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ABSTRACT 

 

It has been 32 years since the Brundtland Report was published. That was the 

first time that the term Sustainable Development (SD) was coined. In this context, 

renewable sources of energy play an important role on not to deplete our natural 

resources in order to meet our need without compromising future generations. 

Smart Grids are on the pathway to achieve the SD goals. This Thesis focuses on the 

integration of renewables, specifically Solar PV panels and inverters and its 

interactions with the distribution grid. Since the power injection caused by the PV 

inverter can alter the voltage range, Reinforcement Learning (RL) is applied as 

method for voltage regulation. This research aims to integrate all these elements in 

a Co-simulation Real-Time system. To achieve complexity and reality to this co-

simulation frame, an external load is aggregated from an external source. 

Methodology and results are described, and conclusions and future work suggested. 
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CHAPTER 1 

Introduction 

 

 

1.1 Microgrid background 

Fossil Fuel for electric power generation it’s fundamental in our current society for 

subsisting. Nevertheless, this dependence on Fossil Fuels have caused a detriment 

in our environment, since they’re the main cause of environmental pollution and 

thus, global warming [1]. 

Therefore, it has become an ultimate priority to find energy alternatives that are 

sustainable, which means it needs to be a renewable resource and also safe for the 

environment and the people [2].  

As a result of this, the Smart Grid emerges as one of the solutions for this 

predicament [3]. Since it’s such a new term there’s different definitions, such as the 

one from EPRI [4] that states: 
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 “A Smart Grid is one that incorporates information and communications 

technology into every aspect of electricity generation, delivery and consumption in 

order to minimize environmental impact, enhance markets, improve reliability and 

service, and reduce costs and improve efficiency” [5]. In the same manner, 

according to the CERTS (Consortium for Electric Reliability Technology 

Solutions) criteria, a basic Microgrid is an interconnection of the following 

elements [6] [7], which are best illustrated in figure 1. Distributed generating (DG) 

units such as photovoltaic energy, wind power, fuel cells, micro turbines, amongst 

others. Secondly, Energy Storage Systems (ESS) or devices, such as batteries, 

capacitors and flywheels for integration purpose. Additionally, groups of feeders 

for distribution and an Energy Management System (EMS) for power management 

and set point setting purposes for DG unit controllers. 
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Figure 1. Microgrid Architecture [8]. 

 

 

1.2 Control of a Microgrid 

Control of a Microgrid is essential for stable and economically efficient operation. 

The most fundamental functions of the control structure of a microgrid are voltage 

and frequency regulation for both islanded and grid connected modes, proper load 

sharing and Distributed Energy Resource coordination, all of this to achieve an 

optimal resynchronization with the main grid in grid mode [9], [10] . Also, there 

must be a Power Flow control between the microgrid and the main grid thus, 

resulting in an optimized microgrid operating cost [11].  



4 

 

One important feature to take in account in order to control a Microgrid is the PV 

integration impact since it can cause Voltage unbalance, specifically, voltage rise 

on the feeder and potential break of protection synchronization system [12][13]. 

For this reason, the literature shows various methods for controlling the voltage on 

the feeder, for instance, control of On-Load Tap Changing (OLTC) transformers, 

fixed or switched capacitors, Battery Storage (BS) systems, Power curtailment,  

Reactive Power Control, amongst others [14]. 

 

1.3 Thesis Scope and organization 

This thesis is organized in the following chapters: This first chapter being the 

introduction, giving a brief background on Smart Grids and the importance of 

control of these. In chapter 2 the part of co-simulation and background of 

Reinforcement Learning are described. 

Third chapter is the methodology of this study case. It starts with the model to be 

analyzed, then it explains the different parts that are going to be added to the model: 

the aggregated external load on a Raspberry Pi, the Reinforcement Learning block 

in Simulink and Irradiation data set. Then the integration part is explained. On the 

fourth chapter the results of the simulation are showed and discussed to be finished 

by a conclusion. 
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CHAPTER 2 

BACKGROUND 

 

 

2.2 Machine learning background 

Machine learning, as the word contains it is about the process of learning, 

specifically speaking what’s been learned is data or signals, convert it into 

information, and the purpose is the extraction of knowledge, which can be new data 

or information on the learning machine itself. This outcome can help us make 

decisions and/or predictions [15] [16]. Within the Machine Learning (ML) sphere, 

there’s three main categories: unsupervised learning, supervised learning and 

reinforcement learning (RL). In this study, Reinforcement Learning is the case 

that’s of interest. 
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2.2.1 Reinforcement Learning 

Reinforcement Learning (RL) are iterative algorithms which learning process it 

through exploration of an unknown system, this provides the algorithms with 

experience for them to learn the optimal output or way to solve a problem [17]. 

The main of the elements on RL are the agent which interacts with its environment, 

on each time step, the agent receives the environment state St, in which St ϵ S, means 

the set of all possible states, based on that the agent “acts” selecting a specific 

Action At ϵ A(St). As a consequence of this action, the environment sends a reward 

to the agent, and the main goal for the agent it’s to maximize total reward overall 

[18]. This overall maximization is called Value function and the “rule” that the 

agent follows to achieve more rewards is called policy [19] which makes a mapping 

of probabilities distributions of each and one of the possibilities of actions that can 

be executed.  

 

Figure 2 Basic Framework of Reinforcement Learning [18]. 
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Temporal Difference (TD) Learning 

TD learning is the type of reinforcement that has both the quality of Monte Carlo 

methods, because it can learn from raw experience, without the  dynamics of the 

environment’s model and like Dynamic Programming methods, can update 

estimates without having to wait for the final outcome [20]. 

TD charactertic is the set of method that evaluate the value function, amongst them 

SARSA and Q learning. TD feature is that learns it’s value function V(s)  through a 

TD error, which is learned directly from experience, the way it does this is through 

bootstrapping, model free, online and fully incremental. This makes TD a 

prediction problem. To determine the value function update, the method is the 

equation 2.1: 

𝑉(𝑆𝑡) ← 𝑉(𝑆𝑡) +  𝛼[𝑅𝑡+1 +  𝛾𝑉(𝑆𝑡+1)  − 𝑉(𝑆𝑡)]                                               (2.1) 

Being α the learning rate, γ a discount rate and the TD error update is defined by δt 

2.2 

𝛿𝑡 = 𝑟𝑡+1 +  𝛾𝑉(𝑠𝑡+1) −  𝑉(𝑠𝑡)                                                              (2.2) 

Figure 3 ilustrates the algorithm for TD(0) which is tabular since “0” illustrates that 

is based on one-step return [15]. 
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Figure 3. Algorithm for TD(0) [21]. 

 

An off policy TD learning method is Q learning, which is defined by 2.3 

𝑄(𝑆𝑡, 𝐴𝑡) ←  𝑄(𝑆𝑡, 𝐴𝑡) +  𝛼 [𝑅𝑡+1 +  𝛾 max
𝑎

𝑄(𝑆𝑡+1, 𝑎) −  𝑄(𝑆𝑡, 𝐴𝑡)]       (2.3) 

Being Q is the array storing the current action-value function estimate, and 

𝑄(𝑆𝑡, 𝐴𝑡) being an estimate of 𝑄∗(𝑆𝑡, 𝐴𝑡)for each state-action. 

The problem with Q learning it that does not permit updates based on the rewards 

for mor than one iteration. The TD(λ) method described in the next section is the 

solution to this problem. 
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Eligibility traces 

In addition to the TD(0)  and Q method, there’s the TD(λ) method, which now 

includes the concept of eligibility trace, which is a short term memory trace that 

lasts one episode and helps the learning by affecting the weight vector, which is  a 

long-term memory, that lasts the entire duration of the system[21]. The way the 

elgibility trace works is based on the degree in which a state St  has been visited in 

the past, once a reinforcement is collected, it updates all the states that have been 

recently visited given their eligibility [22]. TD(λ) is a way to unify the one step 

TD(0) and Monte Carlo methods, through this eligibility traces and the decay 

parameter λ, for predicting algorithms [15]. 

 

Function Approximation 

TD is considered a tabular case, since the value function or the policy are stored in 

a tabular form, but it’s limited by the number of states and actions, this becomes a 

problem when we take in account the memory and storage for large tables. The 

solution to this problem is make a generalization from previous states, this is what 

is called Function Approximation, which is an instance of supervised learning [20]. 

The method represented for function approximation is a parameterized functional 

form with parameter vector called weight vector w ϵ ℜn , the formula used for the 

approximated value of state S given the weight vector is 𝑣(𝑠, 𝒘) ≈ 𝑣𝜋(𝑠) [18]. 
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Figure 4. On-line gradient-descent TD(λ) for estimating vπ from [18]. 

 

Figure 4 presents the pseudo code for TD(λ) with function approximation, where 

∇𝜐̂(𝑠, 𝒘)  is the gradient of the value approximation function with respect to w, this 

latter updated by the rule  

𝒘 ← 𝒘 +  𝛼[𝑟 +  𝛾𝜐̂(𝑠′, 𝒘)  −  𝜐(𝑠, 𝒘)]∇𝜐(𝑠, 𝒘) [15]. 

 

Linear methods for function approximation 

Above the gradient descent method for function approximation was defined, with 

this in mind, there’s a special case of gradient-descent methods in which the 

approximate value function 𝜐̂ is a linear function of vector w, then 2.4 is now the 

approximate value function with x(s) as vector of features corresponding to every 

state St.  
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𝜐(𝑠, 𝒘) =  𝑤𝑇𝑥(𝑠) =   ∑ 𝑤𝑖𝑥𝑖(𝑠).

𝑛

𝑖=0

                                                                          (2.5) 

.Where ∇𝜐̂(𝑠, 𝒘) = 𝒙(𝑠) , is the gradient of the approximate value function [21]. 

Actor-Critic Methods 

Actor-Critic methods are RL methods that even though they compute action and 

state values, they don’t use them directly for the action selection. Conversely, the 

policy with its own weights it’s independently of any value function, is represented 

directly. 

Usually, the critic is a state-value function that evaluate the new state and decides 

after each action selection. The way the critic evaluates the state is by using the TD 

error. 

 

Figure 5. Actor-Critic Architecture  
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The advantages of using actor-critic is that they require minimal computation for 

action selection, since the policy is explicitly stored. The policy also might be 

stochastic [20]. 

 

 

2.3 Real-Time Simulation environment and Co-Simulation 

As technology develops, simulation frameworks become more complex, since 

nowadays they incorporate physical, software and network aspects combined [23]. 

The development of these systems has been divided between different teams, or 

external supplier, each with its own expertise and its own tools. Each contributor 

plays a part developing its element that adds the system solving. All of this needs 

to be merged with all the other partial solution elements, this global system it’s 

what is called Co-Simulation[24]. This concept can be seen as a holistic 

development process [25] where cutting-edge, multi-disciplinary and optimal 

solution can be accomplished. Challenges are the integration of this partial models 

and/or solutions, since they were developed with different software/hardware and 

it’s possible they were developed by a specialized tool with intellectual property 

rights and can’t be easily accessed. 

Co-simulations as referred to in [24]: 

“It consists of the theory and techniques to enable global simulation of a coupled 

system via the composition of simulators.  Each simulator is a black box mock-up 
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of a constituent system, developed and provided by the team   that is responsible 

for that system.” 

In this present work a Real Time Co-simulation is uses according to the diagram 

from [25], since it’s a Power System with hybrid  representations executed in 

individual runtime environments. As they describe, one challenge it’s to 

synchronize the models and their solvers. 

 

Figure 6 Real-Time Co-simulation [25]. 
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Chapter 3:  

Methodology 

 

 

In this chapter the methodology used in this thesis is explained. First, we describe 

the study case which is a feeder model provided by Sandia National Labs in 

collaboration with the Center of Emerging Energies and Technology (CEET) center 

at the University of New Mexico. Subsequently, the aggregated external load part 

of a previous work also made by a master student at CEET and the real irradiance 

data gathering are described. After that, the Reinforcement Learning part of the 

project and the proposed model of unifying the three parts described above in a co-

simulation environment is being detailed. 

 



15 

 

 

 

3.2 Feeder Model 

3.2.1 Study Case 

 

Figure 7. 15 Bus model provided by Sandia National Labs. 

In this section, a 15 Bus model proportioned by Sandia National Labs was used to 

evaluate the proposed Reinforcement Learning method. The inverter that has the 

RL method is on Bus 12 and is a High Voltage (12.47kV) Distribution Network. 

Added to the model, there’s an external aggregated load on Bus 12 supplied by 

Raspberry-Pi and altogether simulated in a MATLAB Simulink® environment. 

3.2.1 Opal RT environment 

There’s various software packages that simulate distribution systems such as 

GridLAB-D used in [26], OpenDSS, PSCAD, Simulink, etc. In this research to add 

the Real-Time part into the simulation of the distribution Feeder, the 
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software/hardware used for the merging of the co-simulations is RT-Lab which 

works using a MATLAB Simulink environment. 

Figure 7 shows the architecture of RT-Lab, it communicates via TCP/IP protocol 

and the basic setup is host computer (Windows OS) and the target computer by 

Opal RT, the model used for this studio is the OP 5600, with the following 

characteristics: Powerful real-time target with up to 12 INTEL processor cores 3.3 

GHz, Real-time operating system Linux REDHAT and a FPGA based  card for 

analog and digital inputs and outputs. 

 

Figure 8. RT lab architecture[27] 

 

3.2.2 Model Description 

The distribution Feeder used in this simulation it's a 15 Bus Model, with a generator 

(Wye connection) three phase source 115 kV, 60 Hz, 2 transformers, one 115//12.47 

kV, 30MW Nominal Power. Wye-Wye connection, and another at 12.47//480 V at 

Bus 10, one capacitor bank at bus 7, and a switched capacitor bank at bus 3. It also 

includes 4 unbalanced triphasic loads, 2 balanced triphasic loads. Table 1 shows the 
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details of the nominal characteristics of the static loads in the model. 

 

 

 

Load Name Characteristics 

Load Bus 4 

 

Triphasic Balanced 

12.47 kV, 1.885 MW, 1.292 Mvar 

Load Bus 5 

 

Triphasic unbalanced 

Load A 

inductive-resistive 7.199kV, 28 W, 8.9 Var 

Load B, inductive-resistive 7.199 kV, 2288 W, 413 Var. 

Load C, inductive-resistive 7.199 kV, 393.99 W, 54.4 

Var. 

Load Bus 9 

 

Triphasic unbalanced 

Load A, inductive-resistive 7.199kV, 97.18 kW, 22.6 

kVar. 

Load B, inductive-resistive 7.199 kV, 100.579 kW, 

22.407 kVar. 

Load C, inductive-resistive 7.199 kV, 116.317 kW, 

25.615 kVar. 

Load Bus 10 

 

Triphasic unbalanced 

Load A, inductive-resistive 7.199kV, 107.384 kW, 

11.558 kVar. 

Load B, inductive-resistive 7.199 kV, 108.561 kW, 

11.911 kVar. 

Load C, inductive-resistive 7.199 kV, 118.93 kW, 

12.605 kVar. 

Load Bus 11 

 

Unbalanced triphasic 

Load A, pure inductive, 7.199kV, 0 W, 3.43Var 

Load B, inductive-resistive 7.199kV, 386 kW, 489 Var 

Load C, inductive-resistive 7.199 kV, 670 W, 302 Var. 

Load Bus 15  Triphasic Balanced, 480 V, 25.5kW, 19.2 kVar 

Table 1. Description of the static loads on Bus15 Model. 
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Also, it includes 3 PLL (Phase Locked Loop Systems) that are used as inverters for 

the purpose of this project, the characteristics are shown below in table 2. In the 

case study the PLL used is on Bus12. 

 

Name of PLL Location Nominal Characteristics 

PLL Bus 15 258 kVA, 480V 

Triphasic, 12.47 kV, 

1.8Mvar 

PLL1  Bus 12 10 MVA ,12.47 kV base 

Triphasic, 

PLL2 Bus 14 10 MVA, 12.47kV base 

Triphasic 
Table 2. Nominal Characteristics of PLL 

 

Figure 9. Basic PLL structure[28] 
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Phase Locked-Loop architecture (PLL) 

The Diagram in Figure 7 shows the operation of a PLL, it has three main basic 

parts. An error phase detection (PD) that measures the phase difference between 

the input and output signals, then goes through the loop filter, which is generally a 

low pass filter that extracts the DC component from the phase error. Following that, 

the amplified component of the DC signal goes to the VCO, which can be a PI 

controller, as illustrated on Figure 7 (b), then the controller generates the output 

signal frequency and it’s integrated to the phase of the signal output. 

The output of the PD unit is defined by 

 

ṽ = 𝑣𝑦 = 𝑉𝑚𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑔

=  
𝑉𝑚

2 sin(𝜃 − 𝜃𝑔) +
𝑉𝑚

2 sin(𝜃 + 𝜃𝑔)
                                                                      (3.1) 

 

And the output of the loop filter is 3.2: 

𝑑 =  
𝑉𝑚

2
𝑠𝑖𝑛[(𝜔 − 𝜔𝑔)𝑡 + (𝜙 − 𝜙𝑔)].                                                                (3.2) 

 

This output is carried to the PI controller that will generate the frequency ω = θ, 

this until d = 0. Subsequently, this frequency gets integrated to the output signal, 

which is sent back to the error Phase Detection unit, making it a closed locked-loop. 
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The PLL controls that are used on the feeder as inverters with DQ frame using the 

technique three-phase applications is a PLL in the synchronously rotating reference 

frame (SRF-PLL) [26] to produce reactive and active power independently from 

the grid. 

 

3.3 Aggregated external load 

This sections describes the simulation framework of an aggregated load, from a 

previous developed work by [29]  as a part of this co-simulation. For the purposes 

of this study, the part it would focus on would be on the aggregated load part. This 

load generator was used in the previous work to simulate a residential load in Mesa 

del Sol, Albuquerque. Figure 9 describes the entire feeder for Mesa del Sol, but for 

the purposes of this case, only the residential loads in 2 and 3 are to be considered.  
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Figure 10. Mesa del sol layout, residential load is pointed out in 2 and 3. 

 

For the purposes of this study, it simulates a fictional residential aggregated load 

on the bus 12 of the 15 Bus Feeder. The residential community it’s conformed by 

200 homes with typical electric appliances, these are clothes dryer, air conditioner, 

domestic hot water, refrigerator, cooking range and lights. As well as the previous 

work, to simulate physical separation and add a more real component to the RT 

simulation, the load aggregator is executed on a Raspberry Pi 3. 
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Figure 11. Probabilistic characterization of the use of an electric range, in terms of probability 

density function for start-time, probability density function for duration, and discrete probability 

for number of use events. [29] 

 

In the previous developed work , a statistical approach was used to represent the 

effects of human factor on the distribution feeder, in order to represent the 

interaction of the community within the house on their home appliances. A bottom 

up statistical approach is used to represent the interactions of humans-in-the-loop. 

Figure 3 shows the probability density used to describe the use of each appliance, 

modelled after customer usage patterns. Likewise, each use of the appliance it’s 

being statistically characterized in regard to specific social groups (working singles, 

couples, retirees, families. The integral combination of stochastic processes to 

generate the aforementioned load, illustrated on figure 4, there’s an example of a 
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1000 house residential complex bases on demographics and real-time demand 

response in distribution systems produces realistic scenarios that can be used for 

several applications. For this study is used to analyze and control the effect of 

voltage level on the bus. Figure 5 shows the contrast between the aggregated load 

in the previous work, now applied to the model in this study, 200 houses residential 

load, in a period of two hours outputting every second.  

 

Figure 12.Total feeder load resulting from 1000 houses, also indicating the aggregated 

contribution from each appliance. The total load for an individual meter (42) is also 

shown for comparison. The load duration curve (shown in red) indicates significant 

opportunity for shifting and deferring loads. 
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Figure 13. External aggregated load from Bus 12 in the 15 Bus Feeder. 

 

 

3.4 Proposed Method 

3.4.1 Raspberry pi co-simulation environment 

As previously stated, the model of the load is a Real-time each second outputted 

load. In order to have a more realistic model, the external load is not simulated 

within the Simulink model, but using OPAL-RT as an interface between them. 

Figure 13 shows the diagram of the simulation environment. The step size of the 

model is 80μs, to ensure a real-time simulation approach. The first step is load the 

model into the RT-lab software, this generates an executable in C and  sends it to 

the OP5600, which programs the FPGA to receive the PWM signal from the 

Raspberry-Pi and executes the Simulink GUI in the host computer. 
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Figure 14.Simulation environment 

3.4.2 Temporal Difference Learning 

In this section, the outline of the proposed method is discussed, based on [19] work. 

As figure 6 states the diagram of TD(λ) method, reviewed in chapter 2.  

Figure 8 illustrates how the proposed method is applied. The agent is the PV 

inverter and the distribution network it’s the environment. Moreover, the state St  is 

the interconnecting point between the PV and the network, the action at, being the 

reactive power output Q at the inverter, and the reward rt+1 is the operation rule of 

distribution network. Summarizing, the actor (inverter) observes the state (voltage) 

at the interconnecting point and determines an action translated on reactive power 

at the output of itself.  

Afterwards, the critic obtains the reward and voltage value after having controlled 

the reactive power output. This critic evaluates the result of the actor and updates 
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the value function, in turn the actor updates the probability policy based on the 

result of the critic’s evaluation and thus, learning reactive power optimal output. 

In this case, the policy utilized to update the value function in equation 2.1 is the 

following normal distribution function equation 3.1 

 

𝜋(𝑎𝑡|𝜇𝑝𝜎𝑝) =
1

𝜎𝑝√2𝜋
𝑒𝑥𝑝 (−

(𝑎𝑡 − 𝜇𝑝)
2

2𝜎𝑝
).                                                          (3.3) 

 

Figure 15. Diagram of Reinforcement learning applied to the proposed method [19]. 

 

On this actor critic method, π is the policy which is defined by the probability 

distribution of action at t using the average μp and the standard deviation σp. Thus, 

an optimum reactive power output is a function of the voltage as a state S. The 

average μ is calculated using 3.4 

𝜇𝑝 {
𝑎(𝑠𝑡 − 𝑉𝑑)  (𝑠𝑡 ≥ 1.0(𝑝. 𝑢. ))
0                     (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)     

                                                                            (3.4) 
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Where Vd is the transmission voltage at the pole transformer and a is the gradient 

of the reactive power at S. In this case the reactive power is controlled by the 

inverter when the voltage raises, generating a reverse power flow when St is greater 

than the transmission voltage, whereas when the voltage at state St is lower than 

transmission voltage it does nothing. This is the reason that for the purposes of this 

study we only focus on the upper limit of 1.019 p.u. and not the lower limit. 

So having this in mind the work in [19] had two targets optimizing the distribution 

network voltage through reactive power control. One is dissolving the deviation in 

voltage range, the second one, is minimizing the amount of reactive power. The 

proposed reward signal for the project is the following: 

𝑟𝑡+1 = {
−1 + (𝑎𝑡−1 − 𝑎𝑡)   (𝑠𝑡+1 ≥ 1.019(𝑝. 𝑢. ))
𝑎𝑡−1 − 𝑎𝑡                                  (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)

                                              (3.5) 

This reward signal compares the reactive power output a at t-1 and t, if the voltage 

doesn’t go above the limit, that means if at-1 - at   is positive, it receives the reward 

signal. On the other hand, if the reactive power at is above 1.019 p.u. it sends a 

penalty. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1 Simulation Results 

For this study, various scenarios were simulated, the details are explained in the 

following section. There were two phases of the project, one using a random 

uniform distribution of the power inverter. This to corroborate the method was 

working. The original parameters of RL are shown in table 2. This parameter was 

established by one of the authors of the original work. 

 

 

 

Table 3. RL parameters 

 

Parameter Value 

α 0.1  

γ 0.9  

σp 5  

σi 5  

ci 5 intervals from 0.995 to 1.035 (p.u.) 
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4.1.2 Test Run 

First scenario was a test run that serves to corroborate that the algorithm works. 

Since it was only a test run, it was only for one-hour duration. Figure 14 shows the 

Bus 12 voltage of the Feeder, and it shows some regulation on the RL model, it has 

a lot of fluctuations in voltage and is clearly unstable, even though is keeping the 

voltage within range. 

 

Figure 16 Bus Voltage of feeder. 

In figure 16, Q output of inverter is shown, it can be obvious that the RL algorithm 

is not learning on a good pace, making it unstable and outputting more reactive 

power than it’s capable of. To avoid this, the parameters of RL will be changed to 

see if stability can be reached. 
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Figure 17. Q output of inverter. 

In contrast we have in Figure 17 a graph that shows the external load Output and 

the Bus Voltage for a period of 30 minutes. The purpose of this graph is to analyze 

whether the external load was relevant on the bus voltage. In the next section we 

corroborate it has no effect, since the bus is next to the inverter, it’s really affected 

by its output and the load has almost no impact on the bus voltage. 
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Figure 18. Bus Voltage and external load. 

 

On the second test run, the original parameters of RL where changed, changing α 

from 0.1 to 0.001 and γ from 0.9 to 0.99 to improve learning and to see if the model 

would gain stability. Table 4 shows the new parameters, only α and γ were changed, 

the rest of the parameter remained unchanged. 

 

 

 

 

 

Table 4. New parameters of RL. 

 

For the next test run, we wanted to test the robustness of the RL with the new 

parameters, so the capacitor bank at bus 3 is activated and the results are shown 

below in figure 18. 

Parameter Value 

α 0.001  

γ 0.99  

σp 5  

σi 5  

ci 5 intervals from 0.995 to 1.035 (p.u.) 
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As it can be appreciated, the voltage without RL raised excessively and so the 

voltage with RL, but this remained still within the limits, but still with a difference 

of 200 volts higher. Thus, for the next simulations, the capacitor bank was switched 

off. 

 

Figure 19. Test drive capacitor bank switched on. 

 

 

4.2 Sunny day case 

After having adjusted the RL parameters, and run some test runs we used real data 

for the inverter. From Albuquerque, NM on the day of June 22, 2018, being 

considered an average for a day with good amount of irradiance. This data was 

provided by [30], which captured the global irradiance for the entire year of 2018 

in the mentioned city. 
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The global irradiance of that day is shown in figure 19. The time where the 

simulation was run, was between 7:30 am and 6:22pm, being the values above and 

below these so low, were not taken in account for this study case. 

 

Figure 20. Global Irradiance in W/m2 

 

With the parameters changed and now taking in account Real-Time values of 

Irradiance (green) in the PV inverter, the Voltage on Bus 12 can be shown in Figure 

20 (purple). It can be appreciated that the RL maintains voltage well-regulated and 

with a variance of +-10 volts and well within range from 1.002 to 1.004 p.u. 
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Figure 21. Bus Voltage and Power Output of Inverter. 

On the other hand we have figure 21 that shows the output of both simulations with 

and without RL, and it’s clear that the voltage with RL is better regulated, and the 

one without RL is above the 1.01 p.u. limit with  a rise of 100 volts more, which is 

really significant for sensitive components. 
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Figure 22. High irradiance on Bus Voltage 12 with and without RL. 

 

In the same manner, we corroborate that the external load that it’s been shown in 

figure 22 has no effect on the RL voltage regulation, since it basically mimics the 

behavior of the inverter Output. 
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Figure 23. External load Power and Bus 12 Voltage. 

Now, in this simulation the Q output in figure 23 (purple) has a good behavior, not  

oscillating on large values, with a more realistic approach. 

 

Figure 24. Bus Voltage and Q output of Inverter. 
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4.2 Cloudy day case 

Next Case scenario was taking a day with irregular patterns of irradiance, a cloudy 

day. For this research the day of August 22 was selected, due to its irregularities, 

the irradiance of that day is shown in Figure 24. 

 

Figure 25. Irradiance on August 22 2018. 

 

As expected from the previous case, Figure 25 shows the Voltage on the two models 

and they both mimic again the behavior of the inverter output shown in figure 26. 
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Figure 26 Bus 12 Voltage outputs on a cloudy day. 

 

In this case we have the RL controlled voltage being from  ≅ 1.00 𝑝. 𝑢. to 1.004 

p.u., which coincides with the parameter ci of a standard deviation of 1.035 p.u. and 

the voltage without regulation is 200 volts higher than the one being regulated. 
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Figure 27 Inverter Output on a cloudy day. 

 

Then again, figure 27 shows the Q output (green) being reasonably stable and 

helping out maintain the voltage within a regulated range. Although, the voltage 

here is less stable than the high irradiance case, but this is normal due to the 

irregular output of a cloudy day. 

 

Figure 28. Bus Voltage and Q output on a cloudy day. 
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Chapter 5: 

Conclusions and Future Work 

 

 

5.1 Conclusions 

One of the objectives of this work was to integrate an external load on real-time 

outputted every second physically to through Opal-RT and analyze a Distribution 

Feeder Model made in Simulink, which was achieved successfully. Although, for 

the robustness of the voltages being simulated it proved that what has most 

influence in the bus voltage variation was the inverter output, being this one a high 

large PV array (1MW). 

The second objective was able to put real data on the Feeder Model outputted every 

second on the model for a true Real-Time simulation and see how it affected the 

bus voltage being regulated by Reinforcement Learning. 
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Lastly the Reinforcement Learning for reactive power control proved to be 

successful in lower considerably the bus voltage, 100 volts less for a high irradiance 

day, and 200 volts for a irregular irradiance case. 

 On the work published by [19], it’s says that flexibility and robustness of the 

proposes method it’s something that’s needs to be evaluated in the future. In this 

work this robustness is evaluated since in the previous work, they work with low 

penetration PV and Low Voltage (LV) network, specifically 210 volts. While in the 

model presented on this work the target is a medium/high voltage network, working 

on the 12.47kV and a PV penetration of 1 MW, in contrast with the previous work 

that had a PV penetration of 5 kW. Therefore the robustness hypothesis of proposed 

method in [19] it’s being evaluated successfully here. 

 

5.2 Future work: 

Even though the method worked in maintain the regulated voltage within range, it 

might need some adjustments and further analysis in the RL and Simulink 

parameters. Since the non-regulated voltage, even though it was 200 volts higher 

did not really exceed the 1.02 p.u., maybe this can be fixed using different RL 

parameters or equations or a different policy or reward. This because, when we 

switched on the bank capacitor the RL regulated voltage did not followed the RL 

policy. 
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It also can be evaluated with other voltage ranges that are lower than the one 

presented in this work. Since this work wanted to focus in high voltage with high 

PV penetration for Distribution Feeders. This way the RL would probably work 

better. 

Another consideration for the future is implement more real and physical simulation 

by adding a real PV inverter simulator or real PV inverter data, for a more realistic 

behavior of inverter output, input and PV voltage and irradiance.  
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