Introduction to Plithogenic Hypersoft Subgroup

Sudipta Gayen
Florentin Smarandache
Sripati Jha
Manoranjan Kumar Singh
Said Broumi

See next page for additional authors

Follow this and additional works at: https://digitalrepository.unm.edu/nss_journal

Recommended Citation
Gayen, Sudipta; Florentin Smarandache; Sripati Jha; Manoranjan Kumar Singh; Said Broumi; and Ranjan Kumar. "Introduction to Plithogenic Hypersoft Subgroup." Neutrosophic Sets and Systems 33, 1 (2020).
https://digitalrepository.unm.edu/nss_journal/vol33/iss1/14

This Article is brought to you for free and open access by UNM Digital Repository. It has been accepted for inclusion in Neutrosophic Sets and Systems by an authorized editor of UNM Digital Repository. For more information, please contact amywinter@unm.edu, lsloane@salud.unm.edu, sarahrk@unm.edu.
Introduction to Plithogenic Hypersoft Subgroup

Authors
Sudipta Gayen, Florentin Smarandache, Sripati Jha, Manoranjan Kumar Singh, Said Broumi, and Ranjan Kumar

This article is available in Neutrosophic Sets and Systems: https://digitalrepository.unm.edu/nss_journal/vol33/iss1/
Introduction to Plithogenic Hypersoft Subgroup

Sudipta Gayen¹, Florentin Smarandache², Sripati Jha³, Manoranjan Kumar Singh³, Said Broumi⁴ and Ranjan Kumar⁵,*

¹ National Institute of Technology Jamshedpur, India; sudi23dippta@gmail.com
² University of New Mexico, USA
³ Magadh University, Bodh Gaya, India
⁴ Faculty of Science Ben MSik, University Hassan II, Morocco
⁵ Jain Deemed to be University, Jayanagar, Bengaluru, India; ranjank.nit52@gmail.com
* Correspondence: ranjank.nit52@gmail.com

Abstract. In this article, some essential aspects of plithogenic hypersoft algebraic structures have been analyzed. Here the notions of plithogenic hypersoft subgroups i.e. plithogenic fuzzy hypersoft subgroup, plithogenic intuitionistic fuzzy hypersoft subgroup, plithogenic neutrosophic hypersoft subgroup have been introduced and studied. For doing that we have redefined the notions of plithogenic crisp hypersoft set, plithogenic fuzzy hypersoft set, plithogenic intuitionistic fuzzy hypersoft set, and plithogenic neutrosophic hypersoft set and also given their graphical illustrations. Furthermore, by introducing function in different plithogenic hypersoft environments, some homomorphic properties of plithogenic hypersoft subgroups have been analyzed.

Keywords: Hypersoft set; Plithogenic set; Plithogenic hypersoft set; Plithogenic hypersoft subgroup

A LIST OF ABBREVIATIONS

US signifies universal set.
CS signifies crisp set.
FS signifies fuzzy set.
IFS signifies intuitionistic fuzzy set.
NS signifies neutrosophic set.
PS signifies plithogenic set.
SS signifies soft set.
HS signifies hypersoft set.
CHS signifies crisp hypersoft set.
FHS signifies fuzzy hypersoft set.
IFHS signifies intuitionistic fuzzy hypersoft set.
NHS signifies neutrosophic hypersoft set.
PHS signifies plithogenic hypersoft set.
PCHS signifies plithogenic crisp hypersoft set.
PFHS signifies plithogenic fuzzy hypersoft set.
PIFHHS signifies plithogenic intuitionistic fuzzy hypersoft set.
PNHS signifies plithogenic neutrosophic hypersoft set.
CG signifies crisp group.
FSG signifies fuzzy subgroup.
IFSG signifies intuitionistic fuzzy subgroup.
NSG signifies neutrosophic subgroup.
DAF signifies degree of appurtenance function.
DCF signifies degree of contradiction function.
PSG signifies plithogenic subgroup.
PCHSG signifies plithogenic crisp hypersoft subgroup.
PFHSG signifies plithogenic fuzzy hypersoft subgroup.
PIFHSG signifies plithogenic intuitionistic fuzzy hypersoft subgroup.
PNHSG signifies plithogenic neutrosophic hypersoft subgroup.
DMP signifies decision making problem.
\( \rho(U) \) signifies power set of \( U \).

1. Introduction

FS [1] theory was first initiated by Zadeh to handle uncertain real-life situations more precisely than CSs. Gradually, some other set theories like IFS [2], NS [3], Pythagorean FS [4], PS [5], etc., have emerged. These sets are able to handle ambiguous situations more appropriately than FSs. NS theory was introduced by Smarandache which was generalizations of IFS and FS. He has also introduced neutrosophic probability, measure [6,7], psychology [8], pre-calculus and calculus [9], etc. Presently, NS theory is vastly used in various pure as well as applied fields. For instance, in medical diagnosis [10,11], shortest path problem [12,20], DMP [21,26], transportation problem [27,28], forecasting [29], mobile edge computing [30], abstract algebra [31], pattern recognition problem [32], image segmentation [33], internet of things [34], etc. Another set theory of profound importance is PS theory which is extensively used in handling various uncertain situations. This set theory is more general than CS, FS, IFS, and NS theory. Gradually, plithogenic probability and statistics [35], plithogenic logic [35], etc., have evolved which are generalizations of crisp probability, statistics, and logic. Smarandache has also introduced the notions of plithogenic number, plithogenic measure function, bipolar PS, tripolar PS, multipolar PS, complex PS, refined PS, etc. Presently, PS theory is extensively used in numerous research domains.
The notion of SS theory is another fundamental set theory. Presently, SS theory has become one of the most popular branches in mathematics for its huge areas of applications in various research fields. For instance, nowadays in DMP, abstract algebra, etc., it is widely used. Again, there exist concepts like vague sets, rough set, hard set, etc., which are well known for their vast applications in various domains. Gradually, based on SS theory the notions of fuzzy SS, intuitionistic SS, neutrosophic SS theory, etc., have been introduced by various researchers. In fuzzy abstract algebra, the notions of FSG, IFSG, NSG, etc., have been developed and studied by different mathematicians. SS theory has opened some new windows of opportunities for researchers working not only in applied fields but also in pure fields. As a result, the notions of soft FSG, soft IFSG, soft NSG, etc., were introduced. Later on, Smarandache has proposed the concept of HS theory which is a generalization of SS theory. Also, he has extended and introduced the concept of HS in the plithogenic environment and generalized that further. As a result, a new branch has emerged which can be a fruitful research field for its promising potentials. The following Table 1 contains some significant contributions in SS and PS theory by numerous researchers.

Table 1. Significance and influences of PS & SS theory in various fields.

<table>
<thead>
<tr>
<th>Author &amp; references</th>
<th>Year</th>
<th>Contributions in various fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Majhi et al. [53]</td>
<td>2002</td>
<td>Applied SS theory in a DMP.</td>
</tr>
<tr>
<td>Feng et al. [54]</td>
<td>2010</td>
<td>Described an adjustable approach to fuzzy SS based DMP with some examples.</td>
</tr>
<tr>
<td>aman [55]</td>
<td>2011</td>
<td>Defined fuzzy soft aggregation operator which allows the construction of more efficient DMP.</td>
</tr>
<tr>
<td>Broumi et al. [56]</td>
<td>2014</td>
<td>Defined neutrosophic parameterized SS and neutrosophic parameterized aggregation operator and applied it in DMP.</td>
</tr>
<tr>
<td>Broumi et al. [57]</td>
<td>2014</td>
<td>Defined interval-valued neutrosophic parameterized SS a reduction method for it.</td>
</tr>
<tr>
<td>Deli et al. [58]</td>
<td>2014</td>
<td>Introduced neutrosophic soft multi-set theory and studied some of its properties.</td>
</tr>
<tr>
<td>Deli &amp; Naim [59]</td>
<td>2015</td>
<td>Introduced intuitionistic fuzzy parameterized SS and studied some of its properties.</td>
</tr>
<tr>
<td>Smarandache [60]</td>
<td>2018</td>
<td>Introduced physical PS.</td>
</tr>
<tr>
<td>Smarandache [61]</td>
<td>2018</td>
<td>Studied aggregation plithogenic operators in physical fields.</td>
</tr>
</tbody>
</table>

continued...
<table>
<thead>
<tr>
<th>Author &amp; references</th>
<th>Year</th>
<th>Contributions in various fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gayen et al. [62]</td>
<td>2019</td>
<td>Introduced the notions of plithogenic subgroups and studied some of their homomorphic properties.</td>
</tr>
<tr>
<td>Abdel-Basset et al. [63]</td>
<td>2019</td>
<td>Described a novel model for evaluation of hospital medical care systems based on PSs.</td>
</tr>
<tr>
<td>Abdel-Basset et al. [64]</td>
<td>2019</td>
<td>Described a novel plithogenic TOPSIS-CRITIC model for sustainable supply chain risk management.</td>
</tr>
<tr>
<td>Abdel-Basset et al. [65]</td>
<td>2019</td>
<td>Proposed a hybrid plithogenic decision-making approach with quality function deployment.</td>
</tr>
</tbody>
</table>

This Chapter has been systematized as the following: In Section 2, literature reviews of FS, IFS, NS, FSG, IFSG, NSG, PS, PHS, etc., are mentioned. In Section 3, the concepts of PCHS, PFHS, PIFHS, and PNHS have been redefined in a different way and their graphical illustrations have been given. Also, the notions of PFHSG, PIFHSG, and PNHSG have been introduced and further the effects of homomorphism on those notions are studied. Finally, in Section 4, the conclusion is given mentioning some scopes of future researches.

2. Literature Survey

In this segment, some important notions like, FS, IFS, NS, FSG, IFSG, NSG, etc., have been discussed. We have also mentioned PS, SS, HS and some aspects of PHS. These notions will play vital roles in developing the concepts of PHSGs.

**Definition 2.1.** \[1\] Let \( U \) be a CS. A function \( \sigma : U \rightarrow [0,1] \) is called a FS.

**Definition 2.2.** \[2\] Let \( U \) be a CS. An IFS \( \gamma \) of \( U \) is written as \( \gamma = \{(m,t_\gamma(m),f_\gamma(m)) : m \in U\} \), where \( t_\gamma(m) \) and \( f_\gamma(m) \) are two FSs of \( U \), which are called the degree of membership and non-membership of any \( m \in U \). Here \( \forall m \in U \), \( t_\gamma(m) \) and \( f_\gamma(m) \) satisfy the inequality \( 0 \leq t_\gamma(m) + f_\gamma(m) \leq 1 \).

**Definition 2.3.** \[3\] Let \( U \) be a CS. A NS \( \eta \) of \( U \) is denoted as \( \eta = \{(m,t_\eta(m),i_\eta(m),f_\eta(m)) : m \in U\} \), where \( t_\eta(m),i_\eta(m),f_\eta(m) : U \rightarrow \{-0.1,+1\} \) are the corresponding degree of truth, indeterminacy, and falsity of any \( m \in U \). Here \( \forall m \in U \), \( t_\eta(m), i_\eta(m) \) and \( f_\eta(m) \) satisfy the inequality \( -0 \leq t_\eta(m) + i_\eta(m) + f_\eta(m) \leq 3 \).

2.1. Fuzzy, Intuitionistic fuzzy & Neutrosophic subgroup

**Definition 2.4.** \[48\] A FS of a CG \( U \) is called as a FSG iff \( \forall m,u \in U \), the conditions mentioned below are satisfied:

\( (i) \ \alpha(mu) \geq \min\{\alpha(m),\alpha(u)\} \)

*Gayen et al., Introduction to Plithogenic Hypersoft Subgroup*
(ii) $\alpha(m^{-1}) \geq \alpha(m)$.

**Definition 2.5.** [49] An IFS $\gamma = \{(m, t_\gamma(m), f_\gamma(m)) : m \in U\}$ of a CG $U$ is called an IFSG iff $\forall m, u \in U$,

(i) $t_\gamma(mu^{-1}) \geq \min\{t_\gamma(m), t_\gamma(u)\}$
(ii) $f_\gamma(mu^{-1}) \leq \max\{f_\gamma(m), f_\gamma(u)\}$.

The set of all the IFSG of $U$ will be denoted as IFSG($U$).

**Definition 2.6.** [31] Let $U$ be a CG and $\delta$ be a NS of $U$. $\delta$ is called a NSG of $U$ iff the conditions mentioned below are satisfied:

(i) $\delta(mu) \geq \min\{\delta(m), \delta(u)\}$, i.e. $t_\delta(mu) \geq \min\{t_\delta(m), t_\delta(u)\}$ and $f_\delta(mu) \leq \max\{f_\delta(m), f_\delta(u)\}$
(ii) $\delta(m^{-1}) \geq \delta(m)$ i.e. $t_\delta(m^{-1}) \geq t_\delta(u)$ and $f_\delta(m^{-1}) \leq f_\delta(u)$.

**Theorem 2.1.** [66] Let $g$ be a homomorphism of a CG $U_1$ into another CG $U_2$. Then preimage of an IFSG $\gamma$ of $U_2$ i.e. $g^{-1}(\gamma)$ is an IFSG of $U_1$.

**Theorem 2.2.** [66] Let $g$ be a surjective homomorphism of a CG $U_1$ to another CG $U_2$. Then the image of an IFSG $\gamma$ of $U_1$ i.e. $g(\gamma)$ is an IFSG of $U_2$.

**Theorem 2.3.** [31] The homomorphic image of any NSG is a NSG.

**Theorem 2.4.** [31] The homomorphic preimage of any NSG is a NSG.

Some more references in the domains of FSG, IFSG, NSG, etc., which can be helpful to various other researchers are [67–71].

2.2. Plithogenic set & Plithogenic hypersoft set

**Definition 2.7.** [5] Let $U$ be a US and $P \subseteq U$. A PS is denoted as $P_s = (P, \psi, V_\psi, a, c)$, where $\psi$ be an attribute, $V_\psi$ is the respective range of attributes values, $a : P \times V_\psi \rightarrow [0,1]^s$ is the DAF and $c : V_\psi \times V_\psi \rightarrow [0,1]^t$ is the corresponding DCF. Here $s,t \in \{1,2,3\}$.

In Definition 2.7 for $s = 1$ and $t = 1$ a will become a FDAF and $c$ will become a FDCF. In general, we consider only FDAF and FDCF. Also, $\psi(u_i, u_j) \in V_\psi \times V_\psi$, $c$ satisfies $c(u_i, u_i) = 0$ and $c(u_i, u_j) = c(u_j, u_i)$.

**Definition 2.8.** [36] Let $U$ be a US, $V_A$ be a set of attribute values. Then the ordered pair $(\Gamma, U)$ is called a SS over $U$, where $\Gamma : V_A \rightarrow \rho(U)$.

Gayen et al., Introduction to Plithogenic Hypersoft Subgroup
Definition 2.9. Let $U$ be a US. Let $r_1, r_2, \ldots, r_n$ be $n$ attributes and corresponding attribute value sets are respectively $D_1, D_2, \ldots, D_n$ (where $D_i \cap D_j = \phi$ for $i \neq j$ and $i, j \in \{1, 2, \ldots, n\}$). Let $V_\psi = D_1 \times D_2 \times \cdots \times D_n$. Then the ordered pair $(\Gamma, V_\psi)$ is called a HS of $U$, where $\Gamma : V_\psi \rightarrow \rho(U)$.

Definition 2.10. A US $U_C$ is termed as a crisp US if $\forall u \in U_C$, $u$ fully belongs to $U_C$ i.e. membership of $u$ is 1.

Definition 2.11. A US $U_F$ is termed as a fuzzy US if $\forall u \in U_F$, $u$ partially belongs to $U_F$ i.e. membership of $u$ belonging to $[0, 1]$.

Definition 2.12. A US $U_{IF}$ is termed as an intuitionistic fuzzy US if $\forall u \in U_{IF}$, $u$ partially belongs to $U_{IF}$ and also partially does not belong to $U_{IF}$ i.e. membership of $u$ belonging to $[0, 1] \times [0, 1]$.

Definition 2.13. A US $U_N$ is termed as an neutrosophic US if $\forall u \in U_N$, $u$ has truth belongingness, indeterminacy belongingness, and falsity belongingness to $U_N$ i.e. membership of $u$ belonging to $[0, 1] \times [0, 1] \times [0, 1]$.

Definition 2.14. A US $U_P$ over an attribute value set $\psi$ is termed as a plithogenic US if $\forall u \in U_P$, $u$ belongs to $U_P$ with some degree on the basis of each attribute value. This degree can be crisp, fuzzy, intuitionistic fuzzy, or neutrosophic.

Definition 2.15. Let $U_C$ be a crisp US and $\psi = \{r_1, r_2, \ldots, r_n\}$ be a set of $n$ attributes with attribute value sets respectively as $D_1, D_2, \ldots, D_n$ (where $D_i \cap D_j = \phi$ for $i \neq j$ and $i, j \in \{1, 2, \ldots, n\}$). Also, let $V_\psi = D_1 \times D_2 \times \cdots \times D_n$. Then $(\Gamma, V_\psi)$, where $\Gamma : V_\psi \rightarrow \rho(U_C)$ is termed as a CHS over $U_C$.

Definition 2.16. Let $U_F$ be a fuzzy US and $\psi = \{r_1, r_2, \ldots, r_n\}$ be a set of $n$ attributes with attribute value sets respectively as $D_1, D_2, \ldots, D_n$ (where $D_i \cap D_j = \phi$ for $i \neq j$ and $i, j \in \{1, 2, \ldots, n\}$). Also, let $V_\psi = D_1 \times D_2 \times \cdots \times D_n$. Then $(\Gamma, V_\psi)$, where $\Gamma : V_\psi \rightarrow \rho(U_F)$ is called a FHS over $U_F$.

Definition 2.17. Let $U_{IF}$ be an intuitionistic fuzzy US and $\psi = \{r_1, r_2, \ldots, r_n\}$ be a set of $n$ attributes with attribute value sets respectively as $D_1, D_2, \ldots, D_n$ (where $D_i \cap D_j = \phi$ for $i \neq j$ and $i, j \in \{1, 2, \ldots, n\}$). Also, let $V_\psi = D_1 \times D_2 \times \cdots \times D_n$. Then $(\Gamma, V_\psi)$, where $\Gamma : V_\psi \rightarrow \rho(U_{IF})$ is called an IFHS over $U_{IF}$.

Definition 2.18. Let $U_N$ be a neutrosophic US and $\psi = \{r_1, r_2, \ldots, r_n\}$ be a set of $n$ attributes with attribute value sets respectively as $D_1, D_2, \ldots, D_n$ (where $D_i \cap D_j = \phi$ for $i \neq j$ and $i, j \in \{1, 2, \ldots, n\}$). Also, let $V_\psi = D_1 \times D_2 \times \cdots \times D_n$. Then $(\Gamma, V_\psi)$, where $\Gamma : V_\psi \rightarrow \rho(U_N)$ is called a NHS over $U_N$.

Gayen et al., Introduction to Plithogenic Hypersoft Subgroup
Definition 2.19. [52] Let \( U_P \) be a plithogenic US and \( \psi = \{ r_1, r_2, ..., r_n \} \) be a set of \( n \) attributes with attribute value sets respectively as \( D_1, D_2, ..., D_n \) (where \( D_i \cap D_j = \phi \) for \( i \neq j \) and \( i, j \in \{ 1, 2, ..., n \} \)). Also, let \( V_\psi = D_1 \times D_2 \times \cdots \times D_n \). Then \((\Gamma, V_\psi)\), where \( \Gamma : V_\psi \to \rho(U_P) \) is called a PHS over \( U_P \).

Further, depending on someone’s preferences PHS can be categorized as PCHS, PFHS, PIFHS, and PNHS. In [52], Smarandache has wonderfully introduced and illustrated these categories with proper examples.

In the next section, we have mentioned an equivalent statement of Definition 2.19 and described its categories in a different way. Also, we have given some graphical representations of PCHS, PFHS, PIFHS, and PNHS. Again, we have introduced functions in the environments of PFHS, PIFHS, and PNHS. Furthermore, we have introduced the notions of PFHSG, PIFHSG, and PNHSG and studied their homomorphic characteristics.

3. Proposed Notions

As an equivalent statement to Definition 2.19, we can conclude that \( \forall M \in \text{range}(\Gamma) \) and \( \forall i \in \{1, 2, ..., n\}, \exists a_i : M \times D_i \to [0, 1]^s \) (\( s = 1, 2 \) or 3) such that \( \forall (m, d) \in M \times D_i \), \( a_i(m, d) \) represent the DAFs of \( m \) to the set \( M \) on the basis of the attribute value \( d \). Then the pair \((\Gamma, V_\psi)\) is called a PHS.

So, based on someone’s requirement one may choose \( s = 1, 2 \) or 3 and further, depending on these choices PHS can be categorized as PFHS, PIFHS, and PNHS. Also, by defining DAF as \( a_i : M \times D_i \to \{0, 1\} \), the notion of PCHS can be introduced. The followings are those aforementioned notions:

Let \( \psi = \{ r_1, r_2, ..., r_n \} \) be a set of \( n \) attributes and corresponding attribute value sets are respectively \( D_1, D_2, ..., D_n \) (where \( D_i \cap D_j = \phi \), for \( i \neq j \) and \( i, j \in \{1, 2, ..., n\} \)). Let \( V_\psi = D_1 \times D_2 \times \cdots \times D_n \) and \((\Gamma, V_\psi)\) be a HS over \( U \), where \( \Gamma : V_\psi \to \rho(U) \).

Definition 3.1. The pair \((\Gamma, V_\psi)\) is called a PCHS if \( \forall M \in \text{range}(\Gamma) \) and \( \forall i \in \{1, 2, ..., n\} \), \( \exists a_{C_i} : M \times D_i \to \{0, 1\} \) such that \( \forall (m, d) \in M \times D_i \), \( a_{C_i}(m, d) = 1 \).

A set of all the PCHSs over a set \( U \) will be denoted as \( \text{PCHS}(U) \).

Example 3.2. Let a balloon seller has a set \( U = \{ b_1, b_2, ..., b_{20} \} \) of a total of 20 balloons some which are of different size, color, and cost. Also, let for the aforementioned attributes corresponding attribute value sets are \( D_1 = \{ \text{small, medium, large} \}, D_2 = \{ \text{red, orange, blue} \} \) and \( D_3 = \{ \text{small, medium, large} \} \). Let a person is willing to buy some balloons having the attributes as big, red and expensive. Lets assume \((\Gamma, V_\psi)\) be a HS over \( U \), where \( \Gamma : V_\psi \to \rho(U) \) and \( V_\psi = D_1 \times D_2 \times D_3 \). Also, let \( \Gamma(\text{big, red, expensive}) = \{b_3, b_{10}, b_{12}\} \).

Gayen et al., Introduction to Plithogenic Hypersoft Subgroup
Then corresponding PCHS will be $\Gamma(\text{big, red, expensive}) = \{b_3(1, 1, 1), b_{10}(1, 1, 1), b_{12}(1, 1, 1)\}$. Its graphical representation is shown in Figure 1.

**Definition 3.3.** The pair $(\Gamma, V_\psi)$ is called a PFHS if $\forall M \in \text{range}(\Gamma)$ and $\forall i \in \{1, 2, ..., n\}, \exists a_{F_i} : M \times D_i \rightarrow [0, 1]$ such that $\forall (m, d) \in M \times D_i$, $a_{F_i}(m, d) \in [0, 1]$.

A set of all the PFHSs over a set $U$ will be denoted as $\text{PFHS}(U)$.

**Example 3.4.** In Example 3.2 let corresponding PFHS is $\Gamma(\text{big, red, expensive}) = \{b_3(0.75, 0.3, 0.8), b_{10}(0.45, 0.57, 0.2), b_{12}(0.15, 0.57, 0.95)\}$. Its graphical representation is shown in Figure 2.

**Definition 3.3.** The pair $(\Gamma, V_\psi)$ is called a PFHS if $\forall M \in \text{range}(\Gamma)$ and $\forall i \in \{1, 2, ..., n\}, \exists a_{F_i} : M \times D_i \rightarrow [0, 1]$ such that $\forall (m, d) \in M \times D_i$, $a_{F_i}(m, d) \in [0, 1]$.

A set of all the PFHSs over a set $U$ will be denoted as $\text{PFHS}(U)$.

**Example 3.4.** In Example 3.2 let corresponding PFHS is $\Gamma(\text{big, red, expensive}) = \{b_3(0.75, 0.3, 0.8), b_{10}(0.45, 0.57, 0.2), b_{12}(0.15, 0.57, 0.95)\}$. Its graphical representation is shown in Figure 2.

**Figure 1.** PCHS according to Example 3.2

**Figure 2.** PFHS according to Example 3.4

*Gayen et al., Introduction to Plithogenic Hypersoft Subgroup*
Definition 3.5. The pair \((\Gamma, V_\psi)\) is called a PIFHS if \(\forall M \in \text{range}(\Gamma)\) and \(\forall i \in \{1, 2, ..., n\}, \exists a_{IF_i} : M \times D_i \rightarrow [0, 1] \times [0, 1] \times [0, 1]\) such that \(\forall (m, d) \in M \times D_i, a_{IF_i}(m, d) \in [0, 1] \times [0, 1]\).

A set of all the PIFHSs over a set \(U\) will be denoted as \(\text{PIFHS}(U)\).

Example 3.6. In Example 3.2 let corresponding PIFHS is

\[
\Gamma(\text{big, red, expensive}) = \begin{cases} 
\{ b_3(0.87, 0.52, 0.66), b_{10}(0.6, 0.52, 0.2), b_{12}(0.33, 0.2, 0.83) 
\}.
\end{cases}
\]

Its graphical representation is shown in Figure 3.

Definition 3.7. The pair \((\Gamma, V_\psi)\) is called a PNHS if \(\forall M \in \text{range}(\Gamma)\) and \(\forall i \in \{1, 2, ..., n\}, \exists a_{N_i} : M \times D_i \rightarrow [0, 1] \times [0, 1] \times [0, 1] \times [0, 1]\) such that \(\forall (m, d) \in M \times D_i, a_{N_i}(m, d) \in [0, 1] \times [0, 1] \times [0, 1]\).

A set of all the PNHSs over a set \(U\) will be denoted as \(\text{PNHS}(U)\).

Example 3.8. In Example 3.2 let corresponding PNHS is

\[
\Gamma(\text{big, red, expensive}) = \begin{cases} 
\{ b_3(0.87, 1, 0.66), b_{10}(0.61, 0.25, 0.2), b_{12}(0.32, 0.7, 0.83) 
\}.
\end{cases}
\]

Its graphical representation is shown in Figure 4.

Gayen et al., Introduction to Plithogenic Hypersoft Subgroup
3.1. Images & Preimages of PFHS, PIFHS & PNHS under a function

Let $U_1$ and $U_2$ be two CSs and $\forall i, j \in \{1, 2, ..., n\}$, $D_i$ and $P_j$ are attribute value sets consisting of some attribute values. Again, let $g_{ij}: U_1 \times D_i \to U_2 \times P_j$ are some functions. Then the followings can be defined:

**Definition 3.9.** Let $(\Gamma_1, V_1^{\psi}) \in \text{PFHS}(U_1)$ and $(\Gamma_2, V_2^{\psi}) \in \text{PFHS}(U_2)$, where $V_1^{\psi} = D_1 \times D_2 \times \ldots \times D_n$ and $V_2^{\psi} = P_1 \times P_2 \times \ldots \times P_n$. Also, let $\forall M \in \text{range}(\Gamma_1)$, $a_{F_i}: M \times D_i \to [0, 1]$ are the corresponding FDAFs. Again, let $\forall N \in \text{range}(\Gamma_2)$, $b_{F_j}: N \times P_j \to [0, 1]$ are the corresponding FDAFs. Then the images of $(\Gamma_1, V_1^{\psi})$ under the functions $g_{ij}: U_1 \times D_i \to U_2 \times P_j$ are PFHS over $U_2$ and they are denoted as $g_{ij}(\Gamma_1, V_1^{\psi})$, where the corresponding FDAFs are defined as:

$$g_{ij}(a_{F_i})(n, p) = \begin{cases} \max a_{F_i}(m, d) & \text{if } (m, d) \in g_{ij}^{-1}(n, p) \\ 0 & \text{otherwise} \end{cases}$$

The preimages of $(\Gamma_2, V_2^{\psi})$ under the functions $g_{ij}: U_1 \times D_i \to U_2 \times P_j$ are PFHSs over $U_1$, which are denoted as $g_{ij}^{-1}(\Gamma_2, V_2^{\psi})$ and the corresponding FDAFs are defined as $g_{ij}^{-1}(b_{F_j})(m, d) = b_{F_j}(g_{ij}(m, d))$.

**Definition 3.10.** Let $(\Gamma_1, V_1^{\psi}) \in \text{PIFHS}(U_1)$ and $(\Gamma_2, V_2^{\psi}) \in \text{PIFHS}(U_2)$, where $V_1^{\psi} = D_1 \times D_2 \times \ldots \times D_n$ and $V_2^{\psi} = P_1 \times P_2 \times \ldots \times P_n$. Also, let $\forall M \in \text{range}(\Gamma_1)$, $a_{IF_i}: M \times D_i \to [0, 1]$ are the corresponding FDAFs. Then the images of $(\Gamma_1, V_1^{\psi})$ under the functions $g_{ij}: U_1 \times D_i \to U_2 \times P_j$ are PIFHS over $U_2$ and they are denoted as $g_{ij}(\Gamma_1, V_1^{\psi})$, where the corresponding FDAFs are defined as $g_{ij}(a_{IF_i})(n, p) = \begin{cases} \max a_{IF_i}(m, d) & \text{if } (m, d) \in g_{ij}^{-1}(n, p) \\ 0 & \text{otherwise} \end{cases}$

The preimages of $(\Gamma_2, V_2^{\psi})$ under the functions $g_{ij}: U_1 \times D_i \to U_2 \times P_j$ are PIFHSs over $U_1$, which are denoted as $g_{ij}^{-1}(\Gamma_2, V_2^{\psi})$ and the corresponding FDAFs are defined as $g_{ij}^{-1}(b_{IF_j})(m, d) = b_{IF_j}(g_{ij}(m, d))$. 

"Gayen et al., Introduction to Plithogenic Hypersoft Subgroup"
$M \times D_i \to [0,1] \times [0,1]$ with $a_{IF_i}(m,d) = \{(m,d), a_{IF_i}^T(m,d), a_{IF_i}^F(m,d)\} : (m,d) \in M \times D_i$ are the corresponding IFDAFs. Again, let $\forall N \in \text{range}(\Gamma_2)$, $b_{IF_j} : N \times P_j \to [0,1] \times [0,1]$ with $b_{IF_j}(n,p) = \{(n,p), b_{IF_j}^T(n,p), b_{IF_j}^F(n,p)\} : (n,p) \in N \times P_j$ are the corresponding IFDAFs. Then the images of $(\Gamma_1, V_1^1)$ under the functions $g_{ij} : U_1 \times D_i \to U_2 \times P_j$ are PIFHS over $U_2$, which are denoted as $g_{ij}(\Gamma_1, V_1^1)$ and the corresponding IFDAFs are defined as: $g_{ij}(a_{IF_i})(n,p) = (g_{ij}(a_{IF_i}^T)(n,p), g_{ij}(a_{IF_i}^F)(n,p))$, where

$$g_{ij}(a_{IF_i}^T)(n,p) = \begin{cases} \max a_{IF_i}^T(m,d) \text{ if } (m,d) \in g_{ij}^{-1}(n,p) \\ 0 \text{ otherwise} \end{cases}$$

and

$$g_{ij}(a_{IF_i}^F)(n,p) = \begin{cases} \min a_{IF_i}^F(m,d) \text{ if } (m,d) \in g_{ij}^{-1}(n,p) \\ 1 \text{ otherwise} \end{cases}$$

The preimages of $(\Gamma_2, V_2^2)$ under the functions $g_{ij} : U_1 \times D_i \to U_2 \times P_j$ are PIFHS over $U_1$, which are denoted as $g_{ij}^{-1}(\Gamma_2, V_2^2)$ and the corresponding IFDAFs are defined as:

$$g_{ij}^{-1}(b_{IF_j})(m,d) = (g_{ij}^{-1}(b_{IF_j}^T)(m,d), g_{ij}^{-1}(b_{IF_j}^F)(m,d)), \text{ where } g_{ij}^{-1}(b_{IF_j}^T)(m,d) = b_{IF_j}^T(g_{ij}(m,d))$$

and

$$g_{ij}^{-1}(b_{IF_j}^F)(m,d) = b_{IF_j}^F(g_{ij}(m,d))$$

**Definition 3.11.** Let $(\Gamma_1, V_1^1) \in \text{PNHS}(U_1)$ and $(\Gamma_2, V_2^2) \in \text{PNHS}(U_2)$, where $V_1^1 = D_1 \times D_2 \times \ldots \times D_n$ and $V_2^2 = P_1 \times P_2 \times \ldots \times P_n$. Also, let $\forall M \in \text{range}(\Gamma_1), a_{NI_i} : M \times D_i \to [0,1] \times [0,1] \times [0,1]$ with $a_{NI_i}(m,d) = \{(m,d), a_{NI_i}^T(m,d), a_{NI_i}^F(m,d)\} : (m,d) \in M \times D_i$ are the corresponding NDAFs. Again, let $\forall N \in \text{range}(\Gamma_2)$, $b_{NI_j} : N \times P_j \to [0,1] \times [0,1] \times [0,1]$ with $b_{NI_j}(n,p) = \{(n,p), b_{NI_j}^T(n,p), b_{NI_j}^F(n,p)\} : (n,p) \in N \times P_j$ are the corresponding NDAFs. Then the images of $(\Gamma_1, V_1^1)$ under the functions $g_{ij} : U_1 \times D_i \to U_2 \times P_j$ are PNHS over $U_2$, which are denoted as $g_{ij}(\Gamma_1, V_1^1)$ and the corresponding NDAFs are defined as:

$$g_{ij}(a_{NI_i})(n,p) = (g_{ij}(a_{NI_i}^T)(n,p), g_{ij}(a_{NI_i}^F)(n,p), g_{ij}(a_{NI_i}^T)(n,p))$$

where

$$g_{ij}(a_{NI_i}^T)(n,p) = \begin{cases} \max a_{NI_i}^T(m,d) \text{ if } (m,d) \in g_{ij}^{-1}(n,p) \\ 0 \text{ otherwise} \end{cases}$$

and

$$g_{ij}(a_{NI_i}^F)(n,p) = \begin{cases} \min a_{NI_i}^F(m,d) \text{ if } (m,d) \in g_{ij}^{-1}(n,p) \\ 1 \text{ otherwise} \end{cases}$$
The preimages of \( (\Gamma_2, V_2^2) \) under the functions \( g_{ij} : U_1 \times D_i \to U_2 \times P_j \) are PNHS over \( U_1 \), which are denoted as \( g_{ij}^{-1}(\Gamma_2, V_2^2) \) and the corresponding NDAFs are defined as

\[
g_{ij}^{-1}(b_{Nj}) (m, d) = (g_{ij}^{-1}(b_{Nj}^T)(m, d), g_{ij}^{-1}(b_{Nj}^I)(m, d), g_{ij}^{-1}(b_{Nj}^F)(m, d)),
\]

where

\[
g_{ij}^{-1}(b_{Nj}^T)(m, d) = b_{Nj}^T (g_{ij}(m, d)),
\]

\[
g_{ij}^{-1}(b_{Nj}^I)(m, d) = b_{Nj}^I (g_{ij}(m, d)),
\]

\[
g_{ij}^{-1}(b_{Nj}^F)(m, d) = b_{Nj}^F (g_{ij}(m, d)).
\]

In the next segment, we have defined plithogenic hypersoft subgroups in fuzzy, intuitionistic fuzzy, and neutrosophic environments. We have also, analyzed their homomorphic properties.

### 3.2. Plithogenic Hypersoft Subgroup

#### 3.2.1. Plithogenic Fuzzy Hypersoft Subgroup

**Definition 3.12.** Let the pair \( (\Gamma, V_\psi) \) be a PFHS of a CG \( U \), where \( V_\psi = D_1 \times D_2 \times \cdots \times D_n \) and \( \forall i \in \{1, 2, ..., n\}, D_i \) are CGs. Then \( (\Gamma, V_\psi) \) is called a PFHSG of \( U \) if and only if \( \forall M \in \text{range}(\Gamma), \forall (m_1, d), (m_2, d') \in M \times D_i \) and \( \forall a_{F_i} : M \times D_i \to [0, 1] \), the conditions mentioned below are satisfied:

(i) \( a_{F_i}((m_1, d) \cdot (m_2, d')) \geq \min\{a_{F_i}(m_1, d), a_{F_i}(m_2, d')\} \) and

(ii) \( a_{F_i}(m_1, d)^{-1} \geq a_{F_i}(m_1, d) \).

A set of all PFHSG of a CG \( U \) is denoted as PFHSG(\( U \)).

**Example 3.13.** Let \( U = \{e, m, u, mu\} \) be the Kleins 4-group and \( \psi = \{r_1, r_2\} \) is a set of two attributes and corresponding attribute value sets are respectively, \( D_1 = \{1, i, -1, -i\} \) and \( D_2 = \{1, w, w^2\} \), which are two cyclic groups. Let \( V_\psi = D_1 \times D_2 \) and \( (\Gamma, V_\psi) \) be a HS over \( U \), where \( \Gamma : V_\psi \to \rho(U) \) such that the range of \( \Gamma \) i.e. \( R(\Gamma) = \{\{e, m\}, \{e, u\}, \{e, mu\}\} \). Let for \( M = \{e, m\} \), \( a_{F_1} : M \times D_1 \to [0, 1] \) is defined in Table 2 and \( a_{F_2} : M \times D_2 \to [0, 1] \) is defined in Table 3 respectively.

**Table 2. Membership values of \( a_{F_1} \) \hspace{1cm} Table 3. Membership values of \( a_{F_2} \)**

<table>
<thead>
<tr>
<th>( a_{F_1} )</th>
<th>1</th>
<th>( i )</th>
<th>-1</th>
<th>-( i )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( e )</td>
<td>0.4</td>
<td>0.2</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>( m )</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>( a_{F_2} )</th>
<th>1</th>
<th>( w )</th>
<th>( w^2 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( e )</td>
<td>0.8</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>( m )</td>
<td>0.6</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Let for \( M = \{e, u\} \), \( a_{F_1} : M \times D_1 \to [0, 1] \) is defined in Table 4 and \( a_{F_2} : M \times D_2 \to [0, 1] \) is defined in Table 5 respectively.

*Gayen et al., Introduction to Plithogenic Hypersoft Subgroup*
Let for $M = \{e, m, u\}$, $a_{F_1} : M \times D_1 \to [0, 1]$ is defined in Table 6 and $a_{F_2} : M \times D_2 \to [0, 1]$ is defined in Table 7 respectively.

**Proposition 3.1.** Let $U$ be a CG and $(\Gamma, V_{\psi}) \in \text{PFHSG}(U)$, where $V_{\psi} = D_1 \times D_2 \times \cdots \times D_n$ and $\forall i \in \{1, 2, \ldots, n\}$, $D_i$ are CGs. Then for any $M \in \text{range}(\Gamma)$, $\forall (m, d) \in M \times D_i$ and $\forall a_{F_i} : M \times D_i \to [0, 1]$, the followings are satisfied:

(i) $a_{F_i}(e, d^+_i) \geq a_{F_i}(m, d)$, where $e$ and $d^+_i$ are the neutral elements of $U$ and $D_i$.

(ii) $a_{F_i}(m, d)^{-1} = a_{F_i}(m, d)$

**Proof.** (i) Let $e$ and $d^+_i$ be the neutral elements of $U$ and $D_i$. Then $\forall (m, d) \in M \times D_i$,

$$a_{F_i}(e, d^+_i) = a_{F_i}((m, d) \cdot (m, d)^{-1}),$$

$$\geq \min\{a_{F_i}(m, d), a_{F_i}(m, d)^{-1}\} \quad \text{(by Definition 3.12)}$$

$$\geq \min\{a_{F_i}(m, d), a_{F_i}(m, d)\} \quad \text{(by Definition 3.12)}$$

$$\geq a_{F_i}(m, d)$$

(ii) Let $U$ be a group and $(\Gamma, V_{\psi}) \in \text{PFHSG}(U)$. Then by Definition 3.12, $a_{F_i}(m, d)^{-1} \geq a_{F_i}(m, d)$ (3.1)

Again,

$$a_{F_i}(m, d) = a_{F_i}((m, d)^{-1})^{-1}$$

$$\geq a_{F_i}(m, d)^{-1}$$ (3.2)

Hence, from Equation 3.1 and Equation 3.2, $a_{F_i}(m, d)^{-1} = a_{F_i}(m, d)$. $\square$

**Table 4. Membership values of $a_{F_1}$**

<table>
<thead>
<tr>
<th>$a_{F_1}$</th>
<th>1</th>
<th>$i$</th>
<th>$-1$</th>
<th>$-i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e$</td>
<td>0.8</td>
<td>0.2</td>
<td>0.7</td>
<td>0.2</td>
</tr>
<tr>
<td>$u$</td>
<td>0.5</td>
<td>0.2</td>
<td>0.5</td>
<td>0.2</td>
</tr>
</tbody>
</table>

**Table 5. Membership values of $a_{F_2}$**

<table>
<thead>
<tr>
<th>$a_{F_2}$</th>
<th>1</th>
<th>$w$</th>
<th>$w^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e$</td>
<td>0.7</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>$u$</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

**Table 6. Membership values of $a_{F_2}$**

<table>
<thead>
<tr>
<th>$a_{F_2}$</th>
<th>1</th>
<th>$i$</th>
<th>$-1$</th>
<th>$-i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e$</td>
<td>0.9</td>
<td>0.2</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>$mu$</td>
<td>0.7</td>
<td>0.2</td>
<td>0.7</td>
<td>0.2</td>
</tr>
</tbody>
</table>

**Table 7. Membership values of $a_{F_i}$**

<table>
<thead>
<tr>
<th>$a_{F_i}$</th>
<th>1</th>
<th>$w$</th>
<th>$w^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e$</td>
<td>1</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>$mu$</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Proposition 3.2. Let the pair \((\Gamma, V_\psi)\) be a PFHS of a CG \(U\), where \(V_\psi = D_1 \times D_2 \times \cdots \times D_n\) and \(\forall i \in \{1, 2, \ldots, n\}\), \(D_i\) are CGs. Then \((\Gamma, V_\psi)\) is called a PFHSG of \(U\) if and only if \(\forall M \in \text{range}(\Gamma), \forall (m_1, d), (m_2, d') \in M \times D_i\) and \(\forall a_{F_i} : M \times D_i \rightarrow [0, 1]\), \(a_{F_i}((m_1, d) \cdot (m_2, d')^{-1}) \geq \min\{a_{F_i}(m_1, d), a_{F_i}(m_2, d')\}\).

Proof. Let \(U\) be a CG and \((\Gamma, V_\psi) \in \text{PFHSG}(U)\). Then by Definition 3.12 and Proposition 3.1

\[
a_{F_i}((m_1, d) \cdot (m_2, d')^{-1}) \geq \min\{a_{F_i}(m_1, d), a_{F_i}(m_2, d')\}
= \min\{a_{F_i}(m_1, d), a_{F_i}(m_2, d')\}
\]

Conversely, let \(a_{F_i}((m_1, d) \cdot (m_2, d')^{-1}) \geq \min\{a_{F_i}(m_1, d), a_{F_i}(m_2, d')\}\). Also, let \(e\) and \(d'_e\) be the neutral elements of \(U\) and \(D_i\). Then,

\[
a_{F_i}(m, d)^{-1} = a_{F_i}((e, d'_e) \cdot (m, d)^{-1})
\geq \min\{a_{F_i}(e, d'_e), a_{F_i}(m, d)\}
= \min\{a_{F_i}(m, d), a_{F_i}(m, d)\}
\geq \min\{a_{F_i}(m, d), a_{F_i}(m, d), a_{F_i}(m, d)\}
= a_{F_i}(m, d)
\]

Now,

\[
a_{F_i}((m_1, d) \cdot (m_2, d')) = a_{F_i}((m_1, d) \cdot ((m_2, d')^{-1})^{-1})
\geq \min\{a_{F_i}(m_1, d), a_{F_i}(m_2, d')^{-1}\}
= \min\{a_{F_i}(m_1, d), a_{F_i}(m_2, d')\}\] (by Equation 3.3) (3.4)

Hence, by Equation 3.3 and Equation 3.4, \((\Gamma, V_\psi) \in \text{PFHSG}(U)\). \(\square\)

Proposition 3.3. Intersection of two PFHSGs is also a PFHSG.

Theorem 3.4. The homomorphic image of a PFHSG is a PFHSG.

Proof. Let \(U_1\) and \(U_2\) be two CGs and \(\forall i, j \in \{1, 2, \ldots, n\}\), \(D_i\) and \(P_j\) are attribute value sets consisting of some attribute values and let \(g_{ij} : U_1 \times D_i \rightarrow U_2 \times P_j\) are homomorphisms. Also, let \((\Gamma_1, V_{\psi}^{1}) \in \text{PFHSG}(U_1), \) where \(V_{\psi}^{1} = D_1 \times D_2 \times \cdots \times D_n\). Again, let \(\forall M \in \text{range}(\Gamma_1), a_{F_i} : M \times D_i \rightarrow [0, 1]\) are the corresponding FDASs.

Assuming \((n_1, p_1), (n_2, p_2) \in U_2 \times P_j\), if \(g_{ij}^{-1}(n_1, p_1) = \phi\) and \(g_{ij}^{-1}(n_2, p_2) = \phi\), then \(g_{ij}(\Gamma_1, V_{\psi}^{1}) \in \text{PFHSG}(U_2)\).

Let assume that \(\exists (m_1, d_1), (m_2, d_2) \in U_1 \times D_i\) such that \(g_{ij}(m_1, d_1) = (n_1, p_1)\) and \(Gayen et al., Introduction to Plithogenic Hypersoft Subgroup\)
$g_{ij}(m_2, d_2) = (n_2, p_2)$. Then

$$g_{ij}(a_{F_i})(n_1, p_1) \cdot (n_2, p_2)^{-1} = \max_{(n_1, p_1) \cdot (n_2, p_2)^{-1} = g_{ij}(m, d)} a_{F_i}(m, d) \geq a_{F_i}(m_1, d_1) \cdot (m_2, d_2)^{-1} \geq \min\{a_{F_i}(m_1, d_1), a_{F_i}(m_2, d_2)\} \text{ (as } (\Gamma_1, V_\psi^1) \in \text{PFHSG}(U_1))$$

$$\geq \min\{\max_{(n_1, p_1) = g_{ij}(m_1, d_1)} a_{F_i}(m_1, d_1), \max_{(n_2, p_2) = g_{ij}(m_2, d_2)} a_{F_i}(m_2, d_2)\} \geq \min\{g_{ij}(a_{F_i})(n_1, p_1), g_{ij}(a_{F_i})(n_2, p_2)\}$$

Hence, $g_{ij}(\Gamma_1, V_\psi^1) \in \text{PFHSG}(U_2)$. □

**Theorem 3.5.** The homomorphic preimage of a PFHSG is a PFHSG.

**Proof.** Let $U_1$ and $U_2$ be two CGs and $\forall i, j \in \{1, 2, ..., n\}$, $D_i$ and $P_j$ are attribute value sets consisting of some attribute values and let $g_{ij} : U_1 \times D_i \to U_2 \times P_j$ are homomorphisms. Also, let $(\Gamma_2, V_\psi^2) \in \text{PFHSG}(U_2), V_\psi^2 = P_1 \times P_2 \times \cdots \times P_n$. Again, $\forall N \in \text{range}(\Gamma_2), b_{F_j} : N \times P_j \to [0, 1]$ are the corresponding FDAFs. Let assume $(m_1, d_1), (m_2, d_2) \in U_1 \times D_i$. As $g_{ij}$ is a homomorphism the followings can be concluded:

$$g_{ij}^{-1}(b_{F_i})(m_1, d_1) \cdot (m_2, d_2)^{-1} = b_{F_i}(g_{ij}((m_1, d_1) \cdot (m_2, d_2)^{-1})) = b_{F_i}(g_{ij}(m_1, d_1) \cdot g_{ij}(m_2, d_2)^{-1}) \text{ (As } g_{ij} \text{ is a homomorphism)}$$

$$\geq \min\{b_{F_i}(g_{ij}(m_1, d_1)), b_{F_i}(g_{ij}(m_2, d_2))\} \text{ (As } (\Gamma_2, V_\psi^2) \in \text{PFHSG}(U_2))$$

$$\geq \min\{g_{ij}^{-1}(b_{F_i})(m_1, d_1), g_{ij}^{-1}(b_{F_i})(m_2, d_2)\}$$

Then $g_{ij}^{-1}(\Gamma_2, V_\psi^2) \in \text{PFHSG}(U_1)$. □

### 3.2.2. Plithogenic Intuitionistic Fuzzy Hypersoft Subgroup

**Definition 3.14.** Let the pair $(\Gamma, V_\psi)$ be a PIFHS of a CG $U$, where $V_\psi = D_1 \times D_2 \times \cdots \times D_n$ and $\forall i \in \{1, 2, ..., n\}$, $D_i$ are CGs. Then $(\Gamma, V_\psi)$ is called a PIFHS of $U$ if and only if $\forall M \in \text{range}(\Gamma), \forall (m_1, d), (m_2, d') \in M \times D_i$ and $\forall a_{F_i} : M \times D_i \to [0, 1] \times [0, 1]$ with $a_{F_i}(m, d) = \{((m, d), a_{T_{F_i}}(m, d), a_{F_{F_i}}(m, d)) : (m, d) \in M \times D_i\}$, the subsequent conditions are fulfilled:

1. $a_{T_{F_i}}((m_1, d) \cdot (m_2, d')) \geq \min\{a_{T_{F_i}}(m_1, d), a_{T_{F_i}}(m_2, d')\}$
2. $a_{T_{F_i}}((m_1, d)^{-1}) \geq a_{T_{F_i}}(m_1, d)$
3. $a_{F_{F_i}}((m_1, d) \cdot (m_2, d')) \leq \max\{a_{F_{F_i}}(m_1, d), a_{F_{F_i}}(m_2, d')\}$
4. $a_{F_{F_i}}((m_1, d)^{-1}) \leq a_{F_{F_i}}(m_1, d)$

A set of all PIFHS of a CG $U$ is denoted as PIFHS($U$).

*Gayen et al., Introduction to Plithogenic Hypersoft Subgroup*
Example 3.15. Let $U = S_3$ be a CG and $\psi = \{r_1, r_2\}$ is a set of two attributes and corresponding attribute value sets are respectively, $D_1 = A_3$ and $D_2 = S_2$, which are respectively an alternating group of order 3 and a symmetric group of order 2. Let $V_\psi = D_1 \times D_2$ and $(\Gamma, V_\psi)$ be a HS over $U$, where $\Gamma : V_\psi \to \rho(U)$ such that the range of $\Gamma$ i.e. $R(\Gamma) = \{(1), (13)\}, \{(1), (23)\}$. Let for $M = \{(1), (13)\}$, $a_{IF_1} : M \times D_1 \to [0, 1] \times [0, 1]$ is defined in Table 8, and $a_{IF_2} : M \times D_2 \to [0, 1] \times [0, 1]$ is defined in Table 10 respectively.

<table>
<thead>
<tr>
<th>$a_{IF_1}^T$</th>
<th>(1)</th>
<th>(123)</th>
<th>(132)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>(13)</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$a_{IF_1}^F$</th>
<th>(1)</th>
<th>(12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>0.4</td>
<td>0.8</td>
</tr>
<tr>
<td>(13)</td>
<td>0.8</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Let for $M = \{(1), (23)\}$ $a_{IF_1} : M \times D_1 \to [0, 1] \times [0, 1]$ is defined in Table 12 and $a_{IF_2} : M \times D_2 \to [0, 1] \times [0, 1]$ is defined in Table 14 respectively.

<table>
<thead>
<tr>
<th>$a_{IF_1}^T$</th>
<th>(1)</th>
<th>(123)</th>
<th>(132)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>0.6</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>(23)</td>
<td>0.5</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$a_{IF_1}^F$</th>
<th>(1)</th>
<th>(123)</th>
<th>(132)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>0.4</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>(23)</td>
<td>0.6</td>
<td>0.7</td>
<td>0.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$a_{IF_2}^T$</th>
<th>(1)</th>
<th>(12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>(23)</td>
<td>0.7</td>
<td>0.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$a_{IF_2}^F$</th>
<th>(1)</th>
<th>(12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>0.5</td>
<td>0.9</td>
</tr>
<tr>
<td>(23)</td>
<td>0.8</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Here, for any $M \in \text{range}(\Gamma)$ and $\forall i \in \{1, 2\}$, $a_{IF_i}$ satisfy Definition 3.14. Hence, $(\Gamma, V_\psi) \in \text{PIFHSG}(U)$. 

Gayen et al., Introduction to Plithogenic Hypersoft Subgroup
Proposition 3.6. Let $U$ be a CG and $(\Gamma, V_\psi) \in \text{PIFHSG}(U)$, where $V_\psi = D_1 \times D_2 \times \cdots \times D_n$ and $\forall i \in \{1, 2, \ldots, n\}$, $D_i$ are CGs. Then for any $M \in \text{range}(\Gamma)$ and $\forall (m, d_i) \in M \times D_i$ and $\forall a_{IF_i} : M \times D_i \to [0, 1] \times [0, 1]$ with $a_{IF_i}(m, d) = \{(m, d), a_{IF_i}^T(m, d), a_{IF_i}^F(m, d)\} : (m, d) \in M \times D_i$, the subsequent conditions are satisfied:

(i) $a_{IF_i}^T(e, d_e) \geq a_{IF_i}^F(m, d)$, where $e$ and $d_e$ are the neutral elements of $U$ and $D_i$.

(ii) $a_{IF_i}^T(m, d)^{-1} = a_{IF_i}^F(m, d)$

(iii) $a_{IF_i}^F(e, d_e) \leq a_{IF_i}^F(m, d)$, where $e$ and $d_e$ are the neutral elements of $U$ and $D_i$.

(iv) $a_{IF_i}^F(m, d)^{-1} = a_{IF_i}^F(m, d)$

Proof. Here, (i) and (ii) can be easily proved using Proposition 3.1.

(iii) Let $e$ and $d_e$ be the neutral elements of $U$ and $D_i$. Then $\forall (m, d) \in M \times D_i$,

\[
 a_{IF_i}^F(e, d_e) = a_{IF_i}^F((m, d) \cdot (m, d)^{-1}) \\
 \leq \max\{a_{IF_i}^F(m, d), a_{IF_i}^F(m, d)^{-1}\} \quad \text{by Definition 3.14} \\
 \leq \max\{a_{IF_i}^F(m, d), a_{IF_i}^F(m, d)\} \quad \text{by Definition 3.14} \\
 \leq a_{IF_i}^F(m, d)
\]

(iv) Let $U$ be a CG and $(\Gamma, V_\psi) \in \text{PFHSG}(U)$. Then by Definition 3.14

\[
 a_{IF_i}^F(m, d)^{-1} \leq a_{IF_i}^F(m, d) \quad (3.5)
\]

Again,

\[
 a_{IF_i}^F(m, d) = a_{IF_i}^F((m, d)^{-1})^{-1} \\
 \leq a_{IF_i}^F(m, d)^{-1} \quad (3.6)
\]

Hence, by Equation 3.5 and Equation 3.6, $a_{IF_i}^F(m, d)^{-1} = a_{IF_i}^F(m, d)$.

Proposition 3.7. Let the pair $(\Gamma, V_\psi)$ be a PIFHS of a CG $U$, where $V_\psi = D_1 \times D_2 \times \cdots \times D_n$ and $\forall i \in \{1, 2, \ldots, n\}$, $D_i$ are CGs. Then $(\Gamma, V_\psi)$ is called a PIFHSG of $U$ if and only if $\forall M \in \text{range}(\Gamma)$, $\forall (m, d), (m, d') \in M \times D_i$ and $\forall a_{IF_i} : M \times D_i \to [0, 1] \times [0, 1]$ with $a_{IF_i}(m, d) = \{(m, d), a_{IF_i}^T(m, d), a_{IF_i}^F(m, d)\} : (m, d) \in M \times D_i$, the subsequent conditions are fulfilled:

(i) $a_{IF_i}^T((m, d) \cdot (m, d')^{-1}) \geq \min\{a_{IF_i}^T(m, d), a_{IF_i}^T(m, d')\}$ and

(ii) $a_{IF_i}^F((m, d) \cdot (m, d')^{-1}) \leq \max\{a_{IF_i}^F(m, d), a_{IF_i}^F(m, d')\}$

Proof. Here, (i) can be proved using Proposition 3.2.

(ii) Let $U$ be a CG and $(\Gamma, V_\psi) \in \text{PFHSG}(U)$. Then by Definition 3.14 and Proposition 3.6

\[
 a_{IF_i}^F((m, d) \cdot (m, d')^{-1}) \leq \max\{a_{IF_i}^F(m, d), a_{IF_i}^F(m, d')^{-1}\} \\
 \leq \max\{a_{IF_i}^F(m, d), a_{IF_i}^F(m, d')\}
\]

Gayen et al., Introduction to Plithogenic Hypersoft Subgroup
Conversely, let \( a^F_{IF_i}(m_1, d) \cdot (m_2, d')^{-1} \) \( \leq \max\{a^F_{IF_i}(m_1, d), a^F_{IF_i}(m_2, d')\} \). Also, let \( e \) and \( d_e \) be the neutral elements of \( U \) and \( D_i \). Then

\[
a^F_{IF_i}(m, d)^{-1} = a^F_{IF_i}((e, d_e^i) \cdot (m, d)^{-1}) \\
\leq \max\{a^F_{IF_i}(e, d_e^i), a^F_{IF_i}(m, d)\} \\
\leq \max\{a^F_{IF_i}((m, d) \cdot (m, d)^{-1}), a^F_{IF_i}(m, d)\} \\
\leq \max\{a^F_{IF_i}(m, d), a^F_{IF_i}(m, d), a^F_{IF_i}(m, d)\} \\
= a^F_{IF_i}(m, d) \tag{3.7}
\]

Now,

\[
a^F_{IF_i}((m_1, d) \cdot (m_2, d')) = a^F_{IF_i}((m_1, d) \cdot ((m_2, d')^{-1})^{-1}) \\
\leq \max\{a^F_{IF_i}(m_1, d), a^F_{IF_i}(m_2, d')^{-1}\} \\
= \max\{a^F_{IF_i}(m_1, d), a^F_{IF_i}(m_2, d')\} \tag{by Equation 3.7} \tag{3.8}
\]

Hence, by Equation 3.7 and Equation 3.8, \( (\Gamma, V) \in \text{PFHSG}(U) \).

**Proposition 3.8.** Intersection of two PIFHSGs is also a PIFHSG.

**Theorem 3.9.** The homomorphic image of a PIFHSG is a PIFHSG.

**Proof.** Let \( U_1 \) and \( U_2 \) be two CGs and \( \forall i, j \in \{1, 2, ..., n\} \), \( D_i \) and \( P_j \) are attribute value sets consisting of some attribute values and let \( g_{ij} : U_1 \times D_i \rightarrow U_2 \times P_j \) are homomorphisms. Also, let \( (\Gamma_1, V_1^1) \in \text{PFHSG}(U_1), \) where \( V_1^1 = D_1 \times D_2 \times \cdots \times D_n \). Again, let \( \forall M \in \text{range}(\Gamma_1) \) and \( a_{IF_i} : M \times D_i \rightarrow [0, 1] \times [0, 1] \) with \( a_{IF_i}(m, d) = (((m, d), a^T_{IF_i}(m, d), a^F_{IF_i}(m, d)) : (m, d) \in M \times D_i \) are the corresponding IFDAFs. Assuming \( (n_1, p_1), (n_2, p_2) \in U_2 \times P_j \), if \( g_{ij}^{-1}(n_1, p_1) = \phi \) and \( g_{ij}^{-1}(n_2, p_2) = \phi \), then \( g_{ij}(\Gamma_1, V_1^1) \in \text{PFHSG}(U_2) \). Let us assume that \( (m_1, d_1), (m_2, d_2) \in U_1 \times D_i \) such that \( g_{ij}(m_1, d_1) = (n_1, p_1) \) and \( g_{ij}(m_2, d_2) = (n_2, p_2) \). Then by Theorem 3.4,

\[
g_{ij}(a^T_{IF_i})(n_1, p_1) \cdot (n_2, p_2)^{-1} \geq \min\{g_{ij}(a^T_{IF_i})(n_1, p_1), g_{ij}(a^T_{IF_i})(n_2, p_2)\}.
\]

Again,

\[
g_{ij}(a^F_{IF_i})(n_1, p_1) \cdot (n_2, p_2)^{-1} = \min\{(n_1, p_1) - (n_2, p_2)^{-1} = g_{ij}(m, d) \\\n\leq a^F_{IF_i}(m_1, d_1) \cdot (m_2, d_2)^{-1} \\
\leq \max\{a^F_{IF_i}(m_1, d_1), a^F_{IF_i}(m_2, d_2)\}\) (as \((\Gamma_1, V_1^1) \in \text{PFHSG}(U_1)) \\
\leq \max\{\min\{a^F_{IF_i}(m_1, d_1), a^F_{IF_i}(m_2, d_2)\}\} \tag{by Definition 3.10}
\]

Gayen et al., Introduction to Plithogenic Hypersoft Subgroup
Hence, $g_{ij}(\Gamma_1, V^1_\psi) \in PIFHSG(U_2)$. □

**Theorem 3.10.** The homomorphic preimage of a PIFHSG is a PIFHSG.

**Proof.** Let $U_1$ and $U_2$ be two CGs and $\forall i, j \in \{1, 2, \ldots, n\}$, $D_i$ and $P_j$ are attribute value sets consisting of some attribute values and let $g_{ij}: U_1 \times D_i \rightarrow U_2 \times P_j$ are homomorphisms. Also, let $(\Gamma_2, V^2_\psi) \in PIFHSG(U_2)$, where $V^2_\psi = P_1 \times P_2 \times \cdots \times P_n$. Again, let $\forall N \in \operatorname{range}(\Gamma_2)$, $b_{IFj}: N \times P_j \rightarrow [0,1] \times [0,1]$ with $b_{IFj}(n,p) = \{((n,p), b_{IFj}^T(n,p), b_{IFj}^F(n,p)) : (n,p) \in N \times P_j\}$ are the corresponding IFDAFs. Let assume $(m_1,d_1),(m_2,d_2) \in U_1 \times D_i$. Since, $g_{ij}$ is a homomorphism, by Theorem 3.5

$$g_{ij}^{-1}(b_{IFj}^F(m_1,d_1)) \cdot (m_2,d_2)^{-1} \geq \min\{g_{ij}^{-1}(b_{IFj}^T(m_1,d_1)), g_{ij}^{-1}(b_{IFj}^F(m_2,d_2))\}.$$ 

Again,

$$g_{ij}^{-1}(b_{IFj}^F(m_1,d_1)) \cdot (m_2,d_2)^{-1} = b_{IFj}^F(g_{ij}((m_1,d_1) \cdot (m_2,d_2)^{-1}))$$

$$= b_{IFj}^F(g_{ij}(m_1,d_1) \cdot g_{ij}(m_2,d_2)^{-1}) \quad \text{(As $g_{ij}$ is a homomorphism)}$$

$$\leq \max\{b_{IFj}^F(g_{ij}(m_1,d_1)), b_{IFj}^F(g_{ij}(m_2,d_2))\}$$

$$\quad \text{(As $(\Gamma_2, V^2_\psi) \in PIFHSG(U_2)$)}$$

$$\leq \max\{g_{ij}^{-1}(b_{IFj}^F(m_1,d_1)), g_{ij}^{-1}(b_{IFj}^F(m_2,d_2))\}$$

Hence, $g_{ij}^{-1}(\Gamma_2, V^2_\psi) \in PIFHSG(U_1)$. □

3.2.3. Plithogenic Neutrosophic Hypersoft Subgroup

**Definition 3.16.** Let the pair $(\Gamma, V_\psi)$ be a PNHS of a CG $U$, where $V_\psi = D_1 \times D_2 \times \cdots \times D_n$ and $\forall i \in \{1, 2, \ldots, n\}$, $D_i$ are CGs. Then $(\Gamma, V_\psi)$ is called a PNHSG of $U$ if and only if $\forall M \in \operatorname{range}(\Gamma)$, $\forall (m_1,d_1), (m_2,d_2) \in M \times D_i$ and $\forall \mathcal{A}_{N_i} : M \times D_i \rightarrow [0,1] \times [0,1] \times [0,1]$, with $\mathcal{A}_{N_i}(m,d) = \{(m,d), a_{N_i}^T(m,d), a_{N_i}^I(m,d), a_{N_i}^F(m,d)) : (m,d) \in M \times D_i\}$, the subsequent conditions are fulfilled:

(i) $a_{N_i}^T((m_1,d) \cdot (m_2,d')^{-1}) \geq \min\{a_{N_i}^T(m_1,d), a_{N_i}^T(m_2,d')\}$

(ii) $a_{N_i}^T((m_1,d)^{-1}) \geq a_{N_i}^T(m_1,d)$

(iii) $a_{N_i}^I((m_1,d) \cdot (m_2,d')^{-1}) \geq \min\{a_{N_i}^I(m_1,d), a_{N_i}^I(m_2,d')\}$

(iv) $a_{N_i}^I((m_1,d)^{-1}) \geq a_{N_i}^I(m_1,d)$

(v) $a_{N_i}^F((m_1,d) \cdot (m_2,d')^{-1}) \leq \max\{a_{N_i}^F(m_1,d), a_{N_i}^F(m_2,d')\}$

(vi) $a_{N_i}^F(m_1,d)^{-1} \leq a_{N_i}^F(m_1,d)$

A set of all PNHSG of a CG $U$ is denoted as PNHSG($U$).
Example 3.17. Let $D_6 = \{e, m, u, mu, um, mum\}$ be a dihedral group of order 6 and $\psi = \{r_1, r_2\}$ is a set of two attributes and corresponding attribute value sets are respectively, $D_1 = \{1, w, w^2\}$ and $D_2 = A_3$, which are respectively a cyclic group of order 3 and an alternating group of order 3. Let $V_\psi = D_1 \times D_2$ and $(\Gamma, V_\psi)$ be a HS over $U$, where $\Gamma : V_\psi \rightarrow \rho(U)$ such that the range of $\Gamma$ i.e. $R(\Gamma) = \{\{e, mu, um\}, \{e, mum\}\}$.

Let for $M = \{e, mu\}$, $a_{N_1} : M \times D_1 \rightarrow [0, 1] \times [0, 1] \times [0, 1]$ is defined in Table 16 and $a_{N_2} : M \times D_2 \rightarrow [0, 1] \times [0, 1] \times [0, 1]$ is defined in Table 19 respectively.

Table 16. Truth values of $a_{N_1}$

<table>
<thead>
<tr>
<th>$a_{N_1}$</th>
<th>1</th>
<th>$w$</th>
<th>$w^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e$</td>
<td>0.7</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>$mu$</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>$um$</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Table 17. Indeterminacy values of $a_{N_1}$

<table>
<thead>
<tr>
<th>$a_{N_1}$</th>
<th>1</th>
<th>$w$</th>
<th>$w^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e$</td>
<td>0.8</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>$mu$</td>
<td>0.5</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>$um$</td>
<td>0.5</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Table 18. Falsity values of $a_{N_1}$

<table>
<thead>
<tr>
<th>$a_{N_1}^F$</th>
<th>1</th>
<th>$w$</th>
<th>$w^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e$</td>
<td>0.3</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>$mu$</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>$um$</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Table 19. Truth values of $a_{N_2}$

<table>
<thead>
<tr>
<th>$a_{N_2}$</th>
<th>(1)</th>
<th>(123)</th>
<th>(132)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e$</td>
<td>0.7</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>$mu$</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>$um$</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Table 20. Indeterminacy values of $a_{N_2}$

<table>
<thead>
<tr>
<th>$a_{N_2}$</th>
<th>(1)</th>
<th>(123)</th>
<th>(132)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e$</td>
<td>0.8</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>$mu$</td>
<td>0.8</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>$um$</td>
<td>0.8</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Let for $M = \{e, mum\}$, $a_{N_1} : M \times D_1 \rightarrow [0, 1] \times [0, 1] \times [0, 1]$ is defined in Table 22 and $a_{N_2} : M \times D_2 \rightarrow [0, 1] \times [0, 1] \times [0, 1]$ is defined in Table 25 respectively.

Table 22. Truth values of $a_{N_1}$

<table>
<thead>
<tr>
<th>$a_{N_1}$</th>
<th>1</th>
<th>$w$</th>
<th>$w^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e$</td>
<td>0.8</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>$mum$</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Table 23. Indeterminacy values of $a_{N_1}$

<table>
<thead>
<tr>
<th>$a_{N_1}$</th>
<th>1</th>
<th>$w$</th>
<th>$w^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e$</td>
<td>0.8</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>$mum$</td>
<td>0.7</td>
<td>0.6</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Gayen et al., Introduction to Plithogenic Hypersoft Subgroup
This can be proved using Proposition 3.1 and Proposition 3.6.

Proof. Here, for any $M \in \text{range}(\Gamma)$ and $\forall i \in \{1, 2\}$, $a_{N_i}$ satisfy Definition 3.16. Hence, $(\Gamma, V_{\psi}) \in \text{PNHSG}(U)$.

Proposition 3.11. Let the pair $(\Gamma, V_{\psi})$ be a PNHS of a CG $U$, where $V_{\psi} = D_1 \times D_2 \times \cdots \times D_n$ and $\forall i \in \{1, 2, \ldots, n\}$, $D_i$ are CGs. Then $(\Gamma, V_{\psi})$ is called a PNHSG of $U$ if and only if

\begin{align*}
\forall M \in \text{range}(\Gamma), \forall (m_1, d), (m_2, d') \in M \times D_i \text{ and } \forall a_{N_i} : M \times D_i \rightarrow [0, 1] \times [0, 1] \times [0, 1], \text{ with } a_{N_i}(m, d) = \{(m, d), a_{N_i}^T(m, d), a_{N_i}^I(m, d), a_{N_i}^F(m, d) : (m, d) \in M \times D_i\}. \text{ Then the subsequent conditions are satisfied:}
\end{align*}

(i) $a_{N_i}^T(e, d) \geq a_{N_i}^T(m, d)$, where $e$ is the neutral element of $U$.

(ii) $a_{N_i}^T(m, d)^{-1} = a_{N_i}^T(m, d)$

(iii) $a_{N_i}^I(e, d) \geq a_{N_i}^I(m, d)$, where $e$ is the neutral element of $U$.

(iv) $a_{N_i}^I(m, d)^{-1} = a_{N_i}^I(m, d)$

(v) $a_{N_i}^F(e, d) \leq a_{N_i}^F(m, d)$, where $e$ is the neutral element of $U$.

(vi) $a_{N_i}^F(m, d)^{-1} = a_{N_i}^F(m, d)$

Proof. This can be proved using Proposition 3.1 and Proposition 3.6.

Proposition 3.12. Let the pair $(\Gamma, V_{\psi})$ be a PNHS of a CG $U$, where $V_{\psi} = D_1 \times D_2 \times \cdots \times D_n$ and $\forall i \in \{1, 2, \ldots, n\}$, $D_i$ are CGs. Then $(\Gamma, V_{\psi})$ is called a PNHSG of $U$ if and only if

\begin{align*}
\forall M \in \text{range}(\Gamma), \forall (m_1, d), (m_2, d') \in M \times D_i \text{ and } \forall a_{N_i} : M \times D_i \rightarrow [0, 1] \times [0, 1] \times [0, 1], \text{ with } a_{N_i}(m, d) = \{(m, d), a_{N_i}^T(m, d), a_{N_i}^I(m, d), a_{N_i}^F(m, d) : (m, d) \in M \times D_i\}. \text{ Then the subsequent conditions are fulfilled:}
\end{align*}

(i) $a_{N_i}^T((m_1, d) \cdot (m_2, d')^{-1}) \geq \min\{a_{N_i}^T(m_1, d), a_{N_i}^T(m_2, d')\}$

(ii) $a_{N_i}^I((m_1, d) \cdot (m_2, d')^{-1}) \geq \min\{a_{N_i}^I(m_1, d), a_{N_i}^I(m_2, d')\}$

(iii) $a_{N_i}^F((m_1, d) \cdot (m_2, d')^{-1}) \leq \max\{a_{N_i}^F(m_1, d), a_{N_i}^F(m_2, d')\}$

Gayen et al., Introduction to Plithogenic Hypersoft Subgroup
Proof. This can be proved using Proposition 3.2 and Proposition 3.7.

Proposition 3.13. Intersection of two PNHSGs is also a PNHSG.

Theorem 3.14. The homomorphic preimage of a PNHSG is a PNHSG.

Proof. Let $U_1$ and $U_2$ be two CGs and $\forall i, j \in \{1, 2, ..., n\}$, $D_i$ and $P_j$ are attribute value sets consisting of some attribute values and let $g_{ij} : U_1 \times D_i \rightarrow U_2 \times P_j$ are homomorphisms. Also, let $(\Gamma_1, V^1_\psi) \in \text{PNHSG}(U_1)$, where $V^1_\psi = D_1 \times D_2 \times \cdots \times D_n$. Again, let $\forall M \in \text{range}(\Gamma_1)$, $a_{N_i} : M \times D_i \rightarrow [0, 1] \times [0, 1] \times [0, 1]$ with $a_{N_i}(m, d) = \{(m, d), a^T_{N_i}(m, d), a^l_{N_i}(m, d), a^F_{N_i}(m, d) : (m, d) \in M \times D_i\}$ are the corresponding NDAFs.

Assuming $(n_1, p_1), (n_2, p_2) \in U_2 \times P_j$, if $g_{ij}^{-1}(n_1, p_1) = \phi$ and $g_{ij}^{-1}(n_2, p_2) = \phi$ then $g_{ij}(\Gamma_1, V^1_\psi) \in \text{PNHSG}(U_2)$. Lets assume that $\exists (m_1, d_1), (m_2, d_2) \in U_1 \times D_i$ such that $g_{ij}(m_1, d_1) = (n_1, p_1)$ and $g_{ij}(m_2, d_2) = (n_2, p_2)$. Then by Theorem 3.4 and Theorem 3.9, we can prove the followings:

\[
g_{ij}(a^T_{N_i})(n_1, p_1) \cdot (n_2, p_2)^{-1} \geq \min\{g_{ij}(a^T_{N_i})(n_1, p_1), g_{ij}(a^T_{N_i})(n_2, p_2)\},
\]

\[
g_{ij}(a^l_{N_i})(n_1, p_1) \cdot (n_2, p_2)^{-1} \geq \min\{g_{ij}(a^l_{N_i})(n_1, p_1), g_{ij}(a^l_{N_i})(n_2, p_2)\},
\]

and

\[
g_{ij}(a^F_{N_i})(n_1, p_1) \cdot (n_2, p_2)^{-1} \leq \max\{g_{ij}(a^F_{N_i})(n_1, p_1), g_{ij}(a^F_{N_i})(n_2, p_2)\}.
\]

Hence, $g_{ij}(\Gamma_1, V^1_\psi) \in \text{PNHSG}(U_2)$.

Theorem 3.15. The homomorphic preimage of a PNHSG is a PNHSG.

Proof. Let $U_1$ and $U_2$ be two CGs and $\forall i, j \in \{1, 2, ..., n\}$, $D_i$ and $P_j$ are attribute value sets consisting of some attribute values and let $g_{ij} : U_1 \times D_i \rightarrow U_2 \times P_j$ are homomorphisms. Also, let $(\Gamma_2, V^2_\psi) \in \text{PNHSG}(U_2)$, where $V^2_\psi = P_1 \times P_2 \times \cdots \times P_n$. Again, let $\forall N \in \text{range}(\Gamma_2), b_{N_j} : N \times P_j \rightarrow [0, 1] \times [0, 1] \times [0, 1]$ with $b_{N_j}(n, p) = \{(n, p), b^T_{N_j}(n, p), b^l_{N_j}(n, p), b^F_{N_j}(n, p) : (n, p) \in N \times P_j\}$ are the corresponding IFDAFs. Lets assume $(m_1, d_1), (m_2, d_2) \in U_1 \times D_i$. Since $g_{ij}$ is a homomorphism by Theorem 3.5 and Theorem 3.10, the followings can be proved:

\[
g_{ij}^{-1}(b^T_{N_j})(m_1, d_1) \cdot (m_2, d_2)^{-1} \geq \min\{g_{ij}^{-1}(b^T_{N_j})(m_1, d_1), g_{ij}^{-1}(b^T_{N_j})(m_2, d_2)\},
\]

\[
g_{ij}^{-1}(b^l_{N_j})(m_1, d_1) \cdot (m_2, d_2)^{-1} \geq \min\{g_{ij}^{-1}(b^l_{N_j})(m_1, d_1), g_{ij}^{-1}(b^l_{N_j})(m_2, d_2)\},
\]

and

\[
g_{ij}^{-1}(b^F_{N_j})(m_1, d_1) \cdot (m_2, d_2)^{-1} \leq \max\{g_{ij}^{-1}(b^F_{N_j})(m_1, d_1), g_{ij}^{-1}(b^F_{N_j})(m_2, d_2)\}.
\]

Hence, $g_{ij}^{-1}(\Gamma_2, V^2_\psi) \in \text{PNHSG}(U_1)$.
4. Conclusions

Hypersoft set theory is more general than soft set theory and it has a huge area of applications. That is why we have adopted and implemented it in plithogenic environment so that we can introduce various algebraic structures. Because of this, the notions of plithogenic hypersoft subgroups have become general than fuzzy, intuitionistic fuzzy, neutrosophic subgroups, and plithogenic subgroups. Again, we have introduced functions in different plithogenic hypersoft environments. Hence, homomorphism can be introduced and its effects on these newly defined plithogenic hypersoft subgroups can be studied. In the future, to extend this study one may introduce general T-norm and T-conorm and further generalize plithogenic hypersoft subgroups. Also, one may extend these notions by introducing different normal versions of plithogenic hypersoft subgroups and by studying the effects of homomorphism on them.

References


Gayen et al., *Introduction to Plithogenic Hypersoft Subgroup*


*Gayen et al., Introduction to Plithogenic Hypersoft Subgroup*

Gayen et al., *Introduction to Plithogenic Hypersoft Subgroup*


Received: December 13, 2019. Accepted: May 02, 2020

*Gayen et al., Introduction to Plithogenic Hypersoft Subgroup*