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Abstract: In the present paper, for first time, a System of Neutrosophic Linear Equations (SNLE) is 

investigated based on the embedding approach. To this end, the (,,)-cut is used for 

transformation of SNLE into a crisp linear system. Furthermore, the existence of a neutrosophic 

solution to n x n linear system is proved in details and a computational procedure for solving the 

SNLE is designed. Finally, numerical experiments are presented to show the reliability and 

efficiency of the method. 

Keywords: Neutrosophic set; Neutrosophic number; Neutrosophic linear equation; Neutrosophic 

linear system; Embedding method.   

 

 

1. Introduction 

A system of linear equations can be defined as: 

 

                                      Ax=b,                                       (1) 

Various equations in the field of scientific modeling that describe the realistic issues like 

engineering problems and natural phenomena such as differential equations, computational fluid,  

circuit simulation, cryptography, quantum and structural mechanics, MRI reconstructions, 

vibroacoustics, linear and non-linear optimization, portfolios, economic modeling, astrophysics, 

Google page rank, image processing, nano-technology, natural language processing, deep learning, 

etc., must be solved mathematically. These issues can regularly be diminished to solving of linear 

systems. There are a huge amount of models to solve this problem, for more details, see [1-15] and 

the references therein. 

Nevertheless, if the assessment of the coefficients of systems is uncertain and imprecise and just 

some ambiguous understanding regarding the real values of the parameters is accessible, it might be 

advantageous to characterize them with special numbers related to soft computing. Fuzzy set was 

introduced by Zadeh [16, 17], as a suitable instrument to express uncertainty in real life situation. 

After the introduction of fuzzy set, numerous scholars deliberate on this topic (information of some 

studies can be observed in [18-23]). 

Numerous researchers also suggested several strategies to solve linear systems under fuzzy 

situation. Fuzzy linear systems emerged at least until 1980 [24]; however Friedman et al. [25] 

launched a particular model to solve a fuzzy linear system where, the matrix coefficient is crisp and 

the right-hand hand vector is a fuzzy number. Their model later modified by some other scholars; 

see [26-46]. 

However, when there is not clarity in information then the measure of non-membership is not 

the complement of the measure of membership. In these cases, individual measure of membership 

and non-membership are needed. Keeping this type of situation in consideration, intuitionistic fuzzy 

set (IFS) was established by Atanassov [47]. Nevertheless, in different branches of sciences and 

engineering, it was found that two mentioned components are not sufficient to represent some special 

types of information. In such cases, a component namely ‘neutrality’ is needed to represent the 



Neutrosophic Sets and Systems, Vol. 33, 2020     93  

 

 

S. A. Edalatpanah, Systems of neutrosophic linear equations     

information completely. Thus, to remove the limitation of IFS and to handle with more possible types 

of uncertainty in practical situation, Smarandache [48-51] initiated neutrosophic set (NS) as an 

extension of the classical and all types of fuzzy sets.  

This concept divided into two category of the neutrosophic numbers (NNs) and the 

neutrosophic sets (NSs). The neutrosophic number (NN) introduce a concept of indeterminacy, 

denoted by A m nI  ( ,m n R ), consists of its determinate part m and its indeterminate part 

.nI   In the worst scenario, A  can be unknown, i.e., A nI . However, when there is no 

indeterminacy related to A , in the best scenario, there is only its determinate part i.e., A m  [50, 

51]. But, the neutrosophic sets (NSs) represented by a truth-membership degree, an indeterminacy-

membership degree, a falsity-membership degree and have some subclasses such as interval 

neutrosophic set [52-54] , bipolar neutrosophic set [55-57], single-valued neutrosophic set [58-66], 

multi-valued neutrosophic set [67-98], and neutrosophic linguistic set [69-70] and applied to solve 

various problems; see [71-78]. It is worth mentioning that NSs and NNs are two different branches in 

neutrosophic theory and indicate different forms and concepts of information. 

 

Like any other framework, system of linear equations has also been the topic of evolution. One 

of the important developments in this field related to situations that coefficients are defined under 

conditions of uncertainty and indeterminacy. In fact, one of the expectations of classic linear systems 

is their crispness of data. However, in circumstances where uncertainty and indeterminacy is an 

inevitable feature of a real life environment, the assumption of crispness of data seems questionable. 

Also, there is a lot of ambiguity, indeterminacy, and uncertainty in these problems. The system of 

linear equations under neutrosophic environment are more useful than crisp and other fuzzy linear 

systems because user in his/her formulation of the problem is not forced to make a delicate 

formulation. The use of system of Neutrosophic linear equations (SNLE) is recommended to avert 

unrealistic modeling. Though there are numerous methodologies to solve various issues under NSs 

and also some models presented to solve linear systems with NNs [79-80], but to the best of our 

knowledge, the SNLE has not been discussed sets until now. Therefore, the contributions of this study 

are as follow: 

(i) We present for first time, the system of Neutrosophic Linear Equations (SNLE) problem. 

(ii) Based on the (,,)-cut, we design a strategy for solving SNLE with the single valued 

neutrosophic numbers (SVNNs). 

(iii) Some theorems about SNLE are investigated and the conditions of a strong neutrosophic 

solution to n x n system of linear equations is proved in details.   

 

This study prearranged as follows: some fundamental information, notions and operations on 

SVNNs are announced in Section 2. In Section 3, we introduce the SNLE and propose a general model 

to solve it. To show the efficiency and reliability of the method, numerical tests are provided in 

Section 4. Lastly, conclusions are offered in Section 5. 

 

2. Some Basic Definitions and Arithmetic Operations   

  Here, we have deliberated some fundamental definitions regarding the neutrosophic sets and 

single-valued neutrosophic numbers. 

 

Definition 1 [48-49 ]. A neutrosophic set A in objects X is described by a truth-membership function 

TA(x), an indeterminacy-membership function IA(x), and a falsity-membership function FA(x) where, 

TA(x): ]0 ,1 [,X    IA(x): ]0 ,1 [,X   and FA(x): ]0 ,1 [,X    and     

                          .0 ( ) sup ( ) (s sup )up 3A A AT x I x F x      
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Definition 2 [58].When three membership functions of neutrosophic set A be singleton subsets in the 

real standard [0, 1],we have a single-valued neutrosophic set (SVNS) A that is denoted by 

{( ( ) ( ) ( )) | }.,  ,  , A A AA x T x I x F x x X   

Definition 3 [59]. A single valued triangular neutrosophic number (SVTrN-number) is denoted 

by ( , , ), ( , , )A a b c     whose its three membership functions are given as follows: 

 

 

 

 

          ,

                      ,
( )
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0                       .
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Definition 3 [59].  Let 
1 1 1 1 1 1 1( , , ), ( , , )A a b c       and  

2 2 2 2 2 2 2( , , ), ( , , )A a b c       

be two SVTrN-numbers. Then the arithmetic relations are defined as: 

1 2 1 2 1 2 1 2 1 2 1 2 1 2( ) ( , , ),( , , )i A A a a b b c c                                     (2)                                     

1 1 1 1 1 1

1

1 1 1 1 1 1

( , , ), ( , , ) , 0
( )

( , , ), ( , , ) , 0

a b c if
ii A

c b a if

      


      


  

 
  

                              (3) 

 

Definition 4 [59]. The (,,)-cut Neutrosophic set F is denoted by F(,,), where , ,   [0,1] and are 

fixed numbers such that  +  +   3 is defined as by F(,,)= {<TA(x), IA(x), FA(x)> : x  X, TA(x)   

, IA(x)  , FA(x )   }.  

 

Also, If ( , , ), ( , , )A a b c      then (,,)-cut is given by: 

             
( , , )

[( ( )) , ( ( )) ],

[( ( )) , ( ( )) ],

[( ( )) , ( ( )) ]

a b a c c b

A b b a b c b

b b a b c b

  

   

   

   



   

    

   

                      (4) 

3. System of Neutrosophic Linear Equations (SNLE)  

Consider the n n  linear system with the following equations:  

                

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

.............. ,

.............. ,

.

.

.

.

.

.............. .

n n

n n

n n nn n n

a x a x a x b

a x a x a x b

a x a x a x b

   

   

   

    


   










   

                                  (5) 
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The matrix form of the Eq.(5) is as follows: 

                                ,Ax b                                          (6) 

where, the coefficient matrix ( )ijA a is a crisp n n  matrix and , 1,2,....,ib i n   is a 

neutrosophic number. The Eq.(6)  is called a system of neutrosophic linear equations (SNLE). 

 

Let the solution of the SNLE of Eq.(6) be x 
 and its (,,)-cut be

( , , ) )([ ],( , ( )T Tx x x     

[ ],( ), ( )I Ix x  [ ])( ), ( )F Fx x  .If the (,,)-cut of b
 be

( , , ) )([ ],( , ( )T Tx b b     

[ ],( ), ( )I Ib b  [ ])( ), ( )F Fb b  , then The SNLE of (6) can be written as:     

            

1 1

1 1

1 1

1 1

1 1

1

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ),

( )

j

j j

j
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j

j
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T T T
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F
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j
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 

 

 



 

 

 

 

 



 

 

 

 

 


1

( ) ( ).
j

n
F F

ij i

j

a x b 




















 




                                        (7) 

 

If we define 1 1 1 1 1 1( ,...., , ,...., , ,...., , ,...., , ,...., , ,...., )T T T T I I I I F F F F T

i n n n n n nx x x x x x x x x x x x x  and 

1 1 1 1 1 1( ,...., , ,...., , ,...., , ,...., , ,...., , ,...., )T T T T I I I I F F F F T

i n n n n n nb b b b b b b b b b b b b  , then following 

Friedman et al., (1998) we must solve an 6n×6n crisp linear system as: 

  

                                    HX=B                                        (8) 

 

Where, 

      

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

[0] [0]

[0] [0] , .

[0] [0]

T

n n n n n n

I

n n n n n n

F

n n n n n n

D B

H D B B

D B

  

  

  

  
  

    
     

                              (9) 

Also ( )ijD d ,and obtain as follows: 
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,

, ,

0 , ,

0 ,

ij ij ij i n j n ij

ij i j n ij i n j ij

a d a d a

a d a d a

 

 

   


     
                         (10) 

and any  ijd  which is not determined by (10) is zero. Also:  

                 
1 2

2 1

, , , .

T I F

T I F

T I F

b b bD D
D B B B

D D b b b

      
         

             

 

Where, 1 2 1 2, 0, .D D D D D    

Since H is a block diagonal matrix, to reduce the computational complexity, we need only to solve 

the following 2n×2n crisp linear systems: 

                     , , , .i iDx B i T I F                                       (11) 

Worthy mentioning that the matrix D may be singular even if A  is nonsingular; see the following 

example: 

Example 1. The matrix 
1 2

1 1
A

 
  
 

 of the SNLE is nonsingular, while 

1 0 0 2

1 1 0 0

0 2 1 0

0 0 1 1

D

 
 
 
 
 
 

is 

singular. 

In other sense, a SNLE represented by a nonsingular matrix A may be have no solution or an infinite 

number of solutions. Next, following the Friedman et al., (1998), we study some theorems regarding 

the properties of D . 

Theorem 1. D  is nonsingular iff 1 2A D D   and 1 2D D  are nonsingular.  

Theorem 2.If 
1D
 exists it must have the same structure as D, i.e, 

 
1

E F
D

F E

  
  
 

  

Definition 5. Let 1 1 1 1 1 1( ,...., , ,...., , ,...., , ,...., , ,...., , ,...., )T T T T I I I I F F F F T

i n n n n n nx x x x x x x x x x x x x   

be the unique solution of Eq.(5). If {1,2,..., }:k n   ,T T I I

k k k kx x x x  and 
F F

k kx x , then the 

solution ix 
 is called a strong neutrosophic solution. Otherwise, it is a weak neutrosophic solution. 

Theorem 3. Assume that 
1 2

2 1

D D
D

D D

 
  
 

 be a nonsingular matrix. Then Eq.(5) has a strong solution 

if and only if: 

 
1

1 2( ) ( ) 0, , , .i iD D b b i T I F     (12) 
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Proof. From the system (11) we obtain: 

                                    
1 2

2 1

, , ,

i i

i i

D D x b
i T I F

D D x b

    
        

    
 

Hence, 

                                         1 2

i i iD x D x b 

  (13) 

                                         2 1

i i iD x D x b  

  (14) 

From (13) and (14) we have: 

                               
1 2 1 2

1 2

( ) ( ) ,

( )( ) .

i i i i

i i

D D x D D x b b

D D x x b b

     


   
 

From Theorem 1, 1 2D D  is nonsingular. So, 

 
1

1 2( ) ( ) ( )i i i ix x D D b b     (15) 

By the Definition 5, 0i ix x  if Eq. (5) has a strong solution. Henceforth (12) holds. Conversely, 

if (12) holds, by Eq.(15), we have 0i ix x  . 

 

From the theorems 1 and 3, we conclude this result: 

 

Theorem 4. The SNLE has a strong solution if and only if the following conditions hold: 

1. The matrices 1 2A D D   and 1 2D D  are both nonsingular. 

2. 
1

1 2( ) ( ) 0.i iD D b b    

4. Numerical Example 

Here, we provide an experiment to demonstrate the consequences gained in former sections.  

Example 2. Consider the following SNLE: 

                     
1 2

1 2

(0,1,2);(0.9,0.4,0.2) ,

3 (4,5,7);(0.8,0.3,0.3) .

x x

x x

 

 

   


  
                         (16) 

The extended 4 × 4 matrix is 
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1 0 0 1

1 3 0 0
.

0 1 1 0

0 0 1 3

D

 
 
 
 
 
 

 

Since the matrices 1 2A D D   and 1 2

1 1

1 3
D D

 
   

 
 are both nonsingular, then by Theorem1, 

it is easy to see that the matrix D  is nonsingular. Therefor, 
1D
 exists  and based on Theorem 2, 

it must have the same structure as D. If we obtain this inverse, we can see that the Theorem 2 is true: 

                 1

9 1 3 3

8 8 8 8

3 3 1 1

8 8 8 8
.

3 3 9 1

8 8 8 8

1 1 3 3

8 8 8 8

D 

  
 
 
  
 

  
  
 
  
 
 

 

Now, we obtain the (,,)-cut of the right hand side vector. By Definition 4, we get: 

1 ( , , )

2 ( , , )

[0.9( ),0.9(2 )],[0.4(1 ),0.4(1 )],[0.2(1 ),0.2(1 )] ,

[0.8(4 ),0.8(8 2 )],[0.3(5 ),0.3(5 2 )],[0.3(5 ),0.3(5 2 )] .

b

b

  

  

     

     





      

       
 

Also, 
1

1 2

3 1

2 2
( )

1 1

2 2

D D 

 
 

   
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Therefore, by theorems 3 and 4, The SNLE (16) should has a strong solution. To obtain this solution, 

form Eq.(11) we have: 
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For different values of 0 , , 1    ,the graphical interpretation of the above results is shown in 

figures 1and 2.  

 

Figure 1. The value of 1 .x 
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Figure 2. The value of 2 .x 
 

5. Conclusions 

  In this study, we present for first time, the system of Neutrosophic Linear Equations (SNLE) and 

establish a general model to solve it. Some theorems about SNLE are investigated and the conditions 

of a strong neutrosophic solution to n x n system of linear equations is proved in details. Finally, from 

numerical and theoretical studies it can be concluded that the model is efficient and convenient.  
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