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Abstract: For the first time Smarandache introduced neutrosophic sets which can be used as a mathematical
tool for dealing with indeterminate and inconsistent information. the notion of BMBJ-neutrosophic set and subalge-
bra, as a generalization of a neutrosophic set, is introduced, and it’s application to BCI/BCK-algebras is investi-
gated. The concept of BMBJ-neutrosophic subalgebras in BCI/BCK-algebras is introduced, and related properties
are investigated. New BMBJ-neutrosophic subalgebra is established by using an BMBJ-neutrosophic subalgebra of
a BCI/BCK-algebra. Alos, homomorphic (inverse) image of BMBJ-neutrosophic subalgebra and translation of
BMBJ-neutrosophic subalgebra is investigated. At the end, we provided conditions for an BMBJ-neutrosophic set to
be an BMBJ-neutrosophic subalgebra.

Keywords: BMBJ-neutrosophic set; BMBJ-neutrosophic subalgebra; BMBJ-neutrosophic S-extension.

1 Introduction
Different types of uncertainties are encountered in some complex system and many fields like biological, be-
havioural and chemical etc. L.A. Zadeh [33] in 1965 introduced the fuzzy set for the first time to handle
uncertainties in many applications. Also K. Atanassov introduced the intuitionistic fuzzy set on the universe
X as a generalisation of fuzzy set [6] in 1986. The concept of neutrosophic set is developed by Smarandache
([27], [28] and [29]), and this is a more general platform that extends the notions of classic set like (intu-
itionistic) fuzzy set and interval valued (intuitionistic) fuzzy set. Neutrosophic set theory is applied to various
fields which is referred to the [1], [2], [3], [4], [5] [8], [9], [22] and [24]. Neutrosophic algebraic structures in
BCI/BCK-algebras are discussed in the papers [7], [13], [14], [15], [19], [16], [17], [18], [20], [25], [26],
[30], [31] and [32].

In this paper, we introduce the notion of BMBJ-neutrosophic sets and subalgebra, as a generalisation of
neutrosophic set, and we investigate it’s application and related properties it to BCI/BCK-algebras. We
provide some characterizations of BMBJ-neutrosophic subalgebra, and by using an BMBJ-neutrosophic sub-
algebra of a BCI/BCK-algebra, a new BMBJ-neutrosophic subalgebra will be propose. We consider the ho-
momorphic inverse image of BMBJ-neutrosophic subalgebra, and consider translation of BMBJ-neutrosophic
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subalgebra. At the last step, we provide some conditions for an BMBJ-neutrosophic set to be an BMBJ-
neutrosophic subalgebra.

2 Preliminaries

A BCI/BCK-algebra is an important class of logical algebras introduced by K. Iséki (see [11] and [12]) and
was extensively investigated by several researchers.

By a BCI-algebra, we mean a set X with a special element 0 and a binary operation ∗ that satisfies the
following conditions:

(I) (∀x, y, z ∈ X) (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),

(II) (∀x, y ∈ X) ((x ∗ (x ∗ y)) ∗ y = 0),

(III) (∀x ∈ X) (x ∗ x = 0),

(IV) (∀x, y ∈ X) (x ∗ y = 0, y ∗ x = 0 ⇒ x = y).

If a BCI-algebra X satisfies the following identity:

(V) (∀x ∈ X) (0 ∗ x = 0),

then X is called a BCK-algebra. Any BCI/BCK-algebra X satisfies the following conditions:

(∀x ∈ X) (x ∗ 0 = x) , (2.1)
(∀x, y, z ∈ X) (x ≤ y ⇒ x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x) , (2.2)
(∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y) , (2.3)
(∀x, y, z ∈ X) ((x ∗ z) ∗ (y ∗ z) ≤ x ∗ y) (2.4)

where x ≤ y if and only if x ∗ y = 0. Any BCI-algebra X satisfies the following conditions (see [10]):

(∀x, y ∈ X)(x ∗ (x ∗ (x ∗ y)) = x ∗ y), (2.5)
(∀x, y ∈ X)(0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y)). (2.6)

A nonempty subset S of a BCI/BCK-algebra X is called a subalgebra of X if x ∗ y ∈ S for all x, y ∈ S.
By an interval number we mean a closed subinterval ã = [a−, a+] of I, where 0 ≤ a− ≤ a+ ≤ 1. Denote

by [I] the set of all interval numbers. Let us define what is known as refined minimum (briefly, rmin) and
refined maximum (briefly, rmax) of two elements in [I]. We also define the symbols “�”, “�”, “=” in case of
two elements in [I]. Consider two interval numbers ã1 :=

[
a−1 , a

+
1

]
and ã2 :=

[
a−2 , a

+
2

]
. Then

˜rmin {a1, ã2} =
[
min

{
a−1 , a

−
2

}
,min

{
a+

1 , a
+
2

}]
,

˜rmax {a1, ã2} =
[
max

{
a−1 , a

−
2

}
,max

{
a+

1 , a
+
2

}]
,

˜ ˜a1 � a2 ⇔ a−1 ≥ a−2 , a
+
1 ≥ a+

2 ,
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˜ ˜
˜ ˜
and similarly we may have ã1 � a2 and ã1 = ã2. To say ã1 � ã2 (resp. ã1 ≺ ã2) we mean ã1 � a2 and
a1 6= ã2 (resp. ã1 � a2 and ã1 6= ã2). Let ãi ∈ [I] where i ∈ Λ. We define

rinf
i∈Λ

ãi =

[
inf
i∈Λ

a−i , inf
i∈Λ

a+
i

]
and rsup

i∈Λ
ãi =

[
sup
i∈Λ

a−i , sup
i∈Λ

a+
i

]
.

LetX be a nonempty set. A function A : X → [I] is called an interval-valued fuzzy set (briefly, an IVF set)
in X. Let [I]X stand for the set of all IVF sets in X. For every A ∈ [I]X and x ∈ X, A(x) = [A−(x), A+(x)]
is called the degree of membership of an element x to A, where A− : X → I and A+ : X → I are fuzzy sets
in X which are called a lower fuzzy set and an upper fuzzy set in X, respectively. For simplicity, we denote
A = [A−, A+].

Let X be a non-empty set. A neutrosophic set (NS) in X (see [28]) is a structure of the form:

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}

where AT : X → [0, 1] is a truth membership function, AI : X → [0, 1] is an indeterminate membership
function, and AF : X → [0, 1] is a false membership function. For the sake of simplicity, we shall use the
symbol A = (AT , AI , AF ) for the neutrosophic set

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}.

We refer the reader to the books [10, 21] for further information regarding BCi/BCK-algebras, and to the
site “http://fs.gallup.unm.edu/neutrosophy.htm” for further information regarding neutrosophic set theory.

3 BMBJ-neutrosophic structures with applications in
BCI/BCK-algebras

Definition 3.1. Let X be a non-empty set. By an MBJ-neutrosophic set in X , we mean a structure of the form:

A := {〈x;MA(x), B̃A(x), JA(x)〉 | x ∈ X}

where MA and JA are fuzzy sets in X , which are called a truth membership function and a false membership
function, respectively, and B̃A is an IVF set in X which is called an indeterminate interval-valued membership
function.

For the sake of simplicity, we shall use the symbol A = (MA, B̃A, JA) for the MBJ-neutrosophic set

A := {〈x;MA(x), B̃A(x), JA(x)〉 | x ∈ X}.

Definition 3.2. Let X be a BCI/BCK-algebra. An MBJ-neutrosophic set A = (MA, B̃A, JA) in X is called
an BMBJ-neutrosophic subalgebra of X if it satisfies:

H. Bordbar, M. Mohseni Takallo, R.A. Borzooei, Y.B. Jun, BMBJ-neutrosophic subalgebras in
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(∀x, y ∈ X)


MA(x ∗ y) ≥ min{MA(x),MA(y)},
B̃−A(x ∗ y) ≤ max{B̃−A(x), B̃−A(y)},
B̃+

A(x ∗ y) ≥ min{B̃+
A(x), B̃+

A(y)},
JA(x ∗ y) ≤ max{JA(x), JA(y)},
MA(x) + B̃−A(x) ≤ 1, B̃+

A(x) + JA(x) ≥ 1}.

 (3.1)

Example 3.3. Consider a set X = {0, a, b, c} with the binary operation ∗ which is given in Table 1. Then

Table 1: Cayley table for the binary operation “∗”

∗ 0 a b c
0 0 0 0 0
a a 0 0 a
b b a 0 b
c c c c 0

(X; ∗, 0) is a BCK-algebra (see [21]). Let A = (MA, B̃A, JA) be an MBJ-neutrosophic set in X defined by
Table 2. It is routine to verify that A = (MA, B̃A, JA) is an BMBJ-neutrosophic subalgebra of X .

Table 2: MBJ-neutrosophic set A = (MA, B̃A, JA)

X MA(x) B̃A(x) JA(x)
0 0.7 [0.3, 0.8] 0.2
a 0.3 [0.1, 0.5] 0.6
b 0.1 [0.3, 0.8] 0.4
c 0.5 [0.1, 0.5] 0.7

In what follows, let X be a BCI/BCK-algebra unless otherwise specified.

Proposition 3.4. If A = (MA, B̃A, JA) is an BMBJ-neutrosophic subalgebra of X , then MA(0) ≥ MA(x),
B̃−A(0) ≤ B̃−A(x), B̃+

A(0) ≥ B̃+
A(x) and JA(0) ≤ JA(x) for all x ∈ X .

Proof. For any x ∈ X , we have

MA(0) = MA(x ∗ x) ≥ min{MA(x),MA(x)} = MA(x),

B̃−A(0) = B̃−A(x ∗ x) ≤ max{B̃−A(x), B̃−A(x)} = B̃−A(x),

B̃+
A(0) = B̃−A(x ∗ x) ≥ min{B̃+

A(x), B̃−A(x)} = B̃+
A(x)

H. Bordbar, M. Mohseni Takallo, R.A. Borzooei, Y.B. Jun, BMBJ-neutrosophic subalgebras in
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and

JA(0) = JA(x ∗ x) ≤ max{JA(x), JA(x)} = JA(x).

This completes the proof.

Proposition 3.5. LetA = (MA, B̃A, JA) be an BMBJ-neutrosophic subalgebra ofX . If there exists a sequence
{xn} in X such that

lim
n→∞

MA(xn) = 1, lim
n→∞

B̃−A(xn) = 0, lim
n→∞

B̃+
A(xn) = 1 and lim

n→∞
JA(xn) = 0, (3.2)

then MA(0) = 1, B̃−A(0) = 0, B̃+
A(0) = 1 and JA(0) = 0.

Proof. Using Proposition 3.4, we know that MA(0) ≥ MA(x), B̃−A(0) ≤ B̃−A(x), B̃+
A(0) ≥ B̃+

A(x) and
JA(0) ≤ JA(x) for all x ∈ X . for every positive integer n. Note that

1 ≥MA(0) ≥ lim
n→∞

MA(xn) = 1,

0 ≤ B̃−A(0) ≤ lim
n→∞

B̃−A(xn) = 0,

1 ≥ B̃+
A(0) ≥ lim

n→∞
B̃+

A(xn) = 1,

0 ≤ JA(0) ≤ lim
n→∞

JA(xn) = 0.

Therefore MA(0) = 1, B̃−A(0) = 0, B̃+
A(0) = 1 and JA(0) = 0.

Theorem 3.6. Given an BMBJ-neutrosophic set A = (MA, B̃A, JA) in X , if (MA, JA) is an intuitionistic
fuzzy subalgebra of X , and B−A and B+

A are fuzzy subalgebras of X , then A = (MA, B̃A, JA) is an BMBJ-
neutrosophic subalgebra of X .

Proof. It is sufficient to show that B̃A satisfies the condition

(∀x, y ∈ X)(B̃−A(x ∗ y) ≤ max{B̃−A(x), B̃−A(y)}), (3.3)

(∀x, y ∈ X)(B̃+
A(x ∗ y) ≥ min{B̃+

A(x), B̃+
A(y)}). (3.4)

For any x, y ∈ X , we get

B̃A(x ∗ y) = [B̃−A(x ∗ y), B̃+
A((x ∗ y)]

≥ [max B̃−A(x), B̃−A(y)},min{B̃+
A(x), B̃+

A(y)}].

Therefore B̃A satisfies the condition (3.3), and so A = (MA, B̃A, JA) is an BMBJ-neutrosophic subalgebra of
X .

If A = (MA, B̃A, JA) is an BMBJ-neutrosophic subalgebra of X , then

[B−A(x ∗ y), B+
A(x ∗ y)] = B̃A(x ∗ y) � rmin{B̃A(x), B̃A(y)}

= rmin{[B−A(x), B+
A(x), [B−A(y), B+

A(y)]}
= [min{B−A(x), B−A(y)},min{B+

A(x), B+
A(y)}]

H. Bordbar, M. Mohseni Takallo, R.A. Borzooei, Y.B. Jun, BMBJ-neutrosophic subalgebras in
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for all x, y ∈ X . It follows that B−A(x ∗ y) ≥ min{B−A(x), B−A(y)} and B+
A(x ∗ y) ≥ min{B+

A(x), B+
A(y)}.

Thus B−A and B+
A are fuzzy subalgebras of X . But (MA, JA) is not an intuitionistic fuzzy subalgebra of X as

seen in Example 3.3. This shows that the converse of Theorem 3.6 is not true.
Given an BMBJ-neutrosophic set A = (MA, B̃A, JA) in X , we consider the following sets.

U(MA; t) := {x ∈ X |MA(x) ≥ t},
L(B̃−A ; δ1) := {x ∈ X | B̃−A(x) ≤ δ1},
U(B̃+

A ; δ2) := {x ∈ X | B̃+
A(x) ≥ δ2},

L(JA; s) := {x ∈ X | JA(x) ≤ s}

where t, s ∈ [0, 1] and [δ1, δ2] ∈ [I].

Theorem 3.7. An BMBJ-neutrosophic set A = (MA, B̃A, JA) in X is an BMBJ-neutrosophic subalgebra of
X if and only if the non-empty sets U(MA; t), L(B̃−A ; δ1), U(B̃+

A ; δ2) and L(JA; s) are subalgebras of X for all
t, δ1, δ2,∈ [0, 1].

Proof. Suppose that A = (MA, B̃A, JA) is an BMBJ-neutrosophic subalgebra of X . Let t, s ∈ [0, 1] and
[δ1, δ2] ∈ [I] be such thatU(MA; t), L(B̃−A ; δ1), U(B̃+

A ; δ2) andL(JA; s) are non-empty. For any x, y, a, b, u, v ∈
X , if x, y ∈ U(MA; t), a, b ∈ L(B̃−A ; δ1), c, d ∈ U(B̃+

A ; δ2) and u, v ∈ L(JA; s), then

MA(x ∗ y) ≥ min{MA(x),MA(y)} ≥ min{t, t} = t,

B̃−A(a ∗ b) ≤ max{B̃−A(a), B̃−A(b)} ≤ max{δ1, δ1} = δ1,

B̃+
A(c ∗ d) ≥ min{B̃+

A(c), B̃+
A(d)} ≥ min{δ2, δ2} = δ2,

JA(u ∗ v) ≤ max{JA(u), JA(v)} ≤ min{s, s} = s,

and so x ∗ y ∈ U(MA; t), a ∗ b ∈ L(B̃−A ; δ1), c ∗ d ∈ U(B̃+
A ; δ2) and u ∗ v ∈ L(JA; s). Therefore U(MA; t),

L(B̃−A ; δ1), U(B̃+
A ; δ2) and L(JA; s) are subalgebras of X .

Conversely, assume that the non-empty sets U(MA; t), L(B̃−A ; δ1), U(B̃+
A ; δ2) and L(JA; s) are subalgebras

of X for all t, s, δ1, δ2 ∈ [0, 1]. If MA(a0 ∗ b0) < min{MA(a0),MA(b0)} for some a0, b0 ∈ X , then a0, b0 ∈
U(MA; t0) but a0 ∗ b0 /∈ U(MA; t0) for t0 := min{MA(a0),MA(b0)}. This is a contradiction, and thus MA(a ∗
b) ≥ min{MA(a),MA(b)} for all a, b ∈ X . Similarly, we can show that B̃−A(a ∗ b) ≤ max{B̃−A(a), B̃−A(b)},
B̃+

A(c ∗ d) ≥ min{B̃+
A(c), B̃+

A(d)} and JA(a ∗ b) ≤ max{JA(a), JA(b)} for all a, b ∈ X .

Using Proposition 3.4 and Theorem 3.7, we have the following corollary.

Corollary 3.8. If A = (MA, B̃A, JA) is an BMBJ-neutrosophic subalgebra of X , then the sets XMA
:= {x ∈

X | MA(x) = MA(0)}, XB̃−
A

:= {x ∈ X | B̃−A(x) = B̃−A(0)}, XB̃+
A

:= {x ∈ X | B̃+
A(x) = B̃+

A(0)}, and
XJA := {x ∈ X | JA(x) = JA(0)} are subalgebras of X .

We say that the subalgebras U(MA; t), L(B̃−A ; δ1), U(B̃+
A ; δ2) and L(JA; s) are BMBJ-subalgebras of A =

(MA, B̃A, JA).

Theorem 3.9. Every subalgebra of X can be realized as BMBJ-subalgebras of an BMBJ-neutrosophic subal-
gebra of X .

H. Bordbar, M. Mohseni Takallo, R.A. Borzooei, Y.B. Jun, BMBJ-neutrosophic subalgebras in
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Proof. Let K be a subalgebra of X and let A = (MA, B̃A, JA) be an BMBJ-neutrosophic set in X defined by

MA(x) =

{
t if x ∈ K,
0 otherwise, B̃−A(x) =

{
γ1 if x ∈ K,
1 otherwise, B̃+

A(x) =

{
γ2 if x ∈ K,
0 otherwise, JA(x) =

{
s if x ∈ K,
1 otherwise,

(3.5)

where t ∈ (0, 1], s ∈ [0, 1) and γ1, γ2 ∈ (0, 1] with γ1 < γ2. It is clear that U(MA; t) = K, L(B̃−A ; γ1) = K,
U(B̃+

A ; γ2) = K and L(JA; s) = K. Let x, y ∈ X . If x, y ∈ K, then x ∗ y ∈ K and so

MA(x ∗ y) = t = min{MA(x),MA(y)}
B̃−A(x ∗ y) = γ1 = max{B̃−A(x), B̃−A(y)},
B̃+

A(x ∗ y) = γ2 = max{B̃+
A(x), B̃+

A(y)},
JA(x ∗ y) = s = max{JA(x), JA(y)}.

If any one of x and y is contained in K, say x ∈ K, then MA(x) = t, B̃−A(x) = γ1, B̃+
A(x) = γ2, JA(x) = s,

MA(y) = 0, B̃−A(y) = 0, B̃+
A(y) = 0 and JA(y) = 1. Hence

MA(x ∗ y) ≥ 0 = min{t, 0} = min{MA(x),MA(y)}
B̃−A(x ∗ y) ≤ 1 = max{γ1, 1} = max{B̃−A(x), B̃−A(y)},
B̃+

A(x ∗ y) ≥ 0 = min{γ2, 0} = min{B̃+
A(x), B̃+

A(y)},
JA(x ∗ y) ≤ 1 = max{s, 1} = max{JA(x), JA(y)}.

If x, y /∈ K, then MA(x) = 0 = MA(y), B̃−A(x) = 1 = B̃−A(y), B̃+
A(x) = 0 = B̃+

A(y) and JA(x) = 1 = JA(y).
It follows that

MA(x ∗ y) ≥ 0 = min{0, 0} = min{MA(x),MA(y)}
B̃−A(x ∗ y) ≤ 1 = max{1, 1} = max{B̃−A(x), B̃−A(y)},
B̃+

A(x ∗ y) ≥ 0 = min{0, 0} = min{B̃+
A(x), B̃+

A(y)},
JA(x ∗ y) ≤ 1 = max{1, 1} = max{JA(x), JA(y)}.

Therefore A = (MA, B̃A, JA) is an BMBJ-neutrosophic subalgebra of X .

Theorem 3.10. For any non-empty subset K of X , let A = (MA, B̃A, JA) be an BMBJ-neutrosophic set in
X which is given in (3.5). If A = (MA, B̃A, JA) is an BMBJ-neutrosophic subalgebra of X , then K is a
subalgebra of X .

Proof. Let x, y ∈ K. Then MA(x) = t = MA(y), B̃−A(x) = γ1 = B̃−A(y), B̃+
A(x) = γ2 = B̃+

A(y) and
JA(x) = s = JA(y). Thus

MA(x ∗ y) ≥ min{MA(x),MA(y)} = t,

B̃−A(x ∗ y) ≤ max{B̃−A(x), B̃−A(y)} = γ1,

B̃+
A(x ∗ y) ≥ min{B̃+

A(x), B̃+
A(y)} = γ2,

JA(x ∗ y) ≤ max{JA(x), JA(y)} = s,

H. Bordbar, M. Mohseni Takallo, R.A. Borzooei, Y.B. Jun, BMBJ-neutrosophic subalgebras in
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and therefore x ∗ y ∈ K. Hence K is a subalgebra of X .

Using an BMBJ-neutrosophic subalgebra of a BCI-algera, we establish a new BMBJ-neutrosophic subal-
gebra.

Theorem 3.11. Given an BMBJ-neutrosophic subalgebra A = (MA, B̃A, JA) of a BCI-algebra X , let
A∗ = (M∗

A, B̃
∗
A, J

∗
A) be an BMBJ-neutrosophic set in X defined by M∗

A(x) = MA(0 ∗ x), B̃∗A(x) = B̃A(0 ∗ x)
and J∗A(x) = JA(0 ∗ x) for all x ∈ X . Then A∗ = (M∗

A, B̃
∗
A, J

∗
A) is an BMBJ-neutrosophic subalgebra of X .

Proof. Note that 0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y) for all x, y ∈ X . We have

M∗
A(x ∗ y) = MA(0 ∗ (x ∗ y)) = MA((0 ∗ x) ∗ (0 ∗ y))

≥ min{MA(0 ∗ x),MA(0 ∗ y)}
= min{M∗

A(x),M∗
A(y)},

(B̃−A)∗(x ∗ y) = B̃−A(0 ∗ (x ∗ y)) = B̃−A((0 ∗ x) ∗ (0 ∗ y))

≤ max{B̃−A(0 ∗ x), B̃−A(0 ∗ y)}
= max{(B̃−A)∗(x), (B̃−A)∗(y)}

(B̃+
A)∗(x ∗ y) = B̃+

A(0 ∗ (x ∗ y)) = B̃+
A((0 ∗ x) ∗ (0 ∗ y))

≥ min{B̃+
A(0 ∗ x), B̃+

A(0 ∗ y)}
= min({B̃+

A)∗(x), (B̃+
A)∗(y)},

and

J∗A(x ∗ y) = JA(0 ∗ (x ∗ y)) = JA((0 ∗ x) ∗ (0 ∗ y))

≤ max{JA(0 ∗ x), JA(0 ∗ y)}
= max{J∗A(x), J∗A(y)}

for all x, y ∈ X . Therefore A∗ = (M∗
A, B̃

∗
A, J

∗
A) is an BMBJ-neutrosophic subalgebra of X .

Theorem 3.12. Let f : X → Y be a homomorphism of BCK/BCI-algebras. If B = (MB, B̃B, JB) is an
MBJ-neutrosophic subalgebra of Y , then f−1(B) = (f−1(MB), f−1(B̃B), f−1(JB)) is an BMBJ-neutrosophic
subalgebra of X , where f−1(MB)(x) = MB(f(x)), f−1(B̃B)(x) = B̃B(f(x)) and f−1(JB)(x) = JB(f(x))
for all x ∈ X .

Proof. Let x, y ∈ X . Then

f−1(MB)(x ∗ y) = MB(f(x ∗ y)) = MB(f(x) ∗ f(y))

≥ min{MB(f(x)),MB(f(y))}
= min{f−1(MB)(x), f−1(MB)(y)},
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f−1(B̃−B)(x ∗ y) = B̃−B(f(x ∗ y)) = B̃−B(f(x) ∗ f(y))

≤ max{B̃−B(f(x)), B̃−B(f(y))}
= max{f−1(B̃−B)(x), f−1(B̃−B)(y)},

f−1(B̃+
B)(x ∗ y) = B̃+

B(f(x ∗ y)) = B̃+
B(f(x) ∗ f(y))

≥ min{B̃+
B(f(x)), B̃+

B(f(y))}
= min{f−1(B̃+

B)(x), f−1(B̃+
B)(y)},

and

f−1(JB)(x ∗ y) = JB(f(x ∗ y)) = JB(f(x) ∗ f(y))

≤ max{JB(f(x)), JB(f(y))}
= max{f−1(JB)(x), f−1(JB)(y)}.

Hence f−1(B) = (f−1(MB), f−1(B̃B), f−1(JB)) is an BMBJ-neutrosophic subalgebra of X .

Let A = (MA, B̃A, JA) be an BMBJ-neutrosophic set in a set X . We denote

> := 1− sup{MA(x) | x ∈ X},
Π := inf{B̃−B(x) | x ∈ X}.
π := 1− sup{B̃+

B(x) | x ∈ X}.
⊥ := inf{JA(x) | x ∈ X}.

For any p ∈ [0,>], a ∈ [0,Π], b ∈ [0, π] and q ∈ [0,⊥], we define AT = (Mp
A, B̃

a
A, B̃

b
A, J

q
A) by

Mp
A(x) = MA(x) + p, B̃a

A(x) = B̃−A(x) + a, B̃b
A(x) = B̃+

A(x) + b and Jq
A(x) = JA(x)− q. Then AT = (Mp

A,
B̃a

A, B̃
b
A, J

q
A) is an BMBJ-neutrosophic set in X , which is called a (p, a, b, q)-translative BMBJ-neutrosophic

set of A = (MA, B̃A, JA).

Theorem 3.13. If A = (MA, B̃A, JA) is an BMBJ-neutrosophic subalgebra of X , then the (p, a, b, q)-
translative BMBJ-neutrosophic set of A = (MA, B̃A, JA) is also an BMBJ-neutrosophic subalgebra of X .

Proof. For any x, y ∈ X , we get

Mp
A(x ∗ y) = MA(x ∗ y) + p ≥ min{MA(x),MA(y)}+ p

= min{MA(x) + p,MA(y) + p} = min{Mp
A(x),Mp

A(y)},

B̃a
A(x ∗ y) = B̃−A(x ∗ y) + a ≤ max{B̃−A(x), B̃−A(y)}+ a

= max{B̃−A(x) + a, B̃−A(y) + a} = max{B̃a
A(x), B̃a

A(y)},
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B̃b
A(x ∗ y) = B̃+

A(x ∗ y) + b ≥ min{B̃+
A(x), B̃+

A(y)}+ b

= min{B̃+
A(x) + b, B̃+

A(y) + b} = max{B̃b
A(x), B̃b

A(y)},

and

Jq
A(x ∗ y) = JA(x ∗ y)− q ≤ max{JA(x), JA(y)} − q

= max{JA(x)− q, JA(y)− q} = max{Jq
A(x), Jq

A(y)}.

Therefore AT = (Mp
A, B̃

a
A, B̃

b
A, J

q
A) is an BMBJ-neutrosophic subalgebra of X .

Theorem 3.14. Let A = (MA, B̃A, JA) be an BMBJ-neutrosophic set in X such that its (p, a, b, q)-translative
BMBJ-neutrosophic set is an BMBJ-neutrosophic subalgebra of X for p ∈ [0,>], a ∈ [0,Π], b ∈ [0, π] and
q ∈ [0,⊥]. Then A = (MA, B̃A, JA) is an BMBJ-neutrosophic subalgebra of X .

Proof. Assume that AT = (Mp
A, B̃

a
A, B̃

b
A, J

q
A) is an BMBJ-neutrosophic subalgebra of X for p ∈ [0,>],

a ∈ [0,Π], b ∈ [0, π] and q ∈ [0,⊥]. Let x, y ∈ X . Then

MA(x ∗ y) + p = Mp
A(x ∗ y) ≥ min{Mp

A(x),Mp
A(y)}

= min{MA(x) + p,MA(y) + p}
= min{MA(x),MA(y)}+ p,

B̃a
A(x ∗ y)− a = B̃−A(x ∗ y) ≤ max{B̃−A(x), B̃−A(y)}

= max{B̃a
A(x)− a, B̃a

A(y)− a}
= max{B̃−A(x), B̃−A(y)} − a.

B̃b
A(x ∗ y)− b = B̃+

A(x ∗ y) ≥ min{B̃+
A(x), B̃+

A(y)}
= min{B̃b

A(x)− b, B̃b
A(y)− b}

= min{B̃+
A(x), B̃+

A(y)} − b.

and

JA(x ∗ y)− q = Jq
A(x ∗ y) ≤ max{Jq

A(x), Jq
A(y)}

= max{JA(x)− q, JA(y)− q}
= max{JA(x), JA(y)} − q.

It follows that MA(x ∗ y) ≥ min{MA(x),MA(y)}, B̃−A(x ∗ y) ≤ max{B̃−A(x), B̃−A(y)}, B̃+
A(x ∗ y) ≥

min{B̃+
A(x), B̃+

A(y)} and JA(x ∗ y) ≤ max{JA(x), JA(y)} for all x, y ∈ X . Hence A = (MA, B̃A, JA)
is an BMBJ-neutrosophic subalgebra of X .
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Definition 3.15. Let A = (MA, B̃A, JA) and B = (MB, B̃B, JB) be BMBJ-neutrosophic sets in X . Then
B = (MB, B̃B, JB) is called an BMBJ-neutrosophic S-extension of A = (MA, B̃A, JA) if the following
assertions are valid.

(1) MB(x) ≥MA(x), B̃−A(x) ≤ B̃−A(x), B̃+
A(x) ≥ B̃+

A(x) and JB(x) ≤ JA(x) for all x ∈ X ,

(2) If A = (MA, B̃A, JA) is an BMBJ-neutrosophic subalgebra of X , then B = (MB, B̃B, JB) is an
BMBJ-neutrosophic subalgebra of X .

Theorem 3.16. Given p ∈ [0,>], a ∈ [0,Π], b ∈ [0, π] and q ∈ [0,⊥], the (p, a, b, q)-translative BMBJ-
neutrosophic set AT = (Mp

A, B̃
a
A, B̃

b
A, J

q
A) of an BMBJ-neutrosophic subalgebra A = (MA, B̃A, JA) is an

BMBJ-neutrosophic S-extension of A = (MA, B̃A, JA).

Proof. Straightforward.
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[25] M.A. Özturk and Y.B. Jun, Neutrosophic ideals in BCK/BCI-algebras based on neutrosophic points, J. Inter. Math. Virtual
Inst. 8 (2018), 1–17.

[26] A.B. Saeid and Y.B. Jun, Neutrosophic subalgebras of BCK/BCI-algebras based on neutrosophic points, Ann. Fuzzy Math.
Inform. 14(1) (2017), 87–97.

[27] F. Smarandache, Neutrosophy, Neutrosophic Probability, Set, and Logic, ProQuest Information & Learning, Ann Arbor,
Michigan, USA, 105 p., 1998. http://fs.gallup.unm.edu/eBook-neutrosophics6.pdf (last edition online).

[28] F. Smarandache, A unifying field in logics. Neutrosophy: Neutrosophic probability, set and logic, Rehoboth: American
Research Press (1999).

[29] F. Smarandache, Neutrosophic set, a generalization of intuitionistic fuzzy sets, International Journal of Pure and Applied
Mathematics, 24(5) (2005), 287–297.

[30] S.Z. Song, H. Bordbar and Y.B. Jun, Quotient Structures of BCK/BCI-Algebras Induced by Quasi-Valuation Maps Axioms
2018, 7(2), 26; https://doi.org/10.3390/axioms7020026

[31] S.Z. Song, M. Khan, F. Smarandache and Y.B. Jun, A novel extension of neutrosophic sets and Fs application in BCK/BI-
algebras, New Trends in Neutrosophic Theory and Applications (Volume II), Pons Editions, Brussels, Belium, EU 2018,
308–326.

H. Bordbar, M. Mohseni Takallo, R.A. Borzooei, Y.B. Jun, BMBJ-neutrosophic subalgebras in
BCI/BCK-algebras.



Neutrosophic Sets and Systems, Vol. 31, 2020 43

[32] S.Z. Song, F. Smarandache and Y.B. Jun, , Neutrosophic commutativeN -ideals in BCK-algebras, Information 2017, 8, 130.

[33] L.A. Zadeh, Fuzzy sets, Information and Control, 8(3) (1965), 338–353.

Received: May 27, 2019. Accepted: December 07, 2019.

H. Bordbar, M. Mohseni Takallo, R.A. Borzooei, Y.B. Jun, BMBJ-neutrosophic subalgebras in
BCI/BCK-algebras.


	BMBJ-neutrosophic subalgebra in BCI/BCK-algebras
	Recommended Citation

	Introduction
	Preliminaries
	BMBJ-neutrosophic structures with applications in BCI/BCK-algebras
	References

