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Abstract

More general form of (∈, ∈∨q)-neutrosophic ideal is introduced, and their prop-

erties are investigated. Relations between (∈, ∈)-neutrosophic ideal and (∈,
∈ ∨q(kT ,kI ,kF ))-neutrosophic ideal are discussed. Characterizations of (∈, ∈
∨q(kT ,kI ,kF ))-neutrosophic ideal are discussed, and conditions for a neutrosophic

set to be an (∈, ∈∨q(kT ,kI ,kF ))-neutrosophic ideal are displayed.
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1. Introduction

Smarandache [23, 24] introduced the concept of neutrosophic sets which
is a more general platform to extend the notions of the classical set and

∗Corresponding author.

Presented by: Jie Fang
Received: January 31, 2020
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(intuitionistic, interval valued) fuzzy set. Neutrosophic set theory is ap-
plied to several parts which are referred to the site http://fs.gallup.unm.
edu/neutrosophy.htm. Jun [10] introduced the notion of neutrosophic sub-
algebras in BCK/BCI-algebras based on neutrosophic points. Borumand
and Jun [22] studied several properties of (∈, ∈ ∨ q)-neutrosophic sub-
algebras and (q, ∈ ∨ q)-neutrosophic subalgebras in BCK/BCI-algebras.
Jun et al. [11] discussed neutrosophic N -structures with an application
in BCK/BCI-algebras, and in [13, 14] introduced neutrosophic quadruple
numbers based on a set and construct neutrosophic quadruple BCK/BCI-
algebras.

Song et al. [25] introduced the notion of commutative N -ideal in
BCK-algebras and investigated several properties. Bordbar, Jun and et
al. [21] and [17] introduced the notion of (q, ∈ ∨ q)-neutrosophic ideal,
and (∈, ∈ ∨ q)-neutrosophic ideal in BCK/BCI-algebras, and investigated
related properties. Also in [7, 26], they discussed the notion of BMBJ-
neutrosophic sets, subalgebra and ideals, as a generalisation of neutrosophic
set, and investigated it’s application and related properties to BCI/BCK-
algebras.

For more information about the mentioned topics, please refer to [3, 4,
8, 12, 16, 18, 19, 20].

In this paper, we introduce a more general form of (∈, ∈ ∨ q)-neutroso-
phic ideal, and investigate their properties. We discuss relations between
(∈, ∈)-neutrosophic ideal and (∈, ∈ ∨ q(kT ,kI ,kF ))-neutrosophic ideal. We
consider characterizations of (∈, ∈ ∨ q(kT ,kI ,kF ))-neutrosophic ideal. We
investigate conditions for a neutrosophic set to be an (∈, ∈ ∨ q(kT ,kI ,kF ))-
neutrosophic ideal. We find conditions for an (∈, ∈ ∨ q(kT ,kI ,kF ))-neutro-
sophic ideal to be an (∈, ∈)-neutrosophic ideal.

2. Preliminaries

By a BCI-algebra we mean a set X with a binary operation ∗ and the
special element 0 satisfying the axioms:

(a1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(a2) (x ∗ (x ∗ y)) ∗ y = 0,

(a3) x ∗ x = 0,

http://fs.gallup.unm.edu/neutrosophy.htm
http://fs.gallup.unm.edu/neutrosophy.htm
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(a4) x ∗ y = y ∗ x = 0 ⇒ x = y,

for all x, y, z ∈ X. If a BCI-algebra X satisfies the axiom

(a5) 0 ∗ x = 0 for all x ∈ X,

then we say that X is a BCK-algebra. A subset I of a BCK/BCI-algebra
X is called an ideal of X (see [9, 15]) if it satisfies:

0 ∈ I, (2.1)

(∀x, y ∈ X) (x ∗ y ∈ I, y ∈ I ⇒ x ∈ I) . (2.2)

The collection of all BCK-algebras and all BCI-algebras are denoted
by BK(X) and BI(X), respectively. Also B(X) := BK(X) ∪ BI(X).

We refer the reader to the books [9] and [15] for further information
regarding BCK/BCI-algebras.

For any family {ai | i ∈ Λ} of real numbers, we define∨
{ai | i ∈ Λ} = sup{ai | i ∈ Λ}

and ∧
{ai | i ∈ Λ} = inf{ai | i ∈ Λ}.

If Λ = {1, 2}, we will also use a1∨a2 and a1∧a2 instead of
∨
{ai | i ∈ {1, 2}}

and
∧
{ai | i ∈ {1, 2}}, respectively.

Let X be a non-empty set. A neutrosophic set (NS) in X (see [23]) is a
structure of the form:

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}

where AT : X → [0, 1] is a truth membership function, AI : X → [0, 1]
is an indeterminate membership function, and AF : X → [0, 1] is a false
membership function. For the sake of simplicity, we shall use the symbol
A = (AT , AI , AF ) for the neutrosophic set

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}.

Given a neutrosophic set A = (AT , AI , AF ) in a set X, α, β ∈ (0, 1] and
γ ∈ [0, 1), we consider the following sets (see [10]):

T∈(A;α) := {x ∈ X | AT (x) ≥ α},
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I∈(A;β) := {x ∈ X | AI(x) ≥ β},

F∈(A; γ) := {x ∈ X | AF (x) ≤ γ}.

We say T∈(A;α), I∈(A;β) and F∈(A; γ) are neutrosophic ∈-subsets.

3. Generalizations of neutrosophic ideals based on neu-
trosophic points

In what follows, let kT , kI and kF denote arbitrary elements of [0, 1) unless
otherwise specified. If kT , kI and kF are the same number in [0, 1), then
it is denoted by k, i.e., k = kT = kI = kF .

Given a neutrosophic set A = (AT , AI , AF ) in a set X, α, β ∈ (0, 1] and
γ ∈ [0, 1), we consider the following sets:

TqkT
(A;α) := {x ∈ X | AT (x) + α+ kT > 1},

IqkI
(A;β) := {x ∈ X | AI(x) + β + kI > 1},

FqkF
(A; γ) := {x ∈ X | AF (x) + γ + kF < 1},

T∈∨ qkT
(A;α) := {x ∈ X | AT (x) ≥ α or AT (x) + α+ kT > 1},

I∈∨ qkI
(A;β) := {x ∈ X | AI(x) ≥ β or AI(x) + β + kI > 1},

F∈∨ qkF
(A; γ) := {x ∈ X | AF (x) ≤ γ or AF (x) + γ + kF < 1}.

We say TqkT
(A;α), IqkI

(A;β) and FqkF
(A; γ) are neutrosophic qk-subsets;

and T∈∨ qkT
(A;α), I∈∨ qkI

(A;β) and F∈∨ qkF
(A; γ) are neutrosophic ∈ ∨ qk-

subsets. For ψ ∈ {∈, q, qk, qkT , qkI , qkF , ∈ ∨ q, ∈ ∨ qk, ∈ ∨ qkT , ∈ ∨ qkI ,
∈ ∨ qkF }, the element of Tψ(A;α) (resp., Iψ(A;β) and Fψ(A; γ)) is called a
neutrosophic Tψ-point (resp., neutrosophic Iψ-point and neutrosophic Fψ-
point) with value α (resp., β and γ).

It is clear that

T∈∨ qkT
(A;α) = T∈(A;α) ∪ TqkT

(A;α), (3.1)

I∈∨ qkI
(A;β) = I∈(A;β) ∪ IqkI

(A;β), (3.2)

F∈∨ qkF
(A; γ) = F∈(A; γ) ∪ FqkF

(A; γ). (3.3)

Theorem 3.1. Given a neutrosophic set A = (AT , AI , AF ) in X ∈ B(X),
the following assertions are equivalent.
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(1) The nonempty neutrosophic ∈-subsets T∈(A;α), I∈(A;β) and F∈(A; γ)
are ideals of X for all α ∈ ( 1−kT

2 , 1], β ∈ ( 1−kI
2 , 1] and γ ∈ [0, 1−kF2 ).

(2) A = (AT , AI , AF ) satisfies the following assertion.

(∀x ∈ X)

 AT (x) ≤ AT (0) ∨ 1−kT
2

AI(x) ≤ AI(0) ∨ 1−kI
2

AF (x) ≥ AF (0) ∧ 1−kF
2

 (3.4)

and

(∀x, y ∈ X)

 AT (x) ∨ 1−kT
2 ≥ AT (x ∗ y) ∧AT (y)

AI(x) ∨ 1−kI
2 ≥ AI(x ∗ y) ∧AI(y)

AF (x) ∧ 1−kF
2 ≤ AF (x ∗ y) ∨AF (y)

 (3.5)

Proof: Assume that the nonempty neutrosophic ∈-subsets T∈(A;α),
I∈(A;β) and F∈(A; γ) are ideals of X for all α ∈ ( 1−kT

2 , 1], β ∈ ( 1−kI
2 , 1]

and γ ∈ [0, 1−kF2 ). If there are a, b ∈ X such that AT (a) > AT (0) ∨ 1−kT
2 ,

then a ∈ T∈(A;αa) and 0 /∈ T∈(A;αa) for αa := AT (a) ∈ ( 1−kT
2 , 1]. This

is a contradiction, and so AT (x) ≤ AT (0) ∨ 1−kT
2 for all x ∈ X. We also

know that AI(x) ≤ AI(0) ∨ 1−kI
2 for all x ∈ X by the similar way. Now,

let x ∈ X be such that AF (x) < AF (0) ∧ 1−kF
2 . If we take γx := AF (x),

then γx ∈ [0, 1−kF2 ) and so 0 ∈ F∈(A; γx) since F∈(A; γx) is an ideal of X.
Hence AF (0) ≤ γx = AF (x), which is a contradiction. Hence AF (x) ≥
AF (0)∧ 1−kF

2 for all x ∈ X. Suppose that AI(x)∨ 1−kI
2 < AI(x∗y)∧AI(y)

for some x, y ∈ X and take β := AI(x ∗ y) ∧ AI(y). Then β ∈ ( 1−kI
2 , 1]

and x ∗ y, y ∈ I∈(A;β). But x /∈ I∈(A;β) which is a contradiction. Thus
AI(x) ∨ 1−kI

2 ≥ AI(x ∗ y) ∧ AI(y) for all x, y ∈ X. Similarly, we have

AT (x) ∨ 1−kT
2 ≥ AT (x ∗ y) ∧ AT (y) for all x, y ∈ X. Suppose that there

exist x, y ∈ X such that AF (x) ∧ 1−kF
2 > AF (x ∗ y) ∨ AF (y). Taking

γ := AF (x ∗ y) ∨ AF (y) implies that γ ∈ [0, 1−kF2 ), x ∗ y ∈ F∈(A; γ)
and y ∈ F∈(A; γ), but x /∈ F∈(A; γ). This is a contradiction, and so
AF (x) ∧ 1−kF

2 ≤ AF (x ∗ y) ∨AF (y) for all x, y ∈ X.
Conversely, suppose that A = (AT , AI , AF ) satisfies two conditions

(3.4) and (3.5). Let α ∈ ( 1−kT
2 , 1], β ∈ ( 1−kI

2 , 1] and γ ∈ [0, 1−kF2 ) be such
that T∈(A;α), I∈(A;β) and F∈(A; γ) are nonempty. For any x ∈ T∈(A;α),
y ∈ I∈(A;β) and z ∈ F∈(A; γ), we get
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AT (0) ∨ 1−kT
2 ≥ AT (x) ≥ α > 1−kT

2 ,

AI(0) ∨ 1−kI
2 ≥ AI(y) ≥ β > 1−kI

2 ,

AF (0) ∧ 1−kF
2 ≤ AF (z) ≤ γ < 1−kF

2 ,

and so AT (0) ≥ α, AI(0) ≥ β and AF (0) ≤ γ. Hence 0 ∈ T∈(A;α),
0 ∈ I∈(A;β) and 0 ∈ F∈(A; γ). Let a, b, x, y, u, v ∈ X be such that a ∗ b ∈
T∈(A;α), b ∈ T∈(A;α), x ∗ y ∈ I∈(A;β), y ∈ I∈(A;β), u ∗ v ∈ F∈(A; γ),
and v ∈ F∈(A; γ). It follows from (3.5) that

AT (a) ∨ 1−kT
2 ≥ AT (a ∗ b) ∧AT (b) ≥ α > 1−kT

2 ,

AI(x) ∨ 1−kI
2 ≥ AI(x ∗ y) ∧AI(y) ≥ β > 1−kI

2 ,

AF (u) ∧ 1−kF
2 ≤ AF (u ∗ v) ∨AF (v) ≤ γ < 1−kF

2 .

Hence AT (a) ≥ α, AI(x) ≥ β and AF (u) ≤ γ, that is, a ∈ T∈(A;α),
x ∈ I∈(A;β) and u ∈ F∈(A; γ). Therefore T∈(A;α), I∈(A;β) and F∈(A; γ)
are ideals of X for all α ∈ ( 1−kT

2 , 1], β ∈ ( 1−kI
2 , 1] and γ ∈ [0, 1−kF2 ).

Corollary 3.2 ([21]). Given a neutrosophic set A = (AT , AI , AF ) in
X ∈ B(X), the following assertions are equivalent.

(1) The nonempty neutrosophic ∈-subsets T∈(A;α), I∈(A;β) and F∈(A; γ)
are ideals of X for all α, β ∈ (0.5, 1] and γ ∈ [0, 0.5).

(2) A = (AT , AI , AF ) satisfies the following assertion.

(∀x ∈ X)

 AT (x) ≤ AT (0) ∨ 0.5

AI(x) ≤ AI(0) ∨ 0.5

AF (x) ≥ AF (0) ∧ 0.5


and

(∀x, y ∈ X)

 AT (x) ∨ 0.5 ≥ AT (x ∗ y) ∧AT (y)

AI(x) ∨ 0.5 ≥ AI(x ∗ y) ∧AI(y)

AF (x) ∧ 0.5 ≤ AF (x ∗ y) ∨AF (y)


Definition 3.3. A neutrosophic set A = (AT , AI , AF ) in X ∈ B(X) is
called an (∈, ∈ ∨ q(kT ,kI ,kF ))-neutrosophic ideal of X if the following asser-
tions are valid.
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(∀x ∈ X)

 x ∈ T∈(A;αx) ⇒ 0 ∈ T∈∨ qkT
(A;αx)

x ∈ I∈(A;βx) ⇒ 0 ∈ I∈∨ qkI
(A;βx)

x ∈ F∈(A; γx) ⇒ 0 ∈ F∈∨ qkF
(A; γx)

 , (3.6)

(∀x, y∈X)

 x∗y∈T∈(A;αx), y∈T∈(A;αy)⇒ x ∈ T∈∨ qkT
(A;αx ∧ αy)

x∗y∈I∈(A;βx), y∈I∈(A;βy)⇒ x ∈ I∈∨ qkI
(A;βx ∧ βy)

x∗ y∈F∈(A; γx), y∈F∈(A; γy)⇒ x ∈ F∈∨ qkF
(A; γx ∨ γy)


(3.7)

for all αx, αy, βx, βy ∈ (0, 1] and γx, γy ∈ [0, 1).

Example 3.4. Let X = {0, 1, 2, 3, 4} be a set with the binary operation ∗
which is given in Table 1.

Table 1: Cayley table for the binary operation “∗”

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 1
2 2 2 0 2 0
3 3 1 3 0 3
4 4 4 4 4 0

Then (X, ∗, 0) is a BCK-algebra (see [15]). Consider a neutrosophic set
A = (AT , AI , AF ) in X which is given by Table 2.

Table 2: Tabular representation of A = (AT , AI , AF )

X AT (x) AI(x) AF (x)
0 0.6 0.5 0.45
1 0.5 0.3 0.93
2 0.3 0.7 0.67
3 0.4 0.3 0.93
4 0.1 0.2 0.74
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Routine calculations show that A = (AT , AI , AF ) is an (∈, ∈ ∨ q(kT ,kI ,kF ))-
neutrosophic ideal of X for kT = 0.24, kI = 0.08 and kF = 0.16.

Theorem 3.5. A neutrosophic set A = (AT , AI , AF ) in X ∈ B(X) is an
(∈, ∈ ∨ q(kT ,kI ,kF ))-neutrosophic ideal of X ∈ B(X) if and only if A =
(AT , AI , AF ) satisfies the following assertions.

(∀x ∈ X)

 AT (0) ≥ AT (x) ∧ 1−kT
2

AI(0) ≥ AI(x) ∧ 1−kI
2

AF (0) ≤ AF (x) ∨ 1−kF
2

 , (3.8)

(∀x, y ∈ X)

 AT (x) ≥
∧
{AT (x ∗ y), AT (y), 1−kT2 }

AI(x) ≥
∧
{AI(x ∗ y), AI(y), 1−kI2 }

AF (x) ≤
∨
{AF (x ∗ y), AF (y), 1−kF2 }

 . (3.9)

Proof: Assume that A = (AT , AI , AF ) in X ∈ B(X) is an
(∈, ∈ ∨ q(kT ,kI ,kF ))-neutrosophic ideal of X ∈ B(X). If AT (0) < AT (a) ∧
1−kT

2 for some a ∈ X, then there exists αa ∈ (0, 1] such that AT (0) <

αa ≤ AT (a) ∧ 1−kT
2 . It follows that αa ∈ (0, 1−kT2 ], a ∈ T∈(A;αa) and

0 /∈ T∈(A;αa). Also, AT (0)+αa+kT < 2αa+kT ≤ 1, i.e., 0 /∈ TqkT
(A;αa).

Hence 0 /∈ T∈∨ qkT
(A;αa), a contradiction. Thus AT (0) ≥ AT (x)∧ 1−kT

2 for

all x ∈ X. Similarly, we have AI(0) ≥ AI(x)∧ 1−kI
2 for all x ∈ X. Suppose

that AF (0) > AF (z)∨ 1−kF
2 for some z ∈ X and take γz := AF (z)∨ 1−kF

2 .

Then γz ≥ 1−kF
2 , z ∈ F∈(A; γz) and 0 /∈ F∈(A; γz). Also AF (0)+γz+kF ≥

1, that is, 0 /∈ FqkF
(A; γz). This is a contradiction, and thus AF (0) ≤

AF (x)∨ 1−kF
2 for all x ∈ X. Suppose thatAI(a) <

∧
{AI(a∗b), AI(b), 1−kI2 }

for some a, b ∈ X and take β :=
∧
{AI(a ∗ b), AI(b), 1−kI2 }. Then β ≤

1−kI
2 , a ∗ b ∈ I∈(A;β), b ∈ I∈(A;β) and a /∈ I∈(A;β). Also, we have

AI(a) + β + kI ≤ 1, i.e., a /∈ IqkF
(A;β). This is impossible, and therefore

AI(x) ≥
∧
{AI(x∗y), AI(y), 1−kI2 } for all x, y ∈ X. By the similar way, we

can verify that AT (x) ≥
∧
{AT (x ∗ y), AT (y), 1−kT2 } for all x, y ∈ X. Now

assume that AF (a) >
∨
{AF (a ∗ b), AF (b), 1−kF2 } for some a, b ∈ X. Then

there exists γ ∈ [0, 1) such that AF (a) > γ ≥
∨
{AF (a ∗ b), AF (b), 1−kF2 }.

Then γ ≥ 1−kF
2 , a ∗ b ∈ F∈(A; γ), b ∈ F∈(A; γ) and a /∈ F∈(A; γ). Also,

AF (a)+γ+kF ≥ 1, i.e., a /∈ FqkF
(A; γ). Thus a /∈ F∈∨ qkF

(A; γ), which is a

contradiction. Hence AF (x) ≤
∨
{AF (x ∗ y), AF (y), 1−kF2 } for all x, y ∈ X.
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Conversely, suppose that A = (AT , AI , AF ) satisfies two conditions
(3.8) and (3.9). For any x, y, z ∈ X, let αx, βy ∈ (0, 1] and γz ∈ [0, 1)
be such that x ∈ T∈(A;αx), y ∈ I∈(A;βy) and z ∈ F∈(A; γz). Then
AT (x) ≥ αx, AI(y) ≥ βy and AF (z) ≤ γz. Assume that AT (0) < αx,
AI(0) < βy and AF (0) > γz. If AT (x) < 1−kT

2 , then

AT (0) ≥ AT (x) ∧ 1−kT
2 = AT (x) ≥ αx,

a contradiction. Hence AT (x) ≥ 1−kT
2 , and so

AT (0) + αx + kT > 2AT (0) + kT ≥ 2
(
AT (x) ∧ 1−kT

2

)
+ kT = 1.

Hence 0 ∈ TqkT
(A;αx) ⊆ T∈∨ qkT

(A;αx). Similarly, we get 0 ∈ IqkI
(A;βy)

⊆ I∈∨ qkI
(A;βy). If AF (z) > 1−kF

2 , then AF (0) ≤ AF (z)∨ 1−kF
2 = AF (z) ≤

γz which is a contradiction. Hence AF (z) ≤ 1−kF
2 , and thus

AF (0) + γz + kF < 2AF (0) + kF ≤ 2
(
AF (z) ∨ 1−kF

2

)
+ kF = 1.

Hence 0 ∈ FqkF
(A; γz) ⊆ F∈∨ qkF

(A; γz). For any a, b, p, q, x, y ∈ X, let
αa, αb, βp, βq ∈ (0, 1] and γx, γy ∈ [0, 1) be such that a ∗ b ∈ T∈(A;αa),
b ∈ T∈(A;αb), p ∗ q ∈ I∈(A;βp), q ∈ I∈(A;βq), x ∗ y ∈ F∈(A; γx), and y ∈
F∈(A; γy). Then AT (a ∗ b) ≥ αa, AT (b) ≥ αb, AI(p ∗ q) ≥ βp, AI(q) ≥ βq,
AF (x ∗ y) ≤ γx, and AF (y) ≤ γy. Suppose that a /∈ T∈(A;αa ∧ αb). Then
AT (a) < αa ∧ αb. If AT (a ∗ b) ∧AT (b) < 1−kT

2 , then

AT (a) ≥
∧
{AT (a ∗ b), AT (b), 1−kT2 } = AT (a ∗ b) ∧AT (b) ≥ αa ∧ αb.

This is a contradiction, and so AT (a ∗ b) ∧AT (b) ≥ 1−kT
2 . Thus

AT (a) + (αa ∧ αb) + kT > 2AT (a) + kT

≥ 2
(∧
{AT (a ∗ b), AT (b), 1−kT2 }

)
+ kT = 1,

which induces a ∈ TqkT
(A;αa∧αb) ⊆ T∈∨ qkT

(A;αa∧αb). By the similarly
way, we get p ∈ I∈∨ qkI

(A;βp ∧ βq). Suppose that x /∈ F∈(A; γx ∨ γy), that

is, AF (x) > γx ∨ γy. If AF (x ∗ y) ∨AF (y) > 1−kF
2 , then

AF (x) ≤
∨
{AF (x ∗ y), AF (y), 1−kF2 } = AF (x ∗ y) ∨AF (y) ≤ γx ∨ γy,

which is impossible. Thus AF (x ∗ y) ∨AF (y) ≤ 1−kF
2 , and so
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AF (x) + (γx ∨ γy) + kF < 2AF (x)

≤ 2
(∨
{AF (x ∗ y), AF (y), 1−kF2 }

)
+ kF = 1.

This implies that x ∈ FqkF
(A; γx∨γy) ⊆ F∈∨ qkF

(A; γx∨γy). Consequently,
A = (AT , AI , AF ) is an (∈, ∈ ∨ q(kT ,kI ,kF ))-neutrosophic ideal of X ∈
B(X).

Corollary 3.6 ([21]). For a neutrosophic set A = (AT , AI , AF ) in X ∈
B(X), the following are equivalent.

(1) A = (AT , AI , AF ) is an (∈, ∈ ∨ q)-neutrosophic ideal of X ∈ B(X).

(2) A = (AT , AI , AF ) satisfies the following assertions.

(∀x ∈ X)

 AT (0) ≥ AT (x) ∧ 0.5

AI(0) ≥ AI(x) ∧ 0.5

AF (0) ≤ AF (x) ∨ 0.5

 ,

(∀x, y ∈ X)

 AT (x) ≥
∧
{AT (x ∗ y), AT (y), 0.5}

AI(x) ≥
∧
{AI(x ∗ y), AI(y), 0.5}

AF (x) ≤
∨
{AF (x ∗ y), AF (y), 0.5}

 .

Theorem 3.7. A neutrosophic set A = (AT , AI , AF ) in X ∈ B(X) is
an (∈, ∈ ∨ q(kT ,kI ,kF ))-neutrosophic ideal of X ∈ B(X) if and only if the
nonempty neutrosophic ∈-subsets T∈(A;α), I∈(A;β) and F∈(A; γ) are ide-
als of X for all α ∈ (0, 1−kT2 ], β ∈ (0, 1−kI2 ] and γ ∈ [ 1−kF2 , 1).

Proof: Suppose that A = (AT , AI , AF ) is an (∈, ∈ ∨ q(kT ,kI ,kF ))-neutro-

sophic ideal of X ∈ B(X) and let α ∈ (0, 1−kT2 ], β ∈ (0, 1−kI2 ] and

γ ∈ [ 1−kF2 , 1) be such that T∈(A;α), I∈(A;β) and F∈(A; γ) are nonempty.

Using (3.8), we get AT (0) ≥ AT (x) ∧ 1−kT
2 , AI(0) ≥ AI(y) ∧ 1−kI

2 , and

AF (0) ≤ AF (z)∨ 1−kF
2 for all x ∈ T∈(A;α), y ∈ I∈(A;β) and z ∈ F∈(A; γ).

It follows that AT (0) ≥ α∧ 1−kT
2 = α, AI(0) ≥ β∧ 1−kI

2 = β, and AF (0) ≤
γ ∨ 1−kF

2 = γ, that is, 0 ∈ T∈(A;α), 0 ∈ I∈(A;β) and 0 ∈ F∈(A; γ).
Let x, y, a, b, u, v ∈ X be such that x ∗ y ∈ T∈(A;α), y ∈ T∈(A;α),
a ∗ b ∈ I∈(A;β), b ∈ I∈(A;β), u ∗ v ∈ F∈(A; γ), and v ∈ F∈(A; γ) for
α ∈ (0, 1−kT2 ], β ∈ (0, 1−kI2 ] and γ ∈ [ 1−kF2 , 1). Then AT (x ∗ y) ≥ α,
AT (y) ≥ α, AI(a ∗ b) ≥ β, AI(b) ≥ β, AF (u ∗ v) ≤ γ, and AF (v) ≤ γ. It
follows from (3.9) that
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AT (x) ≥
∧
{AT (x ∗ y), AT (y), 1−kT2 } ≥ α ∧

1−kT
2 = α,

AI(a) ≥
∧
{AI(a ∗ b), AI(b), 1−kI2 } ≥ β ∧

1−kI
2 = β,

AF (u) ≤
∨
{AF (u ∗ v), AF (v), 1−kF2 } ≤ γ ∨

1−kF
2 = γ

and so that x ∈ T∈(A;α), a ∈ I∈(A;β) and u ∈ F∈(A; γ). Therefore
T∈(A;α), I∈(A;β) and F∈(A; γ) are ideals of X for all α ∈ (0, 1−kT2 ],

β ∈ (0, 1−kI2 ] and γ ∈ [ 1−kF2 , 1).
Conversely, let A = (AT , AI , AF ) be a neutrosophic set in X ∈ B(X)

such that the nonempty neutrosophic ∈-subsets T∈(A;α), I∈(A;β) and
F∈(A; γ) are ideals of X for all α ∈ (0, 1−kT2 ], β ∈ (0, 1−kI2 ] and γ ∈
[ 1−kF2 , 1). If there exist x, y, z ∈ X such that AT (0) < AT (x) ∧ 1−kT

2 ,

AI(0) < AI(y) ∧ 1−kI
2 , and AF (0) > AF (z) ∨ 1−kF

2 , then 0 /∈ T∈(A;αx),

0 /∈ I∈(A;βy) and 0 /∈ F∈(A; γz) by taking αx := AT (x) ∧ 1−kT
2 , βy :=

AI(y) ∧ 1−kI
2 , and γz := AF (z) ∨ 1−kF

2 . This is a contradiction, and so

AT (0) ≥ AT (x)∧ 1−kT
2 , AI(0) ≥ AI(x)∧ 1−kI

2 , and AF (0) ≤ AF (x)∨ 1−kF
2

for all x ∈ X. Now, suppose that there x, y, a, b, u, v ∈ X be such that
AT (x) <

∧
{AT (x ∗ y), AT (y), 1−kT2 }, AI(a) <

∧
{AI(a ∗ b), AI(b), 1−kI2 },

and AF (u) >
∨
{AF (u ∗ v), AF (v), 1−kF2 }. If we take α :=

∧
{AT (x ∗

y), AT (y), 1−kT2 }, β :=
∧
{AI(a ∗ b), AI(b), 1−kI2 }, and γ :=

∨
{AF (u ∗

v), AF (v), 1−kF2 }, then α ≤ 1−kT
2 , β ≤ 1−kI

2 , γ ≥ 1−kF
2 , x ∗ y ∈ T∈(A;α),

y ∈ T∈(A;α), a ∗ b ∈ I∈(A;β), b ∈ I∈(A;β), u ∗ v ∈ F∈(A; γ), and v ∈
F∈(A; γ). But x /∈ T∈(A;α), a /∈ I∈(A;β) and u /∈ F∈(A; γ), which induces
a contradiction. Therefore AT (x) ≥

∧
{AT (x ∗ y), AT (y), 1−kT2 }, AI(x) ≥∧

{AI(x∗y), AI(y), 1−kI2 }, and AF (x) ≤
∨
{AF (x∗y), AF (y), 1−kF2 } for all

x, y ∈ X. Using Theorem 3.5, we conclude that A = (AT , AI , AF ) is an
(∈, ∈ ∨ q(kT ,kI ,kF ))-neutrosophic ideal of X ∈ B(X).

Corollary 3.8 ([21]). A neutrosophic set A = (AT , AI , AF ) in X ∈ B(X)
is an (∈, ∈ ∨ q)-neutrosophic ideal of X ∈ B(X) if and only if the nonempty
neutrosophic ∈-subsets T∈(A;α), I∈(A;β) and F∈(A; γ) are ideals of X for
all α, β ∈ (0, 0.5] and γ ∈ [0.5, 1).

It is clear that every (∈,∈)-neutrosophic ideal is an (∈, ∈ ∨ q(kT ,kI ,kF ))-
neutrosophic ideal. But the converse is not true in general. For example,
the (∈, ∈ ∨ q(kT ,kI ,kF ))-neutrosophic ideal A = (AT , AI , AF ) with kT =
0.24, kI = 0.08 and kF = 0.16 in Example 3.4 is not an (∈, ∈)-neutrosophic
ideal since 2 ∈ I∈(A; 0.56) and 0 /∈ I∈(A; 0.56).
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We now consider conditions for an (∈, ∈ ∨ q(kT ,kI ,kF ))-neutrosophic
ideal to be an (∈,∈)-neutrosophic ideal.

Theorem 3.9. Let A = (AT , AI , AF ) be an (∈, ∈ ∨ q(kT ,kI ,kF ))-neutroso-
phic ideal of X ∈ B(X) such that

(∀x ∈ X)
(
AT (x) < 1−kT

2 , AI(x) < 1−kI
2 , AF (x) > 1−kF

2

)
.

Then A = (AT , AI , AF ) is an (∈, ∈)-neutrosophic ideal of X ∈ B(X).

Proof: Let x, y, z ∈ X, α, β ∈ (0, 1] and γ ∈ [0, 1) be such that x ∈
T∈(A;α), y ∈ I∈(A;β) and z ∈ F∈(A; γ). Then AT (x) ≥ α, AI(y) ≥ β and
AF (z) ≤ γ. It follows from (3.8) that

AT (0) ≥ AT (x) ∧ 1−kT
2 = AT (x) ≥ α,

AI(0) ≥ AI(y) ∧ 1−kI
2 = AI(y) ≥ β,

AF (0) ≤ AF (z) ∨ 1−kF
2 = AF (z) ≤ γ.

Hence 0 ∈ T∈(A;α), 0 ∈ I∈(A;β) and 0 ∈ F∈(A; γ). For any x, y, a, b, u, v ∈
X, let αx, αy, βa, βb ∈ (0, 1] and γu, γv ∈ [0, 1) be such that x ∗ y ∈
T∈(A;αx), y ∈ T∈(A;αy), a∗b ∈ I∈(A;βa), b ∈ I∈(A;βb), u∗v ∈ F∈(A; γu),
and v ∈ F∈(A; γv). Then AT (x ∗ y) ≥ αx, AT (y) ≥ αy, AI(a ∗ b) ≥ βa,
AI(b) ≥ βb, AF (u ∗ v) ≤ γu, and AF (v) ≤ γv. It follows from (3.9) that

AT (x) ≥
∧
{AT (x ∗ y), AT (y), 1−kT2 } = AT (x ∗ y) ∧AT (y) ≥ αx ∧ αy,

AI(a) ≥
∧
{AI(a ∗ b), AI(b), 1−kI2 } = AI(a ∗ b) ∧AI(b) ≥ βa ∧ βb,

AF (u) ≤
∨
{AF (u ∗ v), AF (v), 1−kF2 } = AF (u ∗ v) ∨AF (v) ≤ γu ∨ γv.

Thus x ∈ T∈(A;αx ∧ αy), a ∈ I∈(A;βa ∧ βb) and u ∈ F∈(A; γu ∨ γv).
Therefore A = (AT , AI , AF ) is an (∈, ∈)-neutrosophic ideal of X ∈ B(X).

Corollary 3.10 ([21]). Let A = (AT , AI , AF ) be an (∈, ∈ ∨ q)-neutroso-
phic ideal of X ∈ B(X) such that

(∀x ∈ X) (AT (x) < 0.5, AI(x) < 0.5, AF (x) > 0.5) .

Then A = (AT , AI , AF ) is an (∈, ∈)-neutrosophic ideal of X ∈ B(X).

Theorem 3.11. Given a neutrosophic set A = (AT , AI , AF ) in X ∈ B(X),
if the nonempty neutrosophic ∈ ∨ qk-subsets T∈∨ qkT

(A;α), I∈∨ qkI
(A;β)
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and F∈∨ qkF
(A; γ) are ideals of X for all α ∈ (0, 1−kT2 ], β ∈ (0, 1−kI2 ]

and γ ∈ [ 1−kF2 , 1), then A = (AT , AI , AF ) is an (∈, ∈ ∨ q(kT ,kI ,kF ))-
neutrosophic ideal of X.

Proof: Let A = (AT , AI , AF ) be a neutrosophic set in X ∈ B(X) such
that the nonempty neutrosophic ∈ ∨ qk-subsets T∈∨ qkT

(A;α), I∈∨ qkI
(A;β)

and F∈∨ qkF
(A; γ) are ideals of X for all α ∈ (0, 1−kT2 ], β ∈ (0, 1−kI2 ]

and γ ∈ [ 1−kF2 , 1). If AT (0) < AT (x) ∧ 1−kT
2 := αx, AI(0) < AI(y) ∧

1−kI
2 := βy and AF (0) > AF (z) ∨ 1−kF

2 := γz for some x, y, z ∈ X,
then x ∈ T∈(A;αx) ⊆ T∈∨ qkT

(A;αx), y ∈ I∈(A;βy) ⊆ I∈∨ qkI
(A;βy),

z ∈ F∈(A; γz) ⊆ F∈∨ qkF
(A; γz), 0 /∈ T∈(A;αx), 0 /∈ I∈(A;βy), and 0 /∈

F∈(A; γz). Also, since AT (0) + αx + kT < 2αx + kT ≤ 1, i.e., 0 /∈
TqkT

(A;αx), AI(0) + βy + kI < 2βy + kI ≤ 1, i.e., 0 /∈ IqkI
(A;βY ),

AF (0) + γz + kF > 2γz + kF ≥ 1, i.e., 0 /∈ FqkF
(A; γz), we get 0 /∈

T∈∨ qkT
(A;αx), 0 /∈ I∈∨ qkI

(A;βy), and 0 /∈ F∈∨ qkF
(A; γz). This is a contra-

diction, and thus (3.8) is valid. Suppose that there exist a, b ∈ X such that
AI(a) <

∧
{AI(a ∗ b), AI(b), 1−kI2 }. Taking β :=

∧
{AI(a ∗ b), AI(b), 1−kI

2 }
implies that a ∗ b ∈ I∈(A;β) ⊆ I∈∨ qkI

(A;β), b ∈ I∈(A;β) ⊆ I∈∨ qkI
(A;β).

Since I∈∨ qkI
(A;β) is an ideal of X, it follows that a ∈ I∈∨ qkI

(A;β),
i.e., a ∈ I∈(A;β) or a ∈ IqkI

(A;β), and so that a ∈ IqkI
(A;β), i.e.,

AI(a) + β + kI > 1, since a /∈ I∈(A;β). But AI(a) + β + kI < 2β + kI ≤ 1,
a contradiction. Hence AI(x) ≥

∧
{AI(x ∗ y), AI(y), 1−kI2 } for all x, y ∈ X.

Similarly, we can verify that AT (x) ≥
∧
{AT (x ∗ y), AT (y), 1−kT2 } for all

x, y ∈ X. Assume that AF (a) >
∨
{AF (a ∗ b), AF (b), 1−kF2 } := γ for

some a, b ∈ X. Then a /∈ F∈(A; γ), a ∗ b ∈ F∈(A; γ) ⊆ F∈∨ qkF
(A; γ),

b ∈ F∈(A; γ) ⊆ F∈∨ qkF
(A; γ). Since F∈∨ qkF

(A; γ) is an ideal of X, we have
a ∈ F∈∨ qkF

(A; γ). On the other hand, AF (a) + γ + kF > 2γ + kF ≥ 1,
that is, a /∈ FqkF

(A; γ). Hence a /∈ F∈∨ qkF
(A; γ), a contradiction. Thus

AF (x) ≤
∨
{AF (x ∗ y), AF (y), 1−kF2 } for all x, y ∈ X. Therefore (3.9)

is valid, and consequently A = (AT , AI , AF ) is an (∈, ∈ ∨ q(kT ,kI ,kF ))-
neutrosophic ideal of X by Theorem 3.5.

Corollary 3.12 ([21]). Given a neutrosophic set A = (AT , AI , AF ) in
X ∈ B(X), if the nonempty neutrosophic ∈ ∨ q-subsets T∈∨ q(A;α),
I∈∨ q(A;β) and F∈∨ q(A; γ) are ideals of X for all α, β ∈ (0, 0.5] and
γ ∈ [0.5, 1), then A = (AT , AI , AF ) is an (∈, ∈ ∨ q)-neutrosophic ideal
of X.
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4. Conclusions

More general form of (∈, ∈ ∨q)-neutrosophic ideal was introduced, and
their properties were investigated. Relations between (∈, ∈)-neutrosophic
ideal and (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic ideal were discussed. Charac-
terizations of (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic ideal were discussed, and
conditions for a neutrosophic set to be an (∈, ∈∨q(kT ,kI ,kF ))-neutrosophic
ideal were displayed.

These results can be applied to characterize the neutrosophic ideals
in a BCK/BCI-algebra. In our future research, we will focus on some
properties of ideal such as intersections, unions, maximality, primeness and
height, and try to find the relations between these properties of ideals and
the results of this paper. For instance, how we can define the prime and
maximal neutrosophic ideals? Whatis the meaning of height of these types
of ideals? For information about the maximality, primeness and height of
ideals, please refer to [1, 2, 6, 5].
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