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Abstract

The accelerated evolution towards jointly considering the physical, cyber, and

social space is expected to dramatically increase the interest of the research and

industrial community to build efficient, resilient, and secure Cyber Physical Social

Systems. In this dissertation, we focus our research activities on devising decen-

tralized intelligent decision making models, frameworks, and algorithms to support

the smooth operation of Cyber Physical Social Systems. The proposed decentral-

ized intelligent decision making models are jointly exploiting theories from the field

of Economics, such as Game Theory and Contract Theory, and from the field of

Computer Science, such as Reinforcement Learning concepts. Reinforcement learn-

ing is applied to allow for humans to make informed decisions in the considered

Cyber Physical Social Systems based off of the dynamically changing environment

around them. Additionally, contract theoretic and game theoretic models allow for

us to accurately depict the relationships between the different involved entities in the

examined system. Several research problems have been examined which can be sum-
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marized as follows: (i) socio-physical human orchestration in smart cities, (ii) socio-

aware public safety framework design, (iii) unmanned aerial vehicle or UAV-enabled

dynamic multi-target tracking and sensing framework, (iv) resource orchestration in

wireless powered communication public safety systems, (v) health data acquisition

from wearable devices during a pandemic by following a techno-economics approach,

(vi) museum and visitor interaction and feedback orchestration enabled by labor eco-

nomics, and (vii) design and operation of prosumer-centric self-sustained smart grid

systems. Finally, all the above problems are thoroughly evaluated and tested via a

series of simulations and emulations with regards to the main characteristics of their

operation, as well as against other approaches from the literature.
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Chapter 1

Introduction

1.1 Motivation

Many recent advances in cyber-physical systems have allowed for new and more

sophisticated interactions in smart cities [1]. As there is more access to information

and data, it becomes more important to not just utilize or provide data, but to

do so in an intelligent and informed manner [2]. Providing this data and utilizing

it correctly helps facilitate better smart services throughout people’s lives as these

systems will have the information available to them to make informed decisions about

how to best provide for their individuals [3]. Additionally, it is important to more

accurately model human decision making, while it would be easy to simply provide

all information to these smart systems, it would not accurately model human decision

making [4]. Human’s will naturally exhibit risk averse decision making behaviours, a

reluctance to participate without a reward, and competitiveness amongst each other

while sharing the same pool of resources [5].

Motivated by the above observations and due to the rising human-centric tech-

nological achievements, Cyber Physical Social Systems (CPSS) arise as a new Cyber

1



Chapter 1. Introduction

Physical Systems paradigm that encompasses the digital fusion among human, com-

puters, networks, and smart objects and devices [6]. CPSS consist not only of raw

sensing and actuating hardware and software, but also consider the humans behavior,

actions, decisions, interactions, and social characteristics in order to plan their effi-

cient operation [7]. Given the joint consideration of all those heterogeneous aspects

within CPSS, these systems are characterized as complex and nowadays, they lack

effective design approaches to systematically study their operation [8]. The ultimate

goal of the CPSS is to bridge the gap among the Cyber Physical and the Cyber Social

systems in order to meet the humans’ social interaction demands and appropriately

adapt to the physical world conditions. Indicative applications of the CPSS include,

but are not limited to, smart home [9], smart cities [10, 11], autonomous vehicles

[12], recommendation and advertisement systems [13, 14, 15], smart medical services

[16, 17], smart grid systems [18, 19, 20], smart agriculture [21, 22, 23], public safety

[24, 25], interactive cultural spaces [26], smart secure systems [27, 28, 29], just to

name a few of them [30, 31].

CPSS is developed in a virtual three dimensional environment, consisting of the

(i) social, (ii) physical, and (iii) cyberspace dimensions. The building components of

the CPSS are (1) the sensing devices, (2) physical objects and smart things [32], (3)

the humans, and the (4) networking [33], computing, communications, and control

functionalities [34, 35, 36]. Within the created three dimensional research space of

the CPSS, the main research challenges that have been identified are listed below

[37, 38]:

1. Human behavior and interaction with the environment

2. Human-computer interaction

3. Context awareness and management

4. Device management and discovery

2



Chapter 1. Introduction

5. Social computing

6. Seamless migration technologies

7. Security, and privacy

Given the increased heterogeneity and complexity of the CPSS, the methodolo-

gies, which should be devised in order to deal with the aforementioned research

challenges, should be of distributed and decentralized nature. The latter observation

is a fundamental principle within CPSS, as centralized approaches could not scale in

such complex systems for the following indicative reasons: (a) the physical infrastruc-

ture is owned by different service, internet, network, computing, content providers,

(b) the humans social and behavioral characteristics are private and known only by

each entity itself, (c) the cyberspace is by nature distributed with out having a sin-

gle point of control. The decentralized nature of the CPSS motivates the study of

decentralized approaches that can provide the enhanced flexibility both to the CPSS

as a whole, and to its entities to act in an autonomous and intelligent manner and

adapt in a real-time manner in the dynamic changes of the environment.

Based on the above observation, this Ph.D. dissertation is motivated by the need

of devising decentralized methodologies, frameworks, models, and algorithms in or-

der to study the CPSS and their variety of functionalities, applications, and services

that they can offer to the end-users, i.e., the humans. In the following subsection, we

present the main characteristics and properties of three main theoretical techniques

that have been used in order to perform the presented research. Those techniques

are: (i) Contract Theory [39], (ii) Game Theory [40], and (iii) Reinforcement Learn-

ing [41]. Based on those techniques, which define the fundamentals of this Ph.D.

dissertation, several applications within smart cities scenarios have been examined,

such as human orchestration in visiting points of interest [42], data collection from

citizens in public safety scenarios [43], multi-target tracking and sensing assisted by
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Unmanned Aerial Vehicles [44], resource management in wireless powered communi-

cations [45], health data acquisition during a pandemic, humans interactions within

cultural places, and demand response management within smart grid systems.

1.2 Decentralized Intelligent Decision-Making

1.2.1 Contract-theoretic Models

Contract theory models the relationship and interactions between an employer and

an employee [39]. This model allows for expectations for effort and reward to be

balanced based on the capability of each employee, with the employee providing an

appropriate amount of effort based on their own individual ability [46]. This results

in the employer providing a personalized reward that encourages getting this effort

from the employee.

Specifically, Contract Theory (CT), lying in the area of Labor Economics, pro-

vides the mathematical foundations to create mutually agreeable contracts or ar-

rangements between economic players, i.e., principal or employer(s) and agents or

employees, in presence of complete or incomplete information (often referred to as

asymmetric information). The incompleteness of information refers to the unknown

by the principal agents’ private characteristics that under typical circumstances steer

the contract formulation. Under this concept, the principal creates contract bundles

based on the statistical knowledge of the potential agents’ private information, i.e.,

the agents’ types, to motivate them provide back their effort and hence, reveal their

actual type [47].

As a means of providing the appropriate incentives to the humans to cooperate

in the direction of the CPSS’s ultimate objective, Contract Theory encompasses the

notion of the end-users’ personal utility satisfaction, i.e., the end-users’ achievement
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of a payoff greater or equal to a threshold value. Therefore, the maximization of the

ultimate CPSS’s objective is pursued subject to the end-users’ personal utility func-

tions satisfaction [48]. From the CPSS’s perspective, the principal and the agents can

correspond to different entities of the CPSS architecture under consideration and can

target different metrics. Under this concept, a wide variety of optimization problems

can be formulated, concurrently, targeting different metrics from the system’s and

the humans’ perspective.

In the following subsections, we present the two major models of agency prob-

lems that are formulated and solved under the principles of Contract Theory, namely

the Adverse Selection and the Moral Hazard, whose potential of expressing typical

CPSS problems (e.g., crowd-sourcing [49], human-orchestration under different prin-

cipal and agents’ utility functions) will be evaluated in the context of the Ph.D.

dissertation.

1.2.2 Adverse Selection Problem

One of the most common problems that arises between a principal and an agent

that falls into the range of adverse selection problem modeling is the ”employment”

contract, under which the agent’s desired performance/effort by the principal and the

principal’s reward back to the agent, are agreed. Specifically, the principal is unaware

of the prospective agent’s capabilities, i.e., the agent’s private information, and tries

to elicit this private information via its contract offer. Following the revelation

principle, the principal can offer multiple employment contracts destined to different-

capability agents, and each agent selects the appropriate contract offer for its type,

i.e., the one that maximizes its personal utility. As such, the agent ultimately reveals

its actual type to the principal.

Let us consider that there areN different agent types, denoted as θi, i ∈ {1, · · · , N}
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that bear different private information. Although there exists information asymmetry

between the principal and the agents, the principal possesses statistical information

regarding the existence/occurrence of different agent types. Hence, we define as λi

the probability of facing the agent type θi, such that
N∑
i=1

λi = 1. The contract bundle

designed and offered by the principal to each agent i is denoted as {pi, ri}, where

pi corresponds to the agent’s effort wanted by the principal and ri is the principal’s

reward provided back to the agent. Therefore, we formulate the principal’s expected

utility function as the principal’s expected profit by the agents’ efforts minus their

provided rewards, i.e., Upr =
N∑
i=1

[λi · (pi−C · ri)], where C ∈ R+ is the principal’s unit

cost of its provided reward to each agent. In a similar manner, the agent’s i personal

utility function is defined as Ui = θi · e(ri) − pi, where the first term expresses the

agent’s evaluation of its received reward minus its provided effort. Specifically, the

agent’s evaluation function of reward e(ri) is strictly increasing and concave with

respect to the agent’s i received reward (i.e., e(0) = 0, e′(ri) > 0, e′′(ri) < 0) and is

commonly modeled as
√
ri or log(1 + ri).

Following the adverse selection problem formulation, the principal’s utility func-

tion Upr is maximized subject to the agents’ satisfaction of their personal utilities

Ui, ∀i ∈ {1, . . . , N}, expressed by the Individual Rationality and Incentive Compat-

ibility constraints, as described below.

Definition 1. (Individual Rationality (IR)) A contract bundle {pi, ri} satisfies

the individual rationality constraint if each agent receives a non-negative utility, i.e.,

θi · e(ri)− pi ≥ 0, ∀i ∈ {1, . . . , N}. (1.1)

Definition 2. (Incentive Compatibility (IC)) Each agent must select the con-

tract bundle {pi, ri} that is designed specifically for their own type θi, i.e.,

θi · e(ri)− pi ≥ θi · e(r′i)− p′i, ∀i, i′ ∈ {1, . . . , N}, i ̸= i′. (1.2)

The IR constraint ensures the participation of each agent in the contract agreement,
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by marginally satisfying the agent’s personal utility function, while the IC constraint

guarantees that each agent can only receive the highest utility when selecting the

contract bundle designed for its own type. Therefore, the optimization problem to

be solved can be written as,

max
{pi,ri}∀i∈{1,...,N}

Upr =
N∑
i=1

[λi · (pi − C · ri)] (1.3a)

s.t. θi · e(ri)− pi ≥ 0, ∀i ∈ {1, . . . , N} (1.3b)

θi · e(ri)− pi ≥ θi · e(ri′)− pi′ , ∀i, i′ ∈ {1, . . . , N}, i ̸= i′ (1.3c)

It should be noted that the adverse selection problem model presented in the cur-

rent section corresponds to the discrete agent type case and can, also, be generalized

to the continuous agent type case to fit more realistic scenarios.

1.2.3 Moral Hazard Problem

In the adverse selection problem formulation, the notions of agent’s effort and agent’s

performance were interchangeably used, assuming that a specific amount of effort

yields in a proportional manner to an amount of performance. However, in several

realistic scenarios, the agent’s effort is costly and its ultimate performance observed

by the principal differs from the effort that has been actually exerted. In order

to model such problems, where the agent’s effort is hidden and only the final per-

formance is observable by the principal, the moral hazard problem formulation is

adopted.

According to the basic moral hazard model, the agent’s performance q is defined

as a noisy signal of its actual provided effort a, such as q = a + εq, where εq ∼

N(µq, σ
2
q ). Given that the principal is unaware of the agent’s effort, the principal

has to strategically reward the agent considering a double compensation scheme that
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includes a fixed reward t and a variable s. The fixed amount of reward is intended

to incentivize the agent to provide its best effort and hence, is offered while signing

the contract. On the contrary, the variable reward is offered as long as the principal

observes the agent’s ultimate performance and its purpose is to compensate the

agent’s incurred cost of providing its best effort. Thus, the total reward provided

to the agent is defined as r = t + s · q. The agent is assumed to have constant

absolute risk averse (CARA) preferences, meaning that the agent’s attitude towards

risk is constant as its reward increases. As a result, we formulate the agent’s personal

utility as Ua = −e−η[r−ψ(a)], where η > 0 is the agent’s coefficient of absolute risk

aversion (η = −U ′′
a /U

′
a), the higher the value of which corresponds to less incentives

for the agent to exert an effort. Also, the term ψ(a) corresponds to the agent’s cost

function of providing its effort and is assumed to be quadratic, such as ψ(a) = 1
2
ca2.

The principal’s utility function is modeled as the evaluation of the agent’s ultimate

performance minus its total offered compensation, i.e., Upr = q − r = (1− s) · a− t.

Considering the problem description above, the contract bundle designed and

offered by the principal to the agent is denoted as {a, r}, where a corresponds to

the agent’s actual effort and r is the principal’s total provided reward. Similarly to

the adverse selection model, the principal’s utility Upr is maximized subject to the

agent’s satisfaction of its personal utility Ua. Thus, the optimization problem to be

solved can be written as follows.

maxUpr = (1− s) · a− t (1.4a)

s.t. E[−e−η[r−ψ(a)]] ≥ Umin (1.4b)

a ∈ argmax
a

E[−e−η[r−ψ(a)]] (1.4c)

where Umin is the minimum acceptable utility for the agent to sign the contractual

agreement. In accordance with the adverse selection model, the principal has to

reassure the agent’s marginal participation in the contract by satisfying its personal
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utility function, as imposed by the first constraint of the optimization problem, i.e.,

the IR constraint. The second constraint maps to the IC constraint and guarantees

that the agent can maximize its personal utility when selecting the right amount of

effort.

1.2.4 Game Theory & Reinforcement Learning

Game Theory has been recognized as a field of applied mathematics targeting at

the study of strategic decision making in conditions of competition, collaboration,

and/or conflict, holding its foundations from the book of John von Neumann and

Oskar Morgenstern in “Theory of Games and Economic Behavior”, while it was

further extended and formalized by John Nash, who mainly focused his research

work on non-cooperative games. Game Theory, was initially introduced as a theory

related to social and economic disciplines, however, nowadays it has been widely

accepted and adopted as a fundamental, useful and powerful tool across various

areas including computer engineering, computer science, Internet of Things, Cyber

Physical Systems, Cyber Physical Social Systems, business, and wireless networking,

among others [50].

Game Theory is built upon the concept of a game, representing an interaction

between different rational entities, or players, whose individual decisions affect each

other’s payoff and actions, who aim to maximize their expected benefit based on their

current status of information. The games are modeled based on the players’ possible

and feasible strategies, representing the set of available options to the involved entities

under which they define their most beneficial decisions and are determined as pure

(if the decision environment is deterministic), or mixed if multiple options can be

probabilistically selected during the game. The decisions of the entities lead to a

corresponding outcome which provides a payoff or utility to the entities, representing
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a quantification of the entities gains or losses from their corresponding actions.

Different variations of games exist referring to different conditions of interactions

among the entities, i.e., players based on the considered situation.

• Static and dynamic games: The first type of games refers to situations where

the involved entities have a certain amount of knowledge which remains the

same during the game, while dynamic games imply that users can gain infor-

mation from their previous actions.

• Zero-sum and non zero-sum games: The first indicates a strictly competitive

situation where the benefit of one entity leads to an equivalent loss of the other

entities, while the second category refers to a situation where the cumulative

gains and losses of the entities are not complementary. The involved entities

can be either competitive or non-competitive among each other.

• Non stochastic and stochastic games: In stochastic games, the game is played

in stages with a certain state to evolve according to a probabilistic rule.

• Games with complete and incomplete information: Complete information games

consider that the information available among the involved entities is common

knowledge to everybody involved int he game, while incomplete information

games deal with situations where the involved entities are aware of only partial

information of the game’s characteristics.

• Non-cooperative and cooperative games: In cooperative games the involved

entities can form collaborations towards achieving optimal outcomes, while

in non-cooperative games the involved entities compete with each other often

having conflicting interests [51, 52, 53].

• Games with perfect or imperfect background knowledge: In the first type, the

involved entities are fully aware of the history of the game, while in the latter
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this does not hold true.

Integrating Reinforcement Learning (RL) algorithms and techniques can facili-

tate the interaction of humans with the CPSS in order to handle in real time aspects

like crowdsourcing, crowdsensing, coordination among them, navigation, and many

more. Reinforcement Learning can support the humans to learn from their environ-

ment and adjust the resource allocation of the system’s limited available resources to

the needs of its human by introducing intelligent resource management and decision

making tools related to the main goal of the CPSS, e.g., public safety, health mon-

itoring, etc. Furthermore, Reinforcement Learning methodologies (e.g., Gradient

Ascent Learning, Log Linear Learning, Q-learning) can be applied to different sce-

narios and can play an important role for the CPSS to operate more autonomously

and automatically optimize many of its functions. In such a way, the CPSS can

organize itself and lead to decentralized structures, with the humans to become part

of the decision making process without pushing large volumes of data to the central-

ized entities, e.g., Cloud, developing a parallel processing capacity which accelerates

the communication and minimizes unnecessary coordination among the humans. It

should be noted that a centralized approach would not scale within a CPSS system

due to its increased heterogeneity, the dynamic manner that it evolves over time, the

plethora of diverse involved entities, and the threat of single point of failure.

Subsequently, the CPSS can optimize its resources by better understanding the

priorities of its involved entities, decrease the decision making time, and manage

congestion in order to deliver superior quality of services and an overall more holistic

experience. The above are already a reality in recent CPSS paradigms (mobile edge

caching, mobile edge computing etc.), hence it is of vital importance to invest more

in designing Reinforcement Learning techniques into CPSS operations within realis-

tic smart applications, such as smart cities, smart health, and others. In this Ph.D.

dissertation, we have elaborated more on the Gradient Ascent Reinforcement Learn-
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ing algorithms and their applicability in real time decision making in CPSS. The

introduced algorithms are coupled either with contract-theoretic or game-theoretic

approaches, which jointly enable the involved entities to perform the real decision

making by sensing and accounting for the dynamic change of the surrounding en-

vironment. The main parameters that have been used in order to evaluate the

performance of these algorithms are their execution time and the efficiency of the

solutions that they converge based on the main goal of the CPSS at each of the

examined research problems.

1.3 Contributions, Publications, and Organization

1.3.1 Contributions

The accelerated evolution towards jointly considering the physical, cyber, and social

space is expected to dramatically increased the interest of the research and industrial

community to build efficient, resilient, and secure Cyber Physical Social Systems. In

this dissertation, we focus our research activities on devising decentralized intelli-

gent decision making models, frameworks, and algorithms to support the smooth

operation of Cyber Physical Social Systems. The proposed decentralized intelligent

decision making models are jointly exploiting theories from the field of Economics,

such as Game Theory and Contract Theory, and from the field of Computer Sci-

ence, such as Reinforcement Learning concepts. Reinforcement learning is applied

to allow for humans to make informed decisions in the considered Cyber Physical

Social Systems based off of the environment around them. Additionally, contract

theoretic and game theoretic models allow for us to accurately depict the relation-

ships between the different involved entities in the examined system. Several research

problems have been examined which can be summarized as follows: (i) socio-physical
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human orchestration in smart cities, (ii) socio-aware public safety framework design,

(iii) unmanned aerial vehicle or UAV-enabled dynamic multi-target tracking and

sensing framework, (iv) resource orchestration in wireless powered communication

public safety systems, and (v) health data acquisition from wearable devices during

a pandemic by following a techno-economics approach, (vi) museum and visitor in-

teraction and feedback orchestration, (vii) prosumer-centric self-sustained smart grid

systems. Finally, all the above problems are thoroughly evaluated and tested via a

series of simulations and emulations with regards to the main characteristics of their

operation, as well as against other approaches from the literature.

1.3.2 Publications

All of the research work presented in this Ph.D. thesis is published or submitted

for publication in peer-reviewed journals and conferences. At the beginning of the

following list, we present the peer-reviewed and published research papers, while at

the end of the list we present separately the research work being submitted and under

review.

1. N. Patrizi, E.E. Tsiropoulou, and S. Papavassiliou, ”Health Data Acquisition

from Wearable Devices during a Pandemic: A Techno-Economics Approach,”

in IEEE ICC, 2021. pp. 1-6, 2021

2. N. Patrizi, G. Fragkos, E.E. Tsiropoulou, and S. Papavassiliou, ”Contract -

Theoretic Resource Control in Wireless Powered Communication Public Safety

Systems,” in IEEE GLOBECOM, pp. 1-6, 2020.

3. N. Patrizi, G. Fragkos, K. Ortiz, M. Oishi, and E.E. Tsiropoulou, ”A UAV-

enabled Dynamic Multi-Target Tracking and Sensing Framework,” in IEEE

GLOBECOM, pp. 1-6, 2020.
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4. G. Fragkos, N. Patrizi, E. E. Tsiropoulou, and S. Papavassiliou, ”Socio-aware

Public Safety Framework Design: A Contract Theory based Approach,” ICC

2020 - 2020 IEEE International Conference on Communications (ICC), Dublin,

Ireland, pp. 1-7, 2020.

5. N. Patrizi, P.A. Apostolopoulos, K. Rael, and E.E. Tsiropoulou, ”Socio-

physical Human Orchestration in Smart Cities,” in IEEE International Con-

ference on Smart Computing (SMARTCOMP), pp. 115-120, 2019.

6. N. Patrizi, S.K. LaTouf, E.E. Tsiropoulou, and S. Papavassiliou, ”Prosumer-

centric Self-sustained Smart Grid Systems” in IEEE Systems Journal (to ap-

pear)

The research work under review are listed below:

1. N. Patrizi, S.K. LaTouf, E.E. Tsiropoulou, and S. Papavassiliou, ”Museum

and Visitor Interaction & Feedback Orchestration Enabled by Labor Eco-

nomics,” in IEEE Transactions on Computational Social Systems. (major

revision)

1.3.3 Organization

This section summarizes the main structure and organization of the rest of the doc-

ument.

Chapter 2 presents a socio-physical human orchestration framework in smart cities

based on game theory and reinforcement learning. The efficient management of a

smart city and the improvement of the quality of humans’ every-day life are becoming

challenging problems due to smart cities’ increased heterogeneity and complexity. In

this chapter, we present a novel socio-physical human orchestration framework to
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deal with the aforementioned issues, by capitalizing on recent advances in game

theory and reinforcement learning. Initially, each human selects, in a distributed

manner, a Point of Interest (PoI) that it wants to visit, by acting as stochastic

learning automaton, exploiting the socio-physical conditions of the environment while

learning from its previous experiences. As a result, those humans that have selected

a specific PoI to visit, ”compete” with each other in order to finally perform their

visit. The humans’ behavior is studied as a non-cooperative game among them, via

adopting the theory of minority games, while the concluding Nash equilibrium point

identifies the humans that will finally visit each PoI. A low complexity algorithm is

introduced to realize the overall framework, while the performance of the proposed

approach is evaluated through modeling and simulation under several scenarios, and

its superiority is demonstrated.

Chapter 3 proposes a socio-aware public safety framework design based on a contract-

theoretic approach. Given the substantial penetration of social networks in citizens’

everyday life activities, the success of a public safety system depends on the citi-

zens’ incentivization by the Emergency Control Center (ECC), and their effective

effort contribution in the overall disaster management operation. In this chapter, we

introduce a formal method based on the principles of Contract Theory, to identify

the optimal rewards to the citizens from the ECC’s perspective, and the optimal in-

vested effort from the citizens’ side, referred to as contract pairs. The identification

of these contract pairs (i.e., rewards and respective efforts) between the ECC and

each citizen, depend on each citizen’s social and communication characteristics that

are used to define their specific type and profile, while they are properly reflected

in the corresponding designed utility functions to be optimized. The problem under

consideration is treated for both cases of complete (ideal) and incomplete (realistic)

information availability, with respect to the level of knowledge of the ECC about the

exact type of each citizen. The overall framework was evaluated via modeling and

simulation, in terms of its efficiency and effectiveness, by studying multiple operation

15



Chapter 1. Introduction

approaches and scenarios.

Chapter 4 introduces a Unmanned Aerial Vehicle or UAV-enabled dynamic multi-

target tracking and sensing framework. In this chapter, initially, a holistic reputation

model is introduced to evaluate the targets’ potential in offloading useful data to the

UAVs. Based on this model, and taking into account UAVs and targets tracking

and sensing characteristics, a dynamic intelligent matching between the UAVs and

the targets is performed. In such a setting, the incentivization of the targets to per-

form the data offloading is based on an effort-based pricing that the UAVs offer to

the targets. The emerging optimization problem towards determining each target’s

optimal amount of offloaded data and the corresponding effort-based price that the

UAV offers to the target, is treated as a Stackelberg game between each target and

the associated UAV. The properties of existence, uniqueness and convergence to the

Stackelberg Equilibrium are proven. Detailed numerical results are presented high-

lighting the key operational features and the performance benefits of the proposed

framework.

Chapter 5 presents a contract-theoretic resource control in wireless powered com-

munication public safety systems. Recent technological advances in the use of UAVs

and Wireless Powered Communications (WPC) have enabled the energy efficient op-

eration of the Public Safety Networks (PSN) during disaster scenarios. In this chap-

ter, an energy efficient information flow and energy harvesting framework capturing

users’ risk-aware characteristics is introduced based on the principles of Contract

Theory. To better support the operational effectiveness of the proposed framework,

users are clustered in rescue groups following a socio-physical-aware group formation

mechanism, while rescue leaders for each group are selected. A reinforcement learn-

ing approach is applied to enable the optimal matching between the UAVs and the

rescue leaders in a distributed and efficient manner. The proposed contract-theoretic

framework models the UAVs-victims relation based on a labor market setting via of-
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fering rewards to the users (incentives) in order to compensate them for their invested

labor (reporting information). Detailed numerical results demonstrate the benefits

and superiority of the proposed framework under different settings.

Chapter 6 studies the health data acquisition from wearable devices during a pan-

demic by following a techno-economics approach. In this chapter, we introduce a

behavioral and labor economics based approach to address the challenge of citizens’

health data acquisition during a pandemic, in a smart city scenario consisting of the

healthcare operator, multiple businesses, and citizens with wearable devices. Ini-

tially, a reinforcement learning approach is adopted in order for the citizens to select

the business to visit, exploiting both social and physical characteristics of all involved

entities. Subsequently, following the principles of behavioral economics, the problem

of the citizens’ incentivization by the businesses to provide their health data via offer-

ing personalized rewards is studied. The solution of the corresponding optimization

problem concludes to a contract between the business and each citizen associated

with this business, containing the optimal reward and optimal portion of reported

data. The process is completed by introducing an optimization framework, where

the healthcare operator incentivizes the businesses to provide the collected health

data to it, by providing them tailored rewards. This is founded on the principles

of Contract Theory, where the health-care operator aims at maximizing its benefit

from the data acquisition process, while guaranteeing that the optimal determined

contracts are acceptable by the respective businesses. Finally, through modeling and

simulation, the performance, effectiveness, and robustness of the overall proposed

framework is demonstrated, under various realistic scenarios.

Chapter 7 evaluates a contract-theoretic model to enable visitors of museum to

provide feedback to the museum in a fairly-incentivized manner. In this chapter,

we address the problem of modeling and orchestrating the interactions between a

museum and its visitors, viewing the system as a CPSS. In particular, the museum
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operator provides monetary rewards to the visitors in exchange for their contribu-

tions, which are expressed as their total number of provided feedback evaluations of

visited exhibits over their touring time. The interactions among the museum oper-

ator and visitors are captured in appropriately designed utility functions following

the principles of labor economics, while the visitors’ behavioral characteristics are

utilized to define their unique types. Under such a setting and formulation, the goal

of the museum operator is to optimize their profit and benefits, while jointly sat-

isfying the visitors’ quality of experience prerequisites, as reflected via their utility

functions. The corresponding optimization problem is treated and solved under the

general and realistic case of incomplete information, wherein the museum operator

estimates the visitors’ types probabilistically. The resulting outcome, referred to as

”optimal contract” jointly determines the visitors’ optimal contributions, as well as

the museum operator’s optimal amount of personalized rewards provided to each vis-

itor. The performance of the proposed approach is evaluated through modeling and

simulation, and detailed numerical results are presented to demonstrate the key ben-

efits of the proposed optimization approach, versus either type-agnostic or heuristic

alternatives.

Chapter 8 presents a prosumer-centric self-sustained Smart Grid system. Modern

Smart Grid systems exploit a two-way interaction paradigm between the utility and

the electricity user and promote the role of prosumer, as a new user type, able to

generate and sell energy, or consume energy. Within such a setting, the prosumers

and their interactions with the microgrid system become of high significance for its

efficient operation. In this chapter, to model the corresponding interactions, we in-

troduce a labor economics-based framework by exploiting the principles of Contract

Theory, that jointly achieves the satisfaction of the various interacting system enti-

ties, that is the Microgid Operator (MGO) and the prosumers. The MGO offers per-

sonalized rewards to the sellers and buyers, to incentivize them to sell and purchase

energy, respectively. To provide a stable and efficient operation point, while aiming
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at jointly satisfying the profit and requirements of the involved competing parties,

optimal personalized contracts, i.e., rewards and amount of sold/purchased energy,

are determined, by formulating and solving contract-theoretic optimization problems

between the MGO and the sellers or byers. The analysis is provided for both cases

of complete and incomplete information availability regarding the prosumers’ types.

Detailed numerical results are presented to demonstrate the operation characteristics

of the proposed framework under diverse scenarios.

Lastly, Chapter 9 concludes the Ph.D. dissertation with an overall summary of the

content and a review of its contributions. Additionally, a segment is devoted to the

presentation of potential future research directions stemming from this work.
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Chapter 2

Human Orchestration in Smart

cities

2.1 Introduction

Recent years have witnessed the rapid growth of smart cities which, among other

benefits, provide smart service systems to enrich and support people’s lives and en-

tertainment options. [54]. People can join different social events (e.g., dining out,

playing sports) by visiting different Points of Interest (PoIs), e.g., restaurants, stadi-

ums, tax offices, in their daily life and decide which places to go to according to some

social and physical parameters (e.g., location preferences, geographical proximity).

The efficient orchestration of humans within a smart city can result in many fold

benefits and catalyze the sustained economic growth of the smart city. However, the

tremendous increase in available information for decision-making, the large number

of possible PoIs within a smart city along with specific social and physical character-

istics and constraints, makes the problem of selecting the most interesting PoI and

deciding whether to visit it, extremely challenging.
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2.1.1 Related Work & Motivation

Recently, a number of research works have been proposed in the context of planning

PoI visits, mainly exploiting the information extracted from the event-based social

networks (EBSN) such as Foursquare, Meetup, and Twitter. In [55], the authors

analyze the humans’ behavior in EBSNs by exploiting their social activities and

interactions towards explaining their attendance in PoIs and identifying the most

influential factors on the humans’ decisions. This study has been extended in [56],

where the authors provide a similar analysis, regarding groups of humans who be-

long to common social groups, by utilizing a Mixed Markov Model to identify the

groups’ behavioral patterns. In [57], the authors introduce various recommendation

algorithms of PoIs to be visited by the humans based on their past visited PoIs, the

physical location of the available PoIs, the social interaction among the humans and

their similarity among each other. A traveling recommender system is proposed in

[58], by jointly considering the PoIs popularity, the similarity of the humans that

visit the same PoI, and the similarity of the available PoIs towards recommending

PoIs.

Furthermore, in [59], the authors study the problem of real-time PoI and event

recommendations to the humans by introducing the event-participant arrangement

strategy. Following this concept, the humans’ satisfaction scores, regarding an ar-

rangement of visiting a PoI, are updated in real-time and the humans can accept

or reject the proposed arrangement. A human-centric approach is also followed in

[60], where the humans are assigned to PoIs and events aiming at maximizing the

humans’ perceived satisfaction. On the other hand, a system-centric approach is pro-

posed in [61] to support the PoIs’ management towards maximizing their perceived

”satisfaction”, which is expressed in terms of revenue and publicity. A more holistic

approach is introduced in [62] by exploiting the whole set of EBSNs functionalities

to recommend PoIs to humans, social groups to humans, and tags to groups.
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As it becomes apparent from the above discussion, several studies have con-

structed models of recommending PoIs to the humans, either by following a human-

centric or a system-centric approach. Furthermore, the literature is already mature

enough in exploiting the information available in EBSNs, such as humans’ interests

in PoIs, humans’ social interactions, geographical proximity to the PoIs, etc. How-

ever, to the best of our knowledge, no prior work has dealt with the problem of

socio-physical autonomous human orchestration in a smart city environment, where

humans can exploit their personal social and physical characteristics, as well as those

of the PoIs to make efficient distributed and autonomous decisions that improve their

personal reward from the visited PoIs.

2.1.2 Contributions & Outline

Our research work aims exactly at filling the aforementioned research gap and pro-

poses a holistic human-centric distributed approach realizing (i) the PoI selection by

the humans, via a reinforcement learning technique, and (ii) the human’s decision-

making process of visiting a PoI, by exploiting the theory of minority games. Our

proposed framework consists of two layers to treat the socio-physical autonomous

human orchestration in a smart city. At the first layer, the humans are considered

as stochastic learning automata who learn from their past choices of PoIs and the

reaction of the smart city environment towards selecting a PoI that will improve their

experienced reward. The humans make probabilistic choices of PoIs until they reach

a firm PoI selection by exploiting their social characteristics, e.g., interest to visit a

PoI, social interaction among the humans that visit the same PoI, and the physical

characteristics, e.g., cost of visit, physical proximity to the PoI, experienced Quality

of Service (QoS) from visiting the PoI, PoI’s capacity and availability.

Given the convergence of the humans’ PoI selection, the humans that selected the
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same PoI and expressed their initial interest to visit it, ”compete” with each other

towards finally visiting the PoI and improving their experienced reward from their

visit. The latter humans’ behavior and interaction is modeled as a non-cooperative

game among the humans that selected the same PoI towards determining their final

attendance or not. Towards showing the existence of the game’s Nash equilibrium,

which identifies the specific humans who will visit the PoI, the theory of minority

games is adopted. A distributed and low-complexity algorithm is introduced, which

determines both the humans’ PoI selection and the humans who visit the PoIs.

Detailed numerical and comparative results demonstrate that the proposed holistic

framework concludes to a promising solution for realizing the autonomous human

orchestration in a smart city, that conforms with the needs and requirements of both

the humans and the smart city planning and management.

The rest of the chapter is organized as follows. In Section 2.2, the overall system

model is described, while in Section 2.3, our proposed human-centric reinforcement

learning-based PoI selection process is presented. Section 2.4 introduces the au-

tonomous human orchestration to the PoIs based on the theory of minority games,

while in Section 2.5 the Smart Orchestration in Points of Interest (SmartPoI) al-

gorithm is presented. Finally, a detailed numerical evaluation of our approach via

modeling and simulation is presented in Section 2.6, while Section 2.7 concludes the

chapter.

2.2 System Model

In this chapter, a smart city environment is considered, with humans interested in

visiting various PoIs inside of a smart city. These humans will decide which PoI they

are interested in visiting by taking into account the socio-physical characteristics of

each PoI and the overall system. Once they have a choice on which PoI they are
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? ? ?

Figure 2.1: Humans autonomous decision making regrading the Point of Interest
that they will visit.

interested in visiting they each play a minority game to determine which humans

will actually visit the PoI. The humans of the system are dentoted as |N |, with

the humans residing in the smart cities boundaries, with the set denoted as N =

{1, ..., n, ..., |N |}. These humans select from the various PoIs |S| (e.g., restaurants,

theaters, tax offices, police station, etc), with the corresponding set of PoIs being

denoted as S = {1, ..., s, ..., |S|}. Each human will make selection to as to which PoI

they have a desire to visit based on their own personal social characteristics, as well

as the physical conditions that are available in the smart city environment, as shown

in Figure 2.1.

The physical and social parameters considered in the system are designed to

provide a holistic view of what aspects matter and the importance thereof to each

human, with each human having personalized preferences. The first parameter con-

sidered is the interest of the human to visiting a specific PoI. For example, a human

might need to pickup groceries in order to make dinner and would thus have a high

interest in visiting a grocery store. Specifically, each human n, n ∈ N has a per-
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sonal interest in,s to visit a PoI s, s ∈ S. The interest degree in,s ranges from zero

to one, i.e, in,s ∈ [0, 1], with smaller values representing less interest to visit the

PoI and larger values meaning a greater interest to visit that PoI. This shows and

considers the unique preference of a human to a space based on their own personal

view of the space. Next, as many places that humans visit are based off of a social

element (e.g., restaurant, movie theater, etc.), the social aspect of a PoI should be

considered. Naturally, this social aspect is based upon personal preferences of one

human’s view towards other humans in the space. For instance, a human’s social

interest for visiting a PoI with humans that they enjoy interacting with will have a

higher social interest value compared to that of a PoI with humans they don’t like

interacting with or a PoI with no humans in it. Thus, the peers’ influence on visiting

a PoI is captured by the social interest SIn,j which expresses the level of willingness

of humans n, j to socially interact with each other. We set the range of SIn,j as

SIn,j ∈ [0, 1] and we assume that the level of social interaction among two humans

n, j ∈ N is directly proportional to the value of SIn,j.

The humans and the PoIs in a smart city are characterized by some physical

conditions and parameters. Each PoI s has an associated cost cs to serve the needs

of the humans. For example, there are restaurants that are more expensive compared

to others which has a drastic influence on a humans’ decisions to visit them. The PoI’s

cost cs of serving a human is normalized with respect to the maximum cost of a PoI

in the smart city, i.e., cs ∈ [0, 1], with values of cs closer to 1 being more expensive.

Naturally, each PoI has a limited amount of humans that can be accommodated at

any time, thus every PoI is characterized by a physical capacity N thres
s , s ∈ S of

humans that it represents the amount of people that can be served. For example,

restaurants will have a limited number of seats and other PoIs will have a limited

based off of fire safety laws as well. Furthermore, humans will tend to not want

to travel long distances to visit a PoI, consequently the distance dn,s of human n

from the PoI s also plays a role in the human’s personal physical factor that weighs
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on their corresponding decision with regard to which PoI they would like to visit.

In our analysis, the distance dn,s is also normalized with respect to the maximum,

thus, dn,s ∈ [0, 1] with values close to zero meaning that the human is close to

that respective PoI. Additionally, humans will prefer PoIs where they are efficiently

and effectively served. PoIs with more people in them are congested and will cause

humans to have a probability of not being served effectively. This shows that the

number of humans |N |Gos , who decide to visit a PoI s is a critical factor in the humans’

decision to go to a PoI. This leads to the defined experienced Quality of Service (QoS)

of human n by visiting a PoI s which is denoted by QoSn,s, with QoSn,s ∈ [0, 1]. The

overall Quality of Service is directly proportional to the value of
t∑

k=0

QoS
[k]
n,s, which

expresses the human’s cumulative experienced QoS over the time including all the

PoIs that the human has visited. If the humans that go to a PoI are more than the

PoI’s capacity, then their experienced QoS is zero (as no human would be served

effectively), i.e., QoSn,s = 0, if |N |Gos > N thres
s , while if the number of humans that

visit the PoI is less than the capacity of the PoI, the normalized human’s QoS is

given by QoSn,s = 1− |N |Go
s

Nthres
s

, if |N |Gos ≤ N thres
s .

2.3 Socio-physical Point of Interest selection

In this section, our goal is to devise a distributed and autonomous mechanism to

enable the humans to select which PoIs they are potentially interested in visiting

based on the socio-physical characteristics previously mentioned. To accomplish

this, we utilize a reinforcement learning technique, which allows for the humans to

learn from their prior choices and the effect that it produced on the overall smart city.

The humans are considered as stochastic learning automata [18] and at each time

slot t of the reinforcement learning loop, they select to visit a PoI from their available

set of actions an(t) = {a1, ..., as, ..., a|S|}, which represents the available PoIs within
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the smart city. The physical meaning of the time slot t can be defined based on the

specific smart city application. Towards selecting a PoI, the humans consider their

social and physical characteristics (Section 2.2): (i) N thres
s : the maximum number of

humans that the PoI s can accommodate, (ii) cs: the normalized cost associated with

visiting and being served at the PoI s, (iii) dn,s: the normalized physical distance of

human n from PoI s, (iv) i
[t]
n,s: the normalized interest of human n to visit the PoI

s at time slot t, (v) |N |Go[t]s : the number of humans that have selected to go to the

PoI s at the time slot t, (vi)
|N |Go[t]

s∑
j=1

SI
[t]
n,j: the total social interest and interaction

of human n with all the other humans |N |Go[t]s that have selected to go to the PoI

s at time slot t, and (vii)
t∑

k=0

QoS
[k]
n,s: the cumulative QoS that the human n has

experienced until the time slot t including all the PoIs that the human has visited.

By combining the above humans’ social characteristics and PoIs’ physical param-

eters, we define the reward function that a human n experiences by visiting a PoI s,

as follows.

r[t+1]
n,s =

N thres
s · i[t]n,s ·

|N |Go[t]
s∑
j=1

SI
[t]
n,j ·

t∑
k=0

QoS
[k]
n,s

|N |Go[t]s · cs · dn,s
(2.1)

The reward function r
[t+1]
n,s is dynamically determined by the human’s past experi-

ence (e.g.,
t∑

k=0

QoS
[k]
n,s), as well as by the reaction of the smart city environment, mean-

ing the choices of the rest of the humans residing in the smart city. Also, the reward

function r
[t]
n,s of each human n per available PoI s is normalized as r̃

[t+1]
n,s =

r
[t+1]
n,s∑

s∈S
r
[t+1]
n,s

to represent the reward probability r̃
[t+1]
n,s , 0 ≤ r̃

[t+1]
n,s ≤ 1 of the human n per each

PoI s. In a nutshell, the reward probability r̃
[t+1]
n,s reflects the potential satisfaction

that the human n may experience by visiting the PoI s at time slot t. A graphical

representation of the reward function and its individual components is presented in

Figure 2.2. The humans consider their reward probabilities in order to determine

27



Chapter 2. Human Orchestration in Smart cities

  
     

     
 

    
 

  
  

  

     

    
 

    
 

    
 

    
 

    
 

    
 

I don’t like 

that place.

I really 

want to go 

there!

500 ft

5 mi.

Figure 2.2: Graphical representation of the reward function.

and update their action probabilities of selecting a PoI.

Each human acts as a stochastic learning automaton and updates its action prob-

ability vector Pr
[t]
n = [Pr

[t]
n,1, ..., P r

[t]
n,s, ..., P r

[t]
n,S], where Pr

[t]
n,s represents the proba-

bility that the human n will select the PoI s at time slot t. Based on the theory

of the stochastic learning automata [18, 63, 64], the humans update their action

b Convergence Time Reward

b Convergence Time Reward

Figure 2.3: Graphical representation of the dependence of the convergence time and
the corresponding achieved reward from the learning rate b.
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probabilities based on the following rule [65].

Pr[t+1]
n,s = Pr[t]n,s + b · r̃[t]n,s · (1− Pr[t]n,s), s

[t]
n = s[t+1]

n (2.2a)

Pr[t+1]
n,s = Pr[t]n,s − b · r̃[t]n,s · Pr[t]n,s, s[t]n ̸= s[t+1]

n (2.2b)

where 0 ≤ b ≤ 1 represents the humans’ learning rate in terms of exploiting the smart

city environment. The dependence of the convergence time and the corresponding

achieved reward from the learning rate b is presented in Figure 2.3. The human’s

probability to select the same PoI in the next time slot t + 1 is updated following

Eq. 2.2a, while the human’s probability to select a different PoI in the next time

slot t+ 1 is calculated by Eq. 2.2b. Also, it is noted that the humans have initially

no prior knowledge regarding their action probabilities, thus the initial selection

of a PoI by the humans is made with equal probability, i.e., Pr
[t=0]
n,s = 1

|S| ,∀s ∈

S. The algorithmic description of the socio-physical PoI selection based on the

proposed reinforcement learning technique and the convergence of the humans’ action

probabilities are studied in Section 2.5.

2.4 Autonomous Human Orchestration based on

Minority Games

After the socio-physical PoI selection by the humans, a number of humans |N |s has

selected to potentially visit the PoI s at the next time slot, where Ns = {1, ..., |N |s}

denotes their corresponding set. The humans ”compete” with each other towards

finally visiting the PoI that they have initially selected. The interactions and behavior

of the humans, who through the reinforcement learning framework expressed interest

in visiting the same PoI, is further captured via a non-cooperative game among

them. Specifically, the theory of minority games is adopted, which proposes that a
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number of players (i.e., humans) repeatedly compete with each other to be in the

minority group via making an action of the two available ones, i.e., go or not to the

initially selected PoI. At each iteration ite of the game, the humans that belong to

the minority group perceive increased satisfaction and they promote their winning

strategy for the next iteration of the game. The main benefit of the minority games

is that they have a non-empty set of Pure Nash equilibria (PNE) [18].

Let us denote the minority game as GMG = [Ns, {An}, {fan(n)}], where Ns is

the set of humans that have selected to visit the PoI s following the reinforcement

learning framework (Section 2.3). At each iteration ite of the minority game, each

human can decide to visit the PoI (aiten = 1) or not (aiten = 0). The set of human’s

strategies is denoted as An = {0, 1}, aiten ∈ An. For each strategy aiten ∈ An, there is

a payoff function f itean : {1, ..., n, ..., |N |} → R, which represents the reward that the

human n experiences by making the action an at the iteration ite of the minority

game. The payoff function f itean is formulated as follows.

f itean =

1, if |N |ans ≤ N thres
s

0, otherwise
(2.3)

where if the number of humans that select a strategy an (i.e., |N |ans ) is less than the

physical capacity N thres
s of the PoI s then they promote their action, i.e., f itean = 1.

To solve the minority game and determine its Pure Nash equilibrium, a distributed

learning algorithm is required. This goal can be achieved by multiple distributed

learning techniques, e.g., Q-learning, exponential learning, trial and error learning.

In this chapter, we have adopted an exponential learning technique to determine in

an autonomous and distributed manner the Pure Nash equilibrium of the minority

game GMG (see Section 2.5).
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2.5 Smart Orchestration in Points of Interest

(SmartPoI) Algorithm

In this section, the distributed Smart Orchestration in PoIs (SmartPoI) algorithm is

presented. At each time slot t, each human n acts as a stochastic learning automaton

making its choice of the PoI that wants to visit, based on its action probabilities

Pr
[t]
n = [Pr

[t]
n,1, . . . , P r

[t]
n,|S|]. After each human’s choice, a cluster of humans |N |s, ∀s ∈

S is constructed, and a minority game is played to determine the set of humans who

finally visit the PoI (NGO
s ), and the corresponding set of humans who do not visit the

PoI (NNGO
s ). For the minority game played for each PoI s, a distributed exponential

learning algorithm is adopted, which leads the humans to make smart choices by

considering only their past actions and converge to one of the
(

Ns

Nthres
s −1

)
+
(

Ns

Nthres
s +1

)
PNE points [66]. For each cluster of humans |N |s that selected the PoI s, each

human n by starting with equal probabilities of going and not going, i.e., pr0n,an=0 =

pr0n,an=1 = 0.5, and zero scores, i.e., π0
n,an=0 = π0

n,an=0 = 0, at each iteration ite of

the minority game the human n determines its action aiten and regarding its payoff

f itean (Eq. 2.3) and the winning action wite, it updates its chosen action’s score πiten,an .

It is highlighted that the winning action wite is evaluated regarding the winning

minority group. Then, each human n evaluates its next time slots’ reward probability

r̃
[t+1]
n,s ,∀s ∈ S, and updates its action probabilities Pr

[t+1]
n,s ,∀s ∈ S (Eq. 2.2a, 2.2b).

Regarding the SmartPoI algorithm’s complexity, at each time slot t of the stochas-

tic learning automata, the minority games at all PoIs are played in parallel. More-

over, since the complexity of each minority game is O(|N |s), by denoting as Ite

the number of iterations that are needed for the convergence of the minority game

that finishes last, the overall complexity of all the minority games is O(Ite · |N |).

Furthermore, since the evaluation of the reward probability and the update of the

action probabilities of each human n for each PoI s, is performed in a constant time,
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Figure 2.4: Graphical representation of the overall proposed framework in this re-
search work summarizing the flow of information, as well as of the control actions to
conclude to the autonomous decision making process.

the complexity of the rest part of the SmartPoI algorithm is O(|N | · |S|). Finally,

by denoting as T the numbers of time slots that are needed for the convergence of

the stochastic learning automata, the overal complexity of the SmartPoI algorithm

is O(T · (Ite · |N |+ |N | · |S|)).

A graphical representation of the overall proposed framework in this research

work is presented in Figure 2.4, summarizing the flow of information, as well as of

the control actions to conclude to the autonomous decision making process.
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Algorithm 1 SmartPoI Algorithm

1: Function {Main}:

2: Input/Initialization: N,S, i
[0]
n,s, dn,s, SIn,j , cs, N

thres
s

t = 0, Conv = 0, P r
[0]
n,s =

1
|S| , ∀n ∈ N, ∀s ∈ S

3: Output: Pr∗ = [Pr∗1, . . . ,Pr∗n, . . . ,Pr∗|N|]

4: while Conv == 0 do

5: Ns = ∅, ∀s ∈ S

6: Choose an(t) ∈ S,Nan(t) = Nan(t) ∪ {n},∀n ∈ N

based on Pr
[t]
n

7: MinorityGame(Ns, N
thres
s ),∀s ∈ S

8: Evaluate r
[t+1]
n,s , r̃

[t+1]
n,s , P r

[t+1]
n,an(t)

, P r
[t+1]
n,s via Eq. 2.1, 2.2a, 2.2b ∀n ∈ N, ∀s ∈ S

9: Conv = 1, if ∀n ∈ N , ∃s ∈ S: |Pr
[t+1]
n,s − 1| ≤ 0.99

10: t = t+ 1

11: end while

12: Pr∗n = Pr
[t]
n , ∀n ∈ N

13: EndFunction

14: Function {MinorityGame}:

15: Input/Initialization: Ns, N
thres
s , priten,an = 0.5, πiten,an = 0, ite = 0, Conv = 0, ∀n ∈

N, ∀an ∈ An

16: Output: NGO
s , NNGO

s

17: while Conv == 0 do

18: NGO
s = NNGO

s = ∅

19: Choose aiten ,∀n ∈ Ns based on priten = [priten,0, pr
ite
n,1]

20: if aiten = 1, then NGO
s = NGO

s ∪ {n}

else NNGO
s = NNGO

s ∪ {n}

21: if |NGO
s | ≤ N thres

s , then wite = 1 else wite = 0

22: πite+1
n,an = πiten,an + f itean

23: prite+1
n,an = exp (γ · πite+1

n,an )/
∑

∀an∈An
exp (γ · πite+1

n,an ) ∀an ∈ An, ∀n ∈ Ns

24: Conv = 1, if ∀n ∈ Ns, ∃an ∈ An: |prite+1
n,an − 1| ≤ 0.99

25: ite = ite+ 1

26: end while

27: EndFunction
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2.6 Experiments

2.6.1 Experiment Setup

In this section, a detailed numerical evaluation of the proposed approach is presented

in terms of the overall framework’s operation efficiency (Section 2.6.2) and superiority

compared to other alternatives (Section 2.6.3). For our simulations, that were carried

out using MATLAB software, we considered a smart city area that consists of |N | =

100 humans randomly distributed in the smart city setting and |S| = 6 PoIs. The

interest in,s as well as the social interest of interaction among the humans SIn,j are

randomly and uniformly assigned to the humans, while Nthres = [6, 8, 10, 12, 14, 16]

and c = [0.166, 0.333, 0.5, 0.666, 0.833, .999]. A detailed Monte Carlo analysis has

been executed for all the presented numerical results considering averages over 10, 000

executions.
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Action probabilities convergence
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2.6.2 SmartPoI Framework’s Operation

First, we evaluate the operation of the socio-physical PoI selection following the

proposed reinforcement learning technique. Figure 2.5a presents the impact of the

learning rate parameter b on the average convergence time of the PoI selection and

the corresponding average reward (Eq. 2.1). The results reveal that for small values

of the learning rate parameter, the humans exploit more thoroughly the available

PoIs, thus, they make a better choice of PoI, resulting in increased average reward.

However, the latter comes with the cost of increased convergence time to a PoI’s

selection. In the rest of our analysis, we consider b = 0.4. Additionally, in Figure

2.5b, the action probabilities convergence is presented for one representative human

in the smart city. The results illustrate that the execution time of the proposed

PoI selection mechanism is less than 1 sec, which makes it practical for real-life

applications.

In Figures 2.6a-2.6d, we present a detailed analysis of the internal operation of

the PoI selection reinforcement learning mechanism based on the proposed reward

function (Eq. 2.1), which captures humans’ and PoIs’ social and physical charac-

teristics. Figure 2.6 illustrates the average cluster size of the humans that selected

each PoI based on: (a) the varying cost cs of the PoIs, (b) the varying distance

dn,s, n ∈ N, s ∈ S, (c) the varying PoIs’ capacity N thres
s , s ∈ S, (d) all the varying

factors of the reward function in Eq. 2.1. It is noted that in Figures 2.6(a)-2.6(c) only

one parameter is varying, while the rest of the factors are the same for all the users

for all the PoIs for fairness in the comparison. The results reveal that the humans

proportionally select the PoI with the lower cost cs (Figure 2.6a) and the higher ca-

pacity (Figure 2.6c). The results also illustrate that the humans select the PoI with

the closest physical proximity (Figure 2.6b). In Figure 2.6d a more complex case is

examined and presented, where multiple social and physical factors are varying. It

is observed that the cost cs becomes a dominant factor in humans’ PoI selection, i.e.,
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more humans select PoIs 1 and 2 which have the relatively lower cost. However, the

dominance of the PoIs’ cost in the PoI selection can be limited by other factors such

as the humans’ distance from the PoIs and the PoIs capacity. For example, even if

PoI 3 has lower cost compared to PoI 6, less humans select PoI 3, as it has a smaller

capacity than PoI 6, thus it can easily become congested and unable to efficiently

serve them.
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Figure 2.6: Humans’ cluster size per PoI for varying (a) PoIs’ cost cs (b) humans’
distance from PoIs’ dn,s, (c) PoIs’ capacity N thres

s , and (d) all the socio-physical
factors in Eq.2.1
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Therefore, we conclude that the holistic consideration of the humans’ and PoIs’

social and physical characteristics in the PoI selection process can better capture the

realistic environment of the smart city.

Next, we discuss the operation of the minority games approach which enables the

humans who initially selected a PoI to finally determine if they will visit it. The

convergence of the humans’ action probabilities is presented in Figure 2.7a for two

indicative subjects. Also, Figure 2.7b presents the humans’ attendance to one PoI,

which has a corresponding capacity N thres
s=2 = 8. The results reveal that the proposed

decision-making approach of the minority games is of low time complexity (i.e., order

of msec) and the number of humans who go to a PoI, stays close to PoI’s capacity,

thus the PoI serves the humans in an efficient manner.
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Figure 2.7: Convergence of human’s (a) action probabilities and (b) attendance.
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2.6.3 Comparative Results

In this subsection, we provide a comparative analysis of our approach focusing on

the benefits of: (a) the holistic consideration of the humans’ and PoIs’ socio-physical

characteristics and (b) the stochastic learning automata technique to enable the

humans to learn the most beneficial selection of a PoI.

Initially, we consider a scenario, where the PoI selection by the humans and the

decision to go to a PoI is performed following the procedure presented in the Smart-

PoI algorithm, while six different alternatives are examined regarding the considered

reward function (Eq. 2.1). In particular, the different cases considered are as fol-

lows, (a) cost: r
[t+1]
n,s = 1

cs
, (b) distance: r

[t+1]
n,s = 1

dn,s
, (c) interest: r

[t+1]
n,s = i

[t+1]
n,s , (d)

SmartPoI, i.e., the reward function is given by Eq. 2.1, (e) QoS: r
[t+1]
n,s =

t∑
k=0

QoS
[k]
n,s

(f) social interest: r
[t+1]
n,s =

|N |Go[t]
s∑
j=1

SI
[t]
n,j. For fairness in the comparison, we use the re-

ward function of Eq. 2.1 to capture the humans’ satisfaction (Figure 2.8a). Also the

average convergence time to the PoIs selection (Figure 2.8b) and the average cluster

size of humans per PoI (Figure 2.8c) are presented. The results reveal that the holis-

tic consideration of the humans’ and PoIs’ characteristics, i.e., SmartPoI scenario,

conclude to improved humans’ satisfaction (Figure 2.8a), while allowing the humans

to quickly learn their desired PoI selection (Figure 2.8b) and not overcongest the

PoIs (Figure 2.8c).

Moreover, the linear relationship of the influential factor (i.e., interest case) with

the humans’ reward function concludes to a slow update rule of PoI selection and a

corresponding low achieved satisfaction compared to a convex relationship (i.e., dis-

tance case), which enables the humans to rapidly exploit the smart city environment

and make a better PoI selection. Moreover, if the PoI selection is based only on

the PoIs’ physical characteristics (e.g., cost case), the humans initially select the PoI

with the lowest cost (thus, they increase their perceived satisfaction), and when they
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exceed the PoIs’ capacity, they quickly learn that this PoI selection is not beneficial

anymore and they choose another PoI.
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Figure 2.9: Average (a) Humans reward and (b) cluster size per PoI, for different
PoIs selection mechanism

Furthermore, if the humans’ personal characteristics are considered for the PoI

selection, i.e., QoS and social interest cases, the humans have a myopic view of the

smart city environment based only on their own perspective, thus they are not able to

efficiently and quickly exploit their choices and they achieve low levels of satisfaction.

Additionally, in Figure 2.8c it is observed that based on the performed Monte Carlo

analysis, the cost, distance, and interest cases conclude to equal human distributions

per PoI, while the SmartPoI and QoS cases that consider the PoIs’ capacity during

the PoI selection process do not overcongest the PoIs. Also, in the social interest

case, we observe that the humans tend to select the PoI with the highest capacity,

as in this case they have better chances to meet other humans with similar interests.

Next, we consider another comparative scenario, where the humans select to visit
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a PoI based on the following alternatives: (a) lowest cost, (b) lowest distance from

a PoI, (c) maximum interest for a PoI, and (d) randomly, instead of fully exploiting

the proposed SmartPoI framework. The results reveal that the PoI selection based

on the SmartPoI framework concludes to superior reward for the humans (Figure

2.9a), as they thoroughly exploit their available choices. The random PoI selection

gives the worst rewards to the humans, while it is observed that the humans become

more satisfied if they pay less to visit a PoI compared to the cases where they have

to travel a large distance for their visit or if they are highly interested in visiting the

PoI. Finally, following the performed Monte Carlo analysis, the results reveal that

the SmartPoI framework does not congest the PoIs, while all the other examined

comparative cases equally distribute the humans among the PoIs, thus, congesting

some PoIs with small capacity N thres
s .

2.7 Conclusions

In this chapter, the problem of the socio-physical human orchestration in smart

city environments is studied by exploiting reinforcement learning and game-theoretic

techniques. Initially, the humans act as stochastic learning automata probabilisti-

cally selecting to visit a Point of Interest based on the reward that they receive and

their past experience. The introduced humans’ reward captures their social char-

acteristics, as well as the PoIs’ physical characteristics. At the second layer of the

proposed approach, the humans that have selected the same PoI ”compete” with

each other towards finally visiting it. The latter humans’ behavior is studied as a

non-cooperative minority game among the humans. The Nash equilibrium point of

the game is determined, which identifies the specific humans that will finally visit

each PoI. A distributed low-complexity algorithm is presented to realize the pro-

posed framework, while the efficiency and superiority of the proposed framework is
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evaluated and demonstrated through modeling and simulation. Part of our current

and future work includes the testing of the proposed framework in the real smart

city environment of the City of Albuquerque, New Mexico, USA and based on the

realistic outcomes, and observations to fine tune the theoretical model.
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Chapter 3

Socio-aware Public Safety

Framework Design based on

Contract Theory

3.1 Introduction

In public safety events, either natural disasters or terrorists attacks, the engagement

of the citizens, the knowledge discovery, and the information dissemination play a

critical role throughout the overall disaster management operation [67]. Nowadays,

social networks have become of paramount importance in preparedness, emergency

control management, response, and recovery. Millions of citizens depend on and

exploit various social networks, such as Facebook, Weibo, Twitter, and others to

spread information about critical events. This process in turn helps the Emergency

Control Centers (ECC) to improve the disaster management operation. An indicative

example is the ”Boston Marathon” event in 2013, where the image of the suspect

was retrieved from the social networks [68]. However, rumors and false information
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can also be disseminated in social networks and harm the rescue process in a public

safety system [69]. Therefore, the classification, capabilities and interactions of the

involved actors in the socio-aware public safety systems are of high significance.

Motivated by the aforementioned observations, in this chapter, we introduce a

socio-aware public safety system, where the types of citizens offering information to

the ECC are identified based on their social and communication characteristics. The

ECC motivates the citizens to participate in the disaster management operation by

offering to them incentives (e.g., benefits, coupons) in accordance to their types under

information asymmetry or complete information, while the citizens contribute their

personal effort to the process in order to improve the disaster management operation.

To this end, we adopt Contract Theory, a powerful tool from microeconomics to

model the citizens’ incentive mechanism, through the use of contracts (agreements)

between the ECC and the citizens. The ultimate goal is to find the optimal contract

pair of ECC’s offered reward and each citizen’s provided effort based on its socio-

communication profile and type.

3.1.1 Related Work

The actual and potential exploitation and impact of social networks on emergency

disaster management and crisis situation has been studied in [70] to identify the

benefits, e.g., monitoring situations, extending emergency response and manage-

ment, as well as the negative developments, such as disseminating rumors. In [71],

the authors introduce the concept of People as Sensors, where people contribute in-

formation through the social networks and their provided information is integrated

within the location-based services, data analysis, and visualization systems. This

concept is further extended in [72], where a tutorial of models and algorithms is

presented for interactive sensing in social networks, where the users’ provided infor-
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mation is exploited to optimize sensing, decision-making, and operations in dynamic

environments, such as the public safety systems. Furthermore, a multimedia content

analysis of the available information in social networks is introduced in [73] in or-

der to detect events, e.g., natural disasters and terrorists’ attacks, and manage the

corresponding rescue operations.

Based on the above, it is evident that a great part of the available literature deals

with the exploitation of the already available information in the social networks in

order to detect public safety events and provide input to the disaster management

operations. However, limited research has been performed in the area of properly

modeling and exploiting the incentivization of the citizens in order to provide valuable

information in the social networks that will support the ECC’s operations. Towards

this direction, some initial efforts have been devoted to encouraging citizens to report

public safety problems, by capitalizing on the concepts of crowdsourcing, incentiviza-

tion and volunteer computing [74, 75]. Nevertheless, the majority of them have been

relatively primitive focusing primarily on finding ways of simply engaging citizens,

being either heuristic or crude in their nature, without attempting to quantify the

contribution of each citizen in a formal manner.

In this chapter, we adopt concepts and principles of Contract Theory, which pro-

vides the mathematical foundations to design formal and informal agreements to

motivate people with potentially conflicting interests to take mutually beneficial ac-

tions, which otherwise would be counter-productive. Under this concept, an employer

provides contracts to the employees based on their profiles, i.e., types, to motivate

them to provide back their effort, which is crucial for the employer’s operational

processes.

Contract theory has been already applied in several communication-related ap-

plications, including device-to-device (D2D) communications [76] and cooperative

spectrum sharing [77, 78]. In particular, in [79], the authors introduce a contract-
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theoretic relay selection framework, where the employer is the transmitter and the

employees are the relay nodes. The transmitter offers rewards, i.e., payments, to the

employees, while the latter guarantee a signal-to-interference-plus-noise-ratio at the

destination. Contract theory has been also used to incentivize the users, i.e., em-

ployees, to establish device-to-device communication pairs to de-congest their com-

munication with the base station (i.e., employer) [80]. Also, contract theory is used

in cooperative spectrum sharing [81], and in cognitive networks allowing the primary

spectrum owner (i.e., employer) to incentivize the secondary users (i.e., employees)

to efficiently share the available bandwidth [82].

3.1.2 Contributions & Outline

This chapter aims exactly at filling the aforementioned research gap, by introducing

formal methods - based on the Contract Theory - in order for the ECC to incentivize

the citizens to participate in the disaster management operations and offer their valu-

able effort and information in an optimal manner. The key scientific contributions of

our work that differentiate it from the rest of the existing literature, are summarized

as follows.

1. The different types of the citizens are identified by the ECC via exploiting their

social and communication characteristics, and identify a socio-communication type

for each citizen. Based on the citizen’s type, a corresponding utility is formulated

reflecting its perceived satisfaction from the received reward for its invested effort.

Also, the ECC’s utility is defined to capture the overall benefit of using the citizens’

efforts, while considering the corresponding cost of providing incentives to the citizens

through the rewards. A contract pair between the ECC and each citizen is considered

to be established consisting of the ECC’s reward and the citizen’s effort (Section 3.2).

2. The problem of determining the optimal rewards from the ECC’s perspective and
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the optimal invested effort from the citizens’ side is formulated and solved initially

considering that the ECC has complete information about the types of the citizens

(Section 3.3). Furthermore, the aforementioned problem is addressed and thoroughly

analyzed, under the most challenging and realistic assumption of ECC’s incomplete

information knowledge about the citizens’ types (Section 3.4). In both scenarios, the

outcome of the proposed framework is the optimal contract pairs.

3. A series of simulation experiments are realized to evaluate the performance and

inherent attributes of the proposed socio-aware public safety framework (Section

3.5). Finally, Section 3.6 concludes the chapter.

3.2 System Model

We consider a public safety system consisting of an Emergency Control Center (ECC)

that is responsible to coordinate the disaster management operations and a set of

citizens C = {1, . . . , c, . . . , |C|}. The ECC rewards the citizens through personalized

rewards rc (e.g., benefits, coupons, money) in order to incentivize them to provide

their valuable effort in the disaster management operations. The citizen’s effort qc

can capture various types of effort: (a) social related effort, such as data quality

(e.g., sensing data, closed cameras TV data), information shared in social networks,

influential posts on Twitter, shelters’ announcements on Facebook, and others, and

(b) communication related effort, such as coverage area of the citizen’s mobile device,

which can potentially act as a relay node, CPU capability provided by the citizen’s

devices to process data in a fog computing setup and others. We consider the nor-

malized values of the ECC’s rewards, i.e., rc ∈ [0, 1], and the citizen’s effort, i.e.,

qc ∈ [0, 1]. Also, the ECC acts in a fair manner and rewards more the citizens that

provide more effort in the disaster management operation, thus the reward rc is a

strictly increasing function with respect to the citizen’s effort qc.
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3.2.1 Citizen’s Social and Communication Type

Each citizen is characterized by a socio-communication type tc which captures its

social and communication characteristics in terms of providing information to the

ECC. Regarding the communication characteristics, each citizen achieves a data rate

Rc = Wlog(1 + Pcgc∑
i ̸=c Pigi+I0

) to directly report information to the ECC’s receiver,

where W is the system’s bandwidth, Pc and gc are the citizen’s transmission power

and channel gain, respectively,
∑

i ̸=c Pigi is the overall sensed interference, and I0 is

the background noise [83]. It is evident that the greater the citizen’s achievable data

rate is, the more valuable it becomes for the ECC’s operation as more information

can be collected by the ECC.

Moreover, the citizen’s socio-communication type is also dependent on its social

characteristics. Each citizen is characterized by its reputation score µc, µc ∈ [0, 1],

based on its activity in the social networks, i.e., information spread. The citizen’s

information spread is modeled in the literature by the diffusion model and the in-

fluence maximization algorithms can be used to determine the reputation score µc

(i.e., identify the influential citizens) [84]. A citizen’s contribution to the informa-

tion spread process, is characterized by a corresponding social impact SIc(µc) to

the community, which is assumed a strictly increasing function with respect to the

citizen’s reputation score. Furthermore, to also capture the importance of the citi-

zen’s information contribution for the disaster management operation of the ECC,

we introduce the concept of knowledge discovery KDc, KDc ∈ [0, 1], referring to the

unique content that the citizen shares to the social network or offers directly to the

ECC compared to a bulk amount of data.

Based on the aforementioned citizen’s social and communication characteristics,

the socio-communication type tc, tc ∈ [0, 1] of the citizen is defined as follows.

tc =
Rc∑

∀i∈C Ri

· SIc(µc)∑
∀i∈C SIi(µi)

·KDc (3.1)
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For demonstration purposes, we also consider a strictly increasing function rc(qc) =

tcqc regarding the ECC’s reward for citizen c. Also, in the following analysis, we

consider |C| different types of citizens, that is each citizen has a unique socio-

communication type, while a citizen of higher type, i.e., t1 < · · · < tc < · · · < t|C|,

provides more effort qc, i.e., q1 < · · · < qc < · · · < q|C|.

3.2.2 Emergency Control Center’s and Citizens’ Utilities

The ECC offers a personalized contract pair {rc(qc), qc} to the citizen c for its pro-

vided effort qc by providing a corresponding reward rc. Each citizen is characterized

by a utility function Uc(qc) expressing the perceived satisfaction from the ECC’s pro-

vided reward based on its socio-communication type, as well as its cost to provide

its effort that the citizen has invested in the disaster management operation. The

citizen’s utility is defined as follows.

Uc(qc) = tc · e(rc)− qc (3.2)

where e(rc) is the evaluation function of the citizen c regarding the received reward rc.

The evaluation function e(rc) is a strictly increasing, concave function with respect

to the citizen’s effort qc, with e(rc = 0) = 0 and expresses the citizen’s satisfaction

with respect to the reward that it received. For demonstration purposes and without

loss of generality, in the following we consider e(rc) =
√
rc.

The ECC also experiences a utility U c
ECC = qc − κ · rc by each citizen’s provided

effort, while taking into account the corresponding cost of the reward rc (κ is the

ECC’s pricing factor). In the general case, the ECC may not be aware of the citizen’s

types, thus the ECC estimates them with probability pc, where
∑|C|

c=1 pc = 1. Thus,

the ECC’s overall perceived utility (accounting for all citizens) is defined as follows.
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UECC(q) =

|C|∑
c=1

[pc(qc − κ · rc)] (3.3)

where q = (q1, . . . , q|C|) is the vector of the citizens’ effort.

Considering the overall socio-aware public safety system, its social welfare, in-

cluding both the ECC and all the citizens, is defined as follows.

SW (q) = UECC(q) +

|C|∑
c=1

Uc(qc) (3.4)

3.2.3 Contract Theory Perspective and Methodology

Based on the aforementioned utilities, rewards and other related parameters, in gen-

eral the solution we seek is a set of contract pairs between the ECC and the citizens

(employer and employees under Contract Theory terminology [39]) with reference to

the citizen’s effort qc and the corresponding provided reward rc, with the objective

being maximizing the employer’s utility. The problem is typically formulated as max-

imizing an objective function that represents the employer’s utility, subject to the

incentive compatibility constraint that the employee’s expected utility is maximized

when accepting the personalized contract, and the individual rationality constraint

that the employee’s utility under this contract is larger than or equal to its counter-

part when not participating.

Contract theory is used to study the interaction between employer(s) and em-

ployees, and treats real world problems with either complete or even incomplete

(often referred to as asymmetric information), by formally designing the contract

between employer and employee, while implicitly introducing cooperation. The in-

formation asymmetry mainly refers to the fact that the employer does not know

exactly the types and therefore the characteristics of the employees, and has only
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knowledge about the probability distribution of the types of employees. Contract-

theoretic models allow the alleviation of this problem, and accordingly the employer

can overcome this asymmetricity and efficiently still incentivize its employees. In the

following sections we address the identification of optimal contract pairs between the

ECC and citizens, for both cases of complete and incomplete information availability.

3.3 Citizens’ Contracts under Complete Informa-

tion

In this section, the ideal case where the ECC knows a priori the type of each citizen

is considered. In this scenario which can be mainly used for benchmarking purposes,

the ECC can fully exploit the citizens’ efforts and make the best out of them re-

garding the disaster management operation. Thus, the ECC aims at maximizing its

perceived utility by the effort of each citizen, while guaranteeing that the latter will

accept the offered contract, i.e., the ECC has to ensure that the individual ratio-

nality condition of each citizen is satisfied. Therefore, the problem of determining

the optimal contracts, under the assumption of complete information of the citizens’

socio-communication types, can be written as follows.

max
{rc(qc),qc}∀c∈C

U c
ECC = qc − κ · rc, ∀c ∈ C (3.5a)

s.t. tc · e(rc)− qc ≥ 0 (3.5b)

The ECC will target at providing the minimum acceptable utility to the citizens

towards maximizing its own utility. Thus, the constraint (3.5b) can be considered

alternatively as equality in this case. Accordingly the solution of the optimization
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problem (3.5a)-(3.5b) is obtained by initially solving the equality (3.5b) with respect

to rc, and subsequently performing basic mathematical treatment and manipulations

(i.e., substituting in (3.5a), differentiating Eq. (3.5a) with respect to qc, and equating

the outcome to zero). Consequently, under the assumption of complete information

availability at the ECC, with respect to the exact type of each citizen and therefore

its characteristics, the optimal contract pair is given by the following closed form

solution: {rc(qc), qc} = {( tc
2κ
)2, t

2
c

2κ
}.

3.4 Contract Theoretic Public Safety Systems un-

der Incomplete Information

In this section, we extend our study in determining the optimal contract pairs

{rc(qc), qc} between the ECC and the citizens, under the realistic scenario of in-

complete information availability, that is the ECC is not aware of the exact type of

each citizen (i.e., information asymmetry). Nevertheless, the ECC should ensure two

conditions for the citizens, i.e., individual rationality (IR) and incentive compatibility

(IC), in order to guarantee their participation in the disaster management operation.

The IR constraint refers to guaranteeing that the citizens will receive a non-negative

utility by accepting the contract, thus, they will be at least willing to participate in

the disaster management operation, while the IC constraint ensures that each citizen

will receive the contract that better matches its type. The aforementioned conditions

can be formally stated as follows.

Definition 1. (Individual Rationality (IR)) A contract pair {rc(qc), qc} should guar-

antee that each citizen’s utility is non-negative, i.e., Uc(qc) = tc·e(rc)−qc ≥ 0,∀c ∈ C.

Definition 2. (Incentive Compatibility (IC)) Each citizen must select the contract

pair {rc(qc), qc} designed for its type, i.e., tc ·e(rc)−qc ≥ tc ·e(rc′)−qc′ ,∀c, c′ ∈ C, c ̸=
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c′.

The IR and IC constraints are necessary, but not sufficient in order the ECC

to determine the optimal contract pairs. Additionally, the following conditions and

properties must hold true in order the contract pairs to be feasible.

Proposition 1. For any feasible contract pair {rc(qc), qc}, the following property

must hold true: rc > rc′ ⇔ tc > tc′ and rc = rc′ ⇔ tc = tc′.

Proof. Initially, we prove the sufficiency of the above property by using the IC con-

straint, i.e., tc · e(rc)− qc ≥ tc · e(rc′)− qc′ ,∀c, c′ ∈ C, c ̸= c′. Thus, we want to show

tc > tc′ ⇒ rc > rc′ . Based on the IC constraint, we have:

tc · e(rc)− qc ≥ tc · e(rc′)− qc′ (3.6)

tc′ · e(rc′)− qc′ ≥ tc′ · e(rc)− qc (3.7)

By adding the inequalities (3.6) and (3.7), we have:

tce(rc) + tc′e(rc′) ≥ tce(rc′) + tc′e(rc) (3.8)

By continuing the derivations in inequality (3.8) and given that tc > tc′ and

e(rc) is a strictly increasing function with respect to rc, we conclude that rc > rc′ .

Continuing our analysis, we prove the necessity of the examined property, i.e., rc >

rc′ ⇒ tc > tc′ . We have rc > rc′ , and given that e(rc) is a strictly increasing function,

we conclude that e(rc) − e(rc′) > 0. Based on Eq. 3.8, we have tc[e(rc) − e(rc′)] ≥

tc′ [e(rc)− e(rc′)] ⇔ [tc − tc′ ][e(rc)− e(rc′)] ≥ 0, thus tc > tc′ . Similar analysis can be

followed for the property rc = rc′ ⇔ tc = tc′ .

The physical meaning of Proposition 1 is that a citizen of higher type tc will

receive a higher reward rc compared to a citizen of lower type tc′ , who will receive
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lower reward rc′ . Proposition 1 guarantees the fairness in the rewards allocation from

the ECC to the citizens.

Proposition 2. (Monotonicity) A citizen of higher type, i.e., t1 < · · · < tc < · · · <

t|C|, will receive a greater reward from the ECC, i.e., r1 < · · · < rc < · · · < r|C|, as it

will contribute a greater effort, i.e., q1 < · · · < qc < · · · < q|C|.

Proof. The proof of this proposition intuitively stems from Proposition 1, given that

t1 < ... < tc < ... < t|C|.

In the following proposition, we examine the perceived utility of the citizens that

have different socio-communication types.

Proposition 3. A citizen of higher type, i.e., t1 < · · · < tc < · · · < t|C|, will receive

a higher utility, i.e., U1 < · · · < Uc < · · · < U|C|.

Proof. We examine two citizens c, c′ ∈ C of types tc > tc′ , c ̸= c′. Based on the IC

constraint, we have tc · e(rc) − qc ≥ tc · e(rc′) − qc′
tc>tc′====⇒ Uc(qc) = tc · e(rc) − qc >

tc′ · e(rc′) − qc′ = Uc′(qc′). Thus, for t1 < · · · < tc < · · · < t|C|, we conclude that

U1 < · · · < Uc < · · · < U|C|.

Based on the above introduced models, constraints, and the application of the

key principles of Contract Theory, the ECC aims at maximizing its utility, while

the citizens should satisfy all their personal constraints in order to be willing to

participate in the socio-aware public safety system. Thus, optimization problem to

determine the optimal contract pairs {rc(qc), qc},∀c ∈ C between the ECC and the

citizens is formulated as follows.

max
{rc(qc),qc}∀c∈C

UECC(q) =

|C|∑
c=1

[pc(qc − κ · rc)] (3.9a)
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s.t. tc · e(rc)− qc ≥ 0,∀c ∈ C (3.9b)

tc · e(rc)− qc ≥ tc · e(rc′)− qc′ ,∀c, c′ ∈ C, c ̸= c′ (3.9c)

0 ≤ r1 < · · · < rc < · · · < r|C| (3.9d)

Given that the above optimization problem is non-convex, in the following we

reduce its constraints in order to solve it in a tractable manner. Based on Proposition

2, we have t1 < · · · < tc < · · · < t|C| and considering the IC constraint, we have

tc · e(rc) − qc ≥ tc · e(rc′) − qc′ ≥ tc · e(r1) − q1. Given that tc > t1, we have:

tc ·e(rc)−qc ≥ tc ·e(r1)−q1 ≥ t1 ·e(r1)−q1 ≥ 0. The last step of the latter inequality

stems from the IR constraint (3.9b). Thus, if t1 · e(r1) − q1 ≥ 0 holds true, then

tc · e(rc) − qc ≥ 0 holds true for each citizen c ∈ C. The above analysis concludes

to the observation that if the IR constraint holds true for the citizen with the lower

type, i.e., t1, then it will hold true for any other citizen of higher type, thus, the IR

constraints are reduced to t1 · e(r1)− q1 = 0. The latter IR constraint is considered

as equality in order to the ECC to collect the maximum benefit from the citizen’s

effort.

In the following analysis, we target at reducing the IC constraints. The terminol-

ogy that we use about the IC constraints between citizens: (a) c, c′, c′ ∈ {1, . . . c−1}

is downward IC constraints, (b) c, c′, c′ ∈ {c+1, . . . |C|} is upward IC constraints, (c)

c, c− 1,∀c, c− 1 ∈ C is local downward IC constraints, and (d) c, c+1,∀c, c+1 ∈ C

is local upward IC constraints.

Proposition 4. All the downward IC constraints can be represented by the local

downward IC constraints.

Proof. Considering three types of citizens: tc−1 < tc < tc+1, the local downward IC

constraints can be written as:

tc+1 · e(rc+1)− qc+1 ≥ tc+1 · e(rc)− qc (3.10)
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tc · e(rc)− qc ≥ tc · e(rc−1)− qc−1 (3.11)

Based on Proposition 1, we have rc > rc′ ⇔ tc > tc′ . For rc > rc−1
e↗⇐=⇒e(rc) >

e(rc−1) ⇔ e(rc)− e(rc−1) > 0. Thus, for tc+1 > tc ⇔ tc+1[e(rc)− e(rc−1)] > tc[e(rc)−

e(rc−1)] ≥(11) qc − qc−1. Therefore, we have recursively: tc+1 · e(rc+1) − qc+1 ≥

tc+1 · e(rc−1) − qc−1 ≥ tc+1 · e(rc−2) − qc−2 ≥ · · · ≥ tc+1 · e(r1) − q1. Thus, all the

downward IC constraints can be equivalently captured by the local downward IC

constraints:

tc · e(rc)− qc ≥ tc · e(rc−1)− qc−1 (3.12)

Proposition 5. All the upward IC constraints can be represented by the local down-

ward IC constraints.

Proof. Based on the IC constraint, we have:

tc−1 · e(rc−1)− qc−1 ≥ tc−1 · e(rc)− qc (3.13)

tc · e(rc)− qc ≥ tc · e(rc+1)− qc+1 (3.14)

Based on Proposition 1, we have rc > rc′ ⇔ tc > tc′ . Thus, based on Eq. 3.14,

we have:

qc+1 − qc ≥ tc[e(rc+1)− e(rc)] ≥ tc−1[e(rc+1)− e(rc)] (3.15)

given that tc > tc−1. Based on Eq. 3.13, 3.15, we have: tc−1e(rc−1)−qc−1 ≥ tc−1e(rc)−

qc ≥ tc−1e(rc+1)− qc+1. Thus, we have: tc−1e(rc−1)− qc−1 ≥ tc−1e(rc+1)− qc+1. Thus,

if the IC constraint holds true for the citizen of type tc−1, then all the upward

IC constraints hold true. Therefore, we have recursively: tc−1 · e(rc−1) − qc−1 ≥
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tc−1 · e(rc+1) − qc+1 ≥ · · · ≥ tc−1 · e(r|C|) − q|C|. Based on the above analysis, we

conclude that the local upward IC constraints and all the upward IC constraints can

be reduced to the local downward IC constraints.

Based on the reduced IR constraints, and Propositions 4 and 5, the optimization

problem (3.9a)-(3.9d) can be rewritten to the following convex optimization problem.

max
{rc(qc),qc}∀c∈C

UECC(q) =

|C|∑
c=1

[pc(qc − κ · rc)] (3.16a)

s.t. t1 · e(r1)− q1 = 0,∀c ∈ C (3.16b)

tc · e(rc)− qc = tc · e(rc−1)− qc−1 (3.16c)

0 ≤ r1 < · · · < rc < · · · < r|C| (3.16d)

The optimization problem (3.16a)-(3.16d) is solved using standard methods of

convex optimization due to the convexity of the objective function and the constraints

[85], and the optimal contract pairs {rc(qc), qc} are determined.

3.5 Numerical Results

In this section, a detailed numerical evaluation of the proposed contract-theoretic

socio-aware public safety approach is conducted, via modeling and simulation. The

performance evaluation initially focuses on the pure operation of the proposed frame-

work in terms of determining the optimal contract pairs, the citizens’ and the ECC’s

utilities, as well as the overall social welfare of the system, for both cases of complete

and incomplete information availability (Section 3.5.1). Then, a comparative study
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of the proposed contract-theoretic framework against different alternative scenar-

ios of determining the amount of effort offered by the citizens is presented (Section

3.5.2).

In the rest, we consider κ = 0.999, and that the probabilities of the citizens’ types

follow a uniform distribution. Moreover, the achievable data rate Rc is determined

for each citizen considering a constant data transmission power Pc = 2Watts, the

channel gain is gc = 1/d2c , where dc ∈ [10, 400]m is the distance of the citizen c from

the ECC’s receiver, the system’s bandwidth isW = 5MHz [86], and the background

noise is I0 = 10−13. The reputation score µc, µc ∈ [0, 1] is appropriately calculated

following the influence maximization algorithm [84, 87]. The social impact function

is SI(µc) = log(µc), and the knowledge discovery factor KDc takes random values

in the interval [0, 1], where values closer to one indicate that the citizen has provided

unique and valuable content to the ECC.

3.5.1 Pure Framework Operation Evaluation

Fig. 3.1.a presents the citizens’ type values as a function of their index. We consid-

ered |C| = 10 indicative citizens, where the greater the citizen’s index is the higher

its type, i.e., t1 < · · · < tc < · · · < t10. Fig. 3.1.b-3.1.d present the citizens’ efforts,

their offered rewards by the ECC and their achieved utilities as a function of the

citizen’s index, respectively, considering the scenarios of complete and incomplete

information. Similarly, Fig. 3.1.e-3.1.f demonstrates the system’s point of view, by

presenting the ECC’s utility and the system’s social welfare, in a cumulative manner

as the number of contributing citizens increases (each time inserting one additional

citizen type indicated by the increased indices in the horizontal axis).

The results reveal that under the scenario of complete information (i.e., ideal sce-

nario), the ECC knows a priori the socio-communication type of each citizen, thus,
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Figure 3.1: Pure Framework Evaluation - Complete and Incomplete (Asymmetric)
Information Scenarios

it fully exploits the citizens’ effort (Fig. 3.1.b) by providing increased rewards to

them (Fig. 3.1.c), and achieving high ECC utility due to the increased citizens’ par-

ticipation (Fig. 3.1.e). Given that the ECC knows the citizens’ types, it offers them

the minimum possible reward based on their invested efforts in order to marginally

satisfy their rationality constraints, thus Uc = 0,∀c ∈ C (Fig. 3.1.d).

On the other hand, under the incomplete information scenario, the ECC is not

aware of the citizens’ actual types, but it rather estimates them based on the knowl-

edge about their probability distribution. In this case, the citizens by not disclosing
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their actual type to the ECC are able to achieve a higher utility compared to the com-

plete information scenario (Fig. 3.1.d), i.e., tradeoff between their invested efforts

(Fig. 3.1.b) and their rewards from the ECC (Fig. 3.1.c). Consequently, the ECC

achieves lower utility compared to the complete information scenario (Fig. 3.1.e).

The sub-graph in Fig. 3.1.d shows that citizens’ of higher type receive higher util-

ity and the contract that matches the citizen’s type concludes to the best achieved

utility.

In a nutshell, based on Fig. 3.1.a-3.1.d, it is confirmed that a citizen of higher

type, invests more effort, receives more reward from the ECC, and consequently

achieves greater utility, eeeeeas also stated in Proposition 2. Moreover, in Fig. 3.1.f,

we observe that despite the fact that under the incomplete information scenario

the ECC is not aware of the exact type of each citizen, the achieved overall public

safety system’s social welfare is reduced only by approximately 15% for the case of

|C| = 10 citizens (this value becomes even smaller for larger populations), which

indicates that the proposed framework behaves very well under the challenging and

realistic asymmetric scenario.

3.5.2 Comparative Evaluation

Fig. 3.2.a-3.2.c compares the proposed incomplete information realistic contact-

theoretic framework’s achieved ECC’s utility, citizens’ utilities, and overall system’s

social welfare, respectively, against three alternative strategies with respect to the

citizen’s effort investment, as follows: (i) minimum effort, (ii) maximum effort, and

(iii) a random amount of effort. The results reveal that under the proposed frame-

work the citizens are able to achieve high utility, similar to the one achieved by

their minimum personal effort strategy (Fig. 3.2.b). Also, as expected, the ECC

achieves the maximum utility if all the citizens invest their maximum effort (Fig.
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3.2.a). However, despite the fact that ECC achieves low utility under the proposed

contract-theoretic approach due to the cost of increased provided rewards to the

citizens (owing to the information incompleteness assumption), the system’s social

welfare is the highest among all scenarios (Fig. 3.2.c). The latter shows that the

proposed framework enables the smooth collaboration between the ECC and the cit-

izens, concluding to improved social welfare. Finally, the scenario where the citizens

invest a random effort presents an intermediate trend regarding all the examined

metrics, between the minimum and the maximum invested efforts scenarios.

In the following we compare the strategy where the ECC offers personalized

rewards to the citizens (according to their type as realized in the proposed framework,

i.e., rc = tc ·qc), against an alternative still linear but type agnostic reward approach,

offering common reward to all the citizens, i.e., rc =
∑|C|

c=1 tc
|C| · qc. We observe that

the citizens benefit in terms of their achieved utility under the contract-theoretic

(CT) framework, while the ECC achieves lower utility compared to the linear reward

scenario, as in the latter case it tends to over-reward the citizens without adopting

to their socio-communication type (Fig.3.3.a). We also observe that the contract-

theoretic framework achieves higher system’s social welfare (Fig. 3.3.b), exceeding

by approximately 25% the corresponding values under the linear reward framework.

3.6 Conclusions

In this chapter, a socio-aware public safety framework founded on the properties of

contract theory is proposed, in order to determine the optimal contract pairs be-

tween the ECC and the citizens, towards incentivizing the latter to participate in

the disaster management operation. The citizens are characterized by their socio-

communication type, capturing both their activity in the social networks and their

communication characteristics. The citizens provide their efforts to the ECC, which

in return rewards them. The identification of the optimal contract pairs, i.e., ECC’s
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rewards and citizens’ efforts, have been provided under the scenarios of both com-

plete and incomplete information, with respect to the ECC knowledge about the

actual type of each citizen.The overall framework was evaluated via modeling and

simulation, in terms of its efficiency and effectiveness, by studying multiple oper-

ation approaches and scenarios. Part of our current and future work contains the

extension of this model under the principles of Prospect Theory, towards capturing

the citizens’ behavioral characteristics in their utilities under risks and uncertainty,

and their corresponding impact on the optimal contract pairing.
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Figure 3.2: Comparative Evaluation
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Figure 3.3: Type dependent vs. type agnostic rewards
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Chapter 4

UAV-enabled Dynamic

Multi-Target Tracking and Sensing

Framework

4.1 Introduction

Unmanned Aerial Vehicles (UAVs) have attracted the interest of the research com-

munity due to their salient attributes, such as strong line-of-sight connection links,

fast and flexible deployment and mobility. Their vital features have enabled them

to support various civil Internet of Things (IoT) applications, such as surveillance

systems [88]. UAVs have also been used for data collection from critical areas in

crowdsourcing applications [89]. Motivated by these applications, in this chapter

we propose a UAV-enabled multi-target tracking and sensing framework, where the

UAVs are matched to the targets based on a reputation model, and the optimal data

collection is determined in a distributed manner by a game-theoretic approach.
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4.1.1 Related Work & Motivation

Computer vision-based target tracking is proposed in the literature using the sparse

representation theory to model the target’s appearance [90]. In [91], the target

tracking problem is formulated based on the partially observable Markov decision

process framework, where input is provided by an on board camera. The joint

problem of target tracking and UAV path planning is studied in [92], by using vision

sensors, a laser scanner, and an on board embedded computer. A deep reinforcement

learning (DRL) approach is proposed in [93] to deal with the target tracking problem,

under the challenge of frequent changes of the target’s aspect ratio. In [94], the

authors determine the minimum number of UAVs that are needed to detect a set of

targets by formulating a network flow-based problem and solving it with heuristic

algorithms.

UAVs have also been used to support crowdsourcing IoT applications enabling

the data collection from targets residing in critical areas, e.g., public safety scenarios.

In [95], a UAV-assisted crowd surveillance use case is studied, where the UAVs collect

videos from cameras on the ground and they process them either on board or at the

ground servers. In [96], the UAV’s flight time is minimized by optimizing its altitude,

while jointly maximizing the number of offloaded bits by the ground devices. In [97],

the joint optimization problem of the UAV’s trajectory and radio resource allocation

is studied via a successive convex approximation framework, to maximize the number

of served devices in terms of achievable uplink data rate.

However, despite the significant advances achieved by these efforts, they either

neglect or partially consider, the problem of stable matching among the UAVs and

the targets, as well as the incentivization of the targets to provide their data to the

UAVs. In this chapter, we aim to address this research gap by introducing (i) a

holistic reputation model to evaluate the targets’ potential to provide useful data,
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(ii) an intelligent matching framework between the UAVs and the targets, and (iii)

a game-theoretic approach to determine the targets’ optimal amount of offloaded

data to the UAVs, while following a pricing-based approach to incentivize them to

perform the data offloading.

4.1.2 Contributions & Outline

The key technical contributions of this research work are summarized as follows.

• A reputation model is introduced to quantify the targets’ reputation in terms

of valuable offloaded data to the UAVs. It consists of (i) the UAV-agnostic

reputation, where the targets’ reputation is determined by all the UAVs, and

(ii) the trustworthy reputation, where the evaluation of a trusted set of UAVs

regarding the targets’ reputation weighs more (Section 4.2).

• Representative preference matching functions are formulated for the UAVs and

the targets to capture their preferences in terms of pairing among each other.

An intelligent matching algorithm is realized to decide the targets to be tracked

by the UAVs (Section 4.3).

• The targets and the UAVs utility from offloading and collecting data, respec-

tively, is captured in utility functions. A Stackelberg game is formulated among

each target and the associated UAV to determine each target’s optimal amount

of offloaded data and the effort-based price that the UAV offers to the target

to incentivize it to offload its data. The properties of existence, uniqueness and

convergence to the Stackelberg Equilibrium are proven (Section 4.4).

• A set of detailed numerical results is presented to evaluate the performance of

the proposed framework, while a comparative study demonstrates its superior-

ity in terms of successful target tracking and data collection (Section 4.5).
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4.2 Models & Assumptions

4.2.1 System Model

We consider a snapshot of a smart city environment consisting of a set of targets

I = {1, . . . , i, . . . , |I|} (e.g., ambulances, firetrucks, mobile IoT sensors), and a set

of UAVs N = {1, . . . , n, . . . , |N |}. The position of each UAV at the time t is pnt =

(xnt , y
n
t , z

n
t ). The target’s position qit = (xit, y

i
t, 0m) at time t is stochastic following

a bivariate Gaussian distribution. Thus, the UAVs know the likelihood ϕi(qit) :

Q → R>0 that the target i is at a location qit at time t. We obtain the highest

likely probabilistic position q̂it = (x̂it, ŷ
i
t, 0m) by employing the mean of the target’s

Gaussian distribution. Each UAV n is characterized by its normalized flying time

Fn ∈ [0, 1], which depends on its energy availability, where a value closer to one

indicates a greater flying time. Each target i has a personal normalized cost ci ∈ (0, 1]

(e.g., consumed energy) to collect the data di,n that will be offloaded to a UAV n,

thus, it charges the UAV with an effort-based price Pi,n in order to obtain its data.

For generalization purposes, we consider that the targets’ data collection personal

cost ci and the effort-based price Pi,n are unitless. Each target has a criticality

factor ii ∈ (0, 1] based on the events in the surrounding environment. For example,

an ambulance close to an area that a shooting occurred has greater criticality of

data compared to a police car patrolling a neighborhood. The targets collect D =

{1, . . . , d, . . . , |D|} different types of data, e.g., videos, alerts, where d ∈ (0, 1]. A

greater value of d represents an enhanced type of data, e.g., video, compared to

a smaller value of d, which indicates a lower type of data, e.g., speed alert. The

popularity of each type of data is captured by the Zipf distribution Zipf(d) = z1
dz2

,

z1 > 0, 0 < z2 < 1.
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4.2.2 UAV-agnostic Reputation Model

The UAVs track the targets and collect data from them in order to report them to

a central entity, e.g., the Emergency Control Center (ECC) in a smart city. Each

target is characterized by a reputation based on how helpful or not was the pro-

vided information. In the UAV-agnostic reputation model, all the UAVs evaluate the

targets’ reputation that they interact with, each one with equal weight. Towards

the UAV n evaluating how helpful is the information collected by the target i, the

following metric is introduced: Hi,n =
di,n
Pi,n

· Zipf(d). Its physical notion is that a

UAV considers the provided data from target i helpful if the data collection process

is cost-efficient (i.e.,
di,n
Pi,n

) and the type of the collected data is of high popularity

(i.e., Zipf(d)). Thus, a binary parameter represents if the collected data are helpful

(cλi,n = 1, if Hi,n ≥ Hthr) or not (c
λ
i,n = 0, if Hi,n < Hthr) for the UAV n in the λ-th

interaction with the target i, where Hthr =
∑

∀i∀nHi,n/|I|.

The reputation of a target i, as it is evaluated by a UAV n, decreases as the most

recent interaction time among them elapses, given that the UAV has not a recent

evaluation regarding the target’s data. A reputation decay function log2(
b

T−tλi,n
+ 1)

is introduced, where tλi,n is the time instance of the λ-th interaction among the UAV

n and the target i, T is the time duration that we study the sytem, and b > 0 is

the decay factor. After each UAV is associated with a target (Section 4.3), the UAV

n provides a good GRi,n =
λi,n∑
λ=1

cλi,n · log2( b
T−tλi,n

+ 1) or a bad reputation BRi,n =

λi,n∑
λ=1

(1− cλi,n) · log2( b
T−tλi,n

+1) for the target i that is associated with, where λi,n is the

number of interactions among the target i and the UAV n in the examined duration

T . Thus, the overall UAV-agnostic reputation that target i receives from UAV n,

considering both its good and bad reputation, is derived as UARi,n = E(beta(GRi,n+

1, BRi,n + 1)) =
GRi,n+1

GRi,n+BRi,n+2
.
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4.2.3 Trustworthy Reputation Model

In contrast to the UAV-agnostic reputation, there may be UAVs that their evaluation

weighs more, e.g., UAVs belonging to the ECC, in the reputation score of a target.

Thus, we determine the most trusted UAV n̂ = argmin
n′∈N

[
∑

n∈N
n′ ̸=n

|UARi,n′ −UARi,n|] as

the one that has the smallest difference from all the other UAVs for a specific target i.

A UAV belongs to the set of trusted UAVs Ntr.,i for a target i, if |UARi,n̂−UARi,n| ≤

Trthr, where Trthr > 0 is a trust threshold defined by the central entity.

The overall reputation of a target i combines the UAV-agnostic reputation and

the trustworthy reputation. Thus, the overall good (Eq. 4.1) and the overall bad

reputation (Eq. 4.2) of the target i is determined as follows.

OGRi,n = w1 ·GRi,n + w2 ·
|Ntr.,i|∑
n′=1

GRi,n′ (4.1)

OBRi,n = w1 ·BRi,n + w2 ·
|Ntr.,i|∑
n′=1

BRi,n′ (4.2)

where w1, w2 ≥ 0 are the weighting factors of the UAV-agnostic and trustworthy

reputation.

Thus, the overall reputation of the target i based on the evaluation of the UAV

n is determined below.

Ri,n = E(beta(OGRi,n + 1, OBRi,n + 1)) =
OGRi,n + 1

OGRi,n +OBRi,n + 2
(4.3)

4.3 Intelligent Multi-Target Tracking

In this section, an intelligent matching mechanism is introduced to pair each UAV

with a corresponding target, while considering their tracking and sensing character-
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istics. Each UAV n has a preference function M t
n,i that captures its priority to track

a target i in time t.

M t
n,i =

1

|q̂it − pnt |
· ii
Pi,n

· Ri,n∑
i∈I
Ri,n

(4.4)

The physical notion of Eq. 4.4 is that a UAV prefers to track a target that is

in its close proximity, has high criticality of collected data, provides its data in a

competitive effort-based price, and it has a good reputation.

Each target i has a preference function TMi,n that captures its priority to offload

data to a UAV n at time t.

TM t
i,n =

1

|q̂it − pnt |
· Fn
ci

· Ri,n

|UARi,n̂ − UARi,n|
(4.5)

The physical notion of Eq. 4.5 is that a target i prefers to offload its data to

a UAV n that (i) is in its close proximity, thus the target will spend less energy to

offload the data; (ii) has a long flying time, thus the target has sufficient time to

transmit its data; (iii) the target’s data collection cost for the requested amount of

data by the UAV n is low; and (iv) is trustworthy and has provided an overall high

reputation for the target i.

Based on the above, we build the UAVs’ and the targets’ matching tables at time t,

as M t = (M t
i,n)|I|×|I| and TM

t = (TM t
i,n)|N |×|N |, respectively. We consider |N | = |I|,

and we are searching for a stable matching among the UAVs and the targets by

examining the problem from the UAVs’ perspective. Following the matching theory,

we adopt the Gale-Shapley algorithm [98] to enable the UAVs to select the targets

that will track at every examined time t. The main steps of the proposed multi-target

multi-UAV matching algorithm are as follows.

1. At each time t, the UAVs and the targets have ranked the members of the opposite

set based on their own preference function, i.e., Eq. 4.4 and Eq. 4.5, respectively.
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2. Each UAV, which is not already paired with a target, will be randomly chosen

to propose to its most preferable target (as indicated by the UAV’s matching table

M t), which has not already rejected this UAV.

3. The target being proposed will: (i) accept the UAV’s proposal, if this is the

target’s first received proposal; (ii) reject if this proposal is worse (in terms of the

target’s preference order of UAVs) than its current proposal; and (iii) accept if this

proposal is better than its current one.

4. If all the UAVs are paired, the matching algorithm stops, otherwise returns to

step 2.

The outcome of the multi-target multi-UAV matching algorithm is the stable

pairs (i∗, n∗) of targets and UAVs.

4.4 Optimal Sensing

In this section, the problem of optimal sensing, i.e., data collection from the smart

city’s field, is addressed. Given the pairs of UAVs and targets, the target’s i utility

by offloading di,n data to the UAV n, is given as follows.

Ui,n(Pi,n, di,n) = Pi,n · di,n − ci · di,n (4.6)

where ci =
ki

Zipf(d)
, ki > 0 is a personalized cost (e.g., energy cost) of the target i

to collect the data of type d. The target’s utility represents the revenue (Pi,n · di,n)

that the target gains by offloading its data, while considering its corresponding cost

(ci · di,n) to collect the data.

The experienced utility of a UAV n by tracking a target i and collecting data

from it, is formulated as follows.
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Un,i(Pi,n, di,n) = µn · log2(1 +
∑
i∈I

Ri,ndi,n)−
∑
i∈I

Pi,ndi,n (4.7)

where µn > 0 is the UAV’s n operation factor, i.e., level of contribution to the smart

city’s proper operation. It is noted that the UAVs belong to a central entity of

the smart city, that controls the data collection operation. The first term of Eq.

4.7 represents the perceived utility of the UAV n by the available information in the

smart city field that is collected by the targets. The second term of Eq. 4.7 represents

the smart city central entity’s total cost (charged by the targets) to collect the data.

Each target aims at maximizing its utility during the data collection process by

determining the optimal effort-based price P ∗
i,n that will charge the UAV in order to

provide its data di,n. Each target’s utility maximization problem is formulated as

follows.

max
Pi,n

Ui,n(Pi,n, di,n) (4.8)

Similarly, each UAV aims at maximizing its own utility during the data sensing

operation. Each UAV determines the optimal amount of data d∗i,n that it can receive

from the target that is paired with, while providing the corresponding effort-based

price. Each UAV’s utility maximization problem is formulated as follows.

max
di,n

Un,i(Pi,n, di,n) (4.9)

The two utility maximization problems of the target (Eq. 4.8) and the UAV (Eq. 4.9)

are coupled together through the variables Pi,n and di,n. Thus, we follow a two-step

Stackelberg game-theoretic approach, where the target i is the leader and the UAV

n is the follower. The Stackelberg game is played between a UAV n and a target i,

thus, |I| Stackelberg games are played in parallel at time t. Towards determining

the Stackelberg Equilibrium (SE) of each game, we perform a backward induction.
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The UAV determines its optimal sensing demand of data d∗i,n requested from

the target towards maximizing its utility, as follows:
∂Un,i

∂di,n
=

µnRi,n

1+
∑
i∈I

Ri,ndi,n
− Pi,n and

∂2Un,i

∂d2i,n
= − µnR2

i,n

(1+
∑
i∈I

Ri,ndi,n)2
< 0. We observe that Un,i is strictly concave with respect

to the requested amount of data di,n. Thus, it has a unique optimal amount of data

d∗i,n determined as follows.

d∗i,n = [
µn
Pi,n

−
1 +

∑
i′∈I,i′ ̸=i

Ri′,ndi′,n

Ri,n

]+ (4.10)

where [x]+, x ≥ 0. Based on Eq. 4.10, we derive the following observations: (i) the

sensing demand of data di,n of the UAV n is proportional to the target’s i overall

reputation and inversely proportional to the target’s i effort-based price that charges

the UAV; (ii) the targets compete with each other to gain a higher reputation by

reducing the effort-based price, thus, reducing their personal cost.

The target’s utility function (Eq. 4.6) can be rewritten as Ui,n(Pi,n, d
∗
i,n) = (Pi,n−

ci)·[ µnPi,n
−

1+
∑

i′∈I,i′ ̸=i

Ri′,ndi′,n

Ri,n
], based on Eq. 4.10. It is noted that if the effort-based price

Pi,n that a target i charges a UAV n is high, this will impact the UAV’s tracking deci-

sion (Section 4.3), and the UAV may select another target to track. Thus, the target’s

optimal effort-based price P ∗
i,n is the Best Response to the other targets announced

prices, i.e., P ∗
i,n = BR(P−i,n), where P−i,n = (P1,n, . . . , Pi−1,n, . . . , Pi+1,n, . . . , P|I|,n).

Towards proving the existence and uniqueness of an SE, we show that the target’s

utility function is strictly concave with respect to the effort-based price Pi,n, as fol-

lows:
∂Un,i

∂di,n
= µnci

P 2
i,n

−
1+

∑
i′∈I,i′ ̸=i

Ri′,ndi′,n

Ri,n
and

∂2Un,i

∂d2i,n
= − 2µnci

(Pi,n)3
< 0. Thus, the best

response strategy of the target i is:

P ∗
i,n = BR(P−i,n) =

√√√√ Ri,nµnci
1 +

∑
i′∈I,i′ ̸=i

Ri′,ndi′,n
(4.11)

Based on Eq. 4.10, 4.11, the SE is (P ∗
i,n, d

∗
i,n) for the Stackelberg game played among
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the UAV n and the target i. In order to prove the convergence of the target’s i best

response strategy to the SE, it suffices to prove that P ∗
i,n = BR(P−i,n) is a standard

function [99, 100].

Theorem 1. Each target’s i, i ∈ I, best response strategy BR(P−i,n) is a standard

function.

Proof. Towards proving Theorem 1, the properties of positivity, monotonicity, and

scalability should hold true.

1. Positivity: Based on Eq. 4.11, we have BR(P−i,n) > 0.

2. Monotonicity: Base on Eq. 4.10, 4.11, we have

BR(P−i,n) =
√√√√ Ri,nµnci

1+
∑

i′∈I,i′ ̸=i

Ri′,n[
µn

Pi′,n
−

1+
∑

i′′∈I,i′′ ̸=i

Ri′′,ndi′′,n

Ri′,n
]

. Thus, we observe that Pi′,n

is proportional to BR(P−i,n). Therefore, the property of monotonicity is satisfied.

3. Scalability: The following property should hold true: a · BR(P−i,n) > BR(a ·

P−i,n), a > 1. We have:
a·BR(P−i,n)

BR(a·P−i,n)
=

√√√√√√a2+
∑

i′∈I,i′ ̸=i

aRi′,n[
µn

Pi′,n
−

1+
∑

i′′∈I,i′′ ̸=i

Ri′′,ndi′′,n

Ri′,n
]

∑
i′∈I,i′ ̸=i

Ri′,n[
µn

Pi′,n
−

1+
∑

i′′∈I,i′′ ̸=i

Ri′′,ndi′′,n

Ri′,n
]

.

Given that a > 1, we have
a·BR(P−i,n)

BR(a·P−i,n)
> 1 ⇐⇒ a · BR(P−i,n) > BR(a · P−i,n).

Thus, we conclude that P ∗
i,n = BR(P−i,n) is a standard function with respect to

P−i,n.

4.5 Numerical Results

In this section, a detailed numerical evaluation is presented in terms of (i) the pro-

posed reputation model’s success to capture the system’s conditions (Section 4.5.1);

(ii) the performance of the intelligent matching algorithm (Section 4.5.2); (iii) the
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Figure 4.1: Targets reputation model – Targets perspective

operation of the game-theoretic sensing framework (Section 4.5.3); and (iv) the ben-

efits of the overall framework compared to other alternatives (Section 4.5.4). For the

purposes of the evaluation, the values of the considered key parameters are as follows:

|N | = |I| = 4, b = 0.5, T rthr = 0.1, w1 = 0.6, w2 = 0.4, z1 = d∗i,n, z2 = 1/P ∗
i,n, an area

of 100m × 100m, znt = 121m,T = 100, µn = [1.115, 1.355, 1.675, 1.789], while Fn, ii

randomly distributed in (0, 1]. The proposed framework’s evaluation was conducted

in a HP Laptop, 1.8GHz Intel Core i7, with 16GB LPDDR3 available RAM.

4.5.1 Operation of Targets Reputation Model

In the following we examine the operation of the reputation model, both from the

targets and the UAVs perspective. In particular, initially Fig. 4.1a presents the

targets’ average overall good (Eq. 4.1), overall bad (Eq. 4.2), and overall (combined)

reputation (Eq. 4.3), over the time period of T = 100 time instances, while Fig. 4.1b

depicts the number of times that the targets were providing helpful data to their

associated UAVs. The results confirm that the targets with the highest average

overall good reputation and the smallest average overall bad reputation conclude to

better average overall reputation (Fig. 4.1a). Accordingly, as shown in Fig. 4.1b

their provided data to the UAVs are evaluated as helpful more times.
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Figure 4.2: Targets reputation model – UAVs perspective

Towards examining the operation of the proposed reputation model from the

UAVs’ perspective, Fig. 4.2a-4.2d present the UAVs’ agnostic reputation deviation

from the most trusted UAV, i.e., |UARi,n̂ − UARi,n|, the number of times that each

UAV belongs to the set of trusted UAVs Ntr.,i of its associated target, the average

normalized effort-based price that it experiences and the average normalized amount

of data that it collects, respectively. We observe that the UAVs with the smallest

deviation (Fig. 4.2a) are trusted more times (Fig. 4.2b). Thus, based on the outcome

of the SE of each game among each UAV and its associated target, they collect more

data (Fig. 4.2d) by investing a smaller effort-based price (Fig. 4.2c), thus collectively

concluding to more cost-efficient data sensing.
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Figure 4.3: UAVs – Targets intelligent matching

4.5.2 UAVs – Targets Intelligent Matching Framework

The following results in Fig. 4.3a-4.3c demonstrate the operation and effectiveness of

the introduced UAVs-targets matching framework, in terms of the UAVs’ preferences

(Eq. 4.4), the targets’ preferences (Eq. 4.5), and the actual number of targets’

selections by the UAVs for a time duration T = 100 time instances, respectively.

Specifically, based on the results illustrated in Fig. 4.3a, it is observed that UAV 1

prefers to track target 1, UAV 2 prefers to track target 2, etc. The exact symmetric

observation holds true regarding the targets’ preferences to offload their data to the
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Figure 4.4: Optimal sensing – Convergence to the SE

corresponding UAVs (Fig. 4.3b). It is noted that the proposed matching framework

captures in a holistic manner both the UAVs and the targets matching preferences

through the proposed preference functions, i.e., Eq. 4.4, 4.5, thus concluding to an

overall successful matching outcome (Fig. 4.3c).

4.5.3 Optimal Sensing Framework Operation Evaluation

In the following, the operation of the optimal sensing framework (Section 4.4) is

evaluated, and the convergence of the corresponding game to the unique SE is shown.

The Stackelberg game between one UAV and the target that is associated with, is

examined for one time instance t. Fig. 4.4a present the target’s normalized offloaded

data di,n and the corresponding effort-based price Pi,n, as a function of the game’s

iterations. The enclosed subfigure presents the respective target’s revenue and cost.

Fig. 4.4b presents the target’s utility Ui,n, and the UAV’s utility Un,i as a function

of the number of iterations. The results reveal that the target’s offloaded amount of

data and the corresponding price (Fig. 4.4a) converge monotonically to the SE in few

iterations (less than 8 iterations equivalent to 7msec). Following the outcome of the

Stackelberg game, the target’s and the UAV’s utility (Fig. 4.4b) also monotonically

converge to the optimal outcome given the uniqueness of the SE. Also, during the

80



Chapter 4. UAV-enabled Dynamic Multi-Target Tracking and Sensing Framework

Proposed     Min

 Distance

Ratio   Reputation

Comparative Scenarios

0

10

20

30

40

A
c
tu

a
l 
S

ta
n

d
a
rd

 D
e
v
ia

ti
o

n Target 1

Target 2

Target 3

Target 4

a)

Proposed     Min

 Distance

Ratio   Reputation

Comparative Scenarios

0

10

20

30

A
v
g

 S
ta

n
d

a
rd

 D
e
v
ia

ti
o

n b)

Proposed     Min

 Distance

Ratio  Reputation

Comparative Scenarios

0

1

2

3

4

A
v

g
 N

u
m

b
e

r 
o

f 
R

e
je

c
ti

o
n

s

c)

Max

Data

 Max

Price

Random Stack-

elberg
Comparative Scenarios

0

50

100

S
o

c
ia

l 
W

e
lf

a
re

d)

Figure 4.5: Comparative Evaluation

Stackleberg game’s iterations, the target increases its revenue and decreases its cost

by strategically deciding its offloaded data, while considering the effort-based pricing

limitations (Fig. 4.4a).

4.5.4 Comparative Evaluation

In this section, initially we compare the proposed intelligent matching framework

with the following three alternative matching approaches. (1) Ratio Approach: The

UAVs select the targets that have high criticality of collected data and provide their

data in a competitive effort-based price, i.e., M t
n,i = ii

Pi,n
. The targets select the

UAVs that have long flying time and its personal cost to collect the data is low,

i.e., TM t
i,n = Fn

ci
. (2) Reputation Approach: The UAVs and the targets define their

preferences based on the reputation model, i.e., M t
n,i

Ri,n∑
i∈I

Ri,n
, TM t

i,n =
Ri,n

|UARi,n̂−UARi,n| .
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(3) Min Distance Approach: The UAVs’ and the targets’ preferences are defined

based on the minimum distance between them, i.e., M t
n,i = TM t

i,n = 1
|q̂it−pnt |

.

Fig. 4.5a and Fig. 4.5b present the actual standard deviation of the number

of selections of each UAV from the most selected target and the corresponding av-

erage standard deviation over all the targets in the system for all the comparative

approaches, respectively. Furthermore, Fig. 4.5c presents the corresponding average

number of rejections, i.e., two UAVs preferred the same target and due to conflict one

UAV’s preference was rejected. The results reveal that under the proposed matching

framework, the UAVs experience few conflicts among each other (Fig. 4.5c), while

they tend to select their most preferable target, and therefore the actual (Fig. 4.5a)

and average (Fig. 4.5b) standard deviation of the number of selections from their

most preferable selection is high. The Ratio approach presents also small number

of conflicts among the UAVs (Fig. 4.5c) compared to the Reputation and the Min

Distance approaches, due to the great variation of the UAVs’ preference function

given the personalized price Pi,n that target i charges UAV n. In the Reputation

approach, all the UAVs tend to select the most reputable targets, while in the Min

Distance approach, the closest targets. Thus, in those two approaches, the number

of rejections is high (Fig. 4.5c) and the actual (Fig. 4.5a) and average (Fig. 4.5b)

standard deviation of the number of selections from their most preferable selection

are consequently low.

Additionally, we compare the proposed optimal sensing framework against the

following three alternatives: (1) Max Data Scenario: All targets offload their total

amount of collected data. (2) Max Price Scenario: The targets charge the UAVs

with a fixed (maximum) price. (3) Random Scenario: The targets decide randomly

the amount of data to offload and the price to charge. For fairness purposes, in

all comparative approaches, the intelligent matching algorithm introduced in this

chapter, is adopted. The social welfare of the system, i.e., the summation of the
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targets’ (Eq. 4.6) and the UAVs’ utilities (Eq. 4.7), is presented in Fig. 4.5d for

all the considered comparative scenarios for T = 100 time instances. The results

clearly reveal the superiority of the proposed optimal sensing framework, while the

Max Data and the Max Price scenarios both present similar low social welfare levels,

and the Random approach provides the worst outcome.

4.6 Conclusions

In this chapter, a novel holistic UAV-enabled multi-target tracking and sensing frame-

work is introduced. Initially, each target’s reputation is defined, consisting of both

UAV-agnostic and trustworthy reputation models. Based on that, the intelligent

pairing of the UAVs with the targets towards enabling the multi-target tracking by

the UAVs, is performed. The targets’ optimal data offloading strategies along with

the optimal effort-based price that the UAVs are charged with in order to collect

the targets’ data, are determined based on a Stackelberg game-theoretic approach.

Detailed numerical results were presented highlighting the key operational features

and the performance benefits of our proposed approach. Part of our current and

future work focuses on treating the examined problem based on a labor economics

approach under the principles of Contract Theory, towards incentivizing the targets

to offload their data to the UAVs [101].
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Chapter 5

Contract-Theoretic Resource

Control in Public Safety Systems

5.1 Introduction

Public Safety Networks (PSNs) have been introduced to provide reliable exchange

of data during catastrophic events (e.g., natural disasters, terrorist attacks). The

persistent and robust information flow in disaster-struck areas has been enabled by

the usage of Unmanned Aerial Vehicles (UAVs). UAV-enabled wireless communi-

cations have attracted great research and commercial interest due to their salient

attributes, i.e., controllable mobility, line-of-sight communication with the trans-

mitters, and low-cost, fast, and flexible deployment [102]. Moreover, the Wireless

Powered Communications (WPC) networking paradigm enables the mobile devices

to harvest energy from the radio frequency signals of the transmitter [103, 104].

Capitalizing on the advances achieved by these technologies, in this chapter, we con-

sider a UAV-assisted WPC network that enables the efficient data collection from a

disaster-struck area, following a contract-theoretic approach.

84



Chapter 5. Contract-Theoretic Resource Control in Public Safety Systems

5.1.1 Related Work & Motivation

The problem of maximizing the system’s energy efficiency in a three layer UAV-

assisted network architecture (space-air-ground) is studied in [105] considering an

Internet of Remote Things network, where the UAVs act as relays. The authors

formulate and solve an optimization problem to determine the devices’ subchannel

selection, their optimal transmission power, and the UAVs’ deployment. In [106], a

UAV performs the data collection from an Internet of Things (IoT) field. The authors

jointly optimize the UAV’s flying speed, altitude, and the IoT devices’ frame length

at the MAC layer, to maximize the ground sensors energy efficiency. In [107], an ant

colony optimization algorithm is presented that enables the collaboration between

the UAVs and the ground devices, in order to prolong the lifetime of the network,

by reducing the devices’ energy consumption to report their data to the UAVs.

The concept of UAV-enabled WPC system has been introduced in [108], where

UAV-mounted energy transmitters, transmit radio frequency signals and the ground

devices harvest energy from them. In [109], the UAV’s trajectory is obtained to

maximize the harvested energy by the ground devices under the UAV’s flying speed

and altitude constraints. In [110], the authors aim at maximizing the minimum

achievable throughput of the ground devices, by jointly optimizing the UAVs’ tra-

jectories, the users’ transmission power, and the decision between the devices’ energy

harvesting and information transmission phases.

However, all these research efforts have been conducted in isolation focusing on

only one of the following related problems, that is: the energy efficient information

acquisition from the ground nodes, the energy harvesting from the UAVs’ radio fre-

quency signals, and/or the optimal UAVs’ deployment. This fragmentation has not

yet allowed the exploitation of the corresponding achievements in their full capacity.

Accordingly, in this chapter, we aim to address this research gap by introducing an
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Figure 5.1: UAV-assisted WPCN topology and framework’s architecture

energy efficient information flow and energy harvesting framework capturing users’

risk-aware characteristics, based on the principles of Contract Theory, and the sup-

port of Reinforcement Learning.

5.1.2 Contributions & Outline

The main contributions of this research work are summarized as follows.

• A wireless powered communication network (WPCN) assisted by UAVs [111]

charging the victims’ devices is considered in a public safety scenario [112]. The

victims’ risk-aware characteristics to provide their information to the UAVs

are captured in representative utility functions [113]. An optimization problem

determining each victim’s optimal amount of provided information to the UAV

and each UAV’s optimal charging power, is formulated and solved following

the principles of Contract Theory, by introducing a labor market relationship

among the UAVs and the users (Section 5.2).

• The victims are organized in rescue groups and the rescue leaders are deter-

mined for each group through a socio-physical groups formation mechanism

(Section 5.3.1). A reinforcement learning framework, based on the theory of

Stochastic Learning Automata, is introduced to enable the optimal matching
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between the UAVs and the rescue leaders of each group, in a distributed and

efficient manner (Section 5.3.2).

• A set of simulation experiments are performed demonstrating the basic charac-

teristics of the proposed contract-theoretic framework, while considering users’

risk-aware behavior. The benefits of the proposed framework are highlighted in

terms of energy-efficiency, information acquisition from the disaster area, and

intelligent users’ incentivization to support the rescue operation (Section 5.4).

5.2 Contract-theoretic Control of Resources

A UAV-assisted WPCN is considered within a public safety system consisting of

a set of victims V = {1, . . . , v, . . . , |V |}, a set of UAVs U = {1, . . . , u, . . . , |U |},

and the Emergency Control Center (ECC). The channel gain between two victims

v, v′ is defined as Gv,v′ =
λ

d2
v,v′

, where λ > 0 represents the channel fading and dv,v′

[m] is the distance among the victims v and v′ [114, 115]. Let Ev [J] denote the

energy availability of each victim’s v device and dv [m] represent the distance of the

victim from the source of the disaster (e.g., epicenter of an earthquake). The victims

are organized in rescue groups. Each rescue group rg determines its rescue leader

rlrg following a socio-physical rescue groups formation mechanism (Section 5.3.1).

Each rescue leader selects in a distributed manner to which UAV it will offload its

data based on a reinforcement learning approach (Section 5.3.2). The considered

system’s topology is presented in Fig. 5.1. Initially, we assume that the rescue

groups formation and the rescue leaders association to the UAVs have already been

performed and we focus on the contract-theoretic control of the resources.

During a catastrophic event, the ECC needs to collect information from the vic-

tims in order to plan the rescue operation [116]. Thus, incentives should be offered

to them in order to provide information to the UAVs and correspondingly to the
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ECC. At the same time, the victims’ behavioral characteristics, i.e., risk-aware be-

havior in terms of providing information, should be considered, while designing their

incentives. To achieve this goal, the principles of Contract Theory are adopted [39].

Contract Theory is a powerful tool to design effective incentives by modeling the

UAVs-victims relation based on a labor market setup. Specifically, the victims of a

rescue group report their information to the corresponding rescue leader. Then, a

UAV, which collects information from the rescue leader, considers the rescue leader’s

risk averse characteristics and offers rewards (i.e., incentives) in order to compensate

it for its invested labor (i.e., reporting information).

Each victim transmits with power proportional to the normalized distance from

its rescue leader, i.e., Pv =
dv,rlrg

max
v∈Vrg

dv,rlrg
· Pmax

v , where Pmax
v is the victim’s maximum

transmission power and Vrg is the set of victims belonging to the rescue group rg. The

corresponding achievable transmission data rate is Rv = W ·log(1+ Gv,rlrgPv

|V ′|∑
v′≥v+1

Gv′,rlrgPv′+I0

)

[117], where I0 represents the Additive White Gaussian Noise and W [Hz] is the

system’s bandwidth, while non-orthogonal multiple access has been considered, and

the successive interference cancellation technique is implemented at the receiver, i.e.,

rescue leader. Thus, during a timeslot t [sec], the total amount of data that the

rescue leader collects is: Drlrg = (
∑
v∈Vrg

Rv)t [bits].

Each UAV offers a contract to each rescue leader that is associated with. The con-

tract is defined as (wrlrg ·Pmax
u , TDrlrg), where P

max
u is the UAV’s maximum charging

power and TDrlrg are the collected data from its rescue group, where TDrlrg ≤ Drlrg .

We consider the UAV’s provided reward as wrlrg ∈ [0, 1], thus, the corresponding

charging power is wrlrg · Pmax
u . Each rescue leader invests an effort (i.e., labor)

arlrg ∈ [0, 1] and transmits TDrlrg = arlrg ·Drlrg data to the UAV. The rescue leader’s

performance, as it is evaluated by the UAV, is defined as qrlrg = arlrg + ϵ, where ϵ

represents some noisy data. The parameter ϵ follows a normal distribution with zero

mean and variance σ2. Towards capturing the rescue leader’s risk aware characteris-

88



Chapter 5. Contract-Theoretic Resource Control in Public Safety Systems

tics in terms of reporting information to the UAV, as well as its perceived satisfaction

from its action and the harvested energy from the UAV, the rescue leader’s risk aware

utility function is defined as follows [39].

Urlrg(wrlrg , arlrg) = −e−nrlrg [wrlrg−ψ(arlrg )] (5.1)

where nrlrg ∈ (0, 1] is the rescue leader’s risk aversion parameter. The greater the

value of nrlrg is, the more conservative the rescue leader becomes in terms of uploading

information to the UAV in order to save its own energy. The function ψ(arlrg) is the

cost function of the rescue leader capturing its personal cost (energy consumption) to

report the collected information from the disaster area to the UAV. The cost function

is concave with respect to the rescue leader’s invested effort, e.g., ψ(arlrg) =
ca2rlrg

2
,

where c > 0 is a constant cost factor. The reward percentage wrlrg offered by the

UAV is defined as wrlrg = µ + srlrg · qrlrg , where µ is a fixed compensation level,

i.e., µ · Pmax
u , to reward the rescue leaders for even participating in the information

flow process, and srlrg is the variable compensation related to the rescue leader’s

performance component. The contract-theoretic control problem of the UAVs (i.e.,

charging power) and the rescue leaders (i.e., transmitted data) resources is formulated

as a maximization problem of the UAV’s expected profit.

max
arlrg ,srlrg

E(qrlrg − wrlrg) (5.2a)

E(−e−nrlrg [wrlrg−ψ(arlrg )]) ≥ Urlrg |min (5.2b)

arlrg ∈ argmax
arlrg

E(−e−nrlrg [wrlrg−ψ(arlrg )]) (5.2c)

where Urlrg |min is the minimum acceptable utility by the rescue leader in order to be

motivated to send the collected data. The constraint (5.2b) represents the individual

rationality constraint of the rescue leader. If this inequality does not hold true,

then, the rescue leader has no incentive to report the collected data to the UAV.
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The constraint (5.2c) captures the incentive compatibility for each victim, i.e., each

victim will put an effort to report the collected data in order to maximize its own

perceived utility.

The rescue leader’s expected utility can be written as E(−e−nrlrg [wrlrg−ψ(arlrg )]) =

−e−nrlrg [µ+srlrgarlrg−
ca2rlrg

2
−

nrlrg
s2rlrg

σ2

2
]) given that we can show that E(−e−nrlrg srlrg ϵ) =

e
nrlrg

s2rlrg
σ2

2 from the theory of the normal distribution. Thus, by solving the con-

straint (5.2c), we can determine the rescue leader’s optimal amount of transmitted

data to the UAV.

TD∗
rlrg = a∗rlrg · Drlrg =

srlrg
c

· Drlrg (5.3)

We can eliminate the constraint (5.2c) by substituting Eq. 5.3 to Eq. 5.2a and

rewrite the optimization problem.

max
arlrg ,srlrg

[
srlrg
c

− (µ+
s2rlrg
c

)] (5.4a)

s.t. µ+
s2rlrg
c

− c

2

s2rlrg
c

−
nrlrg
2
σ2s2rlrg = wrlrg (5.4b)

The solution of the optimization problem (5.4a, 5.4b) yields to the optimal UAV’s

reward, i.e., charging power.

w∗
rlrg · P

max
u = [µ+

1

1 + nrlrgcσ
2
(
srlrg
c

+ ϵ)]Pmax
u (5.5)

Thus, the optimal contract among a UAV and rescue leader is determined to be

(w∗
rlrg

·Pmax
u , TD∗

rlrg
). The operational timeslot of the system is splitted into the wire-

less energy transfer (WET) phase with duration τh[sec] and the wireless information

transmission (WIT) phase with duration τt [sec]. During the WET phase, the UAVs
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transfer directed energy to the rescue leaders that they are associated with, by uni-

casting a radio frequency signal via directional antennas [118]. The rescue leader’s

device’s harvested energy from the UAV that it is associated with is given as follows.

HErlrg = Effrlrg · τh · wrlrg ∗ ·Pmax
u ·Grlrg ,u (5.6)

where Effrlrg ∈ (0, 1] is the energy conversion efficiency factor, which depends on

the rescue leader’s device.

During the WIT phase, each rescue leader reports TD∗
rlrg

to the UAV, assuming

that its available energy, i.e., Erlrg + HErlrg , is sufficient to report the contract

theoretic optimal amount of data. Each rescue leader reports its optimal amount of

data TD∗
rlrg

through a dedicated subchannel with bandwidth W [Hz] to the UAV via

adopting the single carrier frequency division multiple access (SC-FDMA) technique

[119, 120, 121, 122]. Thus, its available data rate is W · log(1 +
Grlrg,UAV P

tr
rlrg

I0
), where

P tr
rlrg

is the rescue leader’s transmission power. Thus, the rescue leader’s consumed

energy to transmit the TD∗
rlrg

data is Etr
rlrg

= P tr
rlrg

· τt, and its remaining energy for

the next timeslot is E
(t+1)
rlrg

= E
(t)
rlrg

+HErlrg − Etr
rlrg

.

5.3 Groups Formation and UAV Associations

5.3.1 Socio-physical Rescue Groups Formation

In this section, a socio-physical-aware rescue groups formation mechanism is pre-

sented, in order to enable the victims to create rescue groups and support the energy

efficient information flow from the victims to the UAVs. In each rescue group, the

victims transmit their information to the rescue leader of the group, who forwards

it along with its own information to a UAV.
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(1) Physical Ties: To support the victims’ energy efficient communication, the vic-

tims tend to participate in rescue groups, where their communication distance among

each other is small and their channel gain conditions are good. Thus, we define a

symmetric matrix G = {gv,v′}|V |×|V |, where gv,v′ =
Gv,v′

max
∀v,v′∈V

{Gv,v′}
∈ [0, 1], which rep-

resents the normalized channel gain conditions of a pair of victims v, v′. Also, the

victim’s normalized energy availability EAv =
Ev

max
∀v′∈V

{Ev′}
∈ [0, 1] is critical in order to

identify whether it could act as a rescue leader. The rescue leaders collect, process,

and transmit the rest of the rescue group’s victims’ information, thus, they spend

an increased amount of energy. Moreover, the victim’s normalized distance from the

source of the disaster Dv =
dv

max
∀v′∈V

{dv′}
∈ [0, 1] is considered, as this victim can provide

more accurate information to the UAV.

(2) Social Ties: The victims have interest to communicate with specific people, e.g.,

family members. The symmetric matrix CI = {civ,v′}|V |×|V |, civ,v′ ∈ [0, 1] captures

the victims’ communication interest. A lower value of civ,v′ represents less commu-

nication interest among the victims.

By combining the victims’ social and physical ties, we define a metric that cap-

tures the rescue and communication capability (RCC) of each victim, as follows.

RCCv = EAv ·Dv ·
∑

v,v′∈V,v ̸=v′
(civ,v′ · gv,v′) (5.7)

The socio-physical rescue groups formation mechanism is executed at the ECC,

which informs the victims through broadcasted messages, and consists of the follow-

ing steps.

(1) Initially, all the victims |V | create a rescue group rg, whose set of victims is

V ′ = V .

(2) For this rescue group rg with set of victims V ′, the rescue leader rlrg is determined

as rlrg = argmax
v∈V ′

{RCCv}.
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(3) For the victims that belong to the rescue group rg with set of victims V ′, the

following condition must hold true:

gv,rlrg · civ,rlrg ·Dv ≥ RG
(V ′)
thres (5.8)

where RG
(V ′)
thres =

∑
v∈V ′

gv,rlrg

|V ′| ·
∑

v∈V ′
civ,rlrg

|V ′| ·
∑

v∈V ′
Dv

|V ′| is a threshold value to create homo-

geneous rescue groups in terms of consisting of victims with close distance, good

channel conditions, high communication interest among each other, as well as con-

tributing valuable information due to their proximity to the source of the disaster.

The victims, who do not satisfy the condition (5.8), they form a new rescue group,

with set of victims V ′′ ⊆ V ′.

(4) Set V ′ = V ′ − V ′′ and if |V ′| > 1, return to step 2, otherwise stop.

5.3.2 Reinforcement Learning-enabled Matching

In this section, a reinforcement learning-based framework is introduced to enable

the optimal matching among the UAVs and the rescue leaders in a distributed and

computationally efficient manner. Each leader acts as a stochastic learning automa-

ton (SLA) making decisions of selecting a UAV to offload its data. Each UAV is

characterized by a reputation, which depends on the physical and communication

characteristics of the overall examined public safety system, and it is given as fol-

lows.

Ru =

∑
rlrg∈Vu

w
∗(ite−1)
rlrg

Pmax
u

∑
∀rlrg

drlrg,u
∑

rlrg∈Vu

TD
∗(ite−1)
rlrg

FTuRu∑
∀rlrg

w
∗(ite−1)
rlrg

Pmax
u

∑
rlrg∈Vu

drlrg,u
∑

∀rlrg
TD

∗(ite−1)
rlrg

∑
∀u
Ru

|V (ite−1)
u |3

(5.9)

where FTu ∈ (0, 1) and Ru are the normalized flying time and the communications

coverage radius of the UAV u, respectively, and Vu is the set of rescue leaders being
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served by the UAV u. The physical notion of Eq. 5.9 is that a rescue leader prefers to

offload its data TD∗
rlrg

to a UAV u that (a) collectively charges with high transmission

power the rescue leaders that are connected to it; (b) is in close proximity; (c) has

a long flying time and large communications coverage radius; (d) it tends to collect

large amount of data; and (e) is not overcongested by other rescue leaders trying to

simultaneously offload their data.

The probability of a rescue leader selecting the same UAV u to offload its data

TD∗
rlrg

in the next iteration of the SLA algorithm is given by Eq. 5.10a and the

probability of selecting a different UAV is given by Eq. 5.10b [123].

Pr
(ite+1)
rlrg ,u

= Pr
(ite)
rlrg ,u

+ bR(ite)
u (1− Pr

(ite)
rlrg ,u

), u
(ite+1)
rlrg

= u
(ite)
rlrg

(5.10a)

Pr
(ite+1)
rlrg ,u

= Pr
(ite)
rlrg ,u

− bR(ite)
u Pr

(ite)
rlrg ,u

, u
(ite+1)
rlrg

̸= u
(ite)
rlrg

(5.10b)

where u
(ite)
rlrg

is the selected UAV u by the rescue leader rlrg in the iteration ite of

the SLA algorithm and 0 < b < 1 is the learning parameter that controls how

fast the rescue leaders learn their optimal UAV matching. It is noted that the

UAVs’ reputation values are broadcasted by them to the rescue leaders to enable the

latter execute the SLA algorithm in a distributed manner and eliminate the signaling

overhead. The SLA algorithm converges when Pr
(ite)
rlrg ,u

≥ Prthr, ∀rlrg where Prthr is

a threshold value, which for the evaluation purposes in this chapter is Prthr = 0.95.

Then, each rescue leader offloads its data TD∗
rlrg

to the selected UAV, as shown in

Fig. 5.1.

5.4 Numerical Results

A detailed numerical evaluation illustrates the performance of the proposed frame-

work in terms of the: impact of socio-physical parameters (Section 5.4.1), contract-
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Figure 5.2: Impact of socio-physical parameters under different comparative scenar-
ios

theoretic and behavioral-aware resource control (Section 5.4.2), and benefits of re-

inforcement learning to implement the optimal matching of the UAVs with the res-

cue leaders (Section 5.4.3). We consider τh = 0.985 sec, τt = 0.015 sec, t = 1

sec, Pmax
u = 85W, dv,v′ ∈ [30, 350]m, λ = 1, Ev ∈ [100, 400] J, Dv ∈ [30, 350]m,

W = 5 · 106Hz, c = 1, b = 0.7, µ = 0.5, FTu ∈ (0, 1], and Ru ∈ [30, 350]m. We

consider |V | = 100 victims, unless otherwise stated. The proposed framework’s

evaluation was conducted in a HP Laptop, 1.8GHz Intel Core i7, 16GB LPDDR3

RAM.

5.4.1 Impact of Socio-Physical Parameters

Three comparative scenarios regarding the victims’ socio-physical characteristics are

evaluated: (i) Best : victims with high communication interest reside close to each

other; (ii) Worst : victims with high communication interest reside far away from

each other; and (iii) Random: victims have random communication interest and
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Figure 5.3: (a) Rescue leaders’ total amount of offloaded data, (b) UAVs’ total
charging power, and (c) Rescue leaders’ total consumed energy w.r.t. risk averse
degree for various comparative scenario

distance among each other. Fig. 5.2a-5.2d present the victims’ data offloaded to their

rescue leaders, their corresponding total consumed energy, the number of created

rescue groups, and their corresponding average size, respectively, as a function of

the number of victims for the three considered comparative scenarios. The results

reveal that under the best case scenario, few homogeneous (in terms of the victims’

socio-physical characteristics) rescue groups are created (Fig. 5.2c) of large average

size (Fig. 5.2d), while the victims achieve to offload a large amount of data (Fig.

5.2a) with small consumed energy (Fig. 5.2b), due to their close proximity and good
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channel conditions among each other. The exact opposite holds true in the worst

case scenario, while the random scenario presents an intermediate behavior between

the best and worst case scenarios.
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Figure 5.4: (a) Energy Efficiency of the PSS, (b) Ratio of the rescue leaders total
offloaded data over the total consumed energy, and (c) Total rescue leaders utility
w.r.t. risk averse degree for various comparative scenario

97



Chapter 5. Contract-Theoretic Resource Control in Public Safety Systems

5.4.2 The Benefits of Contract Theory

We also present the impact of the victims’ risk-aware behavior on the resource man-

agement and the benefits of adopting contract theory to model the interactions among

the UAVs and the rescue leaders. Six comparative scenarios are considered; three

based on the proposed contract-theoretic resource control approach while assuming

the best, worst, and random scenarios (Section 5.4.1), and the corresponding three

scenarios that conclude by assuming that the UAVs charge the rescue leaders’ de-

vices with their maximum available power (referred to as Best Max, Worst Max,

and Random Max respectively). Fig. 5.3a-5.3c present the rescue leaders’ total

amount of offloaded data, the UAVs’ total charging power, and the rescue leaders’

corresponding consumed energy to offload their data to the UAVs, respectively, as

a function of the rescue leaders’ risk averse degree, for all the considered compar-

ative scenarios. It is observed that, with reference to the contract-theoretic based

scenarios, as the rescue leaders become more risk averse (i.e., high value of the risk

averse degree n), they tend to invest less effort in terms of offloading their data to

the UAVs (Fig. 5.3a), thus, they consume less energy in their data transmission

(Fig. 5.3c) and enjoy less rewards (i.e., charging power) from the UAVs (Fig. 5.3b).

Also, in the comparative scenario, where the UAVs provide their maximum available

charging power (Fig. 5.3b) to incentivize the rescue leaders to offload more data

(Fig. 5.3a), this goal is achieved by immensely sacrificing the energy efficiency of the

public safety system (PSS), as shown in Fig. 5.4a.

Specifically, Fig. 5.4a depicts the PSS’s energy efficiency defined as the total

amount of offloaded data by the rescue leaders over the corresponding spent charging

power by the UAVs as a function of the rescue leaders’ risk averse degree n. The

results reveal that the UAVs’ charging power is not well-spent, when they charge the

rescue leaders with their maximum available charging power, and the UAVs’ energy

cost for every unit of collected information is higher for any examined topology
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of the PSS and the victims’ socio-physical characteristics. This, demonstrates the

benefit of the contract-theoretic control of the resources from the PSS’s point of

view. Moreover, the proposed framework is also valuable for the rescue leaders, as it

enables them to achieve greater utility (Eq. 5.1) compared to the scenario of having

their devices charged with the UAVs’ maximum charging power (Fig. 5.4c).
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Figure 5.5: Reinforcement learning-based matching between the UAVs and the rescue
leaders – A comparative evaluation
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5.4.3 Intelligent Matching between UAVs & Rescue Leaders

In this subsection, we highlight the benefits of adopting a reinforcement learning

mechanism to enable the rescue leaders to optimally select a UAV to offload their

data, while considering the characteristics of the PSS. Two indicative alternative ap-

proaches are also considered for comparison purposes: (a) Min Distance: the rescue

leaders offload their data to the closest UAV; and (b) Random: the rescue leaders

randomly select a UAV to offload their data. Fig. 5.5a-5.5c illustrate the rescue

leaders’ total consumed energy, their corresponding total amount of offloaded data,

and the UAVs’ total charging power, respectively, for the considered comparative

scenarios. The results reveal that the reinforcement learning approach enables the

rescue leaders to thoroughly learn their surrounding environment and make a so-

phisticated choice of a UAV, as indicated by the holistic reputation function (Eq.

5.9). Thus, the rescue leaders achieve to report a larger amount of data (Fig. 5.5b),

compared to the other comparative scenarios, while consuming the lowest amount of

energy (Fig. 5.5a), and enjoying greater charging power from the UAVs (Fig. 5.5c).

5.5 Conclusions
In this chapter, a resource orchestration framework is introduced in a UAV-assisted

WPCN within a public safety system, based on the principles of contract theory

and reinforcement learning. The key objective and novelty of this framework is

that it enables the energy efficient information acquisition from the victims, while

considering their risk-aware behavior. Detailed numerical results, obtained through

modeling and simulation, demonstrate the benefits and superiority of the proposed

framework in terms of energy-efficiency, information acquisition from the disaster

area, and intelligent users’ incentivization to support the rescue operation. Our

future research plans include the extension of the proposed framework to consider

the backhaul connection between the UAVs and the emergency control center, thus

offering an energy efficient end-to-end data acquisition and transmission solution.
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Chapter 6

Health Data Acquisition from

Wearable Devices during a

Pandemic

6.1 Introduction

The last century has seen a plethora of pandemics, such as the Spanish flu (1918), the

Hong Kong flu (1968) and the Swine flu (2009) [124]. Towards controlling the spread

of a pandemic, the collection of citizens’ health data, such as heart rate, body temper-

ature, arterial oxygen saturation, from everyday wearable devices (e.g., smart phones,

fitness trackers, etc.) is critical for a large number of applications. Some indicative

applications include contact tracing, rapid diagnosis, patients’ remote monitoring,

and reducing the workload of the medical industry [125]. Furthermore, during a

pandemic outbreak, except for the impact on humans’ health, the global economy is

also heavily impacted, while the non-essential services are forced to shut down. The

recent pandemic of COVID-19 is expected to create a loss of 5.5 trillion US dollars
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in the next two years [126]. This chapter aims at jointly tackling the problem of citi-

zens’ health data acquisition from wearable devices and the economic survival of the

businesses during a pandemic, by introducing a novel techno-economics approach.

6.1.1 Related Work

The collection of health data during pandemics, is crucial regarding both the health-

care planning, as well as towards strategizing for the sustainability of the economy

[127]. Due to the recent COVID-19 outbreak, several wearables have been designed

and exploited to gather citizens’ health data. WHOOP Strap 3.0 is a wrist-mounted

wearable measuring cardiorespiratory variations and reporting them via Bluetooth to

the citizen’s smart phone [128]. Estimote’s wearable devices enable the wearer to up-

date its health status and share it along with its location to a centralized entity, e.g.,

employer [129]. Biosensor Patch 1AX measures the body temperature, respiration

rate, electrocardiogram trace, and heart rate and report them to the person’s smart-

phone over Bluetooth [130]. All those sensors, along with other wearables, have been

recently employed to deal with the COVID-19 outbreak. However, humans are hes-

itant in providing their health data, thus, sophisticatedly designed extrinsic and/or

intrinsic incentive mechanisms should be designed [131].

In addition to the healthcare planning during pandemics, the economic impact

and the change of the citizens’ consumption culture play a key role on the sustainabil-

ity of the economy [132]. McKinsey & Co. released a study showing that more than

70% of the US population has reduced its purchases in personal care services, hotel

stays, out of home entertainment, restaurants, and others, during the COVID-19 era

[133]. A pandemic has a devastating economic impact on the automotive, aviation,

tourism, oil, construction, food, healthcare and medical industries [134]. Thus, cre-

ating the proper conditions to enable the citizens to keep their consumption culture,
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while respecting all the health protection rules, is important to move the economy

during and past the pandemic.

6.1.2 Contributions & Outline

Despite the efforts made in previous works, in regards to the data acquisition from

wearable devices during a pandemic and the economy’s sustainability, the solution

of those two problems still remains highly fragmented. Moreover, the incentivization

of the citizens to provide their health data to the healthcare operator, e.g., operating

at a district level, is even more challenging. In this work, we strive to tackle exactly

these issues, by introducing a behavioral and labor economics based approach. The

main contributions of this research work are summarized below.

1. A smart city scenario consisting of the healthcare operator, multiple businesses,

and citizens with wearable devices is considered (Section 6.2). The citizens select to

visit the businesses and perform purchases by exploiting the physical and social char-

acteristics of both themselves and the businesses, based on a reinforcement learning

approach (Section 6.3).

2. A behavioral economics approach is introduced to incentivize the citizens to

provide the wearable devices’ data to the businesses, while the latter provide extrinsic

motivation to the citizens to facilitate their engagement in performing purchases. An

optimization problem is formulated and solved to determine each citizen’s optimal

amount of reported data and the corresponding received rewards by the selected

business (Section 6.4).

3. Given the overall data collected at each business, a labor economics-based ap-

proach is proposed to enable the healthcare operator at the district level to incen-

tivize the businesses with monetary rewards to report the citizens’ collected data to
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it for further exploitation regarding the healthcare planning. The healthcare opera-

tor’s optimal provided monetary rewards to the businesses, and the optimal amount

of reported data by the latter ones are determined via formulating the problem as a

contract-theoretic optimization problem (Section 6.5). Creating the aforementioned

three layers approach, the joint goal of data acquisition and economy’s sustainability

is achieved.

4. A series of simulation experiments demonstrate the performance, effectiveness,

and robustness of the overall proposed framework under various realistic scenarios

(Section 6.6).

Finally, Section 6.7 concludes the chapter.

6.2 System Model

A smart city environment is considered consisting of the sets of citizens denoted

as C = {1, . . . , c, . . . , |C|}, businesses (e.g., restaurants, hotels, bookstores) S =

{1, . . . , s, . . . , |S|}, and the city’s healthcare operator. The citizens equipped with

wearable devices, can collect and provide personal health data. Those data are

private, thus, the citizens should be incentivized to provide them, if they choose so.

The healthcare operator is interested in collecting those data to facilitate the smart

city’s health protection planning during a pandemic. The businesses suffer from

economic losses during such a pandemic, thus, they are interested in incentivizing

the citizens to visit them, while respecting the announced health protection rules.

The businesses act as a liaison between the citizens and the healthcare operator, in

order to collect the citizens’ health data from the wearable devices, while at the same

time guaranteeing their own economic sustainability. In particular, the businesses

offer personalized rewards to the citizens (e.g., coupons, discounts), and the citizens
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provide as an exchange their health data. Then, the healthcare operator provides

personalized rewards (e.g., tax reduction) to the businesses, while the latter provide

the collected health data from the citizens that visited them.

6.3 Reinforcement Learning-based Selection

A socio-physical based approach is introduced to enable the citizens to select the

business that they will visit via exploiting the principles of reinforcement learning

(RL). Each business is characterized by its reputation Rs ∈ (0, 1]. Moreover, let us

denote by phs ∈ (0, 1] the popularity phs ∈ (0, 1] of each business at an examined

time slot (the latter can be easily retrieved from its Google reviews’ profile, in terms

of how busy is the business with customers). Each citizen c has a social interest

SIc,s ∈ (0, 1] to visit a business s. We denote by |C|s the number of citizens selecting

to visit a business s at a time slot (e.g., one hour) that the system is examined.

A citizen c receives a reward (i.e., personal satisfaction) defined as: rc,s =
SIc,sRs

|C|sphs

by visiting a business s, taking into account that a citizen wants to visit a reputable

business of high personal interest, which however is not very crowded in order to

easily respect the health protection rules. The corresponding normalized reward

is r̂c,s = rc,s/
|S|∑
s=1

rc,s. The citizens can act as stochastic learning automata (SLA)

making distributed decisions about themselves aiming to optimize their long-term

reward by visiting a business. Based on the iterative SLA reinforcement learning

algorithm, each citizen selects to visit the same (Eq. 6.1a) or a different business

(Eq. 6.1b) based on the following probabilistic rule [135]:

P (ite+1)
c,s = P (ite)

c,s + br̂c,s(1− P (ite)
c,s ), s(ite+1)

c = s(ite)c (6.1a)

P (ite+1)
c,s = P (ite)

c,s − br̂c,sP
(ite)
c,s , s(ite+1)

c ̸= s(ite)c (6.1b)
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where 0 < b < 1 is the learning rate. For large values of b, the citizens do not

thoroughly explore their available options, thus, the algorithm converges fast, while

the opposite holds true for small values of b. The SLA algorithm converges when

for each citizen there is a selection to visit a business with probability close to one

(P
(ite)
c,s → 1). The SLA algorithm can be implemented in a mobile application and

help the citizens making personal decisions regarding the businesses that they will

visit during a pandemic.

6.4 Contract-theoretic Data Collection

The problem of the citizens’ incentivization by the businesses to provide their health

data via offering personalized rewards is studied based on the principles of behavioral

economics. Each business may provide Ms [$] maximum rewards to a citizen, while

xc ∈ [0, 1] denotes the actual portion ofMs to be offered to the citizen as an exchange

to the actual reported health data. Each citizen can provide dc [bits] total amount

of data captured by its wearable devices, while yc ∈ [0, 1] denotes the percentage of

them reported to the business. Naturally, each citizen has some personal behavioral

characteristics in terms of how hesitant it is to report its personal health data. The

citizen’s risk aversion behavior to provide its data is captured through the parameter

nc ∈ (0, 1]. The greater the citizen’s risk aversion nc is, the more conservative is the

citizen in reporting its data.

Following the principles of behavioral economics [39], the citizen’s utility is rep-

resented, as follows:

Uc(xc, yc) = −e−nc[xc−ψ(yc)] (6.2)

where ψ(yc) is the citizen’s cost function to report its data to the business capturing

106



Chapter 6. Health Data Acquisition from Wearable Devices during a Pandemic

for example its personal wearable devices’ energy consumption, data usage, etc. The

cost function is strictly increasing with respect to the percentage yc of the reported

data, e.g., ψ(yc) =
cy2c
2
, where c > 0 is a constant cost factor.

It is noted that when a citizen provides ycdc data, not all of its data are useful for

the healthcare operator, thus, we consider the citizen’s contribution in terms of data

as qc = yc + ϵ, where ϵ represents some noisy data. The variable ϵ follows a normal

distribution with zero mean and variance σ2. Also, each business is considered to

provide a percentage reward xc = fs + vcqc, where fs is a fixed reward and vc is a

variable compensation related to the citizen’s provided data.

Towards determining the pair of optimal reward and optimal portion of reported

data, i.e., {x∗cMs, y
∗
cdc}, the following optimization problem is formulated aiming at:

(1) maximizing each business’s expected benefit/profit (Eq. 6.3a), (ii) guaranteeing a

minimum satisfaction Uc,min for each citizen (Eq. 6.3b), thus capturing its individual

rationality (IR), and (iii) maximizing the citizen’s achieved satisfaction (Eq. 6.3c)

to be incentive compatible (IC) to participate in the data reporting process.

max
{xc,yc}∀c∈C

E(qc − xc) (6.3a)

s.t. E(−e−nc[xc−ψ(yc)]) ≥ Uc,min (IR) (6.3b)

yc ∈ argmax
yc

E(−e−nc[xc−ψ(yc)]) (IC) (6.3c)

The citizen’s expected utility can be rewritten when given that E(e−ncvcϵ) =

e
ncv

2
cσ

2

2 as E(−e−nc[xc−ψ(yc)]) = −e−nc[fs+vcyc−
cy2c
2

−ncv
2
cσ

2

2
]) . Thus, by solving (6.3c), we

have:

y∗cdc = vcdc/c, and, we can rewrite the problem (6.3a)-(6.3c).
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max
{xc,yc}∀c∈C

[
vc
c
− (fs +

v2c
c
)] (6.4a)

s.t. fs +
v2c
c
− v2c

2c
− ncv

2
cσ

2

2
= xc (6.4b)

The solution of the problem (6.4a)-(6.4b) can be easily determined as x∗cMs =

[fs +
1

1+nccσ2 (
vc
c
+ ϵ)]Ms. Thus, the contract of optimal reward and optimal portion

of reported data, i.e., {x∗cMs, y
∗
cdc}, is determined.

6.5 Healthcare Operator’s Data Acquisition

In this section, a contract-theoretic framework is introduced in order the healthcare

operator to incentivize the businesses to provide the collected health data to it by

providing tailored rewards to them. Each business has collected in a time slot (e.g.,

one hour) a total amount of data
|C|s∑
c=1

y∗cdc [bits]. Thus, we define the business’s type

as, ts =

|C|s∑
c=1

y∗cdc

max
∀s∈S

{
|C|s∑
c=1

y∗cdc}
∈ [0, 1], reflecting the value of each business to the healthcare

operator in terms of its ability to provide data. Each business performs an effort qs ∈

[0, 1] in terms of reporting the portion of data qs
|C|s∑
c=1

y∗cdc to the healthcare operator,

and receives a personalized reward rs(qs) = tsqs from the operator, accounting for

both the business’s amount of reported data, as well as its potential to report a large

amount of data captured by its type.

Each business’s utility presents its profit/benefit from reporting the collected

data and is given as Us(qs) = tse(rs) − qs, where e(rs) is the evaluation function.

The latter function is a strictly increasing and concave function with respect to the

business’s received reward, e.g., e(rs) =
√
rs, and captures the way the business

evaluates the received monetary rewards. The healthcare operator is unaware of the
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amount of data that each business may have collected, thus, it estimates the type of

each business with probability Prs, which in this chapter, without loss of generality,

is assumed to follow a uniform distribution. The profit/benefit of the healthcare

operator from collecting the data, while providing tailored rewards to the businesses

is given as Uo(q) =
|S|∑
s=1

Prs(qs − λrs), where q = {q1, . . . , q|S|}. The social welfare of

the overall system is SW (q) = Uo(q) +
|S|∑
s=1

Us(qs).

Following the principles of Contract Theory, the healthcare operator aims at max-

imizing its benefit from the data acquisition process (Eq. 6.5a), while guaranteeing

that the optimal contracts, i.e., {r∗s , q∗s}, are acceptable by the businesses. Towards

achieving the latter goal, each business’s profit should be non-negative to satisfy

its personal individual rationality (Eq. 6.5b), the reward provided to each business

should be tailored to its type in order to be incentive compatible for the business

(Eq. 6.5c), and fairness should be guaranteed in the overall rewarding process. The

latter means that a business of higher type, i.e., t1 < · · · < t|S|, will provide more

data, i.e., q1 < · · · < q|S|, thus, it will receive a greater reward (Eq. 6.5d). The

businesses are sorted with respect to their type for simplicity in the presentation.

The corresponding contract-theoretic optimization problem is defined as follows.

max
{rs,qs}∀s∈S

Uo(q) =

|S|∑
s=1

Prs(qs − λrs) (6.5a)

s.t. tse(rs)− qs ≥ 0,∀s ∈ S (IR) (6.5b)

tse(rs)− qs ≥ tse(r
′
s)− q′s, s ̸= s′,∀s, s′ ∈ S (IC) (6.5c)

0 ≤ r1 < · · · < rs < · · · < r|S| (6.5d)

The above optimization problem is non-convex, thus, towards solving it, we will

reduce its constraints. Initially, focusing on the IR constraints in Eq. 6.5b, and based

on the IC constraint we have that tse(rs) − qs ≥ tse(r
′
s) − q′s ≥ tse(r1) − q1, while
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the last inequality holds true given that the evaluation function is strictly increasing

with respect to rs, and r1 < · · · < r|S| and q1 < · · · < q|S|. Also, given that t1 <

· · · < t|S|, we have tse(r1)− q1 ≥ t1e(r1)− q1 ≥ 0. Moreover, the healthcare operator

will provide the sufficient reward to just incentivize the businesses to participate in

the data acquisition process, thus, Eq. 6.5b can be equivalently substituted with

t1e(r1)− q1 = 0.

Towards reducing the IC constraints presented in Eq. 6.5c, we adopt the following

terminology: (i) s, s′, s′ ∈ {1, . . . , s−1} downward IC (DIC), (ii) s, s−1,∀s, s−1 ∈ S

local downward IC (LDIC), (iii) s, s′, s′ ∈ {s+1, . . . , |S|} upward IC (UIC), and (iv)

s, s+ 1,∀s, s+ 1 ∈ S local upward IC (LUIC) constraints [39].

Proposition 1. All the DIC constraints can be captured by the LDIC constraints.

Proposition 2. All the UIC constraints can be captured by the LDIC constraints.

Based on the above analysis of the reduction of the IR and IC constraints, we

can rewrite the optimization problem present it in (6.5a)-(6.5d), as follows.

max
{rs,qs}∀s∈S

Uo(q) =

|S|∑
s=1

Prs(qs − λrs) (6.6a)

s.t. t1e(r1)− q1 = 0,∀s ∈ S (IR) (6.6b)

tse(rs)− qs = tse(rs−1)− qs−1,∀s, s− 1 ∈ S (IC) (6.6c)

0 ≤ r1 < · · · < rs < · · · < r|S| (6.6d)

The resulting optimization problem in (6.6a)-(6.6d) can be easily solved using

standard tools of convex optimization and determine the optimal contracts {r∗s , q∗s}.

Consequently, the total amount of data collected by the healthcare operator is:
|S|∑
s=1

q∗s

|C|∑
c=1

y∗cdc.
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6.6 Numerical Results

In this section, we evaluate the performance of the proposed economic-driven health

data acquisition framework via numerical simulations and detailed comparative anal-

ysis. Initially, the impact of the socio-physical parameters in the citizens’ business

selection and data acquisition is presented under different comparative scenarios

(Section 6.6.1). The risk-aware citizens’ behavior is analyzed under different cost

parameters to show their correlation in the data collection process and the crit-

ical role of the citizens involvement during a pandemic (Section 6.6.2). Finally, a

detailed comparative evaluation is performed to illustrate the businesses’ and health-

care operator’s interactions to jointly achieve the economic survival of the first and

the data collection of the latter towards performing the healthcare planning in the

smart city (Section 6.6.3). In the rest of the analysis, we consider |C| = 500 citizens,

Ms ∈ [2, 4]$, dc ∈ [2, 3.5] Mbits, |S| = 15 businesses, Rs ∈ [0, 1], and SIc,s ∈ [0, 1] and

phs ∈ [0, 1] with increasing values with respect to the business’s ID and c = 2, unless

otherwise explicitly stated. The proposed framework’s evaluation was conducted in

a HP Laptop, 1.8GHz Intel Core i7, 16GB LPDDR3 RAM.

6.6.1 Socio-physical-based Business Selection

In this subsection, the performance of the reinforcement learning-based business se-

lection by the citizens in an autonomous manner via considering their social-physical

characteristics (Section 6.3) is studied. In particular, the proposed SLA distributed

decision-making under various learning rate values, i.e, b = {0.1, 0.4, 0.7, 0.9}, is

compared against (a) Random Scenario: the citizens select randomly which business

to visit; and (b) Congestion Scenario: the citizens act as SLA with reward function

rc,s = 1/|C|s aiming to visit the less congested business without exploiting their

social-physical preferences. For fairness in the comparison, for all examined alterna-
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Figure 6.1: Reinforcement Learning-based Business Selection – A Comparative Eval-
uation

tives, we apply the behavioral contract-theoretic data collection approach (Section

6.4). Fig. 6.1a and Fig. 6.1b present the number of citizens that visited each busi-

ness and the amount of data collected by the latter. The results reveal that under

the SLA approach, the citizens successfully select the business that provides them

higher reward (rc,s =
SIc,sRs

|C|sphs ) given the superior social-physical characteristics. Also,

the corresponding businesses that better satisfy the citizens’ social-physical needs,

achieve to collect more data that can be exploited for making further profit by report-

ing them to the healthcare operator. Thus, the businesses that offer better rewards
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Figure 6.2: Behavioral and Cost-based Data Collection

rc,s to the citizens have dual economic benefit, as they attract more customers and

collect more data from them that can exchange with the healthcare operator for

additional monetary rewards. On the other hand, the random selection allocates

the citizens to the businesses in a non-sophisticated manner. The latter has a re-

sult the heterogeneous congestion of the businesses (Fig. 6.1a) and the unbalanced

data collection (Fig. 6.1b). Also, the Congestion Scenario tends to blindly balance

the number of citizens allocated to the businesses, without accounting for any so-

cial parameters, thus, resulting in lower rewards rc,s =
SIc,sRs

|C|sphs compared to the SLA

approach.
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Focusing on the pure operation of the SLA approach, Fig. 6.1c presents the

percentage of changes of the citizens’ selections to visit a business compared to their

selection for learning rate b = 0.1. The latter is considered as the ground-truth given

that the citizens exploit thoroughly their choices for small values of the learning rate

concluding to higher values of reward by their decision to visit a business. Also, Fig.

6.1c shows the real execution time of the SLA approach until it converges to a stable

decision. The results show that as the value of the learning parameter increases, the

citizens make faster decisions, however, they deviate more from the ground-truth,

consequently receiving smaller rewards.

6.6.2 Behavioral and Cost-based Data Collection

Subsequently, we turn our attention to the quantification of the impact of the citizens’

risk-aware behavior and their experienced cost to report their data to the business

that they select to visit, on their final decisions regarding the amount of data that

they report.

Specifically, Fig. 6.2a-6.2c present the average values of the citizen’s reported

health data, their received reward from the businesses, and their achieved utility

(Eq. 6.2) as a function of the citizen’s risk aversion parameter nc. Three comparative

scenarios are considered regarding the cost that the citizens experience to report their

data: (a) High Cost : ψ(yc) =
cy2c
2
, c = 3, (b) Medium Cost : ψ(yc) =

cy2c
2
, c = 2, and

(c) Low Cost : ψ(yc) =
cy4c
4
, c = 2, where yc ∈ [0, 1]. The results reveal that as the

citizens become more risk averse (i.e., increasing value of the risk aversion parameter

nc) in terms of reporting their health data, they tend to actually report a smaller

amount of data (Fig. 6.2a), thus, they receive a smaller reward from the businesses

(Fig. 6.2b), resulting finally in a decreased enjoyed utility (Fig. 6.2c). In other

words, the more hesitant the citizens become with sharing their wearable devices’
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Figure 6.3: Impact of socio-physical parameters under different comparative scenar-
ios

health data, the less rewards they experience from the businesses.

Focusing on the impact of the cost that the citizens experience to report their

data to the businesses, as expected the results show that the higher the cost, the

less data the citizens report to the businesses that they visit (Fig. 6.2a). Thus, the

businesses offer lower rewards to the citizens (Fig. 6.2b), and the latter achieve less

satisfaction (Fig. 6.2c). Based on the overall above behavioral and cost analysis, we

conclude that a citizen who is less hesitant to report its data, and experiences low

cost, has the potential to contribute more in the data acquisition process and the

businesses’ economic sustainability.

6.6.3 Businesses and Healthcare Operator Interactions

We further explore the interactions among the businesses and the healthcare operator

under the case of complete and incomplete information availability, i.e., the health-

care operator knows the businesses types in a deterministic and probabilistic manner,
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Figure 6.4: System’s Operation - A Comparative Analysis

respectively. Moreover, a comparative evaluation of our proposed contract-theoretic

framework against other approaches is performed, to reveal our framework’s benefits.

In particular, Fig. 6.3a presents the businesses’ type ts as a function of their

ID. Fig. 6.3b-6.3d illustrate the businesses’ normalized effort qs, their normalized

received reward rs from the healthcare operator and their achieved utility Us as a

function of the business ID, respectively, for the complete and incomplete information

scenarios. The results reveal that as the business’s type increases (i.e., the business

has collected more data from the citizens), the greater effort it invests to report the

data to the healthcare operator (Fig. 6.3b). This results in the business receiving a

larger reward (Fig. 6.3c) and consequently a higher utility (Fig. 6.3d). Moreover,

it is shown that higher reward and corresponding higher effort is observed under

the complete information scenario, as the healthcare operator knows the businesses’

types, thus, it provides just sufficient rewards to collect all their available data. For

that reason, the businesses’ utility is zero, as the healthcare operator offers that level

of rewards to the businesses, in order the latter to just balance the cost to report

their data with the received monetary rewards from the healthcare operator.

Subsequently, in Fig. 6.4a and Fig. 6.4b, a comparative evaluation of the health-

care operator’s cumulative utility and the overall social welfare are presented, respec-

116



Chapter 6. Health Data Acquisition from Wearable Devices during a Pandemic

tively, under the complete and incomplete information scenarios, and the Random

and Congestion Scenarios (described in Section 6.6.1). The results reveal that the

complete information scenario achieves the best results as the healthcare operator

has full knowledge about the businesses’ types and can more accurately plan the data

acquisition process (Fig. 6.4a), while guaranteeing the high levels of satisfaction of all

the involved entities (Fig. 6.4b). The incomplete information scenario, which corre-

sponds to a more realistic implementation, achieves the second best results, achieving

approximately 22% worse social welfare compared to the (ideal) complete informa-

tion scenario. This observation indicates that the proposed framework behaves very

well under the challenging scenario, where the healthcare operator is unaware of the

businesses’ characteristics. Finally, the non-sophisticated random scenario results in

the worst results, while the congestion scenario results in unsatisfied citizens visiting

businesses that they have low social interest to visit. Accordingly, in this case the

citizens are not motivated to report a large amount of their data and the system

performs poorly.

6.7 Conclusions

In this chapter, a techno-economics based approach is introduced to deal with the

joint problem of health data acquisition from the citizens and economic sustainability

of the businesses in a smart city. A reinforcement learning approach is proposed to

enable the citizens to choose the most preferable business to visit by exploiting their

socio-physical characteristics. A novel incentivization model is introduced in order

for the citizens to provide their health data to the businesses that they visit, based on

the behavioral economics, while improving the businesses’ economic sustainability.

Moreover, a contract-theoretic data acquisition framework is proposed enabling the

healthcare operator to acquire the citizens’ health data, towards facilitating the smart
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city’s healthcare planning. Part of our current and future work involves the extension

and realization of this model, by implementing the proposed frameworks in mobile

Android and IOS applications, and test them in realistic environments under different

scenarios of incomplete information.
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Chapter 7

Museum and Visitors Interactions

Enabled by Labor Economics

7.1 Introduction

Over the last decade, the world has witnessed a rapid growth of services and ap-

plications provided to citizens in order to improve and facilitate their everyday life

activities. Indicative application domains include smart homes, transportation sys-

tems, education, smart cities, and cultural spaces, to name a few. To improve the

Quality of Service (QoS) provided to the end-users, humans have become an integral

part of the overall system design and the human factors are naturally taken into

account during the system operation. Following this human-in-the-loop (HITL) ap-

proach, cyber-physical-social systems (CPSSs) have emerged combining the aspects

of communications, computing, control, and human resources and attributes [136].

In this chapter, we focus our study on the cyber-physical-social system of a museum,

instrumenting the interactions among the museum operator and the visitors, and in-

centivizing the latter to provide feedback to the former via a labor economics-based

approach.
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7.1.1 Related Work

In CPSSs, the participatory sensing, i.e., data collection from humans in order to

analyze them and extract their characteristics and behaviors, is critical in designing

and optimizing the CPSS to meet the humans’ QoS and Quality of Experience (QoE)

requirements. Various incentives have been introduced in recent literature in order to

incentivize humans’ participatory sensing [137]. Such incentives can be organized into

two main classes: (a) monetary and (b) non-monetary incentives, enabling extrinsic

and intrinsic human motivation, respectively [138]. The monetary incentives can be

static, i.e., predetermined based on some criteria and unaffected by the changes in

the CPSS, or dynamic, i.e., dependent on the real-time conditions of the CPSS. The

non-monetary incentives can be: (i) collective, i.e., the humans are encouraged to

work together for a common good; (ii) social, i.e., the humans are encouraged to

achieve a social status; and (iii) socially interactive, i.e., the CPSS provides to the

humans a feeling of social presence and belonging, such as in social networks and

blogs [139].

In [140], a behavioral model is presented in order to categorize the humans into

three types with respect to the participatory sensing process: malicious, speculative,

and honest. An incentive mechanism is also introduced, which provides benefits to

the humans in proportion to their reputation with respect to the collected informa-

tion. In [141], a contract-theoretic participatory sensing mechanism is proposed. A

participatory sensing platform announces various data acquisition tasks and provides

benefits to humans based on their invested effort to collect and report the data. The

ultimate goal of the participatory sensing in CPSSs is to improve their operation as

dynamic and complex systems and, in parallel, to enhance the experienced QoE by

the humans which play an active role therein [142].

Considering the cultural heritage space use case of CPSSs, such as museums, lim-
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ited quantitative models have been introduced in the literature to jointly optimize

the museum’s operation and the visitors’ QoE, while exploiting their interactions.

In [143], the visitor’s experience in a museum is studied via analyzing the informa-

tion shared by the visitor to the social networks following the participatory sensing

paradigm. The authors’ goal is to exploit the collected information in order to

identify the visitors’ interests, and thus improve the exhibition’s planning. The im-

portance of participatory sensing and the corresponding generated big data has been

highlighted in [144]. Specifically, an exploratory study was conducted with a partici-

pating group of museum professionals who identified the critical role of participatory

sensing and big data in improvements to museum operations.

Furthermore, focusing on the visitors’ QoE improvement, an empirical study was

performed in [145] to identify the most influential parameters of visitors’ QoE, while

considering the visitors’ style and characteristics. This work has been extended in

[26], where a routing mechanism is introduced in order to recommend a museum tour

to the visitors for the purpose of optimizing their QoE. In [146], the authors have

implemented a light detection and ranging (LIDAR) system to detect and track the

visitors’ positions and mobility patterns in the museum. Based on the latter collected

information, the visitors’ behavior during the museum touring is inferred and used

in designing the museum exhibition to improve visitor QoE. This research has been

extended in [147], where the authors have performed a real experiment in the art

gallery of the Ohara Museum of Arts in Japan to extract the visitors’ behavioral

characteristics during the museum visit.

Focusing on exploiting the visitors’ behavioral patterns in order to improve their

achieved QoE, Prospect Theory has been adopted in [148] to determine the opti-

mal time that each visitor should spend per exhibit in order to optimize their QoE.

This research work has been extended in [149] to accommodate the museum op-

erator’s goal of mitigating visitor congestion in the museum, while accounting for
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the visitors’ goal to optimize their QoE. In the proposed model, sophisticated pric-

ing mechanisms have been designed to enable the museum operator to incentivize

the visitors to invest their visiting time appropriately, thereby jointly optimizing

both the museum operator’s and the visitors’ aforementioned objectives. In [150],

the authors focus on designing a mechanism of smart routing and recommendation

provision for the visitors, while accounting for their behavioral and visiting styles.

Also, in [151], a reinforcement learning approach is introduced in order to enable the

visitors to perform a recommendation selection regarding their visiting style (e.g.,

map, facilitator, audiovisual equipment) in an autonomous manner. Moreover, a

game-theoretic framework is proposed to determine their optimal visiting time in a

distributed manner, so as to maximize their perceived QoE.

7.1.2 Contributions & Outline

In a nutshell, the existing research has focused on participatory sensing to infer the

visitors’ behavior in order to either optimize their QoE or enable the museum opera-

tor to perform optimal museum planning, such as with strategic exhibit deployment

and congestion mitigation. However, very limited attention has been given to the

joint accommodation of both the museum operator’s and the visitors’ goals, which

still remains an open issue of high research and practical importance. In particular,

the problem of orchestrating the museum operator’s and the visitors’ interactions

while accounting for the visitors’ behavioral characteristics, in an effort to jointly

optimize the benefits of two entities with different and possibly diverse interests, is

even more challenging. In this research work, we particularly strive to tackle these

issues. The main contributions of this study that differentiate it from other literature

are presented below.

1. The characteristics of the museum considered as a cyber-physical-social system
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are identified. The visitors’ characteristics and their visiting styles are studied

in order to define the visitors’ types. Each visitor is characterized by a unique

type stemming from their level of knowledge with respect to the exhibition,

their mobility pattern, their visiting style, and the time that they are willing

to invest in the museum touring (Section 7.2).

2. A labor economics-based framework is introduced to capture the museum op-

erator’s and the visitors’ benefits from the collected information, via the par-

ticipatory sensing and the monetary incentives, respectively. Specifically, the

museum operator provides monetary rewards to the visitors so that they will

provide evaluations about the exhibits, while simultaneously accounting for

the sensible spending of their time in the museum. The interactions among the

museum operator and visitors are captured in appropriately designed utility

functions following the principles of labor economics (Section 7.3).

3. A labor economics-based optimization problem is formulated to jointly con-

sider and treat the museum operator’s and the visitors’ utilities. The problem

is studied and solved under the scenarios of complete information (Section

7.4), wherein the museum operator knows the visitors’ types deterministically,

and incomplete information (Section 7.5), wherein the museum operator es-

timates the visitors’ types probabilistically. The outcome jointly determines

the visitors’ optimal contributions, expressed in terms of their total provided

evaluations of visited exhibits over their touring time, as well as the museum

operator’s optimal amount of rewards provided to each visitor.

4. With a detailed set of experiments, we show that the proposed approach based

on principles of labor economics, outperforms a type-agnostic scenario which

is unaware of the visitors’ unique characteristics, with a 25% improvement

upon the visitors’ QoE. Our findings also show that the labor economics-based

incentivization framework can provide a five-fold improvement of the social
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welfare of the museum CPSS, when compared to the scenario in which the

visitors provide the maximum possible number of evaluations and invest the

minimum acceptable time for their tour (Section 7.6).

7.2 Museum: A Cyber-physical-social System

The cyber-physical-social system of a museum is considered consisting of the museum

operator, who is responsible for the museum planning and management, and the set

of visitors N = {1, . . . , n, . . . , |N |}. Each visitor has a maximum available time tMax
n

[min] that they are willing to invest in touring the museum. Also, the museum opera-

tor aims to collect feedback and evaluations from the visitors regarding their interest

in the exhibits included in the exhibition. The number of evaluations provided by

the visitor n is denoted as En, En ∈ N. Furthermore, each visitor is characterized by

their level of knowledge kn ∈ [0, 1] regarding the content of the exhibition. Based on

their level of knowledge, the visitor’s provided exhibit evaluations weigh accordingly.

Based on the seminal research work of Véron and Levasseur [152], the visitors

are categorized in the visiting styles of ants, butterflies, grasshoppers, and fish, on

the basis of their mobility pattern in the museum and time spent per exhibit. The

ants visit all of the exhibits sequentially, spending similar time at each one. The

butterflies visit almost all of the exhibits and spend varying times at each one.

The grasshoppers spend a long time at each of a select few exhibits. Finally, the

fish stand in the center of the room observing the majority of the exhibits without

having any specific interest. Based on that animal metaphor of the visitor styles,

we define the visitor’s persona pn, pn ∈ [0, 1], which expresses how trusted each

visitor’s evaluations are. The ant-persona more closely and carefully observes all

of the exhibits, as compared to the butterfly-persona. The butterfly-persona is not
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biased to visit specific exhibits, as compared to the grasshopper-persona. The fish-

persona can be thought of as the less-interested visitor at the exhibition, who may

visit the museum chiefly to accompany their friends or family. Thus, the visitors’

personas are ranked as pfish < pgrasshopper < pbutterfly < pant, capturing the quality

of evaluation that each visitor can provide.

Considering the visitors’ characteristics, we define the visitor’s type τn = pnkn
tMax
n

∈

[0, 1], which jointly reflects the visitors’ personas, their levels of knowledge, and their

willingness to invest time in touring the museum. It is noted that the maximum

visiting time tMax
n is measured in minutes, and for all practical scenarios we consider

tMax
n ≥ 1min.

7.3 Utility Functions: A Labor Economics Mod-

eling

The principles of labor economics are adopted in order to model interactions among

the museum operator and the visitors, as well as their respective benefits from mu-

seum planning and touring. Following the philosophy of labor economics, an ”em-

ployer” provides personalized rewards to the ”employees” in order to incentivize them

to perform an action for the common good. The provided rewards are personalized

based on the employee’s contribution to the overall system’s wellness. Usually, the

employer is unaware of the employees’ types (i.e., incomplete information scenario),

which reflect their capability to provide contribution to the system. Thus, the re-

wards are provided to the employees in a probabilistic manner. On the other hand,

the ideal scenario in which the employer knows the employees’ types deterministically

(e.g., from historical data) is used for benchmarking purposes. The latter scenario

acts as the ground truth to evaluate the success of the devised model under incom-
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plete information regarding the employees’ types. The theory of labor economics

aims to jointly optimize the employer’s profit and benefits, while still satisfying the

employees’ QoE prerequisites, thereby concluding to a stable and rewarding equilib-

rium for the overall system.

Focusing on the museum CPSS use case scenario, the museum operator and the

visitors act as the employer and the employees, respectively. The goal of the museum

operator is to collect meaningful evaluations from the visitors to efficiently plan the

exhibition, as well as to motivate the visitors to spend their time wisely during

their tour. This goal is achieved by adopting an extrinsic motivation strategy and

providing personalized monetary rewards to the visitors, such as ticket discounts and

coupons for the museum’s store. On the other hand, the visitors aim to satisfy their

QoE prerequisites by enjoying the provided monetary rewards and investing their

time meaningfully during their tour.

To begin capturing the above analysis, the visitor’s contribution in the museum

CPSS operation is defined as xn = En

tn
and, for clarity in the analysis and without

loss of generality, is mapped to the interval x̂n ∈ [0, 1]. The museum CPSS bene-

fits from an increased number of provided evaluations, En, in a considerate time, tn

[min], spent by the visitor for their tour. The museum operator provides person-

alized rewards, rn(x̂n) = τnx̂n, rn ∈ [0, 1], to the visitors which are dependent on

their provided contribution, x̂n, and the quality of the information provided by their

evaluation, as captured by their type, τn. Each visitor evaluates their personalized

reward in terms of improving their perceived QoE via the evaluation function e(rn).

The evaluation function is strictly increasing and concave with respect to the received

rewards, e.g., e(rn) =
√
rn. The diminishing rate of return in reward perception is

due to the fact that, especially after some point, visitors are constrained by their

physical capability to further decrease their tour time and/or increase their number

of provided evaluations.
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Each visitor aims to improve their QoE, which consists of the visitor’s evaluation

of their personalized rewards based on their particular visiting type (first term of Eq.

7.1), while also considering the cost of providing their personal contribution to the

smooth operation of the museum CPSS (second term of Eq. 7.1). Thus, the visitor’s

utility is formulated as follows:

Un(x̂n) = τne(rn)− kx̂n (7.1)

where k ∈ R+ is the visitor’s personal cost to provide their contribution, e.g., their

smartphone’s battery level expended to provide evaluations via the museum’s mobile

application.

On the other hand, as mentioned before, the museum operator benefits from col-

lecting the visitors’ contributions. Nevertheless, the museum operator is burdened

with the cost of providing monetary rewards to the visitors in this attempt to ex-

trinsically motivate them. Also, the visiting types τn,∀n ∈ N of the visitors are

unknown by the museum operator in the general case, so the latter one estimates the

visitors’ types with probability Pn, where
|N |∑
n=1

Pn = 1. Thus, the museum operator’s

utility is formulated as:

UM(x̂) =

|N |∑
n=1

[Pn(x̂n − crn)] (7.2)

where c ∈ R+ is the museum operator’s cost to provide the rewards and x̂ =

(x̂1, . . . , x̂n, . . . , x̂|N |) is the visitor contribution vector.

Combining Eq. 7.1 and Eq. 7.2, the social welfare of the overall museum CPSS,

consisting of the museum operator and the visitors, is given collectively as:

SW (x̂) = UM(x̂) +

|N |∑
n=1

Un(x̂n) (7.3)
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Figure 7.1: Museum and visitors interaction and feedback orchestration model.
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A graphical representation of the analysis provided in Sections 7.2 and 7.3, re-

flecting the museum and visitors interaction and feedback orchestration model, is

provided in Fig. 7.1.

7.4 Optimal Contracts under Complete Informa-

tion

In this section, we examine the museum operator’s and the visitors’ interactions under

the ideal case, with the museum operator knowing the visitors’ types deterministically

(i.e., complete information). This scenario is mainly used for benchmarking purposes.

The goal of the museum operator is to optimize its profit and benefits, while jointly

satisfying the visitors’ QoE prerequisites, as they are captured by and reflected via

their utility functions. This optimization problem, given the complete information

of the visitors’ types, can be formulated as:

max
{rn,x̂n}∀n∈N

[Un
M(x̂n) = x̂n − crn],∀n ∈ N (7.4a)

s.t. τne(rn)− kx̂n ≥ 0 (IR) (7.4b)

where Un
M(x̂n) is the museum operator’s utility due to each visitor of known type

τn. The condition (7.4b) expresses the visitor’s individual rationality (IR), which

dictates that the visitor should experience at least a positive utility in order to be

incentivized to interact with the museum operator.

The solution of the optimization problem (7.4a)-(7.4b) concludes to the optimal

reward r∗n and optimal contribution x̂∗n for each visitor. The pair {r∗n, x̂∗n} is referred

to as optimal ”contract” in the remainder of our analysis.
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Theorem 1. (Optimal Contract under Complete Information): Under the

complete information scenario, the optimal contract among the museum operator and

each visitor n, n ∈ N is {r∗n, x̂∗n} = {( τn
2ck

)2, τn
2

2ck2
}.

Proof. The IR constraint in Eq. 7.4b can be reduced to rn = (kx̂n
τn

)2, given that

the museum operator will provide just-sufficient rewards to incentivize the visitors

to participate in the smooth operation of the museum CPSS. Thus, by substituting

the latter expression in Eq. 7.4a, taking the first order derivative with respect to x̂n,

setting it to equal to zero, and solving with respect to x̂n, we have x̂∗n = τn2

2ck2
. Thus,

we can easily derive that r∗n = ( τn
2ck

)2.

Figure 7.2: Optimal contracts under complete and incomplete information scenarios.

The physical meaning of Theorem 1 is that the museum operator and the visitors

provide rewards and contribution, respectively, in proportion to the visitors’ types.

The analysis presented in this section is graphically captured in Fig. 7.2.
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7.5 Museum Congestion & Feedback Management

Under Incomplete Information

In this section, we examine the general case, where the museum operator is unaware

of the visitors’ types τn,∀n ∈ N , and estimates them in a probabilistic manner.

7.5.1 Problem Formulation

Similarly as before, our goal is to determine the optimal contracts {r∗n, x̂∗n}, ∀n ∈ N

between the museum operator and the visitors such that the museum operator opti-

mizes its profit and benefits, while jointly satisfying the visitors’ QoE prerequisites.

To guarantee feasibility of the contracts, the following rational and necessary con-

ditions should hold true: individual rationality (IR), incentive compatibility (IC),

fairness, monotonicity, and rationality.

Definition 1. (Individual Rationality (IR)) Each visitor, n, must experience a non-

negative utility, i.e., Un(x̂n) = τne(rn) − kx̂n ≥ 0,∀n ∈ N , in the optimal contract,

{r∗n, x̂∗n}, in order to be incentivized to participate in the operation of the museum

CPSS.

Definition 2. (Incentive Compatibility (IC)) An optimal personalized contract, {r∗n, x̂∗n},

designed for a visitor of type τn should provide higher utility to the visitor compared

to any other contract that is not aligned to the visitor’s personal characteristics, i.e.,

τne(r
∗
n)− kx̂∗n ≥ τne(rn′ )− kx̂n′ , ∀n ̸= n

′
, n, n

′ ∈ N .

The physical meaning of the IR and IC conditions is that the contracts should be

wisely designed to incentivize the visitors’ participation in the museum’s operation

and should be personalized to each visitor’s unique characteristics.
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Theorem 2. (Fairness) The optimal contract should be fair by assigning higher (or

equal) reward to a visitor of higher (or equal) type, i.e., rn > rn′ ⇔ τn > τn′ (rn =

rn′ ⇔ τn = τn′ ).

Proof. Initially, we consider τn > τn′ ,∀n, n′ ∈ N , with n ̸= n
′
. Based on the IC

condition, we have:

τne(rn)− kx̂n ≥ τne(rn′ )− kx̂n′ (7.5)

τne(rn′ )− kx̂n′ ≥ τn′e(rn)− kx̂n (7.6)

By adding the inequalities (7.5) and (7.6), we have:

(τn − τn′ )e(rn) > (τn − τn′ )e(rn′ ) (7.7)

We know that τn > τn′ , thus, we have e(rn) > e(rn′ ). Given that the evaluation

function is strictly increasing with respect to rn, we conclude that rn > rn′ . We

then consider rn > rn′ ,∀n, n′ ∈ N , with n ̸= n
′
. Given the monotonicity of the

evaluation function, we have e(rn) − e(rn′ ) > 0. Thus, based on Eq. 7.7, we have

(τn − τn′ )(e(rn)− e(rn′ )) > 0. Therefore, we conclude that τn > τn′ .

The physical meaning of the fairness condition is that a visitor of higher type,

who has the potential to contribute more in the museum’s operation, should receive

greater reward.

Theorem 3. (Monotonicity) A visitor of higher type, i.e., τ1 < · · · < τn < · · · < τ|N |

receives greater reward, i.e., r1 < · · · < rn < · · · < r|N |, thus, they are expected to

provide greater contribution, i.e., x̂1 < · · · < x̂n < · · · < x̂|N |.
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Proof. Without loss of generality and for convenience in the notation, we consider

that the visitors’ types are sorted as τ1 < · · · < τn < · · · < τ|N |. Then, based on

Theorem 2, we can also show that r1 < · · · < rn < · · · < r|N |. Thus, given that

rn(x̂n) = τnx̂n, we can easily conclude that x̂1 < · · · < x̂n < · · · < x̂|N |.

The physical meaning of Theorem 3 is that a visitor with higher type is capable of

providing greater contribution and thus receives a greater reward from the museum

operator.

Theorem 4. (Rationality) Visitors of higher types, i.e., τ1 < · · · < τn < · · · < τ|N |,

eventually achieve higher utilities, i.e., U1 < · · · < Un < · · · < U|N |.

Proof. Based on the IC condition for two indicative visitors, n, n
′ ∈ N, n ̸= n

′
,

with τn > τn′ , we have τne(rn) − kx̂n ≥ τne(rn′ ) − kx̂n′ . Because τn > τn′ , we have

τne(rn)−kx̂n ≥ τn′e(rn′ )−kx̂n′ . Generalizing the latter outcome for the visitors with

types τ1 < · · · < τn < · · · < τ|N |, we conclude that U1 < · · · < Un < · · · < U|N |.

The physical meaning of Theorem 4 is that a visitor of higher type, who provides

greater contribution to the museum operation (Theorem 3), will receive greater re-

ward (Theorem 2) and will thus eventually enjoy greater utility.

It should be highlighted that the above five conditions, as presented in Definitions

1, 2, and Theorems 2-4, are necessary but not sufficient in order to conclude to the

optimal contract under the incomplete information scenario. Consequentially, we

formulate the optimization problem to capture the interactions among the museum

operator and the visitors as a maximization problem of the museum operator’s utility

(Eq. 7.8a) under the IR (Eq. 7.8b), IC (Eq. 7.8c), fairness, monotonicity, and

rationality constraints, which can be jointly expressed in Eq. 7.8d, considering that

τ1 < · · · < τn < · · · < τ|N |. Therefore, the optimization problem of determining
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the optimal contracts under incomplete information of the visitors’ types can be

expressed as follows:

max
{rn,x̂n}∀n∈N

UM(x̂) =

|N |∑
n=1

[Pn(x̂n − crn)] (7.8a)

s.t. τne(rn)− kx̂n ≥ 0,∀n ∈ N (IR) (7.8b)

τne(rn)− kx̂n ≥ τne(rn′ )− kx̂n′ , ∀n ̸= n′,∈ N (IC) (7.8c)

0 ≤ r1 < r2 < · · · < rn < · · · < r|N | (7.8d)

The optimization problem (7.8a)-(7.8d) is non-convex.

7.5.2 Problem Solution

To solve the optimization problem (7.8a)-(7.8d) and determine the optimal contracts,

we reduce its constraints, as shown in the following analysis. Initially, we focus on

the IR constraint (Eq. 7.8b). Based on Theorem 4 and the IC condition, we have

that τne(rn) − kx̂n ≥ τne(rn−1) − kx̂n−1 ≥ · · · ≥ τne(r1) − kx̂1. We observe that if

the IR condition holds true for the visitor of the lowest type, i.e., τne(r1)− kx̂1 ≥ 0,

then it will hold true for any visitor of higher type. Furthermore, given that the

museum operator will provide the just-sufficient reward to incentivize the visitors,

we conclude that the constraint (7.8b) can be replaced by τne(r1)− kx̂1 = 0.

We then analyze the IC constraint in Eq. 7.8c using the following terminology

about the IC constraints of visitors with different types: (i) Downward IC (DIC)

constraints for n, n′, n′ ∈ {1, . . . , n− 1}; (ii) Local DIC (LDIC) constraint for n, n−

1 ∈ N ; (iii) Upward IC (UIC) constraint for n, n′, n′ ∈ {n + 1, . . . , |N |}, and (iv)

Local UIC (LUIC) constraint for n, n+ 1 ∈ N .

134



Chapter 7. Museum and Visitors Interactions Enabled by Labor Economics

Theorem 5. All of the UIC constraints can be equivalently captured by the LDIC

constraint.

Proof. We consider the IC conditions of three visitors, n − 1, n, n + 1,∀n ∈ N , as

follows:

τn−1e(rn−1)− kx̂n−1 ≥ τn−1e(rn)− kx̂n (7.9)

τne(rn)− kx̂n ≥ τne(rn+1)− kx̂n+1 (7.10)

Based on Theorem 2, Eq. 7.10 can be analyzed:

k(x̂n+1 − x̂n) ≥ τn[e(rn+1)− e(rn)]
τn>τn−1
=====⇒

k(x̂n+1 − x̂n) ≥ τn−1[e(rn+1)− e(rn)]
(7.11)

Combining Eq. 7.9 and Eq. 7.11, we have τn−1e(rn−1) − kx̂n−1 ≥ τn−1e(rn) −

kx̂n ≥ τn−1e(rn+1) − kx̂n+1. By applying the latter outcome for all of the UIC

constraints, we have τn−1e(rn−1)−kx̂n−1 ≥ τn−1e(rn)−kx̂n ≥ τn−1e(rn+1)−kx̂n+1 ≥

· · · ≥ τn−1e(r|N |) − kx̂|N |. Thus, we conclude that all of the UIC constraints can be

equivalently captured by the LDIC constraint, as expressed in Eq. 7.9.

Theorem 6. All of the DIC constraints can be equivalently captured by the LDIC

constraint.

Proof. We consider the IC conditions of three visitors, n − 1, n, n + 1,∀n ∈ N , as

follows:

τn+1e(rn+1)− kx̂n+1 ≥ τn+1e(rn)− kx̂n (7.12)

τne(rn)− kx̂n ≥ τne(rn−1)− kx̂n−1 (7.13)
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Given that τn > τn−1, we have rn > rn−1
e↗⇐=⇒ e(rn)−e(rn−1) > 0. Thus, we have

τn+1 > τn ⇔ τn+1[e(rn)−e(rn−1)] > τn[e(rn)−e(rn−1)] ≥ k(x̂n−x̂n−1), where the last

step holds true based on Eq. 7.13. We can then apply the latter outcome recursively

for all of the LDIC constraints, as in τn+1e(rn+1) − kx̂n+1 ≥ τn+1e(rn) − kx̂n ≥

τn+1e(rn−1)− kx̂n−1 ≥ · · · ≥ τn+1e(r1)− kx̂1. Therefore, we conclude that all of the

DIC constraints can equivalently be captured by the LDIC constraint, as expressed

in Eq. 7.13.

Combining the outcomes of Theorem 5 and 6, we conclude that all of the IC

constraints can be reduced to the LDIC constraint, i.e., τne(rn)− kx̂n ≥ τne(rn−1)−

kx̂n−1. By considering the IR and IC constraints’ reductions, the optimization prob-

lem (7.8a)-(7.8d) can be written as follows:

max
{rn,x̂n}∀n∈N

UM(x̂) =

|N |∑
n=1

[Pn(x̂n − crn)] (7.14a)

s.t. τne(r1)− kx̂1 = 0 (IR) (7.14b)

τne(rn)− kx̂n ≥ τne(rn−1)− kx̂n−1 (LDIC) (7.14c)

0 ≤ r1 < r2 < · · · < rn < · · · < r|N | (7.14d)

The optimization problem (7.14a)-(7.14d) is convex and can be solved by standard

convex optimization tools. The outcome is the optimal contracts {r∗n, x̂∗n},∀n ∈ N .

Thus, the museum operator determines the optimal allocated rewards r∗n,∀n ∈ N

to the visitors, while the visitors decide their optimal contribution x̂∗n,∀n ∈ N ,

consisting of the ratio of the number of provided evaluations about the exhibits and

their time invested in the museum touring. The analysis presented in this section is

graphically captured in Fig. 7.2.
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7.6 Evaluation & Results

In this section, a detailed set of numerical results are presented in order evaluate the

performance of the proposed framework and reveal its operation benefits. In particu-

lar, the pure operation characteristics and performance of the proposed framework is

presented in Section 7.6.1 considering both the complete and incomplete information

scenarios, while the impact of the visitors personal cost to provide their contribution

on the overall museum CPSS operation is discussed in Section 7.6.2. The benefits

of addressing the visitors in a personalized manner, while considering their unique

characteristics, are shown in Section 7.6.3. Finally, a thorough comparative evalua-

tion is demonstrated in Section 7.6.4, which considers different alternative scenarios

of visitors’ invested contribution and their impact on both their satisfaction and the

overall social welfare of the CPSS.

For the evaluation purposes, we have simulated a large size museum, considering

En ∈ [0, 380, 000], tn ∈ [1, 360] min, and tMax
n following a random and uniform

distribution in [60, 360]min. Also, we assume that pn, Pn, and kn are uniformly

distributed in (0, 1]. Finally, we consider |N | = 100 visitors, and c = 2, k = 5, unless

otherwise explicitly stated.

7.6.1 Pure Operation Performance

In this section, we examine the pure operation performance of the proposed museum

and visitors interaction and feedback orchestration mechanism, with consideration

of both the benchmarking scenario which features complete information, and the

realistic scenario which features incomplete information regarding the visitors’ types.

Fig. 7.3a shows the visitors’ types, τn, as a function of their index (ID), where the

visitors have been sorted with respect to an increasing value of their type. Similarly,
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Figure 7.3: Visitors’ (a) Type, (b) Contribution, (c) Reward, and (d) Utility as a
function of their ID under the complete and incomplete information scenarios.

Fig. 7.3b-7.3d illustrate the visitors’ normalized contribution x̂n, their received re-

ward rn, and their corresponding achieved utility Un(x̂n), respectively, as a function

of their ID under the complete and incomplete information scenarios. The results

reveal that the visitors of greater type provide greater contribution (Fig. 7.3b) to the

operation of the museum and thereby receive a greater reward (Fig. 7.3c), following

the fairness (Theorem 2) and monotonicity (Theorem 3) properties. Accordingly,

the visitors of higher type eventually enjoy a greater utility (Fig. 7.3d) based on the

rationality property (Theorem 4). Moreover, focusing on the comparison of the com-

plete and incomplete information scenarios, we observe that the museum operator

can fully exploit the visitors’ capabilities in collecting their contributions. This is de-

rived from the fact that the visitors provide a greater contribution under the complete

information scenario (Fig. 7.3b), and are thus rewarded more than in the incomplete

information scenario (Fig. 7.3c), while achieving their minimum-acceptable utility

(i.e., zero) which is just sufficient enough to incentivize their participation in the

overall process (Fig. 7.3d). The latter outcome is important to the museum op-
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Figure 7.4: (a) Visitors’ incentive compatibility, (b) Museum operator’s cumulative
utility, and (c) Social welfare.

erator, who strives to wisely invest their resources such that valuable information

is collected from the visitors, while the latter ones spend wisely their time in the

museum touring.

Fig. 7.4a depicts the achieved utility for three indicative visitors’ types, i.e.,

types 70, 80, and 100, considering the optimal contracts that were determined un-

der the incomplete information scenario for each corresponding visitor’s index, i.e.,

{r∗n, x̂∗n},∀n ∈ N . The results confirm that a visitor will achieve the highest relative

utility when they receive a contract that has been designed with their own unique
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type and characteristics in consideration. For example, the visitor of type 80 will

receive the maximum utility for the optimal personalized contract {r∗80, x̂∗80}, while

lower utility is achieved for any other optimal contract {r∗n, x̂∗n}, n ̸= 80, ∀n ∈ N that

is not aligned to its personal type τ80. The following observation respects and con-

firms the incentive compatibility property (Definition 2) and shows the importance

of treating the visitors in a personalized manner. Furthermore, Fig. 7.4a shows that

the visitors of higher type will experience higher utility, when receiving their per-

sonalized contract. The latter observation derives from the rationality condition, as

presented in Theorem 4. Moreover, Fig. 7.4b and Fig. 7.4c illustrate the museum

operator’s cumulative utility and the overall CPSS’s social welfare as a function of

the number of visitors. The results reveal that, as expected, better outcomes can

be achieved under the complete information scenario. However, it should be noted

that the performance achieved in the realistic scenario of incomplete information

is approximately 35% less than in the ideal case of complete information, thereby

showing that the proposed framework is robust and efficient under the uncertainties

introduced by realistic conditions.

7.6.2 Impact of Visitor’s Personal Cost

In this section, we examine the impact of the visitor’s personal cost k, k ∈ R+ on the

interaction among the visitors and the museum operator. The visitor’s personal cost

may stem from various factors, such as the visitor’s smartphone’s battery drainage

during the exhibit evaluations via the museum’s mobile application, delay in touring

in order to provide evaluations about the exhibits, and others. Three different com-

parative scenarios are considered capturing a (i) high (k = 5), (ii) medium (k = 3),

and (iii) low (k = 2) personal cost.

Fig. 7.5a-7.5c show the visitor’s utility as a function of the visitor’s ID, the
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Figure 7.5: Impact of the visitor’s personal cost on the system’s operation.

museum operator’s utility, and the overall social welfare as a function of the number

of visitors, respectively. The results demonstrate that the higher the visitor’s personal

cost is, the less utility they enjoy (Fig. 7.5a). Moreover, given the hesitant behavior

of the visitors to provide their contribution when they experience higher personal

cost, the museum operator’s utility (Fig. 7.5b) and the overall social welfare (Fig.

7.5c) achieve low levels as well.
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Figure 7.6: Labor economics-based vs type-agnostic interaction and feedback orches-
tration.

7.6.3 Visitors’ Unique Types and Characteristics

In this section, we examine the impact of considering the visitors’ unique types and

characteristics, in the overall proposed framework of museum and visitors interaction

and feedback orchestration. In particular, we consider the proposed labor economics-

based approach under the realistic incomplete information scenario, and compare it

against a type-agnostic scenario, where the rewards are allocated to the visitors in a

homogeneous manner, i.e., rn(x̂n) =

|N|∑
n=1

τn

|N | x̂n.

Fig. 7.6a-7.6b illustrate the visitors’ utility with respect to their ID, and the

museum operator’s cumulative utility as a function of the number of visitors, respec-

tively, considering both the incomplete information and the type-agnostic scenarios.

The results reveal that the visitors achieve, on average, 25% better utility (Fig.

7.6a) under the proposed labor economics-based approach when compared to the

type-agnostic approach. This outcome stems from the personalized treatment of the

visitors by the museum operator in our proposed framework, where the museum

operator provides rewards well-aligned to the visitors’ characteristics. Also, it is

observable that the type-agnostic scenario over-rewards visitors of lower types and
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under-rewards visitors of higher types, thereby making the rewards allocation less

fair. Moreover, based on the results presented in Fig. 7.6b, we conclude that the pro-

posed labor economics-based scheme achieves to also outperform the type-agnostic

one from the overall system perspective (i.e., museum operator’s utility). Specifically

a 4% improvement is observed for the case 100 visitors while, based on observed

trends, it is evident that an even greater improvement upon type-agnosticism could

be achieved for cases with larger populations of visitors.

7.6.4 Comparative Evaluation

In this section, a thorough comparative evaluation is provided considering vari-

ous scenarios regarding the visitors’ contribution x̂n. In addition to our proposed

framework, four different alternatives are considered: (i) Minimum contribution, i.e.,

x̂n = min{x̂n}∀n∈N , (ii) Maximum contribution, i.e., x̂n = max{x̂n}∀n∈N , (iii) Ran-

dom contribution, and (iv) Guided contribution, i.e., x̂n = f(x̂∗n) =
−log(τn)

100
.

Fig. 7.7a shows the visitors’ utility with respect to their ID, while Fig. 7.7b-7.7c

present the museum operator’s utility, and the CPSS’s social welfare, respectively, as

a function of the number of visitors. The results reveal that the visitors’ maximum

contribution scenario benefits the museum operator but causes visitor satisfaction to

be low and, thus, yields low social welfare. The exact opposite holds true for the min-

imum contribution scenario, wherein the visitors are not engaged with the museum’s

operation. The random and guided contribution scenarios present an intermediate

performance for both the visitors’ and the museum operator’s benefits as compared

to the aforementioned extreme scenarios of maximum and minimum contribution.

Finally, it is observed that our proposed framework benefits the visitors in terms of

improving their perceived satisfaction, while also supporting the museum operator’s

needs to collect feedback from the visitors and incentivize them to wisely spend their
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Figure 7.7: Comparative evaluation.

time during their museum touring. The combined benefit of our proposed framework

is depicted in the superior social welfare achieved, which shows a five-fold improve-

ment compared to the maximum contribution scenario, where the visitors provide

the maximum possible number of evaluations and invest the minimum acceptable

time for their tour.
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7.7 Conclusion and Future Work

In this chapter, the problem of jointly orchestrating the museum operator’s and the

visitors’ interaction, as well as the feedback provided by the visitors while accounting

for their behavioral characteristics, is considered. The problem is treated and solved

under the prism and reasoning of a labor-economics-based approach. In particular,

the museum is treated as a cyber-physical-social system and the visitors’ unique

characteristics are derived to define their unique types. Following the principles of

labor economics, an optimization problem is formulated and solved to jointly deter-

mine the visitors’ optimal contributions in the museum’s operation and the optimal

rewards allocated by the museum operator to incentivize the visitors’ engagement.

The scenarios of both complete and incomplete information use cases regarding the

visitors’ characteristics are examined, for benchmarking and realistic implementa-

tions purposes, respectively. A set of detailed simulations considering a large size

museum, e.g., Louvre Museum, is provided to demonstrate the performance and

benefits of the proposed framework.

Part of our current and future work refers to the actual implementation of the

proposed framework in a mobile Android and iOS application, and its pilot testing

at the Acropolis Museum in Athens, Greece.
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Chapter 8

Prosumer-centric Self-sustained

Smart Grid Systems

8.1 Introduction

Smart Grid (SG) systems have been introduced as an alternative solution to tra-

ditional power systems which operate in a centralized manner, generating power in

large power stations via the exploitation of fossil fuel resources, and distributing

the generated power to consumers [153]. SGs consist of multiple microgrids, which

are small-scale power supply networks, accommodating conventional energy units,

renewable energy sources, and energy storage systems [154]. One key enabler of SGs

is the new type of users, named prosumers, who are able to generate, store, sell,

and buy energy by mainly exploiting solar photovoltaic panels and storage devices

[155], among others. The prosumers are equipped with smart meters to exchange

(sell/buy) power with the Microgrid Operator (MGO), thus creating a local energy

trading system [156]. In this chapter, we capture the prosumers’ interactions with the

MGO in terms of selling and buying power based on a labor economics framework,
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while guaranteeing the joint optimization of their profits and enabling the overall

microgrid system to converge to a stable point of operation.

8.1.1 Related Work

Several recent research works focus on the operation of microgrid systems aiming to

satisfy the consumers’ or prosumers’ power demand via dealing with the Demand

Response Management (DRM) problem [157]. In [158], the interactions among mul-

tiple microgrid systems are studied based on the Nash bargaining theory in order

to incentivize each microgrid to participate in the proactive energy trading and fair

benefit sharing. The authors formulate the corresponding joint optimization prob-

lem and solve it by decomposing the problem into two sequential problems, where

the first minimizes the social cost and the second one optimizes the trading benefit

sharing. The problem of high-levels stochasticity in the energy production of the

renewable energy sources is studied in [159]. The authors provide a systematic ap-

proach to deal with this problem and provide the enhanced flexibility to the system

to satisfy the consumers’ power demand via exploiting the fast-ramping units, the

energy storage, and the hourly demand response. In [160], the authors introduce

a novel transactive energy control mechanism and a pricing rule to capture the in-

teractions among multiple microgrids, aiming at jointly minimizing their operating

cost and optimizing the utilization of the renewable energy sources. The authors

have provided a detailed comparative evaluation to other centralized and decentral-

ized transactive energy control mechanisms to show the benefits of the proposed

approach in terms of the microgrids’ effective operation and computational efficiency

in microgrids’ coordination.

The problem of reducing prosumers’ electricity bills, while guaranteeing their

minimum power demand constraints is studied in [161] via the introduction of an
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intelligent residential energy management system. A predictive mechanism of the

power demand and supply in a microgrid is introduced in [162] by designing a smart

load estimator based on a neural networks’ approach. The designed mechanism

considers the ambient temperature, the time of day, the hourly price, and the peak

demand. It should be noted here that the above research works follow a system-based

approach emphasizing on the operation of the microgrid, without however accounting

for the unique and personal characteristics of the prosumers.

Focusing on the prosumer-centric microgrid systems, a prospect-theoretic energy

trading approach is introduced in [163], in which the prosumers’ risk-aware char-

acteristics are considered based on the uncertainty that the selling/buying energy

price introduces. The authors formulate a single-leader multiple-follower Stackel-

berg game, where the microgrid operator (leader) announces the optimal price and

the prosumers (followers) determine the amount of energy that they sell or buy, with

all the involved entities aiming to optimize their profit. A similar Stackelberg-based

approach is followed in [18] that also introduces a reinforcement learning mechanism

to enable the consumers to select the utility company that they will purchase energy

from, in an autonomous manner. In [164], the prosumers consider the energy as a

heterogeneous product depending on the generation technology, its location in the

SG, and its owner’s reputation. Accordingly, an optimization problem is formulated

to minimize the costs of energy losses and battery depreciation, while accounting for

the prosumers’ preferences regarding the energy.

Placing further emphasis on exploiting the prosumers’ unique power generation

and demand characteristics, a pricing-based DRM problem is introduced in [165],

which jointly considers the prosumers’ behavioral characteristics in terms of consum-

ing electricity and the electricity demand of their household devices, which can be of

various types. In [166], the authors introduce a distributed system-wide framework

aimed at minimizing the prosumers’ payments, while guaranteeing their privacy and
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comfort constraints, via dynamically adapting the system load profile. In [167, 168],

the authors study the impact of the communication unreliability among the MGO

and the prosumers on the DRM performance and the electricity price by formulating

a joint maximization problem of the DRM performance with respect to the electricity

consumption and price, and solve it by leveraging the dual decomposition method.

Labor economics and Contract Theory have been also introduced in the literature

in order to incentivize the prosumers to follow a desired behavior within a microgrid

[39]. In particular, in [20], the authors introduce a labor economics framework to

capture the interactions of the prosumers and the MGO. A contract-theoretic op-

timization problem is formulated and solved to determine the optimal amount of

purchased electricity and the optimal rewards provided by the MGO to the pro-

sumers for the sake of both parties having optimized profit. It is highlighted that

this research work considers the prosumers only as buyers and not sellers.

8.1.2 Contributions and Outline

Despite the efforts made in the previous research works, in regards to system-centric

or prosumer-centric operation of microgrids, how to incorporate the dual role of the

prosumer, i.e., seller and buyer, within the operation of the microgrid system still

remains an open issue. Furthermore, within such a setting, facilitating the smooth

and seamless operation of the microgrid system, while incentivizing the prosumers

to act in a desirable manner and simultaneously considering their unique personal

energy generation and demand characteristics is even more challenging.

In this research work, we strive exactly to tackle these issues by introducing a

contract-theoretic framework to capture the interactions of the prosumers, acting

either as sellers or buyers, with the microgrid [39]. In particular, a labor economics-

based approach is designed and evaluated, exploiting the principles of Contract The-
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ory to jointly achieve the satisfaction of the various system entities, that is the MGO

and the prosumers, which often present competing interests. Accordingly, the rela-

tions between the MGO and the prosumers (sellers or byers) are captured following

the model of employer-employee relationship, while aiming to jointly satisfy the profit

and requirements of the involved competing parties. Specifically, the main contribu-

tions of this research work that differentiate it from the rest of the existing literature

are summarized below.

1. A microgrid system consisting of the microgrid operator (MGO) and the pro-

sumers, who generate energy based on renewable energy sources (e.g., solar

photovoltaic panels) and are equipped with energy storage (e.g., Lithium-ion

batteries) is introduced. Within the considered microgrid, the prosumers can

dynamically act as sellers or buyers based on their energy generation, demand,

and storage characteristics over time.

2. The interactions among the sellers and the MGO are captured via a contract-

theoretic optimization problem which determines the optimal amount of energy

that the sellers sell to the MGO at a specific announced price, and the optimal

rewards (e.g., price discount) offered by the MGO. The goal of the formulated

problem is to maximize the MGO’s profit, while jointly optimizing the profit

of the sellers via considering their unique personal energy generation, demand,

and storage characteristics.

3. Focusing on the buyers’ side, a different contract-theoretic optimization prob-

lem is formulated to study the interactions among the buyers and the MGO.

The MGO provides personalized rewards to the buyers, e.g., fixed price, consid-

ering their energy demand, while the buyers invest their ”effort”, i.e., money,

to purchase the amount of energy that covers their demand. The optimal per-

sonalized contracts, i.e., optimal personalized reward and purchased energy per
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buyer, are determined to bring the dynamic interaction of the MGO and the

prosumers into a stable mode of operation.

4. A detailed series of experiments are performed to show the drawbacks and

benefits of the proposed prosumer-centric self-sustained smart grid system’s

operation approach. This is realized under both a benchmarking scenario of

complete information and a realistic scenario of incomplete information regard-

ing the prosumers’ energy generation, demand, and storage characteristics. A

scalability analysis is performed to show the efficiency and robustness of the

proposed framework. Also, a detailed study is performed regarding the impact

of the prosumers’ energy generation and demand characteristics, as well as the

MGO’s pricing policies, on the interactions of the sellers and buyers with the

MGO.

The rest of the chapter is organized as follows. Section 8.2 introduces the human-

centric smart grid system model, while Sections 8.3 and 8.4 introduce and solve

the contract-theoretic optimization problems for the sellers and buyers, respectively.

Simulation and comparative results are presented in Section 8.5. Finally, Section 8.6

concludes the chapter.

8.2 Human-centric Smart Grid System Model

A microgrid system is considered, consisting of the microgrid operator (MGO) and

the prosumers. The prosumers can generate energy via various alternative options,

such as solar photovoltaic panels and small wind turbine power generation sys-

tems, and can also store the energy in storage systems, such as Lithium-ion bat-

teries [169]. Each prosumer’s residential infrastructure is equipped with a smart

meter to dynamically measure the energy generation, demand, storage, and ex-

151



Chapter 8. Prosumer-centric Self-sustained Smart Grid Systems

change (selling or buying) power with the MGO. We examine the interactions of

the MGO and the prosumers at each time slot t, with the set of times slots denoted

as T = {1, . . . , t, . . . , |T |}. The sets of prosumers, sellers, and buyers are denoted

as N = {1, . . . , n, . . . , |N |}, S = {1, . . . , s, . . . , |S|}, and B = {1, . . . , β, . . . , |B|},

respectively, with S ⊆ N , B ⊆ N , and |S|+ |B| = |N |.

Each prosumer has a set of home appliances, An = {1, . . . , an, . . . , |An|}, which at

the duration of one time slot t (e.g., one hour) can be either on, i.e., δtan = 1, or off,

i.e., δtan = 0. Thus, their total energy demand is dtn =
∑

∀an∈An
δtanEan [kWh] in the

duration of a time slot t, where Ean [KWh] is the energy consumption of the appliance

an when it is operating during time slot t [170]. It should be noted that a prosumer

can shift the operation of some appliances over time, thus, dMin
n ≤ dtn ≤ dMax

n .

Specifically, dMin
n [kWh] denotes the total energy demand of the appliances of the

prosumer n that are non-shiftable over time, e.g., refrigerator or alarm system, while

dMax
n [kWh] captures the maximum possible energy demand if all of the prosumer’s

appliances are active. Thus, the prosumers’ energy demand vector is defined as

D = [dt1, . . . , d
t
n, . . . , d

t
|N |] per time slot t. Also, the prosumers can generate energy

by exploiting their own renewable energy sources. Thus, the prosumers’ renewable

energy generation vector is defined accordingly as G = [gt1, . . . , g
t
n, . . . , g

t
|N |] [kWh]

per time slot t. The prosumers can act either as sellers or buyers per time slot t

based on their personal energy generation and demand characteristics. Thus, in the

following analysis, we examine the sellers and buyers cases.

Sellers Case: If gtn + bt−1
n ≥ dtn, the prosumer can cover their energy demand

without purchasing energy from the MGO, while also dynamically deciding to sell the

energy generation surplus to the MGO. The energy generation surplus is calculated

as bt+1
n = btn + (gtn − dtn) [kWh], where a percentage ets ∈ [0, 1] of it can be sold to

the MGO. The energy generation surplus is assumed to be stored in the prosumer’s

energy storage system, e.g., Lithium-ion batteries. In this case, the prosumer n acts
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as a seller. The sellers can be incentivized by the MGO to sell their energy surplus

into the energy market instead of storing it locally for future use, if appropriately

designed personlized rewards, such as fixed energy price, are provided by the MGO.

Buyers Case: If gtn + bt−1
n < dtn, the prosumer’s total generated and stored energy

is not sufficient to cover their energy demand dtn. Thus, the prosumer n acts as a

buyer β, and aims to purchase dtn−gtn−bt−1
n [kWh] amount of energy from the MGO,

in consideration of their personal energy needs which are shaped by their respective

shiftable and non-shiftable demands.

In the subsequent two sections, we study the overall interactions of the sellers

and the buyers with the MGO, in terms of selling a purchasing energy, with con-

sideration of their unique personal energy generation and demand characteristics.

The architecture of the overall prosumer-centric self-sustained smart grid system is

presented in Fig. 8.1.

Microgrid 

Operator

Prosumers

Personalized 

Rewards

Buying/Selling 

Energy

Figure 8.1: Prosumer-centric self-sustained smart grid system.
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8.3 Sellers’ & Electricity Market’s Interactions

In this section, we capture the interactions of the sellers with the MGO in terms of

determining the optimal amount of energy that they sell based on the appropriate

incentives, i.e., rewards, provided by the MGO. Each seller s,∀s ∈ S ⊆ N is charac-

terized by their type τ ts =
bt+1
s∑

∀sϵS b
t+1
s

∈ [0, 1], which represents their normalized energy

surplus among the sellers, thus, showing their potential to sell energy to the MGO.

For notation convenience in the presentation, we consider τ t1 < · · · < τ ts < · · · < τ t|S|.

Based on the principles of Contract Theory [39], each seller acts as an ”employee”

investing their personal effort to the ”employer”, i.e., MGO, while the MGO incen-

tivizes the sellers by providing personalized rewards, e.g., fixed energy price, in order

for the MGO and the sellers to jointly optimize their achieved utility. The sellers’

and the MGO’s utility functions, as defined below in Eq. 8.1 and Eq. 8.2, respec-

tively, represent their actual profit (i.e., satisfaction). The seller’s effort is defined as

ets =
bt+1
s

max∀sϵS{bt+1
s } ∈ [0, 1], showing the relative capability of each seller to sell energy

to the MGO. Given that τ t1 < · · · < τ ts < . . . τ t|S|, we have et1 < · · · < ets < . . . et|S|.

The MGO provides personalized rewards rts = τ tse
t
s to the sellers to incentivize them

to sell their available energy surplus. Therefore, a seller with a higher potential to

sell energy, who indeed sells a large amount of energy, will receive a high reward.

The interaction among the MGO and the sellers, aiming at the joint optimization of

their profit by participating in the energy market, concludes to an optimal contract

(et∗s , r
t∗
s ) consisting of the optimal seller’s effort et∗s and the MGO’s optimal provided

personalized reward rt∗s .

Based on the above discussion, the utility functions of the sellers and the MGO

are designed as the actual profit of the participants, while interacting among each

other in the microgrid. The seller’s utility is captured by the received revenue from

selling energy to the MGO (first term of Eq. 8.1) while also considering their personal
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cost to locally produce the energy via the exploitation of their personal renewable

energy source infrastructure (second term of Eq. 8.1).

U t
s(e

t
s) = τ tsϵ(e

t
s)− pSe

t
s (8.1)

The seller’s personal cost to produce their energy locally is denoted as pS ∈ R+

and, in the current analysis, is assumed to be a unitless number. This parameter

can be mapped to monetary units, i.e., [$/kWh], when transferring this model in a

real-life implementation and business case. Also, the function ϵ(ets) represents the

evaluation function, i.e., the way a seller interprets the received reward as personal

satisfaction based on the enjoyed revenue. The evaluation function is a strictly

increasing, concave, and continuous function with respect to the received reward,

as a seller satisfaction increases monotonically with respect to the received reward,

while at some point, the seller’s satisfaction becomes saturated. For demonstration

purposes, and without loss of generality, we consider ϵ(ets) =
√
rts(e

t
s).

The MGO’s utility from interacting with the sellers is defined as follows:

U t
MGO,buy(e) =

|S|∑
s=1

Prts[e
t
s − rts(e

t
s)] (8.2)

where e = [et1, . . . , e
t
s, . . . , e

t
|S|] is the sellers’ effort vector. In general, the MGO is

unaware of the sellers’ energy generation demand and storage characteristics, which

define the sellers’ types. Thus, the MGO estimates each seller’s type τ ts with prob-

abilility Prts, where
|S|∑
s=1

Prts = 1. Several types of probability distributions, such as

Gaussian, Poisson, and others, can be adopted based on the nature of the examined

energy market. The specific distributions of the seller’s types, and the corresponding

probabilities Prts, can be determined in a real-life scenario according to the pro-

sumers’ energy characteristics that can be collected from their monthly electricity
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bills, based on a statistical or machine learning analysis. Note that Eq. 8.2 repre-

sents the MGO’s profit from buying energy from the sellers via their invested effort

ets (first term of Eq. 8.2), while considering the MGO’s cost to provide rewards rts to

the sellers (second term of Eq. 8.2).

8.3.1 Complete Information Scenario

Initially, we consider the benchmarking scenario, where the MGO has complete in-

formation about the sellers’ types. The MGO aims to maximize its own profit from

each seller of known type τ ts (Eq. 8.3a), while providing sufficient rewards to the sell-

ers to maintain their business interactions and energy surplus sales (Eq. 8.3b). Thus,

under the complete information scenario regarding the sellers’ types, the interactions

between the MGO and the sellers can be captured by the following contract-theoretic

optimization problem:

max
{ets}∀s∈S

[ets − rts(e
t
s)] (8.3a)

s.t. τ tsϵ(e
t
s)− pSe

t
s ≥ 0,∀s ∈ S (8.3b)

In this case, given that the MGO will provide just the sufficient rewards to in-

centivize the sellers to sell their energy surplus, Eq. 8.3b can be considered as an

equality.

Theorem 1. The optimal personalized contract between the MGO and each seller

under the complete information scenario is (et∗s , r
t∗
s ) = ( τ

t2
s

2p
2
S
, τ

t2
s

4p
2
S
).

Proof. By solving Eq. 8.3b as an equality with respect to the reward, we have

rts = (pSe
t
s

τ ts
)
2
. By substituting the latter outcome in Eq. 8.3a, taking the first order

derivative with respect to the effort ets, and setting the outcome equal to zero, we

conclude that ets =
τ t

2
s

2p
2
S
. Thus, the optimal contract is (et∗s , r

t∗
s ) = ( τ

t2
s

2p
2
S
, τ

t2
s

4p
2
S
).

156



Chapter 8. Prosumer-centric Self-sustained Smart Grid Systems

The above outcome can be used mainly for benchmarking purposes, as sellers will

not reveal their private information regarding their types, i.e., energy surplus, to the

MGO, in a real-life scenario.

8.3.2 Incomplete Information Scenario

In the remaining analysis of this section, we examine the incomplete information sce-

nario regarding the sellers’ types. In pursuit of capturing the interactions between

the sellers and the MGO, five fundamental conditions are examined: individual ra-

tionality (IR), incentive compatibility (IC), fairness, monotonicity, and rationality.

Those conditions are necessary and sufficient in order to guarantee the feasibility and

existence of an optimal contract among the MGO and the sellers. Each condition is

analyzed and proved below, while its physical meaning is provided within the context

of the MGO’s and the sellers’ interaction.

Definition 1. (Individual Rationality (IR)) Each seller should receive a non-negative

utility, i.e., U t
s(e

t
s) = τ tsϵ(e

t
s)− pSe

t
s ≥ 0,∀s ∈ S, from the optimal contract (et∗s , r

t∗
s ).

Definition 2. (Incentive Compatibility (IC)) Each seller achieves the maximum pos-

sible utility when they receive a contract aligned with their personal energy generation,

demand, and storage characteristics, i.e., τ tsϵ(e
t
s)− pSe

t
s ≥ τ tsϵ(e

t
s′)− pSe

t
s′ ,∀s, s′ ∈ S.

The physical meaning of the IR and IC conditions is that each seller should be

appropriately incentivized by the MGO by enjoying a positive profit aligned with

their personal characteristics in order to sell their energy in the microgrid.

Proposition 1. (Fairness) An optimal contract is fair, i.e., a seller of higher (or

equal) type should enjoy a higher (or equal) reward: rts > rts′ ⇔ τ ts > τ ts′(r
t
s = rts′ ⇔

τ ts = τ ts′).
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Proof. We prove the sufficiency and necessity of the fairness condition. Assuming

that τ ts > τ ts′ , we can write the following IC constraints for the sellers s, s′, ∀s, s′ϵS,

s ̸= s′.

τ tsϵ(e
t
s)− pSe

t
s ≥ τ tsϵ(e

t
s′)− pSe

t
s′ (8.4)

τ ts′ϵ(e
t
s′)− pSe

t
s′ ≥ τ ts′ϵ(e

t
s)− pSe

t
s (8.5)

By adding Eq. 8.4 and Eq. 8.5, we have:

(τ ts − τ ts′)ϵ(e
t
s) ≥ (τ ts − τ ts′)ϵ(e

t
s′) (8.6)

We know that τ ts > τ ts′ , and ϵ(r
t
s(e

t
s)) is a strictly increasing function with respect

to rts, thus we conclude that rts > rts′ .

On the other hand, assuming that rts > rts′ , we derive that ϵ(rts(e
t
s)) > ϵ(rts′(e

t
s′)),

thus we rewrite Eq. 8.6 as: τ ts[ϵ(r
t
s(e

t
s))− ϵ(rts′(e

t
s′))] ≥ τ ts′ [ϵ(r

t
s(e

t
s))− ϵ(rts′(e

t
s′))] and

we conclude that τ ts > τ ts′ . Similarly, we can prove rts = rts′ ⇔ τ ts = τ ts′ .

Proposition 2. (Monotonicity) An optimal contract should have monotonic behav-

ior, i.e., a seller of a higher type will sell more energy and receive a higher reward.

Proof. A seller of higher type receives a higher reward based on Proposition 1, i.e.,

rt1 < · · · < rts < · · · < rt|S| ⇔ τ t1 < · · · < τ ts < · · · < τ t|S|. Then, based on the

monotonic relationship among the reward rts and the effort ets, i.e., r
t
s = τ tse

t
s, we

conclude that et1 < · · · < ets < · · · < et|S|.

Proposition 3. (Rationality) An optimal contract should be rational, i.e., a seller

of higher type should enjoy a higher utility.

Proof. We write the IC condition for two indicative sellers s ̸= s′, ∀s, s′ ∈ S:

τ tsϵ(e
t
s)− pSe

t
s ≥ τ tsϵ(e

t
s′)− pSe

t
s′

τ ts>τ
t
s′⇐===⇒ τ tsϵ(e

t
s)− pSe

t
s ≥ τ ts′ϵ(e

t
s′)− pSe

t
s′ ⇔ U t

s(e
t
s) ≥

158



Chapter 8. Prosumer-centric Self-sustained Smart Grid Systems

U t
s′(e

t
s′). We generalize this outcome for any seller s, ∀s ∈ S: τ t1 < · · · < τ ts < · · · <

τ t|S| ⇔ U t
1 < · · · < U t

s < · · · < U t
|S|.

The physical meaning of the latter three conditions, i.e., fairness, monotonicity,

and rationality, is that an optimal contract (et∗s , r
t∗
s ) should guarantee all of them in

order to incentivize the sellers to sell part or all of their energy surplus during each

time slot t, instead of locally storing it for future use. Based on the above analysis, the

interactions among the MGO and the sellers can be captured as a contract-theoretic

optimization problem aimed at determining the optimal personalized contracts. The

optimization problem aims at jointly maximizing the MGO’s profit (Eq. 8.7a), while

guaranteeing the IR (Eq. 8.7b), IC (Eq. 8.7c), and fairness, monotonicity, and

rationality conditions (Eq. 8.7d), and it is formally stated as follows.

max
{ets,rts}∀s∈S

|S|∑
s=1

[Pr(t)s (ets − rs(e
t
s))] (8.7a)

s.t. τ tsϵ(e
t
s)− pSe

t
s ≥ 0,∀s ∈ S (IR) (8.7b)

τ tsϵ(e
t
s)− pSe

t
s ≥ τ tsϵ(e

t
s′)− pSe

t
s′ , ∀s ̸= s′, s, s′ ∈ S (IC) (8.7c)

0 ≤ rt1 < rt2 < · · · < rts < · · · < rt|S| (8.7d)

The above optimization is clearly non-convex. Thus, we will reduce its constraints

and rewrite it as a convex optimization problem to allow for a tractable and feasible

solution. Starting with the IR constraint (Eq. 8.7b) and based on the IC and

monotonicity conditions, we have: τ tsϵ(e
t
s) − pSe

t
s ≥ τ tsϵ(e

t
1) − pSe

t
1, ∀s ∈ S. Also,

we know that τ ts > τ t1, ∀s ∈ S, thus, τ tsϵ(e
t
s) − pSe

t
s ≥ τ t1ϵ(e

t
1) − pSe

t
1 ≥ 0. Also,

given that the MGO provides just-sufficient rewards to incentivize the sellers to

participate in the microgrid, we can equivalently replace the constraint in Eq. 8.7b

with τ t1ϵ(e
t
1)− pSe

t
1 = 0. Focusing on the reduction of the IC constraints (Eq. 8.7c),

we introduce the following terminology: (i) s, s′, s′ ∈ {1, . . . , s − 1}: downward
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IC constraints, (ii) s, s − 1, ∀s ∈ S: local downward IC constraints, (iii) s, s′,

s′ ∈ {s+1, . . . , |S|}: upward IC constraints, and (iv) s, s+1, ∀s ∈ S: local upwards

IC constraints.

Lemma 1. All the downward IC constraints are captured by the local downward IC

constraints.

Proof. We write the IC conditions for three sellers, s − 1, s, s + 1, as follows:

τ ts+1ϵ(e
t
s+1) − pSe

t
s+1 ≥ τ ts+1ϵ(e

t
s) − pSe

t
s and τ tsϵ(e

t
s) − pSe

t
s ≥ τ tsϵ(e

t
s−1) − pSe

t
s−1.

We know that ets > ets−1

ϵ↗⇐=⇒ ϵ(ets) > ϵ(ets−1)
τ ts+1>τ

t
s⇐====⇒ τ ts+1[ϵ(e

t
s) − ϵ(ets−1)] >

τ ts[ϵ(e
t
s) − ϵ(ets−1)] ≥ pS(e

t
s − ets−1). We apply recursively the latter outcome for all

the sellers: τ ts+1ϵ(e
t
s+1) − pSe

t
s+1 ≥ τ ts+1ϵ(e

t
s−1) − pSe

t
s−1 ≥ · · · ≥ τ ts+1ϵ(e

t
1) − pSe

t
1.

Thus, we conclude that τ tsϵ(e
t
s) − pSe

t
s ≥ τ tsϵ(e

t
s−1) − pSe

t
s−1, i.e., all the downward

IC constraints are captured by the local downward IC constraints.

Lemma 2. All the upward IC constraints are captured by the local downward IC

constraint.

Proof. We write again the IC conditions for three indicative sellers, s − 1, s, s + 1,

as follows:

τ ts−1ϵ(e
t
s−1)− pSe

t
s−1 ≥ τ ts−1ϵ(e

t
s)− pSe

t
s (8.8)

τ tsϵ(e
t
s)− pSe

t
s ≥ τ tsϵ(e

t
s+1)− pSe

t
s+1 (8.9)

Based on Eq. 8.9 and the fairness condition, we have the following expression:

pts(e
t
s+1 − ets) ≥ τ ts [ϵ(e

t
s+1)− ϵ(ets)]

≥τ ts≥τ ts−1 τ ts−1[ϵ(e
t
s+1)− ϵ(ets)]

(8.10)
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Based on Eq. 8.8, 8.10, we have: τ ts−1ϵ(e
t
s−1) − pSe

t
s−1 ≥ τ ts−1ϵ(e

t
s) − pSe

t
s ≥

τ ts−1ϵ(e
t
s+1) − pSe

t
s+1. Thus, τ ts−1ϵ(e

t
s−1) − pSe

t
s−1 ≥ τ ts−1ϵ(e

t
s+1) − pSe

t
s+1, showing

that all the upward IC constraints hold true, if the IC condition is satisfied for the

seller with type τ ts−1. We apply recursively this outcome: τ ts−1ϵ(e
t
s−1) − pSe

t
s−1 ≥

τ ts−1ϵ(e
t
s+1)− pSe

t
s+1 ≥ · · · ≥ τ ts−1ϵ(e

t
|S|)− pSe

t
|S|. Thus, all the upward IC constraints

are captured by the local downward IC constraints.

Based on the above analysis of the reduction of the IR and IC constraints, we

can rewrite the contract-theoretic optimization problem (8.7a)-(8.7d) as follows:

max
{ets,rts}∀s∈S

|S|∑
s=1

[Pr(t)s (ets − rs(e
t
s))] (8.11a)

s.t. τ t1ϵ(e
t
1)− pSe

t
1 ≥ 0 (8.11b)

τ tsϵ(e
t
s)− pSe

t
s = τ tsϵ(e

t
s−1)− pSe

t
s−1 (8.11c)

0 ≤ rt1 < rt2 < · · · < rts < · · · < rt|S| (8.11d)

The optimization problem (8.11a)-(8.11d) is a convex optimization problem and

the optimal contract (et∗s , r
t∗
s ) can be determined based on standard convex optimiza-

tion methods [85]. Detailed numerical results are presented in Section 8.5.

8.4 Buyers’ & Electricity Market’s Interactions

In this section, we focus on capturing the interactions of the buyers with the MGO.

The goal of each buyer β, ∀β ∈ B ⊆ N is to purchase the remaining amount of energy

(dtβ − gtβ − bt−1
β ) [kWh], that cannot be supported by her local energy generation.

The MGO aims to incentivize the buyers to buy the total amount of energy that

they need, by providing personalized rewards rtβ. In our proposed approach, the
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interactions between the MGO and the buyers are captured via a contract-theoretic

model.

In particular, the buyers invest an ”effort” etβ ∈ [0, 1], which represents the

percentage of energy that they buy with respect to their total energy need, i.e.,

dtβ−gtβ−bt−1
β . Each buyer is characterized by a type τ tβ =

dtβ−g
t
β−b

t−1
β

maxβ∈B{dtβ−g
t
β−b

t−1
β } , showing

its relative potential compared to the rest of the buyers in terms of buying energy.

The MGO offers personalized rewards rtβ = τ tβe
t
β to each buyer, e.g., fixed energy

price, in order to incentivize them to buy energy and not postpone or decrease their

energy needs. The buyers’ utility is defined as the gained profit from buying energy

from the MGO and is defined as follows:

U t
β(e

t
β) = τ tβf(e

t
β)− pMe

t
β. (8.12)

The first term of Eq. 8.12 captures the buyer’s personalized satisfaction from

purchasing energy, where f(etβ) is the buyer’s satisfaction function, e.g., f(etβ) =√
rtβ(e

t
β). The latter one captures the buyer’s satisfaction from the consumption

of the energy that they buy from the MGO. The buyer’s satisfaction is a strictly

increasing, continuous, and concave function with respect to the received reward rtβ,

as the buyer becomes more satisfied by covering more of their appliances’ energy

needs while such satisfaction becomes saturated at a specific upper limit of energy

need. Also, pM ∈ [0, 1] here is considered as a normalized dimensionless parameter

representing the energy price, however in a real-life implementation it can be mapped

to realistic values and units [$/kWh] [171]. The MGO’s utility from selling energy

to the buyers is obtained as its total profit, and id defined as follows:

U t
MGO,sell(ebuy) =

|B|∑
β=1

Prtβ[pMe
t
β − rtβ(e

t
β)] (8.13)

As mentioned before, in the general case, the MGO has partial available infor-

mation about the potential of each buyer to buy energy, thus, it probabilistically
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estimates each buyer’s type τ tβ with probability Prtβ, where
∑|B|

β=1 Pr
t
β = 1. Similarly

to the sellers’ case, several types of probability distributions can be adopted based on

the nature of the examined energy market to realistically capture the buyers’ charac-

teristics. The goal of the MGO is to maximize its profit, while guaranteeing that the

buyers will buy energy from the microgrid market. Considering the benchmarking

scenario of complete information of the buyers’ types, the interactions between the

MGO and the buyers are formulated as a maximization problem of the MGO’s profit

(Eq. 8.14a), while considering the optimization of the buyers’ utilities (Eq. 8.14b).

max
{etβ}∀β∈B

[pMe
t
β − rtβ(e

t
β)] (8.14a)

s.t. τ tβf(e
t
β)− pMe

t
β ≥ 0,∀β ∈ B (8.14b)

Theorem 2. The optimal contract among the MGO and each buyer β under the

complete information scenario is (et∗β , r
t∗
β ) = (

τ t
2

β

2pM
,
τ t

2

β

4
).

Proof. It follows the same philosophy, reasoning and steps of Theorem 1.

Under the realistic scenario of incomplete information regarding the buyers’ types,

the conditions of IR (Eq. 8.15b), IC (Eq. 8.15c), and fairness, monotonicity, and ra-

tionality (Eq. 8.15d) should hold true. Also, the optimal contract jointly maximizes

the MGO’s utility, i.e., profit, as follows.

max
{etβ ,r

t
β}∀β∈B

|B|∑
β=1

Pr
(t)
β [pMe

t
β − rtβ(e

t
β)] (8.15a)

s.t. τ tβf(e
t
β)− pMe

t
β ≥ 0,∀β ∈ B (IR) (8.15b)

τ tβf(e
t
β)− pMe

t
β ≥ τ tβf(e

t
β′)− pMe

t
β′ ,∀β ̸= β′ (IC) (8.15c)
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0 ≤ rt1 < rt2 < · · · < rtβ < · · · < rt|B| (8.15d)

Following similar reasoning as in Section 8.3, we can rewrite the above optimiza-

tion problem and solve it with standard convex optimization methods as follows:

max
{etβ ,r

t
β}∀β∈B

|B|∑
β=1

Pr
(t)
β [pMe

t
β − rtβ(e

t
β)] (8.16a)

s.t. τ t1f(e
t
1)− pMe

t
1 = 0 (8.16b)

τ tβf(e
t
β)− pMe

t
β ≥ τ tβf(e

t
β−1)− pMe

t
β−1 (8.16c)

0 ≤ rt1 < rt2 < · · · < rtβ < · · · < rt|B| (8.16d)

The solution of the above problem concludes to the optimal contracts (et∗β , r
t∗
β ),∀β ∈

B, determining the amount of purchased energy of the buyers and the MGO’s offered

personalized rewards to the buyers.

8.5 Numerical Results

In this section, a detailed evaluation analysis of the proposed contract-theoretic ap-

proaches is presented, via modeling and simulation, in order to demonstrate and

assess the sellers and buyers interactions with the microgrid operator. Specifically,

the pure operation characteristics and performance of the proposed framework for

both the sellers and the buyers are presented in Section 8.5.1. The behavior of the

prosumers, in terms of acting either as sellers or buyers, is studied in more detail in

Section 8.5.2 with respect to the energy price, the energy generation cost, and the

prosumers’ energy generation characteristics during a day. Finally, the joint behavior
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of the prosumers and the MGO throughout the day for different energy generation

use case scenarios is studied in Section 8.5.3, towards demonstrating and gaining

more insights about their tight interconnection and interactions.

In the rest of the simulation results, we consider the following parameters: dtn ∈

[0.50, 1.50] kWh, gtn ∈ [0, 2] kWh, pM = 2, pS = 2 [172]. Furthermore, for demonstra-

tion purposes and unless otherwise explicitly stated, we examine the system operation

for |T | = 24 hours and |N | = 100 prosumers. The probabilities Prts and Prtβ are

obtained assuming that the sellers’ and buyers’ types follow uniform distributions.

For all the presented numerical results, a Monte Carlo analysis has been performed

of 10, 000 executions to receive more representative outcomes.

8.5.1 Pure Operation Performance

Initially, the pure operation performance of the proposed prosumer-centric self-

sustained smart grid system model based on the contract-theoretic approach is pre-

sented to capture the interactions of both the sellers (Section 8.3) and the buyers

(Section 8.4) with the MGO. One indicative time slot t is considered, where both

types of interactions are analyzed.

In particular, Fig. 8.2a - 8.2d present the sellers’ and buyers’ types (τ ts, τ
t
β), efforts

(ets, e
t
β), rewards (rts, r

t
β), and utilities (U t

s, U
t
β), respectively, under the scenarios of

complete and incomplete information of the prosumers’ types from the MGO’s per-

spective. For demonstration purposes, the sellers’ and buyers’ IDs have been sorted

with respect to their increasing types. The results show that the higher the seller’s

type is (Fig. 8.2a), the more energy surplus it has, thus, it is incentivized more by

the MGO to sell its available energy by being offered a higher reward (Fig. 8.2c

- left vertical axis). Consequently, it appears that indeed it sells more energy by

investing a greater effort (Fig. 8.2b - left vertical axis). Thus, the seller of greater
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Figure 8.2: Sellers’ and buyers’ types, efforts, rewards, and utilities with respect to
their index under the complete and incomplete information scenarios.

energy surplus ultimately achieves a higher utility (Fig. 8.2d - left vertical axis).

With reference to the sellers, and by comparing the complete (i.e., benchmarking)

and the incomplete (i.e., realistic) information scenarios, we observe that under the

former, the MGO can fully exploit the sellers’ energy surplus. This in turn means

that the MGO provides to the sellers higher rewards to incentivize them to sell the

vast majority of their available energy (Fig. 8.2c - left vertical axis), which indeed

translates to having the sellers actually selling a higher amount of energy (Fig. 8.2b

- left vertical axis), as compared to the incomplete information scenario.

Focusing our analysis on the buyers perspective and interactions with the MGO,
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Figure 8.3: Incentive compatibility condition.

we observe that a buyer with higher need to purchase energy, i.e., of higher type

(Fig. 8.2a), is incentivized more by the MGO to do so (Fig. 8.2c - right vertical

axis). Thus, a buyer of higher type by ultimately purchasing more energy (Fig.

8.2b - right vertical axis), it covers the majority of its energy needs and accordingly

achieves a higher utility (Fig. 8.2d - right vertical axis). Comparing the complete and

incomplete information scenarios with reference to the buyers, the results confirm our

theoretical analysis and observation, by clearly demonstrating that higher rewards

are provided to the buyers (Fig. 8.2c - right vertical axis) in the complete information

scenario, who purchase more energy (Fig. 8.2b - right vertical axis) compared to the

incomplete information scenario. It should be highlighted that under the complete

information scenario, both the sellers and the buyers achieve zero utility (Fig. 8.2d

- right vertical axis), as the MGO provides just the sufficient rewards to marginally

incentivize them to contribute to the microgrid’s smooth and seamless operation.

Also, the results confirm that the individual rationality, incentive compatibility,

fairness, monotonicity, and rationality conditions hold true for both the sellers and

the buyers under all the examined scenarios. Specifically, Fig. 8.3a-8.3b present

the sellers’ and buyers’ utility for the corresponding optimal contracts derived for
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each type for three indicative sellers and buyers with IDs s = {30, 40, 50}, and

β = {30, 40, 50}, respectively. The results reveal that both the sellers and the buyers

achieve the highest possible utility, when receiving the optimal personalized contract

that is designed accounting for their unique energy generation, demand, and storage

characteristics. This observation confirms the validity of the incentive compatibility

condition. Also, the results show that a seller or buyer of a higher type achieves a

higher utility, confirming the validity of the rationality condition.
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Figure 8.4: MGO’s utility and social welfare under the complete and incomplete
information scenarios.

Moreover, Fig. 8.4a-8.4b illustrate the MGO’s utility and overall microgrid sys-

tem’s social welfare as a function of the number of prosumers residing in the microgrid

system under the complete and incomplete information scenarios. The results show

that better MGO’s utility and social welfare is achieved under the complete informa-

tion scenario, as the MGO can provide more targeted rewards by knowing the sellers’

and buyers’ exact types. However, it is highlighted that the incomplete information

scenario, which is a realistic implementation of the microgrid system, achieves ac-

ceptable social welfare, especially, for increasing number of prosumers, with only 7%

worse social welfare compared to the complete information scenario, for the case of

100 prosumers.
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8.5.2 Prosumer’s Behavior throughout the Day

In this subsection, we study the impact of various system and prosumer character-

istics, such as energy price pM , energy generation cost pS , and prosumer’s energy

generation gtn,∀n ∈ N,∀t ∈ T , on the behavior of the prosumers in terms of acting

as sellers or buyers, throughout the operation of a day.
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Figure 8.5: Percentage of prosumers acting as sellers to achieve maximum (a) pro-
sumers’ average utility (i.e., prosumer-centric), (b) MGO utility (i.e., MGO-centric),
and (c) social welfare, vs. increasing number of prosumers, under three scenarios

In particular, Fig. 8.5a-8.5c present the percentage of prosumers that act as
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sellers in order to maximize the average prosumers’ utility, the MGO’s utility, and

the social welfare, respectively, as a function of the number of prosumers in the

microgrid. Three different scenarios of energy price pM and energy generation costs

pS are considered: (i) Even Cost with pM = pS = 2, (ii) High Buyer Cost with

pM = 6, pS = 2, and (iii) High Seller Cost with pM = 2, pS = 6. The results

reveal that when the energy generation cost is high (High Seller Cost scenario), a

smaller percentage of sellers is incentivized to sell energy, as their energy production

cost is high, and the sellers prefer to keep their generated energy for future use.

In contrast, when the energy price is high (High Buyer Cost scenario), the sellers

can achieve a higher profit by selling their generated energy to the MGO, thus, a

higher percentage of prosumers acts as sellers. The Even Cost scenario presents an

intermediate behavior between the High Seller and the High Buyer Cost scenarios.

Also, comparing the prosumer-centric approach (Fig. 8.5a) against an MGO-centric

approach (Fig. 8.5b) that aims at maximizing the MGO utility, we observe in the

latter case a higher offset of the percentages of the prosumers acting as sellers for

the High Seller and Even Cost scenarios, as the MGO aggressively provides rewards

to the prosumers to sell their energy. The opposite holds true for the High Buyer

scenario, as the MGO prefers to sell its available energy to the buyers at a higher

price, as compared to buying energy from the sellers. An intermediate behavior of

the percentages of the prosumers acting as sellers is observed when the goal is to

solely maximize their social welfare (Fig. 8.5c), as the selfish behavior of the MGO

and the prosumers is balanced.

Fig. 8.6a-8.6b present the prosumers’ average energy generation and the per-

centage of them that act as sellers during the day, respectively, for two comparative

scenarios: (i) High Generation scenario, and (ii) Low Generation scenario, where

the prosumers have high and low energy generation capacity, respectively. The pro-

sumers’ energy generation is solely based on solar photovoltaic panels. The results

reveal that during the sunny periods of the day, the prosumers generate more energy
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Figure 8.6: Average energy generation and percentage of prosumers acting as sellers
under high and low energy generation

(Fig. 8.6a), thus, a greater percentage of them is incentivized to act as sellers (Fig.

8.6b) in both examined scenarios. Additionally, in the High Generation scenario, it

is observed that the prosumers generate sufficient amount of energy to cover their

personal energy needs, thus, they act as sellers for the majority of the day’s dura-

tion. It is noted that the energy price and the energy generation costs are assumed

to remain fixed throughout the day.
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Figure 8.7: Average prosumers’ utility and MGO’s utility for pM = 6, pS = 2 under
high and low energy generation
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Figure 8.8: Average prosumers’ utility and MGO’s utility for pM = 2, pS = 6 under
high and low energy generation scenarios

The above analysis and evaluation is further extended in Fig. 8.7 and Fig. 8.8

where both the prosumers and MGO average utilities are presented for two different

scenarios: High Buyer Cost with pM = 6, pS = 2 (Fig. 8.7), and High Seller Cost

with pM = 2, pS = 6 (Fig. 8.8), respectively. The energy generation characteristics

of the prosumers for both scenarios follow the behavior presented in Fig. 8.6a. The

results reveal that when the energy price pM is high and the energy generation cost

pS is low, more prosumers act as sellers, thus, their average utility is higher (Fig.

8.7a), compared to the alternative scenario (Fig. 8.8a). This trend is expected as the

prosumers generate energy with low cost. The offset of the High and Low Generation

scenarios in Fig. 8.7a and Fig. 8.8a stems from the corresponding percentage of

prosumers that act as sellers. Also, the benefit of the prosumers corresponds to the

loss of the MGO, thus, the exact flipped trend is observed in Fig. 8.7b and Fig. 8.8b

regarding the achieved MGO’s utility.
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Figure 8.9: Percentage of prosumers acting as sellers, prosumers’ average utility, and
MGO’s utility during the day for the three energy generation scenarios (pM = 6, pS =
2)

8.5.3 Impact of Energy Generation and Demand on the Pro-

sumers’ and MGO’s Interactions

In the following, we focus our study on the impact of the prosumers’ energy gen-

eration and demand characteristics on their interactions with the microgrid system

during a day. We consider an evolving behavior where the prosumers’ demand is low

for t ∈ [0, 8], then it increases for t ∈ [8, 16], and then drops again for t ∈ [16, 24],

representing the realistic prosumers’ energy demand during the day. The aforemen-

tioned case, is evaluated and studied under three different scenarios regarding the
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prosumers’ energy generation capacity, i.e, High, Medium, and Low. Following a

similar methodology with our evaluation in the previous figures in this subsection

(i.e., considering high buyer cost and high seller cost alternatives), two sets of results

are produced and presented, differentiated exactly with respect to the considered

energy price pM and the energy generation cost pS , i.e., pM = 6, pS = 2 for Fig.

8.9-8.10 and pM = 2, pS = 6 for Fig. 8.11-8.12.
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Figure 8.10: Achieved utility in the system of Fig. 8.9 for different percentages of
prosumers functioning as sellers.

Specifically, Fig. 8.9a-8.9c present the percentage of prosumers acting as sellers,

their average utility and the MGO’s utility during the day, respectively, for the three

aforementioned energy generation scenarios. The results reveal that in the High

energy generation scenario, all the prosumers act as sellers, as they have sufficient

energy surplus to support their personal energy need, while the exact opposite holds

true in the Low energy generation scenario (Fig. 8.9a). In order to gain insight about

the behavior of the curves for the Medium energy generation scenario, we should turn

our attention to Fig. 8.10.

Particularly, with reference to the Medium energy generation scenario, Fig. 8.10

presents the behavior of the prosumers’ average utility (Fig. 8.10a) and the MGO’s

utility (Fig. 8.10b) for different percentages of prosumers acting as sellers (horizontal
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axis). We observe that the maximum prosumers’ average utility is achieved, when

approximately 60% of the prosumers act as sellers. Correlating this value with the

results in Fig. 8.9a, we observe that approximately 60% of the prosumers act as

sellers, except for the time interval 11 am - 3 pm, when the prosumers’ energy demand

becomes high, and accordingly fewer prosumers are acting as sellers. Also, given that

the energy generation cost is low, i.e., pS = 2, as compared to the energy price, which

is high, i.e., pM = 6, the prosumers that generate a lot of energy achieve higher utility

compared to the scenario of generating small amount of energy (Fig. 8.9b). The

exact opposite is observed from the MGO’s perspective (Fig. 8.9c). Focusing on the

Medium energy generation scenario, we observe that during the morning hours, i.e.,

t ∈ [0, 11], the prosumers generate more energy, thus accumulating energy surplus,

and approximately 60% of them act as sellers (Fig. 8.9a), achieving the maximum

possible utility (Fig. 8.10a), thus, their average achieved utility increases during this

time frame (Fig. 8.9b). In the slot t ∈ [10, 11], their energy demands increase and

the percentage of prosumers acting as sellers drops to 20% (Fig. 8.9a), achieving the

lowest possible utility (Fig. 8.10a), driving their average utility to drop (Fig. 8.9b).

Similar analysis and reasoning can be derived and followed for the rest of the day.

Still focusing on the Medium energy generation scenario but from the MGO’s

perspective, we jointly study Fig. 8.9c and Fig. 8.10b. We observe that for the

time periods t ∈ [0, 10] ∪ [15, 24], where the percentage of the prosumers acting as

sellers is approximately 60% (Fig. 8.9a), the MGO achieves a relatively high utility

(Fig. 8.10b), and slowly increases its profit during those time periods. On the other

hand, for the time interval t ∈ [10, 15], where only 20% of the prosumers act as

sellers (Fig. 8.9a) due to their personal high energy demand, the MGO achieves the

highest possible utility (Fig. 8.10b), as the MGO has set its price at a high value,

i.e., pM = 6. Thus, during this period, the MGO accumulates a higher profit.

Last, a symmetric scenario is presented in Fig. 8.11 and Fig. 8.12, where a
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Figure 8.11: Percentage of prosumers acting as sellers, prosumers’ average utility,
and MGO’s utility during the day for the three energy generation scenarios (pM =
2, pS = 6)

low energy price (pM = 2) and high energy generation cost (pS = 6) is considered

instead. The point that should be highlight here is that the average utility of the

prosumers with high energy generation is lower compared to the ones with low energy

generation as the energy generation cost is higher. The exact opposite behavior is

presented by the MGO’s utility, as more prosumers tend to buy energy from it.
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Figure 8.12: Achieved utility in the system of Fig. 8.11 for different percentages of
prosumers functioning as sellers.

8.6 Conclusions

In this chapter, the paradigm of prosumer-centric self-sustained smart grid systems

is introduced, by capturing and properly modeling the interactions of the prosumers

with the microgrid operator via a labor economics based approach. The prosumers

throughout the system operation may serve as sellers or buyers, based on their

personal energy generation, demand, and storage characteristics. The MGO offers

personalized rewards to the sellers and buyers to incentivize them to sell and pur-

chase energy, respectively. The contract-theoretic optimization problems between

the MGO and the sellers and the MGO and the buyers respectively, are formulated

and solved to determine the optimal personalized contracts, i.e., rewards and amount

of sold/purchased energy. Detailed numerical and comparative evaluation results -

obtained via modeling and simulation - are presented to demonstrate the operation of

the proposed framework and highlight its main characteristics, under various diverse

scenarios.

Part of our current and future work is to incorporate the prosumers reactions to

the energy price fluctuation, which introduces risk in their decision to act as sell-
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ers or buyers. In our efforts to study and address this problem, the principles of

Prospect Theory are adopted. Furthermore, along the same lines, we plan to con-

sider a system where multiple MGOs may co-exist and therefore the prosumers may

dynamically get associated with different MGOs at different times, thus introducing

several uncertainties within a more competitive market overall.
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Chapter 9

Conclusion and Future Works

This dissertation proposes novel theory and scalable algorithms for decentralized in-

telligent decision making models, frameworks, and algorithms to support the smooth

operation of Cyber Physical Social Systems.

9.0.1 Summary of Contributions

In this dissertation, we focus our research activities on devising decentralized intel-

ligent decision making models, frameworks, and algorithms to support the smooth

operation of Cyber Physical Social Systems. The proposed decentralized intelligent

decision making models are jointly exploiting theories from the field of Economics,

such as Game Theory and Contract Theory, and from the field of Computer Science,

such as Reinforcement Learning concepts. Reinforcement learning is applied to allow

for humans to make informed decisions in the considered Cyber Physical Social Sys-

tems based off of the environment around them. Additionally, contract theoretic and

game theoretic models allow for us to accurately depict the relationships between the

different involved entities in the examined system.
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Five main research problems have been examined in this Ph.D. dissertation, which

can be summarized as follows:

• socio-physical human orchestration in smart cities,

• socio-aware public safety framework design,

• unmanned aerial vehicle or UAV-enabled dynamic multi-target tracking and

sensing framework,

• resource orchestration in wireless powered communication public safety sys-

tems, and

• health data acquisition from wearable devices during a pandemic by following

a techno-economics approach

• museum and visitors interactions enabled by labor economics

• prosumer-centric self-sustained smart grid systems

9.0.2 Future Work

The work summarized in this Ph.D. dissertation proposes a meaningful and gen-

eral framework, where the control intelligence and decision making process is done

by the humans towards sophisticated sensing the dynamic environment and making

autonomous decisions. Part of our current and future work targets at addressing

the problem of modeling and orchestrating the interactions in a variety of different

cyber-physical-social systems. As each CPSS is unique each one may need to have the

model utilized tailored to that specific CPSS. For example in Chapter 7, the museum

operator provides monetary rewards to the visitors in exchange for their contribu-

tions, which are expressed as their total number of provided feedback evaluations of
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visited exhibits over their touring time. The interactions among the museum oper-

ator and visitors are captured in appropriately designed utility functions following

the principles of labor economics, while the visitors’ behavioral characteristics are

utilized to define their unique types. Under such a setting and formulation, the goal

of the museum operator is to optimize their profit and benefits, while jointly sat-

isfying the visitors’ quality of experience prerequisites, as reflected via their utility

functions. The corresponding optimization problem is treated and solved under the

general and realistic case of incomplete information, wherein the museum operator

estimates the visitors’ types probabilistically. The resulting outcome, referred to as

”optimal contract” jointly determines the visitors’ optimal contributions, as well as

the museum operator’s optimal amount of personalized rewards provided to each vis-

itor. This model follows the general trend that has been utilized for other CPSS but

required some slight adjustments to fit that specific CPSS, such as understanding the

different ways museum visitors view and evaluate the museum. These adjustments

allowed us to create a more holistic approach. Applying the general approach and

tuning the approach to more CPSSs, as mentioned previously, is the basis of our

future work.
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[51] T. Başar and G. J. Olsder, Dynamic noncooperative game theory. SIAM, 1998.

[52] E. E. Tsiropoulou, G. K. Katsinis, P. Vamvakas, and S. Papavassiliou, “Ef-
ficient uplink power control in multi-service two-tier femtocell networks via
a game theoretic approach,” in 2013 IEEE 18th International Workshop on
Computer Aided Modeling and Design of Communication Links and Networks
(CAMAD), pp. 104–108, 2013.

186



References

[53] K. Ritzberger et al., “Foundations of non-cooperative game theory,” OUP Cat-
alogue, 2002.

[54] Y. Kawamoto, N. Yamada, H. Nishiyama, N. Kato, Y. Shimizu, and Y. Zheng,
“A feedback control-based crowd dynamics management in iot system,” IEEE
Internet of Things Journal, vol. 4, no. 5, pp. 1466–1476, 2017.

[55] S. Karanikolaou, I. Boutsis, and V. Kalogeraki, “Understanding event atten-
dance through analysis of human crowd behavior in social networks,” in Pro-
ceedings of the 8th ACM International Conference on Distributed Event-Based
Systems, pp. 322–325, ACM, 2014.

[56] I. Boutsis, S. Karanikolaou, and V. Kalogeraki, “Personalized event recommen-
dations using social networks,” in 2015 16th IEEE International Conference
on Mobile Data Management, vol. 1, pp. 84–93, 2015.

[57] H. Wang, M. Terrovitis, and N. Mamoulis, “Location recommendation in
location-based social networks using user check-in data,” in Proceedings of the
21st ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, pp. 374–383, ACM, 2013.

[58] L. Guo, J. Shao, K. L. Tan, and Y. Yang, “Wheretogo: Personalized travel
recommendation for individuals and groups,” in IEEE 15th International Con-
ference on Mobile Data Management, vol. 1, pp. 49–58, 2014.

[59] J. She, Y. Tong, L. Chen, and T. Song, “Feedback-aware social event-
participant arrangement,” in Proceedings of the 2017 ACM International Con-
ference on Management of Data, pp. 851–865, ACM, 2017.

[60] J. Huang, Y. Zhou, X. Jia, and H. Sun, “A novel social event organization
approach for diverse user choices,” The Computer Journal, vol. 60, no. 7,
pp. 1078–1095, 2016.

[61] N. Bikakis, V. Kalogeraki, and D. Gunopulos, “Social event scheduling,” in
IEEE 34th Intern. Conf. on Data Engineering, pp. 1272–1275, 2018.

[62] T.-A. N. Pham, X. Li, G. Cong, and Z. Zhang, “A general graph-based model
for recommendation in event-based social networks,” in IEEE 31st Interna-
tional Conference on Data Engineering, pp. 567–578, 2015.

[63] A. S. Poznyak and K. Najim, Learning automata and stochastic optimization,
vol. 3. Springer, 1997.

187



References

[64] E. E. Tsiropoulou, G. K. Katsinis, A. Filios, and S. Papavassiliou, “On the
problem of optimal cell selection and uplink power control in open access multi-
service two-tier femtocell networks,” in International Conference on Ad-Hoc
Networks and Wireless, pp. 114–127, Springer, 2014.

[65] R. Mirchandaney and J. A. Stankovic, “Using stochastic learning automata
for job scheduling in distributed processing systems,” Journal of Parallel and
Distributed Computing, vol. 3, no. 4, pp. 527–552, 1986.

[66] P. A. Apostolopoulos, E. E. Tsiropoulou, and S. Papavassiliou, “Game-
theoretic learning-based qos satisfaction in autonomous mobile edge comput-
ing,” in 2018 Global Information Infrastructure and Networking Symposium
(GIIS), pp. 1–5, IEEE, 2018.

[67] P. Vamvakas, E. E. Tsiropoulou, and S. Papavassiliou, “Risk-aware resource
management in public safety networks,” Sensors, vol. 19, no. 18, p. 3853, 2019.

[68] K. Starbird, J. Maddock, M. Orand, P. Achterman, and R. M. Mason, “Ru-
mors, false flags, and digital vigilantes: Misinformation on twitter after the
2013 boston marathon bombing,” IConference 2014 Proceedings, 2014.

[69] F. Bloch, G. Demange, and R. Kranton, “Rumors and social networks,” Inter-
national Economic Review, vol. 59, no. 2, pp. 421–448, 2018.

[70] D. E. Alexander, “Social media in disaster risk reduction and crisis manage-
ment,” Science and engineering ethics, vol. 20, no. 3, pp. 717–733, 2014.

[71] B. Resch, “People as sensors and collective sensing-contextual observations
complementing geo-sensor network measurements,” in Progress in location-
based services, pp. 391–406, Springer, 2013.

[72] V. Krishnamurthy and H. V. Poor, “A tutorial on interactive sensing in social
networks,” IEEE Transactions on Computational Social Systems, vol. 1, no. 1,
pp. 3–21, 2014.

[73] F. Amato, V. Moscato, A. Picariello, and G. Sperli’̀ı, “Extreme events man-
agement using multimedia social networks,” Future Generation Computer Sys-
tems, vol. 94, pp. 444–452, 2019.

[74] X. Zhang, Z. Yang, Z. Zhou, H. Cai, L. Chen, and X. Li, “Free market of crowd-
sourcing: Incentive mechanism design for mobile sensing,” IEEE transactions
on parallel and distributed systems, vol. 25, no. 12, pp. 3190–3200, 2014.

188



References

[75] A. Goncalves, C. Silva, P. Morreale, and J. Bonafide, “Crowdsourcing for public
safety,” in 2014 IEEE International Systems Conference Proceedings, pp. 50–
56, IEEE, 2014.

[76] G. Fragkos, C. Minwalla, J. Plusquellic, and E. E. Tsiropoulou, “Artificially
intelligent electronic money,” IEEE Consumer Electronics Magazine, vol. 10,
no. 4, pp. 81–89, 2020.

[77] M. Diamanti, G. Fragkos, E. E. Tsiropoulou, and S. Papavassiliou, “Resource
orchestration in interference-limited small cell networks: A contract-theoretic
approach,” in International Conference on Network Games, Control and Op-
timization, pp. 101–109, Springer, 2021.

[78] F. Sangoleye, N. Irtija, and E. E. Tsiropoulou, “Smart energy harvesting for
internet of things networks,” Sensors, vol. 21, no. 8, p. 2755, 2021.

[79] Z. Hasan and V. K. Bhargava, “Relay selection for ofdm wireless systems under
asymmetric information: A contract-theory based approach,” IEEE Transac-
tions on Wireless Communications, vol. 12, no. 8, pp. 3824–3837, 2013.

[80] Y. Zhang, L. Song, W. Saad, Z. Dawy, and Z. Han, “Contract-based incentive
mechanisms for device-to-device communications in cellular networks,” IEEE
Journal on Selected Areas in Communications, vol. 33, no. 10, pp. 2144–2155,
2015.

[81] L. Duan, L. Gao, and J. Huang, “Cooperative spectrum sharing: A contract-
based approach,” IEEE Transactions on Mobile Computing, vol. 13, no. 1,
pp. 174–187, 2012.

[82] A. V. Kordali and P. G. Cottis, “A contract-based spectrum trading scheme
for cognitive radio networks enabling hybrid access,” IEEE Access, vol. 3,
pp. 1531–1540, 2015.

[83] E. E. Tsiropoulou, P. Vamvakas, and S. Papavassiliou, “Energy efficient uplink
joint resource allocation non-cooperative game with pricing,” in 2012 IEEE
Wireless Communications and Networking Conference (WCNC), pp. 2352–
2356, IEEE, 2012.

[84] M. Doo and L. Liu, “Probabilistic diffusion of social influence with incentives,”
IEEE Transactions on Services Computing, vol. 7, no. 3, pp. 387–400, 2014.

[85] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university
press, 2004.

189



References

[86] T. Kastrinogiannis, E.-E. Tsiropoulou, and S. Papavassiliou, “Utility-based up-
link power control in cdma wireless networks with real-time services,” in Inter-
national Conference on Ad-Hoc Networks and Wireless, pp. 307–320, Springer,
2008.

[87] G. Katsinis, E. E. Tsiropoulou, and S. Papavassiliou, “Joint resource block
and power allocation for interference management in device to device underlay
cellular networks: A game theoretic approach,” Mobile Networks and Applica-
tions, vol. 22, no. 3, pp. 539–551, 2017.

[88] H. Shakhatreh et al., “Unmanned aerial vehicles (uavs): A survey on civil
applications and key research challenges,” IEEE Access, vol. 7, pp. 48572–
48634, 2019.

[89] P. A. Apostolopoulos, M. Torres, and E. E. Tsiropoulou, “Satisfaction-aware
data offloading in surveillance systems,” in Proceedings of the 14th Workshop
on Challenged Networks, pp. 21–26, 2019.

[90] M. Wan, G. Gu, W. Qian, K. Ren, X. Maldague, and Q. Chen, “Unmanned
aerial vehicle video-based target tracking algorithm using sparse representa-
tion,” IEEE Internet of Things Journal, vol. 6, no. 6, pp. 9689–9706, 2019.

[91] F. Vanegas, J. Roberts, and F. Gonzalez, “Uav tracking of mobile target in
occluded, cluttered and gps-denied environments,” in 2018 IEEE Aerospace
Conference, pp. 1–7, IEEE, 2018.

[92] Y. Liu, Q. Wang, H. Hu, and Y. He, “A novel real-time moving target tracking
and path planning system for a quadrotor uav in unknown unstructured out-
door scenes,” IEEE Trans. on Syst., Man, and Cybern.: Syst., vol. 49, no. 11,
pp. 2362–2372, 2018.

[93] W. Zhang, K. Song, X. Rong, and Y. Li, “Coarse-to-fine uav target tracking
with deep reinforcement learning,” IEEE Trans. on Autom. Science and Eng.,
vol. 16, no. 4, pp. 1522–1530, 2018.

[94] A. Das, S. Shirazipourazad, D. Hay, and A. Sen, “Tracking of multiple targets
using optimal number of uavs,” IEEE Trans. on Aerosp. and Electr. Syst.,
vol. 55, no. 4, pp. 1769–1784, 2018.

[95] N. H. Motlagh, M. Bagaa, and T. Taleb, “Uav-based iot platform: A
crowd surveillance use case,” IEEE Communications Magazine, vol. 55, no. 2,
pp. 128–134, 2017.

190



References

[96] A. Farajzadeh, O. Ercetin, and H. Yanikomeroglu, “Uav data collection over
noma backscatter networks: Uav altitude and trajectory optimization,” in ICC
2019-2019 IEEE International Conference on Communications (ICC), pp. 1–7,
IEEE, 2019.

[97] M. Samir, S. Sharafeddine, C. Assi, T. Nguyen, and A. Ghrayeb, “Uav tra-
jectory planning for data collection from time-constrained iot devices,” IEEE
Trans. on Wireless Communications, vol. 19, no. 1, pp. 33–46, 2019.

[98] D. Gale and L. S. Shapley, “College admissions and the stability of marriage,”
The American Mathematical Monthly, vol. 69, no. 1, pp. 9–15, 1962.

[99] E. E. Tsiropoulou, P. Vamvakas, and S. Papavassiliou, “Joint utility-based
uplink power and rate allocation in wireless networks: A non-cooperative game
theoretic framework,” Physical Communication, vol. 9, pp. 299–307, 2013.

[100] E. E. Tsiropoulou, G. K. Katsinis, and S. Papavassiliou, “Utility-based power
control via convex pricing for the uplink in cdma wireless networks,” in 2010
European Wireless Conference (EW), pp. 200–206, IEEE, 2010.

[101] K. Rael, G. Fragkos, J. Plusquellic, and E. E. Tsiropoulou, “Uav-enabled hu-
man internet of things,” in 2020 16th International Conference on Distributed
Computing in Sensor Systems (DCOSS), pp. 312–319, IEEE, 2020.

[102] M. Mozaffari, W. Saad, M. Bennis, Y.-H. Nam, and M. Debbah, “A tutorial
on uavs for wireless networks: Applications, challenges, and open problems,”
IEEE communications surveys & tutorials, vol. 21, no. 3, pp. 2334–2360, 2019.

[103] P.-V. Mekikis, A. Antonopoulos, E. Kartsakli, A. S. Lalos, L. Alonso, and
C. Verikoukis, “Information exchange in randomly deployed dense wsns with
wireless energy harvesting capabilities,” IEEE Transactions on Wireless Com-
munications, vol. 15, no. 4, pp. 3008–3018, 2016.

[104] M. Diamanti, E. E. Tsiropoulou, and S. Papavassiliou, “The joint power of
noma and reconfigurable intelligent surfaces in swipt networks,” in 2021 IEEE
22nd International Workshop on Signal Processing Advances in Wireless Com-
munications (SPAWC), pp. 621–625, IEEE, 2021.

[105] Z. Li, Y. Wang, M. Liu, R. Sun, Y. Chen, J. Yuan, and J. Li, “Energy efficient
resource allocation for uav-assisted space-air-ground internet of remote things
networks,” IEEE Access, vol. 7, pp. 145348–145362, 2019.

[106] X. Lin, G. Su, B. Chen, H. Wang, and M. Dai, “Striking a balance between sys-
tem throughput and energy efficiency for uav-iot systems,” IEEE IoT Journal,
vol. 6, no. 6, pp. 10519–10533, 2019.

191



References

[107] K. Zhu, X. Xu, and Z. Huang, “Energy-efficient routing algorithms for uav-
assisted mmtc networks,” in IEEE 30th PIMRC, pp. 1–6, IEEE, 2019.

[108] J. Xu, Y. Zeng, and R. Zhang, “Uav-enabled wireless power transfer: Tra-
jectory design and energy region characterization,” in 2017 IEEE Globecom
Workshops, pp. 1–7, IEEE, 2017.

[109] J. Xu, Y. Zeng, and R. Zhang, “Uav-enabled wireless power transfer: Trajec-
tory design and energy optimization,” IEEE Transactions on Wireless Com-
munications, vol. 17, no. 8, pp. 5092–5106, 2018.

[110] J. Park, H. Lee, S. Eom, and I. Lee, “Uav-aided wireless powered communica-
tion networks: Trajectory optimization and resource allocation for minimum
throughput maximization,” IEEE Access, vol. 7, pp. 134978–134991, 2019.

[111] P. Ramezani and A. Jamalipour, “Toward the evolution of wireless powered
communication networks for the future internet of things,” IEEE network,
vol. 31, no. 6, pp. 62–69, 2017.

[112] P. Vamvakas, E. E. Tsiropoulou, M. Vomvas, and S. Papavassiliou, “Adap-
tive power management in wireless powered communication networks: A user-
centric approach,” in 2017 IEEE 38th Sarnoff Symposium, pp. 1–6, IEEE,
2017.

[113] G. Baldini, S. Karanasios, D. Allen, and F. Vergari, “Survey of wireless com-
munication technologies for public safety,” IEEE Communications Surveys &
Tutorials, vol. 16, no. 2, pp. 619–641, 2013.

[114] D. Sikeridis, E. E. Tsiropoulou, M. Devetsikiotis, and S. Papavassiliou, “Wire-
less powered public safety iot: A uav-assisted adaptive-learning approach to-
wards energy efficiency,” Journal of Network and Computer Applic., vol. 123,
pp. 69–79, 2018.

[115] A. A. Khuwaja, Y. Chen, N. Zhao, M.-S. Alouini, and P. Dobbins, “A survey
of channel modeling for uav communications,” IEEE Communications Surveys
& Tutorials, vol. 20, no. 4, pp. 2804–2821, 2018.

[116] G. Fragkos, E. E. Tsiropoulou, and S. Papavassiliou, “Disaster manage-
ment and information transmission decision-making in public safety systems,”
in 2019 IEEE Global Communications Conference (GLOBECOM), pp. 1–6,
IEEE, 2019.

[117] E. E. Tsiropoulou, T. Kastrinogiannis, and S. Papavassiliou, “Uplink power
control in qos-aware multi-service cdma wireless networks,” Journal of Com-
munications, vol. 4, no. 9, pp. 654–668, 2009.

192



References

[118] Y. Wu, L. Qiu, and J. Xu, “Uav-enabled wireless power transfer with direc-
tional antenna: A two-user case,” in 15th ISWCS, pp. 1–6, IEEE, 2018.

[119] E. E. Tsiropoulou, A. Kapoukakis, and S. Papavassiliou, “Energy-efficient sub-
carrier allocation in sc-fdma wireless networks based on multilateral model of
bargaining,” in 2013 IFIP Networking Conference, pp. 1–9, IEEE, 2013.

[120] K. Bhagat and J. Malhotra, “A survey of uplink multiple access techniques
in lte mobile communication system,” in 2014 International Conference on
Advances in Engineering Technology Research (ICAETR - 2014), pp. 1–4, 2014.

[121] E. E. Tsiropoulou, A. Kapoukakis, and S. Papavassiliou, “Uplink resource al-
location in sc-fdma wireless networks: A survey and taxonomy,” Computer
Networks, vol. 96, pp. 1–28, 2016.

[122] P. A. Thomas and M. Mathurakani, “Sc-fdma-an efficient technique for papr
reduction in uplink communication systems-a survey,” International Journal
of Research in Engineering and Technology, vol. 3, no. 1, pp. 53–59, 2014.

[123] G. Fragkos, P. A. Apostolopoulos, and E. E. Tsiropoulou, “Escape: Evacu-
ation strategy through clustering and autonomous operation in public safety
systems,” Future Internet, vol. 11, no. 1, p. 20, 2019.

[124] V. Chamola, V. Hassija, V. Gupta, and M. Guizani, “A comprehensive review
of the covid-19 pandemic and the role of iot, drones, ai, blockchain, and 5g in
managing its impact,” IEEE Access, vol. 8, pp. 90225–90265, 2020.

[125] S. Swayamsiddha and C. Mohanty, “Application of cognitive internet of med-
ical things for covid-19 pandemic,” Diabetes & Metabolic Syndrome: Clinical
Research & Reviews, 2020.

[126] Z. Schneeweiss, D. Murtaugh, and Bloomberg-Economics., “This is how deeply
the coronavirus changed our behavior.”

[127] M. M. Queiroz, D. Ivanov, A. Dolgui, and S. F. Wamba, “Impacts of epidemic
outbreaks on supply chains: mapping a research agenda amid the covid-19
pandemic through a structured literature review,” Annals of Oper. Research,
pp. 1–38, 2020.

[128] S. Parthasarathy, S. Berryhill, C. Morton, A. Dean, A. Berryhill, N. Provencio-
Dean, S. Patel, L. Estep, S. Mashaqi, D. Combs, et al., “Effect of wearables
on sleep in healthy individuals: A randomized cross-over trial and validation
study,” pp. A6165–A6165, American Thoracic Society, 2020.

193



References

[129] C. Burns., “Estimote wearables track workers to curb covid- 19 outbreak.”

[130] Life-Signals, “Covid-19 remote health monitoring in hospitals and at home..”

[131] F. Khalique, S. A. Khan, and I. Nosheen, “A framework for public health
monitoring, analytics and research,” IEEE Access, vol. 7, pp. 101309–101326,
2019.

[132] R. Y. Kim, “The impact of covid-19 on consumers: Preparing for digital sales,”
IEEE Engineering Management Review, 2020.

[133] Mckinsey and Co., “Survey: Us consumer sentiment during the coronavirus
crisis, mckinsey and co., april 5, 2020.”

[134] W. J. McKibbin and R. Fernando, “The global macroeconomic impacts of
covid-19: Seven scenarios,” 2020.

[135] R. S. Sutton, A. G. Barto, et al., Introduction to reinforcement learning,
vol. 135. MIT press Cambridge, 1998.

[136] Y. Zhou, F. R. Yu, J. Chen, and Y. Kuo, “Cyber-physical-social systems: A
state-of-the-art survey, challenges and opportunities,” IEEE Communications
Surveys Tutorials, vol. 22, no. 1, pp. 389–425, 2020.

[137] A. Thanou, E.-E. Tsiropoulou, and S. Papavassiliou, “A roadmap to congestion
management in museums from a socio-technical perspective.,” in CI@ SMAP,
2019.

[138] L. G. Jaimes, I. J. Vergara-Laurens, and A. Raij, “A survey of incentive tech-
niques for mobile crowd sensing,” IEEE Internet of Things Journal, vol. 2,
no. 5, pp. 370–380, 2015.

[139] H. Gao, C. H. Liu, W. Wang, J. Zhao, Z. Song, X. Su, J. Crowcroft, and K. K.
Leung, “A survey of incentive mechanisms for participatory sensing,” IEEE
Communications Surveys Tutorials, vol. 17, no. 2, pp. 918–943, 2015.

[140] Z. Su, Q. Qi, Q. Xu, S. Guo, and X. Wang, “Incentive scheme for cyber phys-
ical social systems based on user behaviors,” IEEE Transactions on Emerging
Topics in Computing, vol. 8, no. 1, pp. 92–103, 2020.

[141] Y. Lin, Z. Chen, X. Feng, H. Zheng, and Y. Xu, “Incentive mechanism de-
sign for participatory sensing: Considering task quality and users’ effort,” in
2017 3rd IEEE International Conference on Computer and Communications
(ICCC), pp. 707–711, 2017.

194



References

[142] Z. Akhtar, K. Siddique, A. Rattani, S. L. Lutfi, and T. H. Falk, “Why is
multimedia quality of experience assessment a challenging problem?,” IEEE
Access, vol. 7, pp. 117897–117915, 2019.

[143] S. Cuomo, P. De Michele, A. Galletti, and F. Piccialli, “A cultural heritage
case study of visitor experiences shared on a social network,” in 2015 10th In-
ternational Conference on P2P, Parallel, Grid, Cloud and Internet Computing
(3PGCIC), pp. 539–544, 2015.

[144] R. P. Kinsley and J. Portenoy, “Perspectives of emerging museum profession-
als on the role of big data in museums,” in 2015 48th Hawaii International
Conference on System Sciences, pp. 2075–2084, 2015.

[145] E. E. Tsiropoulou, A. Thanou, and S. Papavassiliou, “Modelling museum visi-
tors’ quality of experience,” in 2016 11th International Workshop on Semantic
and Social Media Adaptation and Personalization (SMAP), pp. 77–82, IEEE,
2016.

[146] M. G. Rashed, R. Suzuki, T. Yonezawa, A. Lam, Y. Kobayashi, and Y. Kuno,
“Tracking visitors in a real museum for behavioral analysis,” in 2016 Joint 8th
International Conference on Soft Computing and Intelligent Systems (SCIS)
and 17th International Symposium on Advanced Intelligent Systems (ISIS),
pp. 80–85, 2016.

[147] M. G. Rashed, D. Das, Y. Kobayashi, and Y. Kuno, “Analysis and prediction
of real museum visitors’ interests and preferences based on their behaviors,”
in 2017 International Conference on Electrical, Computer and Communication
Engineering (ECCE), pp. 451–456, 2017.

[148] A. Thanou, E. E. Tsiropoulou, and S. Papavassiliou, “Quality of experience
under a prospect theoretic perspective: A cultural heritage space use case,”
IEEE Transactions on Computational Social Systems, vol. 6, no. 1, pp. 135–
148, 2019.

[149] A. Thanou, E. E. Tsiropoulou, and S. Papavassiliou, “A sociotechnical ap-
proach to the museum congestion management problem,” IEEE Transactions
on Computational Social Systems, vol. 7, no. 2, pp. 563–568, 2020.

[150] I. Lykourentzou, X. Claude, Y. Naudet, E. Tobias, A. Antoniou, G. Lepouras,
and C. Vassilakis, “Improving museum visitors’ quality of experience through
intelligent recommendations: A visiting style-based approach.,” in Intelligent
environments (workshops), pp. 507–518, 2013.

195



References

[151] E. E. Tsiropoulou, G. Kousis, A. Thanou, I. Lykourentzou, and S. Papavas-
siliou, “Quality of experience in cyber-physical social systems based on rein-
forcement learning and game theory,” Future Internet, vol. 10, no. 11, p. 108,
2018.
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le sens. Bibliothèque publique d’information du Centre Pompidou, 1989.

[153] G. Hafeez, K. S. Alimgeer, Z. Wadud, I. Khan, M. Usman, A. B. Qazi, and F. A.
Khan, “An innovative optimization strategy for efficient energy management
with day-ahead demand response signal and energy consumption forecasting
in smart grid using artificial neural network,” IEEE Access, vol. 8, pp. 84415–
84433, 2020.

[154] A. Al Hadi, C. A. S. Silva, E. Hossain, and R. Challoo, “Algorithm for de-
mand response to maximize the penetration of renewable energy,” IEEE Ac-
cess, vol. 8, pp. 55279–55288, 2020.

[155] R. Zhou, Z. Li, and C. Wu, “An online procurement auction for power demand
response in storage-assisted smart grids,” in IEEE INFOCOM, pp. 2641–2649,
IEEE, 2015.

[156] A. Kumari, R. Gupta, S. Tanwar, S. Tyagi, and N. Kumar, “When blockchain
meets smart grid: Secure energy trading in demand response management,”
IEEE Network, vol. 34, no. 5, pp. 299–305, 2020.

[157] D. Li, W.-Y. Chiu, H. Sun, and H. V. Poor, “Multiobjective optimization
for demand side management program in smart grid,” IEEE Transactions on
Industrial Informatics, vol. 14, no. 4, pp. 1482–1490, 2017.

[158] H. Wang and J. Huang, “Incentivizing energy trading for interconnected mi-
crogrids,” IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 2647–2657,
2018.

[159] A. Nikoobakht, J. Aghaei, M. Shafie-Khah, and J. P. S. Cataláo, “Assessing
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