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Abstract: In this paper, we introduced a new outranking approach for multi-criteria decision making 

(MCDM) problems to handle uncertain situations in neutrosophic multi environment. Therefore, we 

give some outranking relations of neutrosophic multi sets. We also examined some desired 

properties of the outranking relations and developed a ranking method for MCDM problems. 

Moreover, we describe a numerical example to verify the practicality and effectiveness of the 

proposed method. 

 

Keywords: Single valued neutrosophic sets, neutrosophic multi-sets, outranking relations, decision 

making. 

 

 

1. Introduction 

Fuzzy set theory, intuitionistic fuzzy set theory and neutrosophic set theory is introduced by Zadeh 

[59], Atanassov [1] and Smarandache [28] to handle the uncertain, incomplete, indeterminate and 

inconsistent information, respectively. The above set theories have been applied to many different 

areas including real decision making problems [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 19, 21, 22, 

23, 24, 25, 26, 27, 32, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 58]. Also, several generalizations of the set 

theories made such as fuzzy multi-set theory [34, 35, 48], intuitionistic fuzzy multi-set theory [16, 31, 

36, 37, 57] and n-valued refined neutrosophic set theory [29]. 

Another generalization of above theories that is relevant for our work is single valued 

neutrosophic refined (multi) set theory introduced by Ye [53, 56] which contain a few different 

values. A single valued neutrosophic multi set theory has truth-membership sequence

      1 2, ,..., P
A A At t t   , indeterminacy membership sequence       1 2, ,..., P

A A At t t    and 

falsity-membership sequence       1 2, ,..., P
A A At t t    of element .t T  Recently, the single 

valued neutrosophic multi set theory have attracted widely attention in [20, 33, 50, 51, 52, 54, 55]. The 

paper is organized as follows; In Section 2 we give some basic notions of neutrosophic sets and 

neutrosophic multi-sets. In Section 3, we first introduce outranking relations of neutrosophic 

multi-sets with proprieties. In Section 4, we propose an outranking approach for to solving the 

multi-criteria decision making problems based on neutrosophic multi-set information. In Section 5, 

we propose a selection example to validate the practicality. Finally, in Section 6, we conclude the 

paper. 

2. Preliminaries 
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In this section, we present the basic definitions and results of neutrosophic set theory [28, 33] and 

neutrosophic multi (or refined) set theory [12, 53] that are useful for subsequent discussions. 

Definition 1 [28] let T be a universe. A neutrosophic set A over T is defined by 

       , , , , .A A AA t t t t t T     

where      ,  and 
A A A
t t t    are called truth-membership function, 

indeterminacy-membership function and falsity-membership function, respectively. They are 

respectively defined by  

     : 0,1 , : 0,1 , : 0,1
A A A
t T t T t T                     

          such that      0 3 .
A A A
t t t  

 
     

Definition 2 [33] Let T  be a universe. An single valued neutrosophic set (SVN-set) over T  is a 

neutrosophic set over T , but the truth-membership function, indeterminacy-membership function 

and falsity-membership function are respectively defined by 

     : 0,1 , : 0,1 , : 0,1
A A A
t T t T t T              

 

               such that      0 3.
A A A
t t t       

Definition 3 [53] Let T  be a universe. A neutrosophic multiset set (Nms) 𝒜 on T  can be defined 

as follows: 

𝒜 = {≺ 𝑡, (𝜇𝒜
1 (𝑡), 𝜇𝒜

2 (𝑡), … 𝜇𝒜
𝑝 (𝑡)) , (𝑣𝒜

1 (𝑡), 𝑣𝒜
2 (𝑡), … 𝑣𝒜

𝑝 (𝑡)) , (𝑤𝒜
1 (𝑡), 𝑤𝒜

2 (𝑡), …𝑤𝒜
𝑝 (𝑡)) ≻: 𝑡 ∈ 𝑇} 

Where, 

𝜇𝒜
1 (𝑡), 𝜇𝒜

2 (𝑡), … 𝜇𝒜
𝑝 (𝑡): 𝑇 → [0,1], 

𝑣𝒜
1 (𝑡), 𝑣𝒜

2 (𝑡), … 𝑣𝒜
𝑝 (𝑡): 𝑇 → [0,1], 

and                              𝑤𝒜
1 (𝑡), 𝑤𝒜

2 (𝑡), …𝑤𝒜
𝑝 (𝑡): 𝑇 → [0,1] 

such that                    0 ≤ 𝑠𝑢𝑝𝜇𝒜
𝑖 (𝑡) + 𝑠𝑢𝑝𝑣𝒜

𝑖 (𝑡) + 𝑠𝑢𝑝𝑤𝒜
𝑖 (𝑡) ≤ 3 

(𝑖 = 1,2, … , 𝑃)  and (𝜇𝒜
1 (𝑡), 𝜇𝒜

2 (𝑡), … , 𝜇𝒜
𝑝 (𝑡)) , (𝑣𝒜

1 (𝑡), 𝑣𝒜
2 (𝑡), … , 𝑣𝒜

𝑝 (𝑡)) 𝑎𝑛𝑑 (𝑤𝒜
1 (𝑡), 𝑤𝒜

2 (𝑡), … , 𝑤𝒜
𝑝 (𝑡))Is 

the truth-membership sequence, indeterminacy-membership sequence and falsity- membership 

sequence of the element 𝑢, respectively. Also, P is called the dimension (cardinality) of Nms  𝒜, 

denoted   𝑑(𝒜) . We arrange the truth- membership sequence in decreasing order but the 

corresponding indeterminacy- membership and falsity-membership sequence may not be in 

decreasing or increasing order. 

The set of all Neutrosophic multisets on 𝑇 is denoted by NMS(𝑇). 

Definition 4 [12, 53, 56] Let 𝐴, 𝐵 ∈ 𝑁𝑀𝑆( 𝑇). Then, 

(1) 𝒜  is said to be Nm-subset of ℬ  is denoted by  𝒜 ⊆̃ ℬ if 𝜇𝒜
𝑖 (𝑡) ≤ 𝜇ℬ

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) ≥ 𝑣ℬ

𝑖 (𝑡) , 

𝑤𝒜
𝑖 (𝑡) ≥ 𝑤ℬ

𝑖 (𝑡), ∀ 𝑡 ∈ 𝑇 and 𝑖 = 1,2, … 𝑃. 

   (2) 𝒜 is said to be neutrosophic equal of ℬ is denoted by 𝒜 = ℬ if 𝜇𝒜
𝑖 (𝑡) = 𝜇ℬ

𝑖 (𝑡), 

      𝑣𝒜
𝑖 (𝑡) = 𝑣ℬ

𝑖 (𝑡),  𝑤𝒜
𝑖 (𝑡) = 𝑤ℬ

𝑖 (𝑡), ∀ 𝑡 ∈ 𝑇 and 𝑖 = 1,2, … 𝑃. 

   (3) The complement of 𝒜 denoted by 𝒜𝑐̃ and is defined by  

 𝒜𝑐̃ =≺ 𝑡, (𝑤𝒜
1 (𝑡), 𝑤𝒜

2 (𝑡), … , 𝑤𝒜
𝑝 (𝑡)) , (𝑣𝒜

1 (𝑡), 𝑣𝒜
2 (𝑡), … 𝑣𝒜

𝑝 (𝑡)) , (𝜇𝒜
1 (𝑡), 𝜇𝒜

2 (𝑡), … 𝜇𝒜
𝑝 (𝑡)) ≻: 𝑡 ∈ 𝑇} 
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(4)  If 𝜇𝒜
𝑖 (𝑡) = 0  and 𝑣𝒜

𝑖 (𝑡) =  𝑤𝒜
𝑖 (𝑡) = 1  for all 𝑡 ∈ 𝑇  and 𝑖 = 1,2, … 𝑃,  then 𝒜  is called null     

ns-set and denoted by Φ. 

(5) If 𝜇𝒜
𝑖 (𝑡) = 1 and 𝑣𝒜

𝑖 (𝑡) =  𝑤𝒜
𝑖 (𝑡) = 0 for all 𝑡 ∈ 𝑇 and 𝑖 = 1,2, … 𝑃, then 

     𝒜 is called universal ns-set and denoted by �̃�. 

(6) The union of 𝒜 and ℬ is denoted by 𝒜 ∪̃ ℬ = 𝒞 and is defined by  

𝒞 = {≺ 𝑡, (𝜇𝒞
1(𝑡), 𝜇𝒞

2(𝑡), … 𝜇𝒞
𝑝(𝑡)) , (𝑣𝒞

1(𝑡), 𝑣𝒞
2(𝑡), … 𝑣𝒞

𝑝(𝑡)) , (𝑤𝒞
1(𝑡), 𝑤𝒞

2(𝑡), …𝑤𝒞
𝑝(𝑡)) ≻: 𝑡 ∈ 𝑇} 

      Where 𝜇𝒞
𝑖 = 𝜇𝒜

𝑖 (𝑡) ∨ 𝜇ℬ
𝑖 (𝑡),  𝑣𝒞

𝑖 = 𝑣𝒜
𝑖 (𝑡) ∧ 𝑣ℬ

𝑖 (𝑡), 𝑤𝒞
𝑖 = 𝑤𝒜

𝑖 (𝑡) ∧ 𝑤ℬ
𝑖 (𝑡), ∀𝑡 ∈ 𝑇 and 𝑖 = 1,2, …𝑃.  

(7) The intersection of 𝒜 and ℬ is denoted by 𝒜 ∩̃ ℬ = 𝒟 and is defined by 

𝒟 = {≺ 𝑡, (𝜇𝒟
1 (𝑡), 𝜇𝒟

2 (𝑡), … 𝜇𝒟
𝑝(𝑡)) , (𝑣𝒟

1 (𝑡), 𝑣𝒟
2(𝑡), … 𝑣𝒟

𝑝(𝑡)) , (𝑤𝒟
1(𝑡), 𝑤𝒟

2(𝑡), …𝑤𝒟
𝑝(𝑡)) ≻: 𝑡 ∈ 𝑇} 

     where 𝜇𝒟
𝑖 = 𝜇𝒜

𝑖 (𝑡) ∨ 𝜇ℬ
𝑖 (𝑡),  𝑣𝒟

𝑖 = 𝑣𝒜
𝑖 (𝑡) ∧ 𝑣ℬ

𝑖 (𝑡), 𝑤𝒟
𝑖 = 𝑤𝒜

𝑖 (𝑡) ∧ 𝑤ℬ
𝑖 (𝑡), ∀ 𝑡 ∈ 𝑇 and 𝑖 = 1,2, … 𝑃. 

(8) The addition of 𝒜 and ℬ is denoted by 𝒜+̃ℬ = 𝒰1 and is defined by 

   𝒰1 = {≺ 𝑡, (𝜇𝒰1
1 (𝑡), 𝜇𝒰1

2 (𝑡), … 𝜇𝒰1
𝑝 (𝑡)) , (𝑣𝒰1

1 (𝑡), 𝑣𝒰1
2 (𝑡), … 𝑣𝒰1

𝑝 (𝑡)) , (𝑤𝒰1
1 (𝑡), 𝑤𝒰1

2 (𝑡), …𝑤𝒰1
𝑝 (𝑡)) ≻: 𝑡 ∈ 𝑇} 

   where 𝜇𝒰1
𝑖 = 𝜇𝒜

𝑖 (𝑡) + 𝜇ℬ
𝑖 (𝑡) − 𝜇𝒜

𝑖 (𝑡). 𝜇ℬ
𝑖 (𝑡), 𝑣𝒰1

𝑖 = 𝑣𝒜
𝑖 (𝑡). 𝑣ℬ

𝑖 (𝑡), 𝑤𝒰1
𝑖 = 𝑤𝒜

𝑖 (𝑡). 𝑤ℬ
𝑖 (𝑡) ∀ 𝑡 ∈ 𝑇 and     

𝑖 = 1,2, … 𝑃. 

(9) The multiplication of 𝒜 and ℬ is denoted by 𝒜�̃�ℬ = 𝒰2 and is defined by 

𝒰2 = {≺ 𝑡, (𝜇𝒰2
1 (𝑡), 𝜇𝒰2

2 (𝑡), … 𝜇𝒰2
𝑝 (𝑡)) , (𝑣𝒰2

1 (𝑡), 𝑣𝒰2
2 (𝑡), … 𝑣𝒰2

𝑝 (𝑡)) , (𝑤𝒰2
1 (𝑡), 𝑤𝒰2

2 (𝑡), …𝑤𝒰2
𝑝 (𝑡)) ≻: 𝑡 ∈ 𝑇} 

where 𝜇𝒰2
𝑖 = 𝜇𝒜

𝑖 (𝑡). 𝜇ℬ
𝑖 (𝑡),   𝑣𝒰2

𝑖 = 𝑣𝒜
𝑖 (𝑡) + 𝑣ℬ

𝑖 (𝑡) − 𝑣𝒜
𝑖 (𝑡). 𝑣ℬ

𝑖 (𝑡),  𝑤𝒰2
𝑖 = 𝑤𝒜

𝑖 (𝑡) + 𝑤ℬ
𝑖 (𝑡)𝑤𝒜

𝑖 (𝑡). 𝑤ℬ
𝑖 (𝑡) 

∀ 𝑡 ∈ 𝑇 and 𝑖 = 1,2, …𝑃. 

Here ∨, ∧, +, . , −  denotes maximum, minimum, addition, multiplication, subtraction of real 

numbers respectively. 

Definition 5 [13] Let 

𝒜 = {≺ 𝑡, (𝜇𝒜
1 (𝑡), 𝜇𝒜

2 (𝑡), … 𝜇𝒜
𝑝 (𝑡)) , (𝑣𝒜

1 (𝑡), 𝑣𝒜
2 (𝑡), … 𝑣𝒜

𝑝 (𝑡)) , (𝑤𝒜
1 (𝑡), 𝑤𝒜

2 (𝑡), …𝑤𝒜
𝑝 (𝑡)) ≻: 𝑡 ∈ 𝑇} 

and 

ℬ = {≺ 𝑡, (𝜇ℬ
1 (𝑡), 𝜇ℬ

2(𝑡), … 𝜇ℬ
𝑝(𝑡)) , (𝑣ℬ

1(𝑡), 𝑣ℬ
2(𝑡), … 𝑣ℬ

𝑝(𝑡)) , (𝑤𝒜
1 (𝑡), 𝑤𝒜

2 (𝑡), …𝑤𝒜
𝑝 (𝑡)) ≻: 𝑡 ∈ 𝑇} 

and be two NMSs, then the normalized hamming distance between 𝒜 and ℬ can be defined as 

follows: 

𝑑𝑁𝐻𝐷(𝒜, ℬ  ) =
1

3𝑛. 𝑃
∑∑(|𝜇𝒜

𝑗 (𝑡𝑖) − 𝜇ℬ
𝑗 (𝑡𝑖)| + |𝑣𝒜

𝑗 (𝑡𝑖) − 𝑣ℬ
𝑗 (𝑡𝑖)| + |𝑤𝒜

𝑗 (𝑡𝑖) − 𝑤ℬ
𝑗(𝑡𝑖)|)

𝑛

𝑖=1

𝑃

𝑗=1

. 

3. The Outranking Relations of Neutrosophic Multi-Sets 

In this section, the binary relations between two neutrosophic refined sets that are based on 

ELECTRE by extending the studies in [22]. Some of it is quoted from [13, 22, 35, 49]. 

Definition 6 Let 𝒜 = {≺ 𝑡, (𝜇𝒜
𝑖 (𝑡), 𝑣𝒜

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡)) ≻: 𝑡 ∈ 𝑇, (𝑖 = 1,2,3, … , 𝑝)} and  

ℬ = {≺ 𝑡, (𝜇ℬ
𝑖 (𝑡), 𝑣ℬ

𝑖 (𝑡), 𝑤ℬ
𝑖 (𝑡)) ≻: 𝑡 ∈ 𝑇, (𝑖 = 1,2,3, … , 𝑝)} be two NMS on 𝑇. Then, the strong dominance 

relation, weak dominance relation, and indifference relation of NMS can be defined as follows: 
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1. If 𝜇𝒜
𝑖 (𝑡) ≥ 𝜇ℬ

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) < 𝑣ℬ

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡) < 𝑤ℬ

𝑖 (𝑡)  or 𝜇𝒜
𝑖 (𝑡) > 𝜇ℬ

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) = 𝑣ℬ

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡) =

𝑤ℬ
𝑖 (𝑡), ∀𝑡 ∈ 𝑇  and 𝑖 = 1,2,3, … , 𝑝.  Then 𝒜  strongly dominates ℬ 

(ℬ is strongly dominated by 𝒜), denoted by 𝒜 ≻𝑠 ℬ. 

2. If 𝜇𝒜
𝑖 (𝑡) ≥ 𝜇ℬ

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) ≥ 𝑣ℬ

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡) < 𝑤ℬ

𝑖 (𝑡)  or 𝜇𝒜
𝑖 (𝑡) ≥ 𝜇ℬ

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) < 𝑣ℬ

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡) ≥

𝑤ℬ
𝑖 (𝑡), ∀𝑡 ∈ 𝑇  and 𝑖 = 1,2,3, … , 𝑝.  Then 𝒜  weakly dominates ℬ 

(ℬ is weakly dominated by 𝒜), denoted by𝒜 ≻𝑤 ℬ. 

3. If 𝜇𝒜
𝑖 (𝑡) = 𝜇ℬ

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) = 𝑣ℬ

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡) = 𝑤ℬ

𝑖 (𝑡), ∀𝑡 ∈ 𝑇  and 𝑖 = 1,2,3, … , 𝑝.  Then 𝒜 

indifferent to ℬ, denoted by𝒜 ∼𝑙 ℬ. 

4. If none of the relations mentioned above exist between 𝒜 and ℬ  for any 𝑡 ∈ 𝑇 , then 

𝒜 and ℬ  are incomparable, denoted by 𝒜 ⊥  ℬ .  

Proposition 7 Let 𝒜 = {≺ 𝑡, (𝜇𝒜
𝑖 (𝑡), 𝑣𝒜

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡)) ≻: 𝑡 ∈ 𝑇, (𝑖 = 1,2,3, … , 𝑝)} and  

ℬ = {≺ 𝑡, (𝜇ℬ
𝑖 (𝑡), 𝑣ℬ

𝑖 (𝑡), 𝑤ℬ
𝑖 (𝑡)) ≻: 𝑡 ∈ 𝑇, (𝑖 = 1,2,3, … , 𝑝)}  be two NMS on 𝑇 , then the following 

properties can be obtained: 

1. 𝐼𝑓  ℬ ⊂ 𝒜, 𝑡ℎ𝑒𝑛 𝒜 ≻𝑠 ℬ; 

2. 𝐼𝑓  𝒜 ≻𝑠 ℬ, 𝑡ℎ𝑒𝑛 𝐼𝑓  ℬ ⊆ 𝒜; 

3. 𝒜 ∼𝑙 ℬ 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝒜 = ℬ. 

Proof:  

1. 𝐼𝑓  ℬ ⊂ 𝒜,  then 𝜇ℬ
𝑖 (𝑡) ≤ 𝜇𝒜

𝑖 (𝑡), 𝑣ℬ
𝑖 (𝑡) ≥ 𝑣𝒜

𝑖 (𝑡), 𝑤ℬ
𝑖 (𝑡) ≥ 𝑤𝒜

𝑖 (𝑡), ∀𝑡 ∈ 𝑇 and 𝑖 = 1,2,3, … , 𝑝.  𝒜 ≻𝑠 ℬ 

is definitely validated according to the strong dominance relation in Definition 6. 

2. 𝒜 ≻𝑠 ℬ  then based on Definition 6, 𝜇𝒜
𝑖 (𝑡) ≥ 𝜇ℬ

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) < 𝑣ℬ

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡) < 𝑤ℬ

𝑖 (𝑡)  or 𝜇𝒜
𝑖 (𝑡) >

𝜇ℬ
𝑖 (𝑡), 𝑣𝒜

𝑖 (𝑡) = 𝑣ℬ
𝑖 (𝑡), 𝑤𝒜

𝑖 (𝑡) = 𝑤ℬ
𝑖 (𝑡), ∀𝑡 ∈ 𝑇 and 𝑖 = 1,2,3, … , 𝑝. are realized. Then we have ℬ ⊆ 𝒜. 

3. Necessity: 𝒜 ∼𝑙 ℬ ⇒ 𝒜 = ℬ. According to the indifference relation in Definition 6 it is known that 

𝜇𝒜
𝑖 (𝑡) = 𝜇ℬ

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) = 𝑣ℬ

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡) = 𝑤ℬ

𝑖 (𝑡), ∀𝑡 ∈ 𝑇  and 𝑖 = 1,2,3, … , 𝑝.  Clearly 𝒜 ⊆ 𝒜  and ℬ ⊆

𝒜 are achieved, then 𝒜 = ℬ. 

 Sufficiency: 𝒜 = ℬ ⇒ 𝒜 ∼𝑙 ℬ. If 𝒜 = ℬ,  then it is know that 𝒜 ⊆ ℬ and ℬ ⊆ 𝒜, which means  

𝜇ℬ
𝑖 (𝑡) ≤ 𝜇𝒜

𝑖 (𝑡), 𝑣ℬ
𝑖 (𝑡) ≥ 𝑣𝒜

𝑖 (𝑡), 𝑤ℬ
𝑖 (𝑡) ≥ 𝑤𝒜

𝑖 (𝑡) 𝑜𝑟 𝜇𝒜
𝑖 (𝑡) = 𝜇ℬ

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) = 𝑣ℬ

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡) = 𝑤ℬ

𝑖 (𝑡), ∀𝑡 ∈ 𝑇  

and 𝑖 = 1,2,3, … , 𝑝.  are obtained. Due to the indifference relation in Definition 6, 𝒜 ∼𝑙 ℬ  is 

definitely obtained. 

Proposition 8 Let 𝒜 = {≺ 𝑡, (𝜇𝒜
𝑖 (𝑡), 𝑣𝒜

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡)) ≻: 𝑡 ∈ 𝑇, (𝑖 = 1,2,3, … , 𝑝)},  

ℬ = {≺ 𝑡, (𝜇ℬ
𝑖 (𝑡), 𝑣ℬ

𝑖 (𝑡), 𝑤ℬ
𝑖 (𝑡)) ≻: 𝑡 ∈ 𝑇, (𝑖 = 1,2,3, … , 𝑝)}  and 𝐶 = {≺ 𝑡, (𝜇𝐶

𝑖 (𝑡), 𝑣𝐶
𝑖 (𝑡), 𝑤𝐶

𝑖 (𝑡)) ≻: 𝑡 ∈

𝑇, (𝑖 = 1,2,3, … , 𝑝)} be three NMS on 𝑇, if 𝒜 ≻𝑠 ℬ 𝑎𝑛𝑑 ℬ ≻𝑠 𝐶, then 𝒜 ≻𝑠 𝐶. 

Proof: According to the strong dominance relation in Definition 6, if 𝒜 ≻𝑠 ℬ,  then 𝜇𝒜
𝑖 (𝑡) ≥

𝜇ℬ
𝑖 (𝑡), 𝑣𝒜

𝑖 (𝑡) < 𝑣ℬ
𝑖 (𝑡), 𝑤𝒜

𝑖 (𝑡) < 𝑤ℬ
𝑖 (𝑡)  or 𝜇𝒜

𝑖 (𝑡) > 𝜇ℬ
𝑖 (𝑡), 𝑣𝒜

𝑖 (𝑡) = 𝑣ℬ
𝑖 (𝑡), 𝑤𝒜

𝑖 (𝑡) = 𝑤ℬ
𝑖 (𝑡), ∀𝑡 ∈ 𝑇  and 𝑖 =

1,2,3, … , 𝑝. 

if ℬ ≻𝑠 𝐶,  then 𝜇ℬ
𝑖 (𝑡) ≥ 𝜇𝐶

𝑖 (𝑡), 𝑣ℬ
𝑖 (𝑡) < 𝑣𝐶

𝑖 (𝑡), 𝑤ℬ
𝑖 (𝑡) < 𝑤𝐶

𝑖 (𝑡) or 𝜇ℬ
𝑖 (𝑡) > 𝜇𝐶

𝑖 (𝑡), 𝑣ℬ
𝑖 (𝑡) = 𝑣𝐶

𝑖 (𝑡), 𝑤ℬ
𝑖 (𝑡) =

𝑤𝐶
𝑖 (𝑡), ∀𝑡 ∈ 𝑇 and 𝑖 = 1,2,3, … , 𝑝. 

Therefore the further derivations are: If  

𝜇𝒜
𝑖 (𝑡) ≥ 𝜇ℬ

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) < 𝑣ℬ

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡) < 𝑤ℬ

𝑖 (𝑡), …..(1) 
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𝜇ℬ
𝑖 (𝑡) ≥ 𝜇𝐶

𝑖 (𝑡), 𝑣ℬ
𝑖 (𝑡) < 𝑣𝐶

𝑖 (𝑡), 𝑤ℬ
𝑖 (𝑡) < 𝑤𝐶

𝑖 (𝑡),….. (2) 

from (1) and (2) 

𝜇𝒜
𝑖 (𝑡) ≥ 𝜇𝐶

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) < 𝑣𝐶

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡) < 𝑤𝐶

𝑖 (𝑡), 

then based on Definition 6 𝒜 ≻𝑠 𝐶 is realized. If  

𝜇𝒜
𝑖 (𝑡) ≥ 𝜇ℬ

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) < 𝑣ℬ

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡) < 𝑤ℬ

𝑖 (𝑡), …..(3) 

𝜇ℬ
𝑖 (𝑡) > 𝜇𝐶

𝑖 (𝑡), 𝑣ℬ
𝑖 (𝑡) = 𝑣𝐶

𝑖 (𝑡), 𝑤ℬ
𝑖 (𝑡) = 𝑤𝐶

𝑖 (𝑡),….. (4) 

from (3) and (4) 

𝜇𝒜
𝑖 (𝑡) ≥ 𝜇𝐶

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) < 𝑣𝐶

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡) < 𝑤𝐶

𝑖 (𝑡), 

then based on Definition 6 𝒜 ≻𝑠 𝐶 is achieved. If  

𝜇𝒜
𝑖 (𝑡) > 𝜇ℬ

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) = 𝑣ℬ

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡) = 𝑤ℬ

𝑖 (𝑡), …..(5) 

𝜇ℬ
𝑖 (𝑡) ≥ 𝜇𝐶

𝑖 (𝑡), 𝑣ℬ
𝑖 (𝑡) < 𝑣𝐶

𝑖 (𝑡), 𝑤ℬ
𝑖 (𝑡) < 𝑤𝐶

𝑖 (𝑡),….. (6) 

from (5) and (6) 

𝜇𝒜
𝑖 (𝑡) > 𝜇𝐶

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) = 𝑣𝐶

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡) = 𝑤𝐶

𝑖 (𝑡), 

then based on Definition 6 𝒜 ≻𝑠 𝐶 is obtained. If  

𝜇𝒜
𝑖 (𝑡) > 𝜇ℬ

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) = 𝑣ℬ

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡) = 𝑤ℬ

𝑖 (𝑡), …..(7) 

𝜇ℬ
𝑖 (𝑡) > 𝜇𝐶

𝑖 (𝑡), 𝑣ℬ
𝑖 (𝑡) = 𝑣𝐶

𝑖 (𝑡), 𝑤ℬ
𝑖 (𝑡) = 𝑤𝐶

𝑖 (𝑡),…..(8) 

from (7) and (8) 

𝜇𝒜
𝑖 (𝑡) > 𝜇𝐶

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) = 𝑣𝐶

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡) = 𝑤𝐶

𝑖 (𝑡), 

then based on Definition 6 𝒜 ≻𝑠 𝐶 is realized. Therefore, if 𝒜 ≻𝑠 ℬ 𝑎𝑛𝑑 ℬ ≻𝑠 𝐶, then 𝒜 ≻𝑠 𝐶. 

Proposition 9 Let 𝒜 = {≺ 𝑡, (𝜇𝒜
𝑖 (𝑡), 𝑣𝒜

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡)) ≻: 𝑡 ∈ 𝑇, (𝑖 = 1,2,3, … , 𝑝)},  

ℬ = {≺ 𝑡, (𝜇ℬ
𝑖 (𝑡), 𝑣ℬ

𝑖 (𝑡), 𝑤ℬ
𝑖 (𝑡)) ≻: 𝑡 ∈ 𝑇, (𝑖 = 1,2,3, … , 𝑝)}  and 𝐶 = {≺ 𝑡, (𝜇𝐶

𝑖 (𝑡), 𝑣𝐶
𝑖 (𝑡), 𝑤𝐶

𝑖 (𝑡)) ≻: 𝑡 ∈

𝑇, (𝑖 = 1,2,3, … , 𝑝)} be three NMS on 𝑇, if 𝒜 ∼𝑙 ℬ 𝑎𝑛𝑑 ℬ ∼𝑙 𝐶, then 𝒜 ∼𝑙 𝐶. 

Proof: Clearly, if 𝒜 ∼𝑙 ℬ 𝑎𝑛𝑑 ℬ ∼𝑙 𝐶, then 𝒜 ∼𝑙 𝐶 is surely validated. 

Proposition 10 Let 𝒜 = {≺ 𝑡, (𝜇𝒜
𝑖 (𝑡), 𝑣𝒜

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡)) ≻: 𝑡 ∈ 𝑇, (𝑖 = 1,2,3, … , 𝑝)},  

ℬ = {≺ 𝑡, (𝜇ℬ
𝑖 (𝑡), 𝑣ℬ

𝑖 (𝑡), 𝑤ℬ
𝑖 (𝑡)) ≻: 𝑡 ∈ 𝑇, (𝑖 = 1,2,3, … , 𝑝)}  and 𝐶 = {≺ 𝑡, (𝜇𝐶

𝑖 (𝑡), 𝑣𝐶
𝑖 (𝑡), 𝑤𝐶

𝑖 (𝑡)) ≻: 𝑡 ∈

𝑇, (𝑖 = 1,2,3, … , 𝑝)} be three NMS on 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛 }, then the following results can be obtained. 

1. 
1 − 𝑖𝑟𝑟𝑒𝑓𝑙𝑒𝑥𝑖𝑣𝑖𝑡𝑦 ∶   ∀ 𝒜 ∈ 𝑁𝑀𝑆𝑠,𝒜 ⊁𝑠 𝒜;                                                 
2 − 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 ∶ ∀ 𝒜 , ℬ 𝑜𝑛 𝑁𝑀𝑆𝑠;𝒜 ≻𝑠 ℬ ⇒ ℬ ⊁𝑠 𝒜;                       
3 − 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦: ∀ 𝒜 , ℬ, 𝐶 𝑜𝑛 𝑁𝑀𝑆𝑠;𝒜 ≻𝑠 ℬ , ℬ ≻𝑠 𝐶, 𝑡ℎ𝑒𝑛 𝒜 ≻ 𝐶.  

 

2. 
4 − 𝑖𝑟𝑟𝑒𝑓𝑙𝑒𝑥𝑖𝑣𝑖𝑡𝑦 ∶   ∀ 𝒜 ∈ 𝑁𝑀𝑆𝑠,𝒜 ⊁𝑤 𝒜;                                                             
5 − 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 ∶ ∀ 𝒜 , ℬ 𝑜𝑛 𝑁𝑀𝑆𝑠;𝒜 ≻𝑤 ℬ ⇒ ℬ ⊁𝑤 𝒜;                                  
6 − 𝑛𝑜𝑛 − 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦: ∃ 𝒜 , ℬ, 𝐶 𝑜𝑛 𝑁𝑀𝑆𝑠;𝒜 ≻𝑠 ℬ , ℬ ≻𝑠 𝐶, 𝑡ℎ𝑒𝑛 𝒜 ≻ 𝐶.  

 

3. 
7 − 𝑟𝑒𝑓𝑙𝑒𝑥𝑖𝑣𝑖𝑡𝑦 ∶   ∀ 𝒜 ∈ 𝑁𝑀𝑆𝑠,𝒜 ∼𝑙 𝒜;                                                 
8 − 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 ∶ ∀ 𝒜 , ℬ 𝑜𝑛 𝑁𝑀𝑆𝑠;𝒜 ∼𝑙 ℬ ⇒ ℬ ∼𝑙 𝒜;                       
9 − 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦: ∃ 𝒜 , ℬ, 𝐶 𝑜𝑛 𝑁𝑀𝑆𝑠;𝒜 ∼𝑙 ℬ , ℬ ∼𝑙 𝐶, 𝑡ℎ𝑒𝑛 𝒜 ∼𝑙 𝐶.  

 

Example 11 1,2,4,5 and 6 are exemplified as follows. 

1. If 𝒜 = 〈(0.8,0.5, … ,0.6), (0.3,0.1, … ,0.5), (0.2,0.3, … ,0.4)〉  is a NMSs, then 𝒜 ⊁𝑠 𝒜  can be 

obtained. 

2. If 𝒜 = 〈(0.5,0.7, … ,0.6), (0.2,0.3, … ,0.4), (0.1,0.3, … ,0.2)〉 and  

ℬ = 〈(0.4,0.6, … ,0.5), (0.3,0.4, … ,0.5), (0.2,0.5, … ,0.3)〉  are two NMSs, then 

𝒜 ≻𝑠 ℬ, 𝑏𝑢𝑡 ℬ ⊁𝑠 𝒜 is realized. 
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3. If 𝒜 = 〈(0.7,0.4, … ,0.5), (0.4,0.2, … ,0.6), (0.3,0.3, … ,0.2)〉  is a NMSs, then 𝒜 ⊁𝑤 𝒜  can be 

obtained. 

4. If 𝒜 = 〈(0.5,0.7, … ,0.6), (0.5,0.6, … ,0.4), (0.1,0.3, … ,0.2)〉 and  

ℬ = 〈(0.3,0.5, … ,0.6), (0.2,0.3, … ,0.1), (0.2,0.5, … ,0.3)〉  are two NMSs, then 

𝒜 ≻𝑤 ℬ, ℎ𝑜𝑤𝑒𝑣𝑒𝑟 ℬ ⊁𝑤 𝒜.  

5. If 𝒜 = 〈(0.5,0.7, … ,0.6), (0.3,0.2, … ,0.4), (0.1,0.3, … ,0.2)〉,  

6. ℬ = 〈(0.5,0.6, … ,0.4), (0.5,0.4, … ,0.6), (0.2,0.5, … ,0.3)〉 and  

𝐶 = 〈(0.4,0.3, … ,0.2), (0.6,0.5, … ,0.7), (0.3,0.6, … ,0.8)〉  are three NMSs, then 

𝒜 ≻𝑤 ℬ  𝑎𝑛𝑑  ℬ ≻𝑤 𝐶  are obtained, 𝒜 ≻𝑤 𝐶.  

Proposition 11 [22] Let 𝑡1 and 𝑡2 be two actions, the performances for actions 𝑡1 and 𝑡2 be in the 

form of NMSs, and 𝑃 = 𝑠 ∪𝓌 ∪ 𝑙 mean that “𝑡1 is at least as good as 𝑡2”, then four situations may 

arise: 

1. 𝑡1𝑃𝑡2 and not 𝑡2𝑃𝑡1,  that is 𝑡1 ≻𝑠 𝑡2 or 𝑡1 ≻𝑤 𝑡2; 

2. 𝑡2𝑃𝑡1 and not 𝑡1𝑃𝑡2,  that is 𝑡2 ≻𝑠 𝑡1 or 𝑡2 ≻𝑤 𝑡1; 

3. 𝑡1𝑃𝑡2 𝑎𝑛𝑑 𝑡2𝑃𝑡1,    that is 𝑡1 ∼𝑙 𝑡2; 

4. not 𝑡1𝑃𝑡2 and not 𝑡2𝑃𝑡1,  that is 𝑡1 ⊥ 𝑡2. 

4. An outranking approach for MCDM with simplified neutrosophic multi-set information 

In this section, we introduced an approach for a MCDM problem with neutrosophic multi-set 

information. Some of it is quoted from [22, 35, 49]. 

Definition 12 [15] Let 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) be a set of alternatives, 𝐶 = (𝑐1, 𝑐2, … , 𝑐𝑛) be the set of 

criteria, 𝓌 = (𝓌1,𝓌,… ,𝓌𝑛)
𝑇  be the weight vector of the criterions 𝐶𝑗(𝑗 = 1,2, … , 𝑛)  such that 

𝓌𝑗 ≥ 0  and ∑ 𝓌𝑗 = 1
𝑛
𝑗=1  and 𝑍𝑖𝑗 = 〈(μij

1μij
2 , … , μij

n), (vij
1vij
2, … , vij

n), (wij
1wij

2, … , wij
n)〉  be the decision 

matrix in which the rating values of the alternatives in for NMSs. Then, 

1 2

111 121

221 222

1 2



 
 
 
    
 
 
 
 

n

n

n

ij m n

m m m mn

c c c

ZZ Zx

ZZ Zx

Z

x Z Z Z

 

is called an NMS-multi-criteria decision making matrix of the decision maker. 

Definition 13 [22, 35] In multi-criteria decision making problems; 

1. The cost-type criterion values can be transformed into benefit-type criterion values as follows: 

 

𝛼𝑖𝑗 = {
𝑍𝑖𝑗    for benefit criterion 𝐶𝑗,                                                                   

(𝑍𝑖𝑗)
𝑐
  for benefit criterion 𝐶𝑗 , (𝑖 = 1,2, … ,𝑚; 𝑗 = 1,2, … , 𝑛)

           (9)  

 

where (𝑍𝑖𝑗)
𝑐
 is complement of 𝑍𝑖𝑗 as defined in Definition 4. 

2. The concordance set of subscripts, which should satisfy the constraint  𝑍𝑖𝑗𝑃𝑍𝑘𝑗 , is represented as: 

𝑂𝑖𝑘 = {𝑗:   𝑍𝑖𝑗𝑃𝑍𝑘𝑗} (𝑖, 𝑘 = 1,2, … ,𝑚). 

  𝑍𝑖𝑗𝑃𝑍𝑘𝑗 represents   𝑍𝑖𝑗 >𝑠 𝑍𝑘𝑗  or   𝑍𝑖𝑗 >𝑤 𝑍𝑘𝑗 or   𝑍𝑖𝑗 ∽ 𝑍𝑘𝑗 . 

3. The concordance index ℎ𝑖𝑘  between 𝑥𝑖  and 𝑥𝑘   is thus defined as follows: 

 

ℎ𝑖𝑘 = ∑ 𝑤𝑗
𝑗∈𝑂𝑖𝑘

                                                                                    (10) 

Thus, the concordance matrix C is: 
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221
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hh
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In H; ℎ𝑖𝑘 (𝑖 ≠ 𝑘) denote the degree to which the evaluations of 𝑥𝑖  are at least as good as those 

of the competitor𝑥𝑘, and the degree to which 𝑥𝑖  is inferior to 𝑥𝑘 decreases with increasing ℎ𝑖𝑘 . 

4. The discordance set of subscripts for criteria is given as; 

𝐺𝑖𝑘 = 𝐽 − 𝑂𝑖𝑘 . 

5. The discordance index 𝐺(𝑥𝑖 ;  𝑥𝑘) is represented as: 

𝐺𝑖𝑘 =
max
𝑗∈𝐺𝑖𝑘

{𝑑(𝑍𝑖𝑗 , 𝑍𝑘𝑗)}

max
𝑗∈𝐽
{𝑑(𝑍𝑖𝑗 , 𝑍𝑘𝑗)}

                                                                      (11) 

 

here 𝑑(𝑍𝑖𝑗 , 𝑍𝑘𝑗) denotes the normalized Hamming distance between 𝑍𝑖𝑗  and 𝑍𝑘𝑗  as defined in 

Definition 5. 

Thus, the discordance matrix D is: 

112

221

1 2

 
 

 
 
 

 
 
 

n

n

ik

n n

gg

gg

g

g g

 

In G; 𝑔𝑖𝑘 (𝑖 ≠ 𝑘) denote the degree to which the evaluations of 𝑥𝑖  are at least as good as those of the 

competitor𝑥𝑘, and the degree to which 𝑥𝑖  is inferior to 𝑥𝑘 decreases with increasing  𝑔𝑖𝑘 . 

6. To rank all alternatives, the net dominance index of 𝑥𝑘 

ℎ𝑖𝑘 = ∑ ℎ𝑖𝑘 − ∑ ℎ𝑘𝑖

𝑛

𝑖=1,𝑖≠𝑘

𝑛

𝑖=1,𝑖≠𝑘

                                                                  (12) 

and the net disadvantage index of 𝑥𝑘 is 

𝑔𝑖𝑘 = ∑ 𝑔𝑖𝑘 − ∑ 𝑔𝑘𝑖

𝑛

𝑖=1,𝑖≠𝑘

𝑛

𝑖=1,𝑖≠𝑘

                                                                  (13) 

In here, ℎ𝑘 is the sum of the concordance indices between 𝑥𝑘  and 𝑥𝑘 (𝑖 ≠ 𝑘) minus the sum of 

the concordance indices between 𝑥𝑘  (𝑖 ≠ 𝑘) and  𝑥𝑘 , and reflects the dominance degree of the 

alternative 𝑥𝑘 among the relevant alternatives. Meanwhile, 𝑔𝑘 reflects the disadvantage degree of 

the alternative 𝑥𝑘 among the relevant alternatives. Therefore, 𝑥𝑘 obtains a greater dominance over 

the other alternatives that are being compared as ℎ𝑘 increases and 𝑔𝑘 decreases. 

 

Definition 14 [35] The ranking rules of two alternatives are 

i. If ℎ𝑖 < ℎ𝑘 and 𝑔𝑖 > 𝑔𝑘 then 𝑥𝑘 is superior to 𝑥𝑖 , as denoted by 𝑥𝑘 ≻ 𝑥𝑖; 

ii. If ℎ𝑖 = ℎ𝑘 and 𝑔𝑖 = 𝑔𝑘 then 𝑥𝑘 is indifferent to 𝑥𝑖 , as denoted by 𝑥𝑘 ∼ 𝑥𝑖; 

i. if the relation between 𝑥𝑘  and 𝑥𝑖  does not belong to (i) or (ii);then 𝑥𝑘  and 𝑥𝑖  are 

incomparable; as denoted by 𝑥𝑘 ⊥ 𝑥𝑖 . 

Now, we give an algorithm to develop a new approach as 

Algorithm: 

Step 1 Give the decision-making matrix


  ij m n
Z ; for decision; 

Step 2 Compute the weighted normalized matrix as; 

 

                   1,2,..., ;  1,2,..., . 


     ij ij jm n
w i m j n  
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where  jw is the weight of the j th criterion with ∑ 𝓌𝑗 = 1
𝑛
𝑗=1 . 

Step 3 Find the concordance set of subscripts; 

Step 4 Find the discordance set of subscripts; 

Step 5 Compute the concordance matrix 𝐻 = (ℎ𝑖𝑘)𝑛×𝑛 

Step 6 Compute the discordance matrix 𝐺 = (𝑔𝑖𝑘)𝑛×𝑛 

Step 7. Compute the net dominance index of each alternative ℎ𝑖 (i=1,2,3,...,m) 

Step 8. Compute the net disadvantage index of each alternative 𝑔𝑖 (i=1,2,...,m) 

Step 9. Rank all alternatives and select the best alternative. 

 

5 Illustrative examples 

In this section, we introduced an example for a MCDM problem with neutrosophic refined 

information. Some of it is quoted from [22, 35, 49]. 

Example 15 Assume that 𝑋 = (𝑥1, 𝑥2, 𝑥3, 𝑥4) be a set of alternatives and 𝐶 = (𝑐1, 𝑐2, 𝑐3, 𝑐4) be 

the set of criterions, 𝓌 = (0.1,0.3,0.2,0.4)𝑇 be the weight vector of the criterions 𝐶𝑗(𝑗 = 1,2, … , 𝑛). 

The four alternatives are to be evaluated under the above four criteria in the form of NMSs. Then, 

 

Step 1. The decision matrix 


  ij m n
Z  is given as; 

 

(

〈(0: 1;  0: 2;  0: 4;  0: 5);  (0: 6;  0: 3;  0: 5;  0: 2);  (0: 2;  0: 4;  0: 5;  0: 6)〉

〈(0: 3;  0: 4;  0: 6;  0: 7);  (0: 2;  0: 5;  0: 1;  0: 8);  (0: 3;  0: 4;  0: 6;  0: 8)〉
〈(0: 1;  0: 2;  0: 5;  0: 6);  (0: 1;  0: 3;  0: 5;  0: 2);  (0: 1;  0: 5;  0: 7;  0: 9)〉

〈(0: 2;  0: 3;  0: 4;  0: 5);  (0: 3;  0: 2;  0: 4;  0: 6);  (0: 2;  0: 3;  0: 5;  0: 7)〉

 

 
〈(0: 3;  0: 5;  0: 7;  0: 8);  (0: 4;  0: 3;  0: 6;  0: 2);  (0: 1;  0: 3;  0: 5;  0: 2)〉

〈(0: 2;  0: 3;  0: 4;  0: 5);  (0: 1;  0: 4;  0: 3;  0: 6);  (0: 2;  0: 3;  0: 4;  0: 5)〉

〈(0: 1;  0: 2;  0: 6;  0: 7);  (0: 3;  0: 2;  0: 5;  0: 4);  (0: 1;  0: 2;  0: 5;  0: 6)〉

〈(0: 3;  0: 4;  0: 6;  0: 8);  (0: 2;  0: 1;  0: 3;  0: 6);  (0: 4;  0: 3;  0: 2;  0: 5)〉

 

 
〈(0: 2;  0: 4;  0: 5;  0: 6);  (0: 3;  0: 5;  0: 2;  0: 6);  (0: 1;  0: 2;  0: 5;  0: 6)〉

〈(0: 4;  0: 5;  0: 7;  0: 8);  (0: 1;  0: 6;  0: 2;  0: 3);  (0: 1;  0: 4;  0: 3;  0: 6)〉

〈(0: 3;  0: 6;  0: 8;  0: 9);  (0: 2;  0: 4;  0: 1;  0: 5);  (0: 2;  0: 1;  0: 3;  0: 6)〉

〈(0: 1;  0: 2;  0: 4;  0: 6);  (0: 1;  0: 3;  0: 7;  0: 4);  (0: 3;  0: 4;  0: 6;  0: 7)〉

 

 
〈(0: 1;  0: 2;  0: 4;  0: 5);  (0: 2;  0: 3;  0: 5;  0: 4);  (0: 1;  0: 3;  0: 7;  0: 4)〉

〈(0: 3;  0: 4;  0: 5;  0: 6);  (0: 3;  0: 1;  0: 2;  0: 5);  (0: 3;  0: 6;  0: 8;  0: 9)〉

〈(0: 1;  0: 3;  0: 4;  0: 5);  (0: 1;  0: 4;  0: 6;  0: 7);  (0: 1;  0: 2;  0: 6;  0: 7)〉

〈(0: 2;  0: 4;  0: 5;  0: 7);  (0: 2;  0: 3;  0: 5;  0: 6);  (0: 3;  0: 2;  0: 4;  0: 6)〉)

  

Step 2. The weighted normalized matrix 


  ij m n

 is computed as; 

(

(0: 7943;  0: 8513;  0: 9124;  0: 9330); (0: 0875;  0: 0350;  0: 0669;  0: 0220); (0: 0220;  0: 0104;  0: 0669;  0: 0875)

(0: 6968;  0: 7596;  0: 8579;  0: 8985); (0: 0647;  0: 1877;  0: 0311;  0: 3829); (0: 1014;  0: 1420;  0: 2403;  0: 3829)
(0: 6309;  0: 7247;  0: 8705;  0: 9028); (0: 2080;  0: 0688;  0: 1294;  0: 0436); (0: 2080;  0: 1294;  0: 2140;  0: 3690)

(0: 5253;  0: 6178;  0: 6931;  0: 7578); (0: 1329;  0: 0853;  0: 1848;  0: 3068); (0: 0853;  0: 1329;  0: 2421;  0: 3822)

 

 

(0: 8865;  0: 9330;  0: 9649;  0: 9779); (0: 0498;  0: 0350;  0: 0875;  0: 0620); (0: 0104;  0: 0350;  0: 0669;  0: 0220) 

(0: 6170;  0: 6968;  0: 7596;  0: 8122); (0: 0311;  0: 1420;  0: 1014;  0: 2403); (0: 0647;  0: 1014;  0: 1420;  0: 1877) 

(0: 6309;  0: 7247;  0: 9028;  0: 9311); (0: 0188;  0: 0436;  0: 1294;  0: 0971); (0: 0208;  0: 0436;  0: 1294;  0: 1674) 

(0: 6178;  0: 6931;  0: 8151;  0: 9146); (0: 0853;  0: 0412;  0: 1329;  0: 3068); (0: 1848;  0: 1329;  0: 0853;  0: 2421) 

 

(0: 8513;  0: 9124;  0: 9330;  0: 9502); (0: 0350;  0: 0669;  0: 0720;  0: 0875); (0: 0104;  0: 0220;  0: 0669;  0: 0875) 

(0: 7596;  0: 8122;  0: 8985;  0: 9352); (0: 0311;  0: 0203;  0: 0647;  0: 1014); (0: 0311;  0: 1420;  0: 1014;  0: 2403) 

(0: 7860;  0: 9028;  0: 9563;  0: 9791); (0: 0436;  0: 0971;  0: 0208;  0: 1294); (0: 0436;  0: 0208;  0: 0688;  0: 1674) 

(0: 3981;  0: 5253;  0: 6931;  0: 8151); (0: 0412;  0: 1329;  0: 3822;  0: 1848); (0: 0412;  0: 1329;  0: 3822;  0: 6018) 
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(0: 7943;  0: 8513;  0: 9124;  0: 9330); (0: 0220;  0: 0350;  0: 0669;  0: 0498); (0: 0104;  0: 0350;  0: 1134;  0: 0498)

(0: 6968;  0: 7596;  0: 8122;  0: 8579); (0: 1014;  0: 0311;  0: 0647;  0: 1877); (0: 1014;  0: 2403;  0: 2403;  0: 4988)
(0: 6309;  0: 7860;  0: 8325;  0: 8705); (0: 0228;  0: 0971;  0: 1674;  0: 2140); (0: 0208;  0: 0436;  0: 1674;  0: 2140)

(0: 5253;  0: 6931;  0: 7578;  0: 8670); (0: 1853;  0: 1329;  0: 2421;  0: 3068); (0: 0329;  0: 0853;  0: 1848;  0: 3068)

) 

 

Step 3. The concordance set is found as; 

 12 O ;          21 31 41 13 234 ; ; ; 1,2 ; ;    O O O O O  

           32 42 14 24 34 43; ; 4 ; 1,3 ; 1,2 ; .     O O O O O O  

Step 4. The discordance set is found as; 
           12 21 31 41 13 231,2,3,4 ; 1,2,3 ; 1,2,3,4 ; 1,2,3,4 ; 1,2 ; 1,2,3, 4 ;     G G G G O G  

           32 42 14 24 34 431,2,3,4 ; 1,2,3,4 ; 1,2,3 ; 2,4 ; 3,4 ; 1,2,3,4 .     G G G G G G  

where   denotes “empty”. 

Step 5. The concordance is computed as; 

0 0.4 0.4

0.4 0.4 0.3

0 0 0.4

0 0 0

 
 

 
 
 

 

H  

Step 6. The discordance matrix is computed as; 

1 0.6612 1

0.9958 1 0.5778

1 1 1

1 1 1

 
 

 
 
 

 

G  

Step 7. The net dominance index of each alternative ℎ𝑖 (i=1,2,3,4) is computed as; 

ℎ1 = 0.4, ℎ2 = 1.1, ℎ3 = −0.4  and  ℎ4 = −1.1,⇒ ℎ4 < ℎ3 < ℎ1 < ℎ2; 

Step 8. The net disadvantage index of each alternative 𝑔𝑖 (i=1,2,3,4) is computed as; 

𝑔1 = −0.3346, 𝑔2 = −0.428, 𝑔3 = 0.3388  and  𝑔4 = 0.4242,⇒ 𝑔4 > 𝑔3 > 𝑔1 > 𝑔2. 

Step 9. The final ranking is and the best alte  𝑥2 ≻ 𝑥1 ≻ 𝑥3 ≻ 𝑥4   rnative is 𝑥2. 

 

6. Conclusions  

This paper developed a multi-criteria decision making method for neutrosophic multi-sets 

based on these given the outranking relations. In further research, we will develop different 

methods and compare the different methods on neutrosophic multi-sets. The contribution of this 

study is that the proposed approach is simple and convenient with regard to computing, and 

effective in decreasing the loss of evaluative information. More effective decision methods of this 

proposes a new outranking approach will be investigated in the near future and applied these 

concepts to engineering, game theory, multi-agent systems, decision-making and so on.  
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