ∪̃ 𝑁𝑃4
((𝑎11,𝑎22,𝑎31),𝑥2) ∪̃ 𝑁𝑃5

((𝑎12,𝑎21,𝑎31),𝑥3) ∪̃ 𝑁𝑃6
((𝑎12,𝑎21,𝑎31),𝑥4) 

 ∪̃ 𝑁𝑃7
((𝑎12,𝑎22,𝑎31),𝑥1) ∪̃ 𝑁𝑃8

((𝑎12,𝑎22,𝑎31),𝑥4). 

 Proposition 5 Let (𝐹, 𝑨), (𝐹1, 𝑨) and (𝐹2, 𝑨) be neutrosophic hypersoft sets over 𝑈. Then the following 

hold: 

1.  If (𝐹, 𝑨) is not a null neutrosophic hypersoft set then (𝐹, 𝑨) contains at least one nonnull neutrosophic 

hypersoft point. 

2.  (𝐹1, 𝑨) ⊆̃ (𝐹2, 𝑨) if and only if 𝑁𝑃(𝜶,𝑥) ∈̃ (𝐹1, 𝑨) implies that 𝑁𝑃(𝜶,𝑥) ∈̃ (𝐹2, 𝑨). 

3.  𝑁𝑃(𝜶,𝑥) ∈̃ (𝐹1, 𝑨) ∪̃ (𝐹2, 𝑨) if and only if 𝑁𝑃(𝜶,𝑥) ∈̃ (𝐹1, 𝑨) or 𝑁𝑃(𝜶,𝑥) ∈̃ (𝐹2, 𝑨). 

4.  𝑁𝑃(𝜶,𝑥) ∈̃ (𝐹1, 𝑨) ∩̃ (𝐹2, 𝑨) if and only if 𝑁𝑃(𝜶,𝑥) ∈̃ (𝐹1, 𝑨) and 𝑁𝑃(𝜶,𝑥) ∈̃ (𝐹2, 𝑨). 

5.  𝑁𝑃(𝜶,𝑥) ∈̃ (𝐹1, 𝑨)\̃(𝐹2, 𝑨) if and only if 𝑁𝑃(𝜶,𝑥) ∈̃ (𝐹1, 𝑨) and 𝑁𝑃(𝜶,𝑥) ∉̃ (𝐹2, 𝑨).  

  

The proof of above proposition is similar as in the case of crisp hypersoft point. 

 

3.5  Plithogenic hypersoft point 

     There may be four types of plithogenic hypersoft points namely: plithogenic crisp hypersoft 

point, plithogenic fuzzy hypersoft point, plithogenic intuitionistic fuzzy hypersoft point, plithogenic 

neutrosophic hypersoft point. But in this section we discuss only plithogenic crisp hypersoft point 

whereas other concepts and examples can be given in the similar way. 

 

Definition 21 Let 𝑨 ⊆ 𝑬, 𝜶 ∈ 𝑨, and 𝑥 ∈ 𝑈𝑃 . A plithogenic crisp hypersoft set (𝐹, 𝑨) is said to be a 

plithogenic crisp hypersoft point if 𝐹(𝜶′)  is a null plithogenic crisp set for every 𝜶′ ∈ 𝑨\{𝜶}  and 

𝐹(𝜶)(𝑦)(𝟎) for all 𝑦 ≠ 𝑥. We will denote (𝐹, 𝑨) simply by 𝑃𝑐𝑃
(𝜶,𝑥).  

Definition 22 A plithogenic crisp hypersoft set (𝐹, 𝑨) is said to be a null plithogenic crisp hypersoft point if 

𝐹(𝜶) is a null plithogenic crisp set for each 𝜶 ∈ 𝑨. We will denote a null plithogenic crisp hypersoft set, 

corresponding to 𝜶, by 𝑃𝑐𝑃
(𝜶,0𝑃𝐶).  

      Note that if (𝐹, 𝐀) is a null plithogenic crisp hypersoft set, then for every 𝛂 ∈ 𝐀 it can be 

regarded as a null plithogenic crisp hypersoft set 𝑃𝑐𝑃
(𝛂,0𝑃𝐶). 

Definition 23 A plithogenic crisp hypersoft point 𝑃𝑐𝑃
(𝜶,𝑥) is said to belong to a plithogenic crisp hypersoft set 

(𝐺, 𝑨) if 𝑃𝑐𝑃
(𝜶,𝑥) ⊆̃ (𝐺, 𝑨). We write it as 𝑃𝑐𝑃

(𝜶,𝑥) ∈̃ (𝐺, 𝑨).  



Neutrosophic Sets and Systems, Vol. 35, 2020    420  

 

 
Mujahid Abbas, Ghulam Murtaza, and Florentin Smarandache, Basic operations on hypersoft sets and hypersoft point 

      It is straightforward to check that the plithogenic crisp hypersoft union of plithogenic crisp 

hypersoft points of a plithogenic crisp hypersoft set (𝐺, 𝐀)  gives back the plithogenic crisp 

hypersoft set (𝐺, 𝐀), that is, 

 (𝐺, 𝐀) =∪̃ {𝑃𝑐𝑃
(𝛂,𝑥): 𝑃𝑐𝑃

(𝛂,𝑥) ∈̃ (𝐺, 𝐀)}. 

 

We illustrate this observation through the following example. 

Example 10 Let U = {x1, x2, x3, x4}, and (F, 𝐀) be as given in the example 5. Then some of the 

plithogenic crisp hypersoft points of (F, 𝐀) are the following:  

 𝑃𝑐𝑃1
((𝑎11,𝑎21,𝑎31),𝑥1) = {((𝑎11, 𝑎21, 𝑎31), {𝑥1(1,0,1)})}; 

 𝑃𝑐𝑃2
((𝑎11,𝑎21,𝑎31),𝑥2) = {((𝑎11, 𝑎21, 𝑎31), {𝑥2(1,1,1)})}; 

 𝑃𝑐𝑃3
((𝑎11,𝑎22,𝑎31),𝑥2) = {((𝑎11, 𝑎22, 𝑎31), {𝑥2(0,0,1)})}; 

 𝑃𝑐𝑃4
((𝑎12,𝑎21,𝑎31),𝑥3) = {((𝑎12, 𝑎21, 𝑎31), {𝑥3(1,1,0)})}; 

 𝑃𝑐𝑃5
((𝑎12,𝑎21,𝑎31),𝑥4) = {((𝑎12, 𝑎21, 𝑎31), {𝑥4(1,1,1)})}; 

 𝑃𝑐𝑃6
((𝑎12,𝑎22,𝑎31),𝑥1) = {((𝑎12, 𝑎22, 𝑎31), {𝑥1(1,0,1)})}; 

 𝑃𝑐𝑃7
((𝑎12,𝑎22,𝑎31),𝑥4) = {((𝑎12, 𝑎22, 𝑎31), {𝑥4(0,1,0)})}. 

Moreover we have  

 (𝐹, 𝐀) = 𝑃𝑐𝑃1
((𝑎11,𝑎21,𝑎31),𝑥1) ∪̃ 𝑃𝑐𝑃2

((𝑎11,𝑎21,𝑎31),𝑥2) 

 ∪̃ 𝑃𝑐𝑃3
((𝑎11,𝑎22,𝑎31),𝑥2) ∪̃ 𝑃𝑐𝑃4

((𝑎12,𝑎21,𝑎31),𝑥3) ∪̃ 𝑃𝑐𝑃5
((𝑎12,𝑎21,𝑎31),𝑥4) 

 ∪̃ 𝑃𝑐𝑃6
((𝑎12,𝑎22,𝑎31),𝑥1) ∪̃ 𝑃𝑐𝑃7

((𝑎12,𝑎22,𝑎31),𝑥4). 

 Proposition 6 Let (𝐹, 𝑨), (𝐹1, 𝑨) and (𝐹2, 𝑨) be plithogenic crisp hypersoft sets over 𝑈. Then the following 

hold: 

1.  If (𝐹, 𝑨) is not a null plithogenic crisp hypersoft set then (𝐹, 𝑨) contains at least one nonnull plithogenic 

crisp hypersoft point. 

2.  (𝐹1, 𝑨) ⊆̃ (𝐹2, 𝑨) if and only if 𝑃𝑐𝑃
(𝜶,𝑥) ∈̃ (𝐹1, 𝑨) implies that 𝑃𝑐𝑃

(𝜶,𝑥) ∈̃ (𝐹2, 𝑨). 

3.  𝑃𝑐𝑃
(𝜶,𝑥) ∈̃ (𝐹1, 𝑨) ∪̃ (𝐹2, 𝑨) if and only if 𝑃𝑐𝑃

(𝜶,𝑥) ∈̃ (𝐹1, 𝑨) or 𝑃𝑐𝑃
(𝜶,𝑥) ∈̃ (𝐹2, 𝑨). 

4.  𝑃𝑐𝑃
(𝜶,𝑥) ∈̃ (𝐹1, 𝑨) ∩̃ (𝐹2, 𝑨) if and only if 𝑃𝑐𝑃

(𝜶,𝑥) ∈̃ (𝐹1, 𝑨) and 𝑃𝑐𝑃
(𝜶,𝑥) ∈̃ (𝐹2, 𝑨). 

5.  𝑃𝑐𝑃
(𝜶,𝑥) ∈̃ (𝐹1, 𝑨)\̃(𝐹2, 𝑨) if and only if 𝑃𝑐𝑃

(𝜶,𝑥) ∈̃ (𝐹1, 𝑨) and 𝑃𝑐𝑃
(𝜶,𝑥) ∉̃ (𝐹2, 𝑨).  

 The proof of above proposition is similar as in the case of crisp hypersoft point. 

4. Conclusions  

In this paper, we have initiated the concept of hypersoft point that will lead to define 

Cartesian product and then function on *-hypersoft sets. As a future work, one may carry out the 

study of *-hypersoft topological spaces. Once the functions on *-hypersoft sets are defined, this may 

lead to the study of fixed point results in this new framework. 
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Abstract: In this paper, we introduce the notion of neutrosophic ℵ-bi-ideal for a semigroup. We 
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1. Introduction 

In 1965, Zadeh [16] introduced the idea of fuzzy sets for modeling the ambiguous theories in the 

globe. In 1986, Atanassov [1] generalized fuzzy set and named as intuitionistic fuzzy set, and 

discussed it. Also from his view point, there are two degrees for any object in the world. They are 

degree of membership to a vague subset and degree of non-membership to that given subset.  

Smarandache generalized fuzzy and intuitionistic fuzzy set, and referred as Neutrosophic set 

(see [2, 3, 6, 13-15]). It is identified by a truth, a falsity and an indeterminacy membership function. 

These sets are applied to many branches of mathematics to overcome the complexities arising from 

uncertain data. Neutrosophic set can distinguish between absolute membership and relative 

membership. Smarandache used this in non-standard analysis such as result of sport games 

(winning/defeating/tie), decision making and control theory, etc. This area has been studied by 

several authors (see [5, 10-12]).  

In [8], M. Khan et al. presented and discussed the concepts of neutrosophic ℵ −subsemigroup 

of semigroup. In [5], Gulistan et al. have studied the idea of complex neutrosophic subsemigroups. 

They have introduced the notion of characteristic function of complex neutrosophic sets, direct 

product of complex neutrosophic sets.  

In [4], B. Elavarasan et al. introduced the concepts of neutrosophic ℵ −ideal of semigroup and 

explored its properties. Also, the conditions are given for neutrosophic ℵ −structure becomes 

neutrosophic ℵ −ideal. Further, presented the notion of characteristic neutrosophic ℵ −structure 

over semigroup. 

Throughout this article, 𝑋 denotes a semigroup. Recall that for any subsets 𝐴 and 𝐵 of 𝑋, 

𝐴𝐵 =  {𝑢𝑤|𝑢 ∈ 𝐴 𝑎𝑛𝑑 𝑤 ∈ 𝐵}, the multiplication of A and B.  

For a semigroup X,  

(i) ∅ ≠ 𝑈 ⊆ 𝑋 is a subsemigroup of 𝑋 if 𝑈2 ⊆ 𝑈. 

mailto:porselvi94@yahoo.co.in
mailto:porselvi@karunya.edu
mailto:belavarasan@gmail.com
mailto:elavarasan@karunya.edu
mailto:fsmarandache@gmail.com
mailto:smarand@unm.edu
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(ii) A subsemigroup 𝑈 of X is left (resp., right) ideal if 𝑋𝑈 ⊆ 𝑈 (resp., 𝑈𝑋 ⊆ 𝑈). 𝑈  is an ideal of 𝑋 

if 𝑈 is both left and right ideal of 𝑋.  

(iii) 𝑋 is left (resp., right) regular if for each 𝑠 ∈ 𝑋, there exists 𝑥 ∈ 𝑋 such that 𝑠 = 𝑥𝑠2(resp., 𝑠 =

𝑠2𝑥) [7]. 

(iv) 𝑋 is regular if for each 𝑠 ∈ 𝑋, there exists 𝑥 ∈ 𝑋 such that 𝑠 = 𝑠𝑥𝑠 [9].  

(v) 𝑋 is intra-regular if for every𝑠 ∈ 𝑋, there exist 𝑥, 𝑦 ∈ 𝑋 such that 𝑠 = 𝑥𝑠2𝑦 [9].  

(vi) A subsemigroup  𝑌 of 𝑋 is bi-ideal if 𝑌𝑋𝑌 ⊆ 𝑌. For any 𝑟′ ∈ 𝑋, 𝐵(𝑟′) = {𝑟′, 𝑟′2
, 𝑟′𝑋𝑟′}  is the 

principal bi-ideal of 𝑋 generated by 𝑟′. 

2. Basics of neutrosophic ℵ – structures 

In this section, we present the required basic definitions of neutrosophic ℵ −structures of 𝑋 that 

we need in the sequel. 

The collection of functions from a set 𝑋 to [−1, 0]  is denoted by ℑ(𝑋, [−1, 0]).  Note that    

f ∈ ℑ(𝑋, [−1, 0]) is a negative-valued function from 𝑋 to [−1, 0] (briefly, ℵ −function on 𝑋). Here 

ℵ −structure means (𝑋, 𝑓) of 𝑋.  

 

Definition 2.1. [8] A neutrosophic ℵ − structure of 𝑋 is defined to be the structure: 

𝑋𝑁: =  
𝑋

(𝑇𝑁,𝐼𝑁,   𝐹𝑁) 
=  { 

𝑥

𝑇𝑁(𝑥), 𝐼𝑁(𝑥),   𝐹𝑁(𝑥) 
 | 𝑥 ∈ 𝑋 }  

where 𝑇𝑁  is the negative truth membership function on X, 𝐼𝑁  is the negative indeterminacy 

membership function on X and 𝐹𝑁 is the negative falsity membership function on X. 

Note that for any 𝑥 ∈ 𝑋, 𝑋𝑁 satisfies the condition −3 ≤ 𝑇𝑁(𝑥) + 𝐼𝑁(𝑥) + 𝐹𝑁(𝑥) ≤ 0.  

 

Definition 2.2. [8] A neutrosophic ℵ −structure 𝑋𝑁 of 𝑋 is called a neutrosophic ℵ −subsemigroup 

of 𝑋 if the below condition is valid: 

(∀ 𝑔𝑖, ℎ𝑗 ∈ 𝑋) (

𝑇𝑁(𝑔𝑖ℎ𝑗) ≤ 𝑇𝑁(𝑔𝑖) ˅ 𝑇𝑁(ℎ𝑗)

𝐼𝑁(𝑔𝑖ℎ𝑗) ≥ 𝐼𝑁(𝑔𝑖) ˄ 𝐼𝑁(ℎ𝑗)

𝐹𝑁(𝑔𝑖ℎ𝑗) ≤ 𝐹𝑁(𝑔𝑖) ˅ 𝐹𝑁(ℎ𝑗)

). 

 

Let 𝑋𝑁 be a neutrosophic ℵ − structure of 𝑋 and let 𝜆, 𝛿, ε ∈ [−1, 0] with −3 ≤ 𝜆 +  𝛿 +  ε ≤

0. Then the set 𝑋𝑁(𝜆, 𝛿, ε) ≔ {𝑥 ∈ 𝑋|𝑇𝑁(𝑥) ≤ 𝜆, 𝐼𝑁(𝑥) ≥ 𝛿, 𝐹𝑁(𝑥) ≤ ε} is called a (λ, 𝛿, ε) – level set 

of XN.  

 

Definition 2.3. [4] A neutrosophic ℵ −structure 𝑋𝑁  of 𝑋 is called a neutrosophic ℵ −left (resp., 

right) ideal of 𝑋 if it satisfies: 

(∀ 𝑔𝑖, ℎ𝑗  ∈ 𝑋) (

𝑇𝑁(𝑔𝑖ℎ𝑗) ≤ 𝑇𝑁(ℎ𝑗) (𝑟𝑒𝑠𝑝. , 𝑇𝑁(𝑔𝑖ℎ𝑗) ≤ 𝑇𝑁(𝑔𝑖)) 

𝐼𝑁(𝑔𝑖ℎ𝑗) ≥ 𝐼𝑁(ℎ𝑗) (𝑟𝑒𝑠𝑝., 𝐼𝑁(𝑔𝑖ℎ𝑗) ≥ 𝐼𝑁(𝑔𝑖))

𝐹𝑁(𝑔𝑖ℎ𝑗) ≤ 𝐹𝑁(ℎ𝑗) (𝑟𝑒𝑠𝑝., 𝐹𝑁(𝑔𝑖ℎ𝑗) ≤ 𝐹𝑁(𝑔𝑖))  

). 

 

If 𝑋𝑁 is both neutrosophic ℵ −left and neutrosophic ℵ −right ideal of X, then it is called a 

neutrosophic ℵ −ideal of X. 

 

Definition 2.4. A neutrosophic ℵ −subsemigroup 𝑋𝑁 of 𝑋 is a neutrosophic ℵ −bi-ideal of 𝑋 if 

the following condition is valid: 
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(∀ 𝑟, 𝑠, 𝑡 ∈ 𝑋) (

𝑇𝑁(𝑟𝑠𝑡) ≤ 𝑇𝑁(𝑟)˅  𝑇𝑁(𝑡)

𝐼𝑁(𝑟𝑠𝑡) ≥ 𝐼𝑁(𝑟)˄ 𝐼𝑁(𝑡)

𝐹𝑁(𝑟𝑠𝑡) ≤ 𝐹𝑁(𝑟)˅ 𝐹𝑁(𝑡)
). 

Clearly any neutrosophic  ℵ − left (resp., right) ideal is neutrosophic ℵ −bi-ideal, but the 

neutrosophic ℵ −bi-ideal is not necessary to be a neutrosophic ℵ −left (resp., right) ideal.  

Example 2.5. Consider the semigroup 𝑋 =  {0, 𝑎, 𝑏, 𝑐} with binary operation as follows:  

. 0 a b c

0 0 0 0 0

a 0 0 0 b

b 0 0 0 b

c b b b c  

Then  𝑋𝑁 = {
0

(−0.9,−0.1,−0.7)
,

𝑎

(−0.8,−0.2,−0.5)
,

𝑏

(−0.7,−0.3,−0.3)
,

𝑐

(−0.5,−0.4,−0.1)
} is a neutrosophic ℵ −bi-ideal of 

𝑋, but 𝑋𝑁 is not neutrosophic ℵ −left ideal as well as neutrosophic ℵ −right ideal of 𝑋.        □ 

Definition 2.6. [8] For Φ ≠ A ⊆ 𝑋, the characteristic neutrosophic ℵ −structure of 𝑋 is denoted by  

𝜒𝐴(𝑋𝑁) and is defined to be neutrosophic ℵ −structure  

𝜒𝐴(𝑋𝑁) =   
𝑋

(𝜒𝐴(𝑇)𝑁, 𝜒𝐴( 𝐼)𝑁, 𝜒𝐴(𝐹)𝑁)
 

where 

𝜒𝐴(𝑇)𝑁 : X→ [−1, 0], 𝑥 → {
−1 𝑖𝑓 𝑥 ∈ 𝐴  

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 

𝜒𝐴(𝐼)𝑁 : X→ [−1, 0], 𝑥 → {
0 𝑖𝑓 𝑥 ∈ 𝐴  

−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 

𝜒𝐴(𝐹)𝑁 : X→ [−1, 0], 𝑥 → {
−1  𝑖𝑓 𝑥 ∈ 𝐴  
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

Definition 2.7. [8] Let 𝑋𝑁: =  
𝑋

(𝑇𝑁,  𝐼𝑁,   𝐹𝑁) 
 and 𝑋𝑀: =  

𝑋

(𝑇𝑀,  𝐼𝑀,   𝐹𝑀) 
 .  

(i) 𝑋𝑀 is called a neutrosophic ℵ − substructure of 𝑋𝑁 over 𝑋, denoted by 𝑋𝑁 ⊆ 𝑋𝑀, if  

𝑇𝑁(𝑡) ≥  𝑇𝑀(𝑡),  𝐼𝑁(𝑡) ≤  𝐼𝑀(𝑡), 𝐹𝑁(𝑡) ≥  𝐹𝑀(𝑡) ∀t ∈ 𝑋. 

If 𝑋𝑁 ⊆ 𝑋𝑀 and 𝑋𝑀 ⊆ 𝑋𝑁, then we say that 𝑋𝑁 = 𝑋𝑀. 

(ii) The neutrosophic ℵ − product of 𝑋𝑁 and 𝑋𝑀 is defined to   

   be a neutrosophic ℵ −structure of 𝑋, 

𝑋𝑁 ʘ 𝑋𝑀 ∶=  
𝑋

(𝑇𝑁∘𝑀,  𝐼𝑁∘𝑀,   𝐹𝑁∘𝑀) 
=  {

ℎ

𝑇𝑁∘𝑀(ℎ),  𝐼𝑁∘𝑀(ℎ),   𝐹𝑁∘𝑀(ℎ) 
 | ℎ ∈ 𝑋}, 

where 

(𝑇𝑁 ∘ 𝑇𝑀)(ℎ) = 𝑇𝑁∘𝑀(ℎ) = {
⋀ {𝑇𝑁(𝑟) ˅ 𝑇𝑀(𝑠)}

ℎ=𝑟𝑠

  𝑖𝑓 ∃ 𝑟, 𝑠 ∈ 𝑋 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ℎ = 𝑟𝑠

0                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

(𝐼𝑁 ∘ 𝐼𝑀)(ℎ) = 𝐼𝑁∘𝑀(ℎ) = {
⋁ {𝐼𝑁(𝑟) ˄ 𝐼𝑀(𝑠)}

ℎ=𝑟𝑠

  𝑖𝑓 ∃ 𝑟, 𝑠 ∈ 𝑋 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ℎ = 𝑟𝑠

−1                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

 

(𝐹𝑁 ∘ 𝐹𝑀)(ℎ) = 𝐹𝑁∘𝑀(ℎ) = {
⋀ {𝐹𝑁(𝑟) ˅ 𝐹𝑀(𝑠)}

ℎ=𝑟𝑠

  𝑖𝑓 ∃ 𝑟, 𝑠 ∈ 𝑋 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ℎ = 𝑟𝑠

0                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
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(iii) For t ∈ X, the element 
t

(TN∘M(t),  IN∘M(t),   FN∘M(t)) 
 is simply denoted by 

(XN ʘ XM)(t) = (TN∘M(t),   IN∘M(t),   FN∘M(t)) for the sake of convenience. 

(iv) The union of 𝑋𝑁 and 𝑋𝑀  is a neutrosophic  ℵ −structure over 𝑋 is defined as  

𝑋𝑁 ∪ 𝑋𝑀 = 𝑋𝑁∪𝑀 = (𝑋; 𝑇𝑁∪𝑀,   𝐼𝑁∪𝑀,    𝐹𝑁∪𝑀), 

where 

(𝑇𝑁 ∪ 𝑇𝑀)(ℎ𝑖) = 𝑇𝑁∪𝑀(ℎ𝑖) =  𝑇𝑁(ℎ𝑖) ˄ 𝑇𝑀(ℎ𝑖), 

(𝐼𝑁 ∪ 𝐼𝑀)(ℎ𝑖) = 𝐼𝑁∪𝑀(ℎ𝑖) =  𝐼𝑁(ℎ𝑖) ˅ 𝐼𝑀(ℎ𝑖), 

                   (𝐹𝑁 ∪ 𝐹𝑀)(ℎ𝑖) = 𝐹𝑁∪𝑀(ℎ𝑖) =  𝐹𝑁(ℎ𝑖) ˄ 𝐹𝑀(ℎ𝑖) ∀ℎ𝑖 ∈ 𝑋. 

(v) The intersection of 𝑋𝑁 and 𝑋𝑀 is a neutrosophic  ℵ −structure over 𝑋 is defined as 

𝑋𝑁 ∩ 𝑋𝑀 = 𝑋𝑁∩𝑀 = (𝑋; 𝑇𝑁∩𝑀,   𝐼𝑁∩𝑀,    𝐹𝑁∩𝑀), 

where 

(𝑇𝑁 ∩ 𝑇𝑀)(ℎ𝑖) = 𝑇𝑁∩𝑀(ℎ𝑖) =  𝑇𝑁(ℎ𝑖) ˅ 𝑇𝑀(ℎ𝑖), 

(𝐼𝑁 ∩ 𝐼𝑀)(ℎ𝑖) = 𝐼𝑁∩𝑀(ℎ𝑖) =  𝐼𝑁(ℎ𝑖) ˄ 𝐼𝑀(ℎ𝑖), 

                     (𝐹𝑁 ∩ 𝐹𝑀)(ℎ𝑖) = 𝐹𝑁∩𝑀(ℎ𝑖) =  𝐹𝑁(ℎ𝑖) ˅ 𝐹𝑀(ℎ𝑖) ∀ ℎ𝑖 ∈ 𝑋. 

3. Neutrosophic ℵ −bi-ideals of semigroups 

 In this section, we examine different properties of neutrosophic ℵ −bi-ideals of 𝑋.  

 

Theorem 3.1. For Φ ≠ B ⊆ 𝑋, the following assertions are equivalent: 

(i)  χB(XN) is a neutrosophic ℵ −bi-ideal of X, 

(ii) 𝐵 is a bi-ideal of X. 

Proof: Suppose 𝜒𝐵(𝑋𝑁) is a neutrosophic ℵ −bi-ideal of X. Let r, t ∈ 𝐵 and 𝑠 ∈ 𝑋. Then 

               𝜒𝐵(𝑇)𝑁(𝑟𝑠𝑡) ≤ 𝜒𝐵(𝑇)𝑁(𝑟) ∨ 𝜒𝐵(𝑇)𝑁(𝑡) = −1, 

𝜒𝐵(𝐼)𝑁(𝑟𝑠𝑡) ≥ 𝜒𝐵(𝐼)𝑁(𝑟) ∧ 𝜒𝐵(𝐼)𝑁(𝑡) = 0, 

                𝜒𝐵(𝐹)𝑁(𝑟𝑠𝑡) ≤ 𝜒𝐵(𝐹)𝑁(𝑟) ∨ 𝜒𝐵(𝐹)𝑁(𝑡) = −1.  

Thus 𝑟𝑠𝑡 ∈ 𝐵 and hence B is a bi-ideal of X,       

Conversely, assume  𝐵 is a bi-ideal of 𝑋. Let 𝑟, 𝑠, 𝑡 ∈ 𝑋. 

If 𝑟 ∈ 𝐵 and 𝑡 ∈ 𝐵, then 𝑟𝑠𝑡 ∈ 𝐵. Now 

      𝜒𝐵(𝑇)𝑁(𝑟𝑠𝑡) = −1 = 𝜒𝐵(𝑇)𝑁(𝑟) ∨ 𝜒𝐵(𝑇)𝑁(𝑡), 

𝜒𝐵(𝐼)𝑁(𝑟𝑠𝑡) = 0 = 𝜒𝐵(𝐼)𝑁(𝑟) ∧ 𝜒𝐵(𝐼)𝑁(𝑡), 

      𝜒𝐵(𝐹)𝑁(𝑟𝑠𝑡) = −1 = 𝜒𝐵(𝐹)𝑁(𝑟) ∨ 𝜒𝐵(𝐹)𝑁(𝑡).  

If 𝑟 ∉ 𝐵 or t∉ 𝐵, then 

 𝜒𝐵(𝑇)𝑁(𝑟𝑠𝑡) ≤ 0 = 𝜒𝐵(𝑇)𝑁(𝑟) ∨ 𝜒𝐵(𝑇)𝑁(𝑡), 

𝜒𝐵(𝐼)𝑁(𝑟𝑠𝑡) ≥ −1 = 𝜒𝐵(𝐼)𝑁(𝑟) ∧ 𝜒𝐵(𝐼)𝑁(𝑡) 

𝜒𝐵(𝐹)𝑁(𝑟𝑠𝑡) ≤ 0 = 𝜒𝐵(𝐹)𝑁(𝑟) ∨ 𝜒𝐵(𝐹)𝑁(𝑡).  

 Therefore 𝜒𝐵(𝑋𝑁) is a neutrosophic ℵ −bi-ideal of 𝑋.                        □  

Theorem 3.2. Let 𝜆, 𝛿, ε ∈ [−1, 0] be such that −3 ≤  𝜆 +  𝛿 +  ε ≤ 0. If 𝑋𝑁 is a neutrosophic ℵ −bi- 

ideal, then (𝜆, 𝛿, ε) −level set of 𝑋𝑁 is a neutrosophic bi- ideal of 𝑋 whenever 𝑋𝑁(𝜆, 𝛿, ε) ≠  ∅. 

Proof: Suppose 𝑋𝑁 ( 𝜆, 𝛿, ε) ≠  ∅  for 𝜆, 𝛿, ε ∈ [−1, 0]  with −3 ≤  𝜆 +  𝛿 +  ε ≤ 0.  Let 𝑋𝑁  be a 

neutrosophic ℵ −bi-ideal and let 𝑥, 𝑦, 𝑧 ∈ 𝑋𝑁(𝜆, 𝛿, ε). Then 

𝑇𝑁(𝑥𝑦𝑧) ≤ 𝑇𝑁(𝑥)⋁𝑇𝑁(𝑧) ≤ 𝜆, 

𝐼𝑁(𝑥𝑦𝑧) ≥ 𝐼𝑁(𝑥)⋀ 𝐼𝑁(𝑧) ≥ 𝛿, 
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𝐹𝑁(𝑥𝑦𝑧) ≤ 𝐹𝑁(𝑥)⋁𝐹𝑁(𝑧) ≤ ε 

which imply 𝑥𝑦𝑧 ∈ 𝑋𝑁(𝜆, 𝛿, ε). Therefore 𝑋𝑁(𝜆, 𝛿, ε) is a neutrosophic ℵ −bi-ideal of 𝑋.     □ 

Theorem 3.3. Let 𝑋𝑀 be a neutrosophic ℵ − structure of 𝑋. Then the equivalent assertions are: 

(i) 𝑋𝑀 ʘ 𝑋𝑀 ⊆  𝑋𝑀 and 𝑋𝑀 ⨀𝜒𝑋(𝑋𝑁) ʘ 𝑋𝑀 ⊆  𝑋𝑀 for any neutrosophic ℵ − structure 𝑋𝑁, 

(ii)  𝑋𝑀 is a neutrosophic ℵ −bi-ideal of 𝑋. 

Proof: Suppose (i) holds. Then 𝑋𝑀 is neutrosophic ℵ − subsemigroup of 𝑋 by Theorem 4.6 of [8]. 

Let 𝑟, 𝑠, 𝑡 ∈ 𝑋 and let 𝑎 = 𝑟𝑠𝑡. Then 

(𝑇𝑀)(𝑟𝑠𝑡) ≤ (𝑇𝑀 ∘ 𝜒𝑋(𝑇)𝑁  ∘  𝑇𝑀)(𝑟𝑠𝑡) = ⋀ {(𝑇𝑀 ∘ 𝜒𝑋(𝑇)𝑁)

𝑎=𝑟𝑠𝑡

(𝑟𝑠) ˅ 𝑇𝑀(𝑡)} 

 

                                                 = ⋀ { ⋀ {(𝑇𝑀

𝑏=𝑟𝑠

(𝑟) ˅ 𝜒𝑋(𝑇)𝑁

𝑎=𝑏𝑡

(𝑠)} ˅ 𝑇𝑀(𝑡)} 

      

                                           ≤ ⋀{𝑇𝑀(𝑟) ∨ 𝑇𝑀(𝑡)} ≤ 𝑇𝑀(𝑟) ∨ 𝑇𝑀(𝑡), 

         𝐼𝑀(𝑟𝑠𝑡) ≥ (𝐼𝑀 ∘ 𝜒𝑋(𝐼)𝑁  ∘  𝐼𝑀)(𝑟𝑠𝑡) = ⋁ {(𝐼𝑀 ∘ 𝜒𝑋(𝐼)𝑁)(𝑟𝑠) ˄ 𝐼𝑀(𝑡)

𝑎=𝑟𝑠𝑡

} 

                                     = ⋁ { ⋁ { 𝐼𝑀(𝑟)˄ 

𝑏=𝑟𝑠

𝜒𝑋(𝐼)𝑁(𝑠)} ˄ 𝐼𝑀(𝑡)

𝑎=𝑏𝑡

} 

                                  ≥ ⋁ { 𝐼𝑀(𝑟)˄ 𝐼𝑀(𝑡)

𝑎=𝑟𝑠𝑡

} ≥ 𝐼𝑀(𝑟)˄ 𝐼𝑀(𝑡), 

        (𝐹𝑀)(𝑟𝑠𝑡) ≤ (𝐹𝑀 ∘ 𝜒𝑋(𝐹)𝑁  ∘  𝐹𝑀)(𝑟𝑠𝑡) = ⋀ {(𝐹𝑀 ∘ 𝜒𝑋(𝐹)𝑁)

𝑎=𝑟𝑠𝑡

(𝑟𝑠) ˅ 𝐹𝑀(𝑡)} 

 

                                                   = ⋀ { ⋀ {(𝐹𝑀

𝑏=𝑟𝑠

(𝑟) ˅ 𝜒𝑋(𝐹)𝑁

𝑎=𝑏𝑡

(𝑠)} ˅ 𝐹𝑀(𝑡)} 

      

                                             ≤ ⋀ {𝐹𝑀(𝑟)

𝑎=𝑟𝑠𝑡

˅ 𝐹𝑀(𝑡)} ≤ 𝐹𝑀(𝑟)˅ 𝐹𝑀(𝑡). 

 

Therefore  𝑋𝑀 is a neutrosophic ℵ − bi-ideal of 𝑋.        

For converse, suppose (ii) holds. Then 𝑋𝑀 ʘ 𝑋𝑀 ⊆  𝑋𝑀 by Theorem 4.6 of [8]. 

Let 𝑥 ∈ 𝑋. If 𝑥 = 𝑟𝑏 and r= 𝑠𝑡  for some r, 𝑏, 𝑠, 𝑡 ∈ 𝑋, then 

(𝑇𝑀 ∘ 𝜒𝑋(𝑇)𝑁  ∘  𝑇𝑀)(𝑥) = ⋀ {(𝑇𝑀 ∘ 𝜒𝑋(𝑇)𝑁)

𝑥=𝑟𝑏

(𝑟) ˅ 𝑇𝑀(𝑏)} 

 

                                                               = ⋀ {⋀{𝑇𝑀

𝑟=𝑠𝑡

(𝑠) ˅ 𝜒𝑋(𝑇)𝑁

𝑥=𝑟𝑏

(𝑡)} ˅ 𝑇𝑀(𝑏)} 

      

                                   = ⋀ {⋀{(𝑇𝑀

𝑟=𝑠𝑡

(𝑠)

𝑥=𝑟𝑏

} ˅ 𝑇𝑀(𝑏)} 

                                                                                         = ⋀ {𝑇𝑀(𝑠𝑖)𝑥=𝑟𝑏  ˅ 𝑇𝑀(𝑏)} for some 𝑠𝑖 ∈ 𝑋 and r= 𝑠𝑖𝑡𝑖 

         

≥ ⋀ 𝑇𝑀(𝑠𝑖𝑡𝑖𝑏)

𝑥=𝑠𝑖𝑡𝑖𝑏

=  𝑇𝑀(𝑥),  

  

(𝐼𝑀 ∘ 𝜒𝑋(𝐼)𝑁  ∘  𝐼𝑀)(𝑥) = ⋁ {(𝐼𝑀 ∘ 𝜒𝑋(𝐼)𝑁)(𝑟) ˄ 𝐼𝑀(𝑏)

𝑥=𝑟𝑏

} 
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                                     = ⋁ { ⋁ { 𝐼𝑀(𝑠)˄ 

𝑟=𝑝𝑞

𝜒𝑋(𝐼)𝑁(𝑡)} ˄ 𝐼𝑀(𝑏)

𝑥=𝑟𝑏

} 

             = ⋁ {⋁{ 𝐼𝑀(𝑠)} 

𝑟=𝑠𝑡

 ˄ 𝐼𝑀(𝑏)

𝑥=𝑟𝑏

} 

 

                                                                             = ⋁ {𝐼𝑀(𝑠𝑖) ˄ 𝐼𝑀(𝑏)}𝑥=𝑎𝑏 , for some 𝑠𝑖 ∈ 𝑋 and 𝑟 = 𝑠𝑖𝑡𝑖 

 

           ≤ ⋁ 𝐼𝑀(𝑠𝑖𝑡𝑖𝑏) =

𝑥=𝑠𝑖𝑡𝑖𝑏

𝐼𝑀(𝑥), 

(𝐹𝑀 ∘ 𝜒𝑋(𝐹)𝑁  ∘  𝐹𝑀)(𝑥) = ⋀ {(𝐹𝑀 ∘ 𝜒𝑋(𝐹)𝑁)

𝑥=𝑟𝑏

(𝑟) ˅ 𝐹𝑀(𝑏)} 

 

                                                               = ⋀ {⋀{(𝐹𝑀

𝑎=𝑠𝑡

(𝑠) ˅ 𝜒𝑋(𝐹)𝑁

𝑥=𝑟𝑏

(𝑡)} ˅ 𝐹𝑀(𝑏)} 

      

                                   = ⋀ {⋀{(𝐹𝑀

𝑟=𝑠𝑡

(𝑠)

𝑥=𝑟𝑏

} ˅ 𝐹𝑀(𝑏)} 

                                                                                          = ⋀ {𝐹𝑀(𝑠𝑖)𝑥=𝑟𝑏  ˅ 𝐹𝑀(𝑏)} for some 𝑠𝑖 ∈ 𝑋 and 𝑎 = 𝑠𝑖𝑡𝑖 

         

≥ ⋀ 𝐹𝑀(𝑠𝑖𝑡𝑖𝑏)

𝑥=𝑠𝑖𝑡𝑖𝑏

=  𝐹𝑀(𝑥). 

Otherwise 𝑥 ≠ 𝑟𝑏 or 𝑎 ≠ 𝑠𝑡 for all r, 𝑏, 𝑠, 𝑡 ∈ 𝑋. Then 

(𝑇𝑀 ∘ 𝜒𝑋(𝑇)𝑁  ∘  𝑇𝑀)(𝑥) = 0 ≥ 𝑇𝑀(𝑥), 

(𝐼𝑀 ∘ 𝜒𝑋(𝐼)𝑁  ∘  𝐼𝑀)(𝑥) = −1 ≤ 𝐼𝑀(𝑥), 

(𝐹𝑀 ∘ 𝜒𝑋(𝐹)𝑁  ∘  𝐹𝑀)(𝑥) = 0 ≥ 𝐹𝑀(𝑥). 

Therefore 𝑋𝑀 ⨀𝜒𝑋(𝑋𝑁) ʘ 𝑋𝑀 ⊆  𝑋𝑀 for any neutrosophic ℵ − structure 𝑋𝑁 over 𝑋.     □ 

 

Definition 3.4. A semigroup 𝑋  is called neutrosophic ℵ − left (resp., right) duo if every 

neutrosophic ℵ −left (resp., right) ideal is neutrosophic ℵ −ideal of 𝑋.  

If 𝑋 is both neutrosophic ℵ − left duo and neutrosophic ℵ − right duo, then 𝑋  is called 

neutrosophic ℵ −duo 

 

Theorem 3.5. If 𝑋 is regular left duo (resp., duo, right duo), then the equivalent assertions are: 

 (i) 𝑋𝑀  in X is neutrosophic ℵ −bi- ideal, 

 (ii) 𝑋𝑀  in X is neutrosophic ℵ −right ideal (resp., ideal, left ideal). 

Proof: (𝒊) ⟹ (𝒊𝒊) Suppose 𝑋𝑀 is a neutrosophic ℵ −bi- ideal and 𝑔, ℎ ∈ 𝑋.  As 𝑋 is regular, we get 

𝑔 = 𝑔𝑡𝑔 ∈ 𝑔𝑋 ∩ 𝑋𝑔 for some 𝑡 ∈ 𝑋 which gives 𝑔ℎ ∈ (𝑔𝑋 ∩ 𝑋𝑔)𝑋 ⊆ 𝑔𝑋 ∩ 𝑋𝑔 as 𝑋 is left duo. So 

𝑔ℎ = 𝑔𝑠  and 𝑔ℎ = 𝑠′𝑔  for some 𝑠, 𝑠′ ∈ 𝑋.  As 𝑋  is regular, ∃𝑟 ∈ 𝑋 : 𝑔ℎ = 𝑔ℎ𝑟𝑔ℎ = 𝑔𝑠𝑟𝑠′𝑔 =

𝑔(𝑠𝑟𝑠′)𝑔. Since 𝑋𝑀  is  neutrosophic ℵ −bi- ideal, we have 

𝑇𝑀(𝑔ℎ) = 𝑇𝑀(𝑔(𝑠𝑟𝑠′)𝑔) ≤ 𝑇𝑀(𝑔) ∨ 𝑇𝑀(𝑔) = 𝑇𝑀(𝑔), 

𝐼𝑀(𝑔ℎ) = 𝐼𝑀(𝑔(𝑠𝑟𝑠′)𝑔) ≥ 𝐼𝑀(𝑔) ∧ 𝐼𝑀(𝑔) = 𝐼𝑀(𝑔), 

𝐹𝑀(𝑔ℎ) = 𝐹𝑀(𝑔(𝑠𝑟𝑠′)𝑔) ≤ 𝐹𝑀(𝑔) ∨ 𝐹𝑀(𝑔) = 𝐹𝑀(𝑔). 

Therefore 𝑋𝑀  is neutrosophic ℵ −right ideal.  

 (𝒊𝒊) ⟹ (𝒊) Suppose 𝑋𝑀  is neutrosophic ℵ −right ideal and let 𝑥, 𝑦, 𝑧 ∈ 𝑋. Then 

           𝑇𝑀(𝑥𝑦𝑧) ≤ 𝑇𝑀(𝑥) ≤ 𝑇𝑀(𝑥) ∨ 𝑇𝑀(𝑧), 

𝐼𝑀(𝑥𝑦𝑧) ≥ 𝐼𝑀(𝑥) ≥ 𝐼𝑀(𝑥) ∧ 𝐼𝑀(𝑧), 
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𝐹𝑀(𝑥𝑦𝑧) ≤ 𝐹𝑀(𝑥) ≤ 𝐹𝑀(𝑥) ∨ 𝐹𝑀(𝑧). 

Therefore 𝑋𝑀  is a neutrosophic ℵ −bi-ideal.                 □ 

 

Theorem 3.6. If 𝑋 is regular, then the equivalent assertions are: 

 (i) 𝑋  is left duo (resp., right duo, duo), 

 (ii) 𝑋  is neutrosophic ℵ −left duo (resp., right duo, duo). 

Proof: (𝒊) ⟹ (𝒊𝒊) Let r, s ∈ 𝑋,  we have 𝑟𝑠 ∈ (𝑟𝑋𝑟)𝑠 ⊆ 𝑟(𝑋𝑟)𝑋 ⊆ 𝑋𝑟 as 𝑋𝑟 is left ideal. Since 𝑋  is 

regular, we have 𝑟𝑠 = 𝑡𝑟 for some 𝑡 ∈ 𝑋.  

If 𝑋𝑀 is neutrosophic ℵ −left ideal, then 𝑇𝑀(𝑟𝑠) = 𝑇𝑀(𝑡𝑟) ≤ 𝑇𝑀(𝑟), 𝐼𝑀(𝑟𝑠) = 𝐼𝑀(𝑡𝑟) ≥ 𝐼𝑀(𝑟) and 

𝐹𝑀(𝑟𝑠) = 𝐹𝑀(𝑡𝑟) ≤ 𝐹𝑀(𝑟). Thus 𝑋𝑀 is neutrosophic ℵ −right ideal and therefore 𝑋  is neutrosophic 

ℵ −left duo. 

(𝒊𝒊) ⟹ (𝒊) Let 𝐴 be a left ideal of 𝑋. Then 𝜒𝐴(𝑋𝑀) is a neutrosophic  ℵ −left ideal by Theorem 

3.5 of [4]. By assumption, 𝜒𝐴(𝑋𝑀) is neutrosophic ℵ −ideal. Thus 𝐴 is a right ideal of 𝑋.       □ 

 

Theorem 3.7. If 𝑋 is regular, then the equivalent assertions are: 

(i) Every neutrosophic ℵ −bi-ideal is a neutrosophic ℵ −right (resp., left ideal, ideal) ideal,  

(ii) Every bi-ideal of X  is a right ideal (resp., left ideal, ideal). 

 

Proof:  (𝒊) ⟹ (𝒊𝒊)  Let 𝐴  be a bi-ideal of 𝑋 .  Then by Theorem 3.1 𝜒𝐴(𝑋𝑀)  is neutrosophic 

ℵ −bi-ideal for a neutrosophic ℵ −structure 𝑋𝑀 . Now by assumption, 𝜒𝐴(𝑋𝑀)  is neutrosophic 

ℵ −right ideal.  So by Theorem 3.5 of [4], 𝐴 is right ideal.   

 

         (𝒊𝒊) ⟹ (𝒊) Let 𝑋𝑀  be a neutrosophic ℵ −bi-ideal and let 𝑟, 𝑠 ∈ 𝑋.  Then we get r𝑋𝑟 is a bi-ideal 

of 𝑋. By hypothesis, we can have r𝑋𝑟 is right ideal.  Since 𝑋  is regular, we can get r∈ 𝑟𝑋𝑟. So 𝑟𝑠 ∈

(𝑟𝑋𝑟)𝑋 ⊆ 𝑟𝑋𝑟 implies 𝑟𝑠 = 𝑟𝑥𝑟 for some 𝑥 ∈ 𝑋. Now, 

 𝑇𝑀(𝑟𝑠) = 𝑇𝑀(𝑟𝑥𝑟) ≤ 𝑇𝑀(𝑟) ∨ 𝑇𝑀(𝑟) = 𝑇𝑀(𝑟), 

𝐼𝑀(𝑟𝑠) = 𝐼𝑀(𝑟𝑥𝑟) ≥ 𝐼𝑀(𝑟) ∧ 𝐼𝑀(𝑟) = 𝐼𝑀(𝑟) 

𝐹𝑀(𝑟𝑠) = 𝐹𝑀(𝑟𝑥𝑟) ≤ 𝐹𝑀(𝑟) ∨ 𝐹𝑀(𝑟) = 𝐹𝑀(𝑟). 

Thus 𝑋𝑀 is a neutrosophic ℵ −right ideal of 𝑋.              □ 

Theorem 3.8. For any 𝑋, the equivalent conditions are: 

(i) 𝑋 is regular, 

(ii) 𝑋𝑀 ∩ 𝑋𝑁 = 𝑋𝑀 ʘ𝑋𝑁⨀𝑋𝑀  for every neutrosophic ℵ − bi-ideal 𝑋𝑀  and neutrosophic ℵ − 

ideal 𝑋𝑁 of 𝑋. 

Proof: (𝒊) ⇒ (𝒊𝒊) Suppose 𝑋is regular, 𝑋𝑀 is a neutrosophic ℵ − bi-ideal and 𝑋𝑁  is a neutrosophic 

ℵ −  ideal of X. Then by Theorem 3.3, we have 𝑋𝑀 ʘ𝑋𝑁⨀𝑋𝑀 ⊆  𝑋𝑀  and 𝑋𝑀 ʘ𝑋𝑁⨀𝑋𝑀 ⊆  𝑋𝑁. So 

𝑋𝑀 ʘ𝑋𝑁⨀𝑋𝑀 ⊆  𝑋𝑀 ∩ 𝑋𝑁.  

Let 𝑟′ ∈ 𝑋.   As 𝑋 is regular, there is 𝑝 ∈ 𝑋 such that 𝑟′ = 𝑟′𝑝𝑟′ = 𝑟′𝑝𝑟′𝑝𝑟′. Now 

                                 𝑇𝑀∘𝑁∘𝑀(𝑟′) = ⋀ {𝑇𝑀(𝑑) ∨ 𝑇𝑁∘𝑀(𝑒)}

𝑟′=𝑑𝑒

 

= ⋀ {𝑇𝑀(𝑟′) ∨ { ⋀ {𝑇𝑁(𝑝𝑟′𝑝) ∨ 𝑇𝑀(𝑟′)}

𝑣=𝑝𝑟′𝑝𝑟′

}

𝑟′=𝑟′𝑒

 

                  ≤ ⋀ {𝑇𝑀(𝑟′) ∨ 𝑇𝑁(𝑟′)}

𝑟′=𝑟′𝑒

≤ 𝑇𝑀(𝑟′) ∨ 𝑇𝑁(𝑟′) = 𝑇𝑀∩𝑁(𝑟′), 

        

                   𝐼𝑀∘𝑁∘𝑀(𝑟′) = ⋁ {𝐼𝑀(𝑑) ˄ 𝐼𝑁∘𝑀(𝑒)𝑟′=𝑑𝑒 }                 
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                           = ⋁ {𝐼𝑀(𝑟′)˄{ ⋁ {  

𝑣=𝑝𝑟′𝑝𝑟′

𝐼𝑁(𝑝𝑟′𝑝)˄ 𝐼𝑀(𝑟′)

𝑟′=𝑟′𝑒

}}                     

 

                        ≥ ⋁ {𝐼𝑀(𝑟′) ˄ 𝐼𝑁(𝑟′)}

𝑟′=𝑟′𝑒

≥  𝐼𝑀(𝑟′) ˄ 𝐼𝑁(𝑟′) = 𝐼𝑀∩𝑁(𝑟′),  

   

                                   𝐹𝑀∘𝑁∘𝑀(𝑟′) = ⋀ {𝐹𝑀(𝑑) ∨ 𝐹𝑁∘𝑀(𝑒)}

𝑟′=𝑑𝑒

                             

                                                        = ⋀ {𝐹𝑀(𝑟′) ∨ { ⋀ {𝐹𝑁(𝑝𝑟′𝑝) ∨ 𝐹𝑀(𝑟′)}

𝑣=𝑝𝑟′𝑝𝑟′

}

𝑟′=𝑟′𝑒

 

                  ≤ ⋀ {𝐹𝑀(𝑟′) ∨ 𝐹𝑁(𝑟′)}

𝑟′=𝑟′𝑒

≤ 𝐹𝑀(𝑟′) ∨ 𝐹𝑁(𝑟′) = 𝐹𝑀∩𝑁(𝑟′).  

Thus 𝑋𝑀∩𝑁 ⊆ 𝑋𝑀 ʘ 𝑋𝑁⨀ 𝑋𝑀  and hence  𝑋𝑀∩𝑁 = 𝑋𝑀 ʘ𝑋𝑁⨀𝑋𝑀.  

(𝒊𝒊) ⇒ (𝒊) Suppose (ii) holds. Then 𝑋𝑀 ∩ 𝜒𝑋(𝑋𝑁) = 𝑋𝑀⨀𝜒𝑋(𝑋𝑁)⨀𝑋𝑀. But 𝑋𝑀 ∩ 𝜒𝑋(𝑋𝑁) =

𝑋𝑀, so 𝑋𝑀 = 𝑋𝑀⨀𝜒𝑋(𝑋𝑁)⨀𝑋𝑀 for every neutrosophic ℵ − bi-ideal 𝑋𝑀 of 𝑋. 

Let 𝑢′ ∈ 𝑋. Then 𝜒𝐵(𝑢′)(𝑋𝑀) is neutrosophic ℵ − bi-ideal by Theorem 3.1.  

By assumption, we have 

    𝜒𝐵(𝑢′)(𝑇)𝑀=𝜒𝐵(𝑢′)(𝑇)𝑀 ∘ 𝜒𝑋(𝑇)𝑁 ∘ 𝜒𝐵(𝑢′)(𝑇)𝑀 = 𝜒𝐵(𝑢′)𝑋𝐵(𝑢′)(𝑇)𝑀, 

𝜒𝐵(𝑢′)(𝐼)𝑀=𝜒𝐵(𝑢′)(𝐼)𝑀 ∘ 𝜒𝑋(𝐼)𝑁 ∘ 𝜒𝐵(𝑢′)(𝐼)𝑀 = 𝜒𝐵(𝑢′)𝑋𝐵(𝑢′)(𝐼)𝑀, 

    𝜒𝐵(𝑢′)(𝐹)𝑀=𝜒𝐵(𝑢′)(𝐹)𝑀 ∘ 𝜒𝑋(𝐹)𝑁 ∘ 𝜒𝐵(𝑢′)(𝐹)𝑀 = 𝜒𝐵(𝑢′)𝑋𝐵(𝑢′)(𝐹)𝑀. 

 Since 𝑢′ ∈ 𝐵(𝑢′), we have 

     𝜒𝐵(𝑢′)𝑋𝐵(𝑢′)(𝑇)𝑀(𝑢′) = 𝜒𝐵(𝑢′)(𝑇)𝑀(𝑢′) = −1, 

𝜒𝐵(𝑢′)𝑋𝐵(𝑢′)(𝐼)𝑀(𝑢′) = 𝜒𝐵(𝑢′)(𝐼)𝑀(𝑢′) = 0, 

         𝜒𝐵(𝑢′)𝑋𝐵(𝑢′)(𝐹)𝑀(𝑢′) = 𝜒𝐵(𝑢′)(𝐹)𝑀(𝑢′) = −1 

Thus u’∈ 𝐵(𝑢′)𝑋𝐵(𝑢′) and hence 𝑋 is regular.                    □ 

  

Theorem 3.9. For any 𝑋, the below statements are equivalent: 

(i) 𝑋 is regular, 

(ii) 𝑋𝑀 ∩ 𝑋𝑁 = 𝑋𝑀 ʘ𝑋𝑁  for every neutrosophic ℵ −  bi-ideal 𝑋𝑀  and neutrosophic ℵ − left 

ideal 𝑋𝑁 of 𝑋. 

Proof:(𝒊) ⇒ (𝒊𝒊) Let 𝑋𝑀 and  𝑋𝑁 be neutrosophic ℵ − bi-ideal and neutrosophic ℵ −left ideal of 𝑋 

respectively. Let r ∈ 𝑋.  Then ∃𝑥 ∈ 𝑋 :  r= 𝑟𝑥𝑟. Now 

                                  𝑇𝑀∘𝑁(𝑟) = ⋀ {𝑇𝑀

𝑟=𝑢𝑣

(𝑢) ˅ 𝑇𝑁(𝑣)} ≤ 𝑇𝑀(𝑟)˅ 𝑇𝑁(𝑥𝑟) ≤ 𝑇𝑀(𝑟)˅ 𝑇𝑁(𝑟) = 𝑇𝑀∩𝑁(𝑟), 

                        𝐼𝑀∘𝑁 (𝑟) = ⋁ {𝐼𝑀(𝑢) ˄  𝐼𝑁(𝑣)}

𝑟=𝑢𝑣

≥ 𝐼𝑀(𝑟) ˄  𝐼𝑁(𝑥𝑟) ≥ 𝐼𝑀(𝑟) ˄  𝐼𝑁(𝑟) = 𝐼𝑀∩𝑁(𝑟), 

                                  𝐹𝑀∘𝑁(𝑟) = ⋀ {𝐹𝑀

𝑟=𝑢𝑣

(𝑢) ˅ 𝐹𝑁(𝑣)} ≤ 𝐹𝑀(𝑟)˅ 𝐹𝑁(𝑥𝑟) ≤ 𝐹𝑀(𝑟)˅ 𝐹𝑁(𝑟) = 𝐹𝑀∩𝑁(𝑟). 

 Therefore 𝑋𝑀∩𝑁 ⊆ 𝑋𝑀 ʘ𝑋𝑁.     

 (𝒊𝒊) ⇒ (𝒊)  Suppose (ii) holds, and let 𝑋𝑀 and 𝑋𝑁  be neutrosophic ℵ −  right ideal and 

neutrosophic ℵ −  left ideal of X respectively. Since every neutrosophic ℵ −  right ideal is 

neutrosophic ℵ −  bi-ideal,  𝑋𝑀  is neutrosophic ℵ −  bi-ideal.  Then by assumption, 𝑋𝑀∩𝑁 ⊆

𝑋𝑀 ʘ𝑋𝑁. By Theorem 3.8 and Theorem 3.9 of [4], we can get 𝑋𝑀⨀𝑋𝑁 ⊆ 𝑋𝑁 and 𝑋𝑀⨀𝑋𝑁 ⊆ 𝑋𝑀 and 

so 𝑋𝑀⨀𝑋𝑁 ⊆ 𝑋𝑀 ∩ 𝑋𝑁 = 𝑋𝑀∩𝑁. Therefore 𝑋𝑀⨀𝑋𝑁 = 𝑋𝑀∩𝑁. 

 Let 𝐾 and 𝐿  be right and left ideals of 𝑋  respectively, and r  ∈ 𝐾 ∩ 𝐿.  Then   

𝜒𝐾(𝑋𝑀)⨀𝜒𝐿(𝑋𝑀) = 𝜒𝐾(𝑋𝑀) ∩ 𝜒𝐿(𝑋𝑀) which implies 𝜒𝐾𝐿(𝑋𝑀) = 𝜒𝐾∩𝐿(𝑋𝑀). Since r ∈ 𝐾 ∩ 𝐿, we have 
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𝜒𝐾∩𝐿(𝑇)𝑀(𝑟) = −1 = 𝜒𝐾𝐿(𝑇)𝑀(𝑟), 𝜒𝐾∩𝐿(𝐼)𝑀(𝑟) = 0 = 𝜒𝐾𝐿(𝐼)𝑀(𝑟)  and 𝜒𝐾∩𝐿(𝐹)𝑀(𝑟) = −1 =

𝜒𝐾𝐿(𝐹)𝑀(𝑟) which imply r ∈ 𝐾𝐿.Thus 𝐾 ∩ 𝐿 ⊆ 𝐾𝐿 ⊆ 𝐾 ∩ 𝐿. So 𝐾 ∩ 𝐿 = 𝐾𝐿. Thus 𝑋 is regular.    □ 

 

Theorem 3.10. For any 𝑋, the equivalent conditions are: 

(i) 𝑋 is regular, 

(ii) 𝑋𝑀 ∩ 𝑋𝑁 ⊆ 𝑋𝑀 ʘ𝑋𝑁 for every neutrosophic ℵ − right ideal 𝑋𝑁 and neutrosophic ℵ −   

        bi-ideal 𝑋𝑀 of 𝑋. 

Proof: It is same as Theorem 3.9.                    □ 

Theorem 3.11. For any 𝑋, the equivalent assertions are: 

(i) 𝑋 is regular, 

(ii) 𝑋𝐿 ∩ 𝑋𝑀 ∩ 𝑋𝑁 ⊆ 𝑋𝐿⨀𝑋𝑀 ʘ𝑋𝑁 for every neutrosophicℵ − right ideal 𝑋𝐿, neutrosophic ℵ − 

bi-ideal 𝑋𝑀 and neutrosophic ℵ − left ideal 𝑋𝑁 of 𝑋. 

Proof: (𝒊) ⇒ (𝒊𝒊) Suppose 𝑋 is regular, and let 𝑋𝐿, 𝑋𝑀, 𝑋𝑁 be neutrosophic ℵ − right, bi-ideal, left 

ideals of 𝑋 respectively. Let r ∈ 𝑋.  Then there is 𝑥 ∈ 𝑋 with r= 𝑟𝑥𝑟 = 𝑟𝑥𝑟𝑥𝑟. Now 

          𝑇𝐿∘𝑀∘𝑁(𝑟) = ⋀ {𝑇𝐿

𝑟=𝑢𝑣

(𝑢) ˅ 𝑇𝑀∘𝑁(𝑣)} ≤ 𝑇𝐿(𝑟𝑥)˅ 𝑇𝑀∘𝑁(𝑟𝑥𝑟) ≤ 𝑇𝐿(𝑟)˅{𝑇𝑀(𝑟)˅ 𝑇𝑁(𝑥𝑟)}  

≤ 𝑇𝐿(𝑟)˅𝑇𝑀(𝑟)˅ 𝑇𝑁(𝑟) = 𝑇𝐿∩𝑀∩𝑁(𝑟), 

             𝐼𝐿∘𝑀∘𝑁 (𝑟) = ⋁ {𝐼𝐿(𝑢) ˄  𝐼𝑀∘𝑁(𝑣)}

𝑟=𝑢𝑣

≥ 𝐼𝐿(𝑟𝑥) ˄  𝐼𝑀∘𝑁(𝑟𝑥𝑟) ≥ 𝐼𝐿(𝑟)˄{𝐼𝑀(𝑟) ˄  𝐼𝑁(𝑥𝑟)}

≥ 𝐼𝐿(𝑟)˄𝐼𝑀(𝑟) ˄  𝐼𝑁(𝑟) = 𝐼𝐿∩𝑀∩𝑁(𝑟),       

            𝐹𝐿∘𝑀∘𝑁(𝑟) = ⋀ {𝐹𝐿

𝑟=𝑢𝑣

(𝑢) ˅ 𝐹𝑀∘𝑁(𝑣)} ≤ 𝐹𝐿(𝑟𝑥)˅ 𝐹𝑀∘𝑁(𝑟𝑥𝑟) ≤ 𝐹𝐿(𝑟)˅𝐹𝑀(𝑟)˅ 𝐹𝑁(𝑥𝑟)

≤ 𝐹𝐿(𝑟)˅𝐹𝑀(𝑟)˅ 𝐹𝑁(𝑟) = 𝐹𝐿∩𝑀∩𝑁(𝑟). 

 Therefore 𝑋𝐿∩𝑀∩𝑁 ⊆ 𝑋𝐿⨀𝑋𝑀 ʘ𝑋𝑁.     

(𝒊𝒊) ⇒ (𝒊) Suppose (ii) holds, and let 𝑋𝐿 and 𝑋𝑁 be neutrosophic ℵ − right and neutrosophic 

ℵ − left ideal of X respectively, and 𝑋𝑀   a neutrosophic ℵ −bi-ideal of  𝑋. Then  𝜒𝑋(𝑋𝑀)  is a 

neutrosophic ℵ − bi-ideal by Theorem 3.1. Now 𝑋𝐿 ∩ 𝑋𝑁 = 𝑋𝐿 ∩ 𝜒𝑋(𝑋𝑀) ∩ 𝑋𝑁 ⊆  𝑋𝐿 ʘ𝜒𝑋(𝑋𝑀)⨀𝑋𝑁 ⊆

𝑋𝐿⨀𝑋𝑁. Again by Theorem 3.8 and Theorem 3.9 of [4], we can get 𝑋𝐿⨀𝑋𝑁 ⊆ 𝑋𝐿 ∩ 𝑋𝑁and so 𝑋𝐿⨀𝑋𝑁 =

𝑋𝐿 ∩ 𝑋𝑁. 

 Let 𝐾 and L be right and left ideals of 𝑋 respectively. Then 𝜒𝐾(𝑋𝑀)⨀𝜒𝐿(𝑋𝑀) = 𝜒𝐾(𝑋𝑀) ∩

𝜒𝐿(𝑋𝑀). By Theorem 3.6 of [4], we have 𝜒𝐾𝐿(𝑋𝑀) = 𝜒𝐾∩𝐿(𝑋𝑀). Let r ∈ 𝐾 ∩ 𝐿. Then 

𝜒𝐾𝐿(𝑇)𝑀(𝑟) = 𝜒𝐾∩𝐿(𝑇)𝑀(𝑟) = −1, 

𝜒𝐾𝐿(𝐼)𝑀(𝑟) = 𝜒𝐾∩𝐿(𝐼)𝑀(𝑟) = 0, 

𝜒𝐾𝐿(𝐹)𝑀(𝑟) = 𝜒𝐾∩𝐿(𝐹)𝑀(𝑟) = −1. 

So r ∈ 𝐾𝐿. Thus 𝐾 ∩ 𝐿 ⊆ 𝐾𝐿 ⊆ 𝐾 ∩ 𝐿. Hence 𝐾 ∩ 𝐿 = 𝐾𝐿. Therefore 𝑋 is regular.      □ 

Theorem 3.12. For any 𝑋,  the equivalent conditions are: 

(i) 𝑋 is regular and intra- regular, 

(ii) 𝑋𝑀 ∩ 𝑋𝑁 ⊆ 𝑋𝑀 ʘ𝑋𝑁 for every neutrosophic ℵ − bi-ideals 𝑋𝑀, 𝑋𝑁 of 𝑋. 

Proof: (𝒊) ⇒ (𝒊𝒊) Let 𝑋𝑀 and 𝑋𝑁 be neutrosophic ℵ − bi-ideals.  Let ℎ ∈ 𝑋.  Then by regularity of 

𝑋 , h = ℎ𝑥ℎ = ℎ𝑥ℎ𝑥ℎ for some x ∈ 𝑋.  Since 𝑋  is intra-regular, ∃𝑦, 𝑧 ∈ 𝑋  : h = 𝑦ℎ2𝑧.  Then            

ℎ = ℎ𝑥𝑦ℎℎ𝑧𝑥ℎ. Now 
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           𝑇𝑀∘𝑁(ℎ) = ⋀ {𝑇𝑀

ℎ=𝑟𝑡

(𝑟) ˅ 𝑇𝑁(𝑡)} ≤ 𝑇𝑀(ℎ𝑥𝑦ℎ)˅ 𝑇𝑁(ℎ𝑧𝑥ℎ) ≤ 𝑇𝑀(ℎ)˅ 𝑇𝑁(ℎ)      = 𝑇𝑀∩𝑁(ℎ), 

  𝐼𝑀∘𝑁 (ℎ) = ⋁ {𝐼𝑀(𝑟) ˄  𝐼𝑁(𝑡)}

ℎ=𝑟𝑡

≥ 𝐼𝑀(ℎ𝑥𝑦ℎ) ˄  𝐼𝑁(ℎ𝑧𝑥ℎ) ≥ 𝐼𝑀(ℎ) ˄  𝐼𝑁(ℎ) = 𝐼𝑀∩𝑁(ℎ), 

                     𝐹𝑀∘𝑁(ℎ) = ⋀ {𝐹𝑀

ℎ=𝑟𝑡

(𝑟) ˅ 𝐹𝑁(𝑡)} ≤ 𝐹𝑀(ℎ𝑥𝑦ℎ)˅ 𝐹𝑁(ℎ𝑧𝑥ℎ) ≤ 𝐹𝑀(ℎ)˅ 𝐹𝑁(ℎ) = 𝐹𝑀∩𝑁(ℎ). 

 Therefore 𝑋𝑀 ∩ 𝑋𝑁 ⊆ 𝑋𝑀 ʘ𝑋𝑁 for every neutrosophic ℵ − bi-ideals 𝑋𝑀 and 𝑋𝑁.   

 (𝒊𝒊) ⇒ (𝒊) Suppose (ii) holds, and let 𝑋𝑀 and 𝑋𝑁 be neutrosophic ℵ − right and left ideal of X 

respectively. Then 𝑋𝑀  and 𝑋𝑁  are neutrosophic ℵ − bi-ideals. By assumption, 𝑋𝑀∩𝑁 ⊆ 𝑋𝑀 ʘ𝑋𝑁. 

By Theorem 3.8 and Theorem 3.9 of [4], we can get 𝑋𝑀⨀𝑋𝑁 ⊆ 𝑋𝑁  and 𝑋𝑀⨀𝑋𝑁 ⊆ 𝑋𝑀  and so 

𝑋𝑀⨀𝑋𝑁 ⊆ 𝑋𝑀 ∩ 𝑋𝑁 = 𝑋𝑀∩𝑁. Therefore 𝑋𝑀⨀𝑋𝑁 = 𝑋𝑀∩𝑁. 

 Let 𝐾, 𝐿 be right, left ideals of 𝑋 respectively. Then 𝜒𝐾(𝑋𝑀)⨀𝜒𝐿(𝑋𝑀) = 𝜒𝐾(𝑋𝑀) ∩ 𝜒𝐿(𝑋𝑀).   

By Theorem 3.6 of [4], 𝜒𝐾𝐿(𝑋𝑀) = 𝜒𝐾∩𝐿(𝑋𝑀).  Let 𝑟 ∈ 𝐾 ∩ 𝐿.  Then  𝜒𝐾∩𝐿(𝑇)𝑀(𝑟) = −1 =

𝜒𝐾𝐿(𝑇)𝑀(𝑟), 𝜒𝐾∩𝐿(𝐼)𝑀(𝑟) = 0 = 𝜒𝐾𝐿(𝐼)𝑀(𝑟)  and 𝜒𝐾∩𝐿(𝐹)𝑀(𝑟) = −1 = 𝜒𝐾𝐿(𝐹)𝑀(𝑟)  which imply 𝑟 ∈

𝐾𝐿. Thus 𝐾 ∩ 𝐿 ⊆ 𝐾𝐿 ⊆ 𝐾 ∩ 𝐿 and hence 𝐾 ∩ 𝐿 = 𝐾𝐿. Therefore 𝑋 is regular.  

Also, for 𝑟 ∈ 𝑋, 𝜒𝐵(𝑟)(𝑋𝑀) ∩ 𝜒𝐵(𝑟)(𝑋𝑀) = 𝜒𝐵(𝑟)(𝑋𝑀)⨀𝜒𝐵(𝑟)(𝑋𝑀). By Theorem 3.8 and Theorem 3.9 

of [4], we get 𝜒𝐵(𝑟)(𝑋𝑀) = 𝜒𝐵(𝑟)𝐵(𝑟)(𝑋𝑀).since𝜒𝐵(𝑟)(𝑇)𝑀(𝑟) = −1 = 𝜒𝐵(𝑟)(𝐹)𝑀(𝑟)and 𝜒𝐵(𝑟)(𝐼)𝑀(𝑟) =

0,   we get 𝜒𝐵(𝑟)𝐵(𝑟)(𝑇)𝑀(𝑟) = −1 = 𝜒𝐵(𝑟)𝐵(𝑟)(𝐹)𝑀(𝑟)  and 𝜒𝐵(𝑟)𝐵(𝑟)(𝐼)𝑀(𝑟) = 0  which imply 𝑟 ∈

𝐵(𝑟)𝐵(𝑟). Thus 𝑋 is intra-regular.                              □ 

Theorem 3.13. For any 𝑋, the equivalent conditions are: 

(i) 𝑋 is intra-regular and regular, 

(ii) 𝑋𝑀 ∩ 𝑋𝑁 ⊆ (𝑋𝑀 ʘ𝑋𝑁) ∩ (𝑋𝑁ʘ𝑋𝑀) for every neutrosophic ℵ − bi-ideals 𝑋𝑀 and 𝑋𝑁 of 𝑋. 

Proof:(𝒊) ⇒ (𝒊𝒊) Suppose 𝑋 is regular and intra- regular, and let 𝑋𝑀 and 𝑋𝑁 be neutrosophic ℵ − 

bi-ideals of 𝑋. Then by Theorem 3.12, 𝑋𝑀 ʘ𝑋𝑁 ⊇ 𝑋𝑀 ∩ 𝑋𝑁. Similarly we can prove that 𝑋𝑁 ʘ𝑋𝑀 ⊇

𝑋𝑁 ∩ 𝑋𝑀.Therefore (𝑋𝑀 ʘ𝑋𝑁) ∩ (𝑋𝑁ʘ𝑋𝑀) ⊇ 𝑋𝑀 ∩ 𝑋𝑁  for every neutrosophic ℵ − bi-ideals 𝑋𝑀  and 

𝑋𝑁 of 𝑋. 

(𝒊𝒊) ⇒ (𝒊) Let 𝑋𝑀 and 𝑋𝑁 be neutrosophic ℵ − bi-ideals of 𝑋. Then 𝑋𝑀 ∩ 𝑋𝑁 ⊆ 𝑋𝑀 ʘ𝑋𝑁 gives 

𝑋 is intra-regular and regular by Theorem 3.12.                  □ 

Theorem 3.14. For any 𝑋,  the equivalent assertions are: 

(i) 𝑋 is intra-regular and regular, 

(ii) 𝑋𝑀 ∩ 𝑋𝑁 ⊆ 𝑋𝑀 ʘ𝑋𝑁⨀𝑋𝑀 for every neutrosophic ℵ − bi-ideals 𝑋𝑀 and 𝑋𝑁 of 𝑋. 

Proof:(𝒊) ⇒ (𝒊𝒊) Let 𝑋𝑀  and 𝑋𝑁  be neutrosophic ℵ − bi-ideals, and 𝑎 ∈ 𝑋.  As 𝑋  is regular, 𝑎 =

𝑎𝑥𝑎 = 𝑎𝑥𝑎𝑥𝑎𝑥𝑎 for some 𝑥 ∈ 𝑋.  Since 𝑋 is intra-regular, 𝑎 = 𝑦𝑎2𝑧  for some 𝑦, 𝑧 ∈ 𝑋. Then 𝑎 =

(𝑎𝑥𝑦𝑎)(𝑎𝑧𝑥𝑦𝑎)(𝑎𝑧𝑥𝑎). Now 

𝑇𝑀∘𝑁∘𝑀(𝑎) = ⋀ {𝑇𝑀

𝑎=𝑘𝑚

(𝑘) ˅ 𝑇𝑁∘𝑀(𝑚)} 

                                                              = ⋀ {𝑇𝑀

𝑎=(𝑎𝑥𝑦𝑎)𝑣

(𝑎𝑥𝑦𝑎) ˅ {⋀{

𝑣=𝑟𝑡

𝑇𝑁(𝑟) ∨ 𝑇𝑀(𝑡)}} 

                                            ≤ 𝑇𝑀(𝑎𝑥𝑦𝑎)˅ 𝑇𝑁(𝑎𝑧𝑥𝑦𝑎)˅ 𝑇𝑀(𝑎𝑧𝑥𝑎) 

                                              ≤ 𝑇𝑀(𝑎)˅ 𝑇𝑁(𝑎)˅ 𝑇𝑀(𝑎)      = 𝑇𝑀∩𝑁(𝑎), 

𝐼𝑀∘𝑁∘𝑀 (𝑎) = ⋁ {𝐼𝑀(𝑘) ˄  𝐼𝑁∘𝑀(𝑚)}

𝑎=𝑘𝑚

 

                                                            = ⋁ {𝐼𝑀(𝑎𝑥𝑦𝑎) ˄  {⋁{

𝑣=𝑟𝑡

𝐼𝑁(𝑟) ∧ 𝐼𝑀(𝑡)}}

𝑎=(𝑎𝑥𝑦𝑎)𝑣
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                                            ≥ 𝐼𝑀(𝑎𝑥𝑦𝑎) ˄  𝐼𝑁(𝑎𝑧𝑥𝑦𝑎)˄  𝐼𝑀(𝑎𝑧𝑥𝑎) 

                                          ≥ 𝐼𝑀(𝑎) ˄  𝐼𝑁(𝑎) ∧ 𝐼𝑀(𝑎) = 𝐼𝑀∩𝑁(𝑎), 

 

and 

𝐹𝑀∘𝑁∘𝑀(𝑎) = ⋀ {𝐹𝑀

𝑎=𝑘𝑚

(𝑘) ˅ 𝐹𝑁∘𝑀(𝑚)} 

                                                                = ⋀ {𝐹𝑀

𝑎=(𝑎𝑥𝑦𝑎)𝑣

(𝑎𝑥𝑦𝑎) ˅ {⋀{

𝑣=𝑟𝑡

𝐹𝑁(𝑟) ∨ 𝐹𝑀(𝑡)}} 

                                            ≤ 𝐹𝑀(𝑎𝑥𝑦𝑎)˅ 𝐹𝑁(𝑎𝑧𝑥𝑦𝑎)˅ 𝐹𝑀(𝑎𝑧𝑥𝑎) 

                                                                             ≤ 𝐹𝑀(𝑎)˅ 𝐹𝑁(𝑎)˅ 𝐹𝑀(𝑎) = 𝐹𝑀∩𝑁(𝑎).  

Therefore 𝑋𝑀 ∩ 𝑋𝑁 ⊆ 𝑋𝑀 ʘ𝑋𝑁ʘ𝑋𝑀 for every neutrosophic ℵ − bi-ideals 𝑋𝑀 and 𝑋𝑁 of 𝑋. 

 (𝒊𝒊) ⇒ (𝒊) Let ℎ𝑗 ∈ 𝑋. Then  

𝜒𝐵(ℎ𝑗)(𝑋𝑀) ⊆ 𝜒𝐵(ℎ𝑗)(𝑋𝑀) ∩ 𝜒𝐵(ℎ𝑗)(𝑋𝑀) ⊆ 𝜒𝐵(ℎ𝑗)(𝑋𝑀)⨀ 𝜒𝐵(ℎ𝑗)(𝑋𝑀) ⨀𝜒𝐵(ℎ𝑗)(𝑋𝑀). 

 

So 

 𝜒𝐵(ℎ𝑗)(𝑇)𝑀(ℎ𝑗) ≥ 𝜒𝐵(ℎ𝑗)𝐵(ℎ𝑗)𝐵(ℎ𝑗)(𝑇)𝑀(ℎ𝑗), 

𝜒𝐵(ℎ𝑗)(𝐼)𝑀(ℎ𝑗) ≤ 𝜒𝐵(ℎ𝑗)𝐵(ℎ𝑗)𝐵(ℎ𝑗)(𝐼)𝑀(ℎ𝑗), 

     𝜒𝐵(ℎ𝑗)(𝐹)𝑀(ℎ𝑗) ≥ 𝜒𝐵(ℎ𝑗)𝐵(ℎ𝑗)𝐵(ℎ𝑗)(𝐹)𝑀(ℎ𝑗). 

 Since 𝜒𝐵(ℎ𝑗)(𝑇)𝑀(ℎ𝑗) = −1 = 𝜒𝐵(ℎ𝑗)(𝐹)𝑀(ℎ𝑗) and 𝜒𝐵(ℎ𝑗)(𝐼)𝑀(ℎ𝑗) = 0, we get 

𝜒𝐵(ℎ𝑗)𝐵(ℎ𝑗)𝐵(ℎ𝑗)(𝑇)𝑀(ℎ𝑗) = −1 = 𝜒𝐵(ℎ𝑗)𝐵(ℎ𝑗)𝐵(ℎ𝑗)(𝐹)𝑀(ℎ𝑗)  and 𝜒𝐵(ℎ𝑗)𝐵(ℎ𝑗)𝐵(ℎ𝑗)(𝐼)𝑀(ℎ𝑗) = 0  which 

imply ℎ𝑗 ∈ 𝐵(ℎ𝑗)𝐵(ℎ𝑗)𝐵(ℎ𝑗).  Therefore 𝑋 is intra-regular and regular.            □ 

 

Theorem 3.15. For any 𝑋,  the equivalent assertions are: 

(i) 𝑋 is intra-regular, 

(ii) For each neutrosophic ℵ −ideal 𝑋𝑀 of 𝑋, 𝑋𝑀(𝑎) = 𝑋𝑀(𝑎2) ∀𝑎 ∈ 𝑋. 

Proof: (𝒊) ⇒ (𝒊𝒊) Let 𝑎 ∈ 𝑋. Then 𝑎 = 𝑦𝑎2𝑧 for some 𝑦, 𝑧 ∈ 𝑋.  For a neutrosophic ℵ −ideal 𝑋𝑀,  

we have 

𝑇𝑀(𝑎) = 𝑇𝑀(𝑦𝑎2𝑧) ≤ 𝑇𝑀(𝑎2𝑧) ≤ 𝑇𝑀(𝑎2) ≤ 𝑇𝑀(𝑎), 

𝐼𝑀(𝑎) = 𝐼𝑀(𝑦𝑎2𝑧) ≥ 𝐼𝑀(𝑎2𝑧) ≥ 𝐼𝑀(𝑎2) ≥ 𝐼𝑀(𝑎), 

𝐹𝑀(𝑎) = 𝐹𝑀(𝑦𝑎2𝑧) ≤ 𝐹𝑀(𝑎2𝑧) ≤ 𝐹𝑀(𝑎2) ≤ 𝐹𝑀(𝑎), 

so 𝑇𝑀(𝑎) = 𝑇𝑀(𝑎2); 𝐼𝑀(𝑎) = 𝐼𝑀(𝑎2) and 𝐹𝑀(𝑎) = 𝐹𝑀(𝑎2) for all 𝑎 ∈ 𝑋. Therefore 𝑋𝑀(𝑎) = 𝑋𝑀(𝑎2)  

 (𝒊𝒊) ⇒ (𝒊) Let 𝑎 ∈ 𝑋. Then 𝐼(𝑎2) is an ideal of 𝑋. Thus 𝜒𝐼(𝑎2)(𝑋𝑀) is neutrosophic ℵ −ideal 

by Theorem 3.5 of [4].  By assumption, 𝜒𝐼(𝑎2)(𝑋𝑀)(𝑎) = 𝜒𝐼(𝑎2)(𝑋𝑀)(𝑎2).  Since 𝜒𝐼(𝑎2)(𝑇)𝑀(𝑎2) =

−1 = 𝜒𝐼(𝑎2)(𝐹)𝑀(𝑎2)  and 𝜒𝐼(𝑎2)(𝐼)𝑀(𝑎2) = 0,  we get 𝜒𝐼(𝑎2)(𝑇)𝑀(𝑎) = −1 = 𝜒𝐼(𝑎2)(𝐹)𝑀(𝑎)  and 

𝜒𝐼(𝑎2)(𝐼)𝑀(𝑎) = 0 imply 𝑎 ∈ 𝐼(𝑎2). Thus 𝑋 is intra-regular.                     □ 

 

Theorem 3.16. For any 𝑋,  the equivalent assertions are: 

(i) 𝑋 is left (resp., right) regular, 

(ii) For each neutrosophic ℵ −left (resp., right) ideal 𝑋𝑀 of 𝑋, 𝑋𝑀(𝑎) = 𝑋𝑀(𝑎2)  ∀𝑎 ∈ 𝑋. 

Proof: (𝒊) ⇒ (𝒊𝒊)  Suppose 𝑋  is left regular. Then 𝑎 = 𝑦𝑎2  for some 𝑦 ∈ 𝑋    Let 𝑋𝑀  be 

neutrosophic ℵ − left ideal. Then 𝑇𝑀(𝑎) = 𝑇𝑀(𝑦𝑎2) ≤ 𝑇𝑀(a2)  and so 𝑇𝑀(𝑎) = 𝑇𝑀(𝑎2), 𝐼𝑀(𝑎) =
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𝐼𝑀(𝑦𝑎2) ≥ 𝐼𝑀(𝑎)  and so 𝐼𝑀(𝑎) = 𝐼𝑀(𝑎2),  and 𝐹𝑀(𝑎) = 𝐹𝑀(𝑦𝑎2) ≤ 𝐹𝑀(𝑎)  and so 𝐹𝑀(𝑎) = 𝐹𝑀(𝑎2). 

Therefore 𝑋𝑀(𝑎) = 𝑋𝑀(𝑎2) for all 𝑎 ∈ 𝑋. 

(𝒊𝒊) ⇒ (𝒊) Let 𝑋𝑀  be neutrosophic ℵ −left ideal. Then for any 𝑎 ∈ 𝑋,  we have 𝜒𝐿(𝑎2)(𝑇)𝑀(𝑎) =

𝜒𝐿(𝑎2)(𝑇)𝑀(𝑎2) = −1, 𝜒𝐿(𝑎2)(𝐼)𝑀(𝑎) = 𝜒𝐿(𝑎2)(𝐼)𝑀(𝑎2) = 0  and 𝜒𝐿(𝑎2)(𝐹)𝑀(𝑎) = 𝜒𝐿(𝑎2)(𝐹)𝑀(𝑎2) = −1  

imply 𝑎 ∈ 𝐿(𝑎2). Thus 𝑋 is left regular.                     □ 

Corollary 3.17. Let 𝑋 be a regular right duo (resp., left duo).  Then the equivalent conditions are: 

(i) 𝑋 is left regular, 

(ii) For each neutrosophic ℵ −bi- ideal 𝑋𝑀 of 𝑋, we have 𝑋𝑀(𝑎) = 𝑋𝑀(𝑎2) for all 𝑎 ∈ 𝑋. 

Proof:  It is evident from Theorem 3.5 and Theorem 3.16.              □ 

 

Conclusions 

In this paper, we have presented the concept of neutrosophic ℵ − bi −ideals of semigroups and 

explored their properties, and characterized regular semigroups, intra-regular semigroups and 

semigroups using neutrosophic ℵ-bi-ideal structures. We have also shown that the neutrosophic 

ℵ-product of ideals and the intersection of neutrosophic ℵ-ideals are identical for a regular 

semigroup. In future, we will focus on the idea of neutrosophic ℵ −prime ideals of semigroups and 

its properties.  

Acknowledgments: The authors express their gratitude to the referees for valuable comments and 

suggestions which improve the article a lot. 
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Abstract: The set that lightens the vagueness stage more energetically than fuzzy sets are 

neutrosophic sets. Bi-soft topological space is a space which goes for two different topologies with 

certain parameters. This work carries out, construction of such type of topology on neutrosophic. 

Besides by means of this, separation axioms are extended to pairwise separation axioms by using 

neutrosophic and to analyze the relationship among the class of such spaces. Here some of their 

properties are discussed with illustrative examples. In addition to it, we initiate the matrix form of 

neutrosophic soft sets in such space. Here problems deal to take a decision in life by the choice of 

two different groups. The aim of this decision making problem is to determine the unique thing or 

person from the universe by giving marks depending on parameters. Step by step process of 

solving the problem is explained in algorithm, also formulae given to determine their values with 

illustrative examples. 

Keywords: Neutrosophic sets (NSs); neutrosophic soft sets (NSSs); neutrosophic soft topological 

spaces (NSTSs); neutrosophic soft 4,3,2,1,0iT -spaces (NS 4,3,2,1,0iT -spaces); neutrosophic 

bitopological spaces (NBTSs); neutrosophic bi-soft topological spaces (NBSTSs); pairwise 

neutrosophic soft 4,3,2,1,0iT -spaces (pairwise NS 4,3,2,1,0iT -spaces); decision making (DM).  

 

 

1. Introduction 

Zadeh [54], evaluated a fuzzy set (1965) to explore the situations like risky, unclear, erratic and 

distortion occurs in our life cycle. Fuzzy sets simplify classical sets and are unique cases of the 

membership functions.  It has been used in a spacious collection of domains. This set extended to 

develop intuitionistic fuzzy set (IFS) theory (1986) by Atanassov [47]. Smarandache [7] originated a 

set which forecast the indeterminancy part along with truth and false statements, called NS (1998), 

such as blending of network arises to unpredictable states. It is a dynamic structure which postulates 

the concept of all other sets introduced before. Later, he generalized the NS on IFS [8] and recently 

proposed his work on attributes valued set, plithogenic set (PS) [9]. In day-to-day life decisions taken 

to diagnostic the problems either positive or negative even not both. Such types of problems are key 

role in all fields and so most of the researchers studied DM problem. In recent times various works 
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have been done on these sets by Salma and Alblowi [33] and on extension of neutrosophic analysis 

on DM by Abdel et al. [1-6]. 

Soft set (1999) is a broad mathematical gadget which accord with a group of objects based on 

fairly accurate descriptions with orientation to elements of a parameter set was projected by 

Molodtsov [46]. Topological structure on this set explored by Shabir & Naz [38] as soft topological 

spaces (2011). Anon this thought were developed by Ali et al. [35, 40], Bayramov and Gunduz [22, 

29], Cagman et al. [37], Chen [43], Feng et al. [41], Hussain and Ahmad [36], Maji et al. [44, 45], Min 

[39], Nazmul and Samanta [32], Pie and Miao [42], Tantawy et al. [26], Varol and Aygun [31], 

Zorlutuna et al. [34]. Maji [30] presented the binding of neutrosophic with soft set termed as NSSs 

(2013). Bera & Mahapatra [23] defined such type of set on topological structure, named as NSTSs 

(2017). Using these concepts, Deli & Broumi [27], Bera & Mahapatra [10, 24], on separation axioms by 

Cigdem et al. [20, 21] have done some research works. Mostly DM applied on these sets related to 

fuzzy with multicriteria by Chinnadurai et al. [13, 14 & 19], Abishek et al. [12], Muhammad et al. 

[16], Mehmood et al. [17], Evanzalin Ebenanjar et al. [18] and Faruk [25]. 

Kelly [55] imported the approach of a set equipped with two topologies, named as bitopological 

space (BTS) (1963), which is the generic system of topological space. Also it was carried out by Lane 

[53], Patty [52], Kalaiselvi and Sindhu [15] and pairwise concepts by Kim [51], Singal and Asha [50], 

Lal [48], Reilly [49]. Naz, Shabir and Ali [28] introduced bi-soft topological spaces (BSTSs) (2015) and 

studied the separation axioms on it. Taha and Alkan [11] presented BTS on neutrosophic structure as 

NBTSs (2019) which is engaged with two neutrosophic topologies (NTs). 

The intension of this paper is to initiate the idea of NS on BSTS and to study some essential 

properties of such spaces. Also, the pairwise concept on separation axioms implemented in NBSTS. 

In addition, the NSSs referred as matrix form on NBSTS. As real life application, decisions made to 

select the one among the universe based on its parameters by considering two different groups as 

neutrosophic soft topologies (NSTs). 

The arrangements made in this paper are as follows. Some basic definitions related to NS are in 

segment 2. The results of NBSTS are proved and disproved by counter examples in segment 3. The 

bonding among the pairwise separation axioms on NBSTS are stated with illustrative examples in 

segment 4. In segment 5, the method of evaluating DM problems are described in algorithm and 

formula specified to calculate the scores of universe set, to choose the best among them with 

illustrative examples. Finally, concluded with future work in segment 6.  

2. Preamble 

In this segment, we evoke few primary definitions associated to NSS, NSTS, BSTS and NBSTS. 

 

Definition 2.1 [30] Let V be the set of universe and E be a set of parameters. Let NS(V) denote the set 

of all NSs of V. Then a estimated function of NSS K over V is a set defined by a mapping 

)(: VNSEfK  . The NSS is a parameterized family of the set NS(V) which can be written as a set of 

ordered pairs,  

   EeVvvFvIvTveK efefef KKK
 ::)(),(),(,, )()()(  
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where ]1,0[)(),(),( )()()( vFvIvT efefef KKK
respectively called the truth-membership, 

indeterminacy-membership and false-membership functions of )(efK  and the inequality          

3)()()(0 )()()(  vFvIvT efefef KKK
 is obvious. 

 

Definition 2.2 [23] Let NSS(V) denote the set of all NSSs of V through all Ee  and ),( EVNSSu 

. Then u  is called NST on (V, E) if the following conditions are satisfied. 

(i) uuu  1,  , where null NSS    EeVvveu  ::)1,0,0,,  and absolute NSS   

      EeVvveu  ::)0,1,1,,1 . 

(ii) the intersection of any finite number of members of u  belongs to u . 

(iii) the union of any collection of members of u  belongs to u . 

Then the triplet (V, E, u ) is called a NSTS. 

Every member of u  is called u -open NSS, whose complement is u -closed NSS. 

 

Definition 2.3 [21] Let NSS(V, E) denote the family of all NSSs over V. The NSS ),,( 
eu  is called a 

NSP, for every EeVu  ,1,,0,   and is defined as follows: 










uvandeeif
uvandeeif

veu e ),1,0,0(
),,,(

))((),,(
)(

  

Obviously, every NSS is the union of its NSPs. 

 

Definition 2.4 [11] Let (V, 1u ) and (V, 2u ) be the two different NTs on V. Then (V, 1u , 2u ) is called a 

NBTS. 

3. NBSTS 

In this segment, the conception of NBSTS is defined and some key resources of topology are 

studied on it. The theoretical results are supported by some significant descriptive examples. 

 

Definition 3.1 The quadruple (V, E, 1u , 2u ) is called a NBSTS over (V, E), where 1u  and 2u  are 

NSTs independently satisfy the axioms of NSTS. 

The elements of 1u  
are 1u -neutrosophic soft open sets ( 1u -NSOSs) and the complement of it are 

1u -neutrosophic soft closed sets ( 1u -NSOSs). 

 

Example 3.2 Let V = 21,vv , E =  21,ee  and 1u = { 1,1, Kuu } and 2u = { 21,,1, LLuu } where 211 ,, LLK  

are NSSs over (V, E), defined as follows 

})1,0,0(,,)0,1,1(,{)( 2111
 vvefK ,  

})1,0,1(,,)1,0,0(,{)( 2121
 vvefK    

and 

})1,0,0(,,)1,0,1(,{)( 2111
 vvefL , 
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})0,1,1(,,)0,1,0(,{)( 2121
 vvefL ; 

})0,1,1(,,)0,1,0(,{)( 2112
 vvefL , 

})1,0,0(,,)1,0,1(,{)( 2122
 vvefL . 

Thus 1u  and 2u  are NSTs on (V, E) and so (V, E, 1u , 2u ) is a NBSTS over (V, E). 

 

Example 3.3 Let the neutrosophic soft indiscrete (trivial) topology 1u = }1,{ uu  and neutrosophic 

soft discrete topology ),(2 EVNSSu  .  

Then (V, E, 1u , 2u ) is a NBSTS over (V, E). 

 

Definition 3.4 Let (V, E, 1u , 2u ) be a NBSTS over (V, E), where 1u  
and 2u  

are NSTs on (V, E) and 

),(, EVNSSQP 
 
be any two arbitrary NSSs. Suppose  11 / uiiv KKP     and 

 22 / uiiv LLQ    . Then 1v  
and 2v  are also NSTs on (V, E). Thus (V, E, 1v , 2v )  is a NBST 

subspace of (V, E, 1u , 2u ).  

 

Theorem 3.5 Let (V, E, 1u , 2u ) be a NBSTS over (V, E), where )(1 eu  and )(2 eu  are defined as 

}/)({)( 11 uKu Kefe    

}/)({)( 22 uLu Lefe   for each Ee . 

Then (V, E, )(1 eu , )(2 eu ) is a NBTS over (V, E). 

Proof. Follows from the fact that 1u  and 2u  are NTs on V. 

 

Example 3.6 Let V =  321 ,, vvv , E =  21,ee  and 1u = { 21,,1, KKuu } and 2u = { 4321 ,,,,1, LLLLuu } 

where 432121 ,,,,, LLLLKK  are NSSs over (V, E), defined as follows 

})9.,4.,3(.,,)6.,6.,6(.,,)4.,5.,1(,{)( 32111
 vvvefK ,  

})6.,5.,7(.,,)3.,7.,7(.,,)5.,4.,8(.,{)( 32121
 vvvefK  ; 

})4.,6.,5(.,,)5.,6.,8(.,,)1.,5.,8(.,{)( 32112
 vvvefK ,  

})3.,6.,8(.,,)2.,9.,9(.,,)1.,7.,9(.,{)( 32122
 vvvefK   

and 

})5.,4.,6(.,,)8.,3.,4(.,,)6.,7.,3(.,{)( 32111
 vvvefL , 

})7.,3.,3(.,,)2.,7.,3(.,,)8.,6.,4(.,{)( 32121
 vvvefL ; 

})4.,2.,1(.,,)3.,9.,2(.,,)8.,6.,6(.,{)( 32112
 vvvefL , 
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})4.,5.,5(.,,)3.,2.,4(.,,)5.,9.,7(.,{)( 32122
 vvvefL ; 

})4.,4.,6(.,,)3.,9.,4(.,,)6.,7.,6(.,{)( 32113
 vvvefL , 

})4.,5.,5(.,,)2.,7.,4(.,,)5.,9.,7(.,{)( 32123
 vvvefL ; 

})5.,2.,1(.,,)8.,3.,2(.,,)8.,6.,3(.,{)( 32114
 vvvefL , 

})7.,3.,3(.,,)3.,2.,3(.,,)8.,6.,4(.,{)( 32124
 vvvefL  

Thus 1u  and 2u  are NSTs on (V, E) and so (V, E, 1u , 2u ) is a NBSTS over (V, E). 

Now, 

 
  













)4.,6.,5(.,,)5.,6.,8(.,,)1.,5.,8(.,
,)9.,4.,3(.,,)6.,6.,6(.,,)4.,5.,1(,,1,

)(
321

321
11 vvv

vvv
e uu

u


 , 

 
 
 
  


































)5.,2.,1(.,,)8.,3.,2(.,,)8.,6.,3(.,
,)4.,4.,6(.,,)3.,9.,4(.,,)6.,7.,6(.,
,)4.,2.,1(.,,)3.,9.,2(.,,)8.,6.,6(.,

,)5.,4.,6(.,,)8.,3.,4(.,,)6.,7.,3(.,,1,

)(

321

321

321

321

12

vvv
vvv
vvv

vvv

e

uu

u



  

and 

 
  













)3.,6.,8(.,,)2.,9.,9(.,,)1.,7.,9(.,
,)6.,5.,7(.,,)3.,7.,7(.,,)5.,4.,8(.,,1,

)(
321

321
21 vvv

vvv
e uu

u


 , 

 
 
 
  


















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
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





)7.,3.,3(.,,)3.,2.,3(.,,)8.,6.,4(.,
,)4.,5.,5(.,,)2.,7.,4(.,,)5.,9.,7(.,
,)4.,5.,5(.,,)3.,2.,4(.,,)5.,9.,7(.,

,)7.,3.,3(.,,)2.,7.,3(.,,)8.,6.,4(.,,1,

)(

321

321

321

321

22

vvv
vvv
vvv

vvv

e

uu

u



  

are NTs on V. 

Thus (V, E, )(1 eu , )(2 eu ) is a NBTS over (V, E). 

 

Definition 3.7 Let (V, E, 1u , 2u ) be a NBSTS over (V, E). Then the supremum NST is 21 uu   , 

which is the smallest NST on V that contains 21 uu   . 

 

Example 3.8 Let us consider 3.5 example, where 1u  and 2u  are NSTs on (V, E). 

Then, 










})6.,5.,7(.,,)2.,7.,7(.,,)5.,6.,8(.,{)(
})5.,4.,6(.,,)6.,6.,6(.,,)4.,7.,3(.,{)(

3212

3211
11 vvvef

vvvef
PLK

P

P
  

and  























})6.,5.,7(.,,)2.,7.,7(.,,)5.,6.,8(.,{),(

})7.,4.,3(.,,)2.,7.,6(.,,)4.,6.,1(,{),(

})4.,5.,7(.,,)3.,7.,7(.,,)5.,4.,8(.,{),(

})5.,4.,6(.,,)6.,6.,6(.,,)4.,7.,3(.,{),(

32122

32112

32121

32111

11

vvveef

vvveef

vvveef

vvveef

QLK

Q

Q

Q

Q

 

Thus 11 LK   is the smallest NSS on V that contains 11 LK  . 
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Theorem 3.9 If (V, E, 1u , 2u ) is a NBSTS over (V, E), then 21 uu    is a NST over (V, E). 

Proof. Let (V, E, 1u , 2u ) be a NBSTS over (V, E). 

(i) Since 11, uuu  
 
and 11, uuu   , it follows that 211, uuuu   . 

(ii) Suppose that  IiKi /  is a family of NSSs in 21 uu   .  

Then 1uiK   and 2uiK   for all Ii .  

Thus 1uIi iK   
and 2uIi iK  . 

Therefore 21 uuIi iK    . 

(iii) Let 21, uuLK   . 

Then 1, uLK 
 
and 2, uLK  . 

Since 1uLK 
 
and 2uLK  , we have 21 uuLK     . 

Hence 21 uu    is a NST over (V, E). 

 

Remark 3.10 If (V, E, 1u , 2u ) is a NBSTS over (V, E), then 21 uu    need not be a NST over (V, E). 

 

Example 3.11 Let us consider 3.5 example where 1u  and 2u  are NSTs on (V, E). 

Then, 










})6.0,5.0,7.0(,,)2.0,7.0,7.0(,,)5.0,6.0,8.0(,{)(
})5.0,4.0,6.0(,,)6.0,6.0,6.0(,,)4.0,7.0,3.0(,{)(

3212

3211
11 vvvef

vvvef
PLK

P

P
  

Thus 2111 uuLK    . 

Hence 21 uu    is not a NST over (V, E). 

 

4. Neutrosophic bi-soft separation axioms 

In this segment, the separation of NBSTS is explored. The pairwise NS 4,3,2,1,0iT -spaces on 

NBSTS are introduced and the relationships among them are examined with relevant examples. 

 

Definition 4.1 A NBSTS (V, E, 1u , 2u ) over (V, E) is called a pairwise NS 0T -space, if ),,(
)(


eu  and 

),,(
)(


ev   are distinct NSPs then there exist 1u -NSOS K and 2u -NSOS L such that   

     
Ku e ),,(

)(
  ; ue Lu 

),,(
)(     

  or Lv e 
),,(

)(
  ; ue Kv   ),,(

)( . 
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Example 4.2 Consider neutrosophic soft indiscrete (trivial) topology 1u = }1,{ uu  and neutrosophic 

soft discrete topology ),(2 EUNSSu  . 

Thus (V, E, 1u , 2u ) is a pairwise NS 0T -space. 

 

Theorem 4.3 Let (V, E, 1u , 2u ) be a NBSTS over (V, E). If (V, E, 1u , 2u ) is a pairwise NS 0T -space 

then (V, E, 21 uu   ) is a NS 0T -space. 

Proof. Let (V, E, 1u , 2u ) be a NBSTS over (V, E).  

Suppose that (V, E, 1u , 2u ) is a pairwise NS 0T -space. 

Let ),,(
)(


eu  and ),,(

)(


ev   be any two distinct NSPs. 

Then there exist 1u -NSOS K and 2u -NSOS L such that        

    
Ku e ),,(

)(
  ; ue Lu 

),,(
)(                 

 or Lv e 
),,(

)(
  ; ue Kv   ),,(

)(  

In either case 21, uuLK   .  

Hence (V, E, 21 uu   ) is a NS 0T -space. 

 

Theorem 4.4 Let (V, E, 1u , 2u ) be a NBSTS over (V, E). If (V, E, 1u , 2u ) is a pairwise NS 0T -space 

then (V, E, 1v , 2v ) is also a pairwise NS 0T -space. 

Proof. Let (V, E, 1u , 2u ) be a NBSTS over (V, E). 

Let ),,(
)(


eu  and ),,(

)(


ev   be any two distinct NSPs and ),(, EUNSSQP  . 

Suppose that (V, E, 1u , 2u ) is a pairwise NS 0T -space. 

Then there exist 1u -NSOS K and 2u -NSOS L such that        

      Ku e ),,(
)(

  ; ue Lu 
),,(

)(     

   or Lv e 
),,(

)(
  ; ue Kv   ),,(

)(  

Now Pu e 
),,(

)(
  and Ku e ),,(

)(
  . 

Then KPu e 
),,(

)(
 , where 1uK  . 

Consider ue Lu 
),,(

)( .    

QQLu ue  


),,(
)( . 

ue LQu 
 )(),,(

)(  . 

Thus KPu e 
),,(

)(
  ; ue LQu  )(),,(

)(  , where 1vKP 
 
, 2vLQ  . 
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Or if Lv e 
),,(

)(
  ; ue Kv   ),,(

)( , it can be proved that 

LQv e 
),,(

)(
  ; ue LQv 

 )(),,(
)(  , where 1vKP 

 
, 2vLQ  . 

Hence (V, E, 1v , 2v ) is also a pairwise NS 0T -space. 

 

Definition 4.5 A NBSTS (V, E, 1u , 2u ) over (V, E) is called pairwise NS 1T -space, if ),,(
)(


eu  and 

),,(
)(


ev   are distinct NSPs then there exist 1u -NSOS K and 2u -NSOS L such that   

        
Ku e ),,(

)(
  ;  ue Lu 

),,(
)(  

   
and Lv e 

),,(
)(

 ;  ue Kv   ),,(
)( . 

 

Example 4.6 Let V =  21,vv , E = {e}, and )7,.3.,2(.
)(1 ev and )1,.4.,9(.

)(2 ev  be NSPs. Let },1,{1 Kuuu   and 

},1,{2 Luuu    where K and L are NSSs over (V, E), defined as  

})1,0,0(,,)7.,3.,2(.,{)( 21
)7.,3.,2(.

)(1  vvefvK Ke  

and 

})1.,4.,9(.,,)1,0,0(,{)( 21
)1.,4.,9(.

)(2  vvefvL Le . 

Thus (V, E, 1u , 2u ) is a NBSTS over (V, E). 

Hence (V, E, 1u , 2u ) is a pairwise NS 1T -space, also a pairwise NS 0T -space. 

 

Theorem 4.7 Every pairwise NS 1T -space is also a pairwise NS 0T -space. 

Proof. Follows from the Definitions 4.1 and 4.3. 

 

Remark 4.8 The converse of the 4.7 theorem is not true, which is shown in the following example. 

 

Example 4.9 Let V =  21,vv , E =  21,ee , and )7,.5.,2(.
)(1 1ev , )2,.8.,2(.

)(1 2ev , )5,.7.,2(.
)(2 1ev and )9,.1.,1(.

)(2 2ev  be NSPs. Let 

1u = { 321 ,,,1, KKKuu } and 2u = { 21,,1, LLuu } where 21321 ,,,, LLKKK  are NSSs over (V, E), defined 

as  












})1,0,0(,,)1,0,0(,{)(

})1,0,0(,,)7.,5.,2(.,{)(

212

211)7,.5.,2(.
)(11

1

1

1 vvef

vvef
vK

K

K
e   

; 
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










})9.,1.,1(.,,)1,0,0(,{)(

})1,0,0(,,)1,0,0(,{)(

212

211)9,.1.,1(.
)(22

2

2

2 vvef

vvef
vK

K

K
e    

; 

213 KKK   

and 












})1,0,0(,,)1,0,0(,{)(

})5.,7.,2(.,,)1,0,0(,{)(

212

211)5,.7.,2(.
)(21

1

1

1 vvef

vvef
vL

L

L
e    

; 

 











})9.,1.,1(.,,)2.,8.,2(.,{)(

})5.,7.,2(.,,)7.,5.,2(.,{)(
,,,

212

211)9,.1.,1(.
)(2

)5,.7.,2(.
)(2

)2,.8.,2(.1
)(1

)7,.5.,2(.
)(12

2

2

2121 vvef

vvef
vvvvL

L

L
eeee  

Thus (V, E, 1u , 2u ) is a NBSTS over (V, E). 

Hence (V, E, 1u , 2u ) is a pairwise NS 0T -space, but not a pairwise NS 1T -space since for NSPs 

)7,.5.,2(.
)(1 1ev  and )9,.1.,1(.

)(2 2ev , (V, E, 1u , 2u ) is not a pairwise NS 1T -space. 

 

Theorem 4.10 Let (V, E, 1u , 2u ) be a NBSTS over (V, E). If (V, E, 1u ) or (V, E, 2u ) is not a NS T0-space, 

then (V, E, 1u , 2u ) is a pairwise NS 0T -space but not a pairwise NS 1T -space. 

Proof. Let 1uK 
 
and 2uL  , also ),,(

)(


eu  and ),,(
)(


ev   be any two distinct NSPs.  

Suppose (V, E, 1u ) is a NS 0T -space and (V, E, 2u ) is not a NS 0T -space. 

Then, Ku e ),,(
)(

  ;  ue Lu 
),,(

)(    

 and Lv e 
),,(

)(
 ;  ue Kv   ),,(

)(  

Thus by Definitions 4.1 and 4.3,  

(V, E, 1u , 2u ) is a pairwise NS 0T -space but not a pairwise NS 1T -space. 

 

Theorem 4.11 Let (V, E, 1u , 2u ) be a NBSTS over (V, E). Then (V, E, 1u , 2u ) is a pairwise NS       

1T -space if and only if (V, E, 1u ) and (V, E, 2u ) are NS 1T -spaces.  

Proof. Let (V, E, 1u , 2u ) be a NBSTS over (V, E). 

Let ),,(
)(


eu  and ),,(

)(


ev   be any two distinct NSPs.  

Suppose that (V, E, 1u ) and (V, E, 2u ) are NS 1T -spaces.  

Then there exist 1u -NSOS K and 2u -NSOS L such that        

          
Ku e ),,(

)(
  ; ue Lu 

),,(
)(  

and Lv e 
),,(

)(
  ; ue Kv   ),,(

)(  

In either case the result follows immediately. 

Thus (V, E, 1u , 2u ) is a pairwise NS 1T -space. 

Conversely, assume that (V, E, 1u , 2u ) is a pairwise NS 1T -space. 
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Then there exist some 1u -NSOS 1K  and 2u -NSOS 1L  such that    

     1
),,(

)( Ku e 
  ; ue Lu 

1
),,(

)(           

and 1
),,(

)( Lv e 
  ; ue Kv 

 1
),,(

)(   

Also there exist some 1u -NSOS 2K  and 2u -NSOS 2L  such that    

     2
),,(

)( Ku e   ; ue Lu 
2

),,(
)(     

and 2
),,(

)( Lv e 
  ; ue Kv   2

),,(
)(   

Hence (V, E, 1u ) and (V, E, 2u ) are NS 1T -spaces.  

 

Theorem 4.12 Let (V, E, 1u , 2u ) be a NBSTS over (V, E). If (V, E, 1u , 2u ) is a pairwise NS 1T -space 

then (V, E, 21 uu   ) is a NS 1T -space. 

Proof. Let (V, E, 1u , 2u ) be a NBSTS over (V, E).  

Suppose that (V, E, 1u , 2u ) is a pairwise NS 1T -space. 

Let ),,(
)(


eu  and ),,(

)(


ev   be any two distinct NSPs. 

Then there exist 1u -NSOS K and 2u -NSOS L such that        

     
Ku e ),,(

)(
  ; ue Lu 

),,(
)(    

and Lv e 
),,(

)(
  ; ue Kv   ),,(

)(  

In either case 21, uuLK   . 

Hence (V, E, 21 uu   ) is a NS 1T -space. 

 

Theorem 4.13 Let (V, E, 1u , 2u ) be a NBSTS over (V, E). If (V, E, 1u , 2u ) is a pairwise NS 1T -space 

then (V, E, 1v , 2v ) is also a pairwise NS 1T -space. 

Proof. Let (V, E, 1u , 2u ) be a NBSTS over (V, E). 

Let ),,(
)(


eu  and ),,(

)(


ev   be any two distinct NSPs and ),(, EUNSSQP  . 

Suppose that (V, E, 1u , 2u ) is a pairwise NS 1T -space. 

Then there exist 1u -NSOS K and 2u -NSOS L such that        

     Ku e ),,(
)(

  ; ue Lu 
),,(

)(    

and Lv e 
),,(

)(
  ; ue Kv   ),,(

)(  

Now Pu e 
),,(

)(
  and Ku e ),,(

)(
  . 

Then KPu e 
),,(

)(
 , where 1uK  . 
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Consider ue Lu 
),,(

)( .    

QQLu ue  


),,(
)( . 

ue LQu 
 )(),,(

)(  . 

Thus KPu e 
),,(

)(
  ; ue LQu  )(),,(

)(  , where 1vKP 
 
, 2vLQ  . 

Further if Lv e 
),,(

)(
  ; ue Kv   ),,(

)( , it can be proved that 

LQv e 
),,(

)(
  ; ue LQv 

 )(),,(
)(  , where 1vKP 

 
, 2vLQ  . 

Hence (V, E, 1v , 2v ) is also a pairwise NS 1T -space. 

 

Theorem 4.14 Let (V, E, 1u , 2u ) be a NBSTS over (V, E). For each pair of distinct NSPs ),,(
)(


eu

 
and 

),,(
)(


ev  , ),,(

)(


eu  is a 2u -NSCS and ),,(
)(


ev   

is a 1u -NSCS, then (V, E, 1u , 2u ) is a pairwise NS  

1T -space. 

Proof. Let (V, E, 1u , 2u ) be a NBSTS over (V, E). 

Suppose that for each pair of distinct NSPs ),,(
)(


eu

 
and ),,(

)(


ev  , ),,(
)(


eu  is a 2u -NSCS. 

Then  ceu ),,(
)(

  is a 2u -NSOS. 

Let ),,(
)(


eu  and ),,(

)(


ev   be any two distinct NSPs. 

(i.e.,) uee vu  
),,(

)(
),,(

)(  . 

Thus 

 cee uv ),,(
)(

),,(
)(


  and   u

c
ee uu 


),,(

)(
),,(

)(   (1) 

Similarly assume that for each NSP, ),,(
)(


ev   is a 1u -NSCS. 

Then  cev ),,(
)(


  

is a 1u -NSOS such that 

 cee vu ),,(
)(

),,(
)(


  and   u

c
ee vv 


),,(

)(
),,(

)(   (2) 

 

From (1) and (2), 

      cee vu ),,(
)(

),,(
)(


  ;

 
  u

c
ee uu 


),,(

)(
),,(

)( 
 

and  cee uv ),,(
)(

),,(
)(


  

;   u
c

ee vv 


),,(
)(

),,(
)( 

 



Neutrosophic Sets and Systems, Vol. 35, 2020 446  

 

 
Chinnadurai V and Sindhu M P, A Novel Approach for Pairwise Separation Axioms on Bi-Soft Topology Using 
Neutrosophic Sets and An Output Validation in Real Life Application 

Hence (V, E, 1u , 2u ) is a pairwise NS 1T -space. 

 

Definition 4.15 A NBSTS (V, E, 1u , 2u ) over (V, E) is called pairwise NS 2T -space or pairwise NS 

Hausdorff space, if ),,(
)(


eu  and ),,(

)(


ev   are distinct NSPs then there exist 1u -NSOS K and     

2u -NSOS L such that  Ku e ),,(
)(

 , Lv e 
),,(

)(
 and uLK  . 

 

Example 4.16 Let V =  21,vv , E =  21,ee , and )7,.5.,2(.
)(1 1ev , )2,.8.,2(.

)(1 2ev , )5,.7.,2(.
)(2 1ev and )9,.1.,1(.

)(2 2ev  be NSPs. Let 

1u = { 321 ,,,1, KKKuu } and 2u = { 321 ,,,1, LLLuu } where 321321 ,,,,, LLLKKK  are NSSs over (V, E), 

defined as follows 












})1,0,0(,,)1,0,0(,{)(

})1,0,0(,,)7.,5.,2(.,{)(

212

211)7,.5.,2(.
)(11

1

1

1 vvef

vvef
vK

K

K
e   

; 












})9.,1.,1(.,,)1,0,0(,{)(

})1,0,0(,,)1,0,0(,{)(

212

211)9,.1.,1(.
)(22

2

2

2 vvef

vvef
vK

K

K
e    

; 

213 KKK   

and 












})1,0,0(,,)1,0,0(,{)(

})5.,7.,2(.,,)1,0,0(,{)(

212

211)5,.7.,2(.
)(21

1

1

1 vvef

vvef
vL

L

L
e    

; 












})1,0,0(,,)2.,8.,2(.,{)(

})1,0,0(,,)1,0,0(,{)(

212

211)2,.8.,2(.
)(12

2

2

2 vvef

vvef
vL

L

L
e  

; 

213 LLL   

Then (V, E, 1u , 2u ) is a NBSTS over (V, E). 

Hence (V, E, 1u , 2u ) is a pairwise NS 2T -space. 

 

Theorem 4.17 Let (V, E, 1u , 2u ) be a NBSTS over (V, E). If (V, E, 1u , 2u ) is a pairwise NS 2T -space 

then (V, E, 21 uu   ) is a NS 2T -space. 

Proof. Let (V, E, 1u , 2u ) be a NBSTS over (V, E).  

Suppose that (V, E, 1u , 2u ) is a pairwise NS 2T -space. 

Let ),,(
)(


eu  and ),,(

)(


ev   be any two distinct NSPs. 

Then there exist 1u -NSOS K and 2u -NSOS L such that 

Ku e ),,(
)(

 , Lv e 
),,(

)(
 and uLK  . 

In either case 21, uuLK   . 

Hence (V, E, 21 uu   ) is a NS 2T -space. 
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Theorem 4.18 Let (V, E, 1u , 2u ) be a NBSTS over (V, E). If (V, E, 1u , 2u ) is a pairwise NS 2T -space 

then (V, E, 1v , 2v ) is also a pairwise NS 2T -space. 

Proof. Let (V, E, 1u , 2u ) be a NBSTS over (V, E). 

Let ),,(
)(


eu  and ),,(

)(


ev   be any two distinct NSPs and ),(, EUNSSQP  . 

Suppose that (V, E, 1u , 2u ) is a pairwise NS 2T -space. 

Then there exist 1u -NSOS K and 2u -NSOS L such that       

Ku e ),,(
)(

 , Lv e 
),,(

)(
 and uLK  . 

Now Pu e 
),,(

)(
  and Ku e ),,(

)(
  ; Qv e 

),,(
)(

  and Lv e 
),,(

)(
  

Then KPu e 
),,(

)(
 , LQv e 

),,(
)(

  where 1uK  , 2uL  . 

Consider uLK  .    

    QPQLKP u   . 

    .uLQKP   . 

Thus KPu e 
),,(

)(
 , LQv e 

),,(
)(

  and     .uLQKP   

Hence (V, E, 1v , 2v ) is also a pairwise NS 2T -space. 

 

Theorem 4.19 Every pairwise NS 2T -space is also a pairwise NS 1T -space. 

Proof. Follows from Definitions 4.3 and 4.15. 

 

Theorem 4.20 Let (V, E, 1u , 2u ) be a NBSTS over (V, E). (V, E, 1u , 2u ) is a pairwise NS 2T -space if 

and only if for any two distinct NSPs ),,(
)(


eu  and ),,(

)(


ev  , there exist 1u -NSOS K containing 

),,(
)(


eu

 
but not ),,(

)(


ev   such that .),,(
)( Kv e 

  

Proof. Let (V, E, 1u , 2u ) be a NBSTS over (V, E). 

Let ),,(
)(


eu  and ),,(

)(


ev   be any two distinct NSPs. 

Suppose that (V, E, 1u , 2u ) is a pairwise NS 2T -space. 

Then there exist 1u -NSOS K and 2u -NSOS L such that       

Ku e ),,(
)(

 , Lv e 
),,(

)(
 and uLK  . 

Since uee vu  
),,(

)(
),,(

)(   and uLK  , Kv e 
),,(

)(
 . 

Thus .),,(
)( Kv e 

  
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Conversely, assume that for any two distinct NSPs ),,(
)(


eu  and ),,(

)(


ev  , there exist 1u -NSOS K 

containing ),,(
)(


eu

 
but not ),,(

)(


ev   such that .),,(
)( Kv e 

  

Then   .),,(
)(

c
e Kv 

  

Thus K  and  cK  are disjoint 1u -NSOS and 1u -NSOS containing ),,(
)(


eu

 
and ),,(

)(


ev   

respectively. 

 

Theorem 4.21 Let (V, E, 1u , 2u ) be a NBSTS over (V, E) and (V, E, 1u , 2u ) be a pairwise NS 1T -space 

for every NSP 1
),,(

)( ue Ku 
 . If there exist 2u -NSOS L such that

 
KLLu e 

),,(
)(

 , then   

(V, E, 1u , 2u ) is a pairwise NS 2T -space.   

Proof. Let (V, E, 1u , 2u ) be a NBSTS over (V, E) and let it be a pairwise NS 1T -space 

Suppose that uee vu  
),,(

)(
),,(

)(  .  

Let ),,(
)(


eu  be a 1u -NSCS and ),,(

)(


ev   be a 2u -NSCS. 

Then  cev ),,(
)(


  is a 2u -NSOS such that  

  2
),,(

)(
),,(

)( u
c

ee vu 
    

Then there exist a 2u -NSOS L such that 

 cee vLLu ),,(
)(

),,(
)(


 . 

Thus    cc
e Lv 

),,(
)(

  , Lu e 
),,(

)(


 
and   u

cLL  . 

Hence (V, E, 1u , 2u ) is a pairwise NS 2T -space. 

 

Remark 4.22 Let (V, E, 1u , 2u ) be a NBSTS over (V, E). For any NSS K over (V, E),   2uK 
 denotes the 

NS closure of K with respect to 2u -NST over (V, E). 

 

Theorem 4.23 Let (V, E, 1u , 2u ) be a NBSTS over (V, E). Then the following are equilavent: 

(1) (V, E, 1u , 2u ) is a pairwise NS Hausdorff space over (V, E). 

(2) If ),,(
)(


eu  and ),,(

)(


ev   are distinct NSPs, there exist 1u -NSOS K such that  

   Ku e ),,(
)(



 
and  

c

e
uKv 






2),,(
)(

 . 

Proof. (1)   (2). Suppose that (V, E, 1u , 2u ) is a pairwise NS Hausdorff space over (V, E). 

Then there exist 1u -NSOS K and 2u -NSOS L such that       
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Ku e ),,(
)(

 , Lv e 
),,(

)(
 and uLK  . 

So that cLK  . 

Since   2uK 
 is the smallest 2u -NSCS that contains K and cL  is a 2u -NSCS, then   cLK u 2

 

                          
c

uKL 






2
. 

Thus  
c

e
uKLv 






2),,(
)(

 . 

Hence  
c

e
uKv 






2),,(
)(

 . 

(2)   (1). Let ),,(
)(


eu  and ),,(

)(


ev   be any two distinct NSPs. 

By assumption, there exist 1u -NSOS K such that Ku e ),,(
)(



 
and  

c

e
uKv 






2),,(
)(

 .  

As   2uK 
 is a 2u -NSCS so   2

2
u

c
uKL 








 . 

Now Ku e ),,(
)(

 , Lv e 
),,(

)(
 and  

  2uKKLK 
  . 

            
 

c
uKK 




 2

         (   2uKK 
 ) 

            u . 

Thus uLK  . 

Hence (V, E, 1u , 2u ) is a pairwise NS Hausdorff space over (V, E). 

 

Definition 4.24 Let NSS(V, E) be the family of all NSSs over the universe V and Vu . Then ),,( 
Eu

 

denotes the NSS over (V, E) for which  ),,(),,(
)(

 uu e  , for all Ee . 

 

Corollary 4.25 Let (V, E, 1u , 2u ) be a pairwise NS 2T -space over (V, E). Then for each NSP ),,(
)(


eu ,  

   1
),,(

)(
),,( :2

ueE KuKu u 
 . 

Proof. Let (V, E, 1u , 2u ) be a pairwise NS 2T -space over (V, E) and ),,(
)(


eu  be a NSP. 

Then there exist a NSOS 1
),,(

)( ue Ku 
 .  

If ),,(
)(


eu  and ),,(

)(


ev   are distinct NSPs, by 4.24 theorem, there exist 1u -NSOS K such that  
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Ku e ),,(
)(



 
and  

c

e
uKv 






2),,(
)(

 . 

                  
)(2

),,(
)( efv uKe   

 . 

                  
1

),,(
)( 2 )(),,(

)( ue uKu Ke efv 


  




 

   
for all Ee  . 

Thus 

   ),,(
1

),,(
)(:2 

 Eue uKuK u
  (1) 

 

Also it is obvious that   2),,(
)(

uKKu e


 . 

Thus 

   1
),,(

)(
),,( :2

ueE KuKu u 
  (2) 

 

Hence from (1) and (2), 

   1
),,(

)(
),,( :2

ueE KuKu u 
 . 

 

Corollary 4.26 Let (V, E, 1u , 2u ) be a pairwise NS 2T -space over (V, E). Then for each NSP ),,(
)(


eu , 

  ui
c

Eu 


),,(
 
for i = 1, 2. 

Proof. Let (V, E, 1u , 2u ) be a pairwise NS 2T -space over (V, E) and ),,(
)(


eu  be a NSP. 

By 4.25 corollary, 

   













 1

),,(
)(

),,( :2
ue

cc
E KuKu u   

Since   2uK 
 is a 2u -NSCS, then   2

2
u

c
uK 








 . 

By the axioms of a NS topological space,  

  21
),,(

)(:2
uue

c
KuK u 















 . 

Thus   2
),,(

u
c

Eu 
 . 

Similarly it can be proved that,   1
),,(

u
c

Eu 
 . 

Hence   ui
c

Eu 


),,(
 
for i = 1, 2. 
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Definition 4.27 A NBSTS (V, E, 1u , 2u ) over (V, E) is called pairwise NS regular space, if K is a 1u

-NSCS and ue Ku  ),,(
)(  then there exist 2u -NSOSs 1L and 2L  such that 1

),,(
)( Lu e  , 2LK 

 

and uLL 21 . 

A NBSTS (V, E, 1u , 2u ) over (V, E) is called pairwise NS 3T -space, if it is both a pairwise NS regular 

space and a pairwise NS 1T -space. 

 

Theorem 4.28 Let (V, E, 1u , 2u ) be a NBSTS over (V, E). Then (V, E, 1u , 2u ) is a pairwise NS       

3T -space if and only if for every 1
),,(

)( ue Ku 
 , there exists 2uL 

 
such that 

KLLu e 
),,(

)(
 . 

Proof. Let (V, E, 1u , 2u ) be a NBSTS over (V, E).  

Suppose that (V, E, 1u , 2u ) is a pairwise NS 3T -space and  1
),,(

)( ue Ku 
 . 

Since (V, E, 1u , 2u ) is a pairwise NS 3T -space for the NSP ),,(
)(


eu  and 1u -NSCS cK , there exist 

2u -NSOSs 1L and 2L  such that 1
),,(

)( Lu e  , 2LK c 
 
and uLL 21 . 

Thus KLLu c
e  )( 21

),,(
)(

 . 

Since cL )( 2  is a 2u -NSCS, cLL )( 21  . 

Hence KLLu e  11
),,(

)(
 . 

Conversely, let ue Ku  ),,(
)(  and K be a 1u -NSCS. 

Thus
 

c
e Ku 

),,(
)(

  . 

From the condition of the theorem,   

c
e KLLu 

),,(
)(

 . 

Then Lu e 
),,(

)(
 , cLK 

 
and u

cLL  . 

Hence (V, E, 1u , 2u ) is a pairwise NS 3T -space. 

 

Definition 4.29 A NBSTS (V, E, 1u , 2u ) over (V, E) is called pairwise NS normal space, if for every 

pair of disjoint 1u -NSCSs 1K  and 2K  , there exists disjoint 2u -NSOSs 1L  and 2L  such that 

11 LK   and 22 LK  . 

A NBSTS (V, E, 1u , 2u ) over (V, E) is called pairwise NS 4T -space, if it is both a pairwise NS normal 

space and a pairwise NS 1T -space. 
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Theorem 4.30 Let (V, E, 1u , 2u ) be a NBSTS over (V, E). Then (V, E, 1u , 2u ) is a pairwise NS       

4T -space if and only if for each 1u -NSCS K and 1u -NSOS L with LK  , there exists a 2u -NSOS 

P such that LPPK  . 

Proof. Let (V, E, 1u , 2u ) be a NBSTS over (V, E).  

Suppose that (V, E, 1u , 2u ) is a pairwise NS 4T -space and K be 1u -NSCS and 1uLK  . 

Then cL is a 1u -NSCS and u
cLK  . 

Since (V, E, 1u , 2u ) is a pairwise NS 4T -space, there exist 2u -NSOSs 1P  and 2P  such that 

1PK  , 2PM c 
 
and uPP 21 . 

Thus LPPK c  )( 21 . 

Since cP )( 2  is a 2u -NSCS, cPP )( 21  . 

Hence LPPK  11 . 

Conversely, let 1K  and 2K  be any two disjoint 1u -NSCSs. 

Then cKK )( 21  . 

From the condition of the theorem, there exists a 2u -NSOS P such that cKPPK )( 21  . 

Thus P  and cP)(  are 2u -NSOSs. 

Then PK 1 , cPK )(2   
and u

cPP )( . 

Hence (V, E, 1u , 2u ) is a pairwise NS 4T -space. 

 

Example 4.31 Let V =  21,vv , E =  321 ,, eee , and )3,.4.,2(.
)(1 1ev , )2,.8.,2(.

)(1 2ev , )7,.5.,2(.
)(1 3ev , )5,.2.,1(.

)(2 1ev , )5,.7.,2(.
)(2 2ev and 

)9,.1.,1(.
)(2 3ev  be NSPs.  

Then 1u =  7654321 ,,,,,,,1, KKKKKKKuu  and 2u =  7654321 ,,,,,,,1, LLLLLLLuu  where ,, 21 KK  

765432176543 ,,,,,,,,,,, LLLLLLLKKKKK  are NSSs over (V, E), defined as follows 


















})0,1,1(,,)0,1,1(,{)(

})0,1,1(,,)0,1,1(,{)(

})0,1,1(,,)3.,4.,2(.,{)(

213

212

211

1

1

1

1

vvef

vvef

vvef

K

K

K

K

  
; 


















})0,1,1(,,)0,1,1(,{)(

})5,.7.,2(.,,)0,1,1(,{)(

})0,1,1(,,)0,1,1(,{)(

213

212

211

2

2

2

2

vvef

vvef

vvef

K

K

K

K

  
; 


















})0,1,1(,,)7,.5.,2(.,{)(

})0,1,1(,,)0,1,1(,{)(

})0,1,1(,,)0,1,1(,{)(

213

212

211

3

3

3

3

vvef

vvef

vvef

K

K

K

K

  
;  
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214 KKK 
 
; 

315 KKK 
 
; 

326 KKK 
 
; 

3217 KKKK   

and 


















})1,0,0(,,)1,0,0(,{)(

})1,0,0(,,)1,0,0(,{)(

})1,0,0(,,)1.,7.,5(.,{)(

213

212

211

1

1

1

1

vvef

vvef

vvef

L

L

L

L

  
; 


















})1,0,0(,,)1,0,0(,{)(

})1.,6.,8(.,,)1,0.0(,{)(

})1,0,0(,,)1,0,0(,{)(

213

212

211

2

2

2

2

vvef

vvef

vvef

L

L

L

L

  
; 


















})1,0,0(,,)2.,5.,7(.,{)(

})1,0,0(,,)1,0,0(,{)(

})1,0,0(,,)1,0,0(,{)(

213

212

211

3

3

3

3

vvef

vvef

vvef

L

L

L

L

  
; 

214 LLL  ; 

315 LLL  ; 

326 LLL  ; 

3217 LLLL  ; 

Thus (V, E, 1u , 2u ) is a NBSTS over (V, E). 

Consider c
u )( 1 = { ccccccc

uu KKKKKKK )(,)(,)(,)(,)(,)(,)(,1, 7654321 }  

where ccccccc KKKKKKK )(,)(,)(,)(,)(,)(,)( 7654321  are 1u -NSCSs over (V, E), defined as follows 





















})1,0,0(,,)1,0,0(,{)(

})1,0,0(,,)1,0,0(,{)(

})1,0,0(,,)2.,6.,3(.,{)(

)(

213)(

212)(

211)(

1

1

1

1

vvef

vvef

vvef

K

c

c

c

K

K

K
c

  
; 





















})1,0,0(,,)1,0,0(,{)(

})2,.3.,5(.,,)1,0,0(,{)(

})1,0,0(,,)1,0,0(,{)(

)(

213)(

212)(

211)(

2

2

2

2

vvef

vvef

vvef

K

c

c

c

K

K

K
c

  
; 





















})1,0,0(,,)2,.5.,7(.,{)(

})1,0,0(,,)1,0,0(,{)(

})1,0,0(,,)1,0,0(,{)(

)(

213)(

212)(

211)(

3

3

3

3

vvef

vvef

vvef

K

c

c

c

K

K

K
c

  
;  

ccc KKK )()()( 214 
 
; 

ccc KKK )()()( 315 
 
; 
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ccc KKK )()()( 326 
 
; 

cccc KKKK )()()()( 3217 
 
 

Hence (V, E, 1u , 2u ) is a pairwise NS 4T -space, also a pairwise NS 3T -space. 

5. DM Problem in NBSTS 

In this segment, measured the output of problem and evaluated the decision on NBSTS. 

 

Definition 5.1 Let V be the set of universal set, E be its parameter and  Puuu ,1,1    and 

 Quuu ,1,2    be two NSTs. Then NSSs P and Q in NBSTS (V, E, 1u , 2u ) over (V, E) are defined by 

lk   matrix where every entries are marks of kv  based on each parameters le . 

 





























)(),(),()(),(),()(),(),(

)(),(),()(),(),()(),(),(
)(),(),()(),(),()(),(),(

)()()()()()()()()(

2)(2)(2)(2)(2)(2)(2)(2)(2)(

1)(1)(1)(1)(1)(1)(1)(1)(1)(

222111

222111

222111

kefkefkefkefkefkefkefkefkef

efefefefefefefefef

efefefefefefefefef

lk

vIvFvTvIvFvTvIvFvT

vIvFvTvIvFvTIvFvT
vIvFvTvIvFvTvIvFvT

P

lPlPlPPPPPPP

lPlPlPPPPPPP

lPlPlPPPPPPP









 

and  

 





























)(),(),()(),(),()(),(),(

)(),(),()(),(),()(),(),(
)(),(),()(),(),()(),(),(

)()()()()()()()()(

2)(2)(2)(2)(2)(2)(2)(2)(2)(

1)(1)(1)(1)(1)(1)(1)(1)(1)(

222111

222111

222111

kefkefkefkefkefkefkefkefkef

efefefefefefefefef

efefefefefefefefef

lk

vIvFvTvIvFvTvIvFvT

vIvFvTvIvFvTIvFvT
vIvFvTvIvFvTvIvFvT

Q

lQlQlQQQQQQQ

lQlQlQQQQQQQ

lQlQlQQQQQQQ









 

where Vvvv k ,,, 21  and Eeee l ,,, 21  . 

Clearly   lkuuu P  ,1,1   and   lkuuu Q  ,1,2   are also NSTs in NBSTS (V, E, 1u , 2u ) over   

(V, E). 

Thus the outcome result (OR) of Vv  is given by the formula 

     










 












 


2

)()(
1

2

)()()()(
)(

)()()()()()( vIvIvFvTvFvT
vOR

efefefefefefe QPPQQP  (5.1.1) 

where Ee . 

The Net Result (NR) of each Vvvv k ,,, 21   is 

 



l

j

e
i

e
i

jj vRvNR
1

)()(  (5.1.2) 

for all i = 1 to k. 

 

Example 5.2 Let V = 21,vv , E = 21,ee  and 1u =         224223222221 ,,,,1,


KKKKuu  and  

2u =     222221 ,,1,


LLuu  where             222221224223222221 ,,,,,


LLKKKK  are NSSs over (V, E), 

defined as follows 
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  













 3.6.,2.7.,4.,9.
6.,5.,4.3.,2.,1.

221K , 

  













 2.5.,3.6.,7.,5.
2.,7.,4.1.,3.,2.

222K , 

  













 2.6.,3.6.,7.,9.
2.,7.,4.1.,3.,2.

223K , 

  













 3.5.,2.7.,4.,5.
6.,5.,4.3.,2.,1.

224K . 

and 

  













 2.7.,6.2.,1.,3.
2.,4.,3.1.,8.,5.

221L ,  

  













 9.6.,3.6.,1.,2.
5.,3.,2.2.,7.,4.

222L . 

Thus (V, E, 1u , 2u ) is a NBSTS over (V, E). 

 

Algorithm 

Step 1: List the set of things or person Vv with their parameters Ee . 

Step 2: Go through the records of the particulars. 

Step 3: Collect the data for each Vv  according to all Ee . 

Step 4: Define NSSs. 

Step 5: Define two different topologies 1u and 2u  where each satisfies the condition of NST and 

so (V, E, 1u , 2u ) is a NBSTS over (V, E). 

Step 6: Form 2,1 uuuiNSSs   matrix with collected data where kv  as rows and le  as columns. 

Step 7: Calculate the OR for all Vv . 

Step 8: Calculate the NR for all Vv .  

Step 9: Select a highest value among all the calculated NR. 

Step 10: If two or more NR are identical, add one more parameter and repeat the process. 

Step 11: End the process while we acquire the unique NR of kv . 

 

Problem 5.3 Let us suppose that there are two groups of women. First group consists of young age 

women (YAW, aging 20-25), say 1u , and second group consists of middle age women (MAW, aging 

30-35), say 2u . Our aim is to insist both groups of women to select a saree together according to 

their desire and choice.  

1. Let V =  54321 ,,,, srsrsrsrsr  be the set of sample sarees and selection done by the set of parameters 

let it be E = {c, q, d, p} where is c = colour, q = quality, d = design and p = price.  

2. Both groups are analyzing the sarees collections.  

3. Data are collected for each sarees according to its paramaters given.  

4. Convert these data as NSSs, say YAW and MAW. 

5. Let  YAWuuu ,1,1    and  MAWuuu ,1,2    be two NSTs and so (V, E, 1u , 2u ) is a NBSTS over 

(V, E). 

6. The matrix form of NSSs YAW and MAW are as follows:  
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 



































4.,3.,1.9.,6.,3.3.,2.,1.2.,5.,7.
3.,1.,7.1.,3.,5.8.,6.,4.6.,4.,2.
5.,2.,3.1.,7.,2.8.,4.,7.9.,3.,6.
6.,3.,9.5.,7.,8.2.,4.,3.4.,3.,9.
5.,4.,8.7.,2.,4.2.,2.,7.2.,7.,5.

45YAW  

and 

 



































8.,4.,2.2.,5.,3.2.,1.,2.2.,1.,3.
1.,9.,2.1.,2.,7.5.,4.,3.7.,6.,2.
2.,1.,5.1.,2.,8.3.,7.,6.2.,9.,1.
4.,4.,4.4.,9.,5.2.,4.,8.2.,4.,8.
3.,7.,4.2.,6.,3.2.,3.,7.3.,4.,6.

45MAW  

7. The Table 5.3.1 is obtained by using the formula (5.1.1),  

Table 5.3.1. OR table. 

 sr1 sr2 sr3 sr4 sr5 

c .105 .3575  .08  .225 .21 

q .375 .21 .045 .15  .085 

d .06 .04 .22 .45  .1125 

p .09 .0975 .0425 .125  .2925 

 

8. The Table 5.3.2 is obtained by using the formula (5.1.2),  

Table 5.3.2. NR table. 

 sr1 sr2 sr3 sr4 sr5 

c .105 .3575  .08  .225 .21 

q .375 .21 .045 .15  .085 

d .06 .04 .22 .45  .1125 

p .09 .0975 .0425 .125  .2925 

NR .63 .705 .2275 .2  .28 

 

Thus the second saree has selected by both the categories of women. 

 

Problem 5.4 Consider the situation of problem 5.3.  

1. Let V =  54321 ,,,, srsrsrsrsr  be the set of sample sarees and selection done by the set of parameters 

let it be E = {c, q, d, p} where is c = colour, q = quality, d = design and p = price.  

2. Both groups are analyzing the sarees collections.  

3. Data are collected for each sarees according to its paramaters given.  

4. Convert these data as NSSs, say YAW and MAW. 

5. Let  YAWuuu ,1,1    and  MAWuuu ,1,2    be two NSTs and so (V, E, 1u , 2u ) is a NBSTS over 

(V, E). 

6. The matrix form of NSSs YAW and MAW are as follows:   
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 



































9.,3.,6.9.,6.,3.3.,2.,1.2.,5.,7.
3.,1.,7.2.,2.,7.8.,6.,4.6.,4.,2.
5.,2.,3.1.,7.,2.8.,4.,7.4.,3.,1.
6.,3.,9.5.,7.,8.2.,4.,3.4.,3.,9.
5.,4.,8.7.,2.,4.1.,3.,5.2.,7.,5.

45YAW  

and 

 



































2.,9.,1.2.,5.,3.2.,1.,2.2.,1.,3.
1.,9.,2.2.,3.,7.5.,4.,3.7.,6.,2.
2.,1.,5.1.,2.,8.3.,7.,6.8.,4.,2.
4.,4.,4.4.,9.,5.2.,4.,8.2.,4.,8.
3.,7.,4.2.,6.,3.1.,2.,7.3.,4.,6.

45MAW  

 

7. The Table 5.4.1 is obtained by using the formula (5.1.1),  

Table 5.4.1. OR table. 

 sr1 sr2 sr3 sr4 sr5 

c .105 .3575  .2925  .225 .21 

q .45 .21 .045 .15  .085 

d .06 .04 .22 .375  .1125 

p .09 .0975 .0425 .125  .08 

 

8. The Table 5.4.2 is obtained by using the formula (5.1.2),  

Table 5.4.2. NR table. 

 sr1 sr2 sr3 sr4 sr5 

c .105 .3575  .2925  .225 .21 

q .45 .21 .045 .15  .085 

d .06 .04 .22 .375  .1125 

p .09 .0975 .0425 .125  .08 

NR .705 .705 .015 .125  .0675 

 

Thus first and second sarees have selected by both categories of women. 

In this situation, we just add a parameter f = fabric in E and repeat the process. 

4. After adding one more parameter, convert these data as NSSs, say YAW  and MAW . 

5. Let   YAWuuu ,1,1   and   MAWuuu ,1,2   be two NSTs and so (V, E, 1u , 2u ) is a NBSTS 

over (V, E). 

6. The matrix form of NSSs YAW and MAW are as follows:  
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 














































6.,3.,1.
4.,8.,7.
2.,5.,4.
3.,1.,5.
2.,7.,6.

9.,3.,6.9.,6.,3.3.,2.,1.2.,5.,7.
3.,1.,7.2.,2.,7.8.,6.,4.6.,4.,2.
5.,2.,3.1.,7.,2.8.,4.,7.4.,3.,1.
6.,3.,9.5.,7.,8.2.,4.,3.4.,3.,9.
5.,4.,8.7.,2.,4.1.,3.,5.2.,7.,5.

55YAW  

and 

 














































7.,2.,6.
4.,3.,2.
4.,5.,6.
1.,8.,7.
3.,6.,9.

2.,9.,1.2.,5.,3.2.,1.,2.2.,1.,3.
1.,9.,2.2.,3.,7.5.,4.,3.7.,6.,2.
2.,1.,5.1.,2.,8.3.,7.,6.8.,4.,2.
4.,4.,4.4.,9.,5.2.,4.,8.2.,4.,8.
3.,7.,4.2.,6.,3.1.,2.,7.3.,4.,6.

55MAW  

 

7. The Table 5.4.3 is obtained by using the formula (5.1.1),  

Table 5.4.3. OR table after adding a parameter. 

 sr1 sr2 sr3 sr4 sr5 

c .105 .3575  .2925  .225 .21 

q .45 .21 .045 .15  .085 

d .06 .04 .22 .375  .1125 

p .09 .0975 .0425 .125  .08 

f .175 .22 .1 .0225  .225 

 

8. The Table 5.4.4 is obtained by using the formula (5.1.2),  

Table 5.4.4. NR table after adding a parameter. 

 sr1 sr2 sr3 sr4 sr5 

c .105 .3575  .2925  .225 .21 

q .45 .21 .045 .15  .085 

d .06 .04 .22 .375  .1125 

p .09 .0975 .0425 .125  .08 

f .175 .22 .1 .0225  .225 

NR .88 .925 .115 .1475  .2925 

 

Thus the second saree has selected by both categories of women. 

 

Problem 5.5 Consider the situation that there are six students on the main stage for Quiz Finale. 

There are two teams, each team consists of three students, one is Winner (W) and other is Runner (R). 

Let FA1 and FA2 be two final authorities to judge the event. Our problem is to find the best player in 

the winning team whose teammates are not mentioned here.  

1. Let V =  654321 ,,,,, stststststst  be the set of students and judgement is based on the set of 

parameters let it be E = {ra, eff, ca, mr, gp} where ra = right answers, eff = effectiveness, ca = complex 

analysis, mr = memory, gp = grasping power.  



Neutrosophic Sets and Systems, Vol. 35, 2020 459  

 

 
Chinnadurai V and Sindhu M P, A Novel Approach for Pairwise Separation Axioms on Bi-Soft Topology Using 
Neutrosophic Sets and An Output Validation in Real Life Application 

2. First of all these final authorities will go through the records of the students. 

3. They will collect student’s data according to their paramaters given.  

4. These data are converted into two different NSSs, say FA1 and FA2.  

5. Let  1,1,1 FAuuu    and  2,1,2 FAuuu    be two NSTs and so (V, E, 1u , 2u ) is a NBSTS over 

(V, E).  

6. The matrix form of NSSs FA1 and FA2 are as follows:  

 









































2.,5.,3.4.,5.,3.6.,9.,8.2.,7.,6.4.,3.,7.
4.,1.,4.4.,5.,3.4.,3.,7.1.,2.,9.4.,5.,6.
4.,3.,7.7.,2.,4.1.,6.,8.4.,5.,7.3.,6.,2.
6.,4.,5.3.,2.,1.2.,4.,6.4.,5.,3.6.,6.,3.
5.,7.,2.2.,7.,9.3.,4.,5.1.,6.,8.2.,3.,7.
3.,5.,6.1.,9.,2.8.,4.,2.1.,3.,6.7.,2.,4.

1 56FA  

and 

 









































2.,3.,7.4.,3.,1.1.,3.,5.3.,6.,9.5.,4.,8.
5.,2.,3.7.,2.,4.2.,5.,7.3.,2.,1.4.,9.,5.
5.,4.,8.3.,2.,1.6.,4.,2.8.,4.,7.7.,6.,2.
9.,6.,3.8.,6.,4.4.,3.,1.6.,3.,9.1.,8.,7.
2.,2.,7.8.,4.,7.4.,3.,9.3.,7.,6.2.,1.,5.
1.,7.,2.2.,4.,3.2.,7.,5.4.,3.,2.3.,7.,4.

2 56FA  

 

7. The Table 5.5.1 is obtained by using the formula (5.1.1),  

Table 5.5.1. OR table. 

 st1 st2 st3 st4 st5 st6 

ra .11 .32 .045  .12 .045 .195 

eff .105 .175 .24 .055 .24 .175 

ca .0675 .2275 .0325 .075 .24 .12 

mr .035 .135  .018  .02  .13 .24 

gp .08 .055  .175 .195  .085 .18 

 

8. The Table 5.5.2 is obtained by using the formula (5.1.2),  

Table 5.5.2. NR table. 

 st1 st2 st3 st4 st5 st6 

ra .11 .32 .045  .12 .045 .195 

eff .105 .175 .24 .055 .24 .175 

ca .0675 .2275 .0325 .075 .24 .12 

mr .035 .135  .018  .02  .13 .24 

gp .08 .055  .175 .195  .085 .18 

NR .3975 .9125  .0375 .005 .31 .91 

 

Here both 2st  and 6st  got high score from judges, so they both does not belongs to R. 
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Case (i). If Wst 2 and Rst 6 , then the best player award goes to 2st .  

Case (ii). If Rst 2 and Wst 6 , then the best player award goes to 6st .  

Case (ii). If Wst 2 and Wst 6 , then we just add a parameter ld = leadership. 

4. After adding one more parameter, convert these data as NSSs, say 1FA  and 2FA . 

5. Let   1,1,1 FAuuu   and   2,1,2 FAuuu   be two NSTs and so (V, E, 1u , 2u ) is a NBSTS over 

(V, E). 

6. The matrix form of NSSs 1FA and 2FA are as follows: 

 






















































6.,2.,6.
5.,1.,3.
1.,2.,8.
3.,5.,7.
1.,1.,9.
4.,2.,3.

2.,5.,3.4.,5.,3.6.,9.,8.2.,7.,6.4.,3.,7.
4.,1.,4.4.,5.,3.4.,3.,7.1.,2.,9.4.,5.,6.
4.,3.,7.7.,2.,4.1.,6.,8.4.,5.,7.3.,6.,2.
6.,4.,5.3.,2.,1.2.,4.,6.4.,5.,3.6.,6.,3.
5.,7.,2.2.,7.,9.3.,4.,5.1.,6.,8.2.,3.,7.
3.,5.,6.1.,9.,2.8.,4.,2.1.,3.,6.7.,2.,4.

1 66FA  

and 

 






















































4.,9.,5.
2.,3.,7.
5.,4.,3.
4.,4.,8.
1.,9.,6.
4.,5.,7.

2.,3.,7.4.,3.,1.1.,3.,5.3.,6.,9.5.,4.,8.
5.,2.,3.7.,2.,4.2.,5.,7.3.,2.,1.4.,9.,5.
5.,4.,8.3.,2.,1.6.,4.,2.8.,4.,7.7.,6.,2.
9.,6.,3.8.,6.,4.4.,3.,1.6.,3.,9.1.,8.,7.
2.,2.,7.8.,4.,7.4.,3.,9.3.,7.,6.2.,1.,5.
1.,7.,2.2.,4.,3.2.,7.,5.4.,3.,2.3.,7.,4.

2 66FA  

 

7. The Table 5.5.3 is obtained by using the formula (5.1.1),  

Table 5.5.3. OR table after adding a parameter. 

 st1 st2 st3 st4 st5 st6 

ra .11 .32 .045  .12 .045 .195 

eff .105 .175 .24 .055 .24 .175 

ca .0675 .2275 .0325 .075 .24 .12 

mr .035 .135  .018  .02  .13 .24 

gp .08 .055  .175 .195  .085 .18 

ld .065 .352  .055 .175 .12 .0675 

 

8. The Table 5.5.4 is obtained by using the formula (5.1.2),  

Table 5.5.4. NR table after adding a parameter. 

 st1 st2 st3 st4 st5 st6 

ra .11 .32 .045  .12 .045 .195 

eff .105 .175 .24 .055 .24 .175 

ca .0675 .2275 .0325 .075 .24 .12 

mr .035 .135  .018  .02  .13 .24 

gp .08 .055  .175 .195  .085 .18 
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ld .065 .352  .055 .175 .12 .0675 

NR .4625 1.2375  .0925 .18 .43 .9775 

 

Thus the best player award goes to 2st . 

6. Conclusion 

The main involvement of this paper is to preface the definition of NBSTSs and the study of 

some important properties of such spaces including separation axioms and the relationship between 

4,3,2,1,0iT -spaces. The key of this paper is to apply NBSTS in real life problems to take a decision, 

which might be positive or negative. In our problems two different types of NSTs are combined 

together to choose a unique decision according to the algorithm and calculation made by the 

formulae given here. Subsequently, NBSTS can be built up to pairwise NS separated sets, pairwise 

NS connected spaces, pairwise NS connected sets, pairwise NS disconnected spaces, pairwise NS 

disconnected sets and so on. We look forward to encourage this type of NBSTS will find a way to 

other types of topological structures. In future, some case studies which we mention in this paper 

need to develop on multicriteria DM also.  
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Abstract: Introduction of Neutrosophic sets and Neutrosophic numbers paves a way to handle 

uncertainty more effectively. In this paper we propose a new approach for ranking neutrosophic 

number by using its magnitude. We develop an algorithm for the solution of neutrosophic 

assignment problems involving pentagonal neutrosophic number. The proposed method is easy to 

understand and to apply for finding solution of neutrosophic assignment problems occurring in real 

life situations. To show the proposed strategy numerical models are given and the acquired results 

are analyzed. 

 

Keywords: Neutrosophic sets, Neutrosophic number, Pentagonal neutrosophic number, 

Neutrosophic Assignment Problem, Optimal Solution. 

 

1. Introduction 

 This section gives a survey of research work carried out so far to handle uncertainity. The 

novelty of present work, motivation behind it and structure of the remaining sections were also 

provided.  

1.1: Literature survey 

Smarandache [1] introduced neutrosophic sets having three components truthiness, 

indeterminacies, and falseness. Wang et al [3] introduced a single valued neutrosophic set, which is 

a subclass of a neutrosophic set presented by Smarandache [1]. Introduction of neutrosophic 

measure, neutrosophic integral, and neutrosophic probability by Smarandache [2,4] gave notation 

and many examples for neutrosophic measure, and consequently, the neutrosophic integral and 

neutrosophic probability are also defined. Many researchers have applied the neutrosophic logic in 

various fields. 

To develop an optimization problem and its solution procedure in uncertain environment, the 

study of fuzzy number, intuitionistic fuzzy number, neutrosophic number and their ranking is 

necessary. Several researchers paid attention to fuzzy and intuitionistic fuzzy optimization methods 

by adopting various ranking techniques. But ranking of neutrosophic number is a risk task. To 

handle optimization problems having indeterminacy, ranking of  neutrosophic numbers plays a 

vital role. S.Subasri and K.Selvakumari [5] ranked triangular neutrosophic number and applied the 

same to solve travelling salesman problems. Avishek Chakraborty [6], [7] gave a new ranking 

method to rank pentagonal neutrosophic number. Chakraborty A, Mondal SP, Ahmadian A, Senu 

N, Alam S,Salahshour S in 2018 [8] formatted Different forms of triangular neutrosophic numbers, 

mailto:radhikavisu@gmail.com
mailto:arunfuzzy@gmail.com
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and introduced de-neutrosophication techniques, and  applied in critical path analysis. 

Smarandache [9] in 2019 approached TOPSIS technique for developing supplier selection with 

group decision making under type-2 neutrosophic number. Nabeeh NA, Abdel-Basset M, 

El-Ghareeb HA, Aboelfetouh A in 2019[10] developed multi-criteria decision making approach for 

IoT-based enterprises using neutrosophic numbers. Neutrosophic functions and neutrosophic 

calculus, was defined by Florentin Smarandache [11].Neutrosophic ordinary differential equation of 

first order via neutrosophic numbers is epitomized by Sumathi IR, MohanaPriya V [12], Differential 

equations in neutrosophic environment are explored, and solution of second-order linear differential 

equation with trapezoidal neutrosophic numbers as boundary conditions is discussed by R. Sumathi 

[13].Minimal spanning tree is one of the important fact in the field of graph theory. Single valued 

neutrosophic minimal spanning tree and clustering method was solved by Ye [14] in 2014. Mandal & 

Basu [15] solved similarity measure to find spanning tree related with neutrosophic arena. Mullai 

et.al [16] formulated minimum spanning tree problem in bipolar neutrosophic number. Broumi et.al 

[17] formulated shortest path problem on single valued neutrosophic graphs. Kandasamy [18] 

developed double-valued neutrosophic sets and their application in minimum spanning tree 

problems. Broumi et.al [19] formulated neutrosophic shortest path for solving Dijkstra’s algorithm in 

graph theory. Mohamed Abdel-Basset [20] introduced bipolar neutrosophic number and applied in 

decission making problems he also proposed a model in [21] to evaluate the supply chain 

sustainability metrics based on a combination of quality function deployment and plithogenic 

aggregation operations. Assignment problems plays an important role in optimization. Many 

researchers have handled assignment problems in fuzzy and intuitionistic fuzzy environment but in 

neutrosophic environment, only few articles were published, that too involving other forms 

neutrosophic numbers. This was the first attempt to discuss assignment problems in neutrosophic 

environments involving pentagonal neutrosophic numbers. 

1.2. Motivation 

 For the past few years the ambiguous data were handled by fuzzy sets, intuitionistic fuzzy sets, 

interval valued fuzzy sets and many such structures. Recently, the introduction of neutrosophic sets 

proves to be more suited to handle vagueness than existing set theoretical structure. Fuzzy number 

can measure only uncertainty, intuitionistic and interval valued intuitionistic fuzzy number can 

measure uncertainty and vagueness not hesitation. Only neutrosophic number can measure all the 

three parameters effectively. Thus pentagonal neutrosophic number attracts more attention and 

paves path for new research. 

 1.3. Novelties 

 From its inception, a few research articles had just distributed in various journals in 

neutrosophic field. Only a countable amount of articles had dealt with pentagonal neutrosophic 

number in that other types neutrosophic number can be generalized from pentagonal neutrosophic 

number. Neutrosophic assignment problem is an area in which focus on the de-neutrosophication 

technique applied to solve neutrosophic assignment problem. 

1.4. Contribution 

 In this research article, symmetric pentagonal neutrosophic fuzzy numbers are considered. 

These numbers are converted into crisp values by means of ranking approach by magnitude. There 

are many ranking procedures which rank uncertainty and vagueness separately. Here our ranking 

procedure converts all the three parts of pentagonal neutrosophic number into crisp number. Lastly, 

the proposed ranking was applied to solve neutrosophic assignment problem. Section-1 throws an 

introduction to neutrosophic number and literature survey in the field. Section-2 gives the 

preliminaries Section-3 covers representation, definition and ranking of pentagonal neutrosophic 
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number. Section-4 provides mathematical formation of neutrosophic assignment problem, algorithm 

to solve it and numerical example illustrating the procedure. The last section gives the conclusion 

and scope of the future work. 

2. Preliminaries 

Definition 2.1: [1] Let X  be a universe set. A neutrosophic set on  A X is defined as

      A A AA T x I x F x x X , , : , where       0 1A A AT x I x F x X     , , : ,  represents the 

degree of membership, degree of indeterministic, and degree of non-membership respectively of the 

element ,x X such that      0 3A A AT x I x F x      .  

Definition 2.2: [12]   cut:   , ,  The   cut   , ,  neutrosophic set is denoted by  F   , , ,  

where 0 1      , , , and are fixed numbers, such that 3      is defined as  

              A A A A A AF T x I x F x x X T x I x F x         , , , , : , , , .  

Definition 2.3:  [12] A neutrosophic set A defined on the universal set of real numbers R is said to 

be neutrosophic number if it has the following properties. (i) A is normal if there exist 0x R , , such 

that  0 0 01 0A A AT x I x F x  ( ) , ( ) .  (ii) A is convex set for the truth function  AT x ,  i.e., 

       1 2 1 2 1 21 0 1A A AT x x T x T x x x R          min , , , , , . (iii) A is concave set for the 

indeterministic function and false fuunction    and A AI x F x , i.e., 

       1 2 1 2 1 21 0 1A A AI x x I x I x x x R          max , , , , , ,

       1 2 1 2 1 21 0 1A A AF x x F x F x x x R          max , , , , , .  

3  Ranking of pentagonal Neutrosophic number 

    This section gives the definition of symmetric pentagonal neutrosphic number and a method of 

ranking it by means of magnitude. Numerical examples were illustrated to explain the proposed 

ranking procedure.  

Definition: Symmetric Pentagonal neutrosophic number:  A is a subset of neutrosophic number 

in R with the following truth function, indeterministic function, and falsity function which is given 

by the following: 

       1 2 3 4 5 1 2 3 4 5 1 2 3 4 5A a a a a a b b b b b c c c c c p q r , , , , , , , , , , , , , , ; , , ,  where 0 1p q r    , , , .  

The accuracy membership function   0 1A x    : , , the indeterminacy membership function  

  0 1A x    : ,  and the falsity membership function   0 1A x    : ,  are defined as follows: 
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Figure 1.Representation of Symmetric Pentagonal neutrosophic number 
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Here 1 2 1 2
1 2 2 3 3 4 4 5( ) :[ , ] [0, p], ( ) :[ , ] [p,1], ( ) :[ , ] [p,1], z (x) :[a , a ] [0, ] ,L L R R

A A A Az x a a z x a a z x a a p   

where
1 2( ), (x)L L

A Az x z are non-decreasing left accuracy functions and
1 2( ), ( )R R

A Az x z x are non-increasing 

right accuracy functions of symmetric Pentagonal neutrosophic number. Also

1 2 1 2 1 2
1, 2 2, 3 3, 4 4, 5( ) :[ ] [ ,1], ( ) :[ ] [0,q], ( ) :[ ] [0,q], ( ) :[ ] [q,1], where  ( ), k (x)L L R R L L

A A A A A Ak x b b q k x b b k x b b k x b b k x   

are non-increasing left indeterminacy membership functions and 
1 2( ), k ( )R R

A Ak x x  are non-decreasing 

right indeterminacy membership functions of symmetric pentagonal neutrosophic number. Similarly 

the functions that occur in falsity membership function were defined as follows: 

 

1 2 1 2 1 2
1, 2 2, 3 3, 4 4, 5( ) :[c ] [r,1], m ( ) :[c ] [0, r], m ( ) :[c ] [0, r], m ( ) :[c ] [r,1], where ( ), m (x)L L R R L L

A A A A A Am x c x c x c x c m x   

are non-increasing left falsity membership function and 
1 2( ), m ( )R R

A Am x x are non-decreasing right falsity  

membership function of symmetric Pentagonal neutrosophic number. It is clear that
1 2( ), (x)L L

A Az x z

1 2( ), ( )R R
A Az x z x

,
1 2( ), k (x)L L

A Ak x
,

1 2( ), k ( )R R
A Ak x x ,

1 2( ), m (x)L L
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,
1 2( ), m ( )R R

A Am x x  are one to one and inverse 

exist.  

The inverse functions of left and right accuracy, indeterminacy and falsity functions are defined as 

follows: 
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 The magnitude denoted by Mag(A) of a symmetric pentagonal neutrosophic number

      1 2 3 4 5 1 2 3 4 5 1 2 3 4 5A a a a a a b b b b b c c c c c p q r , , , , , , , , , , , , , , ; , , ,  is determined as follows: 

1 2 1 2 1 2 1 2 1 2
3 3

1 2
3

1( ) ( ( ) ( ) ( ) ( ) 2 a ( ) ( ) ( ) ( ) 2 b ( ) ( )
2

( ) ( ) 2 c ) ( ) .

L L R R L L R R L L
A A A A A A A A A A

R R
A A

Mag A f f f f g g g g h h

h h t d

         

   

            

 



       

2 2 2
1 5 2 4 3 1 5 2 4

2 2 2
3 1 5 2 4 3

1 1 2 2 10 2 1
12

2 6 2 1 2 6

p a a p a a p p a q q b b q b b

q b r r c c r c c r c

               

         

[ ( ) ( )( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )( ) ( ) ].
      
(1) 

 

where the function t(𝛼)is a weighted function and is a non-negative and increasing function on  [0,1] 

with t(0)=0,t(1)=1and  

1

0 2
1)(  dt we choose  t(𝛼)  = 𝛼.The scalar value Mag(A) is used to rank 

Pentagonal neutrosophic number. 

 

Remark: 

When 𝑝 = 0, 𝑞 = 1, 𝑟 = 1 pentagonal neutrosophic number becomes triangular neutrosophic number. 

Then the magnitude of A defined in equation (1) will be transformed into 

2 4 3 2 4 3 2 4 3
1( ) [( ) 10 2( ) 8 2( ) 8 ]

12
Mag A a a a b b b c c c          

 

 

 

 

3.2 Ranking Procedure 
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 Using the magnitude of symmetric pentagonal neutrosophic number defined above, the ordering 

of pentagonal neutrosophic numbers is explained in this section. 

Let       1 2 3 4 5 1 2 3 4 5 1 2 3 4 5A a a a a a b b b b b c c c c c p q r , , , , , , , , , , , , , , ; , , , and     

      1 2 3 4 5 1 2 3 4 5 1 2 3 4 5B d d d d d e e e e e i i i i i u v w , , , , , , , , , , , , , , ; , , be any two arbitrary Pentagonal 

neutrosophic numbers. Then the ranking procedure is as follows: 

Step 1: Compute Mag(A) , Mag(B),any one of the following cases prevail. 

Step 2: 

(i) If ( ) Mag(B), then A BMag A    

(ii) If ( ) Mag(B), then A BMag A    

(iii) If ( ) Mag(B), then A BMag A    

 

3.3 Numerical examples  

The ordering procedure in the previous section is illustrated by numerical examples. 

Consider the following sets of Pentagonal neutrosophic numbers. 

Set 1:A={(.5,1.5,2.5,3.5,4.5)(0.3,1.3,2.3,3.3,4.3)(1.8,2.8,3.8,4.8,5.8);0.5,0.5,0.5} 

     B={(.7,1.7,2.5,3.5,4.7)(.5,1.5,2.2,3.2,4)(1.7,2.7,3.,4.7,5.7);0.5,0.5,0.5} 

     C={(1,4,7,10,13)(0.5,3.5,6.5,9.5,12.5)(4.5,7.5,9,12,14.5);0.5,0.5,0.5} 

Set 2:A={(10,15,20,25,30)(0,3,5,7,10)(0,1,2,3,4,);0.5,0.5,0.5} 

     B={(5,10,15,20,25)(1,2,3,4,5)(1,1.5,2,2.5,3);0.5,0.5,0.5} 

     C={(10,20,30,40,50)(1,4,7,8,10)(1,1.5,2,2.5,3);0.5,0.5,0.5} 

The table.1 gives the comparison of proposed ranking of Pentagonal neutrosophic numbers with 

the existing methods. 

Author name and method Set 1 Set 2 

Proposed method  A=8.6 

B=8.4 

C=22.79 

Result:  C > A > B 

A=27 

B=20 

C=38.5 

Result:   C>A>B 

Avishek Chakraborty’s 

De-Neutrosophication 

value [6]   

A=2.86 

B=2.66 

C=7.66 

Result:  C > A = B 

A=9 

B=6.66 

C=12.70 

Result:   C>A>B 

Avishek Chakraborty’s 

accuracy function value [7]   

A= -.533 

B= -.45 

C= -2.33 

Result:  B > A >C 

A=5 

B=4 

C=8 

Result:   C>A>B 

            Table.1 Comparison table for ranking Pentagonal neutrosophic numbers 

The table 2 gives the numerical example of the De-Neutrosophication value of Triangular 

neutrosophic numbers. 
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Sl.No Triangular neutrosophic numbers proposed method of ranking 

1 A={(1,2,3)(0.5,1.5,2.5)(1.2,2.7,3.5)} 

B={(.5,1.5,2.5)(.3,1.3,2.2)(.7,1.7,2.2} 

Result 

6.083 

3.723 

A > B 

Table.2 De-Neutrosophication value Triangular neutrosophic numbers 

4.  Application of Ranking of Pentagonal Neutrosophic Number in solving Neutosphic                  

Assignment Problem  

In this section neutrosophic assignment problem with pentagonal neutrosophic numbers as 

parameters was formulated, algorithm for identifying the optimal solution to neutrosophic 

assignment problem was stated. Finally a numerical example was produced to explain the 

proposed algorithm. 

    Need for Pentagonal neutrosophic numbers 

Suppose there are n facilities and n jobs it is clear that in this case, there will be n 

assignments. Each facility or say worker can perform each job, one at a time. But there should be 

certain procedure by which assignment should be made so that the profit is maximized or the 

cost or time is minimized. But in our real life applications the times taken to complete the job 

undergo uncertainty, hesitation and vagueness. In such cases we cannot have the parameter as a 

real value. So we have to use some other representation of the parameter with which the 

uncertainty, hesitation and vagueness can be measured. The below discussion justify the need 

for selecting the cost parameter in the terms of Pentagonal neutrosophic number. 

 If the parameter is a real value - uncertainty hesitation and vagueness cannot be handled 

 If the parameter is a fuzzy value- uncertainty but hesitation and vagueness cannot be 

handled 

 If the parameter is an Intuitionistic Fuzzy value - uncertainty and hesitation can be 

handled but vagueness cannot be handled. 

 If the parameter is a Pentagonal neutrosophic value - uncertainty, hesitation and 

vagueness (i.e) all the components can be handled. 

From the above discussion, it is clear that only pentagonal neutrosophic environment 

can tackle the impreciseness, hesitation and truthiness in a membership function of an 

uncertain number, which is more reliable, logical and realistic for a decision maker. 

Pentagonal neutrosophic numbers enabled to meet the imprecise parameters as well, which 

is approvingly the advantageous for the decision makers to analyze the result in a more 

precise manner. Moreover Pentagonal neutrosophic numbers generalize other types of 

neutrosophic numbers. 

 

Pentagonal neutrosophic assignment problem may be formulated as follows: 
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Consider the assignment problem with cost function as Pentagonal neutrosophic number. 

Minimize
1 1

n n

ij ij
i j

z c x
 

 ,  subject to  

1
1 1 2 3 and, , , ,......

n

ij
i

x j n


 
1

 1 1 2 3
n

ij
j

x j n


  , , , ,...... , 1 or 0 for al where is aij ijx i j c , ,   

Pentagonal neutrosophic number and the total cost for performing all the activity is given by 

1 1

n n

ij ij
i j

c x
 

 .  

 

Fundamental Theorems of a Pentagonal neutrosophic Assignment Problem  

The solution of a Pentagonal neutrosophic assignment problem is fundamentally based on the 

following two theorems: 

Theorem 1:  

In a Pentagonal neutrosophic assignment problem, if we add or subtract an Pentagonal 

neutrosophic number to every element of any row (or column) of the Pentagonal neutrosophic 

parameter matrix [𝑐𝑖𝑗 ], then an assignment that minimizes the total Pentagonal neutrosophic 

parameter on one matrix also minimizes the total Pentagonal neutrosophic parameter on the other 

matrix.  

Minimize 
n

j

n

i
ijij xcZ  with 1, 12.... , 1, 1,2.. 0or1for every ,
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ij ij ij
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x j n x i n x i j       
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*
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* , 1,2...ij ij i jc c u v for all i j n     for all i, j=1, 

2,……n are some real valued Pentagonal neutrosophic number. 
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This shows that the minimization of the new objective function 𝑍∗yields the same solution as the 

minimization of original objective function Z 

Theorem 2:  

 In a pentagonal neutrosophic assignment problem with parameter function ijc  if all  0ijc
the feasible solution which ijx  satisfies ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑛
𝑗

𝑛
𝑖 = 0 is an optimal solution. 
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Proof: Since all 0 all 0.ij ijc x  The objective function

n n

ij ij
j i

Z c x cannot be negative the 

minimum possible that Z can have is 0.Therefore any feasible solution ijx obtained that satisfies 

0
n n

ij ij
j i

Z c x  will be optimal. 

 

Algorithm to solve Pentagonal neutrosophic assignment problem: 

We, now introduce a new algorithm called the Pentagonal neutrosophic Hungarian method 

for finding a Pentagonal neutrosophic optimal assignment for Pentagonal neutrosophic assignment 

problem.  

Step 1: Determine the Pentagonal neutrosophic parameter table from the given problem. 

Step 2: Convert the given Pentagonal neutrosophic assignment matrix to crisp by using the 

magnitude method. 

Step 3: Subtract the row minimum from each row entry of that row. Subtract the column minimum 

of the resulting matrix from each column entry of that column. Each column and row now has at 

least one zero. 

Step 4: In the modified assignment table obtained in step 3, search for optimal assignment as 

follows.  

Examine the rows successively until a row with a single zero is found. Assign the zero and cross off 

all other zeros in its column. Continue this for all the rows. Repeat the procedure for each column of 

reduced assignment table. If a row and / or column have two or more zeros assign arbitrary any one 

of these zeros and cross off all other zeros of that row/column. Repeat the above process successively 

until the chain of assigning or cross ends. 

Step 5: If the number of assignments is equal to n, the order of the parameter matrix, optimal 

solution is reached. If the number of assignments is less than n, parameter matrix, go to the step 6. 

Step 6: Draw the minimum number of horizontal and / or vertical lines to cover all the zeros of the 

reduced assignment matrix. This can be done by using the following:  

(i)Mark rows that do not have any assigned zero. (ii)Mark columns that have zeros in the marked 

rows. (iii)Mark rows that do have zeros in the marked columns. Repeat (ii) and (iii) of the above until 

the chain of marking is completed. Draw lines through all the unmarked rows and marked columns. 

This gives the desired minimum number of lines. 

Step 7: Develop the new revised reduced parameter matrix as follows: Find the smallest entry of the 

reduced matrix not covered by any of the lines. Subtract this entry from all the uncovered entries 

and add the same to all the entries lying at the intersection of any two lines.  

Step 8: Repeat step 5 to step 7 until optimal solution to the given assignment problem is attained. 

 

 

 

 

 

Numerical example: 

Suppose we want to assign jobs A, B, C, D to machine M1, M2, M3, and M4. Our aim is to 

find the minimum time so that the job is completed so that each machine is assigned only one job, 
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The time parameter may not be a real value since the time taken to complete a job depend on the 

facts such as (i) working condition of the machine (ii) climatic condition and so on. So we represent 

the time parameter as Pentagonal neutrosophic number. The problem can be considered as follows. 

Minimize 
4 4

j i
ijij xcZ  

Where 

 

}3.0,4.0,5.0);31,25,21,15,9)(23,19,13,9,5)(26,22,18,14,10{(=c
}4.0,3.0,7.0);27.24,21,17,13)(20,18,15,11,7)(26,24,18,15,11,6{(=c

}4.0,3.0,5.0);29,25,21,17,13)(23,20,16,11,7)(25,23,17,14,11{(=c
}4.0,6.0,6.0);31,25,16,11,6)(23,19,13,8,3)(27,21,15,9,4{(=c

}4.0,5.0,6.0);28,24,19,14,9)(23,19,13,8,4)(26,17,14,11,7{(=c
}3.0,4.0,6.0);29,25,22,18,14)(23,20,17,13,9)(26,24,18,15,11,6{(=c

}2.0,6.0,8.0);26,22,18,14,10)(21,17,13,9,5)(26,24,18,15,12{(=c
}5.0,4.0,7.0);25,22,18,14,10)(18,15,12,8,6)(20,16,13,10,7{(=c

}4.0,6.0,6.0);30,26,22,18,14)(24,21,17,12,8)(27,23,19,15,11{(=c
}3.0,4.0,5.0);35,28,23,15,12)(24,21,16,12,6)(30,25,20,14,9{(=c

}5.0,6.0,6.0);30,24,20,14,8)(22,18,12,8,4)(25,20,15,10,6{(=c
}4.0,5.0,4.0);35,28,24,18,10)(28,22,18,12,6)(32,26,20,14,8{(=c
}3.0,4.0,6.0);35,28,22,16,12)(26,22,18,12,7)(32,26,20,15,10{(=c

}4.0,3.0,4.0);30,24,15,10,5)(22,18,12,7,2)(26,20,14,8,3{(=c
}3.0,4.0,6.0);35,25,20,15,10)(25,20,14,10,6)(30,24,18,12,7{(=c
}5.0,5.0,5.0);32,25,23,16,10)(27,22,15,10,7)(30,24,19,13,8{(=c

44

43

42

41

34

33

32

31

24

23

22
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14

13
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Subject to 
4 4

1
1, 1, 2,3, 4. 1, 1, 2,3, 4.ij ij

j i
x i x j



     , for1or 0,  all ij jx i , .   

Pentagonal neutrosophic assignment matrix in the crisp form 

98.5199.4998.5423.45
25.4612.5455.4982.42
69.5754.580.479.60
0.6018.4252.535.56

4M
3M
2M
1M

=C

DCBA

ij
 

Applying step 3, 4 the following time parameter matrix is obtained is 

75.676.475.90
43.33.1173.60
69.1054.1109.13
82.17034.1132.14

4M
3M
2M
1M

=C

DCBA

ij
 

Applying step 5 we the following result 
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32.376.481.80
03.1173.60
26.654.1109.13
39.14034.1132.14

4M
3M
2M
1M

=C

DCBA

ij
 

Number of assignment is equal to the order of the matrix. Therefore the optimal assignment is 

3,1,2,4 MDMCMBMA   the minimum time to complete the job is 

.66.180=25.46+18.42+47+23.45 . 

5. Conclusions 

In this research article the de-Neutrosophication Pentagonal neutrosophic number into a real 

number has been introduced by means of magnitude approach. The resulted ranking has been 

applied to solve neutrosophic assignment problems. The algorithm stated in this paper is simple to 

use and applicable to solve neutrosophic assignment problems in short time. Also it produces 

accurate result. There is much scope for future work in this field. This ranking can be applied to 

solve linear, non-linear and transportation problems involving pentagonal neutrosophic number. 

Further image processing multi-criteria decision making problems can also make use of this 

ranking method for smart computation. 
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Abstract: Distance measure is a numerical measurement of the distance between any two objects. 

The aim of this paper is to propose a new distance measure for trapezoidal fuzzy neutrosophic 

numbers based on the centroids with graphical representation. In addition, the metric properties of 

the proposed measure are examined in detail. A decision making problem also has been solved 

using the proposed distance measure for a software selection process. comparative analysis has been 

done with the existing methods to show the potential of the proposed distance measure and various 

forms of trapezoidal fuzzy neutrosophic number have been listed out to show the uniqueness of the 

proposed graphical representation. Further, advantages of the proposed distance measure have 

been given.  

Keywords: trapezoidal fuzzy neutrosophic numbers; centroids; distance measure  

 

 

1-Introduction 

Zadeh introduced a mathematical frame work called fuzzy set [43] which plays a very significant role 

in many aspects of science. Intuitionistic fuzzy set is the generalization of the Zadeh’s fuzzy set which 

was presented by Atanassov [3]. Later, triangular intuitionistic fuzzy sets was developed by Liu and 

Yuan [22] which is based on the combination of triangular fuzzy numbers and intuitionistic fuzzy 

sets. The fundamental characteristic of the triangular intuitionistic fuzzy set is that the values of its 

membership function and non-membership function are triangular fuzzy numbers rather than exact 

numbers. Furthermore, Ye [38] extended the triangular intuitionistic fuzzy set to the trapezoidal 

intuitionistic fuzzy set, where its fundamental characteristic is that the values of its membership 

function and non-membership function are trapezoidal fuzzy numbers rather than triangular fuzzy 

numbers, and proposed the trapezoidal intuitionistic fuzzy prioritized weighted averaging 

(TIFPWA) operator and trapezoidal intuitionistic fuzzy prioritized weighted geometric (TIFPWG) 

operator and their multi-criteria decision-making method, in which the criteria are in different 

mailto:broumisaid78@gmail.com
mailto:s.broumi@flbenmsik.ma
mailto:taleamohamed@yahoo.fr
mailto:lathamax@gmail.com
mailto:assiabakali@yahoo.fr
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priority level. Recently, Wang et al. [35] introduced a single-valued neutrosophic set, which is a 

subclass of a neutrosophic set presented by Smarandache [30], as a generalization of the classic set, 

fuzzy set and intuitionistic fuzzy set. The single-valued neutrosophic set can independently express 

truth-membership degree, indeterminacy-membership degree and falsity-membership degree and 

deal with incomplete, indeterminate and inconsistent information. All the factors described by the 

single-valued neutrosophic set are very suitable for human thinking due to the imperfection of 

knowledge that human receives or observes from the external world. For example, for a given 

proposition ‘‘Movie X would be hit,’’ in this situation human brain certainly cannot generate precise 

answers in terms of yes or no, as indeterminacy is the sector of unawareness of a proposition’s value 

between truth and falsehood. Obviously, the neutrosophic components are best fit in the 

representation of indeterminacy and inconsistent information, while the intuitionistic fuzzy set 

cannot represent and handle indeterminacy and inconsistent information. Hence, the single-valued 

neutrosophic set has been a rapid development and a wide range of applications [39, 40]. Ye [42] 

introduced the trapezoidal neutrosophic set and its application to multiple attribute decision-making. 

Cui and Ye [10], Donghai et al. [16], Ebadi et al. [17], Guha and Chakraborty [18], Hajjari [19], 

Nayagam et al. [25], Rouhparvar et al. [29], Wu [37], Ye [40], Zou et al. [45] and more researchers have 

shown interest on decision making problem using distance measures.  Weighted projection 

measure, the combination of angle cosine and weighted projection measure,similarity measure, 

hybrid vector similarity measure of single valued neutrosophic set and interval valued neutrosophic 

set, outranking strategy, complete ranking, new ranking function have been introduced so far under 

fuzzy, intuitionistic fuzzy and neutrosophic environments and applied in decision making problem.   

The rest of the paper is organized as follows. In section 2, literature review is given. In section 3, basic 

concepts are presented for better understanding. In section 4, proposed a new distnace measure and 

its graphical representation, and derived its properties in detail. In section 5, new methodology is 

described for a decision making process using the proposed measure. In section 6, a numerical 

example is using the proposed methodology to choose the best software system. In section 7, 

comparative analysis has been done with the existing methods and various forms of trapezoidal 

fuzzy neutrosophic numbers have been listed out to ahow the uniqueness of the proposed graphical 

representation. In section 8, advantages of the proposed measure are given. In section 9, conclusion 

of the present work is given with the future direction.  

2-Literature Review 

The authors of, Ahmad et al. [1] proposed a similarity measure based on the distance and set theory 

for generalized trapezoidal fuzzy numbers. Allahviranloo et al. [2] contributed a new distance 

measure and ranking method for generalized trapezoidal fuzzy numbers. Atanassov [3] introduced 

intuitionistic fuzzy sets. Azman and Abdullah [4] proposed a novel centroid method for trapezoidal 

fuzzy numbers for ranking. Biswas et al. [6] solved a decision making problem using expected value 

of neutrosophic trapezoidal numbers. Biswas et al. [6] solved a decision making problem using 

distance measure under interval trapezoidal neutrosophic numbers. Bolos et al. [7] designed the 

performance indicators of financial assets using neutrosophic fuzzy numbers. Bora and Gupta [8] 

studied the reaction of distance measure on the work of K-Means algorithm Matlab. Chakraborty et 

al. [9] presented  different forms of trapezoidal neutrosophic number and deneutrosophication 
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techniques. Cui and Ye [10] proposed logarithmic similarity measure and applied in medical 

diagnosis under dynamic neutrosophic cubic setting. Darehmiraki [11] introduced a new ranking 

methodology to solve linear programming problem. Das and De [12] introduced a new distance 

measure for the ranking IFNs. Das and Guha [13] introduced a ranking method for IFN using the 

point of centroid. Deli and Oztaurk [14] introduced a defuzzification method and applied in a 

decision-making problem for single valued trapezoidal neutrosophic numbers. Dhar et al. [15] 

indicated square neutrosophic fuzzy matrices. Donghai et al. [16] proposed a new similarity measure 

and distance measure between hesitant linguisticterm sets and applied the proposed concepts in a 

decision making problem. Ebadi et al. [17] proposed a novel distance measure for trapezoidal fuzzy 

numbers. Guha and Chakraborty [18] contributed a theoretical development of distance measure for 

intuitionistic fuzzy numbers (IFNs). Hajjari [19] conferred a new distance measure for Trapezoidal 

fuzzy numbers. Huang and Wu [20] presented equivalent forms of the triangle inequalities in fuzzy 

metric spaces. Liang et al. [21] proposed an integrated approach under a single valued trapezoidal 

neutrosophic environment. Liu and Yuan [22] prospected fuzzy number of intuitionistic fuzzy set. 

Llopis and Micheli [23] rectified a state of conflict in the sequence of input images. Minculete and 

Paltanea [24] introduced an enhanced estimates for the triangle inequality. Nayagam et al. [25] 

contributed a complete ranking of IFNs. Pardha Saradhi et al. [26] presented ordering of IFNs using 

centroids of centroids. Ravi Shankar et al. [27] developed a new ranking formula using centroid of 

centroids for fuzzy numbers and applied in a fuzzy critical path method. Rezvani [28] proposed a 

new ranking exponential formula using median value for trapezoidal fuzzy numbers. Rouhparvar et 

al. [29] introduced a novel fuzzy distance measure. Uppada [31] examined clustering algorithm using 

centroid clearly. Varghese and Kuriakose [32] proposed a formula to find the centroid of the fuzzy 

number. Wang [33] introduced geometric aggregation operator and applied in a decision making 

problem under intuitionistic fuzzy environment. Wang [34] proposed arithmetic aggregation 

operators. Wang et al. [35] introduced single valued neutrosophic sets. Wei et al. [36] introduced 

some persuaded aggregation operators under intuinistic fuzzy setting and applied in a group 

decision making problem. Wu [37] explained about distance metrics and their role in data 

transformations.Ye [38] proposed prioritized aggregation operators based on trapezoidal 

intuitionistic fuzzy concept and applied in a multi-criteria decision making problem. Ye [39] solved 

minimum spanning tree problem under single valued neutrosophic setting and its clustering method. 

Ye [40] proposed single valued neutrosophic cross entropy measure and applied in a decision making 

problem. Ye [41] introduced the expected Dice similarity measure and applied in a decision making 

problem. Ye [42] projected trapezoidal neutrosophic set and applied in a multiple attribute decision 

making. Zhang et al. [44] introduced interval neutrosophic sets and used in multi criteria decision 

making problem. Zou et al. [45] introduced a distance measure between neutrosophic sets as an 

evidential approach. From the literature, it is found that distance measure for trapezoidal 

neutrosophic numbers using centroids with its properties has not yet been studied so far. Hence the 

motivation of the present study.  

Hence, in this paper a new distance measure for trapezoidal fuzzy neutrosophic numbers based on 

centroids has been proposed with its metric properties in detail. Also the graphical representation is 

presented for trapezoidal fuzzy neutrosophic number. Comparative study also have been made with 
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the existing cases for both proposed distance measure and proposed graphical representation. 

Further advantages of the proposed distance measure are presented.  

3-Preliminaries 

Definition 1. [38] Let X  be a space of discourse, a trapezoidal intuitionistic fuzzy set B  in X is 

defined as:     , ,B BB y y y y X   , where    0,1B y   and    0,1B y   are 

two trapezoidal fuzzy numbers             1 2 3 4, , , : 0,1B B B B By y y y y Y       and 

            1 2 3 4, , , : 0,1B B B B By y y y y Y       with the condition that 

   4 40 1,   .B By y y Y       

For Convenience, let    , , ,B y a b c d   and    , , ,B y e f g h   be two trapezoidal 

fuzzy numbers, thus a trapezoidal intuitionistic fuzzy number (TrIFN) can be denoted by 

   , , , , , , , ,j a b c d e f g h which is basic element in a trapezoidal intuitionistic fuzzy set. 

If b c  and f g  hold in a TrIFN j , which is a special case of the TrIFN. 

Definition 2. [38] Let    1 1 1 1 1 1 1 1 1, , , , , , ,j a b c d e f g h  and 

   2 2 2 2 2 2 2 2 2, , , , , , ,j a b c d e f g h , be two TrIFNs. Then there are the following operational 

rules: 

1. 
 

 

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 2

1 2 1 2 1 2 1 2

, , , ,

, , ,

a a a a b b b b c c c c d d d d
j j

e e f f g g h h

       
   

2. 
 

 

1 2 1 2 1 2 1 2
1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

, , , ,

, , ,

a a b b c c d d
j j

e e e e f f f f g g g g h h h h
 

       
 

3. 
        

 

1 1 1 1

1

1 1 1 1

1 1 ,1 1 ,1 1 ,1 1 ,
, 0;

, , ,

a b c d
j

e f g h

   

   
 

       
   

4. 

          
        

1 1 1 1 1 1 1 1

1

1 1 1 1

, , , , 1 1 ,1 1 ,1 1 ,1 1 ,
, 0

1 1 ,1 1 ,1 1 ,1 1

a b c d e f g h
m

i j k l

      



   


       
 

       
 

Definition 3. [30] From philosophical point of view, Smarandache [30] originally presented the 

concept of a neutrosophic set B  in a universal set Y , which is characterized independently by a 
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truth-membership function  BT y , an indeterminacy membership function  BI y  and a falsity-

membership function  BF y . The function  BT y ,  BI y and  BF y in Y are real standard or 

nonstandard subsets of ] 0,1 [,   such that   : ] 0,1 [,BT y Y     : ] 0,1 [,BI y Y    and 

  : ] 0,1 [BF y Y   .Then, the sum of    ,B BT y I y  and  BF y  satisfies the condition 

     0 sup sup sup 3B B BT y I y F y     . Obviously, it is difficult to apply the neutrosophic set 

to practical problems. To easily apply it in science and engineering fields, Wang et al. [35] introduced 

the concept of a single-valued neutrosophic set as a subclass of the neutrosophic set and gave the 

following definition. 

Definition 4. [35] A single-valued neutrosophic set B in a universal set Y is characterized by a 

truth-membership function  BT y , an indeterminacy-membership function  BI y  and a falsity-

membership function  BF y . Then, a single-valued neutrosophic set B  can be denoted by 

      , , ,B B BB y T y I y F y y Y   

where,        , , 0,1B B BT y I y F y   for each y Y . Therefore, the sum of    ,B BT y I y  and 

 BF y satisfies      0 3B B BT y I y F y    . 

Let       , , ,M M MM y T y I y F y y Y   and       , , ,N N NN y T y I y F y y Y   be two single-

valued neutrosophic sets, then we the following relations [8,11]: 

1. Complement:       , ,1 ,C
M M MM y F y I y T y y Y   ; 

2. Inclusion: M N  if and only if    M NT y T y ,    M NI y I y  and    M NF y F y  for 

any y Y ; 

3. Equality: M N  if and only if M N  and N M ;  

4. Union:             , , ,M N M N M NM N y T y T y I y I y F y F y y Y     ; 

5. Intersection:             , , ,M N M N M NM N y T y T y I y I y F y F y y Y     ; 



Neutrosophic Sets and Systems, Vol. 35, 2020    483  

 

 
Said Broumi, Malayalan Lathamaheswari, Ruipu Tan, Deivanayagampillai Nagarajan, Talea Mohamed, Florentin 
Smarandache  and Assia Bakali, A new distance measure for trapezoidal fuzzy neutrosophic numbers based on the centroids 

6. Addition: 
           

   

, , ,M N M N M N

M N

y T y T y T y T y I y I y
M N y Y

F y F y

   
   

  

; 

7. Multiplication: 
           

       

, , ,M N M N M N

M N M N

y T y T y I y I y I y I y
M N y Y

F y F y F y F y

   
   

   

. 

Definition 5. [42] Let Y be a space of discourse, a trapezoidal neutrosophic set H  in Y is defined 

as follow: 

      , , ,H H HH y T y I y F y y Y  , where    0,1HT y  ,    0,1HI y   and    0,1HF y   are 

three trapezoidal fuzzy numbers             1 2 3 4, , , : 0,1H H H H HT y t y t y t y t y Y  , 

            1 2 3 4, , , : 0,1H H H H HI y i y i y i y i y Y   and 

            1 2 3 4, , , : 0,1H H H H HF y f y f y f y f y Y   with the condition 

     4 4 40 3,  .H H Ht y i y f y y Y      

 For convenience, the three trapezoidal fuzzy numbers are denoted by    

   , , , ,HT y a b c d     , , ,HI y e f g h  and    , , ,HF y i j k l . Thus, a trapezoidal neutrosophic 

numbers is denoted by      , , , , , , , , , , , ,m a b c d e f g h i j k l  which is a basic element in the 

trapezoidal neutrosophic set. 

 If b c , f g  and j k  hold in a trapezoidal neutrosophic number 1j , it reduces to the 

triangular neutrosophic number, which is considered as a special case of the trapezoidal neutrosophic 

number. 

Definition 6. [42] Let      1 1 1 1 1 1 1 1 1 1 1 1 1, , , , , , , , , , ,m a b c d e f g h i j k l , and 

     2 2 2 2 2 2 2 2 2 2 2 2 2, , , , , , , , , , ,m a b c d e f g h i j k l  be two trapezoidal neutrosophic numbers. Then 

there are the following operational rules: 

1. 
 

   

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

, , , ,

, , , , , , ,

a a a a b b b b c c c c d d d d
m m

e e f f g g h h i i j j k k l l

       
  , 
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2. 

 

 

 

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

, , , ,

, , , , ;

, , ,

a a b b c c d d

m m e e e e f f f f g g g g h h h h

i i i i j j j j k k k k l l l l

         

       
 

3. 
        

   

1 1 1 1

1

1 1 1 1 1 1 1 1

1 1 ,1 1 ,1 1 ,1 1 ,
, 0;

, , , , , , ,

a b c d
m

e f g h i j k l

   

       
 

       
   

4. 

 

        
        

1 1 1 1

1 1 1 1 1

1 1 1 1

, , , ,

1 1 ,1 1 ,1 1 ,1 1 , , 0

1 1 ,1 1 ,1 1 ,1 1

a b c d

m e f g h

i j k l

   

   

   

         

       

 

Definition 7. [18] Let P and Q be the intuitionistic fuzzy sets with membership functions

   ,P Qx x  , non-membership functions    ,P Qx x  and hesitation degree    ,P Qx x  . Then 

the normalized Hamming distance is  

             
1

1,
2

n

P i Q i P i Q i P i Q i
i

D P Q x x x x x x
n

     


      
 

 

And the normalized Euclidean distance is 

                
2 2 2

1

1,
2

n

E P i Q i P i Q i P i Q i
i

D P Q x x x x x x
n

     


      
    

Definition 8. [17] Consider the real values , 1,2,3,...,6ir i   and if 
1 2 3 4 5 6, ,r r r r r r   then the 

following results are true. 

1.    1 3 5 2 4 6max , , max , ,r r r r r r  

2.      1 2 3 4 5 6 1 3 5 2 4 6max , , max , , max , ,r r r r r r r r r r r r      

Definition 9. [34] For any real numbers , 0, 1,2,...,i ir s i d  , the Euclidean distance is defined as, 

   
2

1
,

d

i i
i

D r s r s


  and satisfies the condition that 
     

1 1 1

1 1 1

p p pd d d
p p p

i i i i
i i i

r s r s
  

     
      

     
   . 
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Definition 10. [42] Let      , , , , , , , , , , , , 1,2,3,...,p p p p p p p p p p p p pm a b c d e f g h i j k l p n   be the 

trapezoidal fuzzy neutrosophic numbers then the trapezoidal fuzzy neurosophic weighted geometric 

operator is defined by  

31 2
1 2 1 2 3( , ,..., ) ... n

n nTFNWG m m m m m m m  
    

 

1 1 1 1

, , , ,p p p p
n n n n

p p p p
p p p p

a b c d   

   

 
  

 
           

1 1 1 1

1 1 ,1 1 ,1 1 ,1 1 ,p p p p
n n n n

p p p p
p p p p

e f g h
   

   

 
        

 
   

 

   

       
1 1 1 1

1 1 ,1 1 ,1 1 ,1 1p p p p
n n n n

p p p p
p p p p

i j k l
   

   

 
        

 
   

 

where, 
1 2, ,..., n   are the weight vectors and the sum of the weight vectors is 1.  

Definition 11. [9] Graphical representation of trapezoidal neutrosophic number 

 

Figure 1. Graphical representation of Trapezoidal neutrosophic number  

Figure 1 shows that graphical representation of trapezoidal fuzzy neutrosophic number can be 

done in different ways. It is a linear trapezoidal neutrosophic number. 

4-Proposed Distance Measure for Trapezoidal Fuzzy Neutrosophic Number 

Here we propose a new distance measure for trapezoidal fuzzy neutrosophic number based on 

centroids. Firstly, individual graphical representation proposed measure is presented here with the 

individual representation of truth, indeterminacy, falsity membership functions and trapezoidal 

fuzzy neutrosophic fuzzy number described by Figure 2-Figure 6. 

Centre point of the object is called centroid. It should lie inside the object. At this point, the three 

medians of the triangle intersect and is termed point of intersection. Centroid is the average of 

coordinate points in X axis and Y axis of each vertex of the triangle. Centroid is the fixed point of all 

linear transformation which maintains length in translation, rotation, glides and reflection.     

The centroid of the truth, indeterminacy and falsity trapezoid is treated as a balance point for the 

trapezoid. The centroid of each part are estimated using the calculation of centroid and the simple 

area and this combination will generate a triangle. Also the distance is measured from the centroid 

of all the parts to X axis and Y axis. Here the area of all the parts are multiplied by the distance and 
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find their sum to get the total value. And the sum of the products of the area and distances is divided 

by the total area and obtain the centroid of circumcentre described by x and y point. Since centroid 

based distance measure may be derived using Euclidean measure, here it is obtained from the 

circumcentre of the centroids and the authentic point for the trapezoidal fuzzy neutrosophic number.         

0

( )nT x
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Figure 2. Truth membership function of trapezoidal fuzzy neutrosophic set with centroid 
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Figure 3. Truth membership function of trapezoidal fuzzy neutrosophic set  

Suppose      1 2 3 4 1 2 3 4 1 2 3 4, , , , , , , , , , ,n a a a a b b b b c c c c  be a trapezoidal fuzzy neutrosophic 

number. Based on the literature (Y. M. Wang et al. On the centroids of fuzzy numbers), we can get the 

centroid point ( ( ), ( ))T T T
o oO x n y n  of the truth membership function of trapezoidal fuzzy 

neutrosophic number n .  
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Figure 4. Indeterminate membership function of trapezoidal fuzzy neutrosophic set with centroid 
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   Figure 5. Indeterminate membership function of trapezoidal fuzzy neutrosophic number 
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we can get the centroid point ( ( ), ( ))I I I
o oO x n y n  of indeterminacy membership function of 

trapezoidal fuzzy neutrosophic number n . 
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Similarly, we can get the centroid point ( ( ), ( ))F F F
o oO x n y n  of falsity membership function 

of trapezoidal fuzzy neutrosophic number n .  
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     Figure 6. Trapezoidal fuzzy neutrosophic number with circumcentre of Centroids 
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In the above figure 5, the red dot represents the center of gravity of the triangle consisting of TO , IO
, and FO . According to the coordinate formula of the center of gravity of the triangle, we can get the 

coordinates of red dots ( ( ), ( ))O x n y n .  
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Definition1: Let      1 1 2 3 4 1 2 3 4 1 2 3 4, , , , , , , , , , ,n a a a a b b b b c c c c  and 

     2 1 2 3 4 1 2 3 4 1 2 3 4, , , , , , , , , , ,n e e e e f f f f g g g g  be two trapezoidal fuzzy neutrosophic 

numbers, and their centroids are 
1 1 1( ( ), ( ))O x n y n , 

2 2 2( ( ), ( ))O x n y n respectively, then the 

distance between 
1n  and 

2n is  
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Theorem 1: This distance  1 2,D n n  of 
1n  and 2n  

fulfills the following properties: 
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1.  1 20 , 1D n n  ; 

2.  1 2, 0D n n 
 
if and only if 

1 2n n , i.e., i ia e ,
 i ib f  and i ic g  

hold for
 

1,2,3,4i  ; 

3.    1 2 2 1, ,D n n D n n . 

4. If 1 2 3, &n n n
 

are the trapezoidal fuzzy neutrosophic numbers then  

     1 3 1 2 2 3, , ,D n n D n n D n n   

Proof 

1. It is easy to prove  1 20 ,D n n . In addition, it can be seen from figure 1, the maximum distance is 

the distance between the point (0,0)  and the point (1,1) , or the point (0,1)  and the point (1,0) , 

assume the coordinates of centroids of 
1n  and 

2n  are 
1O  and 

2O , and 
1 (0,1)O   and 

2 (1,0)O  , or 
1 (1,0)O   and 

2 (0,1)O  , or 
1 (0,0)O   and 

2 (1,1)O  , or 
1 (1,1)O   and 

2 (0,0)O  , then the  1 2, 1D n n  , otherwise,  1 2, 1D n n  , thus  1 20 , 1D n n  . 

2. if 1 2n n , i.e., i ia e ,
 i ib f  and i ic g , then  
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thus  

i ia e , i ib f , i ic g , that is 
1 2n n . 

3. Since, 
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then    1 2 2 1, ,D n n D n n . 

4. Using Def. 8, we can prove (4). 

Let      1 1 2 3 4 1 2 3 4 1 2 3 4, , , , , , , , , , ,n a a a a b b b b c c c c , 

     2 1 2 3 4 1 2 3 4 1 2 3 4, , , , , , , , , , ,n e e e e f f f f g g g g  and  
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     3 1 2 3 4 1 2 3 4 1 2 3 4, j , j , j , ,k ,k ,k , , , ,n j k l l l l are the three trapezoidal fuzzy neutrosophic 

numbers then      1 3 1 2 2 3, , ,D n n D n n D n n 
 

Using the results we have, 
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Using Def.9 we have, 
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   1 2 2 3, ,D n n D n n  and hence the result (4). 

5- Decision Making method based on new distance measure based on centroids 

In this section, we establish an approach based an trapezoidal fuzzy neutrosophic number weighted 

geometric arithmetic operator and a new distance measure based on centroid to deal with trapezoidal 

fuzzy neutrosophic information. The proposed approach is described as follows. 

Step 1: Apply trapezoidal fuzzy neutrosophic number weighted geometric arithmetic operator [39] 

to find the aggregated trapezoidal fuzzy neutrosophic numbers for all the alternatives. 

Step 2: Use the proposed distance measure, find the distances between all the alternatives and the 

ideal trapezoidal fuzzy neutrooshic number 
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Step 3: Rank the alternatives in which smaller value of distance indicate the best one. 

Step 4: End  

6- Numerical Example for the application of the proposed distance measure 

In this section, a numerical example of a software selection problem and the aggregation operator 

called trapezoidal neutrosophic number weighted geometric averaging operator are get used from 

Ye [39] for a multiple attribute decision making problem is contributed to exhibit the application and 

effectiveness of the proposed distance measure under trapezoidal fuzzy neutrosophic environment. 

For a software selection process, consider candidate software systems are given as the set of five 

alternatives
1 2 3 4 5, , , ,S S S S S and the investment company need to take a decision according to four 

criteria: (i). the contribution to organization performance, (ii). The effort totranform from current 

system, (iii). The costs of hardware/software investment, (iv). The outsourcing software deneloper 

reliability denoted by
1 2 3 4,C ,C ,CC respectively with the weight vector  0.25,0.25,0.3,0.2 T

  . The experts 

evaluate the five alternatives with repect to the four criteions under trapezoidal fuzzy neutrosophic 

environment and thus we can form the trapezoidal fuzzy neutrosophic decision matrix: 

 

Table 1: Decision matrix using trapezoidal fuzzy neutrosophic numbers 

 

 
 
Here we used the developed method to obtain the best software system(s) and it is described as 

follows: 

Step 1: Using trapezoidal fuzzy neutrosophic weighted geometric operator in Definition 10, get the 

aggregated trapezoidal fuzzy neutrosophic numbers of , 1, 2,3, 4,5in i  for the software system 

, 1, 2,3, 4,5iS i  as follows: 

           

           

0.4,0.5,0.6,0.7 , 0.0,0.1,0.2,0.3 , 0.1,0.1,0.1,0.1 0.0,0.1,0.2,0.3 , 0.0,0.1,0.2,0.3 , 0.2,0.3,0.4,0.5

0.3,0.4,0.5,0.5 , 0.1,0.2,0.3,0.4 , 0.0,0.1,0.1,0.1 0.2,0.3,0.4,0.5 , 0.0,0.1,0.2,0.3 , 0.0,0.1,0.2,0.3

0.1,0.1,0.D             

           

 

1,0.1 , 0.1,1.1,0.1,0.1 , 0.6,0.7,0.8,0.9 0.0,0.1,0.1,0.2 , 0.0,0.1,0.2,0.3 , 0.3,0.4,0.5,0.6

0.7,0.7,0.7,0.7 , 0.0,0.1,0.2,0.3 , 0.1,0.1,0.1,0.1 0.4,0.5,0.6,0.7 , 0.1,0.1,0.1,0.1 , 0.0,0.1,0.2,0.2
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1,0.1,0.1 , 0.5,0.6,0.7,0.8 0.4,0.4,0.4,0.4 , 0.0,0.1,0.2,0.3 , 0.0,0.1,0.2,0.3

0.3,0.4,0.5,0.6 , 0.0,0.1,0.2,0.3 , 0.1,0.1,0.1,0.1 0.3,0.4,0.5,0.6 , 0.1,0.1,0.1,0.1 , 0.1,0.2,0.3,0.4

0.0,0.1,0.1,0.2 , 0.1,0.1,0
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.1,0.1 , 0.5,0.6,0.7,0.8 0.3,0.4,0.5,0.6 , 0.0,0.1,0.2,0.3 , 0.1,0.1,0.1,0.2

0.2,0.3,0.4,0.5 , 0.0,0.1,0.2,0.3 , 0.1,0.2,0.2,0.3 0.1,0.2,0.3,0.4 , 0.1,0.1,0.1,0.1 , 0.3,0.4,0.5,0.6
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     

     

1

2

3

0.0000,0.2985,0.4162,0.5244 , 0.0209,0.1003,0.1809,0.2639 , 0.1261,0.1745,0.2266,0.2836

0.0000,0.2458,0.2919,0.3798 , 0.0563,0.1262,0.1984,0.2739 , 0.1879,0.2944,0.3717,0.4743

0.0000,0.1599,0.1888,0.25

n

n

n
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
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4

5

45 , 0.0464,0.1000,0.1566,0.2162 , 0.3437,0.4502,0.5424,0.6655

0.2833,0.3885,0.4807,0.5658 , 0.0464,0.1000,0.1566,0.2162 , 0.1480,0.2276,0.3109,0.3109

0.0000,0.2912,0.3756,0.3910 , 0.0760,0.1210,0.1690,0.22

n

n



    08 , 0.1958,0.3012,0.3877,0.5020

Step 2: Use the proposed distance measure and find the distance between all , 1,2,3,4,5in i  and 

the ideal trapezoidal fuzzy neutrosophic number      1,1,1,1 , 0,0,0,0 , 0,0,0,0Idealn  .  

The obtained distances are as follows: 

 

 

 

 

 

1 1

2 2

3 3

4 4

5 5

, 0.1712

, 0.1276

, 0.1000

, 0.1280

, 0.1246

D n I D

D n I D

D n I D

D n I D

D n I D

 

 

 

 

   

Step 3: Find the best alternative by considering the smaller value of the distance as the smaller value 

of distance indicates the best one. 

Using step 2 it is found that, 
3 5 2 4 1D D D D D     and from the ranking order,

3S is the best is 

the best software system. 

 

7- Comparative analysis for the proposed distance measure and graphical representation 

In this section, a comparative study is made to show the effectiveness of the proposed distance  

measure with the existing methods and to show the uniqueness of the proposed graphical 

representation. 

Table 2: Comparative analysis with the existing methods 

Existing 

Methods 

            Score/ distance values Ranking 

1D  2D  3D  4D  5D  

[6] 0.6092 0.4512 0.6039 0.6121 0.6321 2 3 1 4 5S S S S S     

[16] 0.2788 0.6790 0.9394 0.6564 0.4014 3 2 4 5 1S S S S S     

[42] 0.6553 0.5779 0.5069 0.6835 0.5904 4 1 5 2 3S S S S S     

[45] 0.7716 0.7798 0.7349 0.8124 0.8201 3 1 2 4 5S S S S S     

From the Table 2, it is found that, the third software system is the best one among the five alternatives. 

The results in the existing methods overlaps the proposed result. Theresore the proposed 

methodology using the proposed under trapezoidal fuzzy neutrosophic environment to solve the 

decision making problem suitably in comparision with the existing methods. 
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Table 3 represents the various forms of trapezoidal fuzzy neutrosophic numbers (TrFNN) have been 

listed out and it shows the uniqueness of the proposed graphical representation among the existing 

graphical representations. 

Table 3: Comparative analysis with the existing graphical representation  

 

Trapezoidal fuzzy neutrosophic forms Graphical representation 

Darehmiraki [11]; A is a TrFNN,  

'' ' ' ''
1 1 1 2 3 4 4 4, , , , , , ,a a a a a a a a R such that 

'' ' ' ''
1 1 1 2 3 4 4 4a a a a a a a a        

 '' ' ' ''
1 1 1 2 3 4 4 4, , , , , , , , , ,A A AA a a a a a a a a T I F   

𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)  

''
1a '

1a1a 2a
3a '

4a 4a ''
4a

x

 

 

Liang [21]; A is a TrFNN, 

1 2 3 4, , , [0,1]a a a a  such that 

1 2 3 40 1a a a a      

   1 2 3 4, , , , , ,A A AA a a a a T I F  

x0

1 ( )A x

( )A x

( )A x

1a 2a 3a 4a

AT

AI

AF

 

Biswas [5]; A is a TpFNN, 

   

 

41 21 31 41 41 21 31 41

41 21 31 41

,a ,a ,a , ,b ,b ,b ,

,c ,c ,c

a b

c R
 

such that 

11 11 11 21 21 21

31 31 31 41 41 41

c b a
a b c a b c

c b a    

     
 

and  

   

 

11 21 31 41 11 21 31 41

11 21 31 41

,a ,a ,a , ,b ,b ,b ,

,c ,c ,c

A a b

c



 

0

1

11a11c
11b 21c 21b 21a 31a 31b 31c 41a

41b 41c
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8-Advantages of the proposed measure 

An efficient distance measure boosts the performance of task analysis or clustering. Also centroid 

method is specific and location based one and acquire the best geographical location in consideration 

of the distance between all the competences. Though the existing methods namely Euclidean 

measure, Manhattan measure Minkowski measure and Hamming distance measure have been 

applied in many real time problems they could not provide good results for the indeterminate data. 

Hence in this paper, we proposed a new distance measure for trapezoidal neutrosophic fuzzy 

numbers based on centroids and the significant advantages of the proposed measure are given as 

follows. 

(i). Trapezoidal fuzzy neutrosophic number is a simple design of arithmetic operations and easy and 

perceptive interpretation as well. Therefore the proposed measure is an easy and effective one under 

neutrosophic environment. 

(ii). Distance measure can be estimated with simple algorithm and significant level of accuracy can 

be acquired as well. 

(iii). While taking the important decision of choosing the method to measure a distance it can be used 

due its simplicity.   

(iv). The proposed distance measure is based on centroid and hence estimation of the distance 

between all objects of the data set is possible and indeterminacy also can be addressed. 

(v). It is derived using Euclidean distance and hence it is very useful in correlation analysis. 

(vi). Also it can be applied in location planning, operations management, Neutrosophic Statistics, 

clustering, medical diagnosis, Optimization and image processing to get more accurate results 

without any computational complexity.  

9-Conclusion and Future Research 

The concept of distance measure of trapezoidal fuzzy neutrosophic number has sufficient scope of 

utilization in different studies in various domain. In this paper, we proposed a new distance measure 

for the trapezoidal fuzzy neutrosophic number based on centroid with the graphical representation. 

Also, the properties of the proposed measure have been derived in detail. In addition, a decision 

making problem has been solved using the proposed measure as a numerical example. Further, 

comparative analysis has been done with the existing methods to show the potential of the proposed 

distance measure and various forms of trapezoidal fuzzy neutrosophic number have been listed and 

shown the uniqueness of the proposed graphical representation. Furthermore, advantages of the 

proposed measure are given. In future, the present work may be extended to other special types of 

neutrosophic set like pentagonal neutrosophic set, neutrosophic rough set, interval valued 

neutrosophic set and plithogeneic environments.   
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Abstract: Plithogenic Hypersoft sets was introduced by Florentin Smarandache, who has extended 

crisp sets, fuzzy sets, intuitionistic sets, neutrosophic sets to plithogenic sets. The plithogenic sets 

considers the degree of appurtenance of the elements with respect to the attribute system. 

Smarandache has presented the classification of the plithogenic hypersoft sets and the applications 

of plithogenic fuzzy whole hypersoft sets in multi attribute decision making. Inspired by these 

research works, the concept of combined plithogenic hypersoft sets is introduced in this article. The 

representations of the degree of appurtenance of the elements determines the type of plithogenic 

hypersoft set, if it takes a combination of values then the new archetype of plithogenic hypersoft 

sets gets emerged into decision making scenario. This research work is put forth to project the 

realistic perception of the experts in the construction process of optimal conclusions. 

Keywords: Plithogenic hypersoft set, combined plithogenic hypersoft set, decision making, multi 

attribute system. 

 

 

1. Introduction 

Classical set theory deals with the sets consisting of elements with membership values 0 or 1. The 

degree of belongingness of an element in a set has been extended to [0,1] by Zadeh [1] in the name of 

fuzzy sets, which is gaining momentum since its introduction. Sets comprising of quantitative 

elements can be defined by conventional concepts of sets, but the elements of qualitative nature can 

be treated only by fuzzy concepts and its membership value states the degree of confidence of its 

presence in the set. Atanassov [2] investigated on the degree of its absence in the set, by defining 

non-membership values. This paved way for the intuitionistic fuzzy sets, which consists of degree of 

membership, non-membership and hesitation. Fuzzy sets and intuitionistic fuzzy sets are 

extensively applied in decision making process. But still the human perception was not completely 

reflected in these two kinds of sets. This gap was filled by Florentine Smarandache [3-5] who 

introduced neutrosophic fuzzy sets, comprising of degree of truth membership, indeterminacy and 

degree of false membership. Smarandache has represented each of the three function in a more 

generalized and independent manner. Neutrosophic sets have extensive application in decision 

making at recent times. Abdel- Basset et al [6-7] has developed neutrosophic decision making 

models to solve transition difficulties of IoT-based enterprises and to evaluate green supply chain 

management practices. 

  

Smarandache also extended the classical sets, fuzzy sets, intuitionistic fuzzy sets and neutrosophic 

fuzzy sets to plithogenic sets which is a quintuple (P, a, V, d, c) consisting of a set P, the attribute a, 
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the range of attribute values V, degree of appurtenance d, and the degree of contradiction c. The 

nature of d determines the type of plithogenic sets. Smarandache presented an elaborate discussion 

on the genesis of plithogenic sets in his research work [8]. Abdel-Basset et al [9-11] has developed 

decision making models with incorporation of plithogenic sets to evaluate green supply chain 

management practices and intelligent Medical Decision Support Model Based on Soft Computing 

and IoT was also built; a hybrid plithogenic decision-making approach with quality function 

deployment for selecting supply chain sustainability metrics was also framed. These plithogenic 

decision making models are highly robust and feasible. 

          Molodtsov [12] introduced and applied soft sets in decision making which was extended 

to fuzzy soft sets predominantly by Maji [13]. The comprehensive outlook of hypersoft sets was 

made by Smarandache [14] which took the different forms of fuzzy sets in the course of time. Shazia 

Rana et al [15] in their recent work on application of plithogenic fuzzy whole hypersoft set in multi 

attribute decision making introduced the matrix representation of plithogenic hypersoft set and 

plithogenic fuzzy whole hypersoft set which adds to the compatibility of this decision making 

technique. The validation of the proposed decision making model with a numerical example in this 

work has inspired to introduce combined plithogenic hypersoft set. 

 The paper is organized as follows; section 2 presents a brief description of combined plithogenic 

hypersoft sets; section 3 comprises the application of combined plithogenic hypersoft sets in decision 

making based on the technique of Shazia Rana et al [15]; section 4 discusses the results and the last 

section concludes with the future extension of the proposed concept. 

2. Combined plithogenic hypersoft sets 

This section comprises of the direct narration and representation of the combined plithogenic 

hypersoft sets based on the preliminaries discussed by Smarandache [14] and Shazia Rana et al [15] 

to avoid the repetition of the elementary definitions. Smarandache presented the classification of 

plithogenic hypersoft sets and the categorization was purely based on the nature of degree of 

appurtenance. Based on his discussion, let us consider the following example to explain the need of 

combined plithogenic hypersoft sets 

Let U be the universe of discourse that consists of pollution mitigation methods say  

 U = {M1, M2, M3, M4, M5} and the set ℳ = {M1, M4} ⊂ U.  

The attributes are 𝑎1 = Cost efficiency, 𝑎2 = Eco-compatibility, 𝑎3 = Time efficacy, 𝑎4 = Profit yield. If 

the pollution abatement methods are supposed to fulfill these attributes, then in realistic perspective 

the possible attribute values are taken as follows, 

Cost efficiency = A1 = {low, medium, high}, Eco-compatibility = A 2 = {very high, high}, Time efficacy 

= A3 = {less, more}, Profit yield = A4 ={maximum, minimum}. 

   Suppose a manufacturing firm has decided to implement a pollution control method, then the 

above attributes and its values are considered for making optimal decision with the possible range of 

values of attributes. By usual consideration,  

Let the function be:  G: A1 × A2 × A3 × A4 ⟶ P(U) 

Let’s assume: G ({low, high, more, maximum}) = {M1, M4}.  
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The degree of appurtenance of an element x to the set ℳ, with respect to each attribute value a is 

𝑑𝑥0(a) that is the deciding factor of the nature of plithogenic hypersoft set. 

In the context of decision making with the expert’s opinion, then 𝑑𝑥0(a) is the resultant of the expert’s 

perception. Sometimes the expert’s outlook may be a combination of certain, fuzzy, intuitionistic 

and neutrosophic, which is expressed as follows 

G({low, high, more, maximum}) = { M1 (1,0.8,0.7,(0.4,0.5)),  

M4 (1,0.9,(0.8,0.1,0.1),(0.5,0.6)) }. 

This is the pragmatic reflection of the person’s perception in decision making process and this is the 

point of origin of combined plithogenic hypersoft sets. Thus a combined plithogenic hypersoft sets is 

a plithogenic hypersoft set in which the degree of appurtenance of an element x to the set ℳ, with 

respect to each attribute value is a combination of either crisp, fuzzy, intuitionistic or neutrosophic.  

      Combined plithogenic hypersoft sets can be classified into completely combined plithogenic 

hypersoft sets and partially combined plithogenic hypersoft sets based on the nature and 

combination of values taken by 𝑑𝑥0(a). In the above stated example G({low, high, more, maximum}) = 

{ M1 (1,0.8,0.7,(0.4,0.5)), M4 (1,0.9,(0.8,0.1,0.1),(0.5,0.6))} is a completely combined plithogenic 

hypersoft sets as 𝑑𝑥0(a) takes all possible types of values. Suppose G({low, high, more, maximum}) = 

{ M1 (0.9,0.8,0.7,(0.4,0.5)), M4 (0.8,0.9,0.6,(0.5,0.6))} then this combined plithogenic hypersoft set is 

partial in nature as 𝑑𝑥0(a) takes only a combination of two types of values. Thus a combined 

plithogenic hypersoft set which is not complete is partial in its nature. 

           It is very evident that combined plithogenic hypersoft sets are highly rational in nature 

and it will certainly play a vital role in receiving the expert’s opinion, which is very significant in any 

multi attribute decision making process. Also the need of such new types of plithogenic hypersoft 

sets are very essential, because in the manufacturing firms and in business sectors the 

implementation of certain methods and installation of certain mechanisms and machinery may not 

be characterized by only crisp or fuzzy values with regard to the degree of appurtenance as the 

possibility aspect has some extent of participation in it. To handle such situations the combined 

plithogenic hypersoft sets may lend a helping hand to the decision makers. 

3. Application of Combined Plithogenic Hypersoft set in Multi Attribute Decision Making 

The previous section presented an elaborate portrayal of combined plithogenic hypersoft set, 

the significant feature is the realistic representation, but it has certain difficulties in computations as 

the degree of appurtenance varies for each attribute. To handle such crisis, all the values of 𝑑𝑥0(a) 

must be similar in nature, i.e. either all the values must be fuzzy values which is the lower level of 

fuzzy representation or it must be neutrosophic values, the higher level of fuzzy representation. 

         A manufacturing sector has decided to enhance its production rate by installing new kinds 

of machinery. The ultimate aim of incorporating such a change in the production mechanism is 

quality production and customer satisfaction. The market is flooded with several varieties of well 

equipped, modern machines and since the manufacturing sector makes huge investment, the 

decision making process takes place in two phases based on the expert’s opinion and advice. In the 

first phase, ten machines were selected by the manufacturing sector and in the next phase five were 

selected based on the feedback of the users. The decision making problem begins here, as the 

company has to purchase only three out of five based on the extent of satisfaction of the attributes by 

these machines. 
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Let U = { M1, M2, M3, M4, M5, M6, M7,M8, M9, M10} be the university of discourse and set  

T = {M1, M3, M6, M7, M9} ⊂ U.  

The attribute system is represented as follows A = { (A1)Maintenance Cost {Maximum in the initial 

years of utility(A11), Maximum in the latter years of utility(A12)}, (A2)Reliability {High with 

additional expenditure(A21), Moderate with no extra expense(A22)}, (A3)Flexibility {Single task 

oriented(A31), Multi task oriented(A32)}, (A4)Durability {Very high in the beginning years of 

service(A41), High in the latter years of service(A42), }, (A5)Profitability {Moderate in the initial 

years(A51), Maximum in the latter years(A52)}}. 

  The attributes are quite common, but the attribute values are more realistic as it mirror the actual 

aspects involved in making decision. 

Let the function be:  G: A11 × A22 × A32 × A41 × A52 ⟶P(U). Based on the Expert’s opinion, the degree 

of appurtenance of the elements with respect to the attribute values is represented as follows 

G( A11, A22 , A32 , A41, A52)  =  

{M1(0.9,(0.7,0.1),0.8,(0.6,0.2),0.5),M3((0.6,0.3),0.5,(0.4,0.1,0.3),0.8,0.7), 

M6(0.8,0.7,0.6,(0.5,0.2),(0.6,0.1,0.1)),M7((0.7,0.2,0.1),(0.7,0.1),0.9,(0.7,0.2),0.8),M9(1,0.9,0.5,0.8,(0.6,0.1,0.

2))}. 

The modified lower and higher fuzzy values of the degree of appurtenance of the elements with 

respect to the attribute values are denoted as GL(A11, A22 , A32 , A41, A52)  and GH(A11, A22 , A32 , A41, 

A52)   

GL(A11, A22 , A32 , A41, A52)  = {M1(0.9,0.875,0.8,0.75,0.5),M3(0.67,0.5,0.4,0.8,0.7),M6(0.8,0.7,0.6,0.7,0.5), 

M7(0.67,0.875,0.9,0.78,0.8), M9(1,0.9,0.5,0.8,0.47)} 

GH(A11, A22 , A32 , A41, A52)  = 

{M1(0.9,0.1,0.1),(0.7,0.2,0.1),(0.8,0.1,0.1),(0.6,0.3,0.2),(0.5,0.2,0.7)),M3((0.6,0.3,0.3), 

(0.5,0.2,0.7),(0.4,0.1,0.3),(0.8,0.1,0.1),(0.7,0.2,0.1)),M6((0.8,0.1,0.1),(0.7,0.2,0.1),(0.6,0.2,0.3),(0.5,0.3,0.2),(

0.6,0.1,0.1)),M7((0.7,0.2,0.1),(0.7,0.1,0.1),(0.9,0.1,0.1),(0.7,0.1,0.2),(0.8,0.1,0.1)),M9((1,0,0),(0.9,0.1,0.1),(0.

5,0.2,0.7),(0.8,0.1,0.1),(0.6,0.1,0.2))} 

The lower and higher fuzzy values of the degree of appurtenance correspond to single fuzzy value 

and neutrosophic values. The matrix representation C of the degree of appurtenance of the elements 

with respect to the attribute values in combined plithogenic hypersoft sets is 

 A11 A22 A32 A41 A52 

M1 0.9 (0.7,0.1) 0.8 (0.6,0.2) 0.5 

M3 (0.6,0.3) 0.5 (0.4,0.1,0.3) 0.8 0.7 

M6 0.8 0.7 0.6 (0.5,0.2) (0.6,0.1,0.1)), 

M7 (0.7,0.2,0.1) (0.7,0.1) 0.9 (0.7,0.2) 0.8 

M9 1 0.9 0.5 0.8 (0.6,0.1,0.2) 
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The intuitionistic and neutrosophic values are transformed to the above fuzzy values by the 

methods of imprecision and Defuzzification [16] 

Method I (Imprecision membership): Any neutrosophic fuzzy set NA = ( , ) including 

neutrosophic fuzzy values are transformed into intuitionistic fuzzy values or vague values as (A) 

= ( , ) where  is estimated the formula stated below which is called as Impression 

membership method. 

=  

Method II (Defuzzification): After Method I (Median membership), intuitionistic (vague),fuzzy 

values of the form (A)= ( , ) are transformed into fuzzy set including fuzzy values 

as <Δ(A)>= < >. 

The matrix representation CL of the lower fuzzy values of the degree of appurtenance of the 

elements with respect to the attribute values in combined plithogenic hypersoft sets is 

 A11 A22 A32 A41 A52 

M1 0.9 0.875 0.8 0.75 0.5 

M3 0.67 0.5 0.4 0.8 0.7 

M6 0.8 0.7 0.6 0.7 0.5 

M7 0.67 0.875 0.9 0.78 0.8 

M9 1 0.9 0.5 0.8 0.47 

 

By using the procedure of ranking as discussed by Shazia Rana et. al [15] the machines are ranked by 

considering the values of CL.  

The frequency matrix FL representing the ranking of the machines is  

 

 R1 R2 R3 R4 R5 

M1 1 2 0 0 0 

M3 0 0 0 1 2 

M6 0 1 0 2 0 

M7 2 0 1 0 0 

M9 1 1 1 0 0 
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The percentage measure of authenticity of ranking is presented below in Table 3.1 

 

                                    Table 3.1 

 

 

 

 

 

 

 

The matrix representation CH of higher fuzzy values (neutrosophic representations) of the degree of 

appurtenance of the elements with respect to the attribute values in combined plithogenic hypersoft 

sets is 

 

 A11 A22 A32 A41 A52 

M1 (0.9,0.1,0.1) (0.7,0.2,0.1) (0.8,0.1,0.1) (0.6,0.3,0.2) (0.5,0.2,0.7) 

M3 (0.6,0.3,0.3) (0.5,0.2,0.7) (0.4,0.1,0.3) (0.8,0.1,0.1) (0.7,0.2,0.1) 

M6 (0.8,0.1,0.1) (0.7,0.2,0.1) (0.6,0.2,0.3) (0.5,0.3,0.2) (0.6,0.1,0.1) 

M7 (0.7,0.2,0.1) (0.7,0.1,0.1) (0.9,0.1,0.1) (0.7,0.1,0.2) (0.8,0.1,0.1) 

M9 (1,0,0) (0.9,0.1,0.1) (0.5,0.2,0.7) (0.8,0.1,0.1) (0.6,0.1,0.2) 

  

               To make the ranking of the machines based on the higher values in CH the score 

values K(A) of the single valued neutrosophic representations [say A = (a,b,c)] are determined by 

K(A) =  [17] 

 A11 A22 A32 A41 A52 

M1 0.8 0.6 0.75 0.4 0.2 

M3 0.35 0.2 0.45 0.75 0.6 

M6 0.75 0.6 0.45 0.35 0.65 

M7 0.6 0.7 0.8 0.65 0.75 

M9 1 0.8 0.2 0.75 0.6 

The frequency matrix FH representing the ranking of machines is  

 R1 R2 R3 R4 R5 

M1 1 0 1 1 0 

M3 0 0 1 1 1 

M6 0 1 1 1 0 

M7 3 0 0 0 0 

M9 1 1 1 0 0 

R1 M7 50% 

R2 M1 50% 

R3 M9 50% 

R4 M6 67% 

R5 M3 100% 
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The percentage measure of authenticity of ranking is presented below in Table 3.2 

                                         Table 3.2 

R1 M7 60% 

R2 M9 50% 

R3 M6 25% 

R4 M1 33% 

R5 M3 100% 

4. Discussion 

  The combined plithogenic hypersoft set representations are so deliberate in nature. The resultant 

of computations in making decisions in two ways is represented in Table 3.1 and 3.2. The machines 

M7 and M3 occupy first and fifth rank respectively in both kinds of representation of degree of 

appurtenance. Also by making inferences from the table values M1, M3 and M6 can be ranked in 

second ,third and fourth positions respectively. It is very evident that the transformation of 

combined attribute values to lower order fuzzy values yields best results in ranking the machines, 

but still the higher order values will also yield optimum results based on the selection of the score 

functions. The methods of converting combined attribute value to the values of similar fashion have 

to be constituted in the upcoming research works to attain feasible solutions to the decision making 

problems.   

5. Conclusions  

 This research work encompasses the discussion of the new concept of combined plithogenic 

hypersoft set and its application in multi attribute decision making. Besides these types of 

appurtenance degrees, others can be used under the plithogenic umbrella, such as: Pythagorean, 

picture fuzzy, spherical fuzzy, spherical neutrosophic, etc. and even the most general one, refined 

neutrosophic type of appurtenance degree. The combined plithogenic hypersoft set can be extended 

to interval-valued combined plithogenic hypersoft sets and it can be converted to simple fuzzy 

values using score functions. The matrix representations of degree of appurtenance in combined 

plithogenic hypersoft set has induced the author to extend the proposed theoretical 

conceptualization to plithogenic concentric hypergraphs, most probably the scope and future 

research work. 
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Abstract: This article demonstrates a further class of neutrosophic closed sets named neutrosophic 

generalized αg-closed sets and discuss their essential characteristics in neutrosophic topological 

spaces. Moreover, we submit neutrosophic generalized αg-continuous functions with their elegant 

features.  

Keywords: neutrosophic generalized α g-closed sets, neutrosophic generalized α g-continuous 

functions, and neutrosophic generalized αg-irresolute functions. 

 

1. Introduction   

Smarandache [1,2] originally handed the theory of “neutrosophic set”. Recently, Abdel-Basset 

et al. discussed a novel neutrosophic approach [3-8] in several fields, for a few names, information 

and communication technology. Salama et al. [9] gave the clue of neutrosophic topological space (or 

simply 𝑁𝑇𝑆). Arokiarani et al. [10] added the view of neutrosophic α-open subsets of neutrosophic 

topological spaces. Imran et al. [11] presented the idea of neutrosophic semi--open sets in neutrosophic 
topological spaces. Dhavaseelan et al. [12] presented the idea of neutrosophic α𝑚-continuity. Our aim 

is to introduce a new idea of neutrosophic generalized αg-closed sets and examine their vital merits 

in neutrosophic topological spaces. Additionally, we propose neutrosophic generalized 

αg-continuous functions by employing neutrosophic generalized αg-closed sets and emphasizing 

some of their primary characteristics.  

2. Preliminaries 

Everywhere of these following sections, we assume that 𝑁𝑇𝑆s (𝒰, 𝜉), (𝒱, 𝜚) and (𝒲, 𝜇) are 

briefly denoted as 𝒰, 𝒱, and 𝒲, respectively. Let 𝒞 be a neutrosophic set in 𝒰, and we are easily 

symbolized it by 𝑁𝑆, then the complement of 𝒞 is basically given by 𝒞̅. If 𝒞 is a neutrosophic 

open set in 𝒰 and shortly indicated by Ne-OS. Then, 𝒞̅ is termed a neutrosophic closed set in 𝒰 

and simply referred by Ne-CS. The neutrosophic closure and the neutrosophic interior of 𝒞 are 

merely signified by Ne-𝑐𝑙(𝒞) and Ne-𝑖𝑛𝑡(𝒞), correspondingly.  

 

Definition 2.1 [10]: A 𝑁𝑆 𝒞 in a 𝑁𝑇𝑆 𝒰 is named a neutrosophic α-open set and simply written as 

Ne-αOS if 𝒞 ⊆Ne-𝑖𝑛𝑡(Ne-𝑐𝑙(Ne-𝑖𝑛𝑡(𝒞))). Besides, if Ne-𝑐𝑙(Ne-𝑖𝑛𝑡(Ne-𝑐𝑙(𝒞))) ⊆ 𝒞, then 𝒞 is called a 

neutrosophic α-closed set, and we are shortly given it as Ne-αCS. The collection of all such these 

mailto:qays.imran@mu.edu.iq
mailto:dhavaseelan.r@gmail.com
mailto:aalobaidi@uobabylon.edu.iq
mailto:mb_page@kletech.ac.in
mailto:qays.imran@mu.edu.iq
http://fs.unm.edu/NSS/Neutrosophic%20alpha-m-continuity.pdf
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Ne-αOSs (correspondently, Ne-αCSs) in 𝒰 is referred to Ne-αO(𝒰) (correspondently, Ne-αC(𝒰)). 

The intersection of all Ne-αCSs that contain 𝒞 is called the neutrosophic α-closure of 𝒞 in 𝒰 and 

represented by Ne-α𝑐𝑙(𝒞). 

 

Definition 2.2 [13]: A 𝑁𝑆  𝒞  in 𝑁𝑇𝑆  𝒰  is so-called a neutrosophic generalized closed set and 

denoted by Ne-gCS if for any Ne-OS ℳ in 𝒰 such that 𝒞 ⊆ ℳ, then Ne-𝑐𝑙(𝒞) ⊆ ℳ. Moreover, its 

complement is named a neutrosophic generalized open set and referred to Ne-gOS. 
 

Definition 2.3 [14]: A 𝑁𝑆 𝒞 in 𝑁𝑇𝑆 𝒰 is so-called a neutrosophic αg-closed set and indicated by 

Ne-αgCS if for any Ne-OS ℳ  in 𝒰  such that 𝒞 ⊆ ℳ , then Ne-α𝑐𝑙(𝒞) ⊆ ℳ . Furthermore, its 

complement is named a neutrosophic αg-open set and symbolized by Ne-αgOS. 

 

Definition 2.4 [15]: A 𝑁𝑆 𝒞 in 𝑁𝑇𝑆 𝒰 is so-called a neutrosophic gα-closed set and signified by 

Ne-g α CS if far any Ne- α OS ℳ  in 𝒰  such that 𝒞 ⊆ ℳ , then Ne- α𝑐𝑙(𝒞) ⊆ ℳ . Besides, its 

complement is named a neutrosophic gα-open set and briefly written as Ne-gαOS. 

 

Theorem 2.5 [10,13-15]: For any 𝑁𝑇𝑆 𝒰, the next declarations valid and but not vice versa: 

(i) for all Ne-OSs (correspondingly, Ne-CSs) are  Ne-αOSs (correspondingly, Ne-αCSs). 

(ii) for all Ne-OSs (correspondingly, Ne-CSs) are Ne-gOSs (correspondingly, Ne-gCSs). 

(iii) for all Ne-gOSs (correspondingly, Ne-gCSs) are Ne-αgOSs (correspondingly, Ne-αgCSs). 

(iv) for all Ne-αOS (correspondingly, Ne-αCSs) are Ne-gαOSs (correspondingly, Ne-gαCSs). 

(v) for all Ne-gαOSs (correspondingly, Ne-gαCSs) are Ne-αgOSs (correspondingly, Ne-αgCSs). 

 

Definition 2.6: Let (𝒰, 𝜉) and (𝒱, 𝜚) be NTSs and 𝜂: (𝒰, 𝜉) ⟶ (𝒱, 𝜚) be a mapping, we have  

(i) if for each Ne-OS (correspondingly, Ne-CS) 𝒦  in 𝒱 , 𝜂−1(𝒦)  is a Ne-OS (correspondingly, 

Ne-CS) in 𝒰, then 𝜂 is known as neutrosophic continuous and denoted by Ne-continuous. [16]  

(ii) if for each Ne-OS (correspondingly, Ne-CS) 𝒦 in 𝒱, 𝜂−1(𝒦) is a Ne-αOS (correspondingly, 

Ne-αCS) in 𝒰, then 𝜂 is known as neutrosophic α-continuous and referred to Ne-α-continuous. [10] 

(iii) if for each Ne-OS (correspondingly, Ne-CS) 𝒦 in 𝒱, 𝜂−1(𝒦) is a Ne-gOS (correspondingly, 

Ne-gCS) in 𝒰, then 𝜂is known as neutrosophic g-continuous and signified by Ne-g-continuous. [17] 

 

Remark 2.7 [17,10]: Let 𝜂: (𝒰, 𝜉) ⟶ (𝒱, 𝜚) be a map, the next declarations valid and but not vice 

versa: 

(i) For all Ne-continuous functions are Ne-α-continuous. 

(ii) For all Ne-continuous functions are Ne-g-continuous. 

3. Neutrosophic Generalized 𝛂g-Closed Sets 
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The neutrosophic generalized 𝛂g-closed sets and their features are studied and discussed in 

this part of the paper. 

 

Definition 3.1: Let 𝒞 be a 𝑁𝑆 in 𝑁𝑇𝑆 𝒰, then it called a neutrosophic generalized αg-closed set 

and denoted by Ne-gαgCS if for any Ne-αgOS ℳ in 𝒰 such that 𝒞 ⊆ ℳ, then Ne-𝑐𝑙(𝒞) ⊆ ℳ.We 

indicated the collection of all Ne-gαgCSs in 𝑁𝑇𝑆 𝒰 by Ne-gαgC(𝒰). 

Definition 3.2: Let 𝒞 be a 𝑁𝑆 in 𝑇𝑆 𝒰, then its neutrosophic gαg-closure is the intersection of each 

Ne-gαgCS in 𝒰  including 𝒞,  and we are shortly written it as Ne-gαg𝑐𝑙(𝒞) . In other words, 

Ne-gαg𝑐𝑙(𝒞) = ⋂{𝒟: 𝒞 ⊆ 𝒟, 𝒟 is a Ne-gαgCS}. 

 

Theorem 3.3: The subsequent declarations are valid in any 𝑇𝑆 𝒰: 

(i) for all Ne-CSs are Ne-gαgCSs. 

(ii) for all Ne-gαgCSs are Ne-gCSs. 

(iii) for all Ne-gαgCSs are Ne-αgCSs. 

(iv) for all Ne-gαgCSs are Ne-gαCSs. 

Proof: 

(i) Suppose a Ne-CS 𝒞 is in 𝑇𝑆 𝒰. For any Ne-αgOS ℳ, including 𝒞, we have ℳ ⊇ 𝒞 =Ne-𝑐𝑙(𝒞). 

Therefore, 𝒞 stands a Ne-gαgCS. 

(ii) Suppose Ne-gαgCS 𝒞 is in 𝑇𝑆 𝒰. For any Ne-OS ℳ, including 𝒞, we have theorem (2.5) states 

that ℳ stands a Ne-αgOS in 𝒰. Because a Ne-gαgCS 𝒞 satisfying this fact Ne-𝑐𝑙(𝒞) ⊆ ℳ. As a 

result, 𝒞 considers a Ne-gCS. 

(iii) Assume Ne-gαgCS 𝒞 is in 𝑇𝑆 𝒰. For any Ne-OS ℳ, including 𝒞, we have theorem (2.5) states 

that  ℳ  remains a Ne- α gOS in 𝒰 . Subsequently, Ne-g α gCS 𝒞  satisfying this statement  

Ne-α𝑐𝑙(𝒞) ⊆Ne-𝑐𝑙(𝒞) ⊆ ℳ. Therefore, 𝒞 becomes a Ne-αgCS. 

(iv) Assume Ne-gαgCS 𝒞 is in 𝑇𝑆 𝒰. For any Ne-αOS ℳ including 𝒞, we have theorem (2.5) states 

that  ℳ  remains a Ne- α gOS in 𝒰 . Subsequently, Ne-g α gCS 𝒞  satisfying this statement 

Ne-α𝑐𝑙(𝒞) ⊆Ne-𝑐𝑙(𝒞) ⊆ ℳ. Therefore, 𝒞 considers a Ne-gαCS. 

The opposite conditions for this previous theorem do not look accurate by the next obvious 

examples. 

 

Example 3.4: Suppose 𝒰 = {𝑝, 𝑞}  and let 𝜉 = {0𝑁, 𝒜, ℬ, 1𝑁} , such that we have the sets 𝒜 =

〈𝓊, (0.6,0.7), (0.1,0.1), (0.4,0.2)〉  and ℬ = 〈𝓊, (0.1,0.2), (0.1,0.1), (0.8,0.8)〉 , so that (𝒰, 𝜉)  is a 𝑁𝑇𝑆 . 

However, the 𝑁𝑆 𝒞 = 〈𝓊, (0.2,0.2), (0.1,0.1), (0.6,0.7)〉 is a Ne-gαgCS but not a Ne-CS. 

  

Example 3.5: Suppose 𝒰 = {𝑝, 𝑞, 𝑟} and let 𝜉 = {0𝑁, 𝒜, ℬ, 1𝑁}, where such that we have the sets 

𝒜 = 〈𝓊, (0.5,0.5,0.4), (0.7,0.5,0.5), (0.4,0.5,0.5)〉  and ℬ = 〈𝓊, (0.3,0.4,0.4), (0.4,0.5,0.5), (0.3,0.4,0.6)〉 , 

so that (𝒰, 𝜉)  is a 𝑁𝑇𝑆 . However, the 𝑁𝑆  𝒞 = 〈𝓊, (0.4,0.6,0.5), (0.4,0.3,0.5), (0.5,0.6,0.4)〉  is a 

Ne-gCS but not a Ne-gαgCS. 

 

Example 3.6: Suppose 𝒰 = {𝑝, 𝑞} and let 𝜉 = {0𝑁, 𝒜, ℬ, 1𝑁}, where such that we have the sets 𝒜 =

〈𝓊, (0.5,0.6), (0.3,0.2), (0.4,0.1)〉  and ℬ = 〈𝓊, (0.4,0.4), (0.4,0.3), (0.5,0.4)〉 , so that (𝒰, 𝜉)  is a 𝑁𝑇𝑆 . 
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However, the 𝑁𝑆 𝒞 = 〈𝓊, (0.5,0.4), (0.4,0.4), (0.4,0.5)〉 is a Ne-αgCS and hence Ne-gαCS but not a 

Ne-gαgCS. 

 

Definition 3.7: Let 𝒞 be any 𝑁𝑆 in 𝑇𝑆 𝒰, then it is called a neutrosophic generalized αg-open set 

and referred to by Ne-gαgOS iff the set 𝒰 − 𝒞 is a Ne-gαgCS. The collection of the whole Ne-gαgOSs 

in 𝑁𝑇𝑆 𝒰 indicated by Ne-gαgO(𝒰). 

 

Definition 3.8: The union of the whole Ne-gα gOSs in 𝑁𝑇𝑆  𝒰  included in 𝑁𝑆  𝒞  is termed 

neutrosophic gαg-interior of 𝒞 and symbolized by Ne-gαg𝑖𝑛𝑡(𝒞). In symbolic form, we have this 

thing Ne-gαg𝑖𝑛𝑡(𝒞) = ⋃{𝒟: 𝒞 ⊇ 𝒟, 𝒟 is a Ne-gαgOS}. 

 

Proposition 3.9: For any 𝑁𝑆 ℳ in 𝑇𝑆 𝒰, the subsequent features stand: 

(i) Ne-gαg𝑖𝑛𝑡(ℳ) = ℳ iff ℳ is a Ne-gαgOS. 

(ii) Ne-gαg𝑐𝑙(ℳ) = ℳ iff ℳ is a Ne-gαgCS. 

(iii) Ne-gαg𝑖𝑛𝑡(ℳ ) is the biggest Ne-gαgOS included in ℳ. 

(iv) Ne-gαg𝑐𝑙(ℳ) is the littlest Ne-gαgCS, including ℳ. 

Proof: the features (i-iv) are understandable. 

 

Proposition 3.10: For any 𝑁𝑆 ℳ in 𝑇𝑆 𝒰, the subsequent features stand: 

(i) Ne-gαg𝑖𝑛𝑡(ℳ̅) = (Ne − gαg𝑐𝑙(ℳ ))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 

(ii) Ne-gαg𝑐𝑙( ℳ̅) = (Ne − gαg𝑖𝑛𝑡(ℳ ))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

Proof: 

(i) The proof will be evident by symbolic definition, Ne-gαg𝑐𝑙(ℳ) = ⋂{𝒟: ℳ ⊆ 𝒟, 𝒟 is a Ne-gαgCS} 

               (Ne − gαg𝑐𝑙(ℳ))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = ⋂{𝐷̅: ℳ̅ ⊆ 𝐷̅, 𝐷̅ is a Ne-g𝛼gCS} 

                              = ⋃{𝒟̅: ℳ̅ ⊆ 𝒟̅, 𝒟̅ is a Ne-gαgCS} 

                              = ⋃{𝒩: ℳ ⊇ 𝒩, 𝒩is a Ne-gαgOS} 

                              = Ne-gαg𝑖𝑛𝑡(ℳ̅). 

(ii) This feature has undeniable proof analogous to feature (i). 

 

Theorem 3.11: For any Ne-OS 𝒞 in 𝑇𝑆 𝒰, then this set is a Ne-gαgOS. 

Proof: Suppose Ne-OS 𝒞 in 𝑇𝑆 𝒰, so we obtain that 𝒞̅ is a Ne-CS. Therefore, 𝒞̅ is a Ne-gαgCS via 

the previous theorem (3.3), part (i). Consequently, 𝒞 is a Ne-gαgOS. 

 

Theorem 3.12: For any Ne-gαgOS 𝒞 in 𝑇𝑆 𝒰, then this set is a Ne-gOS. 

Proof: Suppose Ne-gαgOS 𝒞 in 𝑇𝑆 𝒰, so we obtain that 𝒞̅ is a Ne-gαgCS. Therefore, 𝒞̅ is a Ne-gCS 

via the previous theorem (3.3), part (ii). Consequently, 𝒞 is a Ne-gOS. 

 

Lemma 3.13: For any Ne-gαgOS 𝒞 in 𝑇𝑆 𝒰, then this set is Ne-αgOS (correspondingly, Ne-gαOS). 

Proof: The proof of this lemma is similar to one of the previous theorem. 

 

Proposition 3.14: For any two Ne-gαgCSs 𝒞 and 𝒟 in 𝑇𝑆 𝒰, then the set 𝒞⋃𝒟 is a Ne-gαgCS. 
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Proof: Suppose any two Ne-gαgCSs 𝒞 and 𝒟 in 𝑁𝑇𝑆 𝒰 and ℳ is a Ne-αgOS, including 𝒞 and 

𝒟. In other words, we have 𝒞⋃𝒟 ⊆ ℳ. So, 𝒞, 𝒟 ⊆ ℳ. Because 𝒞 and 𝒟 are Ne-gαgCSs, we get that 

Ne-𝑐𝑙(𝒞), Ne-𝑐𝑙(𝒟) ⊆ ℳ. Therefore, Ne-𝑐𝑙(𝒞⋃𝒟) = Ne-𝑐𝑙(𝒞)⋃Ne-𝑐𝑙(𝒟) ⊆ ℳ. Then Ne-𝑐𝑙(𝒞⋃𝒟) ⊆

ℳ. Thus, 𝒞⋃𝒟 stands a Ne-gαgCS. 

 

Proposition 3.15: For any two Ne-gαgOSs 𝒞 and 𝒟 in 𝑇𝑆 𝒰, then the set 𝒞⋂𝒟 is a Ne-gαgOS. 

Proof: Suppose any two Ne-gαgOSs 𝒞 and 𝒟 in 𝑇𝑆 𝒰. Subsequently, we have that 𝒞̅ and 𝒟̅ are 

Ne-gαgCSs. So, we reach to this fact 𝒞̅⋃𝒟̅ is a Ne-gαgCS by proposition (3.14). Because 𝒞̅⋃𝒟̅ =

(𝒞⋂𝒟)̅̅ ̅̅ ̅̅ ̅̅ ̅, we obtain to our final result 𝒞⋂𝒟 is a Ne-gαgOS. 

 

Proposition 3.16: Let Ne-gαgCS 𝒞 be in 𝑇𝑆 𝒰, then Ne-𝑐𝑙(𝒞) − 𝒞 does not include non-empty 

Ne-CS in 𝒰. 

Proof: Assume we have Ne-gαgCS 𝒞 and Ne-CS ℱ in 𝑁𝑇𝑆 𝒰 so as ℱ ⊆ Ne-𝑐𝑙(𝒞) − 𝒞. Because 𝒞 

stands a Ne-g α gCS, this gives us the fact Ne- 𝑐𝑙(𝒞) ⊆ ℱ̅ . The latter means ℱ ⊆ Ne − 𝑐𝑙(𝒞)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

Subsequently, we arrive to ℱ ⊆ Ne-𝑐𝑙(𝒞)⋂(Ne − 𝑐𝑙(𝒞)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) = 0𝑁. Therefore, ℱ = 0𝑁 and so, we reach 

to our final result Ne-𝑐𝑙(𝒞) − 𝒞 does not include non-empty Ne-CS. 

 

Proposition 3.17: Let Ne-gαgCS 𝒞  be in 𝑁𝑇𝑆  𝒰  iff Ne-𝑐𝑙(𝒞) − 𝒞  does not include non-empty 

Ne-αgCS in 𝒰. 

Proof: Assume we have Ne-gαgCS 𝒞 and Ne-αgCS 𝒢 in 𝑁𝑇𝑆 𝒰 so as 𝒢 ⊆ Ne-𝑐𝑙(𝒞) − 𝒞. Because 

𝒞 considers a Ne-gαgCS, this gives us the fact Ne-𝑐𝑙(𝒞) ⊆ 𝒢̅. The latter means 𝒢 ⊆ Ne − 𝑐𝑙(𝒞)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

Subsequently, we arrive to 𝒢 ⊆ Ne-𝑐𝑙(𝒞)⋂(Ne − 𝑐𝑙(𝒞)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) = 0𝑁. Therefore, 𝒢 is empty. 

On The Other Hand, let us assume that Ne-𝑐𝑙(𝒞) − 𝒞 does not include non-empty Ne-αgCS in 𝒰. 

Suppose ℳ is Ne-αgOS so as 𝒞 ⊆ ℳ. If we have this truth Ne-𝑐𝑙(𝒞) ⊆ ℳ but then we get this fact  

Ne-𝑐𝑙(𝒞)⋂( ℳ̅) is non-empty. Meanwhile, we know that Ne-𝑐𝑙(𝒞) is Ne-CS and at the same time, 

we have  ℳ̅ is Ne-αgCS, so Ne-𝑐𝑙(𝒞)⋂(ℳ̅) is non-empty Ne-αgCS included Ne-𝑐𝑙(𝒞) − 𝒞. This 

leads us to a contradiction. Consequently Ne-𝑐𝑙(𝒞) ⊈ ℳ. Therefore, 𝒞 considers a Ne-gαgCS. 

 

Theorem 3.18: Let Ne-αgOS and Ne-gαgCS 𝒞 be in 𝑇𝑆 𝒰, then 𝒞 considers a Ne-CS in 𝒰. 

Proof: Assume we have Ne-αgOS and Ne-gαgCS 𝒞 is in 𝑇𝑆 𝒰, so we get that Ne-𝑐𝑙(𝒞) ⊆ 𝒞 and 

subsequently, we reach to 𝒞 ⊆ Ne-𝑐𝑙(𝒞). Consequently, Ne-𝑐𝑙(𝒞) = 𝒞. Therefore, 𝒞 stands a Ne-CS. 

 

Theorem 3.19: Let Ne-gαgCS 𝒞 be in 𝑁𝑇𝑆 𝒰 so as 𝒞 ⊆ 𝒟 ⊆ Ne-cl(𝒞), but then again 𝒟 considers a 

Ne-gαgCS in 𝒰. 

Proof: Assume we have Ne-gαgCS 𝒞 and Ne-αgOS ℳ are in 𝑁𝑇𝑆 𝒰 so as 𝒟 ⊆ ℳ. Later, 𝒞 ⊆ ℳ. 

Subsequently, 𝒞  stands a Ne-gαgCS; this fact pursues Ne-𝑐𝑙(𝒞) ⊆ ℳ . So, 𝒟 ⊆ Ne-𝑐𝑙(𝒞) infers 

Ne- 𝑐𝑙(𝒟) ⊆ Ne- 𝑐𝑙( Ne- 𝑐𝑙(𝒞)) =  Ne- 𝑐𝑙(𝒞) . Consequently,  Ne- 𝑐𝑙(𝒟) ⊆ ℳ . Therefore, 𝒟  exists a 

Ne-gαgCS. 

 

Theorem 3.20: Let Ne-gαgOS 𝒞 be in 𝑁𝑇𝑆 𝒰 so as Ne-𝑖𝑛𝑡(𝒞) ⊆ 𝒟 ⊆ 𝒞, but then again 𝒟 considers 

a Ne-gαgOS in 𝒰. 
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Proof: Assume we have Ne-gαgOS 𝒞  is in 𝑁𝑇𝑆  𝒰  so as Ne-𝑖𝑛𝑡(𝒞) ⊆ 𝒟 ⊆ 𝒞 . After that, 𝒰 −

𝒞 stands a Ne-gαgCS as well as 𝒞̅ ⊆  𝒟̅ ⊆ Ne-𝑐𝑙( 𝒞̅). But then again, we depend on theorem (3.19) to 

get 𝒰 − 𝒟 is a Ne-gαgCS. Therefore, 𝒟 exists a Ne-gαgOS. 

 

Theorem 3.21: A 𝑁𝑆 𝒞 is Ne-gαgOS iff 𝒫 ⊆ Ne-𝑖𝑛𝑡(𝒞) so as 𝒫 ⊆ 𝒞 and 𝒫 considers a Ne-gαgCS. 

Proof: Assume we have that Ne-gαgCS 𝒫 satisfying 𝒫 ⊆ 𝒞 and 𝒫 ⊆ Ne-𝑖𝑛𝑡(𝒞). Afterward,  𝒞̅ ⊆

 𝒫̅ and we have by lemma (3.13),  𝒫̅ remains a Ne-αgOS. Accordingly, Ne-𝑐𝑙( 𝒞̅) = Ne − 𝑖𝑛𝑡(𝒞)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⊆

 𝒫̅. Subsequently,  𝒞̅ stands a Ne-gαgCS. Therefore, 𝒞 stands a Ne-gαgOS. 

On the contrary, we assume Ne-gαgOS 𝒞 and Ne-gαgCS 𝒫 is so as 𝒫 ⊆ 𝒞. Subsequently, 𝒞̅ ⊆  𝒫̅. 

While  𝒞̅ exists a Ne-gαgCS and  𝒫̅ remains a Ne-αgOS, we reach to that Ne-𝑐𝑙( 𝒞̅) ⊆ 𝒫̅. Therefore, 

𝒫 ⊆ Ne-𝑖𝑛𝑡(𝒞). 

 

Remark 3.22: The next illustration demonstrates the relative among the distinct kinds of Ne-CS:  
 

 

 

   
 
 
 

 

 

 

4. Neutrosophic Generalized 𝛂g-Continuous Functions  

In this part of this paper, the neutrosophic generalized 𝛂g-continuous functions are performed 

and examined their fundamental features. 

 

Definition 4.1: Let 𝜂: (𝒰, 𝜉) ⟶ (𝒱, 𝜚) be a map so as 𝒰 and 𝒱 are 𝑁𝑇𝑆s, then: 

(i) 𝜂 is named a neutrosophic αg-continuous and signified by Ne-αg-continuous if for every Ne-OS 

(correspondingly, Ne-CS) 𝒦 in 𝒱, 𝜂−1(𝒦) is a Ne-αgOS (correspondingly, Ne-αgCS) in 𝒰.  

(ii) 𝜂 is named a neutrosophic gα-continuous and signified by Ne-gα-continuous if for every Ne-OS 

(correspondingly, Ne-CS) 𝒦 in 𝒱, 𝜂−1(𝒦) is a Ne-gαOS (correspondingly, Ne-gαCS) in 𝒰. 

 

Theorem 4.2: Let 𝜂 be a function on 𝑁𝑇𝑆 𝒰 and valued in 𝑇𝑆 𝒱. So, we have the following: 

(i) all Ne-g-continuous functions are Ne-αg-continuous. 

(ii) all Ne-α-continuous functions are Ne-gα-continuous. 

(iii) all Ne-gα-continuous functions are Ne-αg-continuous. 

Proof: 

(i) Let Ne-CS 𝒦 be in 𝑁𝑇𝑆 𝒱 and Ne-g-continuous function 𝜂 defined on 𝑁𝑇𝑆 𝒰 and valued in 

𝑇𝑆 𝒱. By definition of Ne-g-continuous, 𝜂−1(𝒦) remains a Ne-gCS in 𝒰. So, we have 𝜂−1(𝒦) is a 

Ne-αgCS in 𝒰 because of theorem (2.5) part (iii). As a result, 𝜂 stands a Ne-αg-continuous. 

Ne-CS Ne-gαgCS 

Ne-αgCS 

Ne-gCS 

Ne-gαCS 

Ne-αgOS 

Ne-αCS 

+ 

Fig. 3.1 
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(ii) Let Ne-CS 𝒦 be in 𝑁𝑇𝑆 𝒱 and Ne-α-continuous function 𝜂 defined on 𝑁𝑇𝑆 𝒰 and valued in 

𝑁𝑇𝑆 𝒱. By definition of Ne-α-continuous, 𝜂−1(𝒦) remains a Ne-αCS in 𝒰. So, we have 𝜂−1(𝒦) is a 

Ne-gαCS in 𝒰 because of theorem (2.5) part (iv). As a result, 𝜂 stands a Ne-gα-continuous. 

(iii) Let Ne-CS 𝒦 be in 𝑁𝑇𝑆 𝒱 and Ne-gα-continuous function 𝜂 defined on 𝑁𝑇𝑆 𝒰 and valued 

in 𝑇𝑆 𝒱 . So, we have 𝜂−1(𝒦) is a Ne-gαCS and then 𝜂−1(𝒦) is a Ne-αgCS in 𝒰  because of 

theorem (2.5) part (v). Therefore, 𝜂 stands a Ne-αg-continuous. 

The reverse of the beyond proposition does not become valid as shown in the next examples. 

 

Example 4.3: (i) Assume 𝒰 = {𝑝, 𝑞}  and 𝜉 = {0𝑁, 𝒜, ℬ, 1𝑁}  and 𝜚 = {0𝑁, ℬ, 𝒞, 1𝑁} ,  where 𝒜 =

〈𝓊, (0.6,0.7), (0.4,0.3), (0.5,0.2)〉 , ℬ = 〈𝓊, (0.5,0.5), (0.5,0.4), (0.6,0.5)〉  and 𝒞 =

〈𝓊, (0.5,0.5), (0.6,0.4), (0.7,0.5)〉 are the neutrosophic sets, then (𝒰, 𝜉) and (𝒰, 𝜚) are  NTSs. Define 

𝜂: (𝒰, 𝜉) ⟶ (𝒰, 𝜚)  as a 𝜂(𝑝) = 𝑞  and 𝜂(𝑞) = 𝑝.   Then 𝜂  is Ne- α g- continuous.   But  𝒞̅ =

〈𝓊, (0.7,0.5), (0.6,0.4), (0.5,0.5)〉  is a Ne-CS  in (𝒰, 𝜚), 𝜂−1(𝒞̅) is not a Ne-gCS in (𝒰, 𝜉) .  Thus 

  𝜂  is not a  Ne-g-continuous. 

(ii) Let 𝒰 = {𝑝, 𝑞}  and let 𝜉 = {0𝑁, 𝒜, ℬ, 1𝑁}  and 𝜚 = {0𝑁, ℬ, 𝒞, 1𝑁} , where 𝒜 =

〈𝓊, (0.6,0.7), (0.4,0.3), (0.5,0.2)〉 , ℬ = 〈𝓊, (0.5,0.5), (0.5,0.4), (0.6,0.5)〉  and 𝒞 =

〈𝓊, (0.5,0.5), (0.5,0.5), (0.4,0.5)〉  are the neutrosophic sets, then (𝒰, 𝜉) and (𝒰, 𝜚) are NTSs. Define 

𝜂: (𝒰, 𝜉) ⟶ (𝒰, 𝜚)   as a 𝜂(𝑝) = 𝑝  and 𝜂(𝑞) = 𝑞.    Then 𝜂  is Ne-g α - continuous . But 𝒞̅ =

〈𝓊, (0.4,0.5), (0.5,0.5), (0.5,0.5)〉  is a Ne-CS  in (𝒰, 𝜚), 𝜂−1(𝒞̅) is not a Ne-𝛼CS in (𝒰, 𝜉). Thus 𝜂  is 
not a Ne-α-continuous. 

(iii) Let 𝒰 = {𝑝, 𝑞}  and let 𝜉 = {0𝑁, 𝒜, ℬ, 1𝑁}  and 𝜚 = {0𝑁, ℬ, 𝒞, 1𝑁} , where 𝒜 =

〈𝓊, (0.6,0.7), (0.4,0.3), (0.5,0.2)〉 , ℬ = 〈𝓊, (0.5,0.5), (0.5,0.4), (0.6,0.5)〉  and 𝒞 =

〈𝓊, (0.5,0.5), (0.6,0.4), (0.7,0.5)〉  are the neutrosophic sets, then (𝒰, 𝜉) and (𝒰, 𝜚) are NTSs. Define 

𝜂: (𝒰, 𝜉) ⟶ (𝒰, 𝜚)  as a 𝜂(𝑝) = 𝑞  and 𝜂(𝑞) = 𝑝 . Then 𝜂  is Ne- α g- continuous . But 𝒞̅ =

〈𝓊, (0.5,0.5), (0.5,0.5), (0.6,0.4)〉 is a Ne-CS in (𝒰, 𝜚), 𝜂−1(𝒞̅) is not a Ne-𝑔𝛼CS in (𝒰, 𝜉). Thus 𝜂 is 
not a Ne-gα-continuous. 
 

Definition 4.4: Let 𝜂  be a function on 𝑁𝑇𝑆  𝒰  and valued in 𝑇𝑆  𝒱 . Then, we named 𝜂  as 

neutrosophic generalized αg-continuous and shortly wrote it as Ne-gαg-continuous if for each 

Ne-CS 𝒦 in 𝒱, 𝜂−1(𝒦) is a Ne-gαgCS in 𝒰. 

 

Theorem 4.5: Let 𝜂  be a function on 𝑁𝑇𝑆  𝒰  and valued in 𝑇𝑆  𝒱 . Afterward, 𝜂  remains a 

Ne-gαg-continuous function iff for each Ne-OS 𝒦 in 𝒱, 𝜂−1(𝒦) is a Ne-gαgOS in 𝒰. 

Proof: Let Ne-OS 𝒦 and Ne-CS 𝒦̅ are in 𝒱. Therefore,  𝜂−1(𝒦̅) = (𝜂−1(𝒦))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ remains a Ne-gαgCS 

in 𝒰. Consequently, 𝜂−1(𝒦) exists a Ne-gαgOS in 𝒰. The reverse proof is evident. 

 

Proposition 4.6: For all Ne-gαg-continuous functions are Ne-αg-continuous. 

Proof: Let Ne-CS 𝒦  be in 𝑁𝑇𝑆  𝒱  and Ne-gαg-continuous function 𝜂  defined on 𝑁𝑇𝑆  𝒰  and 

valued in 𝑇𝑆 𝒱. By definition of Ne-gαg-continuous function, 𝜂−1(𝒦) stands a Ne-gαgCS in 𝒰. So, 

we have 𝜂−1(𝒦) remains a Ne-αgCS in 𝒰 because of theorem (3.3) part (iii). As a result, 𝜂 exists a 

Ne-αg-continuous. 
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Proposition 4.7: For all Ne-gαg-continuous functions are Ne-gα-continuous. 

Proof: Let Ne-CS 𝒦  be in 𝑁𝑇𝑆  𝒱  and Ne-gαg-continuous function 𝜂  defined on 𝑁𝑇𝑆  𝒰  and 

valued in 𝑇𝑆 𝒱. By definition of Ne-gαg-continuous function, 𝜂−1(𝒦) stands a Ne-gαgCS in 𝒰.  

So, we have 𝜂−1(𝒦) remains a Ne-gαCS in 𝒰 because of theorem (3.3) part (iv). As a result, 𝜂 

exists a Ne-gα-continuous. 

The reverse of the beyond proposition does not become valid as shown in the next examples. 

Example 4.8: Let 𝒰 = {𝑝, 𝑞}  and let 𝜉 = {0𝑁, 𝒜, ℬ, 1𝑁}  and 𝜚 = {0𝑁, 𝒞, 1𝑁} ,  where 𝒜 =

〈𝓊, (0.5,0.6), (0.3,0.2), (0.4,0.1)〉 , ℬ = 〈𝓊, (0.4,0.4), (0.4,0.3), (0.5,0.4)〉  and 𝒞 =

〈𝓊, (0.5,0.4), (0.4,0.4), (0.4,0.5)〉  are the neutrosophic sets, then (𝒰, 𝜉) and (𝒰, 𝜚) are NTSs. Define 

𝜂: (𝒰, 𝜉) ⟶ (𝒰, 𝜚)   as a 𝜂(𝑝) = 𝑞  and 𝜂(𝑞) = 𝑝.    Then 𝜂  is Ne- α g- continuous . But 𝒞 =

〈𝓊, (0.4,0.5), (0.4,0.4), (0.5,0.4)〉 is a Ne-CS in (𝒰, 𝜚), 𝜂−1(𝒞̅) is a Ne-αgCS but not a Ne-gαgCS in  

(𝒰, 𝜉). Thus 𝜂 is not a Ne-gαg-continuous. 

 

Example 4.9: Let 𝒰 = {𝑝, 𝑞}  and let 𝜉 = {0𝑁, 𝒜, ℬ, 1𝑁}  and 𝜚 = {0𝑁, 𝒞, 1𝑁} , where 𝒜 =

〈𝓊, (0.5,0.6), (0.3,0.2), (0.4,0.1)〉 , ℬ = 〈𝓊, (0.4,0.4), (0.4,0.3), (0.5,0.4)〉  and 𝒞 =

〈𝓊, (0.5,0.4), (0.4,0.4), (0.4,0.5)〉 are the neutrosophic sets, then (𝒰, 𝜉) and (𝒰, 𝜚) are NTSs. Define 

𝜂: (𝒰, 𝜉) ⟶ (𝒰, 𝜚)  as a 𝜂(𝑝) = 𝑞  and 𝜂(𝑞) = 𝑝.    Then 𝜂  is Ne-g α - continuous . But 𝒞 =

〈𝓊, (0.4,0.5), (0.4,0.4), (0.5,0.4)〉 is a Ne-CS in (𝒰, 𝜚), 𝜂−1(𝒞̅) is a Ne-g𝛼CS but not a Ne-gαgCS in  

(𝒰, 𝜉). Thus 𝜂 is not a Ne-gαg-continuous. 

 

Definition 4.10: Let 𝜂  be a function on 𝑁𝑇𝑆  𝒰  and valued in 𝑇𝑆  𝒱 . Then, we named 𝜂  as 

neutrosophic generalized α g-irresolute and shortly wrote it as Ne-g α g-irresolute if for each 

Ne-gαgCS 𝒦 in 𝒱, 𝜂−1(𝒦) is a Ne-gαgCS in 𝒰. 

 

Theorem 4.11: Let 𝜂  be a function on 𝑁𝑇𝑆  𝒰  and valued in 𝑇𝑆  𝒱 . Afterward, 𝜂  remains a 

Ne-gαg-irresolute function iff for each Ne-gαgOS 𝒦 in 𝒱, 𝜂−1(𝒦) is a Ne-gαgOS in 𝒰. 

Proof: Let Ne-gαgOS 𝒦 and Ne-gαgCS 𝒦̅  are in 𝒱 . Therefore,  𝜂−1(𝒦̅) = (𝜂−1(𝒦))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  remains a 

Ne-gαgCS in 𝒰. Consequently, 𝜂−1(𝒦) exists a Ne-gαgOS in 𝒰. The reverse proof is evident. 

 

Proposition 4.12: For all Ne-gαg-irresolute functions are Ne-gαg-continuous. 

Proof: Let Ne-CS 𝒦  be in 𝑁𝑇𝑆  𝒱  and Ne-gαg-irresolute function 𝜂  defined on 𝑁𝑇𝑆  𝒰  and 

valued in 𝑇𝑆 𝒱. So, we have 𝒦 stands a Ne-gαgCS in 𝒱 by theorem (3.3) part (i). By definition of 

Ne-g α g-irresolute function, 𝜂−1(𝒦)  stands a Ne-g α gCS in 𝒰 . As a result, 𝜂  exists a 

Ne-gαg-continuous. 

The subsequent example explains that the inverse of the overhead proposition does not work. 

 

Example 4.13: Suppose 𝒰 = {𝑝, 𝑞}  and let 𝜉 = {0𝑁, ℬ, 1𝑁}  and 𝜚 = {0𝑁, 𝒜, ℬ, 1𝑁} , where 𝒜 =

〈𝓊, (0.6,0.7), (0.4,0.3), (0.5,0.2)〉 and ℬ = 〈𝓊, (0.5,0.5), (0.5,0.4), (0.6,0.5)〉 are the neutrosophic sets, 

then (𝒰, 𝜉) and  (𝒰, 𝜚) are NTSs. Define 𝜂: (𝒰, 𝜉) ⟶ (𝒰, 𝜚) as a 𝜂(𝑝) = 𝑞 and 𝜂(𝑞) = 𝑝. Then 𝜂 is 

Ne-gαg-continuous. But 𝒞 = 〈𝓊, (0.5,0.5), (0.6,0.4), (0.5,0.7)〉 is a Ne-gαgCS in (𝒰, 𝜚), 𝜂−1(𝒞) is not 

a Ne-gαgCS in (𝒰, 𝜉). Thus 𝜂  is not a Ne-gαg-irresolute. 
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Definition 4.14: We called a 𝑁𝑇𝑆 𝒰 with a neutrosophic T1
2
-space if for each Ne-gCS in 𝒰 is a 

Ne-CS and we denoted it by Ne-T1
2
-space. 

 

Definition 4.15: We called a 𝑁𝑇𝑆 𝒰 with a neutrosophic Tgαg-space if for each Ne-gαgCS in 𝒰 is a 

Ne-CS and we denoted by Ne-Tgαg-space. 

 

Proposition 4.16: Every Ne-T1
2
-space stands a Ne-Tgαg-space. 

Proof: Let 𝒞 be a Ne-gαgCS in Ne-T1
2
-space 𝒰. By theorem (3.3) part (ii), we obtain 𝒞 is a Ne-gCS. 

By definition of Ne-T1
2

-space, we reach to that 𝒞  is a Ne-CS in 𝒰 . Therefore, 𝒰  endures a 

Ne-Tgαg-space. 

 

Theorem 4.17: Let 𝜂1 be a Ne-gαg-continuous function on 𝑁𝑇𝑆 𝒰 and valued in 𝑁𝑇𝑆 𝒱 and let 𝜂2 

be a Ne-g-continuous function on 𝑁𝑇𝑆 𝒱 and valued in 𝑇𝑆 𝒲. If 𝒱 is a Ne-T1
2
-space, then 𝜂2 ∘ 𝜂1 

is a Ne-gαg-continuous function. 

Proof: Assume Ne-CS 𝒦 is in 𝒲. Meanwhile, we have a Ne-g-continuous function 𝜂2 defined on a 

Ne-T1
2
-space 𝒱, then 𝜂2

−1(𝒦) stands a Ne-CS in 𝒱. Subsequently, we also see a Ne-gαg-continuous 

function 𝜂1 defined on 𝒰, then 𝜂1
−1(𝜂2

−1(𝒦)) stands a Ne-gαgCS in 𝒰. Therefore, 𝜂2 ∘ 𝜂1 stands 

a Ne-gαg-continuous. 

 

Theorem 4.18: Let 𝜂 be a function on 𝑁𝑇𝑆 𝒰 and valued in 𝑇𝑆 𝒱, we have the following results: 

(i) If 𝑁𝑇𝑆 𝒰 stands a Ne-T1
2
-space then the function 𝜂 becomes a Ne-g-continuous iff it considers a  

a Ne-gαg-continuous. 

(ii) If 𝑁𝑇𝑆 𝒰 stands a Ne-Tgαg-space then the function 𝜂 becomes a Ne-continuous iff it considers  

a Ne-gαg-continuous. 

Proof: 

(i) Let Ne-CS 𝒦 be in 𝒱 and 𝜂 be a Ne-g-continuous function. By definition of Ne-g-continuous, 

𝜂−1(𝒦) is a Ne-gCS in 𝒰. Besides, the definition of Ne-T1
2
-space states 𝜂−1(𝒦) is a Ne-CS. So, 

𝜂−1(𝒦) is a Ne-gαgCS in 𝒰 by theorem (3.3) part (i). Therefore, 𝜂 is a Ne-gαg-continuous. 

On the contrary, let Ne-CS 𝒦  be in 𝒱  and let 𝜂  be a Ne-g α g-continuous. By definition of 

Ne-gαg-continuous, 𝜂−1(𝒦) is a Ne-gαgCS in 𝒰. Besides, we have 𝜂−1(𝒦) is a Ne-gCS in 𝒰 by 

theorem (3.3) part (ii). Therefore, 𝜂 is a Ne-g-continuous. 
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(ii) Let Ne-CS 𝒦 be in 𝒱 and let 𝜂 be a Ne-continuous. By definition of Ne-continuous, 𝜂−1(𝒦) is 

a Ne-CS in 𝒰. So, we have 𝜂−1(𝒦) is a Ne-gαgCS in 𝒰 by theorem (3.3) part (i). Therefore, 𝜂 is a 

Ne-gαg-continuous. 

On the contrary, let Ne-CS 𝒦 be in 𝒱 and let 𝜂 be a Ne-gαg-continuous. Besides, we have 𝜂−1(𝒦) 

is a Ne-gαgCS in 𝒰. Furthermore, the definition of Ne-Tgαg-space gives 𝜂−1(𝒦) is a Ne-CS in 𝒰. 

Therefore, 𝜂 is a Ne-continuous. 

 

Remark 4.19: The subsequent illustration indicates the relative among the various kinds of 

Ne-continuous functions: 

 

 

 

 

 

 

 

 

 

 

5. Conclusion  

The class of Ne-gαgCS described employing Ne-αgCS structures a neutrosophic topology and 

deceptions between the classes of Ne-CS and Ne-gCS. We as well illustration Ne-gαg-continuous 

functions by applying Ne-gαgCS. The Ne-gαgCS know how to be developed to establish another 

neutrosophic homeomorphism. 
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Abstract: The purpose of the study is to introduce the notion of generalized neutrosophic b-open set 

in neutrosophic topological space. We define generalized neutrosophic b-open set, generalized 

neutrosophic b-interior, generalized neutrosophic b-closure and investigate some of their properties. 

By defining generalized neutrosophic b-open set, we prove some theorems on neutrosophic 

topological spaces. We also furnish some suitable examples. 

Keywords: Neutrosophic set; neutrosophic b-open set; generalized neutrosophic b-open set; 

generalized neutrosophic b-interior; generalized neutrosophic b-closure 
 

 

1. Introduction 

Smarandache (1998) grounded the Neutrosophic Set (NS) in 1998.  From then it became very 

popular and attracted many researchers' attention for theoretical and practical researches (Broumi et 

al., 2018; Khalid, 2020; Peng & Dai, 2018; Pramanik, 2013; 2016a; 2016b; 2020; Pramanik & Mallick, 

2018; 2019; Pramanik & Mondal, 2016; Pramanik & Roy, 2014; Smarandache & Pramanik, 2016; 2018, 

Biswas, Pramanik & Giri, 2014; 2016a; 2016b; Dalapati et al., 2017; Dey, Pramanik, & Giri, 2016a; 

2016b; Pramanik, Mallick, & Dasgupta, 2018; Mondal & Pramanik, 2015; Pramanik & Dalapati, 2018, 
Pramanik, Dey, & Smarandache, 2018; Pramanik, Mondal, & Smarandache, 2016a; 2016b). 

Salama and Alblowi (2012a) grounded the “Neutrosophic Topological Space” (NTS).  Salama 

and Alblowi (2012b) also presented generalized NS and generalized NTSs.  Salama, Smarandache, 

& Alblowi (2014) studied the concept of neutrosophic crisp topological space. Arokiarani, 

Dhavaseelan, Jafari, and Parimala (2017) defined neutrosophic semi-open functions and established 

relation between them.  Iswaraya and Bageerathi (2016) studied neutrosophic semi-closed set and 

neutrosophic semi-open set. Rao and Srinivasa (2017) introduced neutrosophic pre-open set 
and pre-closed set. Dhavaseelan and Jafari (2018) studied generalized neutrosophic closed sets. 

Pushpalatha and Nandhini (2019) defined the neutrosophic generalized closed sets in NTSs. Shanthi, 

Chandrasekar, Safina, and Begam (2018) presented the neutrosophic generalized semi closed sets in 

mailto:1suman.mathematics@tripurauniv.in
mailto:%20sura_pati@yahoo.co.in
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NTSs. Ebenanjar, Immaculate, and Wilfred (2018) studied neutrosophic b -open sets in NTSs. 

Maheswari, Sathyabama, and Chandrasekar (2018) studied the neutrosophic generalized b- closed 

sets in NTSs.  

Research gap: No investigation on neutrosophic generalized b-open set has been reported in the 

recent literature. 

Motivation: In order to fill the research gap, we introduce neutrosophic generalized b-open set. 

Remaining of the paper is designed as follows: 

Section 2 recalls of NTS, neutrosophic b- closed sets and a theorem.  Section 3 introduces 

neutrosophic generalized b-open set and proofs of some theorems on neutrosophic b-open sets. 

Section 4 presents concluding remarks.   

2. Preliminaries and some properties 

Definition 2.1 Assume that ( , )W  is an NTS. Then  , an NS over W  is said to be a Neutrosophic 

b-Open (N-b-open) set (Ebenanjar, Immaculate, & Wilfred, 2018) if and only if (iff)    ⊆Nint(Ncl(

))∪ Ncl(Nint(  )). 

Definition 2.2 In an NTS ( , )W , an NS   is said to be a Neutrosophic b-Closed (N-b-closed) set 

(Ebenanjar, Immaculate, & Wilfred, 2018) iff   ⊇ Nint(Ncl(  ))∩ Ncl(Nint(  )). 

Remark 2.1 An NS  over W  is said to be an N-b-closed set (Ebenanjar, Immaculate, & Wilfred, 

2018) in ( , )W  iff  c is a N-b-open set in ( , )W . 

 

In 2018, Ebenanjar, Immaculate, and Wilfred (2018) studied the concept of N-b-open set in NTS 

but they did not check whether the union or intersection of two N-b-open sets (N-b-closed sets) is 

again an N-b-open set (N-b-closed set) or not. In this paper we show some results on the intersection 

and union of neutrosophic b-closed sets. 

Theorem 2.1 The intersection of any two N-b-closed sets is again an N-b-closed set.    

Proof. Assume that E, F be any two N-b-closed sets in an NTS ( , )W . Then we have 

E ⊇ Nint(Ncl(E)) ∩ Ncl(Nint(E))             (1) 

and F ⊇ Nint(Ncl(F)) ∩ Ncl(Nint(F))            (2) 

For any two NSs E and F We know that E∩F ⊆ Eand E∩F ⊆  𝐹. 

Now E∩F ⊆ E⟹Nint(E∩F) ⊆ Nint(E) ⟹Ncl(Nint(E∩F)) ⊆ Ncl(Nint(E))       (3) 

E∩F ⊆ E⟹Ncl(E∩F) ⊆ Ncl(E) ⟹Nint(Ncl(E∩F)) ⊆ Nint(Ncl(E))              (4) 

E∩F ⊆ F⟹Nint(E∩F) ⊆ Nint(F) ⟹Ncl(Nint(E∩F)) ⊆ Ncl(Nint(F))              (5) 

E∩F⊆ F⟹Ncl(E∩F) ⊆ Ncl(F) ⟹Nint(Ncl(E∩F)) ⊆ Nint(Ncl(F))               (6) 

From (1) and (2) we have, 

E∩F ⊇ Nint(Ncl(E)) ∩ Ncl(Nint(E)) ∩ Nint(Ncl(F)) ∩ Ncl(Nint(F)) 

          ⊇Nint(Ncl(E∩F)) ∩ Ncl(Nint(E∩F)) ∩ Nint(Ncl(E∩F)) ∩ Ncl(Nint(E∩F)) 

[ by eqs (3), (4), (5) & (6)] 

             = Nint(Ncl(E∩F)) ∩ Ncl(Nint(E∩F)) 

⟹E∩F ⊇ Ncl(Nint(E∩F)) ∩ Nint(Ncl(E∩F)). 

Therefore E∩F is an N-b-closed set. 
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Hence the intersection of any two N-b-closed sets is again an N-b-closed set. 

Remark 2.2: The union of any two N-b-closed sets may not be an N-b-closed set. This is proved as 

follows: 

Example 2.1: Assume that 1 2{ , }W p p  and 𝜏 = {0N, 1N, {( 1p , 0.5, 0.2, 0.4), ( 2p , 0.6, 0.1, 0.3)}, {( 1p , 0.3, 

0.5, 0.6), ( 2p , 0.4, 0.4, 0.5)}} be the family of some NSs over W . Then 𝜏 is an NT on .W  Now it can 

be verified that E= {(a, 0.6, 0.5, 0.6), (b, 0.5, 0.6, 0.7)}, F={(a,1, 0, 1), (b, 0.9, 0.1, 0.1)} are two N-b-closed 

sets in (𝑊, 𝜏). But their union E∪F = {(a, 1, 0, 0.6), (b, 0.9, 0.1, 0.1)} is not an N-b-closed set. 

Definition 2.3 Assume that ( , )W  is an NTS and   is an NS overW . Then the Neutrosophic 

b-Closure (Nbcl) and Neutrosophic b-Interior (Nbint) (Ebenanjar, Immaculate & Wilfred, 2018) of   

are defined by 

Nbcl(  ) = ∩{ :   is an N-b-closed set in ( , )W  and ⊆ }; 

Nbint(  ) = ∪{  :   is an N-b-open set in ( , )W  and  ⊆  }. 

 

Remark 2.3 Clearly Nbint(  ) is the largest N-b-open set (Ebenanjar, Immaculate, & Wilfred, 2018) in 

( , )W  which is contained in  and Nbcl(  ) is the smallest N-b-closed set in ( , )W  which contains .  

 

Definition 2.4 Assume that ( , )W  is an NTS. A neutrosophic subset E of ( , )W is said to be a 

Neutrosophic Generalized Closed Set (NGCS) (Dhavaseelan & Jafari, 2018) if Ncl(E)⊆F whenever 

E⊆F and F is an NOS. A subset K of ( , )W  is called Neutrosophic Generalized Open Set (NGOS)  

iff Kc is an NGCS in ( , ).W  

3. Generalized neutrosophic b-open set 

Definition 3.1 Assume that ( , )W  is an NTS. An NS G over W  is called a Generalized 

Neutrosophic b-Open (g-N-b-open) set if ∃ an N-b-closed set H (except 1N) with G⊆H such that 

G ⊆ Nint(H). A neutrosophic subset K in ( , )W  is called a Generalized Neutrosophic b-Closed 

(g-N-b-closed) set iff Kc is a g-N-b-open set in ( , )W .  

Example 3.1 Assume that 1 2{ , }W p p and 𝜏={0N, 1N, {( 1p , 0.5, 0.6, 0.7), ( 2p ,0.6, 0.7, 0.8)}, {( 1p ,0.6, 

0.5, 0.6), ( 2p ,0.7, 0.6, 0.7)}} are the collection of some NSs over .W Then ( , )W is clearly an NTS. 

Here K = {( 1p , 0.6, 0.7, 0.8), ( 2p , 0.5, 0.8, 0.8)} is a g-N-b-open set, because there exists an N-b-closed 

set G = { 1p , 0.7, 0.3, 0.4), ( 2p , 0.8, 0.3, 0.4)} in ( , )W  with K ⊆ G such that K ⊆ Nint(G). 

Proposition 3.1 In an NTS ( , )W , 0N  is a g-N-b-open set but 1N is not a g-N-b-open set. 

Proof. Assume that ( , )W is an NTS. Since a Neutrosophic Open Set (NOS)  is an N-b-open set, so 1N 

is an N-b-open set. Therefore, 0N is an N-b-closed set (since it is the complement of N-b-open set 1N). 

Now 0N ⊆ 0N and 0N ⊆ Nint(0N)= 0N. 

Thus there exist an N-b-closed set 0N (except 1N) with 0N ⊆0N such that 0N ⊆ Nint(0N). Hence 0N is a 

g-N-b-open set in ( , ).W  

But in case of NS 1N, we cannot find any neutrosophic b-closed set H (except 1N) with 1N⊆H such that 

1N⊆ Nint(H). Hence 1N is not a g-N-b-open set in ( , ).W  

Proposition 3.2 Assume that   is a  g-N-b-open set in an NTS ( , ).W  Then, every NS contained 

in   is a g-N-b-open set. 
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Proof. Assume that   be a g-N-b-open set in an NTS ( , )W  and  be any arbitrary NS over W
which is contained in . Since   is a g-N-b-open set, so there exists an N-b-closed set   (except 

1N) with  ⊆   such that  ⊆Nint( ). 

Now   is contained in A, so  

      ⊆  

 ⟹  ⊆  ⊆ &  ⊆  ⊆Nint( ). 

Therefore there exists an N-b-closed set   (except 1N) with  ⊆  such that  ⊆Nint( ). Hence   

is a g-N-b-open set. Thus each NS contained in   is again a g-N-b-open set in ( , )W . 

Definition 3.2 Assume that ( , )W  is an NTS and   be an NS over .W  Then the Generalized 

Neutrosophic b-Interior (g-Nbint) and Generalized Neutrosophic b- Closure (g-Nbcl) of   are defined 

by 

g-Nbint( ) = ∪{  :   is a g-N-b-open set and   ⊆  }; 

g-Nbcl( ) = ∩{  :   is a g-N-b-closed set and   ⊆  }. 

 

Theorem 3.1 Assume that ( , )W  is an NTS. Then each neutrosophic open subset of ( , )W  is a 

g-N-b-open set. 

Proof. Assume that   be an arbitrary NOS in an NTS ( , )W . So   = Nint(  ). Since each 

neutrosophic closed set is an N-b-closed set so Ncl( ) is an N-b-closed set. Also we know that        

  ⊆ Ncl( ). 

Now   ⊆ Ncl( ) 

⟹Nint( ) ⊆ Nint(Ncl( )) 

⟹ = Nint( ) ⊆ Nint(Ncl( )) 

⟹  ⊆ Nint(Ncl( )) 

Therefore there exists an N-b-closed set Ncl( ) with   ⊆ Ncl( ) such that   ⊆ Nint(Ncl( )). Hence 

  is a g-N-b-open set in ( , )W . Thus each neutrosophic open subset of ( , )W  is again a g-N-b-open 

set. 

Remark 3.1 The converse of the theorem 3.1 is not true. This can be shown by the example 3.2. 

Example 3.2 In example 3.1, it can be easily seen that K = {(a, 0.6, 0.7, 0.8), (b, 0.5, 0.8, 0.8)} is a 

g-N-b-open set in ( , )W  but it is not an NOS. 

Theorem 3.2 Assume that ( , )W  
is an NTS. Then each Neutrosophic Pre-Open Set (NPOS) in 

( , )W  is a g-N-b-open set. 

Proof. Assume that ( , )W  is an NTS and   is an NPOS. Then   ⊆ Nint(Ncl( )). Since for any NS

 , Ncl( ) is an N-b-closed set and   ⊆ Ncl( ). Therefore there exists an N-b-closed set Ncl( ) with 

 ⊆ Ncl( ) such that  ⊆ Nint(Ncl( )). Hence   is a g-N-b-open set in ( , )W . Thus each NPOS in 

( , )W  is again a g-N-b-open set. 

Theorem 3.3 If   is both NOS and Neutrosophic Semi-Open Set (NSOS) in an NTS ( , )W then it is 

a g-N-b-open set. 
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Proof.  Assume that ( , )W  is an NTS and   is both NSOS and NOS. Since   is an NOS, so   

= Nint( ). Again since   is an NSOS, so   ⊆ Ncl(Nint( )). It can be verified that Ncl(Nint( )) is an 

N-b-closed set (since it is an NCS). 

Now   ⊆ Ncl(Nint( )) 

⟹Nint( ) ⊆ Nint(Ncl(Nint( )))  [ since  ⊆  𝛿 ⟹ Nint( ) ⊆ Nint(𝛿) ] 

⟹  = Nint( ) ⊆ Nint(Ncl(Nint( )))      [ since   = Nint( ) ] 

⟹   ⊆ Nint(Ncl(Nint( ))) 

Therefore there exists an N-b-closed set Ncl(Nint(  )) with   ⊆ Ncl(Nint( )) in ( , )W  such that    

  ⊆ Nint(Ncl(Nint( ))). Hence   is a g-N-b-open set. 

Theorem 3.4 Assume that ( , )W  is an NTS and  is both neutrosophic 𝛼-open and neutrosophic 

open set. Then   is again a g-N-b-open set. 

Proof. Assume that   is an arbitrary NS which is both neutrosophic 𝛼-open set and NOS. Since   

is an NOS so  = Nint( ). Again since   is a neutrosophic 𝛼-open set, so   ⊆ Nint(Ncl(Nint( ))). 

Hence, it is clear that Ncl(Nint( )) is an N-b-closed set (since it is an NCS) in ( , )W . 

Now   = Nint( ) 

⟹ = Nint( ) ⊆ Ncl(Nint( )) 

⟹   ⊆ Ncl(Nint( )) 

Therefore there exists an N-b-closed set Ncl(Nint(  )) with   ⊆ Ncl(Nint(  )) such that   ⊆

 Nint(Ncl(Nint( ))). Hence   is a generalized N-b-open set in ( , )W . 

Theorem 3.5 The intersection of any two g-N-b-open sets in an NTS ( , )W  is again a g-N-b-open 

set. 

Proof. Let   and   be any two g-N-b-open sets in an NTS ( , )W . Then there exist two N-b-closed 

sets K, L with  ⊆ K,   ⊆L such that   ⊆ Nint(K) and   ⊆ Nint(L). 

Here  ∩   ⊆ K∩L. 

We know that the intersection of two N-b-closed sets is again an N-b-closed set. So K∩L is an 

N-b-closed set in ( , )W . 

Now  ∩   ⊆Nint(K) ∩ Nint(L) [since   ⊆ Nint(K),   ⊆ Nint(L)] 

=Nint(K ∩ L) 

⟹  ∩   ⊆ Nint(K ∩ L). 

Therefore there exists an N-b-closed set K∩L with  ∩  ⊆K∩L such that  ∩   ⊆ Nint(K ∩ L). 

Hence  ∩   is a g-N-b-open set in ( , )W . Thus the intersection of any two g-N-b-open sets in 

( , )W  is again a g-N-b-open set. 

Theorem 3.6 The union of two g-N-b-open sets is a g-N-b-open set if one is contained in the other. 

Proof. Let  ,   are any two g-N-b-open sets in ( , )W  such that  ⊆  .  Since  and   are 

g-N-b-open sets, so there exist two N-b-closed sets G1, G2 with   ⊆ G1 and   ⊆ G2 such that   ⊆

 Nint(G1) and   ⊆ Nint(G2). 

Now  ∪   ⊆  [since  ⊆   ] 

             ⊆G2  

⟹  ∪   ⊆G2 

Again  ∪   ⊆   ⊆ Nint(G2), where G2 is an N-b-closed set in (𝑋, 𝜏). 
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Therefore there exists an N-b-closed set G2 with  ∪   ⊆G2 in (𝑋, 𝜏) such that  ∪   ⊆ Nint(G2).  

Hence the union of two g-N-b-open sets is again a g-N-open set if one is contained in the other.  

Definition 3.3 An NS   is called a g-N-b-open set relative to an NS   if there exists an N-b-closed 

set   with ⊆   ∩   such that   ⊆ Nint( ∩  ). 

Theorem 3.7 Assume that ( , )W  is an NTS. If   is a g-N-b-open set relative to  and   is a 

g-N-b-open set relative to  then  is a g-N-b-open set relative to  . 

Proof.  Since   is a g-N-b-open set relative to   so there exists an N-b-closed set K with          

  ⊆  ∩K such that   ⊆Nint( ∩K). Similarly, since   is a g-N-b-open set relative to   then 

there exists an N-b-closed set L with   ⊆   ∩L such that   ⊆ Nint( ∩L). 

We know that the intersection of two N-b-closed sets is again an N-b-closed set. So K∩L is an 

N-b-closed set. 

Now   ⊆   ∩K ⊆   ∩L∩K 

                           = ∩(L∩K) 

                           = ∩G , where G = K∩L is an N-b-closed set. 

Again   ⊆ Nint( ∩K) 

              ⊆ Nint( ∩G). 

Therefore there exists an N-b-closed set G with G  such that int ( )  N G  

Hence   is a g-N- b-open relative to  . 

4. Conclusion 

In this article, we introduce generalized neutrosophic b-open set, generalized neutrosophic 

b-interior, generalized neutrosophic b-closure and investigate some of their properties. By defining 

generalized neutrosophic b-open set, we prove some theorems on NTSs and few illustrative 

examples are provided. In the future, we hope that based on these notions in NTSs, many new 

investigations can be carried out. 

. 
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Abstract. In a wide spectrum of mathematical issues, the presence of a fixed point (FP) is equal to the presence 

of a appropriate map solution. Thus in several fields of math and science, the presence of a fixed point is im-

portant. Furthermore, an interesting field of mathematics has been the study of the existence and  uniqueness 

of common fixed point (CFP) and coincidence points of mappings fulfilling the contractive conditions. There-

fore, the existence of a FP is of significant importance in several fields of mathematics and science. Results of 

the FP, coincidence point (CP) contribute conditions under which maps have solutions. The aim of this paper 

is to explore these conditions (mappings) used to obtain the FP, CP and CFP of a neutrosophic soft set. We study 

some of these mappings (conditions) such as contraction map, L-lipschitz map, non-expansive map, compatible 

map, commuting map, weakly commuting map, increasing map, dominating map, dominated map of a neu-

trosophic soft set. Moreover we introduce some new points like a coincidence point, common fixed point and 

periodic point of neutrosophic soft mapping. We establish some basic results, particular examples on these 

mappings and points. In these results we show the link between FP and CP. Moreover we show the importance 

of mappings for obtaining the FP, CP and CFP of neutrosophic soft mapping. 

 

Keyword. Neutrosophic set, fuzzy neutrosophic soft mapping, fixed point, coincidence point. 

_________________________________________________________________________________ 
 

1. Introduction 

It is well known fact that fuzzy sets (FS) [1], complex fuzzy sets (CFS) [2], intuitionistic fuzzy sets (IFSs), 

the soft sets [3], fuzzy soft sets (FSS) and the fuzzy parameterized fuzzy soft sets (FPFS-sets) [4], [5] have been 

used to model the real life problems in various fields like in medical science, environments, economics, engi-

neering, quantum physics and psychology etc. 

In ,1965 L. A. Zadeh [1] introduced a FS, which is the generalization of a crisp set. A grade value of a crisp set 

is either 1 or 0 but a grade value of fuzzy set has all the values in closed interval  ].1,0[  A FS plays a central 

role in modeling of real world problems. There are a lot of applications of FS theory in various branches of 

science such as in engineering, economics, medical science, mathematical chemistry, image processing, non-

equilibrium thermodynamics etc. The concept for IFSs is provided in [3] which are generalizations of FS. An 

IFS P can be expressed as },:)(),(,,{ XP PP    where )(vP  represents the degree of mem-

bership, )(vP  represents the degree of non-membership of the element .X  FPFS-sets is the extension of 

a FS and soft set proposed in [4], [5] .  FPFS-sets maintain a proper degree of membership to both elements and 

parameters. 

The notion of a complex CFS, the extension of the fuszy set, was introduced by Ramot et, al., [2]. A CFS mem-

bership function has all the values in the unit disk. A complex fuzzy set is used for representing two-dimen-

sional phenomena and plays an important role in periodic phenomena. Complex fuzzy set is used in signals 

and systems to identify a reference signal out of large signals detected by a digital receiver. Moreover it is used 

for expressing complex fuzzy solar activity (solar maximum and solar minimum) through the average number 

http://cuiatd.edu/
mailto:saimaanis@cuiatd.edu.pk
mailto:abdulsamiawan@ciit.net.pk
mailto:smarand@unm.edu
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of sunspot. 

Smarandache [6], [7] has given the notion of a neutrosophic set (NS). A NS is the extension of a crisp set, FS and 

IFS. In NS, truth membership (TM), falsity membership (FM) and indeterminacy membership (IM) are inde-

pendent. In decision-making problems, the indeterminacy function is very significant. A NS and its extensions 

plays a vital role in many fields such as decision making problems, educational problems, image processing, 

medical diagnosis and conflict resolution. Moreover the field of neutrosophic probability, statistics, measures 

and logic have been developed in [8]. The generalization of fuzzy logic (FL) has been suggested by Smarandache 

in [8] and is termed as neutrosophic logic (NL). A proposition in NL is true ),(t  indeterminate )(i  and false 

)( f  are real values from the ranges .,, FIT  FIT ,,  and also the sum of fit ,,  are not restricted. In neutro-

sophic logic, there is indeterminacy term, which have no other logics, such as intuitionistic logic (IL), FL, bool-

ean logic (BL) etc. Neutrosophic probability (NP) [8] is the extension of imprecise probability and classical prob-

ability. In NP, the chance occurs by an event is %t  true, %i  indeterminate and %f  false where fit ,,  varies 

in the subsets IT ,  and F  respectively. Dynamically these subsets are functions based on parameters, but they 

are subsets on a static basis. In NP ,3sup_ n  while in classical probability .1sup_ n  The extension of 

classical statistics is neutrosophic statistics [8] which is the analysis of events described by NP. There are twenty 

seven new definitions derived from NS, neutrosophic statistics and a neutrosophic probability. Each of these 

are independent. The sets derived from NS are intuitionistic set, paradoxist set, paraconsistent set, nihilist set, 

faillibilist set, trivialist set, and dialetheist set. Intuitionistic probability and statistics, faillibilist probability and 

statistics,tautological probability and statistics, dialetheist probabilityand statistics, paraconsistent probability 

and statistics, nihilist probability and statistics and trivialist probability and statistics are derived from neuto-

sophic probability and statistics. N. A. Nabeeh [9] suggested a technique that would promote a personal selec-

tion process by integrating the neutrosophic analytical hierarchy process to show the ideal solution among 

distinct options with order preference tevhnique similar to an ideal solution (TOPSIS). M. A. Baset [10] intro-

duced a new type of neutrosophy technique called type 2 neutrosophic numbers. By combining type 2 neutro-

sophic number and TOPSIS, they suggested a novel method T2NN-TOPSIS which is very useful in group deci-

sion making. They researched a multi criteria group decision making technique of the analytical network pro-

cess method and Visekriterijusmska Optmzacija I Kommpromisno Resenje method under neutrosophic envi-

ronment that deals high order imprecision and incomplete information [11]. M. A. Baet suggested a new strat-

egy for estimating the smart medical device selecting process in a GDM in a vague decision environment. Neu-

trosophic with TOPSIS strategy is used in decision-making processes to deal with incomplete information, 

vagueness and uncertainty, taking into account the decision requirements in the information gathered by deci-

sion-makers [12]. They suggested the robust ranking method with NS to manage supply chain management 

(GSCM) performance and methods that have been widely employed to promote environmental efficiency and 

gain competitive benefits. The NS theory was used to manage imprecise understanding, linguistic imprecision, 

vague data and incomplete information [13]. Moreover M. A. Baset [14] et, al., used NS for assessment technique 

and decision-making to determine and evaluate the factors affecting supplier selection of supply chain man-

agement. T. Bera [15] et, al., defined a neutrosophic norm on a soft linear space known as neutrosophic soft 

linear space. They also modified the concept of neutrosophic soft (Ns) prime ideal over a ring. They presented 

the notion of Ns completely semi prime ideals, Ns completely prime ideals and Ns prime K-ideals [16]. Moreo-

ver T. Bera [17] introduced the concept of compactness and connectedness on Ns topological space along with 

their several characteristics. R. A. Cruz [18] et, al., discussed P-intersection, P- union, P-AND and P-OR of neu-

trosophic cubic sets and their related properties. N. Shah [19] et, al., studied neutrosophic soft graphs. They 

presented a link between neutorosophic soft sets and graphs. Moreover they also discussed the notion of strong 

neutosophic soft graphs. 

Smarandache [20] discussed the idea of a single valued neutrosophic set (SVNS). A SVNS defined as for any 
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space of points set 'U  with 𝑢 in ,'U  a SVNS W  in ,'U  the truth membership, false memebership and inde-

terminac membership functions denoetd as ,AT  AF  and AI  respectively with ,AT AF , ]1,0[AI  for each u  

in '.U  A SVNS W is expressed as ,,/)(),(),( XFITW WWWX    when X  is continous. For a dis-

crete case, a SVNS can be expressed as ,/)(),(),(
1

iiFiIiTW
n

i




  .Xi  Later, Maji [21] gave a new 

concept neutrosophic soft set (NSS). For any initial universal set W  and any parameters set E  with EA   

and )(WP  represents all the NS of W . The order set ),( A  is said to be the soft NS over W  where 

).(: WPA   Arockiarani et al., [22] introduced fuzzy neutrosophic soft topological space and presents 

main results of fuzzy neutrosophic soft topological space. Later on the researchers linked the above theories 

with different field of sciences. 

The purpose of this paper is to study the mappings such as contraction mapping, expansive mapping, non-

expansive mapping, commuting mapping, and weakly commuting mapping used to attain the FP, CP and CFP 

of a neutrosophic soft set. We present some basic resultsnd particular examples of fixed points, coincidence 

points, common fixed points in which contraction mapping, expansive mapping, non-expansive mapping, com-

muting mapping, and weakly commuting mapping are used. 

2. Preliminaries 

We will discuss here the basic notions of NS and neutrosophic soft sets. We will also discuss some new 

neutrosophic soft mappings such as contraction mapping, increasing mapping, dominated mapping, dominat-

ing mapping, K-lipschitz mapping, non-expansive mapping, commuting mapping, weakly compatible map-

ping. Moreover we will study periodic point, common fixed point, coinciding point of neutrosophic soft-map-

ping. Here )( 

EUSN


 is the collection of all neutrosophic soft points. 

Definition 2.1 [7] Let U  be any universal set, with generic element .U   A NS 


N  is defined by 

},,)(),(),(,{ UFITN
NNN

  



 where   1,0:,, UFIT  and  

                                                     .3)()()(0    

NNN
FIT  

)(),(  

NN
IT  and )(

N
F  denote TM, IM and FM functions respectively. In   ,11,1,0 

  where   is 

it's non-standard part and 1  is it's standard part. Likely ,00 
    is it's non-standard part and 0 is it's 

standard part. It is difficult to employ these values in real life applications. Hence we take all the values of 

neutrosophic set from subset ].1,0[   

Definition 2.2 [23] Let 𝐸 and 𝑊 be the set of parameters and initial universal set respectively. Let the power set 

of 𝑊  is denoted by 𝑃(𝑊).  Then a pair ),( A  is called soft set (SS) over  𝑊,  where EA  and 

).(: WPA    

Definition 2.3 [21] Let 𝐸 and 𝑊 be the set of parameters and initial universal set respectively. Suppose that the 

set of all neutrosophic soft set (NSS) is denoted as )(WSN


. Then for E , a pair ),(   is called a SSN


 

over W , where )(: WSN


  is a mapping. 

Definition 2.4 [24] Let 𝐸 and 𝑊 be the set of parameters and initial universal set respectively. Suppose that the 

set of all NSS is denoted as )(WSN


. A NSS 


N  over W  is a set which defined by a set valued function 

N


representing a mapping ).(: WSNE
N



   

N
  is known as approximate function of the ).(WSN



 The 
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neutrosophic soft set can be written as: 

                               }:}):)(),(),(,{,{( )()()( EeWFITeN eee
NNN

  


 

where )(),(),(  NNN FIT   represents the  TM, IM and FM functions of )(e
N
  respectively and has val-

ues in ].1,0[  Also  

                                                     .3)(),(),(0 )()()(    eee
NNN

FIT


 

Definition 2.5 [22] Let U   be any universal set. The fuzzy neutrosophic set (fn-s) N   is defined as 

                                                    },)(),(),(,{ XFITN NNN     

where )(),(),(  NNN FIT   represents the TM, IM and FM functions respectively and

].1,0[:,, NFIT  Also .3)()()(0    NNN FIT   

Definition 2.6 [22] Let 𝐸 and 𝑊 be the set of parameters and initial universal set respectively. Suppose that the 

set of all fuzzy neutrosophic soft set (FNS-set) is denoted as )( 

EUSFN


. Then for E , a pair ),(   is said 

to be a FNS-set over W , where )(: WSN


  is a mapping. 

Definition 2.7 [25] Let BA   ,  be two fuzzy neutrosophic soft set. An fuzzy neutrosophic soft (FNS) relation 

  from A  to B  is known as FNS mapping if the two conditions are fulfilled. 

i.   For every ,
1

AA  


 there exists ,

1
BB  


 where 



 
11

, BA  are FNS elements. 

ii.   For empty fuzzy FNS element in ,A  the )( A  is also empty FNS element. 

Definition 2.8 [25] Let ),( RWFNSA  
 be a FNS-set and AA  :  an FNS-mapping. A fuzzy neu-

trosophic element 


A  is called a fixed point of   if .)(  AA     

Criterion [26], [27] Let )(WSN


 be the set of all neutrosophic points over ).,( EW   Then the neutrosophic soft 

metric on based of neutrosophic points is defined as )()(: EE WSNWSNd


  having the following prop-

erties. 

).1M  0),(  



BAd  for all ).(, EBA WSN


 

   

).2M  .0),( 

BABAd     

).3M  ).,(),( 

ABBA dd     

).4M  ).,(),(),( 

BCCABA ddd     

Then )),(( dUSN E




 is said to be neutrosophic soft metric space. Here 


BA    implies  


BABA

IITT
 

 ,  and .
BA

FF
 

  

3. Mappings on Neutrosophic Soft Set 

Here, we introduced some new neutrosophic soft mappings such as contraction mapping, increasing 

mapping, dominated mapping, dominating mapping, K-lipschitz mapping, non-expansive mapping, commut-

ing mapping, weakly compatible mapping. Also we introduced periodic point, common fixed point, coinciding 

point of neutrosophic soft-mapping. Here  )( 

EUSN


 is the collection of all neutrosophic soft points. 
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Definition 3.1 Let    be a mapping from )( 

EUSN


 to ).( 

EUSN


 Then   is called neutrosophic soft contrac-

tion if ),())(),((   BABA kdd    for all )(, 

  EBA USNF


  and ).1,0[k  Where k  is called 

contraction factor. 

Example 3.1 Let },,{ 311 U  be any initial universal set and },{ 21  BAR . Define a NSS 


A  

and 


B  as below: 

})}7.0,8.0,1.0,,3.0,9.0,1.0,,6.0,7.0,3.0,{,(

}),4.0,2.0,1,,4.0,7.0,6.0,,3.0,1.0,8.0,{,{(

3212

3211



  A
 

and 

})}.7.0,8.0,1.0,,9.0,3.0,2.0,,6.0,3.0,1.0,{,(

}}),4.0,2.0,1,,6.0,8.0,1,,1.0,7.0,9.0,{,{(

3212

3211



  B
 

The distance defined [27] as 

})|)()(||)()(||)()({(|min))(),((
1

212121
21 p

BBBBBBi

p
ii

p
ii

p
iiAA TTIITTd  





  

).1( p  

In this example, we take ,1p  now 

).,(2.0
)8.0)(2.0(

16.0
3.05.08.0

|9.06.0||3.08.0||2.01|

|)()(|

|)()(||)()(|

|})()(|

|)()(||)()({|min))((),((

2

1

1

1

21

2121

21

2121
2

1

1

1

22

2222



























































AA

ii

iiiiAA

d

FF

IITT

FF

IITTd

BB

BBBB

BB

BBBBi

 

 

Here ,2.0k  so   is a contraction. 

Definition 3.2 Let    be a mapping from )( EWSN


 to ).( EWSNF


 Then   is called neutrosophic soft non-

expansive mapping if ),())(),((   BABA kdd    for all )(, EBA WSN


 

  and .1k   

Example 3.2 Let },,{ 321 W  and },{ 21  BAR . Define a neutrosophic soft sets 


A  and 


B  

as follows: 

})}7.0,6.0,4.0,,3.0,9.0,1.0,,6.0,7.0,3.0,{,(

}),6.0,4.0,2.0,,4.0,7.0,6.0,,2.0,1.0,1,{,{(

3212

3211



  A
 

 

and 
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})}.7.0,6.0,4.0,,9.0,3.0,2.0,,6.0,3.0,1.0,{,(

}}),6.0,4.0,2.0,,6.0,5.0,1,,2.0,5.0,1,{,{(

3212

3211



  B
 

 

).,(1
)5.0)(1(

5.0
1.02.02.0

|7.06.0||6.04.0||4.02.0|

|)()(|

|)()(||)()(|

|})()(|

|)()(||)()({|min))((),((

2

1

1

1

21

2121

21

2121
2

1

1

1

33

3333


























































AA

ii

iiiixAA

d

FF

IITT

FF

IITTd

BA

BABB

BB

BBBBi

 

 

Here ,1k  so   is non-expansive. 

Definition 3.3 Let   be a mapping from )( EWSN


 to ).( EWSN


 Then   is called neutrosophic soft k-Lip-

schitz mapping if ),())(),((   BABA kdd    for all )(, EBA WSNF


 

   and .0k   

Example 3.3 Let },,{ 321 W  and },{ 21  BAR . Define a NSS 


A   and 


B  as below: 

})}7.0,6.0,4.0,,3.0,9.0,1.0,,4.0,6.0,5.0,{,(

}),6.0,4.0,2.0,,4.0,7.0,6.0,,3.0,4.0,3.0,{,{(

3212

3211



  A
 

 

and 

})}.9.0,3.0,1,,9.0,2.0,3.0,,5.0,7.0,5.0,{,(

}}),6.0,4.0,2.0,,3.0,6.0,1,,3.0,4.0,1,{,{(

3212

3211



  B
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).,(2
)5.0)(2(

1
2.03.05.0

|5.03.0||7.04.0||5.01|

|)()(|

|)()(||)()(|

|})()(|

|)()(||)()({|min))((),((

2

1

1

1

21

2121

21

2121
2

1

1

1

11

1111

?


























































AA

ii

iiiiAA

d

FF

IITT

FF

IITTd

BA

BABB

BB

BBBBi

 

 

Here ,2k  so   is k-lipschitz. 

Note: Every neutrosophic soft contraction mapping is neutrosophic soft K-lipschitz mapping but its converse 

does not hold. 

Definition 3.4 Let  be a mapping from )( EWSN


 to ).( EWSN


 Then   is said to be neutrosophic soft kanan 

contraction if ))](,())(,([))(),((   BBAABA ddkd   for all )(, EBA WSN


 

  and 

).,0[ 2
1k  Where k  is called contraction factor. 

Definition 3.5 Let   and   be two mappings from )( 

EUSN


 to )( 

EUSN


. Then   and   are called neu-

trosophic soft commuting mapping if ))(())((   AA    for all  ).( 

  EA USN


   

 Definition 3.6 Let   and   be two mappings from )( 

EUSN


 to )( 

EUSN


. Then   and   are called neu-

trosophic soft weakly commuting mapping if ))(),(()))(()),(((   AAAA dd    for all 

).( 

  EA USN


   

Definition 3.7 Let   and   be two mappings from )( 

EUSN


 to )( 

EUSN


. If for 
  

0
)( AAn

 and 

  
0

)( AAn
 as n  and ).(,

0

  EAA USN
n




 Then it is called neutrosophic soft compatible map-

ping if .0)))(()),(((lim  


  AAn
d   

Definition 3.8 Let  , )()(:   EE USNUSN


  be two mappings. If there is )( 

  EA USN


  such that 

,)()(   AAA    then )( 

  EA USN


  is called common fixed point neutrosophic soft mappings. 

Definition 3.9 If 


A  is a fixed point of ),()(:   EE USNUSN


  then 


A  is also a fixed point 
k that is 

 AA
k

  )(  for all ).( 

  EA USN


  So 


A  is called periodic point of neutrosophic soft mapping   and 

k  is called period of .   

Remark Every fixed point of neutrosophic soft mapping is a periodic point but every periodic point of neutro-

sophic soft mapping is not a fixed point. 

Definition 3.9 Let  ,   be two mappings from )( 

EUSN


 to ).( 

EUSN


 If ,)()(   BAA    for all 



Neutrosophic Sets and Systems, Vol. 35, 2020  

 

 ____________________________________________________________________________________________________________ 
Madad Khan, Muhammad Zeeshan, Saima Anis, Abdul Sami Awan and Florentin Smarandache, Neutrosophic Soft Fixed Points 

538 

).(, 

  EBA USNF


  Then 


A  is called coincidence point of   and   and 


B  is called point of coinci-

dence for   and .   

Definition 3.10 Let )()(:   EE USNUSN


  be a mapping. Then   is said to be neutrosophic soft increas-

ing map if for any 


BA    implies )()(   BA    for all ).(, 

  EBA USN


   

Definition 3.11 Let )()(:   EE USNUSN


  be a mapping. Then   is said to be neutrosophic soft domi-

nated map if 
 AA   )(  for all ).( 

  EA USN


   

Definition 3.12 Let )()(:   EE USNUSN


  be a mapping. Then   is said to be neutrosophic soft domi-

nating map if )(   AA     for all ).( 

  EA USN


   

4. Main Results 

Banach Contraction Theorem 

Proposition 1 Let )( 

EUSN


 be a non-empty set of neutrosophic points and )),(( dUSN E




 be a complete neu-

trosophic soft metric space. Suppose   is a mapping from )( 

EUSN


 to )( 

EUSN


 be contraction. Then fixed 

point of   exists and unique. 

Proof Let )(
0

  EA USN



 be arbitrary. Define )(

01

    AA  and by continuing we have a sequence in the 

form ).(
1

  



nn AA  Now 

).,(
.
.
.

),(

))(),((

),(

))(),((

),(

))(),((),(

01

32

32

21

21

1

11

3

2

2








































































AA
n

AA

AA

AA

AA

AA

AAAA

dk

dk

dk

dk

kd

kd

dd

nn

nn

nn

nn

nn

nnnn

 

Now for ,, 0nnm   we have 
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. as 0),(

),(
1

),(]...1[

),(...),(),(

),(...),(),(),(

1

01

01

010101

12111

12

11










































nd

d
k

k

dkkkk

dkdkdk

dddd

nn

mmnnnnnn

AA

AA

n

AA
nmn

AA
m

AA
n

AA
n

AAAAAAAA











 

So 



nA  is a cauchy sequence in ),),(( dUSN E




 but )),(( dUSN E




 is complete, so there exists  

)( 

  EA USN


  such that 0),(  





AAn
d  as .n  Now 

).,(

))(),(())(,(
1




























 

AA

AAAA

n

nn

kd

dd
 

On taking limit as ,n  we get 

.0)),((  







 AAd  

But 

.0)),((  







 AAd  

So 

.)(

0)),((




























AA

AAd
 

So  




A  is the FP of .   

Now we have to show that 




A  is unique. Suppose there exists another FP )( 

  EB USN


  such that 

.)( 





   BB  Now 

.0),()1(

),(

))(),((),(









































 

BA

BA

BABA

dk
kd
dd

 

Here 0)1(  k , so 

.0),( ??  



BAd  

But 

.0),(

0),(

























BA

BA

d
d

 

Hence ,


  

BA  so the fixed point is unique. 

Proposition 2 Let )),(( dUSN E




 be a complete neutrosophic soft metric space. Suppose   be a mapping from 

)( 

EUSNF


to )( 

EUSNF


 satisfies the contraction ),())(),((
1111

    BAB
m

A
m kdd  for all  

),(,
11

  EBA USN



 where )1,0[k  and m  is any natural number. Then   has a FP. 
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 Proof It follows from banach contraction theorem that 
m  has unique a FP that is  .)(

11

   AA
m  Now 

).(

))((

)())((

1

1

11

1























 

A

A
m

A
m

A
m

 

By the uniqueness of FP, we have .)(
11

   AA   

Proposition 3 Let )),(( dUSN E




 be a complete neutrosophic soft metric space. Suppose  ,  satisfy 

)](,())(,([))(,())(,())(),((
1111111111

    ABBABBAABA ddddd  for all  

)(,
11

  EBA USNF



 with  ,,  are non-negative and .1   Then   and   have a unique FP. 

 Proof Let )(
1

  EA USN



 be a fixed point of   that is .)(

11

   AA  We need to show that  .)(
11

   AA  

Now 

))(,()(,(

)],())(,([))(,(),(

))](,())(,([))(,())(,(

))(),(())(,(

1111

11111111

11111111

1111

































AAAA

AAAAAAAA

AAAAAAAA

AAAA

dd

dddd

dddd

dd

0))(,()1(
11

 

  AAd  

Since  ,0)1(     so  

.0))(,(
11

 

  AAd  

But 

0))(,(
11

 

  AAd  

hence 

.0))(,(
11

 

  AAd  

Thus .)(
11

   AA   

 Proposition 4 Let )( 

EUSN


 be a non-empty set of neutrosophic points and )),(( dUSN E




 be a complete neu-

trosophic soft metric space. Suppose   is a mapping from )( 

EUSN


 to )( 

EUSN


 be kanan contraction. Then 

fixed point of   exists and unique. 

 Proof Let )(
0

  EA USN



 be arbitrary. Define )(

01

    AA  and by continuing we have a sequence in the 

form ).(
1

  



nn AA  Now 
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),(

),(
1

),(

),(),()1(

),(),(

)],(),([

))(,())(,([

))(),((),(

1

11

11

11

11

11

11











































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neutrosophic soft fixed point can be used. In addition, dynamic programming may employ the notion of pres-

ence and uniqueness of the common solution of neutrosophic soft set. 
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Abstract. The multiple criteria decision making (MCDM) problems indicate the alternatives which have more

or less resemblance to each other. An important mathematical tool used by decision-makers (DMs) to quan-

tify these resemblances is the similarity measure (SM). SM is a powerful tool that measures the resemblance

more accurately. Mostly, fuzzy sets (FSs) and its extensions handle the vague and uncertain information by

considering the membership, non-membership, and indeterminacy degrees whose sum always lies in the interval

[0, 1]. However, single-valued neutrosophic sets (SVNSs) and interval-valued neutrosophic sets (IVNSs) have

information whose sum is bounded in [0, 3]. In the present work, we extended the SM presented by William and

Steel for SVNSs and IVNSs by using the concept of Euclidean distance. The weights of criteria indicate much

influence for the selection of the best alternative, sometimes DMs feel hesitation to allocate the weights to the

criteria. We applied the linear programming (LP) model to evaluate the weights of the criteria to reduce the

hesitancy. Later on, SM is utilized to establish an MCDM model for the selection of the best option. Moreover,

the Spearman’s rank correlation coefficient is implemented to analyze the ranking order. Finally, a medical

diagnosis example is illustrated for the feasibility and effectiveness of the proposed model.

Keywords: picture fuzzy sets; fuzzy sets; similarity measure; neutrosophic sets; linear programming model.

—————————————————————————————————————————-

1. Introduction

Most of the information provided to the experts or decision makers (DMs) are ambiguous

and uncertain. DMs handle such information precisely by using the fuzzy sets (FSs) theory

presented by Zadeh [31] in 1965. FSs contain a single value in its specification, called a mem-

bership degree (MDg) which is always bounded in the closed interval [0, 1]. FSs have been

broadly used in different fields, for example, medical diagnosis, image processing, etc. [12,17].
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In various ambiguous decision making problems, the MDg is assumed not exactly as a numer-

ical value but as an interval. Therefore, Zadeh [32] introduced the interval-valued fuzzy sets

(IVFSs), an augmentation of FSs. Though, the FSs and IVFSs only have the MDg, and they

cannot designate the non membership degree (NMDg) of the element belonging to the set.

Consider that in a competition of university’s postgraduate students, a board of seven experts

evaluate the efficiency of a student. According to three experts a student can be accepted

for admission, according to two experts he or she is rejected and the remaining two experts

remained impartial. In such circumstances, FSs and IVFSs could not handle the vagueness

and uncertainty precisely. Atanassov [6] further extended the notion of FSs into intuitionistic

fuzzy sets (IFSs) to cope such problems which comprise both MDg and NMDg in its structure

so that, 0 ≤MDg +NMDg ≤ 1. Most rapidly, IFSs become an important device to deal with

the imprecise and ambiguous information than the FSs and IVFSs.

In spite of the fact that, IFSs have been successfully implemented in distinct fields, however,

IFSs were not covering the human’s attitude perfectly. Casting of vote is an excellent example

of such type of attitude, we may divide the voters into four groups: vote for, vote against,

neutral and refusal of voting. When a person refuses to vote, we can say that the person is

not anxious about the general election. Cuong [11] focused such types of human’s attitude by

presenting the idea of picture fuzzy sets PcFSs, the generalized form of IFSs. PcFSs have

three components in its formation called, MDg, NMDg and of degree refusal (DgR) such that,

0 ≤MDg +NMDg +DgR ≤ 1. But PcFSs also have some limitations to express the decision

information. For instance, three groups of decision makers (DMs) assess the advantages of

a new business. First group predicts that the business will be profitable is 0.7, according to

second group the possibility of loss is 0.2 and the third group is not sure whether the business

will be profitable is 0.4. In this scenario, PcFSs cannot handle the information because,

0.7 + 0.2 + 0.3 = 1.2 > 1.

Therefore, to handle such situations Wang et al. [22] introduced an amazing concept of single-

valued neutrosophic sets (SVNSs) that consists of three degrees, the truth-membership (Tn(x))

degree, indeterminacy-membership (In(x)) degree, and falsity membership (Fn(x)) degree in

the closed interval [0, 1] so that it satisfy the condition, 0 ≤ Tn(x) + In(x) + Fn(x) ≤ 3. Later

on, Wang [23] described these three degrees in the form of an interval, called an interval-

valued neutrosophic sets (IVNSs). Nowadays, NSs have become the center of the eye of the

researcher due to its innovation. Many researchers are trying to print it for example, Abdel-

Basset et.al [1–4] used the score and accuracy functions of trapezoidal neutrosophic numbers to

minimize the cost of projects under uncertain environmental conditions, in order to tackle the

ambiguity and uncertainty present in the data for MCDM problems, utilized the plithogenic
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set, a generalization of NSs, a novel hybrid neutrosophic MCDM model is presented on the

basis of TOPSIS by using bipolar neutrosophic numbers and resolve the supply chain issues

with the help of best-worst method (evaluating weights) and plithogenic set, respectively.

SM is one of the vital and powerful tools that measures the level of resemblance among

the objects. In order to show the preference strength among the alternatives, the similarity

measures have achieved more attention from the DMs since the previous few decades. Various

DMs have presented a number of similarity measures for MCDM problems to select the most

favorable alternative from the various options having identical features under the certain cri-

teria. For example, Beg and Ashraf discussed the various characteristic of similarity measures

under the framework of FSs [7]. Ye [28–30] introduced the cosine similarity measures (vector

similarity) and implemented it to pattern recognition and medical diagnosis under the environ-

ments of simplified neutrosophic sets, interval neutrosophic sets and IFSs. Intarapaiboon [14]

applied two new similarity measures to pattern recognition in IFSs situations. Moreover, Song

and Hu [20] established two measures of similarity between hesitant fuzzy linguistic term sets

and used it for MCDM problems. Recently, Wei and Gao [26] developed the generalized Dice

similarity measures for PcFSs and implemented for pattern recognition. Consequently, Wang

et al. [24] presented the generalized Dice similarity measures for Pythagorean fuzzy sets and

used it in multiple attribute group decision making.

The linear programming (LP) model introduced by Vanderbei [21], permits some target func-

tion to be minimized or maximized inside the system of given situational limitations. LP is a

computational technique that enables DMs to solve the problems which they face in decision-

making model. It encourages the DMs to deal with constrained ideal conditions which they

need to make the best of their resources. Various experts utilized LP model in MCDM for

different extensions of FSs [5, 10, 13, 18, 25]. Recently, Sindhu et al. [19] implemented the LP

methodology with extended TOPSIS (technique for order of preference by similarity to ideal

solution) for picture fuzzy sets. The weights of criteria appear to specify that the DMs identify

the significance of people views and its influence on attaining the objective. Sometimes DMs

hesitate or confused to allocate the weights to criteria. Thereby, we applied TOPSIS to get the

objective function and then find out the weights of criteria under some constraints by using

LP model. The novelty of this article is concerned about proposing the SM to overcome the

shortcoming present in the existing technique. The following are the major contributions of

this study:

• William and Steel SM is extended on the basis of novel distance measure.

• Evaluate the objective function by using TOPSIS.
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• Weights of criteria are calculated with the help of LP model.

• An MCDM model is developed on the basis of SM and implemented it for medical

diagnosis under the framework of SVNSs and IVNSs.

• Spearman’s rank-correlation coefficient and the critical value are applied to strength

the proposed MCDM model.

Rest of the article is organized as: Section 2 encloses some preliminaries regarding SVNSs

and IVNSs. Various pre-existing similarity measures of SVNSs, IVNSs and their shortcoming

are elaborated in Section 3. The modified similarity measures for SVNSs and IVNSs are

described in Section 4. An MCDM model is proposed in Section 5 and the developed model

is then applied on an example of medical diagnosis in Section 6 to elaborate the validity and

effectiveness. A comprehensive comparative analysis based on Spearman’s rank correlation

coefficient is penned in Section 7. Conclusions and future work are highlighted in Section 8.

2. Preliminaries

A brief introduction of the notions FSs, PcFSs, SV NS and IV NS and the LP model is

presented in this section.

Definition 2.1. [31] Let X = {x1, x2, ..., xn} be a discourse set. A fuzzy set (FS) A on X is

represented in terms of a functions m : X → [0, 1] such that

A = {〈xi,mA(xi)〉 |xi ∈ X}.

Definition 2.2. [11] Let X = {x1, x2, ..., xn} be a fixed set. A picture fuzzy set Pc on X is

defined as:

Pc = {〈xi, αPc(xi), γPc(xi), βPc(xi)〉 |xi ∈ X, i = 1, 2, ..., n},

where αPc(xi), βPc(xi), γPc(xi) ∈ [0, 1] are called the acceptance membership, neutral and

rejection membership degrees of xi ∈ X to the set Pc, respectively and αPc(xi), γPc(xi) and

βPc(xi) fulfil the condition: 0 ≤ αPc(xi) + γPc(xi) + βPc(xi) ≤ 1, for all xi ∈ X. Also

ζPc(xi) = 1−αPc(xi)−γPc(xi)−βPc(xi), then ζPc(xi) is said to be a degree of refusal membership

of xi ∈ X in Pc. For our convenience, we can write pi = (αPc(xi), βPc(xi), γPc(xi)) as the

picture fuzzy numbers (PcFNs) over a set Pc, where i = 1, 2, ..., n.

Definition 2.3. [22] Let X = {x1, x2, ..., xn} be a fixed set. A SVNS Ns on X is defined as:

Ns = {〈xi, αNs(xi), γNs(xi), βNs(xi)〉 |xi ∈ X, i = 1, 2, ..., n},

where αNs(xi), γNs(xi), βNs(xi) ∈ [0, 1] are called the truth-membership, indeterminacy and

falsity- membership degrees of xi ∈ X to the set Ns, respectively and αNs(xi), γNs(xi) and
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βNs(xi) fulfil the condition:

for all xi ∈ X then, 0 ≤ αNs(xi) + γNs(xi) + βNs(xi) ≤ 3. Let N1
s and N2

s be two SVNS, then

following conditions hold:

(1) N1
s ⊆ N2

s iff αN1
s
(xi) ≤ αN2

s
(xi), βN1

s
(xi) ≥ βN2

s
(xi) and γN1

s
(xi) ≥ γN2

s
(xi),

(2) N1
s = N2

s iff N1
s ⊆ N2

s and N2
s ⊆ N1

s .

Definition 2.4. [23] Let X = {x1, x2, ..., xn} be a fixed set. An ISVNS Ñs on X is defined

as:

Ñs = {
〈
xi, αÑs

(xi), γÑs
(xi), βÑs

(xi)
〉
|xi ∈ X, i = 1, 2, ..., n},

where αÑs
(xi) = [αl

Ñs
(xi), α

u
Ñs

(xi)] ⊆ [0, 1], γÑs
(xi) = [γl

Ñs
(xi), γ

u
Ñs

(xi)] ⊆ [0, 1], βÑs
(xi) =

[βl
Ñs

(xi), β
u
Ñs

(xi)] ⊆ [0, 1] are called the truth-membership, indeterminacy and falsity- mem-

bership degrees of xi ∈ X to the set Ñs, respectively and satisfy the condition:

for all xi ∈ X then, 0 ≤ αu
Ñs

(xi) + γu
Ñs

(xi) + βu
Ñs

(xi) ≤ 3. Let Ñ1
s and Ñ2

s be two SVNS, then

following conditions hold:

(1) Ñ1
s ⊆ Ñ2

s iff αlN1
s
(xi) ≤ αlN2

s
(xi), α

u
N1

s
(xi) ≤ αuN2

s
(xi), β

l
N1

s
(xi) ≥ βlN2

s
(xi), β

u
N1

s
(xi) ≥

βuN2
s
(xi), γ

l
N1

s
(xi) ≥ γlN2

s
(xi) and γuN1

s
(xi) ≥ γuN2

s
(xi),

(2) Ñ1
s = Ñ2

s iff Ñ1
s ⊆ Ñ2

s and Ñ2
s ⊆ Ñ1

s .

Definition 2.5. [21]. The linear programming model is constructed as:

Maximize: Z = c1t1 + c2t2 + c3t3 + ...+ cntn

Subject to: a11t1 + a12t2 + a13t3 + ...+ a1ntn ≤ b1
a21t1 + a22t2 + a23t3 + ...+ a2ntn ≤ b2
...

am1t1 + am2t2 + am3t3 + ...+ amntn ≤ bm
t1, t2, ..., tn ≥ 0,

where m and n denotes the cardinalities of the constraints and decision variables t1, t2, ..., tn,

respectively. A solution (t1, t2, ..., tn) is called feasible point if it fulfils all of the restrictions.

LP model is used to find the optimal solution of the decision variables to maximize or minimize

the linear function Z.

3. Some existing similarity measures for SVNSs and IVNSs

Similarity measure is a most widely used tool to evaluate the relationship between two sets.

Two sets are said to be perfectly similar if similarity measure between them is exactly 1. The

following are the compulsory axioms for the sets (SVNSs or IVNSs) to be perfectly similar:
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Definition 3.1. Let X = {x1, x2, ..., xn} be a universal set and N1
s = {< xi, αN1

s
(xi), γN1

s
(xi),

βN1
s
(xi)} and N2

s = {< xi, αN1
s
(xi), γN2

s
(xi), βN2

s
(xi) >} be two SVNS, where, i = 1, 2, ..., n.

Then,

(1) 0 ≤ S(N1
s , N

2
s ) ≤ 1,

(2) S(N1
s , N

2
s ) = S(N2

s , N
1
s ),

(3) S(N1
s , N

2
s ) = 1 if and only if N1

s = N2
s .

A cosine similarity measure S(N1
s , N

2
s ) of SVNS presented by Ye [29] is given as:

S(N1
s , N

2
s ) =

(α
N1
s
(xi))(αN2

s
(xi))+(γ

N1
s
(xi))(γN2

s
(xi))+(β

N1
s
(xi))(βN2

s
(xi))

[
√

(α
N1
s
(xi))2+(γ

N1
s
(xi))2+(β

N1
s
(xi))2][

√
(α

N2
s
(xi))2+(γ

N2
s
(xi))2+(β

N2
s
(xi))2]

.

Suppose that N1
s = (x, 0.4, 0.2, 0.6) and N2

s = (x, 0.2, 0.1, 0.3) are two SVNSs, the Definition

2.3 shows that N1
s 6= N2

s . However, by using cosine similarity measure presented by Ye [29],

we see that, S(N1
s , N

2
s ) = 1, show the contradiction of the property 3 of Definition 3.1 which

describe that S(N1
s , N

2
s ) = 1 if and only if N1

s = N2
s . Similarly, if we take, αN1

s
(xi) =

(k + 1)αN2
s
(xi), γN1

s
(xi) = (k + 1)γN2

s
(xi) and βN1

s
(xi) = (k + 1)βN2

s (xi), where k ≥ 1, then

according to cosine similarity measure, its value is:

S(N1
s , N

2
s ) =

(α
N1
s
(xi))(αN2

s
(xi))+(γ

N1
s
(xi))(γN2

s
(xi))+(β

N1
s
(xi))(βN2

s
(xi))

[
√

(α
N1
s
(xi))2+(γ

N1
s
(xi))2+(β

N1
s
(xi))2][

√
(α

N2
s
(xi))2+(γ

N2
s
(xi))2+(β

N2
s
(xi))2]

,

S(N1
s , N

2
s ) =

((k+1)α
N2
s
(xi))(αN2

s
(xi))+((k+1)γ

N2
s
(xi))(γN2

s
(xi))+((k+1)β

N2
s
(xi))(βN2

s
(xi))

[
√

((k+1)α
N2
s
(xi))2+((k+1)γ

N2
s
(xi))2+((k+1)β

N2
s
(xi))2][

√
(α

N2
s
(xi))2+(γ

N2
s
(xi))2+(β

N2
s
(xi))2]

,

S(N1
s , N

2
s ) =

(k+1)(α
N2
s
(xi))

2+(γ
N2
s
(xi))

2+(β
N2
s
(xi))

2)

(k+1)((α
N2
s
(xi))2+(γ

N2
s
(xi))2+(β

N2
s
(xi))2)

=1, which again opposes the property 3 of

Definition 3.1.

Further, if N1
s = (0, 0, 0) and N2

s = (0, 0, 0) are two SVNS then according to Jaccrd and Dice

similarity measures presented in [29] become undefined or meaningless.

Same as, if Ñ1
s = (y, [0.3, 0.4], [0.2, 0.3], [0.4, 0.5]) and

Ñ1
s = (y, [0.6, 0.8], [0.4, 0.6], [0.8, 1]) are two IVNSs, then according to Definition 2.4, Ñ1

s 6= Ñ2
s ,

but the similarity measure presented by Ye [30] gives that, S(Ñ1
s , Ñ

2
s ) = 1, that is, Ñ1

s = Ñ2
s

which again presents a contradiction with property 3 of Definition 3.1. Also for two IVNSs,

Ñ1
s = [0, 0] and Ñ2

s = [0, 0], we get the meaningless or undefined results by using Equation 9

presented in [15]. So the similarity measures presented in [15,29,30] have a deficiency.

Hence, from the above discussion, it is clear that the existing similarity measures have some

drawbacks and cannot be able to select the best alternative. Consequently, there is a need to

improve the similarity measure which satisfy the axiom of Definition 3.1.

4. Proposed similarity measures for SVNSs and IVNSs

In order to overcome the deficiencies present in the above discussed similarity measures, we

extend a similarity measure presented by William and Steel [27] for the SVNSs (IVNSs) based

on the novel distance measure as:
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D(N1
s , N

2
s ) =

1

3n

n∑
i=1

( [∣∣αN1
s
(xi)− αN2

s
(xi)

∣∣+
∣∣γN1

s
(xi)− γN2

s
(xi)

∣∣+
∣∣βN1

s
(xi)− βN2

s
(xi)

∣∣]+

max
[∣∣αN1

s
(xi)− αN2

s
(xi)

∣∣ , ∣∣γN1
s
(xi)− γN2

s
(xi)

∣∣ , ∣∣βN1
s
(xi)− βN2

s
(xi)

∣∣]
)
,

(1)

Sim(N1
s , N

2
s ) = e−

1
n
D(N1

s ,N
2
s ), (2)

where n is the number of alternatives and 1 ≤ i ≤ n.

Similarly for the IVNSs the distance and similarity measures are:

D̃(Ñ1
s , Ñ

2
s ) =

1

3n

n∑
i=1



[|αl
Ñ1

s
(xi)− αlÑ2

s
(xi)|+ |αuÑ1

s
(xi)− αuÑ2

s
(xi)|+

|γl
Ñ1

s
(xi)− γlÑ2

s
(xi)|+ |γuÑ1

s
(xi)− γuÑ2

s
(xi)|+

|βl
Ñ1

s
(xi)− βlÑ2

s
(xi)|+ |βuÑ1

s
(xi)− βuÑ2

s
(xi)|]+

max[|αl
Ñ1

s
(xi)− αlÑ2

s
(xi)|, |αuÑ1

s
(xi)− αuÑ2

s
(xi)|,

|γl
Ñ1

s
(xi)− γlÑ2

s
(xi)|, |γuÑ1

s
(xi)− γuÑ2

s
(xi)|

, |βl
Ñ1

s
(xi)− βlÑ2

s
(xi)|, |βuÑ1

s
(xi)− βuÑ2

s
(xi)|]


, (3)

S̃im(Ñ1
s , Ñ

2
s ) = e−

1
n
D̃(Ñ1

s ,Ñ
2
s ). (4)

Theorem 4.1. The SM Sim(N1
s , N

2
s ) defined in Equation (2) amongst N1

s =

{
〈
xi, αN1

s
(xi), γN1

s
(xi), βN1

s
(xi)

〉
} and N2

s = {
〈
xi, αN2

s
(xi), γN2

s
(xi), βN2

s
(xi)

〉
} satisfies the

given properties:

(1) Sim(N1
s , N

2
s ) = 1 if and only if N1

s = N2
s ,

(2) Sim(N1
s , N

2
s ) = Sim(N2

s , N
1
s ),

(3) 0 ≤ Sim(N1
s , N

2
s ) ≤ 1.

Proof

(1) Suppose that, N1
s = N2

s that is, αN1
s
(xi) = αN2

s
(xi), γN1

s
(xi) = γN2

s
(xi) and

βN1
s
(xi) = βN2

s
(xi), then by using Equation (2), we have

Sim(N1
s , N

2
s ) = e0 = 1.

(2) Consider Sim(N1
s , N

2
s ) = e−

1
n
D(N1

s ,N
2
s )

=

e

− 1
3n2

∑n
i=1


[∣∣αN1

s
(xi)− αN2

s
(xi)

∣∣+
∣∣γN1

s
(xi)− γN2

s
(xi)

∣∣+
∣∣βN1

s
(xi)− βN2

s
(xi)

∣∣]+

max
[∣∣αN1

s
(xi)− αN2

s
(xi)

∣∣ , ∣∣γN1
s
(xi)− γN2

s
(xi)

∣∣ , ∣∣βN1
s
(xi)− βN2

s
(xi)

∣∣]


,

=

e

− 1
3n2

∑n
i=1


[∣∣αN2

s
(xi)− αN1

s
(xi)

∣∣+
∣∣γN2

s
(xi)− γN1

s
(xi)

∣∣+
∣∣βN2

s
(xi)− βN1

s
(xi)

∣∣]+

max
[∣∣αN2

s
(xi)− αN1

s
(xi)

∣∣ , ∣∣γN2
s
(xi)− γN1

s
(xi)

∣∣ , ∣∣βN2
s
(xi)− βN1

s
(xi)

∣∣]


,

= e−
1
n
D(N2

s ,N
1
s ) = Sim(N2

s , N
1
s ),
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(3) From Equations (1) and (2), it is obvious that, Sim(N1
s , N

2
s ) ≤ 1 and it become zero

i.e., Sim(N1
s , N

2
s ) = 0 only when the distance between N1

s and N2
s is very large.

Example 4.2. Let N1
s = (x, 0.4, 0.2, 0.6) and N2

s = (x, 0.2, 0.1, 0.3) be two SVNSs, then by

using Equations (1) and (2), the similarity measure is, Sim(N1
s , N

2
s ) = 0.7408.

Example 4.3. Let Ñ1
s = (x, [0.3, 0.4], [0.2, 0.3], [0.4, 0.5]) and Ñ2

s = (x, [0.6, 0.8], [0.4, 0.6],

[0.8, 1]) be two IVNSs, then by using Equations (3) and (4), the similarity measure is, Sim(Ñ1
s ,

Ñ2
s ) = 0.3679.

Theorem 4.4. The SM S̃im(Ñ1
s , Ñ

2
s ) defined in Equation (4) amongst Ñ1

s =

{
〈
xi, αÑ1

s
(xi), γÑ1

s
(xi), βÑ1

s
(xi)

〉
} and Ñ2

s = {
〈
xi, αÑ2

s
(xi), γÑ2

s
(xi), βÑ2

s
(xi)

〉
} satisfies the

given properties:

(1) S̃im(Ñ1
s , Ñ

2
s ) = 1 if and only if Ñ1

s = Ñ2
s ,

(2) S̃im(Ñ1
s , Ñ

2
s ) = S̃im(Ñ2

s , Ñ
1
s ),

(3) 0 ≤ S̃im(Ñ1
s , Ñ

2
s ) ≤ 1.

Proof The proof of this Theorem is obvious.

4.1. Proposed weighted similarity measures (WSM) for SVNSs and IVNSs

Since the weights of the criteria have a great impact in making decision process therefore we

can further extend the proposed similarity measures into the WSM. Let w = (w1, w2, ..., wm)T

be a weight vector of the m criteria with
∑m

j=1wj = 1. In order to get WSM Siwm (N1
s , N

2
s ) for

SVNSs, we first define the weighted distance as:

Dw(N1
s , N

2
s ) =

n∑
i=1

m∑
j=1

wj

( [∣∣αN1
s
(xi)− αN2

s
(xi)

∣∣+
∣∣γN1

s
(xi)− γN2

s
(xi)

∣∣+
∣∣βN1

s
(xi)− βN2

s
(xi)

∣∣]+

max
[∣∣αN1

s
(xi)− αN2

s
(xi)

∣∣ , ∣∣γN1
s
(xi)− γN2

s
(xi)

∣∣ , ∣∣βN1
s
(xi)− βN2

s
(xi)

∣∣]
)
,

(5)

and

Siwm (N1
s , N

2
s ) = e−

1
n
Dw(N1

s ,N
2
s ). (6)

In the similar way, a WSM S̃iwm (Ñ1
s , Ñ

2
s ) on the basis of weighted distance D̃w(Ñ1

s , Ñ
2
s ) for

IVNSs is obtained as:

D̃w(Ñ1
s , Ñ

2
s ) =

n∑
i=1

m∑
j=1

wj



[|αl
Ñ1

s
(xi)− αlÑ2

s
(xi)|+ |αuÑ1

s
(xi)− αuÑ2

s
(xi)|+

|γl
Ñ1

s
(xi)− γlÑ2

s
(xi)|+ |γuÑ1

s
(xi)− γuÑ2

s
(xi)|+

|βl
Ñ1

s
(xi)− βlÑ2

s
(xi)|+ |βuÑ1

s
(xi)− βuÑ2

s
(xi)|]+

max[|αl
Ñ1

s
(xi)− αlÑ2

s
(xi)|, |αuÑ1

s
(xi)− αuÑ2

s
(xi)|,

|γl
Ñ1

s
(xi)− γlÑ2

s
(xi)|, |γuÑ1

s
(xi)− γuÑ2

s
(xi)|

, |βl
Ñ1

s
(xi)− βlÑ2

s
(xi)|, |βuÑ1

s
(xi)− βuÑ2

s
(xi)|]


, (7)

Sindhu et al., Selection of Alternative under the Framework of SVNSs



Neutrosophic Sets and Systems, Vol. 35,2020 555

and

S̃iwm (Ñ1
s , Ñ

2
s ) = e−

1
n
D̃w(Ñ1

s ,Ñ
2
s ). (8)

Theorem 4.5. Let N1
s = {< xi, αN1

s
(xi), γN1

s
(xi), βN1

s
(xi) >} and N2

s = {< xi, αN2
s
(xi),

γN2
s
(xi), βN2

s
(xi) >} be two SVNSs (IVNSs) , then the WSM presented in Equation (6) (Equa-

tion (8)) between two SVNSs (IVNSs) satisfies the following properties:

(1) 0 ≤ Siwm (N1
s , N

2
s ) ≤ 1,

(2) Siwm (N1
s , N

2
s ) = Siwm (N2

s , N
1
s ),

(3) Siwm (N1
s , N

2
s ) = 1 if and only if N1

s = N2
s .

Proof It is obvious as Theorem 4.1.

Example 4.6. Let N1
s = {x, (0.3, 0.2, 0.5), (0.4, 0.6, 0.0)} and N2

s = {x, (0.1, 0.1, 0.8),

(0.2, 0.1, 0.7)} be two SVNSs and w = (0.7, 0.3)T the weight vector, then the WSM for SVNSs

is: Siwm (N1
s , N

2
s ) = 0.9162.

Example 4.7. Let Ñ1
s = {x, ([0.4, 0.6], [0.2, 0.3], [0.3, 0.4]), ([0.5, 0.8], [0.1, 0.4], [0.1, 0.3])} and

Ñ2
s = {x, ([0.7, 0.9], [0.1, 0.2], [0.1, 0.2]), ([0.3, 0.6], [0.1, 0.3], [0.4, 0.7])} be two IVNSs and w =

(0.6, 0.4)T the weight vector, then the weighted similarity measure for IVNSs is: Siwm (N1
s , N

2
s ) =

0.8781.

5. Decision making model under SVNSs (IVNSs)

The model for MCDM problems is presented on the basis of proposed weighted similarity

measure in this section. Suppose that Q = {Q1, Q2, ..., Qn} is a discrete set of alternatives and

G = {G1, G2, ..., Gm} is another discrete set of criteria. If the DMs gave the various values for

the alternative Qi(i = 1, 2, ..., n) under the criteria Gj(j = 1, 2, ...,m), and form a neutrosofic

decision matrix N = [bij ]n×m. The concept of optimal solution assists the DMs to identify the

best alternative from the decision set in MCDM framework. In spite of the fact that the per-

fect option does not exist in actual, it provides a valuable paradigm to appraise alternatives.

Hence, we can find the ideal options N? from the given information as N? = max([bij ]n×m).

Since the weights of the criteria have an excessive impact, thereby a weighing vector of criteria

is provided as w = (w1, w2, w3, ..., wm)T , where
∑m

j=1wj = 1 and wj > 0, can be evaluated

by using the LP model presented in Definition 2.5. The model based on proposed weighted

similarity measure described by Equation (6) (Equation (8)) has the following steps.

Step 1. Based on the information provided by DMs, form a single valued neutrosophic deci-

sion matrix (SVNDM) denoted by N = [bij ]n×m.

Step 2. Find the optimal solution N? from the SVNDM.

Step 3. On the basis of TOPSIS, an objective function is obtained and then calculate the

Sindhu et al., Selection of Alternative under the Framework of SVNSs



Neutrosophic Sets and Systems, Vol. 35,2020 556

weights of criteria by using LP model as described in Definition 2.5.

Step 4. With the aid of weights evaluated in Step 3, calculate the similarity measures amongst

the alternative Qi(i = 1, 2, ..., n) and the optimal alternative N? by using Equation (6) (Equa-

tion (8)).

Step 5. Rank all the alternatives Qi(i = 1, 2, ..., n) from highest to lowest values of similarity

measures obtained in Step 4 and choose the alternative having highest value of the similarity

measure.

6. Practical examples

In this section, a medical diagnosis decision problem is considered to see the validity and

effectiveness of the proposed MCDM model.

Example 1. For parents, it is significant to be aware of the most updated treatment process

so you can be certain about your kids are getting the superlative care possible. According

to the child specialist, some common childhood sicknesses and their appropriate symptoms

are listed. Suppose a collection of diagnoses, chest infections (C), malaria (M), typhoid (T ),

sore throat (S) and bronchitis (B) are examined on the basis of some symptoms, fever (S1),

headache (S2), breathlessness (S3), cough (S4) and chest pain (S5). All the information is

given in the form of neutrosophic decision matrix (NDM) N = [bij ]n×m. Assume that patient

K1 = N? has all the symptoms in the diagnosis process, all the information collected about

the kids Ki(i = 1, 2, ..., n) is provided in the form of SVNS in Table 1.

Maximize: Z = 0.2175w1 + 0.2350w2 + 0.2200w3 + 0.1950w4 + 0.1850w5

Subject to: 10w1 + 8w2 + 12w3 + 10w4 + 15w5 ≥ 10,

10w1 + 8w2 + 12w3 + 10w4 + 15w5 ≤ 10.5,

8w1 + 11w2 + 7w3 + 10w4 + 10w5 ≥ 8,

8w1 + 11w2 + 7w3 + 10w4 + 10w5 ≤ 8.5,

12w1 + 15w2 + 12w3 + 10w4 + 6w5 ≥ 12,

12w1 + 15w2 + 12w3 + 10w4 + 6w5 ≤ 12.5,

w1 + w2 + w3 + w4 + w5 = 1,

w1, w2, ..., w5 ≥ 0.

Table 1. Neutrosophic decision matrix NDM

Daignosis S1 S2 S3 S4 S5

C < 0.4, 0.6, 0.0 > < 0.3, 0.2, 0.5 > < 0.1, 0.3, 0.7 > < 0.4, 0.3, 0.3 > < 0.1, 0.2, 0.7 >

M < 0.7, 0.3, 0.0 > < 0.2, 0.2, 0.6 > < 0.0, 0.1, 0.9 > < 0.7, 0.3, 0.0 > < 0.1, 0.1, 0.8 >

T < 0.3, 0.4, 0.3 > < 0.6, 0.3, 0.1 > < 0.2, 0.1, 0.7 > < 0.2, 0.2, 0.6 > < 0.1, 0.0, 0.9 >

S < 0.1, 0.2, 0.7 > < 0.2, 0.4, 0.4 > < 0.8, 0.2, 0.0 > < 0.2, 0.1, 0.7 > < 0.2, 0.1, 0.7 >

B < 0.1, 0.1, 0.8 > < 0.0, 0.2, 0.8 > < 0.2, 0.0, 0.8 > < 0.2, 0.0, 0.8 > < 0.8, 0.1, 0.1 >

Step 1. Based on the information provided by the professional, form a SVNDM N = [nij ]5×5.

Step 2. Assume that a kid K1 = {(0.8, 0.2, 0.1), (0.9, 0.3, 0.2), (0.2, 0.1, 0.8), (0.6, 0.5, 0.1),

(0.1, 0.4, 0.6)} has all the symptoms in the process of diagnosis.
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Step 3. By using TOPSIS an objective function is obtained and then calculate the weights

of criteria by applying the LP model as described in Definition 2.5.

Step 4. The values of the weighted similarity measure calculated with the help of Equation

(6) amongst the diagnoses and the kid K1 are: S1w
m = 0.7774, S2w

m = 0.7675, S3w
m = 0.7969,

S4w
m = 0.6353 and S5w

m = 0.6127.

Step 5. According to values obtained in Step 4, we get the ranking order as: T � C �M �
B � S. Figure 1 indicates the ranking order presented in [8,9,16,29] and the proposed model

graphically.

Figure 1. Ranking order of alternatives

Example 2. Consider the same scenario as Example 1 with interval-valued data provided in

Table 2. Assume that another Kid K2 suffers from all the symptoms, which can be expressed

by the following IVNS data.

Step 1. Based on the information given by the professional form an interval-valued neu-

trosofic decision matrix (INDM) denoted by Ñ = [ñij ]5×5.

Step 2. Assume a kid K2 = {([0.3, 0.5], [0.2, 0.3], [0.4, 0.5]), ([0.7, 0.9], [0.1, 0.2], [0.1, 0.2]),

([0.4, 0.6], [0.2, 0.3], [0.3, 0.4]), ([0.3, 0.6], [0.1, 0.3], [0.4, 0.7]), ([0.5, 0.8], [0.1, 0.4], [0.1, 0.3])} has

all the symptoms in the process of diagnosis.

Step 3. Use the same weights for the symptoms which are evaluated in Example 1.

Step 4. The values of the weighted similarity measure calculated with the help of Equation
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Table 2. Neutrosofic decision matrix NDM

Daignosis S1 S2 S3

C ([0.4, 0.4], [0.6, 0.6], [0.0, 0.0]) ([0.3, 0.3], [0.2, 0.2], [0.5, 0.5]) ([0.1, 0.1], [0.3, 0.3], [0.7, 0.7])

M ([0.7, 0.7], [0.3, 0.3], [0.0, 0.0]) ([0.2, 0.2], [0.2, 0.2], [0.6, 0.6]) ([0.0, 0.0], [0.1, 0.1], [0.9, 0.9])

T ([0.3, 0.3], [0.4, 0.4], [0.3, 0.3]) ([0.6, 0.6], [0.3, 0.3], [0.1, 0.1]) ([0.2, 0.2], [0.1, 0.1], [0.7, 0.7])

S ([0.1, 0.1], [0.2, 0.2], [0.7, 0.7]) ([0.2, 0.2], [0.4, 0.4], [0.4, 0.4]) ([0.8, 0.8], [0.2, 0.2], [0.0, 0.0])

B ([0.1, 0.1], [0.1, 0.1], [0.8, 0.8]) ([0.0, 0.0], [0.2, 0.2], [0.8, 0.8]) ([0.2, 0.2], [0.0, 0.0], [0.8, 0.8])

Daignosis S4 S5

C ([0.4, 0.4], [0.3, 0.3], [0.3, 0.3]) ([0.1, 0.1], [0.2, 0.2], [0.7, 0.7])

M ([0.7, 0.7], [0.3, 0.3], [0.0, 0.0]) ([0.1, 0.1], [0.1, 0.1], [0.8, 0.8])

T ([0.2, 0.2], [0.2, 0.2], [0.6, 0.6]) ([0.1, 0.1], [0.0, 0.0], [0.9, 0.9])

S ([0.2, 0.2], [0.1, 0.1], [0.7, 0.7]) ([0.2, 0.2], [0.1, 0.1], [0.7, 0.7])

B ([0.2, 0.2], [0.0, 0.0], [0.8, 0.8]) ([0.8, 0.8], [0.1, 0.1], [0.1, 0.1])

(8) amongst the diagnoses and the kid K1 are: S̃1w
m = 0.6445, S̃2w

m = 0.5760, S̃3w
m = 0.7222,

S̃4w
m = 0.6668 and S̃5w

m = 0.5884.

Step 5. The ranking order obtained by using the values calculated in Step 4 is: T � C �
M � B � S. A graphical representation of ranking order presented in [8, 9, 16, 29] and the

proposed model is shown in Figure 2.

Figure 2. Ranking order of alternatives
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7. Comparative analysis with the existing techniques

Various DMs have applied the SMs for medical diagnosis in the environment of SVNSs and

IVNSs [8,9,16,29]. In order to portray the usefulness and validation of the proposed SMs, we

apply it for the same problem and the results are shown in the Tables 3 and 4. According to

the results obtained by applying our proposed MCDM model, we see that the Kids K1 and K2

suffered in the disease typhoid (T ) under the observations of five symptoms Sj(j = 1, 2, ..., 5).

The results obtained by proposed and existing methods are different because of assigning the

weights to the criteria, These results are further analyzed by using Spearman’s correlation

coefficient.

Table 3. Results obtained by proposed SVNS’s SM

SMs C M T S B Ranking

Proposed 0.7774 0.7675 0.7969 0.6353 0.6127 T � C �M � B � S
[8] 0.9443 0.9571 0.9264 0.8214 0.7650 M � C � T � S � B
[9] 0.7941 0.8094 0.4568 0.5851 0.5517 M � C � S � B � T
[16] 0.5385 0.6282 0.6206 0.3336 0.3154 M � T � C � S � B
[28] 0.8505 0.8661 0.8185 0.5148 0.4244 M � C � T � S � B

Table 4. Results obtained by proposed IVNS’s SM

SMs C M T S B Ranking

Proposed 0.6445 0.5760 0.7222 0.6668 0.5884 T � C �M � B � S
[8] 0.9443 0.9571 0.9264 0.8214 0.7650 M � C � T � S � B
[9] 0.7941 0.8094 0.4568 0.5851 0.5517 M � C � S � B � T
[16] 0.5385 0.6282 0.6206 0.3336 0.3154 M � T � C � S � B
[28] 0.8505 0.8661 0.8185 0.5148 0.4244 M � C � T � S � B

7.1. Ranking analysis with Spearman’s rank-correlation coefficient

. The ranking preference of the diagnosis obtained by our and existing techniques are

different and presented in Tables 3 and 4. In order to compare the diagnosis further, we use

the Spearman’s rank-correlation coefficient (ρs) and the critical value Z, where, ρs and Z can

be calculated with the formulae given below:

ρs = 1− 6
i−1=k∑
l=1

(4l)2

n(n− 1)
,

and

Z = ρs
√
n− 1.
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Here, 4l is the difference between two sets of ranking. The values of ρs are always bounded in

the closed interval [−1, 1]. The values of ρs which are nearer to ±1 show the perfect relationship

amongst two ranking orders. Moreover,the critical value Z is compared with a pre-estimated

degree of significance value η. The critical value Z corresponding to the degree of significance

value η = 0.05 for the examples (n = 5) is, Z0.05 = 0.9. If the critical value Z more than 0.9,

it indicates that there exist a strong relationship between two rankings. On the other hand,

the two rankings can be considered as dissimilar or have weaker relationship.

There are five collections of preference rankings obtained by the proposed method and [8, 9,

16, 28], represented by X,Y, V, T and U , respectively and their ranking order can be seen in

Tables 3 and 4. In order to compare these ranking orders, ρs and Z evaluated in Table 5. The

analysis of the results is summarized in Table 5 as follows:

The results obtained by the proposed model with those obtained in [8] and [28], the critical

Table 5. Comparison with existing methods

Daignosis X Y V T U X-Y X-V X-T X-U

C 2 2 2 3 2 0 0 -1 0

M 3 1 1 1 1 2 2 2 2

T 1 3 5 2 3 -2 -4 -1 -2

S 5 4 3 4 4 1 2 1 1

B 4 5 4 5 5 -1 0 -1 -1

Spearman’s rank-correlation coefficient ρs 0.5 -0.2 0.6 0.5

Critical value Z 1 -0.4 1.2 1

value Z = 1 > 0.9, shows that there is a positive relationship between the ranking of the

proposed model (X), the ranking [8] (Y ) and [28] (U). Also, the results obtained by the

proposed model (X) with those obtained in [16] (T ), the critical value Z = 1.2 > 0.9 indicates

that there is a strongly positive relationship between the ranking X and T . However, the

ranking X of the proposed model is significantly dissimilar to the ranking [9] (V ) because the

critical value Z = −0.4 is smaller than 0.9.

8. Conclusions

The similarity measures are extensively utilized in MCDM problems from the last few

decades. This paper suggested a novel technique to develop the similarity measures on the basis

of Euclidean distance measure for SVNSs and IVNSs, respectively. However, the similarity

measures presented in [15, 29, 30] have some shortcoming. On the other hand the suggested

similarity measures satisfy all the axioms of the similarity measure. Moreover, we used the

suggested similarity measures to medical diagnosis decision problems. A practical example is

used to exemplify the practicability and efficiency of the proposed similarity measure, which are

then compared to other existing similarity measures. We will emphasize to apply the proposed
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similarity measure in pattern recognition and supply chain problems under the framework of

SVNSs and IVNSs in future.
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1. Introduction 

In present scenario the classical theory of mathematics can’t be handling 
uncertainties, vagueness or impreciseness of mathematical problem
world define many approaches to understand or define it. 
mathematical formulation of a fuzzy set (FS)
grade. Sometimes the membership function in FS was not suitable one to describe the ambiguity of a 
problem.  

After development of FS theory 
about the belongingness and non-belongingness 
fuzzy set (IFS) theory, which included the degree of membership and 
function of each element in the set. 
in recent scenario [17, 20]. In real life decision making problems, the theory of FS and IFS is much 
applicable, IFS approach in the solution of transportation problems 
23]. 

The basic theme of a transportation problem is to find a direct connection 
destination in minimum time with minimum cost. Hitchcock [
the basic results of transportation problem by simplex method, which was recognized as special 
mathematical module. Since in early stage th
demand and supply were on the crisp values. In present time the real life transportation 
uncertain, uncontrolled factors as the transportation cost, supply and demand are

In that period many research problems related t
in which some are partial fuzzy and some are fully fuzzy. A FTP in which cost demand and supply
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In the present paper, we introduced the concept of single valued trapezoidal neutrosophic 
which is generalization of single valued neutrosophic number. A generalization of crisp, fuzzy 

and intuitionistic fuzzy sets represents as neutrosophic sets, which have uncertainty, inconsistent, and 
leteness information in real world problem. De-neutrosophication is a process to convert 

neutrosophic number into a crisp number for practical applications. For unbalanced neutrosophic 
transportation problem, we also use here minimum row column method and set a comparison among 
crisp and neutrosophic optimal solutions. Here we use two models of transportation problems to 
understand the applications in neutrosophic environment. 

Number, Single valued trapezoidal neutrosophic number, De-neutro
neutrosophic transportation problem. 

In present scenario the classical theory of mathematics can’t be handling the 
vagueness or impreciseness of mathematical problems. Many researchers around the 

world define many approaches to understand or define it. In 1965, Zadeh [37] first time introduce the 
cal formulation of a fuzzy set (FS) as a set with its membership function or membership 

rship function in FS was not suitable one to describe the ambiguity of a 

theory in various fields of uncertainty, Atanassov [1] 
belongingness in fuzzy set and present it’s extension as intu

included the degree of membership and degree of 
function of each element in the set. More development of IFS theory in decision problems 

real life decision making problems, the theory of FS and IFS is much 
, IFS approach in the solution of transportation problems used by many researchers [15, 22, 

The basic theme of a transportation problem is to find a direct connection between source and 
destination in minimum time with minimum cost. Hitchcock [12] was first, who originally developed 
the basic results of transportation problem by simplex method, which was recognized as special 

e in early stage the transportation parameters like transportation cost, 
were on the crisp values. In present time the real life transportation 

as the transportation cost, supply and demand are in fuzzy values.
In that period many research problems related to fuzzy transportation problem (FTP

in which some are partial fuzzy and some are fully fuzzy. A FTP in which cost demand and supply
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of single valued trapezoidal neutrosophic 
which is generalization of single valued neutrosophic number. A generalization of crisp, fuzzy 

and intuitionistic fuzzy sets represents as neutrosophic sets, which have uncertainty, inconsistent, and 
neutrosophication is a process to convert 

For unbalanced neutrosophic 
a comparison among 

Here we use two models of transportation problems to 

neutrosophication, 

the different kind of 
s. Many researchers around the 

] first time introduce the 
as a set with its membership function or membership 

rship function in FS was not suitable one to describe the ambiguity of a 

Atanassov [1] in 1986, believe 
extension as intuitionistic 

degree of non-membership 
IFS theory in decision problems plays key role 

real life decision making problems, the theory of FS and IFS is much 
used by many researchers [15, 22, 

between source and 
] was first, who originally developed 

the basic results of transportation problem by simplex method, which was recognized as special 
transportation cost, 

were on the crisp values. In present time the real life transportation problems have 
in fuzzy values. 

FTP) were solved, 
in which some are partial fuzzy and some are fully fuzzy. A FTP in which cost demand and supply are 
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as fuzzy number is called fully FTP while in case of either cost, demand or supply are in fuzzy number, 
then it is FTP see [24, 7]. In a fuzzy solid transportation problem the parameters are trapezoidal fuzzy 
number (TrFN), introduced by Jim´enez and Verdegay [16] in 1999. For more research work about FTP, 
see [18, 19, 22, 25]. 

In current scenario, due to uncertainty, unawareness, vagueness, ambiguity in the constraints or 
some poor handling of data, the indeterminacy exists in transportation problems. The IFS theory can 
handle the problems of incomplete information but not the indeterminate and inconsistent information 
exists in transportation modal.  

The problems with inconsistent information or indeterminate cannot be handled by any evocation 
of fuzzy set, so to overpower of such problems, Smarandache [27] introduced the neutrosophic set (NS) 
in 1988, which was an extension of classical set, FS and IFS. The well applicable fundamentals of NS, to 
represent the indeterminacy and inconsistent information are truth-membership degree, indeterminacy 
membership degree, and falsity-membership degree. The NS becomes the IFS, if indeterminacy 
membership degree I(𝑥) of NS is equal to hesitancy degree h(𝑥) of IFS.  For practical applications and 
some technical references in NS, Wang et. al. [31] in 2010 introduced the idea of single valued 
neutrosophic set (SVNS). The notion of SVNS is more suitable and effective in solving many real life 
problems of decision making and supply chain management.  For more applications of FS, IFS and NS 
in some different fields see [1- 10, 14, 21, 29- 32, 34, 36]. 

Since the study of transportation models with optimal and effective cost play a key role in every 
real life situation. Many researchers formulated efficient mathematical models in various uncertain 
environments. For practical application, two models of neutrosophic transportation problem (NTP) 
with all entries such as cost, demand, and supply are as single valued trapezoidal neutrosophic number 
(SVTrNN). Here we also use minimum row column method (MRCM) for balance the unbalance crisp 
transportation problem (CTP) and NTP with some existing method.  

The main features of the paper are obtaining the optimal solutions of CTP and NTP after balancing 
with different methods and to compare the results. The paper is well organized in seven sections. In 
section first, introduction of the present paper with some earlier research are given.  In second section, 
the basics concepts of FS, IFS and NS are discussed and reviewed. In third section, introduce the de-
neutrosophication as score function to convert neutrosophic values into crisp values. Section fourth 
composes the classification and mathematical formulation of CTP & NTP of type-2 & 3. In fifth section, 
we introduce the procedures for solutions of CTP & NTP. In section six, seven and eight, we introduce 
two models of transportation with their solutions in different tables, their comparison, result and 
discussion. The conclusion and future aspects of research work exhibit in last section of the paper.   
 
2. Preliminaries 
 
2.1.  Some basic definitions and examples 
Definition 2.1.1. (FS [37]):  A FS A   of a non empty set X is defined as    

 { , ( ) / }AA x x x X where 

  ( )A x is called the membership function such that   ( ) : [0,1]A x X . 
 
Definition 2.1.2. (FN): A convex, normalized fuzzy set A  is called fuzzy number on the universal set of 
real numbers R, if the membership function  A of A  has the following belongingness:  

(i) 
A
 : Xμ    0,1    is continuous

 
 

(ii)  for all               , ,( ) 0,A x a dx   

(iii)  is strictly increasing on and strictly decreasing on        (   ,     ) ,A a b c dx  
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(iv) 
 

for all where           ,  ,   ( .) 1, aA x b c b c dx   

 
Definition 2.1.3. (TrFN[19]): A trapezoidal fuzzy number (TrFN) denoted as  ( , , , )A a b c d , with its 

membership function   ( )A x , on R, is given by  

 

   

   Ã 

 

x - a b - a

μ x =
d - x d - c

,     for a x < b
1,                         for b x < c

,     for c < x d
0,                           otherwise

 








 

                       
If b = c in TrFN  ( , , , )A a b c d , then it becomes TFN  ( , , )A a b d . 
 
Definition 2.1.4. An IFS in a non-empty set X is denoted by  IA and defined as

    
 , , : ,I I

I
A A

A x x X where    , : [0,1]I IA A
X , such that      0 , 1, .I IA A

x X  The degree of 

membership   IA
 and degree of non-membership  IA

are functions from X  to [0,1] in  IA . The degree of 

hesitation is defined as        ( ) 1 1,I IA A
h x x X  in  IA . 

 
Definition 2.1.5. (ITrFN [20]): An Intutinistic trapezoidal fuzzy number (ITrFN) is denoted by 

 
1 2 3 1 2 3 4

I
4a ,a ,a ,a )A = ( a ,a ,a ,a( )  where      1 1 2 3 4 4a a a a a a with membership function  IA

 and non-

membership function   IA
 defined by 

0 for

for

1 for

for

0 for

I

1

1
1 2

2 1

2 3A

4
3 4

4 3

4

,                x < a ,

x - a
,       a x a ,

a - a

μ (x) ,               a x a ,

a - x
,      a x a ,

a - a

,                x > a .

=








 

 

 






      

1, for

for

0, for

for

1 for

I

1

1
1 2

2 1

2 3A

4
3 4

4 3

4

                x < a ,

x - a
,      a x a ,

a - a

(x)                a x a ,

a - x
,       a x a ,

a - a

,                x >

ν

a .

=




  


 


 
















                    

If 2 3a a then ITrFN becomes ITFN denoted as A   
1 2 3 1 2 3( , , )( , , )I a a a a a a  where     1 1 2 3 3a a a a a .  

 
Definition 2.1.6. ([4]):  Let x be a generic element of a non empty set X.  A neutrosophic number  NA  in 
X is defined as      

 { , ( ), ( ), ( ) / },N N N
N

A A A
A x T x I x F x x X     ( ),NA

T x   ( )NA
I x  and   ( ) ] 0,1 [NA

F x where
  : ]0 ,1 [NA

T X ,   : ]0 ,1 [NA
I X  and   : ]0 ,1 [NA

F X   are functions of truth-membership,  

indeterminacy membership  and falsity-membership in  NA respectively also there is no restrictions on 
the sum of  ( ),NA

T x   ( )NA
I x  and   ( )NA

F x  so that       0 3N N NA A A
T (x) I (x) F (x) .  
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For the practical applications it is difficult to apply directly NS theory, hence the notion of SVNS  as 

well as single valued neutrosophic numbers [SVNN] introduced by Deli I., S¸uba Y[8] in 2014 .  
 
Definition 2.1.7. (SVNS [8]):  Let x be the generic point of a non-empty space X. A SVNS is denoted and 
defined as      

 { , ( ), ( ), ( ) / }N N N
N

A A A
A x T x I x F x x X , where for each point x in X, ( ),NA

T x  called truth 

membership ( )NA
I x  called indeterminacy membership and ( )NA

F x  called falsity membership function 

in [0, 1] and      0 ( ) ( ) ( ) 3N N NA A A
T x I x F x .  

For continuous SVNS  NA  can be written as 
    



 ( ), ( ) ( ,       ) / ,N N N

N

N
A A A

A

A T x I x xF Xx x      

When X is discrete, a SVNS  NA can be written as 



    


1
 ,    ( ), ( ) ( ) /  ,   N N N

n
N

i i i iA A A i
i

xA T x I x F x Xx             

 
Example 2.1.1. Let X be a space with capability 1x , trustworthiness 2x  and price 3x  in [0,1]. If expert 
wants “degree of good services”, “degree of indeterminacy” and degree of poor services”, then a SVNS 
 NA  of X  is defined as 

          
1 2 30.7 ,0.1,0.3 / 0.4,0.2, 0.7 / 0.5,0.1,0.6 / .NA x x x  

 
Definition 2.1.8.  An    ( , , ) cut  set of SVNS  NA , a crisp subset of R is defined by 

           


, , { : ( ) , ( ) , ( ) }N
A A AA x T x I x F x      

where        0 1,0 1,0 1  and      0 3.  
 
Definition 2.1.9. A SVNS      

 { , ( ), ( ), ( ) : }N N N
N

A A A
A x T x I x F x x X is called neut-normal, if there exist at 

least three points 1 2 3, ,x x x X  such that     1 2 3( ) 1, ( ) 1, ( ) 1.N N NA A A
T x I x F x  

 
Definition 2.1.10. A SVNS      

 { , ( ), ( ), ( ) : }N N N
N

A A A
A x T x I x F x x X  is called neut-convex set on the real 

line;  if the following conditions are satisfied 1 2 3  , ,x x x R  and   [0,1]  

(i)        1 2 1 2( (1 ) ) min( ( ), ( ))N N NA A A
T x x T x T x  

(ii)       1 2 1 2( (1 ) ) max( ( ), ( ))N N NA A A
I x x I x I x  

(iii)      1 2 1 2( (1 ) ) max( ( ), ( ))N N NA A A
F x x F x F x  

 
Definition 2.1.11. (SVTrNN [8]):  A single valued trapezoidal neutrosophic number (SVTrNN) 

    1 2 3 4( , , , ); , , a
N

a aa a a a a w u v is a special NS on the real line R, whose truth-membership ( )T x
Na

, 

indeterminacy-membership ( )I x
Na

, and a falsity-membership ( )F x
Na

are given as follows: 
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( )
for

for
( )

( )
for

0 for

1

1 2
2 1

2 3

4

3 4
4 3

4 1

( x - a w
,       a x a ,

a - a

w ,                  a x a ,
T x

a - x w
,       a x a ,

a - a

,                       x > a

=

and x < a











 

 

 










N

N

N

N

a

a
a

a

 

( )
for

for
( )

( )
for

1 for

2 1 a
1 2

2 1

2 3a

3 4 a
3 4

4 3

4 1

a - x+ x - a u
,      a x a ,

a - a

u ,                              a x a ,
I x

x - a + a - x u
,      a x a ,

a - a

,                                x > a  and x

=

< a

 

 























N

N

N

N
a

 

( )
for

for
( )

( )
for

1 for and

N

N

N

N
a











 

 

 








2 1 a
1 2

2 1

2 3a

3 4 a
3 4

4 3

4 1

a - x+ x - a v
,      a x a ,

a - a

v ,                              a x a ,
F x

x - a + a - x v
,       a x a ,

a - a

,                                  x > a  x < a

=  

 
where   ,  ,a auw and av  denotes the maximum truth-membership degree, minimum-indeterminacy 
membership degree and minimum falsity-membership degree in [0,1] respectively  and 1 2 3 4, , ,a a a a R

such that   1 2 3 4 .a a a a  When      1 1 2 3 40, ( , , , ); , , aa aa a a a a a w u v is called positive SVTrNN, denoted 
by  0a , and if 4 0,a then     1 2 3 4( , , , ); , , aa aa a a a a w u v  becomes a negative SVTrNN, denoted by  0.a   

If     1 2 3 40 1a a a a ,  , , [0,1]a a aw u v , then a  called a normalized SVTrNN. When

= 1-I T F
  

,N N Na a a
 then SVTrNN reduces as TIFN. If 2 3 ,a a then SVTrNN is reduces single valued 

triangular neutrosophic number (SVTNN), denoted as     1 3 4( , , ); , , .a a aa a a a w u v  
 
Definition 2.1.12.  A single valued trapezoidal neutrosophic number (SVTrNN) with twelve 
components is defined and denoted as: 

     


1 2 3 4 1 2 3 4 1 2 3 4( , , , ); ( , , , ); ( , , , ); , ,N N N
N

A A A
A p p p p q q q q r r r r w u v  

where           1 1 1 2 2 2 3 3 3 4 4 4r q p r q p r q p r q p in which the quantity of the truth membership, 
indeterminacy membership and falsity membership are not dependent and is defined as follows: 
 

for

for
( )

for

0 for and

1

1 2
2 1

2 3

4

3 4
4 3

4 1

(x - p )w
,      p x p ,

p - p

w ,                p x p ,
T x

(p - x)w
,     p x p ,

p - p

,                       x >

=

p  x < p

 

 











 








N

N

N

N

A

A
A

A
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where        
0 ( ) ( ) ( ) 3,  .N N N

N
A A A

T x I x F Ax x    

 
Definition 2.1.13. The parametric form  NA of SVTrNN for some        0 1,0 1,0 1  and 

     0 3  is defined as                     


, ,( ) [ ( ), ( ), ( ), ( ), ( ), ( )]N N N N N N
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A A A A A A
A T T I I F F ,  
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
1 2 1( ) ( )N

N
A

A

T p p p
w

, 
   
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
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Example 2.1.2. let us take (7,12,16,22),(6,11,15, 20),(5,10,14,19); 0.4,0.6,0.6   NA . The parametric 
representation is    0.4 ( ) 7 12.5  T   ,  0.4 ( ) 22 15  T   ,   

0.6 ( ) 18.5 12.5  I   ,  0.6 ( ) 7.5 12.5  I   ,  

0.6 ( ) 17.5 12.5  F   , 0.6 ( ) 6.5 12.5  F    
For different values of , ,    the degree of truthfulness, degree of indeterminacy and degree of 

falsity shown in table 1 and their graphical representation in figure 2:   
Table 1 

α,β,γ  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
 ( )NA

T  7.00 8.25 9.50 10.75 12.00 13.25 14.50 15.75 17.00 18.25 19.50 

 ( )NA
T  22.00 20.50 19.5 17.50 16.00 14.50 13.00 11.50 10.00 8.50 7.00 

 ( )NA
I  18.5 17.25 16.00 14.75 13.50 12.25 11.00 9.75 8.50 7.25 6 

 ( )NA
I  7.50 8.75 10.00 11.25 12.50 13.75 15.00 16.25 17.50 18.75 20.00 

 ( )NA
F  17.5 16.25 15.00 13.75 12.50 11.25 10.00 8.75 7.50 6.25 5.00 

 ( )NA
F  6.50 7.75 9.00 10.25 11.50 12.75 14.00 15.25 16.50 17.75 19.50 
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Figure 2: Graphical representation of 
    


1 2 3 4 1 2 3 4 1 2 3 4( , , , ); ( , , , ); ( , , , ); , ,N N N

N
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A p p p p q q q q r r r r w u v  

where 1 1 1 2 2 2 3 3 3 4 4 4          r q p r q p r q p r q p  
 
2.2. Operational Laws on SVTrNN 
 
Definition 2.2. 1. If  NA and  NB are two SVTrNN with twelve components having truth-membership 
 ( )NA

T x ,  ( )NB
T x , indeterminacy-membership   ( ), ( )N NA B

I x I x  and falsity-membership   ( ), ( )N NA B
F x F x

 
respectively and three real numbers in [0.1], such as  

                  
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Addition of SVTrNN: 
                          
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Negative of SVTrNN: If     

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Subtraction of SVTrNN: 
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Multiplication of SVTrNN:       
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Scalar multiplication of SVTrNN: 
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Inverse of SVTrNN:       
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Division of SVTrNN:       
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Example 2.2.1.  let   (7 ,11,16,21),(6,10,15, 20),(5,9,14,19); 0.4,0.6,0.6NA    and 

(6,11,13, 20),(5,10,12,18),(3,8,11,16); 0.3,0.6,0.7NB    be two SVTrNN, then 
(13,22,29, 41),(11,20, 27, 38),(8,17 ,25,35); 0.4,0.6,0.6N NA B      
( 13, 2,5,15),( 12, 2,5,15),( 11, 2,6,16); 0.4,0.6,0.6N NA B            

 
. (42,121,208,420),(30,100,180,360),(15,72,154, 304); 0.4,0.6,0.6N NA B      
/ (0.35,0.85,1.45,3.50),(0.33,0.83,1.50, 4.00,(0.31,0.81,1.75,6.33); 0.4,0.6,0.6N NA B      

5 (35,55,80,105),(30,50,75,100),(25,45,70,95); 0.4,0.6,0.6NA     
 

3. De-Neutrosophication by using score function 
 

We use the score and accuracy functions of a SVTrNN, is defined by an expert [31] to compare any 
two SVTrNN.  So that the score function is defined as 

             
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12 N N N
N

A A A

p p p p q q q q r r r r
S A w u v  

and accuracy function is 

         
     
 

  
 1 2 3 4 1 2 3 4( ) 2

4 N N N
N

A A A

p p p p q q q q
A w u vA  

 
Example 3.1. Let (7,11,16,21),(6,10,15,20),(5,10,14,19); 0.4,0.6,0.6NA     then ( ) 4.4NS A    and 

( ) 0.7NA  A  
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Definition 3.1. (Comparison of SVTrNN). Let  NA  and  NB  be any two SVTrNN, then one has the 
following: 

(a)    ( ) ( )    N N N NS A S B A B   

(b) If  ( ) ( )N N
S SS A S B  and if   

(i)  ( ) ( )N NA BA A  then  N NA B  
(ii)  ( ) ( )N NA BA A  then  N NA B  
(iii)  ( ) ( )N NA BA A  then  N NA B  

 
Example  3.2.  Let (6,10,16,20),(5,9,14,19),(3,8,12,18); 0.3,0.6,0.7NA   

  and 
(7,11,16,21),(6,15,14, 20),(5,10,14,19); 0.3,0.6,0.7NB           
(8,11,16,22),(6,15,14, 21),(5,10,14,20); 0.3,0.6,0.7NC     be two SVTrNN, then 

( ) 3.00NS A   , ( ) 1.25NA A ,  ( ) 0.4NS B , ( ) 0.0NB A , and ( ) 0.4NS C   , ( ) 0.25NC A ,  
which implies that if   ( ) ( )N NS A S B   then  N NA B  

Also   ( ) ( )N NS B S C  and ( ) ( )N NB C A A  then N NB C  . 
 
4.  Neutrosophic Transportation Problem (NTP) and its Mathematical formulation 
 
4.1. Classification of NTP 
 
Definition 4.1.1.  In a TP, if atleast one parameter such as cost, demand or supply is in form of 
neutrosophic numbers, the TP is termed as NTP. 
 
Definition 4.1.2. A NTP having neutrosophic availabilities and neutrosophic demand but crisp cost, is 
classified as NTP of type-1.  
 
Definition 4.1.3. The NTP having crisp availabilities and crisp demand but neutrosophic cost, is 
classified as NTP of type-2.  
 
Definition 4.1.4.  If all the specifications of TP such as cost, demand and availabilities are combination 
of crisp, triangular or trapezoidal neutrosophic numbers, then NTP classified as NTP of type-3.  
 
Definition 4.1.5.  If all the specifications of TP must be in neutrosophic numbers form, then TP is said to 
be NTP of type-4 or fully NTP. 
 
4.2. Mathematical Formulation of NTP  
 

The TP is very important for transporting goods from one source to another destination. In TP if 
ambiguity occurs in cost, demand or supply then it is more difficult to solve it. To handle this type of 
impreciseness in cost to transferred product from ith sources to jth destination or uncertainty in supply 
and demand the decision maker introduce NTP of SVTrNN.   

Here we consider two models in which the decision maker is unsettled about the specific values i.e. 
cost from ith sources to jth destination and also certainty or uncertainty in supply or demand of the 
product, so that a new type of TP is introduced namely NTP with parameters like cost, demand and 
supply as SVTrNN.  The NTP with assumptions and constraints is defined as the number of unites N

ijx  
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and the neutrosophic cost N
ijc  are transported from ith sources to jth destination. For balance NTP 

 

 
0 0

m n
N N
i j

i j
a b  i.e. total supply is equal to total demand. 

For the formulation of NTP the following assumptions and constraints are required: 
m  Total number of source point 
n Total number of destination point 
i  Table of source (for all m)  
j  Table of destination (for all n) 

N
ijx  Number of transported neutrosophic unites from ith source to jth destination 

N
ijc  Neutrosophic cost of one unit transported from ith source to jth destination 
N
ia  Available neutrosophic supply quantity from ith source   
N
jb         Required neutrosophic demand quantity to  jth destination  

ijc  Crisp cost of one unit quantity 

ijx  Number of transported crisp unites from ith source to jth destination 

ia  Available crisp supply quantity from ith source   

jb         Required crisp demand quantity to  jth destination  

Modal I 
In NTP the objective is to minimize the cost of transported product from source to destination. The 

mathematical formulation of NTP with uncertain transported units and transportation cost, demand 
and supply is: 

 (P1)  
 

 

0 0

0

0

Minimum   

Subject to      sources  1,  2,  3,  . . . , , 

                   ,   destination   1,  2,  3,  . . . , ,      

                 

,

 0 ,

m n
N N N

ij ij
i j

n
N N
ij i

j

m
N N
ij j

i
N
ij

i m

j

x c

x a

x b

x

 





 





 









  

 





Z

n

     1,  2,  3,  . . . , ,  1,  2,  3,  . . . , .i m j   n
 

Modal II 
The mathematical formulation of NTP with uncertain transported units and transportation cost but 

curtained about demand and supply is termed a NTP of type-2 is: 

(P2)        
 

 

0 0

0

0

Minimum   

Subject to      sources  1,  2,  3,  . . . , , 

                       destination   1,  2,  3,  . . . , ,      

                         

,

,

0, 1

m n
N N

ij ij
i j

n

ij i
j

m

ij j
i

ij

i m

j

x c

x

x

x i

a

b

 











 

 

 







 Z

n

,  2,  3,  . . . , ,  1,  2,  3,  . . . , .m j  n
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5.    Procedure for Proposed Algorithms for solution of CTP and NTP  
 
5.1. Basic Assumptions of the Proposed Algorithms  

The total transportation cost does not depends on the mode of transportation and distance, also the 
framework of the problem will be denoted by either crisp or SVTrNN.  

If or
 

    
0 0

  ,  ,
m n

N N
i j

i j
b ia j , then first one can make sure to balance the TP as 

 

   
0 0

   ,,
m n

N N
i j

i j
b ia j ,   

 
5.2.   Steps for solution of CTP after balancing by existing method 
 
Step5.2.1. To change the each neutrosophic cost  ,Niijjc  neutrosophic supply N

ia and neutrosophic 

demand N
jb  of NTP in cost matrix to crisp values, we use here score function method i.e. 

we convert these by using ( )NS A . 
Step5.2.2.  For balance TP, verify that the sum of demands is equal to the sum of supply i.e. 

0 0
 ,,  

m n

i j
i j

i ja b
 

    .  If or
0 0

   ,,
m n

i j
i j

ja b i
 

      , then first one can make sure to balance the TP 

by adding a row or column with zero entries in cost matrix [30].   
Step5.2.3.  After conversion of NTP into TP, choose the minimum entry in each row and subtract it to 

all other entries in that row. The same way is applicable in each column to find minimum 
one zero in each row and each column in TP matrix. For better (see table 4 and table 6). 

Step5.2.4.  Verify that the sum of demands is greater than the supply in each row and the sum of 
supplies are greater than the demand in each column, if ok go on step 5.2.6, otherwise go 
on step 5.2.5. 

Step5.2.5.  Draw the horizontal and vertical lines that cover all the zeros and equal to minimum 
number of order of matrix or reduced table. Now if number of lines is less than to the 
minimum number, revise table by choose the least element which is not under horizontal 
or vertical line and add it to the entry at the cross point of the lines. Again go to step 5.2.3 to 
check the condition. 

Step5.2.6.  To allot the maximum possible units of supply or demand in the cost cell, choose a cell of 
maximum cost in the reduced cost matrix. If the maximum cost exists more than one place, 
choose any one cell of maximum supply or demand.  

Step5.2.7.  If none cell occur for the maximum cost then go for next maximum. If such cell does not 
occur for any value, then choose any cell at random, whose reduced cost is zero. 

Step5.2.8.  From the reduced table omit the row which are fully exhausted or column which are fully 
satisfied, then repeats steps and again. Repeat the procedure until all the demand units and 
all the supply units are fully received respectively. 

 
The procedure for the solution of NTP by using existing method is same as steps in 5.2, while the 

cost, demand, supply and solution vales are in SVTrNN. 
 
5.3. Steps for solution of CTP after balancing by MRCM  

 
For balance the unbalance CTP, we use MRCM which is generalization of method in [27]. We use 

the following steps for solution of CTP by MRCM: 
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Step5.3.1. Convert neutrosophic cost  ,Niijjc  neutrosophic supply N
ia and neutrosophic demand N

jb  of 

NTP in cost matrix to crisp values by using score function ( )NS A i.e NTP convert into CTP. 
Step5.3.2 If CTP is unbalance then to make it balance one by applying the steps of MRCM that is if 

sum of supply is less then to the sum of demand, then add a row of minimum costs in each 
row with a supply equal to sum of supplies and add a column of minimum costs in each 
column with demand equal to the difference value from sum of all supplies differ to sum of 
demand. The same is applicable when sum of demand is less than the sum of supply. i.e. 

     and excess supply,1 1
0 0

          
m n

m i n j
i j

a a b a 
 

     
  

or        and excess demand. 
1

1 1
0

         
n

n j m

m

j i
ib b a b

 
     

 
The unit transportation costs are taken as follows: 

( 1) ( 1)1 1
   min  ,  1 ,            min ,  1 ,i n ij m j ijj n i m
c c i m c c j n    

          

and ( 1)( 1),  1 ,  1 ,      0.ij ji m nc c i m j n c           

Step5.3.3 Obtain optimal solution of converted CTP after balance it by existing method using excel 
solver. Let the crisp optimal solution be ,  1 1,  1 1.ijx i m j n       

Step5.3.4  By assuming '
1  0m   and using the relation  ' ' '  i j ij       for basic variables, find the 

values of all the dual variables ' ,  1i i m     and  ' ,   1 1, j j n      

Step5.3.5. According to MRCM, '
i i     and '

j j     for  1 ,1i m j n    , obtain only central rank 

zero duals. After that in terms of original supply iS and demand jM find the neutrosophic 

optimal solution of the problem. 
 
5.4.   Steps for solution of NTP after balancing by MRCM  
 
Step5.4.1. Convert neutrosophic cost  ,Niijjc  neutrosophic supply N

ia and neutrosophic demand N
jb  of 

NTP in cost matrix to crisp values by using score function ( )NS A  to check either it is balance 
or unbalance. 

Step5.4.2 If NTP is unbalance than same procedure as in 5.3 is applicable. i.e. 

     and excess supply, 
 

     1 1
0 0

          
m n

N N N N
m i n j

i j
a a b a

  

or        and excess demand.  
 

    1 1
0 1

         
n

N N N N
n j

i
m i

m

j
b b a b

 
The unit transportation costs are taken as follows: 

( 1) ( 1)1 1
    min  ,  1 ,              min  ,  1 ,N N N N

i n ij m j ijj n i m
c c i m c c j n    

          

and ( 1)( 1) ,  1 ,  1 ,       0.N N N
ij ji m nc c i m j n c           

Step5.4.3 Obtain optimal solution of NTP by excel solver. Let the neutrosophic optimal solution 
obtained be       ,  1 1,  1 1.N

ijx i m j n  

Step5.4.4  By assuming '
1  0N

m   and using the relation  ' ' '  N N N
i j ij       for basic variables, find the 

values of all the dual variables ' ,  1N
i i m     and  ' ,   1 1, N

j j n      
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Step5.4.5. According to MRCM, 'N N
i i     and 'N N

j j     for  1 ,1i m j n    , obtain only central rank 

zero duals.  
 
6. Numerical Example  
 
6.1. Modal I (NTP of type-3) 

 
Let us consider a NTP with three sources say 1S , 2S , 3S  in which wheat are initially stored and 

ready to transport in three flour mills namely 1M , 2M , 3M with unit transportation cost, demand and 
supply are as SVTrNN. The input data of SVTrNN -TP given in table 2 as follows: 

                   
Table 2  

 1M  2M  3M  Supply 

1S  0.2(3,5,7.5,11)
(2,4,7 ,10) ;0.4
(1,3.5,6,9) 0.8

 
 
 
 
 

 
0.3(2,4.5,10,15)

(0.5,3.5,8,14) ;0.5
(0,2.5,6,12) 0.8

 
 
 
 
 

 
0.2(1,5,9,14.5)

( 3,3.5,8,12) ;0.5
( 4,2,7,11) 0.7

 
 
 
 
 




 
0.4(9,17,26,36)

(6,14,23,33) ;0.7
(3,11,20,30) 0.7

 
 
 
 
 

 

2S  0.4(1,7,11.5,16)
( 1,5,10,14) ;0.5
( 3,3,8.5,12) 0.7

 
 
 
 
 




 
0.5(1,6,9.5,12)

( 1,4,8.5,11) ;0.7
( 2,2,8,10) 0.8

 
 
 
 
 




 
0.3( 1,4,8,15)

( 2,3,6,12) ;0.6
( 3,2,5,11) 0.6

 
 
 
 
 





 
0.3(7,17,25,31)

(3,12,22.5,29) ;0.6
(1,10,19.5,27) 0.7

 
 
 
 
 

 

3S  0.2(3,6,9,12)
(2,5,8,11) ;0.4
(1,4,7 ,10) 0.8

 
 
 
 
 

 
0.2( 1,3.5,9,12)

( 2,2.5,7 ,11) ;0.4
( 4,1,5,10) 0.8

 
 
 
 
 





 
0.2(0,5,8,14)

( 2,3,7 ,12) ;0.6
( 4,1,6,10) 0.6

 
 
 
 
 




 
0.3(9,16,22,31)

(5,14,20,27) ;0.6
(1,12,18,23) 0.7

 
 
 
 
 

 

Demand 0.3(12,21,30,37)
(9,19,28,34) ;0.6
(6,16,25,33) 0.7

 
 
 
 
 

 
0.4(10,16,22,27)

(5,14,20,25) ;0.7
(0,12,18,23) 0.7

 
 
 
 
 

 
0.2(7,12,19,27)

(4,11,18,24) ;0.6
(1,9,15,21) 0.6

 
 
 
 
 

 
 

 
6.2.  Neutrosophic optimal solution with score function method 

 
One can use score function to convert SVTrNN cost, demand and supply to obtain the crisp 

numbers in TP of table 2 as follows: 

 1 2 3 4 1 2 3 4 1 2 3 4( ) 2
12 N N N

N
A A A

p p p p q q q q r r r r
S A w u v

            
     
 

  
  

Here         11

(3,5,7.5,11) 0.2
3 5 7.5 11 2 4 7 10 1 3.5 6 9(2,4,7,10) ;0.4 0.2 0.6 0.2 1.33

12
0.8(1,3.5,6,9)

NS c
 
 
 
 
  
 

            
       

 
  

 12 1.25NS c   ,  13 = -0.58NS c ,  21 1.08NS c   ,  22 1.00NS c   ,  23 0.67NS c   ,  31 1.50NS c   ,

 32 0.50NS c   ,  33 0.50NS c   ,  1 4.33NS a   ,  2 3.67NS a   ,  3 3.50NS a   ,  1 5.83NS b   , 

 2 3.50NS b   ,   3 3.17NS b   . 

 
After converting cost, demand and supply of NTP from SVTrNN to the crisp numbers by using 

score function method, the unbalance CTP cost matrix is given in table 3: 
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Table 3 
 1M  2M  3M  Supply 

1S  -1.33 -1.25 -0.58 -4.33 

2S  -1.08 -1.00 -0.67 -3.67 

3S  -1.50 -0.50 -0.50 -3.50 

Demand -5.83 -3.50 -3.17  
           

By using the steps in 5.2, the optimal crisp solution of CTP and their allotment of demand and 
supply in cost matrix shown in table 4: 

Table 4 
 1M  2M  3M  Supply 

1S  -1.33(-2.16) -1.25(-2.17) -0.58 -4.33 

2S  -1.08(-3.67) -1.00 -0.67 -3.67 

3S  -1.50 -0.50(-0.33) -0.50(-3.17) -3.50 

4S  0 0(-1.00) 0 -1.00 

Demand -5.83 -3.50 -3.17   
 

The complete solution of CTP is 11x = -2.16, 12x = -2.17, 21x = -3.67, 32x = -0.33, 33x = -3.17, 42x = -1.00,

and = 11.30Z . The corresponding optimal solution of NTP with allotment of SVTrNN is shown in table 
5 as follows: 

Table 5 
 1M  2M  3M  Supply 

1S  0.3(-19,-4,13,30)
(-20,-3.5,16,31) ;0.6
(-21,-3.5,15,32) 0.7

 
 
 
 
 

 
0.3(-21,4,30,55)

(-25,-2,26.5,53) ;0.6
(-29,-4,23.5,51) 0.7

 
 
 
 
 

 
 
- 

 
- 

2S  0.3(7,17,25,31)
(3,12,22.5,29) ;0.6
(1,10,19.5,27) 0.7

 
 
 
 
 

 
 
- 

 
- 

 
- 

3S   
- 

0.2(-18,-3,10,24)
(-19,-4,9,23) ;0.6
(-20,-3,9,22) 0.6

 
 
 
 
 

 
0.2(7,12,19,27)

(4,11,18,24) ;0.6
(1,9,15,21) 0.6

 
 
 
 
 

 
 
- 

4S   
- 

0.3(-69,-24,21,66)
(-71,-21.5,26,69) ;0.6
(-73,-20.5,25,72) 0.7

 
 
 
 
 

 
 
- 

 
- 

Demand - - - - 
 

  i.e.           

0.3(-19,-4,13,30) (-21,4,30,55)

(-20,-3.5,16,31) ;0.6 (-25

(-21,-3.5,15,32) 0.7

0.2 0.3(3,5,7.5,11) (2,4.5,10,15)
(2,4,7,10) ;0.4 (0.5,3.5,8,14) ;0.5
(1,3.5,6,9) (0,2.5,6,12)0.8 0.8

NZ
     
     

     
     
     


0.3

,-2,26.5,53) ;0.6

(-29,-4,23.5,51) 0.7

0.3(7,17,25,31)

(3,12,22.5,29) ;0.6

(1,10,19.5,27) 0.7

0.4(1,7,11.5,16) ( 1,3.5,9,12)
( 1,5,10,14) ;0.5 ( 2,2.5,7,11)
( 3,3,8.5,12) ( 4,1,0.7

 
 
 
 
 

   
   

    
   
   


 
 

0.2(-18,-3,10,24)

(-19,-4,9,23) ;0.6

(-20,-3,9,22) 0.6

0.2(7,12,19,27)

(4,11,18,24) ;0.6

(1,9,15,21) 0.6

0.2
;0.4

5,10) 0.8

0.2(0,5,8,14) (0,0,
( 2,3,7,12) ;0.6
( 4,1,6,10) 0.6

   
   

   
   
   

   
   

    
   
   




0.3(-69,-24,21,66)

(-71,-21.5,26,69) ;0.6

(-73,-20.5,25,72) 0.7

0.20,0)
(0,0,0,0) ;0.6
(0,0,0,0) 0.6

   
   
   
   
   
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0.4(-74,187.5,927,2317)

(-25.5,62,738,1999) ;0.4 -194.54
(52,13.75,531.75,1654) 0.6

= =NZ
 
 
 
 
 


  

 
Now for application of MRCM, we use steps in 5.3 to balance the unbalance CTP of table 2 as 

follows in table 6: 
Table 6 

 1M  2M  3M  4M  Supply 

1S  0.2(3,5,7.5,11)
(2,4,7,10) ;0.4
(1,3.5,6,9) 0.8

 
 
 
 
 

 
0.3(2,4.5,10,15)

(0.5,3.5,8,14) ;0.5
(0,2.5,6,12) 0.8

 
 
 
 
 

 
0.2(1,5,9,14.5)

( 3,3.5,8,12) ;0.5
( 4,2,7 ,11) 0.7

 
 
 
 
 




 
0.2(1,5,9,14.5)

( 3,3.5,8,12) ;0.5
( 4,2,7 ,11) 0.7

 
 
 
 
 




 0.4(9,17,26,36)
(6,14,23,33) ;0.7
(3,11,20,30) 0.7

 
 
 
 
 

 

2S  0.4(1,7,11.5,16)
( 1,5,10,14) ;0.5
( 3,3,8.5,12) 0.7

 
 
 
 
 




 
0.5(1,6,9.5,12)

( 1,4,8.5,11) ;0.7
( 2,2,8,10) 0.8

 
 
 
 
 




 
0.3( 1,4,8,15)

( 2,3,6,12) ;0.6
( 3,2,5,11) 0.6

 
 
 
 
 





 
0.3( 1,4,8,15)

( 2,3,6,12) ;0.6
( 3,2,5,11) 0.6

 
 
 
 
 





 0.3(7,17,25,31)
(3,12,22.5,29) ;0.6
(1,10,19.5,27) 0.7

 
 
 
 
 

 

3S  0.2(3,6,9,12)
(2,5,8,11) ;0.4
(1,4,7,10) 0.8

 
 
 
 
 

 
0.2( 1,3.5,9,12)

( 2,2.5,7 ,11) ;0.4
( 4,1,5,10) 0.8

 
 
 
 
 





 
0.2(0,5,8,14)

( 2,3,7,12) ;0.6
( 4,1,6,10) 0.6

 
 
 
 
 




 
0.2(0,5,8,14)

( 2,3,7,12) ;0.6
( 4,1,6,10) 0.6

 
 
 
 
 




 0.3(9,16,22,31)
(5,14,20,27) ;0.6
(1,12,18,23) 0.7

 
 
 
 
 

 

4S  0.4(1,7,11.5,16)
( 1,5,10,14) ;0.5
( 3,3,8.5,12) 0.7

 
 
 
 
 




 
0.2( 1,3.5,9,12)

( 2,2.5,7 ,11) ;0.4
( 4,1,5,10) 0.8

 
 
 
 
 





 
0.2(0,5,8,14)

( 2,3,7 ,12) ;0.6
( 4,1,6,10) 0.6

 
 
 
 
 




 0.2(0,0,0,0)
(0,0,0,0) ;0.6
(0,0,0,0) 0.6

 
 
 
 
 

 
 
 
 
 
 

0.3(25,50,73,98)
(14,40,65.5,89) ;0.6
(5,33,57.5,80) 0.7

 

D
e

m
a
n
d

 
0.3(12,21,30,37)

(9,19,28,34) ;0.6
(6,16,25,33) 0.7

 
 
 
 
 

 0.4(10,16,22,27)
(5,14,20,25) ;0.7
(0,12,18,23) 0.7

 
 
 
 
 

 
0.2(7,12,19,27)

(4,11,18,24) ;0.6
(1,9,15,21) 0.6

 
 
 
 
 

 
0.3(-41,29,97,167)

(-55,14,87,160) ;0.6
(-67,8,78,153) 0.7

 
 
 
 
 

  
 

 
After converting cost, demand and supply of NTP in table 6 from SVTrNN to the crisp numbers by 

using score function method, the balance CTP cost matrix is given in table 7: 
 
Table 7 

 1M  2M  3M  4M  Supply 

1S  -1.33 -1.25 -0.58 -0.58 -4.33 

2S  -1.08 -1.00 -0.67 -0.67 -3.67 

3S  -1.50 -0.50 -0.50 -0.50 -3.50 

4S  -1.08 -0.50 -0.50 0 -11.50 

Demand -5.83 -3.50 -3.17 -10.50   
 

The complete allotment of demand and supply in cost matrix of CTP shown in table 8: 
 
Table 8 

 1M  2M  3M  4M  Supply 

1S  -1.33(-1.16) -1.25 -0.58(-3.17) -0.58 -4.33 

2S  -1.08(-3.67) -1.00 -0.67 -0.67 -3.67 

3S  -1.50 -0.50(-3.50) -0.50 -0.50 -3.50 

4S  -1.08(-1.00) -0.50 -0.50 0(-10.50) -11.50 

Demand -5.83 -3.50 -3.17 -10.50   
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The optimal crisp solution and minimum cost of balance CTP of table 8 is 11 1.16x   , 13 3.17,x  

21 3.67,x   32 3.50,x   41 1.00,x    44 10.50x    and 10.18Z .  
Similarly after balance the unbalance NTP by MRCM, the corresponding optimal solution of 

balance NTP with allotment of SVTrNN is shown in table 9 as follows: 
 
Table 9 

 1M  2M  3M  4M  Supply 

1S  (-18,-2,14,29) 0.4
(-18,-4,12,29) ;0.6
(-18,-4,11,29) 0.6

 
 
 
 
  
 

 - (7,12,19,27) 0.2
(4,11,18,24) ;0.6
(1,9,15,21) 0.6

 
 
 
 
  
 

 
 
- 

 
- 

2S  (7,17,25,31) 0.3
(3,12,22.5,29) ;0.6
(1,10,19.5,27) 0.7

 
 
 
 
  
 

  
- 

 
- 

 
- 

 
- 

3S   
- 

0.3(9,16,22,31)
(5,14,20,27) ;0.6
(1,12,18,23) 0.7

 
 
 
 
 

  
- 

 
- 

 
- 

4S  0.3(-142,-47,44,139)

(-146,-47,51.5,144) ;0.6

(-148,-45,49.5,147) 0.7

 
 
 
 
 

 
 
- 

 
- 

0.3(-41,29,97,167)
(-55,14,87,160) ;0.6
(-67,8,78,153) 0.7

 
 
 
 
 

  
- 

Demand  - - - - 
 
0.4(-18,-2,14,29) (7,12,19,27)

(-18,-4,12,29) ;0.6 (4,11,18,2

(-18,-4,11,29) 0.6

. .
0.2 0.2(3,5,7.5,11) (1,5,9,14.5)

(2,4,7 ,10) ;0.4 ( 3,3.5,8,12) ;0.5
(1,3.5,6,9) ( 4,2,7,11)0.8 0.7

NZ
     
     

     
     
     





0.2

4) ;0.6

(1,9,15,21) 0.6

0.3(7,17,25,31)

(3,12,22.5,29) ;0.6

(1,10,19.5,27) 0.7

.
0.4(1,7,11.5,16) ( 1,3.5,9,12)

( 1,5,10,14) ;0.5 ( 2,2.5,7 ,11)
( 3,3,8.5,12) ( 4,1,5,10)0.7

 
 

 
 
 

     
     

     
    
     


 
 

0.3(9,16,22,31)

(5,14,20,27) ;0.6

(1,12,18,23) 0.7

0.3(-142,-47,44,139)

(-146,-47,51.5,144) ;0

(-148,-45,49.5,147)

.

.

0.2
;0.4
0.8

0.4(1,7 ,11.5,16)
( 1,5,10,14) ;0.5
( 3,3,8.5,12) 0.7

 
 

  
  

 

   
   

    
   
   




0.3(-41,29,97,167)

.6 (-55,14,87,160) ;0.6

(-67,8,78,153)0.7 0.7

.
0.2(0,0,0,0)

(0,0,0,0) ;0.6
(0,0,0,0) 0.6

   
   

    
   
   

 

this implies   
(-191,-104,1267.5,3802.5) 0.4
(85,-117.5,1108,3297) ;0.4 417.77

0.6(415,-89,847.5,2810)

NZ =
 
    
 
 

  

 
 
6.3. Model II (NTP of type-2)   

For solution of NTP of type-2 i.e. a problem in which costs are in SVTrNN while demand and 
supply are given in crisp numbers. Here we are taking the problem in table 2 in which costs are in 
SVTrNN while demand and supply are as crisp numbers given as follows in table 10: 
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Table 10 
 1M  2M  3M  Supply 

1S  0.2(3,5,7.5,11)
(2,4,7 ,10) ;0.4
(1,3.5,6,9) 0.8

 
 
 
 
 

 
0.3(2,4.5,10,15)

(0.5,3.5,8,14) ;0.5
(0,2.5,6,12) 0.8

 
 
 
 
 

 
0.2(1,5,9,14.5)

( 3,3.5,8,12) ;0.5
( 4,2,7,11) 0.7

 
 
 
 
 




 
-4.33 

2S  0.4(1,7,11.5,16)
( 1,5,10,14) ;0.5
( 3,3,8.5,12) 0.7

 
 
 
 
 




 
0.5(1,6,9.5,12)

( 1,4,8.5,11) ;0.7
( 2,2,8,10) 0.8

 
 
 
 
 




 
0.3( 1,4,8,15)

( 2,3,6,12) ;0.6
( 3,2,5,11) 0.6

 
 
 
 
 





 
-3.67 

3S  0.2(3,6,9,12)
(2,5,8,11) ;0.4
(1,4,7,10) 0.8

 
 
 
 
 

 
0.2( 1,3.5,9,12)

( 2,2.5,7,11) ;0.4
( 4,1,5,10) 0.8

 
 
 
 
 





 
0.2(0,5,8,14)

( 2,3,7 ,12) ;0.6
( 4,1,6,10) 0.6

 
 
 
 
 




 
-3.50 

Demand -5.83 -3.50 -3.17  
 
The optimal crisp solution of NTP type-2 is shown in table 11 as follows: 

Table 11 
 1M  2M  3M  Supply 

1S  -2.16 -2.17 - -4.33 

2S  -3.67 - - -3.67 

3S  - -0.33 -3.17 -3.50 

4S  - -1.00 - -3.50 

Demand -5.83 -3.50 -3.17  
 
The corresponding neutrosophic solution of NTP type-2 is: 

 

        
2

(3,5,7.5,11) (2,4.5,10,15) (1,7,11.5,16)0.2 0.3 0.4
2.16 (2,4,7,10) ; 0.4 2.17 (0.5,3.5,8,14) ; 0.5 3.67 ( 1,5,10,14) ; 0.5

0.8 0.8 0.7(1,3.5,6,9) (0,2.5,6,12) ( 3,3,8.5,12)

0.33

N
tZ

     
                 
          

 



( 1,3.5,9,12) (0,5,8,14) ( 14.16, 63.27, 108.44, 163.37)0.2 0.2
( 2,2.5,7,11) ; 0.4 3.17 ( 2,3,7,12) ; 0.6 (5.26, 44.93, 93.68, 145.07)

0.8 0.6( 4,1,5,10) ( 4,1,6,10) (22.85, 27.5, 77.87, 124.

        
             
          

0.2
; 0.6 15.89
0.65

   
2)

 
   
 
 

 

 
Similarly after balance the unbalance NTP of type-2 by MRCM, the corresponding optimal 

neutrosophic solution of balance NTP of type-2 with allotment is as follows:         

   

2

(3,5,7.5,11) 0.2 (1,5,9,14.5) 0.2 (1,7,11.5,16) 0.4 ( 1,
1.16 (2,4,7,10) ;0.4 3.67 ( 3,3.5,8,12) ; 0.5 3.17 ( 1,5,10,14) ; 0.5 3.50

(1,3.5,6,9) 0.8 ( 4,2,7,11) 0.7 ( 3,3,8.5,12) 0.7

N
tZ

      
     

              
           


3.5,9,12) 0.2

( 2,2.5,7,11) ;0.4
( 4,1,5,10) 0.8

(1,7,11.5,16) 0.4 (0,0,0,0) 0.2 7.82,65.59,121.85,174.70
1.00 ( 1,5,10,14) ; 0.5 10.50 (0,0,0,0) ;0.6 19.

( 3,3,8.5,12) 0.7 (0,0,0,0) 0.6

 
 
 

  

   
   

         
      

0.2
86,47.09,103.68,152.52 ; 0.6 14.35

40.03,27.41,85.60,135.85 0.6

 
 

 
  
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7. Comparative Study 
Real life application of single valued trapezoidal neutrosophic numbers in transportation problem 

have been solved by some existing and proposed MRCM methods. In present paper, the minimum cost 
obtained through proposed method with some existing method discussed in [30] have been 
summarized in table 12. From the table it is clear that minimum cost obtained by using MRCM is better 
than to the existing method in both either crisp or in neutrosophic environment. Figure 3 shows the 
graphical representation of the minimum crisp or neutrosophic cost degree of satisfaction by different 
approaches.  

 
Comparison 

 
 
 

Model 
I  

Balance by existing method  Balance by MRCM 
Crisp cost of 

CTP 
= 11.30Z   

The neutrosophic cost of 
NTP 

0.4(-74,187.5,927,2317)
(-25.5,62,738,1999) ;0.4
(52,13.75,531.75,1654) 0.6

=NZ
 
 
 
 
 



corresponding Crisp cost 
of  NTP 

= -194.54NZ  

 
 
 
 
 

Crisp cost of  
CTP 

10.18Z  
 

The neutrosophic cost of 
NTP 

0.4( 191, 104,1267.5,3802.5)
(85, 117.5,1108,3297) ;0.4
(415, 89,847.5,2810) 0.6
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 
 
 
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II  

The neutrosophic cost of NTP 
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0.6

N
tZ

 
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Figure 3: Comparision of results with proposed MRCM and existing method 
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8.  Result and discussion  
 

In this present study the optimal transportation crisp cost and optimal transportation neutrosophic 
cost of unbalanced NTP using MRCM is minimum than the existing method in [30]. It is also verified 
that in de-neutrosophication, the crisp values before and after conversion from neutrosophic to crisp 
and crisp to neutrosophic  are different in score function method.  

For the real life applications one can find the degree of result.  The best of minimum neutrosophic 

cost of unbalanced NTP is 
(-191,-104,1267.5,3802.5) 0.4
(85,-117.5,1108,3297) ;0.4

0.6(415,-89,847.5,2810)

NZ =
 
 
 
 
 

   i.e. total minimum transportation cost 

lies between  -191 to 3802.5 for level of truthfulness or acceptance, 85 to 3297 for level of indeterminacy 
and 415 to 2810 for level of falsity. The degree of truthfulness or acceptance, degree of indeterminacy 
and degree of falsity is defined as ( ) 100

NZ
w 

T
x , ( ) 100

NZ
u 

I
x  and ( ) 100

NZ
v 

F
x  respectively, where x 

denotes the total cost and  

for -191

for 104
( )

for 1267.5 3802.5

0.4( 191) , 104
191 104

0.4, 1267.5
0.4(3802.5 ) ,
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0,
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x
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x
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  
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 




 
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                                  - x ,
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      x ,

                                     for otherwise.


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



   
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u
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  

 


I

         x ,

                                                        x ,
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
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

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

                                                 

  

for - 89 415

for - 89 847
( )
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( 89 ) 0.6( 415) ,
13.75 52

0.6,
( 847) 0.6(2810 ) ,

2810 847
0,
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x x

v
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  
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



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


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Degree



x
 -100 0 500 1000 2000 3000 

100
NZ

w 
T

 40.0 40.0 40.0 40.0 30.0 12.6 

100
NZ

u 
T

 40.0 40.0 40.0 40.0 64.4 91.8 

100
NZ

v 
T

 60.0 60.0 60.0 63.1 83.4 0 

 
With the help of degree of truthfulness, degree of indeterminacy and degree of falsity, we can 

conclude the total neutrosophic cost from the range of -191 to 3802.5 for truthfulness, 85 to 3297 for 
indeterminacy and 415 to 2810 for falsity to scheduled the transportation and budget allocation.  
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9. Conclusions 
In recent scenario the applied mathematical modeling with uncertainty or vagueness is necessity of 

the society. Nowadays the concept of neutrosophic number is very popular to handle such type of 
problems. In this  research paper, we study of unbalance NTP and introduced a new approach MRCM 
for optimal solution with the concept of single valued trapezoidal neutrosophic number of twelve 
components from different viewpoints. Also the optimal neutrosophic solution and minimum cost 
obtained by using MRCM is better than by using some existing methods. The proposed method 
provides the more practical structure and considers the various characteristics of transportation 
problems in neutrosophic environment. In future the proposed MRCM is applied to the unbalance 
multi-attribute transportation problem, assignment problems and multilevel programming problem in 
neutrosophic environment. The present research will be a mile stone for transportation problems with 
generalization of the pick value of truth, indeterminacy and falsity functions by considering, which are 
very important for uncertainty theory.  
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