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Abstract

Artificial Intelligence (AI) based techniques are typically used to model decision

making in terms of strategies and mechanisms that can conclude to optimal payo�s

for a number of interacting entities, often presenting competitive behaviors. In this

thesis, an AI-enabled multi-access edge computing (MEC) framework is proposed,

supported by computing-equipped Unmanned Aerial Vehicles (UAVs) to facilitate

Internet of Things (IoT) applications. Initially, the problem of determining the

IoT nodes optimal data o�oading strategies to the UAV-mounted MEC servers,

while accounting for the IoT nodes’ communication and computation overhead, is

formulated based on a game-theoretic model. The existence of at least one Pure

Nash Equilibrium (PNE) point is shown by proving that the game is submodular.

Furthermore, di�erent operation points (i.e., o�oading strategies) are obtained and

studied, based either on the outcome of Best Response Dynamics (BRD) algorithm,

or via alternative reinforcement learning approaches, such as gradient ascent, log-

linear and Q-learning algorithms, which explore and learn the environment towards
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determining the users’ stable data o�oading strategies. The respective outcomes

and inherent features of these approaches are critically compared against each other,

via modeling and simulation.

This work has been published in:

G. Fragkos, E.E. Tsiropoulou, and S. Papavassiliou, ”Artificial Intelli-

gence Enabled Distributed Edge Computing for Internet of Things Ap-

plications,” in IEEE International Conference on Distributed Computing

in Sensor Systems, 2020
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Chapter 1

Overview

1.1 Introduction

The rapid deployment of Internet of Things (IoT) devices [1, 2], such as sensors,

smartphones, autonomous vehicles, wearable smart devices, along with the recent

advances in the Artificial Intelligence (AI) and Reinforcement Learning (RL) tech-

niques [3], have paved the way to a future of using distributed edge computing to assit

humans’ everyday activities, in several domains such as transportation, healthcare,

public safety and others [4–6]. The ubiquity of the IoT devices with enhanced sensing

capabilities creates increasingly large streams of data that need to be collected and

processed in an energy and time e�cient manner.

Traditionally, Cloud-based solutions were utilized to deal with the computational,

storage, and networking challenges imposed by the large streams of data. However,

Cloud computing faces great challenges related to energy consumption, latency, and

security, all of them being critical aspects for sensor-driven applications [7,8]. On the

other hand, the emerging edge computing paradigm proposes shifting the pendulum

away from the traditional Cloud computing model, towards a distributed infrastruc-
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Chapter 1. Overview

ture model at the edge of the network, by o�ering computational resources closer to

the physical location of data producers/consumers [9–11].

Nevertheless, in order to fully unleash the autonomous decision-making capabil-

ities of the edge devices and users, while exploiting the distributed edge computing

capabilities, there is an urgent need to push the AI frontiers to the system’s edge [12].

AI mechanisms allow 5G networks to be predictive and proactive, which is essential

in making the 5G vision conceivable [13]. Nowadays, AI has extended its domain and

strength, beyond the traditional machine learning approaches, by being founded on

multi-disciplinary techniques, such as control theory, computationally light reinforce-

ment learning techniques, game theory, optimization theory, and meta-heuristics [14].

Game Theory is a mathematical tool that helps us understand the phenomena

that we observe in cases where multiple decision makers with competing interests

interact among each other aiming at determining a stable mode of operation [15].

Specifically, game theory was first proposed for the economics domain [16] and was

originally examining the ways in which interacting choices of economic entities pro-

duce outcomes with respect to the utilities of those entities [17]. However, it has also

been deployed in multiple domains such as Psychology [18], Political Science [19],

Sociology [20] and many others. In the recent years, game theory has also started

to be extensively utilized in the field of Computer Science, where, in the majority

of the cases, the respective entities act in a selfish way aiming at maximizing their

own objective. Accordingly, there have been published many research works [21–25]

which exploit the benefits of game theory to solve distributed decision-making prob-

lems, networks-related problems [26], resource management and orchestration chal-

lenges [27], security and privacy concerns [28], or even Big Data processing-related

problems.

Except for Game Theory, another important feature that enables the research

community to take advantage of the AI’s power is Reinforcement Learning (RL).

2



Chapter 1. Overview

RL is a subset of Machine Learning, where the agents learn to achieve a goal, i.e.,

maximize the expected cumulative future reward, in an uncertain and potentially

complex environment which demonstrates dynamic variability and stochasticity [29–

32]. Since the agent’s actions have short and long term consequences, the agent

needs to gain some understanding of the complex e�ects its actions have on the

environment and it should find the perfect balance between exploration (exploring

potential hypotheses in terms of choosing its actions) and exploitation (exploiting

limited knowledge about what is already learned should work in a satisfactory way).

The main di�erence between RL and the traditional Supervised Learning [33] is

that there is no need for labeled input/output pairs and that RL focuses on finding a

balance between exploration and exploitation, achieving thus near-optimal solutions.

The latter observation reveals that the reinforcement learning techniques can be

applied in a real-time decision-making problem, which is and important component

within the dynamically changing networking and communications environments. The

selected actions of the agents transition the current state of the environment to

the next state and finally the agents experience a reward as a feedback from the

environment.

As a result, Reinforcement Learning has paved the way towards a lightweight

AI-enabled future and becomes a core component of the AI vision to support the

distributed decision making and emulate the humans behavior through a machine

type of representation and actions [34, 35]. Furthermore, the lower computational

complexity of the reinforcement learning approaches, in terms of data classification

and o�ine processing, compared to the supervised learning approaches, have pro-

vided the enhanced flexibility to the implementation of the decision-making problems

in a real-time or close to real-time manner.

Motivated by the aforementioned observations and arguments, in this paper,

we propose an artificial intelligence enabled multi-access edge computing (MEC)

3



Chapter 1. Overview

framework, supported by computing-equipped Unmanned Aerial Vehicles (UAVs) to

facilitate IoT applications. The key problem at hand is to properly explore and learn

the environment and the interdependence among the IoT nodes actions, so that to

determine their optimal data o�oading strategies to an UAV-mounted MEC server,

while accounting for the IoT nodes’ communication and computation overhead.

1.2 Related Work & Motivation

Mutli-access Edge Computing (MEC) [36] is constantly gaining ground in distributed

computing, since traditional Cloud computing su�ers from high energy consumption

and latency due to high volume data streams. In [37], the authors study the problem

of users’ data o�oading along to a MEC server as well as the interference manage-

ment problem in wireless cellular networks by solving the joint optimization of the

computation o�oading decision, physical resource block allocation, and MEC com-

putation resource allocation. Moreover, the authors in [38] present the problem of

data o�oading to a MEC server as a non-cooperative game among vehicles aiming

at minimizing the latency of data o�oading and also the existence of a Nash Equi-

librium is proven. In [39], the joint problem of MEC server selection by the end-users

and their optimal data o�oading, along with the optimal price setting by the MEC

servers is examined in a multi-MEC servers and multi-users environment. For that

reason they utilize game Theory and reinforcement learning, and more specifically

the theory of Stochastic Learning Automata (SLA).

Distributed edge computing has been immensely supported by the adoption of

UAV-mounted MEC servers [40], due to the UAVs’ unique characteristics, i.e., fast,

flexible, and e�ortless deployment, mobility, maneuverability, line-of-sight communi-

cation, etc. The problem of minimizing the IoT devices’ communication and compu-

tation energy consumption and the UAVs’ flying energy utilization is studied in [41],

4



Chapter 1. Overview

by jointly optimizing the devices’ data o�oading, transmission power, and the UAVs’

trajectory. In [42], the problem of partial data o�oading from the IoT devices to

ground or UAV-mounted MEC servers is studied in order the devices to satisfy their

minimum Quality of Service (QoS) prerequisites, by adopting the novel concept of

Satisfaction Equilibrium. In [43], the authors target at UAVs energy-e�ciency, where

the authors aim at extending the UAVs’ battery lifetime by jointly optimizing their

hovering time, and the devices’ scheduling and data o�oading, while considering the

constraints of the UAVs’ computation capability and the devices’ QoS constraints.

A similar problem is studied in [44] by exploiting the uplink and downlink commu-

nication among the devices and the UAVs in terms of data o�oading/receiving data

respectively, while guaranteeing the energy e�cient operation of the overall system.

In [45], the problem of jointly optimizing the devices’ association, transmission

power, and data o�oading to the UAVs, as well as the UAVs’ trajectory is stud-

ied, aiming at minimizing the overall power consumption in the system. In [46],

the authors introduce artificial intelligence into the UAVs data o�oading process in

a multi-server MEC environment, by utilizing concepts from game theory and rein-

forcement learning. They formulate a non-cooperative game among the UAVs, which

is proven to be submodular and as a result a Pure Nash Equilibrium (PNE) exists.

In order to approach the PNE they utilize a Best Response Dynamics approach as

well as two di�erent reinforcement learning algorithms.

A techno-economics approach is presented in [47], where the UAVs charge fees

the users for the computation services that they o�er to them. Also, the UAVs

charge their battery over a microwave station and the authors target at maximizing

the UAVs’ utility by optimizing their trajectories and the data o�oading process.

Following the notion of the techno-economic study of the UAV-assisted MEC system,

the authors in [48] study the end-users behavioral characteristics in terms of their

risks in the task o�oading process and they propose a novel pricing mechanism in

5



Chapter 1. Overview

order to introduce a more social behavior to the users with respect to competing for

the UAV-mounted MEC servers’ computation resources.

In [49], the UAVs act as cache and edge computing nodes, and two sequentially

solved optimization problems are considered, to minimize the communication and

computation delay and maximize the energy e�ciency of the system. In [50], the

UAVs act both as MEC servers and as wireless power transfer nodes charging the IoT

devices. The problem of maximizing the UAVs’ computation rate is examined under

the UAVs’ energy provision and speed constraints. This problem has been extended

in [51] by studying the minimization of the overall system’s energy consumption by

jointly optimizing the devices’ association to the UAVs, the UAVs’ flying time, and

their wireless powering duration.

The authors in [52] study a MEC environment, where a UAV is served by cellular

ground base stations (GBSs) for computation o�oading. Since they aim at minimiz-

ing the UAV’s computation o�oading scheduling time by optimizing its trajectory

subject to the maximum speed constraint of the UAV and the computation capacity

constraints at the GBSs, they propose an iterative algorithm based on Successive

Convex Approximation (SCA) which obtains near-optimal solutions. In [53] and [54]

the traditional problem where a set of ground users o�oad tasks to a UAV has been

extended, since the authors examine an UAV-assisted MEC architecture where the

UAV has a twofold role, i.e., contributing in users’ task execution and acting as a

relay node for o�oading the users’ received computation tasks to an access point

(AP). The non-convex minimization of the weighted sum energy of both the users

and the UAV is achieved using a centralized iterative algorithm. Similarly, in [55]

a two-hop uplink communication for Space-Air-Ground Internet of Remote Things

(SAG-IoRT) networks is studied, which is assisted with UAV relays in order to fa-

cilitate complete o�oading of the terrestrial smart devices to satellites. They target

at maximizing the whole system’s energy e�ciency by jointly optimizing the sub-
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Chapter 1. Overview

channel selection, uplink transmission power control and the UAV relay deployment.

The authors in [56] introduce a UAV-enabled MEC system, where the UAVs act

jointly as relay and data processing nodes to support the communication and com-

puting demands of the ground devices. A joint optimization problem is formulated

to minimize the service delay of the ground devices and the UAVs by determining

the UAVs optimal position, the communication and computing resource allocation,

and the devices’ task splitting.

A centralized task o�oading approach to the UAV-mounted and ground MEC

servers is proposed in [57], where an intelligent centralized agent makes optimal

decisions about the users’ task o�oading strategies via sensing the communication

and computing conditions of the environment towards optimizing the users’ Quality

of Experience (QoE). An air-ground integrated MEC architecture is proposed in [58]

consisting of both ground and UAV-mounted MEC servers. The authors highlight

the benefits of the UAV-mounted MEC servers and the problem of opportunistic

computational o�oading is studied in order to determine the tasks that should be

o�oaded to the neighboring UAV clusters with su�cient computing resources, in

order to increase the UAVs’ lifetime and decrease the overall computation time.

Additionally, many research papers deal with the problem of data o�oading

among a cluster of UAVs. More specifically, in [59] the authors propose the Fog

Computing aided Swarm of Drones (FCSD), where a drone will have a computation

task to execute and will partially o�oad its data to nearby drones in order to perform

the computations, thus acting as fog nodes. The scope of this research work is to

minimize the energy consumption of the FCSD system subject to the reliability and

latency constraints by introducing and utilizing an iterative distributed algorithm

based on the Proximal Jacobi method. As far as [60] is concerned, a network of

capacitated UAV-mounted cloudlets (NUMC) covering a region is considered, where

each UAV is endowed with limited computational resources and a restricted capacity

7



Chapter 1. Overview

providing edge computing services to IoT users in that region. The UAVs perform

binary o�oading to other UAVs and as a consequence the authors formulate an ex-

act potential game in order to capture the UAVs’ competitive behavior in terms of

minimizing their energy consumption with respect to the QoS satisfaction of the IoT

users’ requirements. Moreover, the research work [61] proposes a task-scheduling

algorithm based on reinforcement learning targeting at the collaboration of multiple

UAV tasks within a UAV cluster. Specifically, the proposed algorithm enables the

UAV to adjust its task strategy automatically using its calculation of task perfor-

mance e�ciency, while reinforcement learning has been deployed in order the UAVs

to learn tasks according to real-time data and as a consequence to perform decision

making regarding the channel allocation problem in a distributed manner.

Another important aspect of distributed edge computing in the recent bibliogra-

phy is the ability of the ground users and the UAVs to harvest energy in order to

boost the overall system’s energy e�ciency. In [62], the authors consider a multi-

drone enabled data collection system for smart cities, where there are two kinds of

UAVs, i.e., the Low Altitude Platforms (LAPs) which collect the data from the smart

city and the High Altitude Platform (HAP) which provides energy to the LAPs us-

ing wireless energy beams. The scope of this paper is to minimize the total laser

charging energy of the HAP using a novel search algorithm named Drones Travelling

Algorithm (DTA). Furthermore, [63], [64] and [65] all introduce harvesting models in

order the ground users to be able to perform computations locally and/or to trans-

mit information to the UAVs using the harvested energy from the latter ones, aiming

thus at the minimization of the users’ energy consumption. Additionally, in [66] the

authors propose an e�cient energy and radio resource management framework based

on intelligent power cognition of the Solar-powered UAVs (SUAVs), which can learn

the environment including the spatial distributions of solar energy density, the chan-

nel state evolution, and the tra�c patters of wireless communication applications in

adaption to the environment changes. Thus, they utilize reinforcement learning in

8



Chapter 1. Overview

order to maximize the total system throughput within the lifetime of the SUAVs,

by optimizing the energy harvesting and resource allocation of the power cognitive

SUAVs.

In [67] the authors focus on the UAVs’ data o�oading to a MEC server and thus,

they formulate a multi-nature strategy non-cooperative game among the UAVs tak-

ing into consideration the energy consumption, time delay and computation cost.

As a result, they prove the existence of a Pure Nash Equilibrium and propose a

distributed algorithm to determine the UAVs’ strategies at the PNE point. This re-

search work is su�ciently extended in [68], where the authors also aim at minimizing

a combination of energy overhead and delay for each UAV concurrently. Addition-

ally, in [69] the authors examine a UAV-assisted crowd surveillance use case, where

the UAVs acquire videos from cameras on the ground and they perform computation

either on board or at the ground servers. The research work in [70] studies the joint

optimization problem of the UAV’s trajectory and radio resource allocation via a

Successive Convex Approximation (SCA) technique, in order to maximize the num-

ber of served devices in terms of achievable uplink data rate. In [71], the UAV’s time

flight is minimized by optimizing its altitude, while jointly maximizing the number

of o�oaded bits by the ground devices.

However, despite the significant research work and advances achieved by the

aforementioned research e�orts, the problem of the IoT devices’ distributed and

autonomous decision-making with respect to their data o�oading strategies, towards

jointly optimizing their communication and computation overhead has not yet been

fully exploited, especially under the the prism of artificial intelligence. In this thesis,

a field of IoT devices is considered supporting latency and energy sensitive IoT

applications. Accordingly each IoT device has the option to execute its computation

task either locally or o�oad part of it to a UAV-mounted MEC server, by considering

the joint optimization of the involved communication and computation overhead.

9



Chapter 1. Overview

The focus of this paper is placed on the design of an artificial intelligence-enabled

framework that drives the strategic decision of optimal data o�oading to the available

UAV-mounted MEC server, founded on the power and principles of Game Theory

and Reinforcement Learning.

1.3 Contributions

The key technical contributions of this thesis are summarized as follows. First of all,

we model and formulate the IoT devices’ communication, computation and energy

overhead due to data o�oading, while based on this, the utility of each device by

o�oading and processing its computation task’s data to the UAV-mounted MEC

server is reflected in representative functions.

Moreover, in order to capture the competitive behavior of the IoT devices, we for-

mulate a non-cooperative game among them aiming at maximizing their own utility

at every timeslot, while considering at the same time the experienced communica-

tion and computation time overhead, from o�oading and processing their data at

the UAV. As a consequence, this process enables the devices to learn from history,

scrutinize the performance of other nodes, and adjust their behavior accordingly.

We also show the existence of at least on Pure Nash Equilibrium (PNE) point, by

proving that the game is submodular. Thus, we introduce a best response dynamics

approach which converges to a PNE.

Additionally, the proposed distributed edge computing decision making is en-

hanced by an artificial intelligent element, realized by various reinforcement learning

algorithms. The latter enable the IoT devices to learn their environment and make

stable decisions regarding their data o�oading strategies. A set of reinforcement

learning algorithms is examined, including gradient ascent, log-linear, and Q-learning

algorithms.

10



Chapter 1. Overview

Finally, we provide detailed numerical results in order to evaluate the e�ectiveness

of the proposed artificial intelligence-enabled distributed edge computing framework,

while at the same time a comparative study highlights the drawbacks and benefits

of the examined reinforcement learning algorithms.

1.4 Outline

The rest of this thesis is organized as follows. In Section 2.1 we present the for-

mulated IoT devices’ communication and computation overhead, while in Section

2.2 we model the experienced utility of each device. Furthermore, in Section 2.3 we

adduce out proposed game-theoretic edge distributed computing framework, by first

formulating a non-cooperative game among the IoT devices and afterwards proving

that there is at least one Pure Nash Equilibrium (PNE) in Sections 2.3.1 and 2.3.2

respectively. Thus, in Section 2.3.3 we introduce a best response dynamics method

in order the IoT devices to converge to the aforementioned PNE. In Section 2.4 we

introduce three di�erent families of Reinforcement Learning algorithms, aiming at

the IoT devices converging to a PNE in an autonomous and distributed manner.

Specifically, in Section 2.4.1 we present the Linear Reward Inaction (LRI) algorithm,

while in Sections 2.4.2 and 2.4.3 the Binary Log Linear (BLLL) and the stateless

Q-Learning correspondingly. Finally, a detailed numerical and comparative perfor-

mance evaluation results between the di�erent proposed approaches are provided in

Chapter 3, while Chapter 4 concludes this master’s thesis.
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Chapter 2

AI-enabled Distributed Edge

Computing System for IoT

Applications

2.1 Communication & Computation Overhead

A distributed edge computing system is considered consisting of a set of IoT de-

vices D = {1, . . . , d, . . . , |D|} spread in an area x[m] ◊ y[m] and a UAV-mounted

MEC server hovering above the area. Each IoT device has a computation task

T
(t)

d
to be completed at timeslot t, which is defined as T

(t)
d

= (I(t)
d

, „(t)
d

), where

I(t)
d

[bits] denotes the total amount of data of the IoT device’s computation task,

and the parameter „(t)
d

[CP U≠Cycles

bit
] represents the computation intensity of the de-

vice’s task (i.e., a higher value of „(t)
d

expresses a more computing demanding ap-

plication). At each timeslot t, each IoT device o�oads part of its computation

task’s data to the UAV-mounted MEC server for further processing, while aiming

at minimizing its experienced communication and computation latency and energy

12
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cost. The IoT device’s d set of data o�oading strategies at timeslot t is denoted as

A(t)
d

= {a(t)
d,min

, . . . , a(t)
d,j

, . . . , a(t)
d,max

}, where a(t)
d,j

œ [0, 1] is a percentage of the overall

amount of the device’s computation task’s data.

Moreover, a non-orthogonal multiple access (NOMA)-based wireless communica-

tion environment is considered to enable each IoT device to o�oad its computation

task’s data a(t)
d,j

· I(t)
d

[bits] to the UAV at each timeslot t. Also, the Successive In-

terference Cancellation (SIC) technique is implemented at the UAV to improve the

interference management in the congested IoT environment [72]. Each IoT device’s

d uplink data rate to the UAV-mounted MEC server at each timeslot t is calculated

through the Shannon’s formula, as follows.

R(t)
d

= W · log(1 + p(t)
d

· g(t)
d

‡2
o

+
|D|q

dÕØd+1
p(t)

dÕ · g(t)
dÕ

) (2.1)

where W [Hz] is the system’s bandwidth, p(t)
d

is the device’s transmission power, and

g(t)
d

is the device’s channel gain to communicate with the UAV at the timeslot t.

Each device’s transmission power is considered fixed in the following analysis and its

absolute value depends on its hardware characteristics. Also, following the NOMA

and SIC principles [73], without loss of generality, we consider g(t)
|D| Æ · · · Æ g(t)

d
Æ

. . . g(t)
1 , thus, the interference that the IoT device d experiences is ‡2

o
+

|D|q

dÕØd+1
p(t)

dÕ ·g(t)
dÕ ,

where ‡2
o

is the variance of the Additive White Gaussian Noise [74].

The UAV-mounted MEC server is assumed to have a computation capability

FUAV [CP U≠Cycles

sec
] that is shared among the IoT devices to process their o�oaded

data. Also, the UAV can process in parallel a total amount of data BUAV [bits]

at each timeslot. Based on the above, the time overhead that the IoT device d

experiences at timeslot t by o�oading a(t)
d,j

· I(t)
d

is given as follows [75]:

O(t)
time,d

=
a(t)

d,j
· I(t)

d

R(t)
d

+
„(t)

d
· a(t)

d,j
· I(t)

d

[1 ≠

q
dÕ ”=d

a
(t)
dÕ,jÕ ·I

(t)
dÕ

BUAV
] · FUAV

(2.2)

13



Chapter 2. AI-enabled Distributed Edge Computing System for IoT Applications

The first term of Eq.2.2 represents the communication time overhead that the IoT

device experiences to o�oad its data to the UAV, while the second term captures the

experienced computation time overhead. Also, as it is observed by the denominator

of the second term in Eq.2.2, each IoT device exploits only a portion of the UAV’s

computation capability, as the latter is shared in a fair manner among the IoT devices

with respect to how many bits they o�oaded to the UAV.

Furthermore, the energy overhead that each IoT device experiences by o�oading

its computation task’s data to the UAV at timeslot t is given as follows.

O(t)
energy,d

=
a(t)

d,j
· I(t)

d

R(t)
d

· p(t)
d

(2.3)

The duration of a timeslot t is assumed T [sec] and the energy availability of

an IoT device d at timeslot t is e(t)
d

[J ]. Based on Eq.2.2, 2.3, the total normalized

overhead that the IoT device d experiences at timeslot t is given as follows, which is

the summation of the corresponding time and energy experienced overheads.

O(t)
d

=
O(t)

time,d

T
+

O(t)
energy,d

e(t)
d

(2.4)

2.2 IoT Devices Utilities

In the introduced artificial intelligence-enabled distributed edge computing frame-

work each IoT device perceives a satisfaction by processing its data to the UAV-

mounted MEC server, as well as a cost due to the time and energy overhead that it

experiences. Moreover, each IoT device’s experienced satisfaction and cost are dy-

namically interdependent with the data o�oading strategies of the rest of the devices

in the examined system. Thus, a holistic utility function is introduced for each IoT

device to capture its perceived satisfaction and cost of processing its computation
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task in the considered distributed edge computing system, as follows.

U (t)
d

(a(t)
d,j

, a(t)
≠d,j) = b · e

a
(t)
d,jq

’dÕ ”=d,dÕœD

a
(t)
dÕ,jÕ

≠ c · eO
(t)
d (2.5)

where a(t)
≠d,j is the data o�oading strategy vector of all the devices residing in the

examined system except for the IoT device d. Also, the weights b, c œ [0, 1] are

configurable parameters representing how much the IoT device weighs the satisfaction

that it receives by processing its data at the UAV (first term of Eq.2.5), as compared

to the corresponding cost to perform this action (second term of Eq.2.5). Moreover,

given that small changes in the devices’ data o�oading strategies can dramatically

influence the stable operation of the distributed edge computing system due to the

large number of devices, we have adopted the exponential form to capture the devices’

satisfaction and cost tradeo�s and trends in Eq.2.5.

2.3 Game-Theoretic Edge Distributed Computing

In this section, we cast the IoT devices’ distributed data o�oading problem into the

analytical framework of non-cooperative game theory. Initially, the non-cooperative

data o�oading game among the IoT devices is formulated, while subsequently an

analytical solution is provided to determine a Pure Nash Equilibrium point of the

game.

2.3.1 Problem Formulation

Each IoT device aims at maximizing its perceived utility, as expressed in Eq.2.5, at

each timeslot in order to improve its perceived benefit from o�oading and processing

its data at the UAV-mounted MEC server, while mitigating its personal cost, as ex-

pressed by its experienced overhead (Eq.2.4). Thus, the corresponding optimization
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problem for each IoT device, is expressed as the maximization of each IoT device’s

utility, as follows.

max U (t)
d

(a(t)
d,j

, a(t)
≠d,j) = b · e

a
(t)
d,jq

’dÕ ”=d,dÕœD

a
(t)
dÕ,jÕ

≠ c · eO
(t)
d

s.t. a(t)
d,j

œ A(t)
d

(2.6)

Based on the maximization problem in Eq.2.6, we observe that the IoT devices’

data o�oading strategies are interdependent, and the devices demonstrate compet-

itive behavior in terms of exploiting the UAV’s computing capabilities. Thus, the

utility maximization problem in Eq.2.6 is confronted as a non-cooperative game

among the IoT devices. Let G = [D, {A(t)
d

}dœD, {U (t)
d

}dœD] denote the Distributed

Data O�oading (DDO) game played among the IoT device’s at each timeslot t,

where as mentioned before D is the set of IoT devices, A(t)
d

is the data o�oading

strategy set of each device d œ D, and U (t)
d

denotes the device’s utility.

The solution of the DDO game should determine an equilibrium point, where

the IoT devices have maximized their perceived utility by selecting their optimal

data o�oading strategy a(t)ú
d,j

. If the DDO game has a feasible PNE point, then at

that point, no device has the incentive to unilaterally change its equilibrium data

o�oading strategy a(t)ú
d,j

, given the strategies of the rest of the devices, as it cannot

furhter improve its perceived utility. More precisely, the PNE of the non-cooperative

DDO game is defined as follows.

Definition 1. (Pure Nash Equilibirum) The data o�oading vector a(t)ú =

(a(t)ú
1,jÕ , . . . , a(t)ú

|D|,jÕ), a(t)ú
d,j

œ A(t)
d

, is a PNE of the DDO game if for every IoT device d the

following condition holds true: U (t)
d

(a(t)ú
d,j

, a(t)ú
≠d,j) Ø U (t)

d
(a(t)

d,j
, a(t)ú

≠d,j) for all , a(t)
d,j

œ A(t)
d

.

Based on Definition 1, we conclude that the existence of a PNE in the DDO game

guarantees the stable operation of the distributed edge computing system, while the
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IoT devices maximize their perceived utility. On the other hand, if the DDO game

does not have at least one PNE, that is translated to an unsteady and unstable state

of the examined system.

2.3.2 Problem Solution

The theroy of S-modular games is adopted in order to show the existence of at least

one PNE for the DDO game [26, 76]. The basic intuition of the submodular games

is that an increase in one’s player’s action for given actions of rivals, reinforces the

desire of all players to decrease their actions because of strategic complementarity. S-

modular games have gained great attention in resource allocation problems in wireless

networks [77–80] due to: a) Pure Nash Equilibrium existance in S-modular games

can be proved, b) if each player initially adopts his lowest strategy or his largest

strategy, then he converges monotonically to an equilibrium, which depends on the

initial state and finally c) if the S-modular game has a unique Nash Equilibrium,

then it is dominance solvable and learning rules will converge to it, such as best

response dynamics. Specifically, we show that the DDO game is submodular, which

means that when an IoT device tends to o�oad a large amount of data to the UAV-

mounted MEC server, the rest of the devices follow the exact opposite philosophy,

i.e., they become more conservative in terms of their data o�oading, as the MEC

server is congested with tasks. Thus, in general a submodular game is characterized

by strategic substitutes and has at least one PNE [26], [77]. Considering the DDO

game with strategy space A(t)
d

, we can prove the following theorem.

Theorem 1. (Submodular Game) The DDO game G = [D, {A(t)
d

}dœD, {U (t)
d

}dœD]

is submodular of for all d œ D the following conditions hold true:

(i) ’d œ D, A(t)
d

is a compact subset of the Euclidean space.
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(ii) U (t)
d

is smooth in A(t)
d

and has non-increasing di�erences, i.e., ˆ
2
U

(t)
d

ˆa
(t)
d,j ·ˆa

(t)
dÕ,jÕ

Æ

0, ’d, dÕ
œ D, d ”= dÕ, ’j, jÕ.

Proof. Towards proving that the DDO game is submodular, we consider that the

IoT device can partition its task in any feasible set of data and o�oad them to the

UAV-mounted MEC server. Thus, the strategy space A(t)
d

= (0, 1] is continuous and

a compact subset of the Euclidean space and U (t)
d

is a smooth function. Also we

have: ˆ
2
U

(t)
d

ˆa
(t)
d,j ·ˆa

(t)
dÕ,jÕ

= b · ⁄ ≠ c · µ where we set ⁄ = e

a
(t)
d,jq

’dÕ ”=d,dÕœD

a
(t)
dÕ,jÕ

· ( ≠1
(

q
’dÕ ”=d,dÕœD

a
(t)
dÕ,jÕ )2 +

≠1
(

q
’dÕ ”=d,dÕœD

a
(t)
dÕ,jÕ )3 · a(t)

d,j
) and µ = eO

(t)
d · (

„
(t)
d ·I(t)

d ·
I

(t)
dÕ

BUAV

[1≠

q
dÕ ”=d

a
(t)
dÕ,jÕ ·I(t)

dÕ

BUAV
]2·FUAV úT

) · (1 + O(t)
d

). Thus, we

observe that ⁄ < 0 and µ > 0. Therefore, we conclude that ˆ
2
U

(t)
d

ˆa
(t)
d,j ·ˆa

(t)
dÕ,jÕ

< 0 and the

DDO game is submodular. ⌅

Consequently, taking into account that a submodular game has a non-empty set

of Pure Nash Equilibrium points [26], [77], we conclude that the DDO game has at

least one PNE a(t)ú = (a(t)ú
1,jÕ , . . . , a(t)ú

|D|,jÕ), a(t)ú
d,j

).

2.3.3 Best Response Dynamics

Towards determining the PNE of the DDO game, the Best Response Dynamics

(BRD) method [81] is adopted. The BRD is a natural method by which the IoT

devices proceed to a PNE via a local search method. However, it is noted that

the quality of the PNE depends on the order that the IoT devices update their

data o�oading strategies. In this research work, we consider an asynchronous BRD

algorithm, where all the IoT devices update simultaneously their data o�oading

strategies.
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The best response strategy of each IoT device to the other devices’ data o�oading

strategies is defined as follows.

BRd(a(t)ú
≠d,j) = a(t)ú

d,j
= arg max

a
(t)
d,jœA

(t)
d

U (t)
d

(a(t)
d,j

, a(t)
≠d,j) =

=

ln( c

b
· ( I

(t)
d

R
(t)
d ·T

+ „
(t)
d ·I(t)

d

[1≠

q
dÕ ”=d

a
(t)
dÕ,jÕ ·I(t)

dÕ

BUAV
]·FUAV ·T

+ I
(t)
d

R
(t)
d ·e(t)

d

· p(t)
d

) ·
q

’dÕ ”=d,dÕœD

a(t)
dÕ,jÕ)

1q
dÕ ”=d

a
(t)
dÕ,jÕ ·I

(t)
dÕ

≠ ( I
(t)
d

R
(t)
d ·T

+ „
(t)
d ·I(t)

d

[1≠

q
dÕ ”=d

a
(t)
dÕ,jÕ ·I(t)

dÕ

BUAV
]·FUAV ·T

+ I
(t)
d

R
(t)
d ·e(t)

d

· p(t)
d

)

(2.7)

In a nutshell, the asynchronous BRD algorithm that determines a PNE of the

DDO game is described in Algorithm 1. The complexity of the asynchronous BRD

algorithm is O(|D| · Ite), |D| >> Ite, where Ite is the total number of iterations

in order the algorithm to converge to the PNE. In Section 3 indicative numerical

results in terms of the required number of iterations (and actual time) required for

convergence are presented.

2.4 Reinforcement Learning-Enabled Distributed

Edge Computing

In this section, an artificial intelligence approach is introduced based on reinforce-

ment learning algorithms to enable the IoT devices to determine their stable data of-

floading strategies, in order to process their computation tasks at the UAV-mounted

MEC server, while mitigating their experienced overhead. The need for adopting

these learning approaches versus the game-theoretic model (as expressed via the

BRD framework), arises in several realistic cases including the ones where: a) the

devices are not fully aware of the closed-form solution (Eq. 2.7), and/or b) the de-

vices’ data o�oading strategy space A(t)
d

is discrete (rather than being continuous
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Algorithm 1 Asynchronous BRD Algorithm

1: Input: D, C(t)
d

, p(t)
d

, e(t)
d

T , A(t)
d

, ’d œ D

2: Output: Pure Nash Equilibrium: a(t)ú

3: Initialization: ite = 0, Convergence = 0, a(t)|ite=0

4: while Convergence == 0 do

5: ite = ite + 1;
6: for d = 1 to |D| do

7: Each IoT device d determines a(t)ú
d,j

|ite w.r.t. a(t)ú
≠d,j|ite(Eq.2.7) and receives

U (t,ite)
d

(a(t)ú
d,j

|ite, a(t)ú
≠d,j|ite)

8: end for

9: if a(t)ú
d,j |ite = a(t)ú

d,j |ite≠1 then

10: Convergence = 1

11: end if

12: end while

as assumed in the game-theoretic model). In particular, three di�erent sets of rein-

forcement learning algorithms are examined, namely the gradient ascent, log-linear,

and Q-learning, and their inherent properties are exploited. More importantly, their

convergence to a data o�oading strategy set for all the IoT devices, is critically com-

pared against the corresponding ones at the PNE point, obtained through the BRD

algorithm under the game-theoretic framework introduced in Section 2.3.

2.4.1 Gradient Ascent Learning

In the gradient ascent reinforcement learning approach, the IoT devices act as Learn-

ing Automata (LA) and they learn their environment by performing gradient updates

of their perceived utility. Specifically, Learning Automata are policy iterators, that

keep a vector action probabilities over the available action set and, as is common

in Reinforcement Learning, these probabilities are updated based on feedback sig-
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nals that are received from the environment. These learning schemes perform very

well in game theoretic environments, even though they do not require any informa-

tion exchange (actions, rewards, strategies) on the other players in the game. Each

device’s data o�oading decisions are characterized by an action probability vector

P
(ite)
d = [P (ite)

a
(t)
d,min

, . . . , P (ite)
a

(t)
d,j

, . . . , P (ite)
a

(t)
d,max

]. At each iteration of the gradient ascent al-

gorithm, each device probabilistically chooses its potential data o�oading strategy.

The IoT devices make their stable data o�oading decision, if P (ite)
a

(t)
d,j

Ø Pthres, ’d œ D,

where Pthres is a threshold value of the action probability. The most commonly ap-

plied gradient ascent learning algorithm is called Linear Reward-Inaction (LRI) [82]

and the corresponding action probability updating rule is given as follows [83].

P (ite+1)
a

(t)
d,j

= P (ite)
a

(t)
d,j

+ ÷
ˆ[U (t)
d

]
(ite)

(1 ≠ P (ite)
a

(t)
d,j

), if a(t)
d,j

|ite = a(t)
d,j

|ite+1 (2.8a)

P (ite+1)
a

(t)
d,j

= P (ite)
a

(t)
d,j

≠ ÷
ˆ[U (t)
d

]
(ite)

P (ite)
a

(t)
d,j

, if a(t)
d,j

|ite ”= a(t)
d,j

|ite+1 (2.8b)

where ÷ œ (0, 1] is the learning rate of the IoT devices. For large values of the

learning rate ÷, the IoT devices explore less thoroughly their available data o�oading

strategies, thus they converge fast to their stable decisions, however, they achieve

lower utility. The exact opposite holds true for small values of the learning rate. The

reward that each device receives by its data o�oading decision at each iteration ite

of the LRI algorithm is the normalized utility ˆ[U (t)
d

]
(ite)

= [U(t)
d ](ite)

q
dœD

[U(t)
d ](ite) .

The proposed gradient ascent reinforcement learning algorithm which converges

to a PNE of the DDO game is described in Algorithm 2. As far as the Linear Reward-

Inaction (LRI) algorithm’s complexity is concerned, we indicate as Ite the number of

iterations that the reinforcement learning algorithm requires to converge at a specific

timeslot t. The respective total complexity is O(Ite · (|D| + |D| · |A(t)
d

|)), because for

the IoT devices’ action selections and the corresponding action probabilities’ updates

components at a single iteration, the complexities are O(|D|) and O(|D| · |A(t)
d

|)

respectively. Since, the rest of the LRI algorithm includes only algebraic calculations
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of constant time complexity, i.e., O(1), the aforementioned overall complexity holds

true.

2.4.2 Log-Linear Learning

An alternative set of reinforcement learning algorithms, named log-linear learning

algorithms, is examined in this subsection. The log-linear learning algorithms en-

able the IoT devices to converge to the best PNE with high probability compared

to gradient ascent learning algorithms that simply allow the devices to explore their

distributed edge computing environment. Furthermore, the log-linear learning algo-

rithms allow the IoT devices to deviate from their probabilistically optimal decisions

and make some suboptimal decisions in order to thoroughly explore their available

data o�oading action space. An indicative log-linear learning algorithm is the Bi-

nary Log-Linear Learning (BLLL) algorithm. In BLLL algorithm, each IoT device

initially selects a data o�oading strategy among the available ones, with equal prob-

ability for each one, i.e., P (ite=0)
a

(t)
d,j

= 1
|A(t)

d |
. Then, at each iteration ite of the BLLL

algorithm, one IoT device is randomly selected to perform exploration and learning.

At the exploration phase, the device selects an alternative data o�oading strategy

a(t)
d,jÕ|ite and receives the corresponding utility [U (t)

d
]Õ(ite). At the learning phase, the

IoT device updates its data o�oading strategy based on the following probabilistic

rule.

P (ite+1)
a

(t)
d,j

= e[U(t)
d ]Õ(ite)·—

e[U(t)
d ]Õ(ite)·— + e[U(t)

d ](ite)·—
, if a(t)

d,j
|ite+1 = a(t)

d,jÕ|ite (2.9a)

P (ite+1)
a

(t)
d,j

= e[U(t)
d ](ite)·—

e[U(t)
d ]Õ(ite)·— + e[U(t)

d ](ite)·—
, if a(t)

d,j
|ite+1 ”= a(t)

d,jÕ|ite (2.9b)

where — œ R+ is the learning parameter and for large values of — the IoT devices

explore more thoroughly their available data o�oading strategies. The BLLL al-

gorithm converges when the summation of the devices’ perceived utilities remain
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approximately the same for a very small number of K consecutive iterations (con-

vergence criterion).

The proposed Binary Log-Linear Learning (BLLL) that converges to a PNE of

the DDO game is described in Algorithm 3. Regarding its corresponding complexity

analysis, if we denote Ite the total number of iterations in order the reinforcement

learning algorithm to converge to the PNE, the overall BLLL algorithm’s complexity

is O(Ite). This holds true, since as we have already mentioned, at each iteration ite

of the algorithm only one IoT device performs exploration and learning, which results

to algebraic calculations of constant time O(1). As a consequence, the convergence

of the proposed algorithm is a�ected only by the total number of iterations.

2.4.3 Q-Learning

An alternative reinforcement learning approach, known as stateless Q-Learning, is

studied in this subsection. The stateless Q-Learning utilizes the stochastic approx-

imation methods in order to allow the IoT devices to explore and learn their en-

vironment by following a Markov Decision Process (MDP) policy, thus converging

eventually to their stable data o�oading decisions. Specifically, each IoT device d

preserves an action values vector Q(ite)
d

(a) = [Q(ite)
a

(t)
d,min

, . . . , Q(ite)
a

(t)
d,j

, . . . , Q(ite)
a

(t)
d,max

], where

Q(ite)
a

(t)
d,j

denotes the estimated value of that action a(t)
d,j

up to the iteration ite, i.e., it

depicts the expected utility U (t,ite)
d

given that a(t)
d,j

is selected:

Q(ite)
a

(t)
d,j

≥= E[U (t,ite)
d

|a(t)
d,j

|ite] (2.10)

An indicative way to estimate the aforementioned Q(ite)
a

(t)
d,j

value is based on the

following standard Q-Learning update rule which is given as follows.

Q(ite)
a

(t)
d,j

= Q(ite)
a

(t)
d,j

+ ◊ · (U (t,ite)
d

≠ Q(ite)
a

(t)
d,j

) (2.11)
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where ◊ œ (0, 1] is the learning parameter. Since each IoT device selects an o�oading

strategy at each iteration ite, we introduce the widely used action selection rule

known as the greedy approach. According to the greedy rule, the IoT devices select

the o�oading strategies with the highest expected utility (Eq.2.12), thus they only

exploit the knowledge that is acquired up to the iteration ite.

a(t)
d,j

|ite+1 = arg max
a

(t)
d,jœA

(t)
d

Q(ite)
d

(a) (2.12)

Additionally, we also examine an alternative action selection approach named

‘-greedy. Under the ‘-greedy approach, the IoT devices perform exploration with

probability ‘ by selecting another data o�oading strategy with equal probability
1

|A(t)
d |≠1

other than the one that maximizes their expected utility. For ‘ = 0, the

‘-greedy approach is equivalent to the greedy approach.

The proposed Q-Learning algorithm that converges to a PNE of the DDO game is

described extensively in Algorithm 4. We indicate as Ite the number of epochs that

the reinforcement learning algorithm will execute in order to approach a potential

Pure Nash Equilibrium at a specific timeslot t. The respective total complexity is

O(Ite·|D|), because all the IoT devices select actions with respect to the correspond-

ing action values based on the ‘-greedy approach, experience a reward and afterwards

they update this Q-value. All of these steps are performed in a sequential way and

since the rest of the stateless Q-Learning algorithm contains only algebraic calcula-

tions of constant time complexity, i.e., O(1), the aforementioned overall complexity

holds true.

Detailed numerical evaluation of the examined reinforcement learning algorithms

is provided in Section 3.
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Algorithm 2 LRI Algorithm

1: Input: D, C(t)
d

, p(t)
d

, e(t)
d

T , A(t)
d

, ’d œ D

2: Output: Pure Nash Equilibrium: a(t)ú

3: Initialization: ite = 0, Convergence = 0, P (ite)
a

(t)
d,j

= 1
|A(t)

d |
, ’d œ D, ’a(t)

d,j
œ A(t)

d
, ÷

4: while Convergence == 0 do

5: for d = 1 to |D| do

6: Choose an o�oading strategy a(t)
d,j

to o�oad the respective amount of data to

the UAV-mounted MEC server, with respect to P
(ite)
d

7: end for

8: for d = 1 to |D| do

9: Determines the respective reward ˆ[U (t)
d

]
(ite)

10: end for

11: for d = 1 to |D| do

12: for all a(t)
d,j

œ A(t)
d

do

13: Updates the action probabilities P (ite)
a

(t)
d,j

according to Eq.2.8a and Eq.2.8b

14: end for

15: end for

16: if ÷a(t)
d,j

œ A(t)
d

: P (ite)
a

(t)
d,j

Ø Pthres, ’d œ D then

17: Convergence = 1

18: else

19: ite = ite+1

20: end if

21: end while
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Algorithm 3 BLLL Algorithm

1: Input: D, C(t)
d

, p(t)
d

, e(t)
d

T , A(t)
d

, ’d œ D

2: Output: Pure Nash Equilibrium: a(t)ú

3: Initialization: ite = 0, Convergence = 0, Arbitrary Action Profile a(t)
d,j , —

4: while Convergence == 0 do

5: ite = ite + 1

6: IoT device d œ D is randomly selected to perform exploration and learning

7: IoT device d selects an alternative data o�oading strategy a(t)
d,jÕ with equal prob-

ability P (ite)
a

(t)
d,jÕ

= 1
|A(t)

d |

8: IoT device d receives the corresponding utility [U (t)
d

]Õ(ite)

9: IoT device d Computes the probabilities based on the probabilistic rule presented

in Eq.2.9a and Eq.2.9b

10: IoT device d updates the o�oading strategy for the next iteration a(t,ite+1)
d,j

based

on the above probabilities

11: if convergence criterion = True then

12: Convergence = 1

13: else

14: ite = ite+1

15: end if

16: end while
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Algorithm 4 Q-Learning Algorithm

1: Input: D, C(t)
d

, p(t)
d

, e(t)
d

T , A(t)
d

, ’d œ D

2: Output: Pure Nash Equilibrium: a(t)ú

3: Initialization: ite = 0, ITERATIONS, Q(ite)
d

(a), ’d œ D, ◊

4: while ite ”= ITERATIONS do

5: for d = 1 to |D| do

6: Choose an o�oading strategy a(t)
d,j

to o�oad the respective amount of data

to the UAV-mounted MEC server, with respect to the action value Q(ite)
d

(a)

based on the ‘-greedy approach

7: end for

8: for d = 1 to |D| do

9: Determines the respective reward U (t,ite)
d

10: end for

11: for d = 1 to |D| do

12: Updates the respective action value Q(ite)
a

(t)
d,j

which depicts the expected reward

of the chosen action a(t)
d,j

, based on Eq.2.11

13: end for

14: ite = ite + 1

15: end while
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Experiments

3.1 Experiment Setup

In this section, indicative numerical results are presented to illustrate the perfor-

mance of the proposed artificial intelligence-enabled distributed edge computing

framework (Section 3.2). A detailed comparative analysis is performed to gain insight

about the behavior of the di�erent learning and exploitation approaches adopted in

this paper, by highlighting the drawbacks and benefits of the BRD model versus

the examined reinforcement learning approaches (Section 3.3). Additional discus-

sions regarding the robustness and applicability of the proposed learning methods

are provided in Section 3.4.

We consider an environment consisting of |D| = 250 IoT devices, where each IoT

device’s distance from the UAV-mounted MEC server is randomly and uniformly

distributed in the interval (10m, 400m). The simulation parameters are as follows:

I(t)
d

œ [20, 100]MBytes, C(t)
d

œ [1, 5] · 109CPUcycles, „(t)
d

= C
(t)
d

I
(t)
d

, p(t)
d

œ [1.2, 2]Watts,

W = 5MHz, b = 0.74, c = 0.0043, BUAV Ø
q

dœD

I(t)
d

and FUAV = 15 · 109 CP Ucycles

sec
.

Unless otherwise explicitly stated, we consider a(t)
d,min

œ (0, 0.2], a(t)
d,max

œ [0.8, 1.0]
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with an intermediate step of 0.05, ÷ = 0.3, — = 1000 and ◊ = 0.6. The proposed

framework’s evaluation was conducted via modeling and simulation and was executed

in a MacBook Pro Laptop, 2.5GHz Intel Core i7, with 16GB LPDDR3 available

RAM.

3.2 Pure Operation Performance

In this subsection, we examine the operation performance of the proposed artificial

intelligence-enabled distributed edge computing framework under the game-theoretic

and the reinforcement learning models, in terms of: the IoT devices’ data o�oading

strategies to the UAV-mounted MEC server, the corresponding experienced over-

head and utility, the overall system’s achieved social welfare, as well as the required

iterations and time (execution time) for convergence of the di�erent examined ap-

proaches.
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Figure 3.1: BRD Average O�oaded Data & Overhead

In particular, Fig.3.1 presents the IoT devices’ average o�oaded data to the UAV

and the corresponding experienced overhead as a function of the BRD algorithm’s

iterations and real execution time (lower and upper horizontal axis respectively).
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Figure 3.2: BRD Social Welfare & Utility

The results reveal that the BRD algorithm converges fast to a PNE (i.e., practically

in less than 4 iterations, equivalent to 0.18 sec). Also, the IoT devices converge

to a PNE, where they experience low average overhead (Fig.3.1) and high levels of

utility (Fig. 3.2). Moreover, by studying the BRD framework from the system’s

perspective, we observe that at the PNE high levels of social welfare are obtained

(Fig.3.2).
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Figure 3.3: LRI Action Proabilities

Fig.3.3 presents the convergence of the data o�oading strategies of one indicative

IoT device to a stable data o�oading decision following the LRI algorithm. It is

observed that the devices’ data o�oading converge to a stable decision in less than

100 iterations i.e., 0.32 sec, following the learning procedure of the gradient ascent
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Figure 3.4: LRI Average O�oaded Data & Overhead
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Figure 3.5: LRI Social Welfare & Utility

learning algorithm. Also, Fig. 3.4, 3.5 present the convergence of the IoT devices’

average o�oaded data, overhead, and utility, as well as the system’s social welfare.

The results show that the IoT devices learn in a distributed manner their surrounding

environment and they strategically decide their data o�oading strategies in order to

achieve low overhead and high utility, while collectively enjoy high levels of social

welfare. Furthermore, Fig.3.6 presents the trade-o� among the achieved average

utility of the IoT devices with the corresponding execution time of the LRI algorithm

in order to converge to a stable data o�oading decision as a function of the learning

parameter ÷. The results reveal that for increasing values of the learning parameter

÷, the devices learn faster their environment and make a data o�oading decision.
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Figure 3.6: LRI Learning Parameter

However, this comes at the cost of lower achieved utility, as they under-explore their

available data o�oading decisions.
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Figure 3.7: BLLL Social Welfare

Fig.3.7-3.10 examine the behavior of the BLLL algorithm, for di�erent values

of the learning parameter —, as a function of the iterations and the real execution

time. The results show that the BLLL algorithm converges to the PNE with high

probability, while the IoT devices follow a learning approach, bearing however the

cost of longer convergence time. Thus, the IoT devices converge close to the PNE

and they achieve high utility levels (Fig.3.8), and low overhead (Fig.3.10), while

intelligently deciding their data o�oading strategies (Fig.3.9). Furthermore, the

system converges to high levels of social welfare (Fig.3.7). Moreover, it is observed
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Figure 3.8: BLLL Average Utility
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Figure 3.9: BLLL Average O�oaded Data

that better results are achieved for higher values of the learning parameter —.

Similarly, Fig.3.11-3.14 present the corresponding operation performance of the

Q-learning approach, i.e., both the greedy and the ‘-greedy, in terms of the system’s

social welfare, the IoT devices’ average utility, o�oaded data, and overhead, respec-

tively, as a function of the Q-learning algorithm’s iterations and real execution time.

The results reveal that the Q-learning algorithms converge to stable data o�oading

decisions for all the IoT devices (Fig.3.13) achieving high utilities (Fig.3.12), low

overhead (Fig.3.14), and high social welfare values (Fig.3.11). It is also observed

that the ‘-greedy algorithm by allowing with small probability (‘ = 0.01) the IoT
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Figure 3.10: BLLL Average Total Overhead
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Figure 3.11: Q-Learning Social Welfare

devices to explore other data o�oading strategies than the ones that maximize the

expected utilities, achieve the best results among the di�erent Q-learning implemen-

tations. This is due to the fact that the IoT devices can explore alternative actions

compared to the greedy Q-learning algorithm (‘ = 0) where they myopically choose

the strategies that o�er them the maximum expected utility. On the other hand, if

the devices overexplore alternative strategies, i.e., ‘ = 0.1, they deviate from good

outcomes, being ”lost” in the exploration phase.
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Figure 3.12: Q-Learning Average Utility
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Figure 3.13: Q-Learning Average O�oaded Data

3.3 Comparative Evaluation

In this subsection, a comparative evaluation among the examined learning models

(i.e. game theoretic model and reinforcement learning ones) utilized to determine the

IoT devices’ data o�oading strategies in the distributed edge computing environment

is performed.

Fig.3.15-3.17 present the system’s social welfare, the social welfare’s mean square

error with respect to the BRD model, and the execution time of all the examined

algorithms, respectively. The results reveal that the game-theoretic model - as re-

flected by the BRD algorithm - illustrates the best results, both in terms of achieved
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Figure 3.14: Q-Learning Average Total Overhead
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Figure 3.15: RL Social Welfare Comparison

social welfare and execution time. Then, the BLLL algorithm achieves the highest

social welfare among all the reinforcement learning algorithms, given its inherent

attribute to converge to a PNE with high probability as demonstrated in previous

subsection. On the other hand, the LRI approach, given its simplistic action update

rule (Eq.2.8a,2.8b) converges fast (Fig.3.17) to a stable data o�oading vector for all

the IoT devices, while sacrificing the achieved welfare (Fig.3.15). The Q-Learning

approaches, i.e., ‘ = 0, 0.01, 0.1 illustrate similar execution time (Fig.3.17) and high

levels of social welfare (Fig.3.15) with the BRD algorithm’s PNE outcome. In a nut-

shell, based on the results in Fig.3.16, we observe that the smallest mean square error

of the social welfare with respect to the BRD algorithm’s outcome is achieved by the
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Figure 3.16: RL MSE Comparison
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Figure 3.17: RL Execution Time

BLLL algorithm and then by the ‘-greedy Q-learning algorithms with ‘ = 0.01 and

‘ = 0.1, respectively. Also, by allowing the IoT devices to slightly deviate from the

strategies that maximize their expected utilities, they achieve better results than the

other reinforcement learning approaches, as they thoroughly explore their alternative

strategies.

The above discussion is summarized in Fig.3.16. We observe that the smallest

mean square error of the social welfare with respect to the BRD algorithm’s outcome

is achieved by the BLLL algorithm and then by the ‘-greedy Q-learning algorithms

with ‘ = 0.01 and ‘ = 0.1, respectively. Following the previous algorithms, the
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BRD LRI BLLL Q(‘ = 0) Q(‘ = 0.1) Q(‘ = 0.01)
Social Welfare 183.08 181.72 183 182.75 182.89 182.95
MSE - 1.8496 0.0064 0.109 0.036 0.0169
Execution Time 0.31 0.49 3.90 9.09 9.09 9.09

Table 3.1: RL Comparison Table

greedy Q-learning algorithm still illustrates results close to the BRD algorithm’s

ones, while the LRI algorithm achieves the worst outcome in terms of the system’s

social welfare. Finally, the comparative results between the di�erent reinforcement

learning algorithms that were discussed above and presented in the graphs, are all

included in Table 3.1.

3.4 Discussion on Learning Methods Applicability

In the following a detailed analysis of the BLLL learning approach operation is

performed, with respect to the strategy space size available to the IoT devices (i.e.,

available number of actions). The BLLL approach is selected as it demonstrated the

best results among all the examined reinforcement learning frameworks.
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Figure 3.18: BLLL MSE for di�erent number of actions
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Figure 3.19: BLLL Execution Time for di�erent number of actions

Fig.3.18 presents the mean square error of the BLLL algorithm’s achieved social

welfare compared to the outcome of the BRD algorithm for 20, 100, 1, 000, 10, 000

data o�oading strategies, while Fig.3.19 shows the corresponding execution time

of the BLLL algorithm. The results illustrate that as the devices’ strategy space

increases, the achieved social welfare by the BLLL algorithm approaches the corre-

sponding one by the BRD algorithm, at the cost of increased execution time.

Based on the results provided in the latter two subsections, we observe that, the

game-theoretic BRD algorithm converges to better results both from the devices’

and the system’s perspective, primarily due to the use of the closed-form used to

determine the PNE (Eq. 2.7). Nevertheless, this requires that the devices are aware

of the closed-form solution or can extrapolate it, which bears additional overhead.

The reinforcement learning algorithms on the other hand, eliminate this assumption,

by enabling the devices to learn their environment without having a priori knowl-

edge of the optimal strategy rule. Last but not least, it should be noted that the

reinforcement learning approaches can be better applied in realistic cases where the

devices’ strategy space is not continuous as considered in the game-theoretic model

(i.e the devices may arbitrarily select any percentage of their data to o�oad), but in-

stead the devices are allowed to select their data o�oading strategies from a discrete
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predefined strategy space.
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Conclusion and Future Works

In this paper, an artificial intelligence-enabled distributed edge computing framework

is proposed, to support IoT applications by exploiting the computing capabilities of

a UAV-mounted MEC server. The communication and computation overhead expe-

rienced by the IoT devices is modeled, and appropriate utility functions are designed

for the IoT devices to measure their satisfaction from o�oading their computation

tasks in the distributed edge computing environment. A non-cooperative game is

formulated among the IoT devices and its PNE, i.e., devices’ optimal data o�oad-

ing strategies, is determined following the theory of submodular games. This game

theoretic-model facilitates a process that enables the devices to learn, scrutinize the

performance of other devices, and adjust their own behavior accordingly. Alterna-

tive reinforcement learning algorithms are adopted, i.e., gradient ascent, log-linear,

and Q-learning, to determine the devices’ stable data o�oading strategies. Detailed

numerical results are presented that demonstrate the operational characteristics and

performance of the di�erent models and algorithms, while they are compared against

each other.

Part of our future work is to extend and evaluate the presented framework, while
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considering a multi-UAV-mounted servers setup, where the IoT devices can exploit

the di�erent computation choices of the environment. Moreover, another aspect of

our future work is to examine the case where the actions of the IoT devices with

respect to the UAV-mounted MEC server, i.e., o�oaded bits, reside in a contin-

uous space and also design a satisfactory UAV trajectory in the continuous two-

dimensional area. In this case, it becomes impossible to represent the action values

in a finite data structure such as a 1D matrix and thus we will have to construct a

non-linear function approximator via deep neural networks. As a consequence, we

will utilize Deep Reinforcement Learning (DRL) where we will deploy several Tem-

poral Di�erence (TD)-based Value-based methods such as Deep Q-Networks (DQN),

Double Deep Q-Networks (DDQN), Dueling Networks, as well as Policy-based meth-

ods such as Advantace Actor Critic (A2C) and Deep Deterministic Policy Gradients

(DDPG).

Additionally, we envision the integration of the blockchain data structure [84] and

of a truth-inducing sybil resistant decentralized blockchain oracle [85] in order the

IoT devices to vote regarding their satisfaction from the perceived Quality of Service

(QoS) and Quality of Experience (QoE) from the UAV. Moreover, another important

aspect which is interesting to examine in the future is the incentivization of the IoT

devices to o�er their data to the UAV following a labor economic approach [86] as

well as the importance of the information that each IoT device wants to o�oad in

a public safety scenario [72]. The security aspect regarding these use cases is also

essential, since in a public safety scenario, i.e., terrorist attack, the IoT devices may

have to mask their communication’s information in a way that are not traceable by

malicious users [87,88].

We are also inclined to examine the case where the are multiple UAVs serving

the IoT devices and the latter ones have to perform autonomous decision-making

regarding to which UAV they will partially o�oad their data [46, 89]. At this case,
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we should also consider the case of the incentivization and management of the UAVs

in order to process the IoT devices’ data [90,91], and also the resource orchestration

in such a heterogeneous communication environment [92–94], where the UAVs may

have di�erent characteristics.
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