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Abstract In this paper, we present a new 2-tuple linguis-
tic representation model, i.e. Distribution Function Model
(DFM), for combining imprecise qualitative information us-
ing fusion rules drawn from Dezert-Smarandache Theory
(DSmT) framework. Such new approach allows to preserve
the precision and efficiency of the combination of linguistic
information in the case of either equidistant or unbalanced
label model. Some basic operators on imprecise 2-tuple la-
bels are presented together with their extensions for impre-
cise 2-tuple labels. We also give simple examples to show
how precise and imprecise qualitative information can be
combined for reasoning under uncertainty. It is concluded
that DSmT can deal efficiently with both precise and impre-
cise quantitative and qualitative beliefs, which extends the
scope of this theory.

Keywords Information fusion · Qualitative reasoning
under uncertainty · DSmT · Imprecise belief structures ·
2-Tuple linguistic label

X. Li (�) · X. Dai
Key Laboratory of Measurement and Control of CSE (School of
Automation, Southeast University), Ministry of Education,
Nanjing 210096, China
e-mail: xindeli@seu.edu.cn

J. Dezert
ONERA (The French Aerospace Lab.), 29 Avenue de la Division
Leclerc, 92320 Châtillon, France
e-mail: jean.dezert@onera.fr

F. Smarandache
Chair of Math. & Sciences Dept., University of New Mexico, 200
College Road, Gallup, NM 87301, USA
e-mail: smarand@unm.edu

1 Introduction

Qualitative methods for reasoning under uncertainty have
gained more and more attentions by Information Fusion
community, especially by the researchers and system de-
signers working in the development of modern multi-source
systems for information retrieval, fusion and management
in defense, in robotics and so on. This is because tradi-
tional methods based only on quantitative representation and
analysis are not able to adequately satisfy the need of the de-
velopment of science and technology that integrate at higher
fusion levels human beliefs and reports in complex systems.
Therefore qualitative knowledge representation and analy-
sis becomes more and more important and necessary in next
generations of decision-making support systems. In 1954,
Polya was one of the pioneers to characterize formally the
qualitative human reports [19]. Then Zadeh [31–35] made
important contributions in this field in proposing a fuzzy lin-
guistic approach to model and to combine qualitative/vague
information expressed in natural language. However, since
the combination process highly depends on the fuzzy oper-
ators chosen, a possible issue has been pointed out by Yager
in [30]. In 1994, Wellman developed Qualitative Probabilis-
tic Networks (QPN) based on a Qualitative Probability Lan-
guage, which relaxed precision in representation and reason-
ing within the probabilistic framework [29]. Subrahmanian
introduced the annotated logics, which was a powerful for-
malism for classical (i.e. consistent), as well as paraconsis-
tent reasoning in artificial intelligence [15, 27]. QPN and
Annotated Logics belong actually to the family of imprecise
probability [28] and probability bounds analysis (PBA) ap-
proaches [6]. Parsons proposed a Qualitative Evidence The-
ory (QET) with new interesting qualitative reasoning tech-
niques but his QET unfortunately cannot deal efficiently
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with complex problems of qualitative information fusion en-
countered in real world [16–18]. Dubois and Prade proposed
a Qualitative Possibility Theory (QPT) in Decision Analysis
(DA) for the representation and the aggregation of prefer-
ences. QPT was driven by the principle of minimal speci-
ficity [4]. They use refined linguistic quantifiers to represent
either the possibility distributions which encode a piece of
imprecise knowledge about a situation, or to represent the
qualitative belief masses over the elements in 2�. However,
the combination process might produce approximate results
because of the finite probabilistic scale of the label set [5].
Hájek et al. in [9] proposed a Qualitative Fuzzy Possibilistic
Logic (QFPL) which was used to deal with both uncertainty
(possibility) and vagueness (fuzziness). QFPL is different
from our qualitative reasoning in DSmT or DST frame-
works, though the propositional variables were mapped to
a set of values i.e. {0,1/n,2/n, . . . ,1} similar to 1-tuple
linguistic model, since it built modality-free formulas from
propositional variables using connectives, i.e. ∧,∨,→,¬.

The goal of this paper is to propose a mathematical model
of imprecise qualitative belief structures for solving fusion
problems for decision-making support. Our main concern is
to deal efficiently with (potentially highly) conflicting im-
precise and uncertain human-based sources of information,
since most of modern (and future) systems for decision-
making support in security and surveillance, in threat as-
sessment, in defense, etc., require the integration of human
observers/soldiers and/or expert reports in the loop. Our pur-
pose is not to try compare our approach with all aforemen-
tioned theoretical attempts, but only with the few main fu-
sion rules used in the theories of belief functions which fit
with the models and operators proposed in this work in or-
der to show what and how the results can be obtained with
such new approach. This work pursues the efforts made by
our predecessors for a search of robust and efficient ways for
dealing with conflicting qualitative sources of information.

Some research works on quantitative imprecise (quanti-
tative) belief structures have been done at the end of nineties
by Denœux who proposed a representation model in DST
framework for dealing with imprecise belief and plausibil-
ity functions, imprecise pignistic probabilities together with
the extension of Dempster’s rule [1] for combining impre-
cise belief masses. Within the DSmT framework, Dezert and
Smarandache further proposed new interval-valued beliefs
operators and generalized DSm combination rules from pre-
cise belief structures fusion to imprecise/sub-unitary inter-
vals fusion, and more generally, to any set of sub-unitary
intervals fusion [21]. In [13], Li proposed a revised ver-
sion of imprecise division operator and the Min and Max
operators for imprecise belief structures, which can be ap-
plied to fuzzy-extended reasoning combination rules. Since
all the extensions of belief structures proposed so far in the
literature concern only imprecise quantitative belief struc-
tures, we introduce here for the first time a representation

for imprecise qualitative belief structures. In this paper we
present Distribution Function Model (DFM), which offers
a less computational complexity by working with a finite
reduced/coarse granularity set of linguistic labels [3, 23,
25] and a simpler way to deal with unbalanced labels than
Herrera-Martínez’ model [10] and other [7, 8]. We also in-
troduce new operators based on it for combining imprecise
qualitative belief masses, in order to solve fusion problems
for decision-making support.

This paper is organized as follows: In Sect. 2, we remind
briefly the basis of DSmT. In Sect. 3, we present different
linguistic models for qualitative beliefs with the main op-
erators on 2-tuples labels. In Sect. 4, we present the fusion
rules for precise and imprecise qualitative beliefs in DSmT
framework. In Sect. 5, we provide examples to show how
these operators work for combining 2-Tuple qualitative be-
liefs. Concluding remarks are then given in Sect. 6.

2 DSmT for the fusion of beliefs

2.1 Basic belief mass (bba)

In Dempster-Shafer Theory (DST) framework [20], one
considers a frame of discernment � = {θ1, . . . , θn} as a fi-
nite set of n exclusive and exhaustive elements (i.e. Shafer’s
model denoted M0(�)). The power set of � is the set of all
subsets of �. The cardinality of a power set of a set of cardi-
nality |�| = n is 2n. The power set of � is denoted 2�. For
example, if � = {θ1, θ2}, then 2� = {∅, θ1, θ2, θ1 ∪ θ2}. In
Dezert-Smarandache Theory (DSmT) framework [21, 23],
one considers � = {θ1, . . . , θn} as a finite set of n exhaus-
tive elements only (i.e. free DSm-model denoted Mf (�)).
Eventually some integrity constraints can be introduced in
this free model depending on the nature of problem we
have to cope with. The hyper-power set of � (i.e. the free
Dedekind’s lattice) denoted D� [21] is defined as:

1. ∅, θ1, . . . , θn ∈ D�.
2. If A,B ∈ D�, then A ∩ B and A ∪ B belong to D�.
3. No other elements belong to D�, except those obtained

by using rules 1 or 2.

If |�| = n, then |D�| ≤ 22n
. Since for any finite set �,

|D�| ≥ |2�|, we call D� the hyper-power set of �. For ex-
ample, if � = {θ1, θ2}, then D� = {∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪
θ2}. The free DSm model Mf (�) corresponding to D� al-
lows to work with vague concepts which exhibit a contin-
uous and relative intrinsic nature. Such concepts cannot be
precisely refined in an absolute interpretation because of the
unreachable universal truth. The main differences between
DST and DSmT frameworks are (i) the model on which one
works with, (ii) the choice of the combination rule and con-
ditioning rules [21, 23], and (iii) aside working with nu-
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merical/quantitative beliefs DSmT allows to compute di-
rectly with words (more exactly to combine qualitative be-
lief masses as we will show in the sequel). Here we use the
generic notation G� for denoting either D� (when working
in DSmT with free DSm model) or 2� (when working in
DST with Shafer’s model) or any other subset of D� (when
working with a DSm hybrid model).

From any finite discrete frame �, we define a quantitative
basic belief assignment (bba) as a mapping m(.) : G� →
[0,1] associated to a given body of evidence B which satis-
fies

m(∅) = 0 and
∑

A∈G�

m(A) = 1 (1)

where G� is the generic notation for the hyper-power set
taking into account all integrity constraints (if any) of the
model. For example, if one considers a free-DSm model for
� then G� = D�. If Shafer’s model is used instead then
G� = 2� (the classical power-set).

2.2 Fusion of quantitative beliefs

When the free DSm model Mf (�) holds, the pure con-
junctive consensus, called DSm classic rule (DSmC), is per-
formed on G� = D�. DSmC of two independent1 sources
associated with bba’s m1(.) and m2(.) is thus given by
mDSmC(∅) = 0 and ∀X ∈ D� by [21]:

mDSmC(X) =
∑

X1,X2∈D�

X1∩X2=X

m1(X1)m2(X2) (2)

D� being closed under ∪ and ∩ operators, DSmC guaran-
tees that m(.) is a proper bba.

When Shafer’s model holds, instead of distributing the
total conflicting mass onto elements of 2� proportionally
with respect to their masses resulted after applying the con-
junctive rule as within Demspter’s rule (DS) through the
normalization step [20], or transferring the partial conflicts
onto partial uncertainties as within DSmH rule [21], we pro-
pose to use the Proportional Conflict Redistribution rule
no.5 (PCR5) [22, 23] which transfers the partial conflict-
ing masses proportionally to non-empty sets involved in
the model according to all integrity constraints. PCR5 rule
works for any degree of conflict in [0,1], for any models
(Shafer’s model, free DSm model or any hybrid DSm model)
and both in DST and DSmT frameworks for static or dy-
namical fusion problems. The PCR5 rule for two sources is

1While independence is a difficult concept to define in all theories man-
aging epistemic uncertainty, we consider that two sources of evidence
are independent (i.e. distinct and noninteracting) if each leaves one to-
tally ignorant about the particular value the other will take.

defined by: mPCR5(∅) = 0 and ∀X ∈ G� \ {∅}

mPCR5(X)

= m12(X)

+
∑

Y∈G�\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) + m2(Y )
+ m2(X)2m1(Y )

m2(X) + m1(Y )

]
(3)

where each element X, and Y , is in the disjunctive nor-
mal form. m12(X) corresponds to the conjunctive consen-
sus on X between the two sources. All denominators are
different from zero. If a denominator is zero, that fraction
is discarded. No matter how big or small is the conflicting
mass, PCR5 mathematically does a better redistribution of
the conflicting mass than Dempster’s rule and other rules
since PCR5 goes backwards on the tracks of the conjunctive
rule and redistributes the partial conflicting masses only to
the sets involved in the conflict and proportionally to their
masses put in the conflict, considering the conjunctive nor-
mal form of the partial conflict. PCR5 is quasi-associative
and preserves the neutral impact of the vacuous belief as-
signment. General PCR5 fusion formula and improvement
for the combination of k ≥ 2 sources of evidence can be
found in [23] with many detailed examples.

3 Linguistic models of qualitative beliefs

3.1 The 1-tuple linguistic model

In order to compute qualitative belief assignments expressed
by pure linguistic labels (i.e. 1-tuple linguistic representa-
tion model) over G�, Smarandache and Dezert have de-
fined in [23] a qualitative basic belief assignment q1m(.)

as a mapping function from G� into a set of linguistic la-
bels L = {L0, L̃,Ln+1} where L̃ = {L1, . . . ,Ln} is a finite
set of linguistic labels and where n ≥ 2 is an integer. For
example, L1 can take the linguistic value “poor”, L2 the
linguistic value “good”, etc. L̃ is endowed with a total or-
der relationship ≺, so that L1 ≺ L2 ≺ · · · ≺ Ln,where ≺
means inferior to, or less (in quality) than, or smaller than,
etc. To work on a true closed linguistic set L under lin-
guistic addition and multiplication operators, Smarandache
and Dezert extended naturally L̃ with two extreme values
L0 = Lmin and Ln+1 = Lmax, where L0 corresponds to
the minimal qualitative value and Ln+1 corresponds to the
maximal qualitative value, in such a way that L0 ≺ L1 ≺
L2 ≺ · · · ≺ Ln ≺ Ln+1. In the sequel Li ∈ L are assumed
linguistically equidistant labels such that we can make an
isomorphism φL between L = {L0,L1,L2, . . . ,Ln,Ln+1}
and {0,1/(n+1),2/(n+1), . . . , n/(n+1),1}, defined as
φL(Li) = i/(n + 1) for all i = 0,1,2, . . . , n, n + 1.
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From the extension of the isomorphism between the set of
linguistic equidistant labels and a set of numbers in the inter-
val [0,1], one can built exact operators on linguistic labels
which makes possible the extension of all quantitative fu-
sion rules into their qualitative counterparts [14]. We briefly
remind the basic qualitative operators2 (or q-operators for
short) on (1-tuple) linguistic labels:

– q-addition:

Li + Lj =
{

Li+j if i + j < n + 1,

Ln+1 = Lmax if i + j ≥ n + 1.
(4)

The q-addition is an extension of the addition operator
on equidistant labels which is given by Li + Lj = i

n+1 +
j

n+1 = i+j
n+1 = Li+j .

– q-subtraction:

Li − Lj =
{

Li−j if i ≥ j,

−Lj−i if i < j,
(5)

where −L = {−L1,−L2, . . . ,−Ln,−Ln+1}. The q-
subtraction is justified since when i ≥ j , one has with
equidistant labels Li − Lj = i

n+1 − j
n+1 = i−j

n+1 .
– q-multiplication3:

Li · Lj = L[(i·j)/(n+1)], (6)

where [x] means the closest integer4 to x (with
[n + 0.5] = n + 1, ∀n ∈ N). This operator is justified
by the approximation of the product of equidistant la-
bels given by Li ·Lj = i

n+1 · j
n+1 = (i·j)/(n+1)

n+1 . A simpler
approximation of the multiplication, but less accurate (as
proposed in [23]) is thus

Li × Lj = Lmin{i,j}. (7)

– Scalar multiplication of a linguistic label: Let a be a real
number. The multiplication of a linguistic label by a scalar
is defined by:

a · Li = a · i
n + 1

≈
{

L[a·i] if [a · i] ≥ 0,

L−[a·i] otherwise.
(8)

2more q-operators can be found in [3].
3The q-multiplication of two linguistic labels defined here can be
extended directly to the multiplication of n > 2 linguistic labels.
For example the product of three linguistic label will be defined as
Li · Lj · Lk = L[(i·j ·k)/(n+1)(n+1)] , etc.
4When working with labels, no matter how many operations we have,
the best (most accurate) result is obtained if we do only one approxi-
mation, and that one should be just at the very end.

– Division of linguistic labels:

(a) q-division as an internal operator: Let j �= 0, then

Li/Lj =
{

L[(i/j)·(n+1)] if [(i/j) · (n + 1)] < n + 1,

Ln+1 otherwise.

(9)

The first equality in (9) is well justified because
with equidistant labels, one gets: Li/Lj = i/(n+1)

j/(n+1)
=

(i/j)·(n+1)
n+1 ≈ L[(i/j)·(n+1)].

(b) Division as an external operator: �. Let j �= 0. We
define:

Li � Lj = i/j. (10)

Since for equidistant labels Li � Lj = (i/(n + 1))/

(j/(n + 1)) = i/j .

From the q-operators we now can easily and directly ex-
tend all quantitative fusion rules like DSmC or PCR5 into
their qualitative version by replacing classical operators on
numbers with linguistic labels defined just above in the for-
mulas (2) or (3). Many detailed examples can be found in
[3, 14, 22, 23].

3.2 The precise 2-tuple linguistic model

The precise 2-tuple linguistic labels representation allows
to take into account some available richer information con-
tent (if any), like less good, good enough, very good which
is not represented within the 1-tuple linguistic labels rep-
resentation. Herrera and Martínez in [10] were the first
to propose a 2-tuple fuzzy linguistic representation model
for computing with words (CW) for offering a tractable
method for aggregating linguistic information (i.e. Herrera
and Martínez model (HMM) represented by linguistic vari-
ables with equidistant labels) through counting indexes of
the corresponding linguistic labels. The advantages of the
2-tuple Linguistic representation of symbolic method over
methods based on the extension principle in CW in term of
complexity and feasibility have been shown in [10].

For the equidistant labels with uniform distribution, it is
not difficult to solve. But for an unbalanced label model
(as shown in Fig. 1), how to deal with such kind of la-
bels? Though Herrera and Martínez deals with unbalanced
labels with Multi-granular Hierarchical Linguistic Contexts
in [11, 12], whose approach seems too complex in our opin-
ions. In addition, Jin-Hsien Wang and Jongyun Hao pro-
posed another version of 2-Tuple fuzzy linguistic represen-
tation model for computing with words by considering a
proportional factor as 2 order component [7, 8],which can
be transformed to Herrera-Martínez’ 2-Tuple linguistic rep-
resentation model. Here we propose a more general and sim-
pler representation model, called the Distribution Function
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Fig. 1 The 2-Tuple label representation model with unbalanced, or
non-uniform distribution

Fig. 2 The 2-Tuple label representation model with the proportional
assessment

Model (DFM), which can deal with either equidistant or un-
balanced labels.

We assume that there always exist a bundle of distribution
functions �(x) = −(|x| − i + 1)k + 1,0 < k ∈ R between
any two labels i.e. Li−1 and Li, i ∈ [−n,n + 1], which is
continuous and differential (not differential just when Lx =
Li , i is a integer). Obviously, its 1-order derivative d�(.)

dx
< 0,

when x > 0, d�(.)
dx

> 0, when x < 0, because it is an even
function, i.e �(x) = �(−x). Therefore, as we know that the
inverse function of �(.) always exists, i.e. �

−1(.) ∈ [i −1, i].
So here, we represent this kind of 2-Tuple label model to be
(Li,�(.)) denoted q

p

2 , which is distinct from HMM (Li, σ
h
i )

denoted qh
2 .

Comparatively to HMM, i − �
−1(.) is a remainder from

the standard label Li . In order to clearly explain this, we give
a simple linear distribution function (when k = 1) �(x) =
σp = −|x| + i, x ∈ [i − 1, i] shown in Fig. 2.

�
−1(.) = i − σp is continuous within the interval

[i − 1, i], i ∈ [1, n + 1], where σp is a proportional factor
used as the 2-order component modifier between two neigh-
boring labels, i.e. i−x

i−(i−1)
= σp

1 , x = i − σp . We denote this
kind of 2-Tuple label model (Li, σ

p) = Lx = Li−σp , which
is a bit similar to Jin-Hsien Wang and Jongyun Hao’s work
[9, 10], but simpler and more generalized than it.

Example Let’s consider two labels Li−1,Li, i ∈ [1, n + 1]
and let’s assume that there is a 2-Tuple label (Li,0.6), then,
(Li,0.6) = L(i−0.6). Of course, if (Li, σ

h) = (Li, σ
p), there

is a relation between them: i = j , σp = −(n + 1)σh, when
σh ≤ 0, and j = i + 1, σp = 1 − (n + 1)σh, when σh > 0,
where, if σp = 1, then (Li,1) = Li−1. If σp = 0, then
(Li,0) = Li .

3.2.1 Some useful q
p

2 operators

• Comparison operator:
At first, we can define the comparison operator for any

two labels (Li,�(i)), (Lj ,�(j)) under the distribution func-
tion model.

(1) if i > j , i, j ∈ [−(n + 1), n + 1], there is always the
relation (Li,�(i)) ≥ (Lj ,�(j)).

(2) if i = j , i, j ∈ [−(n + 1), n + 1], and �(i) ≤ �(j),
then (Li,�(i)) ≥ (Lj ,�(j)). Otherwise, (Li,�(i)) <

(Lj ,�(j)).
(3) if i < j , i, j ∈ [−(n + 1), n + 1], then (Li,�(i)) ≤

(Lj ,�(j)).

• Negation operator:
Of course, the Negation operator is also defined here, in

order to satisfy the need of the combination operation.

Neg((Li,�(i))) = (L−i ,−�(−i)) (11)

where, �(−i) = �(i), for example, for (Li, σ
p),

Neg(Li, σ
p) = L−i+σp .

• q
p

2 -Addition: For any two labels (Li,�(i)), (Lj ,�(j)),
one defines

(Li,�(i)) + (Lj ,�(j)) = L�−1(i)+j+�−1(j). (12)

Special case,

(Li, σ
p
i ) + (Lj , σ

p
j ) = Li+j−σ

p
i −σ

p
j
. (13)

• q
p

2 -Subtraction: For any two labels (Li,�(i)), (Lj ,�(j)),
one defines

(Li,�(i)) − (Lj ,�(j)) = L�−1(i)−�−1(j). (14)

Special case,

(Li, σ
p
i ) − (Lj , σ

p
j ) = Li−j+σ

p
j −σ

p
i
. (15)

• q
p

2 -Product: For any two labels (Li,�(i)), (Lj ,�(j)), one
defines

(Li,�(i)) × (Lj ,�(j)) = L(�−1(i))×(�−1(j))
n+1

. (16)

Special case,

(Li, σ
p
i ) × (Lj , σ

p
j ) = L(i−σ

p
i

)×(j−σ
p
j

)

n+1

(17)

where, the product operators in (16)–(17) can be easily jus-
tified according to the product operator in HMM because of
their consistency.
• q

p

2 -Scalar multiplication: For any label (Li,�(i)), i ∈
n + 1, and a real number α, one defines

α · (Li,�(i)) = (Li,�(i)) × α = Lα·(�−1(i)). (18)



Fusion of imprecise qualitative information 345

Special case,

α · (Li, σ
p
i ) = (Li, σ

p
i ) × α = Lα(i−σ

p
i ). (19)

• q
p

2 -Division: For any two labels (Li,�(i)), (Lj ,�(j)), if
(Li,�(i)) < (Lj ,�(j)), then one defines

(Li,�(i)) ÷ (Lj ,�(j)) = L (�−1(i))

(�−1(j))
×(n+1)

. (20)

Special case,

(Li, σ
p
i ) ÷ (Lj , σ

p
j ) = L (i−σ

p
i

)

(j−σ
p
j

)
×(n+1)

. (21)

All these operators can be also easily justified and of
course, we can easily transform all the operators in (12)–
(21) to their standard style according to 2-Tuple definition
in DFM.

3.3 The imprecise 2-tuple linguistic model

Since qualitative belief assignment might be imprecise by
expert on some occasions, in order to further combine this
imprecise qualitative information, we introduce operators on
imprecise 2-tuple labels (i.e. addition, subtraction, product
and division, etc.). The definition adopted here is the quali-
tative extension of the one proposed by Denœux’ in [1] for
reasoning with (quantitative) Interval-valued Belief Struc-
tures (IBS).

Definition 1 (IQBS) Let ŁG� denotes the set of all quali-
tative belief structures (i.e. precise and imprecise) over G�.
An imprecise qualitative belief structure (IQBS) is defined
as a non-empty subset m from ŁG� , such that there exist
n subsets F1, . . . ,Fn over G� and n qualitative intervals
[ai, bi], 1 ≤ i ≤ n (with L0 ≤ ai ≤ bi ≤ Ln+1) such that

m = {m ∈ ŁG� | ai ≤ m(Fi) ≤ bi, 1 ≤ i ≤ n,

and m(A) = (L0,0)), ∀A /∈ {F1, . . . ,Fn}}

Proposition 1 A necessary and sufficient condition for m to
be non-empty is that

∑n
i=1 ai ≤ Ln+1 and

∑n
i=1 bi ≥ Ln+1

(by extension of Denœux’ proposition [1]).

In order to combine imprecise qualitative belief struc-
tures, we use the operations on sets proposed by Dezert and
Smarandache in [2].

3.3.1 Addition of imprecise 2-tuple labels

The addition operator is very important in most of combina-
tion rules for fusing information in most of belief functions
theories (in DST framework, in Smets’ Transferable Belief
Model (TBM) [26] as well as in DSmT framework). The

addition operator for imprecise 2-tuple labels (since every
imprecise mass of belief is represented here qualitatively by
a 2-tuple label) is defined by:

m1 � m2 = m2 � m1 � {x | x = s1 + s2, s1 ∈ m1, s2 ∈ m2}
(22)

where the symbol + means the addition operator on labels
and with
{

inf(m1 + m2) = inf(m1) + inf(m2),

sup(m1 + m2) = sup(m1) + sup(m2).

Special case: if a sources of evidence supplies precise infor-
mation, i.e. m is a precise 2-tuple, say (Lk,α

p
k ), then

(Lk,α
p
k ) � m2 = m2 � (Lk,α

p
k )

= {x | x = (Lk,α
p
k ) + s2, s2 ∈ m2} (23)

with
{

inf((Lk,α
p
k ) + m2) = (Lk, σ

p
k ) + inf(m2)

sup((Lk,α
p
k ) + m2) = (Lk,α

p
k ) + sup(m2)

Example If 9 labels are used, i.e. n = 9,

[(L1,0.1), (L3,0.2)] � [(L2,0.2), (L5,0.3)]
= [(L3,0.3), (L8,0.5)],

L3 � [(L2,0.2), (L5,0.3)] = [(L5,0.2), (L8,0.3)].

3.3.2 Subtraction of imprecise 2-tuple labels

The subtraction operator is defined as follows:

m1 � m2 � {x | x = s1 − s2, s1 ∈ m1, s2 ∈ m2} (24)

where the symbol − represents the subtraction operator on
labels and with
{

inf(m1 − m2) = inf(m1) − sup(m2),

sup(m1 − m2) = sup(m1) − inf(m2).

When sup(m1 − m2) ≤ (L0,0), one takes m1 � m2 =
(L0,0); If inf(m1 −m2) ≤ (L0,0), sup(m1 −m2) ≥ (L0,0),
then m1 � m2 = [(L0,0), sup(m1 − m2)]; Otherwise, m1 �
m2 = [inf(m1 − m2), sup(m1 − m2)].
Special case: if one of sources of evidence supplies precise
information, i.e. m is a precise 2-tuple, say (Lk,α

p
k ), then

(Lk,α
p
k ) � m2 = {x | x = (Lk,α

p
k ) − s2, s2 ∈ m2} (25)
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with
{

inf((Lk,α
p
k ) − m2) = (Lk,α

p
k ) − sup(m2),

sup((Lk,α
p
k ) − m2) = (Lk,α

p
k ) − inf(m2).

Similarly,

m1 � (Lk,α
p
k ) = {x | x = s1 − (Lk,α

p
k ), s1 ∈ m1} (26)

with
{

inf(m1 − (Lk,α
p
k )) = inf(m1) − (Lk,α

p
k ),

sup(m1 − (Lk,α
p
k )) = sup(m1) − (Lk,α

p
k ).

Example If 9 labels are used, i.e. n = 9,

[(L2,0.2), (L5,0.3)] � [(L1,0.1), (L3,0.2)]
= [(L0,0), (L4,0.2)],

[(L1,0.1), (L3,0.2)] � (L5,0.3) = (L0,0),

L3 � [(L2,0.2), (L5,0.3)] = [(L0,0), (L2,0.8)].

3.3.3 Multiplication of imprecise 2-tuple labels

The multiplication operator plays also an important role in
most of the rules of combinations. The multiplication of im-
precise 2-tuple labels is defined as follows:

m1 � m2 = m2 � m1 � {x | x = s1 × s2, s1 ∈ m1, s2 ∈ m2}
(27)

where the symbol × represents the multiplication operator
on labels and with
{

inf(m1 × m2) = inf(m1) × inf(m2),

sup(m1 × m2) = sup(m1) × sup(m2).

Special case: if one of sources of evidence supplies precise
information, i.e. m is a precise 2-tuple, say (Lk,α

p
k ), then

(Lk,α
p
k ) � m2 = m2 � (Lk,α

p
k )

= {x | x = (Lk,α
p
k ) × s2, s2 ∈ m2}

with
{

inf((Lk,α
p
k ) × m2) = (Lk,α

p
k ) × inf(m2),

sup((Lk,α
p
k ) × m2) = (Lk,α

p
k ) × sup(m2).

Example If 9 labels are used, i.e. n = 9,

[(L1,0.1), (L3,0.2)] � [(L2,0.2), (L5,0.3)]
= [(L1,0.838), (L2,0.684)],

L3 � [(L2,0.2), (L5,0.3)] = [(L1,0.46), (L2,0.59)].

3.3.4 Division of imprecise 2-tuple labels

The division operator is also necessary in some combina-
tions rules (like in Dempster’s rule or PCR5 by example).
So we propose the following division operator for imprecise
2-tuple labels based on division of sets introduced in [2]:

If m2 �= (L0,0), then

m1 � m2 � {x | x = s1 ÷ s2, s1 ∈ m1, s2 ∈ m2} (28)

where the symbol ÷ represents the division operator on la-
bels and with
{

inf(m1 ÷ m2) = inf(m1) ÷ sup(m2),

sup(m1 ÷ m2) = sup(m1) ÷ inf(m2)

when sup(m1) ÷ inf(m2) ≤ Ln+1. Otherwise we take
sup(m1 ÷ m2) = Ln+1.
Special case: if one of sources of evidence supplies pre-
cise information, i.e. m is a precise 2-tuple, say (Lk,α

p
k ) �=

(L0,0), then

(Lk,α
p
k ) � m2 = {x | x = (Lk,α

p
k ) ÷ s2, s2 ∈ m2} (29)

with
{

inf((Lk,α
p
k ) ÷ m2) = (Lk,α

p
k ) ÷ sup(m2),

sup((Lk,α
p
k ) ÷ m2) = ((Lk,α

p
k ) ÷ inf(m2).

Similarly,

m1 � (Lk,α
p
k ) = {x | x = s1 ÷ (Lk,α

p
k ), s1 ∈ m1} (30)

with
{

inf(m1 ÷ (Lk,α
p
k )) = inf(m2) ÷ (Lk,α

p
k ),

sup(m1 ÷ (Lk,α
p
k )) = sup(m2) ÷ (Lk,α

p
k ).

Example If 9 labels are used, i.e. n = 9,

[(L1,0.1), (L3,0.2)] � [(L2,0.2), (L5,0.3)]
= [(L2,0.085), (L10,0)],

L3 � [(L2,0.2), (L5,0.3)] = [(L7,−0.617), (L10,0)],
[(L2,0.2), (L5,0.3)] � L3 = [(L6,0), (L10,0)].

4 Fusion of qualitative beliefs

4.1 Fusion of precise qualitative beliefs

From the 2-tuple linguistic representation model of qualita-
tive beliefs and the previous operators on 2-tuple labels, we
are now able to extend the DSmC, PCR5 and even Demp-
ster’s (DS) fusion rules into the qualitative domain follow-
ing the track of our previous works [3, 14, 23]. We denote
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q2m(·) the qualitative belief mass/assignment (qba) based
on 2-tuple representation in order to make a difference with
the qba q1m(·) based on 1-tuple (classical/pure) linguis-
tic labels and qem(·) based on qualitative enriched linguis-
tic labels[14]. Mathematically, q2m(·) expressed by a given
source/body of evidence S is defined as a mapping function
q2m(·): G� → L × α such that:

q2m(∅) = (L0,0) and
∑

A∈G�

q2m(A) = (Ln+1,0). (31)

From the expressions of quantitative DSmC (2), PCR5
(3) and Dempster’s (DS) [20] fusion rules and from the
operators on 2-tuple labels, we can define the classical
qualitative combination or proportional redistribution rules
(q2DSmC and q2PCR5) for dealing with 2-tuple linguistic
labels (Li, σ

p
i ). This is done as follows:

• when working with the free DSm model of the frame �:
q2mDSmC(∅) = (L0,0) and ∀X ∈ D� \ {∅}

q2mDSmC(X) =
∑

X1,X2∈D�

X1∩X2=X

q2m1(X1)q2m2(X2) (32)

• when working with Shafer’s or hybrid model of the frame
�: q2mPCR5(∅) = (L0,0) and ∀X ∈ G� \ {∅}
q2mPCR5(X)

= q2m12(X) +
∑

Y∈G�\{X}
X∩Y=∅

[
q2m1(X)2q2m2(Y )

q2m1(X) + q2m2(Y )

+ q2m2(X)2q2m1(Y )

q2m2(X) + q2m1(Y )

]
(33)

where q2m12(X) corresponds to the qualitative conjunc-
tive consensus.

It is important to note that addition, product and division
operators involved in formulas (32) and (33) are 2-tuple op-
erators defined in the previous section. These rules can be
easily extended for the qualitative fusion of k > 2 sources
of evidence. The formulas (32) and (33) are well justified
since every 2-tuple (Li, σ

p
i ) can be mapped into a unique

numerical value corresponding to it which makes the qual-
itative fusion rules q2DSmC and q2PCR5 equivalent to the
corresponding numerical fusion rules DSmC and PCR5.

Theorem 1 (Normalization) If
∑

A∈G� q2m(A) =
(Ln+1,0), then

∑
A∈G� q2mDSmC(A) = (Ln+1,0), and∑

A∈G� q2mPCR5(A) = (Ln+1,0).

Proof Let’s assume that there is a frame of discernment �

which includes several focal elements. According to DSm
model, one defines its hyper-power set D�, Ai ∈ D�, i =

{1,2, . . . , n}. There exist k evidential sources with qualita-
tive belief mass aij , i ∈ {1,2, . . . , k}, j ∈ {1,2, . . . , n}. Ac-
cording to the premise, i.e.

∑
A∈G� q2m(A) = (Ln+1,0),

that is,
∑

j∈{1,2,...,n} aij = (Ln+1,0). According to (16) and
the characteristics of Product operator,

∏

i∈{1,2,...,k}

∑

j∈{1,2,...,n}
aij =

∏

i∈{1,2,...,k}
(Ln+1,0) = (Ln+1,0)

because

q2mDSmC(X)

=
∑

X1,X2,...,Xk∈D�

X1∩X2 ···Xk=X

q2m1(X1)q2m2(X2) · · ·q2mk(Xk)

=
∏

i∈{1,2,...,k}

∑

j∈{1,2,...,n}
aij = (Ln+1,0).

Moreover, since qPCR5 redistributes proportionally the par-
tial conflicting mass to the elements involved in the partial
conflict by considering the canonical form of the partial con-
flict, the total sum of all qualitative belief mass after redistri-
bution doesn’t change and therefore it is equal to (Ln+1,0).
This completes the proof. �

Similarly, Dempster’s rule (DS) can be extended for deal-
ing with 2-tuple linguistic labels by taking q2mDS(∅) =
(L0,0) and ∀A ∈ 2� \ {∅}

q2mDS(A) =
∑

X,Y∈2�

X∩Y=A

q2m1(X)q2m2(Y )

(Ln+1,0) − ∑
X,Y∈2�

X∩Y=∅
q2m1(X)q2m2(Y )

.

(34)

4.2 Fusion of imprecise qualitative beliefs

Let’s consider k sources of evidences providing imprecise
qualitative belief assignments/masses mij defined on G�

with |G�| = d . We denote by mij central value of the la-
bel provided by the source no. i (1 ≤ i ≤ k) for the el-
ement Xj ∈ G�, 1 ≤ j ≤ d . For example with qualita-
tive interval-valued beliefs, mij = [mij − εij ,mij + εij ] ∈
[(L0,0), (Ln+1,0)], where (L0,0) ≤ εij ≤ Ln+1. More gen-
erally, mij can be either an union of open intervals, or of
closed intervals, or of semi-open intervals.

The set of imprecise qualitative belief masses provided
by the sources of evidences can be represented/characterized
by the following belief mass matrices with

inf(M) =

⎡

⎢⎢⎣

m11 − ε11 m12 − ε12 · · · m1d − ε1d

m21 − ε21 m22 − ε22 · · · m2d − ε2d

· · · · · · · · · · · ·
mk1 − εk1 mk2 − εk2 · · · mkd − εkd

⎤

⎥⎥⎦ ,



348 X. Li et al.

sup(M) =

⎡

⎢⎢⎣

m11 + ε11 m12 + ε12 · · · m1d + ε1d

m21 + ε21 m22 + ε22 · · · m2d + ε2d

· · · · · · · · · · · ·
mk1 + εk1 mk2 + εk2 · · · mkd + εkd

⎤

⎥⎥⎦ .

All the previous qualitative fusion rules working with
precise 2-tuple labels can be extended directly for dealing
with imprecise 2-tuple labels by replacing precise operators
on 2-tuple labels by their counterparts for imprecise 2-tuple
labels. We just here present the extensions of DSmC, PCR5
and DS rules of combinations. The extensions of other com-
bination rules (DSmH, Dubois & Prade’s, Yager’s, etc) can
be done easily in a similar way and will not be reported
here.

• The DSmC fusion of imprecise qualitative beliefs
The DSm classical combinational rule of k ≥ 2 impre-

cise qualitative beliefs is defined for the free DSm model
of the frame �, i.e. G� = D� as follows: q2m

I
DSmC(∅) =

(L0,0) and ∀X ∈ D� \ {∅}

q2mI
DSmC(X) =

∑

X1,X2,...,Xk∈D�

X1∩X2,...,∩Xk=X

k∏

i=1

q2mi (Xi). (35)

• The PCR5 fusion of imprecise qualitative beliefs
When working with Shafer’s or DSm hybrid models of
the frame �, the PCR5 combinational rule of two im-
precise qualitative beliefs is defined by: q2m

I
PCR5(∅) =

(L0,0) and ∀X ∈ G� \ {∅}

q2mI
PCR5(X)

= q2mI
12(X) +

∑

Y∈G�\{X}
X∩Y=∅

[
q2m1(X)2q2m2(Y )

q2m1(X) + q2m2(Y )

+ q2m2(X)2q2m1(Y )

q2m2(X) + q2m1(Y )

]
(36)

where q2mI
12(X) corresponds to the imprecise qualitative

conjunctive consensus defined by

q2mI
12(X) =

∑

X1,X2∈G�

X1∩X2=X

q2m1(X1)q2m2(X2). (37)

• Dempster’s fusion of imprecise qualitative beliefs
Dempster’s rule can also be directly extended for deal-

ing with imprecise qualitative beliefs by taking
q2mDS(∅) = (L0,0) and ∀A ∈ 2� \ {∅}

q2mI
DS(A) =

∑
X,Y∈2�

X∩Y=A

q2m1(X)q2m2(Y )

(Ln+1,0) − ∑
X,Y∈2�

X∩Y=∅
q2m1(X)q2m2(Y )

.

(38)

Theorem 2 The following equality holds

q2mI
DSmC(X) = [inf(q2mI

DSmC(X)), sup(q2mI
DSmC(X))]

with

inf(q2mI
DSmC(X)) =

∑

X1,X2,...,Xk∈D�

X1∩X2,...,∩Xk=X

k∏

i=1

inf(q2mi (Xi)),

sup(q2mI
DSmC(X)) =

∑

X1,X2,...,Xk∈D�

X1∩X2,...,∩Xk=X

k∏

i=1

sup(q2mi (Xi)).

Proof Let’s assume inf(q2mi (Xj )) and sup(q2mi (Xj ))

(1 ≤ i ≤ k) be represented by aij ∈ inf(M) and bij ∈ sup(M)

with aij ≤ bij (≤ represents here a qualitative order). For
any label cmj ∈ [amj , bmj ], one has

∑

X1,X2,...,Xk∈D�

X1∩X2,...,∩Xk=X

k∏

i=1

aij ≤
∑

X1,X2,...,Xk∈D�

X1∩X2,...,∩Xk=X

k∏

i=1,i �=m

aij cmj

and also

∑

X1,X2,...,Xk∈D�

X1∩X2,...,∩Xk=X

k∏

i=1,i �=m

aij cmj ≤
∑

X1,X2,...,Xk∈D�

X1∩X2,...,∩Xk=X

k∏

i=1

bij .

Therefore, q2mI
DSmC(X) = [inf(q2mI

DSmC(X)),

sup(q2mI
DSmC(X))] which completes the proof. �

Therefore, this theorem supplies with a terse way to com-
bine imprecise qualitative belief in DSmT framework. That
is, we can respectively compute the upper and lower border
of imprecise qualitative beliefs with q2DSmC given in (32).

When working with Shafer’s or hybrid model of the
frame �: q2m

I
PCR5(∅) = (L0,0) and ∀X ∈ G� \ {∅}. The

PCR5 of imprecise qualitative beliefs (qI
2 PCR5) is given as

follows:

sup(q2mI
PCR5(X))

= sup(q2m12(X))

+
∑

Y∈G�\{X}X∩Y=∅

[
sup(q2m1(X)2q2m2(Y ))

inf(q2m1(X) + q2m2(Y ))

+ sup(q2m2(X)2q2m1(Y ))

inf(q2m2(X) + q2m1(Y ))

]
, (39)

inf(q2mI
PCR5(X))

= inf(q2m12(X))
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+
∑

Y∈G�\{X}X∩Y=∅

[
inf(q2m1(X)2q2m2(Y ))

sup(q2m1(X) + q2m2(Y ))

+ inf(q2m2(X)2q2m1(Y ))

sup(q2m2(X) + q2m1(Y ))

]
(40)

where q2m12(X) corresponds to qI
2 DSmT of the conjunctive

consensus.

5 Examples of fusion of qualitative beliefs

5.1 Example of fusion of precise qualitative beliefs

Let’s consider an investment corporation which has to
choose one project among three proposals � = {θ1, θ2, θ3}
based on two consulting/expert reports. The linguistic labels
used by the experts are among the following ones: I �→ Im-
possible, EU �→ Extremely-Unlikely, VLC �→ Very-Low-
Chance, LLC �→ Little-Low-Chance, SC �→ Small-Chance,
IM �→ IT-May, MC �→ Meanful-Chance, LBC �→ Little-
Big-Chance, BC �→ Big-Chance, ML �→ Most-likely, C �→
Certain. So, we consider the following ordered set L (with
|L| = n = 9) of linguistic labels

L � {L0 ≡ I,L1 ≡ EU,L2 ≡ V LC,L3 ≡ LLC,L4 ≡ SC,

L5 ≡ IM,L6 ≡ MC,L7 ≡ LBC,L8 ≡ BC,

L9 ≡ ML,L10 ≡ C}.

The qualitative belief assignments/masses provided by
the sources/experts are assumed to be given according to
Table 1.

When working with the free DSm model and applying
the qualitative DSmC combinational rule (32), we obtain:

q2mDSmC(θ1) = (L3,0.85),

q2mDSmC(θ2) = (L1,0.433),

q2mDSmC(θ3) = (L1,0.13),

q2mDSmC(θ1 ∩ θ2) = (L3,0.747),

q2mDSmC(θ1 ∩ θ3) = (L3,0.253),

q2mDSmC(θ2 ∩ θ3) = (L2,0.587).

Table 1 Precise qualitative belief assignments given by the sources

Source 1 Source 2

θ1 m1(θ1) = (L5,0.7) m2(θ1) = (L5,0)

θ2 m1(θ2) = (L3,0.3) m2(θ2) = (L3,0.9)

θ3 m1(θ3) = (L3,0) m2(θ3) = (L3,0.1)

We can verify the validity of the Theorem 1, i.e.∑
A∈D� q2m(A) = (L10,0), which proves that is

q2mDSmC(.) is normalized.
Now, let’s assume that Shafer’s model holds for �. In

this case the sets θ1 ∩ θ2, θ1 ∩ θ3, θ2 ∩ θ3 must be empty
and the qualitative conflicting masses q2mDSmC(θ1 ∩ θ2),
q2mDSmC(θ1 ∩ θ3) and q2mDSmC(θ2 ∩ θ3) need to be re-
distributed to the sets involved in these conflicts according
to (33) if the PCR5 fusion rule is used. So, with PCR5 one
gets:

q2mPCR5(θ1) = q2mDSmC(θ1) + q2mxA1(θ1)

+ q2mxB1(θ1) + q2mxA2(θ1)

+ q2mxB2(θ1)

= (L6,0.684),

q2mPCR5(θ2) = q2mDSmC(θ2) + q2myA1(θ2)

+ q2myB1(θ2) + q2mxA3(θ2)

+ q2mxB3(θ2)

= (L2,0.0264),

q2mPCR5(θ3) = q2mDSmC(θ3) + q2myA2(θ3)

+ q2myB2(θ3) + q2myA3(θ3)

+ q2myB3(θ3)

= (L3,0.289).

Because q2mPCR5(θ1) is larger than q2mPCR5(θ2) and
q2mPCR5(θ3), the investment corporation will choose the
first project to invest.

Now, if we prefer to use the extension of Dempter’s rule
of combination given by the formula (38), the total qual-
itative conflicting mass is qKtotal = q2mDSmC(θ1 ∩ θ2) +
q2mDSmC(θ1 ∩ θ3) + q2mDSmC(θ3 ∩ θ2) = (L7,0.587), and
so we obtain:

q2mDS(∅) � (L0,0),

q2mDS(θ1) = q2mDSmC(θ1)

L10 − qKtotal

= (L3,0.85)

L10 − (L7,0.587)

= (L6,0.006133),

q2mDS(θ2) = q2mDSmC(θ2)

L10 − qKtotal

= (L1,0.413)

L10 − (L7,0.587)

= (L2,0.419292),

q2mDS(θ3) = q2mDSmC(θ3)

L10 − qKtotal

= (L1,0.13)

L10 − (L7,0.587)

= (L3,0.574575).

We see that q2mDS(θ1) is larger than q2mDS(θ2) and
q2mDS(θ3), so the first project is also chosen to invest.
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The final decision is same to the previous one obtained by
q2PCR5. However, when the total conflict becomes nearer
and nearer to L10, then q2DS formula will become invalid.
If we adopt the simple arithmetic mean method, the results
of the fusion are:

θ1 : (L5,0.7) + (L5,0)

2
= (L5,0.35),

θ2 : (L3,0.3) + (L3,0.9)

2
= (L3,0.6),

θ3 : (L3,0) + (L3,0.1)

2
= (L3,0.05).

According to the above results, we easily know which
project will be chosen to invest. Though arithmetic mean
method is the simplest method among three methods, for
some complex problems, it can provide unsatisfactory re-
sults since it is not neutral with respect to the introduction
of a total ignorant source in the fusion process. This method
can also be ill adapted to some particular problems. For ex-
ample, one also investigates the possibility of investment in
two projects together, i.e. θi ∩ θj �= ∅. However, the corpo-
ration only choose one of them to invest. How to do it in this
case with simple arithmetic mean method? It is more easy
to take decision from q2PCR5(.).

If all qualitative masses involved in the fusion are nor-
malized, no matter what qualitative fusion rule we use the
normalization is kept (i.e. the result will also be a normal-
ized mass).

5.2 Example of fusion of imprecise qualitative beliefs

Let’s consider again the previous example with imprecise
qualitative beliefs provided by the sources according to Ta-
ble 2.

If one works with the free DSm model for the frame �,
one gets from (35) and the theorem 2 the following results:

q2m
I
DSmC(θ1) = [(L3,0.85), (L3,0.138)],

q2m
I
DSmC(θ2) = [(L1,0.433), (L1,0.001)],

q2m
I
DSmC(θ3) = [(L1,0.13), (L2,0.71)],

q2m
I
DSmC(θ1 ∩ θ2) = [(L3,0.747), (L4,0.571)],

q2m
I
DSmC(θ1 ∩ θ3) = [(L3,0.253), (L4,0.088)],

q2m
I
DSmC(θ2 ∩ θ3) = [(L2,0.587), (L3,0.729)].

Table 2 Imprecise qualitative belief assignments given by the sources

Source 1 Source 2

θ1 m1(θ1) = [(L5,0.7), (L6,0.7)] m2(θ1) = [(L5,0), (L6,0.6)]
θ2 m1(θ2) = [(L3,0.3), (L4,0.3)] m2(θ2) = [(L2,0.01), (L3,0.3)]
θ3 m1(θ3) = [(L3,0), (L5,0.7)] m2(θ3) = [(L3,0.1), (L3,0)]

If one works with Shafer’s model for the frame � (i.e.
all elements of � are assumed exclusive), then the im-
precise qualitative conflicting masses q2m

I
DSmC(θ1 ∩ θ2),

q2m
I
DSmC(θ1 ∩ θ3) and q2m

I
DSmC(θ2 ∩ θ3) need to be re-

distributed to elements involved in these conflicts if PCR5
is used. In such case and from (36) and the Theorem 2, one
gets:

q2m
I
PCR5(θ1) = [(L5,0.2036), (L9,0.8140)],

q2m
I
PCR5(θ2) = [(L2,0.2909), (L4,0.089)],

q2m
I
PCR5(θ3) = [(L3,0.3308), (L6,0.8888)].

From the values of q2m
I
PCR5(.), one will choose the

project θ1 as final decision. It is interesting to note that
q2DSmC and q2PCR5 can be interpreted as special case
(lower bounds) of qI

2 DSmC and qI
2 PCR5.

The approach proposed in this work for combining im-
precise qualitative beliefs presents the following properties:

(1) If one utilizes the q2-operators on 2-tuples without do-
ing any approximation in the calculations one gets an
exact qualitative result, while working on 1-tuples we
round the qualitative result so we get approximations.
Thus addition and multiplication operators on 2-tuple
are truly commutative and associative contrariwise to
addition and multiplication operators on 1-tuples. Ac-
tually, our new representation deals directly with exact
qualitative (refined) values of the labels, which can be
explained well by the DSm Field and Linear Algebra
of Refined Labels (DSm-FLARL) presented in [24]. In
DSm-FLARL we get the exact qualitative result.

(2) Since the 2-tuples {(L0, σ
p

0 ), . . . , (Ln+1, σ
p

n+1)} express
actually continuous qualitative beliefs, they are equiva-
lent to real numbers. So all quantitative fusion rules (and
even the belief conditioning rules) can work directly us-
ing this qualitative framework. The imprecise qualita-
tive DSmC and PCR5 fusion rules can deal easily and
efficiently with imprecise belief structures, which are
usually well adapted in real situations dealing with hu-
man reports.

(3) The precise qualitative DSmC and PCR5 fusion rules
can be seen as special cases of Imprecise qualitative
DSmC and PCR5 fusion rules as shown in our exam-
ples.

6 Conclusion

In this paper, we have proposed a new approach for com-
bining imprecise qualitative beliefs based on 2-tuple dis-
tribution function linguistic representation model presented
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here, which is more general and simpler model. This ap-
proach allows the combination of information in the situa-
tions where no precise qualitative information is available.
The underlying idea is to work with refined labels expressed
as 2-tuples to keep working on the original set of linguistic
labels. We have proposed precise and imprecise qualitative
operators for 2-tuple labels and we have shown through very
simple examples how we can combine precise and/or impre-
cise qualitative beliefs. The results obtained by this approach
are more precise than those based on 1-tuple representation
since no rounding approximation is done in operations and
all the information is preserved in the fusion process. The
imprecise qualitative DSmC and PCR5 fusion rules are the
extensions of precise qualitative DSmC and PCR5 fusion
rules. Applications of this approach for decision-making
support in robotics are currently under development and will
make the object of forthcoming publications.
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