University of New Mexico

UNM Digital Repository

Mathematics and Statistics Faculty and Staff Publications

Academic Department Resources

1996

Mathematical Rebuses

Florentin Smarandache *University of New Mexico*, smarand@unm.edu

Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp

Part of the Harmonic Analysis and Representation Commons, Logic and Foundations Commons, and the Other Mathematics Commons

Recommended Citation

Smarandache, Florentin (1996) "Mathematical Rebuses," Humanistic Mathematics Network Journal: Vol. 1: Iss. 14, Article 11. Available at: http://scholarship.claremont.edu/hmnj/vol1/iss14/11

This Article is brought to you for free and open access by the Academic Department Resources at UNM Digital Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact amywinter@unm.edu, lsloane@salud.unm.edu, sarahrk@unm.edu.

Humanistic Mathematics Network Journal

Volume 1 | Issue 14 Article 11

11-1-1996

Mathematical Rebuses

Florentin Smarandache Pima Community College

Follow this and additional works at: http://scholarship.claremont.edu/hmnj

Part of the <u>Mathematics Commons</u>

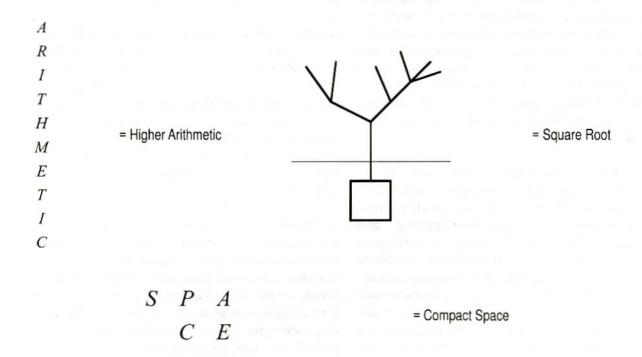
Recommended Citation

Smarandache, Florentin (1996) "Mathematical Rebuses," Humanistic Mathematics Network Journal: Vol. 1: Iss. 14, Article 11. Available at: http://scholarship.claremont.edu/hmnj/vol1/iss14/11

This Open Educational Resource is brought to you for free and open access by the Journals at Claremont at Scholarship @ Claremont. It has been accepted for inclusion in Humanistic Mathematics Network Journal by an authorized administrator of Scholarship @ Claremont. For more information, please contact scholarship@cuc.claremont.edu.

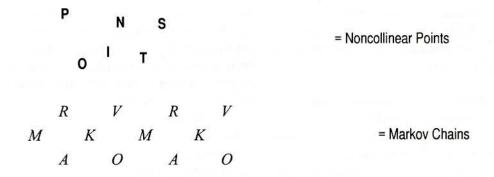
Mathematical Rebuses

Florentin Smarandache Pima Community College Tucson, AZ 85709


$$\begin{pmatrix} M & R & X \\ R & A & I \\ X & I & T \end{pmatrix} = \text{Symmetrical Matrix}$$

$$= \text{Method of the Littlest Squares}$$

Humanistic Mathematics Network Journal #14


Mathematical Rebuses

Florentin Smarandache Pima Community College Tucson, AZ 85709

Mathematical Rebuses

Florentin Smarandache Pima Community College Tucson, AZ 85709

