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Copy Number Variant Analysis and Genome-wide
Association Study Identify Loci with Large Effect for
Vesicoureteral Reflux
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ABSTRACT
Background Vesicoureteral reflux (VUR) is a common, familial genitourinary disorder, and amajor cause of
pediatric urinary tract infection (UTI) and kidney failure. The genetic basis of VUR is not well understood.

MethodsAdiagnostic analysis sought rare, pathogenic copy number variant (CNV) disorders among 1737
patients with VUR. A GWAS was performed in 1395 patients and 5366 controls, of European ancestry.

Results Altogether, 3% of VUR patients harbored an undiagnosed rare CNV disorder, such as the 1q21.1, 16p11.2,
22q11.21, and triple X syndromes ((OR, 3.12; 95%CI, 2.10 to 4.54; P56.3531028) TheGWAS identified three study-
wide significant andfive suggestive lociwith largeeffects (ORs, 1.41–6.9), containing canonical developmental genes
expressed in the developing urinary tract (WDPCP,OTX1, BMP5, VANGL1, andWNT5A). In particular, 3.3%of VUR
patients were homozygous for an intronic variant in WDPCP (rs13013890; OR, 3.65; 95% CI, 2.39 to 5.56;
P51.86310–9). This locus was associated with multiple genitourinary phenotypes in the UK Biobank and eMERGE
studies.AnalysisofWnt5amutantmiceconfirmedtheroleofWnt5asignaling inbladderanduretericmorphogenesis.

Conclusions These data demonstrate the genetic heterogeneity of VUR. Altogether, 6% of patients with
VUR harbored a rare CNV or a common variant genotype conferring an OR .3. Identification of these
genetic risk factors has multiple implications for clinical care and for analysis of outcomes in VUR.
JASN 32: 805–820, 2021. doi: https://doi.org/10.1681/ASN.2020050681
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Vesicoureteral reflux (VUR), the retrograde flow of urine from
the bladder toward the kidneys, caused by malfunction at the
vesicoureteral junction, is a common cause of febrile urinary
tract infection (UTI) and pediatric kidney failure.1,2 VUR oc-
curs most often in isolation, but can arise in conjunction with
more complex defects, such as hydronephrosis and renal
dysplasia.3–5 VUR has a prevalence of 1%–2% in European
populations6–9 and is much more prevalent in females
(.70%), although males predominate in patients diagnosed
between 0 and 2 years of age.10,11 VUR is highly familial, with a
reported occurrence rate of 27%–51% among siblings, and
66% among offspring of affected individuals.9 Segregation
analyses and linkage studies suggested the contribution of
rare variants with large effects and multiple modes of
inheritance.12–19

Urinary tract formation in the mouse begins at E9, when
nephric ducts form and extend, joining the cloaca. Cloacal
septation separates the hindgut from the urogenital sinus
(UGS) between E11 and E14. Subsequently, the UGS differ-
entiates into the bladder and urethra. The ureteric bud (UB)
sprouts from nephric duct on E11, and its distal portion will
form the ureter; however, it is initially joined to the nephric
duct and not directly to the bladder. Mature ureter-bladder
connections form between E10 and E13. Abnormalities in
timing or morphogenesis at any stage can alter the site of
ureter insertion, resulting in ectopic ureters or an abnormal
connection at the vesicoureteral junction, causing VUR and
obstruction.20–23

Relatively little is known about the genetics of VUR in hu-
mans.24 VUR is often present in syndromic disorders featuring
congenital anomalies of the kidney and urinary tract (CA-
KUT).25 Mutations in ROBO2,26 SOX17,27 and TXNB28 have
been implicated in rare families with isolated VUR, but most
nonsyndromic patients are genetically unexplained. Genome-
wide association studies (GWAS) of VUR have not been ade-
quately powered.15,16,29 Recently, we reported that rare copy
number variant (CNV) disorders also contribute to many uri-
nary tract malformations, including VUR.30 Although CNV
disorders were detected in 7.7% of patients with kidney mal-
formations, they accounted for only 1%–2% of VUR pa-
tients.30 These findings motivated additional investigation of
the genetics of VUR in larger cohorts, to confirm the contri-
bution of CNV disorders, and explore alternative genetic
models. Here, we combined genome-wide association and
rare CNV analyses in the largest VUR cohort studied to date.

We complemented these studies by analysis of expression pat-
tern and developmental defects in Wnt5a mutant mice.

METHODS

Subjects and Genotyping
All aspects of the study involving human research participants
adhered to the principles of the Declaration of Helsinki, and
the study protocol was approved by the Institutional Review
Boards of Columbia University Medical Center and each par-
ticipating recruitment site. Signed written informed consent
by the participant and/or their parents or guardians was ob-
tained according to the protocol of local Institutional Review
Boards.

VUR patients and controls were obtained from the follow-
ing study cohorts: VUR patients and healthy controls form
Columbia University and US and international collaborating
sites, patients from the Randomized Intervention for Children
with VUR (RIVUR) study cohort,31 reflux nephropathy pa-
tients from the CKD in Children (CKiD) study,32,33 the Pop-
ulation Architecture using Genomics and Epidemiology con-
sortium34 convenience controls and an Irish cohort
comprising VUR-affected children, and unrelated controls.15

As we reported previously,30 21,498 convenience controls were
obtained from collaborators and from dbGaP (see Data Avail-
ability and Accession Numbers), which comprised partici-
pants of genome-wide genotyping studies of complex traits
that are not associated with VUR or other developmental de-
fects. VUR patients from the RIVUR and Irish cohorts were
diagnosed by voiding cystourethrogram (VCUG); CKiD VUR
patients had a primary diagnosis of reflux nephropathy; pa-
tients from the Columbia cohort, including US and interna-
tional collaborators, were ascertained by VCUG or other di-
agnostic imaging such as renal scintigraphy. All of the samples
from the Columbia University and RIVUR cohorts were gen-
otyped for this study on the Illumina MEGA array. For the
Population Architecture using Genomics and Epidemiology
cohort, genotyped on MEGA arrays, and the Irish cohort,
genotyped on Affymetrix SNP 6.0 chips, we obtained access
to intensity level raw genotyping data. Of these patients, 660
were included in our prior study.30
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Significance Statement

Vesicoureteral reflux (VUR) is associated with progressive kidney
disease. Familial aggregation supports a hereditary basis; however,
its genetic architecture remains to be elucidated. The largest VUR
copy number variant analysis and genome-wide association study
to date accounts for multiple modes of inheritance and sex-specific
effects in VUR, identifying three study-wide significant and five sug-
gestive loci with large effects, containing canonical developmental
genes includingWDPCP andWNT5A. Results of experiments inmice
support novel roles of Wnt5a in urogenital development. Altogether,
6% of patients carried high-risk genotypes. These findings have im-
portant implications for VUR screening.
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Initial Data Processing and Quality Control
Raw intensity probe level data were processed for each cohort
using Illumina GenomeStudio v2011 (Illumina) or Affymetrix
Power Tools software (Affymetrix) to generate genotyping
calls. Using PLINK software,35 markers with call rate (CR)
$95% and minor allele frequency (MAF) .1% were used
to select subjects based on sample CR ($95% or 99%, for
association, or copy number analyses, respectively). We used
KING software36 to estimate relatedness between samples
within and across cohorts, and retained only unrelated samples
(kinship coefficient,0.0884). After examining the possibility of
sex chromosomal abnormalities that could be reportable in our
CNVanalysis (e.g., Klinefelter syndrome), we excluded samples
with discrepancies between genotyped sex and self-reported
sex. Principal component analyses (PCA) were carried out us-
ing Smartpca.37

CNV Analysis
PennCNV software38 was used to determine CNV calls and
quality; CNVs with confidence scores ,30 were ex-
cluded.30,38,39 CNVanalyses were performed on hg18 coordi-
nates, and subsequently mapped to hg19 using University of
California Santa Cruz LiftOver software (https://genome.ucsc.
edu/cgi-bin/hgLiftOver). Illumina Genome Viewer 1.9.0 or
Affymetrix ChAS were used to visualize CNVs and evaluate
possible artifacts. CNVs were classified as pathogenic (known
genomic disorders [GDs]) or likely pathogenic CNVs, based
on previously described criteria30 adapted from recommen-
dations from the American College ofMedical Genetics guide-
lines40,41 and making use of annotations with RefGene, the
Database of Genomic Variation and Phenotype in Humans
using Ensembl Resources and International Standards for Cy-
togenomic Arrays (ISCA) databases, and curated lists of genes
from the Online Mendelian Inheritance in Man and Mouse
Genome Informatics databases and the literature. As previ-
ously described,30,42,43 a CNV was classified as pathogenic
(known GD) when its genomic coordinates overlapped 70%
or more of those of a well-characterized syndromic CNV, as
defined in Database of Genomic Variation and Phenotype in
Humans using Ensembl Resources44 and the literature39,45–47;
whereas large, exon-intersecting CNVs with frequency in con-
trols#0.02%, which did not overlap a benign or likely benign
CNV in the ISCA database, were classified as likely pathogenic
when they met one or more of the following conditions: over-
lapped 70% or more of the span of a pathogenic or likely
pathogenic CNV in the ISCA database; intersected a gene as-
sociated with kidney disease or genitourinary tract defects or
other developmental disorders in humans or mice; or over-
lapped 70% or more with the coordinates of a well-
characterized syndromic CNV, with opposite copy number
sign (loss or gain).

Our primary tests were to compare the burden of (1) the set
of all large, rare CNVs and (2) a predefined set of 148 known
GDs, between VUR patients and controls. The corrected
P value threshold for testing whether VUR patients and

controls significantly differ in the proportion of carriers of
these two sets of variants is P50.05/250.025. We next per-
formed post-hoc tests for 18 individual GDs observed in VUR,
with a corrected threshold of P50.05/1852.731023. Rare
CNV burden analyses were performed on autosomal, gene-
intersecting CNVs of size $100 kb in patients and controls,
with a frequency #0.1% in population subgroups based on
PCA (Supplemental Figure 1), to avoid including CNVs that
might be relatively common within ancestry groups represen-
ted in controls. Six controls, outliers in PCAwithout matching
patients, were removed before burden analyses. For CNV bur-
den analyses, the R v3.5.1 implementation of the two-sided
Fisher’s exact test was used to compare proportions, and
Kaplan–Meier survival curves representing the largest CNV
per genome were compared between patients and controls
using the nonparametric log-rank test implemented in the Py-
thon package lifelines (https://github.com/CamDavidsonPilon/
lifelines/).

GWAS
For the purpose of GWAS, samples were first grouped by gen-
otyping platform into four case-control datasets (Affymetrix
SNP6.0; Illumina MEGA; Illumina Omni 1, 2.5, or OmniEx-
press; Illumina 660, 610, or 550 arrays).

After conducting PCA on each platform-specific dataset,
only subjects of European ancestry were selected and the
MEGA array dataset was further subdivided based on ancestry
(Northwestern European, Polish, Italian, and Southeastern
European), making a total of seven genetically matched
case-control GWAS cohorts, referred to in the Results section.
PCA was then performed separately on each of these seven
GWAS cohorts. Tracy-Widom statistics48 from each of these
PCAs were used to identify statistically significant PCs to be
used as covariates in the association tests.

Imputation was performed separately for each cohort. Af-
ter filtering out genotyped single nucleotide polymorphisms
(SNPs) with a CR ,95%, MAF ,1%, or Hardy-Weinberg
equilibrium exact test P value,0.0001 in controls and updat-
ing or removing SNPs with discrepancies in strand, alleles,
position, and frequencies (1000 G-check-bim.pl perl script
from the McCarthy Group; https://www.well.ox.ac.uk/
;wrayner/tools/), the Michigan Imputation Server (https://
imputationserver.sph.umich.edu/) was used to carry out
phasing (Eagle v2.3), and imputation (Minimac3) with the
Haplotype Reference Consortium (r1.1 2016) reference panel.
Imputation of chromosome X markers was run separately for
males and females. DosageConvertor (v1.0.3 for autosomes,
v1.0.4 for chromosome X) was used to convert dosage files
from Minimac3 format to PLINK dose format. Only SNPs
with high imputation quality (r2$0.8) were retained.

Association analyses under additive, recessive, and domi-
nant logistic regression models were then performed with
Plink using logistic regression separately for each cohort
with cohort-specific significant PCs included as covariates.
For the additive model, dosage values for each SNP were
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used. For the recessive and dominant models, dosage values
were first converted to “best guess” genotypes (i.e., genotypes
with highest probability). All analyses were also repeated for
males and females separately.

Association summary statistics from these GWAS, for
6,131,010 variants common to all seven cohorts, were meta-
analyzed using the fixed-effects inverse variance weighted
method implemented in METAL.49

We used a P value threshold of 7.5831029, (5310284 2.24 3)
as a conservative threshold for genome-wide statistical signifi-
cance of associations and 1.5231027 (203531028 4 2.24 3)
for suggestive associations, to account for testing of multiple
variants: the value of 531028 is accepted as the standard
threshold for genome-wide significant asscociations50; di-
viding by 2.2 accounts for the three genetic models tested,
as shown by González et al.51; and dividing by three accounts
for testing in males and females, both separately and
combined.

Genomic inflation factor lambda was calculated using the
estlambda function from the R package GenABEL. Quantile-
quantile and Manhattan plots were generated in R using the
qqman package. Regional plots for top were created with Lo-
cusZoom52 (http://csg.sph.umich.edu/locuszoom/), using LD
information (r2) from the 1000 Genomes European popula-
tion (November 2014).

Heritability and Polygenic Risk Scores
We used LDSC software53 (https://github.com/bulik/ldsc) to
estimate VUR heritability and LDPred54 (https://github.com/
bvilhjal/ldpred), to derive a polygenic risk score (PRS) for
VUR, based on the summary statistics from our VUR GWAS
under an additive model. Next, we used LDPred to generate
the VUR-PRS for individuals of European ancestry in the
CKiD study cohort (n5432). As opposed to genotypic risk
scores, which are selectively based on top signals, or PRS es-
timated using linkage disequilibrium (LD)-based marker
pruning and a P value threshold, PRS estimation from
GWAS summary statistics with LDPred, uses a Bayesian ap-
proach with a priori on effect sizes and LD information from
an external reference panel (1000 Genomes panel) to derive
the posterior mean effect size of each marker.54 All common
markers in our VUR GWAS summary statistics intersecting
the reference panel, with a defined effect estimate value in the
meta-analysis were used (n55,061,103 markers).

Single Variant PheWAS in the Electronic Medical
Records and Genomics and UK Biobank Datasets
Single variant PheWAS analysis under an additive model was
performed for our GWAS eight top variants, using UK Bio-
bank (UKBB; http://pheweb.sph.umich.edu/SAIGE-UKB/)
and Electronic Medical Records and Genomics (eMERGE;
https://emerge-network.org/) datasets. In the latter, we con-
ducted the analyses in the whole cohorts and separately in
the subgroup of participants under 21 years of age. Interna-
tional Classification of Disease (ICD) codes were converted

ICD-9 codes (https://www.cms.gov/Medicare/Coding/
ICD9ProviderDiagnosticCodes/codes) for PheWAS analy-
sis,55 which mapped to totals of 1817 distinct phecodes. Phe-
WAS was performed using the PheWAS R package.56 The
package uses predefined “control” groups for each phecode
“case” grouping. The case definition requires a minimum of
two ICD-9 codes from the “case” grouping of each phecode. All
phecodes were tested with logistic regression with each phecode
case-control status as an outcome and genotype coded according
to the GWAS model (additive, recessive, or dominant), adjusted
for age, sex, site, and threePCsof ancestry as a predictor.We set the
Bonferroni corrected statistical significance threshold to account
for the number of phecodes used (0.05/181752.7531025). Ad-
ditionally, wemeta-analyzed PheWAS from the eMERGE (all age)
and UKBB analyses, as implemented in the PheWAS R package.

Mice
All animal experiments followed protocols approved by the
Institutional Animal Care and Use Committee at Columbia
University. Hoxb7-Gfp: 129S.Cg-Tg (Hoxb7-EGFP)33Cos/J,
Frank Costantini, Columbia University.57 Wnt5a Mutants:
004758 - B6; 129S7-Wnt5atm1Amc/J; Andrew P McMahon,
University of Southern California.58 All work with mice was
approved by and performed under the regulations of the Co-
lumbia University Institutional Animal Care and Use Com-
mittee. Animals were housed in the animal facility of Irving
Cancer Research Center, Columbia University.

Mouse Genotyping
For Wnt5a ko genotyping was performed with the following
primers: WT forward 59-GAG GAG AAG CGC AGTCAATC-
39; common 59- CAT CTC AAC AAG GGC CTC AT-39 and
Mut forward 59- GCC AGA GGC CAC TTG TGTAG-39; wild
type shows 484bp, mutant 400bp.

Histology
Histology was carried out using hematoxylin and eosin staining
with the standardprotocol. Paraffin sectionswere cleared in three
washes with xylene for 2 minutes each. Samples were rehydrated
by incubating successively in 100% ethanol for 5 minutes per
change, two changes of 95% ethanol for 5 minutes per change,
and two changes of 70% ethanol for 5minutes per change. Slides
were rinsed in tapwater and sampleswere stained inhematoxylin
solution for 3minutes, rinsed, then incubated in 95%ethanol for
4minutes. Slides were then stained with eosin Y solution for 2–3
minutes, then dehydratedwith successive changes of ethanol and
cleared with the slides xylene and mounted in Permount.

Immunostaining
Embryos were embedded in paraffin and serial sections were
generated. For immunohistochemistry, paraffin sections were
deparaffinized using HistoClear and rehydrated through a series
of ethanol and 1XPBS washes. Antigen retrieval was performed
byboiling slides for 15minutes inpH9buffer or 30minutes inpH
6 buffer. Primary antibodies in 1% horse serum were incubated
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overnight at 4°C. The next day, slides were washed with PBST
three times for 10 minutes each and secondary antibodies were
applied for 2 hours at room temperature (RT). 49,6-diamidino-2-
phenylindole (DAPI) was either applied as part of the secondary
antibody cocktail or for 10minutes, for nuclear staining, and then
the slides were sealed with coverslips. E-cadherin (Ecad) staining:
goat anti-mouse Ecad antibody (500 ng/ml, Paraffin or Cryo,
#AF748; R&D Systems).

Whole-mount In Situ Hybridization
Embryos were fixed overnight at 4°C on a rocking table with
4% paraformaldehyde (PFA) in PBS. After fixation, embryos
were washed three times for 10minutes each in PBSwith 0.1%
Tween (PTW) at RT, incubated in 6% H2O2 for 15 minutes at
RT, and then washed three times in PTW for 10 minutes each
time. After the last wash, the PTW was replaced with 1 mg/ml
of proteinase K for 15 minutes at RT. Proteinase K digestion
was terminated by washing twice for 5 minutes each wash at
RTwith PTW, then tissue was postfixed for 10 minutes in 4%
PFA/PTW/0.2%glutaraldehyde, washed three times for 5min-
utes each in PTW, then placed in hybridization buffer (50%
Formamide [Fluca,#47671], 1.3x SSC, pH 5.3; 5 m EDTA pH
8; Yeast RNA [50 ug/ml, #R6750; Sigma], 0.1% Tween 20;
0.4% Chaps; Heparin [100 mg/ml]) first, for 5 minutes at
RT, and then for 1 hour at 68°C. Hybridization buffer was
replaced with 0.4 ml hybridization buffer containing probe,
and samples were incubated overnight at 68°C. Hybridization
buffer was replaced withwarmed hybridization buffer without
probe at 68°C, washed three times for 30 minutes each, then
washed in warmed hybridization buffer with Tris-buffered sa-
line with 0.1% Tween 20 (TBST) three times for 30 minutes
each at 68°C, and in TBST twice for 5 minutes each at RT.
Embryos are preblocked in 0.5 ml 13 TBST110% heat treat-
ed goat serum then placed in blocking solution with fresh 13
TBST 110% serum containing a 1:5000 dilution of alkaline
phosphatase-conjugated anti-digoxigenin Fab fragments for
o/n at 4°C. After the incubation with antibody samples were
washed two times at RTwith TBST, then placed in fresh TBST
overnight at 4°C, and washed twice in alkaline phosphatase
buffer (NTMT [100mMTris, pH 9.5, 50 mMMgCl2, 100 mM
NaCl, 0.1% Tween 20 1%]). Finally, samples were incubated in
substrate solution (NTMT, nitro blue tetrazolium chloride, 5-
bromo-4-chloro-3-indolyl-phosphate; Roche) containing 0.5 mg/
ml levamisole for 15minutes to2hours atRT in thedark.Reactions
were stopped by washing twice for 5 minutes each in TBST. Em-
bryos were then postfixed in 4%PFA/PTW for o/n at 4°C.

RNAscope
Mouse bladders were fixed in 4% PFA for 24 hours at 4°C, then
immersed in 30% sucrose in 13 PBS. Tissue was embedded in
optimal cutting temperature compound at 280°C, then
14 mm sections were placed on Superfrost Plus Slides and
airdried for 1–2 hours at220°C. The slides were then washed
with 200 ml 13 PBS for 5 minutes to remove the optimal
cutting temperature compound, then baked for 30 minutes

at 60°C. Tissue was postfixed in 10% neutral-buffered forma-
lin for 90minutes, then dehydrated through a series of ethanol
washes followed by another baking step in 60°C for 10 min-
utes. Three to five drops of RNAscope Hydrogen Peroxide
(ACD, 322335) were applied to cover the sections, incubated
for 10 minutes then washed in distilled water twice. Target
retrieval was performed by boiling slides in RNAscope13 Tar-
get Retrieval Reagent (ACD, 322000) that was heated to at least
99°C for 5 minutes. After rinsing in distilled water for 5 min-
utes, the slides were transferred to 100% ethanol for 5minutes.
Slides were placed on a humidified chamber and three to five
drops of RNAscope Protease III (ACD, 322337) were applied
to cover each section for 30 minutes at 40°C. Excess liquid was
removed from the slides with distilled water washes, then three
to five drops of the Wdpcp-C1 probe (ACD, 502151) was
added to cover the sections for 2 hours at 40°C in the humid-
ified chamber. Slides were kept overnight in 53 SSC and
washed twice in 13 wash buffer (ACD, 310091) before con-
tinuing with the assay. Three to five drops of RNAscope Mul-
tiplex FL v2 Amp 1 (ACD, 323101) were applied to the sections
then kept in humidified chamber for 30 minutes at 40°C. After
two 2 minute washes in 13 wash buffer, three to five drops of
RNAscope Multiplex FL horseradish peroxidase-C1 (ACD,
323104) were added onto the slides in the humidified chambers
for 15 minutes at 40°C. After two 2-minute washes in 13 wash
buffer, 150–200 ml of diluted tyramide signal amplification
(ACD 322809) plus Cy3 (NEL744001KT, 1:1500; PerkinElmer)
were added to the slides in the humidified chambers for 30min-
utes at 40°C. After two 2-minute washes in 13wash buffer, three
to five drops of RNAscope Multiplex FL horseradish peroxidase
Blocker (ACD, 323107) were added to the slides in the humid-
ified chambers for 15 minutes at 40°C. DAPI was applied for 30
seconds at RT to each slide and incubated for 30 seconds at RT.
DAPI was removed and one to two drops of Prolong Gold Anti-
fadeMountant were applied on the slides to seal with coverslips.

Data Availability and Accession Numbers
Raw data that support the findings of this study are available
from the corresponding authors on reasonable request. The
data are also available on dbGaP (https://www.ncbi.nlm.
nih.gov/gap) under the following accession numbers:
phs001749.v1.p1, phs000650.v3.p1, phs000304.v1.p1,
phs000169.v1.p1, phs000092.v1.p1, phs000199.v1.p1,
phs000431.v1.p1, phs000356.v2.p1, phs001584.v1.p1 (and
other, pending). Some restrictions may apply according to
participants’ consent and privacy protection. All images gen-
erated from mouse experiments reported in this study will
also be available from the corresponding authors.

RESULTS

Rare CNV Analysis
We conducted a rare CNV analysis in a multiethnic cohort of
1737 VUR patients and 24,765 population controls. We found
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a significant excess burden of large, rare, gene-intersecting
CNVs in VUR patients compared with controls (defined as
size$100 kb, frequency in PCA-defined populations#0.1%;
Figure 1, Supplemental Figures 2 and 3; P53.5431027). This
difference was principally attributable to enrichment for
larger-sized CNVs (CNVs $500 kb; Supplemental Tables 1
and 2) in VUR. We estimated that 2.23% of VUR patients
can be attributed to carrying a rare CNV of at least 500 kb
(odds ratio [OR], 1.40; 95% confidence interval [95% CI],
1.16 to 1.67; P53.9631024; Figure 1A, Supplemental
Table 1). We next annotated CNVs for pathogenicity. Based
on a survey of 148 known GDs, we found that VUR patients
were significantly enriched in GDs, with 18 distinct, known
GDs in 35 out of 1737 of patients and 162 out of 24,765 of
controls (2.01% versus 0.65%, OR, 3.12; 95% CI, 2.10 to 4.54;
P56.3531028). The GD burden remained highly significant
if we only considered the 1077 VUR patients newly reported in

this study (OR, 4.05; 95% CI, 2.60 to 6.11, P56.4631029).
Recurrent GDs that achieved significance in post-hoc tests in-
cluded 16p11.2 deletion, 22q11.21 duplication, and triple X
syndromes (Table 1). GDs were detected among all subco-
horts, including the CKiD and RiVUR cohorts, which ex-
cluded known chromosomal disorders in their entry criteria.

An additional 16 (0.92%) patients carried a likely patho-
genic CNV (Supplemental Table 3). Among them are heterozy-
gous deletions in chr 2q31.1, encompassing BBS5 and ITGA6;
10q24.2, including HPSE2; 10q26.11–10q26.3, which includes
FGFR2; 12p13.33, including CACNA1C; 12q21.31–12q21.33,
encompassingNPHP6; and two instances of heterozygous de-
letions of COL4A5 in chr X, in females and duplications in
6q14.3, including TBX18; 16q24.1, encompassing FOXC2 and
FOXF1; and 17q25.1–17q25.3, including ITGB4. Altogether,
this analysis of a significantly larger cohort confirms the con-
tribution of rare CNV GDs to the development of VUR and
highlights its genetic heterogeneity.

Genome-wide Association Study
We investigated the contribution of common variants to VUR
by performing a GWAS in seven cohorts of European ancestry
(seeMethods and Supplemental Table 4). After genetic match-
ing and imputation, we performed meta-analysis in 1395 un-
related VUR patients and 5366 matched population controls,
using 6,131,010 imputed variants common to all cohorts.
Given that VUR is significantly more prevalent in females
and its segregation is consistent with multiple modes of
inheritance,18,19,59–61 we performed global and sex-specific
association analyses under additive, recessive, and dominant
models62 (Supplemental Tables 5–13, Supplemental Figure 3).
Genome-wide significance thresholds were adjusted based on
the number of models tested.

Significant and Suggestive GWAS Loci
Altogether we identified three significant and five suggestive
loci (Figure 2, Table 2 and Supplemental Figure 4). Remark-
ably, the three significant loci conferred large effects (OR,
1.41–3.65). The most significant association was in Chr
2p15, under a recessive model (top SNP: rs13013890; OR,
3.65; 95% CI, 2.39 to 5.56; P51.8631029), and mapped to
an intron of WDPCP. Altogether, 3.3% of patients were ho-
mozygous for the risk allele, compared with 1.2% of controls.
Coding mutations in WDPCP cause Bardet-Biedl syndrome
(BBS15; MIM 615992), which features VUR as a known man-
ifestation. Studies of Wdpcp mutant mice also revealed
CAKUT-like phenotypes, including failure of the ureters to
join the UGS, the primordium of the bladder and urethra.63

This locus also includes OTX1, and heterozygous microdele-
tions encompassingWDPCP andOTX1 have been reported in
patients with genitourinary development defects.64We did not
detect such deletions in our CNV analysis of patients with VUR,
indicating that this recessive signal is not attributable to hemizygos-
ity at the WDPCP locus. Analysis of expression quantitative trait
loci (eQTL) studies (Supplemental Tables 14–15) demonstrated

P = 1.98×10–9 VUR
Controls

P
ro

po
rt

io
n 

of
 r

at
e 

C
N

V
s 

(%
)

B

10

5

0

500-1,000 1,000-2,000 ��2,000
CNV size (kb)

P = 3.96×10–4

P = 1.80×10–6

P = 3.12×10–6

VUR
Controls

Fr
eq

ue
nc

y 
(%

)

7.5

A

5.0

2.5

0.0

> 500 > 1,000 ��2,000
Size of largest CNV per genome (kb)

Figure 1. Excess burden of large, rare CNVs in VUR. VUR pa-
tients are enriched in large (size $100 kb), rare (frequency in
PCA-defined populations #0.1%), gene-intersecting CNVs. (A)
Frequency of subjects with their largest CNV size at or above the
indicated size thresholds (kb). (B) Proportion of CNV (size $100
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bars, controls.
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and E13, separating the hindgut from the UGS by E15
(Figure 3G) and failure in this process is associated with ano-
rectal malformations. InWnt5amutants at this stage, the clo-
aca persisted and remained connected to the hindgut
(Figure 3O). UGS defects included rudimentary bladder and
urethra (13 out of 18 embryos), absence of the bladder (5 out
of 18 embryos) or defective urethral differentiation (Figure 3,
N and O).

We next investigated the fate of nephric ducts and distal
ureters. In mutants, the distal ureters, which normally join the
bladder neck at E12 and E13, extended partway toward the
cloacal region and ended blindly (Figure 3, I and Q). In em-
bryos with rudimentary bladders, ureters generally terminated
in the bladder wall outside the lumen, whereas in mutants
with no sign of bladder development, ureters generally termi-
nated at an abnormally anterior position and failed to reach
the cloacal region (Figure 3, J and R). To investigate the origin
of these abnormalities, we analyzed embryos at E9, when
nephric ducts normally make primary connections with the
cloaca Ecad staining of control embryos revealed nephric
ducts that extended caudally, turned toward the midline,
and joined the cloaca at themidpoint between the future hind-
gut and UGS (Figure 3, K–M). In mutants, cloacae were mis-
placed to an anterior position and the dorsal cloaca, which
differentiates into the UGS, was truncated (Figure 3, S–U; cl*
denotes the truncated portion of the cloaca). In addition to
cloacal defects, nephric ducts in Wnt5a mutants either joined
one another or ended blindly, and did not insert into the clo-
aca (Figure 3, S–U). The nephric duct termini inmutants were
generally larger than normal, but we did not observe any sign
of bifurcation as reported in other studies.68,70

PRS, Heritability, and Clinical Associations
Using LD score regression,53 we estimated the SNP-based her-
itability (h2) to be 15.24% under the additive model. We com-
puted a VUR-PRS using LDPred54 under an additive model.
To determine whether the VUR-PRS captures different CA-
KUTor kidney disease subtypes, we applied the VUR-PRS to
participants of European ancestry in the CKiD study, a cohort
composed of pediatric patients with different causes of kidney
failure. However, the VUR-PRS was not different between non-
VUR nephropathy causes of kidney disease (Supplemental
Figure 6). We also did not detect any significant associations of
the VUR-PRS with clinical parameters such as the severity of
reflux or recurrence of UTI among patients with VUR.

We next performed a phenome-wide association study (Phe-
WAS) of the top GWAS signals using two large cohorts: UKBB
and eMERGE, followed by meta-analysis. We also conducted Phe-
WAS on eMERGE participants under 21 years of age (pediatric
eMERGE). Homozygosity for theWDPCP risk allele (rs13013890-
A) was nominally associated with cystitis (Supplemental Tables
17–20; OR, 2.11; 95% CI, 1.22 to 3.65; P57.7831023) in males,
and with an increased risk of bladder neck obstruction (OR, 5.10;
95% CI, 2.23 to 11.69; P51.1731024) and dystrophy of the genital
tract (OR, 2.38; 95% CI, 1.39 to 4.07; P51.4831023) in females.
This locuswas associatedwith 22 genitourinary traits atP,0.05.We
also observed 46 nominal associations of other VUR risk loci with
genitourinary traits (Supplemental Tables 17–20).

DISCUSSION

In the largest genetic study of VUR conducted to date, we
detected rare and common variants with large effects on this

Table 2. VUR associations

Top SNP Chr. Position Nearest Genes A1/A2
Effect Allele
(A1) freq.

OR (95% CI) P Model

rs13013890 2 63,654,109 WDPCP, MDH1, OTX1,

EHBP1, UGP2, VPS54

A/G 0.12 3.65 (2.39 to 5.56) 1.8631029 Recessive

rs10806089 6 77,943,057 HTR1B C/T 0.34 2.75 (1.96 to 3.84) 4.1031029 Recessive
(males)

rs1154855 6 55,612,107 BMP5 G/T 0.48 1.41 (1.26 to 1.59) 4.3331029 Additive
(females)

rs76292820 8 19,313,619 CSGALNACT1 T/C 0.16 4.71 (2.72 to 8.17) 3.4631028 Recessive
(males)

rs12759898 1 116,351,384 NHLH2, VANGL1,

CASQ2

A/T 0.08 1.61 (1.36 to 1.9) 3.5631028 Dominant

rs16838525 1 195,509,949 AL357932.1 C/T 0.15 6.94 (3.43 to 14.06) 7.2131028 Recessive
(males)

rs79060316 8 81,827,316 ZNF704, PAG1 T/C 0.02 2.50 (1.79 to 3.50) 9.0731028 Dominant
rs503022 3 55,491,436 WNT5A A/C 0.13 1.81 (1.45 to 2.25) 1.1931027 Additive

(males)

Top SNP each locus is shown (dbSNP 151). Positions are in University of California Santa Cruz hg19 coordinates. P values, ORs, and their 95% CIs are derived from
meta-analysis of seven European ancestry cohorts (1395 VUR patients and 5366 controls; detailed counts per cohort are shown in Supplemental Table 4), under the
indicated models. Chr., chromosome; freq., frequency; WDPCP, WD Repeat Containing Planar Cell Polarity Effector; MDH1, Malate Dehydrogenase 1; OTX1,
Orthodenticle Homeobox 1; EHBP1, EHDomain Binding Protein 1; UGP2, UDP-Glucose Pyrophosphorylase 2; VPS54, Vacuolar Protein Sorting-Associated Protein
54; HTR1B, 5-Hydroxytryptamine Receptor 1B; BMP5, Bone Morphogenetic Protein 5; CSGALNACT1, Chondroitin Sulfate N-Acetylgalactosaminyltransferase 1;
NHLH2, Nescient Helix-Loop-Helix 2; VANGL1, Vang Gogh-like Planar Cell Polarity Protein 1; CASQ2, Calsequestrin 2; ZNF704, Zinc Finger Protein 704; PAG1,
Phosphoprotein Membrane Anchor With Glycosphingolipid Microdomains 1; WNT5A, Wnt Family Member 5A.
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trait. Most studies of developmental disorders have focused on
rare variants, but our study now demonstrates that common risk
variants also contribute to congenital and developmental disor-
ders. We also found that some risk loci conferred sex-specific
effects. Moreover, we searched for loci under nonadditive models
and detected two significant loci under a recessive inheritance.
These data suggest that more systematic exploration of nonaddi-
tive inheritance and sex-specific analyses may increase the yield
forGWASand clarify the architecture of developmental disorders.

We found that 3% of patients with VUR have an unsus-
pected genomic disorder that is not clinically recognized, in-
cluding those identified in major national cohorts such as
RIVUR and CKiD, where a clinically detectable chromosomal
disorder was an exclusion criterion. These findings extend our
previous studies30 and clarify the spectrum of CNV disorders
that contribute to VUR. In particular, we detected an enrich-
ment of known GD in three loci (Chr. 16p11.2, 22q11.2, and
Chr. X). These GD have been implicated in autism, schizo-
phrenia, developmental delay, congenital cardiac, or vertebral
defects,45,73–77 with variable penetrance. About one third of
patients with the 22q11.2 microdeletion syndrome display an
urinary tract defect.78,79We previously showed that disruption
of CRKL and TBX6 likely account for the kidney and urinary
tract defects in the 22q11.2 and 16p11.2 syndromes, respec-
tively.30,80,81 Recent studies have also implicated MAZ, an-
other gene within the CNV 16p11.2 interval, in genitourinary
defects.82 The 3% prevalence of CNV disorders has significant
clinical implications, given the relatively high prevalence of

VUR in the pediatric population. The detection of pathogenic
CNVs can assist with diagnosis and prediction of complica-
tions, particularly for identification of patients at risk for poor
neurocognitive outcomes.83 Because our dataset was sourced
from multiple studies with different ascertainment criteria
and phenotyping depth, we lacked access to complete data
for all patients on kidney function and renal failure; presence
of other genitourinary tract malformations; VUR staging and
laterality and other clinical variables. However, we note that
the high CNV burden was detected in cohorts with both mild
(RIVUR) and severe (CKiD) outcomes, motivating further
studies to clarify variability of renal function outcomes.

The GWAS for VUR identified loci with large effect, con-
sistent with prior studies of developmental traits, such as hy-
pospadias84,85 and bicuspid aortic valves.86 The top associa-
tions encompass genes that participate in embryonic
development (WDPCP, BMP5, WNT5A, and VANGL1). The
strongest association was an intronic variant in WDPCP,
which encodes a planar polarity protein and has been impli-
cated in Bardet Biedl-1587 and Oro-Digital-Facial syn-
dromes,88 which can feature urinary tract malformations, in-
cluding VUR.89,90 Wdpcp is expressed in the ureter during
mouse embryonic development and its inactivation results
in developmental abnormalities, including cloacal septation
defects.63 We did not detect any coding mutations in LD
with the top WDPCP signal, suggesting the noncoding vari-
ant(s) may influence the timing or location of expression of
WDPCP or other genes in the interval. The large effect
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Figure 3. Wnt5a expression and its role in lower urinary tract morphogenesis. (A–E) In situ hybridization analysis. (A) Wnt5a expression
at E9 in a whole mount embryo. (B) Section through a whole mount embryo showing Wnt5a expression surrounding the cloaca. (C–E)
Wnt5a expression in sagittal sections from embryos at E11 (C), E12 (D), and E15 (E). (F and N) Whole-mount urogenital tracts from a
control (F) and Wnt5a a mutant (N). (G and O) Hematoxylin and eosin–stained sections through the bladder/urethra and hindgut of
controls (G) and Wnt5a mutants (O). Green arrowheads point to the nephric ducts. Yellow arrowhead in (O) points to the distal ureter. (H
and P) Schematic representation of histology shown in (G and O). (I and Q) Sagittal sections through Wnt5a mutants at E12. (J and R)
Sagittal sections through a control (J) and Wnt5a mutant embryo (R). (K, L, S, and T) Ecad staining (green) reveals nephric duct and
cloacal epithelia at E9, in controls (K and L) and Wnt5a mutants (L and T). (M and U) Schematic showing nephric duct insertion into the
cloaca in a wild-type embryo (M) and in a Wnt5a mutant embryo (U). bl, bladder; cl, cloaca; cl* truncated cloaca in Wnt5a mutant; ki,
kidney; nd, nephric duct; ur, ureter; wd, Wolffian duct.
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imparted by this locus warrants additional studies to identify
the causal allele(s) and its utility in clinical prediction among
families with the risk variants.WDPCP is also expressed in the
lower urogenital tract, motivating further investigation of the
potential association with bladder neck obstruction and fe-
male genitourinary disorders, as observed in the UKBB and
eMERGE PheWAS. In addition, the GWAS findings should be
followed up in independent cohorts for replication.

We performed detailed studies of Wnt5a mutant mice be-
cause heterozygous WNT5A mutations cause dominant Rob-
inow syndrome, which can feature urinary tract defects, in-
cluding VUR.91,92 We previously reported a WNT5A loss of
function mutation in a patient with nonsyndromic kidney
malformation.69 WNT5A signaling with its presumptive re-
ceptor ROR2, controls cell migration, convergent extension,
planar cell polarity, and numerous aspects of organ develop-
ment.58WNT5Amediates noncanonicalWnt signaling via the
calcium-signaling or planar cell polarity pathways.93 Wnt5a
mutants display urinary tract phenotypes, including duplicated bi-
fid/ureters and kidneys, renal hypoplasia, defective medullary pat-
terning, defective ureteral insertion, and abnormal extension of the
intermediate mesenchyme and defective genital tubercle morpho-
genesis.68,70,71 Here, we describe a novel role for WNT5A during
early stages of bladder and urethral formation.We find thatWnt5a
expression in the mesenchyme surrounding the cloaca is essential
for cloacal morphogenesis and for insertion of nephric ducts,
which are precursors of the UBs and the ureters. Defects in the
nephric duct insertion process can impair connection between the
upper and lower urinary tract and result in CAKUT-like pheno-
types. These observations suggest WNT5A or a WNT5A-
dependent signal from the cloaca may be important for directing
nephric duct insertion, cloacal septation, and UGS differentiation.
Abnormal position or differentiation of the UGSmay be sufficient
to impair nephric duct and ureter insertion, and may be the cause
of the spectrum of phenotypes observed inWnt5amutants.

Important questions in the clinical management of VUR in-
clude risk prediction for complications such as renal failure and
UTI, or screening criteria for asymptomatic siblings. In our study,
about 6%of VURpatients carried high-risk genotypes, defined as
major CNVdisorders (3%) or homozygosity for theWDPCP risk
allele (3%). Assessment of these loci may be useful for selecting
siblings for screening. Recent studies have also shown the value of
PRS for prediction of complex phenotypes.94,95 We had adequate
power to detect common risk variants; doubling sample size could
yield additional risk loci for VUR at lower MAF and/or OR
(Supplemental Table 16) and more robust PRS. There are no
long-term follow-up studies of VUR into adulthood, and the
PheWAS approach may reveal long-term outcomes associated
with genetic risk factors that cause VUR in childhood.
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