2013

On Fuzzy Soft Matrix Based on Reference Function

Florentin Smarandache

Said Broumi

Mamoni Dhar

Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp

Part of the Analysis Commons, Discrete Mathematics and Combinatorics Commons, Other Mathematics Commons, and the Set Theory Commons
On Fuzzy Soft Matrix Based on Reference Function

Said Broumi

Florentin Smarandache

Mamoni Dhar

Abstract—In this paper we study fuzzy soft matrix based on reference function. Firstly, we define some new operations such as fuzzy soft complement matrix and trace of fuzzy soft matrix based on reference function. Then, we introduced some related properties, and some examples are given. Lastly, we define a new fuzzy soft matrix decision method based on reference function.

Index Terms—Soft set, fuzzy soft set, fuzzy soft set based on reference function, fuzzy soft matrix based on reference function.

I. INTRODUCTION

Fuzzy set theory was proposed by Lotfi A. Zadeh[1] in 1965, where each element (real valued) [0, 1] had a degree of membership defined on the universe of discourse X, the theory has been found extensive application in various field to handle uncertainty. Therefore, several researches were conducted on the generalization on the notions of fuzzy sets such as intuitionistic fuzzy set proposed by Atanassov[2, 3], interval valued fuzzy set[5]. In the literature we found many well-known theories to describe uncertainty: rough set theory[6], etc, but all of these theories have their inherent difficulties as pointed by Molodtsov in his pioneer work[7].

The concept introduced by Molodtsov is called “soft set theory” which is set valued mapping. This new mathematical model is free from the difficulties mentioned above. Since its introduction, the concept of soft set has gained considerable attention and this concept has resulted in a series of work[8, 9, 10, 11, 12, 13, 14].

Also as we know, matrices play an important role in science and technology. However, the classical matrix theory sometimes fails to solve the problems involving uncertainties, occurring in an imprecise environment. In [4], Thomason, introduced the fuzzy matrices to represent fuzzy relation in a system based on fuzzy set theory and discussed about the convergence of powers of fuzzy matrix. In [15, 16, 17], some important results on determinant of a square fuzzy matrices are discussed. Also, Ragab et al. [18, 19] presented some properties of the min-max composition of fuzzy matrices. Later on, several studies and some applications of fuzzy matrices are defined in [20, 21].

In 2010, Cagman et al.[13] defined soft matrix which is representation of soft set, to make operations in theoretical studies in soft set more functional. This representation has several advantages, it’s easy to store and manipulate matrices and hence the soft sets represented by them in a computer.

Recently several research have been studied the connection between soft set and soft matrices [13, 14, 22]. Later, Maji et al.[9] introduced the theory of fuzzy soft set and applied it to decision making problem. In 2011, Yang and C.J[22], defined fuzzy soft matrix (FSM) which is very useful in representing and computing the data involving fuzzy soft sets.

The concept of fuzzy set based on reference function was first introduced by Baruah[23, 24, 25] in the following manner - According to him, to define a fuzzy set, two functions namely fuzzy membership function and fuzzy reference function are necessary. Fuzzy membership value is the difference between fuzzy membership function and reference function which is called “fuzzy soft set based on fuzzy reference function”. Recently, Neog, T.J, Sut D.K.M.Bora[29] combined fuzzy soft set based on reference function and developed some interesting properties as determinant, trace and so on. Thereafter, in [28], T.J Neog, D. K. Sut were extended this new concept to soft set theory, introducing a new concept called “fuzzy soft set based on fuzzy reference function”. Recently, Neog, T.J, Sut D.K.M.Bora[29] combined fuzzy soft set based on reference function with soft matrices. The paper unfolds as follows. The next section briefly introduces some definitions related to soft set, fuzzy set, and fuzzy soft set based on reference function. Section 3 presents fuzzy soft complement.
matrix based on reference function. Section 4 presents trace of fuzzy soft matrix based on reference function. Section 5 presents new fuzzy soft matrix theory in decision making. Conclusions appear in the last section.

II. PRELIMINARIES

In this section first we review some concepts and definitions of soft set, fuzzy soft set, and fuzzy soft set based on reference function from [9, 12, 13, 29], which will be needed in the sequel.

Remark:

For the sake of simplicity we adopt the following notation of fuzzy soft set based on reference function defined in our way as: Fuzzy soft set defined for classical soft set or its variants as fuzzy soft set, fuzzy soft set, and fuzzy soft set in decision making. Conclusions appear in the last section.

2.3. Definition (Fuzzy Soft Set [9])

Suppose that U is an initial universe set and E is a set of parameters, let P(U) denotes the power set of U. A pair (E, F) is called a soft set over U where F is a mapping given by F : E → P(U). Clearly, a soft set is a mapping from parameters to P(U) and it is not a set, but a parameterized family of subsets of the universe.

2.2. Example.

Suppose that U = {s1, s2, s3, s4} is a set of students and E = {e1, e2, e3} is a set of parameters, which stand for result, conduct and sports performances respectively. Consider the mapping from parameters set E to the set of all subsets of power set U. Then soft set (E, F) describes the character of the students with respect to the given parameters, for finding the best student of an academic year.

\[(F, E) = \{\text{result} = s1, s3, s4\} \quad \{\text{conduct} = s1, s2\} \quad \{\text{sports performances} = s2, s3, s4\}\]

2.3. Definition (Fuzzy Soft Set [9, 12])

Let U be an initial universe set and E be the set of parameters. Let A ⊆ E. A pair (F, A) is called fuzzy soft set over U where F is a mapping given by F : A → P(U). Then A is called a fuzzy soft set over U and F is a mapping associated to A.

2.4. Example.

Consider the example 2.2, in soft set (E, F), if s1 is medium in studies, we cannot express with only the two numbers 0 and 1, we can characterize it by a membership function instead of the crisp number 0 and 1, which associates with each element a real number in the interval [0,1]. Then fuzzy soft set can describe as

\[(F, A) = \{(e1) \rightarrow \{s(1.09), s(2.03), s(3.03), s(4.09)\}, (e2) \rightarrow \{s(1.08), s(2.09), s(3.04), s(4.03)\}\}, \quad A = \{e1, e2\}\]

In the following, Neog et al. [29] showed by an example that this definition sometimes gives degenerate cases and revised the above definition as follows:

2.5. Definition [29]

Let A (μ₁, μ₂) = \{(x₁, μ₁(x₁), μ₂(x₁)) : x₁ ∈ U\} and B (μ₃, μ₄) = \{(x₂, μ₃(x₂), μ₄(x₂)) : x₂ ∈ U\} be two fuzzy sets defined over the same universe U.

Then the operations intersection and union are defined as:

- \[A (μ₁, μ₂) \cap B (μ₃, μ₄) = \{(x, min(μ₁(x), μ₃(x)), max(μ₂(x), μ₄(x))) : x ∈ U\}\]
- \[A (μ₁, μ₂) \cup B (μ₃, μ₄) = \{(x, max(μ₁(x), μ₃(x)), min(μ₂(x), μ₄(x))) : x ∈ U\}\]

2.6. Definition [29]

Let A (μ₁, μ₂) = \{(x₁, μ₁(x₁), μ₂(x₁)) : x₁ ∈ U\} and B (μ₃, μ₄) = \{(x₂, μ₃(x₂), μ₄(x₂)) : x₂ ∈ U\} be two fuzzy sets defined over the same universe U. To avoid degenerate cases, we assume that \[min(μ₁(x₁), μ₃(x₂)) ≥ max(μ₂(x₁), μ₄(x₂))\] for all x₁ ∈ U.

Then the operations intersection and union are defined as:

- \[A (μ₁, μ₂) \cap B (μ₃, μ₄) = \{(x, min(μ₁(x), μ₃(x)), max(μ₂(x), μ₄(x))) : x ∈ U\}\]
- \[A (μ₁, μ₂) \cup B (μ₃, μ₄) = \{(x, max(μ₁(x), μ₃(x)), min(μ₂(x), μ₄(x))) : x ∈ U\}\]

2.7. Definition [29]

For usual fuzzy sets A (μ, 0) = \{(x, μ(x), 0) : x ∈ U\} and B (1, μ) = \{(x, 1, μ(x)) : x ∈ U\} defined over the same universe U, we have A (μ, 0) ∩ B (1, μ) = \{(x, min(μ(x), 1), max(0, μ(x))) : x ∈ U\} = \{(x, μ(x), μ(x)) : x ∈ U\}, which is nothing but the null set and A (μ, 0) ∪ B (1, μ) = \{(x, max(μ(x), 1), min(0, μ(x))) : x ∈ U\} = \{(x, 1, 0) : x ∈ U\}, which is nothing but the universal set U.

This means if we define a fuzzy set A (μ, 0) = \{(x, 1, μ(x)) : x ∈ U\} it is nothing but the complement of A (μ, 0) = \{(x, μ(x), 0) : x ∈ U\}.

2.8. Definition [29]

Let A (μ₁, μ₂) = \{(x₁, μ₁(x₁), μ₂(x₁)) : x₁ ∈ U\} and B (μ₃, μ₄) = \{(x₂, μ₃(x₂), μ₄(x₂)) : x₂ ∈ U\} be two fuzzy sets defined over the same universe U. The fuzzy set A (μ₁, μ₂) is a subset of the fuzzy set B (μ₃, μ₄) if for all x ∈ U, μ₁(x) ≤ μ₃(x) and μ₂(x) ≤ μ₄(x).

Two fuzzy sets C = \{(x, μ₅(x)) : x ∈ U\} and D = \{(x, μ₆(x)) : x ∈ U\} in the usual definition would be expressed as C(μ₅, 0) = \{(x, μ₅(x), 0) : x ∈ U\} and D(μ₆, 0) = \{(x, μ₆(x), 0) : x ∈ U\}.

Accordingly, we have C(μ₅, 0) ⊆ D(μ₆, 0) if for all x ∈ U, μ₅(x) ≤ μ₆(x), which can be obtained by putting μ₅(x) = μ₆(x) = 0 in the new definition.

2.9. Definition [29] (Fuzzy Soft Matrices (FSMs) based on reference function)

Let U be an initial universe, E be the set of parameters and A ⊆ E. Let (fₐ, E) be fuzzy soft set (FS) over U. Then a subset of U × E is uniquely defined by \[Rₐ = \{(u, e) : e ∈ A, u ∈ fₐ(e)\}\] which is called a relation form of (fₐ, E).
2.10. Example

Assume that \(U = \{ u_1 , u_2 , u_3 , u_4 \} \) is a universal set and \(E = \{ e_1 , e_2 , e_3 , e_4 \} \) be the set of parameters and \(A = \{ e_1 , e_2 , e_3 \} \subseteq E \) and

\[
\begin{align*}
 f_A(e_1) &= \{ u_1/(0.7,0) , u_2/(0.1,0) , u_3/(0.2,0) , u_4/(0.6,0) \}, \\
 f_A(e_2) &= \{ u_1/(0.8,0) , u_2/(0.6,0) , u_3/(0.1,0) , u_4/(0.5,0) \}, \\
 f_A(e_3) &= \{ u_1/(0.1,0) , u_2/(0.2,0) , u_3/(0.7,0) , u_4/(0.3,0) \}.
\end{align*}
\]

Then the fuzzy soft set \(\langle f_A, E \rangle \) is a parameterized family \(\{ f_A(e_1), f_A(e_2), f_A(e_3) \} \) of all fuzzy soft sets over \(U \). Then the relation form of \(\langle f_A, E \rangle \) is written as

\[
\begin{array}{c|cccc}
R_A & e_1 & e_2 & e_3 & e_4 \\
\hline
u_1 & (0.7,0) & (0.8,0) & (1.0,0) & (0.0) \\
u_2 & (0.1,0) & (0.6,0) & (0.2,0) & (0.0) \\
u_3 & (0.2,0) & (0.1,0) & (0.7,0) & (0.0) \\
u_4 & (0.6,0) & (0.5,0) & (0.3,0) & (0.0)
\end{array}
\]

Hence, the fuzzy soft matrix representing this fuzzy soft set would be represented as

\[
A = \begin{bmatrix}
0.7 & 0.8 & 1.0 & 0.0 \\
0.1 & 0.6 & 0.2 & 0.0 \\
0.2 & 0.1 & 0.7 & 0.0 \\
0.6 & 0.5 & 0.3 & 0.0
\end{bmatrix}
\]

2.11. Definition [29]

We define the membership value matrix corresponding to the matrix \(A \) as \(MV(A) = [\delta_{ij}(e_i)] \) where \(\delta_{ij}(e_i) = \mu_{j1}(c_i) \cdot \mu_{j2}(c_i) \) for all \(i = 1,2,3, \ldots, m \) and \(j = 1,2,3, \ldots, n \) where \(\mu_{j1}(c_i) \) and \(\mu_{j2}(c_i) \) represent the fuzzy membership function and fuzzy reference function respectively of \(c_i \) in the fuzzy set \(F(e_i) \).

2.12. Definition [29]

Let the fuzzy soft matrices corresponding to the fuzzy soft sets (F,E), and (G,E) be \(A = [a_{ij}] \in \text{FSM}_{m \times n} \) and \(B = [b_{ij}] \) where \(a_{ij} = (\mu_{j1}(c_i), \mu_{j2}(c_i)) \) and \(b_{ij} = (\chi_{j1}(c_i), \chi_{j2}(c_i)) \) and \(\mu_{j1}(c_i) \cdot \mu_{j2}(c_i) \). Then A and B are called fuzzy soft equal matrices denoted by \(A = B \), if \(\mu_{j1}(c_i) = \chi_{j1}(c_i) \) and \(\mu_{j2}(c_i) = \chi_{j2}(c_i) \) for all \(i, j \).

In [13], the 'addition (+)' operation between two fuzzy soft matrices is defined as follows.

2.13. Definition [29]

Let \(U = \{ c_1, c_2, c_3, \ldots, c_m \} \) be the universal set and \(E = \{ e_1, e_2, e_3, \ldots, e_n \} \). Let the set of all \(m \times n \) fuzzy soft matrices over \(U \) be \(\text{FSM}_{m \times n} \).

Let \(A, B \in \text{FSM}_{m \times n} \), where \(A = [a_{ij}]) \in \text{FSM}_{m \times n} \), \(a_{ij} = (\mu_{j1}(c_i), \mu_{j2}(c_i)) \) and \(B = [b_{ij}] \in \text{FSM}_{m \times n} \), \(b_{ij} = (\chi_{j1}(c_i), \chi_{j2}(c_i)) \). To avoid degenerate cases we assume that \(\min (\mu_{j1}(c_i), \chi_{j1}(c_i)) \geq \max (\mu_{j2}(c_i), \chi_{j2}(c_i)) \) for all \(i \) and \(j \).

The operation of 'addition (+)' between A and B is defined as \(A + B = C \), where \(C = [c_{ij}] \in \text{FSM}_{m \times n} \), where \(c_{ij} = (\max (\mu_{j1}(c_i), \chi_{j1}(c_i)), \min (\mu_{j2}(c_i), \chi_{j2}(c_i))) \).

2.14. Example

Let \(U = \{ c_1, c_2, c_3, c_4 \} \) be the universal set and \(E = \{ e_1, e_2, e_3 \} \). We consider the fuzzy soft sets based on reference function.

\[
(F,E) = [(F(e_1)) = (c_1,0.3,0), (c_2,0.5,0), (c_3,0.6,0), (c_4,0.5,0)],
\]

\[
(G,F) = [(G(e_1)) = (c_1,0.1,0), (c_2,0.9,0), (c_3,0.7,0), (c_4,0.8,0)],
\]

\[
(F(G)) = [(F(G(e_1)) = (c_1,0.8,0), (c_2,0.7,0), (c_3,0.5,0), (c_4,0.4,0)),
\]

\[
(G(F)) = [(G(F(e_1)) = (c_1,0.9,0), (c_2,0.9,0), (c_3,0.8,0), (c_4,0.7,0))].
\]

The fuzzy soft matrices based on reference function representing these two fuzzy soft sets are respectively

\[
A = \begin{bmatrix}
0.3 & 0.7 & 0.6 & 0.0 \\
0.5 & 0.0 & 0.9 & 0.0 \\
0.6 & 0.0 & 0.7 & 0.0 \\
0.5 & 0.0 & 0.8 & 0.0 \\
0.0 & 0.0 & 0.9 & 0.0 \\
0.0 & 0.0 & 0.9 & 0.0 \\
0.0 & 0.0 & 0.9 & 0.0 \\
0.0 & 0.0 & 0.9 & 0.0
\end{bmatrix}
\]

Here \(A + B = \begin{bmatrix}
0.8 & 0.9 & 0.6 & 0.0 \\
0.7 & 0.9 & 0.9 & 0.0 \\
0.6 & 0.8 & 0.7 & 0.0 \\
0.5 & 0.8 & 0.8 & 0.0
\end{bmatrix}
\]

III. FUZZY SOFT COMPLEMENT MATRIX BASED ON REFERENCE FUNCTION

In this section, we start by introducing the notion of the fuzzy soft complement matrix based on reference function, and we prove some formal properties.

3.1. Definition

Let \(A = [a_{ij}] = [a_{ij}] \in \text{FSM}_{m \times n} \) according to the definition in [26], then \(A^\prime \) is called fuzzy soft complement matrix if \(A^\prime = [1-a_{ij}] \in \text{FSM}_{m \times n} \) for all \(a_{ij} \in [0,1] \).

3.2. Example

Let \(A = [0.7,0)(0.8,0)] \) be fuzzy soft matrix based on reference function, then the complement of this matrix is \(A^\prime = [(1,0.7),(1,0.8)] \).

3.3. Proposition

Let \(A, B \) be two fuzzy soft matrix based on fuzzy reference function. Then

\[
(i)(A^T)^e = (A^T)^e
\]
The proof of (ii) follows similar lines as above.

3.4 Example

Let \(A = \begin{bmatrix} 0.2,0 \times 0.3,0 \end{bmatrix} \) and \(B = \begin{bmatrix} 0.5,0 \times 0.4,0 \end{bmatrix} \). Then \(A^T = \begin{bmatrix} 1,0.5 \times 1,0.4 \end{bmatrix} \) and \(B^T = \begin{bmatrix} 1,0.5 \times 1,0.4 \end{bmatrix} \). Following the definition of addition of two fuzzy soft matrices, we have

\[
C_{ij} = \{ \max(a_{ij}, b_{ij}), \min(r_{il'}, r_{j'i}) \}
\]

According to definition 4.1 the trace of fuzzy soft matrix based on reference function would be:

\[
\text{tr}(C) = \{ \max \{ \max(a_{ij}, b_{ij}) \}, \min \{ \min(r_{il'}, r_{j'i}) \} \} = \{ \max \{ \max(a_{ij}), \max(b_{ij}) \}, \min \{ \min(r_{ij}), \min(r_{ij}) \} \}
\]

and

\[
\text{tr}(A + B) = \{ \max \{ \max(a_{ij}, b_{ij}) \}, \min \{ \min(r_{ij}), \min(r_{ij}) \} \}
\]

Hence the result \(\text{tr}(A + B) = \text{tr}(A + B) \).

4.3. Example:

Let us consider the following two fuzzy soft matrices \(A \) and \(B \) based on reference function for illustration purposes:

\[
A = \begin{bmatrix} 0.3,0 \times 0.7,0 \times 0.8,0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1,0 \times 0.2,0 \times 0.3,0 \end{bmatrix}
\]

The addition of two soft matrices would be:

\[
A + B = \begin{bmatrix} 1,0 \times 0.7,0 \times 0.8,0 \end{bmatrix}
\]

Using the definition of trace of fuzzy soft matrices, we see the following results:

\[
\text{tr}A = \{ \max(0.3, 0.5, 0.4), \min(0, 0, 0) \} = (0.5, 0)
\]

\[
\text{tr}B = \{ \max(1, 0.5, 0.8), \min(0, 0, 0) \} = (1, 0)
\]

Thus we have

\[
\text{tr}A + \text{tr}B = \{ \max(1, 0.5, 0.8), \min(0, 0, 0) \} = (1, 0)
\]

Hence the result

\[
\text{tr}(A + B) = \{ \max(1, 0.5, 0.8), \min(0, 0, 0) \} = (1, 0)
\]

4.4. Proposition

Let \(A = \begin{bmatrix} a_{ij}, r_{ij} \end{bmatrix} \) be a fuzzy soft matrix of order \(n \), if \(A \) is a scalar such that \(0 \leq \lambda \leq 1 \). Then
tr(λA) = λtr(A)

proof.

To prove

\[\text{tr}(\lambda A) = \lambda \text{tr}(A) \leq \lambda \leq 1 \]

we have

\[\text{tr}(\lambda A) = \{ \max(\lambda a_{ij}), \min(\lambda r_{ij}) \} \]

\[= \lambda \{ \max(a_{ij}), \min(r_{ij}) \} = \lambda \text{tr}(A) \]

4.5 Example

Let \(A = \begin{bmatrix} 0.3 & 0.4 & 0.5 \\ 0.6 & 0.7 & 0.8 \end{bmatrix} \) and \(\lambda = 0.5 \)

Then

\[\lambda A = \begin{bmatrix} 0.15 & 0.25 & 0.35 \\ 0.3 & 0.5 & 0.7 \end{bmatrix} \]

\[\text{tr}(\lambda A) = \{ \max(0.15, 0.25, 0.35), \min((0, 0, 0)) \} = (0.25, 0, 0) \]

Again \(\text{tr}(A) = 0.5, 0 \) and hence \(\text{tr}(\lambda A) = 0.5 \).

4.6 Proposition:

Let \(A = \begin{bmatrix} a_{ij}, r_{ij} \end{bmatrix} \in \mathbb{F}S_{m \times n} \) be fuzzy soft square matrices each of order \(n \).

Then

\[\text{tr}(A^T) = \text{tr}(A^T), \text{where } A^T \text{ is the transpose of } A \]

4.7 Example

Let \(A^T = \begin{bmatrix} 0.3 & 0.4 & 0.5 \\ 0.6 & 0.7 & 0.8 \end{bmatrix} \) and \(\text{tr}(A^T) = (0.5, 0) \)

\[\text{Hence} \text{tr}(A^T) = \text{tr}(A) \]

The same result will hold if we consider the complements of fuzzy soft square matrices.

5. Example

Let \(A = \begin{bmatrix} 1, 0.3, 1, 0.5 \\ 0.5, 1, 0.7, 1 \end{bmatrix} \)

\[\text{tr}(A) = \{ \max(1, 1, 1), \min(0.3, 0.5, 0.4) \} = (1, 0.3) \]

If we consider another fuzzy soft matrix \(B = \begin{bmatrix} 0, 1, 0.2, 0.3 \\ 0.5, 0.2, 0, 0 \end{bmatrix} \)

\[\text{tr}(B) = \{ \max(0.5, 0.2), \min(0, 0) \} = (0, 0) \]

V. **NEW FUZZY SOFT MATRIX THEORY IN DECISION MAKING**

In this section we adopted the definition of fuzzy matrix decision method proposed by P. Raja Rajesvari, P. Dhanalakshmi in [30] to the case of fuzzy soft matrix based on reference function in order to define a new fuzzy soft matrix decision method based on reference function.

5.1 Definition: (Value Matrix)

Let \(A = \{a_{ij}, 0\} \in \mathbb{F}S_{m \times n} \).

Then we define the value matrix of fuzzy soft matrix \(A \) based on reference function as \(V(A) = \{a_{ij} - r_{ij}\} \), \(i=1, 2, \ldots, m, j=1,2,3,...,n \), where \(r_{ij} = [0]_{m \times n} \).

5.2 Definition: (Score Matrix)

If \(A = [a_{ij}] \in \mathbb{F}S_{m \times n}, B = [b_{ij}] \in \mathbb{F}S_{m \times n} \).

Then we define score matrix of \(A \) and \(B \) as:

\[s_{A,B} = [d_{ij}]_{m \times n} \text{where } d_{ij} = V(A) - V(B) \]

5.3 Definition: (Total Score)

If \(A = [a_{ij}, 0] \in \mathbb{F}S_{m \times n}, B = [b_{ij}, 0] \in \mathbb{F}S_{m \times n} \).

Let the corresponding value matrices be \(V(A), V(B) \) and their score matrix is \(s_{A,B} = [d_{ij}]_{m \times n} \text{then we define total score for each } c_i \text{ in U as } s_i = \sum_{j=1}^{n} d_{ij} \).

Methodology and algorithm

Assume there is a set of candidates (programmer), \(U = \{c_1, c_2, \ldots, c_n\} \) is a set of candidates to be recruited by software development organization in programmer post. Let \(E \) be the set of parameters related to innovative attitude of the programmer. We construct fuzzy soft set \((F,E) \) over \(U \) represent the selection of candidate by field expert \(X \), where \(F \) is a mapping \(F:E \rightarrow \mathbb{F}S_{m \times n} \) is the collection of all fuzzy subsets of \(U \). We further construct another fuzzy soft set \((G,E) \) over \(U \) represent the selection of candidate by field expert \(Y \), where \(G \) is a mapping \(G:E \rightarrow \mathbb{F}S_{m \times n} \) is the collection of all fuzzy subsets of \(U \). The matrices \(A \) and \(B \) corresponding to the fuzzy soft sets \((F,E) \) and \((G,E) \) are constructed, we compute the complements of the matrices \(A^c \) and \(B^c \) corresponding to \((F,E)^c \) and \((G,E)^c \) respectively. Compute \(A + B \), which is the maximum of selection of candidates by the judges. Compute \(A^c + B^c \), which is the maximum of non selection of candidates by the judges. using the definition (5.1), compute \(V(A+B), V(A^c + B^c) \), and the total trace of \(A^c + B^c \) and \((A+B)(A^c + B^c) \).
score \(S_i \) for each candidate in \(U \). Finally find \(S_j = \max(S_j) \), then conclude that the candidate \(c_j \) has selected by the judges. If \(S_j \) has more than one value the process is repeated by reassessing the parameters.

Now, using definitions 5-1, 5-2 and 5-3 we can construct a fuzzy soft matrix decision making method based on reference function by the following algorithm.

Algorithm

Step1: Input the fuzzy soft set \((F, E)\), \((G, E)\) and obtain the fuzzy soft matrices \(A, B\) corresponding to \((F, E)\) and \((G, E)\) respectively.

Step2: Write the fuzzy soft complement set \((F, E)^c\), \((G, E)^c\) and obtain the fuzzy soft matrices \(A^c, B^c\) corresponding to \((F, E)^c\) and \((G, E)^c\) respectively.

Step3: Compute \((A + B), (A^c + B^c), V(A + B), V(A^c + B^c)\) and \(s((A + B), (A^c + B^c))\).

Step4: Compute the total score \(S_i \) for each \(c_i \) in \(U \).

Step5: Find \(c_i \) for which \(S_i \) is selected for the post.

In case \(S_i \) occurs for more than one value, then repeat the process by reassessing the parameters.

Case Study

Let \((F, E)\) and \((G, E)\) be two fuzzy soft set based on reference function representing the selection of four candidates from the universal set \(U = \{c_1, c_2, c_3, c_4\} \) by the experts X and Y. Let \(E = \{e_1, e_2, e_3\} \) be the set of parameters which stand for intelligence, innovative and analysis.

\[
(F, E) = \{F(e_1) = \{(c_1, 0, 1), (c_2, 0.5, 0), (c_3, 0.1, 0), (c_4, 0.4, 0)\}, F(e_2) = \{(c_1, 0.6, 0), (c_2, 0.4, 0), (c_3, 0.5, 0), (c_4, 0.7, 0)\}, F(e_3) = \{(c_1, 0.5, 0), (c_2, 0.7, 0), (c_3, 0.6, 0), (c_4, 0.5, 0)\}\}.
\]

\[
(G, E) = \{G(e_1) = \{(c_1, 0.2, 0), (c_2, 0.6, 0), (c_3, 0.2, 0), (c_4, 0.3, 0)\}, G(e_2) = \{(c_1, 0.6, 0), (c_2, 0.5, 0), (c_3, 0.6, 0), (c_4, 0.8, 0)\}, G(e_3) = \{(c_1, 0.5, 0), (c_2, 0.8, 0), (c_3, 0.7, 0), (c_4, 0.5, 0)\}\}.
\]

These two fuzzy soft sets based on reference function are represented by the following fuzzy soft matrices based on reference function respectively

\[
A = \begin{bmatrix}
0.1 & 0.6 & 0.5 & 0.2 \\
0.5 & 0.4 & 0.7 & 0.6 \\
0.1 & 0.5 & 0.4 & 0.6 \\
0.4 & 0.7 & 0.5 & 0.6 \\
\end{bmatrix}, \quad B = \begin{bmatrix}
0.2 & 0.6 & 0.5 & 0.2 \\
0.6 & 0.5 & 0.8 & 0.6 \\
0.2 & 0.4 & 0.7 & 0.6 \\
0.3 & 0.8 & 0.5 & 0.6 \\
\end{bmatrix}
\]

Then, the fuzzy soft complement matrices based on reference function are

\[
A^c = \begin{bmatrix}
1.0 & 1.0 & 1.0 & 1.0 \\
0.5 & 0.4 & 1.0 & 1.0 \\
1.0 & 1.0 & 1.0 & 1.0 \\
0.4 & 0.7 & 0.5 & 0.5 \\
\end{bmatrix}, \quad B^c = \begin{bmatrix}
1.0 & 1.0 & 1.0 & 1.0 \\
0.5 & 0.4 & 1.0 & 1.0 \\
1.0 & 1.0 & 1.0 & 1.0 \\
0.3 & 0.8 & 0.5 & 0.5 \\
\end{bmatrix}
\]

Then the addition matrices are

\[
A + B = \begin{bmatrix}
0.2 & 0.6 & 0.5 \\
0.6 & 0.5 & 0.8 \\
0.2 & 0.4 & 0.7 \\
0.4 & 0.8 & 0.5 \\
\end{bmatrix}, \quad A^c + B^c = \begin{bmatrix}
1.0 & 1.0 & 1.0 \\
1.0 & 1.0 & 1.0 \\
1.0 & 1.0 & 1.0 \\
1.0 & 1.0 & 1.0 \\
\end{bmatrix}
\]

\[
V(A + B) = \begin{bmatrix}
0.2 & 0.6 & 0.5 \\
0.6 & 0.5 & 0.8 \\
0.2 & 0.6 & 0.7 \\
0.4 & 0.8 & 0.5 \\
\end{bmatrix}, \quad V(A^c + B^c) = \begin{bmatrix}
0.9 & 0.4 & 0.5 \\
0.5 & 0.6 & 0.3 \\
0.9 & 0.5 & 0.4 \\
0.6 & 0.3 & 0.5 \\
\end{bmatrix}
\]

Calculate the score matrix and the total score for selection

\[
S_1((A + B), (A^c + B^c)) = \begin{bmatrix}
-0.7 & 0.2 & 0 \\
0.1 & 0.1 & 0.5 \\
-0.7 & 0.1 & 0.3 \\
-0.3 & 0.5 & 0 \\
\end{bmatrix}
\]

Total score = \(-0.5, 0.5, 0.3, 0.2\)

We see that the second candidate has the maximum value and thus conclude that from both the expert’s opinion, candidate \(c_2\) is selected for the post.

VI. CONCLUSIONS

In our work, we have put forward some new concepts such as complement, trace of fuzzy soft matrix based on reference function. Some related properties have been established with example. Finally an application of fuzzy soft matrix based on reference function in decision making problem is given. It’s hoped that our work will enhance this study in fuzzy soft matrix.

VII. ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their careful reading of this paper and for their helpful comments.

REFERENCES

