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ABSTRACT: Hesitant neutrosophic sets can accomodate more uncertainty compare to hesitant fuzzy sets and hesitant
intuitionistic sets. On the other hand, triangular neutrosophic numbers are often used by the decision makers to evaluate their
opinion in multi-attribute group decision making problems. Based on the combination of triangular neutrosophic numbers and
hesitant neutrosophic sets, in this paper, we propose hesitant triangular neutrosophic numbers. Also, we discuss various types
of operations between them including some properties. Then, we propose various types of hesitant triangular neutrosophic
weighted aggregation operators to aggregate the hesitant triangular neutrosophic information. Furthermore, we introduce
score of hesitant triangular neutrosophic numbers to ranking the hesitant triangular neutrosophic numbers. Based on the
hesitant triangular neutrosophic weighted aggregation operators and score of hesitant triangular neutrosophic numbers, we
develop a multi attribute decision making (MADM) approach, in which the evaluation values of alternatives on the attribute
are represented in terms of hesitant triangular neutrosophic numbers and the alternatives are ranked according to the values of
the score of hesitant triangular neutrosophic numbers to select the most desirable one. Finally, we give a practical example,
including a comparision study with the other existing method, for enterprise resource planning system selection to verify the
application and effectiveness of the proposed method.

Keywords: Neutrosophic sets, hesitant triangular neutrosophic numbers, aggregation operators, score value, decision
making.

1. INTRODUCTION

In our real life, most of the mathematical problems do not contain exact or complete information about the
given mathematicalmodeling. Therefore, fuzzy set theory by introduced Zadeh [01] is a proper tool to process
inexact information because it allows the partial belongings of an element in a set with a membership function.
Atanassov [02] generalized fuzzy sets to intuitionistic fuzzy sets by adding a non-membership function to
overcome problems that contain incomplete information. In case of fuzzy sets and intuitionistic fuzzy sets, the
membership (or non-membership) value of an element in a set is a unique value in the closed interval [0, 1]. But
since 2009, researchers begin to investigate, what if the membership (non-membership) value of an element in a
set is a discrete finite subset of [0, 1]. In order to tackle this situation, Torra [03] proposed the concept of a
hesitant fuzzy set, which as an extension of a fuzzy set arises from our hesitation among a few different values
lying between the number 0 and 1. Thus the hesitant fuzzy set can more accurately reflect the people’s hesitancy
in stating their preferences over objectives compared to the fuzzy set and its classical extensions. Beg and Rashid
[04] introduced the concept of intuitionistic hesitant fuzzy sets by merging the concept of intuitionistic fuzzy sets
and hesitant fuzzy sets.Various researchers have analyzed the decision making problems under fuzzy, hesitant
fuzzy, intuitionistic fuzzy and intuitionistic hesitant fuzzy environment in Li [05], Ye [06], Xia and Xu [07], Xu
and Xia [08], Wei et al. [09], Xu and Xia [10], Xu and Xia [11], Xu and Zhang [12], Chen et al. [13], Qian et al.
[14], Yu [15], Yu [16], Ye [17], Shi et al. [18], Pathinathan and Johnson [19], Joshi and Kumar [20], Liu [21],
Nehi [22], Zhang [23], Chen and Huang [24], Yang et al. [25], Lan et al. [26] and Zhang et al. [27].

Although intuitionistic fuzzy sets naturally include hesitancy degree to handle uncertain information, it cannot
manage indeterminate information properly because it is dependent on memebership and non-membership
degrees. To handle this situation, Smarandache [28] introduced the neutrosophic set which is basically a
powerful general formal framework that generalizes the concept of the classical set, fuzzy set, intuitionistic fuzzy
set. A neutrosophic set is characterized explicitly by truth-membership function, indeterminacy-membership
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function and falsity membership function and it has applications on image segmentation in Gou and Cheng [29],
Gou and Sensur [30], on clustering analysis in Karaaslan [31], on medical diagnosis problem in Ansari et al. [32]
etc.The neutrosophic set theory have also studied in Wang et al. [33], Wang et al. [34], Gou et al. [35], Ye [36],
Sun et al. [37], Ye [38] and Abdel Basset et al. [39]. The neutrosophic set cannot represent uncertain, imprecise,
incomplete and inconsistent information with a few different values assigned by truth-membership degree,
indeterminacy-membership degree and falsity-membership degree due to doubts of decision maker. In such a
situation, all the decision making algorithms based on neutrosophic sets are difficult to use for such a decision
making problem with three kinds of hesitancy information that exists in the real world. To overcome this
situation, Ye [40] introduced the concept of hesitant neutrosophic sets which is characterized by three
membership degrees, namely-truth membership degrees, indeterminacy membership degrees and falsity
membership degrees which is a few different values lying between the number 0 and 1.

Aggregation operators play a vital role in many fields such as decision making, supply chain, personnel
evaluation and financial investment to solve multi-criteria group decision making problems. A series of
aggregation operatorsin Xia et al. [41], Wang et al. [42], Zhao et al. [43], and Peng [44] were developed based
on fuzzy and hesitant fuzzy information and those were applied in solving decision-making problems. Xu [45],
Wan and Dong [46], Wan et al. [47] and Xu and Yager [48] presented an averaging and geometric aggregation
operators for aggregating the different intuitionistic fuzzy sets based information. Wang and Liu [49] proposed
some Einstein weighted geometric operators for intuitionistic fuzzy sets. Liu et al. [50] proposed some
generalized neutrosophic number Hamacher aggregation operators. Liu and Wang [51] defined few neutrosophic
normalized, weighted Bonferroni mean operators.Chen and Ye [52] used single-valued neutrosophic dombi
weighted aggregation operators for solving a multiple attribute decision-making problem. Some more
aggregation operators on neutrosophic environment can be found in Zhao et al. [53], Liu and Shi [54] and Liu
and Tang [55].

Since Smarandache put forward the concept of neutrosophic sets, the neutrosophic number is given by Subas
[56] subsequently, and it has been made much deeper by many authors in Abdel-Basset [57]. As a special
neutrosophic number,Subas gave two special forms of single valued neutrosophic numbers such as single valued
trapezoidal neutrosophic numbers and single valued triangular neutrosophic numbers on the real number set R.
Now the theory of neutrosphic number has become the fundamental of neutrosophic decision making. For
example; Deli and Subas [58] introduced the concepts of cut sets of neutrosophic numbers and also they applied
to single valued trapezoidal neutrosophic numbers and triangular neutrosophic numbers. Finally they presented a
ranking method by defining the values and ambiguities ofneutrosophic numbers. Also, by using the value and
ambiguity index, Biswas et al. [59] presented a multi-attribute decision making method. Broumi et al. [60] gave
an application shortest path problem under triangular fuzzy neutrosophic numbers. Deli and Subas [61]
developed an approach to handle multicriteriadecision making problems under the single valued triangular
neutrosophic numbers. Also, they presented some new geometric operators including weighted geometric
operator, ordered weighted geometric operator and ordered hybrid weighted geometric operator. Ye [62],
Biswas et al. [63] and Deli [64] proposed some weighted arithmetic operators and weighted geometric operators
to present some multi attribute decision making methods. Karaaslan [65] introduced Gaussiansingle valued
neutrosophic numbers and applied to a multi attribute decision making. Oztiirk [66] and Deli and Oztiirk [67, 68]
initiated concept of distance measure based on cut sets, magnitude function, 1. and 2. centroid point and 1. and 2.
score function. Deli [69] defined concept of centroid point based on single valued trapezoidal neutrosophic
numbers and examine several useful properties. Also, he developed hamming ranking value and Euclidean
ranking value of single valued trapezoidal neutrosophic numbers. Chakraborty et al. [70] presented a decision
making method by introducing different forms of triangular neutrosophic numbers including de-
neutrosophication techniques. Fan et al. [71] defined linguistic neutrosophic number Einstein sum, linguistic
neutrosophic number Einstein product, and linguistic neutrosophic number Einstein exponentiation operations
based on the Einstein operation and used them to develop some MADM problems. Garg and Nancy [72]
introduced some linguistic single valued neutrosophic power aggregation operators and presented their
applications to group decision making process. Zhao et al. [73] developed induced choquet integral aggregation
operators with single valued neutrosophic uncertain linguistic numbers. Recently, Deli and Karaaslan [74]
defined generalized trapezoidal hesitant fuzzy numbers and Deli [75] presented a TOPSIS method formulti-
criteria decision making problems by using the numbers. Some more trapezoidal/triangular hesitant fuzzy
numbers can be found in Zhang et al. [76] and Ye [77].

Motivated by the idea of triangular neutrosophic number, hesitant neutrosophic set and aggregation operators,
the aim of this present article is:

(1) To present the idea of hesitant triangular neutrosophic numbers.

(2) To define few operations between hesitant triangular neutrosophic numbers and study their basic
properties.
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(3) To develop a few weighted aggregation operators such as hesitant triangular neutrosophic weighted
arithmetic aggregation operator of type-1, hesitant triangular neutrosophic weighted arithmetic aggregation
operator of type-2, hesitant triangular neutrosophic weighted geometric aggregation operator of type-1 and
hesitant triangular neutrosophic weighted geometric aggregation operator of type-2.

(4) To propose a decision making method based on the hesitant triangular neutrosophic weighted
aggregation operators to handle multicriteria decision making problems with hesitant triangular neutrosophic
information.

To do so, the rest of the article is arranged as follows:

In section 2, we review some basic concepts. In Section 3, we propose hesitant triangular neutrosophic number
and illustrate it with an example. Also, we discuss various types of operations between them including some
properties. In section 4, we propose various types of hesitant triangular neutrosophic weighted aggregation
operators to aggregate the hesitant triangular neutrosophic information. Furthermore, we introduce the score of a
hesitant triangular neutrosophic number to ranking the hesitant triangular neutrosophic numbers. In section 5,
based on the hesitant triangular neutrosophic weighted aggregation operators and score of hesitant triangular
neutrosophic numbers, we develop a multi attribute decision making approach, in which the evaluation values of
alternatives on the attribute are represented in terms of hesitant triangular neutrosophic numbers and the
alternatives are ranked according to the values of the score of hesitant triangular neutrosophic numbers to select
the best (most desirable) one. Also, we present a practical example for enterprise resource planning system
selection to demonstrate the application and effectiveness of the proposed method. Section 6 is devoted for
comparative study. In final section, we present the conclusion of the study.

2. PRELIMINARIES:

A neutrosophic set is a part of neutrosophy which studies the origin, nature and scope of neutralities as well as
their interactions with different ideational spectra and is a powerful general formal framework that generalizes
the traditional mathematical tools such as fuzzy sets and intuitionistic fuzzy sets.

Definition 1: [34] A single-valued neutrosophic set A on universe set E is given by
A={{x Ty(x),1,(x), Fa(x)):x € E}

where Ty: E = [0,1], I,:E - [0,1], and F4: E — [0,1] satisfy the condition 0 < T, (x) + [, (X) + F, (x) < 3, for
every x € E. The functions T,, I, and F, define the degree of truth-membership function, indeterminacy-
membership function and falsity-membership function, respectively.

Definition 2: [52] A = {{x, T, (x), [, (%), FA(x)): x € E}and B = {{x, Tz (%), I3 (x), F5 (X)): x € E} be two single-
valued neutrosophic sets and A # 0. Then,

1. A+B={<x,1- L L

10

1+{ Ta(X) ]p{ Ts (%) j”}" 1+{[1—|A(x)J”+[1—|B(x)J”}P
1-Ta(¥) 1-Tg (%) 1A (X) I (X)

1

> x e E}

1

1+{1— FA(x)J" {1— FB(x)J”}"
Fa() Fa(9)
2. AxB ={< x, 1 1- !

fos L]l )
Ta(x) Ty (%) 1-1,(x) 1-1,(x)
1- ! > x e E}

1

1+{{ Fu() j{ Fa () ]}
1-F.0) IR
3. AA={Xx1- L , L , L > X e E}

1+{2[TA(X) Jp}p 1+{&[1_|A(X)Jp}p 1+{l{1_FA(X)jp}p
1-T,(x) 1a(X) Fa(x)

o+
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4. A ={<x, 1 J1- L ,1- 1 >:x € E}

1
1-T,0) | | ' F.0) Y
1+ ,1{ A(X)J 1+ ,1[ 2 ] 1+ ,1[ 209 J
T, (x) 1-1,(x) 1-F,(x)
By combining single-valued neutrosophic sets and hesitant fuzzy sets, Ye (2015a) introduced the single-
valued neutrosophic hesitant fuzzy set as a further generalization of the concepts of fuzzy set, intuitionistic fuzzy
set, single-valued neutrosophic set. He also developed single-valued neutrosophic hesitant fuzzy weighted

averaging operator and single-valued neutrosophic hesitant fuzzy weighted geometric operator and applied them
to solve a multiple-attribute decision- making problem.

o=
o |-

Definition 3: [40] A hesitant neutrosophicset on universe set E is given by
N= {(X, TN, Iy (x), Fy(x):x € E}

in whichTy (x), Iy (x) and Fy(x)are three sets of some values in [0,1], denoting the possible truth-membership
hesitant degrees, indeterminacy-membership hesitant degrees, and falsity-membership hesitant degrees of the
element x € E to the set N, respectively, with the conditions 0 <& ,y ,qn <1land 0 <& +y"+n" <3,
where

s€e TN (X)' Y€ TN (X)’T] € F:‘N (X)' 5+ € TI;I'—(X) =U S€TN () max{&},y+ €

IR (%) = Uyery o maxify}, andn* € F{(x) = U, o maxifh } forx €E.

For N; = {(x, Ty, (®), Iy, ®),Fy,(®)):x € E}and N, = {(x, Ty, (%), Iy, (%), Fy,(x)):x € E} be two hesitant
neutrosophicsets and A # 0. Then,

LN, ®N, ={xT, )&T, X1, &I, (X),F, )®F, (X)>xeX}
= U {<xdo, +0, —6,.0, 1 {n 1.1 dmm} > x e X}

5161:N1 (x),0, Esz (X)‘71€|~N1 (X)vf/zErNZ (X),r]lelle (X)i712 E'ENZ (x)
2.N, ®N, ={<x, T, (®T, (x), T, (@I (x),F, ()®F, (x)>xeX}
= U {x A8 8 0n+ v, —rer 3 +m, —mm} > xe X3

51€le (x).6, Esz (X)ne fml (X).72 EI.NZ (X)vﬂlelle (X)i712 E'ENZ (x)

3. AN, = U X L--6) " 107 1 3> xe XHA > 0)
@Efwl (X),ylele (X)vihE'ENl ()
4N/ = U x0T - 0-7) 1 - (-7)"}> xe XA >0)

8efy, (0. ely (Omefyy ()
Definition 4: [56] Let & <b <C, such that &,b,C,€R. A triangular neutrosophic number
A= ((a,,by, Cl);WA,uA, yA> is a special neutrosophic set on the real number set R, whose truth-membership
function g; 1R — [O,WA] ,  indeterminacy-membership function  v;:R — [UA,lj and falsity-

membership function ),A ‘R—> [yA,1] are given as follows;

(2w b - x-+u (x-a,)
—_—f, <x< —F———=, & <x<b
boa ' 2TXH b -2,
R e | x=b+u; (¢, —x) e
,UA(X)— G b ., b <x<g ) VA(X)— - G b, , b<x<c
0, otherwise 1, otherwise
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bl—x+yl\(x—a1), 8 <x<h
b —a
x—b +y;(c,—x)
A (X) = A , b <x<g
5 (X) cb, b <x<c
1, otherwise

Since triangular neutrosophic numbers ([56], [58]) is a special case of trapozidial neutrosophic numbers
(Ye 2017), operations of trapozidial neutrosophic numbers (Ye 2015b, 2017) based on algebraic sum and
algebraic product for triangular neutrosophic numbers can be given as;

If A= ((a. by, c,);w;,u;, y,)and B= ((az,bz,cz);wé,ué,yé> be two triangular neutrosophic numbers
and y # 0, then we have

1 A+B=((a +a,b +b,,C +C, );W; +Ws —W; Wy, Us Ug, Y;.Ys)

2. AB= <(a1a2’b1b2’clcz);WA'Wé’uA TUg —UzUg: Ya+Y¥s — yA'yB>

3. A= (ra, 7b, 7)1~ - wy)* uz, v

4. A =((a’b* ¢t )iw 1-1-u)" 1-A-y,)"

Definition 5: [56] Let A= ((a, b, c);WA, us, yA> be atriangular neutrosophic number. Then,score function of
A, is denoted by Sy(A), is defined as:

SY(A)— [a+b+c]x(2+pu;—vi—vz)
Definition 6: [61] LetA = ((a],bJ,cj,) Wi, Ui, V&, y(G =1,2,...,n) be a collection of triangular neutrosophic

numbers. Then,

1. Triangular neutrosophic weighted arithmetic operatoris defined as;
n

NaO (Kl,gz, ...,Kn) = Z W]K]

2. Triangular neutrosophic weighted geometric operatoris defined as;
n
Ngo (B0 Ko, B = [ [
j=1

where, w = (wy, W, ...,w,)T is a weight vector associated with the N,, or Ny, operator, for every j(j =
1,2,..,n) and w; € [0,1]with}_; w; = 1.

3. HESITANT TRIANGULAR NEUTROSOPHIC NUMBERS:

In this section, the concept of a hesitant triangular neutrosophic number is presented on the basis of the
combination of triangular neutrosophic numbers and hesitant fuzzy sets as a further generalization of the concep
ttriangular neutrosophic numbers. A hesitant triangular neutrosophic number is a special hesitant neutrosophic
set on the real number R, whose truth-membership function, indeterminacy-membership function and falsity-
membership function are expressed by several possible functions.

Definition 7. Let @ <b<c such that a,b,c;eR,  w e[0l(iel,={L2..,m}),

u, ef0Gel, ={,2,...nYand y. €[0,1(i €1, ={L,2,...,k}). A hesitant triangular neutrosophic
number & =< (a;,b,c));{W; :iel,} {ug{ cjel 3yl 1€l }>is a special hesitant neutrosophic set on the
real number R, whose truth-membership functions /™ :R —>[0 W, ](i el ), indeterminacy-membership

function ;™ :R—[0,u}]|(jel,) and falsity-membership function &;™ :R—[0,y,](Iel,) are given as
follows;
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U {M}' 31§X<b1

{oracfwlicly}} b —a
L;TRI _ {oiae{Wi:iel,}}, x=b

U {M}, bl <x<g
{a:ae{wia:ielm}} G — bl

{0}, otherwise

F

{W}, a<x<lb
{H:UG{Ué{ijan}} bl 4
WTRI {B:8e{ul:je}}, x=b
Ya =

Pl e C k) Y
{3:8<{ud:jeln}} ah
{8}, otherwise

{W}, & <X < b_l.
paepylien g b —a
SHTRI _ Pixefyhilendy, x=b
HTRI
{w}, bl <x<g
paeylien g ¢ —b
{1}, otherwise

Example 8. 8=<(1,2,5);{0.8,0.9},{0.4,0.5,0.6},{0.4} > is a hesitant triangular neutrosophic number whose

truth membership function, indeterminacy membership function and falsity membership functionare given
respectively by:

{0'8(";012069;;_1)}' 12§X<2 L6-06x}, 1<x<2
8,09}, x=
=1 5-x) L o6-%) , Ry =) 04 x=2

{0.8 3 ,0.9 3 }, 2<x<5 {0.2x}, 2<x<3

{0}, otherwise {1}, otherwise
{L.6—0.6x,1.5—-0.5%,1.4—0.4x}, 1<x<2
{0.4,05,0.6}, x=2
HTRI .y _
Ya o (0= {0.6x’0.5x+0.5’0.4x—|-l}, 2 <x<5
3 3 3
{3}, otherwise

4. OPERATIONS ON HESITANT TRIANGULAR NEUTROSOPHIC NUMBERS:

In this section, we introduce various operations between hesitant triangular neutrosophic numbers and
demonstrate their basic properties.

Definition 9. Let & =< (a,, by, ¢,)i{w} :i € 1, }ul s je 1, 1 {ys:1 €1, }>and
b=< (az,bz,cz);{w:5 e Imz},{ug (je Inz},{yk'; 1€ 1y,}> be two hesitant triangular neutrosophic numbers
and o >0, then
L AG'D=<(a +ayb +b,,¢ +¢)ifoy + 0, —oqay 10y €W ti € I b €W, ti €1, 33,
8.8, B eful el b8 efu) tiel, g iy edyble b ey il €l 13>
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2.a®'b =< (aa,,bb,,c,c,) oy, sy €W i€ L b0y €4W5 i € 10, 3348+ 8, — B3, -
Bre{uliel, b eful iiel, B Dt~ i efys il €l b efyy €13 >
3.0 d=<(0a,0b,00){l—(1—a)” rae{w;:ic 1, 31{87 :Beful  je 1, 3\ Ayl e 33>

4. oxd=<@ b’ c"){o” :aefwicl, 3 {-1-0):Befuljel, 3
LN :Nefy):le 33>
Theorem 10. Let & =< (a,by,¢):{w} si € 1, J{ul 1 je 1, 3 {yh 1€l 3>,
b=<(a,.b,,¢,):{W, i € 1, 1{ul - jel, H{ys 1€ 1, }>and
C =< (ag, by, Co)ifwi sie 1, h{ul s je Ins},{y('§ 11 €1, }> be three hesitant triangular neutrosophic numbers

and o0,0,,0, >0, then

1. as'b=be'a 5 00 (Ad'b)=(c0'a)a (c@'b)
2.a@’b=b®’a 6. 0%’ (A®'b)=(0+'8)®' (0 +'b)
3. aa/ba’'c)=(aa'b)a/c 7. o' (AQ'D)=(0+'&)® (0 +'b)
4.4 be'¢)=(@x'b)x'¢ 8. (0,+0)* a= (0, A)®' (0,+' &)

Proof:1-2 straight forward.
3.8 (DB C) =< (a.by,C)iWy Us, s > B < @, +8g,by +b3,C, +05 { +0a5 — 05 efwg el
age{W i€ 1, Y1488 By equlrj el b B efud i e 1,3 Pt ey s €1},
Nefye el 3>
=<(a + (@ +ag),by + (b, +15),¢ + (€, +¢3)); {oy + (ap +ag —apas) — oy (@, + g —anag):
o e{wyiie P e G{Wli; el hag e{wtie I, 3351(5,85) - B, eful:je I} 5 G{Ug :
jel,h B eul iel, I 0e)  h efys il el b\ efyp il el b ey el 13>
=<(a +a; +ag,by +0, +05,¢ +C; +C3); {og + ay + a5 — a0 — o, + oz — az0)
o e{w,ie Iy }r o SUHE I, b3 e{wtie I 33A5153,05 2 5y eful:je I}
Bre{uljel, s eful j el W, edyi e L b, efyg il €l
S LIS 3 ®
and
(@' D) &' C=< (a +ay.b; +b,,¢ +C))ifey +ap —yay toy Wl zi € 1y Foap €{Wh tie 1, 3,
38, preful el BB eful i e, B edyk e L by efyp il €13 >
@' < (ag, by, co)i{wg i € 1, 1l 1 j € Ina},{yé el 3>
=<((a, +ap) +a5,(b, +1b,) +b5,(c, +¢3) +C3); {(ey + , — ) + a5 — (g + 8, — 4By
oy €{wy i€ 1}y €{W i€ 1y Foog €{wg i € 1 31A(515,)0 16, €qud - €1, 3.5, €qul -
jel,¥sse{ul i, O N dya e b A eyl €l A eyt €1 33>
=<(8, +a; + a3, +0, +b5,¢, +C; +C3); {og + 0 + o3 — a3 — e, + g —yazag):
ag €Wy ti€ Iy bop €W i€ 1y hagefwy i e 1, 31 88,0,: B efud s j el
Brefulijel hosefuljel A edya el edyg il €l ),
Ao {ye 1€ 13> @)
Hence from eq. 1-2, we have, 4@/ (b @/ €)= (@@’ b) @' ¢ .
4. Proof is similar to 3
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5. 0@ (A®'b) =00 <(a,+ay,b, +by, ¢ +¢,)i{oy + 0, — oy, 10y E{WL i € I o €W, zi €1, 33,
38, B efud el BB equl i e, Do edyble by efy il e, 1>
=< (0(a +3,), (b +1,),0(c; +C,)ifl— (L — (g + 0 —qy))” 1oy {W s € I, 3
ay €W i € 1, Y1A(83,)7 B eud s e 1 1By efu) e 1,3 1AW
Nefyplel b efyglel, 33>
=<(0a +0a,0b +0b,,0¢ +0¢,)ifl—(L—ay)" (L— ;)" 1oy €{Wy i € 1, 1oy €W i €1, 3},
376, Breful el b eful iel, BN A efya il el b eyl el > )
and
(0O &)@ (0 O'b) =< (0a,0b,00){L— A y)” 10, fwl:i I 367 B e{ulje1, 3y,
N edyail el 33>0 < (0a,,00,,00,){L—1—ay) 1o, e{wS i€ 1, 3},
03,7 1B, eul T e 1L, AT\ ey il €1, 1>
=<(0a, +08,0b +0by,0¢ +0¢){l—(1—0y)") + (1~ (1 0p)7) -
(L= (L) )L (L= p)") tey €{ws i € Iy ap €{wy 1T € 1, 13876, B €
fulrjel 1B e{ul el 3N nedyail el b eyl €, 13>
=< (0a + 08,00 +0by,0¢, +0¢,)ifl— (1—y) " (1— )" oy €{wjzi € 1, },
ay ey tie 1, 3488, B edu)iel B eful s j el BN
Nefyilel b eyl > (4)
Hence from eq. 3-4, we have 0 @' (@' b) = (¢ ®' &) &' (c &' b) .
6. Proof is similar to 5
7. (0,+0,) o'a=< (014 02)a, (01 + 0), (01 + 05)0)i{l— (L= )72 1oy W) s € |ml}}’{,3101+02 :
Brefultjel, BT 2 o efys e 3>
=<(093 + 08, 01Dy + 00y, 01¢; +0,C) L — (L — ) (L — )2 1oy € Wg},
{6767 prefud i e 1, AN A2y edyg il €, 33> ()
And
(0 o) a) @' (o, o} ) =< (01, 01,070 )i fL — (L— ) 1oy €{wy s € (3 2 e eful:je I3}
Prinedyitle 1 33> 8 <(0g8y,050,056) {1~ (L— )2 1oy e{wy:
icly {8720 efudrje N2 i efya il € 13>
=<(098 + 08,010y + 0y, 016 + 056 )i {1 — L= y) ) + - (L—y)?2) —
11— A=) - )72):0q e{wy:i€ |ml}}’{51015102 pefudije I3}
PN N edys el 3>
=< (093 + 098,010y + 05y, 09C) + 0C ) {L— (L= ) (L— )72 Ly € Wa},
672 p efud e 1, AN N2 edyg il €1 1) (6)
Hencefrom eq. 5-6, we have (0, +0,) ®'a=(0, ®' d) &' (0, @’ ).
8. Proof is similar to 7
Definition 11. Letd =< (a, by, c)){w} sie I, }{ul:jel, 3 {yi:1 €l }> and
b=< (az,bz,cz);{wé e Imz},{uﬁj (je Inz},{yk'; e Ik2}> be two hesitant triangular neutrosophic numbers

and o >0, then
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1. 83" b =< (a +ayby +by,c, +¢,):{l— 1

2 , 22
(0%
1+ +]—2
[1022]

roefuliel, hoefuljely 3y

0412

2
17041

c 1

2 212
1- 32 1/322]
1+ +
{ 312 22
1
{ s elyailel b efy el B3>
2 2]2
1-\? 1-)°
1 1 2
2. 8®"b =< (aa,,bb,,c,):{ L oy e{wy i€l hay efw il 3},
2 2 2 2 E
st
oy @y
1 . .
{1_ 1 :ﬂle{ua"{:JEIru}rﬂZ e{ué:JEInz}}n
2 212
B 2%
- [1_ﬂ12] +[1_522
1
a- Sy efyhlel B eyl el 1>
2 2]2
A A
H{w] e,
3. 0 ®"a=<(0ay,0by,00);{1— 1 i €{wh i€ 1, 1R 1
0[2 2|2 1_52 2]2
1+40 ot 1+40 52 ]
1 oeplienns
1- 2 ?
1+40 2 J
4, ox"a=<(a’,b,¢){ !

T roy €{wyti€ 1, 3L !

1
212 212
1_ 2 2
1+|O’ aza ] J 1+|a 1ﬁ52] }
1

Fyevkilel
2|2
)\2
1+|o 1)\2] ]

Theorem 12. Leta =< (ay, b, ¢ );{W, @i e Iml},{ug{ ije Inl},{yz';1 el }>,
b=<(a5.b,,,):{W, i € 1, {ul - jel, Hys 1€ 1, }>and

-

C=< (a3,b3,c3);{wi~ e Ims},{ucj rje Ins},{yé e Ik3}> be three hesitant triangular neutrosophic numbers

and o,0,,0, >0, then
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1.40"b=ba"a

2.a0"b=bhw"a

3. é@” (6@// (~2) — (a@// 6) @//C

4. <'§.®” (6 ®// &)= (é_@” 6) ®//(~:

5. U®// (é@" 6) — (0 ®// 5) @” (U ®// 6)
6.0+" (A®"b)= (0" &) ®" (o +"b)
7.(0,40,)0"a=(0,0"8) D" (0,0" )
8. (0, +0,) %" a= (0, %" @) ®" (0, +" &)

Proof:1.-2. Straight forward.
3.4 ba"¢)

=< (a,brc){wh i € 1 1ul s je 1, 1Ay 1€ 1, 3> D" < (a, +agb, +byc, +oy);

1-

1
2
+

azz

2
a3

2 2
1—CY2 )

1

1_CY3

{H[

=< (a3 + (8, +a3),b, + (b, +13),¢, + (¢, +3));

2]2
B,

{

N =

2 1/22
+2%

B

1- 8,2
B3y

1

N

2
2
1-)g
A’

2
1- )2
22

T G{Wli; el bhag e{w:ie [ 3 9

efulijel, hoefuljel, 3y

Ne{yp el b e{y el 1>
2 3

1
{1-
2|2
1
1- 1
2 2 212
o «
1_|_ 2 3
a? 2 1*@22 17a32
I+{|—L5| +
1—01
1
1-]1— T
, V2 23
(67 QL
1+{|—2—| +|—
|1—a22] [1_“32] }

riogefwticl, ha, e{wyiiel, hagefwiel, 13,
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1 . . -
{ Tihefultiel, o e{ul el b o e{ud el 3
1 2|2
1= 1
2 2 2 212
)
[1ﬂ12]2 ﬂz ﬂ3
1+ +
By 1 .
L2 2 52 2]12
e
B, B3
1
{ T edyiilel b edyp el b efye el 3>
1 2|2
1= 1
2 2 2 212
|
1 {1/\12] n A2 A3
+ 2
& 1
22 (14 2)%]2
el
A g
1
=<(a+a, +agb +b,+bs,c, +c, +¢5); {1— T
2 2 2 2 a2 212
(@7 (6%
1 1 2 3
- [1012 +[la22] * 1a32]
ag e{wyii€ly, by eqw, i€l bagefwticl, 3}
1 . . .
{ Tioe{uiel, o, e{uljel, )y ge{udjel 3
)2 22 2\2]2
- [1@] I S I
B B,° B4
1
{ sinefyile b efyp el s efye il el 1>
1222 (1-02)  (1-22T )
1+ _l]+[_2 + 3]
[ )\12 /\22 )\32
(5.69”6)69”6

=<(a +a,b +b,,c +¢){l—

1 [ il
Tioge{witi€ly ha, efwytiel 3}

2 212
o ay?
44— 2
{ 17(112 * 17a22

c 1
1- 32 2 (- 3,7
1 + -
g 5,2 ]
1

T pefuljel, Lo e{u)jel 3

N e{yhileh b efyh el 33>®" < @bscs el Ye >

NI

™
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=<((a +ay) +ag, (b +b,) +by, (¢, +¢,) +¢3);

1 P P P
{1— Ty efwiiicl b, efwgiiely hage{wsticly 3}
2]2
1
1- 1
2 2]2
2 2
T2 |22
I 2 [l—alz 1—022
1+ [ 8 2] +
1703
1
1-|1- .
2 2 22
1+ -] 4|22
170112 17a22

{ 1 pimellien et metl e,
1 2|2
1= T
2 2
| e 2
2 BZ ,6 2
1-35° 1 2
b5 1
1
2 212
T (' el
B B3,°
1
{ S edyale I efyp el b edye € 3>
2)2
1
1- 1
2 2|2
Lol (=22
2 2 + /\12 + Y 2
1- ) 2
1+[ 2 ] " !

1+

1
2 212
1-M? N 1- )72
M 22

=<(ay+a,+agb +b, +bs,c ¢, +¢5); {1 — 1

o efwgiel,

2 2 2 2|2
(e% [e% [e%
1 3 1 2
+ll—a32] +[1—alz] 1—a22 ]
ay €{ws i€ 1y hage{wi i€ 1, JH L T
1-52) (1-82)  (1-82]|
ol ] )
Bs By By
prefuliel o eful jel b eful el 1 ! T
1-x2) 1)\122 1321 |
1 — 3 — 2
i A32]+[ /\12]+[ A22]
Mefyple el lel b efyeilel 33> ®)

Hence from eq. 7-8, we have, 4" (b & €) = (A" b)p" € .
4. Proof is similar to 3.
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5. 00" (@a"b)

:OG)”<(a1+a2,bl+b2,c1+c2);{1— 1

2 212
CMZ Ozz
It ] 2
[1—012] [1-&22]}

1 P i
{ T e{uiel, Lo efultiel, 3

1-62) (1-s2) |
144|725 | +|—57

{ Ch By ]

1
{ Tivefyailel by edypilel 13>
2 2 2 212

[kAl 1- X, ]

1+ 2 2
)‘l >‘2

=<(0a +0a,,0b +0b,,0¢, +0¢,);{1— L

1 o e{wie [ e e{wli; feln b

oy e{wyiiel,
22

1
1= T
2 2 2|2
- )
1+40 1
1
(a7 i a2 ? 2
Q Qr
ay e{ws i€l 3},
1 . Do
{ Tl efuljel, hoe{uljel 3}
22
1
1- 1
2 2)2
. 1—,312] [1—,322] 2
2 2
By By
1+4o 1
1
2 2132
1- 52 1-8,°
g ]
By B,
1
{ mnefyhilel b {1 € 3>
2)2
1
1= T
2 2|2
1-)2 1-\2
1+[ 2 + /\22
1 2
1+40 1
1
2)2
1- )2 1-)7
|| |7
A A2
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1

=< (08 +0a,,0b, +0b,,0¢, +0¢,);{l— Tl e{wyiiel,
2 )2 , )2
1+{o]| - 2] +[ %2 2]]
l-o l-a,
P 1 P P
ap e{wy el I A O AP IS (R S P
1- ﬁl ] [1 B, ] ]
1
{ 7" X\ €{yh |€|k1}/\z€{yb lel,}}>
1-02F (1-22)2
1+10 ?1 + 22
/\l )‘2
1
=<(0a, +0a,,0b +0b,,0¢, +0¢,);{l— T
2 2)2
1 1
1- 1 1- 1
2 2|2 2 2|2
el ) oy
l-o l1-a,
1+ 1 + 1
1 1
213 » )2
1+40 0512] 1+]o| 22 2]
- l-a,
il il 1
ale{wazleIml},aze{wﬁzlelmz}},{ T
2 212
1 1
1- 1 1- 1
222 2)\2]2
1+40 l—fl ] 1+i0 1_62 ]
By Ba
1+ 1 + 1
1 1
2\2 |2 2
1o 11 {o 12 ]
/31 ﬁz
Bre{uiijel, ho eyl jel, B T-
2 212
1 1
1- 1 1- 1
2\2|2 222
1+io 1_’2\1 ] 1410 1_’:2 ]
. A A2
+ 1 + 1
1 1
2\2|2 2\2|2
1+yo 1_21 ] 1+i0 1_22 ]
A A2
Nefyhilel b efyy el 33>
1 P 1 P
=< (oay,ob,0¢);{l— T e{wy il W —————1:6e{ui:jel, 3}

212
2
Qv
11al?] ] 1+|
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{%:Ai e{yi:lel 3> 0" < oay,0by,00, {Ll- 1 oo e{wg i€ 1, 3,
1-)2 2]2 0.2 2|2
1+ a[ % ] 1+40 17222
1 . i 1 ) .
{ T3 e{uijel, g TNyl el 3>
15,2\ |? 122
— B —N
1+ 0[ ,822 ] 1+[0 )\22 ] J
:(UQI,Q)EB”(UQ”B)
6. Proof is similar to 5
7. (0,+0,)0"a
1 P
=<((oq +0y)a, (07 +0,)b, (07 +0,)c)i{l— T g E{wy i€l 3}
2 2
o
14+4(o + 1
(al 02)[1—0112
{ TAefuzjel g T M Ee{yalel}
212 212
1- 52 1-)?
1+ (01+02)[ ! ] 1+ (01+02)[
B2 N’
=<((01 +0)a, (01 +0,)by, (07 +0,)Cy);
1 -
{1- i:ale{wé e Iml}},
1 2 1 2|2
1- 1 1- 1
o2 2]2 o2 2]2
1440y 1_1%2] 1410, 1_1%2]
1+ 1 + 1
1 1
2 2|2 2 2|2
1+40¢ | 5 1+40, | 5
l-og l-og
1 ) i
{ 1-/316{Ua-16|nl}},
1 2 1 2|2
- 1 - 1
2)2 |2 2)2 ]2
1410y 1751 ] 1410, 1751 ]
By By
1+ 1 + 1
1 1
2\2]2 2\2]|2
1+10, 1_51 ] 1+10, 1_51 ]
By By
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{ 1 Ty e{ypilel 3>
2 212
1— ! - 1— ! .
2\2|2 2\2|2
1{ L } HHI = ]
1+ 1 + 1
1 1
1-\2 212 1-)\2 212
1+|Ul = ] 1{ e ]
. 1 . i 1 . i
=<(018,09P,0:C,); {1 — T e{wgriely 3 T A e{usjely 3
, 2|2 ﬁ 2|2
1+10y| 2] 1+ 01 1 ]
—al 1
1 . I " ) 1
{ T M E{ya el }33>D <(0281,05b,05¢);{1—- 1
222 2 2|2
1470 1_);1 ] 1440, = 5
A 1o
i 1 . i 1 . I
oq €W i€ 1 11 { CiA el jel, B ek ilel 3>
2)2 2
1—|—021ﬁ1] 1+10, )\)\21]
1 1
:(O_l ®// é.)@// (0_2 ®/I é.)

8. Proof is similar to 7.

5. HESITANT TRIANGULAR NEUTROSOPHIC WEIGHTED AGGREGATION OPERATORS:

This section deals with various types of hesitant triangular neutrosophic weighted aggregation operators along
with their basic properties.

Definition 13: Let &; =< (a;, J,cj);{ng ey hug, :relnj},{yi'ij el 3> (=1 2, 3y ) be a

collection of hesitant triangular neutrosophic numbers. Then the hesitant triangular neutrosophic weighted
arithmetic aggregation operator of type-1 (HTNWAAQ;, for short) is defined as:

HTNWAAO, 4,8,48;,.....8, =W O a)a' (W, ©'&)a (WO &) e ......a" (w, ©@'a,)

n
where W; is the weight of aj (G=1,2,3,...... , n) such that W, >0 and ZW]- =1.
j=1
Theorem 14: Let & =<(a;, J,cj);{wiij ey hug, :relnj},{y;j el > (=1 2, 3., ) be a

collection of hesitant triangularneutrosophic numbers. Then HTNWAAQO; &,8,,8;,.....,&, is a hesitant
triangular neutrosophic number and

n n n n _
HTNWAAO, (4,.4,.5;,......8,) =< > _w;a;,> w;b;, > w;c). & [[A—ay) ™ :
j=1 j=1 j=1 j=1

aj e{w, e |mj}},{]‘[5jmwi 8 e{ug, ire |nj}},{]‘[/\jrwi DA edyy, el 3>
i=1 i=1
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n
where W; is the weight of &; (j=1,2,3,.......n) such that W; >0 and » "W; =1.
=1
Proof: Let wus prove the result using the method of mathematical induction. For n=2,

HTNWAO, (4,,4,)

=(w,0'a)e W, 0'a,)

=< (Wyay, Wby, Wiy )ifl— (1— oy )" 1oy {w) sie 1, 31{8™M 13 e{uf r el 3},
" e{yy e L 3> 0 < (Whay, Woby WGy )ifl— (1— ) "2 ta, €W}, si € 1, 3),
{6," 18, efug, tie |nz}}a{>\2w2 ‘A E{yg2 el 3>

=< (W,ay +W,ay, Wby +W,b,, Wie, +WoG,);(1—(L—ay)™) + 1—(1—a;,)"2) -
{l-Q-a)"™)x(-1=,)") ey E{Wjal el b E{W(iiz e |m2}}:{ﬂlwlﬁzwz :
By G{Ugl rely b5, €{U§2 je |nz}}a{)&WU\ZW2 Y G{yzlqll el b e{yli2 el 3>

=< (Wyay + Woay, Wby + Wob, Wi, +Woly)i{l— (1— )™ (1— )" 1oy €qwy si €1, ),
o €W, i€ 1, 1085, B eful ir el 38 €U, i e 1, A"
M EQyy el h ey, el 1>

2 2 2 2 _ _ 2 .
:<(ijaj,ijbj,ijcj);{l—H(l—ozj)WJ a G{W;';j e Imj}},{HﬁjW’ B; e{ugj re Inj}},
=1 =1 =1 j=1 j=1

2
Wi, .
{Hl)\J A e{ya, el B>
J:
Thus the result is true for n=2. Let us assume that the result is true for n=s. Then HTNWAQ, (&,,48,,8,

S S S s ) . s Wi ;
=< (Y ow;ay, > wiby, Y wie)fL-TT(L—a))™ taj efwy tie ly, A8 :6; efug rret, 3
j=1 ji=1 =1 j=1 =t

S -
{HlAjWJ D efyy el B>
J=
Now for n=s+1, we have, HTNWAQ, (4,,&,,8;,....... &)

S S S S ) ) S .
=<Oowa;, >Sowb S wie)t-T]a—a)" : q e{w, tie |mj}},]'[ﬁjwJ {8 efug, rel, 1
=1 =1 j=1 j-1

j=1

IR e{ys, 1€ > Wy O &)
j=1
S S s s ) - s -
:<(;V"Jai';Wibi';chj)’{l—g(l—aj)wj oy efwg tie lm,.}},lljlﬁjwl 5y equl irely I

Ty W) . W1 .
{{11:[1)‘1' Ty G{y!aj el }>e'< @s+1as+1iws+lbs+1lWs+1cs+1 }1_ (- asiy) o

i or W, . r . W, . | .
caelnl, ety YHON A, el rel, BN el et J>
s s s
=< (ijaj + Ws+1as+1vzwjbj +Ws+1bs+1’zchj +Ws+lcs+l);
=1 =1 =1
s s

{a- ]‘[(1faj)Wj Y+1— (10— a(sﬂ))wsﬂ) - 1‘[(17%-)Wj )X~ (L~ agg,q) ") e{w;j el b,
j=1 =1
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age{wy i€ }}{(Hﬁ,wl) Besit 1By efuy irely 16, efup irel, I

s+l s+1 s+1

T Wi Weog . [
{(Hl)\j DA elys lelgha, elys  le L 33>
J:
S S Wiy W, i
. I
=< (ijaj +Werla'erllz:Wj Ws+1bs+llzchj +Ws+1(:s+1) {1 ((H(l aJ) J)asiirl) - O G{Wéj e Imj}v
j=1 j=t =t

P Wj\ oW .
ame{w;~ls+1 e 'msﬂ}}*{(Hﬂj DBt 8y efug crely 1A, e{ug rel, 3
j=1

s+1

Sy Wi\ W,
{(Hl/\j DAGTE E{Yeli]— el b, e{y!iSH el 13>
J:

s+1 S+l s+1 s+1 . . st
:<(ijaj,2wj J,Zw ),{1—H(1—aj)wl:aje{ng mJ}}{HﬁJ Vi edug iret, 3

] =1 j=1

s+1

{H/\ i Dy e{ya el 3>

Thus the result is true for n=s+1 also. Hence by the principle of mathematical induction, the result is true for any
natural number n.

Theorem 15: Let &; =<(a;, J,cj);{wi~1j ey hug, :relnj},{ygj el 3> (=1 2 3., n) be a

collection of hesitant triangular neutrosophic numbers. Then for any hesitant triangular neutrosophic number 0 ,
we have,

() HTNWAAO, 0a'&,,0 &' &8,,0 @/ &;,......0 ' &, =0 HTNWAAO, &,,8,.8;,.......a,

(i) HTNWAAO, 4,4, &,.....d, =0 if & =0 for each j
Proof: Straight Forward.

Definition 16: Let & =<(a;, J,cj);{w;j el Jug, ire Inj},{y{';Ij el 3> (=1 2, 3,y ) be a

collection of hesitant triangular neutrosophic numbers. Then the hesitant triangular neutrosophic weighted
geometric aggregation operator of type-1 (HTNWGAGQ;, for short) is defined as:

HTNWGAO, (&,,8,,8;,.......8,) = (W, *' &) ® (W, ¥’ &) @' (W *' &) ®'....... 0" (W, *' &)

n
where W; is the weight of &; (7=1,2,3,......,n) such that W; >0 and » “W; =1.
=1

Theorem 17: Let & =<(a;, J,cj);{wi~1j el pug ire Inj},{yi~1j el > (71.23....0) be a
collection of hesitant triangularneutrosophic numbers. Then HTNWGAGO;, (&,8,,8;,.---,8,) is a hesitant
triangular neutrosophic number and HTNWGAQ, (&,,8,,4,.......&,)
:<(1£[ajWj ,f[bjwj,ﬁcjwj);ﬁajwj L e{ng lie Imj}},{1—11[(1—6J-)V\'j 8y e{uy ey 3
j=1 j=1 j=1 =1 j=1
;JE[l(l—,\j)Wi A edyy, el 3>
n
where W; is the weight of aj (G=12,3,...... ;n) such that W; >0 and ZW]- =1.
=1
Proof: Similar to the proof of Theorem 14.

Theorem 18: Let &; =<(a;, J,cJ);{w;j el 1ug, :relnj},{ygj el 3> (=1, 2, 3., ) be a

collection of hesitant triangular neutrosophic numbers. Then for any hesitant triangular neutrosophic number g,
we have,
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(i) HTNWGAQC;, &.4,.4&,.....d, =0 if & =0 for each j

Proof: Straight forward .

Definition 19: Let 4 :<(aj,bj,c,.);{w;j el 1ug, :relnj},{ygj el 3> (=1, 2, 3., n) be a
collection of hesitant triangular neutrosophic numbers. Then the hesitant triangular neutrosophic weighted
arithmetic aggregation operator of type-2 is denoted by HTNWAAQG; (&,,8,,8;,.......d,) and is defined by:

HTNWAAQO, (&,8,,8;,......8,) = (W O" &) @ (W, ©" &) 0" (W, ©" &) " ......a" (W, ©" &)

n
where W; is the weight of & (7=1,2,3,......,n) such that W; >0 and ) "Wj =1,
=1

Theorem 20: Let &, :<(aj,bj,cj);{w‘,i;lj el Jug, ire Inj},{y{';Ij el 3> (=1, 2, 3,y ) be a
collection of hesitant triangular neutrosophic numbers. Then HTNWAAQ, (8,8,,8;,.---,8,) is a hesitant
triangular neutrosophic number and HTNWAAQ, (&,,8,,4;,......, a,)

n n n 1 . . 1
=< (Qow;ag, Yy wiby, > wic;)fL- rropedw el e -
I B , 22 )22
N QY n 1— 3
1+ ij J 2 1+ ij 2J
=1 =LA
r 1 |
[a’je{uglj :relnj}},{ 1 :/\je{yéj:lelkj}}>
0, (1-x )P
1+ ZWJ' 2J
1A
n
where W; is the weight of & (7=1,2,3,......,n) such that W; >0 and Zle =1.
J:
Proof:For n=2, we have,
HTNWAAO,, (&,&,)
=(w o4 a)a" (w, o a,)
1 T 1
=< (W;ay, Wiy, WG, )L — Tiog €{wy tie 3 TG e{ug irel, 3
C(Z 2|2 1 /82 212
1+4w, 1 14w |72
! 1—a12] N2 ]
1 1
{ T Yy 1€ 13> 87 < (Whdy, Wob,, WiCy) L — T
17)\12 2|2 o? 2|2
14+iw % ] 141w, 1—25]
P 1 . 1 : I
{op {wg, tiely, 31 { 702 €Ug, 1 TN €{ys, (1€l 3>
1- 32\ |2 1- 22V |2
1+{w, | =12 1+{w,|——22
% a2 ] 2N ]
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=< (W@ + WyBy, Wby +Wob, WG +W,C,);

1 P -
{1- l:ale{wgll:leIml},aze{w;«lz:|elmz}},
2 212
1 1
1- 1-
1 1
2 2|2 2 V2|2
i | |l
14 o N -
1 1
1-1+ T 1-1+ T
o |'|? o |'|?
1+iw 5 1+qw, 5
- —a;
1 . ro. r .
{ 1 .ﬁle{U5l-r€|nl},/@2€{U52.J€|n2}},
2 212
1 1
1— 1—
1 1
2)2]2 2)2]2
1+[w1 ! 351] ] 1+|w2 1552] }
M1 2
1+ + 1
1 1
2 2|2 2 V2|2
1+[W11 Zﬁlm]J 1+{W2 1 fzm]]
lglm 2m
1 . I . I .
{ T M e{ys (e A edya, 1€ 3>
2 212
1 1
1— 1-
1 1
\2)?]2 22
1+ wl1 2)\1 1+ wz1 2/\2
. A A2
+ 1 + 1
1 1
2?2 2?2
1+iw % 1+{w, ! ZAZ
)‘l A2
1 P
=< (W, +W,8,, Wb, +w,b,, W, +w,C,); {1l - o efwy tiel,},
o 2 2 2)2
1+1w, + W,
! 1-of 2 1-a3
P 1 .
o, e{wg, ti €1y, 3 T Brefug crel, 8, efug, tiel, )
1-g2) (1= g2) |
T+{w | ==t | +w,|=—52
B B3
1 : I I
{ T M E{Yy Tel A e{yg, 1€l 3>
) 1
32 Y
1+ \/\/1l 2)‘1 +w21 2)‘2]
Al A
2 2 2 1 . 1
:<(;wjaj,;wjbj,aqu);{l— Tiog e el 3 T
1= 1= 1= 9 a]g 2]2 2 1— Jz 212
1+ ij o2 1+ ij >
=1 & =1 j
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B efug rel, 14 L T e{ys (lel 3>

212
2. (1-)2
=

2
Aj

Thus the result is true for n=2. Let us assume that the result is true for n=s.
Then we have, HTNWAAQ,, (8,,8,,4;,......, &)

S S S 1 . . 1
=<(Qowjay, Y wib;, > wic) {1~ rraj e{wy i€l 3h T
= = =1 212 212
s ]2 s 1— JZ
1+ ij — 1+ ZWJ 4
=1 i j=1 i
) 1
By edug rel, 3he A e{ygj el 3>
s, (1-x2)|2
1+ ij 5
=LA

Now for n=s+1, we have, HTNWAQ, (&,8,,8,...... &)

S S S 1 .
=<(O_w;a;, Y wib;, > wic)ifL- Tioge{wy il 3,
j=1 =1 =1 , 2|2
i
1+ ij 2
=1 |1
1 . ro. 1 . 1.
{ 1 'ﬁjg{uéj 'relnj}}'{ 1 -Ajg{yéj 'Ielkj}}>
212 2|2
s, (1- 2 s, |1=X
1+ ZWJ 21] 1+ ZWJ 2J
=1 Bj j=1 /\J'
1 :
@< o181 W 1Ds 11, We 1Co 1 HL— T %1 E{W%SH e Imm}}*
212
2
«
(s+1)
1+ Ws 1 1 S;
— Qs 41
{ ! 8 eful rel, B4 1 A efyl e B>
2 17 Pen 8541 Nesr 77" 17 Tsn yas+ ’ Ks1
2 2
1- 32 1-\?
1+ Ws 11 zﬂ(HD 1+ Ws 11 2(s+1)
B(erl) (s+1)
=< (W@ + Wody, Wi, + Wby, WG, + W),
1 . (. i
{1_ 2 2 1 .aj E{Waj e Imi}’a5+1€{wﬁs+l e Imerl}}l
1 1 2
1- 1 1- 1
2]2 212
S a? ol 1
1+ ZWJ sz T4 Wy (S;)
[le lfaj 17a(s+1)
1+ +
1-1+ ! i 1-1+ ! 1
S o? 2|2 a? iE
T+{> w | — 14 {wg, (SZD
i1 (1-aj 1=y

Abhijit Saha, Irfan Deli, and Said Broumi, HESITANT Triangular Neutrosophic Numbers and Their Applications

to MADM



Neutrosophic Sets and Systems, Vol. 35, 2020 290

1
{ T e{u~ re Inl_},,(is+1 e{ug1s+1 re I”s+1}}‘
2 2)2
1 1
1- 1 1— T
AP 212
s 1— 32 17,32
1+> W f’] T~ oD
j=1 /31' /6(5+1)
1+ 1 + 1
1 1
237 2)2
s, [1-p2 1- 32
1120w, fj] 1 ey 25(s+1)]
j=1 ﬂj ﬂ(s+1)
1 hefyl el b eqy!
{ 17 Yaj - kA SWa
2 212
1 1
1- 1 1- 1
212 2 2]2
s ]__/\.2 1-)
(s+1)
1+1> w; 2‘] I A ]
j=1 j (s+1)
1+ 1 + 1
1 1
2]2 2 2]2
S /\2 1—)\ 41
1+ ZW ] 11wy %
j=1 (s+1)
el 13>
s+1 s+l s+1 1
=1 =1 =1 s s 2 2 2]2
o X(s41)
L)W a2l T2
= —Q B G
i i
@; e{wéj Hely hagy e{wa~ls+l e Imm}},
1 . r. roo.
{ 2 1 ﬁj e{uéj re Inj}'ﬂ5+1 e{ués+l re Inerl}}l
2
s, 1= ﬁz 1- B
141> W, R
= A Bis+y
! Aefyl el b eyl el B>
{ 17 Yaj - kid s yas+1 ) Kst1
212
s, [1-)2 1-)\
j (s+1)
1+ ij 2 | "Wz
j=1 j (s+1)
s+1 s+1 s+1 1 P i )
—<(ZWjaj.Zij ZW )L T G{Waj e Imj},aS+1 e{waS+1 e Imm}},
—~ 1
! s+l 12 2|2
1+ Wi
-Z Hi- al
1 et i C e 1 .
{ 1 'ﬁj E{Ua]_ re nJ'}'ﬂerl e{ués+l re ns+1}}‘{ 2 1
2
s+l (1— 32 s+l (1 )\2
1+ ZW ﬁ 1+ EWJ’ 21
J j=1 )\i

Ajedys el b, ey el 3>

s+1
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Thus the result is true for n=s+1 also. Hence by the principle of mathematical induction, the result is true for any
natural number n.

Theorem 21: Let & =<(aj,bj,cj);{w§;lj el 1ug, :relnj},{ygj el > (=1 2, 3., n) be a

collection of hesitant triangular neutrosophic numbers. Then for any hesitant triangular neutrosophic number 0 ,
we have,

() HTNWAAO, 04”80 ¢"&,02"4;,.....0 8”8, =0a" HTNWAAO, 4,4,,&,......4,

(i) HTNWAAO, &,.4,.4,,.....d, =0 if & =0 for each j

Proof: Straight forward .

Definition 22: Let 4; :<(aj,bj,cj);{w§;lj el Jug, ire Inj},{ygj el 3> (=1 2 3,y ) be a

collection of hesitant triangular neutrosophic numbers. Then the hesitant triangular neutrosophicweighted
geometric aggregation operator of type-2 is denoted by HTNWGAQ, (&,,8,,8;,......,&,) and is defined by:

HTNWGAGQ,, (8,,8,,8;,......, 8,) = (W ¥ &) " (W, ¥ 8,) " (W *” &) ®” ... " (W, *¥" &,)

n
where W; is the weight of &; (j=1.2,3......., n) such that W; >0 and lej =1.
J:
Theorem 23: Let &, :<(a,-,bj,cj);{w;~1j ey hug, :relnj},{yi';j el 3> (=1 2, 3. ) be a

collection of hesitant triangular neutrosophic numbers. Then HTNWGAQG;, (&,,8,,8;,.....,d,) is a hesitant

triangular neutrosophic number and
HTNWGAQ,, (@,.8,.4,,......d,)

n n n .
=<(Ta;" . T]b;" . T]c;")k 1 Tiaj efw; el - !
e 2)2 ' J 212
1—al2 n 12
1+ W, 1+ W,
B e H"li-e
ro. 1 . I .
B; G{Uaj ‘re Inj}}, {1- T A e{yaj e ij}>
n 22 2|2
4+ w| —
1 (1A
n
where W; is the weight of &; (j=1,2,3,.......n) such that W; >0 and » "W; =1.
=1
Proof: Similar to the proof of Theorem 20.
Theorem 24: Let &, =<(aj,bj,cj);{w§;lj el 1ug, :relnj},{ygj el 3> (=1, 2, 3., ) be a

collection of hesitant triangular neutrosophic numbers. Then for any hesitant triangular neutrosophic number g,
we have,

(i) HTNWGAO,, %" 8,0 =" 8,0 " 8,.....,0 ©" &, =0&" HTNWGAO, &,8,,8;,......4,
(i) HTNWGAO,, 4,.4,.4,......d, =0 if & =0 for each |
Proof: Straight forward .

Definition 25: Let d=< (al,bl,cl);{wg e Im},{ug Tje In},{ygl el }> be a hesitant triangular
neutrosophic number. Then the score of d is defined by:
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N 1 18 1¢ 1
S(a)_3><max{a1,bl,cl}(a1+bl+cl)x 2+aj§“; —;;ﬁ; _E;AJ

Where o e{w;j Heln b0 efug irely B e{y:ij el }

If & =< (aj.bj.c;)i{ws, 11 €l 14 irely 3y (Il }>(1=12) be two hesitant triangular
neutrosophic numbers, then, the comparison method is given as;

I. If S(§,) >S(&,)then & >3,

II. 1fS(4)=S(4,) then & =4,

5. APPLICATION OF HESITANT TRAPEZOIDAL NEUTROSOPHIC NUMBERS:

In this section, we apply the weighted aggregation operators and the score function of hesitant triangular
neutrosophic numbers to the multi-attribute decision-making problem with hesitant triangular neutrosophic
information.

Let X ={A,A,As,....., Ay} be a set of alternatives, A={c;,C,,Cs,.....,C,} be a set of attributes and
w={W, W,,Ws,....., W, } be a set of weights (W; is the weight of attribute C; (j=1,2,3,...... ,n) such that

n
W; >0 and ZWJ- =1.) In this case, the characteristic of the alternative A (i =12,...,m) on attribute
=1
Cj (] =1,2,...,n)is represented by the following form of a hesitant triangular neutrosophic number:
— . p . ro. .
A =< (aij1b|jicij)v{waij TPE }:{Uaij re Inij}1{yéij NS Ikij}>-
Now, we construct a multi-attribute decision making method by the following algorithm:

e ALGORITHM:

Step-1: Express the evaluation results of the expert based on the alternative Aj(i =12,...,m) on attribute
¢ (1,2, ...,n) in terms of hesitant triangular neutrosophic numbers x;; as a mxn Table.

A G
Step-2: Compute the aggregation values giTk i=12,...,m) (k=12) or giTk i=12..,m) (k=12 of
A@{=12,..,m)as;

i = HTNWAAO; (A;, Ay, A) (1=12....m) (k=12)
or

1 — HTNWGAO, (Ay, v An) (1 =1,2,00m) (k =1,2)

A G
Step-3: Calculate the score values of giT" (i=12,...,m) (k=12) or giTk i=12,..,m) (k=12) of
A (i=12,..,m) based on Definition 25.
Step-4: Rank the alternatives by using definition 25.

Example 22:

Let us consider a decision making problem adapted from Wei et al. (2017). Suppose an organisation plans to
implement enterprise resource planning (ERP) system. The first step is to form a project team that consists of
CIO and two senior representatives from user departments. By collecting all possible information about ERP
vendors and systems, project team chooses five potential ERP systems A; (i=1, 2, 3, 4, 5) as candidates. The
company employs some external professional organizations (or experts) to aid this decision making. The project
team selects four attributes to evaluate the alternatives: function and technology c;, strategic fitness c; vendor’s
ability ¢; and vendor’s reputation c,. The five possible ERP systems A; (i=1, 2, 3, 4, 5) are to be evaluate during
the hesitant triangular neutrosophic numbers by the decision makers under the above four attributes whose
weighting vector isw = (0.3,0.3,0.2,0.2).
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Step-1: We express the initial evaluation results of the expertforfivepossiblealternativesbased on

fourattributesbythe form of hesitant triangular neutrosophic numbers, as shownin Table 1.

Table 1:The evaluation result by the expert is shown in the below table

cy Cs Cz Cy
4 <(0.3.0.4.0.2); <(0.10506):{03}.{04, | <(0.50607:{0204} | <(04060.7):{0.8} 106,
1| 10506}.{0103}.{04. | 05}.{03.06})> {051.{03.04}> 0.7}.{0.1.02}>

0.7}>
4 <(0.2,0.3,04); {0.2}, <(0.40606):{0709}{| <(050709:{0102} | <(0.20305);{06}.{04,
“2| 105.073.{04)> 0.23.{05.07}> {0608} {0506}> | 05}.{02,04}>
4 <(0.6.0.6.0.7):0.1.0.43.{0 | <(0.3.0.4.0.4):{0.6. <(0.1.0.2.0.3):{0.2.03} | <(0.5,0.5.0.6):{0.3,0.5},
o3 6.0.8}.{0.4,0.50.7}> 0.7}.{0.5}.{0.5,0.8}> {04.06}.{0.5.06}> {0.3,0.53,{02}>
4 <(0.1,0.3,0.3); {0.7}, <(050505):{0102} {| <(040506);{0206} | <(0.10.102):{0305},
741 10.6.0.9}.{0.4} 0.4.0.7}.{02.05}> {02.04}.{03.04}> {0.7.0.8}.{0.1.02}>
4 <(0.5,0.6.0.6): {0.3,0.6}, | <(0.2,0.3.0.3): <(0.7.0.8.0.8):{0.50.7} | <(0.2.0.3.0.5);
2| {04.05}.{02.04}= {0305},{0405}.{04, | {03.06}.{0.1.03}> {0.40.53,{0.2.03},{0.6,

06}> 0.7.08}>

Step-2:We compute the aggregationvalues giTlA (i=12,..5) of A(i=12,..5) as;
ol = HTNWAAO, (A;, Ay A, Al)

=<(0.30,0.51,0.52); {0.494124,0.522409, 0.526880, 0.553333}, {0.299254,0.308624,0.319973,0.329992,0.416080,

0.429108, 0.444888,0.458818},{0.262529, 0.301566,0.278077,0.319426, 0.323211, 0.371272,
0.342353, 0.393260,0.310519,0.356693, 0.328909,0.377818,0.382294, 0.439141,0.412567,0.465148}>

g = HTNWAAQO;, (Ay, Ay, Agg, Ay)

=<(0.32,0.47,0.58); {0.468719,0.481089,0.617891,0.626787},{0.376740,0.393934, 0.399052,0.417264,0.416754,
{0.389321,0.447212,0.403779, 0.435774,0.441436,0.461583},0.463821,0.430672,0.494712, 0.446666,0.513085}>

gl = HTNWAAO, (Ay, Ay, A Auy)
=<(0.39,0.44,0.51);{0.419636, 0.457406,0.434930,0.471704,0.467623,0.502270,0.481653, 0.515387,0.344568,
0.387223, 0.361840,0.403371,0.398762, 0.437891, 0.414606,0.452704},{0.456007,0.505058,0.494527,
0.547722,0.497111, 0.550583, 0.539102,0.597092},{0.389321, 0.448274,0.479310,0.460489,
0.416275,0.530219,0.403779, 0.464922,0.497111,0.477590, 0.431735,0.549910}>

ol = HTNWAAC, (A, A, A, Ave)
=<(0.39,0.44,0.51);{0.398762,0.437891, 0.476592,0.510656,0.419636,0.457406, 0.494764,0.527644%,{0.439833,

0.451737,0.505235,0.518910,0.520235,0.534315, 0.597593,0.613767,0.496724,0.510168, 0.570586,0.586030,0.587525,

0.603427, 0.674889,0.693156},{0.232461,0.267027,0.282842,0.246228,0.306007,0.351510, 0.372328,0.324130}>

g’ = HTNWAAO, (Aqy, Asy, Ass: Ast)
=<(0.39,0.49,0.53);{0.365425,0.388147,0.427055, 0.447570,0.426353,0.446894,
0.482066,0.500612,0.463497,0.482708,0.515603,0.532948,0.515010, 0.532376,0.562112,0.577792},{0.328749,
0.356519,0.377634,0.409533,0.351510,0.381202,0.403779,0.437887,0.375847, 0.407595,0.431735,0.468204},
{0.267027,0.275388,0.282842,0.332644,0.343059,0.352345, 0.301566,0.311008,0.319426,0.375670, 0.387433,
0.397920,0.328749,0.339042,0.348219, 0.409533,0.422356,0.433787,0.371272,0.382897, 0.393260,0.462505,
0.476986,0.489897}>
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A
Step-3:  Wecalculate  the  score  values  of giTk (i=12..,5 of A@{=12..5 as
0.30+0.51+0.52)
s(A) ="
(A) 3x0.52

— % (0.299254 + 0.308624 + 0.319973+ 0.329992 4- 0.416080 - 0.429108 + 0.444888 + 0.458818)

x[2+ % (0.494124 + 0.522409 + 0.526880+ 0.553333)

— % (0.262529 + 0.301566 + 0.278077 + 0.319426 + 0.323211+ 0.371272 + 0.342353 4 0.393260

+0.310519 + 0.356693 +- 0.328909 + 0.377818 + 0.382294 + 0.439141+ 0.412567 + 0.465148)

_ %><[2+O.524186—0.375842—0.354048]

=1.5297,
Similarly, we have; S(A,) =1.3244, S(A)) =1.2687, S(A,) =1.4110,S(A) =1.5235.

Step-4: Since S(A) > S(A)>S(A)>S(A)>S(A).So A-A>-A>A>A.
Thus we conclude that A is the best (most desirable) ERP system. On the other hand, if we apply the other
proposed weighted aggregation operators such as HTNWGAQ; , HTNWAAQ;, , HTNWGAQ;, for

computing the best alternative(s), then step 2 of the proposed approach has been executed for each weighted
aggregation operators and hence their corresponding hesitant triangular neutrosophic number has been
constructed. Finally, based on these, the score values of the aggregated hesitant triangular neutrosophic humbers
are computed and ranking has been done which are summarized in table-2. We can conclude from table-2 that

although the ranking orders of the alternatives are slightly different; the best (most desirable) alternative is still

A inall cases.
Table-2: Ranking order of alternatives
Weighted aggregation operators Ranking Best alternative
HINWAAO, A=Ay = Ay = Ay = A, Ay
HTNWGAO A=A — Ay — Ay = A A
- )
HINWAAO, A=Ay = As = Ay = Ay Ay
HINWGAO, A=Ay = Ay = A = A A

6. COMPARATIVE STUDY:

In order to compare the performance of the proposed method with some existing methods (Ye 2013a, Ye 2014,
Ye 2015a, Ye 2015b, Liu 2016, Abdel-Basset et al. 2017, Wei et al. 2017), a comparative study is presented and
their corresponding final ranking are summarized in table 3. From table-3, it is clear that although the ranking
order of the alternatives are slightly different, but the best (most desirable) alternative is the same as found in the
existing approaches (Ye 2013a, Ye 2014, Ye 20153, Ye 2015b, Liu 2016, Abdel-Basset et al. 2017). Thus, our
proposed method can be suitably utilized to solve the multi attribute decision making problems than the other

existing methods due to the fact that more fuzziness and uncertainties are involved in our proposed approach.
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Table 3: Comparative study

Existing Ranking Our proposed Ranking Best
approach method alternative

HTNWAAO, A=A >A>A A
HTNWGAO, | A -A>A>A A
ve 361 A=A=A=A [ HINWAAC, | A=A -A>-A A,
HTNWGAO,, | A=A =A > A A
HTNWAAO, | A=A - A=A A,
HTNWGAO, | A >-A>A>-A A,
veltll | A=A -A=A | HINWAAO, | A=A - A=A A,
HTNWGAO, | A >=A>A A A,
HTNWAAO, A=A -A>A A,
HTNWGAO, | A=A >=A>A A
ve [40] A=A=A=A [ HINWAAC, | A=A -A>-A A,
HTNWGAC;, | A -A > A - A A,
HTNWAAO, A=A >A>A A,
HTNWGAQO, A-A-A>A A,
ve 28] A=A~ A=A [ HINWAAC, | A=A -A-A A,
HTNWGAO;, A-A>-A A A,
HTNWAAO; A-A>-A>A A,
_ A=A A=A HTNWGAO; A-A>A>A A,
Liu[21] HTNWAAC, | A=A = A=A A,
HTNWGAO, | A, >-A>A A A,
HTNWAAQ, A=A =A>A A,
HTNWGAO, | A, -A>A>A A,
pnder | A A A A TTHTNWARD, | A - A - A - A A,
[57] HTNWGAO, | A -A>A > A A,

7. CONCLUSION

In this paper, hesitant triangular neutrosophic numbers and their basic properties are presented. Also, various
types of operations between the hesitant triangular neutrosophic numbers are discussed. Then, various types of
hesitant triangular neutrosophic weighted aggregation operators are proposed to aggregate the hesitant triangular
neutrosophic information. Furthermore, score of hesitant triangular neutrosophic numbers is proposed to ranking
the hesitant triangular neutrosophic numbers.Based on the hesitant triangular neutrosophic weighted aggregation
operators and score of hesitant triangular neutrosophic numbers, a multi attribute decision making method is
developed, in which the evaluation values of alternatives on the attribute are represented in terms of hesitant
triangular neutrosophic numbers and the alternatives are ranked according to the values of the score of hesitant
triangular neutrosophic numbers to select the most desirable one. Finally, a practical example for enterprise
resource planning (ERP) system selection is presented to demonstrate the application and effectiveness of the
proposed method. The advantage of the proposed method is that it is more suitable for solving multi attribute
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decision making problems with hesitant triangular neutrosophic information because hesitant triangular
neutrosophic numbers can handle indeterminate and inconsistent information and are the extensions of hesitant
triangular fuzzy numbers, hesitant triangular intuitionistic fuzzy numbersas well as triangular neutrosophic
numbers.

In the future, we will develop another approach called linguistic hesitant triangular neutrosophic number as a
further generalization of it and this will be applied in different practical problems.
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