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Abstract. In this article one proposes several numerical examples for applying the extension set to 2D- and 3D-spaces. While 

rectangular and prism geometrical figures can easily be decomposed from 2D and 3D into 1D linear problems, similarly for the circle 

and the sphere, it is not possible in general to do the same for other geometrical figures.  
 

Key words. Extentics, extension engineering, contradictory problems, computational and artificial intelligence 

 

I. INTRODUCTION 

XTENICS  has been used since 1983 by Cai Wen and many 

other Chinese scholars in solving contradictory problems. 

The distance between a number and a set, and the degree 

of dependence of a point with respect to a set were defined for 

the one-dimensional space, and later for higher dimensional 

spaces. We present below several examples in 2D and 3D 

spaces. 

2.    APPLICATION 1. 

We have a factory piece whose desired 2D-dimensions should 

be 20 cm   30 cm, and acceptable 2D-dimensions 22 cm   34 

cm. We define the extension 2D-distance, and then we 

compute the extension 2D-dependent function.  Let’s do an 

extension diagram: 

 
 

Diagram 1. 
 

We have a desirable factory piece A’B’C’D’ and an 

acceptable factory piece ABCD. The optimal point for both of 

them is O(17,11). 

a) The region determined by the rays OA and OD. 

The extension 2D-distance 


between a point P and a set is 

the  distance from P to the closest frontier of the set, 

distance measured on the line OP.  Whence  

 (P, A’B’C’D’) = -|PP1|          (1) 

and      

                    (P, ABCD) = -|PP2|.          (2) 

The extension 2D-dependent function k of a point P which 

represents the dependent of the point of the nest of the two 

sets is: 

2 2

2 1 1 2

( , _ ) ( , ) | | | |
( )

( , _ ) ( , _ ) ( , ) ( , ' ' ') | | | | | |

P bigger set P ABCD PP PP
k P

P bigger set P smaller set P ABCD P A B C PP PP P P

 

   
       

  

. 

(3) 

In other words, the extension 2D-dependent function k of a 

point P is the 2D-extension distance between the point and the 

closest frontier of the larger set, divided by the 2D-extension 

distance between the frontiers of the two nested sets; all these 

2D-extension distances are taken along the line OP. 

In our application one has:  

2

1 2

| |
( )

| |

PP
k P

P P
                                     (4) 

since P is inside of the larger set. If P was outside of the larger 

set, then k(P) would be negative. 

Let’s consider the coordinates of P(x0,y0), where P is between 

the rays OA and OD in order to make sure OP intersects the 

line segments AD and A’D’ which are closest frontiers of the 

rectangles ABCD and respectively A’B’C’D’. {The problem 

would be similar if P was in between the rays OB and OC.} 

Hence y0 (11,  ] but such y0 that remains in between the 

rays OA and OD. 

Let’s find the coordinates of P1. 

In analytical geometry the equation of line OP passing through 

two points, O(17,11) and P(x0,y0), is: 

0

0

11
11 ( 17)

17

y
y x

x


  


.                            (5) 

Since the y-coordinate of P1 is 21, we replace y = 21 in the 

above equation and we get the x-coordinate of P1.  

Whence one has 

0 0
1

0

10 17 357
( ,21)

11

x y
P

y

 


.

 

E 
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Let’s find the coordinates of P2. The y-coordinate of P2 is 22. 

Replace y = 22 in equation (2) and solve for the x-coordinate 

of P2.  

 

One gets 

 
0 0

2

0

11 17 374
( ,22)

11

x y
P

y

 


. 

The classical distance in 2D-space between two points M(m1, 

m2), N(n1, n2) is  

 

2 2
1 1 2 2( , ) ( ) ( )d M N m n m n    .       (6) 

We compute the classical 2D-distances d(P, P2) and d(P1, P2). 

2

0 0
0 0

02

21 2
0 0 0 0

0 0

2
2 2

0 0 0 0 0 0
0 0

2
0 0

2

0

0

11 17 374 2(22 )
11| |

( )
| |

11 17 374 10 17 357 2(22 21)
11 11

22 17 374 ( 17) ( 22)2( 22) (
11 ( 11)

17
1

11

x y
x y

yPP
k P

P P
x y x y

y y

x y x y x y
y y

y y

x

y



  
   

 
   

   
   

  

     
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 

2

2
0

2
0

0, 0

0 0 0

0, 0

22)

( 17)
1

( 11)

22 (11, 22]
| 22 | 22 , 11

22 22

x

y

y y
y y y

y y






  
       

  

 

(7) 

and P in between the rays OA and OD. 

Since the extension 2D-dependent function k(x0,y0) = 22-y0, 

for 0 11y  , does not depend on x0 for the region between 

rays OA and OD, one has classes of points lying on horizontal 

lines parallel to A’D’ (see the green line segments on Diagram 

1) whose extension 2D-dependent function value is the same. 

For example, the green horizontal line segment passing 

thought P is the class of points having the same extension 2D-

dependent function value as point P. 

b) The region determined by the rays OC and OD. 

{Similar result would obtain if one gets the opposite 

region determined by the rays OA and OB.} 

 If one takes another region determined by the rays 

OC and OD and a point Q(x1,y1) in between one gets  

     
2

1 1

1 2

| |
( ) ( , )

| |

QQ
k Q k x y

Q Q
  

                         (8)

 

By a similar method we find the Cartesian coordinates of the 

points Q1 and Q2. 

In analytical geometry the equation of line OQ passing 

through two points, O(17,11) and Q(x1,y1), is: 

          

1

1

11
11 ( 17)

17

y
y x

x


  


.                      (9) 

Since the x-coordinate of Q1 is 32, we replace x = 32 in the 

above equation and we get the y-coordinate of P1.  

Whence one has 
1 1

1

1

11 15 352
(32, )

17

x y
Q

x

 


    (10) 

Let’s find the coordinates of Q2. 

The x-coordinate of P2 is 34. Replace x=22 in equation (3) and 

solve for the y-coordinate of Q2. One gets 

1 1
2

1

11 17 374
(34, )

17

x y
Q

x

 


.                                         (11) 

We compute the classical 2D-distances d(Q, Q2) and d(Q1, 

Q2). 
2

1 1
1 1

12

21 2
1 1 1 1

1 1

22
1 1

1
2

1 1 1
1

2
1

2
1

11 17 3742(34 )
17| |

( )
| | 11 17 374 11 15 3522(34 32)

17 17

( 34) ( 11)2( 34)
( 17) | 34 | 34

, 17
2 24( 11)

4
( 17)

x y
x y

xQQ
k P

Q Q x y x y

x x

x y
x

x x x
x

y

x



  
   

 
   

   
   

  

 
 

  
     






 
(12) 

and Q in between the rays OC and OD. 

Since the extension 2D-dependent function k(x1,y1) = 

134

2

x
, for x1 > 17, does not depend on y1 for the region 

between rays OC and OD, one has classes of points lying on 

vertical lines parallel to C’D’ (see the red line segments on 

Diagram 1) whose extension 2D-dependent function value is 

the same. For example, the blue vertical line segment passing 

thought Q is the class of points having the same extension 2D-

dependent function value as point Q. 

 

2.     SPLITTING AN EXTENSION 2D-PROBLEM 

INTO TWO 1D-PROBLEMS. 

 
Remarkably, for rectangular shapes one can decompose a 2D-

problem into two 1D-problems. Yet, for other geometrical 

figures it is not possible. The more irregular geometrical 

figure, the less chance to decompose a 2D-problem into 1D-

problems. 

In our case, we separately consider the factory piece’s width 

and length. 

1) The width of a factory piece is desirable to be 20 cm 

and acceptable up to 22 cm. 

2) And the length of a factory piece is desirable to be 30 

cm and acceptable up to 34 cm. 

In the first 1D-problem one makes the diagram: 

 
Diagram 2. 

 

One computes, using Prof. Cai Wen’s extention 1D-dependent 

function: 
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0
0

0 0

0 0

22 0
| 11|

| 11| 112( ) 11 | 11|
22 0 21 1 11 10

| 11| (| 11| )
2 2

y
y

k y y

y y


 

 
    

   
    

 

(13) 

If y0 > 11 as in our 2D-space problem, then k(y0) = 22-y0 

which is consistent with what we got in the 2D case. 

In the second 1D-problem one makes the diagram: 

 

 

 
                                              x0               

Diagram 3. 

One computes, using Prof. Cai Wen’s extension 1D-dependent 

function: 

0
0 0 0

0

0 0

34 0
| 17 |

| 17 | 17 | 17 | 17 17 | 17 |2( )
34 0 32 2 17 15 2 2

| 17 | (| 17 | )
2 2

x
x x x

k x

x x


 

     
   

    
    

 

(14) 

If x0 > 17 as in our 2D-space problem, then 

0
0

34
( )

2

x
k x


 , which is consistent with what we got in 

the 2D-case. 

Therefore, a 2D-extension problem involving rectangles is 

equivalent with two 1D-extension problems. Certainly this 

equivalence is not valid any longer if instead of rectangles we 

have more irregular geometrical figures representing factory 

pieces.  

Similarly will be possible for splitting a 3D-application for 

prisms into three 1D-applications, or into one 2D-application 

and one 1D-application. 

3.     REGION CRITICAL ZONE. 

Critical Zone is the region of points where the degree of 

dependence of a point P with respect to a nest of two intervals  

k(P) (-1, 0). 

In the above figure, it is all area between the rectangles ABCD 

and A1B1C1D1. 

A1B1C1D1 was constructed by drawing parallels to the sides of 

the rectangle ABCD, such that: 

- The distance between the parallel lines A’D’ and AD, 

be the same with the distance between the parallel 

lines AD and A1D1; 

- The distance between the parallel lines A’B’ and AB, 

be the same with the distance between the parallel 

lines AB and A1B1; 

- The distance between the parallel lines B’C’ and BC, 

be the same with the distance between the parallel 

lines BC and B1C1; 

- The distance between the parallel lines C’D’ and CD, 

be the same with the distance between the parallel 

lines CD and C1D1. 

One then extend the construction of a net of included 

rectangles AiBiCiDi   Ai+1Bi+1Ci+1Di+1 

and for the points Pi+I lying on surface in between the 

rectangles AiBiCiDi and Ai+1Bi+1Ci+1Di+1 the dependent 

function k(Pi+I) (-i-1, -i). 

 

4.      APPLICATION IN THE 3D-SPACE. 

A factory piece has the desirable dimensions  20x30x7 but the 

acceptable factory piece can be 22x34x10 (in centimeters).   

The red prism is the desirable form, and the green prism is the 

acceptable form. 

We consider a Cartesian system XYZ and the vertexes of 

these two prisms are: 

A(0,22,0), B(0,0,0), C(34,0,0), D(34,22,0), E(0,22,10), 

F(0,0,10), G(34,0,10), H(34,22,10); 

A’(2,21,3), B’(2,1,3), C’(32,1,3), D’(32,21,3), E’(2,21,7), 

F’(2,1,7), G’(32,1,7), H’(32,21,7). 

O(17,11,5);   P(x0,y0,z0),    P’(x1,y1,7),    P’’(x2,y2,10); 

     Q(17,11,z0), Q’(17,11,7), Q’’(17,11,10).                    (15) 

The following triangles are similar:  QOP, Q’OP’, 

Q’’OP’’. 

 
 

Diagram 4. 
 

Using similarity of triangles,  Thales Theorem, and 

proportionalizations we get that: 

| '' | | '' |

| ' '' | | ' '' |

PP QQ

P P Q Q
  

which is equivalent to the equality of dependent function 

values  

of ( ) ( )k P k Q , 

since  
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( , ) | '' | | '' |
( )

( , ) ( , ' ' ' ' ' ' ' ') | '' | | ' | | ' '' |

P ABCDEFGH PP PP
k P

P ABCDEFGH P A B C D E F G H PP PP P P



 
     

 

  (16)

 

and similarly: 

 
( , ) | '' | | '' |

( )
( , ) ( , ' ' ' ' ' ' ' ') | '' | | ' | | ' '' |

Q ABCDEFGH QQ QQ
k Q

Q ABCDEFGH Q A B C D E F G H QQ QQ Q Q



 
     

 

.  (17) 

Therefore, the plane which passes through the point P and is 

parallel with the planes EFGH and E’F’G’H’ (limited by the 

lines OE’, OF’, OG’, OH’) is the locus of points having the 

same dependent function value. 

k(P) = 
0 10

3

z 
 for z0 > 5 and point P inside the reversed 

pyramid OEFGH. 

5.     CRITICAL ZONE. 

 

The Critical Zone, whose dependent function of each point in 

this zone belongs to (-1, 0), will be a larger prism 

A1B1C1D1E1F1G1H1 which envelopes the prism ABCDEFGH 

at the same distance from each face as it was between the 

prisms A’B’C’D’E’F’G’H’ and ABCDEFGH.  Therefore, the 

distance between faces A’B’C’D’ and ABCD is the same as 

the distance between faces ABCD and A1B1C1D1; and the 

faces A’B’C’D’ and ABCD and A1B1C1D1 are parallel. 

Similarly for all six faces of the prism A1B1C1D1E1F1G1H1: the 

distance between faces A’E’H’D’ and AEHD is the same as 

the distance between faces AEHD and A1E1H1D1; and the 

faces A’E’H’D’ and AEHD and A1E1H1D1 are parallel, etc. 

One can construct a net of such prisms: 

Ai+1Bi+1Ci+1Di+1Ei+1Fi+1Gi+1Hi+1  AiBiCiDiEiFiGiHi where 

the value of the dependent function for the points which 

belong to  

Int(Ai+1Bi+1Ci+1Di+1Ei+1Fi+1Gi+1Hi+1 -  AiBiCiDiEiFiGiHi) is in 

the interval             (-i-1, -i), while for the points lying on the 

Fr(Ai+1Bi+1Ci+1Di+1Ei+1Fi+1Gi+1Hi+1) the dependent function is 

–i-1. One considers ABCDEFGH as A0B0C0D0E0F0G0H0, and 

A’B’C’D’E’F’G’H’ as                              A-1B-1C-1D-1E-1F-1G-

1H-1 for the rule to work for all included prisms. 

6.      SPLITTING A 3D-PROBLEM INTO THREE 1D-

PROBLEM. 

Similarly to the previous 2D-problem, we separately consider 

the factory piece’s width, length, and height. 

1) The width of a factory piece is desirable to be 20 cm 

and acceptable up to 22 cm. 

2) And the length of a factory piece is desirable to be 30 

cm and acceptable up to 34 cm. 

3) And the height of a piece factory is desirable to be 7 

cm and acceptable 10 cm. 

In the first 1D-problem one makes the diagram: 

 
 

Diagram 5. 

 

One computes, using Prof. Cai Wen’s extention 1D-dependent 

function: 

0 0( ) 11 | 11|k y y  
             (18)

 

In the second 1D-problem one makes the diagram: 

 

 

 
 

Diagram 6. 

 

In the third 1D-problem one makes the diagram: 

 

 
 

Diagram 7. 

 

One computes, using Prof. Cai Wen’s extention 1D-dependent 

function: 

0
0

10
( )

3

z
k z




              (19)

 

7.       SPLITTING A 3D-PROBLEM INTO A 2D-

PROBLEM AND A 1D-PROBLEM. 

Similarly to the previous 2D-problem, we separately consider 

the factory piece’s width, length, and height. 

1) The factory 2D-piece is desirable to be 20x30 cm and 

acceptable up to 22x34 cm. 

2) And the height of a piece factory is desirable to be 7 

cm and acceptable 10 cm. 

 

8.       A 2D-PROBLEM WHICH IS SPLIT INTO ONLY 

ONE 1D-PROBLEM. 

Assume the desirable circular factory piece radius is 6 cm and 

acceptable is 8 cm. 
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Diagram 8. 

 

It is equivalent to a 1D-problem which has the 

diagram: 

 

Diagram 9. 

One computes, using Prof. Cai Wen’s extension 

1D-dependent function: 

0
0( )

2

x
k x 

       (20)
 

9.       A 2D-PROBLEM WHICH CANNOT BE SPLIT INTO 

1D-PROBLEMS. 

 

 

 Diagram 10. 

1. The Critical Zone is between the blue 
triangle A’B’C’ and the black dotted triangle 
A’’B’’C’’.  Points lying on lines parallel to the red 
triangle’s sides have the same dependence 
function value (for example the points lying on the 
orange line segment). 
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