
University of New Mexico University of New Mexico 

UNM Digital Repository UNM Digital Repository 

Psychology ETDs Electronic Theses and Dissertations 

Summer 8-1-2023 

EFFECTS OF TRANSCRANIAL DIRECT CURRENT STIMULATION EFFECTS OF TRANSCRANIAL DIRECT CURRENT STIMULATION 

ON CATEGORY LEARNING IN OLDER ADULTS ON CATEGORY LEARNING IN OLDER ADULTS 

Benjamin C. Gibson 
University of New Mexico 

Follow this and additional works at: https://digitalrepository.unm.edu/psy_etds 

Recommended Citation Recommended Citation 
Gibson, Benjamin C.. "EFFECTS OF TRANSCRANIAL DIRECT CURRENT STIMULATION ON CATEGORY 
LEARNING IN OLDER ADULTS." (2023). https://digitalrepository.unm.edu/psy_etds/441 

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital 
Repository. It has been accepted for inclusion in Psychology ETDs by an authorized administrator of UNM Digital 
Repository. For more information, please contact disc@unm.edu. 

https://digitalrepository.unm.edu/
https://digitalrepository.unm.edu/psy_etds
https://digitalrepository.unm.edu/etds
https://digitalrepository.unm.edu/psy_etds?utm_source=digitalrepository.unm.edu%2Fpsy_etds%2F441&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/psy_etds/441?utm_source=digitalrepository.unm.edu%2Fpsy_etds%2F441&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu


i 

 

     

  

     Benjamin C. Gibson 
       Candidate  

      

     Psychology  

     Department 

      

     This dissertation is approved, and it is acceptable in quality and form for publication: 

 

     Approved by the Dissertation Committee: 

 

               

     Dr. Vincent Clark, Chairperson 

  

 

     Dr. Jeremy Hogeveen 

 

 

     Dr. Davin Quinn 

 

 

     Dr. Sephira Ryman 

 

 

 

 



ii  

 

EFFECTS OF TRANSCRANIAL DIRECT CURRENT STIMULATION ON 

CATEGORY LEARNING IN OLDER ADULTS 

by 

BENJAMIN C. GIBSON 

 

B.A., Urban Planning, California State University Northridge, 2010 

M.S. Psychology, University of New Mexico, 2019 

 

 

DISSERTATION 

 

Submitted in Partial Fulfillment of the  

Requirements for the Degree of 

Doctor of Philosophy 

Psychology 

 

The University of New Mexico 

Albuquerque, New Mexico 

 

August 2023 

 

 

 

 

 

 

  

 

 



iii  

 

ACKNOWLEDGMENTS 

I would like to express my deepest gratitude to my mentor, Dr. Vince Clark, for his 

generosity with his time and resources as well as his support and guidance throughout my 

graduate studies. His wisdom and encouragement have been invaluable in helping me 

navigate the challenges of graduate school. Thank you as well to the members of my 

dissertation committee, Drs. Jeremy Hogeveen, Davin Quinn, and Sephira Ryman, for their 

insightful feedback. I would additionally like to thank those who have provided mentorship 

and sat on my previous committees, Drs. Katie Witkiewitz, Jay Sanguinetti, Eric Claus, and 

Eric Ruthruff.  

I would like to express my appreciation to my parents, Bill and Kathy, for their unconditional 

love and support. About a decade ago I told them of my desire to attend a PhD program, and 

without their endorsement then I would not have been able to start this journey. Their 

guidance, encouragement, and belief in me have been a constant source of motivation, and I 

am deeply grateful for their presence in my life.  

Lastly, I would like to thank Tori Votaw, whom I met as a fellow cohort member a week 

after moving to Albuquerque to start this journey, and whom I now have the privilege to call 

my wife. Tori has been an unwavering source of love, support, and encouragement 

throughout my doctoral journey, and the example she has set while completing this degree 

alongside me has been a constant source of strength and inspiration. Without her, I would not 

have been able to achieve this accomplishment. 

Thank you all for your contributions to my academic and personal growth. 

 



iv  

 

EFFECTS OF TRANSCRANIAL DIRECT CURRENT STIMULATION ON 

CATEGORY LEARNING IN OLDER ADULTS 

by 

BENJAMIN C. GIBSON 

Ph.D., University of New Mexico, 2023 

M.S. Psychology, University of New Mexico, 2019 

B.A., Urban Planning, California State University Northridge, 2010 

 

ABSTRACT 

Those over the age of 65 occupy a growing proportion of the population. With this growth, 

cognitive issues that accompany aging are increasingly coming to the forefront, yet despite 

this focus, ways to ameliorate cognitive issues in older adults are lacking. Transcranial direct 

current stimulation (tDCS) offers one possibility for improving cognitive function in older 

adults, but tDCS application is hindered by individual factors that manifest as heterogeneity 

in outcomes across the literature. This is especially the case in older adults, where changes in 

anatomy and functionality provide a potential complication for tDCS application. Presented 

here are three studies seeking to explicate some of that heterogeneity. In Study 1, the 

behavioral effects of tDCS in older adults are delineated, specifically whether those with and 

without Mild Cognitive Impairment experience different effects. In healthy older adults, 

there was a main effect of active tDCS on task performance where accuracy was increased 

across all blocks. In those with MCI, an interaction between active tDCS and task block was 

observed, such that improvement in the task did not occur until after 20 minutes. In Study 2, 

finite element modeling of tDCS current flow was performed in order to understand how 

changes in white matter, grey matter, and cerebrospinal fluid impact the current introduced 

by tDCS. Among those who received active tDCS, significant relationships existed between 

white matter and cerebrospinal fluid ratios and task performance, with higher white matter 
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and lower cerebrospinal fluid ratios predicting better performance in the active tDCS group. 

Lastly, higher electric field magnitude underneath the electrode was predictive of better task 

performance in the active stimulation group. In Study 3, differences in resting state 

functional connectivity at baseline were used to predict benefit following active tDCS. 

Consistent with findings of dedifferentiation in older adults, where functional connectivity 

patterns in older adults are less segregated than those in younger adults, stronger 

intraconnectivity in the front-parietal control network was predictive of better task 

performance in those who received active tDCS. Together, these results highlight how brain 

differences in older adults can affect tDCS application, and how understanding these 

differences can ensure that the potential benefits of tDCS in older adults are maximized.   
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Effects of Transcranial Direct Current Stimulation (tDCS) on Category Learning in Older 

Adults with and without MCI 

 

Abstract 

The number of adults over the age of 65 is increasing, but the common cognitive disorders 

that affect older adults are inadequately addressed. Transcranial direct current stimulation 

(tDCS) is an emerging technology that could play a role in improving cognition in older 

adults. In a randomized, sham-controlled study, tDCS was applied to the right inferior frontal 

gyrus of 82 adults between the ages of 50 and 84 with and without Mild Cognitive 

Impairment. TDCS was applied once (2 mA for 30 minutes) during the training portion of a 

visual categorization task featuring discovery learning. In healthy older adults, there was a 

main effect of active tDCS on accuracy where accuracy was increased across all the blocks. 

In those with MCI, an interaction between active tDCS and task block was observed, such 

that improvement in the task did not occur until after 20 minutes. An increase in reaction 

time with active stimulation was also observed in the healthy control group. These findings 

offer promise for future tDCS work in both healthy older adults and those with cognitive 

impairment. However, the current study provides evidence that differential effects occur 

between these groups and future studies should seek to elucidate the differences that underlie 

these contrasting effects. 
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Introduction 

The proportion of older adults in the population is increasing. In the United States, it is 

forecasted that the population of adults over the age of 65 will increase from around 55 

million in the year 2022 to nearly 85 million by the year 2050 (Ortman, 2014). Those over 

the age of 65 are also living longer, with the average life expectancy of a 65 year old 

increasing from 15 to 19 years since the 1970’s (Ortman, 2014). With an aging population, 

awareness of possible cognitive issues associated with aging is becoming increasingly 

widespread, leading many older adults experiencing changes in their subjective cognitive 

function to seek medical consultation (Jessen et al., 2020). A third of adults over the age of 

65 are affected by some form of diagnosable neurocognitive decline (DeCarli, 2003), but 

even those who do not meet the criteria for cognitive disorders associated with aging, such as 

Alzheimer’s and Mild Cognitive Impairment (MCI), still report subjective changes in 

cognitive function that can be distressing (Harada et al., 2013; Jessen et al., 2020). An 

increasing population of older adults, coupled with an increasing awareness of the deleterious 

effects of cognitive decline, will likely increase the costs associated with treating age-related 

cognitive problems in the future, which already worldwide is estimated at a trillion dollars 

per year (Patterson, 2018). Despite this financial outlay and an increasing awareness, current 

interventions to alleviate neurocognitive decline are largely ineffective (Fink et al., 2018; 

Kane et al., 2017), meaning that better methods for combating neurocognitive decline are 

needed.  

  

One possible method for combating neurocognitive decline is a form of noninvasive brain 

stimulation, transcranial direct current stimulation (tDCS), which holds several key 
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advantageous features. Compared to other interventions, tDCS is inexpensive and easy to 

implement, so could potentially be used as a preventative measure in older adults not yet 

experiencing cognitive decline, or as an intervention in those who have been diagnosed. In 

tDCS, small electrodes are placed on the scalp and these deliver a weak current typically in 

the range of 1 to 2 milliamps (mA). The electrical currents induced by tDCS, after passing 

through the skull and into the brain, are able to modulate the potential of neuronal 

membranes, change synaptic function (Liebetanz et al., 2002; Nitsche & Paulus, 2000, 2001), 

and then possibly change cognitive function. In a population of neurons, anodal stimulation, 

where the current flows into the brain, generally induces a depolarization of neuronal 

membranes that makes action potentials more likely, while cathodal stimulation, where the 

current flows out of the brain, produces a polarization that makes action potentials less likely 

(Lefaucheur et al., 2017; Nitsche et al., 2003). However, this is a net effect and individual 

neurons underneath the electrode may respond differently according to their orientation or 

shape. Indeed, all neurons are simultaneously hyperpolarized and hypopolarized, such that in 

a typical neuron, with its long axis reaching towards the anodal electrode at one end and the 

soma reaching away from the anodal electrode at the other end, the dendrites at the end of the 

long axis will be hyperpolarized while the soma is depolarized (Bikson et al., 2004). In cases 

where the neuron is at any orientation between 89 and 144 degrees to the anodal electrode, 

any excitation effect will be weaker, while an inhibitory effect would be observed if the 

neuron was oriented between 146 and 180 degrees relative to the anodal electrode. For cases 

when the neuron is perfectly perpendicular to the current flow, or the shape of the neuron 

itself is symmetrical, then the effect of tDCS current on excitability would be null (Rawji et 

al., 2018). In the idealized case of an asymmetric neuron at 90 degrees to the anode, the 
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maximum theorized change to membrane potential is between 0.2 and 0.5 mV, accounting 

for at most 2.5% of the change needed to get a resting neuron to firing threshold (Opitz, 

Falchier, Yan, Yeagle, Linn, Megevand, Thielscher, A, et al., 2016; Radman et al., 2009). 

This means that any effect on behavior tDCS might have is one where this small 

physiological effect is compounded across an entire network of neurons. In practice this 

means that, 1) sound experimental design is vitally important to ensure that the small effect 

of tDCS is maximized, and 2) that individual differences are quite capable of nullifying any 

benefit of tDCS.  

  

One protocol that has previously been shown to maximize the effects of tDCS is anodal 

application to the right inferior frontal gyrus (rIFG; or F10 in the 10-20 EEG system) coupled 

with the cathode placed on the left arm. Applied concurrently during learning (i.e. “online” 

stimulation), this protocol has demonstrated beneficial effects on performance with effect 

sizes up to d = 1.2 (Clark et al., 2012; Coffman et al., 2012; Falcone et al., 2012), more than 

double the effect size found in a meta-analysis for tDCS applied during learning across 

various protocols (Simonsmeier et al., 2018). The initial studies of the F10 protocol were 

conducted in a training task called DARWARS where subjects are tasked with learning to 

identify threats in computer generated pictures of urban areas of the Middle East (Clark et al., 

2012; MacMillan et al., 2005). Subsequent research has used the Predicting Response To 

F10(X) tDCS (PRETXT) task (Gibson et al., 2020, 2021). In this task, pictures of European 

streets are presented one at a time on a computer screen and subjects are instructed to learn 

the arbitrary rules that separate the pictures into two categories. These tasks are different but 

have important similarities: both require sustained attention and discovery learning, 
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processes that are both associated with the rIFG stimulation site through both stimulation and 

imaging findings (Mayseless & Shamay-Tsoory, 2015; McKinley et al., 2013; Nelson et al., 

2014; Seger et al., 2000; Seger & Cincotta, 2006). 

  

While the F10 tDCS protocol has been previously successful in improving performance in 

the PRETXT task, that was in a sample of young adults with an average age of 23.2 (SD = 

8.34) (Gibson et al., 2020). For older adults, changes in cognition and brain structure provide 

potential complications for tDCS application. Across the literature, tDCS has been applied to 

both older adults with cognitive impairments and to healthy older adults using a variety of 

experimental parameters (Chen et al., 2022; Indahlastari, Hardcastle, et al., 2021a). Working 

memory has been a common target for tDCS in healthy older adults. The majority of these 

studies have been successful in improving measures of working memory, with a systematic 

review noting that 10 of 14 studies reported improvement (Goldthorpe et al., 2020). In 

another recent meta-analysis (Indahlastari, Hardcastle, et al., 2021a), the effect size for tDCS 

across cognitive studies in healthy adults over 65 was a moderate g = 0.63. The reviewed 

studies all applied tDCS to the frontal cortex to improve attention (g = 0.63), working 

memory (g = 0.48), error awareness (g = 0.54), and episodic memory (g = 1.2) (Indahlastari, 

Hardcastle, et al., 2021a). Some of the reviewed working memory studies applied tDCS over 

multiple days, ranging from 5 sessions to 20, but all studies exploring other cognitive 

abilities applied a singular session of tDCS. Interestingly, there was no difference in effect 

size within the working memory domain between studies applying tDCS once (g = 0.51) and 

studies applying tDCS on multiple occasions (g = 0.51) (Indahlastari, Hardcastle, et al., 

2021a). Across cognitive processes there is evidence that single session tDCS is capable of 
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improving functions in healthy older adults, but there is no clear evidence to support a 

specific stimulation length or strength (Indahlastari, Hardcastle, et al., 2021a). 

  

Compared to the above findings in healthy older adults, evidence for tDCS improving 

outcomes in those with MCI or Alzheimer’s is mixed to poor (Chen et al., 2022; Inagawa et 

al., 2019; Rajji, 2019). Across numerous outcomes in a recent meta-analysis, including 

recognition memory, attention, and executive function, tDCS application failed to benefit 

those diagnosed with Alzheimer’s or MCI. An exception to this pattern was the mini-mental 

state examination, which was included in 11 of 16 reviewed studies and showed a small 

average improvement across studies (Chen et al., 2022). However, in this body of studies 

only 1 applied online tDCS, while the rest applied offline tDCS across multiple days ranging 

from 3 sessions per week for 2 weeks to daily sessions for 6 months (Ferrucci et al., 2008; Im 

et al., 2019). While a greater number of sessions was found to elicit a greater benefit across 

studies, the paucity of previous research exploring online application of tDCS in those with 

MCI leaves open the possibility that even single session online stimulation could be 

effective. An important difference in comparing studies conducted in healthy older adults and 

studies conducted with those with MCI is that, while the majority of studies in healthy older 

adults applied online stimulation, the opposite was true of studies with MCI, where the 

majority are offline. It is thus possible that online stimulation could have better results than 

those seen in meta-analysis, even if those few studies applying online tDCS across multiple 

sessions have not found consistent benefit (Cotelli et al., 2014; Inagawa et al., 2019).  
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While existing work applying tDCS to both healthy older adults and those with MCI shows 

some promise, those parameters that maximize the effects of tDCS in these populations has 

yet to be discovered. The goal of the current study was to improve performance on the 

PRETXT task by applying the previously successful F10 protocol to a sample of older adults, 

both those considered healthy and those with MCI.  

 

Methods 

Subjects 

Both healthy older adults and those with MCI were recruited for this study from the 

Albuquerque, New Mexico, area. All data collection occurred at the Mind Research Network. 

MCI status was determined either by prior diagnosis by a medical professional, as reported 

by the subject themselves or a subject’s caregiver, or by an assessment conducted as part of 

the study. For this study we classified both subjects with a preexisting diagnosis of MCI, and 

those without a diagnosis of MCI but who scored a 25 or lower on the Montreal Cognitive 

Assessment (MOCA) (Nasreddine et al., 2005a), as having MCI. The inclusion criteria for 

healthy controls in the study were as follows, 50-90 years old, right handed, learned English 

by age 7, no history of psychiatric hospitalization or current psychosis, no excessive drug, 

alcohol or nicotine use, no significant history of epilepsy, migraines, stroke or traumatic 

brain injury, no neurodevelopmental disorders such as ADHD, not taking medications with 

significant psychotropic effect, no severe sensory impairment, no severe chronic illnesses, 

not requiring a helper animal, no previous experience with tDCS, no metal or electronic 

implants that might interfere with stimulation or be an magnetic resonance imaging (MRI) 

contraindication, no allergies to nickel or latex, no current potential COVID-19 symptoms. 
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For subjects with MCI, inclusion criteria were identical expect for exceptions concerning 

medications with psychotropic effects, where medications related to neurodegenerative 

condition and medications for anxiety and depression were allowed. MCI patients also 

needed to be able to sign a consent form, or have a legally authorized representative able to 

sign on their behalf. In order to ensure understanding of the consent form, subjects were 

asked a series of questions about information presented in the consent form such as, “Tell me 

the main risks and possible benefits of participating in this study”. Subjects were paid $10 

dollars per hour as well as receiving bonuses for completing specific portions of the study, 

including $25 for the MRI, $25 for a blood draw and $10 dollars for completing all portions 

of the study. Prior to the beginning of the study, it was anticipated that some individuals 

would complete the MRI, while others would not due to preference, contraindications to 

MRI, or funding constraints.  

 

Upon arrival at the Mind Research Network, all subjects were informed of the details and 

goals of the study, including the use of tDCS and MRI, and consented. For those who 

received an MRI, participation lasted 6-8 hours spread over two days (Figure 1). On day 1 

subjects completed 2-3 hours of neuropsychological assessment including the MOCA, 

followed by their first MRI scan, with the MRI scan lasting around 1.5 hours. During this 

scan subjects completed several measures, including structural, resting state, and the baseline 

portion of the PRETXT task. On day 2 subjects completed the training portion of the 

PRETXT task while receiving tDCS. Immediately after the training portion was complete, 

subjects returned to the scanner and completed the test portion of the PRETXT task in 

addition to other measures. For subjects who did not receive an MRI, participation lasted 4-6 
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hours and was also spread over 2 days. On day 1 subjects completed the same 

neuropsychological assessments. Then on day 2 subjects completed all portions of the 

PRETXT task consecutively (Figure 2).  

 

PRETXT Task 

The experimental task was a modified version of that used previously (Gibson et al., 2020, 

2021), created and presented in E-Prime Version 3 (Psychology Software Tools, Sharpsburg, 

PA). The goal of the PRETXT task is to learn to correctly classify pictures of European 

streets into 2 categories. All pictures were standardized to be 1,670 pixels wide and between 

600 and 750 pixels tall when presented on a computer monitor with a display resolution of 

1920 by 1080. In centimeters these dimensions were 52 by 19-24. When presented in the 

scanner on a JVC DLA Multimedia projector (Model DLA-SX 200), the dimensions of the 

picture were 30 cm by 22 cm. Participants were much closer to the image in the scanner, a 

distance of 14 cm compared to 85 cm outside, meaning that horizontal and vertical visual 

angles were larger inside the scanner, 93 by 76 degrees, compared to outside, 34 by 16 

degrees. Within the scanner, responses were recorded using a MIND Input Device 

(https://www.mrn.org/collaborate/mind-input-device), and outside using a computer 

keyboard. The task was broken into 3 segments, baseline, training, and test. Throughout the 

task, static street views were presented on the screen for 2.5 seconds. During those 2.5 

seconds subjects needed to respond with a button press saying whether they thought the 

picture belonged in category 1 or 2. Following 2 baseline blocks of 50 trials without 

feedback, there were four blocks of training, each with 60 trials in which subjects received 

accuracy feedback following each response telling them if they had correctly categorized the 

https://www.mrn.org/collaborate/mind-input-device
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previous picture. Accuracy feedback consisted of a screen stating that subjects either 

responded correctly, incorrectly, or failed to respond in the 2.5 second interval. This written 

feedback was accompanied by corresponding auditory feedback consisting of male voices 

with various European accents. Training blocks were followed by the post-test, which like 

the baseline did not have feedback. The test blocks consisted of four blocks of 50 trials each. 

The baseline set was framed as a practice block during which subjects were instructed to 

become accustomed to the timing of the stimuli and to begin hypothesizing about criteria that 

might differentiate the categories.  

  

To successfully perform the task, subjects needed to learn that an arbitrary difference 

separated the 2 categories, specifically that pictures taken on the left-hand side of the road 

where traffic would be approaching them belonged to category 1, while pictures taken on the 

right hand side where traffic would be moving away belonged to category 2. Prior to 

beginning the study, subjects were only told that there were two categories and were not 

informed about any possible ways to differentiate them. Instead, through discovery learning 

(Bruner, 1961), they were tasked with gaining knowledge of the pertinent criteria via 

feedback during the training portion. For those who completed the baseline, training, and test 

sections of the task outside of the MRI, the baseline and test sections were performed on the 

same desktop computer on which all subjects completed the tDCS-accompanied training 

portion. After completion, subjects were asked what they thought was the critical difference 

or differences between category 1 and 2, and to list the criteria they tried through the training 

portion in order to try and correctly classify the pictures. For all blocks of the PRETXT task, 
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accuracy was calculated by dividing number of trials correct by total number responses. 

Trials in which the subject did not respond in time were not counted.   

 

tDCS  

TDCS was administered via an ActivaDose II iontophoresis unit (Activa Tek, Inc.). Double 

blinding was performed using a blinding box displaying 6 switches. Two ActivaDose II units 

were connected to the blinding box, one delivering the active dose and one the sham dose, 

and specific switches on the blinding box allowed the current of one or the other of the 

machines to pass. Subjects were randomized to receive an active anodal dose of 2.0 mA or a 

sham dose applied to F10, with the return cathodal electrode placed on the contralateral 

triceps. Subjects were randomized to a switch associated with one of these conditions 

beforehand and the researcher administering tDCS was unaware of the dosages associated 

with the 6 switches. Two 5x5 cm sponges with a metal backing enclosed in a rubber holder 

were used to deliver tDCS current. Sponges were soaked overnight in SignaGel electrode 

paste. The electrode was attached to the subject’s head with an Amrex Velcro strap and to the 

arm with Coban adhesive wrap. Stimulation lasted 30 minutes and began after the baseline 

block. At 30 seconds and 4 minutes after the beginning of stimulation, subjects completed a 

sensation questionnaire asking them to rate the degree of itching, heat, and tingling on a 0-10 

Likert-type scale. Subjects were informed that sensations rated 7 or above would prompt the 

termination of stimulation and end the experiment. After the first five minutes of stimulation, 

subjects began the 1st training block, with stimulation ending in the last minute of the 3rd 

training block. Following completion of the training portion, subjects were asked to guess 

whether they believed they received real or placebo stimulation.  
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Statistical Analysis 

Analyses were conducted in Statistical Product and Service Solutions (SPSS) and R. To 

understand differences in accuracy and reaction time between tDCS conditions, linear mixed 

models (LMM) were used. LMM were created using the R package lme4 (Bates et al., 2014). 

LMM are superior to repeated measures analysis of variance (ANOVA) for the current 

analysis because they are better able to account for the violation of sphericity and able to 

include subjects with missing data. LMM also account for nested observations, time within 

people, and correlated residuals between people across the 9 blocks. Three different models 

for accuracy and reaction time were constructed. In both cases there was a combined model 

with both HC and MCI subjects, as well as models for each group separately. The models for 

accuracy included main effects of tDCS condition and block (baseline thru test, 1-9, with the 

2 baseline blocks combined) and the interaction between block and condition. Blocks 1-9 

were coded -4 to positive 4 so that the main effect of condition represented the impact on 

accuracy averaged over all blocks. Those for reaction time additionally included accuracy 

(grand-mean centered) to explore whether reaction time was changed across stimulation 

conditions regardless of accuracy. All models included random intercepts and slopes and 

used restricted maximum likelihood. Additional analyses were performed in SPSS. These 

included one-way ANOVAs examining possible differences in sensations between 

stimulation groups and cross-tabulation and χ2 test to examine possible differences in other 

between-groups variables including sex and guessed condition (active stimulation or placebo 

stimulation). 
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Hypotheses  

1) Healthy control subjects who receive active stimulation will demonstrate greater rule 

learning (as measured by increased in categorization accuracy during training and test 

relative to baseline) compared to subjects who receive sham stimulation.  

2) Subjects with MCI/AD who receive active stimulation will demonstrate greater rule 

learning (as measured by categorization accuracy during training and test relative to baseline) 

compared to subjects who receive sham stimulation.  

 

Results  

Data from 82 subjects was collected for the analyses, with 25 subjects classified as MCI and 

57 as healthy controls (Table 1). The average age for the entire sample was 66.9 (SD = 9.1) 

and ranged from 50 to 84. The average was 63.9 (SD = 7.3) for the HC group and 73.8 (SD = 

8.9) for those with MCI. Out of the entire sample of 82, 37 subjects or 45% were male. 

Broken down by group it was 19 out of 57 or 33% male in the HC group, and 18 out of 25 or 

72% male in the MCI group. The distribution of sex and diagnosis was such that there was a 

significant relationship between them, χ2 (1, N = 82) = 10.49, p = 0.001), with those in the 

MCI more likely to be male (72%) and those in the HC group more likely to be female 

(67%). Out of the total sample, 2 participants classified themselves as Native American and 

both were healthy controls. Two participants classified themselves as black, with one being a 

HC and one being classified as MCI. Seventeen individuals classified themselves as 

Hispanic, with 5 of these considered as MCI participants for this study. The rest of the 

sample of 61 classified themselves as white, which included 19 participants with MCI.   
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Overall, 43 (13 MCI) of the final sample received active stimulation and 39 (10 MCI) 

received the sham dose. Twenty-nine (9 MCI) subjects who received active stimulation and 

29 (8 MCI) who received sham performed the baseline and test blocks in the scanner while 

14 (4 MCI) in the active group and 10 (4 MCI) in the sham group performed these parts of 

the study outside the scanner. One-way ANOVAs indicated significant differences in 

sensations between groups (Figure 3). While there was no significant difference in heat at 

time 1 (F(1,80) = 1.45, p = 0.232) or time 2 (F(1,80) = 0.087, p = 0.769), (F(1,80), itching 

and tingling were significantly different at time 1 (F(1,80) = 11.16, p = 0.001), (F(1,80) = 

13.57, p < .001) and time 2 (F(1,80) = 8.12, p = 0.005), (F(1,80) = 10.69, p = .002). At both 

of these time points those in the active group reported greater itching (time 1: M = 2.65, SD = 

1.9; time 2: M = 2.16, SD = 1.36) and tingling (time 1: M = 2.42, SD = 1.24; time 2: M = 

2.19, SD = 1.2) compared to the sham group (itching at time 1: M = 1.54, SD = 0.88; time 2: 

M = 1.44, SD = 0.85) (tingling at time 1: M = 1.56, SD = 0.78; time 2: M = 1.44, SD = 0.82). 

Despite this there was no significant relationship between assigned condition and guessed 

condition with the possible guesses being active, placebo, and unsure χ2 (2, N = 82) = 2.86, p 

= 0.239). 

 

Linear Mixed Models  

For both accuracy and reaction time, there were 718 observations from 82 subjects. Test data 

from 5 subjects tested in the scanner, 1 active and 4 sham, were missing. These 20 missing 

observations were estimated with restricted maximum likelihood conditioning on all model 

predictors and weighing those with complete data sets more heavily. In examining the data 

prior to analysis, it was observed that there were differences in accuracy and reaction time 
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between those who performed the baseline and test in the scanner and those who performed 

these blocks outside the scanner. Whether a subject was part of the MRI portion of the study 

was thus added as a covariate to the models and coded .5 or -.5.  

 

Accuracy  

The intraclass correlations (ICC) for the combined, HC, and MCI models differed. The 

combined group ICC was 58%, meaning that 58% of the variance in accuracy was due to 

between-person differences, while 42% was due to change over time. The ICC in the HC was 

similar to that of the combined group at 60%. However, the ICC for the MCI group was 40%. 

In the total sample (Figure 4; Table 2), the main effect of active stimulation on categorization 

accuracy was not significant across all blocks (b(SE) = 3.07(1.68), p = 0.072). The 

interaction between block and tDCS condition was also not significant (b(SE) = 0.62(0.44), p 

= 0.164), and the model examining the interaction between block and condition did not fit 

significantly better than model with main effects only (χ2(1) = 2.01, p = 0.157). For the HC 

group only (Figure 5; Table 3), the main effect of active stimulation was significant (b(SE) = 

4.78(1.94), p = 0.017), meaning that active stimulation cohort exhibited greater 

categorization accuracy averaged across all blocks compared to sham. The interaction 

between block and condition was not significant, (b(SE) = 0.3(0.58), p = 0.607), and as in the 

combined sample, the model including the interaction between block and condition did not 

significantly improve model fit (χ2(1) = 0.28, p = 0.599). In the MCI group (Figure 6; Table 

4), the main effect of tDCS condition was not significant (b(SE) =2 .59(2.88), p = 0.377). 

However, the interaction between condition and block was significant (b(SE)=0.6(1.17), p = 
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0.032). Accordingly, the model including the interaction between block and condition had 

significantly better fit than the main effects only model (χ2(1) = 5.23, p = 0.022). 

 

Reaction Time 

The ICCs for reaction time were similar: 37% for the combined group, 39% for the healthy 

control group, and 30% for the MCI group. For the combined sample (Figure 7; Table 5), the 

main effect of accuracy was significant (b(SE) = -3.72(0.88), p < 0.001, where increased 

accuracy was associated with decreased reaction times. The main effect of tDCS condition on 

reaction time was not significant (b(SE) = -40.51(36.4), p = 0.269), nor was the interaction 

between block and condition (b(SE) = -9.41(8.71), p = 0.283). The main effect of whether an 

individual subject performed the baseline and test blocks in the MRI was also significant, 

with those in the MRI having a significantly faster reaction time in milliseconds (b(SE) = -

117.17(39.67), p = 0.004) (Figure 8; Table 5). Examining the HC group alone, the main 

effect of accuracy was again significant, (b(SE) = -4.12(0.97), p < 0.001). Unlike in the 

combined sample, tDCS condition was significant (b(SE) = -94.22(39.99), p = 0.022), 

indicating that active stimulation decreased reaction times over and above the effect of 

accuracy. The main effect of performing the baseline/test in the MRI was also significant 

(b(SE) = -150.5(43.99), p = 0.001) (Table 6), while the interaction between block and tDCS 

condition was not significant (b(SE) = -20.84(10.47), p = 0.052). However, the model 

including the interaction effect had significantly better fit (χ2(1) = 4.01, p = 0.045) (Figure 9; 

Table 7). In the MCI group neither the main effect of tDCS condition (b(SE) = 44.54(67.15), 

p = 0.523), or the interaction between condition and block (b(SE) = 15.73(15.61), p = 0.325) 

were significant influences on reaction time. And unlike the combined and HC samples, the 
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main effect of performing the baseline/test blocks in the MRI (b(SE) = -67.28(71.74), p = 

0.356), and the main effect of accuracy (b(SE) = -3.68(1.91), p = 0.054) were not significant. 

 

Discussion 

In the first application of active tDCS to the right IFG in older adults (Indahlastari, 

Hardcastle, et al., 2021a; Siegert et al., 2021), the current study observed an improvement in 

performance during a difficult discovery learning task. From baseline to test, those in the 

combined sample who received active stimulation improved an average of 11.3%, compared 

to an average of 4.0% in those who received sham stimulation. For HC alone, improvement 

with active stimulation was 12.3% compared to 5.1% in sham. MCI patients who received 

active stimulation had an 8.4% increase in performance from baseline to test, 7 times greater 

than those who received sham stimulation who had an average improvement of 1.2%.  

 

It is notable that improvement was seen in older adults using a stimulation protocol 

previously successful in younger adults. Only a handful of studies have been conducted 

comparing the same tDCS protocols between younger and older adults, but differing effects 

of anodal stimulation between these populations is common (Habich et al., 2020). For 

example, during anodal stimulation applied during a resting state MRI scan, opposing 

patterns of functional connectivity changes were observed between younger and older adults, 

indicating that different physiological effects can follow from the same stimulation protocol 

(Antonenko, Nierhaus, et al., 2018). In another study, older and younger adults looked at 

pictures of famous places and people and were asked to recall the name. Anodal tDCS was 

applied to the left and right anterior temporal lobe (ATL) in a cross-over design. In face 
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recall an interaction occurred where older adults had greater improvement during left ATL 

stimulation, whereas younger adults had greater improvement during right ATL stimulation. 

When identifying places, older adults improved with both right and left ATL stimulation, 

while younger adult performance declined with both right and left ATL stimulation. These 

findings indicate that behavioral results can also differ across age groups receiving the same 

stimulation protocol (Ross et al., 2011). Together, different physical and behavioral 

consequences of stimulation in older adults fits with theoretical accounts of aging derived 

from fMRI, where older adults display more overall frontal lobe activation and more bi-

hemispheric activation compared to younger adults (Davis et al., 2012; Hakun et al., 2015a; 

Turner & Spreng, 2012a)   

 

Given the importance of age in tDCS application, a post-hoc analysis was performed with the 

current sample, regressing age on PRETXT test performance. Age was a significant predictor 

of performance on the test blocks in the active group, (R2 = 0.098, β = -0.31, t(40) = -2.08, p 

= 0.044). There was no such relationship in the sham group (Figure 10). So, while the 

average age of those who received active anodal stimulation was 67.6 years, of those who 

had over 60% accuracy in the test blocks, 11 had ages lower than the average, while only 4 

had ages above the average. By overall categorization accuracy, those lower in age appear to 

be the primary benefactors of active tDCS in the current study. 

 

Nevertheless, a significant interaction between active tDCS and block was observed in the 

on-average older MCI group, where improvement in categorization occurred gradually over 

the training blocks, such that only in the last training block did the average performance of 
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active MCI subjects meaningfully separate from their sham counterparts. This compared to 

the HC group, where improvement was instant, with a gap in performance between active 

and sham stimulation occurring in the first training block. This difference could be due to 

tDCS of the rIFG improving different cognitive processes in younger and older subjects 

within our sample. In the younger HC sample, rIFG stimulation may be improving insight 

and creativity, processes that are associated with the rIFG stimulation area (Bowden & Jung-

Beeman, 2003; Mashal et al., 2007; Mihov et al., 2010). As the rules that must be discerned 

in order to correctly categorize the pictures are arbitrary, having to do with how the picture is 

taken rather than anything in the picture itself, insight and creativity are key to success in the 

task. In addition to imaging studies, there is some evidence linking the rIFG with creativity 

via tDCS, from a study where both anodal and cathodal stimulation were each applied to the 

contralateral inferior frontal gyri concurrently, with rIFG anodal coupled with left IFG 

cathodal increasing creativity (Hertenstein et al., 2019; Mayseless & Shamay-Tsoory, 2015).  

 

In the older MCI sample, delayed improvement could have occurred due to improvements in 

sustained attention, another process associated with the rIFG (Bowden & Jung-Beeman, 

2003; Hampshire et al., 2009, 2010). Another way of conceptualizing attention over an 

extended period is as the vigilance decrement, which is a decrease in the ability to notice 

details over time (Helton & Russell, 2011; Parasuraman, 1979) that begins to occur around 

20 minutes (Hitchcock et al., 2003). With the training portion of the PRETXT task occurring 

over 40 minutes, an increased ability to attend to details in the second half of the training 

could have provided a performance boost to those with MCI.  
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Stimulation also influenced reaction time, though this was only significant in the HC group. 

Notably, those in the HC group who received active anodal stimulation had faster reaction 

times when accuracy was controlled for, indicating that stimulation itself decreased reaction 

times. Of note, while the effect of accuracy decreased reaction times in both HC and those 

with MCI, the effect of active stimulation was reversed, where active stimulation decreased 

reaction times in the HC group by 94 milliseconds, but increased reaction times (though non-

significantly) in the MCI group by 45 milliseconds. This difference in reaction times is 

further evidence for possible contrasting mechanisms in MCI and healthy control subjects in 

our sample.   

 

It is possible that in another context, this difference engendered by active anodal tDCS could 

provide a meaningful benefit to those living with MCI. Harnessing the small effect of tDCS 

seen in the current study in those with MCI may require multiple applications of online 

tDCS, which is underexplored in the literature (Chen et al., 2022). Those studies that have 

used multiple applications of online tDCS in those with MCI have suffered from poor design, 

where online tDCS has been applied while subjects perform multiple tasks (Gonzalez et al., 

2021; Martin et al., 2019). As a subthreshold neuromodulator, online tDCS can be said to be 

partially targeted towards neurons that are close to firing, i.e. engaged in that online task 

(Kronberg et al., 2017, 2019). As it may take up to 5 minutes for tDCS to affect neuronal 

excitability, changing the target of the tDCS current by changing the task multiple times 

during stimulation is likely to minimize any effect of tDCS (Bindman et al., 1964). Future 

tDCS application in those with MCI should thus explore online stimulation during a singular 

task, as in the current study. While this may hinder the transferability of any trained task, it 
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will provide additional evidence for the efficacy of tDCS in adults with MCI. With this 

established, tasks with the most utility for improving day-to-day function can then be 

explored. 

 

Limitations  

While the results provide tentative support for the efficacy of tDCS application in older 

adults, the magnitude of tDCS effect in this study is a smaller than that seen previously in the 

PRETXT task. Besides the differences in populations, there were modifications in the 

PRETXT task that could also account for differences in performance. While in the current 

version of the task there was one rule concerning traffic direction that subjects needed to 

learn in order to correctly categorize the pictures, in the previous version there was an 

additional rule present in half of the pictures, where an umlaut was associated with left sided 

traffic and a tilde with right sided traffic. It is unclear what effect the removal of this rule 

could have had, and it is possible that the absence of it made the task either easier or more 

difficult.   

 

It is noteworthy that subjects who completed the baseline and test blocks in the fMRI had 

different accuracy and reaction times than those who completed these blocks outside the 

scanner, a possibility that was not anticipated when designing the study. Examining test data 

only, across HC and MCI groups those who completed these blocks in the scanner had an 

average accuracy of 57.9% (SD=17.3%; n=29, 31% MCI) compared to those who completed 

these outside the scanner who had an average accuracy of 63.6% (SD=18.2%; n=14, 29% 

MCI). Curiously, this pattern was reversed for those who received sham stimulation, with 
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those in the scanner performing better at 55.2% (SD=12.9%; n=26, 27% MCI) than those 

performing the test outside at 50.6% (SD=12.4%; n=9, 44% MCI). This pattern is likely 

attributable to the small sample size in the latter group, which was also comprised of a larger 

percentage of those with MCI, rather than any interaction with stimulation. Being in the 

scanner had a more uniform impact on reaction times between stimulation groups. While the 

effect of being in the MRI was negligible during the test blocks, reaction times at baseline 

were significantly different inside and outside the scanner. Within the scanner the average 

response time in milliseconds at baseline was 921.9 (SE=43.1; n=58. 29% MCI), compared 

to outside the scanner where it was 1295.2 (SE=48.9; n=24, 33% MCI). While the 

instructions given to participants outside and inside the scanner were identical, several other 

differences may account for the discrepancies seen in reaction time as well as accuracy inside 

and outside the scanner. 

 

One difference was the experimental design. Those completing the task outside the scanner 

performed all 9 blocks consecutively within the span of 2 hours. For those who received an 

MRI, the baseline portion of the PRETXT task was performed on a separate day from the 

other blocks. Most often these different experimental visits were within the same week, but 

in a few instances several months separated the visits. It is possible that receiving active 

tDCS immediately after the baseline portion garnered some benefit as those who received 

active tDCS and were tested outside the scanner had an increase in categorization accuracy 

from baseline at 48.4% (SE=2.1%) to training block 1 at 55.7% (SE=3.4%), while 

active/inside MRI (baseline: 50%, SE=1.4%; training 1: 48.2%, SE=2.7%), sham/outside 

MRI (baseline: 47.1%, SE=1.7%; training 1: 44.2%, SE=2.9%), and sham/inside MRI 
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(baseline:52.4%, SE=1.2%; training 1: 47.7%, SE=1.5%) all had declines from baseline to 

training 1 (Figure 11). The reason for these differences is unclear, and a priori it could have 

been hypothesized that a gap in time between baseline and training block 1 could have 

benefited performance through an incubation period, where the solution to an unsolved 

problem emerges suddenly after having set aside thinking about that problem for a time 

(Wallas, 1926). However, besides the results themselves, several other factors argue against a 

possible benefit for an incubation period. First, there may be an ideal ratio of time spent in 

purposeful problem solving and the incubation period (Sio & Ormerod, 2009). For an 

incubation period where activity is totally unrelated to problem solving, the typical ratio is 

10:1, that is, 1 unit of active problem solving to 10 units of an incubation period (Kaplan, 

n.d.). In the current study that ratio was at the very least 144:1 (with 10 minutes of active 

problem solving and an incubation period of 24 hours), likely too disproportionate to 

engender insight through incubation. Second, failure in problem solving might be crucial, 

where only those problems where an impasse is reached are remembered sufficiently to 

engender problem solving during incubation (Patalano & Seifert, 1994; Zeigarnik, 1938). As 

participants in the baseline portion had not yet received accuracy feedback, they had no way 

of gauging their ability to correctly categorize the pictures, and no way of knowing if they 

had reached an impasse. 

 

For those who received active stimulation and were tested inside the scanner, there was also a 

larger decrease in performance between training block 4 and the test blocks, an average 

decrease of 3.56% compared to 0.88% in active/outside MRI, 0.28% in sham/outside MRI, 

and 0.98% in sham/inside MRI (Figure). As with the time between baseline and the first 
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training session, there was a gap between training block 4 and test block 1 for those receiving 

an MRI, albeit a much shorter gap ranging from around 15 minutes to around 60 minutes. 

While it is unknown what specific cognitive processes might benefit from tDCS-mediated 

improvement and allow for increased categorization accuracy on the PRETXT task, it is 

possible that tDCS mediated effects after online application outlast the duration of 

stimulation and provide beneficial after effects. For example, if tDCS elicited improvements 

in processes such as sustained attention or increased processing speed, these effects could 

persist during the test blocks and continue to provide benefit. In the motor cortex, increases 

in cortical excitability following stimulation have been shown to endure for 30-60 minutes 

(Ammann et al., 2017; López-Alonso, Cheeran, et al., 2015; López-Alonso, Fernández-del-

Olmo, et al., 2015). Though these results are highly variable, and it is unclear to what extent 

this variability is due to the effect of tDCS itself or in the common method of measuring 

motor cortex excitability, TMS motor evoked potentials (Chew et al., 2015), it is likely that 

the physiological effects of tDCS in the current study lasted beyond the period of stimulation 

itself. Those who had to wait and perform the test portion in the scanner then experienced a 

diminished extended benefit of tDCS compared to those who performed the test blocks 

immediately after the end of stimulation. 

 

The last major difference that likely accounted for variability in performance between those 

inside and outside the scanner was the size and quality of the display on which subjects 

viewed the stimuli. Inside the scanner, the projected image, while smaller, actually took up a 

greater proportion of the visual field. However, rather than make it easier, this might have 

made it more difficult for participants to discern the street direction rule, which rather than 
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requiring visual search requires subjects to view the entire picture as a whole. Within the 

scanner the screen is also partially transparent as it is a projected rather than digital display, 

leading to a distorted image in which details are more difficult to discern. This, in 

combination with a distracting setting and an older population, likely made a difference in 

performance. Older adults have difficulty seeing as well as younger adults when there is 

reduced light due to a phenomenon called senile miosis where the pupil becomes smaller and 

allows less light to enter the eye (Stuen & Faye, 2003). In the low-light setting of the MRI 

scanner, this may have made it difficult for older adults to discern the stimuli (Sloane et al., 

1988). Additionally, it is well documented that processing speed declines in older adults 

(Harada et al., 2013), and there is evidence to indicate that the presence of distractions further 

hinders processing speed in older adults (Lustig et al., 2006; Weeks & Hasher, 2014). The 

distracting environment of the MRI may have then put a further burden on the performance 

of older adults. 

 

Future Directions  

The relationship between age and performance seen in the current study is undoubtedly 

driven by changes in anatomy and physiology, as the brain changes in a predictable way as it 

ages and these changes affect the efficacy of tDCS. Across age groups, the effects of tDCS 

are highly variable and affected by numerous experimental and individual factors 

(Batsikadze G. et al., 2013; Nitsche et al., 2003), but due to changes in brain morphology, 

variability is an even greater concern when applying tDCS in older adults (Siegert et al., 

2021). Critically, the thickness of the cortex decreases with age (Hogstrom et al., 2013; Salat 

et al., 2004a), with the PFC, the tDCS target in the current study, the first to undergo age 
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associated atrophy (Nissim et al., 2017a). This poses a problem for tDCS, as the increasing 

gap between the skull and the cortex is filled by highly conductive cerebrospinal fluid (CSF). 

In this case more of the current introduced by tDCS travels around the brain via the CSF 

rather than into the cortex below the electrode (Indahlastari, Hardcastle, et al., 2021a; 

Mahdavi & Towhidkhah, 2018a). The age effects observed in the current study could largely 

be due to cortical atrophy and the accompanying increase in CSF. Understanding how these 

anatomical changes influence this protocol in older adults is vital to maximizing the benefits 

observed with the F10 protocol.   

 

Conclusion  

In the first application of the F10 protocol in older adults, tDCS was successful in improving 

performance on a difficult categorization task. The effects of this protocol were different 

across younger and older members of our sample, with the on-average younger HC sample 

seeing an immediate benefit to performance following tDCS application, and the on-average 

older MCI sample seeing a benefit following 20 minutes of application. Age was also 

predicative of performance across groups, but only in the active stimulation group, indicating 

that the benefits of tDCS are dependent upon changes that occur with aging. Future work 

should seek to elucidate the anatomical and physiological differences that mediate the 

relationship between age and tDCS outcome.  
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Figure 1: Project design for PRETXT participation for subjects who received an MRI. 

Figure 2: Project design for PRETXT participation for subjects who did not receive and 

MRI.  
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Figure 3: Sensation ratings for active and sham groups 30 seconds and 5 

minutes after the start of stimulation. Error bars +/- 1 SE 
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Figure 4: Accuracy for the combined sample across active and sham groups. Error bars +/- 

1 SE.  
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Figure 5: Accuracy for the healthy control group across active and sham groups. Error bars 

+/- 1 SE.   
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Figure 6: Accuracy for the MCI group across active and sham groups. Error bars +/- 1 SE.  
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Figure 7: Reaction time for the combined groups across active and sham groups. Error bars 

+/- 1 SE.  
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Figure 8: Reaction time for the healthy control group across active and sham groups. Error 

bars +/- 1 SE.  
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Figure 9: Reaction time for the MCI across active and sham groups. Error bars +/- 1 SE.  
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Figure 10: The relationship between age and average PRETXT test performance.  
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Figure 11: Differences in accuracy by tDCS condition and whether baseline/test were performed 

within the fMRI. Error bars = +/- 1 SE.  
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Tables 

Table 1: Sample Demographics      

 Total (N=82)  

Healthy Control 

(n=57) 

Mild Cognitive Impairment 

(n=25) 

  Mean (SD) or n (%) Mean (SD) or n (%) Mean (SD) or n (%) 

Age 66.9 (9.1) 63.9 (7.3) 73.8 (8.9)  

Female Sex 45 (55%) 38 (66%) 7 (28%) 

Male 37 (45%) 19 (33%) 18 (72%) 

Black 2 (2.4%) 1 (1.8%) 1 (4%) 

Hispanic 17 (20.7%) 12 (21.1%) 5 (20%) 

Native American 2 (2.4%) 2 (3.5%)  

White 61 (74.4%) 42 (73.7%) 19 (76%) 

 

 

Table 2: Results from the linear mixed model examining accuracy, HC and MCI combined  

 Main Effects  Interaction 

Fixed 

Effects  b (SE) df t-value p-value  b (SE) df t-value p-value 

Intercept  53.59 (1.64) 108.61 33.01 <0.001 52.13 (1.93) 85.66 27.07 <0.001 

Block 1.14 (0.22) 79.19 5.15 <0.001 0.81 (0.32) 80.41 2.5 0.014 

Condition 3.07 (1.68) 80.17 1.83 0.072 5.83 (2.58) 80.41 2.57 0.027 

MRI 0.43 (1.84) 79.83 0.231 0.818 0.42 (1.84) 79.85 0.23 0.819 

Block x 

Condition      0.62 (0.44) 78.7 1.41 0.164 

         

Random 

Effects Variance SD 

Correlation 

with 

intercept   Variance  SD 

Correlation 

with 

intercept    

Intercept 129.3 11.37   128.58 11.34   

Block 2.87 1.69 0.92  2.84 1.69 0.92  

         
Note: Bold font indicates associations that are significant (p < .05). b = unstandardized regression coefficient; 

SE = standard error; df = degrees of freedom; SD = standard deviation 
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Table 3: Results from the linear mixed model examining accuracy in HC  

 Main Effects  Interaction 

Fixed 

Effects  b (SE) df t-value p-value  b (SE) df t-value p-value 

Intercept  54.24 (2.06) 78.14 26.33 <0.001 53.47 (2.55) 59.7 20.96 <0.001 

Block 1.36 (0.28) 56 4.71 <0.001 1.96 (0.43) 56.73 2.8 0.007 

Condition 4.78 (1.94) 55.05 2.46 0.017 6.24 (3.42) 55.54 1.83 0.073 

MRI 0.38 (2.16) 55.01 0.18 0.859 0.38 (2.16) 55.02 0.18 0.862 

Block x 

Condition      0.3 (0.58) 55.26 0.52 0.607 

         

Random 

Effects Variance SD 

Correlation 

with 

intercept   Variance  SD 

Correlation 

with 

intercept    

Intercept 156.18 12.5   157.68 12.56   

Block 3.56 1.89 0.96  3.62 1.9 0.96  

         
Note: Bold font indicates associations that are significant (p < .05). b = unstandardized regression coefficient; 

SE = standard error; df = degrees of freedom; SD = standard deviation 

 

Table 4: Results from the linear mixed model examining accuracy in MCI 

  Main Effects  Interaction 

Fixed 

Effects  b (SE) df t-value p-value  b (SE) df t-value p-value 

Intercept  50.36 (2.18) 22.52 23.12 <0.001 49.41 (2.23) 21.78 22.13 <0.001 

Block 0.64 (0.27) 21.97 2.32 0.029 0.02 (0.37) 21.25 0.06 0.951 

Condition 2.59 (2.88) 21.98 0.9 0.377 4.39 (3.02) 21.67 1.46 0.159 

MRI -0.12 (3.08) 21.92 -0.04 0.969 -0.07 (3.09) 21.94 -0.02 0.983 

Block x 

Condition       1.17 (0.51) 21.22 2.3 0.032 

         

Random 

Effects Variance SD 

Correlation 

with 

intercept   Variance  SD 

Correlation 

with 

intercept    

Intercept 48.86 6.99   49.53 7.04   

Block 0.78 0.88 0.42  0.55 0.74 0.48  

         
Note: Bold font indicates associations that are significant (p < .05). b = unstandardized regression coefficient; 

SE = standard error; df = degrees of freedom; SD = standard deviation 

 

 



39  

 

Table 5: Results from the linear mixed model examining response time, HC and MCI combined  

  Main Effects  Interaction 

Fixed 

Effects  b (SE) df t-value 

p-

value  b (SE) df t-value 

p-

value 

Intercept  1381.43 (28.68) 83.72 48.17 <0.001 1389.14 (29.57) 81.07 46.98 <0.001 

Block 5.29 (4.45) 82.06 1.19 0.237 10.31 (6.42) 77.54 1.61 0.112 

Condition -40.51 (36.4) 79.18 -1.11 0.269 -54.57 (38.67) 79.51 -1.41 0.162 

Accuracy -3.72 (0.88) 497.84 -4.21 <0.001 -3.66 (0.89) 496.94 -4.14 <0.001 

MRI -117.17 (39.67) 77.54 -2.95 0.004 -117.24 (39.69) 77.34 -2.95 0.004 

Block x 

Condition      -9.41 (8.71) 74.75 -1.08 0.283 

         

Random 

Effects Variance SD 

Correlation 

with 

intercept   Variance  SD 

Correlation 

with 

intercept    

Intercept 24563.7 156.73   24620.7 156.91   

Block 738.4 27.17 0.49  744.2 27.28 0.49  

         
Note: Bold font indicates associations that are significant (p < .05). b = unstandardized regression coefficient; SE = 

standard error; df = degrees of freedom; SD = standard deviation 

 

Table 6: Results from the linear mixed model examining response time in HC  

  Main Effects  Interaction 

Fixed 

Effects  b (SE) df t-value 

p-

value  b (SE) df t-value 

p-

value 

Intercept  1439.67 (31.71) 54.12 45.4 <0.001 1439.67 (31.71) 54.12 45.4 <0.001 

Block 6.96 (5.47) 56.57 1.27 0.208 6.96 (5.47) 56.57 1.27 0.208 

Condition -94.22 (40) 52.37 -2.36 0.022 -94.22 (40) 52.37 -2.36 0.022 

Accuracy -4.12 (0.97) 248.98 -4.27 <0.001 -4.08 (0.96) 249.99 -4.24 <0.001 

MRI -150.49 (43.99) 248.97 -3.42 0.001 -150.67 (43.93) 50.88 -3.43 0.001 

Block x 

Condition      -20.84 (10.47) 51 -1.99 0.052 

         

Random 

Effects Variance SD 

Correlation 

with 

intercept   Variance  SD 

Correlation 

with 

intercept    

Intercept 18348.3 135.46   18231.5 135.02   

Block 850.6 29.17 0.35  798.1 28.25 0.35  

         
Note: Bold font indicates associations that are significant (p < .05). b = unstandardized regression coefficient; SE = 

standard error; df = degrees of freedom; SD = standard deviation 
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Table 7: Results from the linear mixed model examining response time in MCI 

  Main Effects  Interaction 

Fixed 

Effects  b (SE) df t-value 

p-

value  b (SE) df t-value 

p-

value 

Intercept  1278.71 (51.82) 23.64 23.54 <0.001 1262.98 (53.87) 21.43 23.44 <0.001 

Block 3.33 (7.79) 22.86 0.43 0.673 -4.69 (11.15) 21.09 -0.42 0.678 

Condition 44.54 (67.15) 21.96 0.65 0.523 73.57 (73.15) 21.45 1.01 0.326 

Accuracy -3.68 (1.91) 207.25 -1.93 0.054 -3.96 (1.93) 205.44 -2.05 0.041 

MRI -67.28 (71.74) 21.82 -0.94 0.356 -67.16 (71.55) 21.83 -0.94 0.358 

Block x 

Condition      15.73 (15.61) 21.73 1.01 0.325 

         

Random 

Effects Variance SD 

Correlation 

with 

intercept   Variance  SD 

Correlation 

with 

intercept    

Intercept 27269.6 165.14   27003.6 164.33   

Block 584.9 24.19 0.64  592.5 24.34 0.63  

         
Note: Bold font indicates associations that are significant (p < .05). b = unstandardized regression coefficient; SE = 

standard error; df = degrees of freedom; SD = standard deviation 
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Appendix 

Accuracy formula for linear mixed model using lmer in R: 

Summary(Main Effects <- lmer(Accuracy ~ Block (Centered) + Condition + fMRI 

Group + (Block Centered|Subject ID), 

control=lmerControl(optimizer="bobyqa",optCtrl=list(maxfun=2e5)),data=LONG,na.

action=na.omit)) 

Summary(Interaction Effects <- lmer(Accuracy ~ Block (Centered)*Condition + 

fMRI Group + (Block Centered|Subject ID), 

control=lmerControl(optimizer="bobyqa",optCtrl=list(maxfun=2e5)),data=LONG,na.

action=na.omit)) 

ANOVA(Main Effects, Interaction Effects) 

Response time formula linear mixed model using lmer in R: 

Summary(Main Effects <- lmer(Response Time ~ Block (Centered) + Condition + 

Accuracy + fMRI Group + (Block Centered|Subject ID), 

control=lmerControl(optimizer="bobyqa",optCtrl=list(maxfun=2e5)),data=LONG,na.

action=na.omit)) 

Summary(Interaction Effects <- lmer(Response Time ~ Block (Centered)*Condition 

+ Accuracy + fMRI Group + (Block Centered|Subject ID), 

control=lmerControl(optimizer="bobyqa",optCtrl=list(maxfun=2e5)),data=LONG,na.

action=na.omit))  

ANOVA(Main Effects, Interaction Effects) 
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Interaction between Anatomy and Transcranial Direct Current Stimulation (tDCS) on 

Category Learning in Older Adults 

 

Abstract 

Transcranial direct current stimulation is an emerging technology possibly capable of 

improving cognitive function in older adults, both those with and those without pathological 

conditions associated with aging. However, a major hindrance to tDCS application in older 

adults are brain changes that occur with aging, specifically the shrinking of the cortex, which 

makes it more difficult for the current introduced by tDCS to reach the brain. Finite element 

modeling (FEM) of current flow based on individual structural images provides a method of 

mapping current flow, allowing an understanding of the interaction between tDCS, anatomy, 

and performance. The current study performed FEM in a sample of older adults with and 

without Mild Cognitive Impairment and explored the relationship between current delivered 

to the right inferior frontal gyrus via anodal tDCS and performance on a difficult 

categorization task. Analyses were performed in order to understand differences between the 

MCI and healthy control group, differences in brain ratio, age, and performance among all 

subjects, and differences in brain ratio, electric field magnitude and performance among 

those who received active anodal tDCS. Significant differences in white matter (WM), grey 

matter (GM), and cerebrospinal fluid (CSF) differentiated those classified as HC and those 

classified as having MCI with the latter having higher CSF and lower WM and GM ratios. 

Age was a significant predictor of WM, GM, and CSF ratios, with increasing age predicting 

smaller WM and GM ratios and a larger CSF ratio. Among those in the active group, 

significant relationships existed between WM and CSF ratios and categorization task 

performance, with higher WM and lower CSF ratios predicting better performance in the 
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active but not sham groups. Lastly, higher electric field magnitude underneath the electrode 

was predictive of better categorization task performance in the active group. The current 

study adds to the FEM literature, demonstrating that brain ratio is also predictive of 

performance in those receiving tDCS, in addition to electric field magnitude. Future research 

should attempt to fill the gaps in the FEM literature, conducting more prospective FEM 

studies, and further accounting for the utility of anatomy in customizing current dose a 

priori.  
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Introduction 

 

Normal aging is generally associated with a decline in cognitive functioning, especially in 

measures of fluid intelligence such as processing speed, attention, memory, and executive 

function (Salthouse, 2010, 2012). Additionally, up to a fifth of those over the age of 65 are 

diagnosed with Mild Cognitive Impairment (MCI), with around 10% of those with an MCI 

diagnosis later progressing to Alzheimer’s Disease (Kirova et al., 2015). Unfortunately, the 

best way to address cognitive decline currently is prevention, and the choice of the more 

salubrious option throughout life, be it consuming fewer deleterious substances or 

participating in more activities thought to increase cognitive reserve (Livingston et al., 2020). 

Once cognitive decline becomes apparent, existing interventions to stave of cognitive decline 

are less effective (Shafqat, 2008). A technology that can potentially improve this situation is 

transcranial direct current stimulation (tDCS), which offers one method of potentially 

opposing both normal cognitive decline and that seen in pathological conditions associated 

with aging. Promising results following tDCS application in older adults have been observed, 

indicating that tDCS is capable of providing a meaningful benefit in the cognitive 

functioning of older adults (Hsu et al., 2015; Manenti et al., 2013; Meinzer et al., 2013; 

Nissim, O’Shea, Indahlastari, Kraft, et al., 2019).  

 

However, changes associated with the aging brain make the application of tDCS more 

difficult in older adults. With changes in imaging measures across both task-specific 

activation patterns (Davis et al., 2012; Goh, 2011; Hakun et al., 2015b) and resting state 

patterns (Betzel et al., 2014), as well as changes in neuronal function (Kumar & Foster, 2004; 

Randall et al., 2012; Tanabe et al., 1998), tDCS protocols that have been shown to be 



45  

 

effective in younger populations may not replicate in older samples, meaning that protocols 

must be specifically tailored. Aging is generally associated with structural and functional 

changes to the brain, with brain atrophy perhaps the most salient change (Drag & 

Bieliauskas, 2010). The thickness of the cortex decreases with age (Hogstrom et al., 2013; 

Salat et al., 2004b), with the prefrontal cortex (PFC) the first to see age associated atrophy, 

with decline there occurring faster than in other cortices (Nissim et al., 2017b). These brain 

volume changes are driven by decreases in both grey matter (GM) and white matter (WM) 

(Raz, 2005; Raz et al., 1997), decreases which accelerate with age (Oschwald et al., 2020). A 

measurable benchmark of brain atrophy is enlargement of the ventricles, which have a yearly 

median expansion rate of 0.43% for those aged 24 to 37 years, increasing to 4.25% yearly in 

those 70-81 (Betzel et al., 2014). Shrinking of the cortex also leads to increased space 

between the scalp and the brain, space which is then filled with greater amounts of 

cerebrospinal fluid (CSF). This poses a problem for tDCS application as CSF is highly 

conductive, leading to more of the current introduced by tDCS being shunted around the 

brain rather than into the brain (Mahdavi & Towhidkhah, 2018b). Atrophy varies across 

individuals, increasing the inter-individual variability of tDCS effects in older adults 

(Antonenko et al., 2021; Antonenko, Külzow, et al., 2018). As noted, the PFC is the first 

region to see atrophy, and it is the target for the vast majority of tDCS studies in older adults, 

furthering heterogeneity in outcomes (Indahlastari, Hardcastle, et al., 2021b; Lemaitre et al., 

2012).  

 

One way to try and understand the impact that different brain morphologies have on tDCS is 

to model the likely path of current through the skull via finite element modeling (FEM) 
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(Bikson et al., 2015; Datta et al., 2009). The first FEM models created to try and understand 

tDCS current flow were simple spheres, nested within one another to represent skin, skull, 

and brain (Miranda et al., 2006). Structural images, first combined into averaged, 

representative models and then taken from each individual, were then used as a basis, with 

these divided into different tissue types including grey matter (GM), white matter (WM), 

CSF, and bone, all assigned different conductivity values (Datta et al., 2009; Wagner et al., 

2007). Added to these models was information about the physical properties of the electrodes 

and the tDCS dose. The end result are models containing many millions of elements (Bikson 

et al., 2012). The typical currents seen in these models mirror those seen in intracranial 

recordings (Opitz, Falchier, Yan, Yeagle, Linn, Megevand, Thielscher, Deborah A., et al., 

2016), and in direct comparison, FEM models of tDCS current flow have been shown to 

correlate r = .81 ± .12 with in vivo electrical recordings done in epilepsy patients (Huang et 

al., 2017). Electric fields predicted by FEM models have also been shown to correlate with 

physiological measures of tDCS effects, such as reductions in GABA concentration, a 

neurotransmitter involved in learning via long-term potentiation (Antonenko et al., 2019; 

Trepel & Racine, 2000), and stronger post-tDCS transcranial magnetic stimulation-induced 

motor-evoked potentials (Mosayebi-Samani et al., 2021), a common method of measuring 

the impact of tDCS since the reemergence of the technology in at the beginning of the 

century (Nitsche & Paulus, 2000).    

 

Different FEM studies have attempted to quantify the degree to which tDCS current flow is 

affected by anatomical changes in aging. Several modeling studies with small sample sizes 

have demonstrated a trend of decreasing electrical field and current density in the brain with 
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increasing age (Mahdavi & Towhidkhah, 2018b; Thomas et al., 2018), and these findings 

have been corroborated by replications with larger samples. One study conducted with 24 

adult males found that increasing age was significantly correlated with an increasing volume 

of CSF, and a decreasing amount of tDCS current reaching the cortex (Laakso et al., 2015). 

Notably, the range of ages used in this sample was 21-55 years old, meaning that brain 

changes may alter tDCS current flow in middle age as well as in older adults. Elsewhere, 

machine learning was able to predict responders and non-responders to tDCS among older 

adults using FEM modeling of current intensity, where current intensity was found to 

positively correlate with behavioral improvement in a working memory task (Albizu et al., 

2020), a result that indicates that differences in the efficacy of tDCS across older participants 

might be reduced by the customization of applied current.  

 

In the largest exploration of tDCS FEM in aging adults, Indahlastari and colleagues used 

structural images of 587 older adults, both males and females with an age range of 51-95, to 

model two tDCS electrode montages (Indahlastari et al., 2020). They computed brain ratio by 

taking the total volume inside the skull and dividing this by combinations of GM, WM, and 

CSF. They found that a negative correlation between age and current reaching the cortex 

underneath the electrode was due in part to an increasing quantity of CSF. The relationship 

between decreasing current flow and increasing CSF was not uniform across the brain, 

however, as there was a high degree of variability in atrophy across brain regions. The 

prefrontal cortex experienced the largest decreases in current density, a result that fits with 

the literature that sees this area as most prone to atrophy (Fjell et al., 2009; Nissim et al., 

2017b). Given the prevalence of tDCS application to this area (Tremblay et al., 2014), it is 
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vital to account for atrophy when applying tDCS to samples of older adults, especially when 

trying to recreate montages previously successful in younger samples. Indahlastari et al. 

additionally found that reductions in grey matter drove the overall reduction in brain ratio 

seen with atrophy, while the relationship between white matter ratio and age was slightly 

positive. This latter finding is at odds with what has generally been observed elsewhere 

(Oschwald et al., 2020), but the large sample size lends credence to their findings. 

Additionally, if the decrease in GM outpaces that seen in WM, WM ratio could stay the same 

while the overall volume of WM declines.   

 

One tDCS protocol previously successful in improving cognition in younger adults is active 

anodal application to the right inferior frontal gyrus (rIFG) coupled with cathodal application 

to the left arm (Clark et al., 2012; Coffman et al., 2012; Falcone et al., 2012). This protocol 

applied during a categorization task known as the PRETXT task (Gibson et al., 2020), has 

also recently been successful in improving performance in a sample of older adults between 

the ages of 50 and 84 (Study 1). The current study will build on those results by examining 

the relationship between brain ratio and age across a subset of participants who received 

structural magnetic resonance imaging (MRI), and on brain ratio, task performance, and 

electric field magnitude across those who received structural MRIs and active tDCS.  

 

Methods 

Healthy older adults, as well as those with MCI, were recruited for this study, and all data 

were collected at the Mind Research Network in Albuquerque, New Mexico. Inclusion 
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criteria required subjects to be: right handed; between 50-90 years old; an English speaker 

before the age of 7; without excessive drug or alcohol use, without a history of psychiatric 

hospitalization; without a history of epilepsy, migraines, stroke, traumatic brain injury, other 

chronic illnesses, or current COVID-19 symptoms; inexperienced with tDCS; and able to 

receive a MRI. Healthy control subjects were not allowed to be taking medications with 

significant psychotropic effects, but this requirement was waived for participants with MCI. 

MCI patients also needed to be able to sign a consent form, or have a legally authorized 

representative able to sign on their behalf. Both those who came with an existing diagnosis of 

MCI as well as those who scored a 26 or lower on the Montreal Cognitive Assessment 

(MOCA) (Nasreddine et al., 2005b) were classified as having MCI for this study. All 

subjects were paid for their time at a rate of $10 dollars per hour and also received bonuses 

for completing each MRI ($25) and the entirety of the study ($10). Following consent, 

participation lasted 6-8 hours spread over two days (Figure 1). Subjects completed the first 

MRI scan on day 1, during which time they received the structural scan and performed the 

baseline portion of the PRETXT (Predicting Response To F10(X) tDCS) task. On day 2 they 

then received tDCS during the training portion of the PRETXT task followed by an 

additional MRI scan where the test portion of the PRETXT task was performed. The 

cognitive task (PRETXT) was a modified version of one used previously, in which subjects 

are tasked with learning how to categorize pictures of European streets into 2 categories. 

Learning occurs via feedback in the training portion, while the baseline and test portions 

performed in the scanner have no feedback. The cognitive task is explained in detail in study 

1 and elsewhere (Gibson et al., 2020, 2021). Application of tDCS also followed the same 

pattern as that of previous studies, where an ActivaDose II iontophoresis unit was used to 
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apply 2 mA of anodal stimulation for 30 minutes to the rIFG, or F10 on the international 

10/20 system, with the cathode placed on the contralateral triceps. The 5x5 cm sponges 

delivering the current were soaked in SignaGel for 24 hours prior to use, and the sponges 

were placed in a rubber holder with a metal backing during application. For double-blinding, 

two ActivaDose units were connected to a blinding box with 6 switches, half of which 

allowed the current from the ActivaDose machine administering the active dose of 2.0 mA to 

pass, while the other half allowed the current from the ActivaDose machine administering the 

sham dose of 0.1 mA to pass.  

 

Finite Element Modeling of tDCS Current  

T-1 and T-2 weighted images with 1 mm3 volumes from 57 participants were used to create 

segmented brain models, and 29 of these (those who received active anodal stimulation) were 

subsequently used to create individual FEM models. T-2 weighted images were added, as 

comparison studies have demonstrated improved accuracy in models where T-2 images are 

included, especially in accurately demarcating CSF and bone (Hoornweder et al., 2022; 

Puonti et al., 2020). Realistic vOlumetric-Approach to Simulate Transcranial Electric 

Stimulation (ROAST) version 3.0 was used to create the FEM models (Huang et al., 2018). 

ROAST is a complete pipeline that runs in Matlab and borrows algorithms for tissue 

segmentation from SPM (Penny et al., 2011), the creation of a 3D mesh from Iso2mesh 

(Fang & Boas, 2009), and FEM solving from getDP (Dular et al., 1998). The assigned 

conductivity values used in ROAST to create the electric field distribution were (in Siemens 

per meter, S/m): Grey matter: 0.276; white matter: 0.126; CSF: 1.65; bone: 0.01; skin: 0.465; 

air: 2.5 x 10-14; gel: 0.3; metal electrode backing for electrodes: 5.9 x 107. The tDCS 
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electrodes were modeled as 5 x 5 cm2 pads with a thickness of 1 cm soaked in conductive 

gel. The anode was placed at F10, and the cathode was placed on the contralateral lower 

neck. This was accomplished by extending the field of view of the MRI with the ROAST 

program, and ascribing the conductivity value for skin to the modeled neck. While for 

montages involving only cephalic electrodes, imaging beyond the whole head makes only a 

negligible difference in computed electric field (Thomas et al., 2019), it is likely that small 

differences exist when modeling tDCS montages like that used in the current study where the 

return cathodal electrode is placed on the contralateral triceps. Segmented brain volumes 

were divided into WM, GM, and CSF, and these were used to calculate brain ratios, with 

either GM, WM, or CSF as the numerator and the combination of these three as the 

denominator.  

 

Statistical Analysis and Hypotheses  

Analyses were conducted in Statistical Product and Service Solutions (SPSS). Statistical 

analyses in the current study consisted of three one-way ANOVA’s elucidating any 

differences in brain anatomy between those classified as MCI and those classified as HC, and 

then ten separate linear regression models exploring the relationship between age and brain 

ratio among all subjects scanned, brain ratio and electric field magnitude underneath the 

electrode in the active group, brain ratio and PRETXT performance in the active group, and 

finally between electric field magnitude underneath the electrode and PRETXT performance 

in the active group. Hypotheses for the models were the following:  
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1) Those classified as having MCI will have a significantly higher CSF ratio and significantly 

lower grey matter (GM) and white matter (WM) ratio compared to those classified as healthy 

controls.  

2) A significant positive relationship will exist between CSF ratio and age. 

3) A significant negative relationship will exist between GM ratio and age.  

4) No significant relationship will exist between WM ratio and age. 

5) In the active group, a significant negative relationship will exist between CSF ratio and 

electric field magnitude underneath the electrode.  

6) In the active group, no significant relationship will exist between GM ratio and electric 

field magnitude underneath the electrode.  

7) In the active group, a significant positive relationship will exist between WM ratio and 

electric field magnitude underneath the electrode. 

8) In the active group, a significant negative relationship will exist between CSF and 

PRETXT test performance. 

9) In the active group, no significant relationship will exist between GM ratio and PRETXT 

test performance. 

10) In the active group, a significant positive relationship will exist between WM ratio and 

PRETXT test performance. 

11) In the active group, a significant positive relationship will exist between electric field 

magnitude underneath the electrode (at Montreal Neurological Institute (MNI) coordinate 28, 

23, -14) and PRETXT test performance.  
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Results 

Subjects  

Fifty eight subjects completed the protocol. Three of these were excluded, one active subject 

for pressing the wrong buttons during the test portion of the PRETXT task, one active subject 

for having electric field magnitudes 3 standard deviations above the mean, and one sham 

subject who was missing structural imaging. This left 55 subjects in total with an average age 

of 67.2 (SD = 8.9). A majority of the sample, n = 32 or 58.2%, were female and a majority of 

the sample n = 41 or 74.5%, identified as non-Hispanic white. There were 27 subjects 

included in the active anodal group, where again the majority were female, n = 15 or 55.6%, 

and identified as non-Hispanic white, n = 23 or (85.2%). Fifteen, or 27.3% of the entire 

sample were classified as having MCI, and n = 8 or 29.6% of the active group was classified 

as having MCI. See Table 1 for complete demographic information. 

 

Differences according to study group and age  

Three separate one-way ANOVAs were conducted to explore differences in brain ratios 

between those classified as having MCI and those classified as HC (Figure 2). MCI subjects 

(M = 33.2%, SD = 4.6%) in the current study had significantly higher CSF ratio (F(1,53) = 

18.39, p < 0.001) than HC subjects (M = 28.2%, SD = 3.6%). In contrast MCI subjects (M = 

38.9%, SD = 2.4%) had a significantly lower GM ratio (F(1,53) = 12.75, p<.001) than HC 

subjects (M = 41.3%, SD = 2.1%), and MCI subjects (M = 27.9%, SD = 3.1%) had a 

significantly lower (F(1,53) = 12.45, p<.001) WM ratio compared to HC subjects (M = 
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30.5%, SD = 2.2%). For the regression models exploring the relationship between age and 

brain ratio, age explained more than half of the variance in CSF ratio (R2 = 0.55), and the 

main effect of age on CSF was significant (β = -0.74, t(53) = 8.07, p < 0.001 (Table 2, Figure 

3), with increasing CSF ratio with age. Age explained 44% of the variance in GM (R2 = 

0.44), and also had a significant main effect (β = -0.66, t(53) = -6.45, p < 0.001) (Table 2, 

Figure 4), where GM ratio increased with age. Similarly, age accounted for 39% of the 

variance in WM (R2 = 0.39) and the main effect of age on WM ratio was significant (β = -

0.62, t(53) = -5.84, p < 0.001) (Table 2, Figure 5), with WM ratio decreasing with age.  

 

Differences in electric field magnitude and performance  

In those who received active anodal stimulation, separate regression models indicated that 

CSF, GM, and WM all had significant main effects on electric field magnitude underneath 

the electrode.  Within their respective models, CSF accounted for 39% of the variance (R2 = 

0.39), GM for 33% of the variance (R2 = 0.33), and WM for 34% of the variance (R2 = 0.34). 

The main effects were: CSF, (β = -0.63, t(25) = -4.06, p < 0.001) (Table 3, Figure 6); GM, (β 

= 0.57, t(25) = 3.48, p = 0.002) (Table 3, Figure 7); and WM, (β = 0.59, t(25) = 3.62, p = 

0.001) (Table 3, Figure 8), where lower CSF and higher WM and GM ratios were associated 

with stronger electric fields underneath the electrode. For those in the active group, the main 

effects of CSF and WM ratio on PRETXT performance were significant, with CSF 

accounting for 21% of the variance (R2 = 0.21, β =-0.46, t(25) = -2.58, p = 0.016) (Table 4, 

Figure 9) and WM 22% of the variance (R2 = 0.22, β =0.47, t(25) = 2.68, p = 0.013) (Table 4, 

Figure 11) within their different models, such that lower CSF and higher WM ratios were 

associated with better performance. The main effect of GM on PRETXT performance did not 
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reach significance (R2 = 0.14, β =0.37, t(25) = 2, p = 0.056) (Table 4, Figure 10). This 

relationship between brain anatomy and PRETXT performance was present only in the active 

group, as in the sham group alone the relationships between test performance and CSF (R2 = 

0.07, β =-0.08, t(23) = -0.41, p = 0.683) (Figure 9), GM (R2 < 0.01, β =0.11, t(23) = 0.05, p = 

0.958) (Figure 10), and WM (R2 = 0.01, β =0.11, t(23) = 0.53, p = 0.6) (Figure 11) were flat. 

Lastly, in those who received active stimulation, the main effect of electric field magnitude 

underneath the electrode was significant in predicting PRETXT test performance (R2 = 0.2, β 

=0.44, t(23) = 2.48, p = 0.02) (Table 5, Figure 12), with greater electric field magnitude 

associated with better performance. Underneath the electrode, those in the active group had 

an average electric field magnitude of 0.16 V/m (SD = 0.04).  

 

Discussion 

The results of the current study provide strong evidence for the impact that brain anatomy 

has on the potential benefits of tDCS. Greater electric field magnitude underneath the 

electrode predicted better performance, where an increase of 1 SD or 0.037 V/m equated to a 

7.5% increase in categorization accuracy. The findings from the current study join a small 

but growing body of literature exploring the relationship between electric fields calculated 

via FEM and behavioral outcomes. In the first study to demonstrate such a relationship, 

current density in the PFC was positively correlated with improvement in a working memory 

task in a sample of young adults (Kim et al., 2014). Further evidence for this result was 

provided by a meta-analysis that looked at working memory studies applying tDCS to the 

PFC and found that performance was related to electric field strength in the PFC 

(Wischnewski et al., 2021). This relationship between higher current density/electric field 
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magnitude and behavioral response has also been previously shown in older adults when 

applying tDCS to the PFC (Albizu et al., 2020). In the current study, the average electric field 

magnitude underneath the electrode at MNI coordinates 28, 23, 14 in those who received 

active stimulation was 0.16 V/m, a finding that is in line with the range of 0.10 – 0.40 V/m 

typically observed for stimulation between 1 and 2 mA (Esmaeilpour et al., 2018; Francis et 

al., 2003; X. Liu et al., 2019). Using an above chance cutoff for accuracy in the test blocks of 

60.5% (Gibson et al., 2021), the difference in electric field magnitude among those in the 

active group who did and those who did not learn the task is notable, with those 9 subjects 

above the cutoff having an electric field magnitude of 0.191 V/m (SD = 0.04), and those 18 

subjects below the cutoff at 0.149 V/m (SD = 0.03), a significant difference (p = 0.026).  

 

Beyond electric field magnitude, lower CSF and a higher WM ratio were also significant 

predictors of performance in those who received active anodal stimulation, with a higher GM 

ratio approaching statistical significance. In all three of these cases the interaction between 

brain anatomy and stimulation is apparent, where significant or nearly significant 

relationships between brain ratio and performance in the active group can be contrasted with 

the complete lack of any relationship in the sham group (Figures 9-11). While other attributes 

like gyri morphology are known to affect current flow (Salvador et al., 2010), this is only the 

second study to date to find a relationship between general brain anatomy in older adults and 

tDCS induced behavior change. The one previous study to find such a relationship is one of 

the few prospective FEM studies in the literature, where modeling was conducted prior to the 

intervention and used for individual placement of tDCS on the PFC (Rasmussen et al., 2021). 

Replicating that result in the current study implies near optimal tDCS targeting across a 
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number of subjects, which is noteworthy given that this montage was originally designed for 

application in a younger sample (Clark et al., 2012), and it is common for younger and older 

adults to display different patterns of activation when performing the same task (Davis et al., 

2012; Manenti et al., 2011; Reuter-Lorenz & Cappell, 2008; Vallesi et al., 2011).  

 

The relationship between anatomy and performance observed in the current study makes 

sense given the location of stimulation in the PFC, an area prone to volume changes in aging. 

This is true for both GM (Sowell et al., 2004) and WM (Barrick et al., 2010; Sullivan et al., 

2010). White matter hyperintensities also occur first in anterior regions (Storsve et al., 2016), 

and have an effect on observed current in FEM studies, reducing flow to nearby non-lesioned 

areas by up to 7% while also contributing to decreases in overall brain volume (Indahlastari, 

Albizu, et al., 2021). It is possible that stimulation in posterior regions less prone to atrophy 

may not evince such a strong relationship between anatomy and performance. In that case 

precise gyri location may play more of a factor, though electrode placement would need to be 

very precise across participants, and gyri morphology may only be relevant for the 

application of so called high definition tDCS (Antonenko et al., 2021; Hill et al., 2018). 

Aligning with this interpretation, when applied to the sensorimotor cortex during a 

proprioceptive task, there was no observed correlation between modeled electric field 

magnitude and performance in older adults (Muffel et al., 2019). 

 

The finding of a significant relationship between WM ratio and age, where WM ratio 

displayed a sharp decline with age in our sample, was contrary to the hypothesized 
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relationship. The positive significant relationship between GM ratio and electric field 

magnitude was also contrary to the hypothesized relationship. The basis for these hypotheses 

was a previous FEM study, where in a very large sample of 587 older adults, the authors 

observed the relationship between white matter ratio and age to be very slightly positive (R2 = 

0.007), with increasing WM ratio with age (Indahlastari et al., 2020). They also observed the 

relationship between GM ratio and current density to be very slightly negative, with 

decreases in GM ratio explaining only 0.008 % of the variance in current density. However, 

in the current sample, age was a strong negative predictor of WM ratio (R2 = 0.39), and GM 

ratio was a strong positive predictor of electric field magnitude underneath the electrode (R2 

= 0.33). There are several possible reasons for this difference. First, Indahlstari and 

colleagues used the median current density across several brain regions when an F3-F4 

montage was applied, rather than electric field magnitude in a specific location underneath 

the electrode. While the relationship between current density and electric field magnitude is 

assumed to be linear, taking the median current density or electric field magnitude across 

several regions could lead to different results, especially if some of those areas have less 

atrophy than the rIFG. Second, the inclusion of T-2 and T-1 weighted images in the current 

study, compared to only T-1 in Indahlstari et al. might be another reason. Including T-2 

images has been shown to improve the accuracy of FEM models, including those created in 

ROAST (Nielsen et al., 2018; Puonti et al., 2020), the program also used by Indahlstari and 

colleagues. The observed similarity between models with both T-1 and T-2 and models with 

T-1 were 76% in CSF and 87% in bone (Hoornweder et al., 2022). These differences, 

coupled with a 92% overlap in WM segmentation, may explain the disparate result seen in 

the current study, where age explained 55.2% of the variance in brain volume compared to 
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11.6% in Indahlstari et al. Some of this difference may also be driven by the inclusion of 

those with MCI in the current study, whom accounted for 27.3% of the total sample. 

However, with these subjects removed, age still explains 38.4% of the variance in brain 

volume. The reduction in WM with age seen in the current study is also more in line with the 

literature generally, where both cross-sectional (H. Liu et al., 2016) and longitudinal 

(Hedman et al., 2012) studies find that WM volume peaks at around age 50, with decreases 

accelerating after the age of 60. While increases in CSF have been previously emphasized in 

FEM studies, findings here indicate that WM and GM volume is also critical for tDCS effect 

in older adults (Laakso et al., 2015; Mahdavi & Towhidkhah, 2018b; Opitz et al., 2015).   

 

Limitations 

There are several limitations to note when interpreting the results of the current study. 

Including both those with MCI and HC subjects in the same sample is a potential issue for 

interpretation, yet it is unknown how many of those we classified as MCI based solely on 

their MOCA score (8 of 15 of those with MCI in the current sample) would actually be 

classified as such by a neuropsychologist. However, it is noteworthy that differences on the 

MOCA alone were sufficient to demark those with significant differences in atrophy, lending 

some credence to the policy of noting those with MOCA scores under 26 as having MCI for 

the purposes of this study.  Even with this policy, there were only 8 MCI subjects in the 

active group, not enough to analyze separately. 
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Another potential limitation is differences in electrode placement in actual practice and in 

FEM. All subjects were modeled with identical idealized placement, but this is unlikely to 

have occurred in reality. Even small drifts of 5% (around 1-1.5 cm) can significantly alter the 

results of FEM in electrode placement, changing observed current intensities up to 38% 

(Opitz et al., 2018; Woods et al., 2015). In practice, online tDCS, where neurons engaged in 

a specific task and close to firing threshold are said to be preferentially affected by tDCS 

current (in comparison to unengaged neurons that are not close to their firing threshold), 

likely mitigates some of the variance seen in small shifts of the electrode (Bikson & Rahman, 

2013; Dayan et al., 2013; Miniussi et al., 2013), but there is undoubtedly a point where 

electrode drift becomes an issue even in online tDCS. Also, models only included electrode 

placement on the nape of the neck, but placement on the arm may lead to different current 

flow. Additionally, tissue in the neck was modeled uniformly as skin, but various types of 

tissues have different conductivities that could have affected currents as they exited the skull.   

 

While FEM provides an avenue for understanding how broad anatomy affects tDCS, it has a 

significant shortcoming, specifically that it is incapable of accounting for what occurs in an 

active brain. An important feature in tDCS study design is whether tDCS is applied online 

during a task, or offline while the subject is not tasked with doing anything specific (Antal et 

al., 2007; Bortoletto et al., 2015). This difference is important because tDCS is a 

subthreshold neuromodulator, unable to make neurons fire on its own (Kronberg et al., 

2019). Thus what those neurons are doing as tDCS is applied is vitally important to the effect 

of tDCS. Viewing the brain as passive when it comes to applying tDCS is known 

theoretically as a stimulation-dependent account, an account that sees the influences of tDCS 
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as consisting of the inhibitory influence of cathodal stimulation, the excitatory influence of 

active stimulation, and the placement of these two types of stimulation on the body. Of 

course the brain is not passive, but rather contains a currently unfathomable amount of 

moving parts. How these myriad parts interact with tDCS is something that is not fully 

understood and is unable to be accounted for in FEM.  

 

It is challenging to even gauge how much of a problem this is for the accuracy of FEM. As 

previously stated, neurons close to firing threshold are preferentially engaged by tDCS, 

engendering a targeted effect in task specific networks in online stimulation. Given this, in a 

particular task it is possible that areas in the brain connected to a location receiving current 

themselves undergo important downstream effects via structural connectivity, even if that 

secondary location is not receiving any current directly. In contrast there may be an area far 

from the electrode where a FEM model finds significant current, but in that case a beneficial 

tDCS effect in this area that contributes towards task performance cannot be assumed. 

Equating places receiving current according to FEM with places getting an effect from tDCS 

is an assumption that must be tested separately for each task and each brain region (Jones et 

al., 2021), because as a whole the FEM literature does not provide evidence that areas of 

significant current flow not directly underneath the electrode are actually meaningful for the 

tDCS effect in any given task (Hunold et al., 2022). 

 

Future Directions 
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To address these limitations, more work is necessary to explicate the utility of FEM models. 

Since few studies using forward FEM models have been performed, the accuracy of their 

predictions has not been widely tested. To date, only one study has successfully used 

prospective individualized FEM to guide tDCS placement (Rasmussen et al., 2021). The 

results of this study were promising, but future studies should directly compare FEM-

individualized montages and one-size-fits-all montages to understand the benefit of FEM. 

The existing ratio of prospective to retrospective FEM studies is potentially problematic, and 

possibly indicative of unpublished null results, in which case more null results of FEM 

models should be published. With more of these gaps filled, it may become clear that FEM is 

more useful in specific instances, such as when modeling precise application of high 

definition-tDCS, modeling offline stimulation, or modeling current path in older adults. In 

older adults, calculating dosage based on FEM is promising and may be a way of 

ameliorating variability in tDCS effect among those in a given sample of older adults. For 

example, it was calculated that currents up to 3.25 mA would be needed in some older adults 

to reach the current equivalent of 2 mA in younger adults (Indahlastari et al., 2020). 

 

However, the current finding that anatomy itself quantified by WM, GM, and CSF ratio is 

predictive of tDCS effect means that FEM models of tDCS current flow might not be 

necessary, especially where tDCS is applied to areas that typically have the most age-

associated atrophy, like the PFC. In the current study, electric field magnitude explained 20% 

of the variance in performance, compared to CSF ratio at 21% and WM ratio at 22%. 

Combined into one model, WM, GM and CSF together explained 25% of the variance in 

performance. Such an equation accounting for these three variables could potentially be used 
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to personalize current dose, and in that instance it is not clear what is added by performing 

FEM of current flow. That brain anatomy has not often been predictive of tDCS effect 

previously may be due to the commonality of using only T1 weighted imaging for 

segmentation instead of the combination of T1 and T2 used in the current study. Indeed, the 

one study to identify a relationship between brain anatomy in the form of cortical thickness 

and tDCS-mediated performance improvements used a combination of T-1 and T-2 weighted 

images for segmentation (Rasmussen et al., 2021). MRI scans themselves might even be 

made redundant, a potential advantage as one of the chief benefits of tDCS is its low cost, 

and maintaining that benefit would necessitate the preclusion of expensive individual MRIs. 

An alternative would be to establish a likely relationship between brain anatomy and 

transcranial magnetic stimulation motor-evoked potentials, and then use differences in 

motor-evoked potentials to calculate dosage (Caulfield et al., 2020). 

 

Other factors may serve as moderators in the relationship between anatomy and tDCS-

elicited performance gains, because while structural brain changes often coincide with 

declines in cognitive performance, there is extensive heterogeneity, with some individuals 

able to marshal compensatory resources in order to maintain cognitive function in the face of 

inevitable age-related changes (Park & Festini, 2017). The current study did not measure 

such a compensatory relationship, instead finding that anatomy plays a direct effect on 

performance. However, compensatory mechanisms may serve as a moderator between 

changes in anatomy and cognitive performance, and future studies should measure the extent 

to which factors known to be protective may disrupt the straightforward relationship between 

anatomy and performance observed in the current study. For example, functional 
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neuroimaging measures in older adults often display a pattern dedifferentiation, where older 

adults see less specific task-associated activation patterns compared to younger adults 

(Hakun et al., 2015b; Reuter-Lorenz & Park, 2010), as well as changes in resting state 

networks, like decreased functional connectivity within individual networks like the default 

mode, salience, and central executive/fronto-parietal control network coupled with increased 

connectivity between these networks (Andrews-Hanna et al., 2007; He et al., 2014). Future 

studies should examine how connectivity changes impact the application of tDCS and 

subsequent task performance.  

 

Conclusion 

This study provides a mix of both expected and novel findings. Among findings with a good 

deal of previous empirical support, this study observed that brain anatomy changes with age 

and that there are discernible differences in anatomy between those with and without MCI. 

Among more novel findings, this study joins a small literature demonstrating that electric 

field magnitude and brain anaotmy affect the potential gains of tDCS. Future work needs to 

further our understanding of the role of FEM can play in mitigating the heterogeneity of and 

improving outcomes from tDCS application in older adults.  
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Figures 

 

 

 

 

 

 

  

Figure 2: Comparison of CSF, grey matter, and white matter between healthy controls (HC) 

and subjects with Mild Cognitive Impairment (MCI). Error bars +/- 1 SE. 

Figure 1: Project design.    
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Figure 3: Relationship between age and CSF ratio.   
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Figure 4: Relationship between age and grey matter ratio.   
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Figure 5: Relationship between age and white matter ratio.   
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Figure 6: Relationship between CSF ratio and electric field magnitude for those who 

received active stimulation.    
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Figure 7: Relationship between grey matter ratio and electric field magnitude for those who 

received anodal stimulation.    
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Figure 8: Relationship between white matter ratio and electric field magnitude for those 

who received active stimulation.    
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Figure 9: Relationship between CSF ratio and PRETXT test performance for those who 

received active stimulation.    
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Figure 10: Relationship between grey matter ratio and PRETXT test performance for those 

who received active stimulation.    
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Figure 11: Relationship between white matter ratio and PRETXT test performance for 

those who received active stimulation.    
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Figure 12: Relationship between electric field magnitude at MNI coordinate 28, 23, -14 

and PRETXT test performance for those who received active stimulation.    



76  

 

Tables 

 

Table 1: Sample Demographics  

 Total (N=55)  Active  (n=27) 

  Mean (SD) or n (%) Mean (SD) or n (%) 

Age 67.2 (8.9) 67.9 (10.3) 

MCI 15 (27.3%) 8 (29.6%) 

Male 23 (41.8%) 12 (44.4%) 

Black 2 (3.6%) 0 (0%) 

Hispanic 10 (18.2%) 3 (11.1%) 

Native American 2 (3.6%) 1 (3.7%) 

White 41 (74.5%) 23 (85.2%) 

   

Table 2: Age predicting CSF, Grey Matter, and White Matter Ratios among all subjects  

 Variable B (SE) β t p R2  

Model 1 CSF Ratio 0.004 (<.001) 0.74 8.07 < 0.001 0.55 

Model 2 Grey Matter Ratio -0.002 (<.001) -0.66 -6.45 < 0.001 0.44 

Model 3 White Matter Ratio -0.002 (<.001) -0.63 -5.84 < 0.001 0.39 

 

 

  

Table 3: CSF, Grey Matter, and White Matter Ratios predicting electric field magnitude in the 

active group  

 Predictor B (SE) β t p R2  

Model 1 CSF Ratio -0.57 (.14) -0.63 -4.06 <0.001 0.39 

Model 2 Grey Matter Ratio 0.89 (.25) 0.57 3.48 0.002 0.33 

Model 3 White Matter Ratio 1.04 (.29) 0.59 3.62 0.001 0.34 

  

 

Table 4: CSF, Grey Matter, and White Matter Ratios predicting PRETXT Performance in the 

active group  

 Predictor B (SE) β t p R2  

Model 1 CSF Ratio -168.27 (65.32) -0.46 -2.58 0.016 0.21 

Model 2 Grey Matter Ratio 234.22 (65.32) 0.37 2 0.056 0.14 

Model 3 White Matter Ratio 340.28 (127.19) 0.47 2.68 0.013 0.22 
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Table 5: Electric field magnitude predicting PRETXT performance 

Predictor B (SE) β t p R2  

EF Magnitude 181.12 (72.93) 0.45 2.48 0.02 0.2 
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The Interaction between Intra and Inter Network Connectivity and Transcranial Direct 

Current Stimulation (tDCS) on Category Learning in Older Adults 

 

Abstract 

Numerous changes occur in the aging brain. One that is observable during analyses of resting 

state functional connectivity has been labeled “dedifferentiation,” and is characterized by 

decreases in correlated activity between the nodes of a given network, such as the default 

mode network (DMN), and increases in correlated activity between the nodes of one network 

and the nodes of another, such as between the DMN and salience network (SN). These 

increases in dedifferentiation have been shown to correlate with decreases in cognitive 

performance. This study aimed to investigate the relationship between dedifferentiation, age, 

and cognitive performance following the application of transcranial direct current stimulation 

(tDCS) in a combined sample of healthy older adults and those with mild cognitive 

impairment (MCI). Consistent with findings of dedifferentiation in older adults, increasing 

age was associated with stronger internetwork connectivity between the DMN, frontoparietal 

control network (FPCN), and SN. Additionally, in those who received 2.0 mA of active 

anodal stimulation over 10-20 site F10 with cathodal stimulation on the left arm for 30 

minutes, stronger intraconnectivity in the FPCN network was predictive of better task 

performance. This result joins a growing body of literature explicating the effects of 

dedifferentiation in older adults, while at the same time being one of the first studies to 

describe how tDCS impacts measures of dedifferentiation, and the interaction between tDCS, 

dedifferentiation, and performance in a learning task. 
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Introduction 

Aging is associated with a decline of cognitive function, a decline that can have a detrimental 

effects on quality of life (Harada et al., 2013). With an aging population, more remedial 

methods for combating age-associated cognitive decline are needed (Ortman, 2014). 

Transcranial direct current stimulation (tDCS), a form of noninvasive brain stimulation, 

offers a new possibility for combating age related cognitive decline, and there have already 

been several positive findings from the application of tDCS in healthy older adults. These 

findings have found improvements in working memory, (Min-Ho et al., 2011; Satorres et al., 

2022), executive function (Hanley & Tales, 2019; Šimko et al., 2021), memory consolidation 

(Perceval et al., 2020), and language function following interventions with tDCS (Matar et 

al., 2020). Those with mild cognitive impairment (MCI) have also benefited from tDCS 

application with improvements observed following cognitive training paired with tDCS 

(Gonzalez et al., 2018; Martin et al., 2019). However, there are also a number of published 

null results (Kaminski et al., 2017; Leach et al., 2018; Nilsson et al., 2015, 2017), indicating 

that heterogeneity is a major issue for tDCS application in older adults. This heterogeneity, 

due to both experimental and individual factors, is still largely unclassified across the tDCS 

literature, but this is especially the case in older adults (Habich et al., 2020). 

 

One source of heterogeneity in older adults is changes in brain morphology, which can 

greatly affect tDCS outcomes. On the macroscopic scale, decreases in white matter and grey 

matter volume, coupled with an increase in cerebrospinal fluid volume, poses a problem for 

tDCS in older adults as it potentially affects tDCS current flow, both reducing the amount of 

current that reaches the cortical surface and affecting the flow of current that does reach the 
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brain (Laakso et al., 2015; Mahdavi & Towhidkhah, 2018; Study 2). On the microscopic 

scale, additional changes to the structure of neurons, such as the loss of synaptic spines or 

decreased functionality of the N-methyl-D-aspartate receptor (Magnusson, 2012; Morrison & 

Baxter, 2012) may affect what designs are possible in older adults, potentially making offline 

studies, where tDCS is applied prior to a task, less feasible due to the shortened window of 

long term potentiation changes that may not outlast the application of stimulation (Fertonani 

et al., 2014).  

 

Functional organization also changes with age, like that measurable by resting state 

functional magnetic resonance imaging. In that modality, subjects are placed in the scanner 

and not given a specific task. Often, they are told to keep their eyes open and look at a 

fixation cross, but otherwise the mind is free to wander. Resting state functional connectivity 

(rsFC), the measurement that comes from resting state functional magnetic resonance 

imaging, is the amount of positive or negative correlation between specific brain areas and 

their respective fluctuations in blood oxygen level dependent measurement during this time 

without a specific activity. In functional connectivity analyses, areas of simultaneous co-

occurring activity are said to be functionally connected. This is in contrast to areas with 

direct fiber connections which are said to be structurally connected. Structural connectivity is 

thus a physical relationship, while functional connectivity is a statistical relationship 

(Buckner et al., 2013; Fox & Raichle, 2007). Patterns in rsFC, resting state networks, 

resemble those seen in task-based studies, so it is thought they similarly represent the 

underlying organization of the brain (M. W. Cole et al., 2014; Crossley et al., 2013; Spreng et 

al., 2010). A feature of rsFC is that it places minimal demands on the subject other than the 
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need to keep still, making it easier to standardize since it does not involve the presentation of 

stimuli. This is advantageous in populations like older adults who may have difficulty 

performing tasks within the scanner (Study 1). Despite the seeming simplicity, however, the 

examination of rsFC data is starting to yield clinically useful data (E. J. Cole et al., 2021), 

and a number of resting state networks have been identified, including the executive or 

fronto-parietal control network (FPCN), dorsal attention or task-positive network, ventral 

attention or salience network (SN), sensorimotor network, visual network, and task-negative 

or default mode network (DMN) (Smitha et al., 2017; Varangis et al., 2019). 

 

In older adults, specific patterns are visible in rsFC where older adults display increased 

inter-network connectivity and decreased intra-network connectivity (Antonenko & Flöel, 

2014; Damoiseaux, 2017; Deery et al., 2023; Sala-Llonch et al., 2015; Vieira et al., 2020).  

This fits into a general pattern of "dedifferentiation", "demodularization", or “desegregation” 

that occurs in the aging brain, where in task based fMRI, specific activation patterns seen in 

younger adults become increasingly less pronounced with age (Park & Reuter-Lorenz, 

2009a). Reductions in intra-network connectivity mean that in the absence of a task the nodes 

of the DMN, such as the posterior cingulate cortex, medial prefrontal cortex, and angular 

gyrus, display reduced functional connectivity to each other. However, they exhibit more 

functional connectivity to the nodes of other networks, like the dorsolateral prefrontal cortex 

and posterior parietal cortex of the FPCN (Allen et al., 2011; Grady et al., 2016; Spreng et 

al., 2016; Tomasi & Volkow, 2012). Such dedifferentiation has been observed in both cross-

sectional studies comparing older adults to younger adults (Ferreira et al., 2016; Geerligs et 

al., 2015; Hrybouski et al., 2021), and longitudinal studies following older adults over time 
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(Chong et al., 2019; Ng et al., 2016; Zonneveld et al., 2019). The amount of change seen in 

various networks also varies in the aging brain, with some like the visual network 

experiencing little change; others like the limbic network demonstrating an increase in 

segregation from other networks (Andrews-Hanna et al., 2007; Hrybouski et al., 2021; 

Malagurski et al., 2020); and others like the SN, FPCN, and DMN experiencing greater 

change that follows the dedifferentiation pattern (Schulz et al., 2022).  

 

Changes visible in rsFC in older adults are also associated with cognitive performance. These 

include changes in connections within networks, such as studies that found stronger FPCN 

intraconnectivity related to better working memory and verbal memory (Geerligs et al., 2015; 

Stumme et al., 2020), and studies that found stronger DMN intraconnectivity related to better 

episodic memory (Fjell et al., 2015) and processing speed (Staffaroni et al., 2018). And 

changes in connections between networks, like where overall desegregation of the DMN, 

FPCN, SN, and other networks from one another was associated with worse episodic 

memory (Chan et al., 2014), worse processing speed (Varangis et al., 2019), and worse 

attention (Chong 2019). Also, stronger internetwork connectivity between the FPCN and 

DMN specifically was correlated with worse associative memory (Grady et al., 2016) and 

worse verbal memory (Stumme et al., 2020). In a study that followed adults over the age of 

65 for 4 years, a decrease in segregation of different networks was seen over that period, with 

the SN, DMN, and FPCN having the strongest declines. Additionally, reductions in the 

segregation of the FPCN over that time correlated with a decline in processing speed. When 

controlling for age, the effect of desegregation of the FPCN was still significant, indicating 

that rsFC is predicative of cognitive performance even when the effects of age are accounted 
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for (Malagurski et al., 2020). Separating age from rsFC is important, because while it is 

expected that changes in rsFC will correlate with increasing age, to justify their use, 

measures of rsFC must have additional utility beyond age and the other brain changes, such 

as decreases in grey matter and white matter, and increases in cerebrospinal fluid (Study 2) 

that also correlate with age. Besides being correlated to cognitive performance, rsFC has also 

been predictive of improvement following cognitive interventions. Less dedifferentiation of 

the FPCN, DMN, SN, as well as others at baseline was associated with greater executive 

function improvement following a 6 month exercise regimen (Baniqued et al., 2018), (Gallen 

et al., 2016). In another study, lower baseline connectivity between the nodes of the SN and 

other networks was also related to better learning (Iordan et al., 2018).  

 

Only two studies have used measures of rsFC prior to tDCS application to explore 

differences in who might benefit the most from tDCS, one of which was in healthy older 

adults. In the other study with younger adults, those with higher baseline connectivity within 

the DMN had better gains after 5 days of working memory training coupled with tDCS 

application to the left dorsolateral prefrontal cortex (Cerreta et al., 2020). In the study with 

older adults, those with lower baseline connectivity between the FPCN, dorsal attention 

network, and sensorimotor network had larger improvements in visual working memory 

during the application of tDCS to the left dorsolateral prefrontal cortex (Pupíková et al., 

2022). Changes in rsFC have been observed following tDCS application in older adults, with 

some studies noting that tDCS changed rsFC patterns in older adults, making them more 

similar to those of younger adults (Antonenko et al., 2019; Lindenberg et al., 2013; Meinzer 

et al., 2013; Nissim, O’Shea, Indahlastari, Telles, et al., 2019; J. Zhou et al., 2020).  
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The current study builds on these previous findings by further exploring the relationship 

between age and dedifferentiation, and more importantly, whether patterns of rsFC visible in 

older adults prior to tDCS application can be used to predict the benefits of tDCS.   

 

Methods  

This study recruited healthy older adults and those with mild cognitive impairment (MCI) to 

investigate the effects of tDCS on cognitive performance and brain function. The participants 

were required to be right-handed, aged between 50-90 years, English speakers before the age 

of 7, and without a history of neurological or psychiatric disorders. They additionally were 

excluded for excessive drug or alcohol use, epilepsy, migraines, stroke, traumatic brain 

injury, other chronic illnesses, or current COVID-19 symptoms. Potential participants needed 

to be inexperienced with tDCS and be able to receive an MRI. Healthy control subjects were 

not allowed to be taking medications with possible psychotropic effects, but participants with 

MCI were allowed to be taking these medications. Subjects with MCI needed to be able to 

sign a consent form, or have a legally authorized representative able to sign on their behalf. 

Both those who came with an existing diagnosis of MCI as well as those who scored a 26 or 

lower on the Montreal Cognitive Assessment (MOCA) were classified as having MCI for 

this study. 

 

The study consisted of two days of participation (Figure 1). On day one subjects completed 

the resting state scan as well as the baseline portion of the cognitive task, the Predicting 

Response To F10(X) tDCS) or PRETXT task, while in the scanner. The PRETXT task was 
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performed immediately before the resting state scan. Please see Study 1 and Study 2 for 

further description of the PRETXT task. On day two, tDCS was applied during the training 

portion of the PRETXT task followed by an additional scan where the test portion of the 

PRETXT task was performed in the scanner, and again it was followed by the resting state 

scan. tDCS was applied using an ActivaDose II iontophoresis unit and delivered 2 mA of 

anodal stimulation for 30 minutes to the right inferior frontal gyrus, or F10 on the 

international 10/20 system, with the cathode placed on the contralateral triceps. The current 

was delivered using sponges soaked in SignaGel that were placed in a rubber holder with a 

metal backing during application. For double-blinding, two ActivaDose units were connected 

to a blinding box with 6 switches, half of which allowed the current from the ActivaDose 

machine administering the active dose of 2.0 mA to pass, while the other half allowed the 

current from the ActivaDose machine administering the sham dose of 0.1 mA to pass. 

 

Magnetic Resonance Imaging Parameters  

Participants were scanned with a 3T Prisma system with 32 channel head coil (Siemens; 

Erlangen, Germany). The parameters for the T-1 weighted structural image were: repetition 

time [TR] = 2500 milliseconds; echo time [TE] = 1.81, 3.6, 5.39, 7.18 milliseconds; 

inversion time [TI] = 1000 milliseconds; flip angle = 8 degrees; number of excitations [NEX] 

= 1; slice thickness = 0.8 mm; field of view (FOV) 256 mm; matrix size = 320x320; voxel 

size 0.8 mm cubed). For the T-2 acquisition the parameters were repetition time [TR] = 3200 

milliseconds; echo time [TE] = 564 milliseconds; flip angle = 8 degrees; number of 

excitations [NEX] = 1; slice thickness = 0.8 mm; field of view (FOV) 256 mm; matrix size = 

320x320; voxel size 0.8 mm cubed). Resting state data was acquired over a 10-minute period 
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using a single-shot, gradient-echo planar pulse sequence (TR = 800 milliseconds; TE = 37 

milliseconds; flip angle = 52 degrees; multiband acceleration factor = 8; NEX = 1; slice 

thickness = 2 mm; FOV = 208mm; matrix size 104x104) with 72 interleaved 2-mm slices 

acquired for whole brain coverage (voxel size: 2x3mm). A total of 738 images were 

collected. 

 

Resting State Data Processing  

Image processing was done in CONN Toolbox. Functional volumes were realigned and 

unwarped to account for subject motion estimation and correction with a subject motion 

threshold of .9 mm. Slice timing correction was performed and outlier scans above 97th 

percentile were identified and removed. Grey matter, white matter, and cerebrospinal fluid 

volumes were segmented and normalized in MNI space and the skull was stripped. Data was 

denoised using component-based noise correction, the anatomical component-based noise 

correction, and the global signal regression before being band-pass filtered for frequencies 

below 0.008 and above 0.09 Hz. Linear detrending was performed along with despiking 

before regression. Regions of interest (ROIs) for the DMN, SN, and FPCN networks were 

defined using the Network Atlas in CONN. The ROIs for the DMN were the medial 

prefrontal cortex, left and right angular gyri, and posterior cingulate cortex. For the SN, they 

were the anterior cingulate cortex, left and right anterior insula, left and right anterior 

prefrontal cortex, and left and right supramarginal gyri. Lastly for the FPCN network the 

ROIs were left and right dorsolateral prefrontal cortices and left and right posterior parietal 

cortices. Please see Figure 2 for visual representation of the ROIs (Chabran et al., 2020) 
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Statistical Analysis and Hypotheses  

Mean time series were extracted from each ROI, and Pearson correlation coefficients were 

calculated for all possible pairs of ROIs within and between the networks of interest. The 

correlation coefficients were Fisher transformed in CONN toolbox to improve normality and 

these were used in individual regression analyses (Hausman 2020) and one-way ANOVAs. 

Statistical analyses were conducted in Statistical Product and Service Solutions (SPSS). Eight 

regression analyses were performed in SPSS, four exploring the relationship between 

connectivity and age and four exploring the relationship between connectivity and 

performance on the PRETXT task. For both outcomes, the four connectivity measures of 

interest were intra-network connectivity in the DMN, SN, and FPCN networks, and average 

inter-network connectivity between these three networks. Finally, 4 one-way ANOVAs were 

conducted to explore any possible differences in intra-network and average inter-network 

connectivity between those classified as healthy controls and those classified as having MCI.  

Hypotheses for the models were the following: 

1) With increasing age there will be decreasing strength in intra-network connectivity within 

the DMN, FPCN, and SN.  

2) With increasing age, there will be increasing inter-network connectivity, marked by 

increases in positive correlations and decreases in anticorrelations between these three 

networks.  

3) In addition, stronger intra-network connectivity in the DMN, FPCN, and SN will predict 

better task performance in those who receive active tDCS. 
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4) Weaker inter-network connectivity between these networks will predict better task 

performance in those who receive active tDCS. 

 

Results 

Subjects 

Fifty-four subjects had baseline rsFC collected. One was excluded for having missing 

PRETXT data, leaving 53 subjects. The average age was 67.1 (SD = 8.92) years. Most of the 

sample identified as female, 30 or 56.6%, and as non-Hispanic white, 38 or 71.7%. Twenty-

seven subjects were included in the active tDCS group, where likewise the majority 

identified as female, 15 or 55.6%, and non-Hispanic white, 23 or 85.2%. Fifteen subjects 

(28.3%) in the sample were classified as having MCI, including 8 or 29.6% of those who 

received active stimulation. See Table 1 for complete demographic information. 

 

Age and connectivity  

In the models exploring the relationship between age and rsFC, age was not a significant 

predictor of intraconnectivity in the DMN (R2 = 0.03, β = -0.17, t(52) = -1.25, p = 0.217) 

(Figure 3), FPCN (R2 = 0.06, β = -0.25, t(52) = -1.82, p = 0.07) (Figure 4), or SN (R2 = 0.01, 

β = -0.7, t(53) = -0.5, p = 0.616) (Figure 5). However, age was a significant predictor of 

internetwork connectivity (R2 = 0.08, β = 0.27, t(52) = 2.05, p = 0.046), accounting for 8% of 

the variance where increasing age was associated with increasing average connectivity 

between the DMN, FPCN, and SN (Figure 6). This average difference was driven by stronger 
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internetwork connectivity between the DMN and SN (R2 = 0.08, β = 0.28, t(53) = 2.05, p = 

0.045) and between the FPCN and SN (R2 = 0.11, β = 0.32, t(52) = 2.45, p = 0.018), while no 

relationship was found between age and connectivity between the DMN and FPCN (R2 = 

0.001, β = 0.04, t(52) = 0.25, p = 0.8). Please see Table 2 for the statistics of the age and 

connectivity models. 

 

Connectivity and performance  

Among those who received active stimulation, neither intraconnectivity within the DMN (R2 

= 0.05, β = 0.21, t(26) = 1.08, p = 0.289) (Figure 7) or SN (R2 = 0.03, β = 0.21, t(26) = 1.08, 

p = 0.289) (Figure 8) was predictive of PRETXT performance. In contrast, intraconnectivity 

in the FPCN network predicted a statistically significant 20% of the variance in task 

performance in the active group, with stronger connectivity in the FPCN network associated 

with better PRETXT performance (R2 = 0.2, β = 0.45, t(26) = 2.48, p = 0.020) (Figure 9). 

Average connectivity between the DMN, FPCN, and SN was not associated with task 

performance in the active group (R2 = 0.07, β = -0.26, t(26) = -1.36, p = 0.185) (Figure 10). 

Among the relationships between these networks, only the relationship between the SN and 

FPCN was predictive of performance among those who received active stimulation (R2 = 

0.11, β = -0.38, t(26) = -2.11, p = 0.046), with connectivity between the SN and DMN (R2 = 

0.08, β = -0.33, t(26) = -1.75, p = 0.092) and DMN and FPCN (R2 = 0.01, β = 0.11, t(26) = 

0.53, p = 0.603) not predictive of performance. In those who received sham stimulation, 

intraconnectivity within the DMN (R2 = 0.10, β = 0.31, t(25) = 1.59, p = 0.125) and FPCN 

(R2 < 0.001, β = -0.01, t(25) = -0.037, p = 0.971) was not significantly associated with 

performance, but interconnectivity in the SN was a significant predictor of performance (R2 = 
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0.18, β = 0.43, t(25) = 2.3, p = 0.030). For internetwork connectivity among those who 

received sham stimulation, average internetwork connectivity (R2 = 0.11, β = -0.32, t(25) = -

1.68, p = 0.106), connectivity between the DMN and FPCN (R2 = 0.006, β = -0.08, t(25) = -

0.388, p = 0.701), and connectivity between the SN and FPCN (R2 = 0.05, β = -0.22, t(25) = -

1.09, p = 0.125) were not significant predictors of performance. In contrast, connectivity 

between the DMN and SN was predictive of performance (R2 = 0.17, β = -0.41, t(25) = -1.21, 

p = 0.037).  

 

Differences between those with MCI and healthy controls  

Four separate one-way ANOVA’s were conducted to explore differences in intra and inter 

network connectivity between those classified in the MCI group and those classified as HC 

(Figure 11). None of these differences were significant, though differences in 

intraconnectivity in the DMN (F(1,52) = 3.63, p = 0.062), FPCN (F(1,52) = 3.48, p = 0.068), 

and SN (F(1,52) = 3.49, p = 0.067) were approaching significance, where in all three 

between groups comparisons healthy controls had stronger within network connectivity. 

Average connectivity between the DMN, FPCN, and SN was also not significantly different 

between healthy controls and those classified as having MCI (F(1,52) = 0.56, p = 0.458), and 

none of the relationships between these networks approached significance. (Figure 10).  

 

Discussion  

The current study is one of the first to find that differences in rsFC can predict performance 

following the application of active anodal tDCS. Specifically, stronger intraconnectivity in 
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the FPCN predicted better performance in the active anodal group. Interpreting the β from 

that analysis, a one standard deviation increase in the positive strength of the correlation 

coefficient (approximately r = 0.19) equated to a 7.5% increase in categorization accuracy in 

the PRETXT task. Given that the average improvement in categorization accuracy in the 

active group over the course of the task was 11.5%, the predictive power of FPCN 

intranetwork connectivity is quite large. Differences in rsFC according to age were also 

observed, with a trend towards dedifferentiation consistent with the literature, though in the 

current sample only the change in average inter-network connectivity between the DMN, 

FPCN, and SN reached significance, where a one SD increase in age, 8.9 years, resulted in an 

increase in the average correlation between these networks of r = 0.035. 

 

Post-hoc tests revealed that the significant change in inter-network connectivity with age 

(Figure 5), was driven entirely by the SN, both its relationship with the DMN and the FPCN. 

In contrast, no relationship was observed between age and connectivity between the DMN 

and FPCN. The SN is thought to play a role in switching between the task negative DMN and 

task positive FPCN in order to efficiently use attention and working memory (Uddin, 2015). 

Individuals with stronger segregation between the SN and FPCN networks have also shown 

better performance on tests of executive function and attention, suggesting that the ability to 

flexibly switch between these two networks is an important aspect of cognitive control 

(Seeley et al., 2007). The result in the current study joins others that demark the SN as a 

nexus of age associated change (Meier et al., 2012), especially the relationship between the 

SN and other networks, such as the DMN, where desegregation has been observed in 

longitudinal and cross sectional studies (Ferreira et al., 2016; Malagurski et al., 2020). 
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Compared to young adults, nodes in the SN of older adults have more connections to nodes 

in other networks (Iordan et al., 2018), and connectivity of the SN and DMN was best able to 

differentiate older and younger adults in a machine learning study (La Corte et al., 2016). In 

that same study, SN connectivity was better able to predict cognitive performance in older 

adults than age itself, meaning there is utility for rsFC over and above age (La Corte et al., 

2016). Indeed, this was also the case in the current study, where increasing age was also an 

inferior predictor of cognitive performance (p = 0.192) across the entire sample in 

comparison to internetwork connectivity of the SN. Other studies have found the DMN to be 

important in older adults, both its connection to the FPCN and its within network connections 

(Grady et al., 2016; Ng et al., 2016), but neither was found to be associated with age or task 

performance in the current study. The current results are consistent with the older adults’ 

rsFC literature, however, where different networks emerge in different studies. On the whole 

there is strong support for the dedifferentiation hypothesis in older adults, with a recent meta-

analysis finding decreased within-network connectivity in 37 of 50 studies and increased 

between-network connectivity in 32 of 37 studies (Deery et al., 2023). 

 

Also revealed by post-hoc tests, the relationship between the SN and FPCN was related to 

performance, where those with weaker correlations between the nodes of the SN and the 

FPCN performed better after active stimulation. The SN is particularly relevant to the 

PRETXT task, where subjects are tasked with learning an arbitrary rule to correctly classify 

European streets into 2 categories, and the SN is thought to be involved in the detection of 

pertinent stimuli and the monitoring of rules (Han et al., 2019; Sestieri et al., 2014). Thus, 
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subjects with weaker segregation of the SN may have been less able to filter out irrelevant 

information. 

 

A previous study applying active tDCS to the same target as the current study, the right 

inferior frontal gyrus (rIFG), found that stimulation altered the relationship between the SN 

and DMN, strengthening deactivation of the DMN with concurrent SN activation (Li et al., 

2019). Activation of the right anterior insula, a critical SN structure, is correlated with 

concurrent DMN deactivation and better cognitive control. (Hampshire and Sharp 2015; 

Touroutoglou 2012) The right anterior insula is functionally connected to the rIFG during 

tasks (Aron et al., 2014; Hampshire et al., 2010; Sridharan et al., 2008; Touroutoglou et al., 

2012), and is thought to be stimulated when tDCS is applied to the rIFG (Hunter et al., 2015; 

Li et al., 2019). In contrast, application of tDCS to the dorsolateral prefrontal cortex has been 

shown to affect connectivity within the FPCN (Peña-Gómez et al., 2012). It is thus possible 

that rIFG stimulation can affect the relationship between the SN and DMN, but not the 

relationship between the SN and FPCN, so that the health of the SN and FPCN inter-network 

connectivity which subjects have before tDCS application affects their performance. This 

interpretation is supported by findings in the sham group, where instead, SN and DMN inter-

network connectivity was predictive of performance. 

 

This possibility is supported further by connectivity within the FPCN, which was found to be 

a significant predictor of performance in those who received active stimulation with larger 

positive correlations between FPCN nodes associated with better task performance (Figure 
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8). The FPCN is a task positive network associated with cognitive performance, such as that 

which occurs during working memory and goal directed attention (Hausman et al., 2022; 

Palva et al., 2010). The FPCN also underlies the adaption to feedback (Dosenbach et al., 

2007). Given that the PRETXT task requires discovery learning, where subjects must learn to 

separate pictures into two categories through iterative hypothesis testing and feedback, this is 

a critically important function. In one of only two previous studies that used rsFC to predict 

tDCS effects, Cerreta et al. explored whether rsFC within the DMN and FPCN could predict 

outcomes following tDCS mediated working memory training in young adults (Cerreta et al., 

2020). They found that intraconnectivity in the DMN, and not the FPCN, predicted tDCS 

benefit, the opposite of the current study. These results fit in with an interpretation that sees 

the stimulation of the dorsolateral prefrontal cortex, the target in the Cerreta study, as a direct 

way to affect FPCN intranetwork connectivity, an effect not accomplished by right IFG 

stimulation. This interpretation is further supported by studies that have applied anodal tDCS 

to the dorsolateral prefrontal cortex and observed increased connectivity within the FPCN 

following stimulation (Nissim, O’Shea, Indahlastari, Kraft, et al., 2019; J. Zhou et al., 2020).  

 

The results from the current study bear on the implications of dedifferentiation in older 

adults. While the relationships observable in rsFC of older adults, weaker intra-network 

connectivity and stronger inter-network connectivity, are a critical part of the literature and 

evidence for dedifferentiation, this theory was proposed following observations in task-based 

blood oxygen level dependent (BOLD) fMRI. There, in comparison to younger adults, older 

adults who performed as well as younger adults sometimes did so while displaying 

comparatively larger amounts of BOLD activation (Hakun et al., 2015b; Reuter-Lorenz & 
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Cappell, 2008; Reuter-Lorenz & Park, 2010). This is especially true during tasks requiring 

executive function and the prefrontal cortex, where in some cases tasks that are accompanied 

by unilateral prefrontal cortex activation in younger adults are accompanied by bilateral 

activation in adults with a similar performance level (Davis et al., 2012; Turner & Spreng, 

2012b). In cases where greater BOLD in older adults has correlated with performance 

equaling that of younger adults with less BOLD activation, dedifferentiation has been 

proposed as a form of compensation, where older adults need to marshal more neurological 

resources to maintain a high level of cognitive performance (Cabeza & Dennis, 2013; Park & 

Reuter-Lorenz, 2009b) In cases where greater BOLD is not associated with better 

performance, dedifferentiation is better interpreted as representing age-related decline in the 

specialization of specific brain regions and increased inefficiency in neural processing, such 

as in cases where bilateral prefrontal cortex recruitment was associated with worse 

performance (Goh, 2011; Meinzer et al., 2009; Stern, 2009). Findings from the current study 

support the latter interpretation, where dedifferentiation is only associated with worse 

performance in older adults. In this it concurs with the majority of studies exploring the rsFC 

correlates of cognitive performance in older adults (Chan et al., 2014; Chong et al., 2019; 

Geerligs et al., 2015; Grady et al., 2016; Stumme et al., 2020; Varangis et al., 2019). It is also 

noteworthy that less dedifferentiation, specifically within the FPCN, predicted the benefits of 

tDCS. This is a conceptual departure from the finding frequently observed in tDCS studies 

where poorer performers benefit more from tDCS application (Krebs et al., 2021; Perceval et 

al., 2020; D. Zhou et al., 2015), and perhaps evidence of a disconnect between anatomical 

and physiological measures associated with poor performance and poor performance itself in 

older adults. 
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Limitations 

The inclusion of both healthy controls and those with MCI in the current study is a potential 

limitation. However, no significant differences in connectivity patterns were found between 

healthy controls and those with MCI in the current study, though these differences may have 

emerged with a larger sample size. Importantly, the main results of the study still hold if 

those with MCI are removed, with age still predictive of average internetwork connectivity in 

healthy controls (p = 0.046), and FPCN intra-network connectivity still predictive of task 

performance (p = 0.04) in those who received active stimulation. 

 

Sample sizes larger than 53 are preferred for imaging studies, but the current study had a 

sample size comparable to others that have examined imaging correlates of tDCS (Li et al., 

2019; Peña-Gómez et al., 2012; Polanía et al., 2011). Also, for examining how age affects 

rsFC, cross-sectional analyses like the current study can observe differences across those of 

different ages, but only longitudinal studies can observe changes in rsFC that occur with age. 

Longitudinal studies do mirror cross-sectional studies in older adults in supporting network 

dedifferentiation (Staffaroni et al., 2018; Zonneveld et al., 2019), but increased nuance can be 

observed in longitudinal studies, such as the finding that while segregation within the FPCN 

and DMN continues to decline into old age, segregation of the salience network within 

individuals decreases until around age 75, and slightly increases thereafter (Malagurski et al., 

2020). Undoubtedly, greater insights would be garnered from collecting rsFC measures and 

correlating these with performance across time. Finally, while earlier criticisms of the utility 



97  

 

of rsFC in understanding the brain have largely been drowned out by the sheer amount of 

rsFC findings that have accumulated in the intervening years, it is still useful to remember 

the limitations of rsFC and acknowledge that "rest" does not hold a privileged place when it 

comes to understanding the brain (Buckner et al., 2013; Finn, 2021; Gal et al., 2022; Morcom 

& Fletcher, 2007). Given this, it is also possible, perhaps likely, that there are better ways to 

predict the effects of tDCS besides rsFC (Study 2). 

 

Future Directions  

Future work should look at changes in rsFC following stimulation, and changes in FC during 

PRETXT task performance, in order explicate the relationships observed here. Specifically, it 

was observed that those displaying less dedifferentiation between the SN and FPCN, and 

within the FPCN, benefited more from active stimulation, with the same pattern seen 

between dedifferentiation, aging, and cognitive performance. As discussed previously, 

however, it is possible that the relationship between existing functionally of the FPCN and 

PRETXT task performance is due to the stimulation site, where the rIFG provides a way to 

more readily affect SN activity and not FPCN activity. Stimulating the right dorsolateral 

prefrontal cortex, rather than the rIFG, may then offer a method to improve FPCN 

connectivity, and by extension PRETXT task performance, directly. However, before 

stimulation is applied elsewhere, the changes in connectivity following the current protocol 

should be examined. In that case it is tDCS induced reductions in dedifferentiation within the 

SN that would be expected to correlate with better performance.   
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Imaging modalities measuring effective rather than functional connectivity may also provide 

a method of predicting tDCS response following application to the rIFG. For example, in one 

study, fractional anisotropy, a measure of white matter health, within the SN predicted 

response to tDCS of the rIFG. Those with low fractional anisotropy had no improvement 

with active stimulation (Li et al., 2019). Similarly, in another study more voluminous white 

matter tracts leading from the rIFG predicted the effects of cathodal stimulation of that same 

location on improvements in picture naming speed (Rosso et al., 2014). Studies like these 

performed in older adults may offer a way of understanding important differences behind 

disparate tDCS findings in younger and older adults. Ultimately, however, the goal of work 

combining tDCS and imaging should be to glean what insights are possible from imaging, 

but not devise protocols that make tDCS application dependent on neuroimaging. Much work 

remains to be done to understand the substantial heterogeneity inherent in tDCS application, 

and for this neuroimaging will undoubtedly play a part, but the ultimate advantages of tDCS 

is that it is comparatively simple to implement, inexpensive to procure, and exceptionally 

safe to use. Techniques which impinge upon the cost/benefit ratio of tDCS should not be a 

part of long-term programs for tDCS implementation. 

 

Conclusion 

The current study found that differences in rsFC can predict performance following the 

application of active anodal tDCS, where stronger intraconnectivity in the FPCN predicted 

better performance in the active anodal group. Differences in rsFC with age were also 

observed, consistent with findings of dedifferentation. These findings highlight the potential 

predictive power of rsFC in understanding the effects of tDCS and emphasize the importance 
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of studying the relationship between different brain networks and how they interact with 

cognitive interventions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



100  

 

Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Project design.    

Figure 1: Regions of interest in the current study. Taken from Chabran et al., 2020.    
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Figure 3: Relationship between age and intra-network connectivity in the default mode 

network, represented in unstandardized correlation coefficients.  
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Figure 4: Relationship between age and intra-network connectivity in the fronto-parietal 

control network, represented in unstandardized correlation coefficients. 
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Figure 5: Relationship between age and intra-network connectivity in the salience network, 

represented in unstandardized correlation coefficients. 



104  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 6: Relationship between age and average inter-network connectivity between the 

default mode, salience, and fronto-parietal networks, represented in unstandardized 

correlation coefficients. 
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Figure 7: Relationship between intra-network connectivity in the default mode network and 

task performance among the active and sham groups, represented in unstandardized 

correlation coefficients. 
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Figure 8: Relationship between intra-network connectivity in the salience network and 

task performance among the active and sham groups, represented in unstandardized 

correlation coefficients. 
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Figure 9: Relationship between intra-network connectivity in the fronto-parietal network 

and task performance among the active and sham groups, represented in unstandardized 

correlation coefficients. 

  



108  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Relationship between average inter-network connectivity between the default 

mode, salience, and fronto-parietal networks and task performance, represented in 

unstandardized correlation coefficients. 
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Figure 11: Differences in average inter-network connectivity between the default mode, 

salience, and fronto-parietal networks and task performance and intra-connectivity within 

each of these networks in the healthy control and MCI groups. Y-axis represents 

represented in unstandardized correlation coefficients. Error bars +/- 1 SE. 



110  

 

Tables 

Table 1: Sample Demographics  

 Total (N=53)  Active  (n=27) 

  Mean (SD) or n (%) Mean (SD) or n (%) 

Age 67.1 (8.9) 67.9 (10.3) 

MCI 15 (28.3) 8 (29.6) 

Male 23 (45.2%) 12 (44.4%) 

Black 2 (3.7%) 0 (0%) 

Hispanic 11 (20.7%) 4 (14.8%) 

Native American 2 (3.7%) 1 (3.7%) 

White 38 (71.7%) 23 (81.4%) 

   

   

 

Table 2: Age predicting intraconnectivity in the DM, FP, and salience networks and average 

interconnectivity  

 Variable B (SE) β t p R2  

Model 1 DM Intraconnectivity -0.003 (.003) -0.17 -1.25 0.217 0.17 

Model 2 FP Intraconnectivity  -0.005 (0.003) -0.25 -1.82 0.074 0.25 

Model 3 Salience Intraconnectivity  -0.001 (0.002) -0.07 -0.5 0.616 0.07 

Model 4 Average Interconnectivity  0.004 (<.002) -0.27 2.04 0.046 0.28 

  

 

Table 3: Intraconnectivity in the DM, FP, and salience networks and average 

interconnectivity predicting PRETXT performance in the active group 

 Predictor B (SE) β t p R2  

Model 1 DM Intraconnectivity 22.11 (20.41) 0.21 -1.08 0.289 0.21 

Model 2 FP Intraconnectivity  41.53 (16.72) 0.44 2.48 0.02 0.44 

Model 3 Salience Intraconnectivity  19.09 (22.59) 0.17 0.84 0.406 0.17 

Model 4 Average Interconnectivity  -35.23 (25.83) -0.26 -1.36 0.185 0.26 
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