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Abstract: In this paper, the concepts of a neutrosophic τ -structure ring spaces, neutrosophic τ -structure ring GδT1/2
spaces and neutrosophic τ -structure ring exterior B spaces and neutrosophic τ -structure ring exterior V spaces are
introduced. Some interesting functions that preserve neutrosophic τ -structure ring exteriorB spaces and neutrosophic
τ -structure ring exterior V spaces in the context of image and preimage are derived with the necessary examples.
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1 Introduction
The concept of fuzzy sets was introduced by Zadeh [16]. consequent to the introduction of fuzzy sets, fuzzy
logic has been applied in many real life situations to handle uncertainty. Chang [7] introduced the concept
of fuzzy topological spaces. There are several kinds of fuzzy set extensions such as intuitionistic fuzzy set,
interval-valued fuzzy sets, etc. After the introduction of intuitionistic fuzzy sets and its topological spaces
by Atanassov [6] and Coker [8], the concept of imprecise data called neutrosophic sets was introduced by
Smarandache [9]. The concept of neutrosophic topological space was introduced by Salama [15]. Later
R.Narmada Devi [10,11,12,13,14] introduced the concepts of intuitionistic fuzzy Gδ sets, intuitionistic fuzzy
exterior spaces and neutrosophic complex topological spaces. Moreover, the neutrosophic theory plays a vi-
ral role in all fields of branches like medial diagnosis [1,2,5], multiple criteria group decision making [3,4],
etc. In this paper, the concepts of neutrosophic τ -structure ring spaces, neutrosophic Gδ rings, neutrosophic
first category rings, neutrosophic τ -structure ring GδT1/2 spaces and neutrosophic τ -structure ring exterior B
spaces and neutrosophic τ -structure ring exterior V spaces are introduced. Further, neutrosophic τ -structure
ring continuous (resp. open, hardly open) functions and somewhat neutrosophic τ -structure ring continuous
functions are presented. Some interesting properties among of functions along with the spaces are discussed
and necessary examples are provided.

2 Preliminiaries
We need the following basic definitions for our study.
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Definition 2.1. [9] LetX be a nonempty set. A neutrosophic setA inX is defined as an object of the formA =
{〈x, TA(x), IA(x), FA(x)〉 : x ∈ X} such that TA, IA, FA : X → [0, 1]. and 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

Definition 2.2. [9] Let A = 〈x, TA(x), IA(x), FA(x)〉 and B = 〈x, TB(x), IB(x), FB(x)〉 be any two neutro-
sophic sets in X . Then

(i) A∪B = 〈x, TA∪B(x), IA∪B(x), FA∪B(x)〉 where TA∪B(x) = TA(x)∨ TB(x), IA∪B(x) = IA(x)∨ IB(x)
and FA∪B(x) = FA(x) ∧ FB(x).

(ii) A∩B = 〈x, TA∩B(x), IA∩B(x), FA∩B(x)〉 where TA∩B(x) = TA(x)∧ TB(x), IA∩B(x) = IA(x)∧ IB(x)
and FA∩B(x) = FA(x) ∨ FB(x).

(iii) A ⊆ B if TA(x) ≤ TB(x), IA(x) ≤ IB(x) and FA(x) ≥ FB(x), for all x ∈ X .

(iv) the complement of A is defined as C(A) = 〈x, TC(A)(x), IC(A)(x), FC(A)(x)〉 where TC(A)(x) = 1 −
TA(x), IC(A)(x) = 1− IA(x) andFC(A)(x) = 1− FA(x).

(v) 0N = {〈x, 0, 0, 1〉 : x ∈ X} and 1N = {〈x, 1, 1, 0〉 : x ∈ X}

Definition 2.3. [10,11] Let (X,T ) be an intuitionistic fuzzy topological space. Let A = 〈x, µA, γA〉 be an
intuitionistic fuzzy set on an intuitionistic fuzzy topological space (X,T ). Then A is said be an intuitionistic
fuzzy Gδ set if A =

⋂∞
i=1Ai, where Ai = 〈x, µAi

, γAi
〉 is an intuitionistic fuzzy open set in an intuitionistic

fuzzy topological space (X,T ). The complement of an intuitionistic fuzzy Gδ set is said to be an intuitionistic
fuzzy Fσ set.

Definition 2.4. [12,13] Let A = 〈µA, γA〉 be an intuitionistic fuzzy set on an intuitionistic fuzzy topological
space (X, τ). An intuitionistic fuzzy exterior of A is defines as follows: if IFExt(A) = IF int(A)

Definition 2.5. [12,13] Let R be a ring. An intuitionistic fuzzy set A = 〈x, µA, γA〉 in R is called an in-
tuitionistic fuzzy ring on R if it satisfies the following conditions on the membership and nonmembership
values:

(i) µA(x+ y) ≥ µA(x) ∧ µA(y),

(ii) µA(xy) ≥ µA(x) ∧ µA(y),

(iii) γA(x+ y) ≤ γA(x) ∨ γA(y),

(iv) γA(xy) ≤ µA(x) ∨ γA(y),

for all x, y ∈ R.

3 Properties of neutrosophic τ -Structure Ring Exterior B Spaces
Definition 3.1. LetR be a ring. A neutrosophic setA = 〈x, TA(x), IA(x), FA(x)〉 inR is called a neutrosophic
ring on R if it satisfies the following conditions:

(i) TA(x+ y) ≥ TA(x) ∧ TA(y) and TA(xy) ≥ TA(x) ∧ TA(y)

(ii) IA(x+ y) ≥ IA(x) ∧ IA(y) and IA(xy) ≥ IA(x) ∧ IA(y)
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(iii) FA(x+ y) ≤ FA(x) ∨ FA(y) and FA(xy) ≤ FA(x) ∨ FA(y), for all x, y ∈ R.

Definition 3.2. Let R be a ring. A family S of a neutrosophic rings in R is said to be neutrosophic τ -structure
ring on R if it satisfies the following conditions:

(i) 0N , 1N ∈ S .

(ii) G1 ∩G2 ∈ S for any G1, G2 ∈ S .

(iii) ∪Gi ∈ S for arbitrary family {Gi | i ∈ I} ⊆ S .

The ordered pair (R,S ) is called a neutrosophic τ -structure ring space. Every member of S is called a
neutrosophic τ -open ring in (R,S ). The complement C(A) of a neutrosophic τ -open ring A is a neutrosophic
τ -closed ring in (R,S ).

Example 3.1. Let R = {0, 1} be a set of integers module 2 with two binary operations ’+’ and ’.’ are specified
by the following tables:

+ 0 1
0 0 1
1 1 0

and
· 0 1
0 0 0
1 0 1

Then (R,+, ·) is a ring. Define neutrosophic rings B and D on R as follows: TB(0) = 0.5, TB(1) =
0.7, IB(0) = 0.5, IB(1) = 0.7, FB(0) = 0.3, FB(1) = 0.2, TD(0) = 0.3, TD(1) = 0.4, ID(0) = 0.3, ID(1) =
0.4, FD(0) = 0.5, FD(1) = 0.6. Then S = {0N , B,D, 1N} is a neutrosophic τ -structure ring on R. Thus the
pair (R,S ) is a neutrosophic τ - structure ring space.

Notation 3.1. Let (R,S ) be any neutrosophic τ -structure ring space. Then NO(R) ( resp. NC(R) ) denotes
the family of all neutrosophic τ -open( resp. closed ) rings of (R,S ).

Definition 3.3. Let (R,S ) be any neutrosophic τ -structure ring space. Let A be a neutrosophic ring in R.
Then the neutrosophic ring interior and neutrosophic ring closure A are defined and denoted as NFRint(A) =
∪{B | B ∈ NO(R) and B ⊆ A} and NFRcl(A) = ∩{B | B ∈ NC(R) and A ⊆ B respectively.

Remark 3.1. Let (R,S ) be any neutrosophic τ -structure ring space. Let A be any neutrosophic ring in R.
Then the following statements hold:

(i) NFRcl(A) = A if and only if A is a neutrosophic τ -closed ring.

(ii) NFRint(A) = A if and only if A is a neutrosophic τ -open ring.

(iii) NFRint(A) ⊆ A ⊆ NFRcl(A).

(iv) NFRint(1N) = 1N and NFRint(0N) = 0N .

(v) NFRcl(1N) = 1N and NFRcl(0N) = 0N .

(vi) NFRcl(C(A)) = C(NFRint(A)) and NFRint(C(A)) = C(NFRcl(A)).

(vii) ∪∞i=1NFRcl(Ai) ⊆ NFRcl(∪∞i=1Ai).

(viii) ∩ni=1NFRcl(Ai) = NFRcl(∪ni=1Ai).
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(ix) ∩∞i=1NFRcl(Ai) ⊆ NFRcl(∪∞i=1Ai).

(x) ∪∞i=1NFRint(Ai) ⊆ NFRint(∪∞i=1Ai).

Definition 3.4. Let (R,S ) be any neutrosophic τ -structure ring space. Let A be a neutrosophic ring in R.
Then NFRint(C(A)) is called a neutrosophic ring exterior of A and is denoted by NFRExt(A).

Proposition 3.1. Let (R,S ) be any neutrosophic τ -structure ring space. LetA andB be any two neutrosophic
rings in R. Then the following statements hold:

(i) NFRExt(A) ⊆ C(A).

(ii) NFRExt(A) = C(NFRcl(A)).

(iii) NFRExt(NFRExt(A)) = NFRint(NFRcl(A)).

(iv) If A ⊆ B then NFRExt(A) ⊇ NFRExt(B).

(v) NFRExt(1N) = 0N and NFRExt(0N) = 1N .

(vi) NFRExt(A ∪B) = NFRExt(A) ∩NFRExt(B).

Definition 3.5. Let (R,S ) be a neutrosophic τ -structure ring space. Let A be any neutrosophic ring in R.
Then A is said be to a neutrosophic Gδ ring in (R,S ) if A =

⋂∞
i=1Ai, where Ai = 〈x, TAi

, IAi
, FAi
〉 is a

neutrosophic τ -open ring in (R,S ). The complement of a neutrosophic Gδ ring is a neutrosophic Fσ ring in
(R,S ).

Definition 3.6. Let (R,S ) be a neutrosophic τ -structure ring space. Let A be any neutrosophic ring in R.
Then A is said be to a

(i) neutrosophic dense ring if there exists no neutrosophic τ -closed ring B in (R,S ) such that A ⊂ B ⊂
1N .

(ii) neutrosophic nowhere dense ring if there exists no neutrosophic τ -open ring B in (R,S ) such that
B ⊂ NFRcl(A). That is, NFRint(NFRcl(A)) = 0N .

Definition 3.7. Let (R,S ) be any neutrosophic τ -structure ring space. Let A be any neutrosophic fuzzy
ring in R. Then A is said be to a neutrosophic first category ring in (R,S ) if A = ∪∞i=1Ai where Ai’s
are neutrosophic nowhere dense rings in (R,S ). The complement of a neutrosophic first category ring is a
neutrosophic residual ring in (R,S ).

Proposition 3.2. Let (R,S ) be any neutrosophic τ -structure ring space. If A is a neutrosophic Gδ ring and
the neutrosophic ring exterior of C(A) is a neutrosophic dense ring in (R,S ), then C(A) is a neutrosophic
first category ring in (R,S ).
Proof:

A being a neutrosophic Gδ ring in (R,S ), A = ∩∞i=1Ai where Ai’s are neutrosophic τ -open rings. Since
the neutrosophic ring exterior of C(A) is a neutrosophic dense ring in (R,S ), NFRcl(NFRExt(C(A))) =
1N . Because NFRExt(C(A)) ⊆ A ⊆ NFRcl(A), one has NFRExt(C(A)) ⊆ NFRcl(A).
This implies that NFRcl(NFRExt(C(A))) ⊆ NFRcl(A), that is, 1N ⊆ NFRcl(A). Therefore, NFRcl(A) =
1N . That is, NFRcl(A) = NFRcl(∩∞i=1Ai) = 1N . However, IFRcl(∩∞i=1Ai) ⊆ ∩∞i=1NFRcl(Ai). Hence,
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1N ⊆ ∩∞i=1NFRcl(Ai). That is, ∩∞i=1NFRcl(Ai) = 1N . This implies that NFRcl(Ai) = 1N , for each Ai ∈
S . Hence NFRcl(NFRint(Ai)) = 1N . Now, NFRint(NFRcl(C(Ai))) = NFRint(C(NFRint(Ai))) =
C(NFRcl(NFRint(Ai))) = 0N . Therefore, C(Ai) is a neutrosophic nowhere dense ring in (R,S ). Now,
C(A) = C(∩∞i=1Ai) = ∪∞i=1C(Ai). Hence, C(A) = ∪∞i=1C(Ai) where C(Ai)’s are neutrosophic nowhere
dense rings in (R,S ). Consequently, C(A) is a neutrosophic first category ring in (R,S ).

Proposition 3.3. If A is a neutrosophic first category ring in a neutrosophic τ -structure ring space (R,S )
such that B ⊆ C(A) where B is non-zero neutrosophic Gδ ring and the neutrosophic ring exterior of C(B) is
a neutrosophic dense ring in (R,S ), then A is a neutrosophic nowhere dense ring in (R,S ).
Proof:

Let A be a neutrosophic first category ring in (R,S ). Then A = ∪∞i=1Ai where Ai’s are neutrosophic
nowhere dense rings in (R,S ). Now C(NFRcl(Ai)) is a neutrosophic τ -open ring in (R,S ). Let B =
∩∞i=1C(NFRcl(Ai)). Then B is non-zero neutrosophic Gδ ring in (R,S ). Now, B = ∩∞i=1C(NFRcl(Ai)) =
C(∪∞i=1NFRcl(Ai)) ⊆ C(∪∞i=1Ai) = C(A). Hence B ⊆ C(A). Then A ⊆ C(B). Now,

NFRint(NFRcl((A)) ⊆ NFRint(NFRcl((C(B)))

= NFRint(C(NFRint(B)))

= C(NFRcl(NFRint(B)))

= C(NFRcl(NFRExt(C(B)))

Since NFRExt(C(B)) is a neutrosophic dense ring in (R,S ), NFRcl(Ext(C(B)))
= 1N . Therefore, NFRint(NFRcl(A)) ⊆ 0N . Then, NFRint(NFRcl(A)) = 0N . Hence A is a neutrosophic
nowhere dense ring in (R,S ).

Definition 3.8. Let (R,S ) be a neutrosophic τ -structure ring space. LetA be any neutrosophic ring inR. Then
A is said to be a neutrosophic τ -regular closed ring in (R,S ) if NFRcl(NFRint(A)) = A. The complement
of a neutrosophic τ -regular closed ring in (R.S ) is a neutrosophic τ -regular open ring in (R.S ).

Remark 3.2. Every neutrosophic τ -regular closed ring is a neutrosophic τ -closed ring.

Definition 3.9. Let (R,S ) be a neutrosophic τ -structure ring space. Then (R,S ) is called a neutrosophic
τ -structure ring GδT1/2 space if every non-zero neutrosophic Gδ ring in (R,S ) is a neutrosophic τ -open ring
in (R,S ).

Proposition 3.4. If the neutrosophic τ -structure ring space (R,S ) is a neutrosophic τ -structure ring GδT1/2
space and if A is a neutrosophic first category ring in (R,S ), then A is not a neutrosophic dense ring in
(R,S ).
Proof:

Assume the contrary. Suppose that A is a neutrosophic first category ring in (R,S ) such that A is a
neutrosophic dense ring in (R,S ), that is, NFRcl(A) = 1N . Then, A = ∪∞i=1Ai where Ai’s are neutrosophic
nowhere dense rings in (R,S ). Now, C(NFRcl(Ai)) is a neutrosophic τ -open ring in (R,S ). Let B =
∩∞i=1C(NFRcl(Ai)). Then, B is non-zero neutrosophic Gδ ring in (R,S ). Now, B = ∩∞i=1C(NFRcl(Ai)) =
C(∪∞i=1NFRcl(Ai)) ⊆ C(∪∞i=1Ai) = C(A). Hence B ⊆ C(A). Then, NFRint(B) ⊆ NFRint(C(A)) ⊆
C(NFRcl(A)) = 0N . That is, NFRint(B) = 0N . Since (R,S ) is a neutrosophic τ -structure ring GδT1/2
space, B = NFRint(B), which implies that B = 0N . This is a contradiction. Hence A is not a neutrosophic
dense ring in (R,S ).
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Proposition 3.5. If (R,S ) is a neutrosophic τ -structure ring GδT1/2 space, then NFRExt(∪∞i=1C(Ai)) =
∩∞i=1Ai.
Proof:

Let (R,S ) be a neutrosophic τ -structure ring GδT1/2 space. Assume that Ai’s are neutrosophic τ -regular
closed rings in (R,S ). Then, the Ai’s are neutrosophic τ -closed rings in (R,S ), which implies that C(Ai)’s
are neutrosophic τ -open rings in (R,S ). Let B = ∩∞i=1Ai. Then B is a non-zero neutrosophic Gδ ring in
(R,S ). Since (R,S ) is a neutrosophic τ -ring GδT1/2 space, B = NFRint(B) is a neutrosophic τ -open ring,
which implies that NFRint(∩∞i=1Ai) = ∩∞i=1Ai. Now, NFRExt(∪∞i=1C(Ai)) = NFRint(C(∪∞i=1C(Ai))) =
NFRint(∩∞i=1Ai) = ∩∞i=1Ai. Hence the proof.

Definition 3.10. Let (R,S ) be a neutrosophic τ -structure ring space. Then (R,S ) is called a neutrosophic
τ -structure ring exteriorB ( in short,ExtB ) space ifNFRExt(∩∞i=1C(Ai)) = 0N whereAi’s are neutrosophic
nowhere dense rings in (R,S ).

Example 3.2. Let R = {0, 1} be a set of integers of module 2 with two binary operations provided by the
following tables:

+ 0 1
0 0 1
1 1 0

and
· 0 1
0 0 0
1 0 1

Then (R,+, ·) is a ring. Define neutrosophic rings A,B,M,D,E, F and G on R as follows: TA(0) =
0.5, TA(1) = 0.7, IA(0) = 0.5, IA(1) = 0.7, FA(0) = 0.3, FA(1) = 0.3, TB(0) = 0.5, TB(1) = 0.7, IB(0) =
0.5, IB(1) = 0.7, FB(0) = 0.3, FB(1) = 0.2, TM(0) = 0.3, TM(1) = 0.4, IM(0) = 0.3, IM(1) = 0.4, FM(0) =
0.5, FM(1) = 0.6, TD(0) = 0.4, TD(1) = 0.5, ID(0) = 0.4, ID(1) = 0.5, FD(0) = 0.3, FD(1) = 0.5, TE(0) =
0.3, TE(1) = 0.2, IE(0) = 0.3, IE(1) = 0.2, FE(0) = 0.5, FE(1) = 0.7, TF (0) = 0.3, TF (1) = 0.2, IF (0) =
0.3, IF (1) = 0.2, FF (0) = 0.5, FF (1) = 0.8, TG(0) = 0.3, TG(1) = 0.2, IG(0) = 0.3, IG(1) = 0.2, FG(0) =
0.6, FG(1) = 0.7, TH(0) = 0.3, TH(1) = 0.2, IH(0) = 0.3, IH(1) = 0.2, FH(0) = 0.6, FH(1) = 0.8. Then
S = {0N , A,B,M,D, 1N} is a neutrosophic τ -structure ring on R. Thus the pair (R,S ) is a neutrosophic
τ -structure ring space. Let {E,F,G,H} be neutrosophic nowhere dense rings in (R,S ).

Then NFRExt(∩{C(E), C(F ), C(G), C(H)}) = NFRExt(C(E)) = NFRint(E) = 0N . Therefore,
(R,S ) is a neutrosophic τ -structure ring ExtB space.

Proposition 3.6. Let (R,S ) be a neutrosophic τ -structure ring space. Then the following statements are
equivalent:

(i) (R,S ) is a neutrosophic τ -structure ring ExtB space.

(ii) NFRint(A) = 0N , for every neutrosophic first category ring A in (R,S ).

(iii) NFRcl(A) = 1N , for every neutrosophic residual ring A in (R,S ).

Proof:
(i)⇒(ii)

Let A be any neutrosophic first category ring in (R,S ). Then A = ∪∞i=1Ai where Ai’s are neutro-
sophic nowhere dense rings in (R,S ). Now, NFRint(A) = NFRint(∪∞i=1Ai) = NFRint(C(∩∞i=1C(Ai))) =
NFRExt(∩∞i=1C(Ai)). Since (R,S ) is a neutrosophic τ -structure ringExtB space, NFRExt(∩∞i=1C(Ai)) =
0N . Therefore, NFRint(A) = 0N . Hence (i)⇒ (ii).
(ii)⇒(iii)
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Let A be any neutrosophic residual ring in (R,S ). Then C(A) is a neutrosophic first category ring in
(R,S ). By (ii), NFRint(C(A)) = 0N . That is, NFRint(C(A)) = 0N = C(NFRcl(A)). Therefore,
NFRcl(A) = 1N . Hence (ii)⇒ (iii).
(iii)⇒(i)

Let A be any neutrosophic first category ring in (R,S ). Then A = ∪∞i=1Ai where Ai’s are neutrosophic
nowhere dense rings in (R,S ). Since A is a neutrosophic first category ring, C(A) is a neutrosophic residual
ring in (R,S ). Then by (iii),NFRcl(C(A)) = 1N . Now,NFRExt(∩∞i=1C(Ai)) = NFRint(C(∩∞i=1C(Ai))) =
NFRint(∪∞i=1Ai) = NFRint(A) = C(NFRcl(C(A))) = 0N . Hence,NFRExt(∩∞i=1C(Ai)) = 0N whereAi’s
are neutrosophic nowhere dense rings in (R,S ). Therefore, (R,S ) is a neutrosophic τ -structure ring ExtB
space.

Proposition 3.7. If A is a neutrosophic first category ring in a neutrosophic τ -structure ring space (R,S )
such that B ⊆ C(A) where B is non-zero neutrosophic Gδ ring and the neutrosophic ring exterior of C(B) is
a neutrosophic dense ring in (R,S ), then (R,S ) is a neutrosophic τ -structure ring ExtB space.
Proof:

Let A be any neutrosophic first category ring in (R,S ) such that B ⊆ C(A) where B is non-zero neu-
trosophic Gδ ring and the neutrosophic ring exterior of C(B) is aneutrosophic dense ring in (R,S ). Then
by Proposition 3.3., A is a neutrosophic nowhere dense ring (R,S ), that is, NFRint(NFRcl(A)) = 0N .
Then, NFRint(A) ⊆ NFRint(NFRcl(A)) implies that NFRint(A) = 0N . By Proposition 3.6., (R,S ) is a
neutrosophic τ -structure ring ExtB space.

Proposition 3.8. If (R,S ) is a neutrosophic τ -structure ring ExtB space and if ∪∞i=1Ai = 1N where Ai’s are
neutrosophic τ -regular closed rings in (R,S ), then NFRcl(∪∞i=1NFRExt(C(Ai))) = 1N .
Proof:

Let (R,S ) be any neutrosophic τ -structure ring ExtB space. Assume that Ai’s are neutrosophic τ -
regular closed rings in (R,S ). Suppose that NFRint(Ai) = 0N , for each i ∈ J . Since Ai is a neutrosophic
τ - regular closed ring in (R,S ), Ai is a neutrosophic τ -closed ring in (R,S ). Also, NFRint(Ai) = 0N
implies that NFRint(NFRcl(Ai)) = 0N . Therefore, Ai’s are neutrosophic nowhere dense rings in (R,S ).
Since ∪∞i=1Ai = 1N , NFRExt(∩∞i=1C(Ai)) = NFRExt(C(∪∞i=1Ai)) = NFRint(∪∞i=1Ai) = NFRint(1N) =
1N . Hence, NFRExt(∩∞i=1C(Ai)) = 1N . Since (R,S ) is a neutrosophic τ -structure ring ExtB space,
NFRExt(∩∞i=1C(Ai)) = 0N , which is a contradiction. Hence NFRint(Ai) 6= 0N , for atleast one i ∈
J . Therefore, ∪∞i=1NFRint(Ai) 6= 0N . Since Ai is a neutrosophic τ -regular closed rings in (R,S ) and
∪∞i=1NFRcl(Ai) ⊆ NFRcl(∪∞i=1Ai),

⇒ ∪∞i=1NFRcl(NFRint(Ai)) ⊆ NFRcl(∪∞i=1NFRint(Ai))

⇒ ∪∞i=1Ai ⊆ NFRcl(∪∞i=1NFRint(Ai))

⇒ ∪∞i=1Ai ⊆ NFRcl(∪∞i=1NFRExt(C(Ai)))

⇒ 1N ⊆ NFRcl(∪∞i=1NFRExt(C(Ai))).

But 1N ⊇ NFRcl(∪∞i=1NFRExt(C(Ai))). Hence, NFRcl(∪∞i=1NFRExt(C(Ai))) = 1N .

4 On neutrosophic τ -Structure Ring Exterior V Spaces
Definition 4.1. Let (R,S ) be any neutrosophic τ -structure ring space. Then (R,S ) is called a neutrosophic
τ -structure ring exterior V ( in short, ExtV )space if NFRcl(∩ni=1Ai) = 1N where Ai’s are neutrosophic Gδ
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rings and the neutrosophic ring exterior of C(Ai)’s are neutrosophic dense rings in (R,S ).

Example 4.1. Let R = {0, 1, 2} be a set of integers of module 3 together with two binary operations as
follows:

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

and

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

Then (R,+, ·) is a ring. Define neutrosophic rings A,B and D on R as follows: TA(0) = 1, TA(1) =
0.2, TA(2) = 0.9, IA(0) = 1, IA(1) = 0.2, IA(2) = 0.9, FA(0) = 0, FA(1) = 0.8, FA(2) = 0.1, TB(0) =
0.3, TB(1) = 1, TB(2) = 0.2, IB(0) = 0.3, IB(1) = 1, IB(2) = 0.2, FB(0) = 0.7, FB(1) = 0, FB(2) =
0.8, TD(0) = 0.7, TD(1) = 0.4, TD(2) = 1, ID(0) = 0.7, ID(1) = 0.4, ID(2) = 1, FD(0) = 0.3, FD(1) =
0.6, FD(2) = 0.
Then S = {0N , A,B,D,A∩B,A∪B,A∩D,A∪D,B∩D,B∪D,D∩(A∪B), A∪(B∩D), B∪(A∩D), 1N}
is a neutrosophic τ -structure ring on R. Thus the pair (R,S ) is a neutrosophic τ -structure ring space.

Now, A∩D = ∩{B∪ (A∩D), D∩ (A∪B), D,A} andD∩ (A∪B) = ∩{A∪B,D∩ (A∪B), A∪D} are
neutrosophic Gδ rings in (R,S ). Also, the neutrosophic ring exterior of C(A ∩D) and C(D ∩ (A ∪ B)) are
neutrosophic dense rings in (R,S ). Now,NFRcl(∩{A∩D,D∩(A∪B)}) = NFRcl(A∩D) = 1N .Therefore,
(R,S ) is a neutrosophic τ -structure ring ExtV space.

Proposition 4.1. Let (R,S ) be a neutrosophic structure ring space. Then (R,S ) is a neutrosophic τ -structure
ring ExtV space iff NFRint(∪ni=1C(Ai)) = 0N where Ai’s are neutrosophic Gδ rings and the neutrosophic
ring exterior of C(Ai)’s are neutrosophic dense rings in (R,S ).
Proof:

Let (R,S ) be a neutrosophic ring ExtV space. Assume that Ai’s are neutrosophic Gδ rings and the
neutrosophic ring exterior of C(Ai)’s are neutrosophic dense rings in (R,S ). Since (R,S ) is a neutrosophic
τ -structure ring ExtV space, NFRcl(∩ni=1Ai) = 1N . Now, NFRint(∪ni=1C(Ai)) = NFRint(C(∩ni=1Ai)) =
C(NFRcl(∩ni=1Ai)) = 0N . Therefore, NFRint(∪ni=1C(Ai)) = 0N where Ai’s are neutrosophic Gδ rings and
the neutrosophic ring exterior of C(Ai)’s are neutrosophic dense rings in (R,S ).

Conversely, letNFRint(∪ni=1C(Ai)) = 0N whereAi’s are neutrosophicGδ rings and the neutrosophic ring
exterior of C(Ai)’s are neutrosophic dense rings in (R,S ). Now, NFRcl(∩ni=1Ai) = NFRcl(C(∪ni=1Ai)) =
C(NFRint(∪ni=1Ai)) = 1N . Therefore, (R,S ) is a neutrosophic τ -structure ring ExtV space.

Proposition 4.2. Let (R,S ) be a neutrosophic τ -structure ring space. If every neutrosophic first category ring
in (R,S ) is formed from the neutrosophic Gδ rings and the neutrosophic ring exterior of its complements are
neutrosophic dense rings in a neutrosophic τ -structure ringExtV space (R,S ), then (R,S ) is a neutrosophic
τ -structure ring ExtB space.
Proof:

Assume that Ai’s are neutrosophic Gδ rings in (R,S ) and the neutrosophic ring exterior of C(Ai)’s are
neutrosophic dense rings in (R,S ), for i = 1, ..., n. Since (R,S ) is a neutrosophic τ -structure ring ExtV
space and by Proposition 4.1.,NFRint(∪ni=1C(Ai)) = 0N . But ∪ni=1NFRint(C(Ai)) ⊆ NFRint(∪ni=1C(Ai)),
which implies that ∪ni=1NFRint(C(Ai)) = 0N . Then NFRint(C(Ai)) = 0∼. Since Ai’s are neutrosophic Gδ

rings in (R,S ) and the neutrosophic ring exterior of C(Ai)’s are neutrosophic dense rings in (R,S ), for
i = 1, ..., n. By Proposition 3.2., C(Ai)’s are neutrosophic first category rings in (R,S ), for i = 1, ..., n.
Therefore, NFRint(C(Ai)) = 0N , for every C(Ai) is a neutrosophic first category rings in (R,S ). By
Proposition 3.6., (R,S ) is a neutrosophic τ -structure ring ExtB space.
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Definition 4.2. Let (R1,S1) and (R2,S2) be any two neutrosophic τ -structure ring spaces. Let f : (R1,S1)→
(R2,S2) be any function. Then f is said to be a

(i) neutrosophic τ -structure ring continuous function if f−1(A) is a neutrosophic τ -open ring in (R1,S1),
for every neutrosophic τ -open ring A in (R2,S2).

(ii) somewhat neutrosophic τ -structure ring continuous function if A ∈ S2 and f−1(A) 6= 0∼ implies that
there exists a neutrosophic τ -open ring B in (R1,S1) such that B 6= 0N and B ⊆ f−1(A).

(iii) neutrosophic τ -structure ring hardly open function if for each neutrosophic dense ring A in (R2,S2)
such that A ⊆ B ⊂ 1N for some neutrosophic τ -open ring B in (R2,S2), f−1(A) is a neutrosophic
dense ring in (R1,S1).

(iv) neutrosophic τ -structure ring open function if f(A) is a neutrosophic τ -open ring in (R2,S2), for every
neutrosophic τ -open ring A in (R1,S1).

Proposition 4.3. Let (R1,S1) and (R2,S2) be any two neutrosophic τ -structure ring spaces. Let f : (R1,S1)→
(R2,S2) be any function. Then the following statements are equivalent:

(i) f is a neutrosophic τ -structure ring continuous function.

(ii) f−1(B) is a neutrosophic τ -closed ring in (R1,S1), for every neutrosophic τ -closed ring B in (R2,S2).

(iii) NFRcl(f−1(A)) ⊆ f−1(NFRcl(A)), for each neutrosophic ring A in (R2,S2).

(iv) f−1(NFRint(A)) ⊆ NFRint(f
−1(A)), for each neutrosophic ring A in (R2,S2).

Remark 4.1. Let (R1,S1) and (R2,S2) be any two neutrosophic τ -structure ring spaces. If f : (R1,S1) →
(R2,S2) is a neutrosophic τ -structure ring continuous function, then f−1(NFRExt(C(A)) ⊆ NFRExt(C(f

−1(A))),
for each neutrosophic ring A in (R2,S2).
Proof: The proof follows from the Definition 3.4 and Proposition 4.3..

Proposition 4.4. If a function f : (R1,S1) → (R2,S2) from a neutrosophic τ -structure ring space (R1,S1)
into another neutrosophic τ -structure ring space (R2,S2) is neutrosophic τ -structure ring continuous, 1-1 and
if A is a neutrosophic dense ring in (R1,S1), then f(A) is a neutrosophic dense ring in (R2,S2).
Proof:

Suppose that f(A) is not a neutrosophic dense ring in (R2,S2). Then there exists a neutrosophic τ -closed
ring in (R2,S2) such that f(A) ⊂ D ⊂ 1N . Then, f−1(f(A)) ⊂ f−1(D) ⊂ f−1(1N). Since f is 1-1,
f−1(f(A)) = A. Hence A ⊂ f−1(D) ⊂ 1N . Since f is a neutrosophic τ -structure ring continuous function
and D is a neutrosophic τ -closed ring in (R2,S2), f−1(D) is a neutrosophic τ -closed ring in (R1,S1). Then
NFRcl(A) 6= 1N , which is a contradiction. Therefore f(A) is a neutrosophic dense ring in (R2,S2).

Remark 4.2. Let (R1,S1) and (R2,S2) be any two neutrosophic τ -structure ring spaces. Then

(i) the neutrosophic τ -structure ring continuous image of a neutrosophic τ -structure ring ExtV space
(R1,S1) may fail to be a neutrosophic τ -structure ring ExtV space (R2,S2).

(ii) the neutrosophic τ -structure ring open image of a neutrosophic τ -structure ring ExtV space (R1,S1)
may fail to be a neutrosophic τ -structure ring ExtV space (R2,S2).
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Proof: It is clear from the following Examples.

Example 4.2. Let R = {0, 1, 2} be a set of integers of module 3 together with two binary operations as
follows:

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

and

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

Then (R,+, ·) is a ring. Define neutrosophic rings A,B, V,D,E, and F on R as follows: TA(0) =
1, TA(1) = 0.2, TA(2) = 0.9, IA(0) = 1, IA(1) = 0.2, IA(2) = 0.9, FA(0) = 0, FA(1) = 0.8, FA(2) =
0.1, TB(0) = 0.3, TB(1) = 1, TB(2) = 0.2, IB(0) = 0.3, IB(1) = 1, IB(2) = 0.2, FB(0) = 0.7, FB(1) =
0, FB(2) = 0.8, TV (0) = 0.7, TV (1) = 0.4, TV (2) = 1, IV (0) = 0.7, IV (1) = 0.4, IV (2) = 1FV (0) =
0.3, FV (1) = 0.6, FV (2) = 0, TD(0) = 0.9, TD(1) = 1, TD(2) = 0.2, ID(0) = 0.9, ID(1) = 1, ID(2) =
0.2, FD(0) = 0.1, FD(1) = 0, FD(2) = 0.8, TE(0) = 0.2, TE(1) = 0.2, TE(2) = 1, IE(0) = 0.2, IE(1) =
0.2, IE(2) = 1, FE(0) = 0.8, FE(1) = 0.8, FE(2) = 0, TF (0) = 1, TF (1) = 0.7, TF (2) = 0.4, IF (0) =
1, IF (1) = 0.7, IF (2) = 0.4, FF (0) = 0, FF (1) = 0.3, FF (2) = 0.6.

Then S1 = {0N , A,B, V,A∩B,A∪B,A∩V,A∪V,B∩V,B∪V, V ∩(A∪B), A∪(B∩V ), B∪(A∩V ), 1N}
and S2 = {0N , D,E, F,D∩E,D∪E,D∩F,D∪F,E∩F,E∪F, F ∩(D∪E), D∪(E∩F ), E∪(D∩F ), 1N}
are two neutrosophic τ -structure rings on R. Thus the pair (R,S1) and (R,S2) are neutrosophic τ -structure
ring spaces. Now,A∩V = ∩{B∪(A∩V ), V ∩(A∪B), V, A} and V ∩(A∪B) = ∩{A∪B, V ∩(A∪B), A∪V }
are neutrosophic Gδ rings in (R,S1). Also, the neutrosophic ring exterior of C(A ∩ V ) and C(V ∩ (A ∪ B))
are neutrosophic dense rings in (R,S1). Now, NFRcl(∩{A ∩ V, V ∩ (A ∪ B)}) = NFRcl(A ∩ V ) = 1N .
Therefore, (R,S1) is a neutrosophic τ -structure ring ExtV space. Define a function f : (R,S1) → (R,S2)
by f(0) = 1, f(1) = 2 and f(2) = 0. Clearly, f is a neutrosophic τ -structure ring continuous function.
Also, f(A) = D, f(B) = E and f(V ) = F . Now, D = ∩{D,D ∪ E,D ∪ (E ∩ F )}, D ∩ F = ∩{F,D ∪
F,D ∩ F, F ∩ (D ∪ E)} and E = ∩{E,E ∪ F,E ∪ (D ∩ F )} are neutrosophic Gδ rings in (R,S2). Also,
the neutrosophic ring exterior of C(D), C(F ) and C(D ∩ F ) are neutrosophic Gδ rings in (R,S2). But,
NFRcl(∩{D,E,D∩F}) = C(E∩F ) 6= 1N . Therefore, (R,S2) is not a neutrosophic τ -structure ring ExtV
space. Therefore the neutrosophic τ -structure ring continuous image of a neutrosophic τ -structure ring ExtV
space (R1,S1) may fail to be a neutrosophic τ -structure ring ExtV space (R2,S2).

Example 4.3. Let R = {0, 1, 2} be a set of integers of module 3 together with two binary operations as
follows:

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

and

. 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

Then (R,+, ·) is a ring. Define neutrosophic rings A,B, V and D on R as follows: TA(0) = 1, TA(1) =
0.2, TA(2) = 0.9, IA(0) = 1, IA(1) = 0.2, IA(2) = 0.9, FA(0) = 0, FA(1) = 0.8, FA(2) = 0.1, TB(0) =
0.3, TB(1) = 1, TB(2) = 0.2, IB(0) = 0.3, IB(1) = 1, IB(2) = 0.2, FB(0) = 0.7, FB(1) = 0, FB(2) =
0.8, TV (0) = 0.7, TV (1) = 0.4, TV (2) = 1, IV (0) = 0.7, IV (1) = 0.4, IV (2) = 1, FV (0) = 0.3, FV (1) =
0.6, FV (2) = 0, TD(0) = 0.5, TD(1) = 0.6, TD(2) = 0.4, ID(0) = 0.5, ID(1) = 0.6, ID(2) = 0.4, FD(0) =
0.5, FD(1) = 0.4, FD(2) = 0.6.

Then S1 = {0N , A,B, V,A∩B,A∪B,A∩V,A∪V,B∩V,B∪V, V ∩(A∪B), A∪(B∩V ), B∪(A∩V ), 1N}
and S2 = {0N , A,B, V,D,A ∪ B,A ∪ V,A ∪D,B ∪ V,B ∪D,V ∪D,A ∩ B,A ∩ V,A ∩D,B ∩ V,B ∩
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D,V ∩ D,D ∪ (A ∩ V ), V ∩ (A ∪ B), A ∪ (B ∩ V ), B ∪ (A ∩ V ), 1N} are two neutrosophic τ -structure
rings on R. Thus the pair (R,S1) and (R,S2) are neutrosophic τ -structure ring spaces. Now, A ∩ V =
∩{B ∪ (A ∩ V ), V ∩ (A ∪ B), V, A} and V ∩ (A ∪ B) = ∩{A ∪ B, V ∩ (A ∪ B), A ∪ V } are neutrosophic
Gδ rings in (R,S1). Also, the neutrosophic ring exterior of C(A ∩ V ) and C(V ∩ (A ∪ B)) are neutrosophic
dense rings in (R,S1). Now, NFRcl(∩{A ∩ V, V ∩ (A ∪ B)}) = NFRcl(A ∩ V ) = 1V . Therefore, (R,S1)
is a neutrosophic ring ExtV space. Define a function f : (R,S1) → (R,S2) by f(0) = 0, f(1) = 1 and
f(2) = 2. Clearly, f is a neutrosophic τ -structure ring open function. Also, f(A) = A, f(B) = B, f(V ) = V
and f(D) = D. Now, A = ∩{A,A∪B,A∪ V,A∪ (B ∩ V )}, D ∪ (A∩ V ) = ∩{V, V ∪D,A∩ V,D ∪ (A∩
V ), V ∩ (A ∪ B)} and B = ∩{B,B ∪ V,B ∪D,B ∪ (A ∩ V )} are neutrosophic Gδ rings in (R,S2). Also,
the neutrosophic ring exterior of C(A), C(B) and C(D∪ (A∩V )) are neutrosophic Gδ rings in (R,S2). But,
NFRcl(∩{A,B,D ∪ (A ∩ V )}) = C(B ∩ V ) 6= 1N . Therefore, (R,S2) is not a neutrosophic τ -ring ExtV
space. Therefore the neutrosophic τ -structure ring open image of a neutrosophic τ -structure ring ExtV space
(R1,S1) may fail to be a neutrosophic τ -structure ring ExtV space (R2,S2).

Proposition 4.5. Let (R1,S1) and (R2,S2) be any two neutrosophic τ -structure ring spaces. If f : (R1,S1)→
(R2,S2) is onto function, then the following statements are equivalent:

(i) f is a neutrosophic τ -structure ring hardly open function.

(ii) NFRint(f(A)) 6= 0N , for all neutrosophic ring A in (R1,S1) with NFRint(A) 6= 0N and there exists a
neutrosophic τ -closed ring B 6= 0N in (R2,S2) such that B ⊆ f(A).

(iii) NFRint(f(A)) 6= 0N , for all neutrosophic ring A in (R1,S1) with NFRint(A) 6= 0N and there exists a
neutrosophic τ -closed ring B 6= 0N in (R2,S2) such that f−1(B) ⊆ A.

Proof:
(i)⇒(ii)

Assume that (i) is true. Let A be any neutrosophic ring A in (R1,S1) with NFRint(A) 6= 0N and
B 6= 0N be a neutrosophic τ -closed ring in (R2,S2) such that B ⊆ f(A). Suppose that NFRint(A) =
0N . This implies that NFRcl(C(f(A))) = 1N . Thus, C(f(A)) is a neutrosophic dense ring in (R2,S2)
and C(f(A)) ⊆ C(B). By assumption, f−1(C(f(A))) is a neutrosophic dense ring in (R1,S1). That is,
NFRcl(f

−1(C(f(A)))) = 1N . Now, NFRint(A) = NFRint(f
−1(f(A))) = C(NFRcl(C(f

−1(f(A))))) =
C(NFRcl(f

−1(C(f(A))))) = 0N . This is a contradiction. Hence (i)⇒(ii).
(ii)⇒(iii)

Assume that (ii) is true. Since f is onto function and by assumption, B ⊆ f(A). This implies that
f−1(B) ⊆ f−1(f(A)), that is, f−1(B) ⊆ A. Hence (ii)⇒(iii).
(iii)⇒(i)

Let V ⊆ C(D) where C is a neutrosophic dense ring and D is non-zero neutrosophic τ -open ring in
(R2,S2). Let A = f−1(C(V )) and B = C(D). Now, f−1(B) = f−1(C(D)) ⊆ f−1(C(V )) = A.

Consider, NFRint(f(A)) = NFRint(f(f
−1(C(V ))) = NFRint(C(V )) = C(NFRint(V )) = 0N .

Therefore, NFRint(A) = 0N , which implies that NFRint(f−1(C(V ))) = NFRint(C(f
−1(V ))) = 0N .

Therefore, C(NFRcl(f−1(V ))) = 0N . Thus, NFRcl(f−1(V )) = 1N . Therefore, f−1(V ) is a neutrosophic
dense ring in (R1,S1). This implies that f is a neutrosophic τ -structure ring hardly open function. Hence
(iii)⇒(i). This completes the proof.

Proposition 4.6. If a function f : (R1,S1) → (R2,S2) from a neutrosophic τ -structure ring space (R1,S1)
onto another neutrosophic τ -structure ring space (R2,S2) is neutrosophic τ -structure ring continuous, 1-1 and

R. Narmada Devi and A New Novel of neutrosophic τ -Structure Ring ExtB and ExtV Spaces



182 Neutrosophic Sets and Systems, Vol. 32 2020

neutrosophic τ -structure ring hardly open function and if (R1,S1) is a neutrosophic τ -structure ring ExtV
space, then (R2,S2) is a neutrosophic τ -structure ring ExtV space.
Proof:

Let (R1,S1) be a neutrosophic τ -structure ring ExtV space. Assume that Ai’s (i = 1, ..., n) are neu-
trosophic Gδ rings in (R2,S2) and the neutrosophic ring exterior of C(Ai)’s are neutrosophic dense ring in
(R2,S2). Then NFRcl(NFRExt(C(Ai))) = 1N and Ai = ∩∞j=1Bij where Bij’s are neutrosophic τ -open
rings in (R2,S2). Hence

f−1(Ai) = f−1(∩∞j=1Bij) = ∩∞j=1f
−1(Bij) (4.1)

Since f is a neutrosophic τ -structure ring continuous function and Bij’s are neutrosophic τ -open rings
in (R2,S2), f−1(Bij)’s are neutrosophic τ -open rings in (R1,S1). Hence f−1(Ai) = ∩∞j=1f

−1(Bij) is an
neutrosophic Gδ rings in (R1,S1). Since f is a neutrosophic τ -structure ring hardly open function and
NFRExt(C(Ai)) is a neutrosophic dense ring in (R2,S2), f−1(NFRExt(C(Ai))) is a neutrosophic dense
ring in (R1,S1). Now,

f−1(NFRExt(C(Ai))) = f−1(NFRint(Ai))

⊆ NFRint(f
−1(Ai))

= NFRExt(C(f
−1(Ai))).

Therefore 1N = NFRcl(f
−1(NFRExt(C(Ai)))) ⊆ NFRcl(NFRExt(C(f

−1(Ai)))), which implies that
1N = NFRcl(NFRExt(C(f

−1(Ai)))). HenceNFRExt(C(f−1(Ai))) is a neutrosophic dense ring in (R1,S1).
Since (R1,S1) is a neutrosophic τ -strucuture ring ExtV space, NFRcl(∩ni=1f

−1(Ai)) = 1N where f−1(Ai)’s
are neutrosophic Gδ rings in (R1,S1) and the neutrosophic ring exterior of C(f−1(Ai))’s are neutrosophic
dense ring in (R1,S1). Thus, NFRcl(∩ni=1f

−1(Ai)) = 1N = NFRcl(f
−1(∩ni=1Ai)). Therefore, f−1(∩ni=1Ai)

is a neutrosophic dense rings in (R1,S1). Since f is a neutrosophic τ -structure ring continuous, 1-1 and by
Proposition 3.4., f(f−1(∩ni=1Ai)) is a neutrosophic dense ring in (R2,S2). Hence NFRcl(f(f−1(∩ni=1Ai))) =
1N . Since f is 1-1, f(f−1(∩ni=1Ai)) = ∩ni=1Ai. Then, NFRcl(∩ni=1Ai) = 1N . Therefore, (R2,S2) is a
neutrosophic τ -structure ring ExtV space.

Conversely, let (R2,S2) be a neutrosophic τ -structure ring ExtV space. Assume that Ai’s (i = 1, ..., n)
are neutrosophic Gδ rings in (R2,S2) and the neutrosophic ring exterior of C(Ai)’s are neutrosophic dense
rings in (R2,S2).

Then NFRcl(NFRExt(C(Ai))) = 1N and Ai = ∩∞j=1Bij where Bij’s are neutrosophic τ -open rings in
(R2,S2). Hence

f−1(Ai) = f−1(∩∞j=1Bij) = ∩∞j=1f
−1(Bij) (4.2)

Since f is a neutrosophic τ -structure ring continuous function and Bij’s are neutrosophic τ -open rings
in (R2,S2), f−1(Bij)’s are neutrosophic τ -open rings in (R1,S1). Hence f−1(Ai) = ∩∞j=1f

−1(Bij) is a
neutrosophic Gδ rings in (R1,S1). Since f is a neutrosophic τ -structure ring hardly open function and
NFRExt(C(Ai)) is a neutrosophic dense ring in (R2,S2), f−1(NFRExt(C(Ai))) is a neutrosophic dense
ring in (R1,S1). By Remark 4.2., f−1(NFRExt(C(Ai))) ⊆ NFRExt(C(f

−1(Ai))).
Thus,NFRcl(f−1(NFRExt(C(Ai)))) = 1N ⊆ NFRcl(NFRExt(C(f

−1(Ai)))). Hence,NFRExt(C(f−1(Ai)))
is a neutrosophic dense ring in (R1,S1). Suppose that NFRcl(∩ni=1f

−1(Ai)) 6= 1N . This implies that

NFRcl(∩ni=1f
−1(Ai)) 6= 0N

⇒ NFRint(∪ni=1C(f
−1(Ai))) 6= 0N

⇒ NFRint(∪ni=1f
−1(C(Ai))) 6= 0N .
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Then, there is a non-zero neutrosophic τ -open ring Ei in (R1,S1) such that Ei ⊆ ∪ni=1f
−1(C(Ai)). Now,

f(Ei) ⊆ f(∪ni=1f
−1(C(Ai)))

⊆ ∪ni=1f(f
−1(C(Ai)))

⊆ ∪ni=1C(Ai)

= C(∩ni=1Ai).

Then, NFRint(f(Ei)) ⊆ NFRint(C(∩ni=1Ai)) = C(NFRcl(∩ni=1Ai)). (4.3)

Since (R2,S2) is a neutrosophic τ -structure ring ExtV space, NFRcl(∩ni=1Ai) = 1N . Hence from
(4.3), NFRint(f(Ei)) ⊆ 0N . This implies that NFRint(f(Ei)) = 0N , which is a contradiction. Hence
NFRcl(∩ni=1f

−1(Ai)) = 1N . Therefore, (R1,S1) is a neutrosophic τ -structure ring ExtV space.

Proposition 4.7. Let (R1,S1) and (R2,S2) be any two neutrosophic τ -structure ring spaces. Let f : (R1,S1)→
(R2,S2) be any bijective function. Then the following statements are equivalent:

(i) f is somewhat neutrosophic τ -structure ring continuous function.

(ii) If A is a neutrosophic τ -closed ring in (R2,S2) such that f−1(A) 6= 1N , then there exists a neutrosophic
τ -closed ring 0N 6= E 6= 1N in (R1,S1) such that f−1(A) ⊂ E.

(iii) If A is a neutrosophic dense ring in (R1,S1), then f(A) is a neutrosophic dense ring in (R2,S2).

Proof:
(i)⇒(ii)

Assume that (i) is true. Let A be a neutrosophic τ -closed ring in (R2,S2) such that f−1(A) 6= 1N .
Then C(A) is a neutrosophic τ -open ring in (R2,S2) such that C(f−1(A)) = f−1(C(A)) 6= 0N . Since f
is somewhat neutrosophic τ -structure ring continuous, there exists a neutrosophic τ -open ring E in (R1,S1)
such that E ⊆ f−1(C(A)). Then there exists a neutrosophic τ -closed ring C(E) 6= 0N in (R1,S1) such that
C(E) ⊂ f−1(A). Hence (i)⇒(ii).
(ii)⇒(iii)

Assume that (ii) is true. Let A be a neutrosophic dense ring in (R1,S1) such that f(A) is a neutrosophic
dense ring in (R2,S2). Then, there exists a neutrosophic τ -closed ring C in (R2,S2) such that

f(A) ⊂ E ⊂ 1N .

This implies that f−1(E) 6= 1N . Then by (ii), there exists a neutrosophic τ -closed ring 0N 6= D 6= 1N such
that A ⊂ f−1(E) ⊂ D ⊂ 1N . This is a contradiction. Hence (ii)⇒(iii).
(iii)⇒(ii)

Assume that (iii) is true. Suppose (ii) is not true. Then there exists a neutrosophic τ -closed ring A in
(R2,S2) such that f−1(A) 6= 1N . But there is no neutrosophic τ -closed ring 0N 6= E 6= 1N in (R1,S1) such
that f−1(A) ⊆ E. This implies that f−1(A) is a neutrosophic dense ring in (R1,S1). But from hypothesis
f(f−1(A)) = A must be neutrosophic dense ring in (R2,S2), which is a contradiction. Hence (iii)⇒(ii).
(ii)⇒(i)

Let A be a neutrosophic τ -open ring in (R2,S2) and f−1(A) 6= 0N . Then, f−1(C(A)) = C(f−1(A)) =
0N . Then by (ii), there exists a neutrosophic τ -closed ring 0N 6= B 6= 1N such that f−1(C(A)) ⊂ B. This
implies that C(B) ⊂ f−1(A) and C(B) 6= 0N is a neutrosophic τ -open ring in (R1,S1). Hence (ii)⇒(i).
Hence the proof.
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Proposition 4.8. If a function f : (R1,S1) → (R2,S2) from a neutrosophic τ -structure ring space (R1,S1)
onto another neutrosophic τ -structure ring space (R2,S2) is somewhat neutrosophic τ -structure ring contin-
uous, 1-1 and neutrosophic τ -structure ring open function and if (R1,S1) is a neutrosophic τ -structure ring
ExtV space, then (R2,S2) is a neutrosophic τ -structure ring ExtV space.
Proof:

Let (R1,S1) be a neutrosophic τ -structure ring ExtV space. Assume that Ai’s (i = 1, ..., n) are neu-
trosophic Gδ rings in (R1,S1) and the neutrosophic ring exterior of C(Ai)’s are neutrosophic dense rings in
(R1,S1). Then, NFRcl(NFRExt(C(Ai))) = 1N and Ai = ∩∞j=1Bij where Bij’s are neutrosophic τ -open
rings in (R1,S1). Since f is a neutrosophic τ -structure ring open function, f(Bij)’s are neutrosophic τ -open
rings in (R2,S2). Now, ∩∞j=1f(Bij) is a neutrosophic Gδ rings in (R2,S2). Since f is 1-1,

f−1(∩∞j=1f(Bij)) = ∩∞j=1f
−(f(Bij)) = ∩∞j=1Bij = Ai (4.4)

Since f is onto, f(Ai) = f(f−1(∩∞j=1f(Bij))) = ∩∞j=1f(Bij) (4.5)

Therefore, f(Ai) is a neutrosophic Gδ rings in (R2,S2). Since f is somewhat neutrosophic τ -structure
ring continuous function, NFRExt(C(Ai‘)) is a neutrosophic dense ring in (R1,S1) and by Proposition 4.7.,
f(NFRExt(C(Ai))) is a neutrosophic dense ring in (R2,S2), which implies that NFRExt((f(Ai))). Now
we claim that NFRcl(∩∞i=1f(Ai)) = 1N . Suppose that NFRcl(∩ni=1f(Ai)) 6= 1N . This implies that

C(NFRcl(∩ni=1f(Ai))) 6= 0N

⇒ NFRint(∪ni=1C(f(Ai))) 6= 0N

⇒ NFRint(∪ni=1f(C(Ai))) 6= 0N .

Therefore there is an non-zero neutrosophic τ -open ring Ei in (R2,S2) such that Ei ⊆ ∪ni=1f(C(Ai)).
Then f−1(Ei) ⊆ f−1(∪ni=1f(C(Ai))). Since f is somewhat neutrosophic τ -structure ring continuous function
and Ei ∈ S2, NFRint(f−1(Ei)) 6= 0N implies that NFRint(f−1(∪ni=1f(C(Ai)))) 6= 0N .
Then NFRint(∪ni=1f

−1(f(C(Ai)))) 6= 0N . Since f is a bijective function, NFRint(∩ni=1C(Ai)) 6= 0N , which
implies that C(NFRcl(∩ni=1Ai)) 6= 0N . That is, NFRcl(∩ni=1Ai) 6= 1N . This is a contradiction. Hence
(R2,S2) is a neutrosophic τ -structure ring ExtV space.

Conversely, let (R2,S2) be a neutrosophic τ -structure ringExtV space. Assume thatAi’s (i = 1, ..., n) are
neutrosophic Gδ rings in (R1,S1) and the neutrosophic ring exterior of C(Ai)’s are neutrosophic dense ring
in (R1,S1). Then NFRcl(NFRExt(C(Ai))) = 1N and Ai = ∩∞j=1Bij where Bij’s are neutrosophic τ -open
rings in (R1,S1). Since f is somewhat neutrosophic τ -structure ring continuous function, NFRExt(C(Ai))’s
are neutrosophic dense rings in (R1,S1) and By Proposition 4.7., f(NFRExt(C(Ai))) is a neutrosophic
dense ring in (R2,S2). That is, NFRcl(NFRExt(C(Ai))) = 1N . Since f is a neutrosophic τ -structure ring
open function and Bij’s are neutrosophic τ -open rings in (R1,S1), f(Bij)’s are neutrosophic τ -open rings in
(R2,S2). Hence ∩∞j=1f(Bij) is a neutrosophic Gδ ring in (R2,S2). Since f is 1-1,

f−1(∩ni=1f(Bij)) = ∩ni=1(f
−1(f(Bij)) = ∩ni=1Bij. (4.6)

Since f is onto,
f(Ai) = f(f−1(∩∞j=1f(Bij))) = ∩∞j=1f(Bij). (4.7)
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Hence f(Ai) is a neutrosophic Gδ ring in (R2,S2). Now,

NFRcl(NFRExt(C(f(Ai))) = NFRcl(NFRExt(f(C(Ai)))

= NFRcl(NFRint(f(Ai))

⊇ NFRcl(f(NFRint(Ai))

⊇ f(NFRcl(NFRint(Ai)))

= f(1N) = 1N .

This implies that NFRExt(C(f(Ai)) is a neutrosophic dense ring in (R2,S2). Hence the neutrosophic
ring exterior of C(f(Ai)) is a neutrosophic dense ring in (R2,S2). Since (R2,S2) is a neutrosophic τ -
structure ring ExtV space, NFRcl(∩ni=1f(Ai)) = 1N . Now we claim that NFRcl(∩ni=1f(Ai)) = 1N where
Ai’s (i = 1, ..., n) are neutrosophic Gδ rings in (R1,S1) and the neutrosophic ring exterior of C(Ai)’s are
neutrosophic dense rings in (R1,S1). Suppose that NFRcl(∩ni=1Ai) 6= 1N . This implies that

C(NFRcl(∩ni=1Ai)) 6= 0N

⇒ NFRint(C(∩ni=1Ai)) 6= 0N

⇒ NFRint(∪ni=1C(Ai)) 6= 0N .

Then there is a non-zero neutrosophic τ -open ring Ei in (R1,S1) such that Ei ⊆ ∪ni=1C(Ai). Now,

f(Ei) ⊆ f(∪ni=1C(Ai))

⊆ ∪ni=1f(C(Ai))

⊆ ∪ni=1C(f(Ai))

= C(∩ni=1f(Ai)).

Then, NFRint(f(Ei)) ⊆ NFRint(C(∩ni=1f(Ai))) ⊆ C(NFRcl(∩ni=1f(Ai))) (4.8)

Since (R2,S2) is a neutrosophic τ -structure ring ExtV space, NFRcl(∩ni=1f(Ai)) = 1N . Hence from
(4.8), NFRint(f(Ei)) ⊆ 0N , which implies that NFRint(f(Ei)) = 0N , which is a contradiction. Hence
NFRcl(∩ni=1Ai) = 1N . Therefore (R1,S1) is a neutrosophic τ -structure ring ExtV space.

5 Conclusion

A neutrosophic set model provides a mechanism for solving the modeling problems which involve indetermi-
nacy, and inconsistent information in which human knowledge is necessary and human evaluation is needed.
It deals more flexibility and compatibility to the system as compared to the classical theory, fuzzy theory
and intuitionistic fuzzy models. In this paper, a new idea of a neutrosophic τ -structure ring spaces, neutro-
sophic τ -structure ring GδT1/2 spaces and neutrosophic τ -structure ring exterior B spaces and neutrosophic
τ -structure ring exterior V spaces have been introduced. Further, neutrosophic τ -structure ring continuous
(resp. open,hardly open)functions, somewhat neutrosophic τ -structure ring continuous functions are studied.
Their characterization are derived and illustrated with examples.
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