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Abstract

Human activity detection in digital videos is currently attracting significant research

interest. This problem is especially challenging for video datasets that have a lot of

human activity, illumination noise, and structural noise. The video dataset associ-

ated with the Advancing Out of School Learning in Mathematics and Engineering

(AOLME) project has these challenges. ALOME videos have been used in the study

of human activities “in the wild”.

This thesis explores detection of hand movement using color and optical flow.

Exploratory analysis considered the problem component wise on components created

from thresholds applied to motion and color. The proposed approach uses patch

color classification, space-time patches of video, and histogram of optical flow. The

approach was validated on video patches extracted from 15 AOLME video clips. The

approach achieved an average accuracy of 84% and an average receiver operating

characteristic area under curve (ROC AUC) of 89%.
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Chapter 1

Introduction

1.1 Overview

The AOLME dataset has many examples of human activities and actions to analyze,

(see Fig. 1.1). As the frames in Fig. 1.1 depict, in the AOLME project, students

interact with facilitators and each other to work on math and engineering lessons.

The videos in Fig. 1.1 have much in common. Each group has a primary camera

capturing it. Each group has monitors. Each group has one keyboard which is passed

around between students. There are two common room locations; thus, there are

common colors (e.g. the table tops and the chairs and the cabinets). There are

common students and facilitators in different videos.

However, there is a lot of variables in the videos that qualify the AOLME dataset

as an uncontrolled environment. Camera angles differ, even between videos on the

same group, (e.g. see Fig. 1.1f and Fig. 1.1l). The illumination is not consistent,

(e.g. see Fig. 1.1b versus Fig. 1.1d). People can and do move around freely.

From the point of view of using optical flow as motion information to detect

1



Chapter 1. Introduction

human actions, there are also several challenges. First, there is illumination noise.

Second, there are obstructions of motions. The monitors often block or partially

block the view of people’s movement; see how the monitors block people’s hands in

Fig. 1.1d, Fig. 1.1e, Fig. 1.1l, and Fig. 1.1n. People also block other people. See

in Fig. 1.1e how there are multiple people stacked on the left. See in Fig. 1.1n how

one girl blocks another girl on each side of the table. People block themselves. For

example, a person may put a hand over their mouth which bocks an activity of

talking, or for example, a person’s head may block part of her moving hand, as is

happening in Fig. 1.1b. Third, there is movement not associated with the primary

table in a shot. Other groups work and move in the background; see Fig. 1.1a -

Fig. 1.1c, Fig. 1.1e - Fig. 1.1f, Fig. 1.1h – Fig. 1.1m, and Fig. 1.1o. People walk in

the background; see Fig. 1.1c, Fig. 1.1f, Fig. 1.1h - Fig. 1.1j, and Fig. 1.1l. People

adjust equipment; see Fig. 1.1k and Fig. 1.1m. People hold animated conversations

nearby; see Fig. 1.1n. People walk between the camera and the primary table; see

Fig. 1.1l. Fourth, the people who interact at the primary table may not be sitting

at the table. Participants at a primary table may stand or lean near the table;

see Fig. 1.1d - Fig. 1.1f and Fig. 1.1m. Furthermore, participants may join a table

partway or just visit a primary table or move to and fro from the table; see Fig. 1.1g

and Fig. 1.1o and Fig. 1.1d.

1.2 Motivation

A focus of the AOLME project is understanding how the students best learn. There-

fore, how the students interact with the facilitator, each other, and their lessons is of

interest when defining what human activity and actions are useful to detect. What

the participants are doing with their hands is an important aspect of how they in-

teract with their lessons and each other. For example, the participants interact with

2



Chapter 1. Introduction

the lessons by writing (Fig. 1.1a - Fig. 1.1b, by typing (Fig. 1.1d, Fig. 1.1g, Fig. 1.1k,

Fig. 1.1l, Fig. 1.1m, Fig. 1.1o), by using the mouse (Fig. 1.1o), or by flipping through

their notebooks (Fig. 1.1k). They interact with each other by pointing (Fig. 1.1a,

Fig. 1.1c, Fig. 1.1d, Fig. 1.1e, Fig. 1.1h, Fig. 1.1i, Fig. 1.1j, Fig. 1.1n). They inter-

act by gesturing while talking (Fig. 1.1b). They use gestures to describe (Fig. 1.1f,

Fig. 1.1i). They use gestures to communicate (in Fig. 1.1l the facilitator is giving

thumbs up).

Thus the focus of this thesis is detecting moving hands.

1.3 Thesis Statement

The thesis of this research is that hand movement can be detected in full frame

video based on motion information from optical flow over a duration of time and

color information. For the color information, this thesis claims that skin regions can

be defined by classification of patches in a video frame. The basic idea for the hand

movement detection is to look everywhere in the video via space-time patches and

reject regions that do not qualify due to low motion and low skin region presence.

Non-rejected space-time patches can be classified based on histograms of the flow.

1.4 Contributions

The contributions of this thesis include:

1. Exploratory analysis which considers the moving hand detection problem com-

ponent wise on components created from thresholds applied to motion and

color.

3



Chapter 1. Introduction

2. A new method for determining color regions based on patch classification.

3. A hand detection method for space-time patches based on color regions and

optical flow.

1.5 Summary

Chapter 2 gives background, especially concerning research done in the AOLME

dataset. Chapter 3 describes the steps used in exploratory analysis and in the space-

time patch classification. Chapter 4 presents results, and Chapter 5 summarizes the

conclusions and conjectures about future work.

4



Chapter 1. Introduction

(a) V1 (b) V2 (c) V3

(d) V4 (e) V5 (f) V6

(g) V7 (h) V8 (i) V9

(j) V10 (k) V11 (l) V12

(m) V13 (n) V14 (o) V15

Figure 1.1: Frames from 15 different videos in the AOLME dataset. Censoring is
present to protect subject privacy.
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Chapter 2

Background

2.1 Prior Work Done Using AOLME Dataset

References [5][4] used typing / no typing and writing / no writing video crops from

AOLME videos to demonstrate a distributed and scalable video analysis architecture.

Unlike [5][4], this thesis works in the full uncropped video.

References [12][13] focus on face and head detection, attention detection based

on where the faces look, and group interactions based on the attention direction

detected. In [12][13], the work uses texture by using an AM-FM images. In [12], the

method for face detection included a pixel value based skin detector from [2]. This

thesis used that skin detector during the exploratory analysis phase. Furthermore in

[12], the full image was scanned in a space patch manner classifying the patches as

face or non-face. Similarly, this thesis scans using patches for the hand and non-hand;

however, since the search is in segments of video, space-time patches are used.

The references [9][8] focus on activity detection of writing, typing, and talking.

The approach of [9][8] first finds candidate regions for writing, typing, and talking.

6



Chapter 2. Background

The candidate region for writing is found via combined pixel color value masks for

tables, pencils and pens, and paper along with some shape info on the pencils. The

candidate region for typing is found via pixel color value masks for keyboards and for

table (with convex hull applied) and for skin along with a KNN to detect keyboards.

The candidate region for talking is found via the pixel color value masks for skin,

skin cleanup, KNN for faces, and shape. Once the candidate regions, which already

have a context, are established classification on optical flow histograms over three

frames is done to determine writing versus no writing, typing versus no typing, and

talking versus no talking.

This thesis is similar to [9][8] in that both skin detection and motion information

through time is used. However, this thesis approaches differently with space-time

patches because general hand movement does not have a context with other objects

like typing and writing. This thesis also collects features from flow over a longer du-

ration of time than [9][8]. Lastly, while [9][8] pixel color mask for skin was considered,

it was not used in this thesis’s method.

2.2 Other Work Concerning Hand Detection

Examples of research that deals with hand detection are summarized in Table 2.1,

and some common datasets are summarized in Table 2.2. Some of the studies had

pieces that were similar to this thesis along with dissimilar pieces. The study in [7]

has a patch based skin detector for RGB images. It classifies via features passed to a

random forest. Unlike their study, this thesis does not extract features but directly

classifies the RGB values. Furthermore, their videos used are focused on the hand

(i.e. no faces are present in the videos). The study in [11] uses a convolutional neural

net (CNN) for a skin detector on 5x5 overlapping patches. Unlike their study, this

thesis did not use overlapping patches and used less complex classifiers. The study

7



Chapter 2. Background

in [11] also rejected regions with low skin count. This thesis does similarly; however,

this thesis looks for moving hands whereas the study looks at images.

Study Dataset Problem Type

AHD: Thermal
Image-Based Adap-
tive Hand Detection
for Enhanced Track-
ing System, 2018
[14]

their own thermal
camera database,
palm facing videos of
tracing 0-9 and A-J

detection and tracking of
hand

Towards transferring
grasping from human
to robot with RGBD
hand detection, 2017
[7]

their own generated
RGBD 325 frame
videos of just hand
in various challenging
lighting, background
color, and occlusion
situations

hand detection for the pur-
poses of passing information
to robot

Deep Learning Based
Hand Detection in
Cluttered Environ-
ment Using Skin
Segmentation, 2017
[11]

public datasets of
Oxford, 5-signer and
EgoHands; extracted
images from Indian
classical dance (ICD)
videos

hand detection

Table 2.1: This table summarizes types of research problems involving hand detec-
tion in current literature.

Dataset Name Dataset Description

Oxford [10] 13050 annotated hands in images
from public sources

5-signer [3][11] footage of signers against moving
backgrounds

EgoHands [1] 48 first-person videos with 15000
hand instances.

Table 2.2: This table summarizes some public datasets referenced in recent litera-
ture.
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Chapter 3

Methods

3.1 Overview

This thesis was a mix of exploratory stages where comprehensive quantitative results

were not the objective and of a stage where quantitative validation was recorded for

an approach. The following sections are presented in the order they were considered

in during research so that we build up to the final approach.

In Section 3.2, we describe a choice made after visual inspection to sample the

video before making the optical flow calculations. This choice is used in subsequent

exploration and approach. In Section 3.3, an exploratory stage is described where

we classified components formed per frame. During this exploration, we became

interested in using a skin region detection. Section 3.4, explains the motivation for

and the new proposed approach for a patch skin region detector. The patch skin

region detector is later used for the final approach that is quantitatively validated.

Next, we considered how to approach the hand detection over a duration of

time. Section 3.5 describes how the reference dataset of space-time exemplars is

9



Chapter 3. Methods

formed. In Section 3.6, we describe another component exploration stage, this time

on components projected through time. Then the final space-time patch approach

is described in Section 3.7.

A description of the computing platform that was used for implementing the final

system is given in Section 3.8.

3.2 Sampling and Resizing Video before Optical

Flow Calculation

Motion information is obtained using optical flow [6]. To cause humans motion to be

more separable from small illumination movement in the background, we calculate

optical flow on frames that are four apart. The videos we used are 60 frames per

second. See Fig. 3.1 for an example of the distinction. We also resized the 1920 x

1080 images to 724 x 1286 for faster processing, easier viewing, and magnifying the

motions.

(a) zero frames dropped (b) three frames dropped

Figure 3.1: Optical flow for different number of frames dropped. Censoring is present
to protect subject privacy.
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3.3 Classification of Per Frame Components

In this section, the method and results from exploration of per frame components is

presented.

3.3.1 Method of Classification of Per Frame Components

The basic idea was to capture moving hands in a frame by intersecting skin regions

[12][2] (Fig. 3.4) with flow magnitudes (Fig. 3.3a or Fig. 3.3b). See Fig. 3.5 for inter-

section. Classification of the components as hand or non-hand would be done from

features associated with the component. The flow threshold was frame dependent.

Due to how the skin regions captured tended to be on the edge of hands Fig. 3.4,

further processing steps were needed. The approach is shown in Fig. 3.6, Fig. 3.7,

and Fig. 3.8 and described in Fig. 3.9. We will refer to this procedure as approach 1.

To break up small connections between components, slight variations on the

approach 1 components via with watershed lines were added into approach 2 and

approach 3. These are depicted in Fig. 3.10, Fig. 3.11, Fig. 3.12, Fig. 3.13, Fig. 3.14,

Fig. 3.15, Fig. 3.16, Fig. 3.17, and Fig. 3.19 and described in Fig. 3.18 and Fig. 3.20.

Labeling of the components for training was done via using exemplar boxes that

we created as reference. See Fig. 3.21. The exemplar boxes were drawn tightly

around all the hands in a frame. If 20% of a component is overlapped by region

that fall in exemplar boxes, then the component is considered a hand component.

Otherwise it is labeled as a non-hand component. See Fig. 3.22, Fig. 3.23, and

Fig. 3.24.

The features extracted for each component are as follows:

• Sixteen bin hue probability density function (PDF).
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• Sixteen bin saturation PDF.

• Eighteen bin value PDF.

• Canny edge to component area ratio.

• Eight bin histogram of flow with each bin normalized by the number of values

falling the bin.

• Component area.

• Component perimeter.

• Orientation of minimum area rectangle.

• Ratio of component area to minimum area rectangle area.

• Ratio of minimum area rectangle’s short side to its long side.

For classification, random forest classifier is trained with bagging enabled. There-

fore the out-of-bag (OOB) samples are available for validation testing. See Sec-

tion 3.3.2 for those results.
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Figure 3.2: flow step of Fig. 3.9. Censoring is present to protect subject privacy.
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(a) flow thresh

(b) flow thresh (different visualization)

Figure 3.3: flow thresh step of Fig. 3.9. Censoring is present to protect subject
privacy.
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Figure 3.4: skin detection[12][2] step of Fig. 3.9.

Figure 3.5: intersection step of Fig. 3.9.
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Figure 3.6: dt intersection step of Fig. 3.9.

Figure 3.7: importance step of Fig. 3.9.
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Figure 3.8: approach 1 cpns step of Fig. 3.9. Censoring is present to protect subject
privacy.

function APPROACH 1 COMPONENTS(frame, flow mag)

flow thresh ← flow mag > MEDIAN of flow mag where
flow mag > Q3(flow mag) +

1.5 * IQR(flow mag)
skin detection ← SKIN DETECTOR[12][2](frame)
intersection ← LOGICAL AND(flow thresh, skin detection)
dt intersection ← DISTANCE TRANSFORM(intersection)
importance ← dt intersection where flow thresh exist

. approach 1 components
approach 1 cpns ← importance > 14.5

return approach 1 cpns

end function

Figure 3.9: Steps taken to get the components (we refer to this as approach 1).
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Figure 3.10: dt approach 1 step of Fig. 3.18.

Figure 3.11: dt approach 1 less connectors step of Fig. 3.18.
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Figure 3.12: top 75 percent step of Fig. 3.18.

Figure 3.13: local max step of Fig. 3.18.
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Figure 3.14: markers step of Fig. 3.18.

Figure 3.15: WS result step of Fig. 3.18.
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(a)

Figure 3.16: WS cpns step of Fig. 3.18 (watershed components)

Figure 3.17: approach 2 cpns step of Fig. 3.18 (approach 2 components)
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function APPROACH 2 COMPONENTS(approach 1 cpns, frame)

dt approach 1 ← DISTANCE TRANSFORM(approach 1 cpns)
dt approach 1 less connectors ← remove regions less than

0.2 * MAX(dt approach 1)
top 75 percent ← take the top 75% per component in

dt approach 1 less connectors

local max ← mark pixel if it is the max value in a 13 x 13 neighborhood
markers ← get the unknown region in the markers as dilation around

LOGICAL OR(top 75 percent, local max)
WS result ← WATERSHED(frame, markers)

. watershed components
WS cpns ← enlarge watershed lines in WS result

approach 2 cpns ← break up the approach 1 cpns with lines
between WS cpns

return approach 2 cpns, WS cpns

end function

Figure 3.18: Additional steps to get variation from approach 1 of Fig. 3.9

Figure 3.19: approach 3 cpns step of Fig. 3.20 (approach 3 components)
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function APPROACH 3 COMPONENTS(WS cpns, approach 1 cpns)

. approach 3 components
approach 3 cpns ← take WS cpns that overlap

approach 1 cpns

return approach 3 cpns

end function

Figure 3.20: Additional steps to get variation from approach 1 of Fig. 3.9 using
WS cpns generated in Fig. 3.18

Figure 3.21: The exemplar boxes are drawn closely around all hands in the frame.
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Figure 3.22: This figure shows approach 1 labels. The green components are labeled
hand, and the red components are labeled non-hand based on how the component
overlaps exemplar regions of Fig 3.21. Censoring is present to protect subject privacy.

Figure 3.23: This figure shows approach 2 labels. The green components are labeled
hand, and the red components are labeled non-hand based on how the component
overlaps exemplar regions of Fig 3.21. Censoring is present to protect subject privacy.
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Figure 3.24: This figure shows approach 3 labels. The green components are labeled
hand, and the red components are labeled non-hand based on how the component
overlaps exemplar regions of Fig 3.21. Censoring is present to protect subject privacy.
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3.3.2 Component Classifier Results

For the dataset to train and validate the component classifier, exemplars were drawn

in frames from 8 video clips. Per clip, 25 to 137 frames were used. Component

samples from all frames and all clips were scrambled together as the dataset. A

random subset of non-hand was chosen to train with since there more non-hand

than hand samples.

The random forest classifier out-of-bag accuracy scores are reported in Table 3.1

for approach 1, approach 2, and approach 3 after a random search on some random

forest hyperparameters was done.

Classification of components in a frame that came from a video clip whose frames

were not used in training is shown in Fig. 3.25. While the moving hands are captured,

there are also components over the faces and over the cabinet that are classified as

hand though they should be classified as non-hand.

approach 1 approach 2 approach 3

OOB accuracy 0.7795 0.7468 0.7672

Table 3.1: Out-of-bag accuracy
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(a) approach 1

(b) approach 2

(c) approach 3

Figure 3.25: Classification of components in an unseen frame. Green means the
random forest classifier predicts the component as hand. Red means the random
forest classifier predicted the component as non-hand.
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3.4 Patch Skin Region Detection

The motivation for making a new skin region detector came from the need to improve

prior methods. See how in Fig. 3.26b and Fig. 3.26c the methods used tend to capture

the edges of hands and forearms but not the middle regions.

28



Chapter 3. Methods

(a) frame

(b) [12][2]

(c) [9] before cleanup (d) [9] after cleanup

Figure 3.26: The skin regions result on the frame in Fig. 3.26a from the method
used by [12][2] is shown in Fig. 3.26b. The skin region result on Fig. 3.26a from the
method used by [9] is in Fig.3.26c, the result before cleanup, and in Fig. 3.26d, the
result after cleanup.
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3.4.1 Method of Patch Skin Region Detector

The method used was to classify 2 x 2 patches of frame as skin versus non skin.

Thus the feature vector has 12 (2 x 2 x 3) features. Hand region of interest (ROI)

are clipped and non-hand regions are clipped as shown in Fig. 3.27 for forming

labeled patches for training. Predictions of a k-nearest neighbors (KNN) classifier

(k = 5) and a logistic regression classifier were combined via a logical and because

the classifiers made different kinds of errors as seen in Fig. 3.28. Cleanup of the

predicted skin regions is done according to Fig. 3.29.

(a) hand (b) non skin

Figure 3.27: Fig. 3.27a is an example of hand regions for forming hand training
samples. Fig. 3.27b is an example of non-skin regions for forming non-skin training
samples.
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(a) KNN (b) logistic regression

Figure 3.28: Fig. 3.28a has skin prediction by KNN classifier. Fig. 3.28b has skin
prediction by logistic regression classifier.

function SKIN CLEANUP(skin region mask)

kernel ← [[0, 0, 0, 1, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 1, 0, 0, 0]]

cleaned ← OPEN(skin region mask, kernel)
cleaned ← fill holes in cleaned

cleaned ← remove components in cleaned with area ≤ 132 pixels
kernel ← [[0, 1, 0],

[1, 1, 1],
[0, 1, 0]]

cleaned ← DILATE(cleaned, kernel)

return cleaned

end function

Figure 3.29: Steps taken to clean the skin regions predicted by classifier
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3.4.2 Results of Patch Classification for Patch Skin Region

Detector

An example of the skin predictions on 2 x 2 patches and of the cleaned result is

shown in Fig. 3.30. The training set consisted of 13 frames from different video clips.

Leave-one-out (LOO) validation was performed over the training frames. The LOO

results are in Table 3.2.

(a) frame (b) predictions

(c) predictions cleaned

Figure 3.30: An example of patch classification and post cleaning.
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mean std min Q1 median Q3 max IQR

Precision 0.296 0.111 0.127 0.210 0.273 0.394 0.522 0.184
Sensitivity 0.852 0.137 0.475 0.797 0.893 0.932 0.986 0.135
Specificity 0.956 0.027 0.871 0.952 0.962 0.971 0.983 0.019

Table 3.2: LOO per frame for the labeled regions for the patch skin region classifier.
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3.5 Space-Time Exemplars

A premise of this thesis was that optical flow over a duration of time could be used for

detection. With this in mind, a reference set was formed on clips of video. Exemplar

boxes were drawn over the space region in which a hand passed through during the

duration of a time segment. Three second segments were used in the reference. Thus,

for the sampled video described in 3.2, there are 45 frames in a 3 second segment.

An example of exemplar boxes in a segment is shown in Fig. 3.31.
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(a) 180 (b) 208

(c) 276 (d) 292

(e) 340 (f) 356

Figure 3.31: There are three exemplar boxes in this three second segment. Six of
the forty-five frames are shown here. Frame numbers are shown in each sub figure.
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3.6 Space-Time Component Exploration

This thesis explores projection through time of components in frames. In theory,

the larger projection components formed could be used as regions of interest over

which optical flow information over a duration of time could be collected. For this

exploration, only one video clip was looked at and the following methods described

were formed from observations of that one clip.

Fig. 3.32 describes a first step of how the projection components could formed,

and Fig. 3.33 shows an example how it looks in a video segment. Notice in Fig. 3.33,

how the projection component covers the facilitator pointing and the student’s hand

movement; however, the component covers parts of their heads and the person walk-

ing in the background as well. Thus, it would be good if the projected component

could be broken up.

Fig. 3.34 outlines the steps to break up components and Fig. 3.35 and Fig. 3.36

shows an example. A skin region mask should also help define a region of interest.

The projection of skin regions can be formed by taking the union of all the skin

region masks for all the frames in a segment. Fig. 3.38a shows an example of the

skin projection by itself, and Fig. 3.38b shows an example of both the projection

from flow magnitude and from skin region overlapping. Fig. 3.39 gives steps that

make a component mask based on how the skin union and broken union overlap. The

resulting component mask is shown in Fig. 3.40. The method resulted in components

that were more broken up than the original projection component. Fig. 3.41, shows

a case where the method did not result in successfully broken components as the face

movement and person walking in the background fell under the same component as

the hand movement.
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function PROJECTION(segment frames)

for each frame in segments frames do
flow mag components ← take regions with

flow magnitude >
MEDIAN(top 3.125% of frame flow magnitude

values)
flow mag components collect ← append flow mag components

end for

union ← UNION(all frames in flow mag components collect)

return union

end function

Figure 3.32: Projection by taking union of components formed from applying a
threshold to flow magnitude.
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(a) 180 (b) 212

(c) 244 (d) 276

(e) 328 (f) 356

Figure 3.33: 6 of the 45 frames in the segment are shown here. The projection found
according to Fig. 3.32 is overlaid in yellow. Frame numbers are shown in each sub
figure.
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function BREAKING(segment frames, union)

flow mag sum ← sum all the frames of flow magnitude into one frame
markers sum ← get unknown region in the markers by eroding and

dilating flow mag sum

markers sum result ← WATERSHED(flow mag sum, markers sum)
lines ← extract lines from markers sum result

dt union ← do distance transform on union

markers ← get the unknown region in markers as dilation around dt union

with a threshold of > 10.0 applied
markers result ← WATERSHED(dt union, markers)
watershed components ← extract from markers result

broken ← break watershed components with lines

return broken

end function

Figure 3.34: Steps to break up projection components.
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(a) log(flow mag sum+ 1) (b) markers sum

(c) markers sum results (d) lines

Figure 3.35: This shows the first group of steps in Fig. 3.34 shown on the union
components of the Fig. 3.33 example.
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(a) dt union (b) dt union with > 10.0 threshold applied

(c) markers (d) watershed components

Figure 3.36: This shows the second group of steps in Fig. 3.34 shown on the union
components of the Fig. 3.33 example.
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Figure 3.37: This shows the last step, broken components (yellow overlay), of
Fig. 3.34 shown on the union components of the Fig. 3.33 example.
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(a) skin union is red overlay

(b) skin union and broken overlap is orange

Figure 3.38: Fig. 3.38a shows skin region mask union overlaid as red for the example
common to Fig. 3.33 and Fig. 3.37. Fig. 3.38b has the skin union (red) and the broken
union (yellow) overlapping (orange).
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function GET COMPONENTS(broken, skin union)

for each component in broken do
if component overlaps skin union by < 50% of component then

components mask ← add overlap to components mask

else if component overlaps skin union by ≥ 50% of component then
components mask ← add component to components mask

end if
end for

return components mask

end function

Figure 3.39: Steps to use both skin union and broken to form components mask.
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Figure 3.40: The figure shows the resulting component mask for segment 1 after the
GET COMPONENTS function of Fig. 3.39 is used.
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(a) segment 10 frame 1800

(b) segment 10 frame 1896

(c) segment 10 frame 1976

Figure 3.41: The figure shows the resulting component mask for segment 10 after
the GET COMPONENTS function of Fig. 3.39 is used.
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3.7 Space-Time Patches Approach

The region of interest approach with projection components explored in Section 3.6

was not further considered. Instead, a holistic approach which used space-time

patches was used for collecting features over time for classification.

The space-time patches were 76 x 76 with 50% overlap in space and covered

3 seconds (45 frames in the sampled video). The space-time patches were given

assigned labels depending on how they overlapped the space-time exemplars. The

procedure is given in Fig. 3.42 and an example of the labeled patches is in Fig. 3.43.

The system for predicting the label (non-hand or hand) for the space-time patches

is depicted in Fig. 3.44.

The skin information used per patch is the number of nonzero pixels (referred to as

skin count) in the through time skin overlay image. For every frame in the segment,

a skin region image is computed, (for example see Fig. 3.45c and Fig. 3.45d). These

are processed into the skin overlay; an example visualizing overlaying is in Fig. 3.45.

The result for a segment is in Fig. 3.45f. The basic idea is to project the skin region

detection results.

The optical flow was precomputed and saved in videos. To do this the flow

magnitude is clipped to be in the range of [0, 50]. Then both the flow angle and

clipped flow magnitude are rescaled and truncated to be 8 bit unsigned integers.

Later, two features are collected per space-time patch from the optical flow as follows:

1. Sum of all 76 x 76 x 45 optical flow magnitude values (referred to as

flow mag sum all).

2. Histogram of flow with 32 bins for all the 76 x 76 x 45 pixels in the space-

time patch. Each bin is divided by the number of flow angles that fell in a bin

(unless that number is zero). The bin edges start at−π/32, go counterclockwise
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around unit circle, and have a bin size of π/16.

In the Prune Patches block of Fig. 3.44, some patches are predicted as non-hand

based on:

label =


non-hand if flow mag sum all ≤ 100 or

skin count/(76 ∗ 76) ≤ 0.1

determine by Trained Classifier otherwise

(3.1)

The remaining patches are predicted by a trained classifier. A random forest

classifier was used.
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function LABEL PATCH(patch, exemplars)
. initialize
winning label ← non-exemplar
winning overlap area / exemplar area ← 0

for exemplar in segment’s exemplars do
area overlap ← get patch and exemplar overlap
overlap area / exemplar area ← get ratio of

area overlap / exemplar area
overlap area / patch area ← get ratio of

area overlap / patch area

if overlap area / exemplar area >= 0.2 OR
overlap area / patch area > 0.8 then

if overlap area / exemplar area >
winning overlap area / exemplar area then

winning label← gets the label associated with the exemplar

end if
end if

end for

return winning label

end function

Figure 3.42: Steps to assign a patch a label from the exemplars in the segment.
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(a) 180

(b) 320

Figure 3.43: 2 frames of the 45 frames in a segment. The exemplar boxes are in
yellow. The patches that take the non-hand label are in black. The patches that
take the hand label are in cyan.
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Figure 3.44: This flowchart is for the system used to predict the label on space-time
patches.
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(a) 1440 (b) 1444

(c) 1440 skin regions (d) 1444 skin regions

(e) Fig. 3.45c and Fig. 3.45d (f) overlay of all 45 in segment

Figure 3.45: This figure shows a visual example of forming skin overlay image.
Fig. 3.45a through Fig. 3.45b show two sequential frames of a segment. Fig. 3.45c
through Fig. 3.45d show the skin region detections by the Section 3.4 method.
Fig. 3.45e shows the result of overlaying Fig. 3.45c and Fig. 3.45d. Lastly, Fig. 3.45f
shows the result of overlaying each next frame in a video segment into the previous
overlay image. Overlaying here means that the union of frames is taken; where there
is intersection, the RGB values are combined with a weight of 0.5.

52



Chapter 3. Methods

3.8 Computation

Computation of cleaned skin regions and the optical flow and extraction of the fea-

tures for the dataset used to validate Section 3.7 was done via an account on the

machine Wheeler at the Center for Advanced Research Computing. Wheeler is a SGI

ALtixXE, Xeon X5550, Intel Xeon Nehalem EP, 2.67GHz machine with 294 nodes,

8 cores per node, 48 GB RAM / core, and 40TB of local scratch. Memory intensive

tests were preformed on a computer belonging to the Image and Video Processing

and Communications Laboratory. It was a Dell Precision Tower 7910 with Intel Xeon

Processor E5-2630 v4, with 32 GB memory, and with a Windows operating system.
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Results

4.1 Result of Space-Time Patch Classification

The dataset used for validation of the space-time classification consisted of 15 video

clips from the AOLME dataset. Ten of the videos were approximately 39 seconds

(thus 13 segments per clip), and five of the videos were approximately 99 seconds

(33 segments per clip). All of the videos were approximately 60 frames per second.

Exemplars were drawn for moving hands in the video clips according to Section 3.5.

A frame from each video clip is shown in Fig. 1.1.

Descriptions of the video clips are given in Table 4.1, Table 4.2, Table 4.3, and

Table 4.4. Scores for space-time patch classification for leave-one-out (LOO) valida-

tion over the video clips are in Table 4.5. The statistics on the LOO validation are

in Table 4.6. Fig. 4.1 shows patch classifications for a single video segment.
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Video Content

V1 Student and facilitator are at the primary table. Both face the
camera. There is one other group in the far background.

V2 Four students are at the primary table. There is another group in
the right back side.

V3 Three students and a facilitator are at the primary table. There
are two other groups in the background. People walk around in the
background as well.

V4 Two facilitators and two students are at the primary table. There
are laptop monitors blocking some movement. One student is
standing and wanders to and from the table.

V5 Four student and two facilitators are at the primary table. One of
facilitators is standing. People block and the view of others. The
monitor blocks activity as well. There are two other groups in the
background.

V6 Two students and a facilitator are at the primary table. The facil-
itator is standing. There is another group and a lone person at a
laptop in the background. A person walked in the background.

V7 A facilitator and four students are at the primary table. One stu-
dent returns to the table during the clip.

V8 Three students and two facilitators are at the primary table. There
are two groups in the background. People walk in the background.

V9 Four students are at a table. There are four other groups in the
background. People walk in the background.

V10 Two students and a facilitator at the primary table. There are three
other groups in the background. People walk in the background.

Table 4.1: This table holds notes about the content in the 39 second clips (V1 -
V10).
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Video Content

V11 Two students and a facilitator are at the primary table. There is
one other group in the background. There is a person fiddling with
a camera in the background. And some other people working on a
laptop.

V12 Two students and a facilitator are at the primary table. There are
two other groups in the background. People walk in the background
at times.

V13 Two students and two facilitators are at the primary table. One
of the facilitators moves from a standing by the table to a leaning
by the table on a box. There are two groups in the background.
There are walking people and people checking equipment in the
background.

V14 Four students and a facilitator are at the primary table. People
walk through the in the foreground in occasionally. A couple people
have an animated conversation while standing in the background.

V15 Two students and two facilitators at the primary table. The facili-
tators come and leave from the primary table. One of the students
leaves partway. There are five other groups in the background.
People walk in the background.

Table 4.2: This table holds notes about the content in the 99 second clips (V11 -
V15).
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Video Comments on Skin Detection from Cleaned Patch Prediction

V1 Skin, especially the hands, was detected well. There was some box,
wood, orange bag, and orange trim that was detected as skin well,
but those types of regions were reduced from what was present in
the scene.

V2 The skin was detected well. There is sizable amount of cabinet
detected as skin.

V3 The skin at the primary table was detected well, though the skin
detection on the facilitator’s face and upper arm was spotty. There
were splotches of wood-like regions captured. There was a light
purple shirt that was captured as skin. There were some duller red
shirts that were not captured.

V4 The skin detection was missing some regions at times. The faces of
two people was not fully detected. There is only a small amount
of wood (there are bookshelves with wood trim in the background)
being classified as skin.

V5 The skin detection on the hands is okay, but there are some missing
splotches. The faces are pretty splotch. There are some non-skin
items classified as skin.

V6 The skin detection is pretty good. There is some detection of wood
chairs and trim as skin.

V7 The skin of the hands is detected somewhat, but it is broken up
sometimes. Skin of face is only partially detected. There is a small
amount of wood trim and reddish brown books on the bookshelves
that is detected as skin.

V8 Some of the skin detection is good, but some of the skin detection
is broken up. There is only a little detection of wood trim as skin.

V9 Skin is detected, but it is somewhat broken up. Faces are especially
broken up. Only a small amount of wood trim was detected as skin.

V10 The skin detection is poor in this clip. The skin at the primary table
is especially not captured. Bits of a rather light purple shirt are
detected as skin. A pinkish rust cardigan is detected as skin. There
is some wood trim and reddish part of object that are classified as
skin.

Table 4.3: This table holds notes about the patch skin detector in the 39 second
clips (V1 - V10).
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Video Comments on Skin Detection from Cleaned Patch Prediction

V11 The skin detection at the primary table does well. There is a large
region of wood cabinet that gets detected as skin.

V12 The skin detection for the hands is okay. The skin detection on the
face is splotchy at times. There is some wood chairs, brown plastic
bag, and reddish part of the background that get detected as skin.

V13 Some of the skin detection is okay, but some is poorly detected.
There is some wood and orange sign that get detected as skin.

V14 The skin detection works pretty well, but there is one face that
it is very splotchy. There is wood cabinet and bookshelf that are
prominently detected as skin.

V15 The skin of the hands is detected pretty well. The detected skin
of faces is holey at times. There is a lot of little bits of wood or
orange parts of the background that get detected as skin.

Table 4.4: This table holds notes about the patch skin detector in the 99 second
clips (V11 - V15).

For the operating point defined by minimum Euclidean
to (Specificity, Sensitivity) = (1.0, 1.0)

Video ROC AUC Euclidean Distance Specificity Sensitivity Accuracy

V1 0.960 0.088 0.923 0.953 0.923
V2 0.889 0.241 0.789 0.880 0.794
V3 0.840 0.316 0.784 0.767 0.783
V4 0.889 0.180 0.916 0.833 0.913
V5 0.930 0.169 0.874 0.886 0.875
V6 0.938 0.174 0.849 0.911 0.853
V7 0.892 0.184 0.836 0.913 0.840
V8 0.903 0.217 0.829 0.857 0.831
V9 0.895 0.237 0.794 0.882 0.802
V10 0.758 0.406 0.823 0.627 0.816
V11 0.910 0.214 0.865 0.834 0.863
V12 0.917 0.188 0.878 0.855 0.877
V13 0.913 0.153 0.880 0.904 0.881
V14 0.879 0.236 0.788 0.895 0.793
V15 0.875 0.246 0.783 0.881 0.785

Table 4.5: Validation results on the 15 AOLME clips.
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Chapter 4. Results

µ σ Min Q1 Median Q3 Max IQR

ROC AUC 0.892 0.045 0.758 0.879 0.895 0.917 0.960 0.038
Accuracy 0.842 0.045 0.783 0.794 0.840 0.877 0.923 0.083

Table 4.6: Statistics of validation results on the 15 AOLME clips.
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Chapter 4. Results

Figure 4.1: This figure shows the classification for the first segment of V2. Regions
where there are no patches indicate patches got pruned there. Patches that are
gray were classified non-hand. Patches that are purple were classified as hand. The
exemplar boxes are in yellow.
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Chapter 5

Conclusions and Future Work

The final quantitative results of an average accuracy of 84% and ROC AUC 0.89%

for space-time patch classification on the LOO of video can be improved. Visual

inspection of the results show error on the side of over segmenting, i.e. there is a

sizable amount of false positives, non-hand patches classified as hands. This shows

that the trained classifier is not able to distinguish between hand movements and

other movements. I suspect that the trained classifier may be misclassifying high

movements as hand. See Fig. 5.1 and then Fig.5.2. The places where the patches

show up correspond to the regions with the most motion over time. This comparison

was not investigated extensively, however.

One thought for future work is to use the face detection work developed for the

AOLME dataset in [12][13]. This would help reduce the over segmentation that

occurs in patches over faces.
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Chapter 5. Conclusions and Future Work

Figure 5.1: Sum of the flow magnitude sum for all the frames under a log transfor-
mation.

Figure 5.2: This figure shows the classification for the first segment of V13. Regions
where there are no patches indicate patches got pruned there. Patches that are
gray were classified non-hand. Patches that are purple were classified as hand. The
exemplar boxes are in yellow.
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