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Abstract: The object of this article is mainly to discuss the notion of neutrosophic extended triplet 

direct product (NETDP) and neutrosophic extended triplet semi-direct product (NETS-DP) of NET 

group. The purpose is to give a clear introduction that allows a solid foundation for additional 

studies into the field. We introduce neutrosophic extended triplet internal direct product (NETIDP) 

and neutrosophic extended triplet external direct products (NETEDP) of NET group. Then, we 

define NET internal and external semi-direct products for NET group by utilizing the notion of 

NET set theory of Smarandache. Moreover, some results related to NETDP and NETS-DPs are 

obtained. 

Keywords: NET direct product; NET internal direct product; NET external direct product; NET 

semi-direct product; NET internal semi-direct product; NET external semi-direct product. 

 

 

1. Introduction 

Neutrosophy is a new branch of philosophy, presented by Florentin Smarandache [1] in 1980, 

which deals the interactions with different ideational spectra in our everyday life. A NET is an object 

of the structure 
( ) ( )( , , ),neut x anti xx e e  for ,x N was firstly presented by Florentin Smarandache [2-4] 

in 2016. In this theory, the extended neutral and the extended opposites can similar or non-identical 

from the classical unitary element and inverse element respectively. The NETs are depend on real 

triads: (friend, neutral, enemy), (pro, neutral, against), (accept, pending, reject), and in general 

( , ( ), ( ))x neut x anti x as in neutrosophy is a conclusion of Hegel’s dialectics that is depend on x and

( )anti x . This theory acknowledges every concept or idea x together along its opposite ( )anti x  

and along their spectrum of neutralities ( )neut x  among them. Neutrosophy is the foundation of 

neutrosophic logic, neutrosophic set, neutrosophic probability, and neutrosophic statistics that are 

utilized or applied in engineering (like software and information fusion), medicine, military, 

airspace, cybernetics, and physics. Kandasamy and Smarandache [5] introduced many new 

neutrosophic notions in graphs and applied it to the case of neutrosophic cognitive and relational 

maps. The same researchers [6] were introduced the concept of neutrosophic algebraic structures for 

groups, loops, semi groups and groupoids and also their N  algebraic structures in 2006. 

Smarandache and Mumtaz Ali [7] proposed neutrosophic triplets and by utilizing these they defined 

NTG and the application areas of NTGs. They also define NT field [8] and NT in physics [9]. 

Smarandache investigated physical structures of hybrid NT ring [10]. Zhang et al [11] examined the 

Notion of cancellable NTG and group coincide in 2017. Şahın and Kargın [12], [13] firstly introduced 

new structures called NT normed space and NT inner product respectively. Smarandache et al [14] 
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studied new algebraic structure called NT G-module which is constructed on NTGs and NT vector 

spaces. The above set theories have been applied to many different areas including real decision 

making problems [15-39]. Additionally, Abdel Basset et al applied neutrosophic set theory to 

artificial intelligence in medicine [43, 44, 46, 56], decision making [45, 48, 49, 52], programming [47], 

forecasting [50], IoT [51], chain management [53], TOPSIS technique [54], and importing field [55]. 

   This paper deals with direct and semi-direct products of NETGs. We give basic definitions, 

notations, facts, and examples about NETs which play a significant role to define and build new 

algebraic structures. Then, the concept of NET internal and external direct and semi-direct 

products are given and their difference between the classical structures are briefly discussed. 

Finally, some results related to NET direct and semi-direct products are obtained. 

2. Preliminaries  

Since some properties of NETs are used in this work, it is important to have a keen knowledge 

of NETs. We will point out some few NETs and concepts of NET group, NT normal subgroup, and 

NT costs according to what needed in this work. 

Definition 2.1 [7, 9] A NT has a form     ,  ,  ,a neu at nti aa for     , ,a a Na neut anti  , 

accordingly  neut a  and  anti a N  are neutral and opposite of ,a  that is different from the 

unitary element, thus: ( ) ( )a neut a neut a a a     and ( ) ( ) ( )a anti a anti a a neut a     

respectively. In general, a  may have one or more than one neut's and one or more than one anti's. 

Definition 2.2 [3, 9] A NET is a NT, defined as definition 1, but where the neutral of a  (symbolized 

by 
( )neut ae  and called "extended neutral") is equal to the classical unitary element. As a 

consequence, the "extended opposite" of a , symbolized by 
( )anti ae  is also same to the classical 

inverse element. Thus, a NET has a form
( ) ( )( , , )neut a anti aa e e , for ,a N where 

( )neut ae  and 
( )anti ae

  in N  are the extended neutral and negation of a  respectively, thus:
( ) ( ) ,neut a neut aa e e a a     

which can be the same or non-identical from the classical unitary element if any and 
( ) ( ) ( ).anti a anti a neut aa e e a e     Generally, for each a ∊ N there are one or more

( )neut ae 's and 
( )anti ae 's. 

Definition 2.3 [7, 9] suppose ( , )N   is a NT set. Subsequently ( , )N   is called a NTG, if the 

axioms given below are holds. 

(1) ( , )N  is well-defined, i.e. for and ( , ( ), ( )), ( , ( ), ( ) ,a neut a anti a b neut b anti b N one    

has ( , ( ), ( )) ( , ( ), ( )) .a neut a anti a b neut b anti b N   

(2)  ( , )N   is associative, i.e. for anyone has  

( , ( ), ( )) ( , ( ), ( ) ( , ( ), ( )) .a neut a anti a b neut b anti b c neut c anti c N    

Theorem 2.4 [41] Let ( , )N   be a commutative NET relating to   an

( , ( ), ( )), ( , ( ), ( ))a neut a anti a b neut b anti b N ; 

 (i)    ( ) ( ) ( );neut a neut b neut a b    

 (ii)  ( ) ( ) ( );anti a anti b anti a b    

Definition 2.5 [3, 9] Assume ( , )N   is a NET strong set. Subsequently ( , )N   is called a NETG, if 

the axioms given below are holds. 

(1)  ( , )N   is well-defined, i.e. for any ( , ( ), ( )), ( , ( ), ( ) ,a neut a anti a b neut b anti b N  

one has ( , ( ), ( )) ( , ( ), ( ) .a neut a anti a b neut b anti b N    

(2)  ( , )N   is associative,  

i.e. for any ( , ( ), ( )), ( , ( ), ( )), ( , ( ), ( )) ,a neut a anti a b neut b anti b c neut c anti c N one has 
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 

 

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )).

a neut a anti a b neut b anti b c neut c anti c

a neut a anti a b neut b anti b c neut c anti c

 

  
 

Definition 2.6 [42] Assume that 
1

( , )N   and 
2

( , )N  are two NETG’s. A mapping 

1 2
:f N N  is called a neutro-homomorphism if: 

(1)  For any 
1

( , ( ), ( )), ( , ( ), ( ) ,a neut a anti a b neut b anti b N we have 

 

   

( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( ))

f a neut a anti a b neut b anti b

f a neut a anti a f b neut b anti b



 
 

 (2)  If ( , ( ), ( ))a neut a anti a is a NET from 
1
,N Then 

   ( ) ( )f neut a neut f a and    ( ) ( ) .f anti a anti f a  

Definition 2.8 [40] Assume that 
1

( , )N  is a NETG and H is a subset of 
1
.N  H is called a NET 

subgroup of N  if itself forms a NETG under .  On other hand it means: 

  (1)  
( )neut ae lies in .H  

  (2)  For any ( , ( ), ( )), ( , ( ), ( ) ,a neut a anti a b neut b anti b H  

( , ( ), ( )) ( , ( ), ( ) .a neut a anti a b neut b anti b H   

       (3)  If ( , ( ), ( )) ,a neut a anti a H  then 
( ) .anti ae H  

Definition 2.9 [40] A NET subgroup H  of a NETG N  is called a NT normal subgroup of N  if 

( , ( ), ( )) ( , ( ), ( )), ( , ( ), ( ))a neut a anti a H H a neut a anti a a neut a anti a N   and we represent it 

as .H N(  

3. Direct Products of NETG  

   In this section, we define NET internal and external direct products. Then, we give propositions 

and proof them. 

Definition 3.1 Assume that we have two neutrosophic extended triplet groups H and K, and 

N H K   is the NET cartesian product (NETCP) of H and K, in other words 

 

   

( , ( ), ( )),2 2 2
, ( ), ( )),( , ( ), ( )) ,( 1 1 1 1 11 ( , ( ), ( ))2 2 2

, ( ), ( ) , , ( ), ( ) .1 2 1 2 1 2 1 2 1 2 1 2

neut antih h h
N neut anti neut antih h h k k k

neut antik k k

neut anti neut anti H Kh h h h h h k k k k k k

 
  

 

        

 

Clearly N is closed under multiplication, it is obvious to see associativity and it has a neutral 

element denoted by ( , )1 1 1N H K  and the anti-neutrals of 

 ( , ( ), ( )), ( , ( ), ( ))h neut h anti h k neut k anti k is  ( )), ( )) ,anti h anti k  respectively. 

Definition 3.2 Suppose that ,H K  are two NETGs. The NETG N H K  with binary operation 

described componentwise as denoted in definition (3.1.1) is called the “neutrosophic extended 

triplet direct product” of H and K . 

Example 3.3 Find the NET direct product of two NETG 2z and .3z  Since  
2

0,1z  and 

 
3

0,1,3 ,z   the NETs 
2z is (0,0,0), (1,0,1) and the NETs of 

3z is (0,0,0), (1,0,2), (2,0,1).  

The NET direct products are 
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       

   2 3

(0,0,0), (0,0,0) , (0,0,0), (1,0,2) , (0,0,0), (2,0,1) , (1,0,1), (0,0,0) ,
.

(1,0,1), (1,0,2) , (1,0,1), (2,0,1)
z z

  
   

  

Definition 3.4 If a NETG N contains neutrosophic triplet normal subgroups (NTNS-Gs) H and 

K as shown N HK and  ,1H K N  we call N is the “NETIDP” of H and .K  

Example 3.5 Examine the NETG 
6
, )(z  and the following NET subgroups: 

{(0,0,0), (2,0, 4), (4,0, 2)}

{(0,0,0), (3,0,3)}.

H

K




 

Note that 
( , ( ), ( )) ( , ( ), ( )) : ( , ( ), ( )) ,

.
( , ( ), ( ))

h neut h anti h k neut k anti k h neut h anti h H
N

k neut k anti k K

  
 

 
 

That means (0,0,0), (2,0,4), (4,0,2) + (0,0,0), (3,0,3)  

 (0,0,0),(1,0,5),(2,0,4),(3,0,3),(4,0,2), (5,0,1) . So the first condition is met. Also the 

neutral for 6z is 0N and  (0,0,0)0H K N   so the second condition is met. Lastly 
6z is an 

abelian so the third condition is met. 

Table 1. The elements of NETG
6

( , )z  . 

+ 0 1 2 3 4 5 

0 0 1 2 3 4 5 

1 1 2 3 4 5 0 

2 2 3 4 5 0 1 

3 3 4 5 0 1 2 

4 4 5 0 1 2 3 

5 5 0 1 2 3 4 

As can be seen, the formed NETs of 
6z is  (0,0,0), (1,0,5), (2,0,4), (3,0,3), (4,0,2), (5,0,1) .  

and also all classical internal direct products are usually not NETIDPs (some do not even contain 

either the neutral or anti-neutral elements). 

Proposition 3.6 If N is the NETIDP of H and ,K  subsequently N is neutro-isomorphic to the 

NETDP .H K  

Proof to put on that N is neutro-isomorphic to ,H K we describe the succeeding map 

: ,f H K N   

 ( , ( ), ( )), ( , ( ), ( ))f h neut h anti a k neut k anti k  , ( ), ( )h k neut h k anti h k                     (1) 

If    ( , ( ), ( ) , , ( ), ( ) ,h neut h anti h H k neut k anti k K  then  

 

 

( , ( ), ( )

( , ( ), ( ) .

h k neut h k anti h k

k h neut k h anti k h

  

   
 

Actually, we’ve utilizing that both NETGs K and H are neutrosophic triplet normal that 
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   
1 1

( , ( ), ( ))( , ( ), ( ) , ( ), ( ) ( , ( ), ( ) ,h neut h anti h k neut k anti k h neut h anti h k neut k anti k K
 

  

   
1 1

( , ( ), ( ))( , ( ), ( ) , ( ), ( ) ( , ( ), ( )h neut h anti h k neut k anti k h neut h anti h k neut k anti k H
 

  

Implying that 

   

 

1 1
( , ( ), ( ))( , ( ), ( ) , ( ), ( ) ( , ( ), ( )

.1

h neut h anti h k neut k anti k h neut h anti h k neut k anti k

K H N

 

  
 

At the same time let us show that f is a NETG neutro-isomorphism. 

1. This a NETG neutro-homomorphism onwards 

 ' ' ' ' ' '( , ( ), ( )), ( , ( ), ( )), ( , ( ), ( )), ( , ( ), ( ))f h neut h anti h k neut k anti k h neut h anti h k neut k anti k

 ' ' ' ' ' '( , ( ), ( )),( , ( ), ( ))f h h neut h h anti h h k k neut k k anti k k        by (1) . 

 ' ' ' ' ' '( , ( ), ( )) ( ), ( ), ( )) ( , ( ), ( ))h neut h anti h h k neut h k anti h k k neut k anti k     

 ' ' ' ' ' '( , ( ), ( )) ( ), ( ), ( )) ( , ( ), ( ))h neut h anti h k h neut k h anti k h k neut k anti k     

 
' ' '

' ' '

( , ( ), ( )),
( , ( ), ( )), ( , ( ), ( )) .

( , ( ), ( ))

h neut h anti h
f h neut h anti h k neut k anti k f

k neut k anti k

 
   

 

 

2. Let us show that the map f  is injective. First we have to check that its neutro-kernel is 

trivial. Actually, if 

 ( , ( ), ( )), ( , ( ), ( ) 1f h neut h anti h k neut k anti k N  Then 

 ( , ( ), ( )), ( , ( ), ( ) 1h neut h anti h k neut k anti k N  

   
1

, ( ), ( ) , ( ), ( )h neut h anti h k neut k anti k


   

 

   

, ( ), ( )

, ( ), ( ) 1

h neut h anti h K

h neut h anti h H K N

 

   
 

We have then that 
 , ( ), ( )h neut h anti h

=
 , ( ), ( )k neut k anti k  1N

which proves that 

the neutro-kernel is  ( , ) .1 1N N  

3. Lastly it’s obvious to see that f is subjective since .N HK  briefly record that the 

definitions of NETEDP and NETIDP are assuredly unlimited to two NETGs. We can totally 

describe them for n NETGs as ,..., .1H H n   

Definition 3.7 If ,...,1H H n  are random NETGs the NET external direct product of ,...,1H H n  

is ...1 2N H H H n     which is the NET cartesian product with componentwise multiplication. 
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Example 3.8 Let NETG  (8) 1,3,5,7u   and  (12) 1,5,7,11u   under multiplication modulo 

8 and mudulo 12 respectively. Let’s construct a NETG table for (12).u  

Table 2. The elements of NETG (12)u . 

  1 5 7 11 

1 1 5 7 11 

5 5 1 11 7 

7 7 11 1 5 

11 11 7 5 1 

The NETs of (8)u are (1,1,1), (3,1,3), (5,1,5), (7,1,7)  and the NETs of (12)u are 

(1,1,1), (5,1,5), (7,1,7), (11,1,11).   
Now let’s see the NET external direct products of 

       

         

   

(8) (12) (1,1,1), (1,1,1) , (1,1,1), (5,1,5) , (1,1,1), (7,1,7) , (1,1,1), (11,1,11) ,

(3,1,3), (1,1,1) , (3,1,3), (5,1,5) , (3,1,3), (7,1,7) , (3,1,3), (11,1,11) , (5,1,5), (1,1,1) ,

(5,1,5), (5,1,5) , (5,1,5), (7,1,7) , (5,1,5), (

u u 

     

     

11,1,11) , (7,1,7), (1,1,1) , (7,1,7), (3,1,3) ,

(7,1,7), (5,1,5) , (7,1,7), (7,1,7) , (7,1,7), (11,1,11) .

 

In general, all classical internal direct products are not NETEDPs (some do not even contain either 

the neutral or anti-neutral elements). 

Definition 3.9 If N contains NETNS-Gs ,...,1H H n as shown ...1N H Hn  and every n  can be 

symbolized as    , ( ), ( ) ... , ( ), ( )h neut h anti h neut antih h hn n n  particularly, we call  N is the 

neutrosophic extended triplet internal direct product of ,..., .1H H n  There is a small distinction 

between neutrosophic extended triplet internal product as we see in the definition, since in this 

instance of two NET subgroups, the condition dedicated briefly record that each  n can be 

symbolized particularly as   , ( ), ( ) , ( ), ( ) ,1 1 1 2 2 2neut anti neut antih h h h h h but alternately that 

the intersection of the two NET subgroups is  ( ) .1N  The following proposition indicates the 

relation among those two points of view. 

Proposition 3.10 Assume that ...1N H Hn  thus every H i  is a NET normal subgroup of .N  

The succeeding axioms are equivalent. 

I. N  is the NETDP of the .H i  

II.  ... ,11 2 1H H H Hi i N   1,..., .i n   

Proof Let’s show . .    Let’s suppose that N is the NETIDP of the H i , in other words all 

element in N can be inscribed particularly as a product of elements in  H i . Let’s assume 
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    , ( ), ( ) ... .11 2 1n neut n anti n H H H Hi i N    We obtain that 

 , ( ), ( ) ... ,1 2 1n neut n anti n H H Hi   this is particularly expressed as  

    

   

, ( ), ( ) , ( ), ( ) , ( ), ( ) ...1 1 1 2 2 2

, ( ), ( ) ... , , ( ), ( ) .1 11 1 1

n neut n anti n neut anti neut antih h h h h h

neut anti neut antih h h h h hH H HN i N n ji i i j j j



  

 

Moreover,  , ( ), ( )n neut n anti n Hi thus      , ( ), ( ) ...1 11 1n neut n anti n n nH HN N i   and we 

have     , ( ), ( ) 1neut antih h h Nj j j   for all j and    , ( ), ( ) .1n neut n anti n N  

. .    Conversely, let us assume that  , ( ), ( )n neut n anti n N  can be written either   

    

   

, ( ), ( ) , ( ), ( ) , ( ), ( ) ...1 1 1 2 2 2

, ( ), ( ) , , ( ), ( ) ,

n neut n anti n neut anti neut antih h h h h h

neut anti neut antih h h h h h H jn n n j j j




 

or  

    

   

, ( ), ( ) , ( ), ( ) , ( ), ( ) ...1 1 1 2 2 2

, ( ), ( ) , , ( ), ( ) .

n neut n anti n neut anti neut antik k k k k k

neut anti neut antik k k k k k H jn n n j j j




 

Remember that whereby every H j are NET normal subgroups, subsequently 

  , ( ), ( ) , ( ), ( )neut anti neut antih h h h h hi i i j j j  

    

 

, ( ), ( ) , ( ), ( ) , , ( ), ( ) ,

, ( ), ( ) .

neut anti neut anti neut antih h h h h h h h h Hij j j i i i i i i

neut antih h h H jj j j

 


 

In other words, we can do the succeeding manipulations. 

    , ( ), ( ) , ( ), ( ) ... , ( ), ( )1 1 1 2 2 2neut anti neut anti neut antih h h h h h h h hn n n  

    , ( ), ( ) , ( ), ( ) ... , ( ), ( )1 1 1 2 2 2neut anti neut anti neut antik k k k k k k k kn n n  

   , ( ), ( ) ... , ( ), ( )2 2 2neut anti neut antih h h h h hn n n  

     

 

1
, ( ), ( ) ... , ( ), ( ) , ( ), ( ) ...1 1 1 1 1 1 2 2 2

, ( ), ( )

neut anti neut anti neut antih h h k h h k k k

neut antik k kn n n

  
   

   , ( ), ( ) ... , ( ), ( )3 3 3neut anti neut antih h h h h hn n n  
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   
 

 

   

1
, ( ), ( )1 2 2 2, ( ), ( ) ... , ( ), ( )1 1 1 1 1 1
, ( ), ( )2 2 2

, ( ), ( ) ... , ( ), ( )3 3 3

neut antih h h
neut anti neut antih h h k h h

neut antik k k

neut anti neut antik k k k k kn n n

 
   

  
 

 

and likewise and then so long as we achieve 

                     1
, ( ) , ( ) , ( ) , ( )n e u t a n t i n e u t a n t ih h h k k kn n n n n n


                       (1) 

     

 

11
, ( ), ( ) , ( ), ( ) ... , ( ), ( )1 1 1 1 1 1 1 1 1

, ( ), ( ) .1 1 1

neut anti neut anti neut antih h h k k k h h hn n n

neut antik k kn n n


   

  

 

Until now the left hand side (1) refers to H n although the right hand side refers to  ... ,1 1   H H n  

we obtain such     1
, ( ), ( ) , ( ), ( ) ... 11 1neut anti neut antih h h k k k H H Hn n Nn n n n n n


    

signifying that  , ( ), ( )neut antih h hn n n =  , ( ), ( ) .neut antik k kn n n  

We end this by repeating the procedure. Let’s prove this for the conditions of two NETGs. We’ve 

noticed overhead that the NET cartesian product of two NETGs H and K endowed in relation to a 

NETG structure by taking in mind componentwise binary operation. 

   , ( ), ( ) , , ( ), ( )1 1 1 1 1 1neut anti neut antih h h k k k

   , ( ), ( ) , , ( ), ( ) .1 1 1 1 1 1 1 1 1 1 1 1neut anti neut anti H Kh h h h h h k k k k k k          

  The preference of this binary operation of course decides the structures of ,N H K   and 

exceptionally, we’ve noticed such the neutro-isomorphic duplicates of NETGs H and K  in N  

are NETNS-Gs. Contrarily that one may describe a NETIDP, we have to suppose that we’ve two 

NETNS-Gs.  

  Now let’s examine a further overall setting, thus the NET subgroup  K  doesn’t need to be NET 

normal, for whatever we have to describe another binary operation on the NETCP  .H K  this’ll 

take us to the definition of NETIS-DP and NETES-DP. 

  Remember that a neutro-auto orphism of a NETG H is an objective NETG 

neutro-homomorphism from .H H  It’s obvious to realize such the set of neutro-auto orphism 

of H shapes a NETG according to the composition of maps and identify element the neutrality map 

.1H  We symbolize it by ( ).1Aut H  

Proposition 3.11 Suppose that H and K are NETGs, and   

   : ( ), , ( ), ( ) , ( ), ( )K Aut H k neut k anti k k neut k anti k   are a  NETG 

neutro-homomorphism. Subsequently the binary operation       ,H K H K H K      
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 
' ' ' ' '

'

( , ( ), ( )), ( , ( ),
( , ( ), ( )), ( , ( ), ( )) ,

( ))

h neut h anti h k neut k
h neut h anti h k neut k anti k

anti k

 
  
 

 

 ' ' '

' ' '

( , ( ), ( )) (( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( ))( , ( ), ( ))

h neut h anti h k neut k anti k h neut h anti h

k neut k anti k k neut k anti k

 
 
 
 

 

endows  H K  with a NETG structure, with neutral element  , .1 1H K  

Proof let’s realize such the closure property is holds. 

1) Neutrality: Let’s prove that   ,1 1H K  is the neutral element. We have  

  1( , ( ), ( )),( , ( ), ( ))   ,1h neut h anti h k neut k an Ht k Ki  

  ( , ( ), ( )) ( , ( ), ( )) ,( , ( ), ( ))1h neut h anti h k neut k anti k k neut k anti kH  

 ( , ( ), ( )), ( , ( ), ( ))h neut h anti h k neut k anti k For all ( , ( ), ( )) ,h neut h anti h H  

( , ( ), ( )) ,k neut k anti k K Whereby ( , ( ), ( ))k neut k anti k  is a NETG 

neutro-homomorphism. We also have  

  ' ' ' ' ' ', ( , ( ), ( )),( , ( ), ( ))1 1 h neut h anti h k neut k anti kH K  

 ' ' ' ' ' '( , ( ), ( )),( , ( ), ( ))1 h neut h anti h k neut k anti kH  

 ' ' ' ' ' '( , ( ), ( )),( , ( ), ( ))h neut h anti h k neut k anti k  

2) Anti-neutrality : Let  ( , ( ), ( )), ( , ( ), ( ))h neut h anti h k neut k anti k H K  and let’s prove 

that 

   
1

11 ( , ( ), ( )) , , ( ), ( )
( , ( ), ( ))

h neut h anti h k neut k anti k
k neut k anti k


  

 
 

is the anti-neutral of  

 ( , ( ), ( )), ( , ( ), ( )) .h neut h anti h k neut k anti k  

We have  

 

 

1
, ( )

1
( , ( ), ( )) , ( )( , ( ), ( )),( , ( ), ( ))

1
, ( ), ( )

h neut h

k neut k anti k anti hh neut h anti h k neut k anti k

k neut k anti k



 
    

  
 

 
 
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 
 

1
( , ( ), ( ))

, ( ), ( ) ( , ( ), ( ))
1

, ( ), ( ) ,1

k neut k anti k
h neut h anti h k neut k anti k

h neut h anti h K




 
 
  
 

 

     1
, ( ), ( ) , ( ), ( ) , , .1 1 1h neut h anti h h neut h anti h K H K


   

We also have  

   

 

1 11 , ( ), ( ) , , ( ), ( )
( , ( ), ( )

( , ( ), ( ))( , ( ), ( )

h neut h anti h k neut k anti k
k neut k anti k

h neut h anti h k neut k anti k


   

   

   

 

11 1, ( ), ( ) , ( ), ( )( , ( ), ( )

, ( ), ( ) ,1

h neut h anti h k neut k anti kk neut k anti k

h neut h anti h K


  

 
  
 

 

     

     

11 1, ( ), ( ), ( ), ( ) , ( ), ( )
.

1 1, ( ), ( ) , ( ), ( ) ,1, ( ), ( )

h neut h anti hk neut k anti k k neut k anti k

h neut h anti h h neut h anti h Kk neut k anti k

 



  
 

  
  

 

 

Using that  

   
1 1

, ( ), ( ), ( ), ( ) k neut k anti kk neut k anti k
   

Whereby  is a NETG neutro-homomorphism. Instantly  

     

 

11 1, ( ), ( ), ( ), ( ) , ( ), ( )

, ( ), ( ) ,1

h neut h anti hk neut k anti k k neut k anti k

h neut h anti h K

 
  

 
 
 

 

      11 , ( ), ( ) , ( ), ( ) ,1, ( ), ( ) h neut h anti h h neut h anti h Kk neut k anti k
  

    1 ,1 1, ( ), ( ) H Kk neut k anti k   ,1 1H K  

using that   1
, ( ), ( )k neut k anti k   is a NETG neutro-homomorphism for every 

 , ( ), ( ) .k neut k anti k K  

3) Associativity : Lastly let’s check that the following condition holds,   we’ve  

 

( , ( ), ( )), ( , ( ), ( )), ( ', ( '), ( ')),

( ', ( '), ( '))

( '', ( ''), ( '')), ( '', ( ''), ( ''))

h neut h anti h k neut k anti k h neut h anti h

k neut k anti k

h neut h anti h k neut k anti k

 
 
   
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 

( , ( ), ( )), ( , ( ), ( )), ( ', ( '), ( ')),

( , ( ), ( )), ( ', ( '), ( '))

( '', ( ''), ( '')), ( '', ( ''), ( ''))

h neut h anti h k neut k anti k h neut h anti h

k neut k anti k k neut k anti k

h neut h anti h k neut k anti k

 
  
   

( , ( ), ( )) ,( ', ( '), ( ')),( , ( ), ( ))

( ', ( '), ( '))( , ( ), ( ))

( '', ( ''), ( '')), ( , ( ), ( )), ( ', ( '), ( ')),

( '', ( ''),

h neut h anti h h neut h anti hk neut k anti k

k neut k anti kk neut k anti k

h neut h anti h k neut k anti k k neut k anti k

k neut k an





 
 
 
 

,
( ''))ti k

 
 
 

 

While conversely  

( ', ( '), ( ')), ( ', ( ')

(( , ( ), ( )), ( , ( ), ( ))) , ( '))( '', ( ''), ( '')),

( '', ( ''), ( ''))

h neut h anti h k neut k

h neut h anti h k neut k anti k anti k h neut h anti h

k neut k anti k

 
 
 
 
 

 

(( , ( ), ( )), ( , ( ), ( )))

( ', ( '), ( ')), ( '', ( ''),( ', ( '), ( '))

( '')), ( ', ( '), ( '))( '', ( ''), ( ''))

h neut h anti h k neut k anti k

h neut h anti h h neut hk neut k anti k

anti h k neut k anti k k neut k anti k





 
 
 
 

 

 

 

( ', ( '),( ', ( '), ( '))

( '))( , ( ), ( )) ,( , ( ), ( ))
( '', ( ''), ( ''))

( , ( ), ( )) ( ', ( '), ( '))( '', ( ''), ( ''))

k neut kh neut h anti h

anti kh neut h anti h k neut k anti k
h neut h anti h

k neut k anti k k neut k anti k k neut k anti k





  
  
  

   
  


 



 

Whereby K  is a NETG, we have 

 

 

( , ( ), ( ))( ', ( '), ( ')) ( '', ( ''), ( ''))

( , ( ), ( )) ( ', ( '), ( '))( '', ( ''), ( '')) .

k neut k anti k k neut k anti k k neut k anti k

k neut k anti k k neut k anti k k neut k anti k
 

Mark that by seeing at the first component 

( , ( ), ( ))( ', ( '), ( '))

( , ( ), ( )) ( ', ( '), ( '))

k neut k anti k k neut k anti k

k neut k anti k k neut k anti k



 
 

utilizing that   is a NETG neutro-homomorphism, therefore 

 

 

( , ( ), ( )) ( ', ( '), ( '))( , ( ), ( ))

( ', ( '), ( ') ( '', ( ''), ( ''))( , ( ), ( ))

h neut h anti h h neut h anti hk neut k anti k

k neut k anti k h neut h anti hk neut k anti k




 

 

 

( , ( ), ( )) ( ', ( '), ( '))( , ( ), ( ))

( ', ( '), ( '))
.( , ( ), ( )) ( , ( ), ( ))

( '', ( ''), ( '')

h neut h anti h h neut h anti hk neut k anti k

k neut k anti k
k neut k anti k k neut k anti k

h neut h anti h




 



 
 
 
 
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Furthermore, ( , ( ), ( ))k neut k anti k is a NETG neutro-homomorphism, yielding 

 

  

( , ( ), ( )) ( ', ( '), ( '))( , ( ), ( ))

( '', ( ''), ( ''))( , ( ), ( )) ( ', ( '), ( '))

h neut h anti h h neut h anti hk neut k anti k

h neut h anti hk neut k anti k k neut k anti k



 
 

 

( ', ( '), ( '))

( , ( ), ( )) ( , ( ), ( )) ( ', ( '), ( '))

( '', ( ''), ( ''))

h neut h anti h

h neut h anti h k neut k anti k k neut k anti k

h neut h anti h

 

 
 
 
 
 
 

 

which concludes the proof. Now let’s define the first NET semi-direct product. 

    In general, the NET direct product is not enough because the operation between elements of the 

two NET subgroups is always commutative. On other hand, if N is a NETG, H is a NTNS-G, K is 

a NET subgroup ( K need not be NT normal like in a NET direct product), ,1K N N   then N

must be a NET semi-direct product. (The operation between elements of H and K need not be 

commutative.) So, we can argue that the NET semi-direct product classifies all NETGs constructed in 

this way. 

4. Semi-Direct Products of NETG  

Definition 4.1 Suppose that H and K are two NETGs, and : ( )K Aut H   is a NETG 

neutro-homomorphism. The set H K endowed in a relation to the binary operation 

  

 

( , ( ), ( )), ( , ( ), ( )) ( ', ( '), ( ')), ( ', ( '), ( '))

( , ( ), ( )) ( ', ( '), ( ')) ,( , ( ), ( ))

( , ( ), ( ))( ', ( '), ( '))

h neut h anti h k neut k anti k h neut h anti h k neut k anti k

h neut h anti h h neut h anti hk neut k anti k

k neut k anti k k neut k anti k

 
  

 
 

 

is a NETG N called a “NET external semi-direct product of NETGs H and K ” b 

, symbolized by .N H Kx 
  

Example 4.2 The NET set ,L H N  where ,H N are NETGs and N AutH is the NETES-DP 

of H and N when equipped with the following operation, defined by the action 

: :N AutH   ( , ( ), ( )),( , ( ), ( ))1 1 1 1 1 1neut anti neut antih h h n n n  

 ( , ( ), ( )) ( , ( ), ( )) ,1 1 1 ( , ( ), ( )) 2 2 21 1 1

( , ( ), ( ))( , ( ), ( ))1 1 1 2 2 2

neut anti neut antih h h h h hneut antin n n

neut anti neut antin n n n n n

 
 
 
 

 

 ( , ( ), ( ))( , ( ), ( )) ( , ( ), ( )) ,1 1 1 1 1 1 2 2 2
,

( , ( ), ( ))( , ( ), ( ))1 1 1 2 2 2

neut anti neut anti neut antih h h n n n h h h

neut anti neut antin n n n n n

 
  
 
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for all ( , ( ), ( )),( , ( ), ( ))1 1 1 2 2 2neut anti neut anti Hh h h h h h  and all ( , ( ), ( )),1 1 1neut antin n n

( , ( ), ( )) .2 2 2neut anti Nn n n   

Definition 4.3 Let N be a NETG in a relation to NET subgroups H and .K We say that N is the 

“NETIS-DP of H and K ” if H is a NETNS-G of ,N thus HK N and  .1H K N  It is 

symbolized by N H ⋊ .K  

Example 4.4 Let’s show that the dihedral NETG 2D n  is the NETIS-DP of two of its NET 

subgroups : the NET subgroup of rotations of a regular n  gon, and the NET subgroup generated 

by a single reflection of the same regular n  gon. If 

( , ( ), ( )),( , ( ), ( )) ,2 a neut a anti a x neut x anti xD n   where ( , ( ), ( ))a neut a anti a generates the 

NET subgroup ( , ( ), ( ))a neut a anti a   of rotations and ( , ( ), ( ))x neut x anti x generates the NET 

subgroup ( , ( ), ( )) ,x neut x anti x  then we know that ( , ( ), ( )) 1
na neut a anti a N and 

2( , ( ), ( )) ,1x neut x anti x N  where 1N  is the neutral symmetry. We know that 

  ( , ( ), ( )) ( , ( ), ( )) ;1 a neut a anti a x neut x anti xN     we also know that, if x  is a reflection 

and a  a rotation, then  

1( , ( ), ( ))( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )).nx neut x anti x a neut a anti a a neut a anti a x neut x anti x  

  Being 2D n the NETG of all symmetries of a regular n  gon, it contains all and only the rotations 

and reflections of the n  gon itself; this fact, combined with the fact that 

  ( , ( ), ( )) ( , ( ), ( )) ,1 a neut a anti a x neut x anti xN     allows us to deduce 

( , ( ), ( )) ( , ( ), ( )) .2a neut a anti a x neut x anti x D n     

Since ( , ( ), ( )) ( , ( ), ( )) ,2a neut a anti a x neut x anti x D n    it follows 

( , ( ), ( )) ( , ( ), ( )) .2a neut a anti a x neut x anti x D n    Finally, we obtain 

1

1

( , ( ), ( ))( , ( ), ( ))( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( )) ;n

x neut x anti x a neut a anti a x neut x anti x

a neut a anti a a neut a anti a



  
 

thus, ( , ( ), ( ))a neut a anti a   is NT normal. Therefore  

( , ( ), ( )) ( , ( ), ( )) .2 a neut a anti a x neut x anti xD n   ã  
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Lemma 4.5 Assume that N is a NETG with NET subgroups H and .K  Assume that N HK

and  .1H K N  Subsequently all element ( , ( ), ( ))n neut n anti n of N can be inscribed 

particularly in the form ( , ( ), ( ))( , ( ), ( )),h neut h anti h k neut k anti k for ( , ( ), ( ))h neut h anti h H

and ( , ( ), ( )) .k neut k anti k K  

Proof Since ,N HK we know that ( , ( ), ( ))n neut n anti n can be written as 

( , ( ), ( ))( , ( ), ( )).h neut h anti h k neut k anti k  Assume it can also be inscribed 

( ', ( '), ( '))( ', ( '), ( ')).h neut h anti h k neut k anti k  Then 

( , ( ), ( ))( , ( ), ( )) ( ', ( '), ( '))( ', ( '), ( '))h neut h anti h k neut k anti k h neut h anti h k neut k anti k  

so  

 

1 1( ', ( '), ( ')) ( , ( ), ( )) ( ', ( '), ( '))( , ( ), ( ))

.1

h neut h anti h h neut h anti h k neut k anti k k neut k anti k

H K N

 

  
 

In case ( , ( ), ( )) ( ', ( '), ( '))h neut h anti h h neut h anti h and  

( , ( ), ( )) ( ', ( '), ( ')).k neut k anti k k neut k anti k  

  The NETIDPs and NETEDPs were two sides of the similar objects, consequently are the 

NETIS-DPs and NETES-PDs. If N H Kx 
 is the NETES-DP of NETGS H and ,K  subsequently 

 1H H  is a NETNS-G of N and it’s obvious that N is the NETIS-DP of  1H  and 

 1 .K  Because of this we can go from NETES-PDs to NETIS-PDs. The following conclusion goes 

in the another way, from NET internal to external semi-direct products. 

Proposition 4.6 Assume that N is a NETG with NET subgroups H and ,K and N is the 

NETIS-PDs of H and .K  Then N H Kx 
where : ( )K Aut H   is stated by  

 

 
1

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))( , ( ), ( ))

( , ( ), ( )) ,

h neut h anti h k neut k anti k h neut h anti hk neut k anti k

k neut k anti k






 

( , ( ), ( )) , ( , ( ), ( )) .h neut h anti h H k neut k anti k K   

Proof Note that ( , ( ), ( ))k neut k anti k refers to ( )Aut H where H is NET normal. By the lemma 

4.5 all the element ( , ( ), ( ))n neut n anti n of N can be inscribed particularly in terms of  

( , ( ), ( ))( , ( ), ( )),h neut h anti h k neut k anti k  

with ( , ( ), ( ))h neut h anti h H and ( , ( ), ( )) .k neut k anti k K So that, the map : ,H K Nx 
   

 ( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))h neut h anti h k neut k anti k h neut h anti h k neut k anti k   

is a bijection. It is just to prove such this bijection is a neutro-homomorphism. Stated 

 ( , ( ), ( )), ( , ( ), ( ))h neut h anti h k neut k anti k  
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and  

 ( ', ( '), ( ')), ( ', ( '), ( '))h neut h anti h k neut k anti k  in .H Kx 
 

We have  

 
( ', ( '), ( ')), ( ', ( '),

( , ( ), ( )), ( , ( ), ( ))
( '))

h neut h anti h k neut k
h neut h anti h k neut k anti k

anti k

  
  

  
 

 ( , ( ), ( )) ( ', ( '), ( ')) ,( , ( ), ( ))

( , ( ), ( ))( ', ( '), ( '))

h neut h anti h h neut h anti hk neut k anti k

k neut k anti k k neut k anti k



  
   
  
  

 

1

( , ( ), ( ))( , ( ), ( ))( ', ( '), ( '))

( , ( ), ( )) , ( , ( ), ( ))( ', ( '), ( '))

h neut h anti h k neut k anti k h neut h anti h

k neut k anti k k neut k anti k k neut k anti k




 
  

 
 

( , ( ), ( ))( , ( ), ( ))( ', ( '), ( '))( ', ( '), ( '))h neut h anti h k neut k anti k h neut h anti h k neut k anti k  

 
( ', ( '), ( ')),

( , ( ), ( )), ( , ( ), ( )) .
( ', ( '), ( '))

h neut h anti h
h neut h anti h k neut k anti k

k neut k anti k
 

 
  

 
 

  Therefore  is a NETG neutro-homomorphism, which ends the proof. Shortly, we obtain such all 

NETIS-DP is neutro-isomorphic to any NETES-DP, when  is conjugation. 

5. Conclusion 

   The most important point of this article is first to define the NETs and subsequently use these 

NETs to describe the NET internal and external direct and semi-direct products of NETG. As in 

classical group theory, in neutrosophic extended triplet group theory building blocks for finite NET 

groups is simple NET groups. One way to make this simple NETG to larger group is NET direct 

product. As an addition, we allow rise to a new field called NT Structures (such as neutrosophic 

extended triplet direct product and semi-direct product. Another researchers can work on the 

application of NETEDP and NETIDP and semi-direct product to NT vector spaces (representation of 

the NETG), module theory, number theory, analysis, geometry, zigzag products of graphs and 

topological spaces.  
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