1999

Smarandache type functions obtained by duality

Florentin Smarandache
C Dumitrescu
N Varlan
ST Zamfir
E Radescu

See next page for additional authors

Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp

Part of the Number Theory Commons, Other Mathematics Commons, and the Set Theory Commons
Authors
Florentin Smarandache, C Dumitrescu, N Varlan, ST Zamfir, E Radescu, and N Radescu
SMARANDACHE TYPE FUNCTIONS OBTAINED BY DUALITY

by

C.DUMITRESCU, N. VARLAN, ST. ZAMFIR, E. RĂDESCU, N. RĂDESCU
and
FLORENTIN SMARANDACHE

Abstract

In this paper we extend the Smarandache function from the set \mathbb{N}^* of positive integers to the set \mathbb{Q} of rationals.

Using the inversion formula this function is also regarded as a generating function. We make in evidence a procedure to construct (numerical) functions starting from a given function in two particular cases. Also some conecions between the Riemann's zeta function are established.

1. Introduction

The Smarandache function [13] is a numerical function $S: \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$S(n) = \min \{ m! : m \text{ is divisible by } n \}.$$

From the definition it results that if $n = p_1^{a_1} p_2^{a_2} \ldots p_r^{a_r}$, (1)

Key words and phrases: Smarandache function, prime numbers.
AMS(1991) Mathematics Subject Classifications: 11R42
is the decomposition of \(n \) into primes then
\[
S(n) = \max S(p_i^a) \quad (2)
\]
and moreover, if \([n_1,n_2]\) is the smallest common multiple of \(n_1 \) and \(n_2 \) then
\[
S([n_1,n_2]) = \max \{ S(n_1), S(n_2) \} \quad (3)
\]

The Smarandache function characterizes the prime numbers in the sense that a positive integer \(p \geq 4 \) is prime if and only if it is a fixed point of \(S \).

From Legendre’s formula:
\[
m! = \prod_p \sum_{i=1}^{m_p} p^i \quad (4)
\]
it results [2] that if \(a_n(p) = \frac{(p^n - 1)}{(p-1)} \) and \(b_n(p) = p^n \) then considering the standard numerical scale
\[
[p] : b_0(p), b_1(p), \ldots, b_n(p), \ldots
\]
and the generalized scale
\[
[p] : a_0(p), a_1(p), \ldots, a_n(p), \ldots
\]
we have
\[
S(p^k) = p(\alpha_{[p^k]}(p)) \quad (5)
\]
that is \(S(p^k) \) is calculated multiplying by \(p \) the number obtained writing the exponent \(\alpha \) in the generalised scale \([p]\) and “reading” it in the standard scale \((p)\).

Let us observe that the calculus in the generalised scale \([p]\) is essentially different from the calculus in the usual scale \((p)\), because the usual relationship \(b_{n+1}(p) = pb_n(p) \) is modified in \(a_{n+1}(p) = pa_n(p) + 1 \) (for more details see [2]).

In the following let us note \(S_p(\alpha) = S(p^\alpha) \). In [3] it is proved that
Smarandache type function obtained by duality

\[S_p(\alpha) = (p-1)\alpha + \sigma_{[p]}(\alpha) \] \hspace{1cm} (6)

where \(\sigma_{[p]}(\alpha) \) is the sum of the digits of \(\alpha \) written in the scale \([p]\) and also that

\[S_p(\alpha) = \frac{(p-1)^2}{p}E_p(\alpha) + \alpha + \frac{p-1}{p}\sigma_p(\alpha) + \sigma_{[p]}(\alpha) \] \hspace{1cm} (7)

where \(\sigma_p(\alpha) \) is the sum of the digits of \(\alpha \) written in the standard scale \((p)\) and \(E_p(\alpha) \) is the exponent of \(p \) in the decomposition into primes of \(\alpha! \). From (4) results that

\[E_p(\alpha) = \frac{\alpha - \sigma_{[p]}(\alpha)}{p-1} \] \hspace{1cm} (8)

we can observe that this equality may be written as

\[E_p(\alpha) = [\frac{\alpha}{p}]_{[p]} \]

that is the exponent of \(p \) in the decomposition into primes of \(\alpha! \) is obtained writing the integer part of \(\alpha/p \) in the base \((p)\) and reading in the scale \([p]\).

Finally we note that in [1] it is proved that

\[S_p(\alpha) = p(\alpha - [\frac{\alpha}{p}] + [\frac{\sigma_p(\alpha)}{p}]) \] \hspace{1cm} (9)

From the definition of \(S \) it results that \(S_p(E_p(\alpha)) = p[\frac{\alpha}{p}] = \alpha - \alpha_p \) (\(\alpha_p \) is the remainder of \(\alpha \) with respect to the modulus m) and also that

\[E_p(S_p(\alpha)) \geq \alpha; \quad E_p(S_p(\alpha) - 1) < \alpha \] \hspace{1cm} (10)

so
\[\frac{S_p(\alpha) - \sigma(\alpha)(S_p(\alpha))}{p-1} \geq \alpha ; \quad \frac{S_p(\alpha) - 1 - \sigma(\alpha)(S_p(\alpha) - 1)}{p-1} < \alpha \]

Using (6) we obtain that \(S_p(\alpha) \) is the unique solution of the system

\[\sigma(\alpha) \leq \sigma(\alpha)(\alpha - 1) + 1 \quad (11), \]

2. Connection with classical numerical functions

It is said that Riemann’s zeta function is

\[\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \]

We may establish a connection between the functions \(S_p \) and Riemann’s function as follows:

Proposition 2.1. If \(n = \prod_{i=1}^{r_n} p_i^{\alpha_i} \) is the decomposition into primes of the positive integer \(n \) then

\[\frac{\zeta(s-1)}{\zeta(s)} = \sum_{n=1}^{\infty} \prod_{i=1}^{r_n} \frac{S_p(p_i^{\alpha_i-1}) - p_i}{p_i^{\alpha_i}} \]

Proof. We first establish a connection with Euler’s totient function \(\varphi \). Let us observe that for \(\alpha > 2 \), \(p^\alpha - (p-1)\varphi(p^\alpha) = p \). Then by means of (6) it results (for \(\alpha > 2 \)) that

\[S_p(p^{\alpha-1}) = (p-1)p^{\alpha-1} + \sigma(p^{\alpha-1}) = \varphi(p^\alpha) + p \]

Using the well known relation between \(\varphi \) and \(\zeta \) given by
Smarandache type function obtained by duality.

\[\frac{\zeta(s-1)}{\zeta(s)} = \sum_{n \geq 1} \frac{\varphi(n)}{n^n} \]

and (12) it results the required relation.

Let us remark also that if \(n \) is given by (1), then

\[\varphi(n) = \prod_{i=1}^{t} \varphi(p_i^{\alpha_i}) = \prod_{i=1}^{t} (S_{p_i^{\alpha_i}} - p_i) \]

and

\[S(n) = \max (\varphi(p_i^{\alpha_i + 1}) + p_i) \]

Now it is said that \(1 + \varphi(p_i) + \ldots + \varphi(p_i^{\alpha_i}) = p_i^{\alpha_i} \) and then

\[\sum_{k=1}^{\alpha_i - 1} S_{p_i^{k}} - (\alpha_i - 1)p_i = p_i^{\alpha_i} \]

Consequently we may write

\[S(n) = \max (S \sum_{k=0}^{\alpha_i - 1} S_{p_i^{k}} - (\alpha_i - 1)p_i) \]

To establish a connection with Mangolt's function let us note

\[\land = \min, \lor = \max, \land_d = \text{the greatest common divisor and } \lor_d = \text{the smallest common multiple.} \]

We shall write also \(n_1 \land_d n_2 = (n_1, n_2) \) and \(n_1 \lor_d n_2 = [n_1, n_2] \).

The Smarandache function \(S \) may be regarded as a function from the lattice \(\mathcal{L}_d = (N^*, \land_d, \lor_d) \) into the lattice \(\mathcal{L} = (N^*, \land, \lor) \) so that

\[S(\lor_{i=1}^{d} n_i) = \lor_{i=1}^{d} S(n_i) \quad (14) \]

53
Of course S is also order preserving in the sense that $n_1 \leq n_2 \Rightarrow S(n_1) < S(n_2)$.

It is said [10] that if (V, \wedge, \vee) is a finite lattice, $V = \{x_1, x_2, ..., x_n\}$ with the induced order \leq, then for every function $f: V \rightarrow \mathbb{N}$ the associated generating function is defined by

$$F(x) = \sum_{y \leq x} f(y) \quad (15)$$

Maglot’s function Λ is

$$\Lambda(n) = \begin{cases}
\ln p & \text{if } n = p^i \\
0 & \text{otherwise}
\end{cases}$$

The generating function of Λ in the lattice \mathbb{Z}_d is

$$F_d(n) = \sum_{k \leq n} \Lambda(k) = \ln n \quad (16)$$

The last equality follows from the fact that

$$k \leq n \Rightarrow k \wedge_d \frac{n}{k} = k \wedge \frac{n}{k} \quad (k \text{ divides } n)$$

The generating function of Λ in the lattice \mathbb{Z} is the function Ψ

$$F(n) = \sum_{k \leq n} \Lambda(k) = \Psi(n) = \ln [1, 2, ..., n] \quad (17)$$

Then we have the diagram from below.

We observe that the definition of S is in a closed connection with the equalities (1.1) and (2.2) in this diagram. If we note the Mangolt’s function by f then the relations

$$[1, 2, ..., n] = e^{F(n)} = e^{F(1)}e^{F(2)}...e^{F(n)} = e^{\Psi(n)}$$

$$n! = e^{\hat{F}} = e^{F(1)}e^{F(2)}...e^{F(n)}$$

together with the definition of S suggest us to consider numerical functions of the form:
Smarandache type function obtained by duality

\[v(n) = \min \{ m/n : m \leq 1, 2, \ldots, n \} \]

(18)

where will be detailed in the section 5.

\[F_d(n) = \sum_{k \leq n} \Lambda(k) = \ln n \]

(1.1)

\[F(n) = \sum_{k \leq n} \Lambda(k) = \Psi(n) \]

3. The Smarandache function as generating function

Let \(V \) be a partial order set. A function \(f: V \to N \) may be obtained from its generating function \(F \) defined as in (15), by the inversion formula

\[f(x) = \sum_{z \leq x} F(z) \mu(z, x) \]

(19)
where \(\mu \) is Moebius function on \(V \), that is \(\mu : V \times V \rightarrow \mathbb{N} \) satisfies:

\[
\begin{align*}
(\mu_1) & \quad \mu(x,y) = 0 \quad \text{if } x \leq y \\
(\mu_2) & \quad \mu(x,x) = 1 \\
(\mu_3) & \quad \sum_{x \leq y \leq z} \mu(x,y) = 0 \quad \text{if } x < z
\end{align*}
\]

It is said [10] that if \(V = \{1, 2, ..., n\} \) then for \((V, \leq_d) \) we have \(\mu(x,y) = \mu\left(\frac{y}{x}\right) \), where \(\mu(k) \) is the numerical Moebius function

\[\mu(1) = 1, \quad \mu(k) = (-1)^d \text{ if } k = p_1p_2...p_d \quad \text{and} \quad \mu(k) = 0 \text{ if } k \text{ is divisible by the square of an integer } d > 1.\]

If \(f \) is the Smarandache function it results

\[F_s(n) = \sum_{d|n} \text{S}(n)\]

Until now it is not known a closed formula for \(F_s \), but in [8] it is proved that

(i) \(F_s(n) = n \) if and only if \(n \) is a prime, \(n = 9, 16 \) or \(n = 24 \)

(ii) \(F_s(n) > n \) if and only if \(n \in \{8, 12, 18, 20\} \) or \(n = 2p \) with \(p \) a prime (hence it results \(F_s(n) \leq n + 4 \) for every positive integer \(n \)) and in [2] it is showed that

(iii) \(F(p_1p_2...p_d) = \sum_{i=1}^{d} 2^{i-1} p_i \)

In this section we shall regard the Smarandache function as a generating function that is using the inversion formula we shall construct the function \(s \) so that

\[s(n) = \sum_{d|n} \mu(d) \frac{n}{d} \quad (20)\]

If \(n \) is given by (1) it results that

56
Smarandache type function obtained by duality

\[s(n) = \sum_{p_1p_2\cdots p_t} (-1)^S(\frac{n}{p_1p_2\cdots p_t}) \]

Let us consider \(S(n) = \max S(p_i^{a_i}) = S(p_i^{a_0}) \). We distinguish the following cases:

(a) if \(S(p_i^{a_0}) > S(p_i^{a_0}) \) for all \(i \neq i_0 \), then we observe that the divisors \(d \) for which \(\mu(d) \neq 0 \) are of the form \(d = \prod p_i^{a_i} \). A divisor of the last form may contain \(p_{i_0} \) or not, so using (2) it results

\[
s(n) = S(p_{i_0}^{a_0})(1 - C_{i_0}^{1} - C_{i_0}^{2} + \cdots + (-1)^{i_0} C_{i_0}^{i_0}) + S(p_{i_0}^{a_0 - 1})(-1 + C_{i_0}^{1} - C_{i_0}^{2} + \cdots + (-1)^{i_0})
\]

that is \(s(n) = 0 \) if \(t = 2 \) or \(S(p_{i_0}^{a_0}) = S(p_{i_0}^{a_0 - 1}) \) and \(S(n) = p_{i_0} \) otherwise.

(b) if there exist \(j_0 \) so that \(S(p_{j_0}^{a_0}) < S(p_{j_0}^{a_0}) \) and \(S(p_{j_0}^{a_0 - 1}) > S(p_i^{a_0}) \) for \(i \neq i_0, j_0 \), we also suppose that \(S(p_{j_0}^{a_0}) = \max \left\{ S(p_j^{a_0} / S(p_{j_0}^{a_0 - 1}) < S(p_j^{a_0}) \right\} \).

Then

\[
S(n) = S(p_{j_0}^{a_0})(1 - C_{j_0}^{1} + C_{j_0}^{2} + \cdots + (-1)^{j_0 - 1} C_{j_0}^{j_0}) + S(p_{j_0}^{a_0 - 1})(-1 + C_{j_0}^{1} - C_{j_0}^{2} + \cdots + (-1)^{j_0 - 1})
\]

so \(S(n) = 0 \) if \(t = 3 \) or \(S(p_{j_0}^{a_0 - 1}) = S(p_{j_0}^{a_0}) \) and \(S(n) = -p_{j_0} \) otherwise.

Consequently, to obtain \(S(n) \) we construct as above a maximal sequence.
i_1, i_2, \ldots, i_k, so that $S(n) = S(p_{i_1}^{a_1}), S(p_{i_1}^{a_1-1}), \ldots, S(p_{i_k}^{a_k}), \ldots, S(p_{i_k}^{a_k-1}) < S(p_k^{a_k})$ and it results that $S(n) = 0$ if $t \geq k + 1$ or $S(p_{i_k}^{a_k}) = S(p_{i_k}^{a_k-1})$ and $S(n) = (-1)^{k+1}$ otherwise.

Let us observe that

$$S(p^x) = S(p^{x-1}) \leftarrow (p-1)\alpha + \sigma_{[p]}(\alpha) = (p-1)(\alpha-1) + \sigma_{[p]}(\alpha-1) \leftarrow$$

$$\sigma_{[p]}(\alpha-1) - \sigma_{[p]}(\alpha) = p - 1$$

Otherwise we have $\sigma_{[p]}(\alpha-1) - \sigma_{[p]}(\alpha) = 1$. So we may write

$$S(n) = \begin{cases}
0 & \text{if } t \geq k + 1 \text{ or } \sigma_{[p]}(\alpha_k - 1) - \sigma_{[p]}(\alpha_k) = p - 1 \\
(-1)^{k+1}p_k & \text{otherwise}
\end{cases}$$

Application. It is said [10] that if (V, \bigwedge, \bigvee) is a finit lattice, with the induced order \leq and for the function $f : V \to N$ we consider the generating function F defined as in (15) then if $g_{ij} = F(x_i \bigwedge x_j)$ it results det $g_{ij} = f(x_1)f(x_2)\ldots f(x_n)$. In [10] it is shown also that this assertion may be generalized for partial ordered set by defining

$$g_{ij} = \sum_{x_i \leq x_j} f(x)$$

Using these results if we denote by (i,j) the greatest common divisor of i and j, end $\Delta(r) = \det(S((i,j)))$ for $i,j = 1, r$ then $\Delta(r) = s(1)s(2)\ldots s(r)$. That is for a sufficient large we have $\Delta(r) = 0$ (in fact for $r \geq 8$). Moreover, for every n there exists a sufficient large r so that $\Delta(n,r) = \det(S(n+i,n+j)) = 0$, for $i,j = 1, r$ because

$$\Delta(n,r) = \prod_{i=1}^{n} S(n+1)$$

58
4. The extention of S to the rational numbers

To obtain this extension we shall define first a dual function of the Smarandache function.

In [4] and [6] a duality principale is used to obtain, starting from a given lattice on the unit interval, other lattices on the same set. The results are used to propose a definition of bitopological spaces and to introduce a new point of view for studying the fuzzy sets. In [5] the method to obtain news lattices on the unit, interval is generalised for an arbitrary lattice.

In the following we adopt a method from [5] to construct all the functions tied in a certain sense by duality to the Smarandache function.

Let us observe that if we note

$$\mathcal{R}_d(n) = \{m/m \leq n\} , \mathcal{L}_d(n) = \{m/m \leq n\} , \mathcal{R}(n) = \{m/m \leq n\} , \mathcal{L}(n) = \{m/m \leq n\}$$

then we may say that the function S is defined by the triplet \((\wedge, \vee, \mathcal{R}_d) \), because

$$S(n) = \wedge \{m/m \in \mathcal{R}_d(n)\}.$$ Now we may investigate all the functions defined by means of a triplet \((a,b,c)\), where a is one of the symbols \(\vee, \wedge, \wedge_d \), b is one of the symbols \vee, \wedge and c is one of the sets \(\mathcal{R}_d(n), \mathcal{L}_d(n), \mathcal{R}(n), \mathcal{L}(n) \) defined above.

Not all of these function are non-trivial. As we have already seen the triplet \((\wedge, \vee, \mathcal{R}_d) \) defines the function $S_1(n) = S(n)$, but the triplet \((\wedge, \vee, \mathcal{L}_d) \) defines the functions $S_2(n) = \wedge \{m/m \leq n\}$, which is identically one.

Many of the functions obtained by this method are step functions. For instance let S_3 be the function defined by \((\wedge, \vee, \mathcal{R}) \). We have $S_3(n) = \wedge \{m/m \leq n\}$ so $S_3(n) = m$ if and only if $n \in [(m-1)! + 1, m!]$. Let us focus the attention on the function defined by \((\vee, \vee, \mathcal{L}_d) \)
\[S_d(n) = \sqrt{\frac{m}{m!} \leq d} \] (21)

where there is in a certain sense the dual of Smarandache function.

Proposition 4.1. The function \(S_d \) satisfies

\[S_d(n_1 \wedge n_2) = S_d(n_1) \wedge S_d(n_2) \] (22)

so is a morphism from \((N^*, \wedge_d)\) to \((N^*, \wedge_d)\).

Proof. Let us denote by \(p_1, p_2, \ldots, p_r \ldots \) the sequence of the prime numbers and let \(n_1 = \prod p_i^{\alpha_i}, n_2 = \prod p_i^{\beta_i} \).

The \(n_1 \wedge n_2 = \prod p_i^{\min(\alpha_i, \beta_i)} \), \(S_d(n_1 \vee n_2) = m \), \(S_d(n_i) = m_i \), for \(i = 1,2 \) and we suppose \(m_1 \leq m_2 \) then the right hand in (22) is \(m_1 \wedge m_2 = m \).

By the definition \(S_d \) we have \(E_{p_i}(m) \leq \min(\alpha_i, \beta_i) \) for \(i \geq 1 \) and there exists \(j \) so that \(E_{p_i}(m+1) > \min(\alpha_i, \beta_i) \). Then \(\alpha_i \geq E_{p_i}(m) \) and \(\beta_i \geq E_{p_i}(m) \) for all \(i > 1 \). We also have \(E_{p_i}(m_r) \leq \alpha_i \) for \(r = 1, 2 \). In addition there exists \(h \) and \(k \) so that

\[E_{p_i}(m_i+1) > \alpha_h, \ E_{p_i}(m_2+1) > \alpha_k. \]

Then \(\min(\alpha_i, \beta_i) > \min(E_{p_i}(m_1), E_{p_i}(m_2)) = E_{p_i}(m_1) \), because \(m_1 \leq m_2 \), so \(m_1 \leq m_2 \). If we assume \(m_1 < m_2 \) it results that \(m! \leq n_1 \) so it exists \(h \) so that \(E_{p_h}(m) > \alpha_n \) and we have the contradiction \(E_{p_h}(m) > \min(\alpha_i, \beta_i) \). Of course
Smarandache type function obtained by duality

\[S_4(2n+1)=1 \quad \text{and} \]
\[S_4(n)>1 \quad \text{if and only if } n \text{ is even} \quad (23) \]

Proposition 4.2. Let \(p_1, p_2, \ldots, p_r, \ldots \) be the sequence all consecutive primes and
\[n = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k} q_1^{\beta_1} q_2^{\beta_2} \cdots q_r^{\beta_r} \]
the decomposition of \(n \in \mathbb{N}^+ \) into primes such that the first part of the decomposition contains the (eventually) consecutive primes and let
\[t_i = \begin{cases}
S(p_i^{\alpha_i}) - 1 & \text{if } E_{p_i}(S(p_i^{\alpha_i})) > \alpha_i \\
S(p_i^{\alpha_i}) + p_i - 1 & \text{if } E_{p_i}(S(p_i^{\alpha_i})) = \alpha_i
\end{cases} \quad (24) \]
then \(S_n(n) = \min\{t_1, t_2, \ldots, t_k, p_{k+1} - 1\} \)

Prof. If \(E_{p_i}(S(p_i^{\alpha_i})) > \alpha_i \) then from the definition of the function \(S \) it results that \(S(p_i^{\alpha_i}) - 1 \) is the greatest positive integer \(m \) such that \(E_{p_i}(m) \leq \alpha_i \). Also if \(E_{p_i}(S(p_i^{\alpha_i})) = \alpha_i \) then \(S(p_i^{\alpha_i}) + p_i - 1 \) is the greatest integer \(m \) with the property that \(E_{p_i}(m) = \alpha_i \).

It results that \(\min\{t_1, t_2, \ldots, t_k, p_{k+1} - 1\} \) is the greatest integer \(m \) such that \(E_{p_i}(m! \leq \alpha_i) \) for \(i = 1, 2, \ldots, k \).

Proposition 4.3. The function \(S_4 \) satisfies
\[S_4(n_1 + n_2) \cap S_4([n_1, n_2]) = S_4(n_1) \cap S_4(n_2) \]
for all positive integers \(n_1 \) and \(n_2 \).
Proof. The equality results using (22) from the fact that
\(n_1 + n_2, [n_1, n_2] = (n_1, n_2) \).

We point out now some morphisme properties of the functions defined by a triplet \((a, b, c)\) as above.

Proposition 4.4. (I) The functions \(S_2: N \rightarrow N, S_2(n) = \bigvee_d \{ m/m \leq d \} \) satisfies

\[
S_2(n_1 \wedge n_2) = S_2(n_1) \wedge S_2(n_2) = S_2(n_1) \wedge S_2(n_2) \quad (25)
\]

(ii) The function \(S_6: N \rightarrow N, S_6(n) = \bigvee_d \{ m/m \leq d \} \) satisfies

\[
S_6(n_1 \vee n_2) = S_6(n_1) \vee S_6(n_2) \quad (26)
\]

(iii) The function \(S_9: N \rightarrow N, S_9(n) = \bigvee_d \{ m/m \leq n \} \) satisfies

\[
S_9(n_1 \wedge n_2) = S_9(n_1) \wedge S_9(n_2) \quad (27)
\]

Proof. (I) Let \(A = \{ a_i \mid a_i \leq d n_i \}, B = \{ b_i \mid b_i \leq d n_2 \}, C = \{ c_k \mid c_k \leq d n_i \wedge n_2 \} \)

Then we have \(A \subseteq B \) or \(B \subseteq A \). Indeed, let \(A = \{ a_1, a_2, ..., a_h \}, B = \{ b_1, b_2, ..., b_r \} \) so that \(a_i \leq a_{i-1} \) and \(b_j \leq b_{j-1} \). Then if \(a_h \leq b_r \) it results that \(a_i \leq b_r \) for \(i = 1, h \) so \(a_i \leq b_j \leq d n_2 \). That minds \(A \subseteq B \). Analogously, if \(b_r \leq a_h \) it results \(B \subseteq A \). Of course we have \(C = A \cap B \) so if \(A \subseteq B \) it results
Smarandache type function obtained by duality

\[S_d(n_1 \wedge n_2) = \bigvee_{k=1}^{d} c_k \wedge a_i = S_d(n_1) = \min((S_d(n_1), S_d(n_2))) = S_d(n_1) \wedge S_d(n_2) \]

From (25) it results that \(S_d \) is order preserving in \(\mathcal{L}_d \) (but not in \(\mathcal{L} \) because \(m! < m! + 1 \) but \(S_d(m!) = [1, 2, ..., m] \) and \(S_d(m! + 1) = 1 \), because \(m! + 1 \) is odd).

(ii) Let us observe that \(S_d(n) = \bigvee_{i \in [1, t]} \{ m \mid \exists i : E_{p_i}(m) < a_i \} \).

If \(a = \bigvee \{ m/n < d \} \) then \(n \leq (a+1)! \) and \(a+1 = \bigwedge \{ m/n \leq d \} = S(n) \), so \(S_d(n) = [1, 2, ..., S(n) - 1] \).

Then we have

\[S_d(n_1 \vee n_2) = [1, 2, ..., S(n_1 \vee n_2) - 1] = [1, 2, ..., S(n_1) \vee S(n_2) - 1] \]

and

\[S_d(n_1) \vee S_d(n_2) = [[1, 2, ..., S_d(n_1) - 1], [1, 2, ..., S_d(n_2) - 1]] = [1, 2, ..., S_d(n_1) \vee S_d(n_2) - 1] \]

(iii) The relations (27) results from the fact that \(S_d(n) = [1, 2, ..., m] \) if and only if \(n \in [m!, (m+1)! - 1] \).

Now we may extend the Smarandache function to the rational numbers. Every positive rational number \(a \) possesses a unique prime decomposition of the form

\[a = \prod_p p^{\alpha_p} \quad (28) \]

with integral exponents \(\alpha_p \) of which only finitely many are nonzero. Multiplication of rational numbers is reduced to addition of their integral exponent systems. As a consequence of this reduction questions concerning divisibility of rational numbers are reduced to questions concerning ordering of the corresponding exponent systems. That
is if \(b = \prod_p p^{\beta_p} \) then \(b \) divides \(a \) if and only if \(\beta_p \leq \alpha_p \) for all \(p \). The greatest common divisor \(d \) and the least common multiple \(e \) are given by

\[
d = (a, b, \ldots) = \prod_p p^{\min(\alpha_p, \beta_p, \ldots)}
\]
\[
e = [a, b, \ldots] = \prod_p p^{\max(\alpha_p, \beta_p, \ldots)}
\] (29)

Furthermore, the least common multiple of nonzero numbers (multiplicatively bounded above) is reduced by the rule

\[
[a, b, \ldots] = \frac{1}{\left(\frac{1}{a}, \frac{1}{b}, \ldots\right)}
\] (30)

to the greatest common divisor of their reciprocals (multiplicatively bounded below).

Of course we may write every positive rational \(a \) under the form \(a = n/n_1 \) with \(n \) and \(n_1 \) positive integers.

Definition 4.5. The extention \(S: Q^* \rightarrow Q^* \) of the Smarandache function is defined by

\[
S\left(\frac{n}{n_1}\right) = \frac{S(n)}{S(n_1)}
\] (31)

A consequence of this definition is that if \(n_1 \) and \(n_2 \) are positive integers then

\[
S\left(\frac{1}{n_1} \bigvee \frac{1}{n_2}\right) = S\left(\frac{1}{n_1}\right) \bigvee S\left(\frac{1}{n_2}\right)
\] (32)

Indeed
Smarandache type function obtained by duality

\[S\left(\frac{1}{n_1} \bigvee_d \frac{1}{n_2}\right) = S\left(\frac{1}{n_1} \bigwedge_d \frac{1}{n_2}\right) = \frac{1}{S_{d}(n_1) \bigwedge \frac{1}{S_{d}(n_2)}} = \frac{1}{S_{d}(n_1)} \bigvee \frac{1}{S_{d}(n_2)} = S\left(\frac{1}{n_1}\right) \bigvee S\left(\frac{1}{n_2}\right) \]

and we can immediately deduce that

\[S\left(\frac{n}{n_1} \bigvee \frac{m}{m_1}\right) = (S(n) \bigvee S(m)) \cdot S\left(\frac{1}{n_1}\right) \bigvee \left(\frac{1}{m_1}\right) \]

(33)

It results that the function \(\tilde{S} \) defined by \(\tilde{S}(a) = \frac{1}{S\left(\frac{1}{a}\right)} \) satisfies

\[\tilde{S}(n_1 \bigwedge_d n_2) = \tilde{S}(n_1) \bigwedge \tilde{S}(n_2) \]

and

\[\tilde{S}\left(\frac{1}{n_1} \bigwedge \frac{1}{n_2}\right) = \tilde{S}\left(\frac{1}{n_1}\right) \bigwedge \tilde{S}\left(\frac{1}{n_2}\right) \]

(34)

for every positive integers \(n_1 \) and \(n_2 \). Moreover, it results that

\[\tilde{S}\left(\frac{n_1}{m_1} \bigvee \frac{n_2}{m_2}\right) = (\tilde{S}(n_1) \bigvee \tilde{S}(n_2)) \cdot (\tilde{S}\left(\frac{1}{m_1}\right) \bigvee \tilde{S}\left(\frac{1}{m_2}\right)) \]

and of course the restriction of \(\tilde{S} \) to the positive integers is \(S_{d} \). The extension of \(S \) to all the rationals is given by \(S(-a) = S(a) \).
5. Numerical function inspired from the definition of the Smarandache function

We shall use now the equality (21) and the relation (18) to consider numerical functions as the Smarandache function.

We may say that \mathfrak{m} is the product of all positive "smaller" than \mathfrak{m} in the lattice \mathcal{L}. Analogously, the product ρ_m of all the divisors of \mathfrak{m} is the product of all the elements "smaller" than \mathfrak{m} in the lattice \mathcal{L}. So we may consider functions of the form

$$\theta(n)=\bigwedge\{m/n, \rho(m)\}$$ \hspace{1cm} (35)

It is said that if $m=p_1^{x_1}p_2^{x_2}\ldots p_i^{x_i}$, then the product of all the divisors of m is $\rho(m)=\sqrt{m^{\tau(m)}}$ were $\tau(m)=(x_1+1)(x_2+1)\ldots(x_i+1)$ is the number of all the divisors of m.

If n is given as in (1) then $n, \rho(m)$ if and only if:

$$g_1=x_1(x_1+1)(x_2+1)\ldots(x_i+1) - 2\alpha_1 \geq 0$$

$$g_2=x_2(x_1+1)(x_2+1)\ldots(x_i+1) - 2\alpha_2 \geq 0$$

..

$$g_i=x_i(x_1+1)(x_2+1)\ldots(x_i+1) - 2\alpha_i \geq 0$$ \hspace{1cm} (37)

so $\theta(n)$ may be obtained solving the problem of non linear programing

$$(\min)f=p_1^{x_1}p_2^{x_2}\ldots p_i^{x_i}$$ \hspace{1cm} (38)

under the restrictions (37).

The solutions of this problem may be obtained applying the algorithm SUMT (Sequential Unconstrained Minimization Techniques) does to Fiacco and McCormick.
Smarandache type function obtained by duality

[7].

Examples

For \(n=3^4\cdot5^{12} \), (37) and (38) become (min) \(f(x)=3^45^{x_2} \) with
\[x_1(x_1+1)(x_2+1)\geq 8, \quad x_2(x_1+1)(x_2+1)\geq 24. \]
Considering the function
\[U(x,n)=f(x)-r\sum_{i=1}^{n} \ln g_i(x) \]
and the system
\[\delta U/\delta x_1=0, \quad \delta U/\delta x_2=0 \]
(39)
in [7] it is showed that if the solution \(x_1(r),x_2(r) \) can't be explained from the system we can make \(r=0 \). Then the system becomes
\[x_1(x_1+1)(x_2+1)=8, \quad x_2(x_1+1)(x_2+1)=24 \]
with the (real) solution \(x_1=1, x_2=3 \).

So, we have
\[\min m/3^4\cdot5^{12}\leq \rho(m)=m_0=3\cdot5^3 \]
Indeed \(\rho(m_0)=m_0^{(m_0)^2}=m_0^1=3^4\cdot5^{12}=n \)

For \(n=3^2\cdot5^7 \), from the system (39) it results for \(x_2 \) the equation
\[2x_2^3+9x_2^2+7x_2+98=0 \]
with the real solution \(x_2\in(2,3) \). It results \(x_1\in(4/7,5/7) \).
Considering \(x_1=1 \), we observe that for \(x_2=2 \) the problem, but \(x_2=3 \) give
\[\theta(3^2\cdot5^7)=3^1\cdot5^{12}. \]

Generaly for \(n=p_1^{\alpha_1}p_2^{\alpha_2} \), from the system (39) it results the equation
\[\alpha_1x_2^3+(\alpha_1+\alpha_2)x_2^2+\alpha_2x_2-2\alpha_2^2=0 \]
with solutions given by Cartan's formula.

Of course, using "the method of the triplets", as for the Smarandache function, many
other functions may be associated to \(\theta \).

For the function \(v \) given by (18) it is also possible to generate a class of functions by means of such triplets.

In the sequel we'll focus the attention on the analogous of the Smarandache function and on his dual in this case.

Proposition 5.1. If \(\nu \) has the decomposition into primes given by (1) then

(i) \(\nu(n) = \max_{i=1,\ldots,d} p_i^{a_i} \)

(ii) \(\nu(n_1 \lor n_2) = \nu(n_1) \lor \nu(n_2) \)

Proof.

(i) Let be \(\max p_i^{a_i} = p_u^{a_u} \). Then \(p_i^{a_i} \leq p_u^{a_u} \) for all \(i = 1, \ldots, d \), so \(p_i^{a_i} \leq [1, 2, \ldots, p_u^{a_u}] \).

But \((p_i^{a_i}, p_j^{a_j}) \) for \(i \neq j \) and then \(n \leq [1, 2, \ldots, p_u^{a_u}] \).

Now if for some \(m < p_u^{a_u} \) we have \(n \leq [1, 2, \ldots, m] \), it results the contradiction \(p_u^{a_u} \leq [1, 2, \ldots, m] \).

(ii) If \(n_1 = \Pi p_i^{a_i} \), \(n_2 = \Pi p_i^{\beta_i} \) then \(n_1 \lor n_2 = \Pi p_i^{\max(a_i, \beta_i)} \) so

\[\nu(n_1 \lor n_2) = \max p_i^{\max(a_i, \beta_i)} = \max(p_u^{a_u}, \nu(p_u^{\beta_i})) \]

The function \(v_1 = v \) is defined by means of the triplet \((\land, \leq, \mathcal{R}_{[d]}(\neg)) \) where \(\mathcal{R}_{[d]}(\neg) = \{m/n \leq [1, 2, \ldots, m]\} \). His dual, in the sense of the above section is the function defined by the triplet \((\lor, \geq, \mathcal{R}_{[d]}(\neg)) \). Let us note this function.
Smarandache type function obtained by duality

\[v_4(n) = \sqrt{\{m/1,2,\ldots,m\leq n\}} \]

That is \(v_4(n) \) is the greatest natural number with the property that all \(m \leq v_4(n) \) divide \(n \).

Let us observe that a necessary and sufficient condition to have \(v_4(n) > 1 \) is to exists \(m > l \) so that every prime \(p \leq m \) divide \(n \). From the definition of \(v_4 \) it is also results that \(v_4(n) = m \) if and only if \(n \) is divisible by every \(i \leq n \) and note by \(m+1 \).

Proposition 5.2. The function \(v_4 \) satisfies

\[v_4(n_1 \land n_2) = v_4(n_1) \land v_4(n_2) \]

Proof. Let us note \(n = n_1 \land n_2 \), \(v_4(n) = m \), \(v_4(n_i) = m_i \) for \(i = 1, 2 \). If \(m_1 = m_1 \land m_2 \) then we prove that \(m = m_1 \). From the definition of \(v_4 \) it results

\[v_4(n_i) = m_i = [\forall i \leq m_i \land n \text{ is divisible by } i \text{ but not by } m + 1] \]

If \(m < m_1 \) then \(m + 1 \leq m_1 \leq m \) so \(m + 1 \) divides \(n_1 \) and \(n_2 \). That is \(m + 1 \) divides \(n \).

If \(m > m_1 \) then \(m_1 + 1 \leq n \) so \(m_1 + 1 \) divides \(n \). But \(n \) divides \(n_1 \), so \(m_1 + 1 \) divides \(n_1 \).

If \(t_0 = \max\{i/j \leq i \Rightarrow n \text{ divide } n\} \) then \(v_4(n) \) may be obtained solving the integer linear programming problem.
\begin{align*}
\ln ax = \sum_{i=1}^{t_0} x_i \ln p_i \\
x_i \leq \alpha_i \text{ for } i = 1, t_0 \tag{41}
\end{align*}

If \(f_0 \) is the maximal value of \(f \) for above problem, then \(v(n) = e^{f_0} \).

For instance \(v(2^3 \cdot 3^2 \cdot 5 \cdot 11) = 6 \).

Of course, the function \(v \) may be extended to the rational numbers in the same way as the Smarandache function.

References:

Smarandache type function obtained by duality

[8]. P. Gronas, The Solution of the dispanthine equation $\sigma_1(n) = n$, Smarandache Function J. V. 4-5., No.1 (1994),14-16.

Department of Mathematics, University of Craiova.
ROMANIA

Department of Mathematics, University of New Mexico, Gallup, NM 87301, USA.
E-mail: smarand@unm.edu