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KEY PO INT S

l Mosaic and germline
gain-of-function
variants in TLR8 cause
neutropenia, antibody
deficiency,
lymphoproliferation,
and bone marrow
failure.

l TLR8 gain of function
leads to an
inflammatory
environment with
activated T cells and
abnormalities in B-cell
differentiation.

Inborn errors of immunity (IEI) are a genetically heterogeneous group of disorders with
a broad clinical spectrum. Identification of molecular and functional bases of these
disorders is important for diagnosis, treatment, and an understanding of the human
immune response. We identified 6 unrelated males with neutropenia, infections, lym-
phoproliferation, humoral immune defects, and in some cases bone marrow failure as-
sociated with 3 different variants in the X-linked gene TLR8, encoding the endosomal
Toll-like receptor 8 (TLR8). Interestingly, 5 patients had somatic variants in TLR8 with
<30% mosaicism, suggesting a dominant mechanism responsible for the clinical phe-
notype. Mosaicism was also detected in skin-derived fibroblasts in 3 patients, demon-
strating that mutations were not limited to the hematopoietic compartment. All patients
had refractory chronic neutropenia, and 3 patients underwent allogeneic hematopoietic
cell transplantation. All variants conferred gain of function to TLR8 protein, and immune
phenotyping demonstrated a proinflammatory phenotype with activated T cells and
elevated serum cytokines associated with impaired B-cell maturation. Differentiation of
myeloid cells from patient-derived induced pluripotent stem cells demonstrated in-

creased responsiveness to TLR8. Together, these findings demonstrate that gain-of-function variants in TLR8 lead to
a novel childhood-onset IEI with lymphoproliferation, neutropenia, infectious susceptibility, B- and T-cell defects,
and in some cases, bone marrow failure. Somatic mosaicism is a prominent molecular mechanism of this new disease.
(Blood. 2021;137(18):2450-2462)

Introduction
Inborn errors of immunity (IEI) are a heterogeneous group of
genetic disorders affecting the immune system with multiple
clinical manifestations, including infection, autoimmunity,

autoinflammation, bone marrow failure, malignancy, and

atopy.1,2 Genomic investigation of rare patients with IEI has

revealed a spectrum of genetic inheritance and mechanisms of

disease, including loss-of-function and gain-of-function variants,
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sometimes in the same gene with overlapping or divergent
phenotypes.3-5 While most IEIs are associated with germline
defects, postzygotic mutational events leading to somatic mo-
saicism can also cause disease; for example, somatic mutation in
hematopoietic stem cells can cause autoimmune lymphoproli-
ferative syndrome.6 The overall number of patients with IEIs due
to postzygotic somatic mosaicism was thought to be relatively
low based on rare case reports. However, recent investigation
using targeted sequencing of 128 families suspected to have
specific IEIs but without an identified germline variant found that
;15% of patients had mosaic variants in the known targeted
IEI genes.7 The recent identification of somatic mutations in
UBA1 in the hematopoietic cells of men with adult-onset
autoinflammatory disease highlights the importance of in-
vestigating nongermline genetic variants in IEIs.8 However,
somatic mosaicism is generally overlooked as a cause of IEI and
monogenic disease, particularly with regards to disease dis-
covery. The reasons for this may include challenges in detecting
low-frequency variants and the need to perform genetic testing
on the tissue or cell type carrying the variant.

We identified 6 unrelated males with severe infections, neu-
tropenia, humoral abnormalities, and bone marrow failure
consistent with an IEI. Sequencing of peripheral blood DNA
samples identified novel missense variants in the TLR8 gene,
with 5 patients having genetic mosaicism. TLR8 is located on the
short arm of chromosome X (Xp22.2) and encodes Toll-like re-
ceptor protein 8 (TLR8), an endosomal receptor that senses
microbial single-stranded RNA degradation products and serves
to alert the immune response to the presence of viral and
bacterial infection.9,10 TLR8 is primarily expressed by neutrophils
and monocytes. We investigated the mechanism whereby
identified variants altered the function of the encoded TLR8
protein and the immune response associated with the clinical
phenotype of patients. Findings identified increased activity of
TLR8 and downstream inflammatory signals associated with
human disease.

Methods
Patients and genetic testing
Written and informed consent was obtained for all participants at
Washington University or the National Institutes of Health. Some
patients were identified through GeneMatcher.11 These studies
were approved by the institutional review boards of the authors’
institutions. Exome sequencing was performed using whole-
blood DNA as a research or clinical test. To confirm genetic
variants and determine allele frequency, droplet digital poly-
merase chain reaction (ddPCR) (Bio-Rad) was performed with
DNA and/or complementary DNA (cDNA) samples from the
indicated tissue. ddPCR included ddPCR SuperMix for Probes
(no dUTP) (Bio-Rad), reference probe (HEX dye), and probes
specific for TLR8 c.1295C.T or TLR8 c.1482C.A variants (FAM
dyes, custom design, Bio-Rad), nuclease-free water with 25 ng
DNA or cDNA. All ddPCR assays were analyzed using theQX200
Droplet reader and Quantasoft software version 1.7.4.

Flow cytometry
Immunophenotyping of peripheral blood mononuclear cells
(PBMCs) and analysis of phosphorylated p65 Ser536 (NF-kB)
were performed using standard flow cytometry–based assays.

Detailed methodology is provided in supplemental Methods
(available on the Blood Web site).

Serum cytokine analysis
Serum cytokines were measured using a multianalyte (13-plex)
(Luminex assay kit; R&D Systems, Minneapolis, MN) by the
Center for Human Immunology and Immunotherapy Programs at
Washington University. Analytes assayed included tumor ne-
crosis factor a (TNF-a), interleukin-18 (IL-18), interferon-g (IFN-g),
BAFF, sIL2Ra, IL-12/23p40, CXCL10, IL-10, IL-6, IL-8, IL-17,
IL1-b, and MCP-1. IL-18 binding protein levels were measured
by a previously defined method.12 Levels of soluble forms of Fas
ligandwere quantitated by enzyme-linked immunosorbent assay
(RayBiotech, Norcross, GA).

Transfection studies in TLR8-deficient NF-kB
reporter cell line
Expression plasmids with P432L, F494L, G572D, and D543A
were generated as described in supplemental Methods. Human
HEK Blue Null1 NF-kB reporter cells (InvivoGen), which lack
expression of TLR7 and TLR8, were cultured in Dulbecco’s
modified Eagle medium supplemented with 10% fetal bovine
serum, normocin (50 mg/mL), blasticidin (10 mg/mL), and Zeocin
(100 mg/mL) (InvivoGen). NF-kB transcriptional activity was
measured by quantifying secreted alkaline phosphatase (SEAP)
by QUANTI-BLUE assay (InvivoGen) in reporter cells transiently
transfected with wild-type (WT) or mutant TLR8 following
stimulation. TLR ligands/agonists used in these studies included
TL8-506 (TLR8 agonist), CLO75 (TLR8/TLR7 agonist), R848
(resiquimod, a TLR7/TLR8 agonist), or CL264 (TLR7 agonist) (all
from InvivoGen). Specificity of TL8-506 for TLR8 was demon-
strated in HEK cells expressing human TLR7, which did not
respond to TL8-506 stimulation (supplemental Figure 2B).
Similarly, cells expressing TLR8 but lacking TLR7 did not respond
to stimulation with CL264 (supplemental Figure 2F). For trans-
fection experiments, briefly, 500 ng (or indicated concentration)
WT or mutant TLR8 plasmid was transiently transfected into
reporter cells (Lipofectamine; Thermo Fisher Scientific,Waltham,
MA), and 48 hours after transfection, cells were stimulated with
the indicated doses of TLR agonist followed by quantification of
SEAP in the supernatant as a readout of NF-kB activity. Fold
change in SEAP activity was calculated by normalizing data to
untransfected wells without TLR8 stimulation. Statistical analysis
was performed by 1-way analysis of variance (ANOVA) using
GraphPad Prism 8.0 (GraphPad Software, La Jolla, CA), where a
P value , .05 was considered significant.

Fibroblast and iPSC line generation
Skin-punch biopsies were obtained from patients P1, P2, P3, and
P5 after written informed consent and approval from local in-
stitutional review boards at Washington University, Nemours
Alfred I. DuPont Hospital for Children, or Vanderbilt University.
Primary fibroblasts lines from patients were generated by the
Genome Engineering and iPSC Center at Washington University
in St. Louis. Fibroblasts from 2 patients (P2 and P3) were
reprogrammed to induced pluripotent stem cells (iPSCs) by the
Genome Engineering and iPSC Center using the Cytotune 2.0
reprogramming kit (Thermo Fisher Scientific). Karyotype
(G-banding) was performed and confirmed 46XY karyotype. The
STEMdiff Hematopoietic Kit (05310, STEMCELL Technologies,
Inc.) was used to differentiate iPSCs into CD341 hematopoietic

IMMUNODEFICIENCY WITH TLR8 GAIN OF FUNCTION blood® 6 MAY 2021 | VOLUME 137, NUMBER 18 2451

D
ow

nloaded from
 http://ashpublications.org/blood/article-pdf/137/18/2450/1806942/bloodbld2020009620.pdf by guest on 23 June 2022



progenitor cells (HPCs). Detailed methodology is provided in
supplemental Methods.

Generation of iPSCs or modified CD34-derived
neutrophils and macrophages
To differentiate neutrophils, CRISPR-modified CD34s (details for
generation in supplemental Methods) or iPSC-derived CD34s
were maintained in STEMspan media containing stem cell factor
(100 ng/mL, Stem Cell Technologies) and granulocyte colony
stimulating factor (G-CSF; 10 ng/mL, R&D Systems) and were
differentiated by a slight modification of a previously described
protocol.13 Cells were pelleted by centrifugation on day 14,
washed in phosphate-buffered saline, and stained with CD45,
CD66b (BD Optibuild) for the defining neutrophil population
(CD451/CD66b1) and used for fluorescence-activated cell
sorting analysis. Neutrophil differentiation was further confirmed
by hematoxylin and eosin (H&E) staining following cytospin
centrifugation on slides at 500 rpm for 8 minutes (Thermo Fisher
Scientific). Macrophages were differentiated from iPSC-derived
CD34s with Myeloid Expansion Supplement II (Stem Cell
Technologies). Macrophage differentiation was confirmed
on day 14 by flow cytometry as CD451CD141 (BD Biosciences)
and by H&E staining.

Additional methods in online supplement
Additional detailed methodology for protein modeling, protein
expression by western analysis, mass cytometry, and IFN sig-
nature studies may be found in supplemental Methods.

Results
Clinical phenotype
All patients (P1-P6) presented with infections leading to di-
agnosis of neutropenia (Table 1). Clinical case summaries for
each patient may be found in supplemental Methods. Two
patients presented in their first year of life (P2 and P6). One
patient (P5) had a history of refractory immune thrombocyto-
penia and splenomegaly at 5 years of age prior to onset of
neutropenia at age 14 years. Absolute neutrophil counts were
0 or very low at diagnosis (range, 0-284 cells/mL; supplemental
Table 1). All patients had evidence of lymphoproliferation, in-
cluding lymphadenopathy and/or splenomegaly (Table 1 and
Figure 1A). Two patients had positive antineutrophil antibodies
(supplemental Table 2).

With the exception of P1, who responded to G-CSF therapy and
prednisolone, patients had a poor response to therapeutic or
high doses of G-CSF. Five patients received immunoglobulin
replacement therapy due to low serum immunoglobulin G (IgG),
recurrent infections, and/or low B-cell numbers (Table 1). All
patients received immunosuppressive therapies that included
corticosteroids. Other medications used in .1 patient included
sirolimus and rituximab (clinical case summaries, supplemental
Methods). Bone marrow biopsy findings varied and included
hypocellularity and lymphohistiocytic or lymphoid aggregates
(Table 1 and Figure 1B-C; supplemental Table 1). A T-cell
clonality test was performed on the bone marrow of 4 pa-
tients, and 2 patients had oligoclonality with dominant T-cell
clones in the marrow by T-cell receptor g rearrangement studies
(P1 and P4; Table 1). Three patients (P2, P4, and P5) underwent
hematopoietic cell transplantation (HCT). P2 had bone marrow

findings of absent neutrophils with normal myeloblasts and a
prolonged period (.9 months) of absent peripheral blood
neutrophils prior to allogeneic HCT from a mismatched un-
related donor. He failed to engraft with his first transplant and
was retransplanted several months later but died at day 1172
due to renal failure and vasoplegia (clinical case summaries,
supplemental Methods). P4 was diagnosed with evolving T-cell
large granular lymphocytic (T-LGL) leukemia and underwent
haploidentical donor HCT, subsequently requiring donor T-cell
infusions due to relapse of neutropenia with loss of donor chi-
merism. P5 had a hypocellular bonemarrow with leukopenia and
thrombocytopenia refractory to treatment prior to a matched
sibling HCT. P6 died at 8 years of age due to overwhelming
fungal infections and bone marrow failure.

Genetic investigation
Exome sequencing identified TLR8 gene variants in all patients,
either on initial review or by targeted review of the TLR8 gene
evaluating for low-level mosaicism (Figure 1D). Five patients
(P1-P5) had mosaic TLR8 variants; 4 patients (P1, P2, P4, and P5)
shared the same variant (c.1295 C.T; p.P432L), while the fifth
patient (P3) harbored a different mosaic variant (c.1482 C.A,
p.F494L). The final patient (P6) had a de novo germline hemi-
zygous variant in TLR8 (c.1715 G.A, p.G572D). None of the
variants were present in the gnomAD database,14 and all were
predicted to be deleterious by Combined Annotation De-
pendent Depletion (CADD) score (supplemental Table 3). No
other known disease-causing variants relevant to clinical phe-
notypes were identified. To determine the frequency of mosa-
icism and its origin, ddPCRwas performed using DNA and cDNA
from different cell lineages and tissues including whole blood,
PBMCs, purified immune subsets, saliva and/or skin fibroblast
lines in patients with mosaic variants (Figure 1E-F). All patients
had ,30% mosaicism, with similar allelic frequencies across
different cell types, suggesting the mutational event may have
occurred at an early stage of embryonic development. One
patient (P5) did not carry the mutated allele in a skin fibroblast
line. Analysis of lung tissue of P2 post-HCT at a time when he had
100% donor chimerism revealed the presence of the variant in
the DNA, but not RNA (not shown), consistent with the presence
of genetic mosaicism in lung tissue rather than the presence of
donor immune cells expressing TLR8 transcript.

Functional consequences of TLR8 variants
Monocytes and neutrophils from patients expressed TLR8
protein (Figure 1G). Following ligand binding, TLR8 signaling
activates NF-kB to upregulate a proinflammatory transcrip-
tional signal. Stimulation of peripheral blood monocytes with
a low dose of the TLR8 agonist TL8-506 led to the activation
of a small percentage of monocytes (5% to 6%) in patients
with mosaic variants, as measured by phosphorylated p65
(NF-kB) (Figure 1H), suggesting that the observed TLR8
variants may lower the activation threshold to ligand in
primary cells.

Based onmosaicism conferring disease and enhanced activation
of patient cells, we hypothesized that the variants may confer
increased function to the encoded protein. The TLR8 dimer
undergoes a rigid body rotational and hinge motion upon ac-
tivation (supplemental Figure 2A).15 Residues affected by the
mosaic variants, P432 and F494, contact each other in one
monomer and, after TLR8 activation, come into close contact
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Figure 1. Patients havemosaic and germline variants in TLR8with normal expression of TLR8 protein and enhanced responsiveness to TLR8 stimulation. (A) Abdominal
computed tomography scan from P1 showing marked splenomegaly. (B) H&E staining of bone marrow biopsy specimen (P3) showing hypocellularity for age with lym-
phohistiocytic aggregate (arrow). (C) Leder staining demonstrating myeloid hypoplasia (P3). (D) Family pedigrees of the 6 patients with variants in TLR8. Symbols with dots
indicate mosaicism, and the solid black box indicates a germline variant in P6 (ND, not done). (E) ddPCR of patient DNA showing droplets with TLR8 variant p.P432L (upper left),

2454 blood® 6 MAY 2021 | VOLUME 137, NUMBER 18 ALURI et al

D
ow

nloaded from
 http://ashpublications.org/blood/article-pdf/137/18/2450/1806942/bloodbld2020009620.pdf by guest on 23 June 2022



with the same residues from the other subunit (Figure 2A;
supplemental Figure 2A). Similarly, G572, the location of the
germline variant, is solvent exposed in the inactive dimer but is in

close proximity to R375 in the other subunit in the activated
dimer. In both cases, patient amino acid substitutions would be
predicted to kinetically or thermodynamically stabilize activated

Figure 1 (continued)WTTLR8 (lower right), both templates (upper right), or no TLR8 template (lower left) for P1 and themother.Monos, monocytes; NK, natural killer;WB, whole
blood, NT, no TLR8 template. (F) Percentage of droplets with variant or WT sequence in DNA or cDNA from whole blood or PBMCs, saliva, fibroblast lines, and/or sorted cell
populations. (G) Intracellular TLR8 expression by flow cytometry in cells from age-matched healthy controls (solid red lines) and patients (P1, P3, and P5, solid blue lines). Similar
expression of TLR8 was observed in patient monocytes and neutrophils. CD31 T cells did not express TLR8. Red dashed line and blue dashed line indicates unstained control in
healthy controls and patients respectively. (H) Expression of phosphorylated p65 (NF-kB) inmonocytes (CD141) from patients (P1 and P3) and healthy age-matchedmale controls
stimulated with indicated doses of TLR8 agonist TL8-506. A small percentage (5% to 6%) of patient monocytes responded to the lower dose (100 ng/mL) of the stimulant. Healthy
cells responded at the highest dose of TLR8 stimulation. There was no statistical difference between the patient cells and healthy cells with respect to their response at the
highest dose of stimulation.
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Figure 2. Functional studies demonstrate gain of function of
TLR8. (A) Analysis of residues altered by TLR8 variants show that
positions P432 and F494 contact the symmetric positions in the
other subunit of the active ligand-bound dimer. G572D in the
ligand-binding state is predicted to enter into a hydrophobic
pocket and interact with R375. (B-C) NF-kB reporter cells (HEK
Blue Null1 cells) that do not express endogenous TLR8 were
transfected with WT TLR8, patient TLR8 variants (encoding
p.P432L, p.F494L, p.G572D), or a loss-of-function (LOF) TLR8
variant (encoding p.D543A) and stimulated with the indicated
doses of the TLR8-specific agonist TL8-506 (B) or the TLR8/TLR7
agonist CLO75 (C) for 24 hours. Mosaic and germline TLR8 variants
lead to gain of function in TLR8 activity as measured by NF-kB
transcriptional activity. Data are represented as mean 6 standard
deviation of biological replicates and representative of 8 in-
dependent experiments (TL8-506) or 3 independent experiments
(CLO75). **P # .01, ***P # .001 by 2-way ANOVA test.
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TLR8 homodimers through hydrophobic (P432L and F494L) or
charged (G572D) interactions.

A cell line lacking TLR7 and TLR8 (HEK Blue Null1) was trans-
fectedwith reference (WT) andmutant TLR8 constructs (p.P432L,
p.F494L, and p.G572D), as well as a previously reported loss-of-
function mutant, p.D543A15 (supplemental Figure 2C). Over-
expression of WT or variant TLR8 did not lead to constitutive
signaling (Figure 2B-C). Following stimulation with the TLR8-
specific chemical ligand TL8-506, the 3 putative disease-causing
constructs led to an increased NF-kB activity compared with WT
or loss-of-function constructs (Figure 2B). The gain-of-function
response was independent of the concentration of plasmid
(supplemental Figure 2D) and was also present in the presence
of WT TLR8 (supplemental Figure 2E) and when stimulated with
a TLR8/TLR7 ligand (CLO75) (Figure 2C). When TLR8 variants
were expressed in a reporter cell line also expressing TLR7,
similar enhanced responses to TLR8 ligand, but not TLR7 ligand,
were observed, supporting specificity of the enhanced re-
sponsiveness due to patient variants (supplemental Figure 2F).
Together, these findings support gain of function of TLR8 due
to the identified genetic variants.

Immunologic features in patients with
gain-of-function TLR8
Immunologic laboratory features of the patients were variable,
likely due to differences in disease state of patients (Figure 3).
Several patients had evidence of T-cell dysregulation, with in-
verse CD4:CD8 ratio, skewed naive to memory ratio of CD41

T cells, and elevated CD81 CD45RA1 CCR72 effector memory
T cells . Patients also had increased double-negative T cells
(supplemental Table 2), which is seen in patients with autoim-
mune lymphoproliferative syndrome but also reflective of

immune dysregulation, autoimmunity, and a lymphoproliferative
state.16,17 Consistent with hypogammaglobulinemia, all patients
had reduced class-switch memory B cells. Further character-
ization of B-cell subsets in 2 patients identified reduced fre-
quency of CD24hiCD38hi transitional B cells, CCR61 naive B cells,
and a reduced expression of CD21 on naive B cells relative to
healthy controls (supplemental Figure 3B), suggesting an im-
pairment in activation of naive B cells and maturation of B cells.
One patient had a high percentage of CD21lo/2 B cells (sup-
plemental Figure 3B), a subset of naive B cells that is elevated in
patients with autoimmune diseases and common variable im-
mune deficiency, and is associated with splenomegaly and
cytopenias.18-20 Serum cytokine analysis revealed significantly
elevated levels of proinflammatory cytokines IL-18, IFN-g, IL12/
23p40, and IL2Ra (Figure 4; supplemental Figure 3A). The B-cell
survival factor BAFFwas also elevated in patients, consistent with
the observed defects in mature B cells.21 Three patients had
elevated soluble Fas ligand levels (.200 pg/mL), a biomarker of
lymphoproliferative disorders and a mediator of neutropenia in
chronic idiopathic neutropenia and large granular lymphocytic
leukemia.22-24 Monocyte subset analysis showed a reduced
frequency of nonclassical CD14loCD161 monocytes compared
with age-matched controls (supplemental Figure 3C). TLR8
signaling upregulates type I IFNs.9 While 3 patients with mosaic
variants had an increased IFN signature in their peripheral blood
comparedwith healthy controls, this was lower than patients with
primary disorders of type I IFN production (supplemental Fig-
ure 4), suggesting it may not be themajor driver of disease in our
patients.25 Bonemarrow samples from P1 and P5 were examined
by mass cytometry for intracellular cytokines and other markers
of inflammation, and findings in P1 correlated with that pa-
tient’s highly activated T-cell immune phenotype and hyper-
inflammatory cytokine environment detected in the serum
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(supplemental Figures 5-7). Together, these studies demon-
strate the presence of an inflammatory signal in patients with an
activated T-cell phenotype and defects in B-cell maturation and
suggest the possibility of an inflammatory environment in the
bone marrow.

Myeloid differentiation of patient-derived iPSCs
and gene-edited CD341 cells
Skin fibroblast lines from P2 and P3 with either the p.P432L or
p.F494L mosaic defects were reprogrammed into iPSCs that
were then single-cell cloned to generate lines with WT or variant
TLR8. Following multiple ($5) passages, cell lines appeared
clonal based on the presence of WT or variant TLR8 DNA
(supplemental Figure 8A). Hematopoietic precursor cells were
differentiated from patient-derived iPSC lines and cultured with
G-CSF to generate neutrophils (Figure 5A; supplemental
Figure 8B-C). HPCs derived from iPSC-p.P432L had 100%
variant TLR8 DNA allele frequency. Following neutrophil

differentiation, there was an emergence of a small population
(;30%) of neutrophils withWT TLR8DNA sequence detected by
both ddPCR and Sanger sequencing, potentially due to out-
growth of previously undetectable WT iPSCs through selective
advantage or somatic reversion. However, it is unclear whether
this WT DNA was efficiently transcribed and expressed, since
WT cDNA from the same samples was not detected by PCR
(supplemental Figure 8D-E). Stimulation of iPSC-derived neu-
trophils from WT or variant TLR8 with a TLR8 ligand demon-
strated increased NF-kB signaling in samples with TLR8 variants
compared with neutrophils withWT TLR8, demonstrating gain of
function in primary relevant cells (Figure 5A). Similar findings
were observed in neutrophils from healthy donor hematopoietic
progenitors (CD341 cells) genetically engineered to express the
p.P432L TLR8 variant (Figure 5B; supplemental Figure 9A-C).
Hematopoietic precursor cells derived from patient P2 iPSCs
were also differentiated into macrophages. Similar to neutro-
phils, macrophages with variant TLR8 (p.P432L) demonstrated
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increased NF-kB signaling in response to TLR8 stimulation
(Figure 5C). As with results from neutrophil assays, un-
differentiated iPSC-p.P432L and derived CD341 HPCs did not
have detectable WT TLR8 sequence; however, following dif-
ferentiation intomacrophages, there was again an emergence of
a small population (13%) of cells with WT TLR8DNA that was not
detected in the transcript (supplemental Figure 9E). Macro-
phages derived from iPSC-p.P432L cells secreted more IL-6 and
TNF-a compared with iPSC-derived cells with WT TLR8 fol-
lowing overnight stimulation with a low dose of TLR8 agonist
(TL8-506, 25 ng/mL; Figure 5D). These cells also produced more
IL-1b and IL-10 (data not shown). Stimulation of iPSC-derived
macrophages with the TLR7 agonist CL264 demonstrated no
differences in cytokine production (Figure 5D), suggesting that
the TLR8 variants here do not alter responses to TLR7. Stimu-
lation of macrophages through a nonendosomal TLR with li-
popolysaccharide (LPS) (TLR4 agonist) demonstrated similar
levels of cytokines (Figure 5E).

Overall, these experiments demonstrate that both neutrophils
and macrophages with the TLR8 variant have increased re-
sponsiveness to TLR8 stimulation, measured by phosphorylation
of NF-kB and cytokine production. The identification ofWTDNA
in neutrophils and macrophages, but not CD341 HPCs, derived
from TLR8 variant iPSC clones suggests the possibility of a se-
lective advantage for reversion mutations that may be silenced
based on the lack of expressed cDNA.

Discussion
We report 6 unrelated male patients with an IEI characterized by
neutropenia, infections, lymphoproliferation, B-cell defects, and
in some cases bone marrow failure due to mutations in TLR8, the
X-chromosome gene encoding TLR8, a pattern recognition re-
ceptor recognizing single-stranded RNA. Importantly, 5 of the 6
patients were mosaic for TLR8 variants, with 4 patients sharing
the same mosaic variant. Mosaicism was ,30%, suggesting an
X-linked dominant phenotype. Detection of TLR8 variants in
multiple tissues, including skin fibroblasts, suggests that muta-
tional events causing disease likely occurred at a relatively early
stage of embryogenesis and are not limited to the hemato-
poietic compartment in most patients. There are .430 recog-
nized monogenic disorders associated with immunodeficiency.1

While genetic mosaicism in known disease-causing genes has
been detected in patients with IEI through targeted sequenc-
ing,7 somatic mutation as a primary mechanism of monogenic IEI
is rare.1 Our discovery suggests that mosaicism should be
considered in disease discovery, which will require new ap-
proaches to exome and genome analysis to identify low-
frequency genetic variation.

Single-gene defects in TLR8 have not been previously associ-
ated with monogenic human disease. Monogenic loss-of-

function defects in signaling molecules downstream of TLR8
been associated with susceptibility to infection and a clinical
phenotype distinct from our patients, including those in genes
encoding IRAK-4, MyD88, IRF7, and the NF-kB protein
complex.26-29 Loss-of-function variants in the gene encoding
TLR3 lead to an IEI with susceptibility to herpes simplex en-
cephalitis.30 Genetic variants in TLR7 were reported in patients
with severe response to SARS-CoV-2 infection, although whether
these confer altered responses to that or other viruses is un-
known.31 Studies of the functional role of TLR8 in the immune
response have been limited in large part due to difference in li-
gand binding between mouse and human TLR8. Deletion of Tlr8
in the mouse leads to increased TLR7 signaling due to the lack of
inhibition by TLR8, with dendritic cells producing high amounts of
cytokines causing spontaneous autoimmunity, autoantibodies,
splenomegaly, and reduced B-cell numbers, similar to features in
our patients.32 By contrast, transgenic expression of human TLR8
also caused increased cytokine production with hyper-
inflammation, even in mice with few as 20% of blood cells con-
taining the human TLR8 transgene, demonstrating a strong
biological effect of TLR8 signaling.33 Our data suggest that TLR7
signaling is not altered with patient TLR8 gain-of-function variants,
based on similar cytokine responses with a TLR7 agonist in
patient-derived macrophages.

The TLR8 variants here lead to a gain-of-function phenotype with
patient-derived cells exhibiting hypersensitivity to ligand stim-
ulation including increased NF-kB activation and cytokine pro-
duction. The age of onset ranged from infancy to teenage years.
While one of the patients with early-onset disease had a
germline variant (P6), which could be predicted to lead to more
severe disease than low-level genetic mosaicism, patients with
mosaic disease presented between 1 and 16 years. Variant TLR8
was present in fibroblasts of 4 of 5 patients with mosaicism,
suggesting that the mutation occurred at an early stage of
development. While it was not possible to test DNA samples of
patients with later-onset disease to determine whether mosai-
cism changed, analysis of peripheral blood samples from 2
patients at different time points in their disease demonstrated
stable mosaicism (supplemental Figure 9F). The triggers for
disease in patients with somatic TLR8 variants are uncertain, but
variability of onset age in patients with the same genetic variant
and similar levels of mosaicism suggest that environmental
factors, most likely those known to stimulate TLR8, including
pathogenic bacteria, viruses and commensal microbiota, may
influence clinical severity and initiation of disease. Following
onset of neutropenia, no patients had remission without therapy,
suggesting that once triggered, the inflammatory process
driving disease is not easily controlled and is potentially self-
perpetuating. One patient (P5) had refractory ITP 11 years prior
to onset of neutropenia. He had a period of disease remission
following his ITP diagnosis; however, once he developed neu-
tropenia, his disease progressed to require HCT. Interestingly,

Figure 5 (continued)macrophage differentiation ofWT or p.P432L induced pluripotent stem cell (iPSC) clones from patient (P2) and phosphorylated p65 (NF-kB) in response to
stimulation with the indicated doses of the TLR8-ligand TL8-506. Cells are gated on CD451CD141macrophages. (D-E) iPSC-derivedmacrophages withWT or p.P432L TLR8 from
patient (P2) were cultured overnight with the indicated doses of TL8-506 (TLR8 agonist), CL264 (TLR7 agonist), or LPS (TLR4 agonist). (D) Cytokines were measured in the cell
culture supernatant and demonstrate that macrophages with variant TLR8 produced significantly more IL-6 and TNF-a with low-dose TLR8 stimulation (TL8-506, 25ng/mL)
compared with cells with WT TLR8. There was no difference in the cytokine response to TLR7 stimulation (CL264), and doses of CL264 ,100 ng/mL did not result in cellular
activation (data not shown). (E) WT and p.P432L macrophages had a similar response to the TLR4 ligand LPS with respect to production of TNF-a and IL-6. NS, no stimulation.
Data are presented as mean6 SEM and includes data from 3 independent experiments, analyzed by 2-way ANOVA. Findings that are statistically significant are denoted by an
asterisk (*P # .05).
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this fibroblasts from this patient did not carry the TLR8 variant,
suggesting that the mutation may have been limited to the
hematopoietic compartment in this case.

TLR8 is primarily expressed in neutrophils and other myeloid-
derived cells. While the most unifying clinical phenotype of
these patients is neutropenia, the other striking findings in pa-
tients were elevated serum cytokines and skewing of adaptive
immune cell compartments. Patients had an activated T-cell
phenotype and abnormal B-cell maturation, and most patients
required immunoglobulin replacement therapy. While some of
the patients here had an elevated type I transcriptional signature
in their peripheral blood, this was much lower than patients with
type I interferonopathies, and patients with TLR8 gain of function
lack other clinical features of these disorders such as vascul-
opathy, interstitial lung disease, and central nervous system
disease.34 Two patients developed oligoclonal T-cell pop-
ulations within their bone marrow, with one patient diagnosed
with T-LGL leukemia. A reduced frequency of transitional B cells,
memory B-cell precursors, and class-switch memory B cells
suggests a defect in both transitioning from the bone marrow
and maturing into memory cells. High levels of serum BAFF, a
B-cell survival and differentiation factor normally used by mature
B cells, further correlated with the findings of low memory
B cells.35 Together, the immunologic findings in these patients
suggest cell-extrinsic effects of TLR8 gain of function, which we
hypothesize is due to increased inflammatory cytokines, acti-
vated T cells, and possibly direct interactions with activated
antigen-presenting cells bearing variant TLR8 in patients.

The phenotype of cytopenias and B-cell defects with lympho-
proliferation in our patients has clinical overlap with other IEIs,
including autoimmune lymphoproliferative syndrome, de-
ficiency of ADA2, and other primary immune regulatory
disorders.36-39 There is also clinical and pathologic overlap be-
tween TLR8 gain of function and T-LGL leukemia, including
elevated levels of IL-18 and IFN-g, bone marrow findings of
follicular hyperplasia, an activated T-cell phenotype, neutropenia,
andprogression tomarrow failure in some patients.24,40-43 Asmany
as 80% of T-LGL leukemia patients have neutropenia of uncertain
etiology, with evidence for elevated Fas ligand from activated
T cells mediating apoptosis of neutrophils and direct cytotoxic
effects of activated T cells on immature neutrophils in that
disease.24,40,42 Pathologic overlap in the marrow of patients with
T-LGL leukemia has also been observed with autoimmune lym-
phoproliferative syndrome.44

The consistent refractory neutropenia with lymphoproliferation
makes TLR8 gain of function a unique entity among IEIs. While
the mechanism of neutropenia in IEI is often attributed to au-
toimmunity, only a subset of patients here had detectable
antineutrophil antibodies. Interestingly gain-of-function variants
in another X-linked gene, WAS, are associated with X-linked
severe congenital neutropenia due to a defect in myeloid
differentiation.45-47 Differentiation of neutrophils from patient-
derived iPSCs expressing TLR8 variants suggests there may be
an intrinsic effect of gain-of-function TLR8 on the development
and/or survival of neutrophils, based on the emergence of cells
withWT TLR8 sequence. However, the dominant effect of a small
number of cells clearly demonstrate amore complex phenotype.
We hypothesize that the mechanism of neutropenia in patients
with TLR8 gain of function is multifactorial, potentially including

antineutrophil antibodies; proinflammatory cytokines such as
IL-18, TNF-a, and IFN-g impairing neutrophil differentiation; and
direct and indirect effects of activated T cells and monocytes,
including cytotoxicity and soluble Fas ligand.41,48

Our findings of 3 novel variants in TLR8 in 6 unrelated patients
provides evidence for a new monogenic TLR8-associated IEI
with neutropenia, infections, lymphoproliferation, B-cell defects,
and in some patients bone marrow failure. We propose naming
this disorder “inflammation, neutropenia, bone marrow failure,
and lymphoproliferation caused by TLR8” (INFLTR8). Identifi-
cation of mosaic variants causing disease demonstrates the
importance of considering somatic mutation as a genetic cause
of IEI, especially in molecularly uncharacterized disease. Con-
sidering the range of mosaicism detected in our cohort sufficient
to cause disease (5% to 30%), it is likely that patients with a low
percentage of mosaicism in a disease-causing gene may be
overlooked by exome or genome sequencing. Treatment of the
patients with TLR8 gain of function has proven challenging, and
this is perhaps related to the multifactorial involvement of my-
eloid cells, T and B lymphocytes, and a proinflammatory envi-
ronment. Further investigation of the functional consequences
of TLR8 gain of function and identification of additional patients
will lead to a better understanding of this new disorder and
provide guidance for evidence-based therapy improving long-
term outcome.
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