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Incentivization in Mobile Edge
Computing using a Full Bayesian

Approach

by

Sean Lebien

B.S, John Brown University, 2018

M.S., Computer Engineering, University of New Mexico, 2020

Abstract

The advances of multi-access edge computing (MEC) have paved the way for the

integration of the MEC servers, as intelligent entities into the Internet of Things

(IoT) environment as well as into the 5G radio access networks. In this thesis, a

novel artificial intelligence-based MEC servers’ activation mechanism is proposed,

by adopting the principles of Reinforcement Learning (RL) and Bayesian Reason-

ing. The considered problem enables the MEC servers’ activation decision-making,

aiming at enhancing the reputation of the overall MEC system, as well as consid-

ering the total computing costs to serve efficiently the users’ computing demands,

guaranteeing at the same time their Quality of Experience (QoE) prerequisites sat-

isfaction. Each MEC server decides in an autonomous manner whether it will be

activated or remain in sleep mode by utilizing the theory of Bayesian Learning Au-

tomata (BLA). A human-driven peer-review-based evaluation of the edge computing

system’s provided services is also introduced based on the concept of Bayesian Truth

Serum (BTS), which supports the development of a reputation mechanism regard-

ing the MEC servers’ provided services. The intelligent MEC servers’ autonomous

v



decisions’ satisfaction is captured via a holistic utility function, which they aim to

maximize in a distributed manner. Finally, detailed numerical results obtained via

modeling and simulation, highlight the key operation features and superiority of the

proposed framework.

This work has been published in:

G. Fragkos, S. Lebien and E. E. Tsiropoulou, ”Artificial Intelligent Multi-

Access Edge Computing Servers Management,” in IEEE Access, vol. 8,

pp. 171292-171304, 2020, doi: 10.1109/ACCESS.2020.3025047.
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Chapter 1

Introduction

With the advent of Internet of Things (IoT) and the 5G networks, the number of

mobile devices, such as smartphones, wearable devices, tablet computers, and others,

has dramatically increased, resulting in 8.2 billion mobile subscriptions in 2020 [1].

Also, the mobile applications running on the mobile devices, such as social network-

ing [2] and video-based applications [3, 4], online gaming, and others, request services

with various stringent delay, energy, and processing constraints [5, 6]. Such mobile

applications are typically resource-hungry in terms of computation demand and en-

ergy consumption [7, 8], thus, the mobile devices cannot support them locally and

they migrate them to other available computing resources [9, 10]. The current end-

to-end computing continuum consists of multi-access edge, fog, and cloud computing

that jointly contribute to the processing of the end-users’ offloaded computation

tasks [11].

The novel concept of multi-access edge computing (MEC) brings the comput-

ing capability closer to the end users by deploying modest-size MEC servers at the

edge of the radio access networks [12, 13]. MEC, as compared to cloud computing,

can significantly improve the data offloading delay [14], the corresponding mobile
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Chapter 1. Introduction

devices’ energy consumption [15], as well as the security levels [16], given that the

users’ offloading tasks travel shorter distances. A large part of the recent literature

has focused on the problem of users’ optimal data offloading (or equivalently tasks

offloading) by proposing either centralized approaches exploiting the softwarization

of the data offloading decision-making process [17] or distributed approaches based

on optimization [18], game theoretic [19], or learning methods [20, 21] to support the

users’ autonomous decision-making.

However, limited research efforts have been devoted to the problem of activating

the sufficient number of MEC servers, either from the users’ perspective, i.e., satisfy

the users’ Quality of Service (QoS) and Quality of Experience (QoE) prerequisites

[22, 23], or from the service providers’ perspective (the ones that own the MEC

servers), i.e., maximize their techno-economics benefit or profit. Consequently, in this

paper [24], the problem of distributed and autonomous MEC servers’ management

is studied based on an artificial intelligence-enabled framework that is jointly driven

by the end users’ QoE satisfaction and the computing service providers’ reputation.

1.1 Related Work

In this section, we will give a brief overview of some related research works in regards

to MEC servers’ management in terms of their activation and allocation of their

computing capability to the end users. The problem of managing the computing

capabilities of the servers has attracted the researchers’ interest early enough in the

literature. In 2007, the problem of noninstantaneous server activation (i.e., the non-

zero time to replicate and activate a server) is studied in [25]. The authors introduce a

dynamic approach in order to share the servers’ resources among multiple users, while

considering the hysteresis control to reduce the servers’ activation and deactivation

cost when momentary fluctuations of the workload occur. Their numerical results

2



Chapter 1. Introduction

demonstrated the activation characteristics had a significant effect on the system’s

performance and that resource sharing through the studied threshold techniques lead

to significant cost savings. In [26], the authors introduce a two-time-scale approach,

where the servers’ activation decision occurs in slow time scale, while the servers’

computing capacity allocation to the users’ offloaded tasks is made at a faster time

scale based on the servers’ power scaling criterion. The introduced two-time-scale

joint job scheduling and servers’ management problem is addressed via stochastic

optimization. They did however run into several practical concerns, such as a detailed

problem model and simulation inconsistencies with the real-world. An energy saving-

driven approach is proposed in [27], where the authors formulated a minimization

problem of the MEC servers’ total energy consumption under the constraints of users’

QoS prerequisites (e.g., transmission power, price, rate [28, 29, 30]) and mobility

patterns. The solution of this problem concluded to the selection of a set of MEC

servers to be activated based on the users’ offloading tasks request profiles. Their

proposed algorithm significantly reduced the energy savings, achieving up to 34%

during peak hours and 16% during morning hours.

In [31], a three-layer computing architecture is introduced consisting of the user,

edge computing, and the cloud computing layers. Focusing on the edge computing

plane, the authors propose a hierarchical structure of the geo-distributed activated

MEC servers to aggregate the users’ offloaded tasks, efficiently exploit the MEC

servers’ resources and manage the workloads during peak hours. This could be

achieved all while minimizing the energy consumption and signal overhead for la-

tency required devices. Their results demonstrated that they were able to satisfy

latency requirements of different services while also saving energy for IoT devices.

The latter challenge is also addressed in [32], where virtualized network functions

are strategically allocated to the available servers in order to minimize the energy

consumption of the computing and networking infrastructure, as well as improve

the protection level against resource demand uncertainty. In [17], a software defined

3



Chapter 1. Introduction

networking approach is introduced to jointly manage the users’ tasks offloading and

the MEC servers’ resources’ exploitation based on a game theoretic [33] and rein-

forcement learning approach, respectively. A similar approach is proposed in [34],

by adopting a deep reinforcement learning model, while considering that the users

may be reluctant in revealing personal information about the MEC servers’ selection

preferences, the computing demands of their offloading tasks, as well as their wire-

less communication characteristics (i.e., cell selection [35]). Their offloading strategy

combined a policy gradient DRL-based approach with a differential neural computer

(DNC), which allowed for optimal results far more efficiently than other results.

A centralized approach for the MEC servers’ management problem is introduced

in [36], where a regional orchestrator manages the servers’ activation and distribution

of workloads towards guaranteeing the users’ QoS prerequisites via formulating the

problem as a stochastic overlapping coalition formation game. The MEC servers’

were observed to significantly improve the processing capacity if they are allowed to

learn from its previous interactions with other servers, allowing it to learn about its

overall environmental state. Focusing on the energy efficient operation of the MEC

servers, the authors in [37] use a Lyapunov optimization approach to determine the

MEC servers’ energy harvesting policy from the environment [38, 39], jointly with the

task offloading scheduling. They found they were able to significantly increase the

overall system utility through their chosen optimizations. Following the philosophy

of MEC servers’ energy efficient operation, a dynamic power management scheme is

introduced in [40] towards deciding when and for how long each MEC server should

be in sleep mode in order to minimize the system’s energy consumption without

compromising the users’ QoS prerequisites satisfaction considering a multi-service

applications environment [41]. The efficient use of power could significantly improve

the use of power resources in data centers. A scalability analysis of the MEC system

is discussed in [42] for increasing number of users and offloading tasks. The authors

adopt a Particle Swarm Optimization method in order to decide on the number of

4



Chapter 1. Introduction
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Figure 1.1: Overall architecture of the artificial intelligent multi-access edge comput-
ing servers management

activated MEC servers, while lowering the users’ serving delay and maximizing the

MEC system’s cost effectiveness. Cloudlets of server clusters would theoretically

reconfigure to maximize scalability, and would provide the same high-quality results

for various types of requirements.

A minority game theoretic approach is introduced in [43, 44] via considering the

total number of MEC servers that should be activated to serve the users and allowing

the MEC servers to autonomously decide their activation in order to respect the

aforementioned constraint by following the theory of minority games. This work has

been further extended in [45] via considering the problem of users’ association to the

MEC servers and introducing a distributed reinforcement learning-based decision

making process. This approach can then be applied to smart cities, public safety

networks, as well as mobile edge computational environments.
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1.2 Contributions & Outline

Despite the efforts made in the previous works, in regards to the MEC servers’

management, how to incorporate the end users’ personalized Quality of Experience

satisfaction in the MEC servers’ activation decision making still remains to be an

open issue. Moreover, to facilitate the infrastructure/service providers’ penetration

in the computing market, how to capture the MEC servers’ reputation is even chal-

lenging. In this work, we strive to tackle these issues. In detail, the design goal is

to capture the end users’ evaluation of the edge computing system and of the acti-

vated MEC servers that process their offloaded computing tasks in terms of satisfying

their QoE prerequisites, create a reputation model for the MEC servers, and devise a

distributed and autonomous MEC servers’ activation mechanism based on the prin-

ciples of artificial intelligence. The main contributions of this work that differentiate

it from the rest of the literature, are summarized below.

1. A human-driven evaluation of the edge computing system (i.e., activated MEC

servers) is introduced in regards to the services that they provide to the end

users, based on the theory of Bayesian Truth Serum [46, 47]. The proposed

approach supports the extraction of an objective evaluation from subjective

data provided by the users.

2. A reputation scheme is proposed based on a novel Bayesian model to quantify

the reputation of each activated MEC server in the computing market based

on the Quality of Service that they provide to the end users and based on the

latter ones subjective QoE satisfaction.

3. An artificial intelligence-based MEC servers’ activation mechanism is devised

based on the theory of Bayesian Learning Automata. The MEC servers de-

cide their activation or not in a distributed and autonomous manner towards

6



Chapter 1. Introduction

improving their reputation in the overall edge computing system, while con-

sidering their cost to serve the users computing demands. A distributed and

low-complexity algorithm is also designed that converges to the Bayesian Nash

equilibrium, which is a stable operation point for the whole edge computing

system.

4. A series of experiments are performed to evaluate the performance of the over-

all MEC servers’ management scheme, in terms of the extraction of the objec-

tive evaluation of the MEC servers’ provided computing services based on the

users’ subjective data, the reputation scheme for the MEC servers, and their

autonomous decision making regarding their activation or not. Also, a detailed

comparative evaluation with alternative MEC servers’ management schemes

demonstrates our proposed framework’s superiority and benefits.

The rest of the paper is organized as follows. The system model is introduced in

Section 2, while the users’ evaluation mechanism of the MEC servers is discussed in

Section 3. Section 4 introduces the MEC servers’ reputation model and the artifi-

cial intelligence-based MEC servers’ activation is analyzed in Section 5. Simulation

results are investigated in Section 6, while Section 7 concludes the paper.
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Chapter 2

System Model

A heterogeneous MEC environment is considered consisting of |S| MEC servers

and |U | users, where their sets are denoted as S = {1, . . . , s, . . . , |S|} and U =

{1, . . . , u, . . . , |U |}, respectively. At each time slot t, each MEC server s ∈ S has

a corresponding reputation µ
(t)
s and a computation capability F

(t)
s [CPUcycles

sec
] that is

allocated to the users’ offloaded computing tasks in order to process them. The

MEC server’s reputation is gained based on its capability to serve the users and sat-

isfy their Quality of Experience prerequisites. More information regarding the MEC

servers’ reputation scheme is provided in Section 4.

Each user u ∈ U offloads a task T
(t)
u = (I

(t)
u , C

(t)
u , φ

(t)
u ) to the set of activated MEC

servers, where I
(t)
u [bits] denotes the computation total input bits and C

(t)
u [CPUcycles]

is the total number of CPU cycles required to accomplish the computation task

T
(t)
u . The parameter φ

(t)
u [CPUcycles

bits
] expresses the computation complexity of the task

requested by the user, and its value depends on the nature of the application, i.e.,

a larger value of φ
(t)
u expresses a more computationally intensive task. The problem

of users’ association to the available MEC servers is not addressed in this paper,

while a similar approach is adopted from our previous works [48, 49] considering the

8



Chapter 2. System Model

users’ computation tasks and personal characteristics in order to select a MEC server.

Thus, in the rest of the analysis, we consider that each user’s tasks are offloaded to

the edge computing system and distributed among all the activated MEC servers

following an intelligent software-defined orchestration mechanism [50, 51].

Eventually, each MEC server s ∈ S decides in an autonomous and distributed

manner whether it will offer its computation capability to the users’ tasks execution

or not, i.e., a
(t)
s ∈ {0, 1}, where a

(t)
s denotes the final decision of MEC server s at time

slot t. For a
(t)
s = 1, the MEC server s is activated in time slot t, while for a

(t)
s = 0,

the MEC server remains in sleep mode in time slot t. We consider S(t) = {s ∈ S :

a
(t)
s = 1} to be the set of the activated MEC servers at a specific time slot t. The

adopted system model, as well as the overall architecture of the proposed artificial

intelligent multi-access edge computing servers management system is presented in

Fig. 1.1.
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Human-driven Computing System

Evaluation

In this section, a human-driven peer-review-based evaluation of the edge computing

system and the corresponding MEC servers is introduced in regards to the services

that they provide to the end users, based on the theory of Bayesian Truth Serum.

At the end of each time slot t, each user u ∈ U evaluates the perceived QoE from

the activated MEC servers, which are all responsible for the execution of its task

T
(t)
u at time slot t, in a distributed manner. In order to assess how truthful were the

aforementioned users’ evaluations, we adopt the concept of Bayesian Truth Serum

(BTS), which allows us to elicit an overall objective evaluation from subjective data

when the ground truth is unknown and being at the same time strict Bayes-Nash

incentive compatible for |U | → ∞ [52]. Specifically, at time slot t, user u answers a

binary question, i.e., ”Are you satisfied from the activated MEC servers’ S(t) provided

service?”, by providing the following two evaluation reports:

• The information report xu
(t,S(t)) = (x

(t,S(t))
u,0 , x

(t,S(t))
u,1 ), which denotes the personal

answer of user u, where
∑

i∈{0,1}
x

(t,S(t))
u,i = 1, and i denotes the possible answers,

10



Chapter 3. Human-driven Computing System Evaluation

i.e., ”YES” (i = 1) or ”NO” (i = 0) with x
(t,S(t))
u,i ∈ {0, 1},∀i ∈ {0, 1}.

• The prediction report yu
(t,S(t)) = (y

(t,S(t))
u,0 , y

(t,S(t))
u,1 ), where y

(t,S(t))
u,1 denotes the

prediction regarding the fraction of the users whose answer is x
(t,S(t))
u,1 = 1, i.e.,

”YES”, and y
(t,S(t))
u,0 is the prediction for the fraction of the users whose answer

is x
(t,S(t))
u,0 = 1, i.e., ”NO”, and

∑
i∈{0,1}

y
(t,S(t))
u,i = 1.

Based on the users’ information and prediction reports, the population endorsement

frequencies x
(t,S(t))
i (Eq. 3.1) and the geometric mean of the users’ population predic-

tions y
(t,S(t))
i (Eq. 3.2) for each of the answers i, i ∈ {0, 1} are calculated as follows:

x
(t,S(t))
i =

1

|U |
·
|U |∑
u=1

x
(t,S(t))
u,i (3.1)

and

log(y
(t,S(t))
i ) =

1

|U |
·
|U |∑
u=1

log(y
(t,S(t))
u,i ) (3.2)

Consequently, the BTS score sc
(t)
BTS,u(xu

(t,S(t)),yu
(t,S(t))) of each user u, which depicts

how truthful its personal answer was, is calculated based on the formula:

sc
(t)
BTS,u(xu

(t,S(t)),yu
(t,S(t))) =

∑
i∈{0,1}

x
(t,S(t))
u,i · log(

x
(t,S(t))
i

y
(t,S(t))
i

)

+ α ·
∑
i∈{0,1}

x
(t,S(t))
i · log(

y
(t,S(t))
u,i

x
(t,S(t))
i

)

(3.3)

where the first part of Eq.3.3 is the information score and the second part is the

prediction score of the user. The information score increases if an answer i, i ∈

{0, 1} is surprisingly common, i.e., if the mean endorsement population frequency

x
(t,S(t))
i is higher than the corresponding mean prediction y

(t,S(t))
i . The surprisingly

common criterion is based on the Bayesian reasoning principle, which states that a

user believes that the rest of the population will underestimate its personal opinion,

reporting thus a higher prediction for that answer in order to further support it.
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As a result, according to the Bayesian argument [53], the users that are truthful

regarding their personal information reports xu
(t,S(t)), they should also provide higher

predictions, leading thus to the conclusion that a truthful user’s opinion is more

likely to be surprisingly common. Moreover, it should be noted that the prediction

score (second term of Eq. 3.3) acts as a penalty proportional to the Kullback-Leibler

divergence [54] between the actual population endorsement frequencies of the answers

x
(t,S(t))
i and the respective user’s population predictions’ geometric means y

(t,S(t))
u,i .

The physical meaning of this observation is that the optimal prediction score is

achieved when the user’s prediction is equal to the actual mean frequency of the

answer i (absolute accuracy), i.e., y
(t,S(t))
u,i = x

(t,S(t))
i . In this case, the prediction score

is equal to 0 since the user will experience a zero penalty.

The parameter α, α > 0 in Eq. 3.3 controls the effect of the prediction score

(penalty) in the total BTS score, i.e., the higher is the value of parameter α, the

higher is the contribution of the prediction score in the calculation of the BTS score

and the lower will be the overall BTS score. The physical meaning of the parameter α

is that it fine-tunes the importance of the prediction error, since a potential minority

of the users who may be more distant from the activated MEC servers will experience

a worse QoE satisfaction due to the increased latency than the majority of the users

which is closer, thus, satisfied. As a consequence, the prediction of the unsatisfied

users may not be representative with respect to the overall service provided by the

activated MEC servers and thus, they should not be strictly penalized because of the

inaccurate prediction. As a next step, the average BTS score u
(t,S(t))
i for each answer

i, i ∈ {0, 1} for xi 6= 0, is calculated as follows, while u
(t,S(t))
i = 0, if xi = 0.

u
(t,S(t))
i =

1

|U | · xi
·
|U |∑
u=1

x
(t,S(t))
u,i · sc(t)

BTS,u(xu
(t,S(t)),yu

(t,S(t))) (3.4)

Finally, the most truthful answer x
(t)
BTS regarding the activated MEC servers’ pro-

vided services at time slot t is the answer that has the highest average BTS score,

12



Chapter 3. Human-driven Computing System Evaluation

i.e.,

x
(t,S(t))
BTS = argmaxi∈{0,1}u

(t,S(t))
i (3.5)

Since all the activated MEC servers contribute to the users’ tasks execution in

a distributed manner, the outcome of Eq. 3.5 determines if the experienced service

provided by S(t) activated MEC servers, satisfied (x
(t,S(t))
BTS = 1) or not (x

(t,S(t))
BTS = 0)

the users’ QoE prerequisites, based on the corresponding users’ subjective evaluation.

13



Chapter 4

Servers Reputation Scheme

In this section, we exploit the human-driven evaluation of the edge computing system,

as presented in the previous section, in order to create a reputation scheme for the

MEC servers, capturing their capability to serve the users and satisfy their QoE

constraints. Towards capturing the MEC servers capability to serve the users and

the corresponding penetration of the infrastructure/service provider, who owns the

MEC servers, into the computing market, we introduce the reputation µ
(t)
s for each

activated MEC server s at time slot t. A Bayesian model is devised, which features

adverse selection based on the Bayesian updating of belief of the users [55].

Specifically, all users share the same prior belief distribution µ
(s,t)
0 = µ0, ∀s ∈

S,∀t, regarding the QoE satisfaction that each MEC server s can provide to them.

Each MEC server s can either offer a high or low QoE satisfaction, with probabilities

aH and aL, respectively, where 0 < aL < aH < 1. At every time slot t, the activated

MEC servers that offer their computation services to the users, are evaluated by the

BTS mechanism (Section 3), i.e., if the users are overall satisfied x
(t,S(t))
BTS = 1 and if

not x
(t,S(t))
BTS = 0 by the activated MEC servers set S(t), creating thus a history for

each MEC server s. We denote as Q
(t)
s , the number of times until time slot t that

14



Chapter 4. Servers Reputation Scheme

the MEC server s offered its services to the users and it was evaluated as helpful

(x
(t,S(t))
BTS = 1), and as F (t)

s we denote the number of times that the MEC server’s

s service was evaluated as not helpful (x
(t,S(t))
BTS = 0). Thus, each MEC server’s s

posterior distribution of reputation is given as follows [55].

µ(t)
s =

µ0 · a(Q
(t)
s )

H · (1− aH)(F(t)
s )

µ0 · a(Q
(t)
s )

H · (1− aH)(F(t)
s ) + (1− µ0) · a(Q

(t)
s )

L · (1− aL)(F(t)
s )

(4.1)

Based on Eq.4.1, we observe that there is a correlation between the MEC server’s

s history of the users’ positive and negative evaluations, i.e., the Q
(t)
s and F (t)

s ,

respectively, and its corresponding reputation. Specifically, the MEC server’s repu-

tation µ
(t)
s increases with respect to the positive received evaluations, i.e., Q

(t)
s , and

decreases with respect to the negative evaluations, i.e., F (t)
s .

4.1 MEC Servers Utility Function

Following the presented reputation scheme for the activated MEC servers at each time

slot t, in this section we formulate each MEC server’s utility function, which captures

the benefit of the MEC server by participating or not in the computing system and

offering its computing capability to the users. Each MEC server s acts as an artificial

intelligent agent making decisions in an autonomous and distributed manner, thus

determining whether it should provide its computation capability F
(t)
s , i.e., a

(t)
s = 1

(the server is activated), or not, i.e., a
(t)
s = 0 (the sever remains in sleep mode), for

the users’ data processing at time slot t. A holistic utility function is introduced for

each MEC server to capture its perceived benefit in terms of rewards by processing

the users’ offloaded data (users positive or negative provided evaluations). The MEC

server’s s, s ∈ S, utility function is formulated as follows.

u(t)
s (a(t)

s , a
(t)
−s) = (

µ
(t)
s · F (t)

s∑
s′∈S

(µ
(t)
s′ · F

(t)
s′ · a

(t)
s′ )

·
∑
u∈U

R(t)
u − F (t)

s ) · a(t)
s (4.2)
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Chapter 4. Servers Reputation Scheme

where R
(t)
u denotes the overall reward which is offered by the user u ∈ U at time slot

t for the computational services of the activated MEC servers, i.e., ∀s ∈ S, where

a
(t)
s = 1. In case that a

(t)
s = 1, i.e., the MEC server s is activated at time slot t, the

first part of Eq.4.2 expresses the portion of the total reward
∑
u∈U

R
(t)
u that MEC server

s will receive, with respect to its reputation µ
(t)
s and the provided computation power

F
(t)
s . Specifically, the higher are the reputation µ

(t)
s and the computation capability

F
(t)
s compared to the other activated servers s′, s′ ∈ S(t), the larger will be the portion

of the reward that s will receive by the users. The second term of the utility function

depicts the operating computing costs of the activated MEC server s in order to

process parts of all the users’ tasks. In case that a
(t)
s = 0, i.e., the MEC server

remains in sleep mode, then the experienced utility is 0, as the MEC server s will

not receive reward from the users and it will not spend its computational resources.

The introduced utility function drives the MEC servers to select in an autonomous

and distributed manner whether they will serve the users or not at a certain time

slot t, by evaluating the potential economic gains over the operating costs.

In order to formulate the overall reward R
(t)
u ,∀u ∈ U , that is provided by each user

to the activated MEC servers, we adopt the concept of the economic sale price [55]

based on the reputation µ
(t)
s , as formulated in Eq. 4.1. Specifically, in order to depict

in a holistic way the efficiency of the overall MEC environment in terms of serving

the users’ computation demands, we consider the average Bayesian reputation of the

activated MEC servers s, s ∈ S(t), which offer their computational services to the

users at time slot t, as follows.

µ(t) =

|S|∑
s=1

µ
(t)
s · a(t)

s

|S|∑
s=1

a
(t)
s

(4.3)

It is noted that if no MEC server is activated, we have µ(t) = 0. Thus, based on

the average holistic bayesian belief µ(t), the users reward the activated MEC servers

16



Chapter 4. Servers Reputation Scheme

Figure 4.1: Bayesian Learning Automata (BLA) Learning Process

with the following reward:

R(t)
u = µ(t) · aH + (1− µ(t)) · aL (4.4)

It is observed that the reward R
(t)
u is an increasing function with respect to the

average reputation µ(t), i.e., the better is the overall posterior belief of the users

regarding the MEC servers provided QoE satisfaction to the users, the higher is the

reward offered by the users.
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Chapter 5

Artificial Intelligent Servers

Activation

Towards realizing an autonomous and distributed decision-making mechanism, we

propose a Learning Automata-based learning algorithm, where each MEC server

s operates as a Bayesian Learning Automaton (BLA) [56] in order to determine

whether it should offer its computation capability F
(t)
s for the users’ offloaded data

execution or not at a certain time slot t. The goal of each MEC server is to maximize

its utility function as presented in Eq.4.1. Fig.1.1 presents the overall procedure of

the Bayesian Learning Automata, where the learning process unfolds throughout the

iterations at time slot t and in every iteration ite, each BLA (i.e., MEC server s),

selects an action a
(ite,t)
s ∈ {0, 1}, which is afterwards evaluated as a good (E

a
(ite,t)
s

= 1)

or a bad (E
a
(ite,t)
s

= 0) decision by the MEC environment.

According to the feedback that the server s receives from the MEC environment

at the ite iteration, it develops an intelligence, i.e., an action probability distribu-

tion, based on which it can make better decisions in the future, i.e., in the upcoming

iterations during time slot t, with respect to the perceived environment’s reward or

18



Chapter 5. Artificial Intelligent Servers Activation

Algorithm 1 BLA Rewards & Penalties

1: Input/Initialization: S, a
(ite,t)
s ,maxite{us

(ite−1,t)}

2: Output: Reward or Penalty Ea
(ite,t)
s

3: for s = 1 to |S| do
4: MEC Server s calculates its utility u

(ite,t)
s (a

(ite,t)
s , a

(ite,t)
−s )

5: if (u
(ite,t)
s (a

(ite,t)
s , a

(ite,t)
−s ) ≥ maxite{u(ite−1,t)

s }) then

6: Decision a
(ite,t)
s leads to reward E

a
(ite,t)
s

= 1

7: Update the maximum experienced utility: maxite{u(ite,t)
s } = u

(ite,t)
s (a

(ite,t)
s , a

(ite,t)
−s )

8: else

9: Decision a
(ite,t)
s leads to penalty E

a
(ite,t)
s

= 0

10: end if

11: end for

penalty and the experienced utility. Eventually, each MEC server s aims at maxi-

mizing the probability of making decisions a
(ite,t)
s that will lead it to receive higher

rewards during the learning process. In the following subsections, we present the

distributed algorithms regarding the processes of the MEC environment determining

whether to reward or penalize the MEC servers for their decisions and the Bayesian

Learning Automata decision making process. It is noted that the traditional Learn-

ing Automata schemes need to have a predefined (constant) value of the learning

parameter, which controls the trade-off between the learning speed and the learn-

ing accuracy. However, this assumption is unrealistic within the examined dynamic

MEC environment. Thus, by adopting the Bayesian Learning Automata scheme,

which does not require a constant learning parameter, we enable our framework to

be dynamic and adaptable during the learning process.
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Chapter 5. Artificial Intelligent Servers Activation

5.1 Bayesian Learning Automata Reward and

Penalty Formulation

In this section, we present the process of determining if a MEC server s, s ∈ S, i.e.,

a Bayesian Learning Automaton, should be rewarded or penalized for its selected

action a
(ite,t)
s . The MEC server s must be rewarded or penalized depending on the

utility u
(ite,t)
s (Eq.4.1) that it experiences in an iteration ite. Specifically, if the MEC

server decides to participate (a
(ite,t)
s = 1) in the users’ offloaded data execution, but

it provides a low computation capability F
(t)
s and has a low reputation µ

(t)
s compared

to the other participating MEC servers, then it will probabilistically receive a small

portion of the total offered reward
∑
u∈U

R
(ite,t)
u =

∑
u∈U

(µ(t)·aH+(1−µ(t))·aL) resulting in

a negative utility u
(ite,t)
s and in a penalty, i.e., E

a
(ite,t)
s

= 0. Therefore, if in a previous

iteration ite′, the MEC server s had selected to remain in sleep mode (a
(ite′,t)
s = 0),

it would have experienced a higher utility, i.e., u
(ite′,t)
s = 0. For that reason, we

store the maximum experienced utility maxite{u(ite,t)
s } for every MEC server s and

every decision a
(ite,t)
s is evaluated according to that value. The BLA rewards and

penalties calculation algorithm is executed in every iteration of a time slot of the

decision-making learning process and is presented in Algorithm 1.

The complexity of the BLA rewards and penalties calculation algorithm is Θ(|S|),

since every MEC server s should determine if it will be rewarded or penalized by

performing algebraic calculations, and the complexity of the latter is constant, i.e.,

Θ(1).

20



Chapter 5. Artificial Intelligent Servers Activation

5.2 Bayesian Learning Automata Decision Mak-

ing

The BLA-based learning method, which operates under the philosophy of the

Bayesian reasoning framework [57], is computationally efficient, since it is inde-

pendent of any learning parameter (in contrast to other Learning Automata-based

schemes). Thus, it is self-adaptive to dynamic changes of the MEC environment.

Furthermore, it follows an action Beta probability distribution instead of storing an

action probability vector, which would increase the memory and computation need of

the corresponding algorithm [58]. Every MEC server s that acts as a BLA preserves

two hyper-parameters as,i and βs,i which correspond to the number of times that s

received a reward and a penalty, respectively, by choosing action i ∈ {0, 1}. Those

hyper-parameters form the Beta probability density function (PDF) as follows:

f(x; as,i, βs,i) =
xas,i−1 · (1− x)βs,i−1∫ 1

0
uas,i−1 · (1− u)βs,i−1du

(5.1)

thus leading to the respective cumulative Beta distribution function:

F (x; as,i, βs,i) =

∫ 1

0
vas,i−1 · (1− v)βs,i−1dv∫ 1

0
uas,i−1 · (1− u)βs,i−1du

(5.2)

where x ∈ [0, 1].

In every iteration ite at a specific time slot t, if the decision a
(ite,t)
s of MEC

server s leads to a reward (E
a
(ite,t)
s

= 1), then the corresponding hyper-parameter

as,i is increased, whereas if it leads to a penalty the corresponding hyper-parameter

βs,i is increased. Thus, the cumulative Beta distribution function (Eq.5.1) serves

as a Bayesian metric of the reward probabilities of each of the available actions

a
(ite,t)
s ∈ {0, 1}. The steps of the BLA-based decision making process are presented

in Algorithm 2, where convergence is our termination criterion and it becomes true

when each MEC server s that experiences a reward, i.e., E
a
(ite,t)
s

= 1, chooses the
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User

u

Personal An-

swer

xu
(t,S(t))

YES Predic-

tion

y
(t,S(t))
u,1

NO Predic-

tion

y
(t,S(t))
u,0

Information

Score

first term of
Eq. 3.3

Prediction

Score

second term
of

Eq. 3.3

BTS Score

x
(t,S(t))
BTS

1 YES (1) 50% 50% 0.2566 −0.1132 0.1433

2 YES (1) 98% 2% 0.2566 −0.4781 −0.2215

3 NO (0) 30% 70% −0.1755 −0.3981 −0.5736

4 YES (1) 75% 25% 0.2566 −7.3 · 10(−4) 0.2558

5 YES (1) 56% 44% 0.2566 −0.0642 0.1923

6 YES (1) 63% 37% 0.2566 −0.0240 0.2325

7 YES (1) 66% 34% 0.2566 −0.0125 0.2441

8 NO (0) 25% 75% −0.1755 −0.5134 −0.6889

9 YES (1) 60% 40% 0.2566 −0.0390 0.2175

10 YES (1) 55% 45% 0.2566 −0.0714 0.1851

11 NO (0) 31% 69% −0.1755 −0.03779 −0.5534

12 NO (0) 70% 30% −0.1755 −0.0027 −0.1782

13 YES (1) 79% 21% 0.2566 −0.0091 0.2474

14 YES (1) 70% 30% 0.2566 −0.0027 0.2539

15 YES (1) 80% 20% 0.2566 −0.0129 0.2437

Table 5.1: Bayesian Truth Serum (BTS) outcome

same action a
(ite,t)
s for a specific number of K iterations, implying that a near-optimal

solution has been determined with high probability.

Regarding the BLA-based Decision Making algorithm’s complexity, for a specific

time slot t, in a specific iteration ite, each MEC server s determines its action a
(ite,t)
s ,

which involves only algebraic calculations needing constant time Θ(1) to be executed,

thus, concluding to a total execution time of Θ(|S|). Afterwards, Algorithm 1 is

executed in order all the rewards and penalties to be determined with a corresponding

complexity of Θ(|S|) (Section 5.1) and the hyper-parameters of all the MEC servers

are updated concluding to a complexity of Θ(|S|). Thus, the total complexity of

Algorithm 2 for time slot t is O(|S| · Ite(t)), where Ite(t) is the total number of

iterations for convergence in that time slot. The overall complexity of Algorithm 2

for all time slots T that the MEC system is examined, isO(T ·(|S|·maxt∈[1,T ]{Ite(t)})).
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Algorithm 2 BLA-based Decision Making

1: Input/Initialization: ite = 0, convergence = false, as,1 = βs,1 = as,0 = βs,0 = 1

∀s, s ∈ S

2: Output: Final Decision made by the MEC servers a
(t)
s , Final Values of the hyper-

parameters as,i and βs,i ∀i, i ∈ {0, 1}

3: while (convergence = false) do

4: ite = ite+ 1

5: for s = 1 to |S| do

6: Pick xs,0 and xs,1 from

F (xs,i; as,i, βs,i) =
∫ xs,j
0 vas,i−1·(1−v)βs,i−1dv∫ 1
0 u

as,i−1·(1−u)βs,i−1du

7: if (xs,0 ≤ xs,1) then

8: Participate: a
(ite,t)
s = 1

9: else

10: Don’t Participate: a
(ite,t)
s = 0

11: end if

12: end for

13: Based on the a
(ite,t)
s calculate the respective Rewards and Penalties by executing

Algorithm 1.

14: for s = 1 to |S| do

15: if (E
a
(ite,t)
s

= 1) then

16: if (a
(ite,t)
s = 0) then

17: as,0 = as,0 + 1

18: else

19: as,1 = as,1 + 1

20: end if

21: else

22: if (a
(ite,t)
s = 0) then

23: βs,0 = βs,0 + 1

24: else

25: βs,1 = βs,1 + 1

26: end if

27: end if

28: end for

29: end while

23



Chapter 6

Numerical Results

In this section, a detailed numerical evaluation is provided in terms of the overall pro-

posed framework’s operation effectiveness, its scalability, and its efficiency compared

to other alternatives. Specifically, the extraction of the users’ evaluation through

the Bayesian Truth Serum approach is presented and compared to an alternative

approach, named Robust Bayesian Truth Serum, to show the drawbacks and bene-

fits of the proposed human-driven computing system evaluation (Section 6.1). Then,

the operation of the Bayesian Learning Automata (BLA) and the reputation sys-

tem is demonstrated (Section 6.2), and a detailed comparative evlauation to other

approaches is presented (Section 6.3).

The proposed framework’s evaluation was conducted in a MacBook Pro Laptop,

2.5GHz Intel Core i7, with 16GB LPDDR3 available RAM. We consider |S| = 20

MEC servers, K = 3, T = 100 time slots, µ0 = 0.2, aH = 0.51, aL = 0.49, and

F
(t)
s ∈ [10 · 109, 12 · 109]CPUcycles

sec
, which is clipped into a smaller range of computing

power units, i.e., F
(t)
s ∈ [10, 12], ensuring thus the same order of magnitude of the

individual considered terms in the MEC servers’ utility function. In the following

analysis, we consider a population of |U | = 500 users, otherwise explicitly stated.

24



Chapter 6. Numerical Results

0.73333

0.26667

YES NO
0

0.2

0.4

0.6

0.8
A

n
s
w

e
r 

A
v
e
ra

g
e

x
i

(a) 0.54176

0.33464

YES NO
0

0.2

0.4

0.6

G
e

o
m

e
tr

ic
 A

v
e

ra
g

e

y
i

(b)   0.2275

-0.62562

YES NO
-0.8

-0.2

A
v

e
ra

g
e

 B
T

S
 S

c
o

re

(c)

Figure 6.1: Human-driven computing system evaluation

6.1 Extraction of Human-driven Computing Sys-

tem Evaluation

In this section, the proposed human-driven computing system evaluation based on

the theory of the Bayesian Truth Serum (BTS) is presented. In the following, we

consider |U | = 15 users for the evaluation of the BTS component at a specific time

slot t.

Fig. 6.1a presents the average population endorsement frequencies x
(t,S(t))
i

(Eq.3.1) for both answers i ∈ {0, 1}, i.e., the ”YES” and ”NO” answers. We observe

that the majority of the users, i.e., 73.33% voted for ”YES” since they were satisfied

from the perceived QoE provided by the MEC servers at time slot t. Fig. 6.1b shows

the mean prediction y
(t,S(t))
i (Eq. 3.2) of the users regarding the population proportion

that voted for ”YES” and for ”NO”, i.e., 54.18% and 33.46%, respectively, which

concludes to the outcome that ”YES” is a surprisingly common answer. Based on the

results presented in Fig. 6.1a, 6.1b, we conclude to the average BTS scores u
(t)
i (Eq.

3.4) for the aforementioned answers, which are 0.2275 and −0.62562, respectively.

Therefore, based on Eq.3.5, the users that are overall satisfied from the experienced

QoE are more truthful than the users with the opposite opinion (as it is shown by the

higher average BTS score for the answer ”YES”), thus, the final answer determined

by the BTS framework (Section 3) is ”YES”, i.e., x
(t)
RBTS = 1.
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Complementary to the above analysis, Table 1 presents all the users’ answers,

predictions and individual scores, which led to the previously discussed results, pre-

sented in Fig. 6.1a-6.1c. The results reveal that the users, who provided the same

answer, achieve the same information score, since the latter is only related to the

users’ answers’ mean endorsement population frequencies x
(t,S(t))
i and the correspond-

ing mean predictions y
(t,S(t))
i . Specifically, the information score (first part of Eq. 3.3)

of the users that answered ”YES” is 0.2566, i.e., positive, whereas the information

score of the users who provided ”NO” as an answer is −0.1755, i.e., negative. The

latter outcome is derived due to the fraction of the population that voted ”YES”

x
(t,S(t))
1 (73.33%, 11 out of 15 users) is higher than the corresponding mean predic-

tion y
(t,S(t))
1 (54.18%), which makes this answer surprisingly common, thus, a truthful

answer, while on the other hand, the ”NO” answer is unsurprisingly common. More-

over, we can clearly observe that the closer is a user’s u prediction yu
(t,S(t)) to the

mean of the actual personal answers x
(t,S(t))
i , i ∈ {0, 1}, the better is the prediction

score, meaning that it is closer to the optimal value of 0. Thus, we observe that user

4, who answered ”YES”, had the best prediction score since its prediction y4
(t,S(t))

was the most accurate among all the users’ predictions, and in combination with the

positive information score of its surprisingly common answer, it is the most truthful

answer in the examined system, receiving the highest BTS score (0.2558).

Another interesting observation is that the proposed BTS framework penalizes

the extreme users’ beliefs. Specifically, we observe that user 2, who answered ”YES”,

is extremely biased since it predicted that 98% of the population will provide ”YES”

as a personal report and only the rest 2% will answer ”NO”. However, because of that

extreme prediction report, the user received the worst prediction score (−0.4781),

since it did not approach the actual mean endorsement population frequencies and

its overall BTS score was negative (−0.2215), thus being ranked in the 12th place

of all the BTS scores in the examined system. Furthermore, user 12 answers ”NO”,

but it gives a higher prediction for the ”YES” answer (70%) compared to that of the
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User u Information Score Prediction Score RBTS Score
xRBTS

1 0 0.75 0.75
2 0.84 0.9996 1.8396
3 0.75 0.51 1.26
4 1 0.9375 1.9375
5 1 0.8064 1.8064
6 0 0.6031 0.6031
7 0.75 0.8844 1.6344
8 0.36 0.4375 0.7975
9 0 0.6400 0.64
10 0.6156 0.6975 1.3131
11 0.64 0.5239 1.1639
12 0.8236 0.91 1.7336
13 1 0.9559 1.9559
14 1 0.91 1.91
15 1 0.96 1.96

Table 6.1: Robust Bayesian Truth Serum (RBTS) Outcome

”NO” answer (30%). In that case, we observe that even though this user receives

a negative information score (because of its unsurprisingly common answer), it also

receives the second best prediction score (−0.0027) and a better BTS score than the

aforementioned extreme user 2, which makes user 12 more truthful compared to user

2. Finally, it is shown that the prediction score of user 1 (−0.1132), who is uncertain

for its opinion since its prediction is y4
(t,S(t)) = (0.5, 0.5), is close to the median of

the prediction scores’ range. Thus, we conclude that the proposed BTS framework

evaluates in a neutral manner the uncertain users, assigning them also a positive

BTS score.

As a next step, we examine the descendant of the BTS, i.e., the Robust Bayesian

Truth Serum (RBTS), which is strictly Bayes-Nash incentive compatible for |U | ≥ 3

[59], in order to compare it with our BTS component. It is noted that the key
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difference of the RBTS model compared to the BTS approach is that the first one

converges to a stable equilibrium solution for small number of users, i.e., |U | ≥ 3,

while the BTS approach requires |U | → ∞. Thus, the RBTS approach is considered

to be more stable for smaller populations than the BTS framework, leading to more

truthful answers’ elicitation. Specifically, according to the RBTS each user u provides

the following two reports:

• The information report x′u
(t,S(t)) ∈ {0, 1}, which is its personal answer and 1

denotes the answer ”YES”, while 0 denotes the answer ”NO”.

• The prediction report y′u
(t,S(t)) ∈ [0, 1], which is the user’s prediction regarding

the fraction of the users that answered ”YES”, i.e., x′u
(t,S(t)) = 1.

Afterwards, a reference user ru = u + 1(mod |U |) and a peer user pu = u + 2(mod

|U |) are selected for each user u ∈ U and the following is calculated:

y
′′(t,S(t))
u =

 y′ru
(t,S(t)) + δ ,if x′u

(t,S(t)) = 1

y′ru
(t,S(t)) − δ ,if x′u

(t,S(t)) = 0
(6.1)

where δ = min{y′ru
(t,S(t)), 1− y′ru

(t,S(t))}. Consequently, the RBTS score of each user

u, which depicts how truthful its information report was, is calculated based on the

formula [59]:

sc(t)
u (x′u

(t,S(t))
) = Rsps(y

′′(t,S(t))
u , x′pu

(t,S(t)))

+Rsps(y
′
u

(t,S(t))
, x′pu

(t,S(t)))
(6.2)

where Rsps(y
′(t)
u , x

(t)
pu ) and Rsps(y

(t)
u , x

(t)
pu ) denote the information and the prediction

scores respectively, while Rsps is a strictly proper scoring rule, defined as follows [59].

Rsps(y, x = 1) = 2 · y − y2

Rsps(y, x = 0) = 1− y2
(6.3)
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Finally, the truthful answer x
(t)
RBTS regarding the MEC servers’ service at time slot t

is the answer that has the highest average RBTS score, and is determined as follows:

x
(t,S(t))
RBTS = max{

∑
u∈U

sc
(t)
u (x′u

(t,S(t)) = 1)∑
u∈U

x′u
(t,S(t))

,

∑
u∈U

sc
(t)
u (x′u

(t,S(t)) = 0)

|U | −
∑
u∈U

x′u
(t,S(t))

} (6.4)
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Figure 6.2: Bayesian Learning Automata-based MEC servers activation decision
making

It is noted that in the presented experiment in this section, the outcome of the

RBTS was identical to the one concluded by the BTS mechanism, i.e., x
(t)
RBTS = 1

(i.e., YES) for fairness in the comparison of the two frameworks. Table 2 presents

the users’ information, prediction, and RBTS scores, whose personal and prediction

reports are the same as the aforementioned BTS instance. The results reveal that

users 5 and 10 that provide the same answer, i.e., ”YES”, and almost identical

prediction reports, they achieve completely different RBTS scores (1.8064 and 1.3131,

respectively), compared to the BTS approach where their scores are almost identical

(0.1923 and 0.1851, respectively). This outcome reveals the inherent drawback of the

RBTS mechanism, which determines the truthfulness of the users based only on the
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Figure 6.3: Bayesian Learning Automata-based MEC servers decision incrimination

reference ru and peer pu users. Given that these users (i.e., reference and peer users)

are different for each user, the final RBTS scores are fully dependent on the reports

of only two other users, which can totally decrease the truthful reporting incentive.

Moreover, we observe that the user 2 with the extreme reporting beliefs, who

gave as a prediction report y
(t)
4 = (0.98, 0.02), has acquired the 5th best RBTS score,

while the BTS approach discouraged such an extreme behavior by ranking it in the

12th place. However, if we invert the positions of users 2 and 10, the RBTS scores

would be 0.6552 and 1.6375, which means that in that case user 2 would be ranked

in the 12th place among all the users. Thus, we conclude to the outcome that even

though the RBTS converges to a Bayes-Nash Equilibrium for smaller populations

(|U | ≥ 3) than the BTS mechanism (|U | → ∞), it is more unstable regarding the

users’ individual truthfulness scores. The basic cause for this fundamental problem

is that the RBTS score of each user depends on its position (i.e., index) inside the

entire population. For that reason, we conclude that the RBTS mechanism provides

a weak incentive to the users to be truthful, compared to the BTS which is a lot
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Figure 6.4: Bayesian Learning Automata-based MEC servers Beta distribution based
on decision

more stable as shown in the previous discussion.

6.2 Bayesian Learning Automata & Reputation

Evaluation

In this section, we study and analyze the behavior of the servers reputation scheme, as

well as the artificial intelligent servers activation mechanism following the Bayesian

Learning Automata approach, as they were introduced in the Sections 4 and 5,

respectively. Our goal is to show the performance of the proposed framework towards

determining the MEC servers’ optimal decision of being activated or remaining in

the sleep mode.

Fig.6.2 illustrates the decisions a
(ite,t)
s of a single MEC server s throughout the

BLA iterations (Algorithm 2) at a specific time slot t. It is observed that in the first
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Figure 6.5: BLA-based MEC servers Parameters for Beta Distribution

4 iterations, the MEC server s explores both actions, i.e., being activated (a
(ite,t)
s = 1)

or remaining at the sleep mode (a
(ite,t)
s = 0), while learning its available decisions and

exploring the MEC environment. However, afterwards the server chooses to be acti-

vated and its decision converges in few iterations, i.e., a
(t)
s = 1. The aforementioned

behavior is also indicated in Fig.6.3, where the cumulative number of server’s s deci-

sions a
(ite,t)
s is presented as a function of the BLA iterations. Specifically, we observe

that the number of both the a
(ite,t)
s = 1 and a

(ite,t)
s = 0 decisions were increasing

until the 4th iteration, and then only the counter of the decision of being activated

(a
(ite,t)
s = 1) keeps increasing until the convergence of the server to its final decision of

being activated. The reason that led the MEC server to that decision can be derived

from the Beta Probability Density Function (PDF) presented in Fig.6.4. Specifically,

the results illustrate that the probability of the server s to be activated (a
(t)
s = 1) is

higher (blue curve) compared to the probability of remaining in the sleep mode (red

curve). This behavior is justified based on the results presented in Fig.6.5, where

the hyper-parameter as,1 is monotonically increasing, while the hyper-parameter βs,1

takes small values. The latter observation means that the server’s decision of being
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Figure 6.6: MEC servers average reputation and reward

activated (a
(ite,t)
s = 1), led most of the times to a reward (E

a
(ite,t)
s

= 1), rather than

a penalty.

The results presented in Fig. 6.6 and Fig. 6.7 illustrate the operation of the

proposed servers reputation scheme. Specifically, Fig.6.6 captures the average rep-

utation µ(ite,t) (Eq.8) and the total users’ reward
∑
u∈U

R
(ite,t)
u (Eq.9) as a function of

the BLA iterations at a certain time slot t. Initially, we observe that both the aver-

age reputation and the users’ reward change over time, since in every iteration the

decisions of every server s, i.e., a
(ite,t)
s , may be different, meaning that different MEC

servers decide to participate until the BLA’s convergence point. Also, we conclude

to the outcome that the greater the average reputation µ(ite,t) is, the more reward∑
u∈U

R
(ite,t)
u the users offer to the servers. The latter observation confirms our theoreti-

cal formulation (Eq.9) and secondly is expected according to the Bayesian belief, i.e.,

the greater the servers’ reputation is, the stronger is the users’ trust that they will

experience a high QoE, thus, they provide a high reward to the MEC servers. More-

over, Fig.6.7 illustrates a Monte Carlo evaluation (10, 000 executions) of the MEC
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Figure 6.7: MEC servers average utility

servers’ achieved utility with respect to the BLA iterations at a certain time slot t.

The results indicate that less than 100 iterations are required for the MEC servers

to converge to their final decisions (equivalent to 0.8 sec), while at the same time

the MEC servers’ average utility is maximized. The latter observation is derived due

to the fact that the proposed framework drives each MEC server to make optimal

decisions a
(ite,t)
s regarding its activation (or not), i.e., each MEC server considers if

its overall reputation µ
(t)
s and computation capability F

(t)
s are sufficient to receive

a satisfying portion of the total reward
∑
u∈U

R
(ite,t)
u compared to all the other MEC

servers.

Fig. 6.8 through Fig. 6.12 shows the operation of the artificial intelligent servers

activation mechanism for two indicative MEC servers. Specifically, Fig. 6.8 shows

that MEC server 1 achieves a higher reputation than the MEC server’s 2 reputation.

Thus, the users trust more server 1 that it will satisfy their QoE requirements. This

fact can also be validated in Fig. 6.9, where the total number of the positive users’

evaluations for the first server, i.e., Q
(t)
1 , is always higher than the corresponding Q

(t)
2
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Figure 6.8: Reputation of two MEC servers over 100 timeslots

of the second server. This indicates that the users were more satisfied when server

1 contributed to their tasks’ execution (Q
(t)
1 > F (t)

1 and Q
(t)
1 increases faster than

F (t)
1 ), than they were when server 2 was activated since its respective total number

of the negative evaluations became equal with that of the positive evaluations after a

certain point of time (Q
(t)
2 = F

(t)
2 ). Thus, MEC server 2 remained in the sleep mode

for the last time slots since it was non-profitable for it to serve the users. Moreover,

the fact that the users were satisfied from the received QoE from MEC server 1,

drove the latter to become active more times than the MEC server 2 (Fig. 6.10).

The latter observation is also confirmed from the results presented in Fig. 6.11,

which show that the first server received a higher fraction of the total users’ reward

due to its higher reputation, which finally resulted to a higher experienced utility

over the time horizon (Fig. 6.12).

Fig.6.13 depicts the BLA iterations and the corresponding real execution time

required for convergence of the MEC servers activation decision making as a function

of the increasing number of MEC servers. The results reveal that the proposed
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Figure 6.9: Q/F Count for two MEC servers

framework scales very well with respect to the increasing number of servers, resulting

in realistic execution time. Thus, the proposed framework can be implemented in a

realistic MEC environment in real or close to real time manner.

6.3 Comparative Evaluation

In this section, a comparative analysis is presented among the proposed artificial

intelligent MEC servers management framework and four other approaches, which

are described as follows:

1. All the MEC servers are active at a certain time slot.

2. The MEC servers decide randomly to become active at a certain time slot.

3. Only half of the available MEC servers with the highest reputation are active

at a certain time slot.
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Figure 6.10: Number of participation events for two MEC servers

4. Only half of the MEC servers with the highest computation capability are

active at a certain time slot.

Fig.6.14 depicts the average utility per MEC server at a specific time slot, in-

cluding all the aforementioned alternative strategies. The results reveal that our

approach, i.e., (e), outperforms compared to all the alternatives since it jointly con-

siders both the servers’ reputation and computation capability in a holistic and intel-

ligent manner, confirming that it enables all the servers to take the most profitable

decisions in an autonomous manner. The approach (c) illustrates the second best

results in terms of MEC servers’ average achieved utility, given that it allows only

the most trusted MEC servers to become active. The worst performance is exhib-

ited by the first two alternative approaches (i.e., (a) and (b)), as they are the least

sophisticated and they do not consider the system parameters in the MEC servers’

activation decision making.
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Figure 6.11: Percentage of reward for two MEC servers
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Chapter 7

Conclusion

The establishment of the multi-access edge computing (MEC) and its widespread

adoption in 5G networks require the refinement of its management in an intelligent

and cost-efficient manner. In this paper, a novel approach towards determining the

MEC servers’ activation, as well as the users’ data processing, is introduced, based

on the principles of artificial intelligence and specifically of reinforcement learning

and Bayesian reasoning. The MEC servers operate as autonomous decision-makers

towards maximizing their utility function, considering the offered reward from the

users, which is modeled following the economic sale price model as well as the respec-

tive computing costs experienced from the aforementioned processing. Accordingly,

the users follow a human-driven evaluation of the edge computing system based on

the Bayesian Truth Serum concept regarding the satisfaction of their QoE prereq-

uisites. Finally, this evaluation leads to a reputation scheme which characterizes

the efficiency of the MEC servers in the edge computing system. A low complexity

distributed algorithm which maximizes the utility function of the MEC servers is in-

troduced, while detailed numerical results that clearly demonstrate our framework’s

operation and superiority are presented.
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Chapter 7. Conclusion

Our current and future work is focused on the extension of this model under the

principles of Deep Reinforcement Learning, where the MEC servers will explore the

continuous space of their available computing power resources in order to provide

the optimal amount of it for the users’ data processing. Moreover, we examine the

prospect of incorporating Contract Theory into our framework, where each user acts

as an “employer” offering rewards to the the MEC servers, which act as “employees”

providing their computing resources to the users, in order the latter to process their

data.
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