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________________________________________________ 

Further Generalization of n-D Distance  

and n-D Dependent Function in Extenics 
 

Florentin Smarandache  

University of New Mexico, Mathematics and Science Department, 705 Gurley Ave., 

Gallup, NM 87301, USA  

e-mail：smarand@unm.edu 

Abstract.  Prof. Cai Wen [1] defined the 1-D Distance and 1-D Dependent Function 

in 1983. F. Smarandache [6] generalized them to n-D Distance and n-D Dependent 

Function respectively in 2012 during his postdoc research at Guangdong University of 

Technology in Guangzhou. O. I. Şandru [7] extended the last results in 2013. Now 

[2015], as a further generalization, we unify all these results into a single formula for 

the n-D Distance and respectively for the n-D Dependent Function. 

 

Keywords: Extenics, extension distance, dependent function, attraction point, posi-

tion indicator. 

1 Extension Distance in 1-D Space 

Let’s use the notation <a, b> for any kind of closed, open, or half-closed interval { [a, 

b], (a, b), (a, b],  [a, b) }. Prof. Cai Wen has defined the extension distance between a 

point x0 and a real interval  S = <a, b>, by 

0( , ) | |
2 2

o
a b b a

x S x
 

  
            (1)

 

where in general  : (R, R2) [-(b-a)/2, + ).    (2) 

2 Principle of the Extension 1-D Distance 

Geometrically studying this extension distance, we find the following principle that 

Prof. Cai has used in 1983 defining it: 

0( , )x S = the geometric distance between the point x0 and the closest extremity point 

of the interval <a, b> to it (going in the direction that connects x0 with the optimal 

point O), distance taken as negative if x0 <a, b>, and as positive if x0 <a, b>. 
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3 Dependent Function in 1-D Space 

Prof. Cai Wen defined in 1983 in 1D the Dependent Function K(y). 

If one considers two intervals S1 and S2, that have no common end points, and S1   S2, 

for any y 𝜖 R one has: 

2

2 1

( , )
( )

( , ) ( , )

y S
K y

y S y S



 



.     (3) 

4 Definition of Attraction Point Principle in n-D Space 

F. Smarandache [2012] introduced the Attraction Point Principle in n-D-Space, as 

follows. 

Let S  be a given n-D set in the universe of discourse U, and the optimal point O  S . 

Then each point P(x1, x2, …, xn) from the universe of discourse tends towards, or is 

attracted by, the optimal point O, because the optimal point O is an ideal of each point.  

There are spaces where the attraction phenomena undergo linearly or non-linearly, by 

upon some specific linear or non-linear curves.  

That’s why one computes the extension n-D-distance between the point P and the set S  

as ρ( (x1, x2, …, xn), S ) on the direction determined by the point P and the optimal 

point O, or on the curve PO. It is a kind of convergence/attraction of each point to-

wards the optimal point.  

There are classes of examples where such attraction point principle works. 

 
Fig. 1. Linear or Non-Linear Attraction Point Principle for any bounded 3D-body. 
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5 Extension Linear or Non-Linear n-D Distance 

F. Smarandache [2012] defined the Extension Linear or Non-Linear n-D-Distance 

between point P and set S as follows: 

' ( )

' ( )

( ), ( )

inf{ ( , '),}
, ( ');

( , ) inf{ ( , ')}, , ' ( );

;
sup{ ( , )};

c

P Fr S

c c

P Fr S

c

Q Fr S Q c O

d P P
P O P c OP

P S d P P P O P c OP

P O
d P Q







 


  


  
 

      (4)

 

where: 

- c means a family of given curves; 

- ( , )c P S means the n-D distance as measured along the family of curves c; 

- the lines are considered as particular cases of curves; 

- O is the optimal point (or curvedly attraction point); 

- the points are attracting by the optimal point on trajectories described by the 

family of curves c; 

- c(O) means the family of curves passing through point O; 

- dc(P,P’) means the curvedly n-D-distance between two points P and P’, or the 

arc length of the curve c between the points P and P’; 

- inf{dc(P,P’)} means the infimum arc length between the points P and P’, i.e. 

among the curves passing between the points P and P’ one takes that curve 

which has the infimum arc length; 

- Fr(S) means the frontier of set S; 

- P’ lays on the frontier of S; 

- ( ')P c OP means that point P lays on the curve c that passes through the 

points O and P’, and P is in between O and P’; 

- similarly ' ( )P c OP means that point P’ lays on the curve c that passes 

through the points O and P, and P’ is in between O and P; 

- and c(OP’) means the curve arc length between the points O and P’ (the ex-

tremity points O and P’ included), therefore Pc(OP’) means that P lies on 

the curve c in between the points O and P’; similarly c(OP); 

- for P coinciding with O, one defined the n-D distance between the optimal 

point O and the set S  as the negatively supremum curvilinear arc length (to be 

in concordance with the 1-D definition). 

6 Extension Linear or Non-Linear Dependent n-D Function 

F. Smarandache [2012] defined the extension linear or non-linear dependent n-D func-

tion as follows. 
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In general, in a universe of discourse U, let’s have a nest of two n-D-sets, S1   S2, 

with no common end points, S1 and S2 included in U, and a point P(x1, x2, …, xn) in the 

universe of discourse U. 

Then the Extension Linear or Non-Linear Dependent n-D-Function KnD referring to 

point      P(x1, x2, …, xn) along the family of curves c is: 

2

2 1

( , )
( )

( , ) ( , )

c
nD c

c c

P S
K P

P S P S



 



    (5) 

where 1( , )c P S and 2( , )c P S are the previous extension linear or non-linear n-D-

distances between the point P and the n-D-set S1 , respectively between the point P 

and the n-D-set S2, along the family of given curves c. 

7 Point-Set Position Indicator 

O. I. Şandru [2013] defined the indicator [called extension distance by Cai Wen] 

between a point P(x) and a set S, without referring to an optimal or attraction point O, 

as follows. 

First, the classical mathematical distance between a point x and a set A is:  

( , ) inf{ ( , ), }x A d x a a A   ,     (6) 

 for any point x 𝜖 Rn and any set S   Rn, where d is the Euclidean distance on Rn. 

Whence,  

( , ),
( , )

( , ),

x S x
x S

x x S

CS

CS






 
  

  

,     (7) 

where AC represents the absolute complement of A, i.e. AC = Rn \ A. 

8 Point-Two Sets Position Indicator  

Then, O. I. Şandru [2013] defined the Point-Two Sets Position Indicator, for any two 

nested sets without common ending points from Rn, such that S1   S2,  where 

1( , )x S  and 2( , )x S  are the previous point-set position indicators, as follows: 

2
1 2

2 1

( , )
( , , )

( , ) ( , )

x S
K x S S

x S x S



 



.     (8) 
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9 Further Generalization of the n-D Distance (or Unification of 

n-D Distances)  

We further generalize the defined Extension Linear or Non-Linear n-D Distance and 

Point-Set Position Indicator between point P and set S as follows. 

a) When the optimal or attraction point does exist, one has: 

' ( )

' ( )

( ) , ( )

inf{ ( , ')},
, ( ') ;

( , ) inf{ ( , ')}, , ' ( ) ;

;
sup{ ( , )};
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

 
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   


   


   
 



      (9) 

where: 

- M is a subspace of the universe of discourse U, i.e. M ⊆ U; 

- dM(P, P’) means the distance between points P and P’ defined on given 

curves included in subspace M; 

- the other notations are identical to those in section 6. 

b) When the optimal or attraction point does not exist, one simply has: 

' ( )

' ( )

inf{ ( , ')}, ( ') ;

( , )
inf{ ( , ')}, ' ( ) ;

M

P Fr S M
M

M

P Fr S M

d P P P c OP M

P S
d P P P c OP M


 

 

   
 

  
  

 

    (10) 

By language abuse, we may consider that formula (9) works also for the case when 

there is no optimal or attraction point O, since of course in the formula of ( , )M P S  

an existing point P is different from a non-existing point O for the first and second 

pieces where one has P ≠ O and respectively P’ ≠ O, and an existing point P cannot be 

equal to a non-existing point O in the third piece {therefore the third piece of formula 

(9) is discarded}. Therefore, formula (9) is a generalization of formula (10). 

Now, if in formulas (9) and (10) one replaces M by a given family of curves passing 

through an attracting O, one obtains the n-D distance formula (defined in 2012). 

But, if in formula (9) and (10) one replaces M by U (the universe of discourse), and 

one considers all possible curves in U, one obtains the point-set position indicator 

(defined in 2013). 

c) Similarly, formula (7) becomes: 

( , ),
( , )

( , ),
M

x S x
x S

x x S M

CS M

CS






 
  

   


     (11) 
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where the Euclidean distances ( , )x S  and ( , )x CS  are computed with respect to 

the points x that belong to M too. 

If in formula (11) one replace M by a given family of curves passing through an at-

tracting point O, one obtains the n-D distance formula (defined in 2012). 

But, if in formula (11) one replaces M by U, one obtains and one considers all possi-

ble curves in U, one obtains the point-set position indicator (defined in 2013). 

10 Further Generalization of n-D Function (or Unification of n-D 

Dependent Functions)  

In general, in an universe of discourse U, let’s have a nest of two n-D sets, S1   S2, 

with no common end points, S1 and S2 included in U, and a point P(x1, x2, …, xn) in the 

universe of discourse U. 

Then the Generalization of n-D Function KnD(P)M and Point-Two Sets Indicator refer-

ring to point P(x1, x2, …, xn) along the family of curves included in M is: 

2

2 1

( , )
( )

( , ) ( , )

M
nD M

M M

P S
K P

P S P S



 



     (12) 

where 1( , )M P S and 2( , )M P S  are the previous generalization of n-D-distance 

{formula (9)} and point-set indicator {formula (10)} between the point P and the n-D 

set S1 , respectively between the point P and the n-D set S2, along the family of given 

curves from M. 

And formula (8) is generalized to: 

2
1 2

2 1

( , )
( , , )

( , ) ( , )

M
M

M M

x S
K x S S

x S x S



 



     (13) 

The properties of newly generalized n-D distance and n-D dependent function remain 

the same as in 1D case. 

11 Conclusion 

In this paper we have listed the previously defined in the scientific literature formulas 

for the 1-D and n-D distance and dependent function, respectively the point-set posi-

tion indicator and point-two-set position indicator. 

We took into consideration problems with optimal or attraction point, and problems 

without such optimal or attraction point. 
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We have then generalized (united) them into the formulas (9) and (11) for the n-D 

distance between a point and a set, and into the formulas (12) and (13) for the n-D 

dependent function. 

Let S be an arbitrary n-D set in the universe of discourse U of any dimension, and the 

optimal or attraction point O  S. Then each point P(x1, x2, …, xn), n ≥ 1, from the 

universe of discourse (linearly or non-linearly) tends towards, or is attracted by, the 

optimal point O, because the optimal point O is an ideal of each point.  

The following properties occur for the generalized (united) definition of n-D-

distance [formulas (9), (10) and (11)]: 

a) It is obvious from the generalized (united) definition of the extension n-D-

distance between a point P in the universe of discourse and the extension n-

D-set S  that: 

i) Point P(x1, x2, …, xn) Int(S)  iff  ρM( (x1, x2, …, xn), S ) < 0; 

ii) Point P(x1, x2, …, xn) Fr(S)  iff  ρM( (x1, x2, …, xn), S ) = 0; 

iii) Point P(x1, x2, …, xn) S  iff  ρM( (x1, x2, …, xn), S ) > 0. 

b) Let S1 and S2 be two extension sets, in the universe of discourse U, such that 

they have no common end points, and S1   S2. We assume they have the 

same optimal points O1O2 O located in their center of symmetry. Then 

for any point P(x1, x2, …, xn)U one has: 

ρM( (x1, x2, …, xn), S1 ) ≥ ρM( (x1, x2, …, xn), S2 ).                         (14) 

The following properties occur for the generalized (united) definition of n-D-

dependent function {formulas (12) and (13)}: 

a) If point P(x1, x2, …, xn) Int(S1), then 1 2( , , ..., )nD n MK x x x > 1; 

b) If point P(x1, x2, …, xn) Fr(S1), then 1 2( , , ..., )nD n MK x x x = 1; 

c) If point P(x1, x2, …, xn) Int(S2-S1), then 1 2( , , ..., )nD n MK x x x   (0, 1); 

d) If point P(x1, x2, …, xn) Int(S2), then 1 2( , , ..., )nD n MK x x x = 0; 

e) If point P(x1, x2, …, xn) Int(S2), then 1 2( , , ..., )nD n MK x x x < 0. 
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