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Abstract: For the first time Smarandache introduced neutrosophic sets which can be used as a mathematical
tool for dealing with indeterminate and inconsistent information. the notion of BMBJ-neutrosophic set and subalge-
bra, as a generalization of a neutrosophic set, is introduced, and it’s application to BC'I/BC K -algebras is investi-
gated. The concept of BMBJ-neutrosophic subalgebras in BC'I/BC K -algebras is introduced, and related properties
are investigated. New BMBJ-neutrosophic subalgebra is established by using an BMBJ-neutrosophic subalgebra of
a BCI/BCK-algebra. Alos, homomorphic (inverse) image of BMBJ-neutrosophic subalgebra and translation of
BMBJ-neutrosophic subalgebra is investigated. At the end, we provided conditions for an BMBJ-neutrosophic set to
be an BMBJ-neutrosophic subalgebra.

Keywords: BMBJ-neutrosophic set; BMBJ-neutrosophic subalgebra; BMBJ-neutrosophic S-extension.

1 Introduction

Different types of uncertainties are encountered in some complex system and many fields like biological, be-
havioural and chemical etc. L.A. Zadeh [33] in 1965 introduced the fuzzy set for the first time to handle
uncertainties in many applications. Also K. Atanassov introduced the intuitionistic fuzzy set on the universe
X as a generalisation of fuzzy set [0] in 1986. The concept of neutrosophic set is developed by Smarandache
([27], [28] and [29]), and this is a more general platform that extends the notions of classic set like (intu-
itionistic) fuzzy set and interval valued (intuitionistic) fuzzy set. Neutrosophic set theory is applied to various
fields which is referred to the [1], [2], [3], [4], [5] [2], [©], [22] and [24]. Neutrosophic algebraic structures in
BC1/BC K-algebras are discussed in the papers [7], [13], [14], [15], [19], [16], [171, [18], [20], [25], [26],
[30], [31] and [32].

In this paper, we introduce the notion of BMBIJ-neutrosophic sets and subalgebra, as a generalisation of
neutrosophic set, and we investigate it’s application and related properties it to BC'I/BC K-algebras. We
provide some characterizations of BMBJ-neutrosophic subalgebra, and by using an BMBJ-neutrosophic sub-
algebra of a BC'I / BC K -algebra, a new BMBJ-neutrosophic subalgebra will be propose. We consider the ho-
momorphic inverse image of BMBJ-neutrosophic subalgebra, and consider translation of BMBJ-neutrosophic
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subalgebra. At the last step, we provide some conditions for an BMBJ-neutrosophic set to be an BMBJ-
neutrosophic subalgebra.

2 Preliminaries
A BCI/BCK-algebra is an important class of logical algebras introduced by K. Iséki (see [! 1] and [12]) and
was extensively investigated by several researchers.

By a BC'I-algebra, we mean a set X with a special element 0 and a binary operation * that satisfies the
following conditions:

D (Vo,y,2 € X) ((z*y) * (2% 2)) * (2 xy) = 0),
) (Vz,y € X) (zx(xxy))xy=0),
() (Vz € X) (zx2 = 0),
(IV) (Vo,y € X) (zxy=0,ysxz=0 = 2 =y).
If a BCI-algebra X satisfies the following identity:
(V) (V& € X) (0% x =0),

then X is called a BC' K -algebra. Any BC'1/BC K-algebra X satisfies the following conditions:

(Vexe X)(zx0=1x), (2.1)
Vo,y,ze X)(x <y => ox2<yxz, 2xy<zx1x), (2.2)
(Vz,y,z€ X)((xxy)*xz2=(xx2)*xy), (2.3)
(Vo,y,z € X) (x5 2) * (yx 2) <z xy) 2.4)

where v < y if and only if x x y = 0. Any BC'I-algebra X satisfies the following conditions (see [ 0]):

(Va,y € X) (2 (2% (v xy)) =z xy), (2.5)
(Vz,y € X)(0* (zxy) = (0% z) * (0 y)). (2.6)

A nonempty subset S of a BC'I/BC K-algebra X is called a subalgebra of X if xxy € Sforallz,y € S.

By an interval number we mean a closed subinterval @ = [a~,a™] of I, where 0 < a~ < a* < 1. Denote
by [I] the set of all interval numbers. Let us define what is known as refined minimum (briefly, rmin) and
refined maximum (briefly, rmax) of two elements in [/]. We also define the symbols “>”, “<”, “="in case of
two elements in []. Consider two interval numbers a; := [af, aﬂ and ay 1= [a; ,ag } . Then

rmin {@, a>} = [min {a7,a; } ,min {a],a}],
rmax {dr, a2} = [max {a;,a; } ,max{af,af}],

ay = ay & a; >ay, af >ag,
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and similarly we may have a; <X a, and a; = as. To say a; > as (resp. a; < as) we mean a; > ap and
ay # as (resp. a3 = ag and a; # as). Let a; € [I] where i € A. We define

rinfa; = |infa; ,infaf | and rsupa; = |supa; ,supa; | .
IS (1SN IS icA i€A icA

Let X be a nonempty set. A function A : X — [[] is called an interval-valued fuzzy set (briefly, an IVF sef)
in X. Let [I]X stand for the set of all IVF sets in X. Forevery A € [I|X and z € X, A(x) = [A~(x), AT (2)]
is called the degree of membership of an element x to A, where A~ : X — I and A" : X — I are fuzzy sets
in X which are called a lower fuzzy set and an upper fuzzy set in X, respectively. For simplicity, we denote

A=]A" AT].
Let X be a non-empty set. A neutrosophic set (NS) in X (see [28]) is a structure of the form:

A= {{z; Ap(x), Ar(x), Ap(x)) | x € X}

where Ar : X — [0,1] is a truth membership function, A; : X — [0, 1] is an indeterminate membership
function, and Ar : X — [0, 1] is a false membership function. For the sake of simplicity, we shall use the
symbol A = (Ar, A;, Ar) for the neutrosophic set

A= {{x; Ap(z), Ar(x), Ap(x)) | x € X }.

We refer the reader to the books [ 10, 21] for further information regarding BC'i/ BC K -algebras, and to the
site “http://fs.gallup.unm.edu/neutrosophy.htm” for further information regarding neutrosophic set theory.

3 BMBJ-neutrosophic structures with applications in
BC1/BCK-algebras

Definition 3.1. Let X be a non-empty set. By an MBJ-neutrosophic set in X, we mean a structure of the form:
A= {(z; Ma(z), Ba(z), Ja(z)) | 2 € X}
where M4 and J, are fuzzy sets in X, which are called a truth membership function and a false membership

function, respectively, and B4 is an IVF set in X which is called an indeterminate interval-valued membership
function.

For the sake of simplicity, we shall use the symbol A = (M, By, J4) for the MBJ-neutrosophic set

A= {(x;MA(m),BA(:L'), Ja(x)) |z € X}

Definition 3.2. Let X be a BCI/BC K -algebra. An MBJ-neutrosophic set A = (M, By, J4) in X is called
an BMBJ-neutrosophic subalgebra of X if it satisfies:
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Y) =

y) > min{B} (z), B} (y)}. : (3.1)
Ja(w xy) < max{ (@), Ja)},

Ma(z) + B, (z) < 1,Bf(z) + Ja(z) > 1} /

Example 3.3. Consider a set X = {0, a, b, c} with the binary operation * which is given in Table 1. Then

[I3RE4

Table 1: Cayley table for the binary operation “x

QO o O %
QO o OO
o O Ol
o OO Oolc
SO Qe OO0

(X;%,0) is a BCK-algebra (see [21]). Let A = (M, By, Ja) be an MBJ-neutrosophic set in X defined by
Table 2. It is routine to verify that A = (M4, Ba, J4) is an BMBJ-neutrosophic subalgebra of X.

Table 2: MBJ-neutrosophic set A = (Mg, BA, Ja)

X MA(Z‘) A(l‘) JA(ZE)
0 0.7 0.3,0.8] 0.2
a 0.3 0.1,0.5] 0.6
b 0.1 0.3,0.8] 0.4
c 0.5 0.1,0.5] 0.7

In what follows, let X be a BC'I/BC K-algebra unless otherwise specified.

Proposition 3.4. If A = (M., By, J4) is an BMBJ-neutrosophic subalgebra of X, then M4(0) > M(z),
B (0) < By (x), Bf(0) > Bi(x) and J4(0) < Ja(z) forall xz € X.

Proof. For any x € X, we have

MaA(0) = Ma(x *x) > min{My(z), Ma(z)} = Ma(z),
B (0) = By (v +x) < max{Bj(v), By (v)} = By (w),

B%(0) = By (v x) > min{ B} (v), By (v)} = B} (x)
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and

J4(0) = Jya(z x x) < max{Ja(x), Ja(z)} = Ja(x).

This completes the proof. []

Proposition 3.5. Let A = (M4, By, J 1) be an BMBJ-neutrosophic subalgebra of X. If there exists a sequence
{z,} in X such that

lim M4(x,) =1, lim BA(:cn) =0, lim BA (x,) =land lim Jy(z,) =0, (3.2)

n—o0 n—oo n—o0 n—o0

then M4(0) = 1, B;(0) = 0, B%(0) = 1 and J4(0) = 0.

Proof. Using Proposition 3.4, we know that M4(0) > M(z), B;(0) < Bj(x), B{(0) > B}(z) and
J4(0) < Ju(zx) for all z € X. for every positive integer n. Note that

Therefore M4(0) = 1, B;(0) = 0, B} (0) = 1 and J4(0) = 0. -

Theorem 3.6. Given an BMBJ-neutrosophic set A = (My, By, Ja) in X, if (Mp, J4) is an intuitionistic
fuzzy subalgebra of X, and B, and B} are fuzzy subalgebras of X, then A = (Ma, Ba, J4) is an BMBJ-
neutrosophic subalgebra of X.

Proof. 1t is sufficient to show that B satisfies the condition

(Vz,y € X)(B5(z *y) < max{B5(z), By(y)}), (3.3)
(Va,y € X)(Bj(z*y) > min{B} (), Bf(y)}). (3.4)

For any z,y € X, we get

BA(x*y) = [BA(Q;*y)

((z *y)]
> [maXBA( ), B4

+

A

B (y)}, min{ B} (z), B (y)}].

Therefore B, satisfies the condition (3.3), and so A = (My, Ba, J 4) is an BMBJ-neutrosophic subalgebra of
X. ]

If A= (My, Ba, J 4) is an BMBJ-neutrosophic subalgebra of X, then
[Bi(xxy), B (zxy)] = Ba(x xy) = rmin{Ba(z), Ba(y)}

= min{[B, (z), B} (z), [B4 (v), Bi ()]}
= [min{B (z), By (y)}, min{ B} (z), B} (y)}]
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for all z,y € X. It follows that B, (z *x y) > min{Bj(x), B;(y)} and B} (z x y) > min{B}(z), B} (y)}.
Thus B} and B} are fuzzy subalgebras of X. But (M, J4) is not an intuitionistic fuzzy subalgebra of X as
seen in Example 3.3. This shows that the converse of Theorem 3.6 is not true.

Given an BMBJ-neutrosophic set A = (Mg, B 4, Ja) in X, we consider the following sets.

U(Mast) = {z € X | Ma(a) > 1},
L(B:8) = {o € X | Bi(x) < a1},
U(B}:6,) = {a € X | Bi(x) > 6},
L(Ja;8) :={x € X | Ja(x) < s}

where ¢, s € [0, 1] and [dy, do] € [I].

Theorem 3.7. An BMBJ-neutrosophic set A = (M4, By, J 4) in X is an BMBJ-neutrosophic subalgebra of
X if and only if the non-empty sets U(M 4;t), L(B;01), U(BY;02) and L(J 4; s) are subalgebras of X for all
t, 01,09, € [0,1].

Proof. Suppose that A = (M, By, J4) is an BMBJ-neutrosophic subalgebra of X. Let ¢, s € [0,1] and
61, 02] € [I] be such that U(Ma; 1), L(By;0,), U(Bj,ég)and L(J4; s) are non-empty. For any z,y, a,b,u,v €
X,ifz,y € UMu;t), a,b € L(By;61), ¢,d € U(B};6,) and u,v € L(J4; 5), then

Ma(z *y) > min{Ma(x), Ma(y)} > min{t,t} = t,
B (a*b) <max{B;(a), B;(b)} < max{d;, &} = d,
B (c*d) > min{B}(c), Bf(d)} > min{dy, &} = d,
Ja(uxv) <max{Ja(u), Ja(v)} < min{s, s} = s,

andsoz xy € U(Mu;t), axb € L(B;01), cxd € U(BY;6,) and u % v € L(Jy;s). Therefore U(My;t),
L(B3;0,), U(B%;8,) and L(.J4; s) are subalgebras of X .

Conversely, assume that the non-empty sets U (My; t), L(B5;01), U(BY; 65) and L(.J4; s) are subalgebras
of X forall t,s,61,09 € [0,1]. If My(ao * by) < min{Ma(ag), Ma(bo)} for some ag, by € X, then ag, by €
U(My;to) but ag * by ¢ U(MA7 to) for to := min{M4(ao), M4(bo)}. This is a contradiction, and thus M4 (a *
b) > min{Mu(a), M4 (b )} for all a,b € X. Similarly, we can show that B (a * b) < max{B(a), B;(b)},
B} (¢ *d) > min{B}(c), B (d )}andJA(a*b)gmax{JA( ), Ja(b )}foralla be X. O

Using Proposition 3.4 and Theorem 3.7, we have the following corollary.
Corollary 3.8. If A = (M, Bu, Ja) is an BMBJ—neutrosophlc subalgebra of X, then the sets XMA ={x €
X | Ma(z) = M ()}’XB’ = {2 € X | By(x) = B;(0)}, Xz = {z € X | Bfi(x) = B;(0)}, and
Xy, i={x € X | Ja(zx) = Ja(0)} are subalgebras of X.

We say that the subalgebras U(May; 1), L(By;01), U(B}; 65) and L(J4; s) are BMBJ-subalgebras of A =
(Ma, Ba, Ja).

Theorem 3.9. Every subalgebra of X can be realized as BMBJ-subalgebras of an BMBJ-neutrosophic subal-
gebra of X.
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Proof. Let K be a subalgebra of X and let A = (Mg, By, J 4) be an BMBJ-neutrosophic set in X defined by

t ifeeK, ~ . [ ifreK, s, . [ ifzek, (s ifzek,
Ma(x) _{ 0 otherwise, By (x) _{ 1  otherwise, Bi(x) = 0  otherwise, Ja(x) =

(3.5)

where ¢ € (0,1], s € [0,1) and 71,72 € (0,1] with y; < 5. Itis clear that U(Ma;t) = K, L(By;m) = K,
U(BY;7) =K and L(Ja;s) = K. Letz,y € X. If z,y € K, then z x y € K and so

By (x xy) = = max{ B, (z), By (y)},
Bj (2 *y) = v = max{B}(z), Bf(y)},
Ja(xxy) =s=max{Ja(z), Ja(y)}.

If any one of = and y is contained in K, say z € K, then Ma(z) = t, B, (v) = 71, B (x) = 72, Ja(x) = 5,
Ma(y) =0, B4(y) =0, B (y) = 0and Ja(y) = 1. Hence

Ma(zx*y) > 0=min{t,0} = min{M4(z), Ms(y)}
Bji(xxy) <1 =max{y,1} = max{B;(x), B ()},
B+ ) > 0 = minfa,0} = min{ B (x), B ()},
Ja(x *xy) <1 =max{s, 1} = max{Ja(z), Ja(y)}.

If 2,y ¢ K, then Ma(z) = 0= Ma(y), By(x) =1 =By (y), Bi(x) = 0= Bj(y) and Ja(z) = 1 = Ja(y).
It follows that

0 = min{0,0} = mln{MA(x),MA(y
1 = max{1,1} = max{B;(z), B (y
0 = min{0,0} = min{ B} (z), BY(y)},
1 =max{1,1} = max{Ja(z), Ja(y)}.

Therefore A = (M4, Ba, J 4) is an BMBJ-neutrosophic subalgebra of X. [l

Theorem 3.10. For any non-empty subset K of X, let A = (M, By, J 1) be an BMBJ-neutrosophic set in
X which is given in (3.5). If A = (Ma, Ba, Ja) is an BMBJ-neutrosophic subalgebra of X, then K is a
subalgebra of X.

Proof. Let v,y € K. Then My(x) = t = Mu(y), B,(x) = v = B,(y), Bf(z) = v» = Bf(y) and
Ja(z) = s = Ju(y). Thus

Ma(z ) > min{Ma(2), Ma(y)} = 1,
t}’m xy) < max{B}(x), :2(@/)} =,
By (z*y) > min{ B} (), By (y)} = 72,

H. Bordbar, M. Mohseni Takallo, R.A. Borzooei, Y.B. Jun, BMBJ-neutrosophic subalgebras in
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and therefore z * y € K. Hence K is a subalgebra of X. [

Using an BMBJ-neutrosophic subalgebra of a BC'I-algera, we establish a new BMBJ-neutrosophic subal-
gebra.

Theorem 3.11. Given an BMBJ-neutrosophic subalgebra A = (M 4, By, Ja) of a BCl-algebra X, let
A" = (M}, B, J}) be an BMBJ-neutrosophic set in X defined by M} (x) = Ma(0 * x), B}(x) = Ba(0* )
and J4(z) = Ja(0 % x) forall x € X. Then A* = (M}, B%, J}) is an BMBJ-neutrosophic subalgebra of X.

Proof. Note that 0 * (z xy) = (0% x) % (0 x y) for all z, y € X. We have

Mji(x % y) = Ma(0% (x5 y)) = Ma((0%2) % (0% y))
> min{ M (0 z), Ma(0 % y)}
= min{M}(x), M3 (y)},

(Ba)"(zxy) =B (0% (xxy)) = B1((0x2) * (0 y))
< max{B; (0% ), B;(0%y)}

= max{(B})"(x), (B4)"(y)}

A
A

(BY) (z*y) = Bi(0* (v xy)) = B{((0%2) % (0% y))
> min{ B} (0 z), B (0% y)}

= min({B})"(2), (BY)"(v)},

and
Ji(xxy)=Ja(0x (xxy)) = Ja((0xx)* (0*y))
<max{Js(0xx), J4(0xy)}
= max{J}(x), J3(y)}
for all 2,y € X. Therefore A* = (M*, B, J%) is an BMBJ-neutrosophic subalgebra of X O

Theorem 3.12. Let f : X — Y be a homomorphism of BOK/BCI-algebras. If B = (Mg, Bg, Jp) is an
MBJ-neutrosophic subalgebra of Y, then f~'(B) = (f~'(Mp), f~'(Bg), f~'(Jp)) is an BMBJ-neutrosophic
subalgebra of X, where f~'(Mp)(x) = My(f(2)), ™ (Bs)(z) = Bo(f(x)) and f~(Jp)(x) = Jp(f(x))
forall x € X.

Proof. Letx,y € X. Then

fH(Mp)(xxy) = Mp(f(z*xy)) = M
> min{Mp(f(x)), Mp

= min{f ™' (Mp)(2), f

s(f(x) * f(y))
(f(y)}
f7 (M) ()},
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fHBg)(zxy) = By(f(z+y)) = Bg(f(z) = f(y))
By (

and
FH I xy) = Jp(f(xxy)) = Jp(f(x) * f(y))
< max{.Jg(f(2)), Jo(f(¥))}
= max{f~(Jp)(z). ' (Jp)(y)}
Hence f~1(B) = (f~Y(Mz), f~Y(Bg), f~*(Jp)) is an BMBJ-neutrosophic subalgebra of X O

Let A = (My, By, J4) be an BMBJ-neutrosophic set in a set X. We denote

T:=1—-sup{Ma(x) | x € X},
Il := inf{Bg(z) | z € X}.
m:=1—sup{Bf(z) |z € X}.
1 :=inf{Ju(z) |z € X}.

For any p € [0, T], a € [0,II, b € [0,7] and ¢ € [0, L], we define A" = (M%, B%, BY, J%) by
MP%(z) = Ma(z) + p, B4(z) = By () + a, B4 (x) = Bf(x) + band J%(z) = Ja(x) — ¢. Then AT = (M%,
B4, BY, J%) is an BMBJ-neutrosophic set in X, which is called a (p, a, b, q)-translative BMBJ-neutrosophic
set of A= (M, By, J4).

Theorem 3.13. If A = (My, By, Ja) is an BMBJ-neutrosophic subalgebra of X, then the (p,a,b,q)-
translative BMBJ-neutrosophic set of A = (Ma, Ba, Ja) is also an BUBJ-neutrosophic subalgebra of X.

Proof. For any x,y € X, we get
Mj(z +y) = Ma(z * y) +p = min{Ma(z), Ma(y)} +p

= min{My(z) + p, Ma(y) + p} = min{Mﬁ(:L‘), Mfl(y)}u

Bi(wxy) = Bi(rxy) +a < max{Bi(a). Bi ()} +a
= max{BZ (:E) + a, BZ (y) + &} = maX{BZ(m), Bj(y)},
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BY(z*y) = Bf(x*+y) +b>min{Bf(z), Bf(y)} + b
— min{B(x) + b, Bi(y) + b} = max{B4(x), B4(n)}.

and
Ji(w*y) = Ja(z*y) — ¢ < max{Ja(z), Ja(y)} — ¢
= max{Ja(z) — ¢, Ja(y) — ¢} = max{J%(x), J4(y)}.
Therefore AT = (M%, B4, BY, J%) is an BMBJ-neutrosophic subalgebra of X . O

Theorem 3.14. Let A = (M, B4, Ja) be an BUBJ-neutrosophic set in X such that its (p, a, b, q)-translative
BMBJ-neutrosophic set is an BMBJ-neutrosophic subalgebra of X for p € [0, T], a € [0,10], b € [0, 7] and
q € [0, L]. Then A = (Mpy, Ba, Ja) is an BMBJ-neutrosophic subalgebra of X.

Proof. Assume that AT = (M%, BY, BY, J%) is an BMBJ-neutrosophic subalgebra of X for p € [0, T],
a€[0,II],b€[0,7] and ¢ € [0, L]. Letz,y € X. Then
Ma(z +y) +p = Mj(x +y) = min{Mj(x), Mi(y)}
= min{Ma(z) + p, Ma(y) + p}
= min{Ma(x), Ma(y)} + p,

Bi(z *y) —a = Bj(z*y) < max{Bj(x), B (y)}
= max{B4(z )—a Bi(y) — a}
= max{B; (v), B, (y)} - a.

B+ y) = b= Bi(w+y) = min{ B (x). B ()}
— min{B%(z) — b, By(y) b}
— min{B}(2). B4} ~ b

and

Ja(wxy) —q = Ji(xxy) <max{J4(z), J4(y)}
= max{Ja(r) — ¢, Ja(y) — ¢}
= max{Ja(z), Ja(y)} — ¢

It follows that Ma(z * y) > min{Ma(z), Ma(y)}, By(z xy) < max{B; (z), B;(y)}, Bi(z *y) >
min{ B} (z), B} (y)} and Ja(z * y) < max{Ja(x), Ja(y)} for all z,y € X. Hence A = (Ma, Ba, Ja)
is an BMBJ-neutrosophic subalgebra of X. [
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Definition 3.15. Let A = (My, By, Ja) and B = (Mp, Bg, Jg) be BMBJ-neutrosophic sets in X. Then
B = (Mg, Bg, Jg) is called an BMBJ-neutrosophic S-extension of A = (M, Ba, Ja) if the following
assertions are valid.

(1) Mp(z) > Mu(z), B;(z) < B;(z), Bf(x) > Bf(x) and Jg(z) < Ju(z) forall z € X,

(2) If A = (My, By, J4) is an BMBJ-neutrosophic subalgebra of X, then B = (Mg, B, Jp) is an
BMBJ-neutrosophic subalgebra of X.

Theorem 3.16. Given p € [0, T], a € [0,11], b € [0,7] and q € [0, L], the (p,a,b, q)-translative BMBJ-
neutrosophic set AT = (M?%, B%, BY, J4) of an BMBJ-neutrosophic subalgebra A = (Ma, Ba, Ja) is an
BMBJ-neutrosophic S-extension of A = (M, Ba, Ja).

Proof. Straightforward. O]

Funding: This research received no external funding.
Acknowledgments: Thanks to Prof.Smarandache for his nice comments during this paper.
Conflicts of Interest: The authors declare no conflict of interest.

References

[1] M. Abdel-Basset, M. Saleh, A. Gamal, A. and F. Smarandache. An approach of TOPSIS technique for developing supplier
selection with group decision making under type-2 neutrosophic number. Applied Soft Computing, 77 (2019), 438-452.

[2] M. Abdel-Baset, V. Chang, A. Gamal and F. Smarandach. An integrated neutrosophic ANP and VIKOR method for achieving
sustainable supplier selection: A case study in importing field. Computers in Industry, 106 (2019), 94-110.

[3] M. Abdel-Basset, G. Manogaran, A. Gamal, and F. Smarandache. A group decision making framework based on neutrosophic
TOPSIS approach for smart medical device selection. Journal of medical systems, 43(2), 38. (2019).

[4] M. Abdel-Baset, V. Chang and A. Gamal. Evaluation of the green supply chain management practices: A novel neutrosophic
approach. Computers in Industry, 108 (2019), 210-220.

[5] M. Abdel-Basset, G. Manogaran, A. Gamal, A and F. Smarandache. A hybrid approach of neutrosophic sets and DEMATEL
method for developing supplier selection criteria. Design Automation for Embedded Systems (2019), 1-22.

[6] K. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets and Systems, vol. 20, p. 87-96 (1986).

[71 R.A. Borzooei, X.H. Zhang, F. Smarandache and Y.B. Jun, Commutative generalized neutrosophic ideals in BC K -algebras,
Symmetry 2018, 10, 350; doi:10.3390/sym10080350.

[8] S. Broumi, A. Dey, M. Talea, A. Bakali, F. Smarandache, D. Nagarajan, M. Lathamaheswari and Ranjan Kumar(2019),
“Shortest Path Problem using Bellman Algorithm under Neutrosophic Environment,” Complex and amp; Intelligent Systems
,pp-1-8, https://doi.org/10.1007/s40747-019-0101-8 ,

[9] S. Broumi, M.Talea, A. Bakali, F. Smarandache, D.Nagarajan, M. Lathamaheswari and M.Parimala, ”Shortest path problem
in fuzzy, intuitionistic fuzzy and neutrosophic environment” .an overview, Complex and amp; Intelligent Systems ,2019,pp
1-8, https://doi.org/10.1007/s40747-019-0098-z
[10] Y.S. Huang, BC-algebra, Beijing: Science Press (2006).

[11] K. Iséki, On BC'I-algebras, Math. Seminar Notes 8 (1980), 125-130.

H. Bordbar, M. Mohseni Takallo, R.A. Borzooei, Y.B. Jun, BMBJ-neutrosophic subalgebras in
BC1/BCK-algebras.



42

Neutrosophic Sets and Systems, Vol. 31, 2020

[12]
[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

K. Iséki and S. Tanaka, An introduction to the theory of BC K -algebras, Math. Japon. 23 (1978), 1-26.
Y.B. Jun, Neutrosophic subalgebras of several types in BC' K/ BCI-algebras, Ann. Fuzzy Math. Inform. 14(1) (2017), 75-86.

Y.B. Jun, S.J. Kim and F. Smarandache, Interval neutrosophic sets with applications in BC'K/BC1I-algebra, Axioms 20138,
7, 23.

Y.B. Jun, F. Smarandache and H. Bordbar, Neutrosophic N -structures applied to BC'K/BCI-algebras, Information 2017, 8,
128.

Y. B. Jun, S. Z. Song, F. Smarandache and H. Bordbar Neutrosophic Quadruple BCK/BCI-Algebras, Axioms 2018, 7, 2.

Y.B. Jun, F. Smarandache, S.Z. Song and H. Bordbar, Neutrosophic Permeable Values and Energetic Subsets with Applications
in BCK/BCI-Algebras, Mathematics 6 (5), 74

Y.B. Jun, F. Smarandache and H. Bordbar, Neutrosophic falling shadows applied to subalgebras and ideals in BCK/BCI-
algebras, Annals of Fuzzy Mathematics and Informatics

Y.B. Jun, F. Smarandache, S.Z. Song and M. Khan, Neutrosophic positive implicative N-ideals in BCK/BC1I-algebras,
Axioms 2018, 7, 3.

M. Khan, S. Anis, F. Smarandache and Y.B. Jun, Neutrosophic N -structures and their applications in semigroups, Ann. Fuzzy
Math. Inform. 14(6) (2017), 583-598.

J. Meng and Y.B. Jun, BC K-algebras, Kyung Moon Sa Co., Seoul (1994).

M. Mohseni Takallo, H. Bordbar, R.A. Borzooei, Y. B. Jun BMBJ-neutrosophic ideals in BCK/BClI-algebras Neutrosophic
Sets and Systems, Vol. 7, 2019

G. Muhiuddin, H. Bordbar, F. Smarandache and Y. B. Jun, Further results on (€, €)-neutrosophic subalgebras and ideals in
BCK/BCl-algebras, Neutrosophic Sets and Systems, Vol. 20, 2018.

N. A. Nabeeh, F. Smarandache, M. Abdel-Basset, H. A. El-Ghareeb and Aboelfetouh, A. An Integrated Neutrosophic-TOPSIS
Approach and Its Application to Personnel Selection: A New Trend in Brain Processing and Analysis. IEEE Access, 7 (2019),
29734-29744.

M.A. Oztiirk and Y.B. Jun, Neutrosophic ideals in BC K/ BCI-algebras based on neutrosophic points, J. Inter. Math. Virtual
Inst. 8 (2018), 1-17.

A.B. Saeid and Y.B. Jun, Neutrosophic subalgebras of BC'K / BCI-algebras based on neutrosophic points, Ann. Fuzzy Math.
Inform. 14(1) (2017), 87-97.

F. Smarandache, Neutrosophy, Neutrosophic Probability, Set, and Logic, ProQuest Information & Learning, Ann Arbor,
Michigan, USA, 105 p., 1998. http://fs.gallup.unm.edu/eBook-neutrosophics6.pdf (last edition online).

F. Smarandache, A unifying field in logics. Neutrosophy: Neutrosophic probability, set and logic, Rehoboth: American
Research Press (1999).

F. Smarandache, Neutrosophic set, a generalization of intuitionistic fuzzy sets, International Journal of Pure and Applied
Mathematics, 24(5) (2005), 287-297.

S.Z. Song, H. Bordbar and Y.B. Jun, Quotient Structures of BCK/BCI-Algebras Induced by Quasi-Valuation Maps Axioms
2018, 7(2), 26; https://doi.org/10.3390/axioms7020026

S.Z. Song, M. Khan, F. Smarandache and Y.B. Jun, A novel extension of neutrosophic sets and Fs application in BCK/BI-
algebras, New Trends in Neutrosophic Theory and Applications (Volume II), Pons Editions, Brussels, Belium, EU 2018,
308-326.

H. Bordbar, M. Mohseni Takallo, R.A. Borzooei, Y.B. Jun, BMBJ-neutrosophic subalgebras in
BC1/BCK-algebras.



Neutrosophic Sets and Systems, Vol. 31, 2020 43

[32] S.Z.Song, F. Smarandache and Y.B. Jun, , Neutrosophic commutative A/ -ideals in BC K -algebras, Information 2017, 8, 130.

[33] L.A. Zadeh, Fuzzy sets, Information and Control, 8(3) (1965), 338-353.

Received: May 27, 2019. Accepted: December 07, 2019.

H. Bordbar, M. Mohseni Takallo, R.A. Borzooei, Y.B. Jun, BMBJ-neutrosophic subalgebras in
BC1/BCK-algebras.



	BMBJ-neutrosophic subalgebra in BCI/BCK-algebras
	Recommended Citation

	Introduction
	Preliminaries
	BMBJ-neutrosophic structures with applications in BCI/BCK-algebras
	References

