A new distance measure for trapezoidal fuzzy neutrosophic numbers based on the centroids

Said Broumi
Malayalan Lathamaheswari
Ruipu Tan
Deivanayagampillai Nagarajan
Talea Mohamed

See next page for additional authors

Follow this and additional works at: https://digitalrepository.unm.edu/nss_journal

Recommended Citation
Broumi, Said; Malayalan Lathamaheswari; Ruipu Tan; Deivanayagampillai Nagarajan; Talea Mohamed; Florentin Smarandache; and Assia Bakali. "A new distance measure for trapezoidal fuzzy neutrosophic numbers based on the centroids." Neutrosophic Sets and Systems 35, 1 (2020).
https://digitalrepository.unm.edu/nss_journal/vol35/iss1/27

This Article is brought to you for free and open access by UNM Digital Repository. It has been accepted for inclusion in Neutrosophic Sets and Systems by an authorized editor of UNM Digital Repository. For more information, please contact amywinter@unm.edu, lsloane@salud.unm.edu, sarahrk@unm.edu.
A new distance measure for trapezoidal fuzzy neutrosophic numbers based on the centroids

Authors
Said Broumi, Malayalan Lathamaheswari, Ruipu Tan, Deivanayagampillai Nagarajan, Talea Mohamed, Florentin Smarandache, and Assia Bakali
A new distance measure for trapezoidal fuzzy neutrosophic numbers based on the centroids

Broumi said 1*, Malayalan Lathamaheswari2, Ruipu Tan3, Deivanayagampillai Nagarajan2, Talea Mohamed1, Florentin Smarandache4, Assia Bakali5

1* Laboratory of Information Processing, Faculty of Science Ben M’Sik, University Hassan II, B.P 7955, Sidi Othman, Casablanca, Morocco; broumisaid78@gmail.com; s.broumi@flbenmsik.ma; taleamohamed@yahoo.fr
2 Department of Mathematics, Hindustan Institute of Technology and Science, Chennai-603 103, India; lathamax@gmail.com
3 College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou 350108, China;
4 Department of Mathematics, University of New Mexico, 705 Gurley Avenue, Gallup, NM 87301, USA
5 Ecole Royale Navale, Boulevard Sour Jdid, B.P 16303 Casablanca, Morocco; Email: assiabakali@yahoo.fr

Abstract: Distance measure is a numerical measurement of the distance between any two objects. The aim of this paper is to propose a new distance measure for trapezoidal fuzzy neutrosophic numbers based on the centroids with graphical representation. In addition, the metric properties of the proposed measure are examined in detail. A decision making problem also has been solved using the proposed distance measure for a software selection process. Comparative analysis has been done with the existing methods to show the potential of the proposed distance measure and various forms of trapezoidal fuzzy neutrosophic number have been listed out to show the uniqueness of the proposed graphical representation. Further, advantages of the proposed distance measure have been given.

Keywords: trapezoidal fuzzy neutrosophic numbers; centroids; distance measure

1-Introduction
Zadeh introduced a mathematical frame work called fuzzy set [43] which plays a very significant role in many aspects of science. Intuitionistic fuzzy set is the generalization of the Zadeh’s fuzzy set which was presented by Atanassov [3]. Later, triangular intuitionistic fuzzy sets was developed by Liu and Yuan [22] which is based on the combination of triangular fuzzy numbers and intuitionistic fuzzy sets. The fundamental characteristic of the triangular intuitionistic fuzzy set is that the values of its membership function and non-membership function are triangular fuzzy numbers rather than exact numbers. Furthermore, Ye [38] extended the triangular intuitionistic fuzzy set to the trapezoidal intuitionistic fuzzy set, where its fundamental characteristic is that the values of its membership function and non-membership function are trapezoidal fuzzy numbers rather than triangular fuzzy numbers, and proposed the trapezoidal intuitionistic fuzzy prioritized weighted averaging (TIFPWA) operator and trapezoidal intuitionistic fuzzy prioritized weighted geometric (TIFPWG) operator and their multi-criteria decision-making method, in which the criteria are in different
Said Broumi, Malayalan Lathamaheswari, Ruipu Tan, Deivanayagampillai Nagarajan, Talea Mohamed, Florentin Smarandache and Assia Bakali, A new distance measure for trapezoidal fuzzy neutrosophic numbers based on the centroids

priority level. Recently, Wang et al. [35] introduced a single-valued neutrosophic set, which is a subclass of a neutrosophic set presented by Smarandache [30], as a generalization of the classic set, fuzzy set and intuitionistic fuzzy set. The single-valued neutrosophic set can independently express truth-membership degree, indeterminacy-membership degree and falsity-membership degree and deal with incomplete, indeterminate and inconsistent information. All the factors described by the single-valued neutrosophic set are very suitable for human thinking due to the imperfection of knowledge that human receives or observes from the external world. For example, for a given proposition “Movie X would be hit,” in this situation human brain certainly cannot generate precise answers in terms of yes or no, as indeterminacy is the sector of unawareness of a proposition’s value between truth and falsehood. Obviously, the neutrosophic components are best fit in the representation of indeterminacy and inconsistent information, while the intuitionistic fuzzy set cannot represent and handle indeterminacy and inconsistent information. Hence, the single-valued neutrosophic set has been a rapid development and a wide range of applications [39, 40]. Ye [42] introduced the trapezoidal neutrosophic set and its application to multiple attribute decision-making. Cui and Ye [10], Donghai et al. [16], Ebadi et al. [17], Guha and Chakraborty [18], Hajjari [19], Nayagam et al. [25], Rouhparvar et al. [29], Wu [37], Ye [40], Zou et al. [45] and more researchers have shown interest on decision making problem using distance measures. Weighted projection measure, the combination of angle cosine and weighted projection measure, similarity measure, hybrid vector similarity measure of single valued neutrosophic set and interval valued neutrosophic set, outranking strategy, complete ranking, new ranking function have been introduced so far under fuzzy, intuitionistic fuzzy and neutrosophic environments and applied in decision making problem. The rest of the paper is organized as follows. In section 2, literature review is given. In section 3, basic concepts are presented for better understanding. In section 4, proposed a new distance measure and its graphical representation, and derived its properties in detail. In section 5, new methodology is described for a decision making process using the proposed measure. In section 6, a numerical example is using the proposed methodology to choose the best software system. In section 7, comparative analysis has been done with the existing methods and various forms of trapezoidal fuzzy neutrosophic numbers have been listed out to show the uniqueness of the proposed graphical representation. In section 8, advantages of the proposed measure are given. In section 9, conclusion of the present work is given with the future direction.

2-Literature Review

Hence, in this paper a new distance measure for trapezoidal fuzzy neutrosophic numbers based on centroids has been proposed with its metric properties in detail. Also the graphical representation is presented for trapezoidal fuzzy neutrosophic number. Comparative study also have been made with

Said Broumi, Malayalan Lathamaheswari, Ruipu Tan, Deivanayagampillai Nagarajan, Talea Mohamed, Florentin Smarandache and Assia Bakali, A new distance measure for trapezoidal fuzzy neutrosophic numbers based on the centroids.
the existing cases for both proposed distance measure and proposed graphical representation. Further advantages of the proposed distance measure are presented.

3-Preliminaries

Definition 1. [38] Let X be a space of discourse, a trapezoidal intuitionistic fuzzy set B in X is defined as: $B = \{(y, \alpha_B(y), \beta_B(y)) | y \in X \}$, where $\alpha_B(y) \subseteq [0,1]$ and $\beta_B(y) \subseteq [0,1]$ are two trapezoidal fuzzy numbers $\alpha_B(y) = (\alpha_B^1(y), \alpha_B^2(y), \alpha_B^3(y), \alpha_B^4(y)) : Y \rightarrow [0,1]$ and $\beta_B(y) = (\beta_B^1(y), \beta_B^2(y), \beta_B^3(y), \beta_B^4(y)) : Y \rightarrow [0,1]$ with the condition that $0 \leq \alpha_B^4(y) + \beta_B^4(y) \leq 1, \ \forall y \in Y$.

For Convenience, let $\alpha_B(y) = (a,b,c,d)$ and $\beta_B(y) = (e,f,g,h)$ be two trapezoidal fuzzy numbers, thus a trapezoidal intuitionistic fuzzy number (TrIFN) can be denoted by $j = ((a,b,c,d),(e,f,g,h))$, which is basic element in a trapezoidal intuitionistic fuzzy set.

If $b = c$ and $f = g$ hold in a TrIFN j, which is a special case of the TrIFN.

Definition 2. [38] Let $j_1 = ((a_1,b_1,c_1,d_1),(e_1,f_1,g_1,h_1))$ and $j_2 = ((a_2,b_2,c_2,d_2),(e_2,f_2,g_2,h_2))$, be two TrIFNs. Then there are the following operational rules:

1. $j_1 \oplus j_2 = \left(\begin{array}{c} (a_1 + a_2 - a_1, a_2, b_1 + b_2 - b_1, b_2, c_1 + c_2 - c_1, c_2, d_1 + d_2 - d_1, d_2) \\ (e_1, e_2, f_1, f_2, g_1, g_2, h_1, h_2) \end{array}\right)$

2. $j_1 \otimes j_2 = \left(\begin{array}{c} (a_1a_2, b_1b_2, c_1c_2, d_1d_2) \\ (e_1 + e_2, e_1, f_1 + f_2, f_1, g_1 + g_2, g_1, h_1 + h_2, h_1) \end{array}\right)$

3. $\lambda j_1 = \left(\begin{array}{c} (1 - (1 - a_1)^\lambda, 1 - (1 - b_1)^\lambda, 1 - (1 - c_1)^\lambda, 1 - (1 - d_1)^\lambda) \\ (e_1^\lambda, f_1^\lambda, g_1^\lambda, h_1^\lambda) \end{array}\right), \lambda > 0$;

4. $m_i^\lambda = \left(\begin{array}{c} (a_i^\lambda, b_i^\lambda, c_i^\lambda, d_i^\lambda), (1 - (1 - e_i)^\lambda, 1 - (1 - f_i)^\lambda, 1 - (1 - g_i)^\lambda, 1 - (1 - h_i)^\lambda) \\ (1 - (1 - i_1)^\lambda, 1 - (1 - j_i)^\lambda, 1 - (1 - k_1)^\lambda, 1 - (1 - l_i)^\lambda) \end{array}\right), \lambda \geq 0$

Definition 3. [30] From philosophical point of view, Smarandache [30] originally presented the concept of a neutrosophic set B in a universal set Y, which is characterized independently by a
Neutrosophic Sets and Systems, Vol. 35, 2020

Said Broumi, Malayalan Lathamaheswari, Ruipu Tan, Deivanayagampillai Nagarajan, Talea Mohamed, Florentin Smarandache and Assia Bakali, A new distance measure for trapezoidal fuzzy neutrosophic numbers based on the centroids

truth-membership function \(T_B(y) \), an indeterminacy membership function \(I_B(y) \) and a falsity-membership function \(F_B(y) \). The function \(T_B(y), I_B(y) \) and \(F_B(y) \) in \(Y \) are real standard or nonstandard subsets of \([0,1] \), such that \(T_B(y) : Y \rightarrow [0,1], I_B(y) : Y \rightarrow [0,1], \) and \(F_B(y) : Y \rightarrow [0,1] \). Then, the sum of \(T_B(y), I_B(y) \) and \(F_B(y) \) satisfies the condition \(0 \leq \text{sup} T_B(y) + \text{sup} I_B(y) + \text{sup} F_B(y) \leq 3 \). Obviously, it is difficult to apply the neutrosophic set to practical problems. To easily apply it in science and engineering fields, Wang et al. [35] introduced the concept of a single-valued neutrosophic set as a subclass of the neutrosophic set and gave the following definition.

Definition 4. [35] A single-valued neutrosophic set \(B \) in a universal set \(Y \) is characterized by a truth-membership function \(T_B(y) \), an indeterminacy-membership function \(I_B(y) \) and a falsity-membership function \(F_B(y) \). Then, a single-valued neutrosophic set \(B \) can be denoted by

\[
B = \{ (y, T_B(y), I_B(y), F_B(y)) \} \quad \text{for each } y \in Y
\]

where, \(T_B(y), I_B(y), F_B(y) \in [0,1] \) for each \(y \in Y \). Therefore, the sum of \(T_B(y), I_B(y) \) and \(F_B(y) \) satisfies \(0 \leq T_B(y) + I_B(y) + F_B(y) \leq 3 \).

Let \(M = \{ (y, T_M(y), I_M(y), F_M(y)) \} \) and \(N = \{ (y, T_N(y), I_N(y), F_N(y)) \} \) be two single-valued neutrosophic sets, then we the following relations [8,11]:

1. Complement: \(M^c = \{ (y, F_M(y), 1-I_M(y), T_M(y)) \} \);
2. Inclusion: \(M \subseteq N \) if and only if \(T_M(y) \leq T_N(y), I_M(y) \geq I_N(y) \) and \(F_M(y) \geq F_N(y) \) for any \(y \in Y \);
3. Equality: \(M = N \) if and only if \(M \subseteq N \) and \(N \subseteq M \);
4. Union: \(M \cup N = \{ (y, T_M(y) \lor T_N(y), I_M(y) \land I_N(y), F_M(y) \land F_N(y)) \} \);
5. Intersection: \(M \cap N = \{ (y, T_M(y) \land T_N(y), I_M(y) \lor I_N(y), F_M(y) \lor F_N(y)) \} \);
6. Addition: \(M \oplus N = \left\{ \left(T_M(y), I_M(y), F_M(y), T_N(y), I_N(y), F_N(y) \right) \mid y \in Y \right\} \).

7. Multiplication: \(M \otimes N = \left\{ \left(T_M(y)T_N(y), I_M(y)I_N(y), F_M(y)F_N(y) \right) \mid y \in Y \right\} \).

Definition 5. [42] Let \(Y \) be a space of discourse, a trapezoidal neutrosophic set \(H \) in \(Y \) is defined as follow:

\[
H = \{ (y, T_H(y), I_H(y), F_H(y)) \mid y \in Y \},
\]

where \(T_H(y) \subset [0,1], \ I_H(y) \subset [0,1] \) and \(F_H(y) \subset [0,1] \) are three trapezoidal fuzzy numbers \(T_H(y) = (i_H^T(y), i_H^{\alpha T}(y), i_H^{\beta T}(y), i_H^T(y)) : Y \rightarrow [0,1] \), \(I_H(y) = (i_H^I(y), i_H^{\alpha I}(y), i_H^{\beta I}(y), i_H^I(y)) : Y \rightarrow [0,1] \) and \(F_H(y) = (i_H^F(y), i_H^{\alpha F}(y), i_H^{\beta F}(y), i_H^F(y)) : Y \rightarrow [0,1] \) with the condition \(0 \leq i_H^{\beta I}(y) + i_H^I(y) + f_H^I(y) \leq 3, \ y \in Y \).

For convenience, the three trapezoidal fuzzy numbers are denoted by \(T_H(y) = (a, b, c, d), \ I_H(y) = (e, f, g, h) \) and \(F_H(y) = (i, j, k, l) \). Thus, a trapezoidal neutrosophic numbers is denoted by \(m = ((a, b, c, d), (e, f, g, h), (i, j, k, l)) \), which is a basic element in the trapezoidal neutrosophic set.

If \(b = c, f = g \) and \(j = k \) hold in a trapezoidal neutrosophic number \(j_1 \), it reduces to the triangular neutrosophic number, which is considered as a special case of the trapezoidal neutrosophic number.

Definition 6. [42] Let \(m_1 = \{(a_1, b_1, c_1, d_1), (e_1, f_1, g_1, h_1), (i_1, j_1, k_1, l_1)\} \) and \(m_2 = \{(a_2, b_2, c_2, d_2), (e_2, f_2, g_2, h_2), (i_2, j_2, k_2, l_2)\} \) be two trapezoidal neutrosophic numbers. Then there are the following operational rules:

1. \(m_1 \odot m_2 = \left\{ \left(a_i + a_j - a_i a_j, b_i + b_j - b_i b_j, c_i + c_j - c_i c_j, d_i + d_j - d_i d_j \right) \mid (i, j) \in \{(1,2), (2,1)\} \right\} \),
2. \[m_i \otimes m_2 = \left\langle (a_i, a_2, b_1, b_2, c_1, c_2, d_1, d_2), \right. \\
\left. (e_i + e_2 - e_1, e_1, f_i + f_2 - f_1, f_1, g_i + g_2 - g_1, g_1, h_i + h_2 - h_1, h_1) \right\rangle; \]

3. \[\lambda m_i = \left\langle \left(1 - \left(1 - a_i^\lambda \right)^\lambda, 1 - \left(1 - b_i^\lambda \right)^\lambda, 1 - \left(1 - c_i^\lambda \right)^\lambda, 1 - \left(1 - d_i^\lambda \right)^\lambda \right), \right. \\
\left. \left(e_i^\lambda, f_i^\lambda, g_i^\lambda, h_i^\lambda \right) \right\rangle, \lambda > 0; \]

4. \[m_i^\lambda = \left\langle \left(1 - \left(1 - a_i^\lambda \right)^\lambda, 1 - \left(1 - b_i^\lambda \right)^\lambda, 1 - \left(1 - c_i^\lambda \right)^\lambda, 1 - \left(1 - d_i^\lambda \right)^\lambda \right), \right. \\
\left. \left(1 - \left(1 - e_i^\lambda \right)^\lambda, 1 - \left(1 - f_i^\lambda \right)^\lambda, 1 - \left(1 - g_i^\lambda \right)^\lambda, 1 - \left(1 - h_i^\lambda \right)^\lambda \right) \right\rangle, \lambda \geq 0. \]

Definition 7. [18] Let \(P \) and \(Q \) be the intuitionistic fuzzy sets with membership functions \(\mu_P(x), \mu_Q(x) \), non-membership functions \(\nu_P(x), \nu_Q(x) \) and hesitation degree \(\pi_P(x), \pi_Q(x) \). Then the normalized Hamming distance is

\[
D(P, Q) = \frac{1}{2n} \sum_{i=1}^{n} \left[|\mu_P(x_i) - \mu_Q(x_i)| + |\nu_P(x_i) - \nu_Q(x_i)| + |\pi_P(x_i) - \pi_Q(x_i)| \right]
\]

And the normalized Euclidean distance is

\[
D_e(P, Q) = \sqrt{\frac{1}{2n} \sum_{i=1}^{n} \left(|\mu_P(x_i) - \mu_Q(x_i)|^2 + |\nu_P(x_i) - \nu_Q(x_i)|^2 + |\pi_P(x_i) - \pi_Q(x_i)|^2 \right)^{1/2}}
\]

Definition 8. [17] Consider the real values \(r_i, \ i = 1, 2, 3, \ldots, 6 \) and if \(r_1 \leq r_2, r_3 \leq r_4, r_5 \leq r_6 \) then the following results are true.

1. \(\max \{r_1, r_3, r_5\} \leq \max \{r_2, r_4, r_6\} \)

2. \(\max \{r_1 + r_3 + r_5, r_2 + r_4 + r_6\} \leq \max \{r_2, r_4, r_6\} + \max \{r_2, r_4, r_6\} \)

Definition 9. [34] For any real numbers \(r, s \geq 0, i = 1, 2, \ldots, d \), the Euclidean distance is defined as,

\[
D(r, s) = \left(\sum_{i=1}^{d} (r_i - s_i)^2 \right)^{1/2}
\]

and satisfies the condition that \(\left(\sum_{i=1}^{d} (r_i + s_i)^2 \right)^{1/2} \leq \left(\sum_{i=1}^{d} r_i^2 \right)^{1/2} + \left(\sum_{i=1}^{d} s_i^2 \right)^{1/2} \).
Definition 10. [42] Let \(m_p = (a_p, b_p, c_p, d_p), (e_p, f_p, g_p, h_p), (i_p, j_p, k_p, l_p) \), \(p = 1, 2, 3, ..., n \) be the trapezoidal fuzzy neutrosophic numbers then the trapezoidal fuzzy neutrosophic weighted geometric operator is defined by

\[
TFNWG(m_1, m_2, ..., m_n) = m_1^{\omega_1} \otimes m_2^{\omega_2} \otimes m_3^{\omega_3} \otimes ... \otimes m_n^{\omega_n}
\]

\[
= \left(\prod_{p=1}^{n} a_p^{\omega_p} \cdot \prod_{p=1}^{n} b_p^{\omega_p} \cdot \prod_{p=1}^{n} c_p^{\omega_p} \cdot \prod_{p=1}^{n} d_p^{\omega_p} \right) \cdot \left(1 - \prod_{p=1}^{n} (1-e_p)^{\omega_p} \cdot 1 - \prod_{p=1}^{n} (1-f_p)^{\omega_p} \cdot 1 - \prod_{p=1}^{n} (1-g_p)^{\omega_p} \cdot 1 - \prod_{p=1}^{n} (1-h_p)^{\omega_p} \right).
\]

\[
\left(1 - \prod_{p=1}^{n} (1-i_p)^{\omega_p} \cdot 1 - \prod_{p=1}^{n} (1-j_p)^{\omega_p} \cdot 1 - \prod_{p=1}^{n} (1-k_p)^{\omega_p} \cdot 1 - \prod_{p=1}^{n} (1-l_p)^{\omega_p} \right)
\]

where, \(\omega_1, \omega_2, ..., \omega_n \) are the weight vectors and the sum of the weight vectors is 1.

Definition 11. [9] Graphical representation of trapezoidal neutrosophic number

Figure 1 shows that graphical representation of trapezoidal fuzzy neutrosophic number can be done in different ways. It is a linear trapezoidal neutrosophic number.

4-Proposed Distance Measure for Trapezoidal Fuzzy Neutrosophic Number

Here we propose a new distance measure for trapezoidal fuzzy neutrosophic number based on centroids. Firstly, individual graphical representation proposed measure is presented here with the individual representation of truth, indeterminacy, falsity membership functions and trapezoidal fuzzy neutrosophic fuzzy number described by Figure 2-Figure 6.

Centre point of the object is called centroid. It should lie inside the object. At this point, the three medians of the triangle intersect and is termed point of intersection. Centroid is the average of coordinate points in X axis and Y axis of each vertex of the triangle. Centroid is the fixed point of all linear transformation which maintains length in translation, rotation, glides and reflection.

The centroid of the truth, indeterminacy and falsity trapezoid is treated as a balance point for the trapezoid. The centroid of each part are estimated using the calculation of centroid and the simple area and this combination will generate a triangle. Also the distance is measured from the centroid of all the parts to X axis and Y axis. Here the area of all the parts are multiplied by the distance and...
find their sum to get the total value. And the sum of the products of the area and distances is divided by the total area and obtain the centroid of circumcentre described by x and y point. Since centroid based distance measure may be derived using Euclidean measure, here it is obtained from the circumcentre of the centroids and the authentic point for the trapezoidal fuzzy neutrosophic number.

\[T_{\tilde{n}}(x) \]

![Figure 2. Truth membership function of trapezoidal fuzzy neutrosophic set with centroid](image)

Suppose \(\tilde{n} = (a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4, c_1, c_2, c_3, c_4) \) be a trapezoidal fuzzy neutrosophic number. Based on the literature (Y. M. Wang et al. On the centroids of fuzzy numbers), we can get the centroid point \(O^T = (x^T_o(\tilde{n}), y^T_o(\tilde{n})) \) of the truth membership function of trapezoidal fuzzy neutrosophic number \(\tilde{n} \).

![Figure 3. Truth membership function of trapezoidal fuzzy neutrosophic set](image)
\[x^T_\circ (\vec{n}) = \frac{\int_{a_1}^{a_2} tf^L \, dx + \int_{a_1}^{a_2} x \cdot 1 \, dx + \int_{a_1}^{a_2} tf^R \, dx}{\int_{a_1}^{a_2} f^L \, dx + \int_{a_1}^{a_2} x \cdot 1 \, dx + \int_{a_1}^{a_2} f^R \, dx} = \frac{1}{3} \left[a_1 + a_2 + a_3 + a_4 - \frac{a_4 a_3 - a_1 a_2}{(a_1 + a_2) - (a_1 + a_2)} \right], \]

\[y^T_\circ (\vec{n}) = \frac{\int_{0}^{1} y (g^L - g^R) \, dy}{\int_{0}^{1} (g^L - g^R) \, dy} = \frac{1}{3} \left[1 + \frac{a_3 - a_2}{(a_1 + a_2) - (a_1 + a_2)} \right]. \]

Figure 4. Indeterminate membership function of trapezoidal fuzzy neutrosophic set with centroid

Figure 5. Indeterminate membership function of trapezoidal fuzzy neutrosophic number
we can get the centroid point \(O^I = (x_o^I(\bar{n}), y_o^I(\bar{n})) \) of indeterminacy membership function of trapezoidal fuzzy neutrosophic number \(\bar{n} \).

\[
x_o^I(\bar{n}) = \frac{\int_{b_1}^{b_2} x f_I^L(dx) + \int_{b_1}^{b_2} x \cdot 1(dx) + \int_{b_2}^{b_3} x f_I^R(dx)}{\int_{b_1}^{b_2} f_I^L(dx) + \int_{b_1}^{b_2} 1(dx) + \int_{b_2}^{b_3} f_I^R(dx)} = \frac{1}{3} \left[b_1 + b_2 + b_3 + b_4 - \frac{b_1 b_2 - b_1 b_4}{(b_4 + b_3) - (b_1 + b_2)} \right],
\]

\[
y_o^I(\bar{n}) = \frac{\int_{c_1}^{c_2} y(g_f^L - g_f^R)dy}{\int_{c_1}^{c_2} (g_f^L - g_f^R)dy} = \frac{1}{3} \left[1 + \frac{b_3 - b_2}{(b_4 + b_3) - (b_1 + b_2)} \right].
\]

Similarly, we can get the centroid point \(O^F = (x_o^F(\bar{n}), y_o^F(\bar{n})) \) of falsity membership function of trapezoidal fuzzy neutrosophic number \(\bar{n} \).

\[
x_o^F(\bar{n}) = \frac{\int_{c_1}^{c_2} x f_F^L(dx) + \int_{c_1}^{c_2} x \cdot 1(dx) + \int_{c_2}^{c_3} x f_F^R(dx)}{\int_{c_1}^{c_2} f_F^L(dx) + \int_{c_1}^{c_2} 1(dx) + \int_{c_2}^{c_3} f_F^R(dx)} = \frac{1}{3} \left[c_1 + c_2 + c_3 + c_4 - \frac{c_1 c_3 - c_1 c_2}{(c_4 + c_3) - (c_1 + c_2)} \right],
\]

\[
y_o^F(\bar{n}) = \frac{\int_{0}^{1} y(g_f^L - g_f^R)dy}{\int_{0}^{1} (g_f^L - g_f^R)dy} = \frac{1}{3} \left[1 + \frac{c_3 - c_2}{(c_4 + c_3) - (c_1 + c_2)} \right].
\]

Figure 6. Trapezoidal fuzzy neutrosophic number with circumcentre of Centroids
In the above figure 5, the red dot represents the center of gravity of the triangle consisting of O', O^T, and O^T. According to the coordinate formula of the center of gravity of the triangle, we can get the coordinates of red dots $O = (x(\tilde{n}), y(\tilde{n}))$.

$$x(\tilde{n}) = \frac{x^T_o(\tilde{n}) + x^I_o(\tilde{n}) + x^F_o(\tilde{n})}{3}$$

$$= \frac{1}{3} \left\{ \frac{1}{3} \left[a_t + a_2 + a_1 + a_4 - \frac{a_t a_1 - a_2 a_1}{a_t + a_1} - (a_t + a_2) \right]
+ \frac{1}{3} \left[b_t + b_2 + b_1 + b_4 - \frac{b_t b_1 - b_2 b_1}{b_t + b_1} - (b_t + b_2) \right]
+ \frac{1}{3} \left[c_t + c_2 + c_1 + c_4 - \frac{c_t c_1 - c_2 c_1}{c_t + c_1} - (c_t + c_2) \right] \right\}$$

$$= \frac{1}{9} \left(a_t + b_t + c_t \right) - \frac{1}{3} \left[a_t a_1 - a_2 a_1 \right] - \frac{1}{3} \left[b_t b_1 - b_2 b_1 \right] - \frac{1}{3} \left[c_t c_1 - c_2 c_1 \right]$$

$$y(\tilde{n}) = \frac{y^T_o(\tilde{n}) + y^I_o(\tilde{n}) + y^F_o(\tilde{n})}{3}$$

$$= \frac{1}{3} \left\{ \frac{1}{3} \left[a_t - a_2 \right] + \frac{1}{3} \left[b_t - b_2 \right] + \frac{1}{3} \left[c_t - c_2 \right] \right\}$$

$$= \frac{1}{9} \left(a_t - a_2 \right) + \frac{1}{3} \left[b_t - b_2 \right] + \frac{1}{3} \left[c_t - c_2 \right]$$

Definition 1: Let $\tilde{n}_1 = \{(a_1, a_2, a_3, a_4), (b_1, b_2, b_3, b_4), (c_1, c_2, c_3, c_4)\}$ and $\tilde{n}_2 = \{(e_1, e_2, e_3, e_4), (f_1, f_2, f_3, f_4), (g_1, g_2, g_3, g_4)\}$ be two trapezoidal fuzzy neutrosophic numbers, and their centroids are $O_1 = (x(\tilde{n}_1), y(\tilde{n}_1))$, $O_2 = (x(\tilde{n}_2), y(\tilde{n}_2))$ respectively, then the distance between \tilde{n}_1 and \tilde{n}_2 is

$$D(\tilde{n}_1, \tilde{n}_2) = \left(\sum_{i=1}^{4} a_t + \sum_{i=1}^{4} b_t + \sum_{i=1}^{4} c_t - \sum_{i=1}^{4} e_t - \sum_{i=1}^{4} f_t - \sum_{i=1}^{4} g_t \right) - \frac{(a_t a_1 - a_2 a_1)}{(a_t + a_1)} - \frac{(e_t e_1 - e_2 e_1)}{(e_t + e_1)} \left(\frac{b_t b_1 - b_2 b_1}{b_t + b_1} - \frac{f_t f_1 - f_2 f_1}{f_t + f_1} \right) - \frac{(c_t c_1 - c_2 c_1)}{(c_t + c_1)} - \frac{(g_t g_1 - g_2 g_1)}{(g_t + g_1)}$$

Theorem 1: This distance $D(\tilde{n}_1, \tilde{n}_2)$ of \tilde{n}_1 and \tilde{n}_2 fulfills the following properties:

Said Broumi, Malayalan Lathamaheswari, Ruipu Tan, Deivanayagampillai Nagarajan, Talea Mohamed, Florentin Smarandache and Assia Bakali, A new distance measure for trapezoidal fuzzy neutrosophic numbers based on the centroids.
1. \(0 \leq D(\vec{n}_1, \vec{n}_2) \leq 1;\)

2. \(D(\vec{n}_1, \vec{n}_2) = 0\) if and only if \(\vec{n}_1 = \vec{n}_2\), i.e., \(a_i = e_i, b_i = f_i\) and \(c_i = g_i\) hold for \(i = 1, 2, 3, 4;\)

3. \(D(\vec{n}_1, \vec{n}_2) = D(\vec{n}_2, \vec{n}_1)\).

4. If \(\vec{n}_1, \vec{n}_2, \text{and } \vec{n}_3\) are the trapezoidal fuzzy neutrosophic numbers then

\[
D(\vec{n}_1, \vec{n}_3) \leq D(\vec{n}_1, \vec{n}_2) + D(\vec{n}_2, \vec{n}_3)
\]

Proof

1. It is easy to prove \(0 \leq D(\vec{n}_1, \vec{n}_2)\). In addition, it can be seen from figure 1, the maximum distance is the distance between the point \((0,0)\) and the point \((1,1)\), or the point \((0,1)\) and the point \((1,0)\), assume the coordinates of centroids of \(\vec{n}_1\) and \(\vec{n}_2\) are \(O_1\) and \(O_2\), and \(O_1 = (0,1)\), and \(O_2 = (1,0)\), or \(O_1 = (1,0)\) and \(O_2 = (0,1)\), or \(O_1 = (0,0)\) and \(O_2 = (1,1)\), or \(O_1 = (1,1)\) and \(O_2 = (0,0)\), then the \(D(\vec{n}_1, \vec{n}_2) = 1\), otherwise, \(D(\vec{n}_1, \vec{n}_2) < 1\), thus \(0 \leq D(\vec{n}_1, \vec{n}_2) \leq 1\).

2. If \(\vec{n}_1 = \vec{n}_2\), i.e., \(a_i = e_i, b_i = f_i\) and \(c_i = g_i\), then

\[
D(\tilde{n}_1, \tilde{n}_2) = \frac{1}{9} \left[\sum_{i=1}^{4} \left(\begin{array}{c}
\frac{a_i a_3 - a_i a_2}{(a_i + a_3) - (a_i + a_2)} - \frac{e_i e_3 - e_i e_2}{(e_i + e_3) - (e_i + e_2)}
\end{array} \right)
\right]
\]

Thus,

\[
\left(\begin{array}{c}
\sum_{i=1}^{4} \frac{a_i a_3 - a_i a_2}{(a_i + a_3) - (a_i + a_2)} - \frac{e_i e_3 - e_i e_2}{(e_i + e_3) - (e_i + e_2)}
\end{array} \right) = 0,
\]

\[
\left(\begin{array}{c}
\frac{b_i b_3 - b_i b_2}{(b_i + b_3) - (b_i + b_2)} - \frac{f_i f_3 - f_i f_2}{(f_i + f_3) - (f_i + f_2)}
\end{array} \right) = 0,
\]

\[
\left(\begin{array}{c}
\frac{c_i c_3 - c_i c_2}{(c_i + c_3) - (c_i + c_2)} - \frac{g_i g_3 - g_i g_2}{(g_i + g_3) - (g_i + g_2)}
\end{array} \right) = 0,
\]
A new distance measure for trapezoidal fuzzy neutrosophic numbers based on the centroids

Thus

\[a_i = e_i, \quad b_i = f_i, \quad c_i = g_i, \] that is \(\tilde{n}_1 = \tilde{n}_2. \)

3. Since

\[
D(\tilde{n}_1, \tilde{n}_2) = D(\tilde{n}_2, \tilde{n}_1).
\]

4. Using Def. 8, we can prove (4).

Let \(\tilde{n}_1 = \{(a_1, a_2, a_3, a_4), (b_1, b_2, b_3, b_4), (c_1, c_2, c_3, c_4)\} \),

\(\tilde{n}_2 = \{(e_1, e_2, e_3, e_4), (f_1, f_2, f_3, f_4), (g_1, g_2, g_3, g_4)\} \) and
where \(\tilde{n}_3 = \{ (j_1, j_2, j_3, j_4), (k_1, k_2, k_3, k_4), (l_1, l_2, l_3, l_4) \} \) are the three trapezoidal fuzzy neutrosophic numbers then

\[
D(\tilde{n}_1, \tilde{n}_3) \leq D(\tilde{n}_1, \tilde{n}_2) + D(\tilde{n}_2, \tilde{n}_3)
\]

Using the results we have,

\[
D(\tilde{n}_1, \tilde{n}_3) = \frac{1}{9} \left[\sum_{i=1}^4 a_i + \sum_{i=1}^4 b_i + \sum_{i=1}^4 c_i - \sum_{i=1}^4 j_i - \sum_{i=1}^4 k_i - \sum_{i=1}^4 l_i - \left(\frac{a_4 a_3 - a_1 a_2}{(a_4 + a_3) - (a_1 + a_2)} - \frac{j_4 j_3 - j_1 j_2}{(j_4 + j_3) - (j_1 + j_2)} \right) \right.
\]

\[
+ \left(\frac{b_4 b_3 - b_1 b_2}{(b_4 + b_3) - (b_1 + b_2)} - \frac{k_4 k_3 - k_1 k_2}{(k_4 + k_3) - (k_1 + k_2)} \right) - \left(\frac{c_4 c_3 - c_1 c_2}{(c_4 + c_3) - (c_1 + c_2)} - \frac{l_4 l_3 - l_1 l_2}{(l_4 + l_3) - (l_1 + l_2)} \right) \right]
\]

\[
= \frac{1}{9} \left[\sum_{i=1}^4 a_i + \sum_{i=1}^4 b_i + \sum_{i=1}^4 c_i - \sum_{i=1}^4 j_i - \sum_{i=1}^4 k_i - \sum_{i=1}^4 l_i - \left(\frac{a_4 a_3 - a_1 a_2}{(a_4 + a_3) - (a_1 + a_2)} - \frac{j_4 j_3 - j_1 j_2}{(j_4 + j_3) - (j_1 + j_2)} \right) \right.
\]

\[
+ \left(\frac{b_4 b_3 - b_1 b_2}{(b_4 + b_3) - (b_1 + b_2)} - \frac{k_4 k_3 - k_1 k_2}{(k_4 + k_3) - (k_1 + k_2)} \right) - \left(\frac{c_4 c_3 - c_1 c_2}{(c_4 + c_3) - (c_1 + c_2)} - \frac{l_4 l_3 - l_1 l_2}{(l_4 + l_3) - (l_1 + l_2)} \right) \right]
\]
\[
\begin{aligned}
&\sum_{i=1}^{\frac{4}{3}} a_i + \sum_{i=1}^{\frac{4}{3}} b_i + \sum_{i=1}^{\frac{4}{3}} c_i - \sum_{i=1}^{\frac{4}{3}} e_i - \sum_{i=1}^{\frac{4}{3}} f_i - \sum_{i=1}^{\frac{4}{3}} g_i + \sum_{i=1}^{\frac{4}{3}} e_i + \sum_{i=1}^{\frac{4}{3}} f_i + \sum_{i=1}^{\frac{4}{3}} g_i - \sum_{i=1}^{\frac{4}{3}} j_i - \sum_{i=1}^{\frac{4}{3}} k_i - \sum_{i=1}^{\frac{4}{3}} l_i \\
&\left[\frac{a_i a_i - a_{a_i}}{b_{b_i} - b_{b_i}} - e_{e_i} - e_{e_i} \right] - \left(e_{e_i} - e_{e_i} \right) - \left(e_{e_i} - e_{e_i} \right) - \left(j_{j_i} - j_{j_i} \right) - \left(j_{j_i} - j_{j_i} \right)
\end{aligned}
\]

\[
\begin{aligned}
&\sum_{i=1}^{\frac{4}{3}} a_i + \sum_{i=1}^{\frac{4}{3}} b_i + \sum_{i=1}^{\frac{4}{3}} c_i - \sum_{i=1}^{\frac{4}{3}} e_i - \sum_{i=1}^{\frac{4}{3}} f_i - \sum_{i=1}^{\frac{4}{3}} g_i + \sum_{i=1}^{\frac{4}{3}} e_i + \sum_{i=1}^{\frac{4}{3}} f_i + \sum_{i=1}^{\frac{4}{3}} g_i - \sum_{i=1}^{\frac{4}{3}} j_i - \sum_{i=1}^{\frac{4}{3}} k_i - \sum_{i=1}^{\frac{4}{3}} l_i \\
&\left[\frac{a_i a_i - a_{a_i}}{b_{b_i} - b_{b_i}} - e_{e_i} - e_{e_i} \right] - \left(e_{e_i} - e_{e_i} \right) - \left(e_{e_i} - e_{e_i} \right) - \left(j_{j_i} - j_{j_i} \right) - \left(j_{j_i} - j_{j_i} \right)
\end{aligned}
\]

\[
\begin{aligned}
&\sum_{i=1}^{\frac{4}{3}} a_i + \sum_{i=1}^{\frac{4}{3}} b_i + \sum_{i=1}^{\frac{4}{3}} c_i - \sum_{i=1}^{\frac{4}{3}} e_i - \sum_{i=1}^{\frac{4}{3}} f_i - \sum_{i=1}^{\frac{4}{3}} g_i + \sum_{i=1}^{\frac{4}{3}} e_i + \sum_{i=1}^{\frac{4}{3}} f_i + \sum_{i=1}^{\frac{4}{3}} g_i - \sum_{i=1}^{\frac{4}{3}} j_i - \sum_{i=1}^{\frac{4}{3}} k_i - \sum_{i=1}^{\frac{4}{3}} l_i \\
&\left[\frac{a_i a_i - a_{a_i}}{b_{b_i} - b_{b_i}} - e_{e_i} - e_{e_i} \right] - \left(e_{e_i} - e_{e_i} \right) - \left(e_{e_i} - e_{e_i} \right) - \left(j_{j_i} - j_{j_i} \right) - \left(j_{j_i} - j_{j_i} \right)
\end{aligned}
\]
Using Def.9 we have,

\[
\begin{align*}
\sum_{i=1}^{4} a_i + \sum_{i=1}^{4} b_i + \sum_{i=1}^{4} c_i - \sum_{i=1}^{4} e_i - \sum_{i=1}^{4} f_i - \sum_{i=1}^{4} g_i - & \left(\frac{a_1 a_2 - a_1 a_2}{(a_1 + a_2) - (a_1 + a_2)} - \frac{e_1 e_2 - e_1 e_2}{(e_1 + e_2) - (e_1 + e_2)} \right) \\
& - \left(\frac{b_1 b_2 - b_1 b_2}{(b_1 + b_2) - (b_1 + b_2)} - \frac{f_1 f_2 - f_1 f_2}{(f_1 + f_2) - (f_1 + f_2)} \right) \\
& - \left(\frac{c_1 c_2 - c_1 c_2}{(c_1 + c_2) - (c_1 + c_2)} - \frac{g_1 g_2 - g_1 g_2}{(g_1 + g_2) - (g_1 + g_2)} \right) \\
& + \left(\frac{a_1 a_2 - a_1 a_2}{(a_1 + a_2) - (a_1 + a_2)} - \frac{e_1 e_2 - e_1 e_2}{(e_1 + e_2) - (e_1 + e_2)} \right) \\
& + \left(\frac{b_1 b_2 - b_1 b_2}{(b_1 + b_2) - (b_1 + b_2)} - \frac{f_1 f_2 - f_1 f_2}{(f_1 + f_2) - (f_1 + f_2)} \right) \\
& + \left(\frac{c_1 c_2 - c_1 c_2}{(c_1 + c_2) - (c_1 + c_2)} - \frac{g_1 g_2 - g_1 g_2}{(g_1 + g_2) - (g_1 + g_2)} \right)
\end{align*}
\]

\[
\leq \frac{1}{9} \left(\sum_{i=1}^{4} e_i + \sum_{i=1}^{4} f_i + \sum_{i=1}^{4} g_i - \sum_{i=1}^{4} j_i - \sum_{i=1}^{4} k_i - \sum_{i=1}^{4} l_i - \left(\frac{e_1 e_2 - e_1 e_2}{(e_1 + e_2) - (e_1 + e_2)} - \frac{j_1 j_2 - j_1 j_2}{(j_1 + j_2) - (j_1 + j_2)} \right) \\
& - \left(\frac{f_1 f_2 - f_1 f_2}{(f_1 + f_2) - (f_1 + f_2)} - \frac{k_1 k_2 - k_1 k_2}{(k_1 + k_2) - (k_1 + k_2)} \right) \\
& - \left(\frac{g_1 g_2 - g_1 g_2}{(g_1 + g_2) - (g_1 + g_2)} - \frac{l_1 l_2 - l_1 l_2}{(l_1 + l_2) - (l_1 + l_2)} \right) \right)
\]

\[
\leq D\left(\tilde{n}_1, \tilde{n}_2 \right) + D\left(\tilde{n}_2, \tilde{n}_3 \right) \text{ and hence the result (4).}
\]

5- Decision Making method based on new distance measure based on centroids

In this section, we establish an approach based on trapezoidal fuzzy neutrosophic number weighted geometric arithmetic operator and a new distance measure based on centroid to deal with trapezoidal fuzzy neutrosophic information. The proposed approach is described as follows.

Step 1: Apply trapezoidal fuzzy neutrosophic number weighted geometric arithmetic operator [39] to find the aggregated trapezoidal fuzzy neutrosophic numbers for all the alternatives.

Step 2: Use the proposed distance measure, find the distances between all the alternatives and the ideal trapezoidal fuzzy neutrooshic number.
Step 3: Rank the alternatives in which smaller value of distance indicate the best one.
Step 4: End

6- Numerical Example for the application of the proposed distance measure

In this section, a numerical example of a software selection problem and the aggregation operator called trapezoidal neutrosophic number weighted geometric averaging operator are get used from Ye [39] for a multiple attribute decision making problem is contributed to exhibit the application and effectiveness of the proposed distance measure under trapezoidal fuzzy neutrosophic environment. For a software selection process, consider candidate software systems are given as the set of five alternatives S_1, S_2, S_3, S_4, S_5 and the investment company need to take a decision according to four criteria: (i). the contribution to organization performance, (ii). The effort to transform from current system, (iii). The costs of hardware/software investment, (iv). The outsourcing software developer reliability denoted by C_1, C_2, C_3, C_4 respectively with the weight vector $\omega = (0.25, 0.25, 0.3, 0.2)^T$. The experts evaluate the five alternatives with respect to the four criteria under trapezoidal fuzzy neutrosophic environment and thus we can form the trapezoidal fuzzy neutrosophic decision matrix:

Table 1: Decision matrix using trapezoidal fuzzy neutrosophic numbers

\[
D = \begin{bmatrix}
(0.4, 0.5, 0.6, 0.7), (0.0, 0.1, 0.2, 0.3), (0.1, 0.1, 0.1, 0.1) & (0.0, 0.1, 0.2, 0.3), (0.0, 0.1, 0.2, 0.3), (0.2, 0.3, 0.4, 0.5) \\
(0.3, 0.4, 0.5, 0.5), (0.1, 0.2, 0.3, 0.4), (0.0, 0.1, 0.1, 0.1) & (0.2, 0.3, 0.4, 0.5), (0.0, 0.1, 0.2, 0.3), (0.0, 0.1, 0.2, 0.3) \\
(0.7, 0.7, 0.7, 0.7), (0.0, 0.1, 0.2, 0.3), (0.1, 0.1, 0.1, 0.1) & (0.4, 0.5, 0.6, 0.7), (0.1, 0.1, 0.1, 0.1), (0.0, 0.1, 0.2, 0.2) \\
(0.0, 0.1, 0.2, 0.2), (0.1, 0.1, 0.1, 0.1), (0.5, 0.6, 0.7, 0.8) & (0.4, 0.4, 0.4, 0.4), (0.0, 0.1, 0.2, 0.3), (0.0, 0.1, 0.2, 0.3) \\
(0.3, 0.4, 0.5, 0.6), (0.0, 0.1, 0.2, 0.3), (0.1, 0.1, 0.1, 0.1) & (0.3, 0.4, 0.5, 0.6), (0.1, 0.1, 0.1, 0.1), (0.1, 0.2, 0.3, 0.4) \\
(0.0, 0.1, 0.1, 0.2), (0.1, 0.1, 0.1, 0.1), (0.5, 0.6, 0.7, 0.8) & (0.3, 0.4, 0.5, 0.6), (0.0, 0.1, 0.2, 0.3), (0.1, 0.1, 0.1, 0.2) \\
(0.2, 0.3, 0.4, 0.5), (0.0, 0.1, 0.2, 0.3), (0.1, 0.2, 0.2, 0.3) & (0.1, 0.2, 0.3, 0.4), (0.1, 0.1, 0.1, 0.1), (0.3, 0.4, 0.5, 0.6) \\
(0.2, 0.3, 0.4, 0.5), (0.0, 0.1, 0.2, 0.3), (0.1, 0.2, 0.3, 0.3) & (0.1, 0.2, 0.3, 0.4), (0.1, 0.1, 0.1, 0.1), (0.1, 0.1, 0.1, 0.1) \\
(0.6, 0.7, 0.7, 0.8), (0.1, 0.1, 0.1, 0.1), (0.0, 0.1, 0.1, 0.2) & (0.1, 0.2, 0.3, 0.3), (0.1, 0.2, 0.3, 0.4), (0.2, 0.3, 0.4, 0.5)
\end{bmatrix}
\]

Here we used the developed method to obtain the best software system(s) and it is described as follows:

Step 1: Using trapezoidal fuzzy neutrosophic weighted geometric operator in Definition 10, get the aggregated trapezoidal fuzzy neutrosophic numbers of $n_i, i=1,2,3,4,5$ for the software system $S_i, i=1,2,3,4,5$ as follows:
Step 2: Use the proposed distance measure and find the distance between all \(n_i \), \(i = 1, 2, 3, 4, 5 \) and the ideal trapezoidal fuzzy neutrosophic number \(n_{\text{ideal}} = \left< \left(1,1,1,1,0,0,0,0\right), \left(0,0,0,0\right) \right> \).

The obtained distances are as follows:
\[
D(n_1, I) = 0.1712 = D_1,
D(n_2, I) = 0.1276 = D_2,
D(n_3, I) = 0.1000 = D_3,
D(n_4, I) = 0.1280 = D_4,
D(n_5, I) = 0.1246 = D_5
\]

Step 3: Find the best alternative by considering the smaller value of the distance as the smaller value of distance indicates the best one.

Using step 2 it is found that, \(D_1 > D_5 > D_2 > D_4 > D_3 \) and from the ranking order, \(S_3 \) is the best is the best software system.

7- Comparative analysis for the proposed distance measure and graphical representation

In this section, a comparative study is made to show the effectiveness of the proposed distance measure with the existing methods and to show the uniqueness of the proposed graphical representation.

Table 2: Comparative analysis with the existing methods

<table>
<thead>
<tr>
<th>Existing Methods</th>
<th>Score/ distance values</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>([6])</td>
<td>(D_1 = 0.6092)</td>
<td>(D_5 = 0.6321)</td>
</tr>
<tr>
<td>([16])</td>
<td>(D_1 = 0.6790)</td>
<td>(D_5 = 0.6564)</td>
</tr>
<tr>
<td>([42])</td>
<td>(D_1 = 0.7798)</td>
<td>(D_5 = 0.8124)</td>
</tr>
</tbody>
</table>

From the Table 2, it is found that, the third software system is the best one among the five alternatives. The results in the existing methods overlaps the proposed result. Therefore the proposed methodology using the proposed under trapezoidal fuzzy neutrosophic environment to solve the decision making problem suitably in comparison with the existing methods.
Table 3 represents the various forms of trapezoidal fuzzy neutrosophic numbers (TrFNN) have been listed out and it shows the uniqueness of the proposed graphical representation among the existing graphical representations.

Table 3: Comparative analysis with the existing graphical representation

<table>
<thead>
<tr>
<th>Trapezoidal fuzzy neutrosophic forms</th>
<th>Graphical representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darehmiraki [11]; A is a TrFNN,</td>
<td></td>
</tr>
<tr>
<td>$a'_1, a_1, a_2, a_3, a_4, a'_4 \in R$ such that</td>
<td></td>
</tr>
<tr>
<td>$a'_1 \leq a_1 \leq a'_2 \leq a_3 \leq a'_4 \leq a_4$</td>
<td></td>
</tr>
<tr>
<td>$A = \left{(a'_1, a_1, a_2, a_3, a_4, a'_4), T_A, I_A, F_A\right}$</td>
<td></td>
</tr>
</tbody>
</table>

Liang [21]; A is a TrFNN,	![Graphical representation](image2)
$a_1, a_2, a_3, a_4 \in [0,1]$ such that	
$0 \leq a_1 \leq a_2 \leq a_3 \leq a_4 \leq 1$	
$A = \left\{[a_1, a_2, a_3, a_4], T_A, I_A, F_A\right\}$	

Biswas [5]; A is aTpFNN,	![Graphical representation](image3)
$(a_{11}, a_{21}, a_{31}, a_{41}), (b_{11}, b_{21}, b_{31}, b_{41}), (c_{11}, c_{21}, c_{31}, c_{41}) \in R$	
such that	
$c_{11} \leq b_{11} \leq a_{11} \leq c_{21} \leq b_{21} \leq a_{21}$	
$c_{11} \leq b_{31} \leq a_{31} \leq c_{41} \leq b_{41} \leq a_{41}$	
and	
$A = \left\{(a_{11}, a_{21}, a_{31}, a_{41}), (b_{11}, b_{21}, b_{31}, b_{41}), (c_{11}, c_{21}, c_{31}, c_{41})\right\}$	
8-Advantages of the proposed measure

An efficient distance measure boosts the performance of task analysis or clustering. Also centroid method is specific and location based one and acquire the best geographical location in consideration of the distance between all the competences. Though the existing methods namely Euclidean measure, Manhattan measure Minkowski measure and Hamming distance measure have been applied in many real time problems they could not provide good results for the indeterminate data. Hence in this paper, we proposed a new distance measure for trapezoidal neutrosophic fuzzy numbers based on centroids and the significant advantages of the proposed measure are given as follows.

(i). Trapezoidal fuzzy neutrosophic number is a simple design of arithmetic operations and easy and perceptive interpretation as well. Therefore the proposed measure is an easy and effective one under neutrosophic environment.

(ii). Distance measure can be estimated with simple algorithm and significant level of accuracy can be acquired as well.

(iii). While taking the important decision of choosing the method to measure a distance it can be used due its simplicity.

(iv). The proposed distance measure is based on centroid and hence estimation of the distance between all objects of the data set is possible and indeterminacy also can be addressed.

(v). It is derived using Euclidean distance and hence it is very useful in correlation analysis.

(vi). Also it can be applied in location planning, operations management, Neutrosophic Statistics, clustering, medical diagnosis, Optimization and image processing to get more accurate results without any computational complexity.

9-Conclusion and Future Research

The concept of distance measure of trapezoidal fuzzy neutrosophic number has sufficient scope of utilization in different studies in various domain. In this paper, we proposed a new distance measure for the trapezoidal fuzzy neutrosophic number based on centroid with the graphical representation. Also, the properties of the proposed measure have been derived in detail. In addition, a decision making problem has been solved using the proposed measure as a numerical example. Further, comparative analysis has been done with the existing methods to show the potential of the proposed distance measure and various forms of trapezoidal fuzzy neutrosophic number have been listed and shown the uniqueness of the proposed graphical representation. Furthermore, advantages of the proposed measure are given. In future, the present work may be extended to other special types of neutrosophic set like pentagonal neutrosophic set, neutrosophic rough set, interval valued neutrosophic set and plithogeneic environments.
References

Received: Apr 17, 2020. Accepted: July 3 2020