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Abstract

Objective—To describe relationship between cord blood (representing fetal) myo-inositol 

concentrations and gestational age (GA) and to determine trends of blood concentrations in 

enterally and parenterally fed infants from birth to 70 days of age.

Design/Methods—Samples were collected in 281 fed or unfed infants born in 2005 and 2006. 

Myo-inositol concentrations were displayed in scatter plots and analyzed with linear regression 

models of natural log-transformed values.

Results—In 441 samples obtained from 281 infants, myo-inositol concentrations varied from 

nondetectable to 1494 μmol/L. Cord myo-inositol concentrations decreased an estimated 11.9% 

per week increase in GA. Postnatal myo-inositol concentrations decreased an estimated 14.3% per 

week increase in postmenstrual age (PMA) and were higher for enterally fed infants compared to 

unfed infants (51% increase for fed vs. unfed infants).

Conclusions—Fetal myo-inositol concentrations decreased with increasing GA. Postnatal 

concentrations decreased with increasing PMA and were higher among enterally fed than unfed 

infants.

Introduction

Inositol is present throughout the body and particularly in the central nervous system as an 

intracellular free sugar alcohol [1]. At least 90% is myo-inositol, the major stereoisomer in 

the body. Myo-inositol is additionally a constituent of a number of inositol-phosphates, 

glycolipids, glycoproteins, and particularly phosphoinositides. The most common 

phosphoinositide, phosphatidylinositol, is a structural component of various membranous 

structures and a component of lung surfactant phospholipids. Cord blood concentrations of 

myo-inositol are high in the early gestation and decrease with increasing gestation [2, 3]. 

Postnatal blood concentrations of myo-inositol increase through day 2 and then decrease 

with increasing postnatal age [3].

Preterm colostrum has higher myo-inositol concentrations than mature preterm milk 

(average 2.24 mmol/L [40.36 mg/dL] vs. 1.34 mmol/L, respectively, in one study and 4.23 

mmol/L vs. 1.86 mmol/L in another study) [4–6]. A minimum of 0.96 mg/100 kJ (4 mg/100 

kcal) myo-inositol was recommended by the American Academy of Pediatrics Committee 

on Nutrition in 1976 for milk-based formula [7]. A maximum of 9.56 mg/100 kJ (40 mg/100 

kcal) was recommended by the American Academy of Pediatrics in 2004 following a 

recommendation from the Life Sciences Research Organization [8]. Over the ensuing years, 

increasing amounts of myo-inositol have been added to formulas and to breast milk 

fortifiers; however, no intravenous product has been developed. Two studies conducted in 

the 1980s have shown higher postnatal concentrations of myo-inositol in enterally fed 

preterm infants than in those receiving parenteral nutrition exclusively [4, 6].
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In preparation for a large multicenter trial of myo-inositol to prevent retinopathy of 

prematurity to be conducted by the Eunice Kennedy Shriver National Institute of Child 

Health and Human Development Neonatal Research Network [9], a series of pilot studies 

[10, 11] were planned to select an appropriate dose and increase understanding of the 

pharmacokinetics of this endogenous sugar alcohol in the very low birth weight infant. This 

preparatory observational study was designed [1] to describe the relationship between cord 

blood (representing fetal) concentrations and gestational age (GA) and [2] to determine 

trends of blood myoinositol concentrations in enterally and parenterally fed infants from 

birth to 70 days of age, which was the planned duration of myo-inositol administration in the 

trial.

Methods

This was an observational study to describe the concentrations of myo-inositol in cord and 

postnatal blood at various ranges of GA and postmenstrual age (PMA) without myo-inositol 

supplementation and how they are affected by oral feeding. Residual serum or plasma 

samples from infants born at GA of 24–42 weeks and postnatal age of 0–70 days were 

scavenged from clinical laboratories and linked to deidentified demographic (gender, GA, 

size for GA, postnatal age) and feeding data (formula, human milk [HM], supplements, 

intravenous fluids, all without myo-inositol). Characteristics of the sample were recorded 

(source, type of anticoagulant [none, ethylenediamine-tetra-acetic acid {EDTA}, lithium 

heparin], time from collection to storage), and a unique code was assigned. Samples of 

serum/plasma were batched, frozen, and sent to the Pediatric Pharmacology Research Unit 

at the University of Utah. Myo-inositol was measured by high pressure liquid 

chromatography in 50 μL of serum or plasma; this method analyzes total free myo-inositol. 

This assay is linear from 0 to 1000 μmol/L with a correlation coefficient of 0.997 and a 

lower limit of detection of 50 μmol/L [12]. Concentrations ranging 50–99 μmol/L were 

reported as below quantifiable limit (BQL). The chromatographic peak of myo-inositol 

immediately follows that of glucose; however, the chromatographic curve returns to baseline 

except for very high glucose concentrations, thereby yielding accurate and precise 

measurements of myo-inositol using the peak area ratio of inositol to internal standard. The 

day-to-day coefficient of variation was 13% for 50 μmol/L, 7% for 100 μmol/L, and <3% for 

300 and 700 μmol/L. Intraday coefficient of variation was <2% for values 100–700 μmol/L. 

The lowest quantified reported value in this study was 100 μmol/L. Myo-inositol 

concentrations are stable when stored at room temperature for up to 1week and are 

unaffected by anticoagulation with lithium heparin, or EDTA [12].

A target of seven samples was sought for each of four GA groups, at five postnatal age 

ranges. In addition, for the youngest two GA groups, a similar target sample was sought in 

the four feeding categories explained in Table 1. Nothing per os (NPO) was defined as no 

enteral feeding for the previous 72 h. The half-life of myo-inositol in preterm infants has 

been estimated as 5.22 h for single intravenous administration data and 7.90 h for multiple 

intravenous administration data [10, 11]. We are not aware of any pharmacokinetic study of 

myo-inositol administered enterally in neonates. In adults, the serum concentration of myo-

inositol after a single enteral dose peaks at 3 h and is back to baseline after 25 h [13]. Thus, 
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after 72 h NPO (i.e., 6 half-lives beyond 25 h), the majority of myo-inositol administered 

enterally is likely to have been eliminated.

Data analyses included descriptive statistics for myo-inositol concentration, including 

frequencies of results where myo-inositol was not detected (ND), BQL and quantifiable as 

well as first quartile, median, and third quartile values for the quantifiable values. 

Nonparametric locally weighted scatter-plot smoother (LOESS) curves and associated 95% 

confidence intervals were plotted over scatter plots to descriptively assess the profile of 

myo-inositol concentrations by GA for cord samples and by PMA for postnatal samples. For 

cord and postnatal samples separately, the natural log-transformed concentration was 

modeled employing left-censoring techniques to account for values that were not 

quantifiable. The left censoring assumes that the nonquantified values are below 100 μmol/L 

but are not assumed to be a specific value. For cord samples, natural log-transformed inositol 

concentration was modeled as a function of GA. For postnatal samples, natural log-

transformed inositol concentration was modeled as a function of GA, PMA, and feeding 

category (fed vs. NPO) with a random effect for infant to account for correlation between 

observations within infant. The final model was selected to fit available data best as 

determined by the Akaike information criterion (AIC). Results include the parameter 

estimate and its standard error (SE) and the percentage change per week or for feeding vs. 

NPO. Predictive curves resulting from the model were plotted over scatter plots to 

descriptively assess the profile of myo-inositol concentrations by GA for cord samples and 

by PMA for postnatal samples. Sensitivity analyses using linear regression models with 

imputed values of log-transformed postnatal concentrations instead of left censoring were 

also performed that explored quadratic and cubic terms of age and size for GA. Statistical 

analysis was conducted using SAS version 14.2; in particular PROC NLMIXED for the left-

censoring models (SAS Institute, Inc., Cary, NC).

The study was reviewed and approved by the IRB at each participating center. Approval with 

waiver of consent was granted for six of the seven centers, whereas written consent was 

obtained in one center.

Results

Demographics

The study recruited 281 infants in calendar years 2005–2006. The range of GA at birth was 

24–42 weeks with a median GA of 29 weeks. Among the infants sampled, 47% were 

female. Information on race and ethnicity were incomplete and thus not reported. Among the 

441 samples, 1 sample was obtained in 193, 2 samples in 52, 3 samples in 18, and 4–8 

samples in 18 infants. The range of PMA for sample collection extended from 22 to 45 

weeks (Table 2).

Myo-inositol concentrations

Myo-inositol was measured in serum (18% of the samples) or plasma (74% heparin, 8% 

EDTA) obtained from 34 cord samples and 407 infant samples (Table 2). Myo-inositol was 

ND in 84 (19%) samples while concentrations were BQL in 63 (14%) samples. The overall 
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distribution of natural log-transformed myo-inositol concentrations is approximately 

consistent with a normal distribution that is left-censored at 100 μmol/L (Supplementary Fig. 

1).

A total of 34 cord samples were obtained and analyzed with myo-inositol concentrations 

appearing to decrease as gestation advanced from 24 to 42 weeks; the relationship was not 

linear, with progressive flattening of the curve when plotted on a linear scale 

(Supplementary Table 1, Fig. 1). The parameter estimate for GA was −0.13 (SE = 0.04), 

corresponding to a 11.9% decrease in cord myo-inositol concentrations for each 1 week 

increase in GA (P value = 0.003) (Table 3).

A total of 407 postnatal samples were analyzed, with a general trend of myo-inositol 

concentrations decreasing as PMA increased; the relationship was not linear, with 

progressive flattening of the curve when plotted on a linear scale (Supplementary Table 1, 

Fig. 2). The adjusted geometric mean for myo-inositol concentration of samples obtained 

from enterally fed infants are estimated to be increased by 50% compared to samples from 

the NPO infants.

The parameter estimate for PMA was −0.15 (SE = 0.02) corresponding to a 14.3% decrease 

in postnatal myo-inositol concentrations for each 1 week increase in PMA. The adjusted 

geometric means for myo-inositol concentration (μmol/L) for samples obtained from fed 

infants were increased by ~50% compared to samples from the NPO infants.

Sensitivity analyses using imputed values of postnatal myo-inositol concentrations provided 

consistent results with respect to significance of parameter estimates and did not show any 

evidence of an effect of size for GA nor of a cubic or quadratic relationship between age and 

natural log-transformed myo-inositol concentration. As a note, only six samples were from 

small for GA infants, among which three were BQL, one was ND, and two were quantified.

Discussion

In this study, we observed a large range of mixed cord blood myo-inositol concentrations, 

which decreased with increasing GA. Postnatal myo-inositol concentrations decreased after 

3 weeks of postnatal age. A linear model of the natural log-transformed concentration with 

left censoring of nonquantified values fit available data best as determined by AIC criterion 

(not shown). To our knowledge, this study reports results from the largest dataset of 

postnatal myo-inositol concentrations in newborn infants. Postnatal concentrations 

decreased with increasing PMA. Concentrations were higher among infants who were 

feeding compared to those who remained NPO. Preliminary results of this study were used 

in establishing the dosing of myo-inositol in the randomized controlled trial that was later 

conducted by the NICHD Neonatal Research Network [9].

These data are in agreement with previous publications, which showed a progressive 

decrease in serum myo-inositol concentration with increasing GA and postnatal age and 

higher concentrations in patients receiving enteral feedings compared to those receiving 

parenteral nutrition exclusively [2, 4, 14]. No significant relationship was found between 

myo-inositol cord blood concentrations and size for age, possibly due to the small sample 
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size for growth restricted infants and the high proportion of those values that were not 

measurable. Intrauterine growth restriction is associated with increased myo-inositol 

concentrations in sheep and human placenta and neonatal human urine [15–19].

Myo-inositol is synthesized in many tissues by cyclisation of glucose-6-phosphate into myo-

inositol-1-phosphate, which is dephosphorylated by inositol-1-phosphatase to produce 

inositol [20]. Most inositol is located intracellularly as the free myo-inositol stereoisomer. In 

addition, it is present as a component of myo-inositol-containing physiological molecules 

[20–22]. Since myo-inositol has been identified as a second messenger of insulin, it has been 

proposed as a dietary supplement for women with gestational diabetes [23]. A systematic 

review of randomized trials found that the only benefit of maternal myo-inositol 

supplementation was a reduced risk for neonatal hypoglycemia [23]. The Na+/myo-inositol 

cotransporter (SMIT1) has a critical role in developing neural control system, peripheral 

nerve function and osteogenesis [24–26]. Brain myo-inositol depletion in mice missing the 

Na+/myo-inositol cotransporter leads to central apnea that is prevented by myo-inositol 

supplementation [24, 27].

There is no significant correlation between fetal and maternal serum myo-inositol 

concentrations. Maternal concentrations are stable in pregnancy, while fetal concentrations 

are five times as high as maternal concentrations in the first trimester and decrease during 

gestation. Umbilical cord concentrations are higher in the artery than in the vein, consistent 

with fetal synthesis [3, 28, 29]. Quirk et al. found activity of glucose-6-phosphate: 

inositol-1-phosphate cyclase, a putative regulatory enzyme in myo-inositol synthesis, in 

human fetal liver and lung and in placenta [29]. High concentrations of fetal myo-inositol in 

early pregnancy may help maintain redox potential in low-oxygen environment in the first 

trimester and prevent neural tube defects [30, 31]. Myo-inositol affects surfactant 

composition by increasing phosphatidylinositol and the ratio of diphosphatidyl-choline to 

sphingomyelin while decreasing phosphatidyl-glycerol [32–34]. Sex-related differences in 

composition of surfactant, including a higher proportion of phosphatidylinositol and GA-

dependent progressive increase in ratio of phosphatidyl-choline to sphingomyelin in male 

preterm infants, may contribute to the sex-related difference in respiratory distress syndrome 

[35]. Phosphatidylinositol specific phospholipase C, coupled to diacylglycerol lipase action, 

could provide a mechanism for the release of arachidonic acid for prostaglandin biosynthesis 

during parturition [36].

The rate of endogenous production of myo-inositol in 23–29 week preterm infants at 0.44 ± 

1.15 weeks of age (0.36 mmol × kg−1 × d−1) is in the range of the amount ingested when 

receiving full enteral feeds (average in two studies 0.36 and 0.68 mmol × kg−1 × d−1 in 

colostrum and 0.21 and 0.30 mmol × kg−1 × d−1 in HM) [5, 6, 10]. In contrast, the rate of 

endogenous production of myo-inositol in term and late preterm infants (1.52 mmol × kg−1 

× d−1) far exceeds the amount a breast-fed infant typically ingests [4–6, 37].

Myo-inositol clearance by the kidney involves both glomerular filtration and catabolism in 

the parenchyma by myo-inositol oxygenase and aldehyde reductase [38–40]. Urinary myo-

inositol excretion, large at birth, decreases progressively in parallel with decreasing serum 

concentrations and with maturation of aldehyde reductase in the proximal tubule [14]. The 
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premature fetus likely secretes myo-inositol-rich urine into the amniotic fluid that is 

swallowed and recycled back into the fetus [1]. It is not known whether prolonged rupture of 

the fetal membranes or some other pregnancy complication leads to myo-inositol depletion 

at very premature birth. In the present study, 20% of infants born before 30 weeks of 

gestation had cord blood concentrations that were not quantifiable (i.e., BQL μmol/L). In a 

randomized trial, intravenous myo-inositol supplementation starting at 4 to 12 h after birth 

resulted in a remarkable increase in serum myo-inositol and decrease in severity of 

respiratory distress [31]. Since most of the infants born with a mean gestation of 28 weeks in 

this early trial received neither antenatal steroids nor surfactant, these results are not 

replicated at present.

Previous studies have shown an inverse relationship between serum concentrations of myo-

inositol and severe retinopathy of prematurity [41]. This led to a series of pilot trials and 

then a large randomized trial of myo-inositol supplementation, starting from a mean age of 

2.8 days and continuing up to 10 weeks, which eventually did not show a benefit [9–11].

Strengths of this study include large sample size, rigorous methods designed to find the best 

model to fit the data, multivariate analysis including GA, PMA, and feeding category, and 

multiple centers.

One limitation of the study is that samples were measured in 2006 using an HPLC method 

with overlap between BQL threshold (100 μmol/L) and expected blood concentration (~30–

250 μmol/L [3, 4]), resulting in a high proportion of values that were ND or BQL. This may 

have resulted in a bias with higher levels of median concentration in samples that were 

quantified. A more recent technique has been described, in which myo-inositol is separated 

from glucose and other hexose monosaccharides using a lead-form resin-based column and 

measurement using liquid chromatography-double mass spectrometry allows accurate and 

precise measurements of low myo-inositol concentrations below 50 μmol/L [42]. Additional 

limitations of the study include a small number of cord blood samples, a lack of separation 

of umbilical arterial and venous blood, lack of prospective data collection at rigorous time 

points, missing samples, lack of measurement of myo-inositol in HM or formula, lack of 

assessing changes in myo-inositol concentration over time, and lack of analysis by race/

ethnicity. Thus, it is possible that we may have missed significant differences between 

groups.

In summary, in the absence of myo-inositol supplementation, cord myo-inositol 

concentrations decreased with increasing GA. Postnatal concentrations decreased with 

increasing PMA and were higher among infants who were feeding compared to those who 

remained NPO. Present and previous data [8, 31] suggest that in some cases serum 

concentrations of myo-inositol at birth are low.

Data availability

Data reported in this paper may be requested through a data use agreement. Further details 

are available at https://neonatal.rti.org/index.cfm?fuseaction=DataRequest.Home.
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Fig. 1. Cord myo-inositol concentration with prediction curves resulting linear regression models 
of natural log-transformed myoinositol concentration with left censoring by gestational age at 
birth (weeks).
Left-censored includes BQL, below quantifiable limit (<100 μmol/L), and not detected, 0–50 

μmol/L.
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Fig. 2. Serial myo-inositol concentration with prediction curves resulting linear regression models 
of natural log-transformed myoinositol concentration with left censoring by PMA (weeks) and 
feeding category (enterally fed, upper panel; NPO, lower panel).
Left-censored includes BQL, below quantifiable limit (<100 μmol/L), and not detected, 0–50 

μmol/L. For the linear model, a random effect for infant was included to account for 

correlation between observations within infant.
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Table 2

Demographics and sample description.

Infant characteristic Statistic/category All infants (N = 281)

Gestational age (weeks) Mean (SD) 30.4 (4.9)

Median (Q1, Q3) 29.0 (26.3, 33.7)

Size SGA 33 (12%)

AGA 244 (87%)

LGA 4 (1%)

Gender Female 131 (47%)

Male 150 (53%)

Number of samples Median (Min, Max) 1 [1, 8]

Sample characteristic Statistic/category All samples (N = 441)

Postmenstrual age (weeks) <27 74 (17%)

27–29 91 (21%)

30–35 177 (40%)

36–45 99 (22%)

Anticoagulant use Serum 80 (18%)

Plasma-EDTA 33 (7%)

Plasma-heparin 328 (74%)

Sample type Cord 34 (8%)

Infant 407 (92%)

Q1 first quartile, Q3 third quartile, SGA small for gestational age, AGA appropriate for gestational age, LGA large for gestational age, EDTA 
ethylenediamine-tetraacetatic acid.
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