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ABSTRACT 

 This dissertation presents research into the paleobiogeography and paleoecology of 

the Western Interior Seaway (WIS) and Gulf Coastal Plain (GCP) during the Late 

Cretaceous. The dataset utilized here includes an extensive record of marine invertebrates 

from over 200 years of fossil collecting and sedimentary data collated from over 45 different 

literature sources, representing approximately 17 million years of deposition. The high-

resolution of this dataset, and its extensive geographic distribution and temporal duration, 

make it ideal for exploring various ecological questions. Using these data, I have attempted 

to reconstruct paleobiogeographic provinces as published in prior works, explore functional 

diversity patterns, and test some of the fundamental assumptions related to niche modeling in 

the fossil record. This work represents one of the most extensive and dynamic analyses of the 

WIS, focusing on elucidating primary assumptions regarding broad scale ecological 

relationships and the methods used to explore them. 
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CHAPTER 1: INTRODUCTION 

This analysis builds off the extensive research previously conducted on the 

Campanian and Maastrichtian paleontological record of the Western Interior Seaway (WIS) 

and adjacent Gulf Coastal Plain (GCP). It is intended to quantitatively test existing 

paleobiogeographic and ecological assumptions and build a foundational framework for 

future investigations into this interval and region. Specifically, my research utilizes relatively 

novel techniques applied to the fossil record that incorporate quantitative and qualitative 

methods to investigate fundamental biotic patterns and environmental associations that 

existed in the WIS and GCP during the upper Late Cretaceous, just prior to the end-

Cretaceous mass extinction event (Figure 1). 

The fundamental aspects of biotic associations present throughout Earth’s history are 

not only informative in understanding the ancient world, but they may also provide us with 

the tools and base-line assumptions necessary to predict and mitigate detrimental taxonomic 

responses in the world today to projected environmental change. Sediments and fossils from 

the WIS and GCP represent an extremely well-documented, geographically extensive, and 

diverse assemblage that is well suited to investigating these issues. Modern, quantitative, 

biostatistical techniques have in recent history applied to fossil data to expand on previous 

findings (i.e., Dudie and Stigall, 2010; Keil, 2017; Dean et al. 2019). However, it is not 

enough to be able to apply these techniques; we also need to establish the basic principles, 

biases, and viable methods to be sure these techniques are providing accurate results and can 

be interpreted in useful ways. Prior to their application, however, it is important to establish 

the basic principles underlying the phenomena recorded by paleontological and  
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BC Betweenness centrality 
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Figure 1. Campanian to Maastrichtian biostratigraphic chart showing polarity chorn intervals (Malinverno et al. 2020), biozones (Ogg et al. 
2016; Lynds and Slattery 2017), sea level fluctuations (Haq 2014), global stable carbon and oxygen isotope trends (Gale et al. 2020), and 
stable oxygen and carbon isotope data collated for the Western Interior region (Dwyer, 2019). Ages marked with an asterisk have been added 
or updated based on Malinverno et al. (2020) from Slattery et al. (2013). WI isotope values modified from unpublished data by Dwyer (2019) 
which span the R9 regressive interval of the Bearpaw Cyclothem (D. cheyennenses – B. baculus ammonite zones). 
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environmental data, and the common biases which may influence our understanding of these 

phenomena. Questions that can potentially be investigated to better understand the Earth 

system in this way include how taxa and the functional entities distribute themselves across 

space and how species abiotic ecological niches, the primary ecological unit hypothetically 

underlying these biogeographical patterns, can be accurately and consistently assessed using 

fossil data. By collating one of the most extensive, high-resolution paleontological and 

sedimentological databases available to date, this research addresses some aspects of these 

issues and provides guidance for additional investigations, creating an essential framework 

from which even greater understanding of the Late Cretaceous and the modern world can be 

achieved. 

Geologic Setting: The Western Interior Seaway and Gulf Coastal Plain 

During the late Albian, rising sea levels flooded the North American continent, 

connecting the Artic Ocean in the north with the Tethys Sea in the south at the proto-Gulf of 

Mexico (Williams and Stelek 1975; Kauffman and Caldwell 1993; Roberts and Kirschbaum 

1995; Ziegler and Rowley 1998). This epeiric seaway occupied the forearc basins formed by 

the tectonic movement of the North American Plate west relative to the European Plate, 

beginning in the Late Triassic (Monger 1993; DeCelles 2004; Miall et al. 2008). These basins 

were bound on the west by the Cordilleran Fold-Thrust Belt and on the east by the stable 

North American Craton (Kauffman and Caldwell 1993; DeCelles 2004; Miall et al. 2008). 

Sedimentary units from the WIS record tectonically influenced subsidence and associated 

deposition, primarily from erosion of the uplifted fold-thrust belt to the west. Deposits from 

the GCP, in contrast, represent deposition along the passive but subsiding margin of the 

North American Continent (Braile et al. 1986). Geologic units from both regions represent a 
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dense record of marine deposition from approximately 100 to 59.2 Ma (Caldwell, 1974; 

Slattery et al., 2013).  

Across this interval, eustatic and tectonic, regional changes to sea level greatly 

influenced the paleoceanography and geometry of the WIS and its connection with the GCP, 

eventually resulting in the diminution and draining of the WIS itself at the end of the 

Cretaceous (Gill and Cobban 1966a; Kauffman 1984; Kauffman and Caldwell 1993; Slattery 

et al. 2013; Lowery et al. 2018). Oceanic differences between the WIS and GCP may also 

have influenced the macroevolution and macroecology of marine biota. The WIS had a 

unique and potentially dynamically shifting set of conditions, including distinct habitat shifts 

such as moving from siliciclastic to carbonate deposition eastward over its longitudinal 

extent (Slattery et al. 2013), the presence of a counterclockwise gyre and distinct cool and 

warm water masses (Fisher et al. 1994; Slingerland et al. 1996; Steel et al. 2012; Elderbak 

and Leckie 2016; Lowery et al. 2018), and potential periods of oceanic stratification 

(Cochran et al. 2003; He et al. 2005; Fricke et al. 2010; Petersen et al. 2016; Lowery et al. 

2018). Distinct biotic patterns across both space and time have been noted throughout the 

Campanian and Maastrichtian of the WIS in particular, often associated with abiotic factors 

such as sea level (Sohl 1967, 1971, 1987; Jeletzky 1971; Kauffman 1973, 1984; Scott and 

Cobban 1986). 

The dense fossil and sedimentological record of the WIS and GCP, their persistence 

across a critical interval just prior to a major mass extinction event, their broad latitudinal 

distribution, and the variation in environmental conditions they experienced make these two 

regions ideal for testing various hypotheses of ecological patterns and processes on 

geological timescales. Indeed, many previous workers have made great strides in 
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understanding the paleogeographic, biotic, and oceanic patterns that persisted throughout the 

WIS and GCP regions across this interval. Most of these studies are more than thirty years 

old, and the addition of novel methods and more extensive datasets make reevaluating these 

patterns using modern analytical methods both desirable and valuable. For example, it has 

long been assumed – based on investigations primarily conducted in the late 1980s – that the 

WIS was characterized by distinct biogeographical subprovinces whose distribution was 

closely associated with fluctuations in regional sea level (Kauffman 1984). No dedicated 

analysis has reassessed these claims using modern methods or updated taxonomic data. 

Few palaeoecological studies, furthermore, focus on studying spatiotemporal patterns 

within a relatively “stable” interval of Earth’s history, rather than an period of significant 

abiotic change such as a mass extinction interval (i.e., Dunhill et al., 2018; Foster and 

Twitchet, 2014). While these studies are relevant to determining how major abiotic 

perturbations influence biota, they rarely include long-term, in-depth analysis for background 

intervals before or after the mass extinction event itself. Understanding how ecological 

patterns present themselves during background intervals, is therefore highly relevant to 

establishing baseline assumptions. Since the end Cretaceous mass extinction occurs at the 

end of the Maastrichtian, these analyses illuminate the spatial and temporal ecological 

patterns just before this event, providing a point of comparison for shifts across the mass 

extinction interval. 

Lastly, understanding how abiotic and biotic systems interact is useful for predicting 

the effects of modern environmental changes, such as warming climates and shifting sea 

levels. Unlike most modern analyses, paleontological analyses allow for long-term 

assessment of broad-scale patterns during intervals of environmental change. Deep time data 
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can therefore be used as analogues for current and future conditions, informing modern 

conservation efforts. These analyses provide information about various aspects of a marine 

system over approximately 17 million years, informing our understanding of our current 

ecological system and its potential responses to future environmental change.  

Research Chapters and Databases 

This dissertation consists of three research studies that focus on fundamental 

ecological aspects of the WIS and GCP region during the Campanian and Maastrichtian. 

They utilize an extensive fossil dataset including over 33,000 total occurrences of marine 

invertebrates, and composed of 1113 different species and 574 genera (Table 1, Figure 2). 

Major clades represented include bivalves, cephalopods, gastropods, echinoderms, corals, 

brachiopods, bryozoans, and crustaceans. The complete database characterizes a substantial 

portion of marine animal taxonomic and functional diversity preserved in the WIS present 

during the Late Cretaceous and their geographic extent. High taxonomic resolution make 

these data ideal for future studies into primary ecological characteristics such as 

paleobiogeographic patterns, functional assemblages, and realized/fundamental niche 

analyses (Peterson et al. 2011). 

The first chapter focuses on reassessing the paleobiogeographic provinces present in 

the WIS during the Late Cretaceous and their abiotic associations (Purcell et al., 2023). 

Biotic provinces associated with latitudinal gradients that shift across space relative to major 

abiotic shifts such as sea level change were hypothesized to exist in the WIS and GCP across 

the interval (Kauffman 1984). However, only two major provinces were observed using 

quantitative network analysis, with greater provinciality resulting from sea level fall across   
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Table 1. Taxonomic database summary 

Class Number of Unique Genera Number of Unique Species 

Gastropoda 194 376 
Bivalvia 192 395 
Cephalopoda 82 220 
Malacostraca 32 30 
Gymnolaemata 18 15 
Echinoidea 18 30 
Anthozoa 7 10 
Polychaeta 5 5 
Hexanauplia 4 11 
Rhynchonellata 4 2 
Scaphopoda 3 7 
Xiphosura 2 1 
Stenolaemata 2 2 
Demospongea 2 2 
Asteroidea 1 1 
Crinoidea 1 1 
Chromadorea 1 0 
Homarus 1 0 
Lingulata 1 2 
Hydrozoa 1 1 
Thecostraca 1 0 
Maxillipoda 1 1 
Bryozoa (undifferentiated) 1 1 

Total: 574 1113 
 

the interval. Conclusions support a WIS biogeographically homogenized, that became 

increasingly distinct through time from the open-ocean-facing GCP. 

The second chapter explores the distinction between functional and taxonomic diversity in 

the WIS and GCP. Within this analysis, the dataset was also tested for how spatial 

aggregation of occurrences might influenced results of studies of this ilk. Spatiotemporal 

patterns of functional diversity were compared with taxonomic diversity under the primary 

hypothesis that functional diversity would be both spatially and temporally stable relative to  
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Figure 2. Distribution of taxonomic (brown diamonds), stratigraphic (green circles), and 
hydrothermal seep (yellow triangles) from the WIS across the study interval (Campanian – 
Maastrichtian). See Chapters 1 and 4 for details. 
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taxonomic diversity. This hypothesis was largely supported by the data, though differences in 

functional assemblages were observed in the WIS relative to the GCP. These patterns were 

found to reflect specific abiotic factors present in the WIS as compared to the GCP and to 

support ecological buffering against taxonomic loss during environmentally stressed 

intervals. diversity would be both spatially and temporally stable relative to taxonomic 

diversity. This hypothesis was largely supported by the data, though differences in functional 

assemblages were observed in the WIS relative to the GCP. These patterns were found to 

reflect specific abiotic factors present in the WIS as compared to the GCP and to support 

ecological buffering against taxonomic loss during environmentally stressed intervals. 

The final chapter incorporates a high-resolution stratigraphic database from across the 

WIS to assess potential sources of bias in the application of ecological niche modeling using 

deep time paleontological data. This chapter specifically tests the influence of temporal 

resolution on ecological niche quantification and provides a case study test of phylogenetic 

niche conservation in fossil species as they relate to their genus and the potential utility of 

using generic-level data as a proxy for species characteristics. It was hypothesized that  

low temporal resolution negatively influences the fidelity of niche characterization, and that 

individual species within the same genus with present high niche conservation with each 

other and with the genus-level niche itself. Temporal resolution was found to negatively 

correlate with niche characterization, but genus-level data was not found to represent species-

level niches well. 
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Table 2. The number of sedimentary data locality points at each level of biostratigraphic confidence 
in the twelve biozone intervals. See Chapter 4 for details. 

Interval High 
Confidence 

Medium 
Confidence 

Low 
Confidence 

Total 
Localities 

H. birkelundae-H. nebrascensis 5 10 5 20 
B. clinolobatus 5 19 15 39 

B. baculus-B. grandis 10 18 10 38 
B. reesidei-B. eliasi 28 6 3 37 

B. compressus-B. cuneatus 13 7 8 28 
D. cheyennense 3 9 5 17 

D. nebrascense-E. jenneyi 12 21 3 36 
B. reduncus-B. scotti 13 7 11 31 

B. perplexus-B. gregoryensis 38 10 19 67 
B. maclearni-B. sp. (smooth) 24 17 30 71 

B. obtusus 25 9 29 63 
S. leei-B. sp. (weak flank ribs) 19 19 21 59 

Total 506 
 

The sedimentological database included in the third research chapter will furthermore 

provide a foundation for exploring the more detailed localized aspects of ecology and abiotic 

conditions. Stratigraphic data incorporates sedimentary information relevant to 

environmental conditions present during sedimentation, including grain size, siliciclastic 

versus carbonate composition, sedimentary structures, bedding thickness, and bioturbation. 

These data were used to create WIS maps of continuous sedimentary characteristics 

constrained by paleo-shorelines.  
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CHAPTER 2: FAUNAL PROVICIALITY IN THE LATE CRETACEOUS 
WESTERN INTERIOR SEAWAY USING NETWORK MODELING 

Ceara Purcell1, Louis Scuderi1, Corinne Myers1 

1Department of Earth and Planetary Sciences, Northrop Hall, 221 Yale Blvd NE University 
of New Mexico, Albuquerque, New Mexico 87131 

Abstract 

 The Western Interior Seaway (WIS) was historically divided into latitudinal faunal 

provinces that were taxonomically distinct from the adjacent Gulf Coastal Plain (GCP) and 

shift in space due to sea level changes. However, no rigorous quantitative analysis using 

recent taxonomic updates have reassessed these provinces and their associations. We used 

network modeling of macro-invertebrate WIS and GCP fauna to test whether biotic provinces 

existed and to examine their relationships with abiotic change. Results suggest a cohesive 

WIS unit existed across the Campanian, and distinct WIS and GCP provinces existed in the 

Maastrichtian. Sea level changes coincided with changes in network metrics. These results 

indicate that, while the WIS did not contain sub-provinces in the Late Cretaceous, 

environmental factors influenced faunal associations and their communication over time. 

Introduction 

The Western Interior Seaway (WIS) and Gulf Coastal Plain (GCP) are characterized 

by a dense fossil record of marine invertebrates in the latest Cretaceous (~100–66 Ma; 

Caldwell, 1974; Slattery et al., 2013), spanning 45° latitude, that experienced a wide range of 

environmental shifts. Fluctuating sea levels (Figure 3C), for example, modified basin 

geometry and water mass distributions, impacting marine life (e.g., He et al., 2005; 

Kauffman, 1984; Lowery et al., 2018). A restricted connection between the WIS and the 
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open ocean affected oceanic conditions relative to the GCP and may have influenced biotic 

provinces. 

 
Figure 3. A) Previously defined subprovinces and northernmost extent of tropical/subtropical faunas 
during transgressions, modified from Kauffman (1984). B) Occurrence map of data from this study. 
C) Global and regional sea levels curves with major transgressive-regressive events. D) Complete 
database 360 km network with Kauffman’s subprovinces indicated. A modified version of this figure 
with additional biostratigraphic and isotopic data is available as Appendix A, Figure S30. 
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Biotic provinces are geographic regions characterized by distinct ecological associations. 

Previous studies of biotic provinces using fossil materials have: attributed them to major 

climatic regions (e.g., Kocsis et al., 2021), associated shifting provinces with sea level 

fluctuations (e.g., Kauffman, 1984), compared spatiotemporal influences on taxonomic 

association patterns (e.g., Kiel, 2017), and observed changes in provinciality relative to 

taxonomic loss (e.g., Kocsis et al., 2018). 

Quantifying biogeographic patterns can therefore shed light on macroecology over 

evolutionary time. Kauffman (1984) described three significant biotic incursions during 

transgressions based on changes to WIS subprovinces (Figure 3A). These subprovinces, 

determined using percent endemism of mollusk records from 1960-80s, are: (1) Northern 

Interior; (2) Southern Interior; and (3) Central Interior Subprovince (Kauffman 1984). 

Another identified faunal province was the Gulf and Atlantic Coastal Plain Subprovince. 

However, delineation of these paleobiogeographic provinces and their changes through time 

were based on qualitative assemblages limited by the available fossil data (Kauffman, 1984 

and references therein). Analysis of WIS provinciality using current fossil data will improve 

the validity of these interpretations. 

Network modeling analysis of faunal provinces is a novel approach (Kiel 2016, 2017) 

to quantifying faunal similarity across spatiotemporal units. Using a well-vetted database of 

over 33,000 fossil occurrences from the WIS and the GCP we used this approach to 

reevaluate WIS provinciality in the Campanian (CAM) and Maastrichtian (MAA) stages of 

the Late Cretaceous. While previous studies have used network analysis to explore 

provincialism in fossil taxa (Kiel, 2016, 2017; Rojas et al., 2021; Muscente et al., 2018; 

Kocsis et al., 2018, 2021), none have applied the technique to a geochemically unique, 
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restricted ocean system, characterized by over 100 years of dedicated sampling. This research 

may also inform general patterns of Earth-Life interaction over long timescales (e.g., the 

nature of faunal variation through time and space) and serve as a foundation for future 

WIS/GCP investigations. 

Methods 

Records of marine invertebrates from the CAM and MAA of the WIS and the GCP 

were compiled from digital databases, including the Paleobiology Database (08/25/21 

download) and iDigBio (08/30/21 download), and records from museum collections at the 

Black Hills Institute, USGS-Denver (Cobban Collection), and the Mackenzie (2007)thesis 

database (Table S1). Taxa were binned into the Early, Middle, and Late CAM and the Early 

and Late MAA stages (Figure 3B and S1). Localities were converted to paleocoordinates 

within a 60 km grid for analysis; nodes with fewer than three unique taxa were removed. The 

vetted database was analyzed prior to network modeling to determine fundamental sources of 

taxonomic and spatial bias which should be considered during network interpretations 

(Appendix A, Table S2, Figure S2-S9). 

Faunal provinces were delimited for substages individually and for the complete 

database (combined substages) using threshold weighted networks (Keil, 2016) in the 

EDENetworks software (Appendix A, Table S3 & Figure S10-S20; Moalic et al., 2012; 

Kivelä et al., 2015; Kiel, 2016). Network components which disconnect at and below a 

network-specific threshold identified by EDENetworks known as the percolation point are 

interpreted as representing distinct “community” groups (Newman 2012) or faunal provinces. 

General patterns in network connections across all substages together were assessed using 
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coarser spatial aggregations of the data and minor network components were assessed for 

spatiotemporal consistency (Appendix A, Figure S21–S23).  

Average network clustering coefficient (CC) values, indicative of network 

organization ranging from 0 (no cluster) to 1 (fully connected cluster), were compared with a 

null model of randomized networks to determine if the topology was more or less clustered 

than a random distribution (Table S4; Kiel, 2016). Link weights, or the degree of 

dissimilarity between nodes, and betweenness centrality (BC), a measure of the degree to 

which a node acts as a geographic connection between regions, were averaged by 5° 

paleolatitudinal bins for comparison (Appendix A, Figure S24-S26). Link weights were also 

binned by geographic distance to test for correlation between faunal dissimilarity and 

distance (Appendix A, Table S5 & Figure S27). Given latitudinal overlap between the WIS 

and GCP, around 35°N, we separated the data by major components and evaluated link 

similarity between the two regions independently (Appendix A, Table S6 & Figure S28). 

Sampling bias influence on network communication was assessed by binning average 

betweenness centrality (BCave), by generic richness as a proxy for sampling effort (Appendix 

A, Figure S25) and using minimum spanning trees (MST; Appendix A, Figure S29). 

Additional explanation of methods is provided in the supplementary materials.2 

Results and Discussion 

WIS vs. GCP Provinces 

 The presence of a single faunal province in the WIS is supported by all network 

permutations and subsequent analysis (Figure 4). This province is geographically consistent 

with the WIS (Appendix A, Figure S21), is maintained at all threshold levels (Appendix A,  
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Figure 4. Substage and complete database networks at percolation points. 
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Figure S10-15), does not contain spatiotemporally consistent minor components (Appendix 

A, Figure S22-23) and is faunally distinct from GCP grid cells (Appendix A, Figure S21). 

For MAA substages, which contain more GCP fossil occurrences relative to the CAM, a 

well-supported GCP faunal province was observed (Figure 4, S16-S19). This distinct GCP 

province is supported by the full database network as well (Appendix A, Figure S20). 

Network randomization comparisons demonstrated that these results are non-random and 

likely reflect biogeographic patterns (Table S4; average CC >3 stand. dev. from mean). They 

do not result from sampling bias based on comparisons with spatial cluster analysis 

(Appendix A, Figure S5-S9), BC comparisons (Appendix A, Figure S25), and MST 

(Appendix A, Table S7-S12). Thus, our quantitative analysis does not support the existence 

of WIS biotic subprovinces but does support a distinct GCP province in the MAA (Kauffman 

1984). 

The WIS and GCP provinces may have resulted from geochemical and bathymetric 

changes across the transcontinental arch (TA), which may have acted as a bathymetric high 

between the regions (He et al., 2005; Lowery et al., 2018 and references therein), rather than 

by latitudinal factors (e.g., temperature). Geochemical studies have found evidence for non-

normal marine conditions in the WIS, including low salinity or brackish conditions (Cochran 

et al., 2003; Dennis et al., 2013; Fricke et al., 2010) and lower δ18O of seawater than the open 

ocean (Fricke et al. 2010; Petersen et al. 2016). There is also evidence for stratification 

within the WIS during the CAM and MAA, produced by mixing water masses (He et al. 

2005; Lowery et al. 2018). These factors could have created a habitat barrier between the 

GCP and WIS, facilitating provincialism. The WIS fauna may have been more tolerant of 

non-normal conditions, supported by a lack of abundant reef-building and reef-associated 
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taxa (Gill and Cobban 1966b; Caldwell 1968; Kauffman 1984; Kauffman and Caldwell 

1993). 

The lack of a latitudinally-defined provinces within the WIS is unsurprising given a 

flattened latitudinal temperature gradient in the Cretaceous greenhouse (Mannion et al., 

2014; Super et al., 2018). However, evidence for different water mass distributions and 

salinity/temperature gradients have long been associated with latitude and faunal gradients in 

the WIS (Fisher et al., 1994; Slingerland et al., 1996; Longman et al., 1998; Elderbak and 

Leckie, 2016; Lowery et al., 2018). During much of the study interval, a cool-water mass 

circulated south through the WIS from the northern connection with Greenland and northern 

Europe, interacting with the northward moving warm water mass from the Tethys, forming a 

counterclockwise gyre (Steel et al., 2012; Lowery et al., 2018). However, no evidence for 

provinces matching these water bodies was observed in our results. Instead, this gyre could 

have contributed to faunal homogenization despite ocean stratification or abiotic gradients. 

Further, the unique geochemical nature of the basin may have encouraged WIS incumbents 

and generalists to flourish over specialists or invaders. Dataset differences, including 

improved sampling and the lack of foraminifera in this study, may have hindered observation 

of Kauffman’s (1984) subprovinces, though this requires further investigation. Indeed, the 

potential for along-seaway variation within specific WIS faunas, as observed by previous 

authors (i.e., Sohl, 1971; Jeletzky, 1971, etc.), was not tested by this analysis which tests for 

discrete clusters of faunal assemblages. 

Decreasing Faunal Similarity and Sea Level Fall 

Network dissimilarity values increase through time (i.e., decreasing similarity), 

particularly in the WIS province, based on average link values per substage (Table 3); in 
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contrast, the GCP province shows increasing similarity through the MAA (Table S6). 

Bathymetric and geochemical changes coincide with these shifts, suggesting a potential 

relationship. The WIS gyre that may have promoted mixing of water masses, WIS dispersal, 

and mixing with the GCP (Fisher et al. 1994; Slingerland et al. 1996; Longman et al. 1998; 

Elderbak and Leckie 2016). However, falling sea levels likely impacted circulation patterns, 

water mass dynamics, and geochemical and environmental gradients (e.g., non-normal 

salinity, nutrient load) that would limit WIS migration and thereby insulate existing fauna 

from outside invasion (Cochran et al. 2003b; He et al. 2005; Fricke et al. 2010; Petersen et al. 

2016). Shallowing along the TA may also have created a geographic barrier between the WIS 

and GCP as early as the Late CAM (Lehman, 1987; Lowery et al., 2018 and references 

therein).  

Table 3. Average/median link weights within substages and between different substages. 95% 
confidence intervals (CI) of the mean indicated. 

 Substages Link Weight Comparisons (Mean ± 95% CI/Median) 
Substage Link 

Weights              
(Mean ± 95% 
CI/Median) 

Lower 
Camp. Middle Camp. Upper Camp. Lower Maastr. Upper Maastr. 

Lower Camp.  
(0.78 ± 

0.004/0.80) 
- 0.83 ± 

0.002/0.84 
0.85 ± 

0.002/0.86 
0.87 ± 

0.003/0.88 
0.96 ± 

0.001/0.98 

Middle Camp.  
(0.79 ± 

0.002/0.82) 
- - 0.83 ± 

0.001/0.85 
0.86 ± 

0.002/0.88 
0.95 ± 

0.001/0.96 

Upper Camp.  
(0.82 ± 

0.002/0.84) 
- - - 0.86 ± 

0.002/0.88 
0.95 ± 

0.001/0.96 

Lower Maastr.  
(0.83 ± 

0.004/0.86) 
- - - - 0.93 ± 

0.003/0.95 

Upper Maastr.  
(0.85 ± 

0.006/0.95) 
- - - - - 
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Dampened circulation and salinity gradients may have also caused declining faunal 

similarity within the WIS alone, as evidenced by lower average faunal similarity within each 

substage network across time (Table S6). Below ~1000 km faunal similarity comparisons 

show weak correlation between distance and link weight (Figure 5 and S28), indicating only 

slight decline in similarity over distance within a substage, despite decreasing similarity 

though time. Sedimentary evidence for tidal circulation influences through at least the 

Middle and Late CAM (Steel et al. 2012) suggest continued circulation and mixing that could 

promote homogenization. Distance comparisons for the WIS and GCP components 

individually produced similar patterns (Figure S28), indicating that these results are not basin 

specific. Additional study of WIS oceanography is needed to confidently assess the potential 

influence of Late Campanian oceanographic changes. 

 
Figure 5. Plots of average link weights within geographic distance bins (WGS84 ellipsoid). Bars 
indicate 95% confidence intervals. 
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While faunal connectivity within the WIS and between the WIS and GCP decreased 

over time, MAA average link weights show that GCP faunal similarity increased (Appendix 

A, Table S6; Figure S21). As an longitudinally broad, open-ocean facing province, the GCP 

would have experienced normal marine conditions, less latitudinal variation, and the 

potential for long-distance dispersal, potentially supporting faunal similarity across the MAA 

by reducing the endemism. Within the WIS province, from the Early CAM to the Early 

MAA, network connections remained strong between substages across time, indicating weak 

faunal turnover in the region even as faunal similarity decreased, until the Late MAA when 

the province disconnects from previous iterations (Figure 2D). The Late MAA disconnect 

with previous iterations matches expectations of oceanic changes that decrease dispersal and 

habitat homogenization for WIS taxa (Elderbak & Leckie, 2016; Steel et al., 2012; Fisher et 

al., 1994; Longman et al., 1998; Slingerland et al., 1996). 

Latitudinal Patterns 

Results do not support latitude-based faunal provinces, despite changes in network 

metrics across latitudes (Figure 4). However, the region of highest average faunal similarity 

(HFS) shifts 5° north from the 40-45°N bin to the 45-50°N bin across the R9 regressive event 

at the end of the Middle CAM (Kauffman & Caldwell, 1993; Figure 2C). Prior to the R9 

regression, sea levels were more stable and the HFS region was fixed (Appendix A, Figure 

S26). This HFS shift appears to reflect biogeographic patterns and is unlikely to be a product 

of data distributions given that faunal similarity compared to geodesic distance are relatively 

stable over <1,000 km (Figure 5). The geodesic distance covered by a 5° latitudinal bin in 

this region is approximately 555 km and the distance covered by two bins is approximately 

1,110 km. Thus, similarity begins to strongly decrease over distances greater than 10° 



 

23 
 

latitude. This suggests regional control on network metrics. If faunal similarity only 

depended on distance, then similarity should show a uniform pattern across latitude rather 

than the observed peaks and dips (Appendix A, Figure S25). Therefore, a HFS region that 

shifts parallel to sea level likely represents a distinct biogeographical component influenced 

by oceanographic changes. 

Similarly, although the region of highest BCave (indicates highest faunal 

communication between regions) primarily occupies northern latitudes (40-60°N), it shifts 

south from the Middle to Late CAM (Appendix A, Figure S25). This region of highest 

communication may indicate intermediate habitat (Kiel 2016), uniformity of conditions (i.e., 

water depth), or currents which transport taxa long distances (Lowery et al., 2018). The latter 

would support larval migration of marine taxa, especially those with long planktonic larval 

stages (Nickols et al. 2015). However, more specific bathymetric, geochemical, and 

sedimentological evidence for habitat conditions is sorely needed, but outside the scope of 

this analysis. The region of highest BCave may also correspond to Kauffman’s (1984) mixing 

zone. Despite shifts in highest BCave, all networks show a minor or major peak in the central 

WIS (45-50°N; Appendix A, Figure S25) corresponding with a region of mixing water 

masses (Lowery et al. 2018). This supports oceanographic or habitat controls on fauna in the 

WIS. 

Conclusions 

 Network analysis of the Late Cretaceous WIS and GCP supports a single 

biogeographic province throughout the CAM and an independent GCP province in the MAA 

with decreasing faunal connectivity through time. This contrasts with Kauffman’s (1984) 

original division of the region into four “subprovinces.” Decreasing faunal similarity over the 
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study interval is consistent with oceanographic and geochemical changes that restricted the 

WIS and exacerbated non-normal marine conditions. Though no overarching relationship 

between faunal associations and latitude are observed, regional movement of HFS and 

highest BCave suggest environmental changes (i.e., falling sea levels and associated effects) 

were the primary control on biogeographic connections. We provide further evidence for the 

utility of network modeling to quantitatively characterize paleobiogeographic trends on 

evolutionary timescales relative to major environmental shifts, an important analytical tool in 

modern tests of marine biogeographic change under predicted global change. 
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Abstract.  

Functional diversity is a complex aspect of macroecology that may respond to 

environmental changes differently than taxonomic diversity across space and time. To 

investigate spatiotemporal patterns of functional diversity over geologic time we utilize 

paleontological data from the environmentally diverse North American Western Interior 

Seaway and Gulf Coastal Plain through the Campanian and Maastrichtian geologic stages. 

Invertebrate taxa are classified into functional entities (FEs) based on their motility, 

attachment style, tiering level, and feeding strategy and analyzed across four levels of spatial 

aggregation over five geologic sub-stages. Network models of functional assemblages are 

also used to assess functional biogeographic patterns. Results indicate that regional 

functional diversity follows previously observed global trends of stability across geologic 

intervals and supports high functional redundancy (i.e., packing of genera) within specific 

FEs, buffing against loss. Unlike present-day taxa, however, the number of Late Cretaceous 

marine FEs do not decline across a latitudinal temperature gradient. Biogeographic patterns 

in functional diversity are instead associated with paleo-oceanographic conditions and the 
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resulting habitat differences between the Western Interior Seaway and Golf Coastal Plain. 

These analyses provide insight into the spatiotemporal consistency of functional diversity 

patterns relevant to understanding current, ancient, and future Earth-life dynamics. 

Introduction 

The relationship between functional diversity and environmental change, while 

relatively poorly understood, is relevant to current, ancient, and future Earth systems. Given 

a relationship does exist between the two, how abiotic factors influence functional diversity 

under different circumstances has not been well constrained and functional diversity has 

previously been found to respond differently across space and time relative to environmental 

influences (Foster and Twitchett 2014; Dunhill et al. 2018; Edie et al. 2018; Schumm et al. 

2019; Pimiento et al. 2020). For example, functional diversity seems to be little affected 

during mass extinction events despite severe loss of taxonomic diversity (Foster and 

Twitchett 2014; Dunhill et al. 2018; Edie et al. 2018). This is potentially due to functional 

redundancy, which is defined as the number of taxa within a given functional entity (FE) 

(Pimiento et al. 2020). In recent ecosystems functional diversity trends are negatively 

correlated with the latitudinal diversity gradient (LDG), that is, decreasing at greater 

latitudes, regardless of functional redundancy (Edie et al. 2018; Schumm et al. 2019; Floyd et 

al. 2020; Forsyth and Gilbert 2021). Identifying factors that may influence these patterns and 

how they differ during background intervals (versus mass extinction intervals) in the 

geologic record are relevant to a better understanding of macroecology on evolutionary 

timescales. Paleontological data is uniquely able to assess patterns of functional diversity 

across both space and time (Roopnarine and Angielczyk 2015; Muscente et al. 2018; Foster 

et al. 2020). 
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The latest Cretaceous (~ 85 – 66 Ma, Campanian-Maastrichtian) Western Interior 

Seaway (WIS) and Gulf Coastal Plain (GCP) of North America are characterized by a 

spatiotemporally dense fossil record of marine invertebrate assemblages living across a 45-

degree latitudinal gradient (Caldwell 1974; Kauffman 1984; Slattery et al. 2013). Fluctuating 

sea level across the interval impacted marine geochemistry, water mass distributions, and 

biogeography (Figure 6) (e.g., He et al., 2005; Kauffman, 1984; Lowery et al., 2018; Purcell 

et al., 2023, etc.) (Figure 6). The WIS itself was characterized by an asymmetrical foreland 

basin geometry with a deep, siliciclastic foredeep to the west, a latitudinally intermittent 

central forebulge, and a broad, shallow carbonate shelf to the east (Slattery et al. 2013; Minor 

et al. 2022). Furthermore, variable restriction between the WIS and GCP promoted distinct 

habitat conditions between the regions, wherein the WIS experienced episodes of a stratified, 

potentially brackish, and geochemically distinct restricted seaway system and the GCP 

represented a normal-marine, unrestricted shoreline (Fisher et al. 1994; Slingerland et al. 

1996; Longman et al. 1998; Elderbak and Leckie 2016; Lowery et al. 2018; Dwyer 2019). 

The Late Cretaceous WIS and GCP are therefore excellent regions in which to explore the 

spatiotemporal patterns of functional diversity and their relationship to macroecological 

patterns. 

The Late Cretaceous faunal record in these regions is characterized by abiotic change and 

background levels of biotic turnover. Functional entities are globally stable across the end-

Cretaceous mass extinction (KPg) itself (e.g., Edie et al., 2018), but none have yet analyzed 

regional changes in functional diversity during background intervals of the Late Cretaceous. 

Moreover, latitudinal changes in functional diversity have been poorly studied in the fossil 

record. Though present-day functional diversity declines as latitude increases (Edie et al. 
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2018; Schumm et al. 2019), the latest Cretaceous is characterized by a relatively flat 

latitudinal  

 

Figure 6. Campanian to Maastrichtian data locations. 

temperature gradient that may present a more uniform distribution of FEs compared to today 

(Mannion et al. 2012, 2014; Super et al. 2018). Dramatic oceanographic differences between 

the GCP and the WIS have additionally been found to correspond with marine provinciality 

and altered biotic connectivity (Purcell et al. 2023). Regional differences in abiotic factors 

may therefore result in distinct Late Cretaceous patterns in the structure of functional 
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assemblages, or the types of FEs present in a specific time and place (Schumm et al. 2019). 

Global functional diversity analyses, which have previously been the focus of most paleo-FE 

studies, may also introduce longitudinal variations that overprint regional patterns (Mannion 

et al. 2014; Schumm et al. 2019). Generally, the influence of data aggregation across space 

on functional diversity analyses has not been rigorously tested. By focusing on a single, well-

studied region such as the WIS/GCP, we can address these aspects of the biogeography FEs 

over time.  

Thus, we use a well-vetted fossil occurrence database representing approximately 18 

million years of an ecologically diverse suite of marine invertebrates, to observe how 

functional diversity relates to major environmental shifts in space and time within the WIS 

and adjacent GCP. We hypothesize that 1) functional richness and evenness are stable across 

space and within a single temporal interval, and across the minor sea level oscillations and 

environmental changes present during the Campanian and Maastrichtian; 2) the WIS and 

GCP lack notable biogeographic differences in specific FEs, despite previously observed 

taxonomic provinciality and habitat differences; 3) functional redundancy is associated with 

FE stability, both in terms of specific FEs presence and absence and in terms of FE richness 

and evenness, across space/time, and 4) these patterns are observable at several levels spatial 

aggregation. By documenting spatiotemporal FE stability we can contribute to a better 

understanding of how functional diversity connects with FE stability, habitat- and dispersal-

based provinciality, and illustrate the influence of spatial resolution on functional diversity 

analyses. We demonstrate that packing of species and genera into FEs leads to stability of 

functional guild structure throughout the study interval. A major sea level regression and 

disconnect of the WIS and GCP leads to paleoenvironmental change and regional extirpation 
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of FEs. Thus, our research better illuminates the biogeography of functional diversity and its 

structure during a background interval that leads into a major taxonomic depletion event: the 

end-Cretaceous mass extinction (Edie et al. 2018). This work informs both modern and 

ancient understanding of functional diversity dynamics and its relationship to macroecology. 

Methods 

Fossil occurrence data consists of marine invertebrates from WIS and GCP 

Campanian and Maastrichtian strata compiled from digital databases, including the 

Paleobiology Database (08/25/21 download) and iDigBio (08/30/21 download), and records 

from museum collections at the Black Hills Institute, USGS William A. Cobban Cretaceous 

Ammonite Collection, and a thesis database (Mackenzie 2007). All data were vetted to 

remove incomplete, erroneous, or poorly spatially and temporally resolved occurrences and 

to update taxonomic nomenclature. Stratigraphic ages were vetted to the substage level based 

on stratigraphic and biozone information or from literature sources (see Purcell et al. 2023). 

Spatial resolution that could not be confirmed to less than 30km of uncertainty were removed 

to avoid spatial ambiguity and records east of -80° longitude and south of 23° latitude were 

removed to avoid records from outside the WIS/GCP region. 

The final dataset of 32,864 fossil occurrences includes a total of 552 genera of 

bivalves, cephalopods, gastropods, echinoderms, corals, brachiopods, bryozoans, and 

crustaceans (see Purcell et al. 2023 for additional details and references used in dataset 

vetting). These groups represent a wide variety of lifestyle modes both within clades and 

between distinct phylogenetic groups. They are furthermore important components in both 

modern and ancient shallow marine ecosystems and therefore excellent test subjects for 

ecological analysis. Taxa were binned into the Early, Middle, and Late Campanian and the 
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Early and Late Maastrichtian substages based on stratigraphic information. Tests confirming 

signal over noise in this dataset were previously published in Purcell et al. (2023). 

Genera were classified into functional entities (FEs) based on 1) mobility and 

attachment style, 2) lifestyle mode or tiering level, and 3) feeding strategy following 

Bambach et al. (2007;see also Bush & Bambach, 2011) (Table 4). Characteristics were assigned 

based on extant relatives or higher order traits (i.e., Family or Order level traits, see excel file 

Table S36) (i.e., Family or Order level traits; e.g., Aberhan & Kiessling, 2015; Edie et al., 

2018; Foster et al., 2020; Foster & Twitchett, 2014; Sessa et al., 2012). Taxa were grouped 

into FEs using the mFD package in R (Magneville et al. 2022). Functional diversity metrics 

were calculated using five levels of spatial aggregation, or units: regional (WIS+GCP, unit 

size 1), basinal (WIS and GCP, separately, unit size 2), 5° paleolatitudinal bins (unit size 3), 

360km2 grid cells (unit size 4), and 60km2 grid cells (unit size 5). These units assess how 

functional diversity metrics change across space, test sensitivity to spatial binning, and allow 

assessment of patterns that may emerge at different spatiotemporal scales of analysis. 

Aggregations in 60km2 and 360km2 grid cells (referred to as “nodes” in Kiel 2017) are 

intended to capture local paleo-“community” structure, though they do not necessarily scale 

to present-day ecological communities or homogeneous environments. Unit locations were 

estimated based on the average location of occurrences they contain, converted to 

paleocoordinates using the chonosphere package in R (Kocsis and Raja 2020).  
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Table 4. Table of the FE present in the database and their code values. 

Mobility level Code Description 

Mobile, unattached MU Includes actively mobile, freely mobile, slow moving, fast 
moving, and creeping unattached taxa. 

Facultatively mobile, 
unattached FU Includes facultatively mobile and unattached taxa. 

Facultatively mobile, attached FA Includes facultatively mobile and swimming taxa with some 
form of attachment (byssate, pedicle, or cementing) 

Immobile, unattached IU Includes free-lying, boring taxa. 

Immobile, attached IA Includes stationary and attached (cemented, epibiont, byssate) 
taxa. 

Feeding mechanism Code Description 

Suspension feeding S 
Includes all forms of micro-feeding from the water column (i.e., 
filter feeding, suspension feeding, etc.). Various diet types are 
included in this strategy (i.e., carnivore) but it is non-specific. 

Deposit feeding D 

Includes deposit feeding in the subsurface or at the sediment 
surface and detritivore feeding. Some taxa have mixed 
deposit/suspension feeding but just classified as deposit 
feeding. 

Herbivore / grazing H Includes all forms of herbivorous feeding, including grazing. 

Carnivore / predatory C 
Includes all macro-carnivorous and predatory feeding 
strategies. Implies active feeding but includes carnivorous 
scavenging as well. 

Omnivore O 
Includes feeding strategies that incorporate both carnivorous 
and herbivorous feeding. If multiple differing feeding modes 
were attributed to a taxon, including omnivore, omnivore listed. 

Photosymbiotic P Includes photosymbiotic taxa. 

Chemosymbiotic CH Includes chemosymbiotic taxa, including chemosymbiotic 
deposit feeders. 

Tiering Level/Lifestyle Mode Code Description 

Boring B Includes boring taxa and nestlers. 

Epifaunal E 

Includes all taxa living above the sediment-water interface 
(non-burrowing) that do not have upward mobility in the water 
column (includes all epifaunal levels, i.e., intermediate 
epifaunal) 

Semi-infaunal PI Includes all taxa which living partially beneath the sediment 
surface and taxa which both burrow and live epifaunally. 

Infaunal I Includes all taxa living below the sediment surface, either 
shallow, deep, or at uncertain infaunal depths 

Nektonic N Includes all taxa living freely in the water column, well above 
the sediment surface. 

Nekto-benthic NB 
Includes all taxa that live in the water column close to the 
sediment surface or those with uncertainty as to which level of 
the water column they occupy. 
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Generic richness, functional richness (αF; the number of unique FEs), and functional 

evenness were calculated for each spatiotemporal level (i.e., five time bins at five spatial 

scales). Functional evenness, or the relative abundance of genera within FEs, was calculated 

using Simpson’s Measure of Evenness (SME). SME is calculated by normalizing the inverse 

Simpson’s Diversity Index by the number of total FE present: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆’𝑆𝑆 𝐷𝐷𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷 𝐼𝐼𝑆𝑆𝐼𝐼𝐷𝐷𝐼𝐼 (𝐷𝐷) =  
1

∑𝑆𝑆𝑖𝑖2
  (𝐸𝐸𝐸𝐸 1) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆′𝑆𝑆 𝑆𝑆𝐷𝐷𝑚𝑚𝑆𝑆𝑚𝑚𝐷𝐷𝐷𝐷 𝑆𝑆𝑜𝑜 𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝑆𝑆 =  
𝐷𝐷
𝑆𝑆

  (𝐸𝐸𝐸𝐸 2) 

Where pi represents the proportion of genera in a given FE and S is the total number of FEs 

present. Values closer to 0 indicate lower evenness and higher values indicate higher 

evenness (SME has no upper limit); no value is assigned for units containing a single FE. 

Similarly, SME cannot be calculated if all FEs contain a single genus. In both cases, units 

were given SME values of 0. SME is weighted by the abundance or dominance of a specific 

FE and was chosen because it is less sensitive to taxon-richness and provides an estimate of 

the generic abundance distribution (Magurran, 2003; see SI for discussion of other metrics 

tested). Richness and evenness values were compared between temporally and spatially 

adjacent units by calculating the proportional change in αF and SME values.  

Fundamental sources of bias in the database were tested using several methods. The 

relationship between generic and functional richness was analyzed by correlating the two 

variables based on 60km unit aggregates. Bootstrapping of 60km unit αF values based on the 

number of unique genera were performed to determine how αF varies with generic richness 

(αG). Additionally, SQS subsampling (Alroy 2010) of the FEs in each substage was 
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performed to find the generic sample size estimates appropriate for capturing the majority of 

FEs (see SI page 2). 

Functional entity assemblages within spatiotemporal units were compared below the 

regional level using network modeling in the EDENetworks software (Moalic et al. 2012; 

Kivelä et al. 2015) following methods outlined in Kiel (2017) and Purcell et al. (2023). 

EDENetworks for presence-absence data utilizes Bray-Curtis dissimilarity values to assign 

weights to the links between each unit in the network, allowing connections to be viewed at 

different threshold values of dissimilarity. Betweenness centrality, a measure of the degree to 

which a unit acts as a geographic connection between regions, was also calculated (Kivelä et 

al., 2015). Network topology patterns at the percolation point were used to determine if FE 

assemblages were provincial (i.e., geographically controlled) given the assumption that 

network components represent distinct biologically-based “community” groups (Newman 

2012). The percolation point depicts the threshold at which all components in a network are 

connected without forming a single component (Kivelä et al. 2015). The specific FEs and 

associated PBDB paleoenvironmental characteristics of occurrences within components 

found at and just below percolation were qualitatively assessed (Appendix B, Table S35). To 

determine if the WIS and GCP differ in αF, functional diversity, and FEs present, the two 

basins (unit size 2) were analyzed separately using all previously described methods. 

Differences in the three most common clades (cephalopods, bivalves, and gastropods) were 

also compared. Other clades made up too few of the occurrences to form useful networks. 

See supplementary materials for details regarding methods and results (SI, page 23). 
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Results 

Relationship Between Functional and Generic Diversity 

 Generic and functional richness have a strong positive correlation that loses strength 

at approximately more than 100 genera (Appendix B, Figure S1). Generic richness (αG), 

previously considered a proxy for sampling bias in this database (Purcell et al., 2023), is 

therefore not representative of potential αF when more than ~100 genera are present. 

Furthermore, Bootstrap analysis of 60km units indicate standard error of αF in units has a 

positive correlation with unit αF that depreciates above approximately 20 FEs (Appendix B, 

Figure S3). This suggests that the distribution of genera in FEs becomes more variable (i.e., 

less even) when more than 20 FEs are present; that is, functional evenness should be more 

biased in units with < 20 FEs, while also poorly representing potential αF. However, SQS 

analysis of substages, which was used to determine what level of αG best captures the 

majority of common FEs, indicates that αG > 16 in the Campanian and αG > 18 in the 

Maastrichtian are likely to capture the most common FEs (Appendix B, Table S1). Therefore, 

spatiotemporal units with fewer than 100 unique genera are under-sampled relative to αF and 

functional evenness but units with more than 16 and 18 unique genera may reliably represent 

FE assemblages (paleo-“communities”) for the Campanian and Maastrichtian, respectively.  

All units containing less than 16 or 18 unique genera for the Campanian and 

Maastrichtian, respectively, were removed given that they are not considered to be 

representative of either FE assemblages or functional diversity metrics. This includes 67 out 

of 533 units at 60km (unit size 5), 80 out of 132 units at 360km (unit size 4) aggregated 

spatial resolution, and seven out of 32 paleolatitude bins (unit size 3). Removal of these 
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under-sampled units was not found to notably alter results at any level of aggregation. 

Figures and tables including all units regardless of generic richness are available in the SI. 

Substage-level Diversity:  

There are a total of 38 FEs in the database (Appendix B, Table S2): 30 each in the 

Early Campanian and the Middle Campanian, 33 in the Late Campanian, 35 in the Early 

Maastrichtian, and all 38 in the Late Maastrichtian, representative of 18 taxonomic classes 

(Table 4 & 5). Functional entities are overwhelmingly assigned at taxonomic levels below 

class. Regional αF, in unit size 1, is highly stable, rising only slightly (~6% to 10%) across 

any two substages while generic richness is more variable, rising across the Campanian, 

before falling between the Late Campanian and Early Maastrichtian and rising through the 

Late Maastrichtian (Figure 6A, Appendix B, Table S3). Functional evenness (SME) 

decreases 50% between the Middle and Late Campanian and fluctuates slightly across the 

other substages (Figure 6B). SME change only corresponds positively with generic richness 

in the Early to Middle Campanian while αF is stable (Appendix B, Table S3). 

Generic and FE diversity are furthermore disconnected through time. Only three FEs are 

added between the Middle to Late Campanian, despite the sharp increase in generic richness 

(81%) (Figure 8). Simultaneously, mobile unattached epifaunal carnivores (MU-E-C in 

Figure 4; composed of gastropods and crustaceans) rose in dominance from ~8% to ~30% in 

proportional generic richness, while facultatively mobile unattached infaunal suspension 

feeders (FU-I-SF in Figure 8; composed of bivalves) fell from 17% to 10% (Appendix B, 

Table S4). No other FE experienced a change in proportional generic diversity of more than 

5% across the interval. The few shifts in generic occupation of FEs caused functional 

evenness to decline sharply. Following the Late Campanian, MU-E-Cs remain dominant; 



 

37 
 

immobile attached epifaunal suspension feeders (IA-E-SF in Figure 8) and FU-I-SF, both 

previously the most diverse FEs, never again reach their former degree of dominance 

(Appendix B, Table S4). All other FEs have low proportional generic diversity throughout all 

five time bins (<9%). At any given substage no more than eight FEs are “gained”  

 
Figure 7. Line plots of substage values for A) generic richness (red, solid line) and functional 
richness (blue, dotted line) and B) generic richness (red, solid line) and SME (blue, dotted line). The 
left y-axis in all plots depicts generic richness values, while the right y-axis presents values for the 
other metric. Proportional change in values is denoted as percentages. Camp. = Campanian, Maastr. = 
Maastrichtian. 

  



 

38 
 

Table 5. List of taxonomic classes and the FE they represent. See Table S36 for details on genera. 
Asterisks denote FEs represented by a single class. 

FE Class FE Class 
IA-E-P Anthozoa IA-B-SF Demospongea 

IA-E-SF Anthozoa IA-E-SF Demospongea 
MU-PI-C Asteroidea MU-E-H Echinoidea 
MU-N-C Bivalvia MU-E-O Echinoidea 
*FU-I-C Bivalvia *MU-PI-D Echinoidea 

*FU-I-CH Bivalvia MU-I-D Echinoidea 
*MU-I-CH Bivalvia MU-E-C Gastropoda 
*FA-I-D Bivalvia MU-PI-C Gastropoda 
*FU-I-D Bivalvia MU-I-C Gastropoda 
MU-I-D Bivalvia *FU-E-H Gastropoda 
IA-E-P Bivalvia MU-E-H Gastropoda 

*IA-PI-P Bivalvia *FU-PI-H Gastropoda 
*IU-PI-P Bivalvia *MU-PI-H Gastropoda 

*FU-B-SF Bivalvia MU-E-O Gastropoda 
IA-B-SF Bivalvia FA-E-SF Gastropoda 
*IU-B-SF Bivalvia FU-E-SF Gastropoda 
FA-I-SF Bivalvia *MU-E-SF Gastropoda 

*FU-I-SF Bivalvia IA-E-SF Gymnolaemata 
*IU-I-SF Bivalvia IA-E-SF Hexanauplia 
FA-E-SF Bivalvia MU-E-O Homarus 
FU-E-SF Bivalvia IA-E-SF Hydrozoa 
IA-E-SF Bivalvia FA-I-SF Lingulata 

*IU-E-SF Bivalvia MU-E-C Malacostraca 
*FA-PI-SF Bivalvia MU-I-C Malacostraca 
*IA-PI-SF Bivalvia MU-I-D Malacostraca 
*MU-I-SF Bivalvia *MU-E-D Malacostraca 
*IA-I-SF Bivalvia MU-E-O Malacostraca 
IA-E-SF Bryozoa MU-E-C Merostomata 
MU-N-C Cephalopoda IA-E-SF Rhynchonellata 

*MU-NB-C Cephalopoda MU-I-D Scaphopoda 
MU-N-SF Cephalopoda IA-E-SF Stenolaemata 

*MU-NB-SF Cephalopoda IA-E-SF Thecostraca 
IA-E-SF Crinoidea     
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Figure 8. Plot of FE relative generic richness through time. Circle size indicates relative generic richness within each substage, color indicates 
a proportional increase (red) greater than 0.05, decrease (blue) greater than 0.05, change less than 0.05 (orange) from the previous substage. 
Grey indicates a value cannot be compared with a previous substage. Green rectangles denote FEs only found in the GCP and red squares 
denote FEs missing from the Late Maastrichtian WIS. Gastropod silhouettes denote gastropod-type FEs; larger green silhouettes indicate 
herbivorous FEs absent in the Late Maastrichtian 360km WIS network component. FEs that are present in every 60km unit just below 
percolation in each substage are denoted with an asterisk (GCP component) and a cross (WIS component). See Table 4 for FE naming key.
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(i.e., not observed in the previous interval but currently present) and only two FEs are “lost” 

(i.e., previously observed but missing in the current interval). All FEs lost/gained have very 

low proportional generic diversity (Figure 8). The two FEs that are unobserved in a substage 

but present in the preceding and succeeding substages are facultatively unattached epifaunal 

herbivores (FU-E-H) and immobile attached epifaunal photosymbionts (IA-E-P), in the 

Middle Campanian and Late Maastrichtian, respectively (Figure 8, Appendix B, Table S4). 

While both FEs are among the least diverse FEs within the substage prior to their apparent 

extirpation (each represented by a single genus), in the succeeding substage they are not the 

least diverse and are represented by these same genera as well as either one (FU-E-H) or two 

(IA-E-P) additional genera. 

WIS vs GCP Influence 

The WIS, analyzed independently (unit size 2), has fairly stable αF (4% and 7% 

increase) in the Campanian, but declines from the Late Campanian through the Maastrichtian 

(13-30% decline; Appendix B, Figure S4-S5, Table 6). WIS generic richness parallels this 

pattern with greater proportional change. In the GCP generic and functional richness increase 

throughout Appendix B, (Figure S6-S7), particularly between the Middle and Late 

Campanian, indicating that the GCP data strongly influences richness trends in the overall 

database. WIS and GCP SME change inversely to generic richness, even when αF is stable or 

increases (Appendix B, Table S6 and S8).  

 Of the eight FEs “gained” across the study interval, five are only found in the GCP 

(Figure 8): three photosymbionts, one boring suspension feeder, and an attached infaunal 

deposit feeder. No photosymbionts and only one boring FE are present in the WIS at any 
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time bin. Sampling is not a reasonable driver of FE differences between the WIS and GCP. 

All WIS  

Table 6. Table of regional generic richness, functional richness (αf), and functional evenness (SME) 
values in each substage. Values for the overall database are given first, followed by the values 
observed in the WIS and then GCP. Camp. = Campanian, Maastr. = Maastrichtian. 

  Generic Richness Functional Richness (αf) 
Functional Evenness 

(SME) 

Early Camp. 143 (108/47) 30 (28/14) 0.48 (0.53/0.61) 
Mid Camp. 182 (151/65) 30 (29/22) 0.50 (0.51/0.67) 
Late Camp. 329 (199/213) 33 (31/29) 0.25 (0.41/0.21) 

Early Maastr. 300 (119/248) 35 (27/34) 0.28 (0.51/0.26) 
Late Maastr. 323 (42/309) 38 (19/38) 0.23 (0.78/0.22) 

Mean 255.4 (123.8/176.4) 33.2 (26.8/27.4) 0.35 (0.55/0.39) 
Median 300 (119/213) 33 (28/29) 0.28 (0.51/0.26) 

S.D. 86.60 (57.79/115.3) 3.42 (4.60/9.58) 0.13 (0.14/0.23) 
 

substages have more than adequate sampling to produce representative FE assemblages (i.e., 

> 16 and 18 unique genera for the Campanian and Maastrichtian, respectively), and all but 

the Late Maastrichtian WIS dataset have adequate generic richness to capture potential αF 

(i.e., >100 unique genera). No FEs are completely lost between the Early Campanian and 

Late Maastrichtian in the GCP, however, several FEs are absent in the Campanian of the 

GCP where generic richness is frequently <100; this suggests that these absent FEs may be 

caused by poor sampling (Appendix B, Figure S7; Table 6 and S10). That said, generic 

richness in all GCP substages is adequate to capture the 20 most common FEs and the FEs 

with the highest overall proportional generic diversity providing a baseline community 

structure throughout the study interval.  
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Class Influences. 

Cephalopods represent 85 unique genera and 13,170 fossil occurrences. They are 

characterized by only four FEs, all of them mobile and unattached, nektonic or nektobenthic, 

and carnivorous or suspension feeders (Table 5). All four FEs are present throughout the 

study interval and are fairly even (<16% SME change) despite changes to cephalopod 

generic richness (5-54% generic richness change; Appendix B, Figure S8-S9, Table S12). 

Bivalves make up 184 unique genera, 14,085 fossil occurrences, and represent 24 FEs in the 

database. Bivalve generic and functional richness generally increase across the study interval, 

but SME values are more stable, indicating even dispersal of additional genera to bivalve FEs 

(Appendix B, Figure S10-S11). Bivalve SME only changes notably between the Early and 

Middle Campanian, decreasing by ~23% while generic diversity increases by 33% and αF 

increases by 6% (Appendix B, Table S14). Gastropods, which make up 184 unique genera, 

4664 fossil occurrences, and represent 11 FEs, are less stable than bivalves or cephalopods 

(Appendix B, Figure S12-S13). The number of gastropod genera rises sharply between the 

Middle and Late Campanian (408%), resulting in a sharp increase in αF (57%), and a clear 

decline in SME (66%; Appendix B, Figure S12, Table S16). 

Functional versus Generic Diversity Across Distance and Spatial Scales: 

Paleolatitudinal Bins (unit size 3). 

When the data are aggregated by paleolatitudinal bins and compared between 

substages, patterns of proportional change in all metrics are dissimilar from the regional 

analysis (unit size 1) except between the Middle and Late Campanian (Table 7 and 8; 

Appendix B, Figure S15). Proportional change across paleolatitudes bins (i.e., LDG 

comparison) indicates generally decreasing generic and functional richness and increasing  
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Figure 9. Beeswarm plot of proportional change in A) generic richness, B) functional richness (αf), 
and C) functional evenness (SME). Values reflect change in metric between adjacent paleolatitude for 
each substage. Camp. = Campanian, Maastr. = Maastrichtian. 
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Table 7. Table of paleolatitude bin generic richness, functional richness (αf), and functional evenness 
(SME) and mean, median, and standard deviation values for each substage. NA value indicate no 
value measured for that unit in that substage. LC = Early Campanian, MC = Middle Campanian, UM 
= Late Campanian, LM = Early Maastrichtian, UM = Late Maastrichtian. 

 Generic Richness Functional Richness (αf) Functional Evenness (SME) 
 EC MC LC EM LM EC. MC LC EM LM EC. MC LC EM LM 

30-
35°N 11 NA 14 210 238 4 NA 5 32 37 1.1

5 NA 0.8
3 

0.2
6 

0.2
7 

35-
40°N 41 65 142 155 271 14 22 28 30 36 0.5

7 
0.6
7 

0.4
2 

0.3
8 

0.2
1 

40-
45°N 14 40 129 19 3 7 20 18 10 2 1.0

0 
0.7
8 

0.1
5 

0.8
6 

1.5
0 

45-
50°N 67 134 149 109 15 22 28 29 27 8 0.5

6 
0.5
6 

0.5
1 

0.5
1 

0.7
7 

50-
55°N 59 70 119 48 27 22 23 27 16 15 0.7

1 
0.6
6 

0.4
3 

0.7
8 

1.0
6 

55-
60°N 37 27 87 18 16 17 16 25 9 9 0.8

7 
0.7
8 

0.6
0 

1.0
0 

1.2
1 

60-
65°N 5 1 7 NA NA 5 1 4 NA NA 0.0

0 
0.0
0 

0.8
8 NA NA 

Mean 33 56 92 93 95 13 18 19 21 18 0.6
9 

0.5
8 

0.5
4 

0.6
3 

0.8
4 

Median 37 53 119 79 22 14 21 25 22 12 0.7
1 

0.6
7 

0.5
1 

0.6
5 

0.9
2 

S.D. 24.
3 

45.
8 

59.
4 

78.
6 124 7.7 9.4 10.

8 
10.
3 

15.
0 

0.3
7 

0.2
9 

0.2
5 

0.2
9 

0.5
2 

 

Table 8. Summary statistics for proportional change in generic richness, functional richness (αf), and 
functional evenness (SME) for paleolatitude bins across adjacent substages. Camp. = Campanian, 
Maastr. = Maastrichtian. Values with less than the SQS sample estimate have been removed from 
these summary statistics. 

  

Low Camp. - Mid 
Camp. 

Mid. Camp. - Up. 
Camp. 

Up. Camp. - Low 
Maastr. 

Low Maastr. - 
Up. Maastr. 

G
en

er
ic

 
R

ic
hn

es
s Mean 0.38 1.29 -0.48 -0.23 

Median 0.39 1.18 -0.60 -0.27 
SD 0.54 0.93 0.39 0.62 

Fu
nc

tio
na

l 
R

ic
hn

es
s (

α f
) 

Mean 0.21 0.19 -0.30 -0.20 

Median 0.16 0.17 -0.41 -0.03 

SD 0.28 0.25 0.29 0.44 

Fu
nc

tio
na

l 
E

ve
nn

es
s (

SM
E

) 

Mean 0.00 -0.37 1.23 0.24 

Median -0.03 -0.35 0.66 0.28 

SD 0.12 0.27 2.02 0.41 
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evenness across paleolatitude from low to high latitudes, except between the 40-45°N to 45-

50°N bins where richness increases and evenness decreases in all substages (Figure 9). 

However, these patterns are considered to be strongly influenced by sampling bias, as will be 

discussed more below. 

360km and 60km Units (unit size 4). 

Temporal patterns apparent at the substage and paleolatitudinal bin level are present but 

dampened at higher spatial resolutions (360km and 60km units; Figure 10, Appendix B, 

Figures S18-19; Table S30 and S32). Proportional changes in generic and functional richness 

between 360km and 60km units are not well supported by linear regression but indicate that 

the two values are poorly correlated across distance in the Campanian and positively 

correlated (i.e., increasing with increased distance) in the Maastrichtian (Appendix B, Figure 

S20-S27). Proportional changes in 60km and 360km units SME values across distance are 

negatively correlated in all substages except in the Early Campanian 360km units where 

SME is slightly positively correlated with distance (Appendix B, Figure S22 and S26). Thus, 

SME decreases across distance in most substages and, regardless of spatial resolution, agrees 

with assumptions about spatial autocorrelation and previous clustering assessments of the 

database (Purcell et al., 2023). Functional richness only increases with distance in the 

Maastrichtian, most likely due to the addition of GCP units with high generic richness 

(Appendix B, Figure S1). 
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Figure 10. Box and whisker plots of proportional change between substages for generic richness, 
functional richness (αf), and functional evenness (SME) at the 360km and 60km unit scales. Triangles 
indicate mean values. Camp. = Campanian, Maastr. = Maastrichtian. 
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Network models of Functional Assemblages: 

Network models indicate spatiotemporal units are well connected overall across the 

study region, though regional connectivity diminishes with higher spatial resolution (as 

expected) and is less robust in the Late Maastrichtian. Paleolatitude bin networks (unit size 3) 

show strong connections between both adjacent and nonadjacent paleolatitudes for all 

substages, except in bins with poor sampling (i.e., <SQS threshold; Figure 11). 360km and 

60km unit networks (unit sizes 4 and 5, respectively) do not separate into distinct 

components in any substage except the Late Maastrichtian (Appendix B, Figure S28-S29, 12-

14). The 360km Middle Campanian network has two geographically overlapping 

components, represented by a functionally diverse assemblage and a depauperate assemblage 

of only mobile unattached nektobenthic suspension feeders (MU-NB-SF in Figure 8; 

Appendix B, Table S33; Figure S28). However, these components are not observed in the 

60km Middle Campanian unit network (Figure 12); this suggests that data aggregation 

influences network modeling results methodologically (e.g., via percolation points) and may 

not relate directly to biological associations. The 60km Early Maastrichtian network also has 

distinct geographically overlapping components representing functionally diverse and 

functionally depauperate assemblages, most likely due to sampling differences between units 

(Figure 12; Appendix B, Table S34). 
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Figure 11. Network models across paleolatitude bins. Colored points represent the paleolatitude (cool 
= higher paleolatitude, warm = lower paleolatitude). Size indicates betweenness centrality. Line color 
and thickness indicate degree of similarity (thinner/thicker lines = greater similarity). TH =Threshold. 
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Figure 12. Campanian 60km unit networks of FE assemblages plotted without any geographic 
coordinates (left) and based on paleo-coordinates (right). Unit size represents Betweenness Centrality. 
Unit colors indicate paleolatitude as in Fig. 8 (warmer = low paleolatitudes and cooler = higher 
paleolatitudes). TH = Threshold.
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Figure 13. Early Maastrichtian 60km unit networks plotted by FE assemblages (left) and based on paleo-coordinates (right). Unit colors of 
upper networks indicate paleolatitude (warmer = lower paleolatitudes and cooler = higher paleolatitudes). Lower networks are colored by 
groups of highly similar units or components. TH = Threshold. 
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Figure 14. Late Maastrichtian 60km unit networks plotted without any geographic coordinates (left) and based on paleo-coordinates (right). 
Unit colors of upper networks indicate paleolatitude (warm = southern; cool = northern). Lower networks are colored by component. TH = 
Threshold.
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In the Late Maastrichtian 360km and 60km unit networks, however, separate 

components at percolation occupy mainly either the WIS or GCP, indicating provincialism 

(Figure 14, S29; see Purcell et al. 2023 for more on provincialism). These components 

represent a functionally diverse GCP assemblage whose units all share five FEs and a 

functionally less diverse WIS assemblage (Appendix B, Table S33 and S34). When all 

360km substage units are modeled together, strong links persist between all regions and 

substages regardless of distinct components observed in individual substage networks 

(Appendix B, Figure S30). WIS sampling is less extensive in the Late Maastrichtian than in 

the GCP, which may explain these differences. 

Differentiation in network components based on dominantly siliciclastic and 

carbonaceous sediments is potentially present in 60km unit networks (Appendix B, Table 

S35), but a more thorough investigation beyond the scope of this paper would be necessary to 

determine its prevalence. Minimum Bray-Curtis dissimilarity values between units increase 

with distance in all substages except in the 360km Early Campanian network (Appendix B, 

Figure S31-S32), indicating spatial autocorrelation and diminishing FE similarity across 

distance, as expected. Class-level analysis of 60km networks indicates bivalves and 

cephalopods form strong, non-provincial network connections (Appendix B, Figure S33-S36) 

but gastropods form provincial components given their WIS-dominated Campanian 

distribution and GCP-dominated Maastrichtian distribution (Appendix B, Figure S37-S38). 

Three of the five FEs shared by all units in the Late Maastrichtian 60km unit network GCP 

component are represented by gastropods (Figure 8; Appendix B, Table S34). However, 

there is strong evidence that this is once again a product of sampling bias due to differential 
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preservation of taxonomically and ecologically informative features (Smith 2001; Smith et al. 

2001; Dean et al. 2019). 

Discussion 

Several previous studies looking at functional diversity across major environmental 

perturbations have suggested that functional ecological signals are more robust to 

disturbances such as mass extinctions (Foster and Twitchett 2014; Dunhill et al. 2018; Edie 

et al. 2018; Pimiento et al. 2020), but are not stable across latitudes (Edie et al. 2018; 

Schumm et al. 2019). Here we looked at the dynamics of functional entities (FEs) during a 

background (non-mass extinction) interval that experienced environmental changes in the 

form of sea level oscillations and their effects on ocean circulation in a restricted 

epicontinental seaway (WIS) as well as the adjacent normal-marine shelf (GCP). Our results 

indicate that functional diversity is indeed stable through time despite environmental shifts, 

and moreover, is stable across a 35° latitudinal gradient. Both patterns can be explained 

through functional redundancy found previously to produce stability despite environmental 

perturbations (Pimiento et al., 2020). The WIS and GCP are also functionally distinct, a 

characteristic of oceanic basin environmental differences previously observed by Edie et al. 

(2018). Our results suggest, overall, that paleontological data in deep time is relevant and 

useful for spatiotemporal comparisons of functional trends, but that aspects of data 

aggregation and type, such as class-level diversity should be taken into account.  

Functional Diversity in Classes:  

Analyses of FD trends within specific molluscan classes showed some taxon-

specificity, which should be noted for future research as a potential source of bias (e.g., 

especially among gastropods). In most substages, additional bivalve genera are distributed 
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into FEs evenly, resulting in <7% SME change despite more dramatic generic and functional 

richness fluctuations (Appendix B, Figure S11; Table S14). Cephalopods, on the other hand, 

are functionally stable but dramatic changes to cephalopod generic richness resulted in 

changes to functional evenness (<16%) that was not necessarily inverse to generic richness as 

would be expected (Appendix B, Figure S8, Table S12). Finally, gastropod richness and 

evenness values fluctuated strongly across all substages relative to other mollusks (Appendix 

B, Figure S13). Gastropod generic diversity increased sharply between the Middle and Late 

Campanian (408%), resulting in rising αF (57%) and a clear decline in SME (66%). This 

parallels changes to database metrics not observed in either cephalopod or bivalve data alone, 

suggesting that gastropod patterns strongly influenced the overall results. These results show 

that trends in functional diversity observed within single taxonomic classes may poorly 

represent other clades or overall paleo-“community” structure. Thus, ideal datasets should 

include diverse taxonomic sampling to best observe broad paleo-“community” structure 

through space and time. However, it should be noted that ecological and sampling 

identification biases in specific clades, such as WIS gastropods, may also skew results. Close 

attention should therefore be given to the diversity of different higher level taxonomic groups 

in a dataset. Network models using the different mollusk classes also indicate that ecological 

differences can influence these results. Bivalves have high evenness, resulting in more 

consistent representation of FE within high-resolution spatial units that increases network 

connectivity while gastropods have higher FE diversity (αF) and low evenness, which could 

generate distinct network components. However, determining the specific causes are beyond 

the scope of this analyses. 
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Functional Stability through Time: 

Our analyses overall indicate temporal stability in functional diversity across 

background intervals, despite changes to the environment, supporting hypothesis 1. Results 

show that αF increases only slightly across the study interval, despite more rigorous 

(fluctuating) changes to patterns of generic richness. No FEs are lost, and only a few are 

“gained” between any two substages. FEs gained/lost between individual substages are rare, 

with low proportional generic richness, throughout their temporal range of existence. Given 

their rarity, timing of loss/gain may be influenced by taphonomic or sampling biases (e.g., 

the Signor-Lipps effect; (Signor and Lipps 1982; Nawrot et al. 2018; Dean et al. 2019). 

Moreover, previous analyses support that any loss of FEs likely reflects (brief) regional 

extirpation versus a global pattern of extinction, which is also observed here (Foster and 

Twitchett 2014; Dunhill et al. 2018; Edie et al. 2018; Pimiento et al. 2020). For example, 

immobile attached epifaunal photosymbionts (IA-E-P) is represented by only the genus 

Titanosarcolites in the Late Campanian, is unobserved in the Early Maastrichtian, potentially 

indicating extirpation, and is subsequently represented by Titanosarcolites as well as both 

Dictyaraea and Gyropleura in the Late Maastrichtian. Therefore, IA-E-P is most likely either 

present in the Early Maastrichtian, though unsampled, or only briefly absent due to the short-

lived extirpation of Titanosarcolites. Paleolatitude bins and 60/360km units are less 

functionally stable, but this is likely due to spatial resolution and sampling: reduced 

geographic bin size often results in fewer than 100 genera/unit, which results in control of αF 

and functional evenness by generic richness rather than ecology (Appendix B, Figure S1 and 

S3). Unsurprisingly, functional evenness is higher and more stable at higher spatial 

resolutions across time, which demonstrates a limit within spatial resolution to adequately 
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capture the full range of FEs present, or the distribution of genera within them. Thus, 

functional diversity trends are not necessarily consistent at all spatial scales, refuting 

hypothesis 4, though further discussion of the utility of observations made using different 

spatial resolutions is made below. This is an important finding in a field where higher 

resolution is typically considered more “real,” with the implication being that there is a 

specific spatial resolution for plausibly reconstructing paleo-“communities.” Determining 

whether this “best” resolution is generalizable or case-specific will take continued analyses 

that include tests of spatial sensitivity across different time periods and habitats. 

A Flat Latitudinal Functional Diversity Gradient: 

Our analysis shows that the Late Cretaceous WIS + GCP region lack a latitudinal 

functional diversity gradient signal; this confirms hypothesis 1 in part, which predicted that 

functional diversity is stable across space, and contradicts previous studies of latitudinal 

functional diversity gradients in the Recent (Edie et al., 2018; Schumm et al., 2019). At face 

value, both generic and functional richness decline between adjacent paleolatitude bins from 

low to high latitude but few bins contain sufficient unique genera (i.e., >100) to adequately 

represent “real” functional diversity (Table 7). The influence of true diversity change cannot 

be confidently separated from sampling bias. Paleolatitude bin networks are consistently 

well-connected regardless of degree of paleolatitude bin separation spatially, and both 360km 

and 60km unit networks lack latitudinally distinct components, indicating similar functional 

assemblages (Figure 12 & 13). Even taken at face value, paleolatitudinal patterns would 

indicate diversity peaks in mid-latitudes of the study region, potentially due to sampling bias 

such as is present in current diversity studies (i.e., Menegotto & Rangel, 2018). Mid-latitude 

peaks in diversity, even when accounting for sampling bias, have been observed for 
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Cretaceous terrestrial fauna potentially resulting from landmass distributions (Mannion et al. 

2012); these mid-latitude peaks may therefore be representative of shifting WIS basin 

geometries, as can be observed in the data distribution of this study (Figure 6). 

There is, furthermore, poor evidence for a global Late Cretaceous LDG in the 

literature once sampling bias has been taken into account (Huang et al. 2014; Mannion et al. 

2014; Brodie and Mannion 2022). In our WIS+GCP data, functional diversity metrics do not 

change consistently from south to north among bins with sufficient sampling (>100 GR) and 

in the Late Campanian, where paleolatitude bins have >84 genera from 35° to 60°N, αF 

declines inconsistently by a total of ~12%, losing only three FEs. This contrasts sharply with 

the dramatic decline in αF observed by Schumm and colleagues for present-day bivalves 

across the same 25° gradient (Schumm et al., 2019) (Figure 6), and also conflicts with LDG 

patterns observed in present-day birds showing decreased αF at higher latitudes in parallel 

with generic richness (Edie et al., 2018; Schumm et al., 2019). Changes in functional 

diversity across latitude furthermore do not form consistent nested subsets of FEs (Table. 

S24-28), as is observed in the latitudinal gradient of today (Schumm et al., 2019). This 

suggests that FEs are not lost systematically from some maximum αF assemblage, but instead 

the specific FE vary across latitudinal space via turnover. 

This suggests that the lack of change in functional diversity across latitude is a 

distinct pattern of the Late Cretaceous compared to today, or at least one common to 

Greenhouse climate regimes in Earth history (Huang et al. 2014; Brodie and Mannion 2022). 

A flat Late Cretaceous latitudinal temperature gradient documented for the study area could 

have promoted reduced environmental disparity across latitude, thereby fostering functional 

stability (Huber et al. 1995; Mannion et al. 2012). A flat temperature gradient is supported by 
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the observation that terrestrial diversity in the Late Cretaceous correlates with landmass 

distributions rather than climate gradients  (Baron, 1989; Poulsen, 2010; Mannion et al., 

2012; Nicholson et al., 2016). The latitudinally extensive distribution of the WIS basin and 

its unique oceanographic conditions, including non-normal marine conditions such as lower 

salinity and periodic vertical stratification, as well as mixing via counterclockwise gyre 

throughout the Late Cretaceous (Fisher et al. 1994; Slingerland et al. 1996; Leckie et al. 

1998; Longman et al. 1998; Steel et al. 2012; Lowery et al. 2018), may contribute to marine 

invertebrate taxonomic stability despite 25° of geographic distance. The oceanographic 

conditions throughout the WIS that lead to a breakdown or lack of development of a 

latitudinal diversity gradient may also have promoted functional homogenization and marine 

invertebrate stability in functional diversity. 

Provincialism in Functional Assemblages: 

 The WIS and GCP regions are functionally distinct and evolve towards independent 

provinces as habitat differences become exacerbated through time, conflicting with our 

second hypothesis of stability between regions. Five FEs are absent in the WIS which are 

present in the GCP when sampling intensities are sufficient, including photosymbiotic and 

boring taxa consistent with previous studies that observed few reef-associated taxa in the 

WIS (Gill and Cobban 1966b; Sohl 1967; Caldwell 1968; Kauffman 1984; Kauffman and 

Caldwell 1993). While these unoccupied FEs are consistently rare in the GCP, their absence 

over approximately 18 My suggests that the WIS is less functionally diverse than the GCP, 

most likely due to differences in their ocean environment (i.e., restricted epicontinental sea 

versus open-ocean facing shelf environment; Caldwell, 1968; Gill & Cobban, 1966; 

Kauffman, 1984; Kauffman & Caldwell, 1993; Sohl, 1967; Purcell et al., in press) (Figure 6). 
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Basinal differences like these have been observed in oceans today as well, resulting in 

functional turnover and distinct FE assemblages in different regional basins (Schumm et al. 

2019). Low salinity conditions in present-day oceans have also been associated with poor 

development and survival of photosynthetic corals and bivalves (Soo and Todd 2014; Aguilar 

et al. 2019); the non-normal salinity and stratification of the WIS (Cochran et al. 2003a; 

Fricke et al. 2010; Petersen et al. 2016) may have thus inhibited the survival of 

photosymbionts and other reef-associated taxa (Kauffman 1984; Kauffman and Caldwell 

1993).  

Only the Late Maastrichtian networks show strong basin provincialism (Figure 14 

and S29), suggesting higher spatial resolution comparisons only detect geographic FE 

differences when sea levels fell dramatically in the Maastrichtian. This provincialism is 

driven by taxonomic differences, particularly among gastropods, between the two regions, 

consistent with observations by Sohl (1967) among others (Figure 8). Furthermore, most FEs 

extirpated from the Late Maastrichtian WIS were found there in previous intervals, especially 

gastropod-type FEs (Sohl 1967) (Appendix B, Figure S5). Of the 11 possible gastropod-type 

FEs, all are present in at least two earlier substages of the WIS, but only six are present in the 

Late Maastrichtian WIS, where only one of which is herbivorous (Figure 8; Appendix B, 

Table S32 and S33). Only gastropods show clear network provincialism when molluscan 

clades were analyzed independently (Appendix B, Figure S37-S38). Even when considering 

all taxa together, WIS richness values declined (-13% αF) and SME increased (+23% SME), 

between the Late Campanian and Early Maastrichtian, and from the Early to Late 

Maastrichtian following the T9 transgression (-30% αF, +54% SME; Figure 6 and S4). These 

patterns are consistent with the timing of sea level fall during the Late Campanian that 
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exacerbated water mass differences and promoted taxonomic provincialism either through 

habitat change or restrictions to taxon dispersal (Figure 6; Purcell et al., 2023). Increasingly 

non-normal marine conditions likely stressed WIS taxa and promoted their extirpation 

(Cochran et al. 2003b; He et al. 2005; Fricke et al. 2010; Petersen et al. 2016). Lack of 

functional redundancy plausibly made these FEs susceptible to loss while more dominant 

FEs experienced only generic abundance decline or even increase (Figure 8 & S5). It should 

be noted, however, that network-based provincialism may also be influenced by sampling 

biases in gastropods in particular due to their lesser preservation potential and few diagnostic 

characters (Smith et al., 2001; Smith, 2001; Dean et al., 2019) 

Smaller scale differences between the specific FE assemblages present within the 

study region are most likely also due to habitat differences. Several studies have found that 

distinct habitats have not only unique levels of functional diversity, but also different 

collections of specific FEs within different assemblages (de Arruda Almeida et al. 2018; 

Sulemana et al. 2022; Walsh et al. 2022). In all intervals except the Early Campanian, 

maximum FE assemblage similarity (i.e., the similarity between the specific FEs present) 

weakly decreases across distance (Appendix B, Figure S31 and S32). WIS data analyzed 

independently follows a similar pattern in all substages. That the maximum similarity of FE 

assemblages at both unit size 4 and 5 resolutions decreases as distances increase, even within 

the WIS, suggests some spatial control on ecological relationships. Similar assemblages of 

FEs are more likely to occur close to one another, which suggests that habitat distributions 

influence functional community structure (Schumm et al. 2019), even within a region with a 

weak latitudinal temperature change. Future studies that assess the influence of abiotic 

variables on these patterns will potentially help determine their influence on this dataset, but 
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are beyond the scope of this paper. These patterns are furthermore not observed at spatial 

resolutions lower than 360km units (i.e., in latitudinal bins or regionally), thus, functional 

diversity does not appear stable across space at all scales, partially contradicting hypothesis 

1. This may in part be due to the way network models are created using a threshold method. 

Network connections are always present in nodes with shared FEs, so only a complete lack of 

similarity will cause the network to break down at high thresholds. As nodes become smaller, 

they contain fewer FEs, and therefore are either well connected (i.e., potentially containing 

the same common FEs) or have no similarity (i.e., containing rare, different FEs). This result 

adds support to the notion that not only does the study of functionally interesting paleo-

“communities” have a higher resolution limit, but also a lower resolution limit, which 

suggests spatial scale sensitivity analysis should be considered in studies like this. Future 

studies that focus on the influence of spatial unit size and similarity should be conducted to 

better determine how well networks such as these assess paleo-“communities” and the 

specific FEs that make them up, but that is beyond the scope of this analysis. 

Packing and Functional Redundancy: 

Spatiotemporal functional stability in these results is well explained based on 

functional redundancy, supporting hypothesis 3. When generic richness increased across time 

and space, taxa are preferentially “packed” into existing FEs before adding new FEs, 

promoting functional redundancy in specific FE categories (Figure 7). For example, between 

the Middle and Late Campanian, as generic richness increased by ~81% (147 new genera), αF 

only increased by ~10% (three new FEs). Across this interval, the most common FE, mobile 

unattached epifaunal carnivores (MU-E-C in Figure 8), rose in proportional generic diversity 

from ~8% to ~30% while the majority of other FEs fell in proportional generic diversity 
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(Figure 8). High functional redundancy in specific groups diminishes functional evenness, as 

can be seen throughout our results. Prior studies of functional diversity patterns across space 

have also found that functional richness increases with area, but evenness decreases, as 

specific FEs become more dominant (Karadimou et al. 2016). Moreover, this is observed in 

our data where functional evenness responds inversely to changes in generic richness in 

almost every comparison across either time or space, indicating preferential packing in 

specific FEs, such as mobile unattached epifaunal carnivores and facultatively mobile 

unattached infaunal suspension feeders (MU-E-C and FU-I-SF in Figure 8, respectively); 

these are generally the most dominant FEs in all substages and experience some of the most 

significant changes in proportional generic diversity(both positive and negative) (Figure 8). 

Differential packing of genera into FEs can be viewed either from the perspective of 

sampling bias (i.e., poorer sampled units are more even because the most common FEs are 

likely to be represented by the few genera present, but not likely to have many genera in each 

FE) or as an ecological phenomenon, wherein the primary ecological niches are filled first, 

and then those with greater resource availability are packed with more genera as diversity 

increases. The distinction between these two interpretations is not clear, and further research 

would be necessary to determine if these patterns represent ecological processes. 

Dominance of specific FEs is also consistent through time (Figure 8). Similar trends 

have been documented within other taxonomic groups, indicating that either some trait 

characteristics allow for greater subdivision or partitioning, or that some FEs have greater 

capacity for taxonomic diversity due to greater resource abundance (Halpern and Floeter 

2008; Oliveira et al. 2016; Schumm et al. 2019; Pimiento et al. 2020). In this case, mobile 

epifaunal carnivores, facultatively mobile infaunal suspension feeders, and immobile 
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attached epifaunal suspension feeders are the most dominant throughout all intervals (MU-E-

C, F-I-SF, and IA-E- SF in Figure 8, respectively). These groups may have contributed to 

greater resource partitioning and/or utilized resources that were more abundant in the 

WIS/GCP at this time. Among marine groups like bivalves, functional redundancy is most 

likely caused by greater resource availability rather than subdivision of trait space (Stanley 

2008; Schumm et al. 2019). In the case of MU-E-Cs, which are consistently dominant 

throughout the study interval, taxa would be less limited by spatial constraints since they are 

mobile and unattached, making prey abundance a more likely limiting factor. 

Functional redundancy appears to have buffered most FEs from complete loss even 

when generic diversity declined.  Loss of generic richness by 8.8% between the Late 

Campanian and Early Maastrichtian is associated with the loss of only one FE: immobile 

attached epifaunal photosymbionts (IA-E-P in Figure 8). This FE had very low proportional 

generic richness in the Late Campanian (0.3% of genera) and is spatially restricted to the 

GCP (Appendix B, Table S4). These results are consistent with patterns observed in mollusks 

across the Miocene to Pleistocene by Pimiento et al. (2020), wherein functional diversity was 

sustained despite taxonomic loss by the preferential extinction of functionally redundant 

hypothesized competitors. Functional evenness increased from the Late Campanian to the 

Early Maastrichtian (SME proportional increase of ~11%) as the relative generic richness of 

the most dominant FE (MU-E-C) declined from ~30% to ~26%. No other FE experienced 

such a large decrease. Thus, whereas functional redundancy in this dominant FE likely 

buffered it against regional extinction, less dominant FEs were generally more likely to be 

extirpated. Along these lines, unaffected, less dominant FEs were more likely buffered by 

reduced resource competition among fewer taxa (Pimiento et al. 2020). 



 

64 
 

Conclusions  

 Analysis of Campanian and Maastrichtian Western Interior Seaway (WIS) and Gulf 

Coastal Plain (GCP) of North American invertebrates indicates stability in functional 

richness (αF) and instability in functional evenness as additional genera are preferentially 

packed into a few dominant functional entities (FEs). Additionally, functional redundancy is 

found to buffer against FE loss across both time and space. Sampling biases these results at 

finer, and potentially very broad, spatial scales; although comparisons of FE assemblages 

across space are still viable given that they can capture the influence of habitat variability. 

The WIS and GCP region lack a present-day-style LDG, potentially caused by a flat 

latitudinal temperature gradient across these latitudes. Instead, the WIS and GCP regions 

display distinct FE assemblages and functional provinciality by the Late Maastrichtian which 

mirrors taxonomic provinciality with a lag time of one substage (Purcell et al. 2023). 

Provinciality is likely caused by oceanographic differences between the basins, particularly 

non-normal marine conditions in the WIS which were probably exacerbated by falling sea 

levels in the Maastrichtian. Non-normal marine conditions stress photosymbiotic taxa, 

including both corals and bivalves, boring taxa, and FEs occupied by herbivorous gastropods. 

This is observed herein by a decrease in generic richness or complete loss of these FEs in the 

WIS. The lag between provinces formed in the Early Maastrichtian for taxa but the Late 

Maastrichtian for FEs may suggest either a data-based difference between the two analyses, 

or an ecological pattern wherein functional diversity remained stable for a period of time 

after taxonomic turnover produced taxonomic provincialism. Functional diversity trends also 

differ by taxonomic class, discouraging future use of single clades for interpretation of 

spaciotemporal trends in assemblage (paleo-“community”) structure. That said, overall this 
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investigation provides evidence for FE paleo-“community” stasis during background 

intervals not characterized by a global climate upheaval (e.g., mass extinction events). 

Results also provide additional information regarding the stability of functional diversity and 

redundancy through changing environmental conditions and at different spatial scales, 

improving our understanding about long-term and broad-scale functional diversity dynamics 

for both current and ancient systems. 
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CHAPTER 4: TESTING FUNDAMENTAL NICHE 
CHARACTERISTICS USING HIGH-RESOLUTION LATE 

CREATACEOUS WESTERN INTERIOR MARINE INVERTEBRATES 

Abstract 

Ecological niche models (ENMs) are a common tool used to analyze various aspects of 

ecology, evolution, biotic distribution, and community structure by correlating environmental 

variables with species occurrence distributions based on the concept of a realized niche. 

Similarly, paleoENM analysis is applied to address these same questions across long 

intervals of Earth’s history and species’ durations. This enables the exploration of 

fundamental assumptions about the niche itself (e.g., whether it is stable over species’ 

durations and/or conserved across evolutionary lineages). However, very little analysis has 

been performed testing the fidelity of these methods under the unique biases in 

paleontological data. In particular, the influence of temporal aggregation and assumed 

ecological similitude between individual species and their genera have been poorly explored. 

Using a high-resolution, geographically widespread, deep time dataset, this paper analyzes 

the impacts of temporal resolution on paleoENM-based niche prediction, and performs basic 

tests of phylogenetic niche conservation between sister species of marine bivalves to draw 

conclusions about appropriate application of paleoENM analysis. The results of these tests 

indicate that great attention should be paid to environmental data sources, interpolation 

processes, and ecological interpretation when using fossil data, and that substage-level 

aggregation is unlikely to produce meaningful results within intervals characterized by highly 

variable environments. Furthermore, we find that individual species-level niche predictions 

do not match well that of the generic-level estimation. These inherent biases in fossil data 

likely give rise to researchers utilizing generalist taxa rather than specialists, resulting in 
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apparent ecological homogenization. However, our results also indicate that paleoENM is 

useful for assessing general aspects of ecological shift or differentiation and for analyzing 

niche abiotic habitat characteristics of functional entities, particularly when primary 

ecological characteristics and environmental factors are appropriately scaled.  

Introduction 

The ecological niche is a fundamental species’ characteristic that is frequently used to 

address macroecological and evolutionary questions (Brown 1995; Peterson et al. 2011). 

Although an ecological “niche” can be defined in many ways, here we use the Hutchinson 

niche: an n-dimensional hypervolume composed of environmental factors that allow a 

population to survive and reproduce in a given area (Hutchinson 1957; Peterson 2001, 2011; 

Soberón and Peterson 2005). Hutchinson divided niches into two forms: (1) fundamental 

niche (FN) – encompassing all abiotic factors necessary for survival and reproduction, and 

(2) realized niche (RN) – a subset of the FN wherein the FN is restricted by biotic 

interactions and dispersal capacity (Soberón and Peterson 2005; Peterson et al. 2011). Many 

modern studies have attempted to quantify the FN/RN to elucidate ecological and 

evolutionary concepts, including species’ life histories, biotic interactions, geographic range 

patterns, invasion potential, biotic response to environmental shifts, and extinction 

vulnerability (i.e., Adhikari et al., 2015; Benito Garzón et al., 2011; Liu et al., 2022; 

Lockwood et al., 2013; Peterson, 2003; Planas et al., 2014; Purcell & Stigall, 2021; Valencia-

Rodríguez et al., 2021; Varela et al., 2010; etc.). Given the wide variety of species, 

environments, and hypotheses being tested, each dataset is unique, making the identification 

of universal or generalizable “rules” of FN/RN interactions with evolutionary or ecological 

processes difficult to define or quantify comparatively.  
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The application of these techniques to the deep time fossil record adds additional 

dimensions, first and foremost the element of time, to using niche estimation to test 

macroevolutionary and macroecological hypotheses unique to paleontological data. Modern 

datasets usually involve higher spatial resolution, denser species occurrence data, can 

incorporate genome-based phylogenetic information, and use well-established climatic 

variables that can produce detailed estimation of niche dynamics (Peterson et al. 2011). In 

contrast, ecological niche analyses using deep time datasets have the advantage of using 

fossil and sedimentological data to compare long-term patterns of FN/RN not achievable in 

modern datasets (Maguire and Stigall 2009; Dudei and Stigall 2010; Malizia and Stigall 

2011; Brame and Stigall 2014; Saupe et al. 2014, 2015, 2019; Stigall 2014, Myers et al. 

2015b; Purcell and Stigall 2021). Given that species are known to survive on million-year 

(Myrs) timescales, the extension of these methods to deep time is imperative to truly 

understand how niche dynamics relate to evolutionary and ecological trajectories of species 

and clades.  

However, paleo-niche analyses must also consider the loss of spatiotemporal detail 

inherent in the geologic record (reviewed in Myers et al., 2015). Primarily, the process of 

sedimentation homogenizes both temporal and, to a lesser degree, spatial information. At 

best, geologic units may record 104 years of environmental information per centimeter within 

a single defined sedimentary layer (Schindel, 1980). Fine-scale analysis of ecology and 

environmental characteristics at less than this resolution is therefore rarely viable. In practice, 

most niche estimation in deep time relies on temporal aggregation at the geological substage 

to stage level (i.e., generally 100s-1000s kyrs). Moreover, temporal aggregation increases as 

the geographic scope of analyses gets larger – for example, when using regional or global 
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data, which is particularly important for “big data” paleobiological analyses so common 

today (e.g., Maguire and Stigall 2009; Saupe et al. 2019; Purcell and Stigall 2021). 

Therefore, while fossil analyses allow for long-term tests of niche dynamics and their 

relationship to macroevolutionary and macroecological process that are not possible using 

modern species, by necessity they assume either localized environmental stability across long 

time intervals or that long-term averages of environmental conditions are consistent with a 

species’ preferred habitat. 

Paleontological data is also biased both by the fossilization process itself which 

preserves hard-bodied taxa significantly more often than soft-bodied taxa (Kidwell and 

Flessa 1996), by the incomplete exposure of strata, and the erosion of exposed material 

(Antell et al. 2024). Spatial uncertainty, present in all datasets, requires that species’ 

occurrences be spatially thinned to a single occurrence per grid cell (already likely larger 

than in modern datasets). Given that fossil species’ occurrences, rarely extensive or dense to 

begin with, are often spatially clumped, spatial thinning typically leads to substantial 

reduction in occurrence observations (Shcheglovitova and Anderson 2013; Aiello-Lammens 

et al. 2015). For example, Purcell and Stigall (2021) used a spatial error of 30kms, based on 

the spatial error margin for the fossil taxa analyzed and linked to 30km geographic grid cell 

size used. This results in very few fossil species with sufficient distributions to perform 

robust paleo-niche analysis using popular methods, such as the Maxent algorithm (Phillips et 

al. 2006), often regarded as greater than five occurrences (Hernandez et al. 2006). To obtain 

sufficient occurrence numbers after spatial thinning, most paleo-niche analyses are restricted 

to genus-level comparisons, particularly in deep time (e.g., Brame & Stigall, 2014; Dudei & 

Stigall, 2010b; Hopkins et al., 2014; Maguire & Stigall, 2009; Malizia & Stigall, 2011b; 
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Myers et al., 2013; Nurnberg & Aberhan, 2013; Purcell & Stigall, 2021). How well a genus 

represents species-level ecological traits, however, is still debated (Hendricks et al. 2014). 

Unfortunately, very few datasets allow for the high-resolution, densely fossiliferous, 

and well document comparisons necessary to test these issues directly. How well temporally-

aggregated geological and paleontological information represents real-world biological 

phenomenon has yet to be well established. Even assuming that temporal resolution is not a 

factor in accurate niche estimation (e.g., if FNs are stable over species’ durations), niche 

characteristics may not be conserved between related species and at the genus-level, 

potentially resulting in less robust paleo-niche analyses. Given the advantages of using fossil 

data to assess overall community structure (Fara and Benton 2000; Finnegan and Droser 

2008), the relationship between environmental change and ecological response (Purcell and 

Stigall 2021), and various other macroecological questions (Myers et al. 2015), addressing 

these issues is vital to the production of accurate scientific study. 

Using a high-resolution sedimentary record with regionally correlated Western 

Interior Seaway (WIS) marine units and a well-vetted paleontological database representing 

approximately 17 million years of marine life, we tested fundamental aspects of niche 

estimation in deep time. By comparing niche overlap in a simplified environmental space, 

these data were used to address three main questions: 1) how temporal resolution influences 

niche estimation, 2) how well fossil data of phylogenetically related taxa (sister species) 

present phylogenetic niche conservation, and 3) how well the genus-level niche estimation 

conserves species-level niche characteristics. The results of these analysis inform the utility 

of paleo-niche estimation in deep time to test macroevolutionary and macroecological 

hypotheses. We provide best practices for more accurate paleo-niche estimation and 
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ultimately support the application of ecological niche modeling in the fossil record 

(paleoENM). 

Methods: 

 Our study used marine invertebrate fossil occurrence data from the North American 

WIS during the Campanian and Maastrichtian stages of the Late Cretaceous. Occurrence data 

was compiled from online records downloaded from the Paleobiology Database (08/25/21 

download) and iDigBio (08/30/21 download), and records from museum collections at the 

Black Hills Institute, the USGS-Washington Cobban Collection, and a thesis database 

(Mackenzie 2007). All data were vetted to remove incomplete, erroneous, or poorly 

spatiotemporally resolved occurrences and to update taxonomic nomenclature (see Purcell et 

al. 2023 for additional details and references used in dataset vetting). Stratigraphic ages were 

vetted to the biozone level based on stratigraphic and biozone information in the database 

itself or from literature sources (Cobban et al. 2006; Merewether and McKinney 2015), 

resulting in twelve temporal bins (Figure 15, Table 9). To remove spatial ambiguity, 

taxonomic occurrences with spatial resolution less than 30 km of uncertainty were removed. 

To include only WIS data, records east of -80° longitude and south of 31.6° latitude were 

removed (see Purcell et al., 2023).  

The final WIS dataset of 21,156 fossil occurrences includes a total of 279 genera of 

bivalves, cephalopods, gastropods, echinoderms, corals, brachiopods, bryozoans, and 

crustaceans (Figure 2). Tests confirming signal over noise in this dataset were previously 

published in Purcell et al. (2023). In the cleaned database, potential taxa for use in niche 

estimation were identified by greater than six fossil occurrences within at least one biozone 

interval. More than six fossil occurrences identified at the species-level was selected as an  
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Figure 15. Biostratigraphic chart showing collated biozone intervals; shading delineates each interval 
used in analyses (modified from Purcell et al. 2023). 
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arbitrarily threshold because it is slightly greater than the minimum value recommended for 

creating ecological niche models (ENMs) using the popular Maxent algorithm (Hernandez et 

al. 2006), while still providing a relatively relaxed threshold for sparce fossil data. Selected 

taxa were spatially thinned to the 30 km geographic grid cell size determined by allowed 

spatial uncertainty in occurrences. After spatial thinning, only the Inoceramus genus had 

sufficient species-level occurrences for phylogenetic niche conservation tests; in this case, 

seven Inoceramus species had six or more occurrences in at least one time interval. These 

were also evaluated with three “comparison taxa” species from the Ctena, Lucina, and 

Chlamys genera that had sufficient occurrences in most of the same biozone intervals (Table 

9). All ten bivalve species were used for analysis of temporal sensitivity. 
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Table 9. Summary of the number of species occurrences in each biozone interval. Note that some 
biozone intervals were not used for analysis, due to a lack of adequate species occurrence 
information. 
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INGROUP 
Inoceramus 

barabini           7     9       

Inoceramus 
convexus         8 7             

Inoceramus 
sagensis               15 11       

Inoceramus 
sublaevis         11 7             

Inoceramus 
oblongus                 9       

Inoceramus 
saskatchewanensis         9               

Inoceramus 
azerbaydjanensis     7                   

COMPARISON TAXA 
Chlamys 

nebrascensis           7     11 10     

Ctena  
imbricatula       10 7 8     11       

Lucina  
subundata           8   9         

 

In order to estimate environmental niches, 11 spatially continuous environmental layers were 

reconstructed based on sedimentary proxies, distance from shore, and distance from 

hydrothermal seep deposits (following Myers et al 2015). Stratigraphic data used to 

characterize environmental proxy variables were collected across WIS localities from 

literature sources, including theses and dissertations, published journal articles, and field 

guides (see SI for references). The sedimentary environmental proxy variables included: 

percent grain sizes in siliciclastic rocks (ranging from mud to coarse sand), percent 
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limestone, stratigraphic bedding style, bedding thickness, and degree of bioturbation (Table 

S28). Environmental layer values were averaged at individual localities based on three levels 

of temporal resolution: biozone, substage—Middle and Late Campanian, and stage—

Maastrichtian only. The Point Statistics tool and the Inverse Distance Weighting method in 

ArcGIS Pro was used to interpolate values at locations without sedimentary data and create a 

spatially continuous, smoothed set of raster layers with 30 km resolution. Raster layers for 

the distance-from-shore variable were created using paleo-shorelines published in previous 

works (Gill and Cobban 1973; Cobban et al. 1994; Roberts and Kirschbaum 1995; Slattery et 

al. 2013) and updated based on fossil localities and stratigraphic information from the current 

database. The distance-from-hydrothermal-seeps variable was based on the locations of 

individual or clusters of seeps published in various literature sources (see SI for details on 

sedimentary data collection, aggregation, and interpolation). Environmental layers were then 

intersected with outcrop masks to restrict continuous variables only to areas of potential 

fossil occurrence, thus reducing model overfitting. These were created using relevant Late 

Cretaceous outcrop polygons buffered an additional 30 km to allow for spatial error in the 

dataset (see SI for references). Outcrop masks were clipped to strandline boundaries for the 

appropriate interval and then used to clip raster data for each variable (Figure 16). This 

resulted in environmental layer characterization for the twelve biozone-level intervals, five 

substages (early, middle, and late Campanian, and the early and late Maastrichtian), and the 

Maastrichtian stage. Based on the taxa selected for analysis, only seven biozone intervals, the 

early and late Campanian, the early Maastrichtian, and the Maastrichtian were utilized in the 

following analyses. 
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Figure 16. Example interpolated maps within the twelve biozone intervals, representing percent mud. Cool colors indicate low percentage and 
warmer colors indicate high percentage of mud. Shorelines are denoted with black. Note that limitations in sedimentary data collected resulted 
in unmapped portions of the basin in some intervals. 
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Niche overlap was assessed using comparisons of observed occurrences within a 

simplified two-dimensional environmental principal components space (PCS) using the 

ecospat package in R (Broennimann et al. 2012; Di Cola et al. 2017).  Niche overlap is a 

metric describing the degree of similarity between two niches in environmental space (e-

space). When two temporal bins were compared, only shared, non-correlated environmental 

proxy variables were used (Appendix C, Figure S2 and S3, Table S7). Niche overlap is 

quantified using two metrics of similarity, a version of the Hellinger distance, known as the I 

statistic, and Schoener’s (1968) D statistic (Warran et al., 2008). These metrics range from 0 

to 1 (indicating zero to complete overlap, respectively) and were calculated by comparing 

smoothed kernel density functions representing taxonomic occupancy for taxon in each PCS 

grid cell (Broennimann et al. 2012; Di Cola et al. 2017). Both metrics produce similar results, 

though Schoener’s D has a greater ecological implication than the I statistic (see Warren et 

al., 2008 for discussion). In this analysis both metrics were calculated for comparison, but 

given the similarity of their results, only the D statistic is discussed in detail.  

Three other metrics of niche change were also calculated: niche stability, expansion, 

and unfilling (Di Cola et al. 2017). Niche stability is the amount of niche space within the 

PCS which is maintained or conserved between the two taxa being compared (or between the 

same taxon in two intervals). Niche unfilling and expansion are used to determine how a 

niche has changed either by taxa moving away from previously occupied e-space or 

expanding into new e-space, respectively. Both metrics are interpreted here as instability, 

given that these analyses do not assess alteration of the niche across time or space. 

Calculations of niche overlap, stability, unfilling, and expansion were performed using both 

the niche equivalency and niche similarity tests in ecospat to determine if values were greater 
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or less than would be expected at random (Di Cola et al. 2017). The niche equivalency test is 

used to determine if two distributions are more or less identical than the overlap of a random 

set of simulated distributions created using pooled data. The niche similarity test determines 

if the distributions are more or less similar than the overlap of a randomized subset of the 

data within analogous e-space (Di Cola et al. 2017). Niche equivalency is a very strict test of 

niche overlap, whereas niche similarity is a more lenient test and, in general, niche 

equivalency is rarely observed in nature (Warren et al. 2010; Aguirre-Gutiérrez et al. 2015). 

Data sensitivity to temporal resolution was analyzed by comparing niche overlap and 

stability between the highest resolution temporal bins (biozones) with lower resolution bins 

(substage and stage) for all ten bivalve species, resulting in a total of twenty-one 

comparisons. It was hypothesized that niche overlap and stability would fail to be statistically 

high between different temporal bin resolutions. Phylogenetic niche conservation (PNC) was 

analyzed by comparing niche overlap and stability between the species of Inoceramus 

bivalves (I. barabini, I. convexus, I. sagensis, I. sublaevis, I. saskatchewanensis, I. oblongus, 

and I. azerbaydjanensis). These analyses were contrasted with comparisons between 

Inoceramus species and three non-Inoceramus bivalve species (Ctena imbricatula, Lucina 

subundata, and Chlamys nebrascensis); in total, twenty-eight PNC comparisons were tested. 

It was hypothesized that niche overlap and stability would be statistically higher, and higher 

on average, between Inoceramus species than between Inoceramus species and non-

Inoceramus taxa. Finally, niche overlap and stability between Inoceramus species and the 

genus-level Inoceramus niche estimation were analyzed to assess how well the genus 

represents the environmental niche space of its component species, resulting in nine 

comparisons. Partitioning of the genus-level niche by individual species was visualized in R 
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using convex hulls in a two-dimensional PCS of shared, non-correlated environmental 

variables within a single biozone. 

Results 

Temporal bin Size Comparison 

 Table 10 provides niche overlap results for taxon comparisons at variable temporal 

resolution. Of the twenty-one temporal comparisons, three (~ 14.3%) had statistically more 

equivalent niche overlap, and only 7 (~33% had statistically high overlap similarity (see 

bolded D-values and stability scores in Table 10, S9, and S11). Niche stability overall in 

these comparisons averaged 72% (Table 11 and S8). Only five of the 21 comparisons (~ 

24%) had statistically higher niche stability values (Table 10). Unfilling and expansion were 

statistically lower than expected at random four and five times, respectively, in niche 

similarity tests (Appendix C, Table S11). A weak positive correlation between the interval 

duration ratio (biozone to substage and stage) and niche overlap furthermore indicates that as 

temporal aggregation increases niche overlap values decrease, as predicted (Figure 17). 

Statistically low niche values were calculated but given that their biological significance 

cannot be well constrained, they are not included in these results (see SI for details). 

 Non-analogous environmental conditions were common between temporal bins of 

different resolution (Appendix C, Figure S4). Furthermore, niche distributions were 

disjointed within PCS at the substage level for two of the eleven taxa-intervals assessed 

(Appendix C, Figure S4). Only one of the biozone-level niches had a disjointed distribution. 

These results suggest that non-analogous conditions are introduced by aggregating variables 

at lower temporal resolutions and the estimation of niche space occupancy for taxa within 

these environments is artifactually modified through this process. Furthermore, results of 
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overlap comparisons are somewhat unique to the species and intervals compared, suggesting 

that lower temporal resolution in these analyses do not produce consistent results across time 

interval sizes.  

Table 10. Results (p-value, alpha=0.5) of greater niche similarity tests for temporal resolution 
comparisons. Bolded values indicate statistical significance at the p-value < 0.05 level. 

Species Intervals Compared D value Stability 

C. nebrascensis B. baculus-B. grandis to lower Maastrichtian 0.001* 0.005* 
C. nebrascensis B. baculus-B. grandis to Maastrichtian 0.105 0.118 
I. sagensis B. compressus-B. cuneatus to upper Campanian 0.133 0.166 
I. azerbaydjanensis B. maclearni-B. sp. (smooth) to middle Campanian 0.165 0.161 
C. imbricatula B. perplexus-B. gregoryensis to middle Campanian 0.002* 0.191 
I. convexus B. reduncus-B. scotti to middle Campanian 0.243 0.171 
I. sublaevis B. reduncus-B. scotti to middle Campanian 0.105 0.003* 
I. saskatchewanensis B. reduncus-B. scotti to middle Campanian 0.028* 0.024* 
C. imbricatula B. reduncus-B. scotti to upper Campanian 0.102 0.239 

I. barabini B. reesidei-B. eliasi to upper Campanian 0.034 0.080 
I. sagensis B. reesidei-B. eliasi to upper Campanian 0.113 0.205 
I. oblongus B. reesidei-B. eliasi to upper Campanian 0.014* 0.191 
C. imbricatula B. reesidei-B. eliasi to upper Campanian 0.085 0.168 
L. subundata B. reesidei-B. eliasi to upper Campanian 0.337 0.139 
C. nebrascensis B. reesidei-B. eliasi to upper Campanian 0.040* 0.021* 
I. convexus D. nebrascense-E. jenneyi to upper Campanian 0.001* 0.022* 
I. barabini D. nebrascense-E. jenneyi to upper Campanian 0.059 0.133 
I. sublaevis D. nebrascense-E. jenneyi to upper Campanian 0.003* 0.126 
C. imbricatula D. nebrascense-E. jenneyi to upper Campanian 0.093 0.153 
L. subundata D. nebrascense-E. jenneyi to upper Campanian 0.076 0.133 
C. nebrascensis D. nebrascense-E. jenneyi to upper Campanian 0.003* 0.016* 
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Figure 17. Correlation plot of duration ratio to mean niche overlap (D value). 
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Table 11. Summary of niche overlap and stability results. Sbst. D = duration of the substage/stage; b. 
D. = duration of biozone interval; D Ratio = ratio of the biozone duration; N = number of 
comparisons. 

      D-value Stability 
 Intervals Compared sbst. D b. D. D Ratio N Mean Median Mean Median 

Temporal Bin Comparison 

Maastrichtian B. baculus-B. grandis to 
Maastrichtian 6.1 1.8 0.3 1 0.38 0.38 0.60 0.60 

Lower 
Maastrichtian 

B. baculus-B. grandis to lower 
Maastrichtian 2 1.8 0.9 1 0.78 0.78 0.82 0.82 

Upper 
Campanian 

B. reesidei-B. eliasi to upper 
Campanian 4.1 1.4 0.3 6 0.41 0.45 0.73 0.72 

B. compressus-B. cuneatus to 
upper Campanian 4.1 0.7 0.2 1 0.43 0.43 0.71 0.71 

D. nebrascense-E. jenneyi to 
upper Campanian 4.1 1.7 0.4 6 0.45 0.42 0.73 0.77 

B. reduncus-B. scotti to upper 
Campanian 4.1 1.3 0.3 4 0.38 0.37 0.82 0.95 

Middle 
Campanian 

B. perplexus-B. gregoryensis to 
middle Campanian 4.3 1.4 0.3 1 0.60 0.60 0.74 0.74 

B. maclearni-B. sp. (smooth) to 
middle Campanian 4.3 1.4 0.3 1 0.09 0.09 0.31 0.31 

TOTAL       21 0.43 0.43 0.72 0.74 

Phylogenetic Comparison 

Ingroup 

B. reesidei-B. eliasi - 1.4 - 3 0.67 0.68 0.71 0.66 

D. nebrascense-E. jenneyi - 1.7 - 3 0.33 0.10 0.52 0.41 

B. reduncus-B. scotti - 1.3 - 3 0.58 0.52 0.63 0.77 

TOTAL -     9 0.52 0.54 0.62 0.66 

Comparison 
taxa 

B. reesidei-B. eliasi - 1.4 - 6 0.65 0.63 0.92 0.93 

B. compressus-B. cuneatus - 0.7 - 1 0.29 0.29 0.64 0.64 

D. nebrascense-E. jenneyi - 1.7 - 9 0.48 0.57 0.76 0.83 

B. reduncus-B. scotti - 1.3 - 3 0.36 0.38 0.50 0.53 

TOTAL       19 0.50 0.57 0.76 0.86 

Niche Partitioning Comparison 

Inoceramus 
Species to 

Genus 

B. reesidei-B. eliasi - 1.4 - 3 0.45 0.46 0.63 0.67 

D. nebrascense-E. jenneyi - 1.7 - 3 0.39 0.55 0.53 0.49 

B. reduncus-B. scotti - 1.3 - 3 0.71 0.72 0.82 0.89 

  TOTAL       9 0.52 0.48 0.66 0.67 
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Phylogenetic Niche Conservation Comparisons 

 Only Inoceramus oblongus vs. I. sagensis comparison in the B. reesidei-B. eliasi 

interval had statistically greater niche equivalence than would be expected at random 

(Appendix C, Table S14). Four of the nine Inoceramus species (~ 44%) showed greater niche 

similarity than would be expected at random (Table 12 and Appendix C, Table S16). Only 

one species comparison (I. barabini vs. I. sagensis in the B. reesidei-B. eliasi biozone 

interval) had greater niche stability than would be expected at random using the niche 

similarity test. Overlap plots support these results (Figure 18 and S5). 

 Comparisons of the Inoceramus species with the three non-Inoceramus species 

indicate that statistically high overlap and stability is only slightly more common between 

related species than unrelated ones based on the niche similarity test (Table 12). When using 

the niche equivalency test, seven of the nineteen non-Inoceramus to Inoceramus species 

comparisons (~ 26%) had greater niche equivalence than would be expected at random and 

three of the nineteen comparisons (~16%) had greater stability and lower niche expansion 

than would be expected at random (Appendix C, Table S19). Two non-Inoceramus 

comparisons showed statistically greater unfilling based on the niche equivalency test 

(Appendix C, Table S20). Seven of the nineteen comparisons (~ 37%) had statistically high 

D-values, high stability, and low expansion, and four had statistically low unfilling when 

using niche similarity tests (Appendix C, Table S21). Therefore, the proportion of species 

with statistically similar niches is slightly higher between related taxa (Appendix C, Table 

S16), but statistical equivalence was more common between unrelated taxa. Mean niche 

stability for the non-Inoceramus to Inoceramus species comparisons (0.76) was higher than 

within Inoceramus species comparisons (0.62; Appendix C, Table 11). Mean expansion was 



 

84 
 

lower between within Inoceramus comparisons relative to non-Inoceramus to Inoceramus 

comparisons (0.24 versus 0.38, respectively), and mean unfilling was approximately the 

same (0.32 and 0.34 respectively; Tables S18 and S13). Plots of niche comparisons for non-

Inoceramus taxa support these results (Figures 19 and S6). Surprisingly, these analyses 

suggest that stability and overlap was higher on average between evolutionarily more distant 

taxa vs. between sister taxa. Statistical assessments furthermore do not indicate that niche 

equivalency was higher between related taxa than unrelated taxa, and proportions of 

statistically high overlap and stability based on niche similarity were not distinct.  

 
Figure 18. Example overlap plots of Inoceramus species against each other and against Ctena 
imbricatula during the B. reduncus-B. scotti biozone interval. Blue represents regions of niche 
stability, red regions of niche expansion (i.e., where the second listed species has expanded beyond 
the niche of the first listed species), and green represents regions of niche unfilling (i.e., where the 
second listed species niche has moved away from space occupied by the first listed species). Red lines 
represent the extent of environmental space realized within the interval and the black arrow indicates 
the shift of the niche centroid between the two species. See Figures S5 and S6 for all species overlap 
plots. 
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Table 12. Results (p-value, alpha=0.5) of greater niche similarity tests for phylogenetic comparisons. 
Bold text and asterisks indicate significant results. 

Phylogenetic Conservation Comparisons 
Species Compared Interval D value Stability (higher) 

Ingroup Comparisons 

I. convexus vs. I. saskatchewanensis B. reduncus-B. scotti 0.112 0.381 
I. sublaevis vs. I. saskatchewanensis B. reduncus-B. scotti 0.221 0.353 
I. convexus vs. I. sublaevis B. reduncus-B. scotti 0.431 0.392 
I. convexus vs. I. barabini D. nebrascense-E. jenneyi 0.429 0.209 
I. convexus vs. I. sublaevis D. nebrascense-E. jenneyi 0.431 0.392 
I. barabini vs. I. sublaevis D. nebrascense-E. jenneyi 0.001* 0.251 
I. barabini vs. I. sagensis B. reesidei-B. eliasi 0.015* 0.026* 
I. barabini vs. I. oblongus B. reesidei-B. eliasi 0.038* 0.072 
I. oblongus vs. I. sagensis B. reesidei-B. eliasi 0.048* 0.058 

Comparison taxa Comparisons 

C. imbricatula vs. I. convexus B. reduncus-B. scotti 0.411 0.295 
C. imbricatula vs. I. sublaevis B. reduncus-B. scotti 0.306 0.147 
C. imbricatula vs. I. saskatchewanensis B. reduncus-B. scotti 0.112 0.074 
C. nebrascensis vs. I. barabini D. nebrascense-E. jenneyi 0.001* 0.001* 
C. imbricatula vs. I. convexus D. nebrascense-E. jenneyi 0.398 0.305 
C. imbricatula vs. I. sublaevis D. nebrascense-E. jenneyi 0.356 0.626 
C. nebrascensis vs. I. barabini D. nebrascense-E. jenneyi 0.001* 0.001* 
C. nebrascensis vs. I. convexus D. nebrascense-E. jenneyi 0.449 0.015* 
C. nebrascensis vs. I. sublaevis D. nebrascense-E. jenneyi 0.015* 0.045* 
L. subundata vs. I. barabini D. nebrascense-E. jenneyi 0.101 0.138 
L. subundata vs. I. convexus D. nebrascense-E. jenneyi 0.501 0.356 
L. subundata vs. I. sublaevis D. nebrascense-E. jenneyi 0.028* 0.448 
L. subundata vs. I. sagensis B. compressus-B. cuneatus 0.265 0.158 
C. nebrascensis vs. I. barabini B. reesidei-B. eliasi 0.006* 0.098 
C. nebrascensis vs. I. sagensis B. reesidei-B. eliasi 0.067 0.045* 
C. nebrascensis vs. I. oblongus B. reesidei-B. eliasi 0.101 0.083 
C. imbricatula vs. I. barabini B. reesidei-B. eliasi 0.017* 0.172 
C. imbricatula vs. I. sagensis B. reesidei-B. eliasi 0.044* 0.035* 
C. imbricatula vs. I. oblongus B. reesidei-B. eliasi 0.076 0.018* 
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Species to Genus Comparisons (Niche Partitioning) 

 Only I. barabini in the B. reesidei-B. eliasi interval had a statistically greater high 

niche overlap when compared with the genus-level niche based on niche similarity tests, as 

well as greater than random niche stability and lower than random niche expansion (Tables 

13 and S26). In the D. nebrascense-E. jenneyi interval, I. barabini also had lower niche 

unfilling than would be expected at random, but no other comparison of overlap or stability 

was statistically high (Appendix C, Table S26). In the D. nebrascense-E. jenneyi interval, I. 

sublaevis had higher than expected niche unfilling based on the niche equivalency test 

(Appendix C, Table S25). No other values were statistically significant based on the niche 

equivalency test. 

Mean niche stability for all species to genus comparisons was approximately equal to 

the mean stability observed among Inoceramus species themselves, 52% (Table 11). 

Unfilling was notably very low for species to genus comparisons, ranging from 0% to 24% 

and averaging only 5% (Appendix C, Table S23). Niche expansion was more notable, 

ranging from 9% to 68% and averaging 34% (Appendix C, Table S23). Niche expansion is 

expected to be higher and niche unfilling extremely low for species to genus comparisons 

since the genus niche (always analyzed as the “secondary” niche) is expected to be larger. 

Our results are consistent with these expectations and suggest that niche stability and overlap 

were not high overall between species and the genus. In cases where the species niche did not 

overlap with the genus niche (unfilling), it is plausible that spatial thinning removed relevant 

occurrence points of specific species from the genus, resulting in a broader species’ 

ecological extent from the genus-level data. This is observed for I. sublaevis in the D. 
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Figure 19. Convex hull comparisons of the Inoceramus genus and Inoceramus species niches in PCS for three biozone intervals. Polygons 
represent occupied environmental spaces for each taxa within PC environmental space. Dark grey points represent environmental data 
observed in the interval. Colors indicate Inoceramus species (green = I. barabini, light blue = I. convexus, pink = I. sagensis, dark blue = I. 
oblongus, orange = I. sublaevis, yellow = I. saskatchewanensis); grey = Inoceramus genus estimation.  
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nebrascense-E. jenneyi comparison with Inoceramus, which had statistically high unfilling 

based on niche similarity test results, caused by a gap in the Inoceramus niche distribution, 

presumably from spatial thinning (Appendix C, Figure S7). Principal component 

comparisons of multiple Inoceramus species to the genus niche using convex hulls visualizes 

the structure of species niches within the generic niche (Figure 19). These plots show 

species’ niche partitioning to some degree within the genus-level niche, but also that overlap 

is common between species. 

 
Table 13. Results (p-value, alpha=0.5) of greater niche similarity tests for phylogenetic comparisons. 
Bold text and asterisks indicate significant results. 

Species Interval D value Stability (higher) 

I. convexus B. reduncus-B. scotti 0.114 0.225 
I. sublaevis B. reduncus-B. scotti 0.165 0.144 
I. saskatchewanensis B. reduncus-B. scotti 0.060 0.145 
I. convexus D. nebrascense-E. jenneyi 0.292 0.202 
I. sublaevis D. nebrascense-E. jenneyi 0.137 0.347 
I. barabini D. nebrascense-E. jenneyi 0.152 0.170 
I. barabini B. reesidei-B. eliasi 0.033* 0.041* 
I. sagensis B. reesidei-B. eliasi 0.206 0.089 
I. oblongus B. reesidei-B. eliasi 0.212 0.076 

 

Discussion 

The Effects of Temporal Aggregation in Paleo-niche Analyses 

The temporal resolution used for deep-time analysis is typically constrained by 

logistical factors such as geologic age constraints, inadequate taxonomic abundances, and 

issues with regional correlation. The combination of these factors frequently forces 

researchers to aggregate sedimentary data at the lower resolutions (substage or higher) when 

analyzing paleo-niche parameters (e.g., Maguire and Stigall 2009; Hopkins et al. 2014; Saupe 

et al. 2019; Purcell and Stigall 2021). Higher-resolution studies can be achieved but generally 
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involve investigating less geographically extensive regions, such as a single, well-sampled 

sedimentary basin with well correlated high-resolution stratigraphic data (e.g., Brame & 

Stigall, 2014; Dudei & Stigall, 2010; Malizia & Stigall, 2011). Generally, these studies are 

forced to assume that data homogenization will increase analytical noise, but not modify the 

overall signal of niche patterns, if they exist (e.g., Purcell & Stigall, 2021). Here we 

specifically tested for the influence of temporal aggregation and found that niche 

characteristics are not well conserved at lower temporal resolutions, although temporal 

aggregation does not typically introduce unique niche e-space occupation. 

Across the Late Cretaceous, temporal biozone intervals ranging in duration from ~ 

0.7 Myrs (B. compressus-B. cuneatus) to ~ 1.8 Myrs (D. nebrascense-E. jenneyi) were 

compared with longer intervals lasting ~ 2 Myrs (early Maastrichtian) to ~ 4.3 Myrs (late 

Campanian). We were also able to compare the B. baculus-B. grandis biozone interval with 

the Maastrichtian stage overall, which represents ~ 6.1 Myrs of deposition. Across these 

comparisons, differences in temporal duration were found to correlate with decreased niche 

overlap (Figure 17). Lower temporal resolution of the original data therefore did not well-

characterize the niche of species at comparatively higher resolutions. Within these temporal 

comparisons, species niches had high overlap (mean D-value = 0.43) and stability (mean = 

72%) but values were often statistically insignificant either for the niche equivalency or 

similarity tests (Table 9). Only ~ 33% of the taxa analyzed had statistically high D-values of 

overlap and only ~ 24% had statistically high stability.  

Furthermore, map interpolations at different temporal resolutions show notable 

differences between biozone-level bins within most environmental proxy variables 

(Appendix C, Figure S2). For example, percent mud is high (greater than 50%) only in the 
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northeastern portion of the basin and lower (less than 30%) in the rest of the basin during the 

D. nebrascense-E. jenneyi interval. During the succeeding D. cheyennense interval, however, 

percent mud is relatively high (greater than 30%) in the majority of the southern and easter 

portions of the basin (Figure 16). These patterns are in turn distinct from the distribution of 

mud within the other two biozones that make up the Late Campanian. When aggregated at 

the Late Campanian substage level, the regions with highest percent mud are in the northern 

portion of the basin, within two distinct “patches” (Appendix C, Figure S2). Even in higher-

resolution studies using fossil data that are limited to shorter duration aggregations, such as 

0.5 Myrs temporal bins, environmental variables are aggregated across intervals potentially 

much longer than the duration of the species occupation (i.e., Dudei and Stigall, 2010). Basin 

geometry is also highly variable across the study interval, with marine areas shifting rapidly 

with changing sea levels (both eustatic and tectonic), particularly across the Late Campanian 

and Maastrichtian (Figure 16) (Cobban et al., 1994; Gill & Cobban, 1973; Roberts & 

Kirschbaum, 1995; Slattery et al., 2013). This almost certainly leads to a distortion of 

environmental averages within regions that shift from marine to non-marine within a single 

interval. Changes to shorelines are likely occurring even within biozone intervals themselves, 

though these alternations are too high-resolution to detect in this dataset (and perhaps any). 

Thus, aggregating data at a higher geochronological level necessarily homogenizes and 

distorts otherwise localized or regional characteristics. This results not only in a loss of 

spatiotemporal detail, but also potentially erroneous spatial correlations between shorter-

lived taxa and long-term environmental averages. 

While changes in shoreline are not ubiquitous to all regions or intervals of Earth 

history, periods of environmental change are common targets for deep-time paleo-niche 
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analysis. Consequently, researchers must pay close attention to the influence that temporal 

aggregation has on the interpretation of their results, and not assume homogenization will 

represent niche characteristics accurately. In all paleoecological analyses, the highest 

temporal resolution available should be used whenever possible to avoid over-generalizing 

variables, and changes to broader paleoceanography and data distributions should be 

carefully considered before attempting or interpreting these kinds of analyses. Paleo-niche 

analysis can provide useful information provided the resolution of the data matches the 

question being asked, however. For example, analyses that are conducted to assess how 

species shift their niche space through time in response to changes in temperature can 

constrain their area of analyses to consistently marine environments that lack dramatically 

shifting shoreline. 

Implications for Testing Phylogenetic Niche Conservation in Deep Time 

Phylogenetic niche conservation is a debated biotic pattern relevant to both ecological 

and evolutionary trends (Crisp and Cook 2012; Pyron et al. 2015). Related taxa are generally 

considered to have more ecologically similar environmental requirements than unrelated 

taxa, given the fact that they share more recent ancestral traits (Hadly et al. 2009; Nürnberg 

and Aberhan 2013). Indeed, PNC has been observed in both allopatric species (Peterson et al. 

1999) and in sympatric species (Lovette and Hochachka 2006), indicating that both physical 

separation of populations and genetic divergence can result in conservation of fundamental 

ecological traits. If PNC is widespread over macroevolutionary timescales, then it becomes a 

primary justification supporting the application of genus-level niche traits in paleo-niche 

modeling and other deep time applications (Dudei and Stigall 2010; Malizia and Stigall 

2011; Nürnberg and Aberhan 2013; Brame and Stigall 2014; Hendricks et al. 2014; Purcell 
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and Stigall 2021). Our secondary hypothesis predicted niche conservatism between sister 

species for this reason. However, niche comparisons between unrelated taxa produced higher 

average stability than between related taxa (76% and 62%, respectively) and very similar 

overlap values (50% and 52%, respectively). The proportion of comparisons with statistically 

greater niche stability was lower for within-genus species comparisons than species 

comparisons across different genera (~ 11% and 37%, respectively), and statistically high 

overlap was only slightly more common for within-genus versus between-genus species 

comparisons (~ 44% and 37%, respectively). These results reject our hypothesis of greater 

niche conservation between related versus among less closely related taxa and suggest that 

either PNC is not present within the taxa considered, or substantial biases prevent PNC from 

being observed. A lack of PNC may be, and was here, observed as within-genus species 

niche partitioning, which is generally regarded as important to promote speciation 

(Cavender-Bares et al. 2004; Graham et al. 2004); it is also likely that evidence for PNC is 

taxon- and/or spatiotemporal scale-specific. Differentiating niche characteristics may 

furthermore simply not be observable at a given level of analysis or method of niche 

estimation (Lovette and Hochachka 2006), caused by environmental variable biases and/or 

the fundamental characteristics in the taxa selected for analyses.   

Specifically, low spatial and temporal resolution, including potentially biozone-level 

resolutions, and the broad-scale distribution of the taxa analyzed likely culminates in an over-

generalization of environmental characteristics and a bias towards preservation of generalist 

taxa. Deep-time environmental variables are especially prone to over-generalization in these 

kinds of analyses, since they are by necessity time-averaged, autocorrelated proxies 

(Appendix C, Figure S3). For example, oxygen levels are critical to habitat restrictions of 
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marine biota (Deutsch et al. 2015), but oxygen levels can only be approximated in 

sedimentary units by a combination of variables such as sedimentary structures (indicating 

energy level and water depth) and bioturbation, which is broadly associated with oxygen 

levels sufficient to allow for activity below the sediment-water interface (Leszczyński 1991). 

However, neither sedimentary structure nor degree of bioturbation are characterized in 

sufficient detail in most datasets to capture much more than “oxic-to-some-degree” vs. 

“anoxic” at each specific location, often due to insufficient preservation and/or the 

idiosyncrasies of documentation. Generalizations like these culminate in a simplification of 

real-world patterns such that higher resolution niche differentiation may be difficult to 

observe, resulting in high niche similarity. Furthermore, other aspects of species’ realized 

niches, such as biotic interactions, cannot be well-characterized in most cases, even using 

more recent datasets (Peterson et al. 2011). 

These results furthermore indicate that the current method of approximating 

environmental characteristics using continuous sedimentary variable proxies may be less 

useful than manually classifying relevant habitat regions on a more categorical level. For 

example, anoxic and oxygen-rich marine habitats can be interpreted directly by a researcher 

based on a collection of sedimentological variables and mapped accordingly. While these 

variable maps may also include generalizations, they have the potential to more accurately 

represent cumulative environmental variables that are directly relevant to taxonomic 

distributions in a way that cannot be easily captured using sedimentary data alone. Niche 

models created using ground truthed categorical habitats such as these may therefore produce 

more definitive results when comparing niche characteristics between taxa or across time, 

and should be tested in future analyses. 
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In addition to the issues with environmental generalization, taxonomic preservation 

and sampling bias in the fossil record further complicate the resolution issue, since only a 

very small subset of a population (even across a long temporal interval) is fossilized, 

collected, and documented (Kidwell and Flessa 1996). This means that it is challenging to 

collect species occurrences across their entire geographic and temporal range. Niche studies 

on modern animals and plants have shown that not using the full biogeographic range of 

species’ distributions can obscure accurate niche estimation, particularly when using ENM 

algorithms (i.e., Owens et al. 2013). Furthermore, when conducting deep-time niche analysis, 

these occurrences are further reduced by spatial thinning, which again promotes analysis of 

common, widespread, and long-lived species rather than taxa with patchy or localized 

distributions (whether those be real or artifactual). It is commonly assumed that wide-ranging 

taxa have large niches and are therefore more ecologically generalized (Kammer et al. 1997; 

Slatyer et al. 2013). Even under ideal circumstances with high-resolution, modern data, 

generalist taxa have been found to have similar ecological characteristics to one another 

(Denelle et al. 2020). Given that subtle environmental differences are unlikely to be 

preserved when using deep-time environmental proxy data, ecological distinctions between 

generalist taxa occupying similar overall habitats are also unlikely to be observed. The high 

similarity between both related and unrelated species observed here supports this 

interpretation. Given that this analysis includes some of the highest resolution and best-vetted 

data available for paleo-niche analysis, these results suggest that PNC is unlikely to be easily 

distinguished in fossil data unless higher resolution datasets with a greater biogeographic 

diversity of taxa and their environments can be achieved. Instead, fossil data is more 

applicable to analyzing broad-scale changes in niche parameters within generalist species. 
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Within-species partitioning of generic niches 

In paleontological studies, the genus-level, or even above, is often used for ecological 

analyses since because (1) genus-level data is so much more abundant and (2) genus-level 

patterns are considered a decent proxy of species-level biotic processes (Hadly et al. 2009; 

Malizia and Stigall 2011; Nürnberg and Aberhan 2013; Brame and Stigall 2014; Tong et al. 

2021). Others argue that the species is the fundamental biological unit of analysis (Vrba 

1980, 1984, 1989), and that higher taxonomic levels do not inherently capture ecologically 

relevant biotic responses (Hendricks et al. 2014). For example, while a genus’ niche might 

show expansion across time due to a few species on the extremities of the genus niche 

moving into new abiotic space, individual species that do not occupy marginal regions of the 

genus’ niche may instead be experiencing substantial reduction of their niche space 

occupation in a way that cannot be observed at the genus-level (Hendricks et al. 2014; 

Purcell and Stigall 2021). This can be visualized here with convex hull reconstructions 

(Figure 19). In the B. reduncus-B. scotti interval, for example, the extremities of the first 

principal component axis of the genus-level niche are not occupied by the three species 

analyzed directly, and any change to these species across this axis could not be observed at 

the genus-level (Figure 19). Furthermore, our results of niche comparisons between 

Inoceramus species and the Inoceramus genus-level niche estimation suggest that the genus-

level niche does not represent individual species well statistically (Table 11). Average niche 

overlap for species-level analysis compared to the genus-level is only 0.52, and only one 

species (I. barabini) had statistically high overlap and stability based on the niche similarity 

test in only one biozone interval of two (Table 13). This contradicts several studies using 

fossil data that have found similar patterns of niche overlap and conservation between both 

species and genera (e.g., Hadly et al. 2009; Malizia and Stigall 2011; Nürnberg and Aberhan 
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2013; Brame and Stigall 2014). How time influences a genus-to-species niche relationship is 

beyond the scope of this analysis but given the poor overlap in this study between individual 

species and the genus-level analysis, it is very possible that genus-level paleo-niche patterns 

reflect ecological phenomenon at the species-level. 

Conversely, if the genus is considered a functional entity, rather than an evolutionary 

entity, its utility is vastly increased. Firstly, there are distinct advantages to utilizing higher-

level taxonomic information for addressing biological and ecological traits in general. 

Obviously, using the genus greatly expands the utility of sparce datasets because it allows 

researchers to incorporate fossil data that has only be identified to the genus-level. 

Additionally, studies have found that higher taxonomic levels may present distinct biotic 

responses relevant to life history traits (Hadly et al. 2009; Smith et al. 2019; Tong et al. 

2021). More importantly for using paleontological data for niche analyses, genera 

classifications are typically based on morphological similarity, which is directly linked in 

most cases with the functional traits relevant to an organism’s lifestyle (i.e., Weller 1949). 

While this often means that genera cannot be considered evolutionarily entities, since they 

may represent convergent morphologies rather than phylogenetically related taxa, this 

principle enables researchers to classify genera into functional ecological entities that occupy 

a specific ecological role in their community strcture and assess their temporal and spatial 

distribution relative to abiotic factors on a macroecological level (Foster and Twitchett 2014; 

Dunhill et al. 2018; Edie et al. 2018). 

Therefore, if we consider a genus niche to represent a functional entity rather than an 

evolutionary entity, the issues related to interpreting the genus relative to the species niche 

are largely resolved. Analyses using the genus niche can instead enhance our understanding 
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of how functional entities are distributed relative to fundamental abiotic characteristics and 

how they respond across space and time. The actual species-level changes occurring in these 

analyses may not be clear, depending on the genus and number of species included within it, 

but any genus-level alteration may be indicative of taxonomic or ecological instability 

(Purcell and Stigall 2021). For example, contraction of a genus niche requires either species 

extinction or contraction of species’ niches (Figure 20). Depending on the degree of overlap 

between species within the niche (i.e., PNC), these alterations must furthermore be 

simultaneous across the same interval of comparison. Ignoring the specific species-level 

changes however, this pattern would indicate an overall ecological responses by the 

functional entity represented by the genus, and can lead to further, more detailed analyses 

related to abiotic pressures and ecological processes. Only genus niche stability, in fact, may 

be entirely nonspecific about the species niche patterns (Figure 20C), while still indicating 

that either niche characteristics of the functional entity are being maintained through stability 

at the species level or through compensation for any alteration by individual species by the 

others within the genus. Therefore, though the genus niche is not representative of individual 

species ecological niches, it is in fact highly relevant to understanding functional diversity 

patterns at a broad scale.  
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Figure 20. Examples of niche dynamics through time at the species and genus-level, which can be 
interpreted as representing the niche of an ecological entity. The genus-level niche is in black, species 
niches are colored. 

Conclusions 

 This dataset represents the highest-resolution, most geographically extensive, and 

thoroughly cleaned deep-time dataset used for niche comparisons to date. We find that paleo-

niche analyses should be considered individualistically and wholistically to avoid over-

generalizing biological phenomenon. The size of a temporal bin, particularly during intervals 

with substantial changes to paleoceanography and paleogeography, can strongly influence 

the outcome of niche estimation in deep time, and accuracy diminishes with environmental 

data aggregated over longer intervals. High niche similarity values resulting from such low-

resolution analysis are therefore potentially misleading, given that they likely result from the 

over-generalization of already biased environmental proxy data and the use of geographically 
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widespread, generalist taxa. The case study comparing genus-level niche estimation to the 

species-level did not find that the generic-based niche represented individual species’ niches 

well, despite the fact that this genus is composed of abundant, generalist species with 

relatively high niche overlap between them. This suggests that the structure of species’ paleo-

niches within genera is an exciting research area in need of more and specific analysis. 

Furthermore, if the genus is considered as a functional entity, genus-level niche analyses may 

open up an extremely useful avenue for further research into how abiotic factors across space 

and time influence the fundamental functional characteristics of ecological communities.  
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CHAPTER 5: CONCLUSION 

 The Western Interior Seaway has been studied for over 200 years (Everhart, 2017), 

resulting in the collection of vast numbers of fossils and geologic data all collected with 

specific, and not necessarily complementary research goals. The Western Interior Seaway 

persisted from approximately the late Jurassic to the early Paleocene (approximately 100 Ma) 

and is one of the best preserved and studied sedimentary basins in the world (Miall et al., 

2008). Not only is the WIS well studied as a whole, but the digital age has provided a 

previously unprecedented venue for cataloguing and disseminating paleontological and 

sedimentological data. The evolution of quantitative methods applicable to fossil data has 

also greatly advanced, and computer software has made exploring “big data” questions 

related to Earth history very accessible such that researchers can investigate large 

biostratigraphic regions like the WIS with ease relative to the methods available to previous 

researchers. Geologic data, recording aspects of the interacting biotic and abiotic aspects of 

the Earth system, can now more than ever before be used to address questions related to how 

the Earth functions in the past and evaluate underlying principles that may explain how it 

will progress in the future. 

 This expanding scientific horizon requires that we carefully assess the match between 

data uncertainty and the questions we are asking, but also the methods we are using to 

answer them. Limitations in paleontological data, while somewhat mitigated by our ever-

growing datasets and increased understanding about biases, still exist and must be taken into 

account. Previously established paradigms regarding biotic patterns and processes, while not 

inherently wrong, require reassessment using updated information and methods to support 

their accuracy. For example, the analyses documented here indicate that biotic subprovinces 
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were not an established characteristic of the WIS, as previously established by Kauffman 

(1980). In short, the fundamental relationships between biotic and abiotic data that 

paleontologists and other researchers explore should be carefully considered not just within 

the confines of a priori factors, but also within the limits of what paleontological and 

geological data can achieve using current methods. One goal of this dissertation is to 

explicitly address some of these issues using a high-resolution, well establish dataset from an 

extensively studied, geographically extensive region; thus testing potential biases in as 

comprehensive a dataset as exists for deep time marine ecosystems. 

 The first research chapter (Chapter 2) uses relatively novel quantitative methods to 

reassess a long-established assumption regarding the paleobiogeography of the WIS, and the 

relationship between taxonomic distributions and abiotic factors. This chapter finds that the 

current dataset is incompatible with previous conclusions regarding WIS provinciality 

(Kauffman, 1980), supporting further research into the biogeographic structure of 

continental-sized regions in the fossil record. The second research chapter (Chapter 3) takes 

these methods further, addressing a popular topic in paleontology today: that functional 

diversity patterns result from ecological processes unique from taxonomic diversity, and tests 

the influence of spatial constraints on paleobiogeographic analytical results. This study 

compares functional diversity patterns with major abiotic shifts present at the same time at 

different spatial scales and contrasts these patterns with modern patterns. The last research 

chapter (Chapter 4) explores the validity of ecological niche modeling using deep-time 

datasets by comparing the influence that temporal resolution has on niche analyses and 

assessing the conservation of niche characteristics between related specific taxa and their 

genus. It furthermore provides an extensive and detailed stratigraphic dataset that 
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compliments the taxonomic data used in previous chapters and lays the groundwork for using 

stratigraphic data to create sedimentological maps of the WIS at the biostratigraphic level. 

This dataset will contribute significantly to continued studies linking paleobiogeographical 

and paleoenvironmental patterns in the WIS. 

 This research, while presenting novel data related to the biotic and abiotic system 

present in the WIS, are first and foremost linked to testing how methods shape research 

results (and consequent interpretations). They are meant to highlight the importance of 

considering data from multiple angles and scales, while also taking biases into account 

whenever feasible. The Late Cretaceous WIS represents one of the best studied, most vetted, 

and extensively documented datasets in the world, allowing researchers to not only explore 

highly relevant questions related to abiotic and biotic interactions, but also to establish 

principles for paleontological research moving forward. It is my hope that, regardless of 

whether the conclusions of this research remain eternally accurate, that these data and the 

methods used to explore them can create a foundation for future research, improving our 

understanding of the Earth system and its exciting history as a whole. 
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APPENDIX A: 
Supplementary Materials for “Faunal provinciality in the Late Cretaceous 
Western Interior Seaway using a network modeling approach” by Purcell 

et al.: 

Appendix A-1: Detailed Methods and Results 

Database Vetting:  

Original downloads from the PBDB and iDigBio were configured to include all taxa from the 

Late Cretaceous and then vetted to remove incomplete, erroneous, or poorly spatially and temporally 

resolved data. All genera denoted with “?”, “c.f.”, “aff.” and taxa not identified to the genus-level 

were removed to avoid occurrences with insufficient taxonomic resolution. All taxonomic names 

were vetted using peer-reviewed literature to identify taxonomic updates, synonymies, and to correct 

any spelling errors (Appendix B provides all references used to vet taxonomic designations). 

Stratigraphic ages were updated and vetted to geologic substage temporal resolution based on 

stratigraphic and biozone information included in the original database file, primary literature sources 

cited for each occurrence, and the WIS stratigraphic database of Myers et al. (2015). Occurrence 

records with spatial resolution > 30km of uncertainty were removed to avoid spatially ambiguous 

data, and records south of 23° latitude and east of -80° longitude were removed to avoid records from 

outside the WIS and GCP regions. The resulting geographic range of the dataset extends from 23° to 

54° N and 83° to 118° W (Figure S1).  

The final vetted database contained 33,168 fossil occurrences (Table S1; Figure S1) 

representing 574 unique genera and 1113 unique species of marine macroinvertebrates including 

bivalves, ammonites, gastropods, echinoderms, corals, brachiopods, polychaetes, and crustaceans. 

These groups represent a wide variety of lifestyle modes both within clades and between distinct 

phylogenetic groups. They are furthermore important components in both modern and ancient 

shallow marine ecosystems (Bush and Bambach 2011) and therefore allow comparison to modern 

systems. 
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Figure S1. Map of fossil occurrence data information. Point colors indicate substage. 
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Database Evaluation: 

Prior to network modeling, the vetted database was analyzed to assess for taphonomic and 

sampling bias (Vilhena and Smith 2013). This included comparisons of taxonomic richness with 

sampling bias, or the number of fossil occurrences per geographic unit. Since taxonomic information 

is categorical and autocorrelation of this data type is complex and frequently includes duplicated 

locations, alternative methods for analyzing general sampling bias spatial autocorrelation were 

utilized. This was achieved by creating a 60km grid in ArcGIS Pro using the Grid Index Tool (ESRI, 

2021) that was overlain on the data. This grid size was chosen to account for uncertainty in fossil 

location information, while still maintaining localized community ranges that would be consistent 

across geographic space. An alternative 30km grid size at our occurrence resolution was tested and 

produced primarily singleton grid cells (i.e., a grid cell with only 1 fossil occurrence) and was 

therefore uninformative for our analysis of fossil communities. The genus- and species-level data 

were summarized by number of fossil occurrences per 60km grid cell as well as the number of unique 

genera and species per grid cell, though only genus-level data were analyzed using network modeling 

(see Appendix C for R code). 

 The data, once aggregated, was found to be highly right-skewed (Figure S2 and S3) and to 

have a strong correlation between the number of fossil occurrences in a grid cell (i.e., sampling) and 

the taxonomic richness (Figure S4). Thus, the data is non-normal and there is a strong positive 

relationship between taxonomic richness and the number of occurrences sampled in a given 60-km 

pixel, or node, herein regarded as sampling effort. This correlation is used in subsequent analyses, 

including MST assessments, to determine the influence that sampling bias has on network outputs by 

allowing for indirect comparisons between the number of fossils present in a node as indicated by 

generic richness, and network values or patterns. 
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Figure S2. Histograms and Q-Q plots of genus-level occurrence counts and richness for the data aggregated in 
60-km grid cells. The data is highly right-skewed and deviates greatly from the trend line, indicating that it is 
non-normal. 
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Figure S3. Histograms and Q-Q plots of species-level occurrence counts and richness for the data aggregated 
in 60-km grid cells. The data is highly right-skewed and deviates greatly from the trend line, indicating that it is 
non-normal. 
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Figure S4. Scatter plots and log-transformed plots of taxonomic richness and the number of occurrences for 
the data aggregated in 60-km grid cells. The data is strongly correlated prior to log10 normalization. Once 
normalized, the correlation is smaller though still high, and the trend line fits with much smaller residual error. 

 

 

The nature of the geographic distribution and autocorrelation embedded in the dataset was 

analyzed with ArcGIS Pro (Spatial Autocorrelation (Global Moran's I) (Spatial Statistics) tool) and 
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the Cluster and Outlier Analysis (Anselin Local Moran's I (Spatial Statistics) tool; ESRI, 2021) to 

determine the degree of local and global spatial autocorrelation of genus and species-level richness 

and total number of fossils collected at each location. Global and local spatial autocorrelation of these 

data was then analyzed using the Moran’s I statistic and local Anselin Moran’s I statistic, 

respectively, in ArcGIS Pro (ESRI, 2021). Overall, results of spatial autocorrelation analyses (both 

global and local) indicate high spatial clustering within the WIS and GCP with some high-low and 

low-high outliers based on region (Figures S4-S8). Visual comparisons between Anselin Moran’s I 

with network results, however, did not indicate that any obvious parallels between autocorrelation 

patterns of clustering/outliers with either link weights or betweenness centrality. These results 

indicate that spatial bias is not a primary control on general network topology.  

The Global Moran’s I analysis indicates that all substages are statistically clustered (p-values 

ranging from 0 to 0.078), with only the distribution of species-level occurrence counts in the Lower 

Campanian falling just outside the 95% confidence interval. All z-scores for the tests are positive, 

indicating clustering rather than dispersal. These results suggest that the data overall is highly 

clustered globally when summarized based on the 60km grid, both in terms of taxonomic richness and 

sampling effort. The results of the Anselin Local Moran’s I analysis indicates similar clustering at 

local scales (Figure S4-S8). For each substage, many summarized 60km grid points have statistically 

high clustering of either high values with other high values, or low values with other low values for 

both unique taxa and total taxa occurrence counts. 
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Table S2: Results of Global Moran’s I analysis. Distance threshold values were calculated automatically to 
ensure that each occurrence had at least one neighbor and have been rounded up to the nearest km. 

 Number Unique 
Genera/Grid Cell 

Number Genus 
Occ/Grid Cell 

 Number Unique 
Species/Grid Cell 

Number Species 
Occ/Grid Cell 

 

Substag
e 

Moran’
s I p 

Moran’
s I z 

Moran’
s I p 

Moran’
s I z 

Distance 
Threshol

d 
(nearest 

km) 

Moran’
s I p 

Moran’
s I z 

Moran’
s I p 

Moran’
s I z 

Distance 
Threshol

d 
(nearest 

km) 
Low 
CAM 0.003 2.997 0.006 2.724 432 0.006 2.757 0.078 1.762 416 

Mid 
CAM 0.000 14.046 0.000 8.393 492 0.000 10.389 0.000 7.006 498 

Up 
CAM 0.000 5.577 0.000 6.468 559 0.000 3.662 0.000 4.428 645 

Low 
MAA 0.000 8.280 0.000 5.163 371 0.000 7.604 0.000 5.019 371 

Up 
MAA 0.000 10.486 0.000 5.786 289 0.000 13.393 0.000 7.144 746 

 

Local spatial relationships related to sampling and taxonomic richness were assessed using 

the Cluster and Outlier Analysis (Anselin Local Moran's I) (Spatial Statistics) tool in ArcGIS Pro. 

Aneslin Local Moran’s I analysis determines if the values of a particular feature are more or less 

similar to its neighbors than would be expected at random using a 95% confidence interval. The 

results can indicate spatial outliers and local clusters that are not assessed using the global statistic. 

Overall, Aneslin Local Moran’s I analysis indicates that the data from the Campanian substages are 

concentrated in the WIS region rather than the GCP based both on the number of unique taxa (i.e., 

taxonomic richness) and the total fossil occurrence counts (i.e., sampling count). These analyses also 

strongly suggest that the distribution of genera/species richness and sampling counts are not random 

but show high clustering. Analyses of the Campanian substages in general show that the dominance 

of high-high clusters for richness shifts from the more northern grid cells of the WIS in the Lower 

Campanian, to the more central portion of the WIS in the Middle and Upper Campanian. The 

Maastrichtian substages, on the other hand, indicate that higher richness and sampling are 

concentrated in the GCP and that the WIS is dominated by low-low clustering for all analysis. 

It also appears that clustering/outlier patterns for sampling counts parallel that of taxonomic 

richness, except in the Middle Campanian substage where the generic richness and the total genus 
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sampling count results appear inverse. These results indicate that, despite the fact that the southern 

portion of the WIS (Colorado and southern Wyoming) has clusters of low sampling, this area is 

dominated by high-high clusters of generic richness. Similarly, the northern portion of the WIS 

(Montana and Canada) is dominated by low-low clusters of generic richness, despite the fact that it is 

dominated by high sampling. This suggests that the few occurrence records in the southern region of 

the WIS that do exist have a disproportionately high genus richness, and the reverse for the northern 

region. Interestingly, this pattern does not hold when the data are analyzed based on species for the 

Middle Campanian. Details for each substage are listed below. 

Visual comparisons of networks relative to Aneslin Local Moran’s I analysis indicate 

that spatial distribution of unique genera counts within grid cells did produce noticeable bias in 

the substage networks (Figure S5 – S9). In the Lower Campanian, the northern portion of the WIS, 

which is dominated by high-high clusters of unique genera counts had overall weaker faunal 

associations and stronger links in the southern portion where low-low clusters dominate. In the 

Middle Campanian, this pattern is reversed: the southern portion of the basin, dominated by high-high 

clusters, maintains relatively stronger links than the northern portion, which is characterized by low-

low clusters. The Upper Campanian network has the strongest links between regions with low-low 

clustering in the northwest and east-central regions, but relatively strong faunal associations were 

found across the majority of the WIS, connecting the southwestern, northwestern, and east-central 

portions (see Figure S10, S12, S14, S16, and S18). The Lower Maastrichtian network maintains its 

strongest links between the southern and east-central portions of the WIS, which are characterized by 

low-low clustering, but relatively strong links are maintained across the whole basin and are weakest 

in the north where few clusters or outliers were observed. The Lower Maastrichtian network also 

presents strong links within the GCP between grid cells along the eastern margin, where high-high 

clusters dominate. Finally, the Upper Maastrichtian network is characterized by strong links both in 

the WIS, where low-low clusters dominate, and in the GCP, particularly along the eastern margin 
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where high-high clusters are the most common. The faunal associations are somewhat stronger in the 

WIS during this substage than they are in the GCP. 

Lower Campanian: Data from the Lower Campanian summarized by the 60-km grid cells 

indicate that the WIS has clusters of both high-high and low-low counts of unique genera (Figure S5). 

Clusters of high-high unique genera are mostly found in central Wyoming and Montana, while low-

low clusters are mostly distributed in northern New Mexico and southern Utah, as well as Alberta, 

Canada. Outliers of low unique genera counts surrounded by high (low-high outliers) are also fairly 

common and distributed across Montana and Wyoming. Only three grid cells were found to be 

statistical outliers of high unique genera counts surrounded by low (high-low outliers), and these are 

located in southern Utah and northern New Mexico. The majority of grid cells in Utah, Colorado, and 

the eastern regions of Montana and Wyoming were not statistically significant clusters or outliers 

regarding unique genera counts. The GCP region had no significant clusters or outliers for the Lower 

Campanian data. Patterns found using the summarized number of unique species were very similar to 

those of the unique genera, except that the number of high-high clusters was far fewer in central 

Wyoming and Montana and that a greater number of high-low outliers were found in the western 

Colorado. One grid cell was determined to be a high-low outlier for the number of unique species in 

the GCP of Alabama. The data summarized by the number of total genera indicate that there are both 

high-high clusters and low-high outliers distributed throughout the central WIS, primarily in 

Wyoming and northern Utah. Low-low clusters of genus occurrence counts are located primarily in 

Alberta and northern New Mexico. Only two grid cells were determined to be high-low outliers, 

located in Alabama and northern New Mexico. Patterns for the summarized number of species 

occurrence counts were very similar to those of genus occurrence counts, except that the number of 

high-high clusters and low-high outliers in central WIS were far fewer and that four total grid cells 

were identified as high-low outliers in northern New Mexico and Colorado. 
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Figure S5. Map results of Anselin Local Moran’s I analysis showing the distribution of clustering and outliers 
for number of unique genera summarized using the 60km grid for the Lower Campanian. 
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Middle Campanian: Data from the Middle Campanian summarized by the 60-km grid cells 

indicate that the northern WIS in Montana is dominated by low-low clusters with few high-low 

outliers and that the central WIS in Colorado, Utah, and Wyoming is dominated by both high-high 

clusters and low-high outliers for both the number of unique genera and species (Figure S6). Grid 

cells located in New Mexico, eastern Wyoming, North Dakota, and most of the GCP were 

predominantly non-significant, excluding a few low-low clusters. When the data was analyzed based 

on the number of species occurrences, a very similar pattern emerges, except that the GCP has a much 

higher number of low-low clusters. When analyzed based on the number of genus occurrences, 

however, the distribution of clusters and outliers is almost completely opposite that of the number of 

species occurrences. For data summarized by genus occurrences, the Montana region is dominated by 

high-high clusters with a single cell that represents a low-high outlier, the central region of the WIS is 

dominated by both low-low clusters and high-low outliers, and grid cells in the GCP region were 

almost all found to be low-low clusters. 
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Figure S6. Map results of Anselin Local Moran’s I analysis showing the distribution of clustering and outliers 
for number of unique genera summarized using the 60km grid for the Middle Campanian. 
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Upper Campanian: Data from the Upper Campanian summarized by the 60-km grid cells 

indicate that the northern WIS in Montana, Alberta, and Saskatchewan is dominated by low-low 

clusters with few high-low outliers located in Montana and that the central WIS in Colorado and 

southern Wyoming is dominated by both high-high clusters and low-high outliers for both the number 

of unique genera and the number of unique species (Figure S7). Grid cells located in New Mexico, 

eastern Wyoming, North Dakota, Nebraska, South Dakota, and most of the GCP were predominantly 

non-significant. However, the data analyzed based on unique genera indicate a concentration of low-

low clusters in South Dakota, northern Nebraska, and North Dakota that is not found when analyzed 

based on unique species counts. There are also several grid cells identified as low-high outliers across 

the GCP for unique species, and one high-low outlier for unique genera counts in eastern Texas. The 

distribution of significant clusters and outliers identified when the data was analyzed based on both 

the total number of genus and species count is extremely similar to those found for the number of 

unique genera and species in the Upper Campanian. 
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Figure S7. Map results of Anselin Local Moran’s I analysis showing the distribution of clustering and outliers 
for number of unique genera summarized using the 60km grid for the Upper Campanian. 
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Lower Maastrichtian: Data from the Lower Maastrichtian summarized by the 60-km grid 

cells indicate that the South Dakota and southern Colorado regions are dominated by low-low clusters 

of unique genera and unique species, but that the majority of the WIS region has no significant 

clustering or outliers (Figure S8). The GCP region, however, is dominated by low-low clustering in 

northern Mexico and Arkansas for the number of unique genera and mix of high-high clusters with 

low-high outliers in the east. This pattern holds for the GCP region when analyzed based on the 

number of unique species, but with only a single low-low cluster grid cell in northern Mexico. Two 

grid cells were identified as high-low outliers for both the unique genus and species analysis, one in 

eastern Montana and another in eastern Texas. The distribution of clusters and outliers for analysis 

performed based on the total species and genus occurrence counts were very similar to that of the 

number of unique genera overall, except that Colorado does not have significant low-low cluster grid 

cells while Montana and southern Canada regions do.  
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Figure S8. Map results of Anselin Local Moran’s I analysis showing the distribution of clustering and outliers 
for number of unique genera summarized using the 60km grid for the Lower Maastrichtian. 
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Upper Maastrichtian: Data from the Upper Maastrichtian summarized by the 60-km grid 

cells indicate that the WIS is dominated by low-low clusters of unique genera and unique species, and 

that the western portion of the GCP, including Texas and northern Mexico have no significant outliers 

or clusters (Figure S9). The eastern GCP region, however, is dominated by low-low clustering, 

particularly in Alabama and Georgia, and low-high outliers for both the number of unique genera and 

species. This general pattern holds when analyzed based on both genus and species occurrence 

counts, excepting that the WIS region in North and South Dakota are predominantly non-significant. 
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Figure S9. Map results of Anselin Local Moran’s I analysis showing the distribution of clustering and outliers 
for number of unique genera summarized using the 60km grid for the Upper Maastrichtian. 
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Network Analysis: 

Faunal occurrence records of genera were aggregated into “paleogeographic analysis units” 

or nodes based on the 60km-grid that was created in ArcGIS Pro using the Grid Index tool with cell 

sizes set to 60x60km (see above section on data evaluation). Aggregated data in the form of a 

presence-absence matrix were input into the EDENetworks version 2018 software package (Kivelä et 

al. 2015). Nodes with fewer than three genera were removed from the analysis to allow for better 

comparisons of assemblages and to avoid singletons (i.e., Kiel, 2017). Weighted distances between 

nodes, or links, were calculated based on the Bray–Curtis dissimilarity index, which calculates how 

similar two nodes are based on the number of shared taxa, 

𝐷𝐷(𝐴𝐴,𝐵𝐵) =
2∑ min(𝐴𝐴𝑖𝑖 ,𝐵𝐵𝑖𝑖)𝑘𝑘

𝑖𝑖=1
∑ (𝐴𝐴𝑖𝑖 + 𝐵𝐵𝑖𝑖𝑘𝑘
𝑖𝑖=1 )

 (𝐸𝐸𝐸𝐸 1) 

 

where A and B are two nodes, calculated over a vector with length K where every ith element 

represents the presence or absence of a specific taxa. This calculation is computationally identical to 

the Sorensen or Dice coefficient (Somerfield 2008). The index value ranges from 0, indicating that 

the two nodes share identical taxa, to 1, indicating that they share none. R Code used to configure the 

database into tables that could be input into EDENetworks can be found in Appendix C. 

All data locations were converted to paleo coordinates using the R package chronosphere 

(Kocsis and Raja 2020) to reproject the data back to their original positions and relative distances. 

Faunal provinces were delimited using these distance weight measures in a thresholding network 

approach (Moalic et al. 2012; Kivelä et al. 2015; Kiel 2016) where the threshold represents the 

maximum weight (level of dissimilarity) of the links used to construct the network; weights that fall 

above this value (i.e., those with greater faunal dissimilarity) were removed from the network (Kivelä 

et al. 2015). Thus, at lower thresholds the network is more fractured (more and smaller network 

components) and at higher thresholds the network is more connected (fewer and larger components). 
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The point at which all components are connected without forming a unitary component is referred to 

as the percolation point (Kivelä et al. 2015). Components which become disconnected at thresholds at 

and below the percolation point can be interpreted as representing distinct “community” groups 

(Newman 2012) and therefore can be used to draw conclusions about the distribution of faunal 

provinces.  

Network models were created using EDENetworks for all substages individually and for the 

complete database, which combines all substages together. Networks were produced between the 0.99 

threshold and 0.40 threshold to analyze the consistency of topological patterns at intervals of 0.05, 

and an additional network was produced for each percolation point (Table S3). General patterns in 

network connection across all substages for the complete database were also visually assessed by 

using a coarser spatial aggregation of the data, by a 360km grid aggregation (see below). This 

aggregation produced lower resolution comparison with fewer nodes but allowed for easier 

visualization of network connections across both space and time simultaneously. 

 Networks and their figures were produced for each substage between the 0.99 threshold and 

0.40 threshold to analyze the consistency of topological patterns at intervals of 0.05, and an additional 

network was produced for each percolation point (Table S3). The complete database, containing the 

data from all substages, was only analyzed at thresholds between 0.76 and 0.40 due to computational 

time constraints. Topological patterns were generally consistent at all thresholds for all networks, and 

no distinct minor components or subprovinces become more obvious within the primary WIS and 

GCP provinces at lower thresholds (Figure S10-S20). 

Results of the network analysis indicate a single faunal province, representing the WIS 

throughout the Campanian, and two primary faunal provinces in the Maastrichtian (one 

circumscribing the WIS and the other delineating the GCP) (Figure S16-S19); the two provinces were 

also observed in the complete database network (Figure S20). The lack of a GCP province in the 

Campanian (Figure S10-S15) is probably driven by a lack of GCP data; only in the Maastrichtian 
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when GCP data is more abundant does the GCP province become clear. Topological patterns were 

generally consistent at all thresholds for all networks, and no distinct minor components become more 

obvious within the primary WIS and GCP provinces at lower thresholds.  
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Table S3. Summary table of network analysis results for all substages and complete database including 
summary values for individual threshold analysis. 

 Low CAM Mid CAM Up CAM Low MAA Up MAA Complete 
DB 

Size 75 109 138 68 50 440 
Distance Measure Jaccard Jaccard Jaccard Jaccard Jaccard Jaccard 

Avg Distance 0.79 0.8 0.83 0.84 0.87 0.86 
Min Distance 0 0.2 0 0 0 0 
Max Distance 1 1 1 1 1 1 

PERCOLATION POINT 0.61 0.57 0.5 0.8 0.86 0.76 
Edges 367 175 174 674 447 16965 

Avg Degree (<k>) 9.79 3.21 2.52 19.82 17.88 77.11 
Max Degree (kmax) 33 11 17 41 29 119 
Avg Clustering (<c>) 0.41 0.25 0.18 0.68 0.8 0.58 
Avg Distance (<d>) 0.51 0.48 0.44 0.69 0.69 0.67 

Connectivity (components) 18 25 74 3 9 22 
Connectivity (largest) 57 84 61 66 44 415 

 MINIMUM SPANNING TREE 
Edges 74 108 137 67 49 439 

Avg Degree (<k>) 1.97 1.98 1.99 1.97 1.96 2 
Max Degree (kmax) 6 7 6 5 4 8 
Avg Clustering (<c>) 0 0 0 0 0 0 
Avg Distance (<d>) 0.49 0.5 0.52 0.56 0.58 0.48 

Connectivity (components) connected connected connected connected connected connected 
Connectivity (largest)       

 THRESHOLD 0.99 
Edges 2322 5741 8761 2066 987 - 

Avg Degree (<k>) 61.92 105.34 126.97 60.76 39.48 - 
Max Degree (kmax) 71 108 135 65 48 - 
Avg Clustering (<c>) 0.93 0.98 0.97 0.94 0.89 - 
Avg Distance (<d>) 0.75 0.8 0.81 0.82 0.84 - 

Connectivity (components) 3 connected 2 2 connected - 
Connectivity (largest) 73  137 67  - 

 THRESHOLD 0.95 
Edges 2299 5492 8235 1832 606 - 

Avg Degree (<k>) 61.31 100.77 119.35 53.88 24.24 - 
Max Degree (kmax) 70 108 133 65 38 - 
Avg Clustering (<c>) 0.93 0.96 0.94 0.91 0.87 - 
Avg Distance (<d>) 0.75 0.79 0.8 0.8 0.75 - 

Connectivity (components) 3 connected 2 3 connected - 
Connectivity (largest) 73  137 66  - 

 THRESHOLD 0.90 
Edges 2042 4731 6901 1505 497 - 
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Avg Degree (<k>) 54.45 86.81 100.01 44.26 19.88 - 
Max Degree (kmax) 67 102 126 58 29 - 
Avg Clustering (<c>) 0.88 0.89 0.85 0.83 0.85 - 
Avg Distance (<d>) 0.72 0.77 0.78 0.78 0.71 - 

Connectivity (components) 4 connected 2 3 3 - 
Connectivity (largest) 72  137 66 48 - 

 THRESHOLD 0.85 
Edges 1684 3651 4958 1070 431 - 

Avg Degree (<k>) 44.91 66.99 71.86 31.47 17.24 - 
Max Degree (kmax) 63 97 109 53 28 - 
Avg Clustering (<c>) 0.79 0.79 0.74 0.75 0.8 - 
Avg Distance (<d>) 0.69 0.73 0.74 0.74 0.69 - 

Connectivity (components) 4 3 4 3 7 - 
Connectivity (largest) 72 106 135 66 31 - 

 THRESHOLD 0.80 
Edges 1400 2711 3586 674 357 26242 

Avg Degree (<k>) 37.33 49.74 51.97 19.82 14.28 119.28 
Max Degree (kmax) 60 84 91 41 26 268 
Avg Clustering (<c>) 0.75 0.7 0.68 0.68 0.73 0.65 
Avg Distance (<d>) 0.66 0.7 0.71 0.69 0.66 0.71 

Connectivity (components) 5 4 4 3 9 15 
Connectivity (largest) 69 104 135 66 30 423 

 THRESHOLD 0.75 
Edges 1086 18.51 2333 506 300 16253 

Avg Degree (<k>) 28.96 33.96 33.81 14.88 12 73.88 
Max Degree (kmax) 53 65 71 35 25 192 
Avg Clustering (<c>) 0.65 0.62 0.58 0.63 0.68 0.58 
Avg Distance (<d>) 0.63 0.67 0.67 0.66 0.75 0.67 

Connectivity (components) 8 5 11 4 11 24 
Connectivity (largest) 66 103 128 59 28 377 

 THRESHOLD 0.70 
Edges 789 1111 1347 309 215 9009 

Avg Degree (<k>) 21.04 20.39 19.52 9.09 8.6 40.95 
Max Degree (kmax) 45 42 53 22 23 135 
Avg Clustering (<c>) 0.6 0.51 0.46 0.54 0.59 0.5 
Avg Distance (<d>) 0.59 0.62 0.62 0.61 0.6 0.62 

Connectivity (components) 12 6 14 8 12 36 
Connectivity (largest) 62 102 125 56 27 336 

 THRESHOLD 0.65 
Edges 523 579 710 189 145 4737 

Avg Degree (<k>) 13.95 10.62 10.29 5.56 5.8 21.53 
Max Degree (kmax) 40 24 33 17 18 85 
Avg Clustering (<c>) 0.48 0.43 0.38 0.41 0.51 0.43 
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Avg Distance (<d>) 0.54 0.57 0.56 0.57 0.56 0.56 
Connectivity (components) 15 11 19 15 16 54 

Connectivity (largest) 60 98 119 50 24 353 
 THRESHOLD 0.60 

Edges 304 274 352 79 97 2310 
Avg Degree (<k>) 8.11 5.03 5.1 2.32 3.88 10.5 

Max Degree (kmax) 32 16 21 10 12 60 
Avg Clustering (<c>) 0.36 0.29 0.28 0.26 0.41 0.34 
Avg Distance (<d>) 0.494 0.52 0.5 0.5 0.52 0.5 

Connectivity (components) 24 15 43 25 18 88 
Connectivity (largest) 48 94 92 40 22 317 

 THRESHOLD 0.55 
Edges 203 142 195 51 55 1372 

Avg Degree (<k>) 5.41 2.61 2.83 1.5 2.2 6.24 
Max Degree (kmax) 19 11 17 9 8 48 
Avg Clustering (<c>) 0.33 0.2 0.2 0.16 0.3 0.26 
Avg Distance (<d>) 0.45 0.46 0.45 0.46 0.48 0.46 

Connectivity (components) 27 36 64 37 25 142 
Connectivity (largest) 47 54 73 16 17 261 

 THRESHOLD 0.50 
Edges 181 112 174 42 33 1199 

Avg Degree (<k>) 4.83 2.06 2.52 1.24 1.32 5.45 
Max Degree (kmax) 18 11 17 9 6 48 
Avg Clustering (<c>) 0.31 0.17 0.18 0.1 0.27 0.25 
Avg Distance (<d>) 0.43 0.45 0.44 0.45 0.45 0.45 

Connectivity (components) 29 47 74 43 34 195 
Connectivity (largest) 46 51 61 15 10 207 

 THRESHOLD 0.45 
Edges 80 42 77 12 5 433 

Avg Degree (<k>) 2.13 0.77 1.12 0.35 0.2 1.97 
Max Degree (kmax) 12 6 10 3 2 21 
Avg Clustering (<c>) 0.23 0.07 0.09 0.03 0 0.13 
Avg Distance (<d>) 0.36 0.36 0.36 0.34 0.26 0.36 

Connectivity (components) 45 74 95 57 45 281 
Connectivity (largest) 30 24 35 5 3 128 

 THRESHOLD 0.40 
Edges 58 31 47 10 5 303 

Avg Degree (<k>) 1.55 0.57 0.68 0.29 0.2 1.38 
Max Degree (kmax) 10 6 9 2 2 18 
Avg Clustering (<c>) 0.22 0.05 0.08 0.04 0 0.11 
Avg Distance (<d>) 0.33 0.34 0.32 0.32 0.26 0.33 

Connectivity (components) 47 83 108 59 45 311 
Connectivity (largest) 28 18 31 3 3 108 
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Figure S10. Set of network figures for the Lower Campanian. Node sizes indicate betweenness centrality, 
color denotes the number of unique genus occurrences present at the site, and link weights between nodes 
denoted by line color and thickness. No obvious structure except in WIS, where the network is densely 
interconnected without substructure. Only one major component in WI. All other interconnections not included 
in this major component have less than 2 nodes each. No configuration seemed to make any subprovinces more 
visible, so the Minimum Spanning Tree configuration were used to plot the network figures. GCP region is not 
well connected at or below the percolation threshold. High betweenness centrality values in WIS. No obvious 
connection between low generic richness and weak linkages. 
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Figure S11. Set of network figures for the Lower Campanian with nodes placed based on geographic 
coordinates. Node sizes indicate betweenness centrality, color denotes the number of unique genus occurrences 
present at the site, and link weights between nodes denoted by line color and thickness. No obvious structure 
except in WIS, where the network is densely interconnected without substructure. Only one major component in 
WI with weak connections between WI and GCP nodes. GCP region is not well connected at or below the 
percolation threshold. Northern sites were also poorly connected and become less so with lower thresholds. 
High betweenness centrality values in WIS and strong links between southeast, central-east, and southwest 
nodes of the WI. 
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Figure S12. Set of network figures for the Middle Campanian. Node sizes indicate betweenness centrality, 
color denotes the number of unique genus occurrences present at the site, and link weights between nodes 
denoted by line color and thickness. No obvious structure except in WIS, where nodes interconnected without 
substructure. Only one major component in WIS and all other components have less than 2 nodes each. No 
configuration seemed to make any subprovinces more visible, so used Minimum Spanning Tree configuration 
to plot figures. High betweenness centrality values in the WIS. At lower thresholds, linkages break down 
somewhat in WIS but still strong connections across whole region. No obvious connection between low generic 
richness and weak linkages. In fact, strongest links appear to be between those sites with less than 5 genera.  
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Figure S13. Set of network figures for the Middle Campanian with nodes placed based on geographic 
coordinates. Node sizes indicate betweenness centrality, color denotes the number of unique genus occurrences 
present at the site, and link weights between nodes denoted by line color and thickness. No obvious structure 
except in WIS, where nodes interconnected without substructure. Only one major component in WIS and all 
other components have less than 2 nodes each. GCP region is not well connected at all. At lower thresholds, 
linkages break down somewhat in WIS but still strong connections across whole region, particularly in the 
south, south-western, and eastern nodes.  
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Figure S14. Set of network figures for the Upper Campanian. Node sizes indicate betweenness centrality, color 
denotes the number of unique genus occurrences present at the site, and link weights between nodes denoted by 
line color and thickness. No obvious structure except in WI, where nodes are interconnected without 
substructure. Only one major component in WIS and any others have less than 3 nodes each. No configuration 
seemed to make any subprovinces more visible, so used Minimum Spanning Tree configuration to plot figures. 
At lower thresholds, linkages break down somewhat in WIS but still strong connections across whole region. 
No obvious connection between low generic richness and weak linkages. In fact, strongest links appear to be 
between those sites with less than 10 genera. 
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Figure S15. Set of network figures for the Upper Campanian with nodes placed based on geographic 
coordinates. Node sizes indicate betweenness centrality, color denotes the number of unique genus occurrences 
present at the site, and link weights between nodes denoted by line color and thickness. No obvious structure 
except in WI, where nodes are interconnected without substructure. GCP region is not well connected at all 
(only one weak connection between the WIS and GCP nodes). At lower thresholds, linkages break down 
somewhat in WIS but still strong connections across whole region, particularly between and northwest to 
eastern nodes. 
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Figure S16. Set of network figures for the Lower Maastrichtian. Node sizes indicate betweenness centrality, 
color denotes the number of unique genus occurrences present at the site, and link weights between nodes 
denoted by line color and thickness. Two major components in the WIS and GCP regions. One weak connection 
between GCP site (isolated otherwise) and WIS. No configuration seemed to make any subprovinces more 
visible, so used Minimum Spanning Tree configuration to plot figures. GCP region on the east side maintains its 
connections throughout thresholds. High betweenness centrality values in WIS, mostly at lower thresholds, not 
at percolation point. At lower thresholds, linkages break down somewhat in WIS but still strong connections 
across whole region. No obvious connection between low generic richness and weak linkages. In fact, strongest 
links appear to be between those sites with less than 10 genera.  
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Figure S17. Set of network figures for the Lower Maastrichtian with nodes placed based on geographic 
coordinates. Node sizes indicate betweenness centrality, color denotes the number of unique genus occurrences 
present at the site, and link weights between nodes denoted by line color and thickness. One weak connection 
between GCP site and WIS below the percolation point. GCP region on the east side maintains its connections 
throughout thresholds. High betweenness centrality values in WIS. At lower thresholds, linkages break down 
somewhat in WIS but still strong connections across whole region, though they are strongest between the 
southern, central-east, and central nodes. 
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Figure S18. Set of network figures for the Upper Maastrichtian. Node sizes indicate betweenness centrality, 
color denotes the number of unique genus occurrences present at the site, and link weights between nodes 
denoted by line color and thickness. Two major components, the WIS and GCP regions, connected by one weak 
connection between the WIS and GCP that is gone by 0.80 threshold. No configuration seemed to make any 
subprovinces more visible in WI, so used Minimum Spanning Tree configuration to plot figures. GCP region 
has strong connections across region. High betweenness centrality values in GCP, mostly at lower thresholds, 
not at percolation point. At very low thresholds (0.5), linkages break down somewhat in GCP and WIS but still 
strong connections across both regions, particularly in eastern side of GCP. No obvious connection between low 
generic richness and weak linkages. In fact, some of strongest links appear to be between those sites with less 
than 5 genera in WIS. 
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Figure S19. Set of network figures for the Upper Maastrichtian with nodes placed based on geographic 
coordinates. Node sizes indicate betweenness centrality, color denotes the number of unique genus occurrences 
present at the site, and link weights between nodes denoted by line color and thickness. Two major components, 
the WIS and GCP regions, connected by one weak connection between the WIS and GCP that is gone by 0.80 
threshold. GCP region has strong connections across region. High betweenness centrality values in GCP, mostly 
at lower thresholds, not at percolation point. At very low thresholds (0.50), linkages break down somewhat in 
GCP and WIS but still strong connections within both regions, particularly in eastern side of GCP. 
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Figure S20. Set of network figures for the entire database. Node sizes indicate betweenness centrality, color 
denotes node substage, and link weights between nodes denoted by line color and thickness. Only 2 major 
components, not divided otherwise, one is the WIS region and the other is GCP region (mostly MAA). The WIS 
and GCP regions connected mainly by Upper Campanian sites. Same age sites tend to be more closely 
connected to each other than different age sites on Minimum Spanning Tree. Topology maintained throughout 
thresholds. 
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Network Randomization Comparisons 

Clustering coefficient values, which describe the ratio of the number existing connections 

between a node and its neighbors to the maximum possible such connections, were calculated and 

then averaged over the network as a whole (Saramäki et al. 2007). Clustering coefficients for 

networks created at the percolation point were compared with a null model of randomized networks 

that contained the same number of nodes and links to determine if the network was more or less 

clustered than would be expected from a random distribution (Kiel, 2016; Table S4). Average 

clustering coefficient values that are distinct from random indicate substructure in the network, 

suggesting that the network represents aspects of the real-world system, such as community groups or 

faunal provinces, that differ in assemblage along distinct network components (Newman 2012).  

 Each clustering coefficient was compared with a null model of randomized networks that 

contain the same number of nodes and links to determine if the network is more or less clustered than 

would be expected at random (Kiel 2016). Networks were randomized in R using the igraph and tnet 

packages (Csárdi & Nepusz, 2006; Opsahl, 2009; see Appendix C for R codes). Randomization for 

each substage network were run 1000 times, rewiring the same numbers of nodes and links while 

maintaining link weight distributions. Average clustering coefficient distributions for the randomized 

networks were then compared with the clustering coefficient of the original network (Table S4). 

Results indicate that all network clustering coefficients are greater or less than three standard 

deviations from the mean, and therefore highly distinct from random. 
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Table S4. Results of randomization analysis to compare clustering coefficients. 1000 randomized networks 
created for each network using the same numbers of nodes and links (with maintained link weights) rewired. 

 
Networks <CC> 

Mean 
Randomized 

<CC> 

1st S.D. Rand. 
<CC> 

2nd S.D. Rand. 
<CC> 

3rd S.D. Rand. 
<CC> 

Lower 
Campanian 0.531 0.395 0.404 0.414 0.423 

Middle 
Campanian 0.307 0.065 0.079 0.093 0.107 

Upper 
Campanian 0.440 0.171 0.189 0.206 0.223 

Lower 
Maastrichtian 0.660 0.498 0.503 0.507 0.512 

Upper 
Maastrichtian 0.923 0.595 0.601 0.606 0.612 

Complete 
Database 0.569 0.368 0.369 0.370 0.371 
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Complete 360km2 Grid Cell Aggregation Network 

 We also spatially aggregated the data to a 360km grid cell size, both to check for sensitivity 

and to allow for easier spatiotemporal visualization of network connections. This analysis was 

performed using the same methods as the 60km2-aggregation using instead a 360km2 grid index layer 

created in ArcGIS Pro using the Grid Index Tool (ESRI, 2021). The 360km aggregation produced 

lower resolution networks that compared fewer nodes. Furthermore, networks were only created at 

the percolation point for the composite database as a whole rather than for individual substages and at 

different thresholds to save time on computation (and following the consistency of network topology 

patterns found in using the 60km resolution nodes, above). 

 Results indicate that the patterns observed at the higher resolution 60km-grid-aggregation 

were maintained at this courser aggregation. The WIS and GCP components were still distinct from 

one another in the Maastrichtian. One advantage of coarser aggregation is that it allowed for easier 

visual comparisons across substages when the nodes were mapped geographically (Figure S21). The 

WIS component is well connected across all substages excluding the Late Maastrichtian, and 

connections are common between non-consecutive substages from the Middle Campanian through the 

Early Maastrichtian, though node links are most common between consecutive substages. 

 These patterns are consistent with patterns results from the 60km-grid aggregation, and 

furthermore suggest that the WIS was a distinct faunal province that persisted for a significant period 

of time. During the Late Maastrichtian, the WIS component was still well interconnected and distinct 

from the GCP component, but it does not share strong connections with the earlier WIS components 

(i.e., the three Campanian substages or the Lower Maastrichtian). This suggests turnover of fauna in 

the region while maintaining internal spatial homogeneity within the Late Maastrichtian itself. These 

patterns support interpretations discussed in the main text, that sea levels fell towards the end of the 

interval, potentially altering climate and circulation patterns, and altering faunal associations in the 

Late Maastrichtian. 
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Figure S21. Network maps of the composite network created using a 360km2 grid aggregation. Note the well-
connected WIS component throughout all substages excluding the Upper Maastrichtian.  
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Detailed Subcomponent Analysis 

To determine if much smaller but spatially consistent subcomponents (potential communities 

at lower spatial scale than “subprovinces”) existed in any of the substage networks, identified 

subcomponents containing more than four interconnected nodes were analyzed at thresholds below 

the percolation point. A limit of at least four nodes was chosen arbitrarily for this analysis; few 

subcomponents were observed in any network with fewer than 4 connected nodes. These 

subcomponents were mapped using the ggplot2 package (Wickham 2016) in R to determine if they 

represent consistent geographic subprovinces of highly connected nodes. R code for this analysis can 

be found in Appendix C. Only the Middle Campanian and the Late Maastrichtian were found to 

contain subcomponents with greater than four interconnected nodes, at threshold levels below the 

percolation points. Figure S22 and S23 display the major and subcomponents from these networks 

plotted on a U.S. map and coded by color. 

Manual subcomponent analysis did not find any subcomponents in the WIS that were 

geographically or temporally stable. In the Middle Campanian, the secondary component observed is 

not consistent through all thresholds, instead only representing the same nodes between the 0.45 and 

0.40 thresholds. The third component observed at the 0.45 threshold is furthermore not observed at 

any other threshold analyzed here. These results indicate that these components do not represent 

consistent network features, but are instead lesser faunal associations that shift with changing 

thresholds. It is possible, however, that the secondary component observed between the 0.45 and 

0.40 thresholds in the WIS represents a significant faunal association, perhaps related to previously 

described biogeographic features like Kauffman (1984)’s “endemic center” or Central Interior 

Province. The geographic position of this subcomponent does correspond roughly with both units 

based on Kauffman’s (1984) map (Fig. 7, p. 286). Further work may be able to elucidate if the faunal 

assemblages in this region are indeed related to a distinct endemic center or a weak subprovince in the 

WIS but cannot be conclusively determined here. In the Lower Maastrichtian, the secondary 
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component observed in the 0.75 and 0.60 thresholds indicates that the GCP region, along its eastern 

margin, is characterized by a consistent subcomponent observed in the overall network topology. 

However, this component breaks down at the 0.50 threshold. Thus, no other subcomponents are 

observed in the network that could correspond with subprovinces. 
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Figure S22. Maps of major and minor components (containing >3 interconnected nodes) from network analysis 
of the Middle Campanian for thresholds 0.40, 0.45, and 0.50. All other node components containing less than 4 
nodes were not mapped. The major component for all thresholds covers the majority of the WIS region while 
the secondary component occupies the middle WI at all threshold levels. However, the secondary component 
observed at the 0.50 does not consist of the same nodes as those of the 0.45 and 0.40 thresholds. This indicates 
that a consistent subcomponent only emerges at the 0.45 threshold while the secondary component observed in 
the 0.50 threshold breaks down into smaller pieces. The third subcomponent is only observed at the 0.45 
threshold, indicating that it is a portion of the major component that becomes distinct at the 0.45 threshold level 
before breaking down into smaller pieces at lower thresholds.  
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Figure S23. Maps of major and minor components (containing >3 nodes) from network analysis of the Lower 
Maastrichtian for thresholds 0.50, 0.60, and 0.75. All other node components containing less than 4 nodes were 
not mapped. The major component for all thresholds covers the majority of the WIS region. The secondary 
component is located in the eastern GCP from the 0.75 to 0.60 thresholds, but shifts to the WIS region at the 
0.50 threshold level as the GCP region subcomponent breaks down into ones with less than 4 interconnected 
nodes. This indicates that the secondary component is fairly consistent and represents the eastern GCP region 
for most threshold levels, but no other consistent subcomponents exist within the network.  
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Average Betweenness Centrality: 

Within each network, the betweenness centrality (BC) metric was measured for each node, describing 

the importance of that node in connecting other nodes through a shortest path (Kivelä et al. 2015). 

Betweenness centrality of a node is calculated as 

𝐵𝐵𝐵𝐵(𝑆𝑆) = ∑ 𝜎𝜎𝑠𝑠𝑠𝑠(𝑖𝑖)
𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠≠𝑣𝑣≠𝑡𝑡   (𝐸𝐸𝐸𝐸2)

Where 𝜎𝜎𝑠𝑠𝑡𝑡 is the number of shortest paths connecting nodes s and t and 𝜎𝜎𝑠𝑠𝑡𝑡(i) is the number of those 

paths which pass through node i. This metric indicates the degree to which a node/region/province 

acts as potential geographic or phylogenetic connection between otherwise dissimilar 

regions/provinces. Nodes were binned into 5-degree paleolatitudinal bins to compare average BC 

(BCave) across latitudinal space.  

It should be noted that, given that the GCP does not contain as many latitudinal bins as the 

WIS (only existing in the study area between approximately 25-37°N), latitudinal binning 

comparisons across the GCP are inappropriate at this scale of analysis. Further, there is some 

latitudinal overlap between the southernmost WIS and the northernmost GCP, around 35°N, due to 

the Mississippi Embayment which may influence these results. Since we found that generic richness 

was correlated strongly with sampling effort (Figure S4) we assessed its impact on network 

communication by comparing BCave values calculated using generic richness bins (Figure S25). 

Generic richness values did not have a strong relationship with BCave values, indicating that generic 

richness and, by that proxy, sampling effort did not strongly control BCave. Had sampling effort and 

generic richness correlated strongly with BCave, it would be indicative of sampling bias. 

 Betweenness centrality varied between substages and at different threshold levels for each 

substage (Figure S24). The values of BCave were consistently higher at the percolation threshold for 

all substages than at all thresholds below the percolation points, indicating that the number of shortest 

paths running through nodes was particularly high in the network at the percolation point. Higher 
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BCave values at thresholds above the percolation point are present but not common, and most 

substages show a decrease in BCave at thresholds above the percolation point (Figure S24). These 

results suggest that nodes within each substage network are particularly important for forming 

connections between other nodes at the percolation point. However, it should be noted that 

betweenness centrality is greatly dependent on network density, or the number of links between 

nodes, and therefore the level of influence a set of nodes has on network connectivity can only be 

directly compared within the same threshold level for a substage. This enables comparisons of BC 

within substage thresholds based on different latitude bins and binned numbers of unique fossil 

occurrences (Figure S25). 
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Figure S24. Average betweenness centrality values for the individual substage networks at different threshold 
levels at and below their percolation points. The highest value of BC was recorded at the percolation point for 
the Middle Campanian (0.57), at 156.6. This value suggests that the network was highly structured. All other 
substages have values less than 40, and all substages show a general decrease in BC values at thresholds below 
their percolation points excluding the Lower Maastrichtian. The Lower Maastrichtian has a relatively stable BC 
value between its percolation point (0.80) and 0.60, with some variation, indicating that structure remains 
relatively high in these networks up until the 0.55 threshold level. Line color and symbol indicates substage, 
dashed lines are interpolated across several threshold levels.  

 

 

 

 



 

164 
 

Figure S25 shows the results of BCave for each substage at different thresholds based on 

latitudinal bins and sampling count bins. Average BC values in the Campanian substages are highest 

in the mid- to northern latitudes (40-60°N; Figure 5), consistent with higher sampling in the WIS vs. 

GCP during these intervals. However, at the percolation point for each substage, the latitudinal bin 

with the highest BCave shifts south through time. In the Lower and Middle Campanian, the highest 

BCave is found in the 50-55°N and 55-60°N bins, respectively, but in the Upper Campanian the 

highest BCave value was observed in the 40-45°N bin. This pattern is consistent but dampened at other 

thresholds, except in the Upper Campanian where the pattern is amplified at thresholds just above the 

percolation point (Figure S24). The highest average BC value for the Lower Maastrichtian substage is 

in the 35-40°N latitude bin; this shifts in the Upper Maastrichtian to highest average BC values in the 

45–50°N bin with a second highest value in the 35–40°N bin. The fact that the second-highest BCave 

value in the Lower Maastrichtian exists in the 35-40°N bin is probably a product of increased 

sampling effort for that latitude, and suggests network patterns are somewhat influenced by sampling 

distributions in geographic space. Overall, patterns observed at the percolation point for each substage 

were paralleled but dampened at other thresholds, except for the Upper Campanian and both 

Maastrichtian substages where these trends were amplified but not substantially distinct. These 

patterns indicate that network topology is consistent at different thresholds. 

Average BC binned by generic richness (i.e., the number of unique genera per 60-km grid 

cell) (vs. generic richness) do not indicate that sampling bias impacts the ability for nodes to act as 

communicating links between other areas. If greater sampling bias and therefore higher generic 

richness greatly influenced network communication, we would expect there to be a positive 

relationship between BCave and the number of unique genera. However, nodes with lower richness 

appear to have higher general BCave than nodes with greater richness for most substages and their 

thresholds, though this is not a universal trend and specifics depend on threshold level as well as 

substage. At thresholds below the percolation point, peaks in BCave for richness bins are diminished, 
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excluding the Lower Maastrichtian substage. Average BC of generic richness bins therefore 

suggests no strong correlation exists between the number of unique taxa and a node’s ability to 

communicate information within the network (Figure S25). 

Overall, these results indicate that lower numbers of unique taxa do not diminish a node’s 

ability for be positioned along the shortest connecting paths between other nodes, communicating 

faunal information succinctly, and may in fact result in increasing the likelihood for these positions. 

Linkage patterns within individual substage Minimum Spanning Tree (MST) furthermore indicate 

that, while associations the number of unique genera in a node are non-random, they are not 

dominated by links between nodes of the same bin of unique genera counts (see more on MST 

below). This suggests that the number of unique genera within a grid cell has some influence on 

network topology, but that it is not the primary deciding factor. Nodes with fewer unique genera are 

probably characterized by highly common taxa, making them important for connecting nodes with 

more distinct and rarer genera. This interpretation corresponds well with the results of MST 

assessments, since nodes with a lower number of unique genera appear to form stronger links than 

those with greater number of unique genera. This may indicate that the nodes with fewer unique taxa 

that are common form strong links to one another and form links with nodes containing a more 

unique genera, while nodes with more and rarer taxa differ more, forming weaker links.  Thus, 

sampling bias was not found to strongly impact network connections. 
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Figure S25. Average BC values for the different substages binned by latitude and by the number of fossil 
occurrences aggregated into each grid cell or node. 
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Average Link Weights through Time and by Latitude: 

 A comparison of average/median network link weights with latitude revealed 

significant variability within each substage and no clear trend across substages (Figure S26, A and B; 

Table S5), suggesting that faunal similarity does not vary consistently with latitude through time or 

space. In other words, network similarity neither increases or decreases across latitude in any interval. 

Generally, the lowest average similarity was observed in the 35-40°N bin. Highest similarity shifts 

north from the 40-45°N bins in the Lower and Middle Campanian to 45-50°N in the Upper 

Campanian; similarly, the Lower Maastrichtian showed the highest average similarity at 30-35°N, 

shifting to 45-50°N in the Upper Maastrichtian. Faunal similarity is overall greater between nodes 

within a latitudinal bin and those nodes without and higher between nodes in the WIS bins (40-50°N) 

to those without than the GCP (Figure S26, C and D).  
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Figure S26. Plots of average and median weights (Bray–Curtis dissimilarity index) within bins of latitude.  
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Distance Comparisons: 

The relationship between network links and geographic distance was analyzed to determine 

how distance impacts faunal similarity across the study region. Under the null hypothesis it is 

expected that, as distance increases, link dissimilarity values or weights will increase as well given an 

assumption that faunal similarity is primarily spatially controlled. Distance values were calculated for 

the completely connected networks (Threshold = 0.99) for each substage in order to assess all faunal 

links based on paleocoordinates using the geodesic distance calculation from the geosphere package 

in R (Hijmans, 2021; code in Appendix C). Link weights between different nodes were binned by 50- 

to 500-kms and used to calculate average and median weight values. Networks were also analyzed by 

binning link values into 5-degree paleolatitudinal bins as mentioned previously to compare link 

weight change across latitude. 

Comparisons between geographic distance and faunal similarity determined that the 

similarity of nodes is greater in general when the two nodes are closer together, but weakens 

significantly at ~1000 km distance. At very great distances (i.e., >2000 km), the correlation similarity 

loses power in most substages (Figure S27). Results show little increase in weight with distance until 

the 1000-1500 km bin at which weights increase sharply. Average network link weight did not 

consistently continue to increase beyond the 2000 – 2500 km bin range. Overlap in confidence 

intervals indicate that most substages do not have significantly different similarity values. However, 

mean similarity notably decreases from the Lower to the Middle Campanian (Figure S27 A). Median 

values showed similar trends, with generally higher average values in each bin. 

To test for differences in similarity across distance within the different basins, the WIS and 

GCP components identified by the networks were also analyzed individually, following the same 

procedure as use for overall basin link weight averages (see section Average Dissimilarity by 

Network-Identified Components below). Patterns observed in the collective database were largely 

maintained in the WIS and GCP analyzed individually, but distances greater than ~2000 km were not 
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frequently observed (Figure S29). In the WIS, only the Lower Maastrichtian is distinctly less similar 

than other substages across most distance bins (Figure S29 A). In the GCP, confidence interval values 

in almost all distance bins overlap, suggesting that no significant difference in similarity is observed 

(Figure S29 C). 
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Figure S27. Plots of average (A) and median (B) weights (Bray–Curtis dissimilarity index) within bins of 
geographic distance (geodesic distance using the WGS84 ellipsoid). 95% Confidence Intervals indicated by 
vertical bars. 
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Figure S28. Plots of average (A) and median (B) WIS weights (Bray–Curtis dissimilarity index) and average 
(C) and median (D) GCP weights within bins of geographic distance (geodesic distance using the WGS84 
ellipsoid). 95% Confidence Intervals indicated by vertical bars. 
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Table S5. Table of mean/median weights (Bray–Curtis dissimilarity index) binned by latitude for each 
substage. NA values indicate that the bin lacked occupied grid cells.  

Degree Bins Low CAM Mid CAM Up CAM Low MAA Up MAA 
30-35 0.88/0.94 0.70/0.70 NA 0.51/0.51 NA 
35-40 1.0/1.0 0.91/1.0 0.93/0.96 0.89/0.96 0.79/0.80 
40-45 0.65/0.67 0.75/0.78 0.95/1.0 NA NA 
45-50 0.70/0.70 0.77/0.78 0.75/0.76 0.81/0.83 0.47/0.50 
50-55 0.75/0.75 0.77/0.79 0.79/0.81 0.76/0.78 0.75/0.76 
55-60 0.85/0.85 NA 0.83/0.84 0.65/0.65 NA 
60-65 NA NA NA NA NA 
Total 0.78/0.80 0.79/0.82 0.82/0.84 0.83/0.86 0.85/0.95 
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Average Dissimilarity by Network-Identified Components: 

The GCP region is defined as the submerged continent below the TA (~ northern TX) and 

extends east to overlap in latitude the southern WIS in the Mississippi Embayment, which might 

render latitude-based comparisons of the region highly uninformative. It is furthermore possible that 

the WIS and GCP provinces experienced different faunal association patterns across time which 

cannot be observed when the two are assessed in the same network. To test if network patterns differ 

between the WIS and GCP basins, we examined each provincial component individually. We 

separated the WIS from the GCP based on network components identified just below the percolation 

point for each substage (when components become disassociated from one another), which are 

geographically associated with the WIS and GCP in R. Faunal dissimilarity values represented by the 

links between nodes present in these two components were then used to calculate average faunal 

dissimilarity for both the WIS and GCP at each substage. WIS and GCP component values were 

averaged to include all links (i.e., a threshold of 100) but based on network-identified components at a 

level just below the percolation point for each, when the two components are disconnected 

completely. The GCP component was only present and therefore only calculated for in the 

Maastrichtian substages.. 

Results of average link weights for the WIS and GCP as distinct component not restricted to 

latitude show that WIS average faunal similarity was stable during the Campanian then decreased in 

the Maastrichtian while similarity increased within the GCP over the Maastrichtian (Table S6). 
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Table S6. Results of dissimilarity comparisons between network identified components representing the WIS 
and GCP in each substage. The threshold level used to identified nodes within each component are listed, as 
well as average dissimilarity values for links between identified nodes in the fully connected network for each 
substage. 

Substage Threshold of ID’ed components WIS Avg Dissimilarity  GCP Avg Dissimilarity 
Lower Camp. 0.60 0.726 NA 
Middle Camp. 0.55 0.771 NA 
Upper Camp. 0.45 0.779 NA 

Lower Maastr. 0.75 0.810 0.919 
Upper Maastr. 0.85 0.882 0.816 
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Minimum Spanning Trees: 

Beyond the previous analysis binning BCave by generic richness demonstrating that sampling 

bias did not control network component results (i.e., identified WIS and GCP faunal provinces), we 

tested for sampling bias by comparing the influence of generic richness on network topology using 

minimum spanning trees (MST). MST are subnetworks that connect nodes using the minimum link 

weights possible while preventing loops (forcing the network to produce only branching trees where 

branches cannot reconnect via looping), therefore representing fundamental aspects of network 

topology (Graham and Hell 1985; Mareš 2008). The topology of MSTs test sampling bias by 

calculating the degree of clustering between nodes containing similar generic richness. If sampling 

bias is the primary factor controlling topology, MSTs should show extremely high clustering between 

nodes of the same richness bin, a lower relative proportion of links between adjacent bins, and 

virtually no links between non-adjacent bins. Essentially, there should be a high dominance of links 

between nodes of the same richness level, were richness (i.e., sampling bias) the primary factor 

controlling how similar nodes are to one another. 

Results of MST link proportion comparisons for substages (Figure S29, A-E) indicate that a 

high and relatively even proportion of links exist between nodes with the same or similar generic 

richness, and very low proportions of non-adjacent bin links (Tables S9-S13). This result suggests 

that while sampling bias influenced network topology, it was not the primary factor delineating 

network connections. No MST shows a majority of clustering between nodes of the same richness bin 

with a lower proportion between adjacent bins and virtually none between non-adjacent bins, 

excluding perhaps the Upper Maastrichtian. Therefore, sampling bias is unlikely to have strongly 

influenced network topology in all substages, except perhaps the Upper Maastrichtian. The 

MST for the complete database indicates that most substages are dominated by within-interval 

connections, rather than randomly or geographically sharing links with other intervals (Figure S29, 

F). This is expected based on an assumption of temporal autocorrelation and supports age-defined 
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communities as a primary control on topology. Substages are also linked with adjacent substages, 

rather than to non-adjacent ones, consistent with the expectation that communities will become less 

similar through time (Table S14). 
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Figure S29. Minimum spanning trees for each substage and the collective network. For substages (A-E), node color indicates the number of unique fossil genera present in each 
node, node size indicates betweenness centrality, and link size and color denotes the weight between two nodes (Bray–Curtis dissimilarity index). See Figures S10-S20 for legends 
regarding nodes and edges. Nodes for the complete database (F) are colored based on the substage they belong to. Nodes are labeled with their grid cell ID. 
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Table S7. List of the number of links between unique fossil occurrence count bins in the minimum spanning tree of 
the Lower Campanian. There are substantially more links between nodes of the same bin count and similar bin 
counts (adjacent bins) than between non-adjacent bin counts. 

Lower Campanian – Minimum Spanning Tree Links 
Type of Link Count Percentage 

Same Bin: 36 47.37% 
Adjacent Bin 35 46.05% 

Non-Adjacent Bin 5 6.6% 
 

Table S8. List of the number of links between unique fossil occurrence count bins in the minimum spanning tree of 
the Middle Campanian. There are substantially more links between nodes of the same bin count and similar bin 
counts (adjacent bins) than between non-adjacent bin counts. 

Middle Campanian – Minimum Spanning Tree Links 
Type of Link Count Percentage 

Same Bin: 54 49.54% 
Adjacent Bin 45 41.28% 

Non-Adjacent Bin 10 13.16% 
 

Table S9. List of the number of links between unique fossil occurrence count bins in the minimum spanning tree of 
the Upper Campanian. There are substantially more links between nodes of the same bin count and similar bin 
counts (adjacent bins) than between non-adjacent bin counts. 

Upper Campanian – Minimum Spanning Tree Links 
Type of Link Count Percentage 

Same Bin: 59 43.07% 
Adjacent Bin 67 48.90% 

Non-Adjacent Bin 11 8.03% 
 

Table S10. List of the number of links between unique fossil occurrence count bins in the minimum spanning tree of 
the Lower Maastrichtian. There are substantially more links between nodes of the same bin count and similar bin 
counts (adjacent bins) than between non-adjacent bin counts. 

Lower Maastrichtian – Minimum Spanning Tree Links 
Type of Link Count Percentage 

Same Bin: 33 49.25% 
Adjacent Bin 25 37.31% 

Non-Adjacent Bin 9 13.43% 
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Table S11. List of the number of links between unique fossil occurrence count bins in the minimum spanning tree of 
the Upper Maastrichtian. There are substantially more links between nodes of the same bin count and similar bin 
counts (adjacent bins) than between non-adjacent bin counts. 

Upper Maastrichtian – Minimum Spanning Tree Links 
Type of Link Count Percentage 

Same Bin: 31 63.27% 
Adjacent Bin 7 14.29% 

Non-Adjacent Bin 11 22.45% 
 

Table S12. List of the number of links between substages in the minimum spanning tree of the complete database. 
There are substantially more links between nodes of the same substage, less than half as many between adjacent 
substages, and less than a third between non-adjacent substages. 

Complete Database – Minimum Spanning Tree Links 
Type of Link Count Percentage 

Same Substage: 270 61.36% 
Adjacent Substages: 109 24.77% 

Non-Adjacent Substages: 61 13.86% 
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Extended Biostratigraphic Chart (Extension of Figure 1): 
 

 
Figure S30. Campanian to Maastrichtian biostratigraphic chart showing polarity chon intervals (Malinverno et al. 2020), biozones (Ogg et al. 2016; Lynds and 
Slattery 2017), sea level fluctuations (Haq 2014), global stable carbon and oxygen isotope trends (Gale et al. 2020), and stable oxygen and carbon isotope data 
collated for the Western Interior region (Dwyer, 2019). Ages marked with an asterisk have been added or updated based on Malinverno et al. (2020) from 
Slattery et al. (2013). WI isotope values modified from unpublished data by Dwyer (2019) which span the R9 regressive interval of the Bearpaw Cyclothem (D. 
cheyennenses – B. baculus ammonite zones). 
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Appendix A-2. Taxonomic References List (See Table S13) 

The following list of references were used to vet and update taxonomic nomenclature for the 

fossil data included in Table S1 (excel file). Table S15 lists the original names provided by the primary 

databases (i.e., iDigBio, PBDB, etc.), the updated name, if one is necessary, the reference used to check 

the name, and any additional notes. Taxa were removed if they were not marine invertebrates, identified 

down to at least the genus level, or if they included “c.f.”, “aff.”, or “?” following the genus name. Most 

references were found using basic google searches, but others were researched in specific available 

volumes (i.e., Akers and Akers, 2002a).  
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Appendix A-3. R Code used for Analysis 

The following scripts were used in R to perform analyses. 

Code for Comparing Generic Richness and Occurrence Number (Sampling Bias) 

library(ggplot2) 
library(ggmap) 
library(tidyverse) 
library(sf) 
library(mapview) 
library(raster) 
library(rgdal) 
library(dismo) 
library(XML) 
library(maps) 
library(mFD) 
library(reshape2) 
library(vegan) 
library(dplyr) 
library(tidyr) 
 
setwd("C:/Users/ceara/Documents/Province Project/Occurrence Data/VettedCombinedDB") 
 
# read in the data table (includes the name of grid cell based on 60km grid) 
data <- read.csv("R_Config_for_EN_OUTPUT/Vetted_Substage_Joined_60.csv", header=TRUE) 
 
#### RECONFIGURE ENTIRE DB (same basic code as used to configure into EDENETWORKS 

format) #### 
 
colnames(data) 
 
#convert data to simple dataframes that can be used in EDENETWORKS analyses 
simplify_data <- function(data){ 
  data1 <- data.frame(data) 
  data2 <- data1[,c(1:2,8:9,19,25:29)] 
  return(data2) 
} 
 
trunk_data <- simplify_data(data) 
ncol(trunk_data) 
colnames(trunk_data) 
nrow(trunk_data) 
 
#create collumn collating the grid cell and the age 
trunk_data$Abrev_Age <-with(trunk_data, ifelse(Substage_from_Zone.Mbr == "CAM (low)", 
                                                   'LC', ifelse(Substage_from_Zone.Mbr == "CAM (mid)", 
                                                                'MC', ifelse(Substage_from_Zone.Mbr == "CAM (up)", 
                                                                             'UC', ifelse(Substage_from_Zone.Mbr == "MAA (low)", 
                                                                                          'LM', 'UM' ))))) 
head(trunk_data) 
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nrow(trunk_data) 
 
# replace the grid cell name column with the grid cell name and abbreviated age collated 
trunk_data$PageName <- paste(trunk_data$PageName,trunk_data$Abrev_Age,sep="") 
head(trunk_data) 
colnames(trunk_data) 
nrow(trunk_data) 
 
# Add the faunal province information 
FP_list <- read.csv("FaunalProv_AttributesList.csv") 
FP_list <- FP_list[,1:3] # shorted to just the Province and Grid name columns 
nrow(FP_list) 
unique(FP_list$Province) 
 
FP_list$Color <- with(FP_list, ifelse(Province == "NIP", 
                                      'mediumblue', ifelse(Province == "SIP", 
                                                           'gold', ifelse(Province == "CIP", 
                                                                          'darkolivegreen', ifelse(Province == "GCP", 
                                                                                                   'chocolate', ifelse(Province == "EC", 
                                                                                                                       'darkmagenta', 'grey' )))))) 
 
FP_list$ColorAge <-with(FP_list, ifelse(Age == "LC", 
                                        'darkblue', ifelse(Age == "MC", 
                                                           'olivedrab', ifelse(Age == "UC", 
                                                                               'yellow', ifelse(Age == "LM", 
                                                                                                'darkorange', 'darkred' ))))) 
 
# Check for difference in the two datasets 
pn <- trunk_data[,10] 
fp <- FP_list[,2] 
setdiff(pn, fp) 
#merge the two (table join by Grid cell name) 
trunk_data <- merge(trunk_data,FP_list,by="PageName") 
colnames(trunk_data) 
head(trunk_data) 
nrow(trunk_data) #check that there are the same # occ still 
 
# subset just the spp-level occ data into  
trunk_data_spp <- subset(trunk_data, Updated_Sp != "") 
head(trunk_data_spp) 
nrow(trunk_data_spp) 
 
colnames(trunk_data) 
 
# Get the number of fossil occurrence present for each grid cell 
trunk_gen_occnum <- as.data.frame(table(trunk_data$PageName)) 
 
trunk_spp_occnum <- as.data.frame(table(trunk_data_spp$PageName)) 
 
trunk_gen_occnum <- data.frame(trunk_gen_occnum[,-1], row.names = trunk_gen_occnum[,1]) 
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trunk_spp_occnum <- data.frame(trunk_spp_occnum[,-1], row.names = trunk_spp_occnum[,1]) 
 
# function to transform into an abundance matrix of locations with genus names 
substg_gen_grid <- function(data){ 
  data1 <- as.data.frame(subset(data)[,c(1,4)]) # subset out just the genus name and location information 
  colnames(data1) <- c("PageName","Genus_Name") # Give the columns names 
  data2 <- dcast(data1, PageName~Genus_Name, length) # transform into a pres-abs matrix based on Grid 

cells 
} 
 
trunk_matrix_gen <- substg_gen_grid(trunk_data) 
 
# function to transform into an abundance matrix of locations with species names 
substg_spp_grid <- function(data){ 
  data1 <- as.data.frame(subset(data)[,c(1,8)]) # subset out just the species name and location information 
  colnames(data1) <- c("PageName","Species_Name") # Give the columns names 
  data2 <- dcast(data1, PageName~Species_Name, length) # transform into a pres-abs matrix based on 

Grid cells 
} 
 
trunk_matrix_spp <- substg_spp_grid(trunk_data_spp) 
 
# function to configure the matrix into the correct format for EDENETWORKS and add the grid cell info 
config_matrix <- function(data){ 
  #base1 <- (merge(data, lookup, by = 'LocationKey',all.X=TRUE, all.y=FALSE)) # only use if trying to 

make column of latlong using unique latlong key 
  x <- nrow(data) 
  data$SampleKey <-seq(1:x) 
  a <- ncol(data) 
  b <- a - 1 
  base2 <- data[,c(1,a,2:b)] # This part would need to change if using lat/long as unique ID 
  base3 <- data.frame(base2[,-1], row.names = base2[,1]) # make the first column with pagename the 

index 
} 
 
trunk_matrix_gen_final <- config_matrix(trunk_matrix_gen) 
head(trunk_matrix_gen_final) 
trunk_matrix_gen_final[4,] 
 
trunk_matrix_spp_final <- config_matrix(trunk_matrix_spp) 
 
#MATRIX OF TOTAL DB BASED ON SPP NAME (For figuring out faunal provinces... not for final 

analysis) 
#trunk_matrix_TOTAL_final <- config_matrix(trunk_matrix_TOTAL) 
 
pres_ab <- function(data){ 
  numeric_cols <- vapply(data, is.numeric, logical(1)) # make all values 1 if not 0 
  data[numeric_cols] <- as.integer(data[numeric_cols] != 0) 
  data 
} 
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trunk_matrix_gen_final_pres <- pres_ab(trunk_matrix_gen_final) 
 
trunk_matrix_spp_final_pres <- pres_ab(trunk_matrix_spp_final) 
 
# get the richness per grid cell count by summing across the rows 
#For genera 
ncol(trunk_matrix_gen_final_pres) 
numb_gen <- data.frame(rowSums(trunk_matrix_gen_final_pres[,2:575])) # sum rows to get total # gen 
trunk_matrix_gen_final_pres_pre <- trunk_matrix_gen_final_pres # create new matrix name to use 
trunk_matrix_gen_final_pres_pre$nGen <- numb_gen # Add column of total occ number 
trunk_gen_rich <- trunk_matrix_gen_final_pres_pre[,c(576)] 
colnames(trunk_gen_rich) 
 
#For species 
ncol(trunk_matrix_spp_final_pres) 
numb_spp <- data.frame(rowSums(trunk_matrix_spp_final_pres[,2:1114])) # sum rows to get total # occ 
trunk_matrix_spp_final_pres_pre <- trunk_matrix_spp_final # create new matrix name to use 
trunk_matrix_spp_final_pres_pre$nSpp <- numb_spp # Add column of total occ number 
trunk_spp_rich <- trunk_matrix_spp_final_pres_pre[,c(1115)] 
colnames(trunk_spp_rich) 
 
# Combine the tables 
 
genus_data <- cbind(trunk_gen_occnum,trunk_gen_rich) 
 
colnames(genus_data) <- c("Occ count","Genus Richness") 
 
species_data <- cbind(trunk_spp_occnum,trunk_spp_rich) 
 
colnames(species_data) <- c("Occ count","Species Richness") 
 
# Look at the correlation and distributions of the genus-level data 
 
pdf(file = "DB_Map_Visualize/genus_histograms.pdf") 
 
hist(genus_data[,1],xlab='Genus Occurrence Count',main='Genus Occurrence Frequency') 
hist(genus_data[,2],xlab='Genus Richness',main='Genus Richness Frequency') 
 
dev.off() 
 
# perform Shapiro test for normality 
shapiro.test(genus_data[,1]) # very much not normal 
shapiro.test(genus_data[,2]) # very much not normal 
 
# Q-Q plots to look at normality 
 
pdf(file = "DB_Map_Visualize/genus_QQplots.pdf") 
 
ggqqplot(genus_data[,1], ylab = "Genus Occurrence Count") 
ggqqplot(genus_data[,2], ylab = "Genus Richness") 
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dev.off() 
 
# condunct spearmans rho correlation (non-parametric because the data is highly skewed) 
cor(genus_data$`Occ count`, genus_data$`Genus Richness`,  method = "spearman", use = 

"complete.obs") 
# result: 0.9327709 >> highly correlated 
 
cor.test(genus_data$`Occ count`, genus_data$`Genus Richness`,  method = "spearman",exact=FALSE) 
  # p-value is highly significant: < 2.2e-16 
 
    ## Correlation is highly significant 
 
# Look at a correlation plot of the data 
library("ggpubr") 
 
pdf(file = "DB_Map_Visualize/genus_scatter_trend.pdf") 
 
ggscatter(genus_data, x = "Occ count", y = "Genus Richness",  
          add = "reg.line", conf.int = TRUE,  
          cor.coef = TRUE, cor.method = "spearman", 
          xlab = "Number of Occurrences", ylab = "Genus Richness") 
 
dev.off() 
 
# create linear model for the correlation 
lm.model = lm(genus_data$'Occ count' ~ genus_data$'Genus Richness', data = genus_data) 
 
summary(lm.model) 
 
# create a log transformed model 
lm_log.model = lm(log1p(genus_data$'Occ count') ~ log1p(genus_data$'Genus Richness'), data = 

genus_data) 
 
summary(lm_log.model) 
str(summary(lm_log.model)) 
names(summary(lm_log.model)) 
 
# Results show that there is a very high correlation between sampling effort (number of fossil occurrences 

collected) 
# and the genus richness observed. 
 
pdf(file = "DB_Map_Visualize/genus_logtransformed_data.pdf") 
 
# perform log10 transformation on both sets of data and graph 
ggplot(data = genus_data, aes(x = genus_data$'Occ count', y = genus_data$'Genus Richness')) + 
  geom_point() + 
  scale_x_log10() + scale_y_log10() + 
  xlab("Log10 transformed Number of Occurrences") + 
  ylab("Log10 transformed Genus Richness") + 
  ggtitle("Log Transfromed Richness vs. Occurrence Count") + 
  geom_smooth(method=lm, level=0.99) + 
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  annotate('text',x = 10, y = 100,label=paste('R-squared:',summary(lm_log.model)$r.squared)) 
 
dev.off() 
 
# Look at the correlation and distributions of the species-level data 
 
pdf(file = "DB_Map_Visualize/species_histograms.pdf") 
 
hist(species_data[,1],xlab='Species Occurrence Count',main='Species Occurrence Frequency') 
hist(species_data[,2],xlab='Species Richness',main='Species Richness Frequency') 
 
dev.off() 
 
# perform Shapiro test for normality 
shapiro.test(species_data[,1]) # very much not normal 
shapiro.test(species_data[,2]) # very much not normal 
 
# Q-Q plots to look at normality 
 
pdf(file = "DB_Map_Visualize/species_QQplots.pdf") 
 
ggqqplot(species_data[,1], ylab = "Species Occurrence Count") 
ggqqplot(species_data[,2], ylab = "Speices Richness") 
 
dev.off() 
 
# condunct spearmans rho correlation (non-parametric because the data is highly skewed) 
cor(species_data$`Occ count`, species_data$`Species Richness`,  method = "spearman", use = 

"complete.obs") 
# result: 0.9353668 
 
cor.test(species_data$`Occ count`, species_data$`Species Richness`,  method = 

"spearman",exact=FALSE) 
# p-value is highly significant: < 2.2e-16 
 
## Correlation is highly significant 
 
 
# Look at a correlation plot of the data 
library("ggpubr") 
 
pdf(file = "DB_Map_Visualize/species_scatter_trend.pdf") 
 
ggscatter(species_data, x = "Occ count", y = "Species Richness",  
          add = "reg.line", conf.int = TRUE,  
          cor.coef = TRUE, cor.method = "spearman", 
          xlab = "Number of Occurrences", ylab = "Species Richness") 
 
dev.off() 
 
# create linear model for the correlation 
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lm.model_spp = lm(species_data$'Occ count' ~ species_data$'Species Richness', data = species_data) 
 
summary(lm.model_spp) 
 
# create a log transformed model 
lm_log.model_spp = lm(log1p(species_data$'Occ count') ~ log1p(species_data$'Species Richness'), data 

= species_data) 
 
summary(lm_log.model_spp) 
 
# Results show that there is a very high correlation between sampling effort (number of fossil occurrences 

collected) 
# and the species richness observed. 
 
pdf(file = "DB_Map_Visualize/species_logtransformed_data.pdf") 
 
# perform log10 transformation on both sets of data and graph 
ggplot(data = species_data, aes(x = species_data$'Occ count', y = species_data$'Species Richness')) + 
  geom_point() + 
  scale_x_log10() + scale_y_log10() + 
  xlab("Log10 transformed Number of Occurrences") + 
  ylab("Log10 transformed Species Richness") + 
  ggtitle("Log Transfromed Richness vs. Occurrence Count") + 
  geom_smooth(method=lm, level=0.99) + 
  annotate('text',x = 10, y = 100,label=paste('R-squared:',summary(lm_log.model_spp)$r.squared)) 
 
dev.off() 
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Code to configure Occurrence Database into format for EDENetworks Analysis 

## Load necessary packages 
library(ggplot2) 
library(ggmap) 
library(tidyverse) 
library(sf) 
library(mapview) 
library(raster) 
library(rgdal) 
library(dismo) 
library(XML) 
library(maps) 
library(mFD) 
library(reshape2) 
library(vegan) 
library(dplyr) 
library(tidyr) 
 
# set working directory 
setwd("C:/Users/ceara/Documents/Province Project/Occurrence Data/VettedCombinedDB") 
 
 
##### RECONFIGURE THE FULL DB FILE BASED ON LOCATION AND GRID INFO #### 
 
# read in the csv file of the DB that has only the substage-level occ data 
data <- read.csv('Vetted_Combined_Genus-Spp-lvl_SubstageOnly_sansACP-lowLAT.csv') 
# add column with the lat long information as a unique location ID 
data$LocationKey <- paste(data$Lat,",",data$Lon) 
# add a column with the genus and spp names concatenated 
data$SppName <- paste(data$Updated_Genus," ",data$Updated_Sp) 
# add lat and long columns 
data$Latitude <- paste(data$Lat) 
data$Longitude <- paste(data$Lon) 
head(data) 
nrow(data) 
latlon <- data[,3:4] 
head(latlon) 
nrow(unique(latlon)) 
nrow(data.frame(unique(data$LocationKey))) 
 
# Read in grids made in ArcGIS pro 
grid_60km <- st_read("SpatialGrids/grid_60km.shp") 
plot(grid_60km$geometry,xlim=c(-118,-

68),ylim=c(28,53),col="blue",pch=19,xlab="Longitude",ylab="Latitude") 
points(data$Long,data$Lat,col="red",pch=19,xlab="Longitude",ylab="Latitude") # add occ pts 
 
#transform database into shapefile 
sf_data <- st_as_sf(data, coords = c("Long", "Lat"),  crs = 4326) 
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# function to spatially join DB with grids 
spatial_join <- function(shapefile_data,grid){ 
  data1 <- st_join(shapefile_data,left=TRUE,grid["PageName"]) 
  return(data1) 
} 
 
# spatially join Grid cell Page Names to data table 
join60_data <- spatial_join(sf_data,grid_60km) 
join60_data <- as.data.frame(join60_data) 
colnames(join60_data) 
 
nrow(data.frame(unique(join60_data$Updated_Genus))) 
nrow(data.frame(unique(join60_data$SppName))) 
 
# add column name to last column for geometry 
names(join60_data)[length(names(join60_data))]<-"geometry2"  
colnames(join60_data) 
nrow(join60_data) 
 
 
# write csv file with joined info 
write.csv(join60_data,file="R_Config_for_EN_OUTPUT/Vetted_Substage_Joined_60.csv") 
 
 
#### Get summary information about the dataset as a whole #### 
class_genus <- join60_data[,c(14,8)] 
class_species <- subset(join60_data, Updated_Sp != "") 
class_species <- class_species[,c(14,26)] 
 
nb_gen_class <-count(class_genus) # get the frequency of a genus with class ID 
nb_spp_class <-count(class_species) # get the frequency of a species with class ID 
nb_gen <- nrow(data.frame(unique(class_genus$Updated_Genus))) # get the number of unique genera 
nb_spp <- nrow(data.frame(unique(class_species$SppName))) # get the number of unique species 
nb_classes <- nrow(data.frame(unique(class_genus$HigherTax_Class))) # get number of occ for each 

unique class-level 
nb_occ <- nrow(join60_data) # get number of fosil occurrences 
 
write.csv(unique(class_genus),"R_Config_for_EN_OUTPUT/class_unique_genus.csv",row.names=FAL

SE) 
 
write.csv(unique(class_species),"R_Config_for_EN_OUTPUT/class_unique_species.csv",row.names=FA

LSE) 
 
#### RECONFIGURE ENTIRE DB TO USE IN EDENETWORKS #### 
 
#convert data to simple dataframes that can be used in EDENETWORKS analyses 
simplify_data <- function(data){ 
  data1 <- data.frame(data) 
  data2 <- data1[,c(1:2,8:9,19,25:29)] 
  return(data2) 
} 
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trunk60_data <- simplify_data(join60_data) 
ncol(trunk60_data) 
colnames(trunk60_data) 
nrow(trunk60_data) 
 
#create collumn collating the grid cell and the age 
trunk60_data$Abrev_Age <-with(trunk60_data, ifelse(Substage_from_Zone.Mbr == "CAM (low)", 
                                            'LC', ifelse(Substage_from_Zone.Mbr == "CAM (mid)", 
                                            'MC', ifelse(Substage_from_Zone.Mbr == "CAM (up)", 
                                            'UC', ifelse(Substage_from_Zone.Mbr == "MAA (low)", 
                                            'LM', 'UM' ))))) 
head(trunk60_data) 
nrow(trunk60_data) 
 
# replace the grid cell name column with the grid cell name and abbreviated age collated 
trunk60_data$PageName <- paste(trunk60_data$PageName,trunk60_data$Abrev_Age,sep="") 
head(trunk60_data) 
colnames(trunk60_data) 
nrow(trunk60_data) 
 
# Add the fuanal province information 
FP_list <- read.csv("FaunalProv_AttributesList.csv") 
FP_list <- FP_list[,1:3] # shorted to just the Province and Grid name columns 
nrow(FP_list) 
unique(FP_list$Province) 
 
FP_list$Color <- with(FP_list, ifelse(Province == "NIP", 
                                           'mediumblue', ifelse(Province == "SIP", 
                                           'gold', ifelse(Province == "CIP", 
                                           'darkolivegreen', ifelse(Province == "GCP", 
                                           'chocolate', ifelse(Province == "EC", 
                                           'darkmagenta', 'grey' )))))) 
 
FP_list$ColorAge <-with(FP_list, ifelse(Age == "LC", 
                                          'darkblue', ifelse(Age == "MC", 
                                          'olivedrab', ifelse(Age == "UC", 
                                          'yellow', ifelse(Age == "LM", 
                                          'darkorange', 'darkred' ))))) 
 
# Check for difference in the two datasets 
pn <- trunk60_data[,10] 
fp <- FP_list[,2] 
setdiff(pn, fp) 
#merge the two (table join by Grid cell name) 
trunk60_data <- merge(trunk60_data,FP_list,by="PageName") 
colnames(trunk60_data) 
head(trunk60_data) 
nrow(trunk60_data) #check that there are the same # occ still 
 
# subset just the spp-level occ data into  
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trunk60_data_spp <- subset(trunk60_data, Updated_Sp != "") 
head(trunk60_data_spp) 
nrow(trunk60_data_spp) 
 
colnames(trunk60_data) 
 
# function to transform into an abundance matrix of locations with genus names 
substg_gen_grid <- function(data){ 
  data1 <- as.data.frame(subset(data)[,c(1,4)]) # subset out just the genus name and location information 
  colnames(data1) <- c("PageName","Genus_Name") # Give the columns names 
  data2 <- dcast(data1, PageName~Genus_Name, length) # transform into a pres-abs matrix based on Grid 

cells 
} 
 
trunk60_matrix_gen <- substg_gen_grid(trunk60_data) 
head(trunk60_matrix_gen) 
 
# function to transform into an abundance matrix of locations with species names 
substg_spp_grid <- function(data){ 
  data1 <- as.data.frame(subset(data)[,c(1,8)]) # subset out just the species name and location information 
  colnames(data1) <- c("PageName","Species_Name") # Give the columns names 
  data2 <- dcast(data1, PageName~Species_Name, length) # transform into a pres-abs matrix based on 

Grid cells 
} 
 
trunk60_matrix_spp <- substg_spp_grid(trunk60_data_spp) 
head(trunk60_matrix_spp) 
 
#GET MATRIX OF ALL DB BASED ON SPP NAME (For figuring out faunal provinces... not for final 

analysis) 
#trunk60_matrix_TOTAL <- substg_spp_grid(trunk60_data) 
 
# function to configure the matrix into the correct format for EDENETWORKS and add the grid cell info 
config_matrix <- function(data){ 
  #base1 <- (merge(data, lookup, by = 'LocationKey',all.X=TRUE, all.y=FALSE)) # only use if trying to 

make column of latlong using unique latlong key 
  x <- nrow(data) 
  data$SampleKey <-seq(1:x) 
  a <- ncol(data) 
  b <- a - 1 
  base2 <- data[,c(1,a,2:b)] # This part would need to change if using lat/long as unique ID 
  base3 <- data.frame(base2[,-1], row.names = base2[,1]) # make the first column with pagename the 

index 
} 
 
trunk60_matrix_gen_final <- config_matrix(trunk60_matrix_gen) 
 
trunk60_matrix_spp_final <- config_matrix(trunk60_matrix_spp) 
 
#MATRIX OF TOTAL DB BASED ON SPP NAME (For figuring out faunal provinces... not for final 

analysis) 
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#trunk60_matrix_TOTAL_final <- config_matrix(trunk60_matrix_TOTAL) 
 
pres_ab <- function(data){ 
  numeric_cols <- vapply(data, is.numeric, logical(1)) # make all values 1 if not 0 
  data[numeric_cols] <- as.integer(data[numeric_cols] != 0) 
  data 
} 
 
trunk60_matrix_gen_final <- pres_ab(trunk60_matrix_gen_final) 
 
trunk60_matrix_spp_final <- pres_ab(trunk60_matrix_spp_final) 
 
#MATRIX OF TOTAL DB BASED ON SPP NAME (For figuring out faunal provinces... not for final 

analysis) 
#trunk60_matrix_TOTAL_final <- pres_ab(trunk60_matrix_TOTAL_final) 
 
 
# write csv and txt files of the matrix for the whole dataset 
write.csv(trunk60_matrix_gen_final,file= 

"R_Config_for_EN_OUTPUT/CompleteDB/trunk60_matrix_gen_final.csv") 
#write.table(trunk60_matrix_gen_final,file= 

"R_Config_for_EN_OUTPUT/trunk60_matrix_gen_final.txt",col.names = TRUE) 
 
 
write.csv(trunk60_matrix_spp_final,file= 

"R_Config_for_EN_OUTPUT/CompleteDB/trunk60_matrix_spp_final.csv") 
 
# (For figuring out faunal provinces... not for final analysis) 
#write.csv(trunk60_matrix_TOTAL_final,file= 

"R_Config_for_EN_OUTPUT/trunk60_matrix_TOTAL_final.csv") 
 
## Create matrix with grid cells containing less than 3 occ removed  
 
#For genera 
ncol(trunk60_matrix_gen_final) 
numb_occ_gen <- data.frame(rowSums(trunk60_matrix_gen_final[,2:575])) # sum rows to get total # occ 
trunk60_matrix_gen_final_pre <- trunk60_matrix_gen_final # create new matrix name to use 
trunk60_matrix_gen_final_pre$nOccGen <- numb_occ_gen # Add column of total occ number 
colnames(trunk60_matrix_gen_final_pre) 
trunk60_matrix_gen_great3 <- subset(trunk60_matrix_gen_final_pre, nOccGen >= 3) # subset out all grid 

cells with greater 3 occ  
ncol(trunk60_matrix_gen_great3) 
trunk60_matrix_gen_great3 <- trunk60_matrix_gen_great3[,1:575] # remove occ number column 
colnames(trunk60_matrix_gen_great3) 
 
# export new csv and txt files of the dataset with grids containing <3 occ removed 
write.csv(trunk60_matrix_gen_great3,file= 

"R_Config_for_EN_OUTPUT/CompleteDB/trunk60_matrix_gen_great3.csv") 
# write.table(trunk60_matrix_gen_great3,file= 

"R_Config_for_EN_OUTPUT/trunk60_matrix_gen_great3.txt",col.names = TRUE) 
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# for species 
ncol(trunk60_matrix_spp_final) 
numb_occ_spp <- data.frame(rowSums(trunk60_matrix_spp_final[,2:575])) # sum rows to get total # occ 
trunk60_matrix_spp_final_pre <- trunk60_matrix_spp_final # create new matrix name to use 
trunk60_matrix_spp_final_pre$nOccSpp <- numb_occ_spp # Add column of total occ number 
colnames(trunk60_matrix_spp_final_pre) 
trunk60_matrix_spp_great3 <- subset(trunk60_matrix_spp_final_pre, nOccSpp >= 3) # subset out all grid 

cells with greater 3 occ  
ncol(trunk60_matrix_spp_great3) 
trunk60_matrix_spp_great3 <- trunk60_matrix_spp_great3[,1:1114] # remove occ number column 
colnames(trunk60_matrix_spp_great3) 
 
# export new csv and txt files of the dataset with grids containing <3 occ removed 
write.csv(trunk60_matrix_spp_great3,file= 

"R_Config_for_EN_OUTPUT/CompleteDB/trunk60_matrix_spp_great3.csv") 
# write.table(trunk60_matrix_gen_great3,file= 

"R_Config_for_EN_OUTPUT/trunk60_matrix_gen_great3.txt",col.names = TRUE) 
 
#### Get attribute files for EDENetwork analysis #### 
 
# function for creating an attribute table of averaged coor for each occupied grid cell (attribute data can be 

added to this function) 
coor_atrib <- function(data){ 
  loc <- data[,c(1,9:10)] 
  loc$Latitude <- as.numeric(as.character(loc$Latitude))# get just lat/long and grid cell names to get 

average locations 
  loc$Longitude <- as.numeric(as.character(loc$Longitude))# get just lat/long and grid cell names to get 

average locations 
  avg_lat <- aggregate( Latitude ~ PageName, loc, mean )# create a matrix of lat lon avg for grid cells 
  avg_lon <- aggregate( Longitude ~ PageName, loc, mean )# create a matrix of lat lon avg for grid cells 
  avg_loc <- merge(avg_lat,avg_lon) 
  colnames(avg_loc) <- c("node_label","y","x") 
  avg_loc 
} 
 
colnames(trunk60_data) 
nrow(trunk60_data) 
 
# Get the attribute table of just the locations for genera level 
trunk60_gen_avg_loc <- coor_atrib(trunk60_data) 
head(trunk60_gen_avg_loc) 
nrow(trunk60_gen_avg_loc) 
 
# Get list of all grid cells with greater/less than 2 dev of median occ count?? Trying different methods 
colnames(trunk60_matrix_gen_final_pre) 
lastcol <- ncol(trunk60_matrix_gen_final_pre) 
grid_gen_occ_count <- trunk60_matrix_gen_final_pre[,c(lastcol)] 
colnames(grid_gen_occ_count) <- "Numb_Occ"  # get a list of the total # occ in each grid cell 
head(grid_gen_occ_count) 
summary(grid_gen_occ_count) # check the mean, median, etc for the list 
typeof(grid_gen_occ_count) 
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grid_gen_occ_count_calc <- as.numeric(unlist(grid_gen_occ_count)) # convert to numeric 
hist(grid_gen_occ_count_calc) # values are highly right skewed... most have less than 20 occ 
med_ab_dev <- mad((grid_gen_occ_count_calc)) # calculate the median absolute deviation of the data 
    ### The MAD is too high, even without being multiplied by 2 like SD, can't really go below median 

with it 
sd(grid_gen_occ_count_calc) 
    ### The SD is too high too... can't subtract SD from mean either to get low lying values 
quantile(grid_gen_occ_count_calc) # get quantile values 
    ### Quantiles show that 1st quantile is 2. Might be worth using but very low... try median? 
 
## Going to try to just give color attributes based on below median and below 2nd quantile but will color 

based on bins... no <3 occ 
grid_gen_occ_count$OccColor <- with(grid_gen_occ_count, ifelse(Numb_Occ <= 3, 
                'black', ifelse(Numb_Occ <= 5,'grey', ifelse(Numb_Occ <= 10, 
                 'blue',ifelse(Numb_Occ <= 15,'springgreen', 
                 ifelse(Numb_Occ <= 20,'gold',ifelse(Numb_Occ <= 25,'indianred','purple'))))))) 
grid_gen_occ_count <- cbind(node_label = rownames(grid_gen_occ_count), grid_gen_occ_count) # 

make the index the first row (Grid cell names) 
rownames(grid_gen_occ_count) <- 1:nrow(grid_gen_occ_count) # create a new index 
 
#Add a column of age and province to the attributes table 
nrow(trunk60_data) 
atrib_gen <- unique(trunk60_data[,c(1,12:15)]) 
colnames(atrib_gen) <- c("node_label","Province","Age","ProvColor","AgeColor") 
nrow(atrib_gen) 
head(atrib_gen) 
 
#merge with table of less than median and 2nd quantile value colors 
trunk60_gen_atrib <- merge(grid_gen_occ_count,atrib_gen,by="node_label") 
 
#Add age level info to the loc table 
loc_age_merge <- trunk60_gen_atrib[,c(1,5)] 
head(loc_age_merge) 
trunk60_gen_avg_loc <- merge(trunk60_gen_avg_loc,loc_age_merge,by="node_label") 
 
write.csv(trunk60_gen_avg_loc,file="R_Config_for_EN_OUTPUT/CompleteDB/trunk60_gen_avg_loc.c

sv",row.names=FALSE) 
 
write.csv(trunk60_gen_atrib,file="R_Config_for_EN_OUTPUT/CompleteDB/trunk60_gen_atrib.csv",ro

w.names=FALSE) 
 
# Get the attribute table of just the locations for species level 
trunk60_spp_avg_loc <- coor_atrib(trunk60_data_spp) 
head(trunk60_spp_avg_loc) 
nrow(trunk60_spp_avg_loc) 
 
# Get list of all grid cells with greater/less than 2 dev of median occ count?? Trying different methods 
colnames(trunk60_matrix_spp_final_pre) 
lastcol <- ncol(trunk60_matrix_spp_final_pre) 
grid_spp_occ_count <- trunk60_matrix_spp_final_pre[,c(lastcol)] 
colnames(grid_spp_occ_count) <- "Numb_Occ"  # get a list of the total # occ in each grid cell 
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head(grid_spp_occ_count) 
summary(grid_spp_occ_count) # check the mean, median, etc for the list 
 
## Going to try to just give color attributes based on below median and below 2nd quantile 
grid_spp_occ_count$OccColor <-with(grid_spp_occ_count, ifelse(Numb_Occ <= 3, 
                                   'black', ifelse(Numb_Occ <= 5,'grey', ifelse(Numb_Occ <= 10, 
                                   'blue',ifelse(Numb_Occ <= 15,'springgreen', 
                                   ifelse(Numb_Occ <= 20,'gold',ifelse(Numb_Occ <= 25,'indianred','purple'))))))) 
 
grid_spp_occ_count <- cbind(node_label = rownames(grid_spp_occ_count), grid_spp_occ_count) # make 

the index the first row (Grid cell names) 
rownames(grid_spp_occ_count) <- 1:nrow(grid_spp_occ_count) # create a new index 
 
#Add a column of age and province to the attributes table 
colnames(trunk60_data_spp) 
atrib_spp <- unique(trunk60_data_spp[,c(1,12:15)]) 
colnames(atrib_spp) <- c("node_label","Province","Age","ProvColor","AgeColor") 
head(atrib_spp) 
 
# Merge the two tables together 
trunk60_spp_atrib <- merge(grid_spp_occ_count,atrib_spp, by="node_label",all.y=TRUE) 
head(trunk60_spp_atrib) 
 
#Add age level info to the loc table 
loc_age_merge <- trunk60_spp_atrib[,c(1,5)] 
head(loc_age_merge) 
trunk60_spp_avg_loc <- merge(trunk60_spp_avg_loc,loc_age_merge,by="node_label") 
 
write.csv(trunk60_spp_avg_loc,file="R_Config_for_EN_OUTPUT/CompleteDB/trunk60_spp_avg_loc.c

sv",row.names=FALSE) 
 
write.csv(trunk60_spp_atrib,file="R_Config_for_EN_OUTPUT/CompleteDB/trunk60_spp_atrib.csv",ro

w.names=FALSE) 
 
### Make a attributes table for the matrix with grids containing <3 occ removed (this one is messier) 
 
# Reconfigure the matrix without <3 occ grid cells into a simple list of grid names  
trunk60_matrix_gen_great3_GridNames <- cbind(node_label = rownames(trunk60_matrix_gen_great3), 

trunk60_matrix_gen_great3) # make the index the first row (Grid cell names) 
rownames(trunk60_matrix_gen_great3_GridNames) <- 1:nrow(trunk60_matrix_gen_great3) # create a 

new index 
trunk60_matrix_gen_great3_GridNames <- data.frame(trunk60_matrix_gen_great3_GridNames[,1]) # 

remove all rows except the grid cell names 
colnames(trunk60_matrix_gen_great3_GridNames) <- "node_label" 
nrow(trunk60_matrix_gen_great3_GridNames) 
head(trunk60_matrix_gen_great3_GridNames) 
 
# merge the simplified list of occupied grid cells from the matrix which has had <3 occ grids removed 

with the full atrib table 
trunk60_matrix_gen_great3_atrib <- 

merge(trunk60_matrix_gen_great3_GridNames,trunk60_gen_atrib,all.x=TRUE) 
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nrow(trunk60_matrix_gen_great3_atrib) 
head(trunk60_matrix_gen_great3_atrib) 
 
trunk60_matrix_gen_great3_avgloc <- 

merge(trunk60_matrix_gen_great3_GridNames,trunk60_gen_avg_loc,all.x=TRUE) 
 
write.csv(trunk60_matrix_gen_great3_atrib,file="R_Config_for_EN_OUTPUT/CompleteDB/trunk60_m

atrix_gen_great3_atrib.csv",row.names=FALSE) 
 
write.csv(trunk60_matrix_gen_great3_avgloc,file="R_Config_for_EN_OUTPUT/CompleteDB/trunk60_

matrix_gen_great3_avgloc.csv",row.names=FALSE) 
 
# Reconfigure the matrix without <3 occ grid cells into a simple list of grid names for species 
trunk60_matrix_spp_great3_GridNames <- cbind(node_label = rownames(trunk60_matrix_spp_great3), 

trunk60_matrix_spp_great3) # make the index the first row (Grid cell names) 
rownames(trunk60_matrix_spp_great3_GridNames) <- 1:nrow(trunk60_matrix_spp_great3) # create a 

new index 
trunk60_matrix_spp_great3_GridNames <- data.frame(trunk60_matrix_spp_great3_GridNames[,1]) # 

remove all rows except the grid cell names 
colnames(trunk60_matrix_spp_great3_GridNames) <- "node_label" 
nrow(trunk60_matrix_spp_great3_GridNames) 
head(trunk60_matrix_spp_great3_GridNames) 
 
# merge the simplified list of occupied grid cells from the matrix which has had <3 occ grids removed 

with the full atrib table 
trunk60_matrix_spp_great3_atrib <- 

merge(trunk60_matrix_spp_great3_GridNames,trunk60_spp_atrib,all.x=TRUE) 
nrow(trunk60_matrix_spp_great3_atrib) 
head(trunk60_matrix_spp_great3_atrib) 
 
trunk60_matrix_spp_great3_avgloc <- 

merge(trunk60_matrix_spp_great3_GridNames,trunk60_spp_avg_loc,all.x=TRUE) 
 
write.csv(trunk60_matrix_spp_great3_atrib,file="R_Config_for_EN_OUTPUT/CompleteDB/trunk60_ma

trix_spp_great3_atrib.csv",row.names=FALSE) 
 
write.csv(trunk60_matrix_spp_great3_avgloc,file="R_Config_for_EN_OUTPUT/CompleteDB/trunk60_

matrix_spp_great3_avg_loc.csv",row.names=FALSE) 
 
#### RECONFIGURE INTO SIMPLIFIED SUBSTAGES TO USE IN EDENETWORKS #### 
 
    ## SUBSETTING INTO SUBSTAGE BINS ## 
 
# Subset the genus-level data based on substages 
CAM_low <- subset(trunk60_data,Substage_from_Zone.Mbr == "CAM (low)") 
CAM_mid <- subset(trunk60_data,Substage_from_Zone.Mbr == "CAM (mid)") 
CAM_up <- subset(trunk60_data,Substage_from_Zone.Mbr == "CAM (up)") 
MAA_low <- subset(trunk60_data,Substage_from_Zone.Mbr == "MAA (low)") 
MAA_up <- subset(trunk60_data,Substage_from_Zone.Mbr == "MAA (up)") 
 
# check the number of genus-level occ for each substage 
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nrow(CAM_low) # 1866 
nrow(CAM_mid) # 8403 
nrow(CAM_up) # 8564 
nrow(MAA_low) # 6480 
nrow(MAA_up) # 7855 
 
# write csv of subset genus-level data 
write.csv(CAM_low, file= "R_Config_for_EN_OUTPUT/Low CAM/CAM_low_genus_all.csv") 
write.csv(CAM_mid, file= "R_Config_for_EN_OUTPUT/Mid CAM/CAM_mid_genus_all.csv") 
write.csv(CAM_up, file= "R_Config_for_EN_OUTPUT/Up CAM/CAM_up_genus_all.csv") 
write.csv(MAA_low, file= "R_Config_for_EN_OUTPUT/Low MAA/MAA_low_genus_all.csv") 
write.csv(MAA_up, file= "R_Config_for_EN_OUTPUT/Up MAA/MAA_up_genus_all.csv") 
 
# Subset the spp-level data based on substages 
CAM_low_spp <- subset(trunk60_data_spp,Substage_from_Zone.Mbr == "CAM (low)") 
CAM_mid_spp <- subset(trunk60_data_spp,Substage_from_Zone.Mbr == "CAM (mid)") 
CAM_up_spp <- subset(trunk60_data_spp,Substage_from_Zone.Mbr == "CAM (up)") 
MAA_low_spp <- subset(trunk60_data_spp,Substage_from_Zone.Mbr == "MAA (low)") 
MAA_up_spp <- subset(trunk60_data_spp,Substage_from_Zone.Mbr == "MAA (up)") 
 
# Check number of spp occ in each substage (have not removed duplicates) 
nrow(CAM_low_spp) # 896 
nrow(CAM_mid_spp) # 4856 
nrow(CAM_up_spp) # 5282 
nrow(MAA_low_spp) # 4012 
nrow(MAA_up_spp) # 4866 
 
# write csv of subset spp-level data 
write.csv(CAM_low_spp, file= "R_Config_for_EN_OUTPUT/Low CAM/CAM_low_species_all.csv") 
write.csv(CAM_mid_spp, file= "R_Config_for_EN_OUTPUT/Mid CAM/CAM_mid_species_all.csv") 
write.csv(CAM_up_spp, file= "R_Config_for_EN_OUTPUT/Up CAM/CAM_up_species_all.csv") 
write.csv(MAA_low_spp, file= "R_Config_for_EN_OUTPUT/Low MAA/MAA_low_species_all.csv") 
write.csv(MAA_up_spp, file= "R_Config_for_EN_OUTPUT/Up MAA/MAA_up_species_all.csv") 
 
#### CREATE MATRIX OF GENUS LEVEL OCC INFORMATION FOR EDENETWORKS 

ANALYSIS #### 
 
  # Original attempted made unique lat/long into the ID locations but that doesn't work, so instead 
  # I'm going to make the GridCell name the unique location and give a collection ID that is 
  # meaningless just so the configuration matches what it's supposed to in EDENETWORKS. Any code 
  # that isn't used anymore based on that original attempt has been left but commented out. 
 
# create lookup table of unique location ID (lat,long) to use as "sites" in EN 
# lookup <- seq(1:6000) 
 
# function to transform into an abundance matrix of locations with genus names 
substg_gen_grid <- function(data){ 
  data1 <- as.data.frame(subset(data)[,c(1,4)]) # subset out just the genus name and location information 
  colnames(data1) <- c("PageName","Genus_Name") # Give the columns names 
  data2 <- dcast(data1, PageName~Genus_Name, length) # transform into a pres-abs matrix based on Grid 

cells 
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} 
 
colnames(CAM_low) 
 
CAM_low_matrix_gen <- substg_gen_grid(CAM_low) 
CAM_mid_matrix_gen <- substg_gen_grid(CAM_mid) 
CAM_up_matrix_gen <- substg_gen_grid(CAM_up) 
MAA_low_matrix_gen <- substg_gen_grid(MAA_low) 
MAA_up_matrix_gen <- substg_gen_grid(MAA_up) 
 
# find number of genera in each substage matrix 
ncol(CAM_low_matrix_gen) # 148 
ncol(CAM_mid_matrix_gen) # 188 
ncol(CAM_up_matrix_gen) # 344 
ncol(MAA_low_matrix_gen) # 305 
ncol(MAA_up_matrix_gen) # 331 
 
# function to configure the matrix into the correct format for EDENETWORKS and add the grid cell info 
config_matrix <- function(data){ 
  #base1 <- (merge(data, lookup, by = 'LocationKey',all.X=TRUE, all.y=FALSE)) # only use if trying to 

make column of latlong using unique latlong key 
  x <- nrow(data) 
  data$SampleKey <-seq(1:x) 
  a <- ncol(data) 
  b <- a - 1 
  base2 <- data[,c(1,a,2:b)] # This part would need to change if using lat/long as unique ID 
  base3 <- data.frame(base2[,-1], row.names = base2[,1]) # make the first column with pagename the 

index 
} 
 
# create matrix in correct config with grid cell names include as first  
CAM_low_matrix_gen_final <- config_matrix(CAM_low_matrix_gen) 
CAM_mid_matrix_gen_final <- config_matrix(CAM_mid_matrix_gen) 
CAM_up_matrix_gen_final <- config_matrix(CAM_up_matrix_gen) 
MAA_low_matrix_gen_final <- config_matrix(MAA_low_matrix_gen) 
MAA_up_matrix_gen_final <- config_matrix(MAA_up_matrix_gen) 
 
#function to change from abundance to pres-abs matrix 
pres_ab <- function(data){ 
  numeric_cols <- vapply(data, is.numeric, logical(1)) 
  data[numeric_cols] <- as.integer(data[numeric_cols] != 0) 
  data 
} 
 
CAM_low_matrix_gen_final <- pres_ab(CAM_low_matrix_gen_final) 
CAM_mid_matrix_gen_final <- pres_ab(CAM_mid_matrix_gen_final) 
CAM_up_matrix_gen_final <- pres_ab(CAM_up_matrix_gen_final) 
MAA_low_matrix_gen_final <- pres_ab(MAA_low_matrix_gen_final) 
MAA_up_matrix_gen_final <- pres_ab(MAA_up_matrix_gen_final) 
 
# check the number of rows (# of unique locations w/ genera) for each substage 
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nrow(CAM_low_matrix_gen_final) # 122 
nrow(CAM_mid_matrix_gen_final) # 161 
nrow(CAM_up_matrix_gen_final) # 198 
nrow(MAA_low_matrix_gen_final) # 118 
nrow(MAA_up_matrix_gen_final) # 75  
 
# check number of genera in each substage matrix 
ncol(CAM_low_matrix_gen_final) # 148 
ncol(CAM_mid_matrix_gen_final) # 188 
ncol(CAM_up_matrix_gen_final) # 344 
ncol(MAA_low_matrix_gen_final) # 305 
ncol(MAA_up_matrix_gen_final) # 331 
 
    # The number of unique locations is significantly larger for the Mid and Up CAM 
 
write.csv(CAM_low_matrix_gen_final,file= "R_Config_for_EN_OUTPUT/Low 

CAM/CAM_low_matrix_gen_final.csv") 
write.csv(CAM_mid_matrix_gen_final,file= "R_Config_for_EN_OUTPUT/Mid 

CAM/CAM_mid_matrix_gen_final.csv") 
write.csv(CAM_up_matrix_gen_final,file= "R_Config_for_EN_OUTPUT/Up 

CAM/CAM_up_matrix_gen_final.csv") 
write.csv(MAA_low_matrix_gen_final,file= "R_Config_for_EN_OUTPUT/Low 

MAA/MAA_low_matrix_gen_final.csv") 
write.csv(MAA_up_matrix_gen_final,file= "R_Config_for_EN_OUTPUT/Up 

MAA/MAA_up_matrix_gen_final.csv") 
 
## Create matrix with grid cells containing less than 3 occ removed for each individual substage 
 
#Lower CAM: For genera 
ncol(CAM_low_matrix_gen_final) 
CAM_low_numb_occ_gen <- data.frame(rowSums(CAM_low_matrix_gen_final[,2:148])) # sum rows to 

get total # occ 
CAM_low_matrix_gen_final_pre <- CAM_low_matrix_gen_final # create new matrix name to use 
CAM_low_matrix_gen_final_pre$nOccGen <- CAM_low_numb_occ_gen # Add column of total occ 

number 
colnames(CAM_low_matrix_gen_final_pre) 
CAM_low_matrix_gen_great3 <- subset(CAM_low_matrix_gen_final_pre, nOccGen >= 3) # subset out 

all grid cells with greater 3 occ  
ncol(CAM_low_matrix_gen_great3) 
CAM_low_matrix_gen_great3 <- CAM_low_matrix_gen_great3[,1:148] # remove occ number column 
colnames(CAM_low_matrix_gen_great3) 
 
#Middle CAM: For genera 
ncol(CAM_mid_matrix_gen_final) 
CAM_mid_numb_occ_gen <- data.frame(rowSums(CAM_mid_matrix_gen_final[,2:188])) # sum rows to 

get total # occ 
CAM_mid_matrix_gen_final_pre <- CAM_mid_matrix_gen_final # create new matrix name to use 
CAM_mid_matrix_gen_final_pre$nOccGen <- CAM_mid_numb_occ_gen # Add column of total occ 

number 
colnames(CAM_mid_matrix_gen_final_pre) 
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CAM_mid_matrix_gen_great3 <- subset(CAM_mid_matrix_gen_final_pre, nOccGen >= 3) # subset out 
all grid cells with greater 3 occ  

ncol(CAM_mid_matrix_gen_great3) 
CAM_mid_matrix_gen_great3 <- CAM_mid_matrix_gen_great3[,1:188] # remove occ number column 
colnames(CAM_mid_matrix_gen_great3) 
 
#Upper CAM: For genera 
ncol(CAM_up_matrix_gen_final) 
CAM_up_numb_occ_gen <- data.frame(rowSums(CAM_up_matrix_gen_final[,2:344])) # sum rows to 

get total # occ 
CAM_up_matrix_gen_final_pre <- CAM_up_matrix_gen_final # create new matrix name to use 
CAM_up_matrix_gen_final_pre$nOccGen <- CAM_up_numb_occ_gen # Add column of total occ 

number 
colnames(CAM_up_matrix_gen_final_pre) 
CAM_up_matrix_gen_great3 <- subset(CAM_up_matrix_gen_final_pre, nOccGen >= 3) # subset out all 

grid cells with greater 3 occ  
ncol(CAM_up_matrix_gen_great3) 
CAM_up_matrix_gen_great3 <- CAM_up_matrix_gen_great3[,1:344] # remove occ number column 
colnames(CAM_up_matrix_gen_great3) 
 
#Lower MAA: For genera 
ncol(MAA_low_matrix_gen_final) 
MAA_low_numb_occ_gen <- data.frame(rowSums(MAA_low_matrix_gen_final[,2:305])) # sum rows to 

get total # occ 
MAA_low_matrix_gen_final_pre <- MAA_low_matrix_gen_final # create new matrix name to use 
MAA_low_matrix_gen_final_pre$nOccGen <- MAA_low_numb_occ_gen # Add column of total occ 

number 
colnames(MAA_low_matrix_gen_final_pre) 
MAA_low_matrix_gen_great3 <- subset(MAA_low_matrix_gen_final_pre, nOccGen >= 3) # subset out 

all grid cells with greater 3 occ  
ncol(MAA_low_matrix_gen_great3) 
MAA_low_matrix_gen_great3 <- MAA_low_matrix_gen_great3[,1:305] # remove occ number column 
colnames(MAA_low_matrix_gen_great3) 
 
#Upper MAA: For genera 
ncol(MAA_up_matrix_gen_final) 
MAA_up_numb_occ_gen <- data.frame(rowSums(MAA_up_matrix_gen_final[,2:331])) # sum rows to 

get total # occ 
MAA_up_matrix_gen_final_pre <- MAA_up_matrix_gen_final # create new matrix name to use 
MAA_up_matrix_gen_final_pre$nOccGen <- MAA_up_numb_occ_gen # Add column of total occ 

number 
colnames(MAA_up_matrix_gen_final_pre) 
MAA_up_matrix_gen_great3 <- subset(MAA_up_matrix_gen_final_pre, nOccGen >= 3) # subset out all 

grid cells with greater 3 occ  
ncol(MAA_up_matrix_gen_great3) 
MAA_up_matrix_gen_great3 <- MAA_up_matrix_gen_great3[,1:331] # remove occ number column 
colnames(MAA_up_matrix_gen_great3) 
 
# export new csv files of the dataset with grids containing <3 occ removed 
write.csv(CAM_low_matrix_gen_great3,file= "R_Config_for_EN_OUTPUT/Low 

CAM/CAM_low_matrix_gen_great3.csv") 
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write.csv(CAM_mid_matrix_gen_great3,file= "R_Config_for_EN_OUTPUT/Mid 
CAM/CAM_mid_matrix_gen_great3.csv") 

write.csv(CAM_up_matrix_gen_great3,file= "R_Config_for_EN_OUTPUT/Up 
CAM/CAM_up_matrix_gen_great3.csv") 

write.csv(MAA_low_matrix_gen_great3,file= "R_Config_for_EN_OUTPUT/Low 
MAA/MAA_low_matrix_gen_great3.csv") 

write.csv(MAA_up_matrix_gen_great3,file= "R_Config_for_EN_OUTPUT/Up 
MAA/MAA_up_matrix_gen_great3.csv") 

 
#### Get attribute files for EDENetwork analysis for each Substage #### 
 
# subset out the different substages for genera 
CAM_low_gen_atrib <- subset(trunk60_gen_atrib, Age == "LC") 
CAM_mid_gen_atrib <- subset(trunk60_gen_atrib, Age == "MC") 
CAM_up_gen_atrib <- subset(trunk60_gen_atrib, Age == "UC") 
MAA_low_gen_atrib <- subset(trunk60_gen_atrib, Age == "LM") 
MAA_up_gen_atrib <- subset(trunk60_gen_atrib, Age == "UM") 
 
#write csv files of attributes tables for substages at genus level 
write.csv(CAM_low_gen_atrib,file="R_Config_for_EN_OUTPUT/Low 

CAM/CAM_low_gen_atrib.csv",row.names=FALSE) 
write.csv(CAM_mid_gen_atrib,file="R_Config_for_EN_OUTPUT/Mid 

CAM/CAM_mid_gen_atrib.csv",row.names=FALSE) 
write.csv(CAM_up_gen_atrib,file="R_Config_for_EN_OUTPUT/Up 

CAM/CAM_up_gen_atrib.csv",row.names=FALSE) 
write.csv(MAA_low_gen_atrib,file="R_Config_for_EN_OUTPUT/Low 

MAA/MAA_low_gen_atrib.csv",row.names=FALSE) 
write.csv(MAA_up_gen_atrib,file="R_Config_for_EN_OUTPUT/Up 

MAA/MAA_up_gen_atrib.csv",row.names=FALSE) 
 
### Make a attributes table for the matrix with grids containing <3 occ removed for substages 
 
# subset out the different substages for genera of greater than 3 occ 
CAM_low_gen_great3_atrib <- subset(trunk60_matrix_gen_great3_atrib, Age == "LC") 
CAM_mid_gen_great3_atrib <- subset(trunk60_matrix_gen_great3_atrib, Age == "MC") 
CAM_up_gen_great3_atrib <- subset(trunk60_matrix_gen_great3_atrib, Age == "UC") 
MAA_low_gen_great3_atrib <- subset(trunk60_matrix_gen_great3_atrib, Age == "LM") 
MAA_up_gen_great3_atrib <- subset(trunk60_matrix_gen_great3_atrib, Age == "UM") 
 
#write csv files of attributes tables for substages at genus level 
write.csv(CAM_low_gen_great3_atrib,file="R_Config_for_EN_OUTPUT/Low 

CAM/CAM_low_gen_great3_atrib.csv",row.names=FALSE) 
write.csv(CAM_mid_gen_great3_atrib,file="R_Config_for_EN_OUTPUT/Mid 

CAM/CAM_mid_gen_great3_atrib.csv",row.names=FALSE) 
write.csv(CAM_up_gen_great3_atrib,file="R_Config_for_EN_OUTPUT/Up 

CAM/CAM_up_gen_great3_atrib.csv",row.names=FALSE) 
write.csv(MAA_low_gen_great3_atrib,file="R_Config_for_EN_OUTPUT/Low 

MAA/MAA_low_gen_great3_atrib.csv",row.names=FALSE) 
write.csv(MAA_up_gen_great3_atrib,file="R_Config_for_EN_OUTPUT/Up 

MAA/MAA_up_gen_great3_atrib.csv",row.names=FALSE) 
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#### Get average coordinates files for EDENetwork analysis for each Substage #### 
 
# subset out the different substages for genera 
CAM_low_gen_avg_loc <- subset(trunk60_gen_avg_loc, Age == "LC") 
CAM_mid_gen_avg_loc <- subset(trunk60_gen_avg_loc, Age == "MC") 
CAM_up_gen_avg_loc <- subset(trunk60_gen_avg_loc, Age == "UC") 
MAA_low_gen_avg_loc <- subset(trunk60_gen_avg_loc, Age == "LM") 
MAA_up_gen_avg_loc <- subset(trunk60_gen_avg_loc, Age == "UM") 
 
#write csv files of attributes tables for substages at genus level 
write.csv(CAM_low_gen_avg_loc,file="R_Config_for_EN_OUTPUT/Low 

CAM/CAM_low_gen_avg_loc.csv",row.names=FALSE) 
write.csv(CAM_mid_gen_avg_loc,file="R_Config_for_EN_OUTPUT/Mid 

CAM/CAM_mid_gen_avg_loc.csv",row.names=FALSE) 
write.csv(CAM_up_gen_avg_loc,file="R_Config_for_EN_OUTPUT/Up 

CAM/CAM_up_gen_avg_loc.csv",row.names=FALSE) 
write.csv(MAA_low_gen_avg_loc,file="R_Config_for_EN_OUTPUT/Low 

MAA/MAA_low_gen_avg_loc.csv",row.names=FALSE) 
write.csv(MAA_up_gen_avg_loc,file="R_Config_for_EN_OUTPUT/Up 

MAA/MAA_up_gen_avg_loc.csv",row.names=FALSE) 
 
### Make a average coordinates table for the matrix with grids containing <3 occ removed for substages 
 
# subset out the different substages for genera of greater than 3 occ 
CAM_low_gen_great3_avgloc <- subset(trunk60_matrix_gen_great3_avgloc, Age == "LC") 
CAM_mid_gen_great3_avgloc <- subset(trunk60_matrix_gen_great3_avgloc, Age == "MC") 
CAM_up_gen_great3_avgloc <- subset(trunk60_matrix_gen_great3_avgloc, Age == "UC") 
MAA_low_gen_great3_avgloc <- subset(trunk60_matrix_gen_great3_avgloc, Age == "LM") 
MAA_up_gen_great3_avgloc <- subset(trunk60_matrix_gen_great3_avgloc, Age == "UM") 
 
#write csv files of attributes tables for substages at genus level 
write.csv(CAM_low_gen_great3_avgloc,file="R_Config_for_EN_OUTPUT/Low 

CAM/CAM_low_gen_great3_avgloc.csv",row.names=FALSE) 
write.csv(CAM_mid_gen_great3_avgloc,file="R_Config_for_EN_OUTPUT/Mid 

CAM/CAM_mid_gen_great3_avgloc.csv",row.names=FALSE) 
write.csv(CAM_up_gen_great3_avgloc,file="R_Config_for_EN_OUTPUT/Up 

CAM/CAM_up_gen_great3_avgloc.csv",row.names=FALSE) 
write.csv(MAA_low_gen_great3_avgloc,file="R_Config_for_EN_OUTPUT/Low 

MAA/MAA_low_gen_great3_avgloc.csv",row.names=FALSE) 
write.csv(MAA_up_gen_great3_avgloc,file="R_Config_for_EN_OUTPUT/Up 

MAA/MAA_up_gen_great3_avgloc.csv",row.names=FALSE) 
 
#### CREATE MATRIX OF SPECIES LEVEL OCC INFORMATION FOR EDENETWORKS 

ANALYSIS #### 
 
# create lookup table of unique location ID (lat,long) to use as "sites" in EN 
#lookup <- unique(join60_data[,c(25,27)]) 
 
# function to transform into a pres-abs matrix of locations with genus names 
substg_spp_grid <- function(data){ 
  data1 <- as.data.frame(subset(data)[,c(1,8)]) # subset out just the genus name and location information 
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  colnames(data1) <- c("PageName","Species_Name") # Give the columns names 
  data2 <- dcast(data1, PageName~Species_Name, length) # transform into a pres-abs matrix 
   
} 
 
colnames(CAM_low_spp) 
 
CAM_low_matrix_spp <- substg_spp_grid(CAM_low_spp) 
CAM_mid_matrix_spp <- substg_spp_grid(CAM_mid_spp) 
CAM_up_matrix_spp <- substg_spp_grid(CAM_up_spp) 
MAA_low_matrix_spp <- substg_spp_grid(MAA_low_spp) 
MAA_up_matrix_spp <- substg_spp_grid(MAA_up_spp) 
 
# find number of spp in each substage matrix 
ncol(CAM_low_matrix_spp) # 135 
ncol(CAM_mid_matrix_spp) # 211 
ncol(CAM_up_matrix_spp) # 586 
ncol(MAA_low_matrix_spp) # 381 
ncol(MAA_up_matrix_spp) # 452 
 
# function to configure the SPP-level matrix into the correct format for EDENETWORKS and add the 

grid cell info 
config_matrix_spp <- function(data){ 
  # base1 <- (merge(data, lookup, by = 'LocationKey',all.X=TRUE, all.y=FALSE)) 
  x <- nrow(data) 
  data$SampleKey <-seq(1:x) 
  a <- ncol(data) 
  b <- a - 1 
  base2 <- data[,c(1,a,2:b)] # This part would need to change if using lat/long as unique ID 
  base3 <- data.frame(base2[,-1], row.names = base2[,1]) # make the first column with pagename the 

index 
} 
 
# create matrix in correct config with grid cell names include as first  
CAM_low_matrix_spp_final <- config_matrix_spp(CAM_low_matrix_spp) 
CAM_mid_matrix_spp_final <- config_matrix_spp(CAM_mid_matrix_spp) 
CAM_up_matrix_spp_final <- config_matrix_spp(CAM_up_matrix_spp) 
MAA_low_matrix_spp_final <- config_matrix_spp(MAA_low_matrix_spp) 
MAA_up_matrix_spp_final <- config_matrix_spp(MAA_up_matrix_spp) 
 
head(CAM_low_matrix_spp_final) 
 
#function to change from abundance to pres-abs matrix 
pres_ab <- function(data){ 
  numeric_cols <- vapply(data, is.numeric, logical(1)) 
  data[numeric_cols] <- as.integer(data[numeric_cols] != 0) 
  data 
} 
 
# create pres-abs matrix from the abundance matrix 
CAM_low_matrix_spp_final <- pres_ab(CAM_low_matrix_spp_final) 
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CAM_mid_matrix_spp_final <- pres_ab(CAM_mid_matrix_spp_final) 
CAM_up_matrix_spp_final <- pres_ab(CAM_up_matrix_spp_final) 
MAA_low_matrix_spp_final <- pres_ab(MAA_low_matrix_spp_final) 
MAA_up_matrix_spp_final <- pres_ab(MAA_up_matrix_spp_final) 
 
# check number of spp in each substage matrix 
ncol(CAM_low_matrix_spp) # 135 
ncol(CAM_mid_matrix_spp) # 211 
ncol(CAM_up_matrix_spp) # 586 
ncol(MAA_low_matrix_spp) # 381 
ncol(MAA_up_matrix_spp) # 452 
 
# check the number of rows (# of unique locations w/ species) for each substage 
nrow(CAM_low_matrix_spp_final) # 107 
nrow(CAM_mid_matrix_spp_final) # 156 
nrow(CAM_up_matrix_spp_final) # 188 
nrow(MAA_low_matrix_spp_final) # 116 
nrow(MAA_up_matrix_spp_final) # 73  
 
# The number of unique locations is significantly larger for the Mid and Up CAM 
 
# write csv of matrices for each substage 
write.csv(CAM_low_matrix_spp_final,file= "R_Config_for_EN_OUTPUT/Low 

CAM/CAM_low_matrix_spp_final.csv") 
write.csv(CAM_mid_matrix_spp_final,file= "R_Config_for_EN_OUTPUT/Mid 

CAM/CAM_mid_matrix_spp_final.csv") 
write.csv(CAM_up_matrix_spp_final,file= "R_Config_for_EN_OUTPUT/Up 

CAM/CAM_up_matrix_spp_final.csv") 
write.csv(MAA_low_matrix_spp_final,file= "R_Config_for_EN_OUTPUT/Low 

MAA/MAA_low_matrix_spp_final.csv") 
write.csv(MAA_up_matrix_spp_final,file= "R_Config_for_EN_OUTPUT/Up 

MAA/MAA_up_matrix_spp_final.csv") 
 
## Create matrix with grid cells containing less than 3 occ removed for each individual substage 
 
#Lower CAM: For species 
ncol(CAM_low_matrix_spp_final) 
CAM_low_numb_occ_spp <- data.frame(rowSums(CAM_low_matrix_spp_final[,2:135])) # sum rows to 

get total # occ 
CAM_low_matrix_spp_final_pre <- CAM_low_matrix_spp_final # create new matrix name to use 
CAM_low_matrix_spp_final_pre$nOccGen <- CAM_low_numb_occ_spp # Add column of total occ 

number 
colnames(CAM_low_matrix_spp_final_pre) 
CAM_low_matrix_spp_great3 <- subset(CAM_low_matrix_spp_final_pre, nOccGen >= 3) # subset out 

all grid cells with greater 3 occ  
ncol(CAM_low_matrix_spp_great3) 
CAM_low_matrix_spp_great3 <- CAM_low_matrix_spp_great3[,1:135] # remove occ number column 
colnames(CAM_low_matrix_spp_great3) 
 
#Middle CAM: For species 
ncol(CAM_mid_matrix_spp_final) 
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CAM_mid_numb_occ_spp <- data.frame(rowSums(CAM_mid_matrix_spp_final[,2:211])) # sum rows to 
get total # occ 

CAM_mid_matrix_spp_final_pre <- CAM_mid_matrix_spp_final # create new matrix name to use 
CAM_mid_matrix_spp_final_pre$nOccGen <- CAM_mid_numb_occ_spp # Add column of total occ 

number 
colnames(CAM_mid_matrix_spp_final_pre) 
CAM_mid_matrix_spp_great3 <- subset(CAM_mid_matrix_spp_final_pre, nOccGen >= 3) # subset out 

all grid cells with greater 3 occ  
ncol(CAM_mid_matrix_spp_great3) 
CAM_mid_matrix_spp_great3 <- CAM_mid_matrix_spp_great3[,1:211] # remove occ number column 
colnames(CAM_mid_matrix_spp_great3) 
 
#Upper CAM: For species 
ncol(CAM_up_matrix_spp_final) 
CAM_up_numb_occ_spp <- data.frame(rowSums(CAM_up_matrix_spp_final[,2:586])) # sum rows to 

get total # occ 
CAM_up_matrix_spp_final_pre <- CAM_up_matrix_spp_final # create new matrix name to use 
CAM_up_matrix_spp_final_pre$nOccGen <- CAM_up_numb_occ_spp # Add column of total occ 

number 
colnames(CAM_up_matrix_spp_final_pre) 
CAM_up_matrix_spp_great3 <- subset(CAM_up_matrix_spp_final_pre, nOccGen >= 3) # subset out all 

grid cells with greater 3 occ  
ncol(CAM_up_matrix_spp_great3) 
CAM_up_matrix_spp_great3 <- CAM_up_matrix_spp_great3[,1:586] # remove occ number column 
colnames(CAM_up_matrix_spp_great3) 
 
#Lower MAA: For species 
ncol(MAA_low_matrix_spp_final) 
MAA_low_numb_occ_spp <- data.frame(rowSums(MAA_low_matrix_spp_final[,2:381])) # sum rows to 

get total # occ 
MAA_low_matrix_spp_final_pre <- MAA_low_matrix_spp_final # create new matrix name to use 
MAA_low_matrix_spp_final_pre$nOccGen <- MAA_low_numb_occ_spp # Add column of total occ 

number 
colnames(MAA_low_matrix_spp_final_pre) 
MAA_low_matrix_spp_great3 <- subset(MAA_low_matrix_spp_final_pre, nOccGen >= 3) # subset out 

all grid cells with greater 3 occ  
ncol(MAA_low_matrix_spp_great3) 
MAA_low_matrix_spp_great3 <- MAA_low_matrix_spp_great3[,1:382] # remove occ number column 
colnames(MAA_low_matrix_spp_great3) 
 
#Upper MAA: For species 
ncol(MAA_up_matrix_spp_final) 
MAA_up_numb_occ_spp <- data.frame(rowSums(MAA_up_matrix_spp_final[,2:452])) # sum rows to 

get total # occ 
MAA_up_matrix_spp_final_pre <- MAA_up_matrix_spp_final # create new matrix name to use 
MAA_up_matrix_spp_final_pre$nOccGen <- MAA_up_numb_occ_spp # Add column of total occ 

number 
colnames(MAA_up_matrix_spp_final_pre) 
MAA_up_matrix_spp_great3 <- subset(MAA_up_matrix_spp_final_pre, nOccGen >= 3) # subset out all 

grid cells with greater 3 occ  
ncol(MAA_up_matrix_spp_great3) 
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MAA_up_matrix_spp_great3 <- MAA_up_matrix_spp_great3[,1:452] # remove occ number column 
colnames(MAA_up_matrix_spp_great3) 
 
 
# export new csv of the dataset with grids containing <3 occ removed for each substage and spp 
write.csv(CAM_low_matrix_spp_great3,file= "R_Config_for_EN_OUTPUT/Low 

CAM/CAM_low_matrix_spp_great3.csv") 
write.csv(CAM_mid_matrix_spp_great3,file= "R_Config_for_EN_OUTPUT/Mid 

CAM/CAM_mid_matrix_spp_great3.csv") 
write.csv(CAM_up_matrix_spp_great3,file= "R_Config_for_EN_OUTPUT/Up 

CAM/CAM_up_matrix_spp_great3.csv") 
write.csv(MAA_low_matrix_spp_great3,file= "R_Config_for_EN_OUTPUT/Low 

MAA/MAA_low_matrix_spp_great3.csv") 
write.csv(MAA_up_matrix_spp_great3,file= "R_Config_for_EN_OUTPUT/Up 

MAA/MAA_up_matrix_spp_great3.csv") 
 
#### Get attribute files for EDENetwork analysis for each Substage #### 
 
# subset out the different substages for species 
CAM_low_spp_atrib <- subset(trunk60_spp_atrib, Age == "LC") 
CAM_mid_spp_atrib <- subset(trunk60_spp_atrib, Age == "MC") 
CAM_up_spp_atrib <- subset(trunk60_spp_atrib, Age == "UC") 
MAA_low_spp_atrib <- subset(trunk60_spp_atrib, Age == "LM") 
MAA_up_spp_atrib <- subset(trunk60_spp_atrib, Age == "UM") 
 
#write csv files of attributes tables for substages at species level 
write.csv(CAM_low_spp_atrib,file="R_Config_for_EN_OUTPUT/Low 

CAM/CAM_low_spp_atrib.csv",row.names=FALSE) 
write.csv(CAM_mid_spp_atrib,file="R_Config_for_EN_OUTPUT/Mid 

CAM/CAM_mid_spp_atrib.csv",row.names=FALSE) 
write.csv(CAM_up_spp_atrib,file="R_Config_for_EN_OUTPUT/Up 

CAM/CAM_up_spp_atrib.csv",row.names=FALSE) 
write.csv(MAA_low_spp_atrib,file="R_Config_for_EN_OUTPUT/Low 

MAA/MAA_low_spp_atrib.csv",row.names=FALSE) 
write.csv(MAA_up_spp_atrib,file="R_Config_for_EN_OUTPUT/Up 

MAA/MAA_up_spp_atrib.csv",row.names=FALSE) 
 
### Make attributes tables of substages with only >3 occ 
 
# subset out the different substages for species 
CAM_low_spp_great3_atrib <- subset(trunk60_matrix_spp_great3_atrib, Age == "LC") 
CAM_mid_spp_great3_atrib <- subset(trunk60_matrix_spp_great3_atrib, Age == "MC") 
CAM_up_spp_great3_atrib <- subset(trunk60_matrix_spp_great3_atrib, Age == "UC") 
MAA_low_spp_great3_atrib <- subset(trunk60_matrix_spp_great3_atrib, Age == "LM") 
MAA_up_spp_great3_atrib <- subset(trunk60_matrix_spp_great3_atrib, Age == "UM") 
 
#write csv files of attributes tables for substages at species level 
write.csv(CAM_low_spp_great3_atrib,file="R_Config_for_EN_OUTPUT/Low 

CAM/CAM_low_spp_great3_atrib.csv",row.names=FALSE) 
write.csv(CAM_mid_spp_great3_atrib,file="R_Config_for_EN_OUTPUT/Mid 

CAM/CAM_mid_spp_great3_atrib.csv",row.names=FALSE) 
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write.csv(CAM_up_spp_great3_atrib,file="R_Config_for_EN_OUTPUT/Up 
CAM/CAM_up_spp_great3_atrib.csv",row.names=FALSE) 

write.csv(MAA_low_spp_great3_atrib,file="R_Config_for_EN_OUTPUT/Low 
MAA/MAA_low_spp_great3_atrib.csv",row.names=FALSE) 

write.csv(MAA_up_spp_great3_atrib,file="R_Config_for_EN_OUTPUT/Up 
MAA/MAA_up_spp_great3_atrib.csv",row.names=FALSE) 

 
#### Get average coordinates files for EDENetwork analysis for each Substage species level #### 
 
# subset out the different substages for genera 
CAM_low_spp_avg_loc <- subset(trunk60_spp_avg_loc, Age == "LC") 
CAM_mid_spp_avg_loc <- subset(trunk60_spp_avg_loc, Age == "MC") 
CAM_up_spp_avg_loc <- subset(trunk60_spp_avg_loc, Age == "UC") 
MAA_low_spp_avg_loc <- subset(trunk60_spp_avg_loc, Age == "LM") 
MAA_up_spp_avg_loc <- subset(trunk60_spp_avg_loc, Age == "UM") 
 
#write csv files of attributes tables for substages at genus level 
write.csv(CAM_low_spp_avg_loc,file="R_Config_for_EN_OUTPUT/Low 

CAM/CAM_low_spp_avg_loc.csv",row.names=FALSE) 
write.csv(CAM_mid_spp_avg_loc,file="R_Config_for_EN_OUTPUT/Mid 

CAM/CAM_mid_spp_avg_loc.csv",row.names=FALSE) 
write.csv(CAM_up_spp_avg_loc,file="R_Config_for_EN_OUTPUT/Up 

CAM/CAM_up_spp_avg_loc.csv",row.names=FALSE) 
write.csv(MAA_low_spp_avg_loc,file="R_Config_for_EN_OUTPUT/Low 

MAA/MAA_low_spp_avg_loc.csv",row.names=FALSE) 
write.csv(MAA_up_spp_avg_loc,file="R_Config_for_EN_OUTPUT/Up 

MAA/MAA_up_gen_spp_loc.csv",row.names=FALSE) 
 
### Make a average coordinates table for the matrix with grids containing <3 occ removed for substages 

species level 
# subset out the different substages for genera of greater than 3 occ 
CAM_low_spp_great3_avgloc <- subset(trunk60_matrix_spp_great3_avgloc, Age == "LC") 
CAM_mid_spp_great3_avgloc <- subset(trunk60_matrix_spp_great3_avgloc, Age == "MC") 
CAM_up_spp_great3_avgloc <- subset(trunk60_matrix_spp_great3_avgloc, Age == "UC") 
MAA_low_spp_great3_avgloc <- subset(trunk60_matrix_spp_great3_avgloc, Age == "LM") 
MAA_up_spp_great3_avgloc <- subset(trunk60_matrix_spp_great3_avgloc, Age == "UM") 
 
#write csv files of attributes tables for substages at genus level 
write.csv(CAM_low_spp_great3_avgloc,file="R_Config_for_EN_OUTPUT/Low 

CAM/CAM_low_spp_great3_avgloc.csv",row.names=FALSE) 
write.csv(CAM_mid_spp_great3_avgloc,file="R_Config_for_EN_OUTPUT/Mid 

CAM/CAM_mid_spp_great3_avgloc.csv",row.names=FALSE) 
write.csv(CAM_up_spp_great3_avgloc,file="R_Config_for_EN_OUTPUT/Up 

CAM/CAM_up_spp_great3_avgloc.csv",row.names=FALSE) 
write.csv(MAA_low_spp_great3_avgloc,file="R_Config_for_EN_OUTPUT/Low 

MAA/MAA_low_spp_great3_avgloc.csv",row.names=FALSE) 
write.csv(MAA_up_spp_great3_avgloc,file="R_Config_for_EN_OUTPUT/Up 

MAA/MAA_up_spp_great3_avgloc.csv",row.names=FALSE) 
 
#### CREATE SUMMARY TABLE OF THE NUMBER OF SPP/GEN AND UNIQUE LOCATIONS 

IN EACH SUBSTAGE #### 
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Substage <- c("Low CAM","Mid CAM", "Up CAM", "Low MAA", "Up MAA") 
 
UGenLoc <- c(nrow(CAM_low_matrix_gen_final),nrow(CAM_mid_matrix_gen_final), 
                        nrow(CAM_up_matrix_gen_final),nrow(MAA_low_matrix_gen_final), 
                        nrow(MAA_up_matrix_gen_final)) 
 
GenGrid <- c(nrow(data.frame(unique(CAM_low_matrix_gen_final$PageName))), 
             nrow(data.frame(unique(CAM_mid_matrix_gen_final$PageName))), 
             nrow(data.frame(unique(CAM_up_matrix_gen_final$PageName))), 
             nrow(data.frame(unique(MAA_low_matrix_gen_final$PageName))), 
             nrow(data.frame(unique(MAA_up_matrix_gen_final$PageName)))) 
 
GenOcc <- c(nrow(CAM_low), 
            nrow(CAM_mid), 
            nrow(CAM_up), 
            nrow(MAA_low), 
            nrow(MAA_up)) 
 
Genera <- (c(ncol(CAM_low_matrix_gen_final),ncol(CAM_mid_matrix_gen_final), 
            ncol(CAM_up_matrix_gen_final),ncol(MAA_low_matrix_gen_final), 
            ncol(MAA_up_matrix_gen_final))) -2 
 
USppLoc <- c(nrow(CAM_low_matrix_spp_final),nrow(CAM_mid_matrix_spp_final), 
                        nrow(CAM_up_matrix_spp_final),nrow(MAA_low_matrix_spp_final), 
                        nrow(MAA_up_matrix_spp_final)) 
 
SppGrid <- c(nrow(data.frame(unique(CAM_low_matrix_spp_final$PageName))), 
             nrow(data.frame(unique(CAM_mid_matrix_spp_final$PageName))), 
             nrow(data.frame(unique(CAM_up_matrix_spp_final$PageName))), 
             nrow(data.frame(unique(MAA_low_matrix_spp_final$PageName))), 
             nrow(data.frame(unique(MAA_up_matrix_spp_final$PageName)))) 
 
SppOcc <- c(nrow(CAM_low_spp), 
    nrow(CAM_mid_spp), 
    nrow(CAM_up_spp), 
    nrow(MAA_low_spp), 
    nrow(MAA_up_spp)) 
 
Species <- (c(ncol(CAM_low_matrix_spp_final),ncol(CAM_mid_matrix_spp_final), 
             ncol(CAM_up_matrix_spp_final),ncol(MAA_low_matrix_spp_final), 
             ncol(MAA_up_matrix_spp_final))) -2 
 
summary <- as.data.frame(cbind(Substage, GenOcc, UGenLoc, GenGrid,  Genera, SppOcc, USppLoc, 
                               SppGrid, 
                               Species)) 
colnames(summary) <- c("Substage","TotGenOcc","UniqueGenLocations", "GenGridPixels", "#Genera", 
                       "TotSppOcc","UniqueSppLocations","SppGridPixels","#Species") 
summary 
write.csv(summary, file = "R_Config_for_EN_OUTPUT/SubstageSummary.csv") 
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  # The output shows that there are significantly more unique locations in the Mid and Up CAM 
  # but not a much higher number of occupied grid cells. There are far fewer total gen/spp 
  # occ points in the Low CAM, but not a much lower number of unique spp and genera relative 
  # to other substages. The Up MAA has the fewest total grid cells occupied, despite having 
  # a realtively high number of total spp/gen occ points and unique spp/gen. 
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Code for Conducting Network Randomization Comparisons 

setwd("C:/Users/ceara/Documents/Province Project/Occurrence Data/VettedCombinedDB") 
 
 
#### Lower Campanian #### 
# read in the network information data from the pajek file 
 
library(igraph) 
library(tnet) 
 
low_cam_percol_net <- read.graph('EDENetwork_outputs/Low 

CAM/CAM_low_matrix_gen_great3_thresholded_at_061.net', format = "pajek") 
 
typeof(low_cam_percol_net) 
 
cc_low_cam_percol_net <- transitivity(low_cam_percol_net) 
 
# convert to a i,j,w weighted edgelist (NOTE: Could also do this by getting distance matrix and then  
                                      # converting to NW using graph.adjacency() then convert using get.data.frame()) 
 
### Get the network data into the right format for tnet to calculate random nws (need the nodes to be 

numeric, not grid names) 
low_cam_percol_net2 <- cbind(get.edgelist(low_cam_percol_net, names=FALSE), 

E(low_cam_percol_net)$weight) 
 
# run this since the network is undirected, duplicates ties to justify that there is no direction 
if(!is.directed(low_cam_percol_net)) 
  low_cam_percol_net2 <- symmetrise_w(low_cam_percol_net2) 
 
# make sure conforms to tnet format 
low_cam_percol_net2 <- as.tnet(low_cam_percol_net2, type="weighted one-mode tnet") 
 
### Convert from tnet format to igraph (this should remove any zero weights, which essentially indicates 

identical connection but only 2 present...) 
# Create igraph object 
low_cam_percol_net3 <- tnet_igraph(low_cam_percol_net2,type="weighted one-mode tnet") 
 
# Get summary statistics 
summary(low_cam_percol_net3) 
 
# check that the cc is still close 
cc_low_cam_percol_net2 <- transitivity(low_cam_percol_net3)  
      ### loss of the 2 identical links maybe changed, but not much... 
 
## Plot the network 
 
# Get layout of observed network and plot it... need to look into this more... 
layout <- layout.fruchterman.reingold(low_cam_percol_net3) 
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plot(low_cam_percol_net3, main="Observed Network", layout=layout, 
vertex.label=1:length(low_cam_percol_net3), edge.width=E(low_cam_percol_net3)$weight, 
edge.label=E(low_cam_percol_net3)$weight) 

 
# Create random network from original network 
 
# create function to reshuffle by links (reshuffles weighted links while maintaining negree) 
fun <- function(x) { 
  rg_reshuffling_w(x, option="links") 
} 
 
# set number of times to replicate 
n = 1000 
 
# run analysis to create array with different randomized networks 
low_cam_percol_1000rand <- replicate(n, fun(low_cam_percol_net2), simplify=FALSE) 
 
# turn into igraph objects 
low_cam_percol_1000rand_igraph <- lapply(low_cam_percol_1000rand, function(x) 

tnet_igraph((x),type="weighted one-mode tnet")) 
 
# run cc analysis 
cc_low_cam_percol_1000rand <- lapply(low_cam_percol_1000rand_igraph,function(x) transitivity(x)) 
 
# get random networks cc average 
cc_avg_low_cam_percol_1000rand <- mean(unlist(cc_low_cam_percol_1000rand)) 
 
# Calculate standad deviation of the random dist 
cc_sd_low_cam_percol_1000rand <- sd(unlist(cc_low_cam_percol_1000rand)) 
 
# look at random nw cc distributions 
cc_dist_low_cam_percol_1000rand <- (unlist(cc_low_cam_percol_1000rand)) 
hist(cc_dist_low_cam_percol_1000rand) 
 
### Run statistical test on the real cc using random networks 
 
# H0: cc[real] = mean of cc[rand] 
 
# H1: cc[real] != mean of cc[rand] 
 
# alpha = 0.05 
 
t.test(cc_low_cam_percol_net2, mu = cc_avg_low_cam_percol_1000rand, alternative = 'less') 
 
#### Middle Campanian #### 
 
mid_cam_percol_net <- read.graph('EDENetwork_outputs/Mid 

CAM/CAM_mid_matrix_gen_great3_thresholded_at_057.net', format = "pajek") 
 
typeof(mid_cam_percol_net) 
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cc_mid_cam_percol_net <- transitivity(mid_cam_percol_net) 
 
# convert to a i,j,w weighted edgelist (NOTE: Could also do this by getting distance matrix and then  
# converting to NW using graph.adjacency() then convert using get.data.frame()) 
 
### Get the network data into the right format for tnet to calculate random nws (need the nodes to be 

numeric, not grid names) 
mid_cam_percol_net2 <- cbind(get.edgelist(mid_cam_percol_net, names=FALSE), 

E(mid_cam_percol_net)$weight) 
 
# run this since the network is undirected, duplicates ties to justify that there is no direction 
if(!is.directed(mid_cam_percol_net)) 
  mid_cam_percol_net2 <- symmetrise_w(mid_cam_percol_net2) 
 
# make sure conforms to tnet format 
mid_cam_percol_net2 <- as.tnet(mid_cam_percol_net2, type="weighted one-mode tnet") 
 
### Convert from tnet format to igraph (this should remove any zero weights, which essentially indicates 

identical connection but only 2 present...) 
# Create igraph object 
mid_cam_percol_net3 <- tnet_igraph(mid_cam_percol_net2,type="weighted one-mode tnet") 
 
# Get summary statistics 
summary(mid_cam_percol_net3) 
 
# check that the cc is still close 
cc_mid_cam_percol_net2 <- transitivity(mid_cam_percol_net3)  
### exactly the same! 
 
## Plot the network 
 
# Get layout of observed network and plot it... need to look into this more... 
layout <- layout.fruchterman.reingold(mid_cam_percol_net3) 
 
plot(mid_cam_percol_net3, main="Observed Network", layout=layout, 

vertex.label=1:length(mid_cam_percol_net3), edge.width=E(mid_cam_percol_net3)$weight, 
edge.label=E(mid_cam_percol_net3)$weight) 

 
# Create random network from original network 
 
# create function to reshuffle by links (reshuffles weighted links while maintaining negree) 
fun <- function(x) { 
  rg_reshuffling_w(x, option="links") 
} 
 
# set number of times to replicate 
n = 1000 
 
# run analysis to create array with different randomized networks 
mid_cam_percol_1000rand <- replicate(n, fun(mid_cam_percol_net2), simplify=FALSE) 
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# turn into igraph objects 
mid_cam_percol_1000rand_igraph <- lapply(mid_cam_percol_1000rand, function(x) 

tnet_igraph((x),type="weighted one-mode tnet")) 
 
# run cc analysis 
cc_mid_cam_percol_1000rand <- lapply(mid_cam_percol_1000rand_igraph,function(x) transitivity(x)) 
 
# get random networks cc average 
cc_avg_mid_cam_percol_1000rand <- mean(unlist(cc_mid_cam_percol_1000rand)) 
 
# Calculate standad deviation of the random dist 
cc_sd_mid_cam_percol_1000rand <- sd(unlist(cc_mid_cam_percol_1000rand)) 
 
# look at random nw cc distributions 
cc_dist_mid_cam_percol_1000rand <- (unlist(cc_mid_cam_percol_1000rand)) 
hist(cc_dist_mid_cam_percol_1000rand) 
 
 
 
### Run statistical test on the real cc using random networks 
 
# H0: cc[real] = mean of cc[rand] 
 
# H1: cc[real] != mean of cc[rand] 
 
# alpha = 0.05 
 
t.test(cc_mid_cam_percol_net2, mu = cc_avg_mid_cam_percol_1000rand, alternative = 'less') 
 
#### Middle Campanian #### 
 
mid_cam_percol_net <- read.graph('EDENetwork_outputs/Mid 

CAM/CAM_mid_matrix_gen_great3_thresholded_at_057.net', format = "pajek") 
 
typeof(mid_cam_percol_net) 
 
cc_mid_cam_percol_net <- transitivity(mid_cam_percol_net) 
 
# convert to a i,j,w weighted edgelist (NOTE: Could also do this by getting distance matrix and then  
# converting to NW using graph.adjacency() then convert using get.data.frame()) 
 
### Get the network data into the right format for tnet to calculate random nws (need the nodes to be 

numeric, not grid names) 
mid_cam_percol_net2 <- cbind(get.edgelist(mid_cam_percol_net, names=FALSE), 

E(mid_cam_percol_net)$weight) 
 
# run this since the network is undirected, duplicates ties to justify that there is no direction 
if(!is.directed(mid_cam_percol_net)) 
  mid_cam_percol_net2 <- symmetrise_w(mid_cam_percol_net2) 
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# make sure conforms to tnet format 
mid_cam_percol_net2 <- as.tnet(mid_cam_percol_net2, type="weighted one-mode tnet") 
 
 
### Convert from tnet format to igraph (this should remove any zero weights, which essentially indicates 

identical connection but only 2 present...) 
# Create igraph object 
mid_cam_percol_net3 <- tnet_igraph(mid_cam_percol_net2,type="weighted one-mode tnet") 
 
# Get summary statistics 
summary(mid_cam_percol_net3) 
 
# check that the cc is still close 
cc_mid_cam_percol_net2 <- transitivity(mid_cam_percol_net3)  
### exactly the same! 
 
## Plot the network 
 
# Get layout of observed network and plot it... need to look into this more... 
layout <- layout.fruchterman.reingold(mid_cam_percol_net3) 
 
plot(mid_cam_percol_net3, main="Observed Network", layout=layout, 

vertex.label=1:length(mid_cam_percol_net3), edge.width=E(mid_cam_percol_net3)$weight, 
edge.label=E(mid_cam_percol_net3)$weight) 

 
# Create random network from original network 
 
# create function to reshuffle by links (reshuffles weighted links while maintaining negree) 
fun <- function(x) { 
  rg_reshuffling_w(x, option="links") 
} 
 
# set number of times to replicate 
n = 1000 
 
# run analysis to create array with different randomized networks 
mid_cam_percol_1000rand <- replicate(n, fun(mid_cam_percol_net2), simplify=FALSE) 
 
# turn into igraph objects 
mid_cam_percol_1000rand_igraph <- lapply(mid_cam_percol_1000rand, function(x) 

tnet_igraph((x),type="weighted one-mode tnet")) 
 
# run cc analysis 
cc_mid_cam_percol_1000rand <- lapply(mid_cam_percol_1000rand_igraph,function(x) transitivity(x)) 
 
# get random networks cc average 
cc_avg_mid_cam_percol_1000rand <- mean(unlist(cc_mid_cam_percol_1000rand)) 
 
# Calculate standad deviation of the random dist 
cc_sd_mid_cam_percol_1000rand <- sd(unlist(cc_mid_cam_percol_1000rand)) 
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# look at random nw cc distributions 
cc_dist_mid_cam_percol_1000rand <- (unlist(cc_mid_cam_percol_1000rand)) 
hist(cc_dist_mid_cam_percol_1000rand) 
 
### Run statistical test on the real cc using random networks 
 
# H0: cc[real] = mean of cc[rand] 
 
# H1: cc[real] != mean of cc[rand] 
 
# alpha = 0.05 
 
t.test(cc_mid_cam_percol_net2, mu = cc_avg_mid_cam_percol_1000rand, alternative = 'less') 
 
#### Upper Campanian #### 
 
up_cam_percol_net <- read.graph('EDENetwork_outputs/Up 

CAM/CAM_up_matrix_gen_great3_thresholded_at_050.net', format = "pajek") 
 
typeof(up_cam_percol_net) 
 
cc_up_cam_percol_net <- transitivity(up_cam_percol_net) 
 
# convert to a i,j,w weighted edgelist (NOTE: Could also do this by getting distance matrix and then  
# converting to NW using graph.adjacency() then convert using get.data.frame()) 
 
### Get the network data into the right format for tnet to calculate random nws (need the nodes to be 

numeric, not grid names) 
up_cam_percol_net2 <- cbind(get.edgelist(up_cam_percol_net, names=FALSE), 

E(up_cam_percol_net)$weight) 
 
# run this since the network is undirected, duplicates ties to justify that there is no direction 
if(!is.directed(up_cam_percol_net)) 
  up_cam_percol_net2 <- symmetrise_w(up_cam_percol_net2) 
 
# make sure conforms to tnet format 
up_cam_percol_net2 <- as.tnet(up_cam_percol_net2, type="weighted one-mode tnet") 
 
### Convert from tnet format to igraph (this should remove any zero weights, which essentially indicates 

identical connection but only 2 present...) 
# Create igraph object 
up_cam_percol_net3 <- tnet_igraph(up_cam_percol_net2,type="weighted one-mode tnet") 
 
# Get summary statistics 
summary(up_cam_percol_net3) 
 
# check that the cc is still close 
cc_up_cam_percol_net2 <- transitivity(up_cam_percol_net3)  
### slightly lower, loss of 3 identical connections (wieghts = 0) but not very different 
 
## Plot the network 
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# Get layout of observed network and plot it... need to look into this more... 
layout <- layout.fruchterman.reingold(up_cam_percol_net3) 
 
plot(up_cam_percol_net3, main="Observed Network", layout=layout, 

vertex.label=1:length(up_cam_percol_net3), edge.width=E(up_cam_percol_net3)$weight, 
edge.label=E(up_cam_percol_net3)$weight) 

 
# Create random network from original network 
 
# create function to reshuffle by links (reshuffles weighted links while maintaining negree) 
fun <- function(x) { 
  rg_reshuffling_w(x, option="links") 
} 
 
# set number of times to replicate 
n = 1000 
 
# run analysis to create array with different randomized networks 
up_cam_percol_1000rand <- replicate(n, fun(up_cam_percol_net2), simplify=FALSE) 
 
# turn into igraph objects 
up_cam_percol_1000rand_igraph <- lapply(up_cam_percol_1000rand, function(x) 

tnet_igraph((x),type="weighted one-mode tnet")) 
 
# run cc analysis 
cc_up_cam_percol_1000rand <- lapply(up_cam_percol_1000rand_igraph,function(x) transitivity(x)) 
 
# get random networks cc average 
cc_avg_up_cam_percol_1000rand <- mean(unlist(cc_up_cam_percol_1000rand)) 
 
# Calculate standad deviation of the random dist 
cc_sd_up_cam_percol_1000rand <- sd(unlist(cc_up_cam_percol_1000rand)) 
 
# look at random nw cc distributions 
cc_dist_up_cam_percol_1000rand <- (unlist(cc_up_cam_percol_1000rand)) 
hist(cc_dist_up_cam_percol_1000rand) 
 
### Run statistical test on the real cc using random networks 
 
# H0: cc[real] = mean of cc[rand] 
 
# H1: cc[real] != mean of cc[rand] 
 
# alpha = 0.05 
 
t.test(cc_up_cam_percol_net2, mu = cc_avg_up_cam_percol_1000rand, alternative = 'less') 
 
#### Lower Maastrichtian #### 
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low_maa_percol_net <- read.graph('EDENetwork_outputs/Low 
MAA/maa_low_matrix_gen_great3_thresholded_at_080.net', format = "pajek") 

 
typeof(low_maa_percol_net) 
 
 
cc_low_maa_percol_net <- transitivity(low_maa_percol_net) 
 
# convert to a i,j,w weighted edgelist (NOTE: Could also do this by getting distance matrix and then  
# converting to NW using graph.adjacency() then convert using get.data.frame()) 
 
 
### Get the network data into the right format for tnet to calculate random nws (need the nodes to be 

numeric, not grid names) 
low_maa_percol_net2 <- cbind(get.edgelist(low_maa_percol_net, names=FALSE), 

E(low_maa_percol_net)$weight) 
 
# run this since the network is undirected, duplicates ties to justify that there is no direction 
if(!is.directed(low_maa_percol_net)) 
  low_maa_percol_net2 <- symmetrise_w(low_maa_percol_net2) 
 
# make sure conforms to tnet format 
low_maa_percol_net2 <- as.tnet(low_maa_percol_net2, type="weighted one-mode tnet") 
 
 
### Convert from tnet format to igraph (this should remove any zero weights, which essentially indicates 

identical connection but only 2 present...) 
# Create igraph object 
low_maa_percol_net3 <- tnet_igraph(low_maa_percol_net2,type="weighted one-mode tnet") 
 
# Get summary statistics 
summary(low_maa_percol_net3) 
 
# check that the cc is still close 
cc_low_maa_percol_net2 <- transitivity(low_maa_percol_net3)  
### slightly lower, loss of 1 identical connections (wieghts = 0) but not very different 
 
## Plot the network 
 
# Get layout of observed network and plot it... need to look into this more... 
layout <- layout.fruchterman.reingold(low_maa_percol_net3) 
 
plot(low_maa_percol_net3, main="Observed Network", layout=layout, 

vertex.label=1:length(low_maa_percol_net3), edge.width=E(low_maa_percol_net3)$weight, 
edge.label=E(low_maa_percol_net3)$weight) 

 
# Create random network from original network 
 
# create function to reshuffle by links (reshuffles weighted links while maintaining negree) 
fun <- function(x) { 
  rg_reshuffling_w(x, option="links") 
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} 
 
# set number of times to replicate 
n = 1000 
 
# run analysis to create array with different randomized networks 
low_maa_percol_1000rand <- replicate(n, fun(low_maa_percol_net2), simplify=FALSE) 
 
# turn into igraph objects 
low_maa_percol_1000rand_igraph <- lapply(low_maa_percol_1000rand, function(x) 

tnet_igraph((x),type="weighted one-mode tnet")) 
 
# run cc analysis 
cc_low_maa_percol_1000rand <- lapply(low_maa_percol_1000rand_igraph,function(x) transitivity(x)) 
 
# get random networks cc average 
cc_avg_low_maa_percol_1000rand <- mean(unlist(cc_low_maa_percol_1000rand)) 
 
# Calculate standad deviation of the random dist 
cc_sd_low_maa_percol_1000rand <- sd(unlist(cc_low_maa_percol_1000rand)) 
 
# look at random nw cc distributions 
cc_dist_low_maa_percol_1000rand <- (unlist(cc_low_maa_percol_1000rand)) 
hist(cc_dist_low_maa_percol_1000rand) 
 
### Run statistical test on the real cc using random networks 
 
# H0: cc[real] = mean of cc[rand] 
 
# H1: cc[real] != mean of cc[rand] 
 
# alpha = 0.05 
 
t.test(cc_low_maa_percol_net2, mu = cc_avg_low_maa_percol_1000rand, alternative = 'less') 
 
#### Upper Maastrichtian #### 
 
up_maa_percol_net <- read.graph('EDENetwork_outputs/Up 

MAA/maa_up_matrix_gen_great3_thresholded_at_086.net', format = "pajek") 
 
typeof(up_maa_percol_net) 
 
cc_up_maa_percol_net <- transitivity(up_maa_percol_net) 
 
# convert to a i,j,w weighted edgelist (NOTE: Could also do this by getting distance matrix and then  
# converting to NW using graph.adjacency() then convert using get.data.frame()) 
 
### Get the network data into the right format for tnet to calculate random nws (need the nodes to be 

numeric, not grid names) 
up_maa_percol_net2 <- cbind(get.edgelist(up_maa_percol_net, names=FALSE), 

E(up_maa_percol_net)$weight) 
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# run this since the network is undirected, duplicates ties to justify that there is no direction 
if(!is.directed(up_maa_percol_net)) 
  up_maa_percol_net2 <- symmetrise_w(up_maa_percol_net2) 
 
# make sure conforms to tnet format 
up_maa_percol_net2 <- as.tnet(up_maa_percol_net2, type="weighted one-mode tnet") 
 
 
### Convert from tnet format to igraph (this should remove any zero weights, which essentially indicates 

identical connection but only 2 present...) 
# Create igraph object 
up_maa_percol_net3 <- tnet_igraph(up_maa_percol_net2,type="weighted one-mode tnet") 
 
# Get summary statistics 
summary(up_maa_percol_net3) 
 
# check that the cc is still close 
cc_up_maa_percol_net2 <- transitivity(up_maa_percol_net3)  
### slightly lower, loss of 1 identical connections (wieghts = 0) but not very different 
 
## Plot the network 
 
# Get layout of observed network and plot it... need to look into this more... 
layout <- layout.fruchterman.reingold(up_maa_percol_net3) 
 
plot(up_maa_percol_net3, main="Observed Network", layout=layout, 

vertex.label=1:length(up_maa_percol_net3), edge.width=E(up_maa_percol_net3)$weight, 
edge.label=E(up_maa_percol_net3)$weight) 

 
# Create random network from original network 
 
# create function to reshuffle by links (reshuffles weighted links while maintaining negree) 
fun <- function(x) { 
  rg_reshuffling_w(x, option="links") 
} 
 
# set number of times to replicate 
n = 1000 
 
# run analysis to create array with different randomized networks 
up_maa_percol_1000rand <- replicate(n, fun(up_maa_percol_net2), simplify=FALSE) 
 
# turn into igraph objects 
up_maa_percol_1000rand_igraph <- lapply(up_maa_percol_1000rand, function(x) 

tnet_igraph((x),type="weighted one-mode tnet")) 
 
# run cc analysis 
cc_up_maa_percol_1000rand <- lapply(up_maa_percol_1000rand_igraph,function(x) transitivity(x)) 
 
# get random networks cc average 
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cc_avg_up_maa_percol_1000rand <- mean(unlist(cc_up_maa_percol_1000rand)) 
 
# Calculate standad deviation of the random dist 
cc_sd_up_maa_percol_1000rand <- sd(unlist(cc_up_maa_percol_1000rand)) 
 
# look at random nw cc distributions 
cc_dist_up_maa_percol_1000rand <- (unlist(cc_up_maa_percol_1000rand)) 
hist(cc_dist_up_maa_percol_1000rand) 
 
### Run statistical test on the real cc using random networks 
 
# H0: cc[real] = mean of cc[rand] 
 
# H1: cc[real] != mean of cc[rand] 
 
# alpha = 0.05 
 
 
t.test(cc_up_maa_percol_net2, mu = cc_avg_up_maa_percol_1000rand, alternative = 'less') 
 
#### Complete DB #### 
 
 
comp_db_percol_net <- 

read.graph('EDENetwork_outputs/CompleteDB/trunk60_matrix_gen_great3_thresholded_at_076
.net', format = "pajek") 

 
typeof(comp_db_percol_net) 
 
cc_comp_db_percol_net <- transitivity(comp_db_percol_net) 
 
# convert to a i,j,w weighted edgelist (NOTE: Could also do this by getting distance matrix and then  
# converting to NW using graph.adjacency() then convert using get.data.frame()) 
 
### Get the network data into the right format for tnet to calculate random nws (need the nodes to be 

numeric, not grid names) 
comp_db_percol_net2 <- cbind(get.edgelist(comp_db_percol_net, names=FALSE), 

E(comp_db_percol_net)$weight) 
 
# run this since the network is undirected, dcomplicates ties to justify that there is no direction 
if(!is.directed(comp_db_percol_net)) 
  comp_db_percol_net2 <- symmetrise_w(comp_db_percol_net2) 
 
# make sure conforms to tnet format 
comp_db_percol_net2 <- as.tnet(comp_db_percol_net2, type="weighted one-mode tnet") 
 
### Convert from tnet format to igraph (this should remove any zero weights, which essentially indicates 

identical connection but only 2 present...) 
# Create igraph object 
comp_db_percol_net3 <- tnet_igraph(comp_db_percol_net2,type="weighted one-mode tnet") 
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# Get summary statistics 
summary(comp_db_percol_net3) 
 
# check that the cc is still close 
cc_comp_db_percol_net2 <- transitivity(comp_db_percol_net3)  
### slightly lower, loss of 16 identical connections (wieghts = 0) but not very different 
 
## Plot the network 
 
# Get layout of observed network and plot it... need to look into this more... 
layout <- layout.fruchterman.reingold(comp_db_percol_net3) 
 
plot(comp_db_percol_net3, main="Observed Network", layout=layout, 

vertex.label=1:length(comp_db_percol_net3), edge.width=E(comp_db_percol_net3)$weight, 
edge.label=E(comp_db_percol_net3)$weight) 

 
# Create random network from original network 
 
# create function to reshuffle by links (reshuffles weighted links while maintaining negree) 
fun <- function(x) { 
  rg_reshuffling_w(x, option="links") 
} 
 
# set number of times to replicate 
n = 1000 
 
# run analysis to create array with different randomized networks 
comp_db_percol_1000rand <- replicate(n, fun(comp_db_percol_net2), simplify=FALSE) 
 
# turn into igraph objects 
comp_db_percol_1000rand_igraph <- lapply(comp_db_percol_1000rand, function(x) 

tnet_igraph((x),type="weighted one-mode tnet")) 
 
# run cc analysis 
cc_comp_db_percol_1000rand <- lapply(comp_db_percol_1000rand_igraph,function(x) transitivity(x)) 
 
# get random networks cc average 
cc_avg_comp_db_percol_1000rand <- mean(unlist(cc_comp_db_percol_1000rand)) 
 
# Calculate standad deviation of the random dist 
cc_sd_comp_db_percol_1000rand <- sd(unlist(cc_comp_db_percol_1000rand)) 
 
# look at random nw cc distributions 
cc_dist_comp_db_percol_1000rand <- (unlist(cc_comp_db_percol_1000rand)) 
hist(cc_dist_comp_db_percol_1000rand) 
 
### Run statistical test on the real cc using random networks 
 
# H0: cc[real] = mean of cc[rand] 
 
# H1: cc[real] != mean of cc[rand] 
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# alpha = 0.05 
 
 
t.test(cc_comp_db_percol_net2, mu = cc_avg_comp_db_percol_1000rand, alternative = 'less') 
 
### Take randomized results (mean and sd) and put in table for comparison with real cc 
 
rand_cc_means <- 

c(cc_avg_low_cam_percol_1000rand,cc_avg_mid_cam_percol_1000rand,cc_avg_up_cam_perco
l_1000rand,cc_avg_low_maa_percol_1000rand, 

                    cc_avg_up_maa_percol_1000rand,cc_avg_comp_db_percol_1000rand) 
 
rand_cc_sd <- 

c(cc_sd_low_cam_percol_1000rand,cc_sd_mid_cam_percol_1000rand,cc_sd_up_cam_percol_10
00rand,cc_sd_low_maa_percol_1000rand, 

                   cc_sd_up_maa_percol_1000rand,cc_sd_comp_db_percol_1000rand) 
 
rand_cc_1sd <- (rand_cc_sd) + rand_cc_means 
 
rand_cc_2sd <- (rand_cc_sd *2) + rand_cc_means 
 
rand_cc_3sd <- (rand_cc_sd *3) + + rand_cc_means 
 
cc_means <- 

c(cc_low_cam_percol_net2,cc_mid_cam_percol_net2,cc_up_cam_percol_net2,cc_low_maa_perc
ol_net2, 

              cc_up_maa_percol_net2,cc_comp_db_percol_net2) 
 
cc_table <- cbind(cc_means,rand_cc_means,rand_cc_1sd,rand_cc_2sd,rand_cc_3sd) 
colnames(cc_table) <- c("Networks <CC>","Mean Rand. <CC>","1 S.D. Rand. <CC>","2 S.D. Rand. 

<CC>","3 S.D. Rand. <CC>") 
rownames(cc_table) <- c("Lower Camp.", "Middle Camp.", "Upper Camp.", "Lower Maastr.", "Upper 

Maastr.", "Complete Database") 
 
 
cc_table 
 
write.csv(cc_table,file="NWR_Outputs/rnw_dist_results_table_1000.csv") 
 
x <- 1:5  
set.seed(49) 
mat1 <- do.call(rbind,lapply(1:10,function(y) sample(x,3))) 
 
lapply(1:10,sample(x,2)) 
 
x <- seq(1,10) 
 
r <- array(dim = c(10,3,1)) 
 
for (i in 1:1){ 
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  r[i] <- rg_reshuffling_w(low_cam_061_net2, option="links") 
  print(r) 
} 
 
set.seed(1) 
gen_mat <- function(x) matrix(c(1, 1, 1, x + rnorm(1)), nrow = 2) 
 
gen_mat(5) 
 
n <- 10 
 
# give 1 to gen_mat n-times 
lapply(rep(1, n), gen_mat) 
 
try <- replicate(1,r) 
 
try[[1]] 
 
ri <- tnet_igraph(r,type="weighted one-mode tnet") 
r1 <- tnet_igraph(r11,type="weighted one-mode tnet") 
r2 <- tnet_igraph(r22,type="weighted one-mode tnet") 
r3 <- tnet_igraph(r33,type="weighted one-mode tnet") 
r4 <- tnet_igraph(r44,type="weighted one-mode tnet") 
r5 <- tnet_igraph(r55,type="weighted one-mode tnet") 
 
 
transitivity(ri) 
transitivity(r1) 
transitivity(r2) 
transitivity(r3) 
transitivity(r4) 
transitivity(r5) 
 
gg <- get.data.frame(g) 
 
sum(gg_final$weight != 0) 
nrow(gg) 
 
 
gg_names <- data.frame(unique(gg[,1])) 
colnames(gg_names) <- "names" 
gg_names2 <- data.frame(unique(gg[,2])) 
colnames(gg_names2) <- "names" 
gg_names_list <- unique(rbind(gg_names,gg_names2)) 
 
gg_names_list <- cbind(newColName = rownames(gg_names_list), gg_names_list) 
rownames(gg_names_list) <- 1:nrow(gg_names_list) 
gg_names_list$to <- gg_names_list[,2] 
colnames(gg_names_list) <- c("ID","from","to") 
 
gg_mergefrom <- merge(gg,gg_names_list,by='from',all.x=TRUE) 
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colnames(gg_mergefrom) <- c("from","to",'weight','ID','to_y') 
gg_mergeto <- merge(gg_mergefrom,gg_names_list,by='to',all.x=TRUE) 
 
head(gg_mergeto) 
 
gg_final <- gg_mergeto[,c(4,6,3)] 
 
h <- subset(gg_final, weight != 0) 
colnames(h) <- c("i","j","w") 
 
rnw1 <- rg_reshuffling_w(h, option="links") 
 
rnw1_igraph <- tnet_igraph(rnw,type="weighted one-mode tnet",directed =FALSE) 
 
betweenness(rnw_igraph) 
 
# Look at distribution of weights in the network 
low_cam_dist <- read.table("EDENetwork_outputs/Low CAM/low_CAM_distanceMatrix.txt", header = 

FALSE) 
 
low_cam_names <- read.table("EDENetwork_outputs/Low 

CAM/low_CAM_distanceMatrix_names.txt",header = FALSE) 
summary(low_cam_names) 
colnames(low_cam_names) <- "Node" 
nrow(low_cam_names) 
nrow(low_cam_dist) 
 
colnames(low_cam_dist) <- c(low_cam_names$Node) 
rownames(low_cam_dist) <- c(low_cam_names$Node) 
 
 
low_cam_dist_long <- melt(low_cam_dist) 
 
#make into a numeric table 
try <- matrix(data = NA, nrow = dim(low_cam_dist)[1], ncol = dim(low_cam_dist)[2]) 
 
colnames(try) <- rownames(low_cam_dist) 
rownames(try) <- colnames(low_cam_dist) 
 
for (i in 1:dim(low_cam_dist)[2]) { 
  try[,i] <- c(as.numeric(low_cam_dist[[i]])) 
} 
 
try 
hist(try) 
 
### Node weights not normally distributed, so probably definitely need to resample links from the 

existing networks, rather than creating them from a dist 
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Code for Manually Comparing Potential Network Subcomponents 

## Code to assess the number and attributes of network components, or clusters of interconnected 
nodes, in the substage networks. 
## Notes are included throughout which clarify results and interpretations. 
 
setwd("C:/Users/ceara/Documents/Province Project/Occurrence Data/VettedCombinedDB") 
 
#### Lower Campanian #### 
 
# read in text files for different thresholds 
cam_low_0.61th <- readLines("EDENetwork_outputs/Low 
CAM/CAM_low_matrix_gen_great3_thresholded_at_061.txt") 
cam_low_0.55th <- readLines("EDENetwork_outputs/Low 
CAM/CAM_low_matrix_gen_great3_thresholded_at_055.txt") 
cam_low_0.50th <- readLines("EDENetwork_outputs/Low 
CAM/CAM_low_matrix_gen_great3_thresholded_at_050.txt") 
cam_low_0.45th <- readLines("EDENetwork_outputs/Low 
CAM/CAM_low_matrix_gen_great3_thresholded_at_045.txt") 
cam_low_0.40th <- readLines("EDENetwork_outputs/Low 
CAM/CAM_low_matrix_gen_great3_thresholded_at_040.txt") 
 
# Check which th have components consisting of multiple nodes 
 
cam_low_0.61th # one major component, all others less than 2 nodes each 
cam_low_0.55th # one major component, all others less than 2 nodes each 
cam_low_0.50th # one major component, all others less than 2 nodes each 
cam_low_0.45th # one major component, all others less than 2 nodes each 
cam_low_0.40th  # one major component, all others less than 2 nodes each 
 
## Do not need to run further visualization of these components, all in WI for LOW CAM 
 
#### Middle Campanian #### 
 
# read in text files for different thresholds 
cam_mid_0.57th <- readLines("EDENetwork_outputs/Mid 
CAM/CAM_mid_matrix_gen_great3_thresholded_at_057.txt") 
cam_mid_0.50th <- readLines("EDENetwork_outputs/Mid 
CAM/CAM_mid_matrix_gen_great3_thresholded_at_050.txt") 
cam_mid_0.45th <- readLines("EDENetwork_outputs/Mid 
CAM/CAM_mid_matrix_gen_great3_thresholded_at_045.txt") 
cam_mid_0.40th <- readLines("EDENetwork_outputs/Mid 
CAM/CAM_mid_matrix_gen_great3_thresholded_at_040.txt") 
 
# Check which th have components consisting of multiple nodes 
 
cam_mid_0.57th # one major component, all others less than 2 nodes each 
cam_mid_0.50th # one major component, one minor with 6, all others less than 3 nodes each 
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cam_mid_0.45th # one major component, one minor with 6, one with 4, all others less than 3 nodes 
each 
cam_mid_0.40th  # one major component, one minor with 5, all others less than 3 nodes each 
 
      ## Should map to check location of minor components within WI 
 
#### Upper Campanian #### 
 
# read in text files for different thresholds 
cam_up_0.50th <- readLines("EDENetwork_outputs/Up 
CAM/CAM_up_matrix_gen_great3_thresholded_at_050.txt") 
cam_up_0.45th <- readLines("EDENetwork_outputs/Up 
CAM/CAM_up_matrix_gen_great3_thresholded_at_045.txt") 
cam_up_0.40th <- readLines("EDENetwork_outputs/Up 
CAM/CAM_up_matrix_gen_great3_thresholded_at_040.txt") 
 
# Check which th have components consisting of multiple nodes 
 
cam_up_0.50th # one major component, all others less than 3 nodes each 
cam_up_0.45th # one major component, all others less than 3 nodes each 
cam_up_0.40th  # one major component, all others less than 1 nodes each 
 
## Do not need to run further visualization of these components 
 
#### Lower Maastrichtian #### 
 
# read in text files for different thresholds 
maa_low_0.80th <- readLines("EDENetwork_outputs/Low 
MAA/MAA_low_matrix_gen_great3_thresholded_at_080.txt") 
maa_low_0.75th <- readLines("EDENetwork_outputs/Low 
MAA/MAA_low_matrix_gen_great3_thresholded_at_075.txt") 
maa_low_0.70th <- readLines("EDENetwork_outputs/Low 
MAA/MAA_low_matrix_gen_great3_thresholded_at_070.txt") 
maa_low_0.65th <- readLines("EDENetwork_outputs/Low 
MAA/MAA_low_matrix_gen_great3_thresholded_at_065.txt") 
maa_low_0.60th <- readLines("EDENetwork_outputs/Low 
MAA/MAA_low_matrix_gen_great3_thresholded_at_060.txt") 
maa_low_0.55th <- readLines("EDENetwork_outputs/Low 
MAA/MAA_low_matrix_gen_great3_thresholded_at_055.txt") 
maa_low_0.50th <- readLines("EDENetwork_outputs/Low 
MAA/MAA_low_matrix_gen_great3_thresholded_at_050.txt") 
maa_low_0.45th <- readLines("EDENetwork_outputs/Low 
MAA/MAA_low_matrix_gen_great3_thresholded_at_045.txt") 
maa_low_0.40th <- readLines("EDENetwork_outputs/Low 
MAA/MAA_low_matrix_gen_great3_thresholded_at_040.txt") 
 
# Check which th have components consisting of multiple nodes 
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maa_low_0.80th # one major component, all others less than 1 nodes each 
maa_low_0.75th # one major component, one with 7, all others less than 1 nodes each 
maa_low_0.70th # one major component, one with 7, all others less than 1 nodes each 
maa_low_0.65th # one major component, one with 4, all others less than 2 nodes each 
maa_low_0.60th # one major component, one with 4, all others less than 2 nodes each 
maa_low_0.55th # one major component, 2 with 7, 1 with 4, all others less than 2 nodes each 
maa_low_0.50th # one major component, one with 5, all others less than 3 nodes each 
maa_low_0.45th # one component with 5, one with 4, all others less than 2 nodes each 
maa_low_0.40th # all component less than 3 nodes each 
 
      ## Map out 0.75, 0.60, and 0.50 to look at component locations 
 
#### Upper Maastrichtian #### 
 
# read in text files for different thresholds 
maa_up_0.86th <- readLines("EDENetwork_outputs/Up 
MAA/MAA_up_matrix_gen_great3_thresholded_at_086.txt") 
maa_up_0.80th <- readLines("EDENetwork_outputs/Up 
MAA/MAA_up_matrix_gen_great3_thresholded_at_080.txt") 
maa_up_0.75th <- readLines("EDENetwork_outputs/Up 
MAA/MAA_up_matrix_gen_great3_thresholded_at_075.txt") 
maa_up_0.70th <- readLines("EDENetwork_outputs/Up 
MAA/MAA_up_matrix_gen_great3_thresholded_at_070.txt") 
maa_up_0.65th <- readLines("EDENetwork_outputs/Up 
MAA/MAA_up_matrix_gen_great3_thresholded_at_065.txt") 
maa_up_0.60th <- readLines("EDENetwork_outputs/Up 
MAA/MAA_up_matrix_gen_great3_thresholded_at_060.txt") 
maa_up_0.55th <- readLines("EDENetwork_outputs/Up 
MAA/MAA_up_matrix_gen_great3_thresholded_at_055.txt") 
maa_up_0.50th <- readLines("EDENetwork_outputs/Up 
MAA/MAA_up_matrix_gen_great3_thresholded_at_050.txt") 
maa_up_0.45th <- readLines("EDENetwork_outputs/Up 
MAA/MAA_up_matrix_gen_great3_thresholded_at_045.txt") 
maa_up_0.40th <- readLines("EDENetwork_outputs/Up 
MAA/MAA_up_matrix_gen_great3_thresholded_at_040.txt") 
 
# Check which th have components consisting of multiple nodes 
 
maa_up_0.86th # one major component, all others less than 2 nodes 
maa_up_0.80th # one major component, 2ndary component with 13 nodes, all others less than 1 nodes 
each 
maa_up_0.75th # one major component, 2ndary component with 13 nodes, all others less than 1 nodes 
each 
maa_up_0.70th # one major component, 2ndary component with 13 nodes, all others less than 1 nodes 
each 
maa_up_0.65th # one major component, 2ndary component with 12 nodes, all others less than 1 nodes 
each 
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maa_up_0.60th # one major component, 2ndary component with 12 nodes, all others less than 1 nodes 
each 
maa_up_0.55th # one major component, 2ndary component with 10 nodes, all others less than 1 nodes 
each 
maa_up_0.50th # one major component, 2ndary component with 8 nodes, all others less than 1 nodes 
each 
maa_up_0.45th # all components less than 3 nodes each 
maa_up_0.40th # all component less than 3 nodes each 
 
#### Middle Campanian Components for 0.50 to 0.40 thresholds 
 
# Extract component info and map to visualize: 
 
typeof(cam_mid_0.50th) ## Contains: one major component, one minor with 6, all others less than 3 
nodes each >> NEED TO LOOK AT FIRST 2 COMPONENTS 
 
# split the character string into lists of component information 
cam_mid_0.50th_split <- split(cam_mid_0.50th, cumsum( grepl("^---", cam_mid_0.50th))) 
cam_mid_0.50th_split$"0" 
 
# create individual list objects of each relevant component 
cam_mid_0.50th_split_1st <- cam_mid_0.50th_split$"0" 
cam_mid_0.50th_split_2nd <- cam_mid_0.50th_split$"1" 
 
typeof(cam_mid_0.50th_split_2nd) 
 
# get length of each component (number of rows) 
nrow_1st <- length(cam_mid_0.50th_split_1st) 
nrow_2nd <- length(cam_mid_0.50th_split_2nd) 
 
# create an empty matrix to put the first component in (use length of rows for dimensions, remember all 
components after 1st have extra leading row) 
cam_mid_0.50th_split_1st_matrix <- matrix(data = NA, nrow=nrow_1st-2,ncol=11) 
cam_mid_0.50th_split_2nd_matrix <- matrix(data = NA, nrow=nrow_2nd-3,ncol=11) 
 
# split the string information from the first component in the list by "\t" and unlist to put values into 
vectors 
 
# 1st component 
for (i in 3:length(cam_mid_0.50th_split_1st)){ 
  cam_mid_0.50th_split_1st_matrix[i-2,] <- unlist(strsplit(cam_mid_0.50th_split_1st[i], "\t")) 
} 
 
# 2nd component 
for (i in 4:length(cam_mid_0.50th_split_2nd)){ 
  cam_mid_0.50th_split_2nd_matrix[i-3,] <- unlist(strsplit(cam_mid_0.50th_split_2nd[i], "\t")) 
} 
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# add column names to the matrices 
colnames(cam_mid_0.50th_split_1st_matrix) <- c("Node","Degree",'Clustering', 'Province', 'Numb_Occ', 
'Age', 'betweenness', 'location', 'OccColor', 'AgeColor', 'ProvColor') 
colnames(cam_mid_0.50th_split_2nd_matrix) <- c("Node","Degree",'Clustering', 'Province', 
'Numb_Occ', 'Age', 'betweenness', 'location', 'OccColor', 'AgeColor', 'ProvColor') 
 
# make the matrices into data frames 
cam_mid_0.50th_split_1st_df <- as.data.frame(cam_mid_0.50th_split_1st_matrix) 
cam_mid_0.50th_split_2nd_df <- as.data.frame(cam_mid_0.50th_split_2nd_matrix) 
 
typeof(cam_mid_0.50th_split_1st_df) 
 
# read in the lat/long file for the substage 
cam_mid_loc <- read.csv('R_Config_for_EN_OUTPUT/Mid CAM/CAM_mid_gen_great3_avgloc.csv') 
colnames(cam_mid_loc) <- c("Node","y","x","Age") 
 
 
# merge the dfs together to get the locaiton information with the components 
cam_mid_0.50th_split_1st_merge <- merge(cam_mid_0.50th_split_1st_df,cam_mid_loc,by="Node") 
cam_mid_0.50th_split_2nd_merge <- merge(cam_mid_0.50th_split_2nd_df,cam_mid_loc,by="Node") 
 
# simplify to just the x,y coord for each component 
cam_mid_0.50th_split_1st_loc <- cam_mid_0.50th_split_1st_merge[,c(12,13)] 
cam_mid_0.50th_split_2nd_loc <- cam_mid_0.50th_split_2nd_merge[,c(12,13)] 
 
# plot the map of the different components 
 
library("ggplot2") 
theme_set(theme_bw()) 
library("sf") 
 
library("rnaturalearth") 
library("rnaturalearthdata") 
library("ggspatial") 
 
world <- ne_countries(scale = "medium", returnclass = "sf") # get sf info for whole world from 
rnaturalearth 
class(world) 
 
# Plotting the map 
ggplot(data = world) + 
  geom_sf(size=0.1) + 
  xlab("Longitude") + ylab("Latitude") + 
  annotation_scale(location = "bl", width_hint = 0.5) + 
  annotation_north_arrow(location = "bl", which_north = "true", 
                         height = unit(0.4,"in"), width = unit(0.3,"in"), 
                         pad_x = unit(0.1, "in"), pad_y = unit(0.3, "in"), 
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                         style = north_arrow_minimal) + 
  annotate(geom = "text", x = -90, y = 26, label = "Gulf of Mexico",  
           fontface = "italic", color = "grey22", size = 3) + 
  theme(panel.grid.major = element_line(color = "grey", 
                                        size = 0.3, 
                                        linetype = 2)) + 
  geom_point(data = cam_mid_0.50th_split_1st_loc, aes(x = x, y = y), size = 3,  
             shape = 21, fill = "darkred") + 
  geom_point(data = cam_mid_0.50th_split_2nd_loc, aes(x = x, y = y), size = 3,  
             shape = 21, fill = "lightblue") + 
  coord_sf(xlim = c(-120, -75), ylim = c(20, 60), expand = FALSE) 
ggsave("ComponentAnalysis/cam_mid_0.50th.pdf") 
 
# Second TH level: 
 
### Contains: one major component, one minor with 6, one with 4, all others less than 3 nodes each >>> 
Plot 3 Components 
 
# split the character string into lists of component information 
cam_mid_0.45th_split <- split(cam_mid_0.45th, cumsum( grepl("^---", cam_mid_0.45th))) 
cam_mid_0.45th_split$"0" 
 
# create individual list objects of each relevant component 
cam_mid_0.45th_split_1st <- cam_mid_0.45th_split$"0" 
cam_mid_0.45th_split_2nd <- cam_mid_0.45th_split$"1" 
cam_mid_0.45th_split_3rd <- cam_mid_0.45th_split$"2" 
 
typeof(cam_mid_0.45th_split_2nd) 
 
# get length of each component (number of rows) 
nrow_1st <- length(cam_mid_0.45th_split_1st) 
nrow_2nd <- length(cam_mid_0.45th_split_2nd) 
nrow_3rd <- length(cam_mid_0.45th_split_3rd) 
 
# create an empty matrix to put the first component in (use length of rows for dimentions, remember all 
components after 1st have extra leading row) 
cam_mid_0.45th_split_1st_matrix <- matrix(data = NA, nrow=nrow_1st-2,ncol=11) 
cam_mid_0.45th_split_2nd_matrix <- matrix(data = NA, nrow=nrow_2nd-3,ncol=11) 
cam_mid_0.45th_split_3rd_matrix <- matrix(data = NA, nrow=nrow_3rd-3,ncol=11) 
 
# split the string information from the first component in the list by "\t" and unlist to put values into 
vectors 
 
# 1st component 
for (i in 3:length(cam_mid_0.45th_split_1st)){ 
  cam_mid_0.45th_split_1st_matrix[i-2,] <- unlist(strsplit(cam_mid_0.45th_split_1st[i], "\t")) 
} 
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# 2nd component 
for (i in 4:length(cam_mid_0.45th_split_2nd)){ 
  cam_mid_0.45th_split_2nd_matrix[i-3,] <- unlist(strsplit(cam_mid_0.45th_split_2nd[i], "\t")) 
} 
 
# 3rd component 
for (i in 4:length(cam_mid_0.45th_split_3rd)){ 
  cam_mid_0.45th_split_3rd_matrix[i-3,] <- unlist(strsplit(cam_mid_0.45th_split_3rd[i], "\t")) 
} 
 
# add column names to the matrices 
colnames(cam_mid_0.45th_split_1st_matrix) <- c("Node","Degree",'Clustering', 'Province', 'Numb_Occ', 
'Age', 'betweenness', 'location', 'OccColor', 'AgeColor', 'ProvColor') 
colnames(cam_mid_0.45th_split_2nd_matrix) <- c("Node","Degree",'Clustering', 'Province', 
'Numb_Occ', 'Age', 'betweenness', 'location', 'OccColor', 'AgeColor', 'ProvColor') 
colnames(cam_mid_0.45th_split_3rd_matrix) <- c("Node","Degree",'Clustering', 'Province', 'Numb_Occ', 
'Age', 'betweenness', 'location', 'OccColor', 'AgeColor', 'ProvColor') 
 
# make the matrices into data frames 
cam_mid_0.45th_split_1st_df <- as.data.frame(cam_mid_0.45th_split_1st_matrix) 
cam_mid_0.45th_split_2nd_df <- as.data.frame(cam_mid_0.45th_split_2nd_matrix) 
cam_mid_0.45th_split_3rd_df <- as.data.frame(cam_mid_0.45th_split_3rd_matrix) 
 
typeof(cam_mid_0.45th_split_1st_df) 
 
# read in the lat/long file for the substage 
cam_mid_loc <- read.csv('R_Config_for_EN_OUTPUT/Mid CAM/CAM_mid_gen_great3_avgloc.csv') 
colnames(cam_mid_loc) <- c("Node","y","x","Age") 
 
# merge the dfs together to get the locaiton information with the components 
cam_mid_0.45th_split_1st_merge <- merge(cam_mid_0.45th_split_1st_df,cam_mid_loc,by="Node") 
cam_mid_0.45th_split_2nd_merge <- merge(cam_mid_0.45th_split_2nd_df,cam_mid_loc,by="Node") 
cam_mid_0.45th_split_3rd_merge <- merge(cam_mid_0.45th_split_3rd_df,cam_mid_loc,by="Node") 
 
# simplify to just the x,y coord for each component 
cam_mid_0.45th_split_1st_loc <- cam_mid_0.45th_split_1st_merge[,c(12,13)] 
cam_mid_0.45th_split_2nd_loc <- cam_mid_0.45th_split_2nd_merge[,c(12,13)] 
cam_mid_0.45th_split_3rd_loc <- cam_mid_0.45th_split_3rd_merge[,c(12,13)] 
 
# plot the map of the different components 
 
library("ggplot2") 
theme_set(theme_bw()) 
library("sf") 
 
library("rnaturalearth") 
library("rnaturalearthdata") 
library("ggspatial") 
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world <- ne_countries(scale = "medium", returnclass = "sf") # get sf info for whole world from 
rnaturalearth 
class(world) 
 
# Plotting the map 
ggplot(data = world) + 
  geom_sf(size=0.1) + 
  xlab("Longitude") + ylab("Latitude") + 
  annotation_scale(location = "bl", width_hint = 0.5) + 
  annotation_north_arrow(location = "bl", which_north = "true", 
                         height = unit(0.4,"in"), width = unit(0.3,"in"), 
                         pad_x = unit(0.1, "in"), pad_y = unit(0.3, "in"), 
                         style = north_arrow_minimal) + 
  annotate(geom = "text", x = -90, y = 26, label = "Gulf of Mexico",  
           fontface = "italic", color = "grey22", size = 3) + 
  theme(panel.grid.major = element_line(color = "grey", 
                                        size = 0.3, 
                                        linetype = 2)) + 
  geom_point(data = cam_mid_0.45th_split_1st_loc, aes(x = x, y = y), size = 3,  
             shape = 21, fill = "darkred") + 
  geom_point(data = cam_mid_0.45th_split_2nd_loc, aes(x = x, y = y), size = 3,  
             shape = 21, fill = "lightblue") + 
  geom_point(data = cam_mid_0.45th_split_3rd_loc, aes(x = x, y = y), size = 3,  
             shape = 21, fill = "limegreen") + 
  coord_sf(xlim = c(-120, -75), ylim = c(20, 60), expand = FALSE) 
ggsave("ComponentAnalysis/cam_mid_0.45th.pdf") 
 
### NOTE: though the 2nd component points appear to overlap in the same geographic region as in the 
0.50 TH level in both maps, they do not 
    # represent the same nodes. So, it isn't a consistent component through time... Weird that it overlaps 
so well spatially but based on different nodes. 
    # The 3rd component here also doesn't correspond with the 2nd component from the 0.50 TH. 
 
# Third TH level: 
 
### Contains: one major component, one minor with 5, all others less than 3 nodes each >>> NEED TO 
PLOT 2 COMPONENTS ONLY 
 
# split the character string into lists of component information 
cam_mid_0.40th_split <- split(cam_mid_0.40th, cumsum( grepl("^---", cam_mid_0.40th))) 
cam_mid_0.40th_split$"0" 
 
# create individual list objects of each relevant component 
cam_mid_0.40th_split_1st <- cam_mid_0.40th_split$"0" 
cam_mid_0.40th_split_2nd <- cam_mid_0.40th_split$"1" 
 
typeof(cam_mid_0.40th_split_2nd) 
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# get lenght of each component (number of rows) 
nrow_1st <- length(cam_mid_0.40th_split_1st) 
nrow_2nd <- length(cam_mid_0.40th_split_2nd) 
 
# create an empty matrix to put the first component in (use length of rows for dimentions, remember all 
components after 1st have extra leading row) 
cam_mid_0.40th_split_1st_matrix <- matrix(data = NA, nrow=nrow_1st-2,ncol=11) 
cam_mid_0.40th_split_2nd_matrix <- matrix(data = NA, nrow=nrow_2nd-3,ncol=11) 
 
# split the string information from the first component in the list by "\t" and unlist to put values into 
vectors 
 
# 1st component 
for (i in 3:length(cam_mid_0.40th_split_1st)){ 
  cam_mid_0.40th_split_1st_matrix[i-2,] <- unlist(strsplit(cam_mid_0.40th_split_1st[i], "\t")) 
} 
 
# 2nd component 
for (i in 4:length(cam_mid_0.40th_split_2nd)){ 
  cam_mid_0.40th_split_2nd_matrix[i-3,] <- unlist(strsplit(cam_mid_0.40th_split_2nd[i], "\t")) 
} 
 
# add column names to the matrices 
colnames(cam_mid_0.40th_split_1st_matrix) <- c("Node","Degree",'Clustering', 'Province', 'Numb_Occ', 
'Age', 'betweenness', 'location', 'OccColor', 'AgeColor', 'ProvColor') 
colnames(cam_mid_0.40th_split_2nd_matrix) <- c("Node","Degree",'Clustering', 'Province', 
'Numb_Occ', 'Age', 'betweenness', 'location', 'OccColor', 'AgeColor', 'ProvColor') 
 
# make the matrices into data frames 
cam_mid_0.40th_split_1st_df <- as.data.frame(cam_mid_0.40th_split_1st_matrix) 
cam_mid_0.40th_split_2nd_df <- as.data.frame(cam_mid_0.40th_split_2nd_matrix) # REPRESENTS 
SAME NODES AS THE 2ND COMPONENT IN THE 0.45 TH (but one less) 
 
typeof(cam_mid_0.40th_split_1st_df) 
 
# read in the lat/long file for the substage 
cam_mid_loc <- read.csv('R_Config_for_EN_OUTPUT/Mid CAM/CAM_mid_gen_great3_avgloc.csv') 
colnames(cam_mid_loc) <- c("Node","y","x","Age") 
 
# merge the dfs together to get the locaiton information with the components 
cam_mid_0.40th_split_1st_merge <- merge(cam_mid_0.40th_split_1st_df,cam_mid_loc,by="Node") 
cam_mid_0.40th_split_2nd_merge <- merge(cam_mid_0.40th_split_2nd_df,cam_mid_loc,by="Node") 
 
# simplify to just the x,y coord for each component 
cam_mid_0.40th_split_1st_loc <- cam_mid_0.40th_split_1st_merge[,c(12,13)] 
cam_mid_0.40th_split_2nd_loc <- cam_mid_0.40th_split_2nd_merge[,c(12,13)] 
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# plot the map of the different components 
 
library("ggplot2") 
theme_set(theme_bw()) 
library("sf") 
 
library("rnaturalearth") 
library("rnaturalearthdata") 
library("ggspatial") 
 
world <- ne_countries(scale = "medium", returnclass = "sf") # get sf info for whole world from 
rnaturalearth 
class(world) 
 
# Plotting the map 
ggplot(data = world) + 
  geom_sf(size=0.1) + 
  xlab("Longitude") + ylab("Latitude") + 
  annotation_scale(location = "bl", width_hint = 0.5) + 
  annotation_north_arrow(location = "bl", which_north = "true", 
                         height = unit(0.4,"in"), width = unit(0.3,"in"), 
                         pad_x = unit(0.1, "in"), pad_y = unit(0.3, "in"), 
                         style = north_arrow_minimal) + 
  annotate(geom = "text", x = -90, y = 26, label = "Gulf of Mexico",  
           fontface = "italic", color = "grey22", size = 3) + 
  theme(panel.grid.major = element_line(color = "grey", 
                                        size = 0.3, 
                                        linetype = 2)) + 
  geom_point(data = cam_mid_0.40th_split_1st_loc, aes(x = x, y = y), size = 3,  
             shape = 21, fill = "darkred") + 
  geom_point(data = cam_mid_0.40th_split_2nd_loc, aes(x = x, y = y), size = 3,  
             shape = 21, fill = "lightblue") + 
  coord_sf(xlim = c(-120, -75), ylim = c(20, 60), expand = FALSE) 
ggsave("ComponentAnalysis/cam_mid_0.40th.pdf") 
 
### NOTE: Secondary component in the 0.40 TH same as that of the 0.45 TH, so consistent between the 
two. Again, not the same as the 2nd Component from 
    # the 0.50 TH, however. 
 
#### Lower Maastrichtian Components for 0.75, 0.60, and 0.50 thresholds 
 
# Extract component info and map to visualize: 
 
typeof(maa_low_0.50th) 
 
### Contains: one major component, one with 5, all others less than 3 nodes each >>> PLOT 2 
COMPONENTS 
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# split the character string into lists of component information 
maa_low_0.50th_split <- split(maa_low_0.50th, cumsum( grepl("^---", maa_low_0.50th))) 
maa_low_0.50th_split$"0" 
 
# create individual list objects of each relevant component 
maa_low_0.50th_split_1st <- maa_low_0.50th_split$"0" 
maa_low_0.50th_split_2nd <- maa_low_0.50th_split$"1" 
 
typeof(maa_low_0.50th_split_2nd) 
 
# get lenght of each component (number of rows) 
nrow_1st <- length(maa_low_0.50th_split_1st) 
nrow_2nd <- length(maa_low_0.50th_split_2nd) 
 
# create an empty matrix to put the first component in (use length of rows for dimentions, remember all 
components after 1st have extra leading row) 
maa_low_0.50th_split_1st_matrix <- matrix(data = NA, nrow=nrow_1st-2,ncol=11) 
maa_low_0.50th_split_2nd_matrix <- matrix(data = NA, nrow=nrow_2nd-3,ncol=11) 
 
# split the string information from the first component in the list by "\t" and unlist to put values into 
vectors 
 
# 1st component 
for (i in 3:length(maa_low_0.50th_split_1st)){ 
  maa_low_0.50th_split_1st_matrix[i-2,] <- unlist(strsplit(maa_low_0.50th_split_1st[i], "\t")) 
} 
 
# 2nd component 
for (i in 4:length(maa_low_0.50th_split_2nd)){ 
  maa_low_0.50th_split_2nd_matrix[i-3,] <- unlist(strsplit(maa_low_0.50th_split_2nd[i], "\t")) 
} 
 
# add column names to the matrices 
colnames(maa_low_0.50th_split_1st_matrix) <- c("Node","Degree",'Clustering', 'Province', 'Numb_Occ', 
'Age', 'betweenness', 'location', 'OccColor', 'AgeColor', 'ProvColor') 
colnames(maa_low_0.50th_split_2nd_matrix) <- c("Node","Degree",'Clustering', 'Province', 
'Numb_Occ', 'Age', 'betweenness', 'location', 'OccColor', 'AgeColor', 'ProvColor') 
 
# make the matrices into data frames 
maa_low_0.50th_split_1st_df <- as.data.frame(maa_low_0.50th_split_1st_matrix) 
maa_low_0.50th_split_2nd_df <- as.data.frame(maa_low_0.50th_split_2nd_matrix) 
 
typeof(maa_low_0.50th_split_1st_df) 
 
# read in the lat/long file for the substage 
maa_low_loc <- read.csv('R_Config_for_EN_OUTPUT/low maa/maa_low_gen_great3_avgloc.csv') 
colnames(maa_low_loc) <- c("Node","y","x","Age") 
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# merge the dfs together to get the locaiton information with the components 
maa_low_0.50th_split_1st_merge <- merge(maa_low_0.50th_split_1st_df,maa_low_loc,by="Node") 
maa_low_0.50th_split_2nd_merge <- merge(maa_low_0.50th_split_2nd_df,maa_low_loc,by="Node") 
 
# simplify to just the x,y coord for each component 
maa_low_0.50th_split_1st_loc <- maa_low_0.50th_split_1st_merge[,c(12,13)] 
maa_low_0.50th_split_2nd_loc <- maa_low_0.50th_split_2nd_merge[,c(12,13)] 
 
# plot the map of the different components 
 
library("ggplot2") 
theme_set(theme_bw()) 
library("sf") 
 
library("rnaturalearth") 
library("rnaturalearthdata") 
library("ggspatial") 
 
world <- ne_countries(scale = "medium", returnclass = "sf") # get sf info for whole world from 
rnaturalearth 
class(world) 
 
# Plotting the map 
ggplot(data = world) + 
  geom_sf(size=0.1) + 
  xlab("Longitude") + ylab("Latitude") + 
  annotation_scale(location = "bl", width_hint = 0.5) + 
  annotation_north_arrow(location = "bl", which_north = "true", 
                         height = unit(0.4,"in"), width = unit(0.3,"in"), 
                         pad_x = unit(0.1, "in"), pad_y = unit(0.3, "in"), 
                         style = north_arrow_minimal) + 
  annotate(geom = "text", x = -90, y = 26, label = "Gulf of Mexico",  
           fontface = "italic", color = "grey22", size = 3) + 
  theme(panel.grid.major = element_line(color = "grey", 
                                        size = 0.3, 
                                        linetype = 2)) + 
  geom_point(data = maa_low_0.50th_split_1st_loc, aes(x = x, y = y), size = 3,  
             shape = 21, fill = "darkred") + 
  geom_point(data = maa_low_0.50th_split_2nd_loc, aes(x = x, y = y), size = 3,  
             shape = 21, fill = "lightblue") + 
  coord_sf(xlim = c(-120, -75), ylim = c(20, 60), expand = FALSE) 
ggsave("ComponentAnalysis/maa_low_0.50th.pdf") 
 
# Second TH level: 
 
### Contains: one major component, one with 4, all others less than 2 nodes each >>> PLOT 2 
COMPONENTS 
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# split the character string into lists of component information 
maa_low_0.60th_split <- split(maa_low_0.60th, cumsum( grepl("^---", maa_low_0.60th))) 
maa_low_0.60th_split$"0" 
 
# create individual list objects of each relevant component 
maa_low_0.60th_split_1st <- maa_low_0.60th_split$"0" 
maa_low_0.60th_split_2nd <- maa_low_0.60th_split$"1" 
 
typeof(maa_low_0.60th_split_2nd) 
 
# get lenght of each component (number of rows) 
nrow_1st <- length(maa_low_0.60th_split_1st) 
nrow_2nd <- length(maa_low_0.60th_split_2nd) 
 
 
# create an empty matrix to put the first component in (use length of rows for dimensions, remember all 
components after 1st have extra leading row) 
maa_low_0.60th_split_1st_matrix <- matrix(data = NA, nrow=nrow_1st-2,ncol=11) 
maa_low_0.60th_split_2nd_matrix <- matrix(data = NA, nrow=nrow_2nd-3,ncol=11) 
 
# split the string information from the first component in the list by "\t" and unlist to put values into 
vectors 
 
# 1st component 
for (i in 3:length(maa_low_0.60th_split_1st)){ 
  maa_low_0.60th_split_1st_matrix[i-2,] <- unlist(strsplit(maa_low_0.60th_split_1st[i], "\t")) 
} 
 
# 2nd component 
for (i in 4:length(maa_low_0.60th_split_2nd)){ 
  maa_low_0.60th_split_2nd_matrix[i-3,] <- unlist(strsplit(maa_low_0.60th_split_2nd[i], "\t")) 
} 
 
# add column names to the matrices 
colnames(maa_low_0.60th_split_1st_matrix) <- c("Node","Degree",'Clustering', 'Province', 'Numb_Occ', 
'Age', 'betweenness', 'location', 'OccColor', 'AgeColor', 'ProvColor') 
colnames(maa_low_0.60th_split_2nd_matrix) <- c("Node","Degree",'Clustering', 'Province', 
'Numb_Occ', 'Age', 'betweenness', 'location', 'OccColor', 'AgeColor', 'ProvColor') 
 
# make the matrices into data frames 
maa_low_0.60th_split_1st_df <- as.data.frame(maa_low_0.60th_split_1st_matrix) 
maa_low_0.60th_split_2nd_df <- as.data.frame(maa_low_0.60th_split_2nd_matrix) # NOTE: Not the 
same component as the 2nd component for the 0.50 TH level 
 
typeof(maa_low_0.60th_split_1st_df) 
 
# read in the lat/long file for the substage 
maa_low_loc <- read.csv('R_Config_for_EN_OUTPUT/low maa/maa_low_gen_great3_avgloc.csv') 
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colnames(maa_low_loc) <- c("Node","y","x","Age") 
 
# merge the dfs together to get the locaiton information with the components 
maa_low_0.60th_split_1st_merge <- merge(maa_low_0.60th_split_1st_df,maa_low_loc,by="Node") 
maa_low_0.60th_split_2nd_merge <- merge(maa_low_0.60th_split_2nd_df,maa_low_loc,by="Node") 
 
# simplify to just the x,y coord for each component 
maa_low_0.60th_split_1st_loc <- maa_low_0.60th_split_1st_merge[,c(12,13)] 
maa_low_0.60th_split_2nd_loc <- maa_low_0.60th_split_2nd_merge[,c(12,13)] 
 
# plot the map of the different components 
 
library("ggplot2") 
theme_set(theme_bw()) 
library("sf") 
 
library("rnaturalearth") 
library("rnaturalearthdata") 
library("ggspatial") 
 
world <- ne_countries(scale = "medium", returnclass = "sf") # get sf info for whole world from 
rnaturalearth 
class(world) 
 
# Plotting the map 
ggplot(data = world) + 
  geom_sf(size=0.1) + 
  xlab("Longitude") + ylab("Latitude") + 
  annotation_scale(location = "bl", width_hint = 0.5) + 
  annotation_north_arrow(location = "bl", which_north = "true", 
                         height = unit(0.4,"in"), width = unit(0.3,"in"), 
                         pad_x = unit(0.1, "in"), pad_y = unit(0.3, "in"), 
                         style = north_arrow_minimal) + 
  annotate(geom = "text", x = -90, y = 26, label = "Gulf of Mexico",  
           fontface = "italic", color = "grey22", size = 3) + 
  theme(panel.grid.major = element_line(color = "grey", 
                                        size = 0.3, 
                                        linetype = 2)) + 
  geom_point(data = maa_low_0.60th_split_1st_loc, aes(x = x, y = y), size = 3,  
             shape = 21, fill = "darkred") + 
  geom_point(data = maa_low_0.60th_split_2nd_loc, aes(x = x, y = y), size = 3,  
             shape = 21, fill = "lightblue") + 
  coord_sf(xlim = c(-120, -75), ylim = c(20, 60), expand = FALSE) 
ggsave("ComponentAnalysis/maa_low_0.60th.pdf") 
 
# Third TH level: 
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### Contains: one major component, one with 7, all others less than 1 nodes each >>> PLOT 2 
COMPONENTS 
 
# split the character string into lists of component information 
maa_low_0.75th_split <- split(maa_low_0.75th, cumsum( grepl("^---", maa_low_0.75th))) 
maa_low_0.75th_split$"0" 
 
# create individual list objects of each relevant component 
maa_low_0.75th_split_1st <- maa_low_0.75th_split$"0" 
maa_low_0.75th_split_2nd <- maa_low_0.75th_split$"1" 
 
typeof(maa_low_0.75th_split_2nd) 
 
# get lenght of each component (number of rows) 
nrow_1st <- length(maa_low_0.75th_split_1st) 
nrow_2nd <- length(maa_low_0.75th_split_2nd) 
 
# create an empty matrix to put the first component in (use length of rows for dimensions, remember all 
components after 1st have extra leading row) 
maa_low_0.75th_split_1st_matrix <- matrix(data = NA, nrow=nrow_1st-2,ncol=11) 
maa_low_0.75th_split_2nd_matrix <- matrix(data = NA, nrow=nrow_2nd-3,ncol=11) 
 
# split the string information from the first component in the list by "\t" and unlist to put values into 
vectors 
 
# 1st component 
for (i in 3:length(maa_low_0.75th_split_1st)){ 
  maa_low_0.75th_split_1st_matrix[i-2,] <- unlist(strsplit(maa_low_0.75th_split_1st[i], "\t")) 
} 
 
# 2nd component 
for (i in 4:length(maa_low_0.75th_split_2nd)){ 
  maa_low_0.75th_split_2nd_matrix[i-3,] <- unlist(strsplit(maa_low_0.75th_split_2nd[i], "\t")) 
} 
 
# add column names to the matrices 
colnames(maa_low_0.75th_split_1st_matrix) <- c("Node","Degree",'Clustering', 'Province', 'Numb_Occ', 
'Age', 'betweenness', 'location', 'OccColor', 'AgeColor', 'ProvColor') 
colnames(maa_low_0.75th_split_2nd_matrix) <- c("Node","Degree",'Clustering', 'Province', 
'Numb_Occ', 'Age', 'betweenness', 'location', 'OccColor', 'AgeColor', 'ProvColor') 
 
# make the matrices into data frames 
maa_low_0.75th_split_1st_df <- as.data.frame(maa_low_0.75th_split_1st_matrix) 
maa_low_0.75th_split_2nd_df <- as.data.frame(maa_low_0.75th_split_2nd_matrix) # NOTE: Same 2nd 
component as the 0.60 TH level but with more nodes 
 
typeof(maa_low_0.75th_split_1st_df) 
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# read in the lat/long file for the substage 
maa_low_loc <- read.csv('R_Config_for_EN_OUTPUT/low maa/maa_low_gen_great3_avgloc.csv') 
colnames(maa_low_loc) <- c("Node","y","x","Age") 
 
# merge the dfs together to get the locaiton information with the components 
maa_low_0.75th_split_1st_merge <- merge(maa_low_0.75th_split_1st_df,maa_low_loc,by="Node") 
maa_low_0.75th_split_2nd_merge <- merge(maa_low_0.75th_split_2nd_df,maa_low_loc,by="Node") 
 
# simplify to just the x,y coord for each component 
maa_low_0.75th_split_1st_loc <- maa_low_0.75th_split_1st_merge[,c(12,13)] 
maa_low_0.75th_split_2nd_loc <- maa_low_0.75th_split_2nd_merge[,c(12,13)] 
 
# plot the map of the different components 
 
library("ggplot2") 
theme_set(theme_bw()) 
library("sf") 
 
library("rnaturalearth") 
library("rnaturalearthdata") 
library("ggspatial") 
 
world <- ne_countries(scale = "medium", returnclass = "sf") # get sf info for whole world from 
rnaturalearth 
class(world) 
 
# Plotting the map 
ggplot(data = world) + 
  geom_sf(size=0.1) + 
  xlab("Longitude") + ylab("Latitude") + 
  annotation_scale(location = "bl", width_hint = 0.5) + 
  annotation_north_arrow(location = "bl", which_north = "true", 
                         height = unit(0.4,"in"), width = unit(0.3,"in"), 
                         pad_x = unit(0.1, "in"), pad_y = unit(0.3, "in"), 
                         style = north_arrow_minimal) + 
  annotate(geom = "text", x = -90, y = 26, label = "Gulf of Mexico",  
           fontface = "italic", color = "grey22", size = 3) + 
  theme(panel.grid.major = element_line(color = "grey", 
                                        size = 0.3, 
                                        linetype = 2)) + 
  geom_point(data = maa_low_0.75th_split_1st_loc, aes(x = x, y = y), size = 3,  
             shape = 21, fill = "darkred") + 
  geom_point(data = maa_low_0.75th_split_2nd_loc, aes(x = x, y = y), size = 3,  
             shape = 21, fill = "lightblue") + 
  coord_sf(xlim = c(-120, -75), ylim = c(20, 60), expand = FALSE) 
ggsave("ComponentAnalysis/maa_low_0.75th.pdf") 
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### Maps show that the 2nd component for TH levels 0.75-0.60 are the same, located in the eastern 
side of the GCP. The secondary componenet in the 0.50 TH, 
    # however, is not the same and occupies the middle WIS (assumably it is a result of the WIS major 
component breaking down at lower THs). At TH below the 
    # 0.60 TH, it appears that the GCP breaks down compoletely to less than 4 connected node 
components. 
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Code for Calculating Average Network Link Weights across Distance Bins 

setwd("C:/Users/ceara/Documents/Province Project/Occurrence Data/VettedCombinedDB") 
 
 
# Calculalte geographic distance for paleo-coords between 5deg lats 
x0 <- c(-100.0,35.0) 
y0 <- c(-100.0,40.0) 
 
x <- c(-100.0,40.0) 
y <- c(-100.0,45.0) 
 
x1 <- c(-100.0,45.0) 
y1 <- c(-100.0,50.0) 
 
x2 <- c(-100.0,50.0) 
y2 <- c(-100.0,55.0) 
 
distGeo(x0,y0, a=6378137, f=1/298.257223563) 
distGeo(x,y, a=6378137, f=1/298.257223563) 
distGeo(x1,y1, a=6378137, f=1/298.257223563) 
distGeo(x2,y2, a=6378137, f=1/298.257223563) 
 
555*2 
 
library(geosphere) # load geosphere package 
 
# load the chronosphere package to run this code. This should allow for reconstructions of plat and plong:  
# https://www.evolv-ed.net/post/chronosphere-paleomap/chronosphere-paleomap/ 
library(chronosphere) 
citation("geosphere") 
 
##### Lower Campanian ##### 
 
# read in the lat/long file for the substage 
cam_low_loc <- read.csv('R_Config_for_EN_OUTPUT/Low CAM/CAM_low_gen_great3_avgloc.csv') 
 
# get just the lat long locations from the table 
cam_low_simple_loc <- cam_low_loc[,c(3,2)] 
 
      # NOTE: Remember that these are average locations based on the fossil occ found in each grid cell, 
and therefore already approsimations 
      # which may be biased by not converting the fossil locations to paleocoordinates originally... 
 
# Get the map information for this substage (age chosen is very approximate for this substage because 
limited options) 
cam_low_maps <- reconstruct("plates", age=80) # get paleo plate info 
cam_low_coast <- reconstruct("coastlines", age=80) # get coastline info 
 
# Reconstruct paleocoord using age of rough age of substage (approximate, will use the same age for M 
Cam because limited options...) 
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cam_low_ploc <- reconstruct(cam_low_simple_loc, age=c(80)) 
 
# get min and max paleolong 
cam_low_minlong <- min(cam_low_ploc[,1]) - 10 
cam_low_maxlong <- max(cam_low_ploc[,1]) + 10 
 
# get min and max paleolat 
cam_low_minlat <- min(cam_low_ploc[,2]) - 15 
cam_low_maxlat <- max(cam_low_ploc[,2]) + 15 
 
# plot the maps and points in paleo positions to get an idea about their layout 
par(mfrow = c(1,1)) 
plot(cam_low_maps, col = 'grey', border = NA, xlim = c(cam_low_minlong,cam_low_maxlong), ylim = 
c(cam_low_minlat,cam_low_maxlat)) 
lines(cam_low_coast, col = "black", xlim = c(cam_low_minlong,cam_low_maxlong), ylim = 
c(cam_low_maxlat,cam_low_minlat)) 
points(cam_low_ploc, pch=3, col="red") 
 
# get number of unique locations to use for matrix dimensions 
low_cam_count <- nrow(cam_low_loc) 
 
# create empty dataframe to put the geographic distances into (use the names of the diffrent grid cells as 
row and column names) 
low_cam_geodist_matrix <- data.frame(matrix(ncol = low_cam_count, nrow = low_cam_count)) 
colnames(low_cam_geodist_matrix) <- cam_low_loc$node_label # give the matrix column names based 
on original grid names 
rownames(low_cam_geodist_matrix) <- cam_low_loc$node_label # give the matrix row names based on 
original grid names 
 
# run for loop to get distances using geodesic distance calc 
for (i in 1:nrow(cam_low_ploc)){ 
  low_cam_geodist_matrix[i,] <- distGeo(cam_low_simple_loc[i,],cam_low_simple_loc, a=6378137, 
f=1/298.257223563) 
} 
 
      # results are in meters of distance!!! 
 
# check the dimentions and summary info for the matrix 
ncol(low_cam_geodist_matrix) 
head(low_cam_geodist_matrix) 
 
max(low_cam_geodist_matrix) 
min(low_cam_geodist_matrix) 
mean(as.matrix(low_cam_geodist_matrix), na.rm = TRUE) 
median(as.matrix(low_cam_geodist_matrix), na.rm = TRUE) 
 
# make the matrix into a lower triangle (to make following calc less cumbersome and remove duplicates) 
low_cam_geodist_matrix[lower.tri(low_cam_geodist_matrix, diag = TRUE)] <- NA 
low_cam_geodist_matrix 
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# create a sequence of numbers to use for making bins (these bins were chosen to try to capture variation 
in values while minimizing bin number) 
seq <- c(0,50000, 100000, 200000, 400000, 600000, 1000000, 1500000, 2000000, 2500000, 3000000, 
3500000) 
 
# read in the Jaccard dist matrix created using EDENetworks 
low_cam_dist <- read.table("EDENetwork_outputs/Low CAM/low_CAM_distanceMatrix.txt", header = 
FALSE) # jaccard values matrix 
 
low_cam_names <- read.table("EDENetwork_outputs/Low 
CAM/low_CAM_distanceMatrix_names.txt",header = FALSE) # node names vector 
colnames(low_cam_names) <- "Node" 
 
# give the rows and columns names based on the node names file 
colnames(low_cam_dist) <- c(low_cam_names$Node) 
rownames(low_cam_dist) <- c(low_cam_names$Node) 
 
# check that the two matrices have an identical arrangement 
a <- colnames(low_cam_geodist_matrix) 
b <- colnames(low_cam_dist) 
 
a == b # They do, yay! 
 
#### Calculate the average and mean jaccard weights for the different bins 
 
## 0-50 km ## 
 
# get index positions of all values in geographic distance matrix within 0-50 km 
low_cam_geodist_0_50 = which(low_cam_geodist_matrix <50000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
low_cam_geodist_0_50_jaccard <- 
low_cam_dist[c(low_cam_geodist_0_50[,1]),c(low_cam_geodist_0_50[,2])] 
 
# get the average and median jaccard weight values for the 0-50 km bin 
low_cam_geodist_0_50_avg <- mean(as.matrix(low_cam_geodist_0_50_jaccard), na.rm = TRUE) 
low_cam_geodist_0_50_med <- median(as.matrix(low_cam_geodist_0_50_jaccard), na.rm = TRUE) 
 
## 50-100 km ## 
 
# get index positions of all values in geographic distance matrix within 50-100 km 
low_cam_geodist_50_100 = which(low_cam_geodist_matrix >50000 & low_cam_geodist_matrix < 
100000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
low_cam_geodist_50_100_jaccard <- 
low_cam_dist[c(low_cam_geodist_50_100[,1]),c(low_cam_geodist_50_100[,2])] 
 
# get the average and median jaccard weight values for the 50-100 km bin 
low_cam_geodist_50_100_avg <- mean(as.matrix(low_cam_geodist_50_100_jaccard), na.rm = TRUE) 
low_cam_geodist_50_100_med <- median(as.matrix(low_cam_geodist_50_100_jaccard), na.rm = 
TRUE) 
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## 100-200 km ## 
 
# get index positions of all values in geographic distance matrix within 100-200 km 
low_cam_geodist_100_200 = which(low_cam_geodist_matrix >100000 & low_cam_geodist_matrix < 
200000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
low_cam_geodist_100_200_jaccard <- 
low_cam_dist[c(low_cam_geodist_100_200[,1]),c(low_cam_geodist_100_200[,2])] 
 
# get the average and median jaccard weight values for the 100-200 km bin 
low_cam_geodist_100_200_avg <- mean(as.matrix(low_cam_geodist_100_200_jaccard), na.rm = TRUE) 
low_cam_geodist_100_200_med <- median(as.matrix(low_cam_geodist_100_200_jaccard), na.rm = 
TRUE) 
 
## 200-400 km ## 
 
# get index positions of all values in geographic distance matrix within 200-400 km 
low_cam_geodist_200_400 = which(low_cam_geodist_matrix >200000 & low_cam_geodist_matrix < 
400000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
low_cam_geodist_200_400_jaccard <- 
low_cam_dist[c(low_cam_geodist_200_400[,1]),c(low_cam_geodist_200_400[,2])] 
 
# get the average and median jaccard weight values for the 200-400 km bin 
low_cam_geodist_200_400_avg <- mean(as.matrix(low_cam_geodist_200_400_jaccard), na.rm = TRUE) 
low_cam_geodist_200_400_med <- median(as.matrix(low_cam_geodist_200_400_jaccard), na.rm = 
TRUE) 
 
## 400-600 km ## 
 
# get index positions of all values in geographic distance matrix within 400-600 km 
low_cam_geodist_400_600 = which(low_cam_geodist_matrix >400000 & low_cam_geodist_matrix < 
600000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
low_cam_geodist_400_600_jaccard <- 
low_cam_dist[c(low_cam_geodist_400_600[,1]),c(low_cam_geodist_400_600[,2])] 
 
# get the average and median jaccard weight values for the 400-600 km bin 
low_cam_geodist_400_600_avg <- mean(as.matrix(low_cam_geodist_400_600_jaccard), na.rm = TRUE) 
low_cam_geodist_400_600_med <- median(as.matrix(low_cam_geodist_400_600_jaccard), na.rm = 
TRUE) 
 
## 600-1000 km ## 
 
# get index positions of all values in geographic distance matrix within 600-1000 km 
low_cam_geodist_600_1000 = which(low_cam_geodist_matrix >600000 & low_cam_geodist_matrix < 
1000000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
low_cam_geodist_600_1000_jaccard <- 
low_cam_dist[c(low_cam_geodist_600_1000[,1]),c(low_cam_geodist_600_1000[,2])] 
 



SI Purcell et al., 20XX 288 
 

288 
 

# get the average and median jaccard weight values for the 600-1000 km bin 
low_cam_geodist_600_1000_avg <- mean(as.matrix(low_cam_geodist_600_1000_jaccard), na.rm = 
TRUE) 
low_cam_geodist_600_1000_med <- median(as.matrix(low_cam_geodist_600_1000_jaccard), na.rm = 
TRUE) 
 
## 1000-1500 km ## 
 
# get index positions of all values in geographic distance matrix within 1000-1500 km 
low_cam_geodist_1000_1500 = which(low_cam_geodist_matrix >1000000 & low_cam_geodist_matrix 
< 1500000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
low_cam_geodist_1000_1500_jaccard <- 
low_cam_dist[c(low_cam_geodist_1000_1500[,1]),c(low_cam_geodist_1000_1500[,2])] 
 
# get the average and median jaccard weight values for the 1000-1500 km bin 
low_cam_geodist_1000_1500_avg <- mean(as.matrix(low_cam_geodist_1000_1500_jaccard), na.rm = 
TRUE) 
low_cam_geodist_1000_1500_med <- median(as.matrix(low_cam_geodist_1000_1500_jaccard), na.rm = 
TRUE) 
 
## 1500-2000 km ## 
 
# get index positions of all values in geographic distance matrix within 1500-2000 km 
low_cam_geodist_1500_2000 = which(low_cam_geodist_matrix >1500000 & low_cam_geodist_matrix 
< 2000000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
low_cam_geodist_1500_2000_jaccard <- 
low_cam_dist[c(low_cam_geodist_1500_2000[,1]),c(low_cam_geodist_1500_2000[,2])] 
 
# get the average and median jaccard weight values for the 1500-2000 km bin 
low_cam_geodist_1500_2000_avg <- mean(as.matrix(low_cam_geodist_1500_2000_jaccard), na.rm = 
TRUE) 
low_cam_geodist_1500_2000_med <- median(as.matrix(low_cam_geodist_1500_2000_jaccard), na.rm = 
TRUE) 
 
## 2000-2500 km ## 
 
# get index positions of all values in geographic distance matrix within 2000-2500 km 
low_cam_geodist_2000_2500 = which(low_cam_geodist_matrix >2000000 & low_cam_geodist_matrix 
< 2500000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
low_cam_geodist_2000_2500_jaccard <- 
low_cam_dist[c(low_cam_geodist_2000_2500[,1]),c(low_cam_geodist_2000_2500[,2])] 
 
# get the average and median jaccard weight values for the 2000-2500 km bin 
low_cam_geodist_2000_2500_avg <- mean(as.matrix(low_cam_geodist_2000_2500_jaccard), na.rm = 
TRUE) 
low_cam_geodist_2000_2500_med <- median(as.matrix(low_cam_geodist_2000_2500_jaccard), na.rm = 
TRUE) 
 



SI Purcell et al., 20XX 289 
 

289 
 

## 2500-3000 km ## 
 
# get index positions of all values in geographic distance matrix within 2500-2500 km 
low_cam_geodist_2500_3000 = which(low_cam_geodist_matrix >2500000 & low_cam_geodist_matrix 
< 3000000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
low_cam_geodist_2500_3000_jaccard <- 
low_cam_dist[c(low_cam_geodist_2500_3000[,1]),c(low_cam_geodist_2500_3000[,2])] 
 
# get the average and median jaccard weight values for the 2500-2500 km bin 
low_cam_geodist_2500_3000_avg <- mean(as.matrix(low_cam_geodist_2500_3000_jaccard), na.rm = 
TRUE) 
low_cam_geodist_2500_3000_med <- median(as.matrix(low_cam_geodist_2500_3000_jaccard), na.rm = 
TRUE) 
 
## 3000-3500 km ## 
 
# get index positions of all values in geographic distance matrix within 3000-3500 km 
low_cam_geodist_3000_3500 = which(low_cam_geodist_matrix >3000000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
low_cam_geodist_3000_3500_jaccard <- 
low_cam_dist[c(low_cam_geodist_3000_3500[,1]),c(low_cam_geodist_3000_3500[,2])] 
 
# get the average and median jaccard weight values for the 3000-3500 km bin 
low_cam_geodist_3000_3500_avg <- mean(as.matrix(low_cam_geodist_3000_3500_jaccard), na.rm = 
TRUE) 
low_cam_geodist_3000_3500_med <- median(as.matrix(low_cam_geodist_3000_3500_jaccard), na.rm = 
TRUE) 
 
low_cam_freq_geodist_bins <- c(nrow(low_cam_geodist_0_50), 
                      nrow(low_cam_geodist_50_100), 
                      nrow(low_cam_geodist_100_200), 
                      nrow(low_cam_geodist_200_400), 
                      nrow(low_cam_geodist_400_600), 
                      nrow(low_cam_geodist_600_1000), 
                      nrow(low_cam_geodist_1000_1500), 
                      nrow(low_cam_geodist_1500_2000), 
                      nrow(low_cam_geodist_2000_2500), 
                      nrow(low_cam_geodist_2500_3000), 
                      nrow(low_cam_geodist_3000_3500)) 
 
low_cam_geodist_avg_bins <- c(low_cam_geodist_0_50_avg, 
                      low_cam_geodist_50_100_avg, 
                      low_cam_geodist_100_200_avg, 
                      low_cam_geodist_200_400_avg, 
                      low_cam_geodist_400_600_avg, 
                      low_cam_geodist_600_1000_avg, 
                      low_cam_geodist_1000_1500_avg, 
                      low_cam_geodist_1500_2000_avg, 
                      low_cam_geodist_2000_2500_avg, 
                      low_cam_geodist_2500_3000_avg, 
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                      low_cam_geodist_3000_3500_avg) 
 
 
low_cam_geodist_med_bins <- c(low_cam_geodist_0_50_med, 
                      low_cam_geodist_50_100_med, 
                      low_cam_geodist_100_200_med, 
                      low_cam_geodist_200_400_med, 
                      low_cam_geodist_400_600_med, 
                      low_cam_geodist_600_1000_med, 
                      low_cam_geodist_1000_1500_med, 
                      low_cam_geodist_1500_2000_med, 
                      low_cam_geodist_2000_2500_med, 
                      low_cam_geodist_2500_3000_med, 
                      low_cam_geodist_3000_3500_med) 
 
low_cam_geodist_bins_table <- 
rbind(low_cam_geodist_avg_bins,low_cam_geodist_med_bins,low_cam_freq_geodist_bins) 
 
colnames(low_cam_geodist_bins_table) <- c("0-50 km","50-100 km","100-200 km","200-400 km","400-
600 km","600-1000 km", 
                                 "1000-1500 km","1500-2000 km","2000-2500 km","2500-3000 km","3000-3500 
km") 
rownames(low_cam_geodist_bins_table) <- c("Mean Jaccard Weight","Median Jaccard Weight","Numb. 
Sites in Bin") 
 
low_cam_geodist_bins_table 
 
write.csv(low_cam_geodist_bins_table, file = 'WeightAnalysis/low_cam_geodist_bins_table.csv') 
 
### PLot the lines ##### 
 
plot(low_cam_geodist_bins_table[1,],col="blue",pch=16,axes=FALSE, ann=FALSE) 
axis(1, at=1:11, lab=c("0-50 ","50-100","100-200","200-400","400-600","600-1000", 
                      "1000-1500","1500-2000","2000-2500","2500-3000","3000-3500")) 
axis(2, at=c(0.7,0.75,0.80,0.85,0.90,0.95,1)) 
box() 
title(xlab="Distance Bins (km)") 
title(ylab="Bray–Curtis Dissimilarity Index Weight ") 
title(main="Average Weight by Geographicc Distance") 
 
##### Middle Campanian ##### 
 
# read in the lat/long file for the substage 
cam_mid_loc <- read.csv('R_Config_for_EN_OUTPUT/Mid CAM/CAM_mid_gen_great3_avgloc.csv') 
 
# get just the lat long locations from the table 
cam_mid_simple_loc <- cam_mid_loc[,c(3,2)] 
 
# NOTE: Remember that these are average locations based on the fossil occ found in each grid cell, and 
therefore already approsimations 
# which may be biased by not converting the fossil locations to paleocoordinates originally... 
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# Get the map information for this substage (age chosen is very approximate for this substage because 
limited options) 
cam_mid_maps <- reconstruct("plates", age=80) # get paleo plate info 
cam_mid_coast <- reconstruct("coastlines", age=80) # get coastline info 
 
# Reconstruct paleocoord using age of rough age of substage (approximate, will use the same age for M 
Cam because limited options...) 
cam_mid_ploc <- reconstruct(cam_mid_simple_loc, age=c(80)) 
 
# get min and max paleolong 
cam_mid_minlong <- min(cam_mid_ploc[,1]) - 10 
cam_mid_maxlong <- max(cam_mid_ploc[,1]) + 10 
 
# get min and max paleolat 
cam_mid_minlat <- min(cam_mid_ploc[,2]) - 15 
cam_mid_maxlat <- max(cam_mid_ploc[,2]) + 15 
 
# plot the maps and points in paleo positions to get an idea about their layout 
par(mfrow = c(1,1)) 
plot(cam_mid_maps, col = 'grey', border = NA, xlim = c(cam_mid_minlong,cam_mid_maxlong), ylim = 
c(cam_mid_minlat,cam_mid_maxlat)) 
lines(cam_mid_coast, col = "black", xlim = c(cam_mid_minlong,cam_mid_maxlong), ylim = 
c(cam_mid_maxlat,cam_mid_minlat)) 
points(cam_mid_ploc, pch=3, col="red") 
 
# get number of unique locations to use for matrix dimensions 
mid_cam_count <- nrow(cam_mid_loc) 
 
# create empty dataframe to put the geographic distances into (use the names of the diffrent grid cells as 
row and column names) 
mid_cam_geodist_matrix <- data.frame(matrix(ncol = mid_cam_count, nrow = mid_cam_count)) 
colnames(mid_cam_geodist_matrix) <- cam_mid_loc$node_label # give the matrix column names based 
on original grid names 
rownames(mid_cam_geodist_matrix) <- cam_mid_loc$node_label # give the matrix row names based on 
original grid names 
 
# run for loop to get distances using geodesic distance calc 
for (i in 1:nrow(cam_mid_ploc)){ 
  mid_cam_geodist_matrix[i,] <- distGeo(cam_mid_simple_loc[i,],cam_mid_simple_loc, a=6378137, 
f=1/298.257223563) 
} 
 
# results are in meters of distance!!! 
 
# check the dimentions and summary info for the matrix 
ncol(mid_cam_geodist_matrix) 
head(mid_cam_geodist_matrix) 
 
max(mid_cam_geodist_matrix) 
min(mid_cam_geodist_matrix) 
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mean(as.matrix(mid_cam_geodist_matrix), na.rm = TRUE) 
median(as.matrix(mid_cam_geodist_matrix), na.rm = TRUE) 
 
# make the matrix into a mider triangle (to make folmiding calc less cumbersome and remove duplicates) 
mid_cam_geodist_matrix[lower.tri(mid_cam_geodist_matrix, diag = TRUE)] <- NA 
mid_cam_geodist_matrix 
 
# create a sequence of numbers to use for making bins (these bins were chosen to try to capture variation 
in values while minimizing bin number) 
seq <- c(0,50000, 100000, 200000, 400000, 600000, 1000000, 1500000, 2000000, 2500000, 3000000, 
3500000) 
 
# read in the Jaccard dist matrix created using EDENetworks 
mid_cam_dist <- read.table("EDENetwork_outputs/mid CAM/CAM_mid_Matrix_distance.txt", header = 
FALSE) # jaccard values matrix 
 
mid_cam_names <- read.table("EDENetwork_outputs/mid 
CAM/CAM_mid_Matrix_distance_names.txt",header = FALSE) # node names vector 
colnames(mid_cam_names) <- "Node" 
 
# give the rows and columns names based on the node names file 
colnames(mid_cam_dist) <- c(mid_cam_names$Node) 
rownames(mid_cam_dist) <- c(mid_cam_names$Node) 
 
# check that the two matrices have an identical arrangement 
a <- colnames(mid_cam_geodist_matrix) 
b <- colnames(mid_cam_dist) 
 
a == b # They do, yay! 
 
#### Calculate the average and mean jaccard weights for the different bins 
 
## 0-50 km ## 
 
# get index positions of all values in geographic distance matrix within 0-50 km 
mid_cam_geodist_0_50 = which(mid_cam_geodist_matrix <50000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
mid_cam_geodist_0_50_jaccard <- 
mid_cam_dist[c(mid_cam_geodist_0_50[,1]),c(mid_cam_geodist_0_50[,2])] 
 
# get the average and median jaccard weight values for the 0-50 km bin 
mid_cam_geodist_0_50_avg <- mean(as.matrix(mid_cam_geodist_0_50_jaccard), na.rm = TRUE) 
mid_cam_geodist_0_50_med <- median(as.matrix(mid_cam_geodist_0_50_jaccard), na.rm = TRUE) 
 
## 50-100 km ## 
 
# get index positions of all values in geographic distance matrix within 50-100 km 
mid_cam_geodist_50_100 = which(mid_cam_geodist_matrix >50000 & mid_cam_geodist_matrix < 
100000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
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mid_cam_geodist_50_100_jaccard <- 
mid_cam_dist[c(mid_cam_geodist_50_100[,1]),c(mid_cam_geodist_50_100[,2])] 
 
# get the average and median jaccard weight values for the 50-100 km bin 
mid_cam_geodist_50_100_avg <- mean(as.matrix(mid_cam_geodist_50_100_jaccard), na.rm = TRUE) 
mid_cam_geodist_50_100_med <- median(as.matrix(mid_cam_geodist_50_100_jaccard), na.rm = 
TRUE) 
 
## 100-200 km ## 
 
# get index positions of all values in geographic distance matrix within 100-200 km 
mid_cam_geodist_100_200 = which(mid_cam_geodist_matrix >100000 & mid_cam_geodist_matrix < 
200000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
mid_cam_geodist_100_200_jaccard <- 
mid_cam_dist[c(mid_cam_geodist_100_200[,1]),c(mid_cam_geodist_100_200[,2])] 
 
 
# get the average and median jaccard weight values for the 100-200 km bin 
mid_cam_geodist_100_200_avg <- mean(as.matrix(mid_cam_geodist_100_200_jaccard), na.rm = 
TRUE) 
mid_cam_geodist_100_200_med <- median(as.matrix(mid_cam_geodist_100_200_jaccard), na.rm = 
TRUE) 
 
## 200-400 km ## 
 
# get index positions of all values in geographic distance matrix within 200-400 km 
mid_cam_geodist_200_400 = which(mid_cam_geodist_matrix >200000 & mid_cam_geodist_matrix < 
400000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
mid_cam_geodist_200_400_jaccard <- 
mid_cam_dist[c(mid_cam_geodist_200_400[,1]),c(mid_cam_geodist_200_400[,2])] 
 
 
# get the average and median jaccard weight values for the 200-400 km bin 
mid_cam_geodist_200_400_avg <- mean(as.matrix(mid_cam_geodist_200_400_jaccard), na.rm = 
TRUE) 
mid_cam_geodist_200_400_med <- median(as.matrix(mid_cam_geodist_200_400_jaccard), na.rm = 
TRUE) 
 
## 400-600 km ## 
 
# get index positions of all values in geographic distance matrix within 400-600 km 
mid_cam_geodist_400_600 = which(mid_cam_geodist_matrix >400000 & mid_cam_geodist_matrix < 
600000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
mid_cam_geodist_400_600_jaccard <- 
mid_cam_dist[c(mid_cam_geodist_400_600[,1]),c(mid_cam_geodist_400_600[,2])] 
 
 
# get the average and median jaccard weight values for the 400-600 km bin 
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mid_cam_geodist_400_600_avg <- mean(as.matrix(mid_cam_geodist_400_600_jaccard), na.rm = 
TRUE) 
mid_cam_geodist_400_600_med <- median(as.matrix(mid_cam_geodist_400_600_jaccard), na.rm = 
TRUE) 
 
## 600-1000 km ## 
 
# get index positions of all values in geographic distance matrix within 600-1000 km 
mid_cam_geodist_600_1000 = which(mid_cam_geodist_matrix >600000 & mid_cam_geodist_matrix < 
1000000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
mid_cam_geodist_600_1000_jaccard <- 
mid_cam_dist[c(mid_cam_geodist_600_1000[,1]),c(mid_cam_geodist_600_1000[,2])] 
 
# get the average and median jaccard weight values for the 600-1000 km bin 
mid_cam_geodist_600_1000_avg <- mean(as.matrix(mid_cam_geodist_600_1000_jaccard), na.rm = 
TRUE) 
mid_cam_geodist_600_1000_med <- median(as.matrix(mid_cam_geodist_600_1000_jaccard), na.rm = 
TRUE) 
 
 
 
 
## 1000-1500 km ## 
 
# get index positions of all values in geographic distance matrix within 1000-1500 km 
mid_cam_geodist_1000_1500 = which(mid_cam_geodist_matrix >1000000 & mid_cam_geodist_matrix 
< 1500000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
mid_cam_geodist_1000_1500_jaccard <- 
mid_cam_dist[c(mid_cam_geodist_1000_1500[,1]),c(mid_cam_geodist_1000_1500[,2])] 
 
 
# get the average and median jaccard weight values for the 1000-1500 km bin 
mid_cam_geodist_1000_1500_avg <- mean(as.matrix(mid_cam_geodist_1000_1500_jaccard), na.rm = 
TRUE) 
mid_cam_geodist_1000_1500_med <- median(as.matrix(mid_cam_geodist_1000_1500_jaccard), na.rm = 
TRUE) 
 
## 1500-2000 km ## 
 
# get index positions of all values in geographic distance matrix within 1500-2000 km 
mid_cam_geodist_1500_2000 = which(mid_cam_geodist_matrix >1500000 & mid_cam_geodist_matrix 
< 2000000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
mid_cam_geodist_1500_2000_jaccard <- 
mid_cam_dist[c(mid_cam_geodist_1500_2000[,1]),c(mid_cam_geodist_1500_2000[,2])] 
 
 
# get the average and median jaccard weight values for the 1500-2000 km bin 
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mid_cam_geodist_1500_2000_avg <- mean(as.matrix(mid_cam_geodist_1500_2000_jaccard), na.rm = 
TRUE) 
mid_cam_geodist_1500_2000_med <- median(as.matrix(mid_cam_geodist_1500_2000_jaccard), na.rm = 
TRUE) 
 
## 2000-2500 km ## 
 
# get index positions of all values in geographic distance matrix within 2000-2500 km 
mid_cam_geodist_2000_2500 = which(mid_cam_geodist_matrix >2000000 & mid_cam_geodist_matrix 
< 2500000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
mid_cam_geodist_2000_2500_jaccard <- 
mid_cam_dist[c(mid_cam_geodist_2000_2500[,1]),c(mid_cam_geodist_2000_2500[,2])] 
 
# get the average and median jaccard weight values for the 2000-2500 km bin 
mid_cam_geodist_2000_2500_avg <- mean(as.matrix(mid_cam_geodist_2000_2500_jaccard), na.rm = 
TRUE) 
mid_cam_geodist_2000_2500_med <- median(as.matrix(mid_cam_geodist_2000_2500_jaccard), na.rm = 
TRUE) 
 
## 2500-3000 km ## 
 
# get index positions of all values in geographic distance matrix within 2500-2500 km 
mid_cam_geodist_2500_3000 = which(mid_cam_geodist_matrix >2500000 & mid_cam_geodist_matrix 
< 3000000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
mid_cam_geodist_2500_3000_jaccard <- 
mid_cam_dist[c(mid_cam_geodist_2500_3000[,1]),c(mid_cam_geodist_2500_3000[,2])] 
 
 
# get the average and median jaccard weight values for the 2500-2500 km bin 
mid_cam_geodist_2500_3000_avg <- mean(as.matrix(mid_cam_geodist_2500_3000_jaccard), na.rm = 
TRUE) 
mid_cam_geodist_2500_3000_med <- median(as.matrix(mid_cam_geodist_2500_3000_jaccard), na.rm = 
TRUE) 
 
## 3000-3500 km ## 
 
# get index positions of all values in geographic distance matrix within 3000-3500 km 
mid_cam_geodist_3000_3500 = which(mid_cam_geodist_matrix >3000000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
mid_cam_geodist_3000_3500_jaccard <- 
mid_cam_dist[c(mid_cam_geodist_3000_3500[,1]),c(mid_cam_geodist_3000_3500[,2])] 
 
 
# get the average and median jaccard weight values for the 3000-3500 km bin 
mid_cam_geodist_3000_3500_avg <- mean(as.matrix(mid_cam_geodist_3000_3500_jaccard), na.rm = 
TRUE) 
mid_cam_geodist_3000_3500_med <- median(as.matrix(mid_cam_geodist_3000_3500_jaccard), na.rm = 
TRUE) 
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mid_cam_freq_geodist_bins <- c(nrow(mid_cam_geodist_0_50), 
                               nrow(mid_cam_geodist_50_100), 
                               nrow(mid_cam_geodist_100_200), 
                               nrow(mid_cam_geodist_200_400), 
                               nrow(mid_cam_geodist_400_600), 
                               nrow(mid_cam_geodist_600_1000), 
                               nrow(mid_cam_geodist_1000_1500), 
                               nrow(mid_cam_geodist_1500_2000), 
                               nrow(mid_cam_geodist_2000_2500), 
                               nrow(mid_cam_geodist_2500_3000), 
                               nrow(mid_cam_geodist_3000_3500)) 
 
mid_cam_geodist_avg_bins <- c(mid_cam_geodist_0_50_avg, 
                              mid_cam_geodist_50_100_avg, 
                              mid_cam_geodist_100_200_avg, 
                              mid_cam_geodist_200_400_avg, 
                              mid_cam_geodist_400_600_avg, 
                              mid_cam_geodist_600_1000_avg, 
                              mid_cam_geodist_1000_1500_avg, 
                              mid_cam_geodist_1500_2000_avg, 
                              mid_cam_geodist_2000_2500_avg, 
                              mid_cam_geodist_2500_3000_avg, 
                              mid_cam_geodist_3000_3500_avg) 
 
mid_cam_geodist_med_bins <- c(mid_cam_geodist_0_50_med, 
                              mid_cam_geodist_50_100_med, 
                              mid_cam_geodist_100_200_med, 
                              mid_cam_geodist_200_400_med, 
                              mid_cam_geodist_400_600_med, 
                              mid_cam_geodist_600_1000_med, 
                              mid_cam_geodist_1000_1500_med, 
                              mid_cam_geodist_1500_2000_med, 
                              mid_cam_geodist_2000_2500_med, 
                              mid_cam_geodist_2500_3000_med, 
                              mid_cam_geodist_3000_3500_med) 
 
mid_cam_geodist_bins_table <- 
rbind(mid_cam_geodist_avg_bins,mid_cam_geodist_med_bins,mid_cam_freq_geodist_bins) 
 
colnames(mid_cam_geodist_bins_table) <- c("0-50 km","50-100 km","100-200 km","200-400 km","400-
600 km","600-1000 km", 
                                          "1000-1500 km","1500-2000 km","2000-2500 km","2500-3000 km","3000-
3500 km") 
rownames(mid_cam_geodist_bins_table) <- c("Mean Jaccard Weight","Median Jaccard Weight","Numb. 
Sites in Bin") 
 
mid_cam_geodist_bins_table 
 
write.csv(mid_cam_geodist_bins_table, file = 'WeightAnalysis/mid_cam_geodist_bins_table.csv') 
 
### PLot the lines ##### 
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plot(low_cam_geodist_bins_table[1,],col="blue",pch=16,axes=FALSE, ann=FALSE) 
points(mid_cam_geodist_bins_table[1,],col="red",pch=17) 
axis(1, at=1:11, lab=c("0-50 ","50-100","100-200","200-400","400-600","600-1000", 
                       "1000-1500","1500-2000","2000-2500","2500-3000","3000-3500")) 
axis(2, at=c(0.7,0.75,0.80,0.85,0.90,0.95,1)) 
box() 
title(xlab="Distance Bins (km)") 
title(ylab="Bray–Curtis Dissimilarity Index Weight ") 
title(main="Average Weight by Geographicc Distance") 
 
##### Upper Campanian ##### 
 
# read in the lat/long file for the substage 
cam_up_loc <- read.csv('R_Config_for_EN_OUTPUT/up CAM/CAM_up_gen_great3_avgloc.csv') 
 
 
# get just the lat long locations from the table 
cam_up_simple_loc <- cam_up_loc[,c(3,2)] 
 
# NOTE: Remember that these are average locations based on the fossil occ found in each grid cell, and 
therefore already approsimations 
# which may be biased by not converting the fossil locations to paleocoordinates originally... 
 
# Get the map information for this substage (age chosen is very approximate for this substage because 
limited options) 
cam_up_maps <- reconstruct("plates", age=75) # get paleo plate info 
cam_up_coast <- reconstruct("coastlines", age=75) # get coastline info 
 
# Reconstruct paleocoord using age of rough age of substage (approximate) 
cam_up_ploc <- reconstruct(cam_up_simple_loc, age=c(75)) 
 
# get min and max paleolong 
cam_up_minlong <- min(cam_up_ploc[,1]) - 10 
cam_up_maxlong <- max(cam_up_ploc[,1]) + 10 
 
# get min and max paleolat 
cam_up_minlat <- min(cam_up_ploc[,2]) - 15 
cam_up_maxlat <- max(cam_up_ploc[,2]) + 15 
 
# plot the maps and points in paleo positions to get an idea about their layout 
par(mfrow = c(1,1)) 
plot(cam_up_maps, col = 'grey', border = NA, xlim = c(cam_up_minlong,cam_up_maxlong), ylim = 
c(cam_up_minlat,cam_up_maxlat)) 
lines(cam_up_coast, col = "black", xlim = c(cam_up_minlong,cam_up_maxlong), ylim = 
c(cam_up_maxlat,cam_up_minlat)) 
points(cam_up_ploc, pch=3, col="red") 
 
# get number of unique locations to use for matrix dimensions 
up_cam_count <- nrow(cam_up_loc) 
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# create empty dataframe to put the geographic distances into (use the names of the diffrent grid cells as 
row and column names) 
up_cam_geodist_matrix <- data.frame(matrix(ncol = up_cam_count, nrow = up_cam_count)) 
colnames(up_cam_geodist_matrix) <- cam_up_loc$node_label # give the matrix column names based on 
original grid names 
rownames(up_cam_geodist_matrix) <- cam_up_loc$node_label # give the matrix row names based on 
original grid names 
 
# run for loop to get distances using geodesic distance calc 
for (i in 1:nrow(cam_up_ploc)){ 
  up_cam_geodist_matrix[i,] <- distGeo(cam_up_simple_loc[i,],cam_up_simple_loc, a=6378137, 
f=1/298.257223563) 
} 
 
# results are in meters of distance!!! 
 
# check the dimentions and summary info for the matrix 
ncol(up_cam_geodist_matrix) 
head(up_cam_geodist_matrix) 
 
max(up_cam_geodist_matrix) 
min(up_cam_geodist_matrix) 
mean(as.matrix(up_cam_geodist_matrix), na.rm = TRUE) 
median(as.matrix(up_cam_geodist_matrix), na.rm = TRUE) 
 
# make the matrix into a uper triangle (to make foluping calc less cumbersome and remove duplicates) 
up_cam_geodist_matrix[lower.tri(up_cam_geodist_matrix, diag = TRUE)] <- NA 
up_cam_geodist_matrix 
 
# create a sequence of numbers to use for making bins (these bins were chosen to try to capture variation 
in values while minimizing bin number) 
seq <- c(0,50000, 100000, 200000, 400000, 600000, 1000000, 1500000, 2000000, 2500000, 3000000, 
3500000) 
 
# read in the Jaccard dist matrix created using EDENetworks 
up_cam_dist <- read.table("EDENetwork_outputs/Up CAM/UCam_distance.txt", header = FALSE) # 
jaccard values matrix 
 
up_cam_names <- read.table("EDENetwork_outputs/Up CAM/UCam_distance_names.txt",header = 
FALSE) # node names vector 
colnames(up_cam_names) <- "Node" 
 
# give the rows and columns names based on the node names file 
colnames(up_cam_dist) <- c(up_cam_names$Node) 
rownames(up_cam_dist) <- c(up_cam_names$Node) 
 
# check that the two matrices have an identical arrangement 
a <- colnames(up_cam_geodist_matrix) 
b <- colnames(up_cam_dist) 
 
a == b # They do, yay! 
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#### Calculate the average and mean jaccard weights for the different bins 
 
## 0-50 km ## 
 
# get index positions of all values in geographic distance matrix within 0-50 km 
up_cam_geodist_0_50 = which(up_cam_geodist_matrix <50000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
up_cam_geodist_0_50_jaccard <- 
up_cam_dist[c(up_cam_geodist_0_50[,1]),c(up_cam_geodist_0_50[,2])] 
 
# get the average and median jaccard weight values for the 0-50 km bin 
up_cam_geodist_0_50_avg <- mean(as.matrix(up_cam_geodist_0_50_jaccard), na.rm = TRUE) 
up_cam_geodist_0_50_med <- median(as.matrix(up_cam_geodist_0_50_jaccard), na.rm = TRUE) 
 
## 50-100 km ## 
 
# get index positions of all values in geographic distance matrix within 50-100 km 
up_cam_geodist_50_100 = which(up_cam_geodist_matrix >50000 & up_cam_geodist_matrix < 100000, 
arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
up_cam_geodist_50_100_jaccard <- 
up_cam_dist[c(up_cam_geodist_50_100[,1]),c(up_cam_geodist_50_100[,2])] 
 
 
# get the average and median jaccard weight values for the 50-100 km bin 
up_cam_geodist_50_100_avg <- mean(as.matrix(up_cam_geodist_50_100_jaccard), na.rm = TRUE) 
up_cam_geodist_50_100_med <- median(as.matrix(up_cam_geodist_50_100_jaccard), na.rm = TRUE) 
 
## 100-200 km ## 
 
# get index positions of all values in geographic distance matrix within 100-200 km 
up_cam_geodist_100_200 = which(up_cam_geodist_matrix >100000 & up_cam_geodist_matrix < 
200000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
up_cam_geodist_100_200_jaccard <- 
up_cam_dist[c(up_cam_geodist_100_200[,1]),c(up_cam_geodist_100_200[,2])] 
 
# get the average and median jaccard weight values for the 100-200 km bin 
up_cam_geodist_100_200_avg <- mean(as.matrix(up_cam_geodist_100_200_jaccard), na.rm = TRUE) 
up_cam_geodist_100_200_med <- median(as.matrix(up_cam_geodist_100_200_jaccard), na.rm = 
TRUE) 
 
## 200-400 km ## 
 
# get index positions of all values in geographic distance matrix within 200-400 km 
up_cam_geodist_200_400 = which(up_cam_geodist_matrix >200000 & up_cam_geodist_matrix < 
400000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
up_cam_geodist_200_400_jaccard <- 
up_cam_dist[c(up_cam_geodist_200_400[,1]),c(up_cam_geodist_200_400[,2])] 
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# get the average and median jaccard weight values for the 200-400 km bin 
up_cam_geodist_200_400_avg <- mean(as.matrix(up_cam_geodist_200_400_jaccard), na.rm = TRUE) 
up_cam_geodist_200_400_med <- median(as.matrix(up_cam_geodist_200_400_jaccard), na.rm = 
TRUE) 
 
## 400-600 km ## 
 
# get index positions of all values in geographic distance matrix within 400-600 km 
up_cam_geodist_400_600 = which(up_cam_geodist_matrix >400000 & up_cam_geodist_matrix < 
600000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
up_cam_geodist_400_600_jaccard <- 
up_cam_dist[c(up_cam_geodist_400_600[,1]),c(up_cam_geodist_400_600[,2])] 
 
# get the average and median jaccard weight values for the 400-600 km bin 
up_cam_geodist_400_600_avg <- mean(as.matrix(up_cam_geodist_400_600_jaccard), na.rm = TRUE) 
up_cam_geodist_400_600_med <- median(as.matrix(up_cam_geodist_400_600_jaccard), na.rm = 
TRUE) 
 
## 600-1000 km ## 
 
# get index positions of all values in geographic distance matrix within 600-1000 km 
up_cam_geodist_600_1000 = which(up_cam_geodist_matrix >600000 & up_cam_geodist_matrix < 
1000000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
up_cam_geodist_600_1000_jaccard <- 
up_cam_dist[c(up_cam_geodist_600_1000[,1]),c(up_cam_geodist_600_1000[,2])] 
 
# get the average and median jaccard weight values for the 600-1000 km bin 
up_cam_geodist_600_1000_avg <- mean(as.matrix(up_cam_geodist_600_1000_jaccard), na.rm = TRUE) 
up_cam_geodist_600_1000_med <- median(as.matrix(up_cam_geodist_600_1000_jaccard), na.rm = 
TRUE) 
 
## 1000-1500 km ## 
 
# get index positions of all values in geographic distance matrix within 1000-1500 km 
up_cam_geodist_1000_1500 = which(up_cam_geodist_matrix >1000000 & up_cam_geodist_matrix < 
1500000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
up_cam_geodist_1000_1500_jaccard <- 
up_cam_dist[c(up_cam_geodist_1000_1500[,1]),c(up_cam_geodist_1000_1500[,2])] 
 
# get the average and median jaccard weight values for the 1000-1500 km bin 
up_cam_geodist_1000_1500_avg <- mean(as.matrix(up_cam_geodist_1000_1500_jaccard), na.rm = 
TRUE) 
up_cam_geodist_1000_1500_med <- median(as.matrix(up_cam_geodist_1000_1500_jaccard), na.rm = 
TRUE) 
 
## 1500-2000 km ## 
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# get index positions of all values in geographic distance matrix within 1500-2000 km 
up_cam_geodist_1500_2000 = which(up_cam_geodist_matrix >1500000 & up_cam_geodist_matrix < 
2000000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
up_cam_geodist_1500_2000_jaccard <- 
up_cam_dist[c(up_cam_geodist_1500_2000[,1]),c(up_cam_geodist_1500_2000[,2])] 
 
# get the average and median jaccard weight values for the 1500-2000 km bin 
up_cam_geodist_1500_2000_avg <- mean(as.matrix(up_cam_geodist_1500_2000_jaccard), na.rm = 
TRUE) 
up_cam_geodist_1500_2000_med <- median(as.matrix(up_cam_geodist_1500_2000_jaccard), na.rm = 
TRUE) 
 
## 2000-2500 km ## 
 
# get index positions of all values in geographic distance matrix within 2000-2500 km 
up_cam_geodist_2000_2500 = which(up_cam_geodist_matrix >2000000 & up_cam_geodist_matrix < 
2500000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
up_cam_geodist_2000_2500_jaccard <- 
up_cam_dist[c(up_cam_geodist_2000_2500[,1]),c(up_cam_geodist_2000_2500[,2])] 
 
# get the average and median jaccard weight values for the 2000-2500 km bin 
up_cam_geodist_2000_2500_avg <- mean(as.matrix(up_cam_geodist_2000_2500_jaccard), na.rm = 
TRUE) 
up_cam_geodist_2000_2500_med <- median(as.matrix(up_cam_geodist_2000_2500_jaccard), na.rm = 
TRUE) 
 
## 2500-3000 km ## 
 
# get index positions of all values in geographic distance matrix within 2500-2500 km 
up_cam_geodist_2500_3000 = which(up_cam_geodist_matrix >2500000 & up_cam_geodist_matrix < 
3000000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
up_cam_geodist_2500_3000_jaccard <- 
up_cam_dist[c(up_cam_geodist_2500_3000[,1]),c(up_cam_geodist_2500_3000[,2])] 
 
# get the average and median jaccard weight values for the 2500-2500 km bin 
up_cam_geodist_2500_3000_avg <- mean(as.matrix(up_cam_geodist_2500_3000_jaccard), na.rm = 
TRUE) 
up_cam_geodist_2500_3000_med <- median(as.matrix(up_cam_geodist_2500_3000_jaccard), na.rm = 
TRUE) 
 
## 3000-3500 km ## 
 
# get index positions of all values in geographic distance matrix within 3000-3500 km 
up_cam_geodist_3000_3500 = which(up_cam_geodist_matrix >3000000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
up_cam_geodist_3000_3500_jaccard <- 
up_cam_dist[c(up_cam_geodist_3000_3500[,1]),c(up_cam_geodist_3000_3500[,2])] 
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# get the average and median jaccard weight values for the 3000-3500 km bin 
up_cam_geodist_3000_3500_avg <- mean(as.matrix(up_cam_geodist_3000_3500_jaccard), na.rm = 
TRUE) 
up_cam_geodist_3000_3500_med <- median(as.matrix(up_cam_geodist_3000_3500_jaccard), na.rm = 
TRUE) 
 
up_cam_freq_geodist_bins <- c(nrow(up_cam_geodist_0_50), 
                               nrow(up_cam_geodist_50_100), 
                               nrow(up_cam_geodist_100_200), 
                               nrow(up_cam_geodist_200_400), 
                               nrow(up_cam_geodist_400_600), 
                               nrow(up_cam_geodist_600_1000), 
                               nrow(up_cam_geodist_1000_1500), 
                               nrow(up_cam_geodist_1500_2000), 
                               nrow(up_cam_geodist_2000_2500), 
                               nrow(up_cam_geodist_2500_3000), 
                               nrow(up_cam_geodist_3000_3500)) 
 
up_cam_geodist_avg_bins <- c(up_cam_geodist_0_50_avg, 
                              up_cam_geodist_50_100_avg, 
                              up_cam_geodist_100_200_avg, 
                              up_cam_geodist_200_400_avg, 
                              up_cam_geodist_400_600_avg, 
                              up_cam_geodist_600_1000_avg, 
                              up_cam_geodist_1000_1500_avg, 
                              up_cam_geodist_1500_2000_avg, 
                              up_cam_geodist_2000_2500_avg, 
                              up_cam_geodist_2500_3000_avg, 
                              up_cam_geodist_3000_3500_avg) 
 
up_cam_geodist_med_bins <- c(up_cam_geodist_0_50_med, 
                              up_cam_geodist_50_100_med, 
                              up_cam_geodist_100_200_med, 
                              up_cam_geodist_200_400_med, 
                              up_cam_geodist_400_600_med, 
                              up_cam_geodist_600_1000_med, 
                              up_cam_geodist_1000_1500_med, 
                              up_cam_geodist_1500_2000_med, 
                              up_cam_geodist_2000_2500_med, 
                              up_cam_geodist_2500_3000_med, 
                              up_cam_geodist_3000_3500_med) 
 
 
up_cam_geodist_bins_table <- 
rbind(up_cam_geodist_avg_bins,up_cam_geodist_med_bins,up_cam_freq_geodist_bins) 
 
colnames(up_cam_geodist_bins_table) <- c("0-50 km","50-100 km","100-200 km","200-400 km","400-
600 km","600-1000 km", 
                                          "1000-1500 km","1500-2000 km","2000-2500 km","2500-3000 km","3000-
3500 km") 
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rownames(up_cam_geodist_bins_table) <- c("Mean Jaccard Weight","Median Jaccard Weight","Numb. 
Sites in Bin") 
 
up_cam_geodist_bins_table 
 
write.csv(up_cam_geodist_bins_table, file = 'WeightAnalysis/up_cam_geodist_bins_table.csv') 
 
### Plot the lines ##### 
 
plot(low_cam_geodist_bins_table[1,],col="blue",pch=16,axes=FALSE, ann=FALSE) 
points(mid_cam_geodist_bins_table[1,],col="green",pch=17) 
points(up_cam_geodist_bins_table[1,],col="gold",pch=18) 
axis(1, at=1:11, lab=c("0-50 ","50-100","100-200","200-400","400-600","600-1000", 
                       "1000-1500","1500-2000","2000-2500","2500-3000","3000-3500")) 
axis(2, at=c(0.7,0.75,0.80,0.85,0.90,0.95,1)) 
box() 
title(xlab="Distance Bins (km)") 
title(ylab="Bray–Curtis Dissimilarity Index Weight ") 
title(main="Average Weight by Geographicc Distance") 
 
##### Lower Maastrichtian ##### 
 
# read in the lat/long file for the substage 
maa_low_loc <- read.csv('R_Config_for_EN_OUTPUT/low maa/maa_low_gen_great3_avgloc.csv') 
 
 
# get just the lat long locations from the table 
maa_low_simple_loc <- maa_low_loc[,c(3,2)] 
 
# NOTE: Remember that these are average locations based on the fossil occ found in each grid cell, and 
therefore already approsimations 
# which may be biased by not converting the fossil locations to paleocoordinates originally... 
 
# Get the map information for this substage (age chosen is very approximate for this substage because 
limited options) 
maa_low_maps <- reconstruct("plates", age=70) # get paleo plate info 
maa_low_coast <- reconstruct("coastlines", age=70) # get coastline info 
 
# Reconstruct paleocoord using age of rough age of substage (approximate) 
maa_low_ploc <- reconstruct(maa_low_simple_loc, age=c(70)) 
 
# get min and max paleolong 
maa_low_minlong <- min(maa_low_ploc[,1]) - 10 
maa_low_maxlong <- max(maa_low_ploc[,1]) + 10 
 
# get min and max paleolat 
maa_low_minlat <- min(maa_low_ploc[,2]) - 15 
maa_low_maxlat <- max(maa_low_ploc[,2]) + 15 
 
# plot the maps and points in paleo positions to get an idea about their layout 
par(mfrow = c(1,1)) 
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plot(maa_low_maps, col = 'grey', border = NA, xlim = c(maa_low_minlong,maa_low_maxlong), ylim = 
c(maa_low_minlat,maa_low_maxlat)) 
lines(maa_low_coast, col = "black", xlim = c(maa_low_minlong,maa_low_maxlong), ylim = 
c(maa_low_maxlat,maa_low_minlat)) 
points(maa_low_ploc, pch=3, col="red") 
 
# get number of unique locations to use for matrix dimensions 
low_maa_count <- nrow(maa_low_loc) 
 
# create empty dataframe to put the geographic distances into (use the names of the diffrent grid cells as 
row and column names) 
low_maa_geodist_matrix <- data.frame(matrix(ncol = low_maa_count, nrow = low_maa_count)) 
colnames(low_maa_geodist_matrix) <- maa_low_loc$node_label # give the matrix column names based 
on original grid names 
rownames(low_maa_geodist_matrix) <- maa_low_loc$node_label # give the matrix row names based on 
original grid names 
 
# run for loop to get distances using geodesic distance calc 
for (i in 1:nrow(maa_low_ploc)){ 
  low_maa_geodist_matrix[i,] <- distGeo(maa_low_simple_loc[i,],maa_low_simple_loc, a=6378137, 
f=1/298.257223563) 
} 
 
# results are in meters of distance!!! 
 
# check the dimentions and summary info for the matrix 
ncol(low_maa_geodist_matrix) 
head(low_maa_geodist_matrix) 
 
max(low_maa_geodist_matrix) 
min(low_maa_geodist_matrix) 
mean(as.matrix(low_maa_geodist_matrix), na.rm = TRUE) 
median(as.matrix(low_maa_geodist_matrix), na.rm = TRUE) 
 
# make the matrix into a lower triangle (to make following calc less cumbersome and remove dlowlicates) 
low_maa_geodist_matrix[lower.tri(low_maa_geodist_matrix, diag = TRUE)] <- NA 
low_maa_geodist_matrix 
 
# create a sequence of numbers to use for making bins (these bins were chosen to try to capture variation 
in values while minimizing bin number) 
seq <- c(0,50000, 100000, 200000, 400000, 600000, 1000000, 1500000, 2000000, 2500000, 3000000, 
3500000) 
 
# read in the Jaccard dist matrix created using EDENetworks 
low_maa_dist <- read.table("EDENetwork_outputs/Low MAA/Low_Maa_distance.txt", header = 
FALSE) # jaccard values matrix 
 
low_maa_names <- read.table("EDENetwork_outputs/Low MAA/Low_Maa_distance_names.txt",header 
= FALSE) # node names vector 
colnames(low_maa_names) <- "Node" 
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# give the rows and columns names based on the node names file 
colnames(low_maa_dist) <- c(low_maa_names$Node) 
rownames(low_maa_dist) <- c(low_maa_names$Node) 
 
# check that the two matrices have an identical arrangement 
a <- colnames(low_maa_geodist_matrix) 
b <- colnames(low_maa_dist) 
 
a == b # They do, yay! 
 
#### Calculate the average and mean jaccard weights for the different bins 
 
## 0-50 km ## 
 
# get index positions of all values in geographic distance matrix within 0-50 km 
low_maa_geodist_0_50 = which(low_maa_geodist_matrix <50000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
low_maa_geodist_0_50_jaccard <- 
low_maa_dist[c(low_maa_geodist_0_50[,1]),c(low_maa_geodist_0_50[,2])] 
 
# get the average and median jaccard weight values for the 0-50 km bin 
low_maa_geodist_0_50_avg <- mean(as.matrix(low_maa_geodist_0_50_jaccard), na.rm = TRUE) 
low_maa_geodist_0_50_med <- median(as.matrix(low_maa_geodist_0_50_jaccard), na.rm = TRUE) 
 
## 50-100 km ## 
 
# get index positions of all values in geographic distance matrix within 50-100 km 
low_maa_geodist_50_100 = which(low_maa_geodist_matrix >50000 & low_maa_geodist_matrix < 
100000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
low_maa_geodist_50_100_jaccard <- 
low_maa_dist[c(low_maa_geodist_50_100[,1]),c(low_maa_geodist_50_100[,2])] 
 
# get the average and median jaccard weight values for the 50-100 km bin 
low_maa_geodist_50_100_avg <- mean(as.matrix(low_maa_geodist_50_100_jaccard), na.rm = TRUE) 
low_maa_geodist_50_100_med <- median(as.matrix(low_maa_geodist_50_100_jaccard), na.rm = 
TRUE) 
 
## 100-200 km ## 
 
# get index positions of all values in geographic distance matrix within 100-200 km 
low_maa_geodist_100_200 = which(low_maa_geodist_matrix >100000 & low_maa_geodist_matrix < 
200000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
low_maa_geodist_100_200_jaccard <- 
low_maa_dist[c(low_maa_geodist_100_200[,1]),c(low_maa_geodist_100_200[,2])] 
 
 
# get the average and median jaccard weight values for the 100-200 km bin 
low_maa_geodist_100_200_avg <- mean(as.matrix(low_maa_geodist_100_200_jaccard), na.rm = TRUE) 
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low_maa_geodist_100_200_med <- median(as.matrix(low_maa_geodist_100_200_jaccard), na.rm = 
TRUE) 
 
## 200-400 km ## 
 
# get index positions of all values in geographic distance matrix within 200-400 km 
low_maa_geodist_200_400 = which(low_maa_geodist_matrix >200000 & low_maa_geodist_matrix < 
400000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
low_maa_geodist_200_400_jaccard <- 
low_maa_dist[c(low_maa_geodist_200_400[,1]),c(low_maa_geodist_200_400[,2])] 
 
# get the average and median jaccard weight values for the 200-400 km bin 
low_maa_geodist_200_400_avg <- mean(as.matrix(low_maa_geodist_200_400_jaccard), na.rm = TRUE) 
low_maa_geodist_200_400_med <- median(as.matrix(low_maa_geodist_200_400_jaccard), na.rm = 
TRUE) 
 
 
 
 
## 400-600 km ## 
 
# get index positions of all values in geographic distance matrix within 400-600 km 
low_maa_geodist_400_600 = which(low_maa_geodist_matrix >400000 & low_maa_geodist_matrix < 
600000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
low_maa_geodist_400_600_jaccard <- 
low_maa_dist[c(low_maa_geodist_400_600[,1]),c(low_maa_geodist_400_600[,2])] 
 
# get the average and median jaccard weight values for the 400-600 km bin 
low_maa_geodist_400_600_avg <- mean(as.matrix(low_maa_geodist_400_600_jaccard), na.rm = TRUE) 
low_maa_geodist_400_600_med <- median(as.matrix(low_maa_geodist_400_600_jaccard), na.rm = 
TRUE) 
 
## 600-1000 km ## 
 
# get index positions of all values in geographic distance matrix within 600-1000 km 
low_maa_geodist_600_1000 = which(low_maa_geodist_matrix >600000 & low_maa_geodist_matrix < 
1000000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
low_maa_geodist_600_1000_jaccard <- 
low_maa_dist[c(low_maa_geodist_600_1000[,1]),c(low_maa_geodist_600_1000[,2])] 
 
# get the average and median jaccard weight values for the 600-1000 km bin 
low_maa_geodist_600_1000_avg <- mean(as.matrix(low_maa_geodist_600_1000_jaccard), na.rm = 
TRUE) 
low_maa_geodist_600_1000_med <- median(as.matrix(low_maa_geodist_600_1000_jaccard), na.rm = 
TRUE) 
 
## 1000-1500 km ## 
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# get index positions of all values in geographic distance matrix within 1000-1500 km 
low_maa_geodist_1000_1500 = which(low_maa_geodist_matrix >1000000 & low_maa_geodist_matrix 
< 1500000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
low_maa_geodist_1000_1500_jaccard <- 
low_maa_dist[c(low_maa_geodist_1000_1500[,1]),c(low_maa_geodist_1000_1500[,2])] 
 
# get the average and median jaccard weight values for the 1000-1500 km bin 
low_maa_geodist_1000_1500_avg <- mean(as.matrix(low_maa_geodist_1000_1500_jaccard), na.rm = 
TRUE) 
low_maa_geodist_1000_1500_med <- median(as.matrix(low_maa_geodist_1000_1500_jaccard), na.rm = 
TRUE) 
 
## 1500-2000 km ## 
 
# get index positions of all values in geographic distance matrix within 1500-2000 km 
low_maa_geodist_1500_2000 = which(low_maa_geodist_matrix >1500000 & low_maa_geodist_matrix 
< 2000000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
low_maa_geodist_1500_2000_jaccard <- 
low_maa_dist[c(low_maa_geodist_1500_2000[,1]),c(low_maa_geodist_1500_2000[,2])] 
 
 
# get the average and median jaccard weight values for the 1500-2000 km bin 
low_maa_geodist_1500_2000_avg <- mean(as.matrix(low_maa_geodist_1500_2000_jaccard), na.rm = 
TRUE) 
low_maa_geodist_1500_2000_med <- median(as.matrix(low_maa_geodist_1500_2000_jaccard), na.rm = 
TRUE) 
 
## 2000-2500 km ## 
 
# get index positions of all values in geographic distance matrix within 2000-2500 km 
low_maa_geodist_2000_2500 = which(low_maa_geodist_matrix >2000000 & low_maa_geodist_matrix 
< 2500000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
low_maa_geodist_2000_2500_jaccard <- 
low_maa_dist[c(low_maa_geodist_2000_2500[,1]),c(low_maa_geodist_2000_2500[,2])] 
 
# get the average and median jaccard weight values for the 2000-2500 km bin 
low_maa_geodist_2000_2500_avg <- mean(as.matrix(low_maa_geodist_2000_2500_jaccard), na.rm = 
TRUE) 
low_maa_geodist_2000_2500_med <- median(as.matrix(low_maa_geodist_2000_2500_jaccard), na.rm = 
TRUE) 
 
## 2500-3000 km ## 
 
# get index positions of all values in geographic distance matrix within 2500-2500 km 
low_maa_geodist_2500_3000 = which(low_maa_geodist_matrix >2500000 & low_maa_geodist_matrix 
< 3000000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
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low_maa_geodist_2500_3000_jaccard <- 
low_maa_dist[c(low_maa_geodist_2500_3000[,1]),c(low_maa_geodist_2500_3000[,2])] 
 
 
# get the average and median jaccard weight values for the 2500-2500 km bin 
low_maa_geodist_2500_3000_avg <- mean(as.matrix(low_maa_geodist_2500_3000_jaccard), na.rm = 
TRUE) 
low_maa_geodist_2500_3000_med <- median(as.matrix(low_maa_geodist_2500_3000_jaccard), na.rm = 
TRUE) 
 
## 3000-3500 km ## 
 
# get index positions of all values in geographic distance matrix within 3000-3500 km 
low_maa_geodist_3000_3500 = which(low_maa_geodist_matrix >3000000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
low_maa_geodist_3000_3500_jaccard <- 
low_maa_dist[c(low_maa_geodist_3000_3500[,1]),c(low_maa_geodist_3000_3500[,2])] 
 
# get the average and median jaccard weight values for the 3000-3500 km bin 
low_maa_geodist_3000_3500_avg <- mean(as.matrix(low_maa_geodist_3000_3500_jaccard), na.rm = 
TRUE) 
low_maa_geodist_3000_3500_med <- median(as.matrix(low_maa_geodist_3000_3500_jaccard), na.rm = 
TRUE) 
 
low_maa_freq_geodist_bins <- c(nrow(low_maa_geodist_0_50), 
                              nrow(low_maa_geodist_50_100), 
                              nrow(low_maa_geodist_100_200), 
                              nrow(low_maa_geodist_200_400), 
                              nrow(low_maa_geodist_400_600), 
                              nrow(low_maa_geodist_600_1000), 
                              nrow(low_maa_geodist_1000_1500), 
                              nrow(low_maa_geodist_1500_2000), 
                              nrow(low_maa_geodist_2000_2500), 
                              nrow(low_maa_geodist_2500_3000), 
                              nrow(low_maa_geodist_3000_3500)) 
 
low_maa_geodist_avg_bins <- c(low_maa_geodist_0_50_avg, 
                             low_maa_geodist_50_100_avg, 
                             low_maa_geodist_100_200_avg, 
                             low_maa_geodist_200_400_avg, 
                             low_maa_geodist_400_600_avg, 
                             low_maa_geodist_600_1000_avg, 
                             low_maa_geodist_1000_1500_avg, 
                             low_maa_geodist_1500_2000_avg, 
                             low_maa_geodist_2000_2500_avg, 
                             low_maa_geodist_2500_3000_avg, 
                             low_maa_geodist_3000_3500_avg) 
 
low_maa_geodist_med_bins <- c(low_maa_geodist_0_50_med, 
                             low_maa_geodist_50_100_med, 
                             low_maa_geodist_100_200_med, 
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                             low_maa_geodist_200_400_med, 
                             low_maa_geodist_400_600_med, 
                             low_maa_geodist_600_1000_med, 
                             low_maa_geodist_1000_1500_med, 
                             low_maa_geodist_1500_2000_med, 
                             low_maa_geodist_2000_2500_med, 
                             low_maa_geodist_2500_3000_med, 
                             low_maa_geodist_3000_3500_med) 
 
low_maa_geodist_bins_table <- 
rbind(low_maa_geodist_avg_bins,low_maa_geodist_med_bins,low_maa_freq_geodist_bins) 
 
colnames(low_maa_geodist_bins_table) <- c("0-50 km","50-100 km","100-200 km","200-400 km","400-
600 km","600-1000 km", 
                                         "1000-1500 km","1500-2000 km","2000-2500 km","2500-3000 km","3000-
3500 km") 
rownames(low_maa_geodist_bins_table) <- c("Mean Jaccard Weight","Median Jaccard Weight","Numb. 
Sites in Bin") 
 
low_maa_geodist_bins_table 
 
write.csv(low_maa_geodist_bins_table, file = 'WeightAnalysis/low_maa_geodist_bins_table.csv') 
 
### Plot the lines ##### 
 
plot(low_cam_geodist_bins_table[1,],col="blue",pch=16,axes=FALSE, ann=FALSE) 
points(mid_cam_geodist_bins_table[1,],col="green",pch=17) 
points(up_cam_geodist_bins_table[1,],col="gold",pch=18) 
points(low_maa_geodist_bins_table[1,],col="orange",pch=19) 
axis(1, at=1:11, lab=c("0-50 ","50-100","100-200","200-400","400-600","600-1000", 
                       "1000-1500","1500-2000","2000-2500","2500-3000","3000-3500")) 
axis(2, at=c(0.7,0.75,0.80,0.85,0.90,0.95,1)) 
box() 
title(xlab="Distance Bins (km)") 
title(ylab="Bray–Curtis Dissimilarity Index Weight ") 
title(main="Average Weight by Geographicc Distance") 
 
##### Upper Maastrichtian ##### 
 
# read in the lat/long file for the substage 
maa_up_loc <- read.csv('R_Config_for_EN_OUTPUT/up maa/maa_up_gen_great3_avgloc.csv') 
 
# get just the lat long locations from the table 
maa_up_simple_loc <- maa_up_loc[,c(3,2)] 
 
# NOTE: Remember that these are average locations based on the fossil occ found in each grid cell, and 
therefore already approsimations 
# which may be biased by not converting the fossil locations to paleocoordinates originally... 
 
# Get the map information for this substage (age chosen is very approximate for this substage because 
limited options) 
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maa_up_maps <- reconstruct("plates", age=70) # get paleo plate info 
maa_up_coast <- reconstruct("coastlines", age=70) # get coastline info 
 
# Reconstruct paleocoord using age of rough age of substage (approximate) 
maa_up_ploc <- reconstruct(maa_up_simple_loc, age=c(70)) 
 
# get min and max paleolong 
maa_up_minlong <- min(maa_up_ploc[,1]) - 10 
maa_up_maxlong <- max(maa_up_ploc[,1]) + 10 
 
# get min and max paleolat 
maa_up_minlat <- min(maa_up_ploc[,2]) - 15 
maa_up_maxlat <- max(maa_up_ploc[,2]) + 15 
 
# plot the maps and points in paleo positions to get an idea about their layout 
par(mfrow = c(1,1)) 
plot(maa_up_maps, col = 'grey', border = NA, xlim = c(maa_up_minlong,maa_up_maxlong), ylim = 
c(maa_up_minlat,maa_up_maxlat)) 
lines(maa_up_coast, col = "black", xlim = c(maa_up_minlong,maa_up_maxlong), ylim = 
c(maa_up_maxlat,maa_up_minlat)) 
points(maa_up_ploc, pch=3, col="red") 
 
# get number of unique locations to use for matrix dimensions 
up_maa_count <- nrow(maa_up_loc) 
 
# create empty dataframe to put the geographic distances into (use the names of the diffrent grid cells as 
row and column names) 
up_maa_geodist_matrix <- data.frame(matrix(ncol = up_maa_count, nrow = up_maa_count)) 
colnames(up_maa_geodist_matrix) <- maa_up_loc$node_label # give the matrix column names based on 
original grid names 
rownames(up_maa_geodist_matrix) <- maa_up_loc$node_label # give the matrix row names based on 
original grid names 
 
# run for loop to get distances using geodesic distance calc 
for (i in 1:nrow(maa_up_ploc)){ 
  up_maa_geodist_matrix[i,] <- distGeo(maa_up_simple_loc[i,],maa_up_simple_loc, a=6378137, 
f=1/298.257223563) 
} 
 
# results are in meters of distance!!! 
 
# check the dimentions and summary info for the matrix 
ncol(up_maa_geodist_matrix) 
head(up_maa_geodist_matrix) 
 
max(up_maa_geodist_matrix) 
min(up_maa_geodist_matrix) 
mean(as.matrix(up_maa_geodist_matrix), na.rm = TRUE) 
median(as.matrix(up_maa_geodist_matrix), na.rm = TRUE) 
 
# make the matrix into a uper triangle (to make foluping calc less cumbersome and remove duplicates) 
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up_maa_geodist_matrix[lower.tri(up_maa_geodist_matrix, diag = TRUE)] <- NA 
up_maa_geodist_matrix 
 
# create a sequence of numbers to use for making bins (these bins were chosen to try to capture variation 
in values while minimizing bin number) 
seq <- c(0,50000, 100000, 200000, 400000, 600000, 1000000, 1500000, 2000000, 2500000, 3000000, 
3500000) 
 
# read in the Jaccard dist matrix created using EDENetworks 
up_maa_dist <- read.table("EDENetwork_outputs/Up MAA/UMaa_distance.txt", header = FALSE) # 
jaccard values matrix 
 
up_maa_names <- read.table("EDENetwork_outputs/Up MAA/UMaa_distance_names.txt",header = 
FALSE) # node names vector 
colnames(up_maa_names) <- "Node" 
 
# give the rows and columns names based on the node names file 
colnames(up_maa_dist) <- c(up_maa_names$Node) 
rownames(up_maa_dist) <- c(up_maa_names$Node) 
 
# check that the two matrices have an identical arrangement 
a <- colnames(up_maa_geodist_matrix) 
b <- colnames(up_maa_dist) 
 
a == b # They do, yay! 
 
#### Calculate the average and mean jaccard weights for the different bins 
 
## 0-50 km ## 
 
# get index positions of all values in geographic distance matrix within 0-50 km 
up_maa_geodist_0_50 = which(up_maa_geodist_matrix <50000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
up_maa_geodist_0_50_jaccard <- 
up_maa_dist[c(up_maa_geodist_0_50[,1]),c(up_maa_geodist_0_50[,2])] 
 
# get the average and median jaccard weight values for the 0-50 km bin 
up_maa_geodist_0_50_avg <- mean(as.matrix(up_maa_geodist_0_50_jaccard), na.rm = TRUE) 
up_maa_geodist_0_50_med <- median(as.matrix(up_maa_geodist_0_50_jaccard), na.rm = TRUE) 
 
## 50-100 km ## 
 
# get index positions of all values in geographic distance matrix within 50-100 km 
up_maa_geodist_50_100 = which(up_maa_geodist_matrix >50000 & up_maa_geodist_matrix < 100000, 
arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
up_maa_geodist_50_100_jaccard <- 
up_maa_dist[c(up_maa_geodist_50_100[,1]),c(up_maa_geodist_50_100[,2])] 
 
 
# get the average and median jaccard weight values for the 50-100 km bin 
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up_maa_geodist_50_100_avg <- mean(as.matrix(up_maa_geodist_50_100_jaccard), na.rm = TRUE) 
up_maa_geodist_50_100_med <- median(as.matrix(up_maa_geodist_50_100_jaccard), na.rm = TRUE) 
 
## 100-200 km ## 
 
# get index positions of all values in geographic distance matrix within 100-200 km 
up_maa_geodist_100_200 = which(up_maa_geodist_matrix >100000 & up_maa_geodist_matrix < 
200000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
up_maa_geodist_100_200_jaccard <- 
up_maa_dist[c(up_maa_geodist_100_200[,1]),c(up_maa_geodist_100_200[,2])] 
 
# get the average and median jaccard weight values for the 100-200 km bin 
up_maa_geodist_100_200_avg <- mean(as.matrix(up_maa_geodist_100_200_jaccard), na.rm = TRUE) 
up_maa_geodist_100_200_med <- median(as.matrix(up_maa_geodist_100_200_jaccard), na.rm = 
TRUE) 
 
## 200-400 km ## 
 
# get index positions of all values in geographic distance matrix within 200-400 km 
up_maa_geodist_200_400 = which(up_maa_geodist_matrix >200000 & up_maa_geodist_matrix < 
400000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
up_maa_geodist_200_400_jaccard <- 
up_maa_dist[c(up_maa_geodist_200_400[,1]),c(up_maa_geodist_200_400[,2])] 
 
# get the average and median jaccard weight values for the 200-400 km bin 
up_maa_geodist_200_400_avg <- mean(as.matrix(up_maa_geodist_200_400_jaccard), na.rm = TRUE) 
up_maa_geodist_200_400_med <- median(as.matrix(up_maa_geodist_200_400_jaccard), na.rm = 
TRUE) 
 
## 400-600 km ## 
 
# get index positions of all values in geographic distance matrix within 400-600 km 
up_maa_geodist_400_600 = which(up_maa_geodist_matrix >400000 & up_maa_geodist_matrix < 
600000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
up_maa_geodist_400_600_jaccard <- 
up_maa_dist[c(up_maa_geodist_400_600[,1]),c(up_maa_geodist_400_600[,2])] 
 
# get the average and median jaccard weight values for the 400-600 km bin 
up_maa_geodist_400_600_avg <- mean(as.matrix(up_maa_geodist_400_600_jaccard), na.rm = TRUE) 
up_maa_geodist_400_600_med <- median(as.matrix(up_maa_geodist_400_600_jaccard), na.rm = 
TRUE) 
 
## 600-1000 km ## 
 
# get index positions of all values in geographic distance matrix within 600-1000 km 
up_maa_geodist_600_1000 = which(up_maa_geodist_matrix >600000 & up_maa_geodist_matrix < 
1000000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 



SI Purcell et al., 20XX 313 
 

313 
 

up_maa_geodist_600_1000_jaccard <- 
up_maa_dist[c(up_maa_geodist_600_1000[,1]),c(up_maa_geodist_600_1000[,2])] 
 
# get the average and median jaccard weight values for the 600-1000 km bin 
up_maa_geodist_600_1000_avg <- mean(as.matrix(up_maa_geodist_600_1000_jaccard), na.rm = TRUE) 
up_maa_geodist_600_1000_med <- median(as.matrix(up_maa_geodist_600_1000_jaccard), na.rm = 
TRUE) 
 
## 1000-1500 km ## 
 
# get index positions of all values in geographic distance matrix within 1000-1500 km 
up_maa_geodist_1000_1500 = which(up_maa_geodist_matrix >1000000 & up_maa_geodist_matrix < 
1500000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
up_maa_geodist_1000_1500_jaccard <- 
up_maa_dist[c(up_maa_geodist_1000_1500[,1]),c(up_maa_geodist_1000_1500[,2])] 
 
 
# get the average and median jaccard weight values for the 1000-1500 km bin 
up_maa_geodist_1000_1500_avg <- mean(as.matrix(up_maa_geodist_1000_1500_jaccard), na.rm = 
TRUE) 
up_maa_geodist_1000_1500_med <- median(as.matrix(up_maa_geodist_1000_1500_jaccard), na.rm = 
TRUE) 
 
## 1500-2000 km ## 
 
# get index positions of all values in geographic distance matrix within 1500-2000 km 
up_maa_geodist_1500_2000 = which(up_maa_geodist_matrix >1500000 & up_maa_geodist_matrix < 
2000000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
up_maa_geodist_1500_2000_jaccard <- 
up_maa_dist[c(up_maa_geodist_1500_2000[,1]),c(up_maa_geodist_1500_2000[,2])] 
 
 
# get the average and median jaccard weight values for the 1500-2000 km bin 
up_maa_geodist_1500_2000_avg <- mean(as.matrix(up_maa_geodist_1500_2000_jaccard), na.rm = 
TRUE) 
up_maa_geodist_1500_2000_med <- median(as.matrix(up_maa_geodist_1500_2000_jaccard), na.rm = 
TRUE) 
 
## 2000-2500 km ## 
 
# get index positions of all values in geographic distance matrix within 2000-2500 km 
up_maa_geodist_2000_2500 = which(up_maa_geodist_matrix >2000000 & up_maa_geodist_matrix < 
2500000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
up_maa_geodist_2000_2500_jaccard <- 
up_maa_dist[c(up_maa_geodist_2000_2500[,1]),c(up_maa_geodist_2000_2500[,2])] 
 
# get the average and median jaccard weight values for the 2000-2500 km bin 
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up_maa_geodist_2000_2500_avg <- mean(as.matrix(up_maa_geodist_2000_2500_jaccard), na.rm = 
TRUE) 
up_maa_geodist_2000_2500_med <- median(as.matrix(up_maa_geodist_2000_2500_jaccard), na.rm = 
TRUE) 
 
## 2500-3000 km ## 
 
# get index positions of all values in geographic distance matrix within 2500-2500 km 
up_maa_geodist_2500_3000 = which(up_maa_geodist_matrix >2500000 & up_maa_geodist_matrix < 
3000000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
up_maa_geodist_2500_3000_jaccard <- 
up_maa_dist[c(up_maa_geodist_2500_3000[,1]),c(up_maa_geodist_2500_3000[,2])] 
 
 
# get the average and median jaccard weight values for the 2500-2500 km bin 
up_maa_geodist_2500_3000_avg <- mean(as.matrix(up_maa_geodist_2500_3000_jaccard), na.rm = 
TRUE) 
up_maa_geodist_2500_3000_med <- median(as.matrix(up_maa_geodist_2500_3000_jaccard), na.rm = 
TRUE) 
 
## 3000-3500 km ## 
 
# get index positions of all values in geographic distance matrix within 3000-3500 km 
up_maa_geodist_3000_3500 = which(up_maa_geodist_matrix >3000000, arr.ind = TRUE)  
# extract corresponding values from the jaccard distance matrix 
up_maa_geodist_3000_3500_jaccard <- 
up_maa_dist[c(up_maa_geodist_3000_3500[,1]),c(up_maa_geodist_3000_3500[,2])] 
 
# get the average and median jaccard weight values for the 3000-3500 km bin 
up_maa_geodist_3000_3500_avg <- mean(as.matrix(up_maa_geodist_3000_3500_jaccard), na.rm = 
TRUE) 
up_maa_geodist_3000_3500_med <- median(as.matrix(up_maa_geodist_3000_3500_jaccard), na.rm = 
TRUE) 
 
up_maa_freq_geodist_bins <- c(nrow(up_maa_geodist_0_50), 
                               nrow(up_maa_geodist_50_100), 
                               nrow(up_maa_geodist_100_200), 
                               nrow(up_maa_geodist_200_400), 
                               nrow(up_maa_geodist_400_600), 
                               nrow(up_maa_geodist_600_1000), 
                               nrow(up_maa_geodist_1000_1500), 
                               nrow(up_maa_geodist_1500_2000), 
                               nrow(up_maa_geodist_2000_2500), 
                               nrow(up_maa_geodist_2500_3000), 
                               nrow(up_maa_geodist_3000_3500)) 
 
up_maa_geodist_avg_bins <- c(up_maa_geodist_0_50_avg, 
                              up_maa_geodist_50_100_avg, 
                              up_maa_geodist_100_200_avg, 
                              up_maa_geodist_200_400_avg, 
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                              up_maa_geodist_400_600_avg, 
                              up_maa_geodist_600_1000_avg, 
                              up_maa_geodist_1000_1500_avg, 
                              up_maa_geodist_1500_2000_avg, 
                              up_maa_geodist_2000_2500_avg, 
                              up_maa_geodist_2500_3000_avg, 
                              up_maa_geodist_3000_3500_avg) 
 
up_maa_geodist_med_bins <- c(up_maa_geodist_0_50_med, 
                              up_maa_geodist_50_100_med, 
                              up_maa_geodist_100_200_med, 
                              up_maa_geodist_200_400_med, 
                              up_maa_geodist_400_600_med, 
                              up_maa_geodist_600_1000_med, 
                              up_maa_geodist_1000_1500_med, 
                              up_maa_geodist_1500_2000_med, 
                              up_maa_geodist_2000_2500_med, 
                              up_maa_geodist_2500_3000_med, 
                              up_maa_geodist_3000_3500_med) 
 
up_maa_geodist_bins_table <- 
rbind(up_maa_geodist_avg_bins,up_maa_geodist_med_bins,up_maa_freq_geodist_bins) 
 
colnames(up_maa_geodist_bins_table) <- c("0-50 km","50-100 km","100-200 km","200-400 km","400-
600 km","600-1000 km", 
                                          "1000-1500 km","1500-2000 km","2000-2500 km","2500-3000 km","3000-
3500 km") 
rownames(up_maa_geodist_bins_table) <- c("Mean Jaccard Weight","Median Jaccard Weight","Numb. 
Sites in Bin") 
 
up_maa_geodist_bins_table 
 
 
write.csv(up_maa_geodist_bins_table, file = 'WeightAnalysis/up_maa_geodist_bins_table.csv') 
 
low_cam_geodist_bins_table 
mid_cam_geodist_bins_table 
up_cam_geodist_bins_table 
low_maa_geodist_bins_table 
 
 
### Plot the lines ##### 
 
setwd("C:/Users/ceara/Documents/Province Project/Proposal tables and figures") 
 
pdf(file = "Geographic_Dist_Bins_average_weights.pdf") 
 
# average values plot 
 
plot(low_cam_geodist_bins_table[1,],col="blue",type="o",pch=16,axes=FALSE, 
ann=FALSE,ylim=c(0.65,0.99)) 
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points(mid_cam_geodist_bins_table[1,],col="green",pch=17,type="o") 
points(up_cam_geodist_bins_table[1,],col="gold",pch=18,type="o") 
points(low_maa_geodist_bins_table[1,],col="orange",pch=19,type="o") 
points(up_maa_geodist_bins_table[1,],col="maroon1",pch=15,type="o") 
axis(1, at=1:11, lab=c("0-50 ","50-100","100-200","200-400","400-600","600-1000", 
                       "1000-1500","1500-2000","2000-2500","2500-3000","3000-3500")) 
axis(2, at=c(0.65,0.7,0.75,0.80,0.85,0.90,0.95,0.99)) 
box() 
title(xlab="Distance Bins (km)") 
title(ylab="Jaccard Distance Weight") 
title(main="Average Weight by Geographic Distance") 
legend(x = 8.75, y = 0.75,  legend = c("Low Camp.","Mid Camp.", "Up Camp.", "Low Maastr.","Up 
Maastr."), col = c("blue","darkgreen","gold","orange","maroon1"), 
       pch = c(16,17,18,19,15)) 
 
# median values plot 
 
plot(low_cam_geodist_bins_table[2,],col="blue",type="o",pch=16,axes=FALSE, 
ann=FALSE,ylim=c(0.65,0.99)) 
points(mid_cam_geodist_bins_table[2,],col="green",pch=17,type="o") 
points(up_cam_geodist_bins_table[2,],col="gold",pch=18,type="o") 
points(low_maa_geodist_bins_table[2,],col="orange",pch=19,type="o") 
points(up_maa_geodist_bins_table[2,],col="maroon1",pch=15,type="o") 
axis(1, at=1:11, lab=c("0-50 ","50-100","100-200","200-400","400-600","600-1000", 
                       "1000-1500","1500-2000","2000-2500","2500-3000","3000-3500")) 
axis(2, at=c(0.65,0.7,0.75,0.80,0.85,0.90,0.95,0.99)) 
box() 
title(xlab="Distance Bins (km)") 
title(ylab="Jaccard Distance Weight") 
title(main="Median Weight by Geographic Distance") 
legend(x = 8.75, y = 0.75,  legend = c("Low Camp.","Mid Camp.", "Up Camp.", "Low Maastr.","Up 
Maastr."), col = c("blue","darkgreen","gold","orange","maroon1"), 
       pch = c(16,17,18,19,15)) 
 
dev.off() 
 
pdf(file = "PaleoLocation_Maps_Substages.pdf") 
 
plot(cam_low_maps, col = 'grey', border = NA, xlim = c(cam_low_minlong,maa_up_maxlong), ylim = 
c(cam_low_minlat,cam_low_maxlat)) 
lines(cam_low_coast, col = "black", xlim = c(cam_low_minlong,cam_low_maxlong), ylim = 
c(cam_low_maxlat,cam_low_minlat)) 
points(cam_low_ploc, pch=21, bg = "blue", col = "black") 
 
plot(cam_mid_maps, col = 'grey', border = NA, xlim = c(cam_mid_minlong,cam_mid_maxlong), ylim = 
c(cam_mid_minlat,cam_mid_maxlat)) 
lines(cam_mid_coast, col = "black", xlim =  c(cam_low_minlong,cam_low_maxlong), ylim = 
c(cam_low_maxlat,cam_low_minlat)) 
points(cam_mid_ploc, pch=21, bg = "darkgreen", col="black") 
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plot(cam_up_maps, col = 'grey', border = NA, xlim = c(cam_up_minlong,cam_up_maxlong), ylim = 
c(cam_up_minlat,cam_up_maxlat)) 
lines(cam_up_coast, col = "black", xlim =  c(cam_low_minlong,cam_low_maxlong), ylim = 
c(cam_low_maxlat,cam_low_minlat)) 
points(cam_up_ploc, pch=21, bg = "gold", col="black") 
 
plot(maa_low_maps, col = 'grey', border = NA, xlim = c(maa_low_minlong,maa_up_maxlong), ylim = 
c(maa_low_minlat,maa_low_maxlat)) 
lines(maa_low_coast, col = "black", xlim =  c(cam_low_minlong,cam_low_maxlong), ylim = 
c(cam_low_maxlat,cam_low_minlat)) 
points(maa_low_ploc, pch=21, bg = "orange", col="black") 
 
plot(maa_up_maps, col = 'grey', border = NA, xlim = c(maa_up_minlong,maa_up_maxlong), ylim = 
c(maa_up_minlat,maa_up_maxlat)) 
lines(maa_up_coast, col = "black", xlim =  c(cam_low_minlong,cam_low_maxlong), ylim = 
c(cam_low_maxlat,cam_low_minlat)) 
points(maa_up_ploc, pch=21, bg = "maroon1", col="black") 
 
dev.off() 
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APPENDIX B. Supplementary Materials for “A network analysis approach to 
understanding trends in functional diversity in the Late Cretaceous of North 
America” by Purcell and Myers (in press) 
 

Appendix B-1. Detailed Methods and Results 

Relationship between FR and GR in Database: 
 A basic correlation plot of generic vs functional richness was created based on the values present 

in each grid cell for the raw database in each substage. The plot showed a strong positive trend with fewer 

points at the higher levels of GR (>100 genera) that potentially begin to plateau (Figure S1). A squared 

linear regression computed using the lm function in R was found to have the best fit (R2 = 0.958) of the 

simple models tested, and visually fits the data (Figure S1). Evaluation plots of this regression (Figure S2) 

suggest that the data itself is non-normal based on the Q-Q plot (further confirmed with a Shapiro-Wilk 

test in R: p-value < 0.05), has a linear relationship based on the Residual vs. Fitted plot, contains only one 

significant outlier based on the Residual vs. Leverage plot, and has fairly homogeneous variance except at 

very low fitted values (i.e., < ~40) based on the Scale-Location plot. Overall, these results suggest that the 

regression is a good fit for the data, despite the fact that the data is non-normal.  

 The strong correlation between the two richness variables indicates that the two are closely linked 

and low values of generic richness will very likely correspond with low functional richness in further 

analysis. However, at very high generic richness levels (i.e., >100), it is likely that the two will be less 

strongly correlated. This may impact interpretation at different scales, given that the number of 

unique genera at coarser spatial aggregations in the dataset, such as within latitudinal bins or 

within the entire study region, will be higher than at more localize scales, such as at the level of the 

node. It should also be noted that all 60km nodes with >100 genera are representative of the 

Maastrichtian. This indicates that richness is better represented in the Maastrichtian than in the 

Campanian, though not all Maastrichtian nodes are as well sampled. 
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Figure S1. Plot of generic versus functional richness values for each node in each substage. Point color indicates 
substage interval (blue = Lower Camp., green = Middle Camp., yellow = Upper Camp., orange = Lower Maastr., 
and red = Upper Maastr.). The blue line represent a squared linear regression line fitted to the data (R2 = 0.958) 
using the stat_smooth function from the ggplot2 package, with grey shading indicating the 95% confidence interval.  
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Figure S2. Evaluation plots of the squared linear regression fitted to the data in R using the lm function (y = 0.095x2 
+ 2.64; R2 = 0.949), including a) fitted values plotted against residual values, b) a normal Q-Q plot, c) fitted values 
plotted against the square root of the standardized residuals, and d) a plot of Cook’s distance in the data, wherein 
leverage is plotted against the standardized residuals. 
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Bootstrap results for variation in FR values: 
 Bootstrap analysis of nodes and latitude bins found strong positive correlation between increasing 

FR variability and generic richness (Figure S3). Only when a node has a FR value close to the maximum 

for the dataset (20) does the standard error appear to potentially level off (Figure S3). This analysis tests 

how variable FR is when the unique genera in a node are subsampled. Given the assumption that genera 

are perfectly evenly distributed in FEs, FR values would not change, producing no correlation between 

standard error and FR. However, a positive correlation indicates that genera are not evenly distributed. A 

squared regression model fits this data distribution well (R2 = 0.96), indicating a depreciation of the 

correlation at approximately more than 20 FEs. 

 

Figure S3. Bootstrap of FR results for nodes in all substagaes. Blue line represents a squared linear regression fitted 
to the data. 
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SQS to determine lower sampling limits 
 To determine a lower sample size limit that can be assumed to capture the majority of FE in each 

substage, SQS subsampling (Alroy 2010) was performed on each substage using FEs as taxa and 

calculating their frequencies in each interval based on the number of unique genera they represent (i.e., no 

duplicate genera in a node; Table S1). This subsampling procedure indicates that for the Campanian 

substages, generic richness values greater than 16 and for the Maastrichtian substages generic richness 

values greater than 18 are likely to capture the majority of common FEs in each substage. This shift in the 

generic richness level required to adequately subsample the different stages is most likely due to a shift in 

the dominance of specific FEs and decreasing functional evenness, as is observed at both the paleo-

latitudinal bin and substage level. When using only specific Classes of taxa, the limits are much lower, 

particularly for Cephalopods and Gastropods. Bivalves, which have a high functional diversity (Table 3) 

have SQS sample size estimates of approximately ten in the Campanian and 11 and 13 in the Lower and 

Upper Maastrichtian, respectively. Gastropods, also a functionally diverse group, are dominated by a few 

important functional entities, meaning that their SQS sample size estimate is approximately two in the 

Campanian and three in the Maastrichtian. The Cephalopods represent only four FEs, and their SQS 

sample size estimate is three for the Campanian and two for the Maastrichtian. 

Table S1. Lower sample size estimates provided by SQS subsampling for each substage: 

Substage Entire Database 

Upper Maastr. 18 

Lower Maastr. 17.9 
Upper Camp. 15.7 
Middle Camp. 15.7 
Lower Camp. 15.3 
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Note on Shannon Diversity Index: 
Initially, the Shannon Diversity Index (SEI) was calculated alongside Simpson’s Measure of Evenness 

(SME), but given that the SEI values followed identical patterns to SME but with values which were not 

as easy to read and compare, and given that SEI is more susceptible to bias and error (Magurran 2003), it 

was not included in the final manuscript. However, SEI results are included here in the Supplementary 

Material for transparency. SEI is calculated based on the following formula: 

Shannon Equitability Index (H1) =  −∑(𝑆𝑆𝑖𝑖 ∗ ln(𝑆𝑆𝑖𝑖))
ln(𝑆𝑆)�  (𝐸𝐸𝐸𝐸 1) 

SEI ranges from 0 to 1 with 1 indicating perfect evenness. 

In all cases, SME estimates more significant proportional changes in evenness through time, as can be 

seen here. SME is an evenness metric which is weighted by the abundance or dominance of specific 

species (or in this case, FE) while SEI is a standardized form of the Shannon index, which quantifies 

aspects of diversity based on richness (Magurran, 2004). The SEI is therefore more prone to error when 

sample sizes are low, and not all elements (i.e., FE) are represented in the sample. For this reason, more 

emphasis is placed on SME in this analysis, though SEI is included for comparison. Though the two 

metrics of evenness produce such strikingly different proportional changes, they each show shifts in the 

same direction in all cases. 
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Functional Diversity Patterns: 
 Not all FE are present in all substages but the relative abundance of each is generally very stable 

through time (Figure 5, Table S4). Of the FE which have continuous presence across the study interval, 

only two show an increase or decrease in the relative abundance of genera greater than 0.05: facultatively 

mobile, infaunal suspension feeders and mobile, unattached, epifaunal carnivores, and these only once in 

each. These FEs are two of the three FEs with highest relative abundance in each substage. The third FE 

with consistently high relative abundance throughout the study interval is immobile, attached, epifaunal 

suspension feeders. These three FEs account for at least 8% of all genera in each substage, though which 

of the three contains the largest relative proportion of genera in each substage does change across the 

interval. In the Lower Campanian, immobile, attached, epifaunal suspension feeders have the highest 

relative abundance of genera (16%) and in the Middle Campanian, facultatively mobile, unattached, 

infaunal suspension feeders have the highest relative abundance of genera (17%). In the Upper 

Campanian and both Maastrichtian substages, mobile, unattached, epifaunal carnivores have the highest 

relative abundance (30%, 26%, and 29%, respectively).  

 Most FEs in each substage contain less than 1% of all genera in each substage, and some FEs are 

lost or gained across substages (Figure 5, Table S4). Between the Lower and Middle Campanian the total 

of 30 FE is maintained though there is some shift in the specific FE present. Facultatively mobile, 

unattached, epifaunal herbivores, which only make up 1% of the relative abundance of genera, are lost 

and immobile, attached, infaunal suspension feeders, which make up only 3% of the Middle Campanian 

relative abundance are gained. Between the Middle and Late Campanian, however, no FEs are lost and 

facultatively mobile, unattached, epifaunal herbivores, making up 2% of the relative abundance of genera, 

are regained and mobile, unattached, epifaunal, detritivores (1% relative abundance of genera) and 

immobile, attached, epifaunal, photosymbiotic taxa (1% relative abundance of genera) are gained. 

Between the Upper Campanian and Lower Maastrichtian, immobile, attached, epifaunal, photosymbiotic 

taxa are lost but immobile, unattached, boring, suspension feeders (2% relative abundance of genera), 

facultatively mobile, attached, infaunal, detritivores (1% relative abundance of genera), and immobile, 



SI Purcell et al., 20XX 325 
 

325 
 

attached, semi-infaunal, photosymbiots (1% relative abundance of genera) are gained. Finally, all FE are 

present in the Upper Maastrichtian, meaning that facultatively mobile, unattached, boring suspension 

feeders (2% relative abundance of genera), and immobile, unattached, semi-infaunal, photosymbiotic taxa 

(1% relative abundance of genera) are gained and immobile, attached, epifaunal photosymbionts (2% 

relative abundance of genera) are regained. 

 In total, eight FE which were not originally present in the Lower Campanian are gained at some 

point across the study interval, but each has very low relative abundance which do not greatly change 

across substages (1-3%). Only two FE are “lost” at some point across the study interval, but all are 

recovered by the Upper Maastrichtian. Again, all FE which appear to be lost have very low relative 

abundances. These patterns indicate that these FE are probably rare and their loss/gain may be a product 

of fossilization bias or inadequate sampling. Based on previous analyses which have looked at global 

patterns of FE (Foster and Twitchet, 2014; Edie et al., 2018), it seems highly unlikely that these FE had 

gone globally extinct across the study intervals, though they may have been regionally extirpated for a 

time. 
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Table S2. Table of the functional entities present in each substage. 

Lower Camp. Middle Camp. Upper Camp. Lower Maastr. Upper Maastr. 
IA-E-SF IA-E-SF IA-E-SF IA-E-SF IA-E-SF 
FU-I-C FU-I-C FU-I-C FU-I-C FU-I-C 

FU-I-CH FU-I-CH FU-I-CH FU-I-CH FU-I-CH 
MU-PI-D MU-PI-D MU-PI-D MU-PI-D MU-PI-D 
IU-B-SF IU-B-SF IU-B-SF IU-B-SF IU-B-SF 
IU-I-SF IU-I-SF IU-I-SF IU-I-SF IU-I-SF 
FA-E-SF FA-E-SF FA-E-SF FA-E-SF FA-E-SF 
FU-E-SF FU-E-SF FU-E-SF FU-E-SF FU-E-SF 

MU-N-SF MU-N-SF MU-N-SF MU-N-SF MU-N-SF 
MU-PI-C MU-PI-C MU-PI-C MU-PI-C MU-PI-C 
MU-E-H MU-E-H MU-E-H MU-E-H MU-E-H 
FU-I-SF FU-I-SF FU-I-SF FU-I-SF FU-I-SF 

MU-PI-H MU-PI-H MU-PI-H MU-PI-H MU-PI-H 
FA-I-SF FA-I-SF FA-I-SF FA-I-SF FA-I-SF 
MU-I-C MU-I-C MU-I-C MU-I-C MU-I-C 

MU-I-CH MU-I-CH MU-I-CH MU-I-CH MU-I-CH 
FU-E-H FU-PI-H FU-E-H FU-E-H FU-E-H 
FU-PI-H MU-E-O FU-PI-H FU-PI-H FU-PI-H 
MU-E-O MU-E-SF MU-E-O MU-E-O MU-E-O 
MU-E-SF FA-PI-SF MU-E-SF MU-E-SF MU-E-SF 
FA-PI-SF IA-PI-SF FA-PI-SF FA-PI-SF FA-PI-SF 
IA-PI-SF MU-E-C IA-PI-SF IA-PI-SF IA-PI-SF 
MU-E-C MU-I-SF MU-E-C MU-E-C MU-E-C 
MU-I-SF MU-NB-SF MU-I-SF MU-I-SF MU-I-SF 

MU-NB-SF IU-E-SF MU-NB-SF MU-NB-SF MU-NB-SF 
IU-E-SF MU-N-C IU-E-SF IU-E-SF IU-E-SF 
MU-N-C FU-I-D MU-N-C MU-N-C MU-N-C 
FU-I-D MU-NB-C FU-I-D FU-I-D FU-I-D 

MU-NB-C MU-I-D MU-NB-C MU-NB-C MU-NB-C 
MU-I-D IA-I-SF MU-I-D MU-I-D MU-I-D 

NA NA IA-I-SF IA-I-SF IA-I-SF 
NA NA MU-E-D MU-E-D MU-E-D 
NA NA IA-E-P IA-B-SF IA-E-P 
NA NA NA FA-I-D IA-B-SF 
NA NA NA IA-PI-P FA-I-D 
NA NA NA NA IA-PI-P 
NA NA NA NA FU-B-SF 
NA NA NA NA IU-PI-P 
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Summary of Regional Functional vs Taxonomic Diversity change in Substages: 
Table S3. Table of proportional change in metrics across substages in the raw database. 

 Proportional Change Across Substages: 

 GR FR SME SEI 

Low Camp. - Mid Camp. 0.27 0.00 0.04 0.01 

Mid Camp. - Up Camp. 0.81 0.10 -0.50 -0.11 

Up Camp. - Low Maastr. -0.09 0.06 0.11 0.02 

Low Maastr. - Up Maastr. 0.08 0.09 -0.19 -0.03 

Average: 0.27 0.06 -0.13 -0.02 

Median: 0.17 0.07 -0.07 -0.01 

S.D.: 0.39 0.04 0.27 0.06 
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Table S4. Relative abundance of each FE in each substage. Highest relative abundance values in each substage are 
in bold. The three most abundant FEs in all substages are denoted with an asterisk. 

Functional 
Entities Lower Camp. Middle Camp. Upper Camp. Lower Maastr. Upper Maastr. 

*IA-E-SF 0.161 0.115 0.097 0.120 0.111 
FU-I-C 0.021 0.016 0.009 0.010 0.009 

FU-I-CH 0.021 0.033 0.012 0.017 0.015 
MU-PI-D 0.021 0.027 0.006 0.007 0.012 
IU-B-SF 0.021 0.005 0.018 0.023 0.022 
IU-I-SF 0.021 0.016 0.006 0.007 0.006 
FA-E-SF 0.021 0.044 0.033 0.040 0.040 
FU-E-SF 0.021 0.016 0.021 0.030 0.028 

MU-N-SF 0.021 0.066 0.033 0.010 0.012 
MU-PI-C 0.014 0.016 0.018 0.020 0.015 
MU-E-H 0.014 0.011 0.043 0.053 0.053 
*FU-I-SF 0.133 0.170 0.100 0.113 0.090 
MU-PI-H 0.014 0.022 0.009 0.010 0.006 
FA-I-SF 0.014 0.011 0.018 0.020 0.015 
MU-I-C 0.007 0.005 0.003 0.010 0.009 

MU-I-CH 0.007 0.005 0.003 0.003 0.003 
FU-E-H 0.007 NA 0.006 0.010 0.009 
FU-PI-H 0.007 0.005 0.015 0.017 0.015 
MU-E-O 0.007 0.016 0.012 0.010 0.031 
MU-E-SF 0.007 0.011 0.012 0.017 0.015 
FA-PI-SF 0.007 0.005 0.003 0.007 0.006 
IA-PI-SF 0.007 0.005 0.003 0.007 0.006 

*MU-E-C 0.091 0.077 0.301 0.257 0.294 
MU-I-SF 0.007 0.016 0.009 0.013 0.009 

MU-NB-SF 0.084 0.066 0.049 0.037 0.037 
IU-E-SF 0.063 0.038 0.024 0.013 0.012 
MU-N-C 0.049 0.044 0.024 0.013 0.006 
FU-I-D 0.049 0.038 0.024 0.033 0.028 

MU-NB-C 0.042 0.049 0.043 0.013 0.015 
MU-I-D 0.042 0.033 0.030 0.030 0.028 
IA-I-SF NA 0.011 0.006 0.013 0.003 

MU-E-D NA NA 0.003 0.003 0.003 
IA-E-P NA NA 0.003 NA 0.009 

IA-B-SF NA NA NA 0.007 0.006 
FA-I-D NA NA NA 0.003 0.003 
IA-PI-P NA NA NA 0.003 0.003 

FU-B-SF NA NA NA NA 0.006 
IU-PI-P NA NA NA NA 0.003 
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Basin-level Substage Trends: 
 When data representative of the WIS only are subset and analyzed, only five FEs are lost: 

facultatively mobile, attached, infaunal deposit feeders (bivalve); facultatively mobile, unattached, boring 

suspension feeders (bivalve); immobile, attached, boring suspension feeders (bivalve, sponge); immobile, 

attached, epifaunal photosymbionts (bivalve, coral); immobile, attached, semi-infaunal photosymbionts 

(bivalve); and immobile unattached, semi-infaunal photosybionts (bivalve). These results show that only 

one FE with a boring lifestyle (immobile, unattached, boring suspension feeders) are present, represented 

by bivalves, and no photosymbionts are present once GCP data are removed. Indeed, these same five FEs 

not present in the WIS alone among the eight FEs that are “gained” through time in the database (Figure 

5). While these FEs are consistently rare in the database, accounting for less than 0.9% of all 

genera in a given substage, their absence from the WIS suggests that these FEs may indeed not 

have existed in the WIS during the Campanian and Maastrichtian.  

 When considering the WIS alone, generic richness rises through the Campanian to peak in the 

Upper Campanian, before declining through the Maastrichtian (Table S5; Figure S2). FR parallels this 

general trend, but proportionally changes much less across the Campanian (only 4% and 7% increase 

from Lower to Upper Campanian), before falling dramatically through the Maastrichtian (13% and 30% 

decrease; Table S6). SME decreases first by only 4% from the Lower to Middle Campanian, then by 20% 

from the Middle to Upper Campanian before rising by first 23% then 54% across the Upper Campanian to 

Lower Maastrichtian and the Lower to Upper Maastrichtian, respectively. This suggests that functional 

evenness fell in the later part of the Campanian in the WIS as generic richness increased, even 

when FR remained fairly stable, but when generic richness fell in the later substages, evenness 

increased. This pattern is similar to the one observed when both the WIS and GCP data are considered 

together (Table S3, Figure 4), indicating that as generic richness decreases, evenness increases as taxa 

more evenly distributed within remaining FEs. Declining FR may also contribute to this phenomenon. 

Indeed, the loss of FEs with low relative abundance of genera most likely contributes to rising evenness, 

as only those FEs with high redundancy are left. 
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 The GCP region alone experiences a consistent increase in both generic and functional richness 

throughout the study interval (Table S7; Figure S3). Interestingly, the inverse pattern of rising generic 

richness coupled with a clear decline in SME across the Middle to Upper Campanian is easily observed in 

the GCP alone (Table S8). Again, this indicates that, as generic richness increases, and despite a 

parallel increase in FR, uneven packing within FEs increases. Similarly, to when FEs with low 

relative abundance of genera are lost and evenness increases, most FE that are gained through time in the 

GCP have very low relative abundances, increasing the uneven distribution of taxa within FEs (Table 

S10, Figure S5). It should also be noted, however, that shifts in relative abundance of genera in the GCP 

FEs is more dramatic that those observed in the WIS or overall database (Figure S4 and 5).  
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Table S5. Table of the generic richness, FR, SME, and SEI values in each substage in the WIS. 

WIS Data Generic Richness FR SME SEI 

Lower Camp. 108 28 0.53 0.87 

Mid Camp. 151 29 0.51 0.88 

Upper Camp. 199 31 0.41 0.84 

Lower Maastr. 119 27 0.51 0.87 

Upper Maastr. 42 19 0.78 0.91 

Mean 123.8 26.8 0.55 0.87 

Median 119 28 0.51 0.87 

S.D. 57.79 4.60 0.14 0.02 
 

Table S6. Table of proportional change in metrics across substages in the WIS.  

WIS Data 
Proportional Change Across Substages: 

GR FR SME SEI 

Low Camp. - Mid Camp. 0.40 0.04 -0.04 0.01 

Mid Camp. - Up Camp. 0.32 0.07 -0.20 -0.04 

Up Camp. - Low Maastr. -0.40 -0.13 0.23 0.04 

Low Maastr. - Up Maastr. -0.65 -0.30 0.54 0.04 

Average: -0.08 -0.08 0.13 0.01 

Median: -0.04 -0.05 0.10 0.02 

S.D.: 0.52 0.17 0.32 0.04 
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Figure S4. Line plots of changes in functional ecology metrics across substages for WIS. The left y-axis in all plots 
depicts generic richness values, while the right y-axis presents values for the other metric..  
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Figure S5. Plot of relative abundance of each FE through time based WIS data alone. Circle size indicates relative abundance of a FE within each substage and 
color indicates relative abundance increase across subsequent substages greater than 0.05 (orange), decrease greater than 0.05 (blue), and increase/decrease less 
than 0.05 (yellow). Points are grey if they cannot be compared with a previous substage. See Table 1 for keys to each FE names along the x-axis.  
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Table S7. Table of the generic richness, FR, SME, and SEI values in each substage in the GCP. 

GCP Data Generic Richness FR SME SEI 

Lower Camp. 47 14 0.61 0.87 

Mid Camp. 65 22 0.67 0.90 

Upper Camp. 213 29 0.21 0.76 

Lower Maastr. 248 34 0.26 0.79 

Upper Maastr. 309 38 0.22 0.77 

Mean 176.4 27.4 0.39 0.82 

Median 213 29 0.26 0.79 

S.D. 115.33 9.58 0.23 0.06 

 

 

Table S8. Table of proportional change in metrics across substages in the GCP.  

GCP Data 
Proportional Change Across Substages: 

GR FR SME SEI 

Low Camp. - Mid Camp. 0.38 0.57 0.09 0.04 

Mid Camp. - Up Camp. 2.28 0.32 -0.68 -0.16 

Up Camp. - Low Maastr. 0.16 0.17 0.23 0.04 

Low Maastr. - Up Maastr. 0.25 0.12 -0.16 -0.02 

Average: 0.77 0.29 -0.13 -0.03 

Median: 0.31 0.25 -0.04 0.01 

S.D.: 1.01 0.20 0.40 0.09 
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Figure S6. Line plots of changes in functional ecology metrics across substages for GCP. The left y-axis in all plots 
depicts generic richness values, while the right y-axis presents values for the other metric.
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Figure S7. Plot of relative abundance of each FE through time based on GCP data alone. Circle size indicates relative abundance of a FE within each substage 
and color indicates relative abundance increase across subsequent substages greater than 0.05 (orange), decrease greater than 0.05 (blue), and increase/decrease 
less than 0.05 (yellow). Points are grey if they cannot be compared with a previous substage. See Table 1 for keys to each FE names along the x-axis.  
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Table S9. Relative abundance of each FE in each substage for the WIS. 

WIS Data 

Functional 
Entities Lower Camp. Middle Camp. Upper Camp. Lower Maastr. Upper Maastr. 

FA-E-SF 0.028 0.046 0.055 0.042 NA 
FA-I-SF 0.019 0.013 0.020 0.034 0.048 

FA-PI-SF 0.009 0.007 0.005 0.008 0.024 
FU-E-H 0.009 NA 0.005 NA NA 
FU-E-SF 0.028 0.020 0.020 0.025 0.024 
FU-I-C 0.028 0.013 0.015 0.017 NA 

FU-I-CH 0.028 0.040 0.015 0.025 0.024 
FU-I-D 0.065 0.046 0.030 0.050 0.071 
FU-I-SF 0.167 0.185 0.151 0.176 0.119 
FU-PI-H 0.009 NA 0.005 NA NA 
IA-E-SF 0.102 0.079 0.111 0.126 0.119 
IA-I-SF NA 0.013 0.005 0.008 NA 

IA-PI-SF 0.009 0.007 0.005 0.008 NA 
IU-B-SF 0.028 0.007 0.025 0.025 0.024 
IU-E-SF 0.074 0.040 0.035 0.008 NA 
IU-I-SF 0.028 0.013 0.010 0.017 0.024 

MU-E-C 0.102 0.073 0.171 0.118 0.048 
MU-E-D NA NA 0.005 NA NA 
MU-E-H 0.019 0.013 0.020 0.017 NA 
MU-E-O NA 0.013 0.015 0.008 0.071 
MU-E-SF 0.009 0.007 0.015 0.017 0.024 
MU-I-C NA 0.007 0.005 NA NA 

MU-I-CH 0.009 0.007 0.005 0.008 NA 
MU-I-D 0.028 0.040 0.040 0.050 0.024 
MU-I-SF 0.009 0.020 0.015 0.025 NA 

MU-NB-C 0.028 0.046 0.050 0.034 0.024 
MU-NB-SF 0.093 0.079 0.065 0.067 0.190 

MU-N-C 0.028 0.033 0.015 0.034 0.048 
MU-N-SF 0.009 0.073 0.030 0.017 0.048 
MU-PI-C 0.009 0.020 0.020 0.017 0.024 
MU-PI-D 0.009 0.013 NA NA NA 
MU-PI-H 0.019 0.026 0.015 0.017 0.024 
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Table S10. Relative abundance of each FE in each substage for the GCP.  

GCP Data 

Functional 
Entities Lower Camp. Middle Camp. Upper Camp. Lower Maastr. Upper Maastr. 

IA-E-SF 0.277 0.185 0.075 0.117 0.117 
MU-PI-C 0.021 0.015 0.019 0.024 0.016 
MU-I-C 0.021 NA 0.005 0.012 0.010 
MU-E-O 0.021 0.015 0.005 0.008 0.023 
FU-E-SF 0.021 0.015 0.028 0.036 0.029 
FU-I-SF 0.021 0.138 0.056 0.089 0.084 
MU-N-C 0.149 0.062 0.028 NA 0.003 

MU-NB-C 0.106 0.062 0.047 0.008 0.016 
MU-NB-SF 0.085 0.046 0.047 0.032 0.029 

MU-E-C 0.064 0.062 0.380 0.286 0.301 
MU-I-D 0.064 0.031 0.033 0.032 0.029 
IU-E-SF 0.064 0.062 0.019 0.016 0.013 

MU-PI-D 0.043 0.046 0.009 0.008 0.013 
MU-N-SF 0.043 0.046 0.023 0.012 0.013 

FU-I-C NA 0.031 0.009 0.012 0.010 
IU-I-SF NA 0.031 0.005 0.004 0.006 

MU-E-SF NA 0.031 0.014 0.016 0.016 
FU-I-CH NA 0.015 0.014 0.020 0.013 
FU-PI-H NA 0.015 0.023 0.020 0.016 
MU-PI-H NA 0.015 0.005 0.004 0.006 
IA-PI-SF NA 0.015 NA 0.008 0.006 
MU-I-SF NA 0.015 0.014 0.012 0.010 
FA-E-SF NA 0.046 0.023 0.040 0.042 
FU-I-D NA NA 0.019 0.032 0.026 
FA-I-SF NA NA 0.019 0.016 0.016 
FU-E-H NA NA 0.009 0.012 0.010 
IU-B-SF NA NA 0.009 0.020 0.023 
IA-E-P NA NA 0.005 NA 0.010 
IA-I-SF NA NA 0.005 0.012 0.003 

MU-E-H NA NA 0.052 0.056 0.055 
IA-B-SF NA NA NA 0.008 0.006 
FA-PI-SF NA NA NA 0.008 0.006 
MU-I-CH NA NA NA 0.004 0.003 

FA-I-D NA NA NA 0.004 0.003 
IA-PI-P NA NA NA 0.004 0.003 

MU-E-D NA NA NA 0.004 0.003 
FU-B-SF NA NA NA NA 0.006 
IU-PI-P NA NA NA NA 0.003 
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Class-level Influences: 
 Generic richness for cephalopods increases greatly across the Campanian (by 46% and 17%) but 

declines from the Upper Campanian to Lower Maastrichtian (54%; Table S11; Figure S8). SME is very 

high within cephalopod FEs, ranging from 0.76 to 1.05, and shifts by no more than 16% across any 

substage (Table S12). This means that evenness values for cephalopods are consistent, and only change 

by more than 8% between the Lower and Middle Campanian (16% increase) and Upper Campanian to 

Lower Maastrichtian (16% decrease; Table S12). These changes are caused by shifts in the distribution of 

existing genera withing the four FEs (Figure S9). Mobile, unattached, nekton-benthic suspension feeders 

is consistently the most common FE, but it and all but one other cephalopod FE experiences a rise or 

decline in relative abundance greater than 5% across these intervals (Table S17). Overall, cephalopods 

make up a functionally highly stable portion of the database, despite dramatic changes to generic richness. 

 Bivalves are the most common taxonomic group in the database, including a total of 184 

genera and making up a total of 24 of the 38 FEs, meaning that they most likely have the strongest 

influence on overall patterns in the database. Bivalve generic and functional richness increase across the 

study interval and SME values are fairly stable (Table S13; Figure S10), indicating that packing withing 

bivalve FEs is consistent through time (Figure S10). SME only changes more than 7% between the Lower 

and Middle Campanian, where SME decreases by 23% (Table S14). This decrease in evenness occurs at 

the same time as a dramatic increase in bivalve generic diversity (33%) and a slight increase in bivalve 

FR (6%). However, subsequent increases in both generic and functional richness, such as between the 

Middle and Upper Campanian, are not coupled with a decrease in SME but rather a very slight increase 

(7%). Across the later substages, SME declines only very slightly (2% and 3%) while generic richness 

increases slightly (8%) and decreases slightly (5%) and FR increases (5% and 15%). SME is decoupled 

from both generic and FR, remaining fairly stable in substages after the Middle Campanian, despite 

changes to the other two metrics. 
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Facultatively unattached, infaunal suspension feeders are represented by the most genera in each 

substage, and increase in dominance from the Lower to Middle Campanian while other FEs, including 

those while high relative abundance in the Lower Campanian, decline in dominance (Figure S11; Table 

S18). Furthermore, eight FEs are “gained” throughout the study interval among bivalves alone (Figure 

S11). Gaining FEs in the collective database was assumed to result in declining evenness, but in the case 

of bivalves, only a single FE is gained between the Lower and Middle Campanian (immobile, attached, 

infaunal suspension feeders) declines. Overall, these patterns suggest that declining evenness between the 

Early to Middle Campanian among bivalves is caused by increased packing of genera into the 

facultatively mobile, unattached infaunal suspension feeder group, the addition of the immobile, attached, 

infaunal suspension feeders, and loss of genera in other FEs. Throughout the rest of the substages, 

evenness is highly stable among bivalves despite changes to both generic and functional richness, as the 

addition of genera is coupled with the addition of FE and no significant packing into any one group. 

Gastropods are the second most common class of taxa in the database, making up 184 genera and 

eleven FEs. They are therefore likely to greatly influence general patterns in the database. Notably, 

gastropod generic richness increases by 408% across the Middle to Upper Campanian, but it experiences 

shifts of greater than 14% across all other substages as well (rises 44% from the Lower to Middle 

Campanian, declines 14% from the Upper Campanian to the Lower Maastrichtian, and rises 17% through 

the Maastrichtian; Table S15; Figure S12). FR is stable in the Early to Middle Campanian, but rises by 

57% between the Middle and Upper Campanian when generic richness greatly increases, before falling 

between the Upper Campanian and Lower Maastrichtian (18%), and rising in the Maastrichtian (22%; 

Table S16). Functional evenness in gastropod genera is much lower than that seen in bivalves, except in 

the Middle Campanian, where gastropod SME is 0.52 and bivalves are only 0.39, and fluctuates strongly. 

In particular, a sharp decrease in SME from the Middle to Upper Campanian (66%) coincides with the 

increase to both generic and functional richness.  
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Mobile, unattached, epifaunal carnivores are consistently the most dominate gastropod FE, taking 

up at least 50% of all genera in a given substage (Table S19; Figure S13). However, between the Middle 

and Upper Campanian, this FE experiences a dramatic increase from a relative abundance of 50% to 70% 

while, at the same time, two of the other most abundant FEs (MU-PI-C and MU-PI-H) experience a 

decline in relative abundance from 15% and 12% to 3% and 2%, respectively. Furthermore, four FEs are 

gained between these substages. These factors all contribute to the sharp decrease in evenness between 

the Middle and Upper Campanian. Throughout the rest of the intervals excepting the Late Maastrichtian, 

the relative abundance of mobile, unattached, epifaunal carnivores increases or decreases by more than 

5% and as FE are lost, gained, and change in relative abundance. Clearly, gastropods are highly variable 

in generic richness as well as FR and functional evenness relative to bivalves. Their presence, therefore, 

likely contributes to the greater variability of the database as a whole relative to one including bivalves 

alone. 
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Figure S8. Line plots of changes in functional ecology metrics across substages for cephalopods only. The left y-axis 
in all plots depicts generic richness values, while the right y-axis presents values for the other metric. 
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Figure S9. Plot of relative abundance of each FE through time based cephalopod data alone. Circle size indicates relative abundance of a FE within each substage 
and color indicates relative abundance increase across subsequent substages greater than 0.05 (orange), decrease greater than 0.05 (blue), and increase/decrease 
less than 0.05 (yellow). Points are grey if they cannot be compared with a previous substage. See Table 1 for keys to each FE names along the x-axis. 



SI Purcell et al., 20XX 344 
 

344 
 

 

 

 

Figure S10. Line plots of changes in functional ecology metrics across substages for bivalves only. The left y-axis in 
all plots depicts generic richness values, while the right y-axis presents values for the other metric.
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Figure S11. Plot of relative abundance of each FE through time based bivalve data alone. Circle size indicates relative abundance of a FE within each substage 
and color indicates relative abundance increase across subsequent substages greater than 0.05 (orange), decrease greater than 0.05 (blue), and increase/decrease 
less than 0.05 (yellow). Points are grey if they cannot be compared with a previous substage. See Table 1 for keys to each FE names along the x-axis. 



SI Purcell et al., 20XX 346 
 

346 
 

 

Figure S12. Line plots of changes in functional ecology metrics across substages for gasropods only. The left y-axis 
in all plots depicts generic richness values, while the right y-axis presents values for the other metric.
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Figure S13. Plot of relative abundance of each FE through time based gastropod data alone. Circle size indicates relative abundance of a FE within each substage 
and color indicates relative abundance increase across subsequent substages greater than 0.05 (orange), decrease greater than 0.05 (blue), and increase/decrease 
less than 0.05 (yellow). Points are grey if they cannot be compared with a previous substage. See Table 1 for keys to each FE names along the x-axis.  
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Table S11. Table of the generic richness, FR, SME, and SEI values in each substage in cephalopods only. 

  Generic Richness FR SME SEI 

Lower Camp. 28 4 0.90 0.92 
Mid Camp. 41 4 1.05 0.99 

Upper Camp. 48 4 0.98 0.97 
Lower Maastr. 22 4 0.83 0.89 
Upper Maastr. 23 4 0.76 0.86 

Mean 32.4 4 0.90 0.93 

Median 28 4 0.90 0.92 

S.D. 11.55 0.00 0.11 0.05 
 

Table S12. Table of proportional change in metrics across substages in cephalopods only.  

 Proportional Change Across Substages: 

 GR FR SME SEI 
Low Camp.-Mid Camp. 0.46 0.00 0.16 0.07 
Mid Camp.-Up Camp. 0.17 0.00 -0.06 -0.02 

Up Camp.-Low Maastr. -0.54 0.00 -0.16 -0.08 
Low Maastr.-Up Maastr. 0.05 0.00 -0.08 -0.04 

Average: 0.03 0.00 -0.03 -0.02 

Median: 0.11 0.00 -0.07 -0.03 

S.D.: 0.42 0.00 0.14 0.06 
 

Table S13. Table of the generic richness, FR, SME, and SEI values in each substage in bivalves only. 

  Generic Richness FR SME SEI 

Lower Camp. 72 16 0.51 0.84 
Mid Camp. 96 17 0.39 0.80 

Upper Camp. 116 19 0.42 0.82 
Lower Maastr. 125 20 0.41 0.82 
Upper Maastr. 119 23 0.40 0.82 

Mean 105.6 19 0.43 0.82 

Median 116 19 0.41 0.82 

S.D. 21.71 2.74 0.05 0.02 
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Table S14. Table of proportional change in metrics across substages in bivalves only.  

 Proportional Change Across Substages: 

 GR FR SME SEI 
Low Camp.-Mid Camp. 0.33 0.06 -0.23 -0.05 
Mid Camp.-Up Camp. 0.21 0.12 0.07 0.03 

Up Camp.-Low Maastr. 0.08 0.05 -0.02 0.00 
Low Maastr.-Up Maastr. -0.05 0.15 -0.03 0.00 

Average: 0.14 0.10 -0.05 -0.01 

Median: 0.14 0.09 -0.02 0.00 

S.D.: 0.16 0.05 0.13 0.03 
 

Table S15. Table of the generic richness, FR, SME, and SEI values in each substage in gastropods only. 

  Generic Richness FR SME SEI 

Lower Camp. 18 7 0.47 0.75 
Mid Camp. 26 7 0.52 0.79 

Upper Camp. 132 11 0.18 0.49 
Lower Maastr. 114 9 0.27 0.61 
Upper Maastr. 133 11 0.20 0.55 

Mean 84.6 9 0.33 0.64 

Median 114 9 0.27 0.61 

S.D. 57.71 2.00 0.16 0.13 
 

Table S16. Table of proportional change in metrics across substages in gastropods only.  

 Proportional Change Across Substages: 

 GR FR SME SEI 
Low Camp.-Mid Camp. 0.44 0.00 0.12 0.05 
Mid Camp.-Up Camp. 4.08 0.57 -0.66 -0.37 

Up Camp.-Low Maastr. -0.14 -0.18 0.51 0.25 
Low Maastr.-Up Maastr. 0.17 0.22 -0.26 -0.10 

Average: 1.14 0.15 -0.07 -0.04 

Median: 0.31 0.11 -0.07 -0.03 

S.D.: 1.97 0.32 0.50 0.26 
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Table S17. Relative abundance of each FE in each substage for cephalopods only.  
Functional 

Entities Lower Camp. Middle Camp. Upper Camp. Lower Maastr. Upper Maastr. 

MU-NB-SF 0.429 0.293 0.333 0.500 0.522 
MU-N-C 0.250 0.195 0.146 0.182 0.087 

MU-NB-C 0.214 0.220 0.292 0.182 0.217 
MU-N-SF 0.107 0.293 0.229 0.136 0.174 

 

Table S18. Relative abundance of each FE in each substage for bivalves only.  
Functional 

Entities Lower Camp. Middle Camp. Upper Camp. Lower Maastr. Upper Maastr. 

FU-I-SF 0.264 0.323 0.284 0.272 0.244 
FU-E-SF 0.042 0.031 0.043 0.040 0.042 
MU-I-D 0.028 0.021 0.034 0.016 0.017 

MU-I-CH 0.014 0.010 0.009 0.008 0.008 
FA-I-SF 0.014 0.010 0.043 0.040 0.034 

FA-PI-SF 0.014 0.010 0.009 0.016 0.017 
IA-PI-SF 0.014 0.010 0.009 0.016 0.017 
MU-I-SF 0.014 0.031 0.026 0.032 0.025 
IA-E-SF 0.167 0.167 0.155 0.160 0.168 
IU-E-SF 0.125 0.073 0.069 0.032 0.034 
FU-I-D 0.097 0.073 0.069 0.080 0.076 
FU-I-C 0.042 0.031 0.026 0.024 0.025 

FU-I-CH 0.042 0.063 0.034 0.040 0.042 
IU-B-SF 0.042 0.010 0.052 0.056 0.059 
IU-I-SF 0.042 0.031 0.017 0.016 0.017 
FA-E-SF 0.042 0.083 0.086 0.096 0.101 
IA-I-SF NA 0.021 0.017 0.032 0.008 

MU-N-C NA NA 0.009 NA NA 
IA-E-P NA NA 0.009 NA 0.017 
FA-I-D NA NA NA 0.008 0.008 
IA-PI-P NA NA NA 0.008 0.008 
IA-B-SF NA NA NA 0.008 0.008 
FU-B-SF NA NA NA NA 0.017 
IU-PI-P NA NA NA NA 0.008 
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Table S19. Relative abundance of each FE in each substage for gastropods only.  

Functional Entities Lower Camp. Middle Camp. Upper Camp. Lower Maastr. Upper Maastr. 

MU-E-C 0.556 0.500 0.705 0.623 0.662 
MU-E-H 0.111 0.077 0.106 0.140 0.113 
MU-PI-H 0.111 0.154 0.023 0.026 0.015 
MU-PI-C 0.056 0.115 0.045 0.053 0.038 
FU-E-H 0.056 NA 0.015 0.026 0.023 
FU-PI-H 0.056 0.038 0.038 0.044 0.038 
MU-E-SF 0.056 0.077 0.030 0.044 0.038 
MU-E-O NA 0.038 0.008 NA 0.030 
FA-E-SF NA NA 0.008 NA 0.008 
FU-E-SF NA NA 0.015 0.035 0.030 
MU-I-C NA NA 0.008 0.009 0.008 
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Summary of Functional vs Taxonomic Diversity change in Latitudinal Bins: 
Metrics in General: 
 When the data is converted to paleo-coordinates and separated into seven 5° paleo-latitudinal bins 

for analysis, almost all bins have continuous occupation across the study interval (Table 4). Only in the 

Middle Campanian for the 30-35°N bin, and in the Lower and Upper Maastrichtian for the 60-65°N bin is 

there missing data for comparison. However, only the 30-35 and 50-55 bins have greater than the 

minimum estimated sample size of unique genera for each interval (see Table S1), though most substages 

have sufficient generic richness to represent common FEs across all but the northern-most and southern-

most paleo-latitudinal bins (Table 4). Generic richness within paleo-latitude bins has greater spread of 

values through time but FR values have similar spreads, except in the Middle Campanian, where the first 

and third quartile values are closer to the median than in the other intervals (Figure S14). However, 

median and mean values of both generic and functional richness show similar trends within latitudinal 

bins, increasing across the Campanian before decreasing across the Maastrichtian. SME values have the 

highest spread in the Upper Maastrichtian and mean and median values appear to decrease slightly (i.e., 

become less even) across the Campanian then increase slightly (become more even) across the 

Maastrichtian (Figure S14). SEI values follow a similar pattern overall.  
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Figure S14. Box and whisker plots of generic richness, FR, SME, and SEI for paleo-latitudinal bins in each 
substage. Median values are denoted by a horizontal line and means by triangles.  
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 Both generic and functional richness shift across time based on paleo-latitude bins (Table S20, 

Figure S15). Median and average proportional change in FR between substages, taking into account all 

paleo-latitudinal bins, indicates that FR increases between the Lower and Middle Campanian (~16% 

median) and between the Middle to Upper Campanian (22% median), and fell between substages from the 

Upper Campanian to the Lower Maastrichtian and Lower to Upper Maastrichtian (~24% median and ~3% 

median, respectively). Only between the Lower and Upper Maastrichtian does the median fall particularly 

close to zero, suggesting little overall change, but the first and third interquartile range values indicate 

high variability relative to other substage comparisons.  

All box plots showing proportional change values for functional richness cross the zero line, 

either along the hinge (first or third quartile values) or along the whisker (1.5* interquartile range). This 

indicates that some paleo-latitude bins experience opposing directions of change in FR, despite the 

prevailing trends between substages. Proportional change in generic richness follow a similar general 

trend, except that the spread of values is consistently larger than those observed for FR and proportional 

changes are more extreme. For example, all proportional changes in generic richness increase between the 

Middle and Upper Campanian, indicating that generic richness values increase within all paleo-latitude 

bins between these substages. This once again suggests that generic and functional richness, despite being 

tightly linked, are at times decoupled, even at this scale. When paleo-latitudinal bins with less than the 

estimated SQS lower limit of generic richness are removed from calculations, these patterns are generally 

maintained, but the spread of values is less extreme in all cases (Figure S16). Only in the Upper 

Campanian to Lower Maastrichtian comparison do statistic value change appreciably to a median value of 

-43% rather than -21%, indicating stronger loss of FR. 

SME values are more variable across substages, decreasing between Campanian substages and 

rising between the Upper Campanian and Maastrichtian substages (Figure S15). However, only the 

Middle to Upper Campanian comparison shows unanimous proportional decrease in values. When paleo-

latitude bins with less than the estimated SQS generic richness level are removed, the spread of 
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proportional change values for all substages is diminished and mean and median values for SME fall 

closer to zero, excluding the Middle to Upper Campanian comparison where no values were removed. 

This suggest that the removal of generic richness values which may not appropriately represent FEs 

dampens both negative and positive proportional changes in evenness. Overall, proportional changes in 

SME indicate that the Lower to Middle Campanian has fairly stable evenness but evenness drops between 

the Middle to Upper Campanian, then rises from the Upper Campanian to Upper Maastrichtian. 

SEI values, unlike SME, are highly stable across all intervals, particularly when paleo-latitude 

bins with generic richness lower than the SQS estimated requirements are removed (Figure S16). This 

indicates overall evenness (as opposed to dominance) in the data at the paleo-latitude-bin level of 

aggregation, however error introduced by lower richness levels for this metric is assumed to be high. 

Slight shifts in SEI proportional change values do mimic patterns observed with SME, indicating that 

shifts in the distribution of genera within FEs does occur through time. 
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Figure S15. Box and whisker plots of proportional change in paleo-latitude bins between substages for each metric 
value. Triangles indicate mean values and horizontal lines indicate median values.  
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Table S20. Summary statistics for proportional change in generic richness, FR, SME, and SEI for paleo-latitude bins 
across adjacent substages with all values included, regardless of if generic richness for that paleo-latitude bin was 
less than estimated SQS sample size requirement. 

  

Low Camp. - Mid 
Camp. 

Mid. Camp. - Up. 
Camp. 

Up. Camp. - Low 
Maastr. 

Low Maastr. - Up. 
Maastr. 

G
en

er
ic

 
Ri

ch
ne

ss
 Mean 0.43 2.07 1.93 -0.23 

Median 0.39 1.70 -0.43 -0.27 

SD 0.94 2.10 5.92 0.62 

Fu
nc

tio
na

l 
Ri

ch
ne

ss
 Mean 0.31 0.66 0.65 -0.20 

Median 0.16 0.22 -0.24 -0.03 

SD 0.88 1.17 2.34 0.44 

SM
E 

Mean -0.04 -0.37 0.91 0.24 

Median -0.06 -0.35 0.33 0.28 

SD 0.14 0.27 1.97 0.41 

SE
I 

Mean 0.01 -0.10 0.09 0.00 

Median 0.00 -0.05 0.02 0.02 

SD 0.03 0.14 0.22 0.04 
 

Table S21. Summary statistics for proportional change in generic richness, functional richness (αf), and functional 
evenness (SME) for paleo-latitude bins across adjacent substages. Camp. = Campanian, Maastr. = Maastrichtian. 
Values were removed from calculations if they did not meet the minimum SQS sample size estimate. 

  

Low Camp. - Mid 
Camp. 

Mid. Camp. - Up. 
Camp. 

Up. Camp. - Low 
Maastr. 

Low Maastr. - Up. 
Maastr. 

G
en

er
ic

 
Ri

ch
ne

ss
 Mean 0.38 1.29 -0.48 -0.23 

Median 0.39 1.18 -0.60 -0.27 

SD 0.54 0.93 0.39 0.62 

Fu
nc

tio
na

l 
Ri

ch
ne

ss
 Mean 0.21 0.19 -0.30 -0.20 

Median 0.16 0.17 -0.41 -0.03 

SD 0.28 0.25 0.29 0.44 

SM
E 

Mean 0.00 -0.37 1.23 0.24 

Median -0.03 -0.35 0.66 0.28 

SD 0.12 0.27 2.02 0.41 

SE
I 

Mean 0.01 -0.10 0.12 0.00 

Median 0.01 -0.05 0.02 0.02 

SD 0.03 0.14 0.23 0.04 
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Figure S16. Box and whisker plots of proportional change between substages for each metric value with paleo-
latitude bin values corresponding to generic richness less than the required estimate from SQS removed (i.e., <16 
unique genera for Campanian substages, and <18 unique genera for Maastrichtian substages). Triangles indicate 
mean values and horizontal lines indicate median values. 
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Proportional Change in Metrics Across Latitude: 
 Proportional change across paleo-latitudes within paleo-latitude bins indicates that, in general, 

substages experience decreasing generic and functional richness across paleo-latitude from south to north, 

except between the 40-45°N to 45-50°N bins (Figure 4). Both generic and functional richness decrease 

dramatically moving north across paleo-latitude above the 40-45°N bin. The Upper Maastrichtian is one 

exception to this pattern, showing an increase of close to ~88% in FR across the 45-50°N and 50-55°N 

bins. Between the 40-45°N to 45-50°N bins, FR and generic richness increase by more than 40% in all 

substages (Table S22). Proportional change in generic richness across these bins, while following similar 

patterns, is not identical. For example, the Middle Campanian experiences a proportional increase of 

235% generic richness but only a 40% increase in FR, but the Upper Campanian experiences a 

proportional increase of generic richness of 16% while FR for this substage only increases by 61%. Once 

again, the two factors are decoupled though similar. 

 Across the 35-40°N to 40-45°N transition, both functional and generic richness decrease in all 

substages while between the 30-35°N and 35-40°N paleo-latitude bins, proportional change in richness is 

more variable. In this southernmost transition, the Upper and Lower Campanian experience very 

noticeable increases in both generic and functional richness, while the Lower and Upper Maastrichtian 

experience a fall of only 6% and 3%, respectively (Table S22). It should be pointed out, that these 

southern-most bins are dominated by Maastrichtian data, and therefore this relative stability may be 

influenced by better sampling for the Maastrichtian than for the Campanian substages. Indeed, the more 

dramatic decreases in proportional richness values in the most northern latitude transitions may also be a 

product of poor sampling. Removing values which have lower generic richness than the SQS estimated 

sample size for FR in each substage produces very similar patterns, except that the northernmost and 

southernmost values are removed for the Campanian substages (Table S23; Figure S17). This suggests 

that these extraneous values may be caused by poor sampling and strengthens the conclusion that both 

generic and functional richness decrease in similar proportions across latitude in all substages, except 

between the 40-45°N to 45-50°N bins where values increase notably. 
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 Shifts in dominance across latitude are also highly variable, though, in general, SME increases in 

substages across latitudes between 45°N and 60°N. This indicates that evenness increases between 

latitudes moving north. In the 40-45°N to 45-50°N transition, SEM values decrease in all substages, 

indicating that evenness drops across latitudes in this range. South of 40°N, SEM show both increase and 

decrease in different substages, with an extremely noticeable increase between 35-40°N and 40-45°N for 

the Upper Maastrichtian (Figure 4). When values with fewer than the SQS sample size estimate are 

removed, these patterns are maintained. 
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Table S22. Values of proportional change across paleo-latitude bins in each substages 

  

30-35°N to 
35-40°N 

35-40°N to 
40-45°N 

40-45°N to 
45-50°N 

45-50°N to 
50-55°N 

50-55°N to 
55-60°N 

55-60°N to 
60-65°N 

 Generic Richness 
Low Camp. 2.73 -0.66 3.79 -0.12 -0.37 -0.86 
Mid Camp. NA -0.38 2.35 -0.48 -0.61 -0.96 
Up Camp. 9.14 -0.09 0.16 -0.20 -0.27 -0.92 

Low Maastr. -0.26 -0.88 4.74 -0.56 -0.63 NA 
Up Maastr. 0.14 -0.99 4.00 0.80 -0.41 NA 

 Functional Richness 
Low Camp. 2.50 -0.50 2.14 0.00 -0.23 -0.71 
Mid Camp. NA -0.09 0.40 -0.18 -0.30 -0.94 
Up Camp. 4.60 -0.36 0.61 -0.07 -0.07 -0.84 

Low Maastr. -0.06 -0.67 1.70 -0.41 -0.44 NA 
Up Maastr. -0.03 -0.94 3.00 0.88 -0.40 NA 

 SME 
Low Camp. -0.50 0.76 -0.44 0.25 0.23 -1.00 
Mid Camp. NA 0.17 -0.28 0.18 0.18 -1.00 
Up Camp. -0.49 -0.65 2.42 -0.15 0.40 0.45 

Low Maastr. 0.46 1.26 -0.40 0.53 0.28 NA 
Up Maastr. -0.21 5.99 -0.49 0.38 0.14 NA 

 SEI 
Low Camp. -0.07 0.05 -0.04 0.04 0.03 0.08 
Mid Camp. NA 0.00 -0.02 0.02 0.00 -1.00 
Up Camp. 0.00 -0.32 0.48 -0.03 0.06 -0.06 

Low Maastr. 0.06 0.08 -0.03 0.04 0.01 NA 
Up Maastr. -0.05 0.21 -0.05 0.07 0.00 NA 
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Figure S17. Beeswarm plots of proportional change between paleo-latitude bins for each metric value with paleo-
latitude bin values corresponding to generic richness less than the required estimate from SQS removed (i.e., <16 
unique genera for Campanian substages, and <18 unique genera for Maastrichtian substages).  
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Table S23. Values of proportional change across paleo-latitude bins in each substages with values below SQS 
sample size estimate removed. 

 

30-35°N to 
35-40°N 

35-40°N to 
40-45°N 

40-45°N to 
45-50°N 

45-50°N to 
50-55°N 

50-55°N to 
55-60°N 

55-60°N to 
60-65°N 

 Generic Richness 
Low Camp. NA NA NA -0.12 -0.37 NA 
Mid Camp. NA -0.38 2.35 -0.48 -0.61 NA 
Up Camp. NA -0.09 0.16 -0.20 -0.27 NA 

Low Maastr. -0.26 -0.88 4.74 -0.56 -0.63 NA 
Up Maastr. 0.14 -0.99 4.00 0.80 -0.41 NA 

 Functional Richness 
Low Camp. NA NA NA 0.00 -0.23 NA 
Mid Camp. NA -0.09 0.40 -0.18 -0.30 NA 
Up Camp. NA -0.36 0.61 -0.07 -0.07 NA 

Low Maastr. -0.06 -0.67 1.70 -0.41 -0.44 NA 
Up Maastr. -0.03 -0.94 3.00 0.88 -0.40 NA 

 SME 
Low Camp. NA NA NA 0.25 0.23 NA 
Mid Camp. NA 0.17 -0.28 0.18 0.18 NA 
Up Camp. NA -0.65 2.42 -0.15 0.40 NA 

Low Maastr. 0.46 1.26 -0.40 0.53 0.28 NA 
Up Maastr. -0.21 5.99 -0.49 0.38 0.14 NA 

 SEI 
Low Camp. NA NA NA 0.04 0.03 NA 
Mid Camp. NA 0.00 -0.02 0.02 0.00 NA 
Up Camp. NA -0.32 0.48 -0.03 0.06 NA 

Low Maastr. 0.06 0.08 -0.03 0.04 0.01 NA 
Up Maastr. -0.05 0.21 -0.05 0.07 0.00 NA 
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Nestedness verses Turnover in Functional Entities over Paleolatitude 

 Nestedness, or the subsetting of FE assemblages across latitude, was tested using the betapart 

package in R (Baselga and Orme 2012) following Schumm et al. (2019). This package allows users to 

calculate the pairwise Sørensen dissimilarity between FE presence-absence data, which can be interpreted 

as a metric of nestedness. Sørensen values of 0 indicate turnover fully accounts for the total dissimilarity 

and 1 indicates that nestedness accounts for the dissimilarity. Results of nestedness analysis for 

paleolatitude bins indicate that nestedness is low (Sørensen dissimilarity <0.5) between most 

paleolatitude bins, and rarely high (Sørensen dissimilarity >0.5) between spatially adjacent bins (Table. 

S24-S28). Thus, nestedness does not account for dissimilarity well across latitude. 

Table S24. Pairwise Sørensen dissimilarity values of FEs between Lower Campanian paleolatitude bins. Values 
greater than 0.5 are in bold. 

 30-35°N 35-40°N 40-45°N 45-50°N 50-55°N 55-60°N 

35-40°N 0.556           
40-45°N 0.205 0.286         
45-50°N 0.692 0.175 0.517       
50-55°N 0.519 0.143 0.517 0.000     

55-60°N 0.310 0.062 0.357 0.098 0.106   

60-65°N 0.028 0.284 0.033 0.630 0.630 0.436 
 

Table S25. Pairwise Sørensen dissimilarity values of FEs between Middle Campanian paleolatitude bins. Values 
greater than 0.5 are in bold. 

 35-40°N 40-45°N 45-50°N 50-55°N 55-60°N 

40-45°N 0.038         
45-50°N 0.115 0.158       
50-55°N 0.018 0.066 0.098     
55-60°N 0.109 0.097 0.256 0.168   

60-65°N 0.913 0.000 0.931 0.000 0.000 
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Table S26. Pairwise Sørensen dissimilarity values of FEs between Upper Campanian paleolatitude bins. Values 
greater than 0.5 are in bold. 

 30-35°N 35-40°N 40-45°N 45-50°N 50-55°N 55-60°N 

35-40°N 0.697           
40-45°N 0.339 0.205         
45-50°N 0.706 0.015 0.221       
50-55°N 0.550 0.015 0.189 0.034     

55-60°N 0.533 0.050 0.154 0.071 0.034   

60-65°N 0.028 0.563 0.477 0.758 0.742 0.724 
 

Table S27. Pairwise Sørensen dissimilarity values of FEs between Lower Maastrichtian paleolatitude bins. Values 
greater than 0.5 are in bold. 

 30-35°N 35-40°N 40-45°N 45-50°N 50-55°N 

35-40°N 0.030         
40-45°N 0.471 0.450       
45-50°N 0.082 0.045 0.459     
50-55°N 0.313 0.266 0.208 0.256   

55-60°N 0.561 0.479 0.029 0.500 0.218 
 

Table S28. Pairwise Sørensen dissimilarity values of FEs between Upper Maastrichtian paleolatitude bins. Values 
greater than 0.5 are in bold. 

 30-35°N 35-40°N 40-45°N 45-50°N 50-55°N 

35-40°N 0.013         
40-45°N 0.897 0.895       
45-50°N 0.644 0.636 0.600     
50-55°N 0.423 0.412 0.765 0.228   

55-60°N 0.609 0.600 0.318 0.022 0.167 
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Summary of Functional vs Taxonomic Diversity change in 360km2 Nodes across Substages: 
 At the 360km aggregation scale, generic and functional richness distributions are fairly similar in 

all substages (Figure S18, Table S29), though the Lower Campanian has a noticeably smaller spread of 

FR values in the first and third quartiles than later substages and the Upper Maastrichtian has a greater 

spread of values in this range than other substages. Generic richness outliers are present in most 

substages, but only the Lower Campanian and Lower Maastrichtian have FR outliers. SME values has 

small distributions, in all substages with some outliers in the Mid Campanian and Lower Maastrichtian. 

SEM values have outliers at zero in all cases, except the Middle Campanian, where the first interquartile 

hinge is at zero. Again, zeros in this metric indicate “perfect evenness” which most commonly occurs 

when only a single FE exists in that node. Therefore, these values are not considered important in general. 

Mean and median FR values for each substage at the 360km node scale are fluctuate across the 

substages, ranging from 6.21-14.5 and 4-11, respectively. Generic richness mean and median values 

follow a similar pattern, but means are consistently much larger than median values, ranging from 12.36-

56.85 while median values range from only 6-19. Mean and median values for SME are fairly consistent, 

ranging from 0.59-0.97 and 0.43-0.85, respectively. However, the Lower, and to a lesser degree, Upper 

Maastrichtian distributions have a noticeable increase in all values (Figure S16), indicating lower overall 

evenness in these substages compared to others. 

 Proportional change in 360km node metrics indicate that FR increases across the Campanian, 

decreases between the Upper Campanian and Lower Maastrichtian, and is fairly stable overall 

between the Lower to Upper Maastrichtian (Figure 5, Table S30). Median FR proportional change 

values range from only 2% between the Lower and Upper Maastrichtian to -39% (decrease) between the 

Upper Campanian and Lower Maastrichtian. The distribution of values around these means are fairly 

consistent, except in the Upper Campanian to Lower Maastrichtian when hinge values are noticeably 

closer to the median though at least one outlier point is observed in all substages. The very small spread 

of first and third interquartile values between the Upper Campanian and Lower Maastrichtian suggests 
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that the median value is highly representative of the data for this comparison. Mean FR values of 

proportional change are higher than median values, ranging from 98% to 208% increase in FR values 

between nodes. These high mean values are most likely influenced by outliers, which are present in all 

substages (Figure 5). Proportional change in generic richness follows a very similar pattern to FR, but 

mean and median values both indicate a decrease in generic richness between the Lower and Upper 

Maastrichtian rather than stability in the metric. Again, the two are similar but decoupled. In all cases 

richness distributions cross the zero line either along the interquartile range or along the whisker (1.5* 

IQR). This suggests that not all generic or functional richness values within 360km nodes experience only 

increase or decrease across substages. 

 SME values indicate that evenness declined through the Campanian (median: -24% and -27%) 

and rose between the Upper Campanian and Lower Maastrichtian (median: 15%), but was fairly stable 

between the Lower and Upper Maastrichtian (median: -1%) (Figure 5, Table S30). Again, mean values 

are frequently higher than median values for this metric, most likely influenced by outliers. All 

distributions for SME cross the zero line, indicating that evenness change is not unanimously increasing 

or decreasing in 360km nodes between substages. Overall, SME values at this scale of analysis suggest 

declining evenness in the Campanian, then rising evenness in the Upper Campanian to Lower 

Maastrichtian, followed by relative stability in the Maastrichtian. 

Summary of Functional vs Taxonomic Diversity change in 60km2 Nodes across Substages: 
 At the 60km aggregation scale, FR distributions are fairly similar in all substages (Figure S19, 

Table S32), though Upper Maastrichtian has a noticeably larger interquartile range of FR values than 

earlier substages. Th Upper Maastrichtian generic richness distribution, on the other hand, is more similar 

in its interquartile range to other substages, except the Middle Campanian where the interquartile range is 

noticeably larger. Generic richness outliers are present in all substages, and only the Middle Campanian 

and Upper Maastrichtian lack FR outliers. SME values present interquartile ranges with similar distances 

from the median value in each substage and outliers in all substages. SEM values either have outliers at 
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zero in all cases or their first interquartile hinge is positioned at zero. Again, zeros in this metric indicate 

“perfect evenness” which most commonly occurs when only a single FE exists in that node. Therefore, 

these values are not considered important and may be misleading. 

Median FR values for each substage at the 60km node scale are fairly similar across all the substages, 

ranging from 3-4, but mean values are more variable, ranging from 3.79-10.11. This is most likely a result 

of outliers in the distribution. Generic richness mean and median values follow a similar pattern, where 

medians are fairly similar (3-6) and mean values are much more diverse (5.7-33.5). Again, mean values 

for generic richness are probably influenced by outliers in the distributions. Median values for SME show 

a clear shift from higher values in the Campanian, ranging from 0.83-0.99, to lower values in the 

Maastrichtian (0.37 and 0.38). This suggests a decrease in evenness between the Campanian and 

Maastrichtian. Mean values of SME follow a similar trend but are more variable and assumed to be more 

influenced by outlier values.  

 Proportional change in 60km node metrics indicate that FR increases across the Lower to 

Middle Campanian, is stable across the Middle to Upper Campanian, decreases between the Upper 

Campanian and Lower Maastrichtian, and is fairly stable between the Lower to Upper 

Maastrichtian (Figure 5, Table S33). Median FR proportional change values range from 0% between the 

Middle and Upper Campanian to 90% (increase) between the Lower to Middle Campanian. The upper 

and lower interquartile range values are farther from the median in both the Lower to Middle Campanian 

and Lower to Upper Maastrichtian comparisons than they are in the other two comparisons, and all 

contain numerous outlier values. All distributions cross the zero line, suggesting that not all node values 

shift in the same direction (increase or decrease). Due to outliers with extremely high proportional 

increases, mean values are consistently higher than median values of proportional change in FR.  

Proportional change in generic richness follows a very similar pattern to FR, though median 

values indicate an increase in generic richness between the Middle and Upper Campanian rather than 

stability. Again, the two are similar but decoupled. In all cases richness distributions cross the zero line. 
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This suggests that not all generic or functional richness values within 60km nodes experience only 

increase or decrease across substages. 

 SME values indicate that evenness was stable from the Lower to Middle Campanian (median: -

0%), decreased between the Middle and Upper Campanian (median: -21%), increased between the Upper 

Campanian and Lower Maastrichtian (median: 13%), and decreased between the Lower and Upper 

Maastrichtian (median: -27%) (Figure 5, Table S33). Mean values are frequently higher (more positive) 

than median values for this metric, influenced by outliers which have significant increases in evenness 

through time. All distributions for SME cross the zero line, indicating that evenness change is not 

unanimously increasing or decreasing in 60km nodes between substages. Overall, SME values at this 

scale of analysis suggest first stable then decreasing evenness in the Campanian, then rising 

evenness in the Upper Campanian to Lower Maastrichtian, followed by evenness decrease in the 

Maastrichtian. 
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Figure S18. Box and whisker plots of generic richness, FR, SME, and SEI for 360km nodes in each substage. 
Median values are denoted by a horizontal line and means by triangles. 
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Table 29. Summary statistics of generic and functional richness, SME and SEI values from 360km nodes. 

 
Lower Camp. Middle Camp. Upper Camp. Lower Maastr. Upper Maastr. 

 Generic Richness 

Mean 12.39 19.03 31.39 31.08 56.85 
Median 6.00 6.00 19.00 12.50 18.50 

SD 14.10 26.38 36.85 49.58 73.74 
  Functional Richness 

Mean 6.21 8.10 10.35 9.71 14.05 
Median 4.50 4.00 9.00 7.50 11.00 

SD 5.55 8.08 8.19 9.12 12.71 
  SME 

Mean 0.64 0.84 0.59 0.97 0.60 
Median 0.61 0.65 0.65 0.85 0.43 

SD 0.70 0.94 0.46 0.80 0.48 
  SEI 

Mean 0.80 0.68 0.69 0.83 0.74 
Median 0.92 0.91 0.88 0.92 0.82 

SD 0.34 0.43 0.39 0.26 0.32 
 

Table S30. Summary statistics of proportional change in generic and functional richness, SME and SEI values from 
360km nodes. 

  

Low Camp. – Mid 
Camp. 

Mid. Camp. – Up. 
Camp. 

Up. Camp – Low 
Maastr. 

Low Maastr. – 
Up. Maastr. 

G
en

er
ic

 
Ri

ch
ne

ss
 Mean 1.56 6.25 9.91 2.09 

Median 0.69 0.76 -0.50 -0.27 
SD 2.93 13.43 46.16 6.50 

Fu
nc

tio
na

l 
Ri

ch
ne

ss
 Mean 1.14 2.08 1.29 0.98 

Median 0.32 0.28 -0.39 0.02 
SD 2.15 3.90 7.01 3.25 

SM
E 

Mean -0.05 -0.21 0.52 0.05 
Median -0.24 -0.27 0.15 -0.01 

SD 0.36 0.34 1.08 0.61 

SE
I 

Mean 0.01 -0.05 0.05 0.00 
Median 0.00 -0.04 0.02 0.01 

SD 0.05 0.09 0.16 0.12 
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Figure S19. Box and whisker plots of generic richness, FR, SME, and SEI for 60km nodes in each substage. Median 
values are denoted by a horizontal line and means by triangles.  
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Table S31. Summary statistics of generic and functional richness, SME and SEI values from 60km nodes. 

 
Lower Camp. Middle Camp. Upper Camp. Lower Maastr. Upper Maastr. 

 Generic Richness 

Mean 5.70 9.86 10.85 12.39 33.05 
Median 4.00 6.00 5.00 3.00 6.00 

SD 5.88 10.11 15.68 26.56 44.50 
  Functional Richness 

Mean 3.79 6.04 5.65 5.26 10.11 
Median 3.00 4.00 4.00 3.00 3.50 

SD 3.28 4.94 5.20 6.10 10.35 
  SME 

Mean 0.85 1.09 0.88 0.79 0.54 
Median 0.83 0.99 0.86 0.37 0.38 

SD 0.93 1.14 0.94 1.05 0.63 
  SEI 

Mean 0.67 0.75 0.72 0.67 0.57 
Median 0.92 0.94 0.92 0.92 0.83 

SD 0.43 0.39 0.40 0.43 0.43 
 

Table S32. Summary statistics of proportional change in generic and functional richness, SME and SEI values from 
60km nodes. 

  

Low Camp. - Mid 
Camp. 

Mid. Camp. - Up. 
Camp. 

Up. Camp. - Low 
Maastr. 

Low Maastr. - Up. 
Maastr. 

G
en

er
ic

 
Ri

ch
ne

ss
 Mean 3.79 1.18 1.39 8.54 

Median 1.25 0.12 -0.38 0.00 

SD 6.58 2.49 10.92 28.09 

Fu
nc

tio
na

l 
Ri

ch
ne

ss
 Mean 2.56 0.68 0.42 2.67 

Median 0.93 0.00 -0.40 0.00 

SD 4.10 1.83 2.87 7.14 

SM
E 

Mean 0.16 -0.11 0.37 -0.32 

Median 0.00 -0.21 0.13 -0.27 

SD 0.74 0.50 0.95 0.38 

SE
I 

Mean 0.00 -0.02 0.02 -0.08 

Median 0.00 -0.02 0.02 -0.07 

SD 0.07 0.07 0.07 0.09 
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Summary of Functional vs Taxonomic Diversity change in 360km2 Nodes across Distance: 
 Proportional changes in metrics between nodes within a single substage, plotted by the 

geographic distance between the nodes indicate that change in richness values are not strongly correlated 

with distance for the Campanian substages (Figure S20-S23). In the Maastrichtian substages, increasing 

geographic distance is weakly correlated with increasing proportional change in both generic and 

functional richness (Figure S20-S21).  

SME values similarly do not show strong correlations between proportional changes to evenness 

and geographic distance, though the in all substages except the Lower Campanian, a very week negative 

trend may exist, indicating that evenness values change less as distances increase (Figure S22). This 

negative trend is most likely a product of heteroscedasticity in the data, given that low values of 

proportional change are present across all distances but high values become increasing less common as 

distances increase. Given that most nodes are fairly closely spaced there will by necessity be fewer data 

points at very great distances to compare.  

SEI values show even less of a correlation between proportional change between nodes and 

geographic distance (Figure S23). Negative trend lines observed in the figures are most likely a product of 

the highly heteroscedastic nature of the data and due to the decreasing number of data points at greater 

distances. The overall distribution of data points forms a fairly uniform cloud which has fewer values at 

greater distances, suggesting that, when baseline values of -1 are not taken into account, there is no strong 

correlation between proportional change in SEI and distance. 
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Figure S20. Proportional change in generic richness between all occupied 360km nodes in each substage plotted against distance (m). Blue lines indicate linear 
regression lines calculated for each. 
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Figure S21. Proportional change in functional richness between all occupied 360km nodes in each substage plotted against distance (m). Blue lines indicate linear 
regression lines calculated for each. 
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Figure S22. Proportional change in SME between all occupied 360km nodes in each substage plotted against distance (m). Blue lines indicate linear regression 
lines calculated for each. 
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Figure S23. Proportional change in SEI between all occupied 360km nodes in each substage plotted against distance (m). Blue lines indicate linear regression 
lines calculated for each. 
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Summary of Functional vs Taxonomic Diversity change in 60km2 Nodes across Distance: 
 Proportional changes in metrics between 60km nodes within a single substage, plotted by the 

geographic distance between the nodes indicate that change in richness values are not strongly correlated 

with distance for the Campanian substages (Figure S24-27). In the Maastrichtian substages, increasing 

geographic distance is weakly correlated with increasing proportional change in both generic and 

functional richness (Figure S24-S25).  

Proportional changes in SME values for 60km nodes are very slightly negatively correlated with 

the geographic between nodes at this scale of analysis (Figure S26). SEI values show no correlation 

between proportional change across nodes and geographic distance between those nodes when values of -

1 are not considered (Figure S27). Negative trend lines observed in the figures are most likely a product 

of the highly heteroscedastic nature of the data and due to the decreasing number of data points at greater 

distances. The overall distribution of data points forms a fairly uniform cloud which has fewer values at 

greater distances, suggesting that, when baseline values of -1 are not taken into account, there is no strong 

correlation between proportional change in SEI and distance. These patterns are extremely similar to 

those observed at the 360km node scale, excepting that a negative trend in the proportional change in 

SME with distance is dampened. 
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Figure S24. Proportional change in generic richness between all occupied 60km nodes in each substage plotted against distance (m). Blue lines indicate linear 
regression lines calculated for each. 
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Figure S25. Proportional change in functional richness between all occupied 60km nodes in each substage plotted against distance (m). Blue lines indicate linear 
regression lines calculated for each. 
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Figure S26. Proportional change in SME between all occupied 60km nodes in each substage plotted against distance (m). Blue lines indicate linear regression 
lines calculated for each. 
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Figure S27. Proportional change in SEI between all occupied 60km nodes in each substage plotted against distance (m). Blue lines indicate linear regression lines 
calculated for each. 
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Summary of 360km2 Functional Entity Networks: 
When all substages are modeled in a single network, strong network connections exist across the 

entire study interval and no clear pattern of provinciality is observed (Figure S30). Two major 

components are observed in the network at percolation (TH=0.36), but they do not appear to represent 

any consistent geographic region, instead overlapping similarly to the components observed in the Middle 

Campanian. Furthermore, the geographically distinct secondary component in the Upper Maastrichtian 

GCP region shares strong node similarities with both WIS and GCP regions in previous substages, 

indicating that this is not a geographically consistent set of FE assemblages. 
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Figure S28. Network models of Campanian substages based on 360km nodes. All networks show connections 
present at percolation with the threshold level denoted below the substage name. Models on the left are not plotted 
based on any geographic position, models on the right are plotted based on paleo-latitude coordinates. Node colors 
indicate paleo-latitudes (warmer = southern paleo-latitudes and cooler = northern paleo-latitudes). Color and size of 
links between nodes indicates the level of similarity (thicker and lighter = more similar). Middle Campanian 
components are denoted with arrows. 



Supplementary Materials for Purcell and Myers, 20XX 386 
 

386 
 

 

Figure S29. Network models of Maastrichtian substages based on 360km nodes. All networks show connections 
present at percolation with the threshold level denoted below the substage name. Models on the left are not plotted 
to show components and models on the right are plotted based on paleo-latitude coordinates. Node colors indicate 
paleo-latitudes (warmer = southern paleo-latitudes and cooler = northern paleo-latitudes). Color and size of links 
between nodes indicates the level of similarity (thicker and lighter = more similar). The two components present in 
the Upper Maastrichtian network are indicated with arrows. 
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Table S33. List of FE in each major network component for the Middle Campanian and Upper Maastrichtian based 
on 360km nodes. FEs which are shared by all nodes in the component are denoted with asterisks. FEs which are 
shared by all nodes in the component are denoted with asterisks. These components were separated based on 
manually thresholded networks created below percolation: TH=0.52 for the Middle Camp. and TH=0.75 for the 
Upper Maastr. FEs representative of gastropods are indicated with a gastropod symbol ( ). 

Middle Campanian Upper Maastrichtian 

Primary component   
(WIS region) 

Secondary Component 
(WIS region) 

Primary component    
(WIS region) 

Secondary Component 
(GCP region) 

MU-E-C MU-NB-SF* MU-E-O   MU-E-C   
MU-NB-C  MU-N-SF MU-I-D 
MU-PI-C  MU-NB-SF FU-I-D 
FU-I-C*  MU-E-C   FU-PI-H   

MU-I-D*  FU-E-SF   IA-B-SF 
MU-PI-H   IU-B-SF 

FU-I-D   FU-I-SF* 
FU-I-SF*   FA-E-SF   
FA-E-SF   FU-E-SF   
FU-E-SF   IA-E-SF* 
IA-E-SF*   IU-E-SF 
MU-N-SF   MU-E-SF   

MU-NB-SF*   MU-N-SF 
MU-I-SF   MU-NB-SF* 
IA-I-SF   MU-I-SF 

MU-N-C   IA-I-SF 
FU-I-CH   MU-N-C 
MU-I-CH   MU-NB-C 
MU-E-O   MU-PI-C   
FA-I-SF   FU-I-C 
IU-E-SF   MU-I-C   

MU-E-SF   FU-I-CH 
FA-PI-SF   MU-I-CH 
IA-PI-SF   FA-I-D 
IU-I-SF   FU-E-H   
FU-PI-H   MU-E-H   
MU-PI-D   MU-PI-H   
MU-I-C   MU-E-O   
IU-B-SF   IU-PI-P 
MU-E-H   MU-PI-D 

   FU-B-SF 
   FA-I-SF 
   FA-PI-SF 
   IA-E-P 
   IA-PI-P 
   IU-I-SF 
   IA-PI-SF 
   MU-E-D 
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Figure S30. Network model of the entire database using 360km2 nodes. Nodes are colored by substage 
and plotted on paleo-map reconstructions(Kocsis and Raja 2020) based on relative paleo-location (nodes 
may be offset to make visualization easier) Node size indicates betweenness centrality and link color and 
size indicates the degree of functional similarity (lighter and thicker = more similar).  
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Summary of 60km2 Functional Entity Networks: 
In the Lower Maastrichtian a small highly similar group of nodes (which only disconnect from 

other nodes at thresholds below percolation) geographically overlies the more extensive but less similar 

primary component, mostly in the WIS region (Figure 8). The larger, less similar component is dominated 

by functionally diverse nodes with highly variable FEs, none of which are shared by all nodes in the 

component, while the highly similar component is dominated by functionally depauperate nodes with a 

single shared FE of mobile, unattached, nekto-benthic suspension feeders (cephalopods; Table S34). The 

third component in the Lower Maastrichtian that is geographically located in the eastern GCP region is 

dominated by only mobile, unattached, nektonic, suspension feeders (cephalopods). Therefore, in this 

Lower Maastrichtian network, high FE assemblage similarity is predominately controlled by a disparity 

between FE diversity in different nodes, which can most likely be attributed to sampling bias. Since 

generic richness strongly correlates with both sampling and FR values, it is likely that the separation of 

components in this substage is a product of sampling disparity between nodes. 

 In the Upper Maastrichtian, where functional similarity has a clear geographical signal, sampling 

bias may be similarly influencing network topology. In this substage, WIS region sampling is not as 

strong as GCP region sampling, which may explain the functionally less diverse WIS component that 

does not share any FEs between all nodes and the highly diverse GCP component whose nodes all share 

five total FEs. The Upper Maastrichtian components are characterized by a functional depauperate WIS 

assemblage is dominated by mobile, unattached, nekto-benthic and nektonic suspension feeders 

(cephalopods) and facultatively mobile, epifaunal suspension feeders (gastropods/bivalves) and a highly 

functionally diverse GCP assemblage. 
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Table S34. List of FE in each major network component for the Lower and Upper Maastrichtian based on 60km 
nodes. FEs which are shared by all nodes in the component are denoted with asterisks. These components were 
separated based on manually thresholded networks created below percolation: TH=0.45 for the Lower Maastr and 
TH=0.50 for the Upper Maastr. In the Upper Maastrichtian, FEs representative of gastropods are indicated with a 
gastropod symbol ( ). 

Lower Maastrichtian Upper Maastrichtian 

Component 1 
(WIS region) 

Component 2 
(WIS region) 

Component 3 
(Eastern GCP 

region) 

Primary 
component  
(WIS region) 

Secondary 
Component 
(GCP region) 

MU-I-D MU-NB-SF* MU-N-SF* MU-NB-SF FA-E-SF*   
FU-I-D    MU-N-SF FA-I-D 
FA-I-SF    FU-E-SF   FA-I-SF 
FU-I-SF     FA-PI-SF 
IU-I-SF     FU-B-SF 

FU-E-SF     FU-E-H   
IA-E-SF     FU-E-SF*   

MU-NB-SF     FU-I-C 
MU-E-C     FU-I-CH 
MU-PI-C     FU-I-D 
FU-I-CH     FU-I-SF* 
MU-PI-H     FU-PI-H   
IU-B-SF     IA-B-SF 
FA-E-SF     IA-E-P 
FA-PI-SF     IA-E-SF* 
FU-I-C     IA-I-SF 
FA-I-D     IA-PI-P 

MU-E-H     IA-PI-SF 
FU-PI-H     IU-B-SF 
MU-PI-D     IU-E-SF 
IA-B-SF     IU-I-SF 

MU-E-SF     IU-PI-P 
MU-N-SF     MU-E-C*   
MU-I-SF     MU-E-D 
IA-I-SF     MU-E-H   

MU-N-C     MU-E-O   
MU-NB-C     MU-E-SF   

IU-E-SF     MU-I-C   
MU-E-O     MU-I-CH 
MU-I-CH     MU-I-D 
MU-I-C     MU-I-SF 
IA-PI-P     MU-NB-C 

MU-E-D     MU-NB-SF 
IA-PI-SF     MU-N-C 
FU-E-H     MU-N-SF 

      MU-PI-C   
      MU-PI-D 
        MU-PI-H   
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Table S35. List of paleo-environments provided by the PBDB for select occurrences found in network components 
for the Lower and Upper Maastrichtian (see Table S34). Environmental descriptions which include carbonaceous 
attributes are in bold. In the Upper Maastrichtian components, a potential difference between siliciclastic dominated 
and carbonaceous-dominated environments may be present, but more data is necessary to determine this pattern than 
is possible given the scope of this project. 

Lower Maastrichtian Upper Maastrichtian 
Component 1 (WIS 

region) 
Component 2 (WIS 

region) Primary component Secondary Component 

Offshore, siliciclastic Siliciclastic shale Shale Argillaceous sandstone 
Sandstone Siliciclastic sediments Sandstone Siltstone 

Calcareous 
carbonaceous SS Offshore limestone Sandstone Sandy chalk 
Gray Sandstone Siltstone Shale Silty sandstone 

Grey Sandstone   
Siliciclastic silty 
mud/sandstone Chalk 

Grey Sandstone   Sandstone/silty shale Chalk 
Sandstone   Sandstone Grey Sandstone 

Concretionary sideritic 
calcareous shale      

Concretionary shale      

Calcareous shale and 
grey limestone 

(offshore)       
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Figure S31. Bray-Curtis dissimilarity values between 360km nodes plotted by distance.  
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Figure S32. Bray-Curtis dissimilarity values between 60km nodes plotted by distance.  
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Summary of 60km2 Class-level Functional Entity Networks: 
 Class-level analysis of 60km2 networks indicates that bivalves and cephalopods, which make up 

the majority of FEs in the database, form strong network connections across all regions and lack a 

geographic or provincial signal (Figure S33-S36). However, it should be noted that Late Maastrichtian 

bivalves are not common and form poor network connections in general, though not necessarily based on 

geography (Figure S36). The strongly connected, functionally depauperate components in the Lower 

Maastrichtian are represented by specific, shared cephalopod FEs (Table S4). Their sampling is not 

strongly provincial, and therefore most likely produces the lack of provinciality in most substage 

networks where they form the dominate taxa. Gastropods, on the other hand, are strongly provincial 

(Figure S37-S38). Indeed, the three of the five FEs which are shared by all nodes in the GCP component 

of the Upper Maastrichtian are represented by gastropods and eleven of the 38 FEs possible in this region 

are represented by gastropods. Gastropods, therefore, are considered to have the prevailing influence on 

provinciality in FE assemblages in the Upper Maastrichtian. 
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Figure S33. Campanian cephalopod substage networks plotted without any geographic coordinates (left) and based 
on paleo-coordinates (right). Node colors indicate paleo-latitude where warmer colors indicate southern paleo-
latitudes and cooler colors indicate northern paleo-latitude.  
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Figure S34. Maastrichtian cephalopods substage networks plotted without any geographic coordinates (left) and 
based on paleo-coordinates (right). Node colors indicate paleo-latitude where warmer colors indicate southern paleo-
latitudes and cooler colors indicate northern paleo-latitude. 
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Figure S35. Campanian bivalve substage networks plotted without any geographic coordinates (left) and based on 
paleo-coordinates (right). Node colors indicate paleo-latitude where warmer colors indicate southern paleo-latitudes 
and cooler colors indicate northern paleo-latitude. 
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Figure S36. Maastrichtian bivalve substage networks plotted without any geographic coordinates (left) and based on 
paleo-coordinates (right). Node colors indicate paleo-latitude where warmer colors indicate southern paleo-latitudes 
and cooler colors indicate northern paleo-latitude. 
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Figure S37. Campanian gastropod substage networks plotted without any geographic coordinates (left) and based on 
paleo-coordinates (right). Node colors indicate paleo-latitude where warmer colors indicate southern paleo-latitudes 
and cooler colors indicate northern paleo-latitude. 
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Figure S38. Maastrichtian gastropod substage networks plotted without any geographic coordinates (left) and based 
on paleo-coordinates (right). Node colors indicate paleo-latitude where warmer colors indicate southern paleo-
latitudes and cooler colors indicate northern paleo-latitude. 

  



Supplementary Materials for Purcell and Myers, 20XX 401 
 

401 
 

References 
Alroy, J. (2010). Geographical, environmental and intrinsic biotic controls on Phanerozoic marine 

diversification. Palaeontology, 53(6), 1211–1235. https://doi.org/10.1111/j.1475-
4983.2010.01011.x 

Baselga, A., & Orme, C. D. L. (2012). Betapart: An R package for the study of beta diversity. Methods in 
Ecology and Evolution, 3(5), 808–812. https://doi.org/10.1111/j.2041-210X.2012.00224.x 

Kocsis, Á. T., & Raja, N. B. (2020). chronosphere: Earth system history variables. 

Magurran, A. E. (2003). Measuring Biological Diversity. Blackwell Science Ltd. 

Schumm, M., Edie, S. M., Collins, K. S., Gómez-Bahamón, V., Supriya, K., White, A. E., Price, T. D., & 
Jablonski, D. (2019). Common latitudinal gradients in functional richness and functional 
evenness across marine and terrestrial systems. Proceedings of the Royal Society B: Biological 
Sciences, 286(1908). https://doi.org/10.1098/rspb.2019.0745 

  



Supplementary Materials for Purcell and Myers, 20XX 402 
 

402 
 

Appendix B-2. Functional Ecology References for Table S36 

Aberhan, M., 1994, Guild-structure and evolution of Mesozoic benthic shelf communities: Palaios, v. 9, 
p. 516–545, doi:10.2307/3515126. 

Aberhan, M., 1992, Palokologie und zeitliche Verbreitung benthischer Faunengemeinschaften im 
Unterjura von Chile: Beringeria, v. 5, p. 1–174. 

Aberhan, M., Alroy, J., Fursich, F.T., Kiessling, W., Kosnik, M., Madin, J., Patzkowsky, M., and Wagner, P., 
2004, Ecological attributes of marine invertebrates: unpublished,. 

Aberhan, M., and Kiessling, W., 2015, Persistent ecological shifts in marine molluscan assemblages 
across the end-Cretaceous mass extinction: Proceedings of the National Academy of Sciences of 
the United States of America, v. 112, p. 7207–7212, doi:10.1073/pnas.1422248112. 

Anderson, L.A., 2014, Relationships of Internal Shell Features to Chemosymbiosis, Life Position, and 
Geometric Constraints Within the Lucinidae (Bivalvia), in Hembree, D., Platt, B., and Smith, J. eds., 
Experimental Approaches to Understanding Fossil Organisms. Topics in Geobiology, Dordrecht, 
Springer, v. 41. 

Andrade, C., and Brey, T., 2014, Trophic ecology of limpets among rocky intertidal in Bahia Laredo, Strait 
of Magellan (Chile): Anales del Instituto de la Patagonia, v. 42, p. 65–70, doi:10.4067/s0718-
686x2014000200006. 

Ansell, A.D., 1978, On the rate of growth of Nuculana minuta (Muller)(Bivalvia: Nuculanidae): Journal of 
Molluscan Studies, v. 44, p. 71–82. 

Ansell, A.D., and Morton, B., 1987, Alternative predation strategies of a tropical naticid gastropod: 
Journal of Experimental Marine Biology and Ecology, v. 111, p. 109–119. 

Ansell, A.D., and Morton, B., 1985, Aspects of naticid predation in Hong Kong with special reference to 
the defensive adaptations of Bassina (Callanaitis) calophylla (Bivalvia), in Moron, B. and Dudgeon, 
D. eds., Proceedings of the Second International Workshop on the Malacofauna of Hong Kong and 
Southern China, Hong Kong, 1983, Hong Kong, Hong Kong University Press. 

Avelar, W., and Cunha, A.D., 2009, The anatomy and functional morphology of Diplodon rhombeus 
fontainianus (Orbigny, 1835) (Mollusca Bivalvia, Hyriidae).: 

Bambach, R.K., Bush, A.M., and Erwin, D.H., 2007, Autecology and the filling of ecospace: Key metazoan 
radiations: Palaeontology, v. 50, p. 1–22, doi:10.1111/j.1475-4983.2006.00611.x. 

Berg, C.J.Jr., 1975, Behavior and ecology of conch (Superfamily Strombacea) on a deep subtidal algal 
plain: Bulletin of Marine Science, v. 25, p. 307–317. 

Berke, S.K., and Woodin, S.A., 2009, Behavioral and Morphological Aspects of Decorating in Oregonia 
gracilis (Brachyura: Majoidea):, https://about.jstor.org/terms. 

Beu, A.G., and Maxwell, P.A., 1987a, A revision of the fossil and living gastropods related to Plesiotriton 
Fischer, 1884 (Family Cancellariidae, Subfamily Plesiotritoninae n. subfam.). With an appendix: 



Supplementary Materials for Purcell and Myers, 20XX 403 
 

403 
 

Genera of Buccinidae Pisaniinae related to Colubraria Schumacher, 1817: New Zealand Geological 
Survey Paleontological Bulletin, v. 54, p. 1–140. 

Bishop, G., Feldmann, R.M., and Vega, F., 1998, The Dakoticancridae (Decapoda, Brachyura) from the 
Late Cretaceous of North America and Mexico: Contributions to Zoology, v. 67, p. 237–255. 

Blake, D.B., 1990, Adaptive zones of the Class Asteroidea (Echinodermata): Bulletin of Marine Science-
Miami, v. 46, p. 701–718. 

Boyd, D.W., and Newell, N.D., 2002, A unique pterioid bivalve from the Early Triassic of Utah: American 
Museum Novitates, v. 3375, p. 1–9. 

Bryan, J.R., and Jones, D.S., 1989, Fabric of the cretaceous-tertiary marine macrofaunal transition at 
Braggs, Alabama: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 69, p. 279–301. 

Burn, R., and Thompson, T.E., 1998, Order Cephalaspidea, in Beesley, P.L., Ross, G.J.B., and Wells, A. 
eds., Mollusca: The Southern Synthesis. Fauna of Australia, Melbourne, CSIRO Publishing, v. 5, p. 
943–959. 

Carter, J.G., 1978, Ecology and evolution of the Gastrochaenacea (Mollusca, Bivalvia) with notes on the 
evolution of the endolithic habit: Bulletin of the Peabody Museum of Natural History, Yale 
University, v. 41, p. 1–92. 

Carter, R.M., 1968, Functional studies on the Cretaceous oyster Arctostrea: Paleontology, v. 11, p. 458–
485. 

Cartes, J.E., 1993, Diets of deep-sea brachyuran crabs in the Western Mediterranean Sea: Marine 
Biology, v. 117, p. 449–457, doi:10.1007/BF00349321. 

Casey, R., 1960, A Lower Cretaceous gastropod with fossilized intestines: Paleontology, v. 2, p. 270–276. 

Chew, K.K., 1960, Study of food preferences and rate of feeding of the Japanese oyster drill Ocenebra 
japonica: Special Science Report, US Fish and Widlife Service, v. 365, p. 1–27. 

Cleevey, R.J., and Morris, N.J., 1988, Taxonomy and ecology of Cretaceous Cassiopidae 
(Mesogastropoda): Bulletin of the British Museum (Natural History) Geology, v. 44, p. 233–291. 

Clements, J.C., Ellsworth-Power, M., and Rawlings, T.A., 2013, Diet breadth of the northern moonsnail 
(Lunatia heros) on the Northwestern Atlantic Coast (Naticidae): American Malacological Bulletin, v. 
31, p. 331–336, doi:10.4003/006.031.0212. 

Crovo, M.E., 1971a, Cypraea cervus and Cypraea zebra in Florida - one species or two ? The Veliger, v. 
13, p. 292–295. 

Dando, P.R., Southward, A.J., and Southward, E.C., 1986, Chemoautotrophic symbionts in the gills of the 
bivalve mollusc Lucinoma borealis and the sediment chemistry of its habitat: Proceedings of the 
Royal Society of London, Series B, Biological Sciences, v. 227, p. 227–247. 

Diaz, J.M., and Torres, D.C., 2009, Rediscovery of a Caribbean living fossil: Pholadomya candida G. B. 
Sowerby I, 1823 (Bivalvia: Anomalodesmata: Pholadomyoidea): Nautilus, v. 123, p. 19–20. 



Supplementary Materials for Purcell and Myers, 20XX 404 
 

404 
 

Dominici, S., and Zuschen, M., 2016, Palaeocommunities, diversity  and sea-level change from middle 
Eocene shell beds of the Paris  Basin: Journal of the Geological Society, v. 173, p. 889–900. 

Dushane, H., 1985, The Family Epitioniidae of Panama Bay: The Festivus, v. 17, p. 68–75. 

Dushane, H., 1974, The Panamic-Galapagan Epitoniidae: The Veliger, v. 16, supplement, p. 1–84. 

Edie, S.M., Jablonski, D., and Valentine, J.W., 2018, Contrasting responses of functional diversity to 
major losses in taxonomic diversity: Proceedings of the National Academy of Sciences of the United 
States of America, v. 115, p. 732–737, doi:10.1073/pnas.1717636115. 

Endean, R., 1972, Aspects of molluscan pharmacology, in Florkin, M. and Scheer, B.T. eds., Chemical 
Zoology, Mollusca, New York, Academic Press, v. 7, p. 421–466. 

Fearon, J., and Clapham, M., 2023, Decapod Life Habit: Placeholder reference,. 

Fleming, C.A., 1978, The bivalve mollusc genus Limatula: A list of described species and a review of living 
and fossil species in the Southwest Pacific: Journal of the Royal Society of New Zealand, v. 8, p. 17–
91, doi:10.1080/03036758.1978.10419418. 

de Forges, R.B., 2006, Découverte en mer du Corail d’une deuxième espèce de glyphéide (Crustacea, 
Decapoda, Glypheoidea): Zoosystema, v. 28, p. 17–29, www.zoosystema.com. 

Fontoura-da-Silva, V., de Souza Dantas, R.J., and Caetano, C.H.S., 2013, Foraging tactics in Mollusca: A 
review of the feeding behavior of their most obscure classes (Aplacophora, Polyplacophora, 
Monoplacophora, Scaphopoda and Cephalopoda): Oecologia Australis, v. 17, p. 358–373, 
doi:10.4257/oeco.2013.1703.04. 

Foster, W.J., Garvie, C.L., Weiss, A.M., Muscente, A.D., Aberhan, M., Counts, J.W., and Martindale, R.C., 
2020, Resilience of marine invertebrate communities during the early Cenozoic hyperthermals: 
Scientific Reports, v. 10, doi:10.1038/s41598-020-58986-5. 

Fretter, V., 1975, Umbonium vestiarium, a filter-feeding trochid: Journal of Zoology, v. 177, p. 514–552. 

Fretter, V., and Graham, A., 1978, The prosobranch molluscs of Britain and Denmark. Part 4 - marine 
Rissoacea: Journal of Molluscan Studies, Supplement, v. 6, p. 152–241. 

Fretter, V., and Graham, A., 1981, The prosobranch molluscs of Britain and Denmark. Part 6 - 
Cerithiacea, Strombacea, Hipponicacea, Calyptraeacea, Lamellariacea, Cypraeacea, Naticacea, 
Tonnacea, Heteropoda: Journal of Molluscan Studies, Supplement, 9, p. 285–362. 

Fretter, V., Graham, A., and Andrews, E.B., 1986, The prosobranch molluscs of Britain and Denmark. Part 
9 - Pyramidellacea: The Journal of Molluscan Studies, Supplement 16, p. 557–649. 

Fretter, V., and Manly, R., 1977, Algal associations of Tricolia pullus, Lacuna vincta and Cerithiopsis 
tubercularis (Gastropoda) with special reference to the settlement of their larvae: Journal of the 
Marine Biological Association of the United Kingdom, v. 57, p. 1999–1017. 

Fuchs, D., Iba, Y., Heyng, A., Iijima, M., Klug, C., Larson, N.L., and Schweigert, G., 2020, The 
Muensterelloidea: phylogeny and character evolution of Mesozoic stem octopods: Papers in 
Palaeontology, v. 6, p. 31–92, doi:10.1002/spp2.1254. 



Supplementary Materials for Purcell and Myers, 20XX 405 
 

405 
 

Fursich, F.T., and Kirkland, J.I., 1986, Biostratinomy and paleoecology of a Cretaceous brackish lagoon: 
PALAIOS, v. 1, p. 543–560. 

Fursich, F.T., and Pandey, D.K., 1999, Genesis and environmental significance of Upper Cretaceous shell 
concentrations from the Cauvery Basin, southern India: Palacogeography, Palaeoclimatology, 
Palaeoecology, v. 145, p. 119–139. 

Fushs, D., Iba, Y., Heyng, A., Iijima, M., Klug, C., Larson, N.L., and Schweigert, G., 2019, The 
Muensterelloidea: phylogeny and character evolution of Mesozoic stem octopods: Papers in 
Paleontology, v. 6, p. 31–92. 

Graham, A., 1966, The R/V Pillsbury deep-sea biological expedition to the Gulf of Guinea, 1964-65. 8. 
The fore-gut of some marginellid and cancellariid prosobranchs: Studies in Tropical Oceanography, 
v. 4, p. 134–151. 

Grau, G., 1959, Pectinidae of the Eastern Pacific: Allan Hancock Pacific Expeditions, v. 23, p. 1–308. 

Griffiths, R.J., 1981, Predation on the bivalves Choromytilus meridionalis (Kr.) by the gastropod Natica 
(Tectonatica) tecta Anton: Journal of Molluscan Studies, v. 47, p. 112–120. 

Guerrero, S., and Reyment, R.A., 1988, Predation and feeding in the naticid gastropod Naticarius 
intricatoides (Hidalgo): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 68, p. 49–52. 

Hadfield, M.G., 1976, Molluscs associated with living tropical corals: Micronesica, v. 12, p. 133–148. 

Hansen, T., Farrand, R.B., Montgomery, H.A., Billman, H.G., and Blechschmidt, G., 1987, Sedimentology 
and extinction patterns across the Cretaceous-Tertiary boundary interval in east Texas: Cretaceous 
Research, v. 8, p. 229–252. 

Hansen, T., and Surlyk, F., 2014, Marine macrofossil communities in the uppermost Maastrichtian chalk 
of Stevns Klint, Denmark: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 399, p. 323–344, 
doi:10.1016/j.palaeo.2014.01.025. 

Harasewych, M.G., and Petit, R.E., 1982, Notes on the morphology of Cancellaria reticulata (Gastropoda: 
Cancellariidae): The Nautilus, v. 96, p. 104–113. 

Harasewych, M.G., and Petit, R.E., 1984, Notes on the morphology of Olsonella smithii (Gastropoda: 
Cancellariidae): The Nautilus, v. 98, p. 37–44. 

Hardison, L.K., and Kitting, C.L., 1985, Epiphytic algal browsing by Bittium varium (Gastropoda) among 
Thalassia testudinium turtlegrass: Journal of Phycology, v. 21, p. 1–13. 

Haszprunar, G., 1985, Zur Anatomie und systematischen Stellung der Architectonicidae (Mollusca, 
Allogastropoda): Zoologica Scripta, v. 14, p. 25–43. 

Hayami, I., 1984, Natural history and evolution of Cryptopecten (a Cenozoic- Recent pectinid genus): The 
University Museum, The University of Tokyo, Bulletin, 24, p. 1–149. 

Hayami, I., and Noda, M., 1977, Notes of the Morphology of Neithea (Cretaceous Pectinids) with 
taxonomic revision of Japanese species: Tansactions and Proceedings of the Palaeontological 
Society of Japan, N.S., v. 105, p. 27–54. 



Supplementary Materials for Purcell and Myers, 20XX 406 
 

406 
 

Hayes, T., 1983, The influence of diet on local distribution of Cypraea: Pacific Science, v. 37, p. 27–36. 

Healey, J.M., and Lamprell, K., 1998, Superfamily Mactroidea, in Beesley, B.L., Ross, G.J.B., and Wells, A. 
eds., Mollusca: The Southern Synthesis. Fauna of Australia, Melbourne, CSIRO Publishing, v. 5, p. 
336–340. 

Heinberg, C., 1999, Lower Danian bivalves, Stevns Klint, Denmark: continuity across the K/T boundary: 
Palaeogeography, Palaeoclimatology, Palaeoecology, v. 154, p. 87–106. 

Hendy, A., Aberhan, M., Alroy, J., Kiessling, W., Lin, A., and LaFlamme, M., 2009, Unpublished ecological 
data in support of GSA 2009 abstract: A 600 million year record of ecological diversification: 

Hickman, C.S., 1998, Superfamily Trochoidea, in Beesley, P.L., Ross, G.J.B., and Wells, A. eds., Mollusca: 
The Southern Synthesis. Fauna of Australia, Melbourne, CSIRO Publishing, v. 5, p. 671–692. 

Hickman, C.S., and Lipps, J.H., 1983, Foraminiferivory; selective ingestion of foraminifera and test 
alterations produced by the gastropod Olivella: Journal of Foraminiferal Research, v. 13, p. 108–
114. 

Hickman, C.S., and McLean, J.H., 1990, Systematic revision and suprageneric classification of trochacean 
gastropods: Natural History Museum of Los Angeles County, Science Series, v. 35, p. 1–169. 

Hicks, G.R.F., and Marshall, B.A., 1985, Sex selective predation of deep-sea meiobenthic copepods by 
pectinacean bivalves and its influence on copepod sex ratios: New Zealand Journal of Marine and 
Freshwater Research, v. 19, p. 227–231. 

Hoffmann, R., and Stevens, K., 2020, The palaeobiology of belemnites – foundation for the 
interpretation of rostrum geochemistry: Biological Reviews, v. 95, p. 94–123, 
doi:10.1111/brv.12557. 

Houbrick, R., 1981, Growth studies on the genus Cerithium (Gastropoda: Prosobranchia) with notes on 
ecology and microhabitats: The Nautilus, v. 88, p. 14–27. 

Houbrick, R., 1993, Phylogenetic relationships and generic review of the Bittiinae (Prosobranchia: 
Cerithioidea): Malacologia, v. 35, p. 261–313. 

Houbrick, R., 1978, The family Cerithiidae in the Indo-Pacific. Part 1: the genera Rhinoclavis, 
Pseudovertagus and Clavocerithium: Monographs of Marine Mollusca, v. 1, p. 250–430. 

Houbrick, R., and Fretter, R., 1969, Some aspects of the functional anatomy and biology of Cymatium 
and Bursa: Proceedings of the Malacological Society of London, v. 38, p. 415–429. 

Hubber, M., 2010, Compendium of bivalves. A full-color guide to 3,300 of the world’s marine bivalves. A 
status on Bivalvia after 250 years of research: Hackenheim, Conchbooks, 1–901 p. 

Hughes, R.N., 1986, Laboratory observations on the feeding behaviour, reproduction and morphology of 
Galeodea echinophora (Gastropoda, Cassidae): Zoological Journal of the Linnean Society, v. 86, p. 
355–365. 

Hughes, R.N., and Hughes, H.P.I., 1981, Morphological and behavioural aspects of feeding in the 
Cassidae (Tonnacea, Mesogastropoda): Malacologia, v. 20, p. 385–402. 



Supplementary Materials for Purcell and Myers, 20XX 407 
 

407 
 

Hurst, A., 1965, Studies on the structure and function of the feeding apparatus of Philine aperta with a 
comparative consideration of some other opisthobranchs: Malacologia, v. 2, p. 221–347. 

Jablonski, D., and Bottjer, D.J., 1983, Soft-bottom epifaunal suspension-feeding assemblages in the Late 
Cretaceous: implications for the evolution of benthic paleocommunities., in Taevesz, M.J.S. and 
McCall, P.L. eds., Biotic Interactions in Recent and Fossil Benthic Communities, New York, Plenum 
Press. 

Jackson, J.B.C., 1973, The ecology of molluscs of Thalassia communities, Jamaica, West Indies. 1. 
Distribution, environmental physiology, and ecology of common shallow-water species: Bulletin of 
Marine Science, v. 23, p. 313–350. 

Jell, P.A., and Adrain, J.M., 2003, Available generic names for trilobites: Memoirs of the Queensland 
Museum, v. 48, p. 331–553. 

Jenny, D., Fuchs, D., Arkhipkin, A.I., Hauff, R.B., Fritschi, B., and Klug, C., 2019, Predatory behaviour and 
taphonomy of a Jurassic belemnoid coleoid (Diplobelida, Cephalopoda): Scientific Reports, v. 9, 
doi:10.1038/s41598-019-44260-w. 

Johnson, C.C., and Kauffman, E.K., 1996, Chapter 9,  Maastrichtian extinction patterns of Caribbean 
Province  rudists, in MacLeod, N. and Keller, G. eds., Cretaceous-Tertiary mass extinctions: biotic 
and environmental change, New York-London, Norton and Company, p. 231–272. 

Juinio, M.A.R., and Cobb, J.S., 1992a, Natural diet and feeding habits of the postlarval lobster Homarus 
americanus: Marine Ecology Progress Series, v. 85, p. 83–91, doi:10.3354/meps085083. 

Kay, E.A., 1960, The functional morphology of Cypraea caputserpentis L. and the interpretation of the 
relationships among the Cypraeacea: Internationale Revue Gesamten Hydrobiologie, v. 45, p. 175–
196. 

Keupp, H., Hoffmann, R., Stevens, K., and Albersdörfer, R., 2016, Key innovations in Mesozoic 
ammonoids: the multicuspidate radula and the calcified aptychus: Palaeontology, v. 59, p. 775–
791, doi:10.1111/pala.12254. 

Kiessling, W., 2004, Ecology opinions: 

Kirkland, J.I., 1996, Paleontology of the Greenhorn Cyclothem (Cretaceous: Late Cenomanian to Middle 
Turonian) at Black Mesa, Northeastern Arizona: New Mexico Museum of Natural History and 
Science, Bulletin , v. 6, p. 1–131. 

Klug, C., Schweigert, G., Fuchs, D., and de Baets, K., 2021, Distraction sinking and fossilized coleoid 
predatory behaviour from the German Early Jurassic: Swiss Journal of Palaeontology, v. 140, 
doi:10.1186/s13358-021-00218-y. 

Knudsen, J., 1967, The John Murray expedition 1933-34. The deep sea Bivalvia: Scientific Reports. The 
John Murray Expedition 1933-34, v. 11, p. 237–343. 

Kohl, B., and Vokes, H.E., 1994, On the living habits of Acesta bullisi (Vokes) in chemosynthetic bottom 
communities, Gulf of Mexico: The Nautilus, v. 108, p. 9–14. 



Supplementary Materials for Purcell and Myers, 20XX 408 
 

408 
 

Kohn, A.J., 2001, The Conidae of India revisited: Phuket Marine Biological Center Special Publication, v. 
25, p. 357–362, doi:10.1080/00222937800770171. 

Kohn, A.J., Taylor, J.D., and Wai, J.M., 1997, Diets of predatory gastropods of the families Mitridae and 
Buccinidae in the Houtman Abolhos Islands, Western Australia, in Wells, F.E. ed., Proceedings of 
the Seventh International Marine Biological Workshop: The Marine Flora and Fauna of the 
Houtman Abrolhos Islands, Western Australia, Perth, Western Australian Museum, v. 1, p. 133–
139. 

Komatsu, T., 2013, Palaeoecology of the mid-Cretaceous siphonate bivalve genus Goshoraia (Mollusca, 
Veneridae) from Japan: Palaeontology, v. 56, p. 381–397, doi:10.1111/j.1475-4983.2012.01206.x. 

Kropp, R.K., 1982, Response of five holothurian species to attack by a predatory gastropod, Tonna 
perdix: Pacific Science, v. 36, p. 445–452. 

Kruta, I., Landman, N.H., Rouget, I., Cecca, F., and Larson, N.L., 2010, The jaw apparatus of the Late 
Cretaceous ammonite Didymoceras : Journal of Paleontology, v. 84, p. 556–560, doi:10.1666/09-
110.1. 

Kruta, I., Landman, N., Rouget, I., Cecca, F., and Tafforeau, P., 2011, The role of ammonites in the 
mesozoic marine food web revealed by jaw preservation: Science, v. 331, p. 70–72, 
doi:10.1126/science.1198793. 

Landman, N.H., Tsujita, C.J., Cobban, W.A., Larson, N.L., Tanabe, K., and Flemming, R.L., 2006, Jaws of 
late cretaceous placenticeratid ammonites: How preservation affects the interpretation of 
morphology: American Museum Novitates, p. 1–48, doi:10.1206/0003-
0082(2006)500[0001:JOLCPA]2.0.CO;2. 

Laxton, J.H., 1971, Feeding in some Australasian Cymatiidae (Gastropoda: Prosobranchia): Zoological 
Journal of the Linnnean Society, v. 50, p. 1–9. 

Leonard-Pingel, J.S., and Jackson, J.B.C., 2013, Drilling intensity varies among neogene tropical american 
bivalvia in relation to shell form and life habit: Bulletin of Marine Science, v. 89, p. 905–919, 
doi:10.5343/bms.2012.1058. 

Levine, T.D., Hansen, H.B., and Gerald, G.W., 2013, Effects of shell shape, size, and sculpture in 
burrowing and anchoring abilities in the freshwater mussel Potamilus alatus (Unionidae).: 

Levings, S.C., and Garrity, S.D., 1983, Diet and tidal movements of two co-occurring neritid snails: 
differences in grazing patterns on a tropical rocky shore: Journal of Experimental Marine Biology 
and Ecology, v. 67, p. 61–287. 

Littlewood, D.T.J., 1989a, Predation on cultivated Crassostrea rhizophorae (Guilding) by the gastropod 
Cymatium pileare (Linnaeus): Journal of Molluscan Studies, v. 55, p. 125–127. 

Lopez, A., Montoya, M., and Lopez, J., 1998, A review of the genus Agaronia (Olividae) in the Panamic 
Province and the description of two new species from Nicaragua: The Veliger, v. 30, p. 295–304. 

Maes, V.O., and Raeihle, D., 1976, Systematics and biology of Thala floridana (Gastropoda: Vexillidae): 
Malacologia, v. 15, p. 43–67. 



Supplementary Materials for Purcell and Myers, 20XX 409 
 

409 
 

Malchus, N., Dhondt, A. v, and Troger, K.-A., 1994, Upper Cretaceous bivalves from the Glauconie de 
Lonzee near Gembloux (SE Belgium): Bulletin de L’Institut Royal des Sciences Naturelles de 
Belgique: Sciences de la Terre, v. 64, p. 109–149. 

Marcus, E., and Marcus, Ev.D.B.-R., 1962, On Leucozonia nassa: Faculdade de Filosofia, Ciencias e Letras 
da Universidade de Sao Paulo,  261 (Zoologia, 24), p. 11–24. 

Marcus, E., and Marcus, Ev.D.B.-R., 1959, Studies on Olividae: Boletim Faculdade de Filosofia, Ciências e 
Letras da Universidade de São Paulo 232, Zool., v. 22, p. 99–188. 

Marshall, B.A., 1978, Cerithiopsidae (Mollusca: Gastropoda) of New Zealand, and a provisional 
classification of the family: New Zealand Journal of Zoology, v. 5, p. 47–120. 

McLay, C.L., 2006, Retroplumidae (Crustacea, Decapoda)from the Indo-Malayan archipelago(Indonesia, 
Philippine) and the Melanesian arc islands(Solomon Islands, Fiji and New Caledonia),and 
paleogeographical comments: Tropical Deep-Sea Benthos, p. 375–391. 

Menge, J.L., 1974, Prey selection and foraging period of the predacious rocky intertidal snail, Acanthina 
punctulata: Oecologia, v. 17, p. 293–316. 

Metz, G., 1995, Agaronia eats Olivella: The Festivus, v. 27, p. 86–87. 

Mikkelsen, P.M., 1996, The evolutionary relationships of Cephalaspidea s.l. (Gastropoda: 
Opisthobranchia): a phylogenetic analysis: Malacologia, v. 37, p. 375–442. 

Mikkelsen, P.M., and Bieter, R., 2003, Systematic revision of the western Atlantic file clams, Lima and 
Ctenoides (Bivalvia:Limoida:Limidae): Invertebrate Systematics, v. 17, p. 667–710, 
doi:10.1071/IS03007. 

Mikkelsen, P.M., and Bieler, R., 2008, Seashells of Southern Florida: Living marine mollusks of the Florida 
Keys and regions: 1–503 p. 

Miller, B.A., 1970, Feeding mechanisms in the family Terebridae: Reports of the American Malacological 
Union, Pacific Division, 1970, p. 72–74. 

Mitchell, S.F., 2013, Revision of the Antillocaprinidae Mac Gillavry (Hippuritida, Bivalvia) and their 
position within the Caprinoidea d’Orbigny: Geobios, v. 46, p. 423–446, 
doi:10.1016/j.geobios.2013.07.003. 

Morris, R.H., Abbott, D.P., and Haderlie, E.C., 1980, Intertidal Invertebrates of California: Stanford, 
Stanford University Press, v. ix, 1–690 p. 

Morton, B., 1984, A  review of Polymesoda (Geloina) Gray 1842 (Bivalvia: Corbiculacea) from Indo-Pacific 
mangroves: Asian Marine Biology, v. 1, p. 77–86. 

Morton, B., 1979, A comparison of lip structure and function correlated with other aspects of functional 
morphology of Lima lima, Limaria (Platilimaria) fragilis and Limaria (Platilimaria) hongkongensis sp. 
nov. (Bivalvia: Limacea): Canadian Journal of Zoology, v. 57, p. 728–742. 

Morton, B., 1991, Aspects of predation by Tonna zonatum (Prosobranchia: Tonnoidea) feeding on 
holothurians in Hong Kong: Journal of Molluscan Studies, v. 57, p. 11–20. 



Supplementary Materials for Purcell and Myers, 20XX 410 
 

410 
 

Morton, B., 1983, The biology and functional morphology of Eufistulana mumia (Bivalvia: 
Gastrochaenacea): Journal of Zoology, v. 200, p. 381–404. 

Morton, B., 1985, The reproductive strategy of the mangrove bivalve Polymesoda (Geloina) erosa 
(Bivalvia: Corbiculoidea) in Hong Kong: Malacological Review, v. 18, p. 83–89. 

Morton, B., 1986, The diet and prey capture mechanism of Melo melo (Prosobranchia: Volutidae): 
Journal of Molluscan Studies, v. 52, p. 156–160. 

Morton, B., 2007, The evolution of the watering pot shells (Bivalvia: Anomalodesmata: Clavagellidae and 
Penicillidae): Records of the Western Australian Museum, v. 24, p. 19, doi:10.18195/issn.0312-
3162.24(1).2007.019-064. 

Morton, B., Prezant, R.S., and Wilson, B., 1998, Class Bivalvia, in Beesley, P.L., Ross, G.J.B., and Wells, A. 
eds., Mollusca, The Southern Synthesis. Fauna of Australia, Melbourne, CSIRO Publishing, v. 5, p. 
195–234. 

Morton, B., and Thurston, M.H., 1989, The functional morphology of Propeamussium lucidum (Bivalvia: 
Pectinacea), a deep-sea predatory scallop: Journal of Zoology, London, v. 218, p. 471–496. 

Munster, H., 1995, Taxonomie und Paliobiologie der Bakevelliidae (Bivalvia): Beringeria, v. 15, p. 1–161. 

Nicol, E.A.T., 1932, The Feeding Habits of the Galatheidea: Journal of the Marine Biological Association 
of the United Kingdom, v. 18, p. 87–106. 

Oliver, P.G., 1981, The functional morphology and evolution of recent Limopsidae (Bivalvia, Arcoidea): 
Malacologia, v. 21, p. 61–93. 

Oliver, P.G., and Holmes, A.M., 2006, The Arcoidea (Mollusca: Bivalvia): a review of the current 
phenetic-based systematics: Zoological Journal of the Linnean Society, v. 148, p. 237–251. 

Olsson, A.A., 1970, The cancellariid radula and its interpretation: Paleontographica Americana, v. 7, p. 
19–27. 

Osorio, C., Jara, F., and Ramirez, M.E., 1993, Diet of Cypraea caputdraconis (Mollusca: Gastropoda) as it 
relates to food availability in Easter Island: Pacific Science, v. 47, p. 34–42. 

Owen, G., 1961, A Note on the Habits and Nutrition of Solemya parkinsoni (Protobranchia: Bivalvia): 
Journal of Cell Science, v. 102, p. 15–21. 

Paine, R.T., 1966, Function of labial spines, composition of diet and size of certain marine gastropods: 
The Veliger, v. 9, p. 17–24. 

Perron, F.E., 1978, Seasonal Burrowing Behavior and Ecology of Aporrhais occidentalis (Gastropoda: 
Strombacea):, https://about.jstor.org/terms. 

Petuch, E.J., 1988, Neogene history of tropical American mollusks. Biogeography & evolutionary 
patterns of tropical Western Atlantic Mollusca: Charlottesville, CERF, 1–217 p. 

Pohlo, R., 1982, Evolution of Tellinacea (Bivalvia) : Journal of Molluscan Studies, v. 48, p. 245–256. 



Supplementary Materials for Purcell and Myers, 20XX 411 
 

411 
 

Pojeta, J., and Sohl, N.F., 1987, Ascaulocardium armatum (Morton, 1833), New Genus (Late Cretaceous): 
The Ultimate Variation on the Bivalve Paradigm: Memoir (The Paleontological Society, 
https://about.jstor.org/terms. 

Ponder, W.F., 1985a, A review of the genera of the Rissoidae (Mollusca: Mesogastropoda: Rissoacea): 
Records of the Australian Museum, Supplement 4, p. 1–221. 

Ponder, W.F., 1968, Anatomical notes on two species of the Colubrariidae (Mollusca, Prosobranchia): 
Transactions of the Royal Society of New Zealand, v. 10, p. 217–223. 

Ponder, W.F., 1985b, The anatomy and relationships of Elachisina Dall (Gastropoda: Rissoacea): Journal 
of Molluscan Studies, v. 51, p. 23–34. 

Ponder, W.F., 1972, The morphology of some mitriform gastropods with special reference to their 
alimentary and reproductive systems (Neogastropoda): Malacologia, v. 11, p. 295–342. 

Ponder, W.F., and Keyzer, R.G., 1998, Superfamily Rissoidea, in Beesley, P.L., Ross, G.J.B., and Wells, A. 
eds., Mollusca: The Southern Synthesis. Fauna of Australia, Melbourne, CSIRO Publishing, v. 3, p. 
745–766. 

Quinn, J.F., 1980, A new species and subspecies of Oocorythidae (Gastropoda: Tonnacea) from the 
western Atlantic: The Nautilus, v. 94, p. 149–158. 

Radwin, G.E., and D’Attilio, A., 1976, Murex shells of the world. An illustrated guide to the Muricidae: 
Stanford, Stanford University Press, v. x, 1–284 p. 

Radwin, G.E., and Wells, H.W., 1968, Comparative radular morphology and feeding habits of muricid 
gastropods from the Gulf of Mexico: Bulletin of Marine Science, v. 1, p. 72–85. 

Reidel, F., 1995, An outline of cassoidean phylogeny (Mollusca, Gastropoda): Contributions to Tertiary 
and Quaternary Geology, v. 32, p. 97–132. 

Reidel, F., 1994, Recognition of the superfamily Ficoidea Meek 1864 and definition of the 
Thalassocynidae fam. nov: Zoologische Jahrbücher Abteilung für Systematik, v. 121, p. 457–474. 

Rhoads, D., Speden, I., and Waage, K., 1972, Trophic Group Analysis of Upper Cretaceous (Maestrichtian) 
Bivalve Assemblages from South Dakota: AAPG Bulletin, v. 56, p. 1100–1113. 

Robertson, R., 1996, Fargoa bartschi (Winkley, 1909): a little-known Atlantic and Gulf coast American 
odostomian (Pyramidellidae) and its generic relationships: American Malacological Bulletin, v. 13, 
p. 11–21. 

Robertson, R., 1967, Heliacus (Gastropoda: Architectonicidae) symbiotic with Zoanthiniaria 
(Coelenterata): Science, v. 156, p. 246–248. 

Robertson, R., 1983, Observations on the life history of the wentletrap Epitonium albidum in the West 
Indies: American Malacological Bulletin, v. 1, p. 1–12. 

Robertson, R., 1970, Review of the predators and parasites of stony corals, with special reference to 
symbiotic prosobranch gastropods: Pacific Science, v. 24, p. 43–54. 



Supplementary Materials for Purcell and Myers, 20XX 412 
 

412 
 

Robertson, R., 1963, Wentletraps (Epitoniidae) feeding on sea anemones and corals: Proceedings of the 
Malacological Society of London, v. 35, p. 51–63. 

Robertson, R., and Mau-Lastovicka, T., 1979, The ectoparasitism of Boonea and Fargoa  (Gastropoda: 
Pyramidellacea): Biological Bulletin, v. 157, p. 320–333. 

Roig, M.S., 1926, Los Equiodermos fosiles de Cuba: Contribucion a la paleontologia Cubana, p. 1–179. 

Ros-Franch, S., Marquez-Aliaga, A., and Damborencea, S.E., 2015, Comprehensive database on Induan 
(Lower Triassic) to Sinemurian (Lower Jurassic) marine bivalve genera and their paleobiogeographic 
record: Paleontological Contributions, p. 3–219, doi:10.17161/pc.1808.13433. 

Rowden, A.A., and Jones, M.B., 1995, The burrow structure of the mud shrimp callianassa subterranea 
(Decapoda: Thalassinidea) from the north sea: Journal of Natural History, v. 29, p. 1155–1165, 
doi:10.1080/00222939500770491. 

Rudwick, M.J.S., 1970, Living and Fossil Brachiopods: London, Hutchinson & Co, 1–199 p. 

Sahlmann, C., Chan, T.Y., and Chan, B.K.K., 2011a, Feeding modes of deep-sea lobsters (Crustacea: 
Decapoda: Nephropidae and Palinuridae) in Northwest Pacific waters: Functional morphology of 
mouthparts, feeding behaviour and gut content analysis: Zoologischer Anzeiger, v. 250, p. 55–66, 
doi:10.1016/j.jcz.2010.11.003. 

Saul, L.R., 1973, Evidence for the origin of the  Mactridae (Bivalvia) in the Cretaceous: University of 
California Press, p. 1–59. 

Savazzi, E., 1991, Burrowing in the inarticulate brachiopod Lingula anatina: Palaeogeography, 
Palaeoclimatology, Palaeoecology, v. 85, p. 101–106. 

Schembri, P.J., 1982, Feeding behaviour of fifteen species of hermit crabs (Crustacea: Decapoda: 
Anomura) from the otago region, southeastern new zealand: Journal of Natural History, v. 16, p. 
859–878, doi:10.1080/00222938200770691. 

Schweitzer, C.E., Lacovara, K.J., Smith, J.B., Lamanna, M.C., Lyon, M.A., and Attia, Y., 2003, Mangrove-
dwelling crabs (Decapoda: Brachyura: Necrocarcinidae) associated with dinosaurs from the Upper 
Cretaceous (Cenomanian) of Egypt: Journal of Paleontology, v. 77, p. 888–894, doi:10.1666/0022-
3360(2003)077<0888:mcdbna>2.0.co;2. 

Scott, B.J., and Kenny, R., 1998, Superfamily Neritoidea, in Beesley, P.L., Ross, G.J.B., and Wells, A. eds., 
Mollusca: The Southern Synthesis. Fauna of Australia, Melbourne, CSIRO Publishing, v. 5, p. 565–
1115. 

Seamon, N., and Seamon, E., 1967, Collecting in the Netherlands Antilles (notes on the feeding habits of 
captive Murex brevifrons and Voluta musica): New York Shell Club Notes, v. 134, p. 3–6. 

Sessa, J.A., Bralower, T.J., Patzkowsky, M.E., Handley, J.C., and Ivany, L.C., 2012, Environmental and 
biological controls on the diversity and ecology of Late Cretaceous through early Paleogene marine 
ecosystems in the U.S. Gulf Coastal Plain: Paleobiology, v. 38, p. 218–239, doi:10.1666/10042.1. 

Skinner, D.G., and Hill, B.J., 1987, Feeding and reproductive behaviour and their effect on catchability of 
the spanner crab Ranina ranina: Marine Biology, v. 94, p. 211–218. 



Supplementary Materials for Purcell and Myers, 20XX 413 
 

413 
 

Slack-Smith, S., 1998, Superfamily Glossoidea, in Beesley, P.L., Ross, G.J.B., and Wells, A. eds., Mollusca: 
The Southern Synthesis. Fauna of Australia, Melbourne, CSIRO Publishing xv, v. 5. 

Smith, J.T., 1991, Cenozoic giant pectinids from California and the Tertiary Caribbean Province: 
Lyropecten, “Macrochlamis”, Vertipecten, and Nodipecten species: United States Geological 
Survey Professional Paper 1391, p. 1–137. 

Smith, A.B., 2009, Classification of the Echinoidea: Online database,. 

Smith, A.M., Key, M.M., and Gordon, D.P., 2006, Skeletal mineralogy of bryozoans: Taxonomic and 
temporal patterns: Earth-Science Reviews, v. 78, p. 287–306, doi:10.1016/j.earscirev.2006.06.001. 

Smith, C.P.A., Landman, N.H., Bardin, J., and Kruta, I., 2021, New evidence from exceptionally “well-
preserved” specimens sheds light on the structure of the ammonite brachial crown: Scientific 
Reports, v. 11, doi:10.1038/s41598-021-89998-4. 

Speden, I.G., 1970, The Type Fox Hills Formation, Cretaceous (Maestrichtian), South Dakota. Part 2. 
Systematics of the Bivalvia: Peabody Museum of Natural History, Bulletin, v. 33, p. 1–222. 

Stanley, S.M., 1972, Functional morphology and evolution of bysally attached bivalve molluscs: Journal 
of Paleontology, v. 46, p. 165–296. 

Stanley, S.M., 1970a, Relation of shell form to life habits in the Bivalvia (Mollusca), in Stanley, S.M. ed., 
Relation of shell form to life habits in the Bivalvia (Mollusca),. 

Stasek, C.R., 1961, The ciliation and function of the labial palps of Acila castrensis (Protobranchia, 
Nuculidae) with an evaluation of the role of the protobranch organs of feeding in the evolution of 
the Bivalvia: Proceedings of the Zoological Society of London, v. 137, p. 511–538. 

Statnlmis, E.J., Reede-Dekker, T., van Etten, Y., de Wiljes, J.J., and Videler, J.J., 1996, Behaviour and time 
allocation of the burrowing shrimp Callianassa subterranea (Decapoda, Thalassinidea).: 

Steneck, R.S., and Watling, L., 1982, Feeding capabilities and limitation of herbivorous  molluscs: a 
functional group approach: Marine Biology, v. 68, p. 299–319. 

Stenzel, H.B., 1971, Oysters, in Moore, R.C. ed., Treatise on Invertebrate Paleontology. Part N. Mollusca 
6, Bivalvia, Vol. 3, Boulder, Colorado & Lawrence, Kansas, Geological Society of America & 
Univeristy of Kansas Press, p. N953–N1197. 

Stephenson, L.W., 1941, The larger invertebrate fossils of the Navarro Group of Texas: University of 
Texas Publication number 4101, p. 1–641. 

Stephenson, Ll.W., 1923, Volume V: The Cretaceous Formations of North Carolina: Part 1. Invertebrate 
fossils of the Upper Cretaceous formations.: 

Stevcic, Z., 1973, Society of Systematic Biologists The Systematic Position of the Family Raninidae: 
Systematic Zoology, v. 22, p. 625–632. 

Stupakoff, I., 1986, Observations on the feeding behavior of the gastropod Pleuroploca princeps 
(Fasciolariidae) in the Galapagos Islands: The Nautilus, v. 100, p. 92–95. 



Supplementary Materials for Purcell and Myers, 20XX 414 
 

414 
 

Sundberg, F.A., 1980, Late Cretaceous Paleoecology of the Holz Shale, Orange County, California:, 
https://www.jstor.org/stable/1304314. 

Takeda, Y., Tanabe, K., Sasaki, T., Uesugi, K., and Hoshino, M., 2016, Non-destructive analysis of in situ 
ammonoid jaws by synchrotron radiation X-ray micro-computed tomography: Palaeontologica 
Electronica, v. 19.3, p. 1–13. 

Tanabe, K., Aiba, D., and Abe, J., 2021, The jaw apparatus of the Late Cretaceous heteromorph 
ammonoid Turrilites costatus from central Hokkaido, Japan: Bulletin of the Mikassa City Museum, 
v. 24, p. 1–8. 

Tanabe, K., and Fukuda, Y., 1987, Mouth part histology and morphology, in Saunders, W.B. and 
Landman, N.H. eds., Nautilus. The Biology and Paleobiology of a Living Fossil., New York, Plenum 
Press, p. 312–322. 

Tanabe, K., Landman, N.H., and Kruta, I., 2012, Microstructure and mineralogy of the outer calcareous 
layer in the lower jaws of Cretaceous Tetragonitoidea and Desmoceratoidea (Ammonoidea): 
Lethaia, v. 45, p. 191–199, doi:10.1111/j.1502-3931.2011.00272.x. 

Tanabe, K., Misaki, A., Landman, N.H., and Kato, T., 2013a, The jaw apparatuses of Cretaceous 
Phylloceratina (Ammonoidea): Lethaia, v. 46, p. 399–408. 

Tanabe, K., and Shigeta, Y., 2019, Lower jaws of two species of Menuites (Pachydiscidae, Ammonoidea) 
from the middle Campanian (Upper Cretaceous) in the Soya area, northern Hokkaido, Japan: 
Bulletin of the National Museum of Nature and Science, Series C, v. 45, p. 19–27, 
https://www.researchgate.net/publication/338178645. 

Tanabe, K., Tsujino, Y., Okuhira, K., and Misaki, A., 2015, The jaw apparatus of the Late Cretaceous 
heteromorph ammonoid Pravitoceras: Journal of Paleontology, v. 89, p. 611–616, 
doi:10.1017/jpa.2015.27. 

Taylor, J.D., 1984, A partial food web involving predatory gastropods on a fringing reef: Journal of 
Experimental Marine Biology and Ecology, v. 74, p. 273–290. 

Taylor, J.D., 1968a, Coral reef and associated invertebrate communities (mainly molluscan) around 
Mahé, Seychelles: Philosophical Transactions of the Royal Society of London, Series B, v. 254, p. 
129–206. 

Taylor, J.D., 1982, Diets of sublittoral predatory gastropods of Hong Kong, in Morton, B.S. and Tseng, 
C.K. eds., Proceedings of the First International Marine Biology Workshop, Hong Kong, Hong Kong 
University Press. 

Taylor, J.D., 1989, The diet of coral-reef Mitridae (Gastropoda) from Guam: with a review of other 
species of the family: Journal of Natural History, v. 23, p. 261–278. 

Taylor, J.D., and Glover, E.A., 2000, Diet of olives: Oliva tigridella Duclos, 1835 in Queensland: Molluscan 
Research, v. 20, p. 19–24. 

Taylor, J.D., and Reid, D.G., 1984, The abundance and trophic classification of molluscs upon coral reefs 
in the Sudanese Red Sea: Journal of Natural History, v. 18, p. 175–209. 



Supplementary Materials for Purcell and Myers, 20XX 415 
 

415 
 

Thomas, R.D.K., 1978, Shell Form and the Ecological Range of Living and Extinct Arcoida:, 
https://about.jstor.org/terms. 

Todd, J.A., 2001, Bivalve Life Habits: unpublished,. 

Tong, I.K.Y., 1986, The feeding ecology of Thais clavigera and Morula musiva (Gastropoda: Muricidae) in 
Hong Kong: Asian Marine Biology, v. 3, p. 163–178. 

Turner, R.D., 1969, Superfamily Pholadacea Lamarck, 1908, in Cox, L.R. and et al. eds., Treatise on 
Invertebrate Zoology. Part N. Volume 2 (of 3). Mollusca, Bivalvia, Lawrence, The Geological Society 
of America, Boulder and the University of Kansas. 

Turnsek, D., 1997, Mesozoic corals of Slovenia: Ljubljana, ZRC SAZU, 1–512 p. 

Waller, T.R., 1969, The evolution of the Argopecten gibbus stock (Mollusca: Bivalvia), with emphasis on 
the Tertiary and Quaternary species of eastern North America: Journal of Paleontology, The 
Paleontographical Society Memoir, v. 3, p. 1–125. 

Warmke, G.L., and Almodovar, L.R., 1963, Some associations of marine mollusks and algae in Puerto 
Rico: Malacologia, v. 1, p. 163–167. 

Warren, A., and Bouchet, P., 1988, A new species of Vanikoridae from the western Mediterranean, with 
remarks on the northeast Atlantic species of the family: Bolletino Malacologico, v. 24, p. 73–100. 

Wassenberg, T., and Hill, B., 1989, Diets of four decapod crustaceans (Linuparus trigonus, Metanephrops 
andamanicus, M. australiensis and M. boschmai) from the continental shelf around Australia: 
Marine Biology, v. 103, p. 161–167. 

Wells, H.W., 1958, Predation of Pelecypods and Gastropods by Fasciolaria hunteria (Perry): Bulletin of 
Marine Science of the Gulf and Caribbean, v. 8, p. 152–166. 

Whittington, H.B. et al., 1997, Trilobita. Introduction, Order Agnostina, Order Redlichiida. Volume 1: v. 1, 
1–503 p. 

Willan, R.C., 1998, Superfamily Tellinoidea, in Beesely, P.L., Ross, G.J.B., and Wells, A. eds., Mollusca: The 
Southern Synthesis. Fauna of Australia, Melbourne, CSIRO Publishing, v. 5, p. 342–348. 

Wippich, M.G.E., and Lehmann, J., 2004, Allocrioceras from the Cenomanian (mid-cretaceous) of the 
Lebanon and its bearing on the palaeobiology interpretation of heteromorphic ammonites: 
Palaeontology, v. 47, p. 1093–1107, doi:10.1111/j.0031-0239.2004.00408.x. 

Wise, J.B., 1996, Morphology and phylogenetic relationships of certain pyramidellid taxa 
(Heterobranchia): Malacologia, v. 37, p. 443–511. 

Yonge, C.M., 1977, Form and Evolution in the Anomiacea (Mollusca: Bivalvia)--Pododesmus, Anomia, 
Patro, Enigmonia (Anomiidae): Placunanomia, Placuna (Placunidae Fam. Nov.): Philosophical 
Transactions of the Royal Society B: Biological Sciences, v. 276, p. 453–523. 

Yonge, C.M., 1971, On the functional morphology and adaptive radiation in the bivalve Super-  family 
Saxicavacea (Hiatella (=Saxicava), Saxicavella, Panomya, Panope, Cyr-  todaria: Malacologi, v. 11, p. 
1–44. 



Supplementary Materials for Purcell and Myers, 20XX 416 
 

416 
 

Yonge, C.M., 1939, The protobranchiate Mollusca: a functional interpretation of their structure and 
evolution: Philosophical Transactions of the Royal Society, Series B, Biological Sciences, v. 230, p. 
79–147. 

Yonge, C.M., 1955, Adaptation to rock-boring in Botula and Lithophaga (Lamellibranchia, Mytilidae) with 
a discussion on the evolution of the habit: Quarterly Journal of Microscopical Science, v. 96, p. 
383–410. 

Yonge, C.M., and Thompson, T.E., 1976, Living Marine Molluscs: London, Collins, 1–288 p. 

Zanzerl, H., and Dufour, S.C., 2017, The burrowing behaviour of symbiotic and asymbiotic Thyasirid 
bivalves: Article in Journal of Conchology, v. 42, p. 299–308, 
https://www.researchgate.net/publication/312586311. 

  



Supplementary Materials for Purcell and Myers, 20XX 417 
 

417 
 

Appendix B-3. R Code 

###### Code for mapping FD data and analyzing FD based on mFD package (Magneville et al. 2021) 
##### 

 

  #### Load necessary packages #### 

library(ggplot2) # for making plots 

library(ggmap) # for plotting on maps 

library(tidyverse) 

library(sf) # shapefiles 

library(mapview) 

library(raster) 

library(rgdal) 

library(dismo) 

library(XML) 

library(maps) 

library(mFD) # primary package for running FE analysis 

library(reshape2) # manipulate dfs 

library(vegan) 

library(dplyr) # df stuff 

library(tidyr) 

library(gridExtra) # for plotting muplitple plots on one image 

library(goodpractice) 

library(tidyr) 

 

 

  #### Download data and set directory #### 

# Set working directory to get the file 

setwd("C:/Users/Ceara/Documents/Province Project/FE_Analysis_Code-and-Files") 
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# Read in database file 

data <- read.csv("FE_data_compress_fe_3-7-23_basins.csv") # DATABASE HAS BASIN ID'S 

 

# Option to subset out different basin's data 

# data <- subset(data, Basin == "WIS") # SUBSET OUT WIS BASIN OCC 

# data <- subset(data, Basin == "GCP") # SUBSET OUT GCP BASIN OCC 

nrow(data) 

colnames(data) # check file 

 

  # The data here has all columns from the "raw" file, including: 

  # "Key", "CollectionSource", "Lat", "Long", "LocalityDescrip", "Country", 

  # "State", "County", "Town", "Phylum", "Class", "Order", "Family", 

  # "Updated_Genus", "Updated_Sp", "Updated_subtax", "Early_Int.Substag",  

  # "Late_Int.Substag", "Corr_Stage", "HigherTax_Class", "Formation", "Group",  

  # "Member", "Zone_Comments", "Substage_from_Zone.Mbr", 

  # "Inform_Zone...Merewethere.et.al.2015.", "X", "PaperCited", "collection_no", 

  # "Museum", "EcolRef", "motility", "life_habitat", "feeding"  

 

#### Function for SUBSAMPLING WITH SQS #### 

 

# function to calc sqs value, based on 
https://strata.uga.edu/8370/rtips/shareholderQuorumSubsampling.html 

# this looks like it was put together by Steve Holland.... not sure how to credit 

run_sqs <-function(abundance, quota=0.8, trials=100, ignore.singletons=FALSE, 
exclude.dominant=FALSE) { 

  # abundance is a vector of integers representing the abundance of every species 

   

  if ((quota <= 0 || quota >= 1)) { 

    stop('The SQS quota must be greater than 0.0 and less than 1.0') 
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  } 

   

  # compute basic statistics 

  specimens <- sum(abundance) 

  numTaxa <- length(abundance) 

  singletons <- sum(abundance==1) 

  doubletons <- sum(abundance==2) 

  highest <- max(abundance) 

  mostFrequent <- which(abundance==highest)[1] 

   

  if (exclude.dominant == FALSE) { 

    highest <- 0 

    mostFrequent <- 0 

  } 

   

  # compute Good's u 

  u <- 0 

  if (exclude.dominant == TRUE) { 

    u <- 1 - singletons / (specimens - highest) 

  } else { 

    u <- 1 - singletons / specimens 

  } 

   

  if (u == 0) { 

    stop('Coverage is zero because all taxa are singletons') 

  } 

   

  # re-compute taxon frequencies for SQS 

  frequencyInitial <- abundance - (singletons + doubletons / 2) / numTaxa 
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  frequency <- frequencyInitial / (specimens - highest) 

   

  # return if the quorum target is higher than estimated coverage 

  if ((quota > sum(frequency)) || (quota >= sum(abundance))) { 

    stop('SQS quota is too large, relative to the estimated coverage') 

  } 

   

  # create a vector, length equal to total number of specimens, 

  # each value is the index of that species in the abundance array 

  ids <- unlist(mapply(rep, 1:numTaxa, abundance)) 

   

  # subsampling trial loop 

  richness <- rep(0, trials) # subsampled taxon richness 

  for (trial in 1:trials) { 

    pool <- ids # pool from which specimens will be sampled 

    specimensRemaining <- length(pool) # number of specimens remaining to be sampled 

    seen <- rep(0, numTaxa) # keeps track of whether taxa have been sampled 

    subsampledFrequency <- rep(0, numTaxa) # subsampled frequencies of the taxa 

    coverage <- 0 

     

    while (coverage < quota) { 

      # draw a specimen 

      drawnSpecimen <- sample(1:specimensRemaining, size=1) 

      drawnTaxon <- pool[drawnSpecimen] 

       

      # increment frequency for this taxon 

      subsampledFrequency[drawnTaxon] <- subsampledFrequency[drawnTaxon] + 1 

       

      # if taxon has not yet been found, increment the coverage 



Supplementary Materials for Purcell and Myers, 20XX 421 
 

421 
 

      if (seen[drawnTaxon] == 0) { 

        if (drawnTaxon != mostFrequent && (ignore.singletons == 0 || abundance[drawnTaxon] > 1)) { 

          coverage <- coverage + frequency[drawnTaxon] 

        } 

        seen[drawnTaxon] <- 1 

         

        # increment the richness if the quota hasn't been exceeded, 

        # and randomly throw back some draws that put the coverage over quota 

        if (coverage < quota || runif(1) <= frequency[drawnTaxon]) { 

          richness[trial] <- richness[trial] + 1 

        } else { 

          subsampledFrequency[drawnTaxon] <- subsampledFrequency[drawnTaxon] - 1 

        } 

      } 

       

      # decrease pool of specimens not yet drawn 

      pool[drawnSpecimen] <- pool[specimensRemaining] 

      specimensRemaining <- specimensRemaining - 1 

    } 

  } 

   

  # compute subsampled richness 

  s2 <- richness[richness>0] 

  subsampledRichness <- exp(mean(log(s2))) * length(s2)/length(richness) 

  return(round(subsampledRichness, 1)) 

} 

 

# get the full db list of taxa and then get their frequencies 

genus_vector <- data[,c("Updated_Genus")] 
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genus_freq <-table(genus_vector) # all data frequencies of genera 

 

# run sqs on entire db abundance vector 

data_sqs_val <- run_sqs(genus_freq) 

data_sqs_val 

 

# function to get abundance list for each substage 

sub_func_for_sqs <- function(data,substage){ 

  dat <- as.data.frame(subset(data, Substage_from_Zone.Mbr ==substage)) 

  dat <- dat[,c("Updated_Genus")] 

  dat2 <- table(dat) 

  return(dat2) 

} 

 

maa_up_for_sqs <- sub_func_for_sqs(data,"MAA (up)") 

maa_low_for_sqs <- sub_func_for_sqs(data,"MAA (low)") 

cam_up_for_sqs <- sub_func_for_sqs(data,"CAM (up)") 

cam_mid_for_sqs <- sub_func_for_sqs(data,"CAM (mid)") 

cam_low_for_sqs <- sub_func_for_sqs(data,"CAM (low)") 

 

# run sqs on the substages 

maa_up_sqs_val <- run_sqs(maa_up_for_sqs, quota=0.9) 

maa_low_sqs_val <- run_sqs(maa_low_for_sqs, quota=0.9) 

cam_up_sqs_val <- run_sqs(cam_up_for_sqs, quota=0.9) 

cam_mid_sqs_val <- run_sqs(cam_mid_for_sqs, quota=0.9) 

cam_low_sqs_val <- run_sqs(cam_low_for_sqs, quota=0.9) 

 

 

maa_up_sqs_val 
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maa_low_sqs_val 

cam_up_sqs_val 

cam_mid_sqs_val 

cam_low_sqs_val 

 

#### CONFIGURE DATA ##### 

  #### Overlay Grid and Create Smaller Data Frame (remove unnecessary columns) #### 

 

# Set new WD to read in grid made in ArcGIS pro 

setwd("C:/Users/ceara/Documents/Province Project/FE_Analysis_Code-and-
Files/OccurrenceData_copiedfromProvinceProject/VettedCombinedDB") 

 

sixtykmgrid <- st_read("SpatialGrids/grid_60km.shp") 

# sixtykmgrid <- st_read("SpatialGrids/grid_360km.shp") # option to use 360km grid instead 

 

# Transform database into shapefile 

sf_data <- st_as_sf(data, coords = c("Long", "Lat"),  crs = 4326) 

 

# Function to spatially join DB with grids 

spatial_join <- function(shapefile_data,grid){ 

  data1 <- st_join(shapefile_data,left=TRUE,grid["PageName"]) 

  return(data1) 

} 

 

# Spatially join Grid cell Page Names to data table 

join60_data <- spatial_join(sf_data,sixtykmgrid) 

join60_data <- as.data.frame(join60_data) 

nrow(join60_data) # number of occurrences 
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# number of unque genera in the database 

length(unique(join60_data$Updated_Genus))  

 

#### Option to SUBSET OUT JUST SPECIFIC CLASS OF ORGANISMS FOR COMPARISON #### 

 

  ## Subseting out just specific Class types, using only the most abundant 

   # classes of Bivalvia, Gastropoda, and Cephalopoda 

 

# Look at the frequencies of different taxonomic classes 

table(join60_data$Class) 

 

# Make subsetted df for each of the three most common 

bivalve_db <- subset(join60_data, Class == "Bivalvia") 

gastropod_db <- subset(join60_data, Class == "Gastropoda") 

cephalopod_db <- subset(join60_data, Class == "Cephalopoda") 

 

# Apply the specific taxonomic classes as the base data to use in the rest of the code 

# join60_data <- bivalve_db 

# join60_data <- gastropod_db 

# join60_data <- cephalopod_db 

 

#### Option to SUBSET OUT GRID CELLS with greater than 3 unique genera from DB #### 

 

# Function to remove all rows that represent grid cells with fewer than 3 unique genera 

get_greater_3_database <- function(data){ 

  # Function to get vector of grid cell names with greater than 3 unique genera 

  get_great_3_grids <- function(data,Age){ 

    # Get just the columns of Genus, Age, and Grid cell name 

    gen_age_grid <- data[,c("Updated_Genus","Substage_from_Zone.Mbr","PageName")] 
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    # Remove duplicates from the list 

    unique_gen_age_grid <- unique(gen_age_grid) 

     

    # Get just the substage information in question 

    substage_unique_gen_age_grid <- unique_gen_age_grid %>% filter(Substage_from_Zone.Mbr == Age) 

     

    # Get the number of unique genera in each grid cell in the substage 

    substage_grid_freq <- data.frame(table(substage_unique_gen_age_grid$PageName)) 

     

    # Extract just the Grid cell names that have 3 or more unique genera 

    substage_grid_greater_3_gen <- substage_grid_freq %>% filter(Freq >2) 

    colnames(substage_grid_greater_3_gen) <- c("PageName","freq_gen") 

     

    return(substage_grid_greater_3_gen) 

  } 

   

  # use above function to create list of Grid cells with >3 occ 

  maa_up_grid_greater_3_gen <- get_great_3_grids(data,"MAA (up)") 

  maa_low_grid_greater_3_gen <- get_great_3_grids(data,"MAA (low)") 

  cam_up_grid_greater_3_gen <- get_great_3_grids(data,"CAM (up)") 

  cam_mid_grid_greater_3_gen <- get_great_3_grids(data,"CAM (mid)") 

  cam_low_grid_greater_3_gen <- get_great_3_grids(data,"CAM (low)") 

   

  # get subset of the original db for each substage 

  maa_up_data1 <- as.data.frame(subset(data, Substage_from_Zone.Mbr =="MAA (up)")) 

  maa_low_data1 <- as.data.frame(subset(data, Substage_from_Zone.Mbr =="MAA (low)")) 

  cam_up_data1 <- as.data.frame(subset(data, Substage_from_Zone.Mbr =="CAM (up)")) 

  cam_mid_data1 <- as.data.frame(subset(data, Substage_from_Zone.Mbr =="CAM (mid)")) 
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  cam_low_data1 <- as.data.frame(subset(data, Substage_from_Zone.Mbr =="CAM (low)")) 

   

  # merge the two dfs together to get extra column that has NA if less than 3 genera in the grid cell in 
that SS 

  maa_up_data1_merge <- merge(maa_up_data1,maa_up_grid_greater_3_gen,by="PageName",all.x = 
TRUE) 

  maa_low_data1_merge <- merge(maa_low_data1,maa_low_grid_greater_3_gen,by="PageName",all.x 
= TRUE) 

  cam_up_data1_merge <- merge(cam_up_data1,cam_up_grid_greater_3_gen,by="PageName",all.x = 
TRUE) 

  cam_mid_data1_merge <- merge(cam_mid_data1,cam_mid_grid_greater_3_gen,by="PageName",all.x 
= TRUE) 

  cam_low_data1_merge <- merge(cam_low_data1,cam_low_grid_greater_3_gen,by="PageName",all.x 
= TRUE) 

   

  # remove rows with NA in the freq_gen column 

  maa_up_data1_data2 <- as.data.frame(subset(maa_up_data1_merge, !is.na(freq_gen))) 

  maa_low_data1_data2 <- as.data.frame(subset(maa_low_data1_merge, !is.na(freq_gen))) 

  cam_up_data1_data2 <- as.data.frame(subset(cam_up_data1_merge, !is.na(freq_gen))) 

  cam_mid_data1_data2 <- as.data.frame(subset(cam_mid_data1_merge, !is.na(freq_gen))) 

  cam_low_data1_data2 <- as.data.frame(subset(cam_low_data1_merge, !is.na(freq_gen))) 

   

  # bind the SS dfs back together 

  all_substage_greater_3_data <- rbind(maa_up_data1_data2,maa_low_data1_data2, 

                                       cam_up_data1_data2,cam_mid_data1_data2, 

                                       cam_low_data1_data2) 

   

  # remove the column of freq_gen 

  all_substage_greater_3_data <- all_substage_greater_3_data[,c(1:ncol(all_substage_greater_3_data)-
1)] 
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  return(all_substage_greater_3_data) 

} 

 

# Use above function to remove all rows from the DB that represent grid cells with  

# fewer than 3 unique genera 

join60_great_3_data <- get_greater_3_database(join60_data) 

 

  #### IF GOING TO SUBSAMPLE BY WAY OF USING ONLY GRID CELLS WITH >3 UNIQUE GENERA, 

    ## USE THE ABOVE CODE AND THEN THE NEXT LINE TO REPLACE THE DB USED IN THE REST OF 

    ## THE CODE WITH ONE WITH >3 UNIQUE GENERA GRID CELLS  

 

# Apply the truncated df (with only >3 occ) as the base data to use in the rest of the code 

# join60_data <- join60_great_3_data 

 

#### Option to SUBSET OUT GRID CELLS with greater than SQS limit of unique genera from DB #### 

 

# Function to remove all rows that represent grid cells with fewer than 3 unique genera 

get_greater_sqs_database <- function(data){ 

  # Function to get vector of grid cell names with greater than CAM for SQS limit of 16 unique genera 

  get_great_cam_sqs_grids <- function(data,Age){ 

    # Get just the columns of Genus, Age, and Grid cell name 

    gen_age_grid <- data[,c("Updated_Genus","Substage_from_Zone.Mbr","PageName")] 

     

    # Remove duplicates from the list 

    unique_gen_age_grid <- unique(gen_age_grid) 

     

    # Get just the substage information in question 

    substage_unique_gen_age_grid <- unique_gen_age_grid %>% filter(Substage_from_Zone.Mbr == Age) 
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    # Get the number of unique genera in each grid cell in the substage 

    substage_grid_freq <- data.frame(table(substage_unique_gen_age_grid$PageName)) 

     

    # Extract just the Grid cell names that have 3 or more unique genera 

    substage_grid_greater_cam_sqs_gen <- substage_grid_freq %>% filter(Freq >15) 

    colnames(substage_grid_greater_cam_sqs_gen) <- c("PageName","freq_gen") 

     

    return(substage_grid_greater_cam_sqs_gen) 

  } 

   

  # Function to get vector of grid cell names with greater than MAA for SQS limit of 18 unique genera 

  get_great_maa_sqs_grids <- function(data,Age){ 

    # Get just the columns of Genus, Age, and Grid cell name 

    gen_age_grid <- data[,c("Updated_Genus","Substage_from_Zone.Mbr","PageName")] 

     

    # Remove duplicates from the list 

    unique_gen_age_grid <- unique(gen_age_grid) 

     

    # Get just the substage information in question 

    substage_unique_gen_age_grid <- unique_gen_age_grid %>% filter(Substage_from_Zone.Mbr == Age) 

     

    # Get the number of unique genera in each grid cell in the substage 

    substage_grid_freq <- data.frame(table(substage_unique_gen_age_grid$PageName)) 

     

    # Extract just the Grid cell names that have 3 or more unique genera 

    substage_grid_greater_maa_sqs_gen <- substage_grid_freq %>% filter(Freq >17) 

    colnames(substage_grid_greater_maa_sqs_gen) <- c("PageName","freq_gen") 

     

    return(substage_grid_greater_maa_sqs_gen) 
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  } 

   

  # use above function to create list of Grid cells with >3 occ 

  maa_up_grid_greater_maa_sqs_gen <- get_great_maa_sqs_grids(data,"MAA (up)") 

  maa_low_grid_greater_maa_sqs_gen <- get_great_maa_sqs_grids(data,"MAA (low)") 

  cam_up_grid_greater_cam_sqs_gen <- get_great_cam_sqs_grids(data,"CAM (up)") 

  cam_mid_grid_greater_cam_sqs_gen <- get_great_cam_sqs_grids(data,"CAM (mid)") 

  cam_low_grid_greater_cam_sqs_gen <- get_great_cam_sqs_grids(data,"CAM (low)") 

   

  # get subset of the original db for each substage 

  maa_up_data1 <- as.data.frame(subset(data, Substage_from_Zone.Mbr =="MAA (up)")) 

  maa_low_data1 <- as.data.frame(subset(data, Substage_from_Zone.Mbr =="MAA (low)")) 

  cam_up_data1 <- as.data.frame(subset(data, Substage_from_Zone.Mbr =="CAM (up)")) 

  cam_mid_data1 <- as.data.frame(subset(data, Substage_from_Zone.Mbr =="CAM (mid)")) 

  cam_low_data1 <- as.data.frame(subset(data, Substage_from_Zone.Mbr =="CAM (low)")) 

   

  # merge the two dfs together to get extra column that has NA if less than 3 genera in the grid cell in 
that SS 

  maa_up_data1_merge <- 
merge(maa_up_data1,maa_up_grid_greater_maa_sqs_gen,by="PageName",all.x = TRUE) 

  maa_low_data1_merge <- 
merge(maa_low_data1,maa_low_grid_greater_maa_sqs_gen,by="PageName",all.x = TRUE) 

  cam_up_data1_merge <- 
merge(cam_up_data1,cam_up_grid_greater_cam_sqs_gen,by="PageName",all.x = TRUE) 

  cam_mid_data1_merge <- 
merge(cam_mid_data1,cam_mid_grid_greater_cam_sqs_gen,by="PageName",all.x = TRUE) 

  cam_low_data1_merge <- 
merge(cam_low_data1,cam_low_grid_greater_cam_sqs_gen,by="PageName",all.x = TRUE) 

   

  # remove rows with NA in the freq_gen column 

  maa_up_data1_data2 <- as.data.frame(subset(maa_up_data1_merge, !is.na(freq_gen))) 
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  maa_low_data1_data2 <- as.data.frame(subset(maa_low_data1_merge, !is.na(freq_gen))) 

  cam_up_data1_data2 <- as.data.frame(subset(cam_up_data1_merge, !is.na(freq_gen))) 

  cam_mid_data1_data2 <- as.data.frame(subset(cam_mid_data1_merge, !is.na(freq_gen))) 

  cam_low_data1_data2 <- as.data.frame(subset(cam_low_data1_merge, !is.na(freq_gen))) 

   

  # bind the SS dfs back together 

  all_substage_greater_sqs_data <- rbind(maa_up_data1_data2,maa_low_data1_data2, 

                                         cam_up_data1_data2,cam_mid_data1_data2, 

                                         cam_low_data1_data2) 

   

  # remove the column of freq_gen 

  all_substage_greater_sqs_data <- 
all_substage_greater_sqs_data[,c(1:ncol(all_substage_greater_sqs_data)-1)] 

   

  return(all_substage_greater_sqs_data) 

} 

 

# Use above function to remove all rows from the DB that represent grid cells with  

# fewer than sqs number of unique genera 

join60_great_sqs_data <- get_greater_sqs_database(join60_data) 

 

#### IF GOING TO SUBSAMPLE BY WAY OF USING ONLY GRID CELLS WITH >SQS estimate of UNIQUE 
GENERA, 

## USE THE ABOVE CODE AND THEN THE NEXT LINE TO REPLACE THE DB USED IN THE REST OF 

## THE CODE WITH ONE WITH >3 UNIQUE GENERA GRID CELLS  

 

# join60_data <- join60_great_sqs_data 
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## Get the number of nodes removed from each substage. 

x = subset(join60_data,Substage_from_Zone.Mbr=="MAA (up)") 

a = length(unique(x$PageName)) 

y = subset(join60_great_sqs_data,Substage_from_Zone.Mbr=="MAA (up)") 

b = length(unique(y$PageName)) 

 

 

x1 = subset(join60_data,Substage_from_Zone.Mbr=="MAA (low)") 

a1 = length(unique(x1$PageName)) 

y1 = subset(join60_great_sqs_data,Substage_from_Zone.Mbr=="MAA (low)") 

b1 = length(unique(y1$PageName)) 

 

x2 = subset(join60_data,Substage_from_Zone.Mbr=="CAM (up)") 

a2 = length(unique(x2$PageName)) 

y2 = subset(join60_great_sqs_data,Substage_from_Zone.Mbr=="CAM (up)") 

b2 = length(unique(y2$PageName)) 

 

 

x3 = subset(join60_data,Substage_from_Zone.Mbr=="CAM (mid)") 

a3 = length(unique(x3$PageName)) 

y3 = subset(join60_great_sqs_data,Substage_from_Zone.Mbr=="CAM (mid)") 

b3 = length(unique(y3$PageName)) 

 

 

x4 = subset(join60_data,Substage_from_Zone.Mbr=="CAM (low)") 

a4 = length(unique(x4$PageName)) 

y4 = subset(join60_great_sqs_data,Substage_from_Zone.Mbr=="CAM (low)") 

b4 = length(unique(y4$PageName)) 
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# Number removed 

(a-b)+(a1-b1)+(a2-b2)+(a3-b3)+(a4-b4) 

 

# Origional number of nodes 

a+a1+a2+a3+a4 

 

#### CHANGE DIRECTORY FOR RESULTS TO BE SAVED IN! (This should be changed based on 
subsampling/subsetting of the original df) #### 

# setwd("C:/Users/Ceara/Documents/Province Project/FE_Analysis_Code-and-
Files/FE_base_R_Analysis_OutputFiles/base_data_all_outputs") 

# setwd("C:/Users/Ceara/Documents/Province Project/FE_Analysis_Code-and-
Files/FE_base_R_Analysis_OutputFiles/greater_3_data_all_outputs") 

setwd("C:/Users/Ceara/Documents/Province Project/FE_Analysis_Code-and-
Files/FE_base_R_Analysis_OutputFiles/compress_data_all_outputs") 

# setwd("C:/Users/Ceara/Documents/Province Project/FE_Analysis_Code-and-
Files/FE_base_R_Analysis_OutputFiles/compress_data_360_outputs") 

# setwd("C:/Users/Ceara/Documents/Province Project/FE_Analysis_Code-and-
Files/FE_base_R_Analysis_OutputFiles/compress_greater_3_data_all_outputs") 

# setwd("C:/Users/Ceara/Documents/Province Project/FE_Analysis_Code-and-
Files/FE_base_R_Analysis_OutputFiles/compress_wis_data_all_outputs") 

# setwd("C:/Users/Ceara/Documents/Province Project/FE_Analysis_Code-and-
Files/FE_base_R_Analysis_OutputFiles/compress_gcp_data_all_outputs") 

# setwd("C:/Users/Ceara/Documents/Province Project/FE_Analysis_Code-and-
Files/FE_base_R_Analysis_OutputFiles/compress_bivalve_data_outputs") 

# setwd("C:/Users/Ceara/Documents/Province Project/FE_Analysis_Code-and-
Files/FE_base_R_Analysis_OutputFiles/compress_gastropod_data_outputs") 

# setwd("C:/Users/Ceara/Documents/Province Project/FE_Analysis_Code-and-
Files/FE_base_R_Analysis_OutputFiles/compress_cephalopod_data_outputs") 

# setwd("C:/Users/Ceara/Documents/Province Project/FE_Analysis_Code-and-
Files/FE_base_R_Analysis_OutputFiles/compress_wis_360_data_outputs") 

# setwd("C:/Users/Ceara/Documents/Province Project/FE_Analysis_Code-and-
Files/FE_base_R_Analysis_OutputFiles/compress_sqs_all_data_outputs") 

# setwd("C:/Users/Ceara/Documents/Province Project/FE_Analysis_Code-and-
Files/FE_base_R_Analysis_OutputFiles/compress_sqs_360_data_outputs") 
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  #### Create DF of trait information (motility, life_habitat, and feeding) and simplify DB columns #### 

 

# Create data frame of functional traits for imputing into mFD analysis 

trait_df <- data.frame(c("motility", "life_habitat", "feeding"), 

                       c("N", "N", "N")) 

names(trait_df) <- c("trait_name", "trait_type") 

head(trait_df) 

 

# Convert data to simple dfs that can be used in mFD analyses (subset columns) 

simplify_data <- function(data){ 

  data1 <- data.frame(data) # make into a df 

  data2 <- subset(data1, select = c("Updated_Genus", "Substage_from_Zone.Mbr",  

                                   "motility", "life_habitat", "feeding",  

                                   "PageName","geometry")) 

  return(data2) 

} 

 

simple60_data <- simplify_data(join60_data) 

ncol(simple60_data) 

colnames(simple60_data) 

 

 

#### Separate Data into Substages #### 

 

# Function for splitting into substages, remove duplicate Genus-FE rows, make 

# genus name the index 

substg_split <- function(data,x){ 

  data1 <- as.data.frame(subset(data, Substage_from_Zone.Mbr ==x)) 
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  data2 <-distinct(data1,Updated_Genus,PageName,.keep_all=TRUE) # delete duplicate genus-Grid Cell 
values 

  return(data2) 

} 

 

 

# Create individual substage trait data frames for different genera using substg_split function 

maa_up_60_sbstg<- substg_split(simple60_data,"MAA (up)") 

maa_low_60_sbstg <- substg_split(simple60_data,"MAA (low)") 

cam_up_60_sbstg <- substg_split(simple60_data,"CAM (up)") 

cam_mid_60_sbstg <- substg_split(simple60_data,"CAM (mid)") 

cam_low_60_sbstg <- substg_split(simple60_data,"CAM (low)") 

 

 

# Write CSV for each subsampled substage dataset with grid cell values 

write.csv(maa_up_60_sbstg,file="MaaUP60_substage_FE.csv") 

write.csv(maa_low_60_sbstg,file="MaaLOW60_substage_FE.csv") 

write.csv(cam_up_60_sbstg,file="CamUP60_substage_FE.csv") 

write.csv(cam_mid_60_sbstg,file="CamMID60_substage_FE.csv") 

write.csv(cam_low_60_sbstg,file="CamLOW60_substage_FE.csv") 

 

#### Create df and pres-abs matrix of Substages to use in mFD analysis #### 

# Function to remove extra columns from the substage data frames (keep only FE  

# traits and grid loc "PageName" with genus as index still) 

substg_trait_df <- function(data){ 

  data1 <- as.data.frame(subset(data, select = c("Updated_Genus","motility", "life_habitat", "feeding", 
"PageName"))) 

  data2 <- data1 %>% distinct(Updated_Genus, .keep_all = TRUE) 

  data2 <- data.frame(data2[,-1], row.names = data2[,1]) # make the first column with genus names the 
index 
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  return(data2) 

} 

 

# Remove unnecessary columns from the data frames to get just the trait  

# information for each gen 

maa_up_60_trait_data<- substg_trait_df(maa_up_60_sbstg) 

maa_low_60_trait_data <- substg_trait_df(maa_low_60_sbstg) 

cam_up_60_trait_data <- substg_trait_df(cam_up_60_sbstg) 

cam_mid_60_trait_data <- substg_trait_df(cam_mid_60_sbstg) 

cam_low_60_trait_data <- substg_trait_df(cam_low_60_sbstg) 

 

# Check number of rows (# genera, also generic richness because no duplicates) 

nrow(maa_up_60_trait_data) 

nrow(maa_low_60_trait_data) 

nrow(cam_up_60_trait_data) 

nrow(cam_mid_60_trait_data) 

nrow(cam_low_60_trait_data) 

 

 

# Function to create a simple df of trait values with all variables as factors  

# need this later in the code, when calculating sp.to.fe, 

df_factor_simple <- function(data){ 

  data2 <- as.data.frame(unclass(data[c(1:4)]), stringsAsFactors = TRUE) # make the columns into factors 

  row.names(data2) <- row.names(data) # make the first column with genus names the index 

  data3 <- data2[,c("motility","life_habitat","feeding")] 

  return(data3) 

} 

 

# create simple factor variable df for all substages 
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maa_up_60_trait_data_factor <- df_factor_simple(maa_up_60_trait_data) 

maa_low_60_trait_data_factor <- df_factor_simple(maa_low_60_trait_data) 

cam_up_60_trait_data_factor <- df_factor_simple(cam_up_60_trait_data) 

cam_mid_60_trait_data_factor <- df_factor_simple(cam_mid_60_trait_data) 

cam_low_60_trait_data_factor <- df_factor_simple(cam_low_60_trait_data) 

 

class(cam_low_60_trait_data_factor$motility) # check class of column 

 

 

 

# Get a presence-absence matrix for the substages based on grid cells 

## NOTE: I redo this later by creating Latitudinal Bins that will act as "collections", instead of grid cells 

# see below section on latitudinal bins. 

 

## Function for data substages removing all columns but Genus  

# names and Grid Cell names, and for creating presence-absence matrixes for  

# each grid cell as collection locations 

substg_genus_grid <- function(data){ 

  data1 <- as.data.frame(subset(data)[,c("Updated_Genus","PageName")]) # subset out just the genus 
name and site 

  data2 <- dcast(data1, PageName~Updated_Genus, length) # transform into a pres-abs matrix 

  data3 <- data.frame(data2[,-1], row.names = data2[,1]) # make the site names the row names 

  return(data3) 

} 

 

# Create data frames for pres-abs for each substage based on grid cells 

# use the substage df that still has Grid Names and geometry 

maa_up_60_pres_ab <- substg_genus_grid(maa_up_60_sbstg) 

maa_low_60_pres_ab <- substg_genus_grid(maa_low_60_sbstg) 
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cam_up_60_pres_ab <- substg_genus_grid(cam_up_60_sbstg)  

cam_mid_60_pres_ab <- substg_genus_grid(cam_mid_60_sbstg) 

cam_low_60_pres_ab <- substg_genus_grid(cam_low_60_sbstg) 

 

# check the number of columns (# genera) against the number of rows in original  

# df (again, # genera) 

ncol(maa_up_60_pres_ab) 

ncol(maa_low_60_pres_ab) 

ncol(cam_up_60_pres_ab) 

ncol(cam_mid_60_pres_ab) 

ncol(cam_low_60_pres_ab) 

 

 

#### RUN mFD ANALYSIS FOR DATABASE #### 

  #### Summarize Substage data using sp.tr.summary function #### 

 

# Summarize data using function from mFD pakage: 

maa_up_60_traits_summ <- mFD::sp.tr.summary(tr_cat = trait_df, 

                                          sp_tr = maa_up_60_trait_data_factor, 

                                          stop_if_NA = TRUE) 

 

maa_low_60_traits_summ <- mFD::sp.tr.summary(tr_cat = trait_df, 

                                            sp_tr = maa_low_60_trait_data_factor, 

                                            stop_if_NA = TRUE) 

 

cam_up_60_traits_summ <- mFD::sp.tr.summary(tr_cat = trait_df, 

                                            sp_tr = cam_up_60_trait_data_factor, 

                                            stop_if_NA = TRUE) 
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cam_mid_60_traits_summ <- mFD::sp.tr.summary(tr_cat = trait_df, 

                                            sp_tr = cam_mid_60_trait_data_factor, 

                                            stop_if_NA = TRUE) 

 

cam_low_60_traits_summ <- mFD::sp.tr.summary(tr_cat = trait_df, 

                                            sp_tr = cam_low_60_trait_data_factor, 

                                            stop_if_NA = TRUE) 

 

# Check trait types 

maa_up_60_traits_summ$"tr_types"  

 

# Check trait type details on levels 

maa_up_60_traits_summ$"mod_list"  

 

# Create df of Trait summary list for each substage: 

maa_up_60_traits_list <- maa_up_60_traits_summ$"tr_summary_list" 

maa_low_60_traits_list <- maa_low_60_traits_summ$"tr_summary_list" 

cam_up_60_traits_list <- cam_up_60_traits_summ$"tr_summary_list" 

cam_mid_60_traits_list <- cam_mid_60_traits_summ$"tr_summary_list" 

cam_low_60_traits_list <- cam_low_60_traits_summ$"tr_summary_list" 

 

 

# write the summary lists of traits to csv files: 

write.csv(maa_up_60_traits_list,file="substages_outputs/maa_up_60_traits_list.csv") 

write.csv(maa_low_60_traits_list,file="substages_outputs/maa_low_60_traits_list.csv") 

write.csv(cam_up_60_traits_list,file="substages_outputs/cam_up_60_traits_list.csv") 

write.csv(cam_mid_60_traits_list,file="substages_outputs/cam_mid_60_traits_list.csv") 

write.csv(cam_low_60_traits_list,file="substages_outputs/cam_low_60_traits_list.csv") 
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  # NOTE: This just gives summary information of the trait data, not actual 

    # counts of FE, etc. Can run on more SS if necessary using above lines. 

  #### Compute sp.to.fe mFD function to get functional entity information for each Substage #### 

 

## Function for summarizing genera into functional entities 

    # This function will take the genera from each substage, classify them into FE, then give information 
about 

    # the distribution of genera in FE, list of FE, etc. 

sum_fe <- function(data){ 

  data1 <- mFD::sp.to.fe( 

    sp_tr       = data, # df of trait values for each genus, with genera names as row index IDs 

    tr_cat      = trait_df, # df of traits, includes just "motility","feeding", and "life_habitat" 

    fe_nm_type  = "fe_rank", # tell to name FE by ranked # genera in each (can't use trait names, too 
many) 

    check_input = TRUE) # tell function to give error description if issues in dfs 

  return(data1) 

} 

 

    ### Possible outputs from above function: ### 

        # $fe_nm > gives a vector of the FE names (will be ranked list based on # genera in each, not based 
on traits) 

        # $sp_fe > gives a vector of genera names and their FE in the substage; order based on decreasing # 
genera 

        # $fe_tr > gives a df of the FE and their traits (motility, life habitat, feeding) in columns with FE as 
rows 

        # $fe_nb_sp > gives a vector with species number per FE. If all FE have only one species, a warning 
message  

            # is returned. FE are ordered according to the decreasing number of species they gather. 

        # $details_fe > gives a list containing:  
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            # $fe_codes > a vector containing character referring to traits values (like a barcode) with names 
as  

                            # in fe_nm_type and sorted according to fe_nb_sp 

            # tr_uval > a list containing for each trait a vector of its unique values or a data frame for fuzzy-
coded traits 

            # fuzzy_E > a list with for each fuzzy-coded trait a data frame with names of entities (E) and 
names of species (sp) 

            # tr_nb_uval > a vector with number of unique values per trait (or combinations for fuzzy-coded 
traits) 

            # max_nb_fe > the maximum number of FE possible given number of unique values per trait. 

 

 

# Classify each substage into FE using above function 

maa_up_60_traits <- sum_fe(maa_up_60_trait_data_factor) 

maa_low_60_traits <- sum_fe(maa_low_60_trait_data_factor) 

cam_up_60_traits <- sum_fe(cam_up_60_trait_data_factor) 

cam_mid_60_traits <- sum_fe(cam_mid_60_trait_data_factor) 

cam_low_60_traits <- sum_fe(cam_low_60_trait_data_factor) 

 

      ## NOTE: the above trait outputs will be used later to calc FR and evenness for each SS overall using 
the $fe_nb_sp  

        # option; see later section. 

 

 

# Look at the FE names 

maa_up_60_traits$"fe_nm" 

maa_low_60_traits$"fe_nm" 

cam_up_60_traits$"fe_nm" 

cam_mid_60_traits$"fe_nm" 

cam_low_60_traits$"fe_nm"  # different numbers of FE found for each substage, but roughly the same 
amount 
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# Look at which FE each genus belongs to 

sp_fe_maa_up_60_traits <- maa_up_60_traits$"sp_fe" 

sp_fe_maa_low_60_traits <- maa_low_60_traits$"sp_fe" 

sp_fe_cam_up_60_traits <- cam_up_60_traits$"sp_fe" 

sp_fe_cam_mid_60_traits <- cam_mid_60_traits$"sp_fe" 

sp_fe_cam_low_60_traits <- cam_low_60_traits$"sp_fe" 

 

# Look at number of genera per FE 

fe_nb_sp_maa_up_60_traits <- maa_up_60_traits$"fe_nb_sp" # yes, genus names kept!! hurray! 

fe_nb_sp_maa_up_60_traits  

 

#### Use SQS to check subsampling size for adequate representation of FEs #### 

 

## This is intended to give an idea about how low sampling can go before FE are 

  # not well represented in each SS. Important for nodes, where there are very 

  # few total genera, and even fewer unique ones... 

## Use the above table lists of FE for each genera. 

 

# Create Frequency lists for each FE in each SS: 

maa_up_60_fe_freq <-table(sp_fe_maa_up_60_traits) # all data frequencies of genera 

maa_low_60_fe_freq <-table(sp_fe_maa_low_60_traits) # all data frequencies of genera 

cam_up_60_fe_freq <-table(sp_fe_cam_up_60_traits) # all data frequencies of genera 

cam_mid_60_fe_freq <-table(sp_fe_cam_up_60_traits) # all data frequencies of genera 

cam_low_60_fe_freq <-table(sp_fe_cam_up_60_traits) # all data frequencies of genera 

 

# Use SQS subsampling function (see above) to get estimate for sampling level: 

maa_up_sqs_sample_for_fe <- run_sqs(maa_up_60_fe_freq) 

maa_low_sqs_sample_for_fe <- run_sqs(maa_low_60_fe_freq) 
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cam_up_sqs_sample_for_fe <- run_sqs(cam_up_60_fe_freq) 

cam_mid_sqs_sample_for_fe <- run_sqs(cam_mid_60_fe_freq) 

cam_low_sqs_sample_for_fe <- run_sqs(cam_low_60_fe_freq) 

 

# CHANGE IF USING WIS ONLY: Bind into a df and give row names for each SS: 

sqs_sample_size_fe <- data.frame(c(maa_up_sqs_sample_for_fe, maa_low_sqs_sample_for_fe, 

                        cam_up_sqs_sample_for_fe, cam_mid_sqs_sample_for_fe, 

                        cam_low_sqs_sample_for_fe)) 

 

# sqs_sample_size_fe <- data.frame(c(maa_low_sqs_sample_for_fe,  

                                   # cam_up_sqs_sample_for_fe, cam_mid_sqs_sample_for_fe,  

                                   # cam_low_sqs_sample_for_fe)) 

 

rownames(sqs_sample_size_fe) <- c("Maa UP","Maa LOW","Cam UP","Cam MID","Cam LOW") 

 

# rownames(sqs_sample_size_fe) <- c("Maa LOW","Cam UP","Cam MID","Cam LOW") 

 

colnames(sqs_sample_size_fe) <- "SQS Size Estimate" 

 

# Write to csv  

write.csv(sqs_sample_size_fe,file="grid_collections_outputs/sqs_sample_size_fe.csv") 

 

 

#### ANALYSIS FOR GRID CELLS AS COLLECTIONS #### 

  #### Compute alpha.fd.fe mFD function to get alpha and beta diversity information for each Substage 
#### 

 

## Function to calc functional trait values 

calc_fe <- function(trait_data,pres_ab_data){ 
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  alpha_fd_fe_MAAup <- mFD::alpha.fd.fe( 

    asb_sp_occ       = pres_ab_data,  

    sp_to_fe         = trait_data, 

    ind_nm           = c("fred", "fored", "fvuln"), 

    check_input      = TRUE, 

    details_returned = TRUE) 

} 

 

# Calculate functional richness, redundancy, over redundancy, and vulnerability for each substage in grid 
cells 

maa_up_60_fe <- calc_fe(maa_up_60_traits, maa_up_60_pres_ab) 

maa_low_60_fe<- calc_fe(maa_low_60_traits, maa_low_60_pres_ab) 

cam_up_60_fe <- calc_fe(cam_up_60_traits, cam_up_60_pres_ab) 

cam_mid_60_fe <- calc_fe(cam_mid_60_traits, cam_mid_60_pres_ab) 

cam_low_60_fe <- calc_fe(cam_low_60_traits, cam_low_60_pres_ab) 

 

# Get a matrix of fe values for each grid cell in a time bin 

maa_up_60_fdfe <- (maa_up_60_fe$"asb_fdfe") 

maa_low_60_fdfe <- (maa_low_60_fe$"asb_fdfe") 

cam_up_60_fdfe <- (cam_up_60_fe$"asb_fdfe") 

cam_mid_60_fdfe <- (cam_mid_60_fe$"asb_fdfe") 

cam_low_60_fdfe <- (cam_low_60_fe$"asb_fdfe") 

 

# Look at the df of the alpha-beta diversity outputs 

maa_up_60_fdfe 

maa_low_60_fdfe 

cam_up_60_fdfe 

cam_mid_60_fdfe 

cam_low_60_fdfe  
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# Export results tables summarizing the number of spp, fe, and functional  

  # richness and evenness values for each substage 

write.csv(maa_up_60_fdfe,file="grid_collections_outputs/MaaUP60_fe_alpha_beta_results.csv") 

write.csv(maa_low_60_fdfe,file="grid_collections_outputs/MaaLOW60_fe_alpha_beta_results.csv") 

write.csv(cam_up_60_fdfe,file="grid_collections_outputs/CamUP60_fe_alpha_beta_results.csv") 

write.csv(cam_mid_60_fdfe,file="grid_collections_outputs/CamMID60_fe_alpha_beta_results.csv") 

write.csv(cam_low_60_fdfe,file="grid_collections_outputs/CamLOW60_fe_alpha_beta_results.csv") 

 

# Function to check for diff between two data frames genus name lists, only use 

  # if error in cal FR above  

check_diff_sp <- function(trait_data,pres_ab_data){ 

  df <- as.data.frame(trait_data$"sp_fe") 

  df <- cbind(newColName = rownames(df), df) 

  rownames(df) <- NULL 

  df <- df[,1] 

   

  dd <- as.data.frame(colnames(pres_ab_data)) 

  dd <- dd[,1] 

  head(dd) 

   

  df <- sort(df) 

  dd <- sort(dd) 

  diff <-setdiff(df,dd) 

  return(diff) 

} 

 

#### Look at relationship between Generic and Functional Richness #### 
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# Use iNext to create rarifaction curve of the number genera per number of FEs 

library(iNEXT) 

 

data(spider) 

str(spider) 

 

out <- iNEXT(spider, q=0, datatype="abundance", endpoint=500) 

 

aa <- fe_data1[,2:3] 

 

bb <- iNEXT(aa, q=0, datatype="abundance", size=NULL, endpoint=NULL, knots=40, se=TRUE, conf=0.95, 

      nboot=50) 

 

 

out <- iNEXT(spider, q=c(0, 1, 2), datatype="abundance", endpoint=500) 

# Sample-size-based R/E curves, separating plots by "site" 

ggiNEXT(out, type=1, facet.var="site") 

 

# function to get the Age data as first column 

df_func <- function(data){ 

  ###  Get the functional ecology information for the substage (this is a dataframe) and reconfig: ### 

  data1 <- cbind(Bin = rownames(data), data) # make the grid name the 1st column again 

  rownames(data1) <- 1:nrow(data1) # make a new index for the rownames 

  data1 <- as.data.frame(data1) 

  i <- c(2:6) 

  data1[ , i] <- apply(data1[ , i], 2,            # Specify own function within apply to make numeric 

                       function(x) as.numeric(as.character(x))) 

  return(as.data.frame(data1)) 

} 



Supplementary Materials for Purcell and Myers, 20XX 446 
 

446 
 

 

fe_data1 <- df_func(maa_up_60_fdfe) 

fe_data2 <- df_func(maa_low_60_fdfe) 

fe_data3 <- df_func(cam_up_60_fdfe) 

fe_data4 <- df_func(cam_mid_60_fdfe) 

fe_data5 <- df_func(cam_low_60_fdfe) 

 

data_fe_all <- rbind(fe_data1,fe_data2,fe_data3,fe_data4,fe_data5) 

 

 

# perform Shapiro test for normality on the GR and FR values from grid cells 

shapiro.test(data_fe_all[,"nb_sp"]) # very much not normal 

shapiro.test(data_fe_all[,"nb_fe"]) # very much not normal 

 

 

# make plot of all the GR vs FR values for each grid cell in all substages 

p <- ggplot(fe_data1, aes(x = nb_sp, y = nb_fe)) + 

  geom_point(color = "darkred") + 

  geom_point(data = fe_data2, aes(x = nb_sp, y = nb_fe), color = "#D55E00") + 

  geom_point(data = fe_data3, aes(x = nb_sp, y = nb_fe), color = "goldenrod3") + 

  geom_point(data = fe_data4, aes(x = nb_sp, y = nb_fe), color = "darkolivegreen4") + 

  geom_point(data = fe_data5, aes(x = nb_sp, y = nb_fe), color = "steelblue4") 

 

# add different models to the data to see which fits best 

p + stat_smooth(method = "lm", formula = y ~ x, size = 1, se = FALSE, colour = "black") +  

  stat_smooth(method = "lm", formula = y ~ x + I(x^2), size = 1, se = FALSE, colour = "blue") +  

  stat_smooth(method = "loess", formula = y ~ x, size = 1, se = FALSE, colour = "red") +  

  stat_smooth(method = "gam", formula = y ~ s(x), size = 1, se = FALSE, colour = "green") +  

  stat_smooth(method = "gam", formula = y ~ s(x, k = 3), size = 1, se = FALSE, colour = "violet") +  
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  stat_smooth(method = "lm", formula = y ~ sqrt(x), size = 1, se = FALSE, colour = "goldenrod") +  

  stat_smooth(method = "lm", formula = log(y) ~ log(x), size = 1, se = FALSE, colour = "brown4") 

 

# look at most likely models of those above 

p + stat_smooth(method = "lm", formula = y ~ x + I(x^2), size = 1, se = FALSE, colour = "blue") +  

  stat_smooth(method = "loess", formula = y ~ x, size = 1, se = FALSE, colour = "red") + 

  stat_smooth(method = "gam", formula = y ~ s(x, k = 3), size = 1, se = FALSE, colour = "violet") +  

  stat_smooth(method = "lm", formula = y ~ sqrt(x), size = 1, se = FALSE, colour = "goldenrod") 

 

 

# look at model that appears to fit best of those above 

p + stat_smooth(method = "lm", formula = y ~ sqrt(x), size = 1, colour = "goldenrod") + 

   

  p + stat_smooth(method = "lm", formula = y ~ x + I(x^2), size = 1, colour = "blue") 

 

# It appears, based on the above plots, that other than the loess and gam models, 

# the square root and squared models fit the data best, so tested below: 

 

# create square root model 

model_sr<-lm(fe_data1$nb_sp ~ I(sqrt(fe_data1$nb_fe)), data = fe_data1) 

summary(model_sr) 

 

# create squared model (this one appears to have a higher R2 so probably slightly better fit) 

model_sq<-lm(fe_data1$nb_sp ~ I((fe_data1$nb_fe)^2), data = fe_data1) 

summary(model_sq) 

 

names(summary(model_sq)) 

 

summary(model_sq)$r.squared # extremely high R2 value, indicates good fit 
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summary(model_sq)$coefficients 

summary(model_sq)$adj.r.squared 

 

# plot the information related to the regression model 

par(mfrow = c(2, 2)) 

plot(model_sq) 

 

# export plots as pdf 

pdf("grid_collections_outputs/squared_regression_model_GRvsFR_plots.pdf", width = 11, height = 11) # 
Open a new pdf file 

par(mfrow = c(2, 2)) 

plot(model_sq) 

dev.off() # Close the file 

 

# export plot of GR vs FR within grid cells for each SS and regression line: 

pdf("grid_collections_outputs/GRvsFR_regression_plots.pdf", width = 6, height = 6) # Open a new pdf 
file 

p + stat_smooth(method = "lm", formula = y ~ x + I(x^2), size = 1, colour = "blue") 

dev.off() # Close the file 

 

 

# Based on the above plots, only one point counts as an outlier which may influence 

# the regression (>1 cook's distance), but the residuals indicate a linear 

# relationship in the data (Residual vs Fitted). The Scale-location plot suggests 

# that the data have fairly homogeneous variance values, except at low fitted 

# values where the variance is quite low. The Q-Q plots show non-normality, 

# which is expected given the Shapiro-Wilk tests performed above. 
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# Results show that there is a high correlation between GR and FR, which appears to potentially 

# plateau at the very highest levels of GR (>150), and potentially follow a squared 

# model function (i.e., peaking at ~150 genera before the correlation becomes negative). 

# Either way, this should be considered when examining the results of the analysis. 

# When using lower sampling (correlated strongly with GR), GR is low, and therefore 

# FR will probably be low as well. Might be the case that you can't really examine 

# FD at local scales in the fossil record, given the limitations on the data. This issue 

# may also become even more difficult when using subsampling like sqs, since it will 

# necessarily decrease sampling overall and impacting sampling especially in localized 

# regions. 

 

  #### Use alpha.fd.fe.plot to Plot the results for each grid cell in each substage #### 

  # (par(mfrow) wont work for ggplots so this is my work around) 

 

    # Note: can't keep title of each subplot when putting them together. very annoying. Not sure 

      # how to fix this since it seems like it's just part of the base code for plotting these. 

      # Will have to manually add titles if necessary. 

 

 

 

# Run a for loop function to create the plots and add them to the empty list 

plot_alpha_beta_fe <- function(fe_data,sbstg_data){ 

  fe_plots = list() # create an empty list to store the grid plots in  

  for(i in 1:length(unique(sbstg_data$PageName))){ 

    grid <- unique(sbstg_data$PageName) 

    fe_plots[[i]] = mFD::alpha.fd.fe.plot( 

      alpha_fd_fe       = fe_data, 

      plot_asb_nm       = c(grid[i]), 

      plot_ind_nm       = c("fred", "fored", "fvuln"), 
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      name_file         = NULL, 

      color_fill_fored  = "darkolivegreen2", 

      color_line_fred   = "darkolivegreen4", 

      color_fill_bar    = "grey80", 

      color_fill_fvuln  = "lightcoral", 

      color_arrow_fvuln = "indianred4", 

      size_line_fred    = 0.5, 

      size_arrow_fvuln  = 0.5, 

      check_input       = TRUE) 

  } 

  return(fe_plots) 

} 

 

maa_up_60_fe_plots <- plot_alpha_beta_fe(maa_up_60_fe,maa_up_60_sbstg) 

maa_low_60_fe_plots <- plot_alpha_beta_fe(maa_low_60_fe,maa_low_60_sbstg) 

cam_up_60_fe_plots <- plot_alpha_beta_fe(cam_up_60_fe,cam_up_60_sbstg) 

cam_mid_60_fe_plots <- plot_alpha_beta_fe(cam_mid_60_fe,cam_mid_60_sbstg) 

cam_low_60_fe_plots <- plot_alpha_beta_fe(cam_low_60_fe,cam_low_60_sbstg) 

 

# export plots as single pdf 

pdf("grid_collections_outputs/alpha_beta_allgrids_MAA_up_plots.pdf", width = 15, height = 25) # Open 
a new pdf file 

grid.arrange(grobs = maa_up_60_fe_plots,  

             top = "Upper Maastr. Alpha/Beta Diversity per Grid Cell") # Write the grid.arrange in the file 

dev.off() # Close the file 

 

 

# export plots as single pdf 
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pdf("grid_collections_outputs/alpha_beta_allgrids_MAA_low_plots.pdf", width = 15, height = 25) # 
Open a new pdf file 

grid.arrange(grobs = maa_low_60_fe_plots,  

             top = "Lower Maastr. Alpha/Beta Diversity per Grid Cell") # Write the grid.arrange in the file 

dev.off() # Close the file 

 

# export plots as single pdf 

pdf("grid_collections_outputs/alpha_beta_allgrids_CAM_up_plots.pdf", width = 15, height = 25) # Open 
a new pdf file 

grid.arrange(grobs = cam_up_60_fe_plots,  

             top = "Upper Camp. Alpha/Beta Diversity per Grid Cell") # Write the grid.arrange in the file 

dev.off() # Close the file 

 

# export plots as single pdf 

pdf("grid_collections_outputs/alpha_beta_allgrids_CAM_mid_plots.pdf", width = 15, height = 25) # 
Open a new pdf file 

grid.arrange(grobs = cam_mid_60_fe_plots,  

             top = "Middle Camp. Alpha/Beta Diversity per Grid Cell") # Write the grid.arrange in the file 

dev.off() # Close the file 

 

# export plots as single pdf 

pdf("grid_collections_outputs/alpha_beta_allgrids_CAM_low_plots.pdf", width = 15, height = 25) # 
Open a new pdf file 

grid.arrange(grobs = cam_low_60_fe_plots,  

             top = "Lower Camp. Alpha/Beta Diversity per Grid Cell") # Write the grid.arrange in the file 

dev.off() # Close the file 

 

# Clearly, many grid cells contain very few functional entities AND genera 

# think about removing cells with fewer than 3 genera... 
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  #### Create df of FR for each Grid Cell through time#### 

 

    # This section is firstly trying to make matrices which will show richness values in each 

      # grid cell across the five substages. Many grid cells do not have consistent occupation,  

      # however. Next, will be adding the general location of the grid cells (lat/lon) to the FR df 

      # so that these tables can be exported and plotted in on maps. 

 

# Function to configure to columns with site names as 1st and FR values as second for FUNCTIONAL 
RICHNESS 

config_for_loc_agg <- function(data, Age){ 

  # Create df that just take the functional richness values in each grid cell 

  data_rich_summ <- (data$"asb_fdfe")[,2] 

   

  data_rich_summ <- data.frame(data_rich_summ) 

  data_rich_summ <- cbind(newColName = rownames(data_rich_summ), data_rich_summ) # make grid 
cell first column 

  rownames(data_rich_summ) <- 1:nrow(data_rich_summ) 

  colnames(data_rich_summ) <- c("Site","Numb_FE") 

   

  data_rich_summ$Age <- Age 

  return(data_rich_summ) 

} 

 

# Use config function (above) to alter then added new column with Age 

maa_up_60_func_rich_summ <- config_for_loc_agg(maa_up_60_fe, "MAA up") 

maa_low_60_func_rich_summ <- config_for_loc_agg(maa_low_60_fe, "MAA low") 

cam_up_60_func_rich_summ <- config_for_loc_agg(cam_up_60_fe, "CAM up") 

cam_mid_60_func_rich_summ <- config_for_loc_agg(cam_mid_60_fe, "CAM mid") 

cam_low_60_func_rich_summ <- config_for_loc_agg(cam_low_60_fe, "CAM low") 
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# Bind the data into a single df with 2 columns (stacked the different dfs) 

func_rich_stack <- rbind(maa_up_60_func_rich_summ,maa_low_60_func_rich_summ, 

                    cam_up_60_func_rich_summ,cam_mid_60_func_rich_summ, 

                    cam_low_60_func_rich_summ) 

 

# Used dcast to reconfigure the data so that Age and Site would be identifiers with unique values 

func_rich_table_all <- dcast(func_rich_stack, Site ~ Age, value.var = "Numb_FE") 

 

 

# This is a table showing the number of FE in each grid cell for each substage 

head(func_rich_table_all) 

 

write.csv(func_rich_table_all, file="grid_collections_outputs/Grid_FR_through_time.csv") 

 

  #### Create df of GR for each Grid Cell through time#### 

 

# Function to configure to columns with site names as 1st and FR values as second for GENERIC 
RICHNESS 

config_for_loc_agg_gen_rich <- function(data, Age){ 

  # Create df that just take the functional richness values in each grid cell 

  data_rich_summ <- (data$"asb_fdfe")[,1] 

   

  data_rich_summ <- data.frame(data_rich_summ) 

  data_rich_summ <- cbind(newColName = rownames(data_rich_summ), data_rich_summ) # make grid 
cell first column 

  rownames(data_rich_summ) <- 1:nrow(data_rich_summ) 

  colnames(data_rich_summ) <- c("Site","Numb_G") 
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  data_rich_summ$Age <- Age 

  return(data_rich_summ) 

} 

 

# Use config function (above) to alter then added new column with Age 

maa_up_60_generic_rich_summ <- config_for_loc_agg_gen_rich(maa_up_60_fe, "MAA up") 

maa_low_60_generic_rich_summ <- config_for_loc_agg_gen_rich(maa_low_60_fe, "MAA low") 

cam_up_60_generic_rich_summ <- config_for_loc_agg_gen_rich(cam_up_60_fe, "CAM up") 

cam_mid_60_generic_rich_summ <- config_for_loc_agg_gen_rich(cam_mid_60_fe, "CAM mid") 

cam_low_60_generic_rich_summ <- config_for_loc_agg_gen_rich(cam_low_60_fe, "CAM low") 

 

# Bind the data into a single df with 2 columns (stacked the different dfs) 

generic_rich_stack <- rbind(maa_up_60_generic_rich_summ,maa_low_60_generic_rich_summ, 

                    cam_up_60_generic_rich_summ,cam_mid_60_generic_rich_summ, 

                    cam_low_60_generic_rich_summ) 

 

# Used dcast to reconfigure the data so that Age and Site would be identifiers with unique values 

generic_rich_table_all <- dcast(generic_rich_stack, Site ~ Age, value.var = "Numb_G") 

 

 

# This is a table showing the number of FE in each grid cell for each substage 

head(generic_rich_table_all) 

 

write.csv(generic_rich_table_all, file="grid_collections_outputs/Grid_GR_through_time.csv") 

 

  #### Get the average location for each grid cell per substage (use to group by lat and compare across 
lat) #### 
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# Function to separate geometry back out into lat-long information: 

sep_lat_substage <- function(data,substage){ 

   

  # separate the geometry values back into lat/lon 

  data <- data %>%  

    mutate(geometry = gsub('[POINT ()]', '', geometry)) %>%  

    separate(col = geometry, into = c('Longitude', 'Latitude'), sep = '\\,') 

   

  # remove the first character in lat string, don't know why but the above code adds a "c" 

  data$Longitude <- sub('.', '', data$Longitude) 

   

  # make the lat/lon columns into numeric values 

  data$Longitude <- as.numeric(data$Longitude) 

  data$Latitude <- as.numeric(data$Latitude) 

   

  # separate the df by substages so can take average locations for each grid cell at each substage 

  substg_data <- as.data.frame(subset(data, Substage_from_Zone.Mbr ==substage)) 

  substg_data %>% distinct(Updated_Genus,PageName,.keep_all=TRUE) # delete duplicate value 

   

  return(substg_data) 

} 

 

# Create new df of all data with the lat/lon separated back out 

maa_up_60_loc_data <-sep_lat_substage(join60_data, "MAA (up)") 

maa_low_60_loc_data <-sep_lat_substage(join60_data, "MAA (low)") 

cam_up_60_loc_data <-sep_lat_substage(join60_data, "CAM (up)") 

cam_mid_60_loc_data <-sep_lat_substage(join60_data, "CAM (mid)") 

cam_low_60_loc_data <-sep_lat_substage(join60_data, "CAM (low)") 
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# Function to separate geometry back out into lat-long information for entire db: 

sep_lat <- function(data){ 

   

  # separate the geometry values back into lat/lon 

  data <- data %>%  

    mutate(geometry = gsub('[POINT ()]', '', geometry)) %>%  

    separate(col = geometry, into = c('Longitude', 'Latitude'), sep = '\\,') 

   

  # remove the first character in lat string, don't know why but the above code adds a "c" 

  data$Longitude <- sub('.', '', data$Longitude) 

   

  # make the lat/lon columns into numeric values 

  data$Longitude <- as.numeric(data$Longitude) 

  data$Latitude <- as.numeric(data$Latitude) 

   

  return(data) 

} 

 

join60_data_lat_sep <-sep_lat(join60_data) 

# this above format not used in separating by lat bins (below section), instead 

# use the db table made by combining substages that have been given paleo coords, 

# see next few lines. 

 

# load the chronosphere package to run this code. This should allow for reconstructions of plat and 
plong:  

# https://www.evolv-ed.net/post/chronosphere-paleomap/chronosphere-paleomap/ 

library(chronosphere) 
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# Function to get the plat and plon inforamtion for each occ: 

estimate_ploc <- function(data,age){ 

  # get just the lat long locations from the table 

  data_loc_2col <- data[,c("Longitude","Latitude")] 

   

  # Reconstruct paleocoord using age of rough age of substage (approximate, will use the same age for 
M Cam because limited options...) 

  data_ploc <- as.data.frame(reconstruct(data_loc_2col, age=c(age))) 

   

  colnames(data_ploc) <- c("plong","plat") 

   

  ## Add the paleocoord back into the original location df 

  data$plong <- data_ploc$plong 

  data$plat <- data_ploc$plat 

  return(data) 

} 

 

 

# Use above function to get the plat and plon information for each substage site 

maa_up_60_paleo_loc_data <-estimate_ploc(maa_up_60_loc_data, 80) 

maa_low_60_paleo_loc_data <-estimate_ploc(maa_low_60_loc_data, 80) 

cam_up_60_paleo_loc_data <-estimate_ploc(cam_up_60_loc_data, 75) 

cam_mid_60_paleo_loc_data <-estimate_ploc(cam_mid_60_loc_data, 70) 

cam_low_60_paleo_loc_data <-estimate_ploc(cam_low_60_loc_data, 70) 

 

 

# Write paleo location information to a new file set (MIGHT WANT THESE LATER IF CHRONOSPHERE 
STOPS WORKING AGAIN...) 
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write.csv(maa_up_60_paleo_loc_data, file="maa_up_60_paleo_loc_data.csv") 

write.csv(maa_low_60_paleo_loc_data, file="maa_low_60_paleo_loc_data.csv") 

write.csv(cam_up_60_paleo_loc_data, file="cam_up_60_paleo_loc_data.csv") 

write.csv(cam_mid_60_paleo_loc_data, file="cam_mid_60_paleo_loc_data.csv") 

write.csv(cam_low_60_paleo_loc_data, file="cam_low_60_paleo_loc_data.csv") 

 

# read in the csv data that was produced before for paleocoor information, to save comp time 

maa_up_60_paleo_loc_data <- read.csv("maa_up_60_paleo_loc_data.csv") 

maa_low_60_paleo_loc_data <- read.csv("maa_low_60_paleo_loc_data.csv") 

cam_up_60_paleo_loc_data <- read.csv("cam_up_60_paleo_loc_data.csv") 

cam_mid_60_paleo_loc_data <- read.csv("cam_mid_60_paleo_loc_data.csv") 

cam_low_60_paleo_loc_data <- read.csv("cam_low_60_paleo_loc_data.csv") 

 

# join the above dfs together to create a complete df of all occurrence information 

join60_data_paleo_loc <- rbind(maa_up_60_paleo_loc_data, 

      maa_low_60_paleo_loc_data, 

      cam_up_60_paleo_loc_data, 

      cam_mid_60_paleo_loc_data, 

      cam_low_60_paleo_loc_data) 

 

# write the entire db as a new file with paleo locations: 

write.csv(join60_data_paleo_loc, file="join60_data_60_paleo_loc_data.csv") 

 

    ## NOTE: the above df used later when binning by latitude, used to create "bins" that can be used 
instead of 

      # grid cells when calculating alpha-beta functional diversity 

 

 

# Create function to aggregate location information based on grid cell and merge with grid IDs  
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agg_paleo_loc <- function(loc_data,rich_data){ 

  agg_lat <- aggregate(x = loc_data$plat,                # Specify data column 

            by = list(loc_data$PageName),              # Specify group indicator 

            FUN = mean) 

  agg_lon <- aggregate(x = loc_data$plong,                # Specify data column 

                       by = list(loc_data$PageName),              # Specify group indicator 

                       FUN = mean) 

  grid_loc <- merge(agg_lat,agg_lon,"Group.1") #merge into single df 

  colnames(grid_loc) <- c("Site","pLat","pLon") 

  rich_latlong <- merge(rich_data,grid_loc,by = "Site", all.x=TRUE) 

  return(rich_latlong) 

  }    

 

# Aggregate and merge location information for each substage (above function) 

    # these locations will be used to plot the locations of values on maps based on average grid cell 
locations 

maa_up_60_grid_paleo_local <- agg_paleo_loc(maa_up_60_paleo_loc_data, 
maa_up_60_func_rich_summ) 

maa_low_60_grid_paleo_local <- agg_paleo_loc(maa_low_60_paleo_loc_data, 
maa_low_60_func_rich_summ) 

cam_up_60_grid_paleo_local <- agg_paleo_loc(cam_up_60_paleo_loc_data, 
cam_up_60_func_rich_summ) 

cam_mid_60_grid_paleo_local <- agg_paleo_loc(cam_mid_60_paleo_loc_data, 
cam_mid_60_func_rich_summ) 

cam_low_60_grid_paleo_local <- agg_paleo_loc(cam_low_60_paleo_loc_data, 
cam_low_60_func_rich_summ) 

 

#Aggregate and merge location information for entire database (above function) 

  # these locations will be used to group lat bins in plots based on average grid 

  # cell locations 

grid_local <- agg_paleo_loc(join60_data_paleo_loc, func_rich_table_all) 
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  #### Create histograms of grid metric values for each substage #### 

 

 

# function to create histograms of all metrics calculated by mFD for alpha and beta diversity 

hist_plots <- function(data){ 

  sp_hist <- ggplot() + 

    geom_histogram(as.data.frame(data), mapping = aes(x = nb_sp), 

                   binwidth=5, fill="skyblue4", color="#e9ecef", alpha=0.9) + 

    labs(title="Grid Cell Generic Richness (GR)",x="# Genera", y = "Frequency of Grid Cells") +  

    theme(plot.title = element_text(hjust = 0.5)) 

  fe_hist <- ggplot() + 

    geom_histogram(as.data.frame(data), mapping = aes(x = nb_fe), 

                   binwidth=3, fill="skyblue4", color="#e9ecef", alpha=0.9) + 

    labs(title="Grid Cell Functional Richness (FR)",x="# Functional Entities", y = "Frequency of Grid Cells") 
+  

    theme(plot.title = element_text(hjust = 0.5)) 

  fred_hist <- ggplot() + 

    geom_histogram(as.data.frame(data), mapping = aes(x = fred), 

                   binwidth=0.3, fill="skyblue4", color="#e9ecef", alpha=0.9) + 

    labs(title="Grid Cell Functional Redundancy (FRed)",x="GR/FR", y = "Frequency of Grid Cells") +  

    theme(plot.title = element_text(hjust = 0.5)) 

  fored_hist <- ggplot() + 

    geom_histogram(as.data.frame(data), mapping = aes(x = fored), 

                   binwidth=0.1, fill="skyblue4", color="#e9ecef", alpha=0.9) + 

    labs(title="Grid Cell Functional Over-Redundancy (FORed)",x="FRed Values", y = "Frequency of Grid 
Cells") +  

    theme(plot.title = element_text(hjust = 0.5)) 
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  fvuln_hist <- ggplot() + 

    geom_histogram(as.data.frame(data), mapping = aes(x = fvuln), 

                   binwidth=0.15, fill="skyblue4", color="#e9ecef", alpha=0.9) + 

    labs(title="Grid Cell Functional Vulnerability (FVuln)",x="FVuln Values", y = "Frequency of Grid Cells") +  

    theme(plot.title = element_text(hjust = 0.5)) 

  dist_list <- list(sp_hist,fe_hist,fred_hist,fored_hist,fvuln_hist) 

} 

 

# Create series of histograms for metric values in each substage 

maa_up_60_grid_hist <- hist_plots(maa_up_60_fdfe) 

maa_low_60_grid_hist <- hist_plots(maa_low_60_fdfe) 

cam_up_60_grid_hist <- hist_plots(cam_up_60_fdfe) 

cam_mid_60_grid_hist <- hist_plots(cam_mid_60_fdfe) 

cam_low_60_grid_hist <- hist_plots(cam_low_60_fdfe) 

 

 

pdf("grid_collections_outputs/hist_MAA_up_allgrids.pdf", width = 15, height = 25) # Open a new pdf file 

grid.arrange(grobs = maa_up_60_grid_hist,  

             top = "Upper Maastr. Histograms of Diversity Metrics per Grid Cell") # Write the grid.arrange in 
the file 

dev.off() #close the file 

 

pdf("grid_collections_outputs/hist_MAA_low_allgrids.pdf", width = 15, height = 25) # Open a new pdf 
file 

grid.arrange(grobs = maa_low_60_grid_hist,  

             top = "Lower Maastr. Histograms of Diversity Metrics per Grid Cell") # Write the grid.arrange in 
the file 

dev.off() #close the file 

 

pdf("grid_collections_outputs/hist_CAM_up_allgrids.pdf", width = 15, height = 25) # Open a new pdf file 
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grid.arrange(grobs = cam_up_60_grid_hist,  

             top = "Upper Camp. Histograms of Diversity Metrics per Grid Cell") # Write the grid.arrange in 
the file 

dev.off() #close the file 

 

pdf("grid_collections_outputs/hist_CAM_mid_allgrids.pdf", width = 15, height = 25) # Open a new pdf 
file 

grid.arrange(grobs = cam_mid_60_grid_hist,  

             top = "Middle Camp. Histograms of Diversity Metrics per Grid Cell") # Write the grid.arrange in 
the file 

dev.off() #close the file 

 

pdf("grid_collections_outputs/hist_CAM_low_allgrids.pdf", width = 15, height = 25) # Open a new pdf 
file 

grid.arrange(grobs = cam_low_60_grid_hist,  

             top = "Lower Camp. Histograms of Diversity Metrics per Grid Cell") # Write the grid.arrange in the 
file 

dev.off() #close the file 

 

  #### Create bar plots of FE metrics for each grid cell in each Substage #### 

# Function to create series of bar plots for each substage's grid cells 

bar_plot <- function(fe_data, loc_data, substage){ 

   

  ###  Get the functional ecology information for the substage (this is a dataframe) and reconfig: ### 

  data1 <- cbind(newColName = rownames(fe_data), fe_data) # make the genus name the 1st column 
again 

  rownames(data1) <- 1:nrow(data1) # make a new index for the rownames 

  data1 <- as.data.frame(data1) 

  i <- c(2:6) 

  data1[ , i] <- apply(data1[ , i], 2,            # Specify own function within apply to make numeric 

                       function(x) as.numeric(as.character(x))) 
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  colnames(data1) <- c("Grid", "nb_sp", "nb_fe", "fred", "fored", "fvuln") # set colnames 

   

   

  ### Extract Location Information: ### 

  loc_data1 <- loc_data[c("Site",substage,"pLat","pLon")] # Extract columns for just one substage 

  colnames(loc_data1) <- c("Grid",substage,"pLat","pLon") # Rename columns 

  loc_data1$Lat_1 <- loc_data1$pLat # Add another column to use for binning lat 

  # Next, use mutate and cut to create binned categories of lat 

  loc_data2 <- loc_data1 %>% mutate(Lat_1 = cut(loc_data1$Lat_1,  

                                                breaks=c(-Inf, seq(round(min(loc_data1$pLat)/5)*5,  

                                                                   round(max(loc_data1$pLat)/5)*5, by = 5), Inf))) 

   

   

  ### Merge the new bins with the fe df: ### 

  data3 <- merge(data1,loc_data2, by= "Grid", all.x = TRUE)  

   

  # get the unique lat bins available for this substage and change colname 

  bins <- data.frame(unique(data3$Lat_1)) 

  colnames(bins) <- "Lat_1" 

   

  # Create column with the sorts of labels actually want to use based on ifelse 

  bins$lat_bins <-with(bins, ifelse(Lat_1 == "(-Inf,30]", '23-30°N',  

                                    ifelse(Lat_1 == "(30,35]", '30-35°N',  

                                           ifelse(Lat_1 == "(35,40]", '35-40°N',  

                                                  ifelse(Lat_1 == "(40,45]", '40-45°N', 

                                                         ifelse(Lat_1 == "(45,50]", '45-50°N', 

                                                                ifelse(Lat_1 == "(50,55]", '50-55°N', 

                                                                       ifelse(Lat_1 == "(55,60]", '55-60°N', 

                                                                              '60-65°N' )))))))) 
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  # sort the vector so they're in order from lowest to highest 

  bin_labels <- sort(bins$lat_bins) 

   

  ### Arrange the df based on lat bins and then create a object with the correct order: ### 

  data4 <- arrange(data3,Lat_1) 

  grids <- data4$Grid 

   

  ### Plot the data using geom_col: ### 

  sp_bar <- ggplot(data3, aes(x=Grid, y=nb_sp, fill=Lat_1)) +  

    geom_col(color="#e9ecef") + 

    geom_text(aes(label=nb_sp), position=position_dodge(width=0.9), vjust=-0.25, size = 2.5) + 

    labs(title="Generic Richness",x="Grid Cell", y = "Number of Genera", fill="Paleo-Latitude") +  

    theme(plot.title = element_text(hjust = 0.5), 

          axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) + 

    scale_fill_manual(values=c("red4", 

                                     "tomato3", 

                                     "darkorange3", 

                                     "goldenrod2", 

                                     "darkolivegreen4", 

                                     "aquamarine4", 

                                     "steelblue"),  

                                     labels = bin_labels)+ 

    scale_x_discrete(limits=grids) + 

    ylim(0, 1 + max(data3$nb_sp)) 

 

   

  fe_bar <- ggplot(data3, aes(x=Grid, y=nb_fe, fill=Lat_1)) +  

    geom_col(color="#e9ecef") + 
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    geom_text(aes(label=signif(nb_fe,2)), position=position_dodge(width=0.9), vjust=-0.25, size = 2.5) + 

    labs(title="Functional Richness",x="Grid Cell", y = "Number of Functional Entities", fill="Paleo-
Latitude") +  

    theme(plot.title = element_text(hjust = 0.5), 

          axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) + 

    scale_fill_manual(values=c("red4", 

                                     "tomato3", 

                                     "darkorange3", 

                                     "goldenrod2", 

                                     "darkolivegreen4", 

                                     "aquamarine4", 

                                     "steelblue"),  

                                     labels = bin_labels)+ 

    scale_x_discrete(limits=grids) + 

    ylim(0, 1 + max(data3$nb_fe)) 

   

  fred_bar <- ggplot(data3, aes(x=Grid, y=fred, fill=Lat_1)) +  

    geom_col(color="#e9ecef") + 

    geom_text(aes(label=signif(fred,2)), position=position_dodge(width=0.9), vjust=-0.25, size = 2.5) + 

    labs(title="Functional Redundancy (FRed)",x="Grid Cell", y = "FRed Value", fill="Paleo-Latitude") +  

    theme(plot.title = element_text(hjust = 0.5), 

          axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) + 

    scale_fill_manual(values=c("red4", 

                                     "tomato3", 

                                     "darkorange3", 

                                     "goldenrod2", 

                                     "darkolivegreen4", 

                                     "aquamarine4", 

                                     "steelblue"),  
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                                     labels = bin_labels)+ 

    scale_x_discrete(limits=grids) + 

    ylim(0, 1 + max(data3$fred)) 

   

  fored_bar <- ggplot(data3, aes(x=Grid, y=fored, fill=Lat_1)) +  

    geom_col(color="#e9ecef") + 

    geom_text(aes(label=signif(fored,2)), position=position_dodge(width=0.9), vjust=-0.25, size = 2.5) + 

    labs(title="Functional Over-Redundancy",x="Grid Cell", y = "FORed Value", fill="Paleo-Latitude") +  

    theme(plot.title = element_text(hjust = 0.5), 

          axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) + 

    scale_fill_manual(values=c("red4", 

                                     "tomato3", 

                                     "darkorange3", 

                                     "goldenrod2", 

                                     "darkolivegreen4", 

                                     "aquamarine4", 

                                     "steelblue"),  

                                     labels = bin_labels)+ 

    scale_x_discrete(limits=grids) + 

    ylim(0, 1 + max(data3$fored)) 

   

  fvuln_bar <- ggplot(data3, aes(x=Grid, y=fvuln, fill=Lat_1)) +  

    geom_col(color="#e9ecef") + 

    geom_text(aes(label=signif(fvuln,2)), position=position_dodge(width=0.9), vjust=-0.25, size = 2.5) + 

    labs(title="Functional Vulnerability (FVuln)",x="Grid Cell", y = "FVuln Value", fill="Paleo-Latitude") +  

    theme(plot.title = element_text(hjust = 0.5), 

          axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) + 

    scale_fill_manual(values=c("red4", 

                                     "tomato3", 
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                                     "darkorange3", 

                                     "goldenrod2", 

                                     "darkolivegreen4", 

                                     "aquamarine4", 

                                     "steelblue"),  

                                     labels = bin_labels)+ 

    scale_x_discrete(limits=grids) + 

    ylim(0, 1 + max(data3$fvuln)) 

   

  bar_list <- list(sp_bar,fe_bar,fred_bar,fored_bar,fvuln_bar) 

} 

 

# Create series of bar plots for metric values in each substage 

maa_up_60_grid_bar <- bar_plot(maa_up_60_fdfe,grid_local,"MAA up") 

maa_low_60_grid_bar <- bar_plot(maa_low_60_fdfe,grid_local,"MAA low") 

cam_up_60_grid_bar <- bar_plot(cam_up_60_fdfe,grid_local,"CAM up") 

cam_mid_60_grid_bar <- bar_plot(cam_mid_60_fdfe,grid_local,"CAM mid") 

cam_low_60_grid_bar <- bar_plot(cam_low_60_fdfe,grid_local,"CAM low") 

 

 

# Extract  

pdf("grid_collections_outputs/bar_MAA_up_allgrids.pdf", width = 50, height = 25) # Open a new pdf file 

grid.arrange(grobs = maa_up_60_grid_bar,  

             top = "Upper Maastr. Bar Plots of Diversity Metrics per Grid Cell") # Write the grid.arrange in the 
file 

dev.off() #close the file 

 

pdf("grid_collections_outputs/bar_MAA_low_allgrids.pdf", width = 50, height = 25) # Open a new pdf 
file 
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grid.arrange(grobs = maa_low_60_grid_bar,  

             top = "Lower Maastr. Bar Plots of Diversity Metrics per Grid Cell") # Write the grid.arrange in the 
file 

dev.off() #close the file 

 

pdf("grid_collections_outputs/bar_CAM_up_allgrids.pdf", width = 50, height = 25) # Open a new pdf file 

grid.arrange(grobs = cam_up_60_grid_bar,  

             top = "Upper Camp. Bar Plots of Diversity Metrics per Grid Cell") # Write the grid.arrange in the 
file 

dev.off() #close the file 

 

pdf("grid_collections_outputs/bar_CAM_mid_allgrids.pdf", width = 50, height = 25) # Open a new pdf 
file 

grid.arrange(grobs = cam_mid_60_grid_bar,  

             top = "Middle Camp. Bar Plots of Diversity Metrics per Grid Cell") # Write the grid.arrange in the 
file 

dev.off() #close the file 

 

pdf("grid_collections_outputs/bar_CAM_low_allgrids.pdf", width = 50, height = 25) # Open a new pdf 
file 

grid.arrange(grobs = cam_low_60_grid_bar,  

             top = "Lower Camp. Bar Plots of Diversity Metrics per Grid Cell") # Write the grid.arrange in the 
file 

dev.off() #close the file 

 

  #### Simpsons Measure of Evenness per Grid Cell #### 

 

## function for calculating Simpson's measure of evenness that can be used with the apply funct 

# n = total # genera in a FE in a site/time; N = total # genera in all FE at a site/time;  

# S = total # FE at the site/time; D = sum(n*(n-1))/N(N-1); inversD = inverse of D value; 

#final= inverseD/S 
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simpsons_calc <- function(data){ 

  data1 <- data.frame(data$"details_fdfe") 

   

  # simpsons measure of evenness calculation: 

  simp_calc <- function(data1){ 

    data1 <- data.frame(data1) 

    n <- data1[data1!=0] # get vector of only values greater than 0 (no empty FE) 

    if (length(n)>1 && max(n)>1){ # use if statement to only run the calc on nodes with >1 FE and more 
than 1 genera in at least one FE 

      N <- sum(n) 

      S <- length(n) 

      D = sum(n*(n-1))/(N*(N-1)) 

      inversD <- 1/D 

      sD <- inversD/S 

    } else { 

      0 

    } 

  } 

   

  final <- apply(data1,1,simp_calc) # 1 indicates that it applies function to rows 

   

  data3 <- data.frame(final) 

  data4 <- cbind(newColName = rownames(data3), data3) 

  rownames(data4) <- 1:nrow(data4) 

  colnames(data4) <- c("Site","Simp_Even_Index") 

 

  return(data4) 

} 

 



Supplementary Materials for Purcell and Myers, 20XX 470 
 

470 
 

 

# Calculate Simpson's measure of evenness for each grid cell in substages using above function 

maa_up_60_simp_even <- simpsons_calc(maa_up_60_fe) 

maa_low_60_simp_even <- simpsons_calc(maa_low_60_fe)  

cam_up_60_simp_even <- simpsons_calc(cam_up_60_fe)  

cam_mid_60_simp_even <- simpsons_calc(cam_mid_60_fe)  

cam_low_60_simp_even <- simpsons_calc(cam_low_60_fe)  

 

  #### Create df of Simpsons for each Grid Cell through time #### 

 

# Function to configure to columns with site names as 1st and evenness values as second, age as 3rd 

config_for_loc_even_agg <- function(data, Age){ 

  # Create df that just take the functional richness values in each grid cell 

  data_even_summ <- data 

   

  data_even_summ <- data.frame(data_even_summ) 

  colnames(data_even_summ) <- c("Site","Evenness") 

   

  data_even_summ$Age <- Age 

  return(data_even_summ) 

} 

 

# Use config function (above) to alter then added new column with Age 

maa_up_60_simp_summ <- config_for_loc_even_agg(maa_up_60_simp_even, "MAA up") 

maa_low_60_simp_summ <- config_for_loc_even_agg(maa_low_60_simp_even, "MAA low") 

cam_up_60_simp_summ <- config_for_loc_even_agg(cam_up_60_simp_even, "CAM up") 

cam_mid_60_simp_summ <- config_for_loc_even_agg(cam_mid_60_simp_even, "CAM mid") 

cam_low_60_simp_summ <- config_for_loc_even_agg(cam_low_60_simp_even, "CAM low") 
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# Bind the data into a single df with 2 columns (stacked the different dfs) 

simp_stack <- 
rbind(maa_up_60_simp_summ,maa_low_60_simp_summ,cam_up_60_simp_summ,cam_mid_60_simp
_summ,cam_low_60_simp_summ) 

 

# Used dcast to reconfigure the data so that Age and Site would be identifiers with unique values 

simp_table_all <- dcast(simp_stack, Site ~ Age, value.var = "Evenness") 

 

# This is a table showing the number of FE in each grid cell for each substage 

head(simp_table_all) 

 

# Export the df as a csv file 

write.csv(simp_table_all, file="grid_collections_outputs/Grid_Simpsons_through_time.csv") 

 

  #### Create Bar plots of Simpsons Measure of Evenness #### 

 

# Function to create plot bar graphs of simpson's evenness for each grid cell per substage 

bar_plot_even <- function(even_data,loc_data,substage_column, substage_name){ 

   

  colnames(even_data) <- c("Grid","Simp_Even_Index") 

   

  ### Extract Location Information: ### 

  loc_data1 <- loc_data[c("Site",substage_column,"pLat","pLon")] # Extract columns for just one 
substage 

  colnames(loc_data1) <- c("Grid",substage_column,"pLat","pLon") # Rename columns 

  loc_data1$Lat_1 <- loc_data1$pLat # Add another column to use for binning lat 

  # Next, use mutate and cut to create binned categories of lat 

  loc_data2 <- loc_data1 %>% mutate(Lat_1 = cut(loc_data1$Lat_1,  

                                                              breaks=c(-Inf, seq(round(min(loc_data1$pLat)/5)*5,  

                                                                                 round(max(loc_data1$pLat)/5)*5, by = 5), Inf))) 
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  ### Merge the new bins with the fe df: ### 

  data3 <- merge(even_data,loc_data2, by= "Grid", all.x = TRUE) 

   

  # get the unique lat bins available for this substage and change colname 

  bins <- data.frame(unique(data3$Lat_1)) 

  colnames(bins) <- "Lat_1" 

   

  # Create column with the sorts of labels actually want to use based on ifelse 

  bins$lat_bins <-with(bins, ifelse(Lat_1 == "(-Inf,30]", '23-30°N',  

                                    ifelse(Lat_1 == "(30,35]", '30-35°N',  

                                           ifelse(Lat_1 == "(35,40]", '35-40°N',  

                                                  ifelse(Lat_1 == "(40,45]", '40-45°N', 

                                                         ifelse(Lat_1 == "(45,50]", '45-50°N', 

                                                                ifelse(Lat_1 == "(50,55]", '50-55°N', 

                                                                       ifelse(Lat_1 == "(55,60]", '55-60°N', 

                                                                              '60-65°N' )))))))) 

   

  # sort the vector so they're in order from lowest to highest 

  bin_labels <- sort(bins$lat_bins) 

   

  ### Arrange the df based on lat bins and then create a object with the correct order: ### 

  data4 <- arrange(data3,Lat_1) 

   

  grids <- data4$Grid 

   

  ### Plot the data using geom_col: ### 

  bar <- ggplot(data3, aes(x=Grid, y=Simp_Even_Index, fill=Lat_1)) +  

    geom_col(color="#e9ecef") + 
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    geom_text(aes(label=signif(Simp_Even_Index,2)), position=position_dodge(width=0.9), vjust=-0.25, 
size = 2.5) + 

    labs(title=paste(substage_name,"Simpson's Diversity Index"),x="Grid Cell", y = "Evenness") +  

    theme(plot.title = element_text(hjust = 0.5), 

          axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) + 

    labs(fill="Paleo-Latitude") + 

    scale_fill_manual(values=c("red4", 

                                     "tomato3", 

                                     "darkorange3", 

                                     "goldenrod2", 

                                     "darkolivegreen4", 

                                     "aquamarine4", 

                                     "steelblue"),  

                                     labels = bin_labels)+ 

    scale_x_discrete(limits=grids) + 

    ylim(0, 0.25 + max(data3$Simp_Even_Index)) 

   

  return(bar) 

} 

 

# Use above function to create bar plots of Simpson's Evenness for each SS 

maa_up_simp_even_barplots <- bar_plot_even(maa_up_60_simp_even,grid_local,"MAA up", "Upper 
Maastr.") 

maa_low_simp_even_barplots <- bar_plot_even(maa_low_60_simp_even,grid_local,"MAA up", "Lower 
Maastr.") 

cam_up_simp_even_barplots <- bar_plot_even(cam_up_60_simp_even,grid_local,"MAA up", "Upper 
Camp.") 

cam_mid_simp_even_barplots <- bar_plot_even(cam_mid_60_simp_even,grid_local,"MAA up", "Middle 
Camp.") 

cam_low_simp_even_barplots <- bar_plot_even(cam_low_60_simp_even,grid_local,"MAA up", "Lower 
Camp.") 
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# Make list of the barplots of simpsons evenness 

simp_even_barplots <- list(maa_up_simp_even_barplots, maa_low_simp_even_barplots, 

                 cam_up_simp_even_barplots, cam_mid_simp_even_barplots, 

                 cam_low_simp_even_barplots) 

 

 

# Export bar plots of the Simpson's diversity index per grid cell for each substage 

pdf("grid_collections_outputs/bar_plots_SimpEven_grids.pdf", width = 50, height = 25) # Open a new 
pdf file 

grid.arrange(grobs = simp_even_barplots,  

             top = "Bar Plots of Simpson's Evenness per Grid Cell") # Write the grid.arrange in the file 

dev.off() #close file 

 

  #### Shannon Equability Index for each grid cell##### 

 

# function to get overall shannons evenness for each substage 

shannons_calc <- function(data){ 

   

  # equation for shannons calc 

  shannon_equit <- function(data){ 

    data1 <- data.frame(data) 

    data1 <- data1[data1!=0] # get vector of only values greater than 0 (no empty FE) 

     

    if (length(data1)>1){ # use if statement to only run the calc on nodes with >1 FE and more than 1 
genera in at least one FE 

       

    S <- length(which(data1!=0)) # get the numb of FE 

    Si <- sum(data1) # find out how many genera total present in all FE 
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    Pvals <- data1/Si # get proportions of each FE based on dividing # genera in each by total # genera 

    nlPvals <- log(Pvals) # take natural log of the proportions 

    H <- -sum(nlPvals*Pvals) # calculate Shannon diversity index (H) by multiplying nl of p by p and 
summing and multiply by neg 1  

    LNS <- log(S) # get natural log of number of FE present 

    Hi <- H/LNS # calculate Shannon Equitability Index (Hi) by dividing H by nat log of S 

    } else { 

      0 

    } 

  } 

   

  data1 <- data.frame(data$"details_fdfe") 

   

  final <- apply(data1,1,shannon_equit) # 1 indicates that it applies function to rows 

   

  data3 <- data.frame(final) 

  data4 <- cbind(newColName = rownames(data3), data3) # make row name (i.e., grid cell) first column 
again 

  rownames(data4) <- 1:nrow(data4) 

  colnames(data4) <- c("Site","Shan_Equit_Index") 

   

  return(data4) 

} 

 

 

# Calculate Shannons Equability Index for each grid cell in substages using above function 

maa_up_60_shan_even <- shannons_calc(maa_up_60_fe) 

maa_low_60_shan_even <- shannons_calc(maa_low_60_fe)  

cam_up_60_shan_even <- shannons_calc(cam_up_60_fe)  
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cam_mid_60_shan_even <- shannons_calc(cam_mid_60_fe)  

cam_low_60_shan_even <- shannons_calc(cam_low_60_fe)  

 

 

  #### Create df of Shannon for each Grid Cell through time #### 

 

# Function to configure to columns with site names as 1st and evenness values as second, age as 3rd 

config_for_loc_even_agg <- function(data, Age){ 

  # Create df that just take the functional richness values in each grid cell 

  data_even_summ <- data 

   

  data_even_summ <- data.frame(data_even_summ) 

  colnames(data_even_summ) <- c("Site","Evenness") 

   

  data_even_summ$Age <- Age 

  return(data_even_summ) 

} 

 

# Use config function (above) to alter then added new column with Age 

maa_up_60_shan_summ <- config_for_loc_even_agg(maa_up_60_shan_even, "MAA up") 

maa_low_60_shan_summ <- config_for_loc_even_agg(maa_low_60_shan_even, "MAA low") 

cam_up_60_shan_summ <- config_for_loc_even_agg(cam_up_60_shan_even, "CAM up") 

cam_mid_60_shan_summ <- config_for_loc_even_agg(cam_mid_60_shan_even, "CAM mid") 

cam_low_60_shan_summ <- config_for_loc_even_agg(cam_low_60_shan_even, "CAM low") 

 

# Bind the data into a single df with 2 columns (stacked the different dfs) 

shan_stack <- 
rbind(maa_up_60_shan_summ,maa_low_60_shan_summ,cam_up_60_shan_summ,cam_mid_60_shan_
summ,cam_low_60_shan_summ) 
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# Used dcast to reconfigure the data so that Age and Site would be identifiers with unique values 

shan_table_all <- dcast(shan_stack, Site ~ Age, value.var = "Evenness") 

 

# This is a table showing the number of FE in each grid cell for each substage 

head(shan_table_all) 

 

# Export the df as a csv file 

write.csv(shan_table_all, file="grid_collections_outputs/Grid_Shannon_through_time.csv") 

 

  #### Create Bar plots of Shannon Equability Index #### 

 

# Plot bar graphs of simpson's evenness for each grid cell per substage 

bar_plot_shan_even <- function(even_data, loc_data, substage_column, substage_name){ 

   

  colnames(even_data) <- c("Grid","Shan_Even_Index") 

   

  ### Extract Location Information: ### 

  loc_data1 <- loc_data[c("Site",substage_column,"pLat","pLon")] # Extract columns for just one 
substage 

  colnames(loc_data1) <- c("Grid",substage_column,"pLat","pLon") # Rename columns 

  loc_data1$Lat_1 <- loc_data1$pLat # Add another column to use for binning lat 

  # Next, use mutate and cut to create binned categories of lat 

  loc_data2 <- loc_data1 %>% mutate(Lat_1 = cut(loc_data1$Lat_1,  

                                                breaks=c(-Inf, seq(round(min(loc_data1$Lat_1)/5)*5,  

                                                                   round(max(loc_data1$Lat_1)/5)*5, by = 5), Inf))) 

   

   

  ### Merge the new bins with the fe df: ### 
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  data3 <- merge(even_data,loc_data2, by= "Grid", all.x = TRUE) 

   

   

  # get the unique lat bins available for this substage and change colname 

  bins <- data.frame(unique(data3$Lat_1)) 

  colnames(bins) <- "Lat_1" 

   

  # Create column with the sorts of labels actually want to use based on ifelse 

  bins$lat_bins <-with(bins, ifelse(Lat_1 == "(-Inf,30]", '23-30°N',  

                                    ifelse(Lat_1 == "(30,35]", '30-35°N',  

                                           ifelse(Lat_1 == "(35,40]", '35-40°N',  

                                                  ifelse(Lat_1 == "(40,45]", '40-45°N', 

                                                         ifelse(Lat_1 == "(45,50]", '45-50°N', 

                                                                ifelse(Lat_1 == "(50,55]", '50-55°N', 

                                                                       ifelse(Lat_1 == "(55,60]", '55-60°N', 

                                                                              '60-65°N' )))))))) 

   

  # sort the vector so they're in order from lowest to highest 

  bin_labels <- sort(bins$lat_bins) 

   

  ### Arrange the df based on lat bins and then create a object with the correct order: ### 

  data4 <- arrange(data3,Lat_1) 

   

  grids <- data4$Grid 

   

   

  ### Plot the data using geom_col: ### 

  bar <- ggplot(data3, aes(x=Grid, y=Shan_Even_Index, fill=Lat_1)) +  

    geom_col(color="#e9ecef") + 
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    geom_text(aes(label=signif(Shan_Even_Index,2)), position=position_dodge(width=0.9), vjust=-0.25, 
size = 2.5) + 

    labs(title=paste(substage_name, "Shannon Equitability Index"),x="Grid Cell", y = "Evenness", fill = 
"Paleo-Latitude") +  

    theme(plot.title = element_text(hjust = 0.5), 

          axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) + 

    scale_fill_manual(values=c("red4", 

                                     "tomato3", 

                                     "darkorange3", 

                                     "goldenrod2", 

                                     "darkolivegreen4", 

                                     "aquamarine4", 

                                     "steelblue"),  

                                     labels = bin_labels)+ 

    scale_x_discrete(limits=grids) + 

    ylim(0, 0.1 + max(data3$Shan_Even_Index)) 

   

  return(bar) 

   

} 

 

# Plot bar plots for each substage  

maa_up_shan_even_barplots <- bar_plot_shan_even(maa_up_60_shan_even,grid_local,"MAA 
up","Upper Maastr.") 

maa_low_shan_even_barplots <- bar_plot_shan_even(maa_low_60_shan_even,grid_local,"MAA 
low","Lower Maastr.") 

cam_up_shan_even_barplots <- bar_plot_shan_even(cam_up_60_shan_even,grid_local,"CAM 
up","Upper Camp.") 

cam_mid_shan_even_barplots <- bar_plot_shan_even(cam_mid_60_shan_even,grid_local,"CAM 
mid","Middle Camp.") 



Supplementary Materials for Purcell and Myers, 20XX 480 
 

480 
 

cam_low_shan_even_barplots <- bar_plot_shan_even(cam_low_60_shan_even,grid_local,"CAM 
low","Lower Camp.") 

 

# Create list of shannon bar plots 

bar_list_shan <- list(maa_up_shan_even_barplots, maa_low_shan_even_barplots, 

                      cam_up_shan_even_barplots, cam_mid_shan_even_barplots, 

                      cam_low_shan_even_barplots) 

 

# plot bar plots of the Shannon Equitability index per grid cell for each substage 

pdf("grid_collections_outputs/bar_plots_ShanEven_grid.pdf", width = 50, height = 25) # Open a new pdf 
file 

grid.arrange(grobs = bar_list_shan,  

             top = "Bar Plots of Shannon Equitability Index per Grid Cell") # Write the grid.arrange in the file 

dev.off() #close file 

 

##### ANALYSIS LATITUDE BINS AS COLLECTIONS ##### 

 

  #### Create pres-absence matrices to use in mFD analysis #### 

 

# Function for taking the substage df that have latitudinal bins (see above section on location 
information) 

  # and creating a presence-absence matrix based on bins as "collection" locations 

substg_gen_latbins_pres_abs <- function(data){ 

  # select out the relevant columns from the df 

  data1 <- 
subset(data,select=c("Updated_Genus","Substage_from_Zone.Mbr","motility","life_habitat","feeding", 

                                                 "plong","plat")) 

  # create new column with lat information to mess with 

  data1$Lat_1 <- data1$plat 
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  # create breaks in the df based on latitude 

  data2 <- data1 %>% mutate(Lat_1 = cut(data1$Lat_1,  

                                                breaks=c(-Inf, seq(round(min(data1$plat)/5)*5,  

                                                                 round(max(data1$plat)/5)*5, by = 5), Inf))) 

   

  # subset out just the genus name and lat bin 

  data3 <- as.data.frame(subset(data2,select=c("Updated_Genus","Lat_1")))  

   

  # remove duplicates 

  data3 %>% distinct(Updated_Genus,Lat_1, .keep_all = TRUE) 

   

  # transform into a pres-abs matrix 

  data4 <- dcast(data3, Lat_1~Updated_Genus, length) 

   

  # make the lat bin names the row names 

  data5 <- data.frame(data4[,-1], row.names = data4[,1]) 

   

  # make all values over 1 into 1 and keep all else 0 (presence-absence) 

  data6 <- ifelse(data5 > 0, 1, 0) 

   

  return(data6) 

} 

 

 

#Create data frames for pres-abs for each substage based on latitudinal bins (use paleo-lat dfs) 

maa_up_60_lat_pres_ab <- substg_gen_latbins_pres_abs(maa_up_60_paleo_loc_data) 

maa_low_60_lat_pres_ab <- substg_gen_latbins_pres_abs(maa_low_60_paleo_loc_data) 

cam_up_60_lat_pres_ab <- substg_gen_latbins_pres_abs(cam_up_60_paleo_loc_data)  

cam_mid_60_lat_pres_ab <- substg_gen_latbins_pres_abs(cam_mid_60_paleo_loc_data) 
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cam_low_60_lat_pres_ab <- substg_gen_latbins_pres_abs(cam_low_60_paleo_loc_data) 

 

 

## Function to calc functional trait values 

calc_fe <- function(trait_data,pres_ab_data){ 

  alpha_fd_fe_MAAup <- mFD::alpha.fd.fe( 

    asb_sp_occ       = pres_ab_data,  

    sp_to_fe         = trait_data, 

    ind_nm           = c("fred", "fored", "fvuln"), 

    check_input      = TRUE, 

    details_returned = TRUE) 

} 

 

  #### Compute alpha.fd.fe from mFD for Latitudinal Bins ####  

 

## NOTE: use the same df of trait values for entire SS overall calculated using sp.to.fe" 

 

# Calculate functional richness, redundancy, over redundancy, and vulnerability for each substage in lat 
bins 

  # see above section for the function used here (same function used for getting alpha-beta diversity for 
grid cells) 

maa_up_60_fe_lat <- calc_fe(maa_up_60_traits, maa_up_60_lat_pres_ab) 

maa_low_60_fe_lat<- calc_fe(maa_low_60_traits, maa_low_60_lat_pres_ab) 

cam_up_60_fe_lat <- calc_fe(cam_up_60_traits, cam_up_60_lat_pres_ab) 

cam_mid_60_fe_lat <- calc_fe(cam_mid_60_traits, cam_mid_60_lat_pres_ab) 

cam_low_60_fe_lat <- calc_fe(cam_low_60_traits, cam_low_60_lat_pres_ab) 

 

 

#get a matrix of fe values for each latitudinal bin in a substage 
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maa_up_60_fdfe_lat <- (maa_up_60_fe_lat$"asb_fdfe") 

maa_low_60_fdfe_lat <- (maa_low_60_fe_lat$"asb_fdfe") 

cam_up_60_fdfe_lat <- (cam_up_60_fe_lat$"asb_fdfe") 

cam_mid_60_fdfe_lat <- (cam_mid_60_fe_lat$"asb_fdfe") 

cam_low_60_fdfe_lat <- (cam_low_60_fe_lat$"asb_fdfe") 

 

maa_up_60_fdfe_lat 

maa_low_60_fdfe_lat 

cam_up_60_fdfe_lat 

cam_mid_60_fdfe_lat 

cam_low_60_fdfe_lat 

 

 

# Function to fix row names (so all the same) 

make_lat_names <- function(data){ 

  data <- data.frame(data) 

  data$bins <- rownames(data) 

  data$bins <-with(data, ifelse(bins == "(-Inf,30]", '(-Inf,30]', 

                                ifelse(bins == "(-Inf,35]", '(30,35]', 

                                       ifelse(bins == "(30,35]", '(30,35]',  

                                              ifelse(bins == "(35,40]", '(35,40]', 

                                                     ifelse(bins == "(-Inf,45]", '(40,45]', 

                                                     ifelse(bins == "(40,45]", '(40,45]', 

                                                            ifelse(bins == "(45,50]", '(45,50]', 

                                                                   ifelse(bins == "(50,55]", '(50,55]', 

                                                                          ifelse(bins == "(55,60]", '(55,60]', 

                                                                                 ifelse(bins == "(55, Inf]", '(55,60]', 

                                                                                        ifelse(bins == '(60,65]', '(60, Inf]', 

                                                                                               '(60, Inf]' )))))))))))) 
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  rownames(data) <- data$bins 

  return(data[,c("nb_sp","nb_fe","fred","fored","fvuln")]) 

} 

 

# Use above function to make sure lat bin names are all the same when they mean the same thing 

maa_up_60_fdfe_lat <- make_lat_names(maa_up_60_fdfe_lat) 

maa_low_60_fdfe_lat <- make_lat_names(maa_low_60_fdfe_lat) 

cam_up_60_fdfe_lat <- make_lat_names(cam_up_60_fdfe_lat) 

cam_mid_60_fdfe_lat <- make_lat_names(cam_mid_60_fdfe_lat) 

cam_low_60_fdfe_lat <- make_lat_names(cam_low_60_fdfe_lat) 

 

 

# export results tables summarizing the number of spp, fe, and functional richness and evenness values 
for each substage 

write.csv(maa_up_60_fdfe_lat,file="lat_bins_outputs/LatBins_MaaUP60_fe_alpha_beta_results.csv") 

write.csv(maa_low_60_fdfe_lat,file="lat_bins_outputs/LatBins_MaaLOW60_fe_alpha_beta_results.csv"
) 

write.csv(cam_up_60_fdfe_lat,file="lat_bins_outputs/LatBins_CamUP60_fe_alpha_beta_results.csv") 

write.csv(cam_mid_60_fdfe_lat,file="lat_bins_outputs/LatBins_CamMID60_fe_alpha_beta_results.csv") 

write.csv(cam_low_60_fdfe_lat,file="lat_bins_outputs/LatBins_CamLOW60_fe_alpha_beta_results.csv") 

 

 

 

 

  #### Create Bar Plots of Metrics across lat bins for all substages: #### 

 

# Function to create series of bar plots for each substage's latitudinal bins 

bar_plot_lat <- function(fe_data){ 
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  ###  Get the functional ecology information for the substage (this is a dataframe) and reconfig: ### 

  data1 <- cbind(Bin = rownames(fe_data), fe_data) # make the genus name the 1st column again 

  rownames(data1) <- 1:nrow(data1) # make a new index for the rownames 

  data1 <- as.data.frame(data1) 

  i <- c(2:6) 

  data1[ , i] <- apply(data1[ , i], 2,            # Specify own function within apply to make numeric 

                       function(x) as.numeric(as.character(x))) 

   

  # get the unique lat bins available for this substage and change colname 

  bins <- data.frame(unique(data1$Bin)) 

  colnames(bins) <- "Lat_1" 

   

  # Create column with the sorts of labels actually want to use based on ifelse 

  bins$lat_bins <-with(bins, ifelse(Lat_1 == "(-Inf,30]", '23-30°N', 

                                    ifelse(Lat_1 == "(-Inf,35]", '30-35°N', 

                                           ifelse(Lat_1 == "(30,35]", '30-35°N',  

                                                  ifelse(Lat_1 == "(35,40]", '35-40°N',  

                                                         ifelse(Lat_1 == "(40,45]", '40-45°N', 

                                                                ifelse(Lat_1 == "(45,50]", '45-50°N', 

                                                                       ifelse(Lat_1 == "(50,55]", '50-55°N', 

                                                                              ifelse(Lat_1 == "(55,60]", '55-60°N', 

                                                                                     ifelse(Lat_1 == "(55, Inf]", '55-60°N', 

                                                                                            '60-65°N' )))))))))) 

   

  # sort the vector so they're in order from lowest to highest 

  bin_labels <- sort(bins$lat_bins) 

   

  ### Plot the data using geom_col: ### 

  sp_bar <- ggplot(data1, aes(x=Bin, y=nb_sp, fill=Bin)) +  
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    geom_col(color="#e9ecef") + 

    labs(title="Generic Richness",x="Paleo-Latitude Bin", y = "Number of Genera", fill="Paleo-Latitude") +  

    theme(plot.title = element_text(hjust = 0.5), 

          axis.text.x = element_text(angle = 0, vjust = 0.5, hjust=0.5)) + 

    guides(fill = "none") + 

    scale_fill_manual(values=c("red4", 

                                     "tomato3", 

                                     "darkorange3", 

                                     "goldenrod2", 

                                     "darkolivegreen4", 

                                     "aquamarine4", 

                                     "steelblue"),  

                                     labels = bin_labels)+ 

    scale_x_discrete(labels= bin_labels) + 

    ylim(0, 5 + max(data1$nb_sp))+ 

    geom_text(aes(label=signif(nb_sp,3)), position=position_dodge(width=0.9), vjust=-0.25) 

                                      

  fe_bar <- ggplot(data1, aes(x=Bin, y=nb_fe, fill=Bin)) +  

    geom_col(color="#e9ecef") + 

    labs(title="Functional Richness",x="Paleo-Latitude Bin", y = "Number of Functional Entities", 
fill="Paleo-Latitude") +  

    theme(plot.title = element_text(hjust = 0.5), 

          axis.text.x = element_text(angle = 0, vjust = 0.5, hjust=0.5)) + 

    guides(fill = "none") + 

    scale_fill_manual(values=c("red4", # set scale of colors manually, need 5 colors since 5 lat bins 

                                     "tomato3", 

                                     "darkorange3", 

                                     "goldenrod2", 

                                     "darkolivegreen4", 
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                                     "aquamarine4", 

                                     "steelblue"),  

                                     labels = bin_labels)+ 

    scale_x_discrete(labels= bin_labels) + 

    ylim(0, 1 + max(data1$nb_fe)) + 

    geom_text(aes(label=signif(nb_fe,3)), position=position_dodge(width=0.9), vjust=-0.25) 

   

  fred_bar <- ggplot(data1, aes(x=Bin, y=fred, fill=Bin)) +  

    geom_col(color="#e9ecef") + 

    labs(title="Functional Redundancy (FRed)",x="Paleo-Latitude Bin", y = "FRed Value", fill="Paleo-
Latitude") +  

    theme(plot.title = element_text(hjust = 0.5), 

          axis.text.x = element_text(angle = 0, vjust = 0.5, hjust=0.5)) + 

    guides(fill = "none") + 

    scale_fill_manual(values=c("red4", 

                                     "tomato3", 

                                     "darkorange3", 

                                     "goldenrod2", 

                                     "darkolivegreen4", 

                                     "aquamarine4", 

                                     "steelblue"),  

                                     labels = bin_labels)+ 

    scale_x_discrete(labels= bin_labels) + 

    ylim(0, 0.25 + max(data1$fred))+ 

    geom_text(aes(label=signif(fred,3)), position=position_dodge(width=0.9), vjust=-0.25) 

   

  fored_bar <- ggplot(data1, aes(x=Bin, y=fored, fill=Bin)) +  

    geom_col(color="#e9ecef") + 
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    labs(title="Functional Over-Redundancy",x="Paleo-Latitude Bin", y = "FORed Value", fill="Paleo-
Latitude") +  

    theme(plot.title = element_text(hjust = 0.5), 

          axis.text.x = element_text(angle = 0, vjust = 0.5, hjust=0.5)) + 

    guides(fill = "none") + 

    scale_fill_manual(values=c("red4", 

                                     "tomato3", 

                                     "darkorange3", 

                                     "goldenrod2", 

                                     "darkolivegreen4", 

                                     "aquamarine4", 

                                     "steelblue"),  

                                     labels = bin_labels)+ 

    scale_x_discrete(labels= bin_labels) + 

    ylim(0, 0.25 + max(data1$fored)) + 

    geom_text(aes(label=signif(fored,3)), position=position_dodge(width=0.9), vjust=-0.25) 

   

  fvuln_bar <- ggplot(data1, aes(x=Bin, y=fvuln, fill=Bin)) +  

    geom_col(color="#e9ecef") + 

    labs(title="Functional Vulnerability (FVuln)","Paleo-Latitude Bin", y = "FVuln Value", fill="Paleo-
Latitude") +  

    theme(plot.title = element_text(hjust = 0.5), 

          axis.text.x = element_text(angle = 0, vjust = 0.5, hjust=0.5)) + 

    guides(fill = "none") + 

    scale_fill_manual(values=c("red4", 

                                     "tomato3", 

                                     "darkorange3", 

                                     "goldenrod2", 

                                     "darkolivegreen4", 
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                                     "aquamarine4", 

                                     "steelblue"),  

                                     labels = bin_labels)+ 

    scale_x_discrete(labels= bin_labels) + 

    ylim(0, 0.25 + max(data1$fvuln))+ 

    geom_text(aes(label=signif(fvuln,3)), position=position_dodge(width=0.9), vjust=-0.25) 

   

  bar_list <- list(sp_bar,fe_bar,fred_bar,fored_bar,fvuln_bar) 

} 

 

# Create series of bar plots for metric values in each substage using above function 

maa_up_60_lat_bar <- bar_plot_lat(maa_up_60_fdfe_lat) 

maa_low_60_lat_bar <- bar_plot_lat(maa_low_60_fdfe_lat) 

cam_up_60_lat_bar <- bar_plot_lat(cam_up_60_fdfe_lat) 

cam_mid_60_lat_bar <- bar_plot_lat(cam_mid_60_fdfe_lat) 

cam_low_60_lat_bar <- bar_plot_lat(cam_low_60_fdfe_lat) 

 

 

pdf("lat_bins_outputs/LatBins_MAA_up_bars.pdf", width = 15, height = 25) # Open a new pdf file 

grid.arrange(grobs = maa_up_60_lat_bar,  

             top = "Upper Maastr. Bar Plots of Diversity Metrics per Latitudinal Bin") # Write the grid.arrange 
in the file 

dev.off() #close the file 

 

pdf("lat_bins_outputs/LatBins_MAA_low_bars.pdf", width = 15, height = 25) # Open a new pdf file 

grid.arrange(grobs = maa_low_60_lat_bar,  

             top = "Lower Maastr. Bar Plots of Diversity Metrics per Latitudinal Bin") # Write the grid.arrange 
in the file 

dev.off() #close the file 
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pdf("lat_bins_outputs/LatBins_CAM_up_bars.pdf", width = 15, height = 25) # Open a new pdf file 

grid.arrange(grobs = cam_up_60_lat_bar,  

             top = "Upper Camp. Bar Plots of Diversity Metrics per Latitudinal Bin") # Write the grid.arrange in 
the file 

dev.off() #close the file 

 

pdf("lat_bins_outputs/LatBins_CAM_mid_bars.pdf", width = 15, height = 25) # Open a new pdf file 

grid.arrange(grobs = cam_mid_60_lat_bar,  

             top = "Middle Camp. Bar Plots of Diversity Metrics per Latitudinal Bin") # Write the grid.arrange 
in the file 

dev.off() #close the file 

 

pdf("lat_bins_outputs/LatBins_CAM_low_bars.pdf", width = 15, height = 25) # Open a new pdf file 

grid.arrange(grobs = cam_low_60_lat_bar,  

             top = "Lower Camp. Bar Plots of Diversity Metrics per Latitudinal Bin") # Write the grid.arrange in 
the file 

dev.off() #close the file 

 

 

 

  #### Create Line Plots of richness for each Latitudinal Bin in each Substage #### 

 

# Function to create line plots of GR vs FR across Lat bins 

plot_line_lat <- function(fe_data1,fe_data2,fe_data3,fe_data4,fe_data5,yaxis,legendlabel){ 

  # function to get the Age data as first column 

  df_func <- function(data){ 

    ###  Get the functional ecology information for the substage (this is a dataframe) and reconfig: ### 

    data1 <- cbind(Bin = rownames(data), data) # make the genus name the 1st column again 

    rownames(data1) <- 1:nrow(data1) # make a new index for the rownames 
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    data1 <- as.data.frame(data1) 

    i <- c(2:6) 

    data1[ , i] <- apply(data1[ , i], 2,            # Specify own function within apply to make numeric 

                         function(x) as.numeric(as.character(x))) 

    return(as.data.frame(data1)) 

  } 

   

  fe_data1 <- df_func(fe_data1) 

  fe_data2 <- df_func(fe_data2) 

  fe_data3 <- df_func(fe_data3) 

  fe_data4 <- df_func(fe_data4) 

  fe_data5 <- df_func(fe_data5) 

   

   

  # function to get the bin names (latitude bins) for each SS 

  get_bin_names <- function(data){ 

    # get the unique lat bins available for this substage and change colname 

    bins <- data.frame(unique(data$Bin)) 

    colnames(bins) <- "Lat_1" 

     

    # Create column with the sorts of labels actually want to use based on ifelse 

    bins$lat_bins <-with(bins, ifelse(Lat_1 == "(-Inf,30]", '23-30°N', 

                                      ifelse(Lat_1 == "(-Inf,35]", '30-35°N', 

                                             ifelse(Lat_1 == "(30,35]", '30-35°N',  

                                                    ifelse(Lat_1 == "(35,40]", '35-40°N',  

                                                           ifelse(Lat_1 == "(40,45]", '40-45°N', 

                                                                  ifelse(Lat_1 == "(45,50]", '45-50°N', 

                                                                         ifelse(Lat_1 == "(50,55]", '50-55°N', 

                                                                                ifelse(Lat_1 == "(55,60]", '55-60°N', 
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                                                                                       ifelse(Lat_1 == "(55, Inf]", '55-60°N', 

                                                                                              '60-65°N' )))))))))) 

     

    # sort the vector so they're in order from lowest to highest 

    bin_labels <- sort(bins$lat_bins) 

    return(bin_labels) 

  } 

  

  bin_labels1 <- get_bin_names(fe_data1) 

  bin_labels2 <- get_bin_names(fe_data2) 

  bin_labels3 <- get_bin_names(fe_data3) 

  bin_labels4 <- get_bin_names(fe_data4) 

  bin_labels5 <- get_bin_names(fe_data5) 

   

   

  bin1_line <- ggplot(fe_data1, aes(x=Bin)) + 

    geom_line(aes(y = nb_sp, color = "#D55E00",group=1)) + 

    geom_line(aes(y = 5*nb_fe, color="steelblue",group=2),linetype = "dashed") + 

    geom_point(aes(y = nb_sp), color = "#D55E00") + 

    geom_point(aes(y = 5*nb_fe), color="steelblue") + 

    scale_y_continuous( 

      # Features of the first axis 

      name = "# Genera", 

      # Add a second axis and specify its features 

      sec.axis = sec_axis(~ . * 0.2,name=yaxis) 

    ) + 

    scale_color_discrete(labels=c("Generic Richness", legendlabel)) + 

    labs(title=paste("Upper Maastr.")) + 

    xlab(label="Latitude") + 



Supplementary Materials for Purcell and Myers, 20XX 493 
 

493 
 

    scale_x_discrete(labels= bin_labels1) + 

    theme(legend.title=element_blank(),plot.title = element_text(hjust = 0.5)) 

   

  bin2_line <- ggplot(fe_data2, aes(x=Bin)) + 

    geom_line(aes(y = nb_sp, color = "#D55E00",group=1)) + 

    geom_line(aes(y = 5*nb_fe, color="steelblue",group=2),linetype = "dashed") + 

    geom_point(aes(y = nb_sp), color = "#D55E00") + 

    geom_point(aes(y = 5*nb_fe), color="steelblue") + 

    scale_y_continuous( 

      # Features of the first axis 

      name = "# Genera", 

      # Add a second axis and specify its features 

      sec.axis = sec_axis(~ . * 0.2,name=yaxis) 

    ) + 

    scale_color_discrete(labels=c("Generic Richness", legendlabel)) + 

    labs(title=paste("Lower Maastr.")) +  

    xlab(label="Latitude") + 

    scale_x_discrete(labels= bin_labels2) + 

    theme(legend.title=element_blank(),plot.title = element_text(hjust = 0.5)) 

   

  bin3_line <- ggplot(fe_data3, aes(x=Bin)) + 

    geom_line(aes(y = nb_sp, color = "#D55E00",group=1)) + 

    geom_line(aes(y = 5*nb_fe, color="steelblue",group=2),linetype = "dashed") + 

    geom_point(aes(y = nb_sp), color = "#D55E00") + 

    geom_point(aes(y = 5*nb_fe), color="steelblue") + 

    scale_y_continuous( 

      # Features of the first axis 

      name = "# Genera", 

      # Add a second axis and specify its features 
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      sec.axis = sec_axis(~ . * 0.2,name=yaxis) 

    ) + 

    scale_color_discrete(labels=c("Generic Richness", legendlabel)) + 

    labs(title=paste("Upper Camp.")) +  

    xlab(label="Latitude") + 

    scale_x_discrete(labels= bin_labels3) + 

    theme(legend.title=element_blank(),plot.title = element_text(hjust = 0.5)) 

   

  bin4_line <- ggplot(fe_data4, aes(x=Bin)) + 

    geom_line(aes(y = nb_sp, color = "#D55E00",group=1)) + 

    geom_line(aes(y = 5*nb_fe, color="steelblue",group=2),linetype = "dashed") + 

    geom_point(aes(y = nb_sp), color = "#D55E00") + 

    geom_point(aes(y = 5*nb_fe), color="steelblue") + 

    scale_y_continuous( 

      # Features of the first axis 

      name = "# Genera", 

      # Add a second axis and specify its features 

      sec.axis = sec_axis(~ . * 0.2,name=yaxis) 

    ) + 

    scale_color_discrete(labels=c("Generic Richness", legendlabel)) + 

    labs(title=paste("Middle Camp.")) +  

    xlab(label="Latitude") + 

    scale_x_discrete(labels= bin_labels4) + 

    theme(legend.title=element_blank(),plot.title = element_text(hjust = 0.5)) 

   

  bin5_line <- ggplot(fe_data5, aes(x=Bin)) + 

    geom_line(aes(y = nb_sp, color = "#D55E00",group=1)) + 

    geom_line(aes(y = 5*nb_fe, color="steelblue",group=2),linetype = "dashed") + 

    geom_point(aes(y = nb_sp), color = "#D55E00") + 



Supplementary Materials for Purcell and Myers, 20XX 495 
 

495 
 

    geom_point(aes(y = 5*nb_fe), color="steelblue") + 

    scale_y_continuous( 

      # Features of the first axis 

      name = "# Genera", 

      # Add a second axis and specify its features 

      sec.axis = sec_axis(~ . * 0.2,name=yaxis) 

    ) + 

    scale_color_discrete(labels=c("Generic Richness", legendlabel)) + 

    labs(title=paste("Lower Camp.")) +  

    xlab(label="Latitude") + 

    scale_x_discrete(labels= bin_labels5) + 

    theme(legend.title=element_blank(),plot.title = element_text(hjust = 0.5)) 

   

  bin_list <- list(bin1_line,bin2_line,bin3_line,bin4_line,bin5_line) 

  return(bin_list) 

} 

 

# create list of plots for changes in fr across lat in diff substages 

plot_bins_gr_fr <- plot_line_lat(maa_up_60_fdfe_lat,maa_low_60_fdfe_lat,cam_up_60_fdfe_lat, 

                                 cam_mid_60_fdfe_lat,cam_low_60_fdfe_lat, 

                                 "# Functional Entities","Functional Richness") 

 

 

pdf("lat_bins_outputs/avg_GR_FR_lat_bin_allsubstages.pdf", width = 20, height = 25) # Open a new pdf 
file 

grid.arrange(grobs = plot_bins_gr_fr,  

             top = "Average Generic and Functional Richness across Latitude") # Write the grid.arrange in the 
file 

dev.off() #close the file 
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  #### Export table of FR and GR through time across Latitude Bins #### 

 

# Function to configure to columns with site names as 1st and evenness values as second, age as 3rd 

config_for_loc_rich_agg_latbins <- function(data, Age){ 

  # Create df that just take the functional richness values in each grid cell 

  data_rich_summ <- data.frame(data[,c("nb_sp","nb_fe")]) 

  data_rich_summ$bins <- row.names(data_rich_summ) 

  row.names(data_rich_summ) <- 1:nrow(data_rich_summ) 

  data_rich_summ <- data_rich_summ[,c("bins","nb_sp","nb_fe")] 

  data_rich_summ$Age <- Age 

  return(data_rich_summ) 

} 

 

# Use config function (above) to alter then added new column with Age 

maa_up_60_rich_summ_lat_bins <- config_for_loc_rich_agg_latbins(maa_up_60_fdfe_lat, "MAA up") 

maa_low_60_rich_summ_lat_bins <- config_for_loc_rich_agg_latbins(maa_low_60_fdfe_lat, "MAA 
low") 

cam_up_60_rich_summ_lat_bins <- config_for_loc_rich_agg_latbins(cam_up_60_fdfe_lat, "CAM up") 

cam_mid_60_rich_summ_lat_bins <- config_for_loc_rich_agg_latbins(cam_mid_60_fdfe_lat, "CAM 
mid") 

cam_low_60_rich_summ_lat_bins <- config_for_loc_rich_agg_latbins(cam_low_60_fdfe_lat, "CAM 
low") 

 

# Bind the GR data into a single df with 2 columns (stacked the different dfs) 

GR_stack <- 
rbind(maa_up_60_rich_summ_lat_bins[,c("bins","nb_sp","Age")],maa_low_60_rich_summ_lat_bins[,c("
bins","nb_sp","Age")], 
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cam_up_60_rich_summ_lat_bins[,c("bins","nb_sp","Age")],cam_mid_60_rich_summ_lat_bins[,c("bins",
"nb_sp","Age")], 

                  cam_low_60_rich_summ_lat_bins[,c("bins","nb_sp","Age")]) 

 

# Bind the FR data into a single df with 2 columns (stacked the different dfs) 

FR_stack <- 
rbind(maa_up_60_rich_summ_lat_bins[,c("bins","nb_fe","Age")],maa_low_60_rich_summ_lat_bins[,c("
bins","nb_fe","Age")], 

                  
cam_up_60_rich_summ_lat_bins[,c("bins","nb_fe","Age")],cam_mid_60_rich_summ_lat_bins[,c("bins","
nb_fe","Age")], 

                  cam_low_60_rich_summ_lat_bins[,c("bins","nb_fe","Age")]) 

 

 

# Used dcast to reconfigure the data so that Age and Site would be identifiers with unique values 

GR_lat_bins_table_all <- dcast(GR_stack, bins ~ Age, value.var = "nb_sp") 

 

# Used dcast to reconfigure the data so that Age and Site would be identifiers with unique values 

FR_lat_bins_table_all <- dcast(FR_stack, bins ~ Age, value.var = "nb_fe") 

 

# This are tables showing the number of genera and FE in each grid cell for each substage 

head(GR_lat_bins_table_all) 

head(FR_lat_bins_table_all) 

 

# Export the dfS as a csv file 

write.csv(GR_lat_bins_table_all, file="lat_bins_outputs/Lat_bins_GR_through_time.csv") 

write.csv(FR_lat_bins_table_all, file="lat_bins_outputs/Lat_bins_FR_through_time.csv") 

 

  #### Calculate and create Bar Plot of Simpsons Evenness for Latitudinal Bins #### 
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# simpsons measure of evenness calculation function 

simpsons_calc <- function(data){ 

  data1 <- data.frame(data$"details_fdfe") 

   

  # simpsons measure of evenness calculation: 

  simp_calc <- function(data1){ 

    data1 <- data.frame(data1) 

    n <- data1[data1!=0] # get vector of only values greater than 0 (no empty FE) 

    if (length(n)>1 && max(n)>1){ # use if statement to only run the calc on nodes with >1 FE and more 
than 1 genera in at least one FE 

      N <- sum(n) 

      S <- length(n) 

      D = sum(n*(n-1))/(N*(N-1)) 

      inversD <- 1/D 

      sD <- inversD/S 

    } else { 

      0 

    } 

  } 

   

  final <- apply(data1,1,simp_calc) # 1 indicates that it applies function to rows 

   

  data3 <- data.frame(final) 

  data4 <- cbind(newColName = rownames(data3), data3) 

  rownames(data4) <- 1:nrow(data4) 

  colnames(data4) <- c("Site","Simp_Even_Index") 

   

  return(data4) 

} 
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# Calculate Simpson's measure of evenness for each lat bin in substages using above function 

maa_up_60_simp_even_lat <- simpsons_calc(maa_up_60_fe_lat) 

maa_low_60_simp_even_lat <- simpsons_calc(maa_low_60_fe_lat)  

cam_up_60_simp_even_lat <- simpsons_calc(cam_up_60_fe_lat)  

cam_mid_60_simp_even_lat <- simpsons_calc(cam_mid_60_fe_lat)  

cam_low_60_simp_even_lat <- simpsons_calc(cam_low_60_fe_lat)  

 

 

# plot bar graphs of simpson's evenness for each grid cell per substage 

bar_plot_even_lat <- function(maa_up_even_data, maa_low_even_data, 

                          cam_up_even_data,cam_mid_even_data,cam_low_even_data){ 

   

  colnames(maa_up_even_data) <- c("Bin","Simp_Even_Index") 

  colnames(maa_low_even_data) <- c("Bin","Simp_Even_Index") 

  colnames(cam_up_even_data) <- c("Bin","Simp_Even_Index") 

  colnames(cam_mid_even_data) <- c("Bin","Simp_Even_Index") 

  colnames(cam_low_even_data) <- c("Bin","Simp_Even_Index") 

   

   

  # function to get the bin names (latitude bins) for each SS 

  get_bin_names <- function(data){ 

    # get the unique lat bins available for this substage and change colname 

    bins <- data.frame(unique(data$Bin)) 

    colnames(bins) <- "Lat_1" 

     

    # Create column with the sorts of labels actually want to use based on ifelse 

    bins$lat_bins <-with(bins, ifelse(Lat_1 == "(-Inf,30]", '23-30°N', 

                                      ifelse(Lat_1 == "(-Inf,35]", '30-35°N', 
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                                             ifelse(Lat_1 == "(30,35]", '30-35°N',  

                                                    ifelse(Lat_1 == "(35,40]", '35-40°N',  

                                                           ifelse(Lat_1 == "(40,45]", '40-45°N', 

                                                                  ifelse(Lat_1 == "(45,50]", '45-50°N', 

                                                                         ifelse(Lat_1 == "(50,55]", '50-55°N', 

                                                                                ifelse(Lat_1 == "(55,60]", '55-60°N', 

                                                                                       ifelse(Lat_1 == "(55, Inf]", '55-60°N', 

                                                                                              '60-65°N' )))))))))) 

     

    # sort the vector so they're in order from lowest to highest 

    bin_labels <- sort(bins$lat_bins) 

    return(bin_labels) 

  } 

   

  bin_labels1 <- get_bin_names(maa_up_even_data) 

  bin_labels2 <- get_bin_names(maa_low_even_data) 

  bin_labels3 <- get_bin_names(cam_up_even_data) 

  bin_labels4 <- get_bin_names(cam_mid_even_data) 

  bin_labels5 <- get_bin_names(cam_low_even_data) 

   

   

  ### Plot the data using geom_col: ### 

  maa_up_bar <- ggplot(maa_up_even_data, aes(x=Bin, y=Simp_Even_Index, fill=Bin)) +  

    geom_col(color="#e9ecef") + 

    labs(title="Upper Maastr. Simpson's Diversity Index",x="Paleo-Latitude Bin", y = "SME") +  

    theme(plot.title = element_text(hjust = 0.5), 

          axis.text.x = element_text(angle = 0, vjust = 0.5, hjust=0.5)) + 

    guides(fill= "none") + 

    scale_fill_manual(values=c("red4", 
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                                     "tomato3", 

                                     "darkorange3", 

                                     "goldenrod2", 

                                     "darkolivegreen4", 

                                     "aquamarine4", 

                                     "steelblue"))+ 

    scale_x_discrete(labels= bin_labels1) + 

    ylim(0, 0.25 + max(maa_up_even_data$Simp_Even_Index)) + 

    geom_text(aes(label=signif(Simp_Even_Index,3)), position=position_dodge(width=0.9), vjust=-0.25) 

   

  maa_low_bar <- ggplot(maa_low_even_data, aes(x=Bin, y=Simp_Even_Index, fill=Bin)) +  

    geom_col(color="#e9ecef") + 

    labs(title="Lower Maastr. Simpson's Diversity Index",x="Paleo-Latitude Bin", y = "SME") +  

    theme(plot.title = element_text(hjust = 0.5), 

          axis.text.x = element_text(angle = 0, vjust = 0.5, hjust=0.5)) + 

    guides(fill= "none") + 

    scale_fill_manual(values=c("red4", 

                                     "tomato3", 

                                     "darkorange3", 

                                     "goldenrod2", 

                                     "darkolivegreen4", 

                                     "aquamarine4", 

                                     "steelblue"))+ 

    scale_x_discrete(labels= bin_labels2) + 

    ylim(0, 0.25 + max(maa_low_even_data$Simp_Even_Index)) + 

    geom_text(aes(label=signif(Simp_Even_Index,3)), position=position_dodge(width=0.9), vjust=-0.25) 

   

  cam_up_bar <- ggplot(cam_up_even_data, aes(x=Bin, y=Simp_Even_Index, fill=Bin)) +  

    geom_col(color="#e9ecef") + 
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    labs(title="Upper Camp. Simpson's Diversity Index",x="Paleo-Latitude Bin", y = "SME") +  

    theme(plot.title = element_text(hjust = 0.5), 

          axis.text.x = element_text(angle = 0, vjust = 0.5, hjust=0.5)) + 

    guides(fill= "none") + 

    scale_fill_manual(values=c("red4", 

                                     "tomato3", 

                                     "darkorange3", 

                                     "goldenrod2", 

                                     "darkolivegreen4", 

                                     "aquamarine4", 

                                     "steelblue"))+ 

    scale_x_discrete(labels= bin_labels3) + 

    ylim(0, 0.25 + max(cam_up_even_data$Simp_Even_Index)) + 

    geom_text(aes(label=signif(Simp_Even_Index,3)), position=position_dodge(width=0.9), vjust=-0.25) 

   

  cam_mid_bar <- ggplot(cam_mid_even_data, aes(x=Bin, y=Simp_Even_Index, fill=Bin)) +  

    geom_col(color="#e9ecef") + 

    labs(title="Middle Camp. Simpson's Diversity Index",x="Paleo-Latitude Bin", y = "SME") +  

    theme(plot.title = element_text(hjust = 0.5), 

          axis.text.x = element_text(angle = 0, vjust = 0.5, hjust=0.5)) + 

    guides(fill= "none") + 

    scale_fill_manual(values=c("red4", 

                                     "tomato3", 

                                     "darkorange3", 

                                     "goldenrod2", 

                                     "darkolivegreen4", 

                                     "aquamarine4", 

                                     "steelblue"))+ 

    scale_x_discrete(labels= bin_labels4) + 
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    ylim(0, 0.25 + max(cam_mid_even_data$Simp_Even_Index)) + 

    geom_text(aes(label=signif(Simp_Even_Index,3)), position=position_dodge(width=0.9), vjust=-0.25) 

   

  cam_low_bar <- ggplot(cam_low_even_data, aes(x=Bin, y=Simp_Even_Index, fill=Bin)) +  

    geom_col(color="#e9ecef") + 

    labs(title="Lower Camp. Simpson's Diversity Index",x="Paleo-Latitude Bin", y = "SME") +  

    theme(plot.title = element_text(hjust = 0.5), 

          axis.text.x = element_text(angle = 0, vjust = 0.5, hjust=0.5)) + 

    guides(fill= "none") + 

    scale_fill_manual(values=c("red4", 

                                     "tomato3", 

                                     "darkorange3", 

                                     "goldenrod2", 

                                     "darkolivegreen4", 

                                     "aquamarine4", 

                                     "steelblue"))+ 

    scale_x_discrete(labels= bin_labels5) + 

    ylim(0, 0.25 + max(cam_low_even_data$Simp_Even_Index)) + 

    geom_text(aes(label=signif(Simp_Even_Index,3)), position=position_dodge(width=0.9), vjust=-0.25) 

   

  bar_list <- list(maa_up_bar,maa_low_bar,cam_up_bar,cam_mid_bar,cam_low_bar) 

} 

 

simp_even_barplots_lat <- 
bar_plot_even_lat(maa_up_60_simp_even_lat,maa_low_60_simp_even_lat,cam_up_60_simp_even_lat
, 

                                            cam_mid_60_simp_even_lat,cam_low_60_simp_even_lat) 

 

# plot bar plots of the Simpson's diversity index per grid cell for each substage 
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pdf("lat_bins_outputs/bar_plots_SimpEven_lat_bins.pdf", width = 15, height = 25) # Open a new pdf file 

grid.arrange(grobs = simp_even_barplots_lat,  

             top = "Bar Plots of Simpson's Evenness per Latitudinal Bin") # Write the grid.arrange in the file 

dev.off() #close file 

 

  #### Create line plots of Simpsons for Lat Bins #### 

 

# function to compare GR and simpsons evenness in line plots for each substage 

plot_line_lat_simp <- function(fe_data1,fe_data2,fe_data3,fe_data4,fe_data5, 

                               data1,data2,data3,data4,data5,yaxis,legendlabel){ 

   

  # function to get the Age data as first column and make relevant columns numeric 

  df_func <- function(data){ 

    ###  Get the functional ecology information for the substage (this is a dataframe) and reconfig: ### 

    data1 <- cbind(Bin = rownames(data), data) # make the lat bin name the 1st column again 

    rownames(data1) <- 1:nrow(data1) # make a new index for the rownames 

    data1 <- as.data.frame(data1) 

    i <- c(2:6) 

    data1[ , i] <- apply(data1[ , i], 2,            # Specify own function within apply to make numeric 

                         function(x) as.numeric(as.character(x))) 

    return(as.data.frame(data1)) 

  } 

   

  # use above function on the fe df output to get lat bins as first column and make nb_fe and nb_sp 
numeric 

  fe_data1 <- df_func(fe_data1$asb_fdfe) 

  fe_data2 <- df_func(fe_data2$asb_fdfe) 

  fe_data3 <- df_func(fe_data3$asb_fdfe) 

  fe_data4 <- df_func(fe_data4$asb_fdfe) 
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  fe_data5 <- df_func(fe_data5$asb_fdfe) 

   

   

  # bind the lat bin and gr (nb_sp column) with the fr for each 

  bind_data1 <- cbind(fe_data1[,c(1,2)],data1[,2]) 

  bind_data2 <- cbind(fe_data2[,c(1,2)],data2[,2]) 

  bind_data3 <- cbind(fe_data3[,c(1,2)],data3[,2]) 

  bind_data4 <- cbind(fe_data4[,c(1,2)],data4[,2]) 

  bind_data5 <- cbind(fe_data5[,c(1,2)],data5[,2]) 

   

  # change the column names 

  colnames(bind_data1) <- c("Bin","GR","other") 

  colnames(bind_data2) <- c("Bin","GR","other") 

  colnames(bind_data3) <- c("Bin","GR","other") 

  colnames(bind_data4) <- c("Bin","GR","other") 

  colnames(bind_data5) <- c("Bin","GR","other") 

   

   

  # function to get the bin names (latitude bins) for each SS 

  get_bin_names <- function(data){ 

    # get the unique lat bins available for this substage and change colname 

    bins <- data.frame(unique(data$Bin)) 

    colnames(bins) <- "Lat_1" 

     

    # Create column with the sorts of labels actually want to use based on ifelse 

    bins$lat_bins <-with(bins, ifelse(Lat_1 == "(-Inf,30]", '23-30°N', 

                                      ifelse(Lat_1 == "(-Inf,35]", '30-35°N', 

                                             ifelse(Lat_1 == "(30,35]", '30-35°N',  

                                                    ifelse(Lat_1 == "(35,40]", '35-40°N',  
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                                                           ifelse(Lat_1 == "(40,45]", '40-45°N', 

                                                                  ifelse(Lat_1 == "(45,50]", '45-50°N', 

                                                                         ifelse(Lat_1 == "(50,55]", '50-55°N', 

                                                                                ifelse(Lat_1 == "(55,60]", '55-60°N', 

                                                                                       ifelse(Lat_1 == "(55, Inf]", '55-60°N', 

                                                                                              '60-65°N' )))))))))) 

     

    # sort the vector so they're in order from lowest to highest 

    bin_labels <- sort(bins$lat_bins) 

    return(bin_labels) 

  } 

   

  bin_labels1 <- get_bin_names(bind_data1) 

  bin_labels2 <- get_bin_names(bind_data2) 

  bin_labels3 <- get_bin_names(bind_data3) 

  bin_labels4 <- get_bin_names(bind_data4) 

  bin_labels5 <- get_bin_names(bind_data5) 

   

   

  bin1_line <- ggplot(bind_data1, aes(x=Bin)) + 

    geom_line(aes(y = GR, color = "#D55E00",group=1)) + 

    geom_line(aes(y = 50*other, color="steelblue",group=2),linetype = "dashed") + # have multiplied the 
other variable by 50 

    geom_point(aes(y = GR), color = "#D55E00") + 

    geom_point(aes(y = 50*other), color="steelblue") + 

    scale_y_continuous( 

      # Features of the first axis 

      name = "# Genera", 

      # Add a second axis and specify its features 



Supplementary Materials for Purcell and Myers, 20XX 507 
 

507 
 

      sec.axis = sec_axis(~ . * 0.02,name=yaxis) # scale the other y axis to match multiplication of other 
variable 

    ) + 

    scale_color_discrete(labels=c("Generic Richness", legendlabel)) + 

    labs(title=paste("Upper Maastr.")) + 

    xlab(label="Latitude") + 

    theme(legend.title=element_blank(),plot.title = element_text(hjust = 0.5)) + 

    scale_x_discrete(labels= bin_labels1) 

   

  bin2_line <- ggplot(bind_data2, aes(x=Bin)) + 

    geom_line(aes(y = GR, color = "#D55E00",group=1)) + 

    geom_line(aes(y = 50*other, color="steelblue",group=2),linetype = "dashed") + # have multiplied the 
other variable by 50 

    geom_point(aes(y = GR), color = "#D55E00") + 

    geom_point(aes(y = 50*other), color="steelblue") + 

    scale_y_continuous( 

      # Features of the first axis 

      name = "# Genera", 

      # Add a second axis and specify its features 

      sec.axis = sec_axis(~ . * 0.02,name=yaxis)# scale the other y axis to match multiplication of other 
variable 

    )  + 

    scale_color_discrete(labels=c("Generic Richness", legendlabel)) + 

    labs(title=paste("Lower Maastr.")) +  

    xlab(label="Latitude") + 

    theme(legend.title=element_blank(),plot.title = element_text(hjust = 0.5)) + 

    scale_x_discrete(labels= bin_labels2) 

   

  bin3_line <- ggplot(bind_data3, aes(x=Bin)) + 

    geom_line(aes(y = GR, color = "#D55E00",group=1)) + 
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    geom_line(aes(y = 50*other, color="steelblue",group=2),linetype = "dashed") + # have multiplied the 
other variable by 50 

    geom_point(aes(y = GR), color = "#D55E00") + 

    geom_point(aes(y = 50*other), color="steelblue") + 

    scale_y_continuous( 

      # Features of the first axis 

      name = "# Genera", 

      # Add a second axis and specify its features 

      sec.axis = sec_axis(~ . * 0.02,name=yaxis)# scale the other y axis to match multiplication of other 
variable 

    )  + 

    scale_color_discrete(labels=c("Generic Richness", legendlabel)) + 

    labs(title=paste("Upper Camp.")) +  

    xlab(label="Latitude") + 

    theme(legend.title=element_blank(),plot.title = element_text(hjust = 0.5)) + 

    scale_x_discrete(labels= bin_labels3) 

   

  bin4_line <- ggplot(bind_data4, aes(x=Bin)) + 

    geom_line(aes(y = GR, color = "#D55E00",group=1)) + 

    geom_line(aes(y = 50*other, color="steelblue",group=2),linetype = "dashed") + # have multiplied the 
other variable by 50 

    geom_point(aes(y = GR), color = "#D55E00") + 

    geom_point(aes(y = 50*other), color="steelblue") + 

    scale_y_continuous( 

      # Features of the first axis 

      name = "# Genera", 

      # Add a second axis and specify its features 

      sec.axis = sec_axis(~ . * 0.02,name=yaxis) # scale the other y axis to match multiplication of other 
variable 

    )  + 
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    scale_color_discrete(labels=c("Generic Richness", legendlabel)) + 

    labs(title=paste("Middle Camp.")) +  

    xlab(label="Latitude") + 

    theme(legend.title=element_blank(),plot.title = element_text(hjust = 0.5)) + 

    scale_x_discrete(labels= bin_labels4) 

   

  bin5_line <- ggplot(bind_data5, aes(x=Bin)) + 

    geom_line(aes(y = GR, color = "#D55E00",group=1)) + 

    geom_line(aes(y = 50*other, color="steelblue",group=2),linetype = "dashed") + # have multiplied the 
other variable by 50 

    geom_point(aes(y = GR), color = "#D55E00") + 

    geom_point(aes(y = 50*other), color="steelblue") + 

    scale_y_continuous( 

      # Features of the first axis 

      name = "# Genera", 

      # Add a second axis and specify its features 

      sec.axis = sec_axis(~ . * 0.02,name=yaxis) # scale the other y axis to match multiplication of other 
variable 

    )  + 

    scale_color_discrete(labels=c("Generic Richness", legendlabel)) + 

    labs(title=paste("Lower Camp.")) +  

    xlab(label="Latitude") + 

    theme(legend.title=element_blank(),plot.title = element_text(hjust = 0.5)) + 

    scale_x_discrete(labels= bin_labels5) 

   

  bin_list <- list(bin1_line,bin2_line,bin3_line,bin4_line,bin5_line) 

  return(bin_list) 

} 
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# create list of plots for changes in simpsons and gr across lat in diff substages 

plot_bins_gr_simp <- 
plot_line_lat_simp(maa_up_60_fe_lat,maa_low_60_fe_lat,cam_up_60_fe_lat,cam_mid_60_fe_lat,cam_
low_60_fe_lat, 

                                        
maa_up_60_simp_even_lat,maa_low_60_simp_even_lat,cam_up_60_simp_even_lat,cam_mid_60_sim
p_even_lat, 

                                        cam_low_60_simp_even_lat, "D/S","Simpson's Measure of Evenness") 

 

 

#### NOTE: I have rescaled the evenness data by multiplying by 100, ggplot not able to plot 2 scales 

# but I also rescaled and the second y axis to match (by 0.01). 

 

# Save plots of changes in simpsons and gr across latitude 

pdf("lat_bins_outputs/lat_bin_GR_Simp_allsubstages.pdf", width = 20, height = 25) # Open a new pdf 
file 

grid.arrange(grobs = plot_bins_gr_simp,  

             top = "Average Generic Richness and Simpson's Measure of Evenness across Latitude") # Write 
the grid.arrange in the file 

dev.off() #close the file 

 

 

 

  #### Export table of Simpsons through time across Latitude Bins #### 

 

# Function to configure to columns with site names as 1st and evenness values as second, age as 3rd 

config_for_loc_even_agg_latbins <- function(data, Age){ 

  # Create df that just take the functional evenness values in each lat bin 

  data_even_summ <- data.frame(data) 

  colnames(data_even_summ) <- c("bins","even") 
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  data_even_summ$Age <- Age 

  return(data_even_summ) 

} 

 

# Use config function (above) to alter then added new column with Age 

maa_up_60_simp_summ_lat_bins <- config_for_loc_even_agg_latbins(maa_up_60_simp_even_lat, 
"MAA up") 

maa_low_60_simp_summ_lat_bins <- config_for_loc_even_agg_latbins(maa_low_60_simp_even_lat, 
"MAA low") 

cam_up_60_simp_summ_lat_bins <- config_for_loc_even_agg_latbins(cam_up_60_simp_even_lat, 
"CAM up") 

cam_mid_60_simp_summ_lat_bins <- config_for_loc_even_agg_latbins(cam_mid_60_simp_even_lat, 
"CAM mid") 

cam_low_60_simp_summ_lat_bins <- config_for_loc_even_agg_latbins(cam_low_60_simp_even_lat, 
"CAM low") 

 

 

# Function to fix row names (so all the same) 

make_lat_names_even <- function(data){ 

  data <- data.frame(data) 

  data$bins <-with(data, ifelse(bins == "(-Inf,30]", '(-Inf,30]', 

                                ifelse(bins == "(-Inf,35]", '(30,35]', 

                                       ifelse(bins == "(30,35]", '(30,35]',  

                                              ifelse(bins == "(35,40]", '(35,40]', 

                                                     ifelse(bins == "(-Inf,45]", '(40,45]', 

                                                     ifelse(bins == "(40,45]", '(40,45]', 

                                                            ifelse(bins == "(45,50]", '(45,50]', 

                                                                   ifelse(bins == "(50,55]", '(50,55]', 

                                                                          ifelse(bins == "(55,60]", '(55,60]', 

                                                                                 ifelse(bins == "(55, Inf]", '(55,60]', 
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                                                                                        ifelse(bins == '(60,65]', '(60, Inf]', 

                                                                                               '(60, Inf]' )))))))))))) 

  return(data) 

} 

 

# Use above function to make sure lat bin names are all the same when they mean the same thing 

maa_up_60_simp_summ_lat_bins <- make_lat_names_even(maa_up_60_simp_summ_lat_bins) 

maa_low_60_simp_summ_lat_bins <- make_lat_names_even(maa_low_60_simp_summ_lat_bins) 

cam_up_60_simp_summ_lat_bins <- make_lat_names_even(cam_up_60_simp_summ_lat_bins) 

cam_mid_60_simp_summ_lat_bins <- make_lat_names_even(cam_mid_60_simp_summ_lat_bins) 

cam_low_60_simp_summ_lat_bins <- make_lat_names_even(cam_low_60_simp_summ_lat_bins) 

 

# Bind the GR data into a single df with 2 columns (stacked the different dfs) 

simp_stack_lat_bins <- rbind(maa_up_60_simp_summ_lat_bins,maa_low_60_simp_summ_lat_bins, 

                             cam_up_60_simp_summ_lat_bins,cam_mid_60_simp_summ_lat_bins, 

                             cam_low_60_simp_summ_lat_bins) 

 

# Used dcast to reconfigure the data so that Age and Site would be identifiers with unique values 

simp_stack_lat_bins_table_all <- dcast(simp_stack_lat_bins, bins ~ Age, value.var = "even") 

 

# This are tables showing the Simpsons values in each lat bin for each substage 

head(simp_stack_lat_bins_table_all) 

 

# Export the df as a csv file 

write.csv(simp_stack_lat_bins_table_all, file="lat_bins_outputs/Lat_bins_Simp_through_time.csv") 

 

  #### Calculate and create Bar Plot of Shannon Equability for Latitudinal Bins #### 

 

# Shannon equitability calculation function 
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shannons_calc <- function(data){ 

   

  # equation for shannons calc 

  shannon_equit <- function(data){ 

    data1 <- data.frame(data) 

    data1 <- data1[data1!=0] # get vector of only values greater than 0 (no empty FE) 

     

    if (length(data1)>1){ # use if statement to only run the calc on nodes with >1 FE and more than 1 
genera in at least one FE 

       

      S <- length(which(data1!=0)) # get the numb of FE 

      Si <- sum(data1) # find out how many genera total present in all FE 

      Pvals <- data1/Si # get proportions of each FE based on dividing # genera in each by total # genera 

      nlPvals <- log(Pvals) # take natural log of the proportions 

      H <- -sum(nlPvals*Pvals) # calculate Shannon diversity index (H) by multiplying nl of p by p and 
summing and multiply by neg 1  

      LNS <- log(S) # get natural log of number of FE present 

      Hi <- H/LNS # calculate Shannon Equitability Index (Hi) by dividing H by nat log of S 

    } else { 

      0 

    } 

  } 

   

  data1 <- data.frame(data$"details_fdfe") 

   

  final <- apply(data1,1,shannon_equit) # 1 indicates that it applies function to rows 

   

  data3 <- data.frame(final) 

  data4 <- cbind(newColName = rownames(data3), data3) # make row name (i.e., grid cell) first column 
again 
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  rownames(data4) <- 1:nrow(data4) 

  colnames(data4) <- c("Site","Shan_Equit_Index") 

   

  return(data4) 

} 

 

# Calculate Shannon Equitability Index for each lat bin in substages using above function 

maa_up_60_shan_even_lat <- shannons_calc(maa_up_60_fe_lat) 

maa_low_60_shan_even_lat <- shannons_calc(maa_low_60_fe_lat)  

cam_up_60_shan_even_lat <- shannons_calc(cam_up_60_fe_lat)  

cam_mid_60_shan_even_lat <- shannons_calc(cam_mid_60_fe_lat)  

cam_low_60_shan_even_lat <- shannons_calc(cam_low_60_fe_lat)  

 

 

# plot bar graphs of Shannon Equitability Index for each grid cell per substage 

bar_plot_equit_lat <- function(maa_up_even_data, maa_low_even_data, 

                              cam_up_even_data,cam_mid_even_data,cam_low_even_data){ 

   

  colnames(maa_up_even_data) <- c("Bin","Shan_Equit_Index") 

  colnames(maa_low_even_data) <- c("Bin","Shan_Equit_Index") 

  colnames(cam_up_even_data) <- c("Bin","Shan_Equit_Index") 

  colnames(cam_mid_even_data) <- c("Bin","Shan_Equit_Index") 

  colnames(cam_low_even_data) <- c("Bin","Shan_Equit_Index") 

   

  # function to get the bin names (latitude bins) for each SS 

  get_bin_names <- function(data){ 

    # get the unique lat bins available for this substage and change colname 

    bins <- data.frame(unique(data$Bin)) 

    colnames(bins) <- "Lat_1" 
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    # Create column with the sorts of labels actually want to use based on ifelse 

    bins$lat_bins <-with(bins, ifelse(Lat_1 == "(-Inf,30]", '23-30°N', 

                                      ifelse(Lat_1 == "(-Inf,35]", '30-35°N', 

                                             ifelse(Lat_1 == "(30,35]", '30-35°N',  

                                                    ifelse(Lat_1 == "(35,40]", '35-40°N',  

                                                           ifelse(Lat_1 == "(40,45]", '40-45°N', 

                                                                  ifelse(Lat_1 == "(45,50]", '45-50°N', 

                                                                         ifelse(Lat_1 == "(50,55]", '50-55°N', 

                                                                                ifelse(Lat_1 == "(55,60]", '55-60°N', 

                                                                                       ifelse(Lat_1 == "(55, Inf]", '55-60°N', 

                                                                                              '60-65°N' )))))))))) 

     

    # sort the vector so they're in order from lowest to highest 

    bin_labels <- sort(bins$lat_bins) 

    return(bin_labels) 

  } 

   

  bin_labels1 <- get_bin_names(maa_up_even_data) 

  bin_labels2 <- get_bin_names(maa_low_even_data) 

  bin_labels3 <- get_bin_names(cam_up_even_data) 

  bin_labels4 <- get_bin_names(cam_mid_even_data) 

  bin_labels5 <- get_bin_names(cam_low_even_data) 

   

   

   

  ### Plot the data using geom_col: ### 

  maa_up_bar <- ggplot(maa_up_even_data, aes(x=Bin, y=Shan_Equit_Index, fill=Bin)) +  

    geom_col(color="#e9ecef") + 
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    labs(title="Upper Maastr. Shannon Equitability Index",x="Paleo-Latitude Bin", y = "SEI") +  

    theme(plot.title = element_text(hjust = 0.5), 

          axis.text.x = element_text(angle = 0, vjust = 0.5, hjust=0.5)) + 

    guides(fill="none") + 

    scale_fill_manual(values=c("red4", 

                                     "tomato3", 

                                     "darkorange3", 

                                     "goldenrod2", 

                                     "darkolivegreen4", 

                                     "aquamarine4", 

                                     "steelblue"))+ 

    scale_x_discrete(labels= bin_labels1) + 

    ylim(0, 0.25 + max(maa_up_even_data$Shan_Equit_Index)) + 

    geom_text(aes(label=signif(Shan_Equit_Index,3)), position=position_dodge(width=0.9), vjust=-0.25) 

   

  maa_low_bar <- ggplot(maa_low_even_data, aes(x=Bin, y=Shan_Equit_Index, fill=Bin)) +  

    geom_col(color="#e9ecef") + 

    labs(title="Lower Maastr. Shannon Equitability Index",x="Paleo-Latitude Bin", y = "SEI") +  

    theme(plot.title = element_text(hjust = 0.5), 

          axis.text.x = element_text(angle = 0, vjust = 0.5, hjust=0.5)) + 

    guides(fill="none") + 

    scale_fill_manual(values=c("red4", 

                                     "tomato3", 

                                     "darkorange3", 

                                     "goldenrod2", 

                                     "darkolivegreen4", 

                                     "aquamarine4", 

                                     "steelblue"))+ 

    scale_x_discrete(labels= bin_labels2) + 
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    ylim(0, 0.25 + max(maa_low_even_data$Shan_Equit_Index)) + 

    geom_text(aes(label=signif(Shan_Equit_Index,3)), position=position_dodge(width=0.9), vjust=-0.25) 

                                      

  cam_up_bar <- ggplot(cam_up_even_data, aes(x=Bin, y=Shan_Equit_Index, fill=Bin)) +  

    geom_col(color="#e9ecef") + 

    labs(title="Upper Camp. Shannon Equitability Index",x="Paleo-Latitude Bin", y = "SEI") +  

    theme(plot.title = element_text(hjust = 0.5), 

          axis.text.x = element_text(angle = 0, vjust = 0.5, hjust=0.5)) + 

    guides(fill="none") + 

    scale_fill_manual(values=c("red4", 

                                     "tomato3", 

                                     "darkorange3", 

                                     "goldenrod2", 

                                     "darkolivegreen4", 

                                     "aquamarine4", 

                                     "steelblue"))+ 

    scale_x_discrete(labels= bin_labels3) + 

    ylim(0, 0.25 + max(cam_up_even_data$Shan_Equit_Index)) + 

    geom_text(aes(label=signif(Shan_Equit_Index,3)), position=position_dodge(width=0.9), vjust=-0.25) 

                                      

  cam_mid_bar <- ggplot(cam_mid_even_data, aes(x=Bin, y=Shan_Equit_Index, fill=Bin)) +  

    geom_col(color="#e9ecef") + 

    labs(title="Middle Camp. Shannon Equitability Index",x="Paleo-Latitude Bin", y = "SEI") +  

    theme(plot.title = element_text(hjust = 0.5), 

          axis.text.x = element_text(angle = 0, vjust = 0.5, hjust=0.5)) + 

    guides(fill="none") + 

    scale_fill_manual(values=c("red4", 

                                     "tomato3", 

                                     "darkorange3", 
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                                     "goldenrod2", 

                                     "darkolivegreen4", 

                                     "aquamarine4", 

                                     "steelblue"))+ 

    scale_x_discrete(labels= bin_labels4) + 

    ylim(0, 0.25 + max(cam_mid_even_data$Shan_Equit_Index)) + 

    geom_text(aes(label=signif(Shan_Equit_Index,3)), position=position_dodge(width=0.9), vjust=-0.25) 

                                      

  cam_low_bar <- ggplot(cam_low_even_data, aes(x=Bin, y=Shan_Equit_Index, fill=Bin)) +  

    geom_col(color="#e9ecef") + 

    labs(title="Lower Camp. Shannon Equitability Index",x="Paleo-Latitude Bin", y = "SEI") +  

    theme(plot.title = element_text(hjust = 0.5), 

          axis.text.x = element_text(angle = 0, vjust = 0.5, hjust=0.5)) + 

    guides(fill="none") + 

    scale_fill_manual(values=c("red4", 

                                     "tomato3", 

                                     "darkorange3", 

                                     "goldenrod2", 

                                     "darkolivegreen4", 

                                     "aquamarine4", 

                                     "steelblue"))+ 

    scale_x_discrete(labels= bin_labels5) + 

    ylim(0, 0.25 + max(cam_low_even_data$Shan_Equit_Index)) + 

    geom_text(aes(label=signif(Shan_Equit_Index,3)), position=position_dodge(width=0.9), vjust=-0.25) 

                                      

  bar_list <- list(maa_up_bar,maa_low_bar,cam_up_bar,cam_mid_bar,cam_low_bar) 

} 
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shan_even_barplots_lat <- bar_plot_equit_lat(maa_up_60_shan_even_lat, 

                                             maa_low_60_shan_even_lat, 

                                             cam_up_60_shan_even_lat, 

                                             cam_mid_60_shan_even_lat, 

                                             cam_low_60_shan_even_lat) 

 

# plot bar plots of the Simpson's diversity index per grid cell for each substage 

pdf("lat_bins_outputs/bar_plots_ShanEquit_lat_bins.pdf", width = 15, height = 25) # Open a new pdf file 

grid.arrange(grobs = shan_even_barplots_lat,  

             top = "Bar Plots of Shannon Equitability per Latitudinal Bin") # Write the grid.arrange in the file 

dev.off() #close file 

 

 

 

 

  #### Create line plots of Shannon for Lat Bins #### 

 

# function to compare GR and shannon equitability index in line plots for each substage 

plot_line_lat_shan <- function(fe_data1,fe_data2,fe_data3,fe_data4,fe_data5, 

                               data1,data2,data3,data4,data5,yaxis,legendlabel){ 

   

  # function to get the Age data as first column and make relevant columns numeric 

  df_func <- function(data){ 

    ###  Get the functional ecology information for the substage (this is a dataframe) and reconfig: ### 

    data1 <- cbind(Bin = rownames(data), data) # make the lat bin name the 1st column again 

    rownames(data1) <- 1:nrow(data1) # make a new index for the rownames 

    data1 <- as.data.frame(data1) 

    i <- c(2:6) 

    data1[ , i] <- apply(data1[ , i], 2,            # Specify own function within apply to make numeric 
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                         function(x) as.numeric(as.character(x))) 

    return(as.data.frame(data1)) 

  } 

   

  # use above function on the fe df output to get lat bins as first column and make nb_fe and nb_sp 
numeric 

  fe_data1 <- df_func(fe_data1$asb_fdfe) 

  fe_data2 <- df_func(fe_data2$asb_fdfe) 

  fe_data3 <- df_func(fe_data3$asb_fdfe) 

  fe_data4 <- df_func(fe_data4$asb_fdfe) 

  fe_data5 <- df_func(fe_data5$asb_fdfe) 

   

   

  # bind the lat bin and gr (nb_sp column) with the fr for each 

  bind_data1 <- cbind(fe_data1[,c(1,2)],data1[,2]) 

  bind_data2 <- cbind(fe_data2[,c(1,2)],data2[,2]) 

  bind_data3 <- cbind(fe_data3[,c(1,2)],data3[,2]) 

  bind_data4 <- cbind(fe_data4[,c(1,2)],data4[,2]) 

  bind_data5 <- cbind(fe_data5[,c(1,2)],data5[,2]) 

   

  # change the column names 

  colnames(bind_data1) <- c("Bin","GR","other") 

  colnames(bind_data2) <- c("Bin","GR","other") 

  colnames(bind_data3) <- c("Bin","GR","other") 

  colnames(bind_data4) <- c("Bin","GR","other") 

  colnames(bind_data5) <- c("Bin","GR","other") 
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  # function to get the bin names (latitude bins) for each SS 

  get_bin_names <- function(data){ 

    # get the unique lat bins available for this substage and change colname 

    bins <- data.frame(unique(data$Bin)) 

    colnames(bins) <- "Lat_1" 

     

    # Create column with the sorts of labels actually want to use based on ifelse 

    bins$lat_bins <-with(bins, ifelse(Lat_1 == "(-Inf,30]", '23-30°N', 

                                      ifelse(Lat_1 == "(-Inf,35]", '30-35°N', 

                                             ifelse(Lat_1 == "(30,35]", '30-35°N',  

                                                    ifelse(Lat_1 == "(35,40]", '35-40°N',  

                                                           ifelse(Lat_1 == "(40,45]", '40-45°N', 

                                                                  ifelse(Lat_1 == "(45,50]", '45-50°N', 

                                                                         ifelse(Lat_1 == "(50,55]", '50-55°N', 

                                                                                ifelse(Lat_1 == "(55,60]", '55-60°N', 

                                                                                       ifelse(Lat_1 == "(55, Inf]", '55-60°N', 

                                                                                              '60-65°N' )))))))))) 

     

    # sort the vector so they're in order from lowest to highest 

    bin_labels <- sort(bins$lat_bins) 

    return(bin_labels) 

  } 

   

  bin_labels1 <- get_bin_names(bind_data1) 

  bin_labels2 <- get_bin_names(bind_data2) 

  bin_labels3 <- get_bin_names(bind_data3) 

  bin_labels4 <- get_bin_names(bind_data4) 

  bin_labels5 <- get_bin_names(bind_data5) 
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  bin1_line <- ggplot(bind_data1, aes(x=Bin)) + 

    geom_line(aes(y = GR, color = "#D55E00",group=1)) + 

    geom_line(aes(y = 50*other, color="steelblue"),group=2,linetype = "dashed") + # have multiplied the 
other variable by 50 

    geom_point(aes(y = GR), color = "#D55E00") + 

    geom_point(aes(y = 50*other), color="steelblue") + 

    scale_y_continuous( 

      # Features of the first axis 

      name = "# Genera", 

      # Add a second axis and specify its features 

      sec.axis = sec_axis(~ . * 0.02,name=yaxis) # scale the other y axis to match multiplication of other 
variable 

    ) + 

    scale_color_discrete(labels=c("Generic Richness", legendlabel)) + 

    labs(title=paste("Upper Maastr.")) + 

    xlab(label="Latitude") + 

    theme(legend.title=element_blank(),plot.title = element_text(hjust = 0.5)) + 

    scale_x_discrete(labels= bin_labels1) 

   

  bin2_line <- ggplot(bind_data2, aes(x=Bin)) + 

    geom_line(aes(y = GR, color = "#D55E00",group=1)) + 

    geom_line(aes(y = 50*other, color="steelblue"),group=2,linetype = "dashed") + # have multiplied the 
other variable by 50 

    geom_point(aes(y = GR), color = "#D55E00") + 

    geom_point(aes(y = 50*other), color="steelblue") + 

    scale_y_continuous( 

      # Features of the first axis 

      name = "# Genera", 

      # Add a second axis and specify its features 
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      sec.axis = sec_axis(~ . * 0.02,name=yaxis)# scale the other y axis to match multiplication of other 
variable 

    )  + 

    scale_color_discrete(labels=c("Generic Richness", legendlabel)) + 

    labs(title=paste("Lower Maastr.")) +  

    xlab(label="Latitude") + 

    theme(legend.title=element_blank(),plot.title = element_text(hjust = 0.5)) + 

    scale_x_discrete(labels= bin_labels2) 

   

  bin3_line <- ggplot(bind_data3, aes(x=Bin)) + 

    geom_line(aes(y = GR, color = "#D55E00",group=1)) + 

    geom_line(aes(y = 50*other, color="steelblue"),group=2,linetype = "dashed") + # have multiplied the 
other variable by 50 

    geom_point(aes(y = GR), color = "#D55E00") + 

    geom_point(aes(y = 50*other), color="steelblue") + 

    scale_y_continuous( 

      # Features of the first axis 

      name = "# Genera", 

      # Add a second axis and specify its features 

      sec.axis = sec_axis(~ . * 0.02,name=yaxis)# scale the other y axis to match multiplication of other 
variable 

    )  + 

    scale_color_discrete(labels=c("Generic Richness", legendlabel)) + 

    labs(title=paste("Upper Camp.")) +  

    xlab(label="Latitude") + 

    theme(legend.title=element_blank(),plot.title = element_text(hjust = 0.5)) + 

    scale_x_discrete(labels= bin_labels3) 

   

  bin4_line <- ggplot(bind_data4, aes(x=Bin)) + 

    geom_line(aes(y = GR, color = "#D55E00",group=1)) + 
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    geom_line(aes(y = 50*other, color="steelblue"),group=2,linetype = "dashed") + # have multiplied the 
other variable by 50 

    geom_point(aes(y = GR), color = "#D55E00") + 

    geom_point(aes(y = 50*other), color="steelblue") + 

    scale_y_continuous( 

      # Features of the first axis 

      name = "# Genera", 

      # Add a second axis and specify its features 

      sec.axis = sec_axis(~ . * 0.02,name=yaxis) # scale the other y axis to match multiplication of other 
variable 

    )  + 

    scale_color_discrete(labels=c("Generic Richness", legendlabel)) + 

    labs(title=paste("Middle Camp.")) +  

    xlab(label="Latitude") + 

    theme(legend.title=element_blank(),plot.title = element_text(hjust = 0.5)) + 

    scale_x_discrete(labels= bin_labels4) 

   

  bin5_line <- ggplot(bind_data5, aes(x=Bin)) + 

    geom_line(aes(y = GR, color = "#D55E00",group=1)) + 

    geom_line(aes(y = 50*other, color="steelblue"),group=2,linetype = "dashed") + # have multiplied the 
other variable by 50 

    geom_point(aes(y = GR), color = "#D55E00") + 

    geom_point(aes(y = 50*other), color="steelblue") + 

    scale_y_continuous( 

      # Features of the first axis 

      name = "# Genera", 

      # Add a second axis and specify its features 

      sec.axis = sec_axis(~ . * 0.02,name=yaxis) # scale the other y axis to match multiplication of other 
variable 

    )  + 
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    scale_color_discrete(labels=c("Generic Richness", legendlabel)) + 

    labs(title=paste("Lower Camp.")) +  

    xlab(label="Latitude") + 

    theme(legend.title=element_blank(),plot.title = element_text(hjust = 0.5)) + 

    scale_x_discrete(labels= bin_labels5) 

   

  bin_list <- list(bin1_line,bin2_line,bin3_line,bin4_line,bin5_line) 

  return(bin_list) 

} 

 

 

# create list of plots for changes in simpsons and gr across lat in diff substages 

plot_bins_gr_shan <- plot_line_lat_shan(maa_up_60_fe_lat,maa_low_60_fe_lat, 

                                        cam_up_60_fe_lat,cam_mid_60_fe_lat, 

                                        cam_low_60_fe_lat, 

                                        maa_up_60_shan_even_lat, 

                                        maa_low_60_shan_even_lat, 

                                        cam_up_60_shan_even_lat, 

                                        cam_mid_60_shan_even_lat, 

                                        cam_low_60_shan_even_lat, "Hi","Shannon Equitability Index") 

 

 

#### NOTE: I have rescaled the evenness data by multiplying by 50, ggplot not able to plot 2 scales 

# but I also resealed and the second y axis to match (by 0.02). 

 

# Save plots of changes in simpsons and gr across latitude 

pdf("lat_bins_outputs/lat_bin_GR_Shan_allsubstages.pdf", width = 20, height = 25) # Open a new pdf 
file 

grid.arrange(grobs = plot_bins_gr_shan,  
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             top = "Average Generic Richness and Simpson's Measure of Evenness across Latitude") # Write 
the grid.arrange in the file 

dev.off() #close the file 

 

 

 

  #### Export table of Shannon through time across Latitude Bins #### 

 

# Function to configure to columns with site names as 1st and evenness values as second, age as 3rd 

config_for_loc_even_agg_latbins <- function(data, Age){ 

  # Create df that just take the functional evenness values in each lat bin 

  data_even_summ <- data.frame(data) 

  colnames(data_even_summ) <- c("bins","even") 

  data_even_summ$Age <- Age 

  return(data_even_summ) 

} 

 

# Use config function (above) to alter then added new column with Age 

maa_up_60_shan_summ_lat_bins <- config_for_loc_even_agg_latbins(maa_up_60_shan_even_lat, 
"MAA up") 

maa_low_60_shan_summ_lat_bins <- config_for_loc_even_agg_latbins(maa_low_60_shan_even_lat, 
"MAA low") 

cam_up_60_shan_summ_lat_bins <- config_for_loc_even_agg_latbins(cam_up_60_shan_even_lat, 
"CAM up") 

cam_mid_60_shan_summ_lat_bins <- config_for_loc_even_agg_latbins(cam_mid_60_shan_even_lat, 
"CAM mid") 

cam_low_60_shan_summ_lat_bins <- config_for_loc_even_agg_latbins(cam_low_60_shan_even_lat, 
"CAM low") 
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# Function to fix row names (so all the same) 

make_lat_names_even <- function(data){ 

  data <- data.frame(data) 

  data$bins <-with(data, ifelse(bins == "(-Inf,30]", '(-Inf,30]', 

                                ifelse(bins == "(-Inf,35]", '(30,35]', 

                                       ifelse(bins == "(30,35]", '(30,35]',  

                                              ifelse(bins == "(35,40]", '(35,40]', 

                                                     ifelse(bins == "(-Inf,45]", '(40,45]', 

                                                     ifelse(bins == "(40,45]", '(40,45]', 

                                                            ifelse(bins == "(45,50]", '(45,50]', 

                                                                   ifelse(bins == "(50,55]", '(50,55]', 

                                                                          ifelse(bins == "(55,60]", '(55,60]', 

                                                                                 ifelse(bins == "(55, Inf]", '(55,60]', 

                                                                                        ifelse(bins == '(60,65]', '(60, Inf]', 

                                                                                               '(60, Inf]' )))))))))))) 

  return(data) 

} 

 

# Use above function to make sure lat bin names are all the same when they mean the same thing 

maa_up_60_shan_summ_lat_bins <- make_lat_names_even(maa_up_60_shan_summ_lat_bins) 

maa_low_60_shan_summ_lat_bins <- make_lat_names_even(maa_low_60_shan_summ_lat_bins) 

cam_up_60_shan_summ_lat_bins <- make_lat_names_even(cam_up_60_shan_summ_lat_bins) 

cam_mid_60_shan_summ_lat_bins <- make_lat_names_even(cam_mid_60_shan_summ_lat_bins) 

cam_low_60_shan_summ_lat_bins <- make_lat_names_even(cam_low_60_shan_summ_lat_bins) 

 

# Bind the GR data into a single df with 2 columns (stacked the different dfs) 

shan_stack_lat_bins <- rbind(maa_up_60_shan_summ_lat_bins,maa_low_60_shan_summ_lat_bins, 

                             cam_up_60_shan_summ_lat_bins,cam_mid_60_shan_summ_lat_bins, 

                             cam_low_60_shan_summ_lat_bins) 
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# Used dcast to reconfigure the data so that Age and Site would be identifiers with unique values 

shan_stack_lat_bins_table_all <- dcast(shan_stack_lat_bins, bins ~ Age, value.var = "even") 

 

# This are tables showing the Simpsons values in each lat bin for each substage 

head(shan_stack_lat_bins_table_all) 

 

# Export the df as a csv file 

write.csv(shan_stack_lat_bins_table_all, file="lat_bins_outputs/Lat_bins_Shan_through_time.csv") 

 

##### ANALYSIS USING ALL DATA TO GET VALUES FOR EACH SUBSTAGE OVERALL (NO GRIDS OR LAT 
BINS) ##### 

 

#Function for removing duplicate Genus-FE-Age rows, make genera row index, and randomly subsample 
the data (maybe) 

substg_clean <- function(data){ 

  data1 <- as.data.frame(data) 

  data2 <-distinct(data1,Updated_Genus,motility,life_habitat,feeding,.keep_all=TRUE) # delete duplicate 
value 

  data3 <- data.frame(data2[,-1], row.names = data2[,1]) # make the first column with genus names the 
index 

  #data4 <- data3[sample(nrow(data3), 84), ] # randomly subsample to get 84 occ 

  return(data3) 

} 

 

# Use above function to simplify the df to just the age, traits, grid name, and geometry 

all_sbstgs<- substg_clean(simple60_data) 
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## function for grouping data by substage and removing all columns but Genus names and Grid Cell 
names as a pres-abs matrix 

substg_gen_grid_all <- function(data){ 

  data1 <- cbind(newColName = rownames(data), data) # make the genus name the 1st column again 

  rownames(data1) <- 1:nrow(data1) # make a new index for the rownames 

  data2 <- as.data.frame(subset(data1)[,c(1,2)]) # subset out just the genus name and age 

  colnames(data2) <- c("Updated_Genus","Age") # Give the columns names 

  data3 <- dcast(data2, Age~Updated_Genus, length) # transform into a pres-abs matrix 

  data4 <- data.frame(data3[,-1], row.names = data3[,1]) # make the site names the row names 

  return(data4) 

} 

 

# create df for pres-abs for all data 

substg_pres_ab_all <- substg_gen_grid_all(all_sbstgs) 

 

 

# function to create a simple df of trait values with all variables as factors  

# need this later in the code, when calculating sp.to.fe otherwise will lose genera names 

df_factor_simple_all <- function(data){ 

  data1 <- cbind(newColName = rownames(data), data) # make the genus name the 1st column again 

  data2 <- as.data.frame(unclass(data1[c(1,3:5)]), stringsAsFactors = TRUE) 

  data3 <- data.frame(data2[,-1], row.names = data2[,1]) 

  return(data3) 

} 

 

# create simple factor variable df for all substages 

all_data_simp <- df_factor_simple_all(all_sbstgs) 

 

# summarize data using function from mFD pakage: 
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all_traits_summ <- mFD::sp.tr.summary(tr_cat = trait_df, 

                                          sp_tr = all_data_simp, 

                                          stop_if_NA = TRUE) 

 

# check trait types 

all_traits_summ$"tr_types"  

 

# check trait type details on levels 

all_traits_summ$"mod_list"  

 

 

 

  ## This section uses the trait data created for each substage prior to alpha-beta FE analysis  

    # (which looks at "collections" of grid cells). It therefore is based on FE summary information 

    # for the entire SS as a whole, not divided by location. 

  #### Find Overall values for each SS without identifying collection locations #### 

# Function to get GR, FR, Simpsons, and Shannons values for each SS overall: 

rich_even_summ <- function(data_traits, Age){ 

  # extract vector of the number of genera in each FE for each SS overall: 

  data_fe_nb_sp <- data_traits$fe_nb_sp 

   

  # get the total # of FE in each SS, this is the Functional Richness (FR) for the SS overall 

  data_nb_fe <- length(data_fe_nb_sp) 

   

  # Extract vector of unique genera and their FE for each SS: 

  data_sp_fe <- data_traits$sp_fe 

   

  # get the total # of genera in each SS, this is the Generic Richness (GR) for the SS overall 

  data_nb_g <- length(data_sp_fe) 
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  # simpsons measure of evenness calculation: 

  simp_calc <- function(data1){ 

    data1 <- data.frame(data1) 

    n <- data1[data1!=0] # get vector of only values greater than 0 (no empty FE) 

    if (length(n)>1 && max(n)>1){ # use if statement to only run the calc on nodes with >1 FE and more 
than 1 genera in at least one FE 

      N <- sum(n) 

      S <- length(n) 

      D = sum(n*(n-1))/(N*(N-1)) 

      inversD <- 1/D 

      sD <- inversD/S 

    } else { 

      0 

    } 

  } 

  # get the Simpson's Measure of Evenness Value: 

  data_simp <- simp_calc(data_fe_nb_sp) 

   

  # equation for shannons calc 

  shannon_equit <- function(data){ 

    data1 <- data.frame(data) 

    data1 <- data1[data1!=0] # get vector of only values greater than 0 (no empty FE) 

     

    if (length(data1)>1){ # use if statement to only run the calc on nodes with >1 FE and more than 1 
genera in at least one FE 

       

      S <- length(which(data1!=0)) # get the numb of FE 

      Si <- sum(data1) # find out how many genera total present in all FE 
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      Pvals <- data1/Si # get proportions of each FE based on dividing # genera in each by total # genera 

      nlPvals <- log(Pvals) # take natural log of the proportions 

      H <- -sum(nlPvals*Pvals) # calculate Shannon diversity index (H) by multiplying nl of p by p and 
summing and multiply by neg 1  

      LNS <- log(S) # get natural log of number of FE present 

      Hi <- H/LNS # calculate Shannon Equitability Index (Hi) by dividing H by nat log of S 

    } else { 

      0 

    } 

  } 

   

  data_shan <- shannon_equit(data_fe_nb_sp) 

   

  final_df <- data.frame(firstcolumn = data_nb_g, secondcolumn= data_nb_fe, thirdcolumn= data_simp, 
fourthcolumn= data_shan) 

  rownames(final_df) <- Age 

  colnames(final_df) <- c("GR","FR","SME","SEI") 

   

  return(final_df) 

   

} 

 

# Use above function to get the overall values of GR, FR, Simpsons, and Shannons for each SS 

maa_up_60_rich_even <- rich_even_summ(maa_up_60_traits,"Maa UP") 

maa_low_60_rich_even <- rich_even_summ(maa_low_60_traits,"Maa LOW") 

cam_up_60_rich_even <- rich_even_summ(cam_up_60_traits,"Cam UP") 

cam_mid_60_rich_even <- rich_even_summ(cam_mid_60_traits,"Cam MID") 

cam_low_60_rich_even <- rich_even_summ(cam_low_60_traits,"Cam LOW") 
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# bind the df of each SS richness and evenness from above into single DF 

all_rich_even <- 
rbind(cam_low_60_rich_even,cam_mid_60_rich_even,cam_up_60_rich_even,maa_low_60_rich_even,
maa_up_60_rich_even) 

 

write.csv(all_rich_even, file="substages_outputs/all_richness_evenness_through_time.csv") 

 

  #### Plot of functional and generic richness through 5 substages #### 

 

all_rich_even_age <-   cbind(Age = rownames(all_rich_even), all_rich_even) # make the genus name the 
1st column again 

rownames(all_rich_even_age) <- 1:nrow(all_rich_even_age) # make a new index for the rownames 

 

 # plot the richness values (GR and FR) for each substage to compare 

gr_fr_plot <- ggplot(all_rich_even_age, aes(x=Age)) + 

  geom_line(aes(y = GR, color = "#D55E00",group=1)) + 

  geom_line(aes(y = 10*FR, color="steelblue",group=2),linetype="dashed") + # multiply FR by 10 so more 
visible next to GR 

  geom_point(aes(y = GR), color = "#D55E00") + 

  geom_point(aes(y = 10*FR), color="steelblue") + # multiply FR by 10 so more visible next to GR 

  scale_y_continuous( 

    # Features of the first axis 

    name = "# Genera", 

    # Add a second axis and specify its features 

    sec.axis = sec_axis(~ . * 0.1,name="# FE") # make sure scale divides y axis proportional to above 
mutiplication 

  ) + 

  scale_color_discrete(labels=c("Generic Richness", "Functional Richness")) + 

  labs(title=paste("Generic and Functional Richness through Time")) +  

  theme(text = element_text(size = 16),legend.position="none",plot.title = element_text(hjust = 0.5)) + 
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  scale_x_discrete(labels=c("Lower Camp.", "Middle Camp.","Upper Camp.","Lower Maastr.","Upper 
Maastr.")) 

 

# plot the GR vs Simp for each substage to compare 

gr_simp_plot <- ggplot(all_rich_even_age, aes(x=Age)) + 

  geom_line(aes(y = GR, color = "#D55E00",group=1)) + 

  geom_line(aes(y = 500*SME, color="steelblue",group=2),linetype="dashed") + # multiply SME by 500 
so more visible next to GR 

  geom_point(aes(y = GR), color = "#D55E00") + 

  geom_point(aes(y = 500*SME), color="steelblue") + # multiply SME by 500 so more visible next to GR 

  scale_y_continuous( 

    # Features of the first axis 

    name = "# Genera", 

    # Add a second axis and specify its features 

    sec.axis = sec_axis(~ . * 0.02,name="SME") # make sure scale divides y axis proportional to above 
mutiplication 

  ) + 

  scale_color_discrete(labels=c("Generic Richness", "Simpson's Measure of Evenness")) + 

  labs(title=paste("Generic Richness and Simpson's Measure of Evenness through Time")) +  

  theme(text = element_text(size = 16),legend.position="none",plot.title = element_text(hjust = 0.5)) + 

  scale_x_discrete(labels=c("Lower Camp.", "Middle Camp.","Upper Camp.","Lower Maastr.","Upper 
Maastr.")) 

 

# plot the GR vs Shan for each substage to compare 

gr_shan_plot <- ggplot(all_rich_even_age, aes(x=Age)) + 

  geom_line(aes(y = GR, color = "#D55E00",group=1)) + 

  geom_line(aes(y = 500*SEI, color="steelblue",group=2),linetype="dashed") + # multiply SEI by 500 so 
more visible next to GR 

  geom_point(aes(y = GR), color = "#D55E00") + 

  geom_point(aes(y = 500*SEI), color="steelblue") + # multiply SEI by 500 so more visible next to GR 
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  scale_y_continuous( 

    # Features of the first axis 

    name = "# Genera", 

    # Add a second axis and specify its features 

    sec.axis = sec_axis(~ . * 0.02,name="SEI") # make sure scale divides y axis proportional to above 
mutiplication 

  ) + 

  scale_color_discrete(labels=c("Generic Richness", "Shannon Equitability Index")) + 

  labs(title=paste("Generic Richness and Shannon Equitability Index through Time")) +  

  theme(text = element_text(size = 16),legend.position="none",plot.title = element_text(hjust = 0.5)) + 

  scale_x_discrete(labels=c("Lower Camp.", "Middle Camp.","Upper Camp.","Lower Maastr.","Upper 
Maastr.")) 

 

 

rich_even_plots <- list(gr_fr_plot,gr_simp_plot,gr_shan_plot) 

 

 

grid.arrange(grobs = rich_even_plots,  

             top = "Change in Richness and Evenness Values Through Time") # Write the grid.arrange in the 
file 

 

# Save plots of changes in metrics across substages 

pdf("substages_outputs/Substage_metrics_change_lineplots.pdf", width = 13, height = 16) # Open a 
new pdf file 

grid.arrange(grobs = rich_even_plots,  

             top = "Change in Richness and Evenness Values Through Time") # Write the grid.arrange in the 
file 

dev.off() #close the file 

 

 



Supplementary Materials for Purcell and Myers, 20XX 536 
 

536 
 

 

  #### Make "bubble plot" of functional entity change in # genera (as relative abundance) per substage 
#### 

 

# Function to get # genera present in each FE for a substage 

fe_counts_names <- function(data){ 

  counts <- as.data.frame(data$"fe_nb_sp") 

  names <- as.data.frame(data$details_fe$fe_codes) 

   

  counts1 <- cbind(newColName = rownames(counts), counts) # make grid cell first column 

  rownames(counts1) <- 1:nrow(counts1) 

  colnames(counts1) <- c("FE","genera") 

   

  names1 <- cbind(newColName = rownames(names), names) # make grid cell first column 

  rownames(names1) <- 1:nrow(names1) 

  colnames(names1) <- c("FE","names") 

   

  count_names <- merge(counts1, names1, by ="FE", x.all=TRUE) # merge the FE genera counts with 
names 

  count_names <- count_names[,c(3,2)] # rearrange columns 

   

} 

 

# Create df of # genera per FE in each substage using above function 

maa_up_60_fe_counts <- fe_counts_names(maa_up_60_traits) 

maa_low_60_fe_counts <- fe_counts_names(maa_low_60_traits) 

cam_up_60_fe_counts <- fe_counts_names(cam_up_60_traits) 

cam_mid_60_fe_counts <- fe_counts_names(cam_mid_60_traits) 

cam_low_60_fe_counts <- fe_counts_names(cam_low_60_traits) 
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# Function to get relative abundance of genera for each FE 

find_rel_abund <- function(data){ 

  data1 <- data.frame(data[,1]) 

  for(i in 1:length(data[,2])){ 

    data1$rel_ab[i] <- data[i,2]/sum(data[,2]) 

  } 

   

  colnames(data1) <- c("names","rel_ab") 

  return(data1) 

} 

 

# Get relative abundance of genera in each FE in each substage using above function 

maa_up_60_fe_rel_abd <- find_rel_abund(maa_up_60_fe_counts) 

maa_low_60_fe_rel_abd <- find_rel_abund(maa_low_60_fe_counts) 

cam_up_60_fe_rel_abd <- find_rel_abund(cam_up_60_fe_counts) 

cam_mid_60_fe_rel_abd <- find_rel_abund(cam_mid_60_fe_counts) 

cam_low_60_fe_rel_abd <- find_rel_abund(cam_low_60_fe_counts) 

 

 

 

# Compile above df into list to merge 

rel_abd_list <- list(cam_low_60_fe_rel_abd,cam_mid_60_fe_rel_abd, 

                     cam_up_60_fe_rel_abd,maa_low_60_fe_rel_abd, 

                     maa_up_60_fe_rel_abd) 

 

# merge all the df into one (this makes sure no FE are omitted in any SS) 

rel_abd_list_complete <- rel_abd_list %>% reduce(full_join, by='names') 
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colnames(rel_abd_list_complete) <- c("names","CamLOW","CamMID","CamUP","MaaLOW","MaaUP") 

 

 

# Function to create trait names for the plot 

make_IDs <- function(data){ 

  # split the names column by "-" 

  names_split <- str_split_fixed(data$names, "_", 4) 

   

  # split the subsequent columns by str values to get just trait IDs 

  motility_str <- str_split_fixed(names_split[ ,1], "Y", 2) 

  habitat_str <- str_split_fixed(names_split[ ,3], "AT", 2) 

  feeding_str <- str_split_fixed(names_split[ ,4], "G", 2) 

   

  # concatenate and capitalize the ID values into a single vector 

  trait_names <- paste(toupper(motility_str[ ,2]), toupper(habitat_str[ ,2]), toupper(feeding_str[ ,2]), 
sep="-") 

  return(trait_names) 

} 

 

# Get the trait name IDs using the above function 

trait_names <- make_IDs(rel_abd_list_complete) 

 

# Add trait names IDs to the abundance df 

rel_abd_list_complete$names <- trait_names 

 

write.csv(rel_abd_list_complete,file="substages_outputs/trait_names_rel_abundance.csv") 

 

 

# Function to create a bubble plot like Foster and Twitchet 2014 Fig 3 
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bubble_gen_per_fe <- function(data){ 

  # make copy of the compiled list of # genera per FE in each substage to manipulate 

  data2 <- data 

   

  # Change all values to either 1-5 based on substage (exclude NAs) 

  data2$MaaUP[data2$MaaUP >0 ] <- 5 

  data2$MaaLOW[data2$MaaLOW >0 ] <- 4 

  data2$CamUP[data2$CamUP >0 ] <- 3 

  data2$CamMID[data2$CamMID >0 ] <- 2 

  data2$CamLOW[data2$CamLOW >0 ] <- 1 

   

  # merge the df with # genera in each substage with the df with 1-5 code numbers for all non NA cells 

  data3 <- merge(data,data2,by="names",x.all=TRUE) 

   

  # create new rows of the diff in relative abundance between two successive intervals 

  data3$cl_cm <- data3$CamLOW.x-data3$CamMID.x 

  data3$cm_cu <- data3$CamMID.x-data3$CamUP.x 

  data3$cu_ml <- data3$CamUP.x-data3$MaaLOW.x 

  data3$ml_mu <- data3$MaaLOW.x-data3$MaaUP.x 

   

  # create threshold breaks in the columns of diff in relative abundances 

  data3$TH_cl_cm<-cut(data3$cl_cm,breaks=c(-Inf,-0.05,0.05,Inf),labels=c("<=-0.05","no",">0.05")) 

  data3$TH_cm_cu<-cut(data3$cm_cu,breaks=c(-Inf,-0.05,0.05,Inf),labels=c("<=-0.05","no",">0.05")) 

  data3$TH_cu_ml<-cut(data3$cu_ml,breaks=c(-Inf,-0.05,0.05,Inf),labels=c("<=-0.05","no",">0.05")) 

  data3$TH_ml_mu<-cut(data3$ml_mu,breaks=c(-Inf,-0.05,0.05,Inf),labels=c("<=-0.05","no",">0.05")) 

   

  # create bubble plot of the df to show # genera (based on relative size) in each FE across substages 

  r <- ggplot(data3, aes(x=names)) + 



Supplementary Materials for Purcell and Myers, 20XX 540 
 

540 
 

    geom_point(aes(y = MaaUP.y, size=MaaUP.x, fill = TH_ml_mu),shape=21) + # add points with select 
color, size by # genera 

    geom_point(aes(y = MaaLOW.y, size=MaaLOW.x, fill = TH_cu_ml),shape=21) + 

    geom_point(aes(y = CamUP.y, size=CamUP.x, fill = TH_cm_cu),shape=21) + 

    geom_point(aes(y = CamMID.y, size=CamMID.x, fill = TH_cl_cm),shape=21) + 

    geom_point(aes(y = CamLOW.y, size=CamLOW.x), fill = "darkgrey",shape=21) + # put this color atrib 
outside aes because it will set absolutely and not follow any variable 

    labs(title="Change in # Genera in Functional Entities through Time") + 

    labs(size="Relative Abundances") + # add a legend title, but only for size (will remove color from 
legend) 

    guides(fill="none") + 

    xlab("Functional Entity") + ylab("Age") + # add the x and y axis labels 

    theme(text = element_text(size = 16),plot.title = element_text(hjust = 0.5), # make the title centered 

          axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1), # change x axis ticks to be vert 

          axis.text.y = element_text(angle = 90, vjust = 0.5, hjust=0.5), 

          legend.position = "top", 

          legend.direction="horizontal") +  

    scale_y_discrete(limits=c("Lower Camp.", "Middle Camp.","Upper Camp.","Lower Maastr.","Upper 
Maastr.")) + # change the name of y axis ticks 

    scale_fill_manual(values = c("<=-0.05" = "#D55E00", 

                                 "no"="#E69F00", 

                                 ">0.05"="#0072B2")) + 

    scale_size_continuous(range = c(1, 12), breaks = c(-Inf,0.001,0.02,0.25,0.5,1)) 

   

  return(r) 

} 

# Use above function to create bubble plot of the # genera per FE in each substage 

gen_fe_bubble_plot <- bubble_gen_per_fe(rel_abd_list_complete) 

 

gen_fe_bubble_plot 
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# Export the bubble plot  

pdf("substages_outputs/FE_Bubble_Plot_raw.pdf", width = 14, height = 9) # Open a new pdf file 

gen_fe_bubble_plot 

dev.off() #close the file 
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APPENDIX C. Supplementary Materials for Chapter 4 
 

The following outlines detailed methods and results, including environmental data collection, 

aggregation, and interpolation, as well as niche analysis methods using the ecospat package. Detailed 

results tables and figures are included here. 

Appendix C-1. Detailed Methods 

Sedimentary data aggregation 

All environmental proxy data was collected using best practices outlined in Myers et al (2015) 

and as applied in Purcell et al. (2023). Lithologic information, including grain size and type, stratigraphic 

structures, bedding style and thickness, bioturbation level, and other notable features were recorded for 

each locality included. Grain size and type were converted to percentages while stratigraphic structures, 

thickness, and all other variables were converted into categorical code values for each unit described 

(Table S1). Units were aggregated based on three levels of temporal binning: (1) within ammonite 

biozone intervals (hereafter referred to as biozone intervals), (2) substages, and (3) stage levels (see Table 

S2 for explanation of variable calculations when aggregated). Not all sedimentary variables recorded and 

aggregated in the dataset were included in the final analysis, either because the variable is not considered 

to be well represented in the dataset (e.g., limestone bedding style) or if the variable was recorded to 

examine potential bias (e.g., bioturbation confidence). Confidence values indicate that very few 

sedimentary locations were based on sites with literature descriptions that could be interpreted with high 

confidence (Table S2), however the ratio of covered to uncovered portions of an aggregated section 

indicated that almost all sedimentary locations were described almost completely and did not include 

more than 25% covered units, which would create “gaps in the data aggregation (Table S2). Ammonite 

zones were selected based on the number of stratigraphic localities described, with a minimum of 15 total 

locations necessary to represent a stratigraphic unit. Ammonite biozone time bins are based primarily on 

the biostratigraphic level described in the source material itself.  
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Table S1. Explanation of code values used in sedimentary variables. 

Bedding Thickness Limestone Bedding Style 

Thickness Avg Size 
Value (m) Style Code 

Laminated (<1cm) 0.005 Planar 1 
Very Thin (1-3cm) 0.02 Wavy 2 

Thin (3-10cm) 0.065 Irregular/Rubbly 3 
Medium (10-30cm) 0.2 Nodular 4 

Thick (30-100cm) 0.65     
Very Thick (>100cm) 1.25     

Siliciclastic Sedimentary Structures Bioturbation 

Structures Code Bioturbation Code 

Planar/indistinct/unstated 1 No mentioned explicitly 0.5 

Cross Lam/Trough Crossbedding 2 At least 1 burrow type mentioned 1 

Ripples/Wavy/Graded 3 Multiple burrows/Burrows 
common 2 

Hummocky/Nodular/Scored/Chnl 
structures 

  

4 Burrows abundant 3 

  Bioturbated and above 4 

    Basin 6 
 

  



Supplementary Materials for Purcell and Myers, 20XX 544 
 

544 
 

Table S2. Explanation of each variable calculated in the final data table of sedimentary information collected from 
literature sources. 

Variable Explanation of Table Computations/Rational 
Sedimentary 

Grain 
Percentages 

Sum of lengths (m) of grain type/size within all units divided by total aggregation length (m). 
Interpretation of sediment type amounts based on stratigraphic descriptions and columns can 
be seen in Tables 1 and 2 in Myers et al. (2015). 

Average Bed 
Thickness 

Thickness separated by siliciclastic and limestone beds. Sum of all percentages of silic or 
limestone beds within a unit times the average bed thickness recorded. This value was then 
multiplied by the unit percent within the aggregated section. Finally, normalized average 
thickness values were summed for the total aggregated section. If no thickness value recorded 
in stratigraphic descriptions or displayed in stratigraphic columns from the source materials, 
assumed average bed thickness of 0.15m. 

Siliciclastic Bed 
Style 

Siliciclastic bed styles were given a value from 1 to 4 based on assumed energy level during 
deposition (Table S1). These code values were then multiplied by the unit percentage within 
the total aggregated section and summed. If siliciclastic beds were present but style was not 
described, the unit was given a siliciclastic bed style of 1 (planar). 

Average 
bioturbation 

Bioturbation within a unit was given a value from 1 to 4 based on degree of mixing, number 
and types of burrows, and burrow distinction (Table S1). These code values were then 
multiplied by the unit percentage within the total aggregated section and summed. If 
bioturbation was not mentioned, a value of 0.5 was given, and only if a unit was described as 
lacking bioturbation explicitly was the unit give a value of 0 (no bioturbation). 

Limestone 
Bedding Style 

Limestone bed styles were given a value from 1 to 4 based on assumed energy level during 
deposition (Table S1). These code values were then multiplied by the unit percentage within 
the total aggregated section and summed. If limestone beds were present but style was not 
described, the unit was given a limestone bed style of 1 (planar). 

Ratio of Covered 
vs. Uncovered 

Length 

To measure some aspect of uncertainty in unit descriptions, the ratio of aggregated unit 
lengths that were undescribed (usually covered units) to described unit lengths was 
calculated. 

Limestone 
Bedding style 
Confidence 

The relative confidence of limestone bed style measurements was quantified by applying a 
binary value of either confidence (0) or no confidence (1) to limestone bed style codes. These 
values were then multiplied by the percentage that unit represents within the aggregated 
section, and the resulting values were summed. Lower values closer to zero are therefore 
considered to have greater confidence than higher values. Confidence was only applied to 
units if a limestone bed style was described in the original source material directly. 

Siliciclastic 
Bedding Style 

Confidence 

The relative confidence of siliciclastic bed style measurements was quantified by applying a 
binary value of either confidence (0) or no confidence (1) to siliciclastic bed style codes. 
These values were then multiplied by the percentage that unit represents within the 
aggregated section, and the resulting values were summed. Lower values closer to zero are 
therefore considered to have greater confidence than higher values. Confidence was only 
applied to units if a siliciclastic bed style was described in the original source material 
directly. 

Bioturbation 
Confidence 

The relative confidence of bioturbation level measurements was quantified by applying a 
binary value of either confidence (0) or no confidence (1) to bioturbation level codes. These 
values were then multiplied by the percentage that unit represents within the aggregated 
section, and the resulting values were summed. Lower values closer to zero are therefore 
considered to have greater confidence than higher values. Confidence was only applied to 
units if a bioturbation level was described in the original source material directly. 

Thickness 
Confidence 

The relative confidence of bed thickness measurements was quantified by applying a binary 
value of either confidence (0) or no confidence (1) to both siliciclastic and limestone bed 
thicknesses. These values were then averaged and multiplied by the percentage that unit 
represents within the aggregated section, and the resulting values were summed. Lower 
values closer to zero are therefore considered to have greater confidence than higher values. 
Confidence was only applied to units if bed thickness was described in the original source 
material directly. 
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If biostratigraphic information was not included in the source material, a secondary source was 

used. All stratigraphic information was classified as having either high, medium, or low stratigraphic 

confidence. High confidence indicates that the biostratigraphic information was well-constrained (i.e., the 

upper and lower bounds of the zones were observed by the original authors and/or was well supported 

based on nearby stratigraphy); medium confidence indicates that the biostratigraphic information was 

partially well-constrained (either part of the section was well-constrained or the biostratigraphic age of the 

units was well-described in a nearby location by a secondary source); low confidence indicates that the 

biostratigraphic information was only roughly inferred by a secondary source (Table S3). 

 
Table S3. Number of stratigraphic localities and their assigned stratigraphic confidence level for each ammonite 
biozone interval. 

Interval High 
Confidence 

Medium 
Confidence 

Low 
Confidence Total Localities 

Hoploscaphites birkelundae-
Hoploscaphites nebrascensis 5 10 5 20 

Baculites clinolobatus 5 19 15 39 
Baculites baculus- Baculites grandis 10 18 10 38 
Baculites reesidei- Baculites eliasi 28 6 3 37 
Baculites compressus- Baculites 

cuneatus 13 7 8 28 
Didymoceras cheyennense 3 9 5 17 
Didymoceras nebrascense-

Exiteloceras jenneyi 12 21 3 36 
Baculites reduncus- Baculites scotti 13 7 11 31 

Baculites perplexus- Baculites 
gregoryensis 38 10 19 67 

Baculites maclearni- Baculites sp. 
(smooth) 24 17 30 71 

Baculites obtusus 25 9 29 63 
Scaphites leei- Baculites sp. (weak 

flank ribs) 19 19 21 59 
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Figure S1. Maps of sedimentary data locations. Points are colored based on biostratigraphic confidence (red = low, 
yellow = medium, green = high) and labeled with numeric values. These values can be looked up in Table S4 and in 
the supplementary excel file (Table S27). See Table S3 for full biozone names. 
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Table S4. Sedimentary data references table, including numeric ID values for map reference. See Table S3 for full 
interval names. 

Interval Interval 
Confidence State Reference ID 

Number 

B. baculus - B. grandis High WY Gill and Cobban 1966 113 
B. baculus - B. grandis High WY Robinson et al. 1964 112 
B. baculus - B. grandis High WY Robinson et al. 1964 110 
B. baculus - B. grandis Medium MT Robinson et al. 1964 70 
B. baculus - B. grandis Medium WY Robinson et al. 1964 68 
B. baculus - B. grandis Medium WY Robinson et al. 1964 70 
B. baculus - B. grandis Medium WY Gill et al. 1970 118 
B. baculus - B. grandis Medium WY Gill et al. 1970 129 
B. baculus - B. grandis Medium WY Kiteley 1979 111 
B. baculus - B. grandis High WY Roehler 1990 166 
B. baculus - B. grandis Medium WY Gill 1974 3 
B. baculus - B. grandis Medium WY Gill 1974 4 
B. baculus - B. grandis High WY Gill 1974 5 
B. baculus - B. grandis High WY Gill 1974 11 
B. baculus - B. grandis Medium WY Johnson et al 2005 64 
B. baculus - B. grandis Medium MT Daly 1984 208 
B. baculus - B. grandis Medium MT Daly 1984 210 
B. baculus - B. grandis Medium ND Daly 1984 216 
B. baculus - B. grandis Medium ND Daly 1984 217 
B. baculus - B. grandis Medium ND Daly 1984 218 
B. baculus - B. grandis Low NM Sealey and Lucas 2022 33 
B. baculus - B. grandis Low NM Sealey and Lucas 2022 221 
B. baculus - B. grandis Medium NM Sealey and Lucas 2022 51 
B. baculus - B. grandis Low NM Sealey and Lucas 2022 131 
B. baculus - B. grandis Medium NM Sealey and Lucas 2022 132 
B. baculus - B. grandis Medium NM Sealey and Lucas 2022 133 
B. baculus - B. grandis High NM Sealey and Lucas 2022 77 
B. baculus - B. grandis Medium NM Sealey and Lucas 2022 75 
B. baculus - B. grandis High NM Sealey and Lucas 2022 38 
B. baculus - B. grandis High MT Bishop 1973 62 
B. baculus - B. grandis Low CO Mather 1928 195 
B. baculus - B. grandis Low CO Mather 1928 194 
B. baculus - B. grandis Low CO Mather 1928 196 
B. baculus - B. grandis High ALB Tsujita 1955 58 
B. baculus - B. grandis Low MT Johnson and Smith 1964 192 
B. baculus - B. grandis Low MT Johnson and Smith 1964 206 
B. baculus - B. grandis Low MT Johnson and Smith 1964 205 
B. baculus - B. grandis Low MT Heald 1926 191 
B. clinobatus High WY Gill and Cobban 1966 113 
B. clinobatus Medium WY Gill et al. 1970 129 
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Interval Interval 
Confidence State Reference ID 

Number 

B. clinobatus Medium WY Kiteley 1979 111 
B. clinobatus High WY Gill 1974 3 
B. clinobatus Medium WY Gill 1974 4 
B. clinobatus Medium WY Gill 1974 5 
B. clinobatus Low WY Gill 1974 6 
B. clinobatus High WY Gill 1974 6 
B. clinobatus Medium WY Gill 1974 7 
B. clinobatus High WY Gill 1974 11 
B. clinobatus Medium MT Daly 1984 209 
B. clinobatus Medium MT Daly 1984 211 
B. clinobatus Medium MT Daly 1984 212 
B. clinobatus Medium MT Daly 1984 213 
B. clinobatus Medium ND Daly 1984 214 
B. clinobatus Medium ND Daly 1984 215 
B. clinobatus Medium ND Daly 1984 216 
B. clinobatus Medium ND Daly 1984 217 
B. clinobatus Medium ND Daly 1984 218 
B. clinobatus Medium ND Daly 1984 219 
B. clinobatus Medium ND Daly 1984 220 
B. clinobatus Low NM Sealey and Lucas 2022 33 
B. clinobatus Low NM Sealey and Lucas 2022 224 
B. clinobatus Low NM Sealey and Lucas 2022 221 
B. clinobatus Low NM Sealey and Lucas 2022 50 
B. clinobatus Low NM Sealey and Lucas 2022 51 
B. clinobatus Low NM Sealey and Lucas 2022 131 
B. clinobatus Low NM Sealey and Lucas 2022 132 
B. clinobatus Low NM Sealey and Lucas 2022 133 
B. clinobatus Low NM Sealey and Lucas 2022 77 
B. clinobatus Low NM Sealey and Lucas 2022 75 
B. clinobatus Low NM Sealey and Lucas 2022 49 
B. clinobatus Medium NM Sealey and Lucas 2022 38 
B. clinobatus High CO Nwangwu 1977 116 
B. clinobatus Medium SD Pettyjohn 1967 134 
B. clinobatus Medium MT Bishop 1973 62 
B. clinobatus Low CO Mather 1928 195 
B. clinobatus Low CO Mather 1928 194 
B. clinobatus Low CO Mather 1928 196 
B. compressus - B. cuneatus High CO Roehler 1990 161 
B. compressus - B. cuneatus High CO Porter 1940 89 
B. compressus - B. cuneatus High NM Sealey and Lucas 2022 221 
B. compressus - B. cuneatus Low NM Sealey and Lucas 2022 77 
B. compressus - B. cuneatus High NM Sealey and Lucas 2022 49 
B. compressus - B. cuneatus High NM Sealey and Lucas 2022 38 
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Interval Interval 
Confidence State Reference ID 

Number 

B. compressus - B. cuneatus Medium NM Baltz 1967 80 
B. compressus - B. cuneatus Medium NM Reeside, 1924 190 
B. compressus - B. cuneatus Medium NM Reeside, 1924 199 
B. compressus - B. cuneatus Low NM Reeside, 1924 200 
B. compressus - B. cuneatus Low NM Reeside, 1924 207 
B. compressus - B. cuneatus Medium SD Hanczaryk and Gallagher 2007 67 
B. compressus - B. cuneatus High SD Hanczaryk and Gallagher 2007 105 
B. compressus - B. cuneatus Medium CO Mather 1928 201 
B. compressus - B. cuneatus Medium NM Fitter 1958 157 
B. compressus - B. cuneatus High ALB Tsujita 1955 58 
B. compressus - B. cuneatus High ALB Tsujita 1955 222 
B. compressus - B. cuneatus Medium ALB Tsujita 1955 57 
B. compressus - B. cuneatus High ALB Tsujita 1955 61 
B. compressus - B. cuneatus High ALB Tsujita 1955 79 
B. compressus - B. cuneatus High ALB Tsujita 1955 45 
B. compressus - B. cuneatus High ALB Tsujita 1955 37 
B. compressus - B. cuneatus High ALB Tsujita 1955 125 
B. compressus - B. cuneatus Low MT Johnson and Smith 1964 197 
B. compressus - B. cuneatus Low MT Fuentes et al 2011 150 
B. compressus - B. cuneatus Low MT Braun 1983 223 
B. compressus - B. cuneatus Low MT Braun 1983 107 
B. compressus - B. cuneatus Low MT Braun 1983 56 
B. maclearni - B. sp. (smooth) Medium WY Gill and Cobban 1966 113 
B. maclearni - B. sp. (smooth) High WY Gill and Cobban 1966 113 
B. maclearni - B. sp. (smooth) Medium WY Robinson et al. 1964 109 
B. maclearni - B. sp. (smooth) High WY Gill et al. 1970 226 
B. maclearni - B. sp. (smooth) High WY Gill et al. 1970 130 
B. maclearni - B. sp. (smooth) Medium WY Gill et al. 1970 119 
B. maclearni - B. sp. (smooth) High WY Gill et al. 1970 117 
B. maclearni - B. sp. (smooth) High WY Roehler 1990 162 
B. maclearni - B. sp. (smooth) High WY Roehler 1990 172 
B. maclearni - B. sp. (smooth) High WY Roehler 1990 166 
B. maclearni - B. sp. (smooth) High CO Roehler 1990 161 
B. maclearni - B. sp. (smooth) Medium WY Gill 1974 8 
B. maclearni - B. sp. (smooth) Medium WY Gill 1974 12 
B. maclearni - B. sp. (smooth) Medium WY Gill 1974 19 
B. maclearni - B. sp. (smooth) Low WY Gill 1974 22 
B. maclearni - B. sp. (smooth) High WY Gill 1974 22 
B. maclearni - B. sp. (smooth) High WY Gill 1974 25 
B. maclearni - B. sp. (smooth) High WY Gill 1974 28 
B. maclearni - B. sp. (smooth) Low WY Johnson et al 2005 60 
B. maclearni - B. sp. (smooth) Low WY Johnson et al 2005 64 
B. maclearni - B. sp. (smooth) High WY Minor et al 2022 240 
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Interval Interval 
Confidence State Reference ID 

Number 

B. maclearni - B. sp. (smooth) High WY Minor et al 2022 242 
B. maclearni - B. sp. (smooth) High WY Minor et al 2022 241 
B. maclearni - B. sp. (smooth) High WY Minor et al 2022 243 
B. maclearni - B. sp. (smooth) Medium UT Seymour 2012 40 
B. maclearni - B. sp. (smooth) High UT Seymour 2012 39 
B. maclearni - B. sp. (smooth) Low UT Fisher et al 1960 99 
B. maclearni - B. sp. (smooth) Low UT Fisher et al 1960 99 
B. maclearni - B. sp. (smooth) Low UT Fisher et al 1960 100 
B. maclearni - B. sp. (smooth) Low UT Fisher et al 1960 101 
B. maclearni - B. sp. (smooth) Low UT Fisher et al 1960 102 
B. maclearni - B. sp. (smooth) Low UT Fisher et al 1960 103 
B. maclearni - B. sp. (smooth) Low UT Fisher et al 1960 90 
B. maclearni - B. sp. (smooth) Low UT Fisher et al 1960 90 
B. maclearni - B. sp. (smooth) Low UT Fisher et al 1960 91 
B. maclearni - B. sp. (smooth) Low UT Fisher et al 1960 92 
B. maclearni - B. sp. (smooth) Low UT Fisher et al 1960 104 
B. maclearni - B. sp. (smooth) Low UT Fisher et al 1960 93 
B. maclearni - B. sp. (smooth) Low UT Fisher et al 1960 94 
B. maclearni - B. sp. (smooth) Low UT Fisher et al 1960 95 
B. maclearni - B. sp. (smooth) Low UT Fisher et al 1960 96 
B. maclearni - B. sp. (smooth) Medium UT Fisher et al 1960 97 
B. maclearni - B. sp. (smooth) High UT Chan and Newman 1991 1 
B. maclearni - B. sp. (smooth) High UT Chan and Newman 1991 10 
B. maclearni - B. sp. (smooth) High UT Chan and Newman 1991 14 
B. maclearni - B. sp. (smooth) High UT Chan and Newman 1991 17 
B. maclearni - B. sp. (smooth) High UT Chan and Newman 1991 21 
B. maclearni - B. sp. (smooth) High UT Chan and Newman 1991 23 
B. maclearni - B. sp. (smooth) Medium UT Chan and Newman 1991 26 
B. maclearni - B. sp. (smooth) High UT Chan and Newman 1991 29 
B. maclearni - B. sp. (smooth) Low NM Reeside, 1924 190 
B. maclearni - B. sp. (smooth) Low NM Reeside, 1924 198 
B. maclearni - B. sp. (smooth) Low NM Reeside, 1924 207 
B. maclearni - B. sp. (smooth) High SD Martin et al. 2007 in Martin & Parris 35 
B. maclearni - B. sp. (smooth) Medium SD Martin et al. 2007 in Martin & Parris 36 
B. maclearni - B. sp. (smooth) Low SD Bertog et al. 2007 52 
B. maclearni - B. sp. (smooth) Low KS Bertog et al. 2007 84 
B. maclearni - B. sp. (smooth) Medium SD Bertog et al. 2007 248 
B. maclearni - B. sp. (smooth) Medium SD Bertog et al. 2007 249 
B. maclearni - B. sp. (smooth) Medium SD Bertog et al. 2007 47 
B. maclearni - B. sp. (smooth) Low NM Hutchinson 1974 151 
B. maclearni - B. sp. (smooth) Low NM Hutchinson 1974 158 
B. maclearni - B. sp. (smooth) Low NM Hutchinson 1974 188 
B. maclearni - B. sp. (smooth) Low NM Hutchinson 1974 139 
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Interval Interval 
Confidence State Reference ID 

Number 

B. maclearni - B. sp. (smooth) Low SAS Crockford 1949 149 
B. maclearni - B. sp. (smooth) Low SAS Crockford 1949 142 
B. maclearni - B. sp. (smooth) Medium ALB Stott 1967 164 
B. maclearni - B. sp. (smooth) Medium ALB Stott 1967 165 
B. maclearni - B. sp. (smooth) Medium ALB Stott 1967 168 
B. maclearni - B. sp. (smooth) Low MT Johnson and Smith 1964 193 
B. obtusus High WY Gill and Cobban 1966 113 
B. obtusus Medium WY Robinson et al. 1964 109 
B. obtusus High WY Gill et al. 1970 226 
B. obtusus High WY Gill et al. 1970 130 
B. obtusus Medium WY Gill et al. 1970 119 
B. obtusus High WY Gill et al. 1970 117 
B. obtusus Medium WY Kiteley 1979 71 
B. obtusus Medium CO Scott 1969 85 
B. obtusus High WY Roehler 1990 162 
B. obtusus High WY Roehler 1990 172 
B. obtusus High WY Roehler 1990 166 
B. obtusus High WY Gill 1974 15 
B. obtusus Low WY Gill 1974 19 
B. obtusus Low WY Gill 1974 16 
B. obtusus Low WY Johnson et al 2005 64 
B. obtusus Low WY Minor et al 2022 234 
B. obtusus Low WY Minor et al 2022 235 
B. obtusus Low WY Minor et al 2022 236 
B. obtusus Low WY Minor et al 2022 237 
B. obtusus Low WY Minor et al 2022 238 
B. obtusus Low WY Minor et al 2022 239 
B. obtusus Medium UT Seymour 2012 42 
B. obtusus Low UT Fisher et al 1960 99 
B. obtusus Low UT Fisher et al 1960 100 
B. obtusus Low UT Fisher et al 1960 101 
B. obtusus Low UT Fisher et al 1960 102 
B. obtusus Low UT Fisher et al 1960 103 
B. obtusus Low UT Fisher et al 1960 90 
B. obtusus Low UT Fisher et al 1960 91 
B. obtusus Low UT Fisher et al 1960 92 
B. obtusus Low UT Fisher et al 1960 104 
B. obtusus Low UT Fisher et al 1960 93 
B. obtusus Low UT Fisher et al 1960 94 
B. obtusus High UT Maberry 1971 121 
B. obtusus Medium UT Chan and Newman 1991 10 
B. obtusus High UT Chan and Newman 1991 14 
B. obtusus High UT Chan and Newman 1991 17 
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Interval Interval 
Confidence State Reference ID 

Number 

B. obtusus Low UT Chan and Newman 1991 21 
B. obtusus Low UT Chan and Newman 1991 23 
B. obtusus Low NM Reeside, 1924 190 
B. obtusus Low NM Reeside, 1924 207 
B. obtusus High SD Martin et al. 2007 in Martin & Parris 34 
B. obtusus High SD Martin et al. 2007 in Martin & Parris 35 
B. obtusus Low SD Bertog et al. 2007 52 
B. obtusus High KS Bertog et al. 2007 83 
B. obtusus Medium SD Bertog et al. 2007 248 
B. obtusus Low SD Bertog et al. 2007 249 
B. obtusus High SD Bertog et al. 2007 47 
B. obtusus Low MT Johnson and Smith 1964 54 
B. obtusus Low MT Johnson and Smith 1964 204 
B. obtusus Low MT Johnson and Smith 1964 193 
B. obtusus High SAS McNeil and Caldwell 1981 154 
B. obtusus High SAS McNeil and Caldwell 1981 155 
B. obtusus High SAS McNeil and Caldwell 1981 156 
B. obtusus Medium MAN McNeil and Caldwell 1981 173 
B. obtusus High MAN McNeil and Caldwell 1981 174 
B. obtusus High MAN McNeil and Caldwell 1981 175 
B. obtusus Medium MAN McNeil and Caldwell 1981 176 
B. obtusus High MAN McNeil and Caldwell 1981 187 
B. obtusus High MAN McNeil and Caldwell 1981 135 
B. obtusus High MAN McNeil and Caldwell 1981 136 
B. obtusus High MAN McNeil and Caldwell 1981 137 
B. obtusus High SD McNeil and Caldwell 1981 138 
B. perplexus - B. gregoryensis High WY Gill and Cobban 1966 113 
B. perplexus - B. gregoryensis High WY Gill and Cobban 1966 113 
B. perplexus - B. gregoryensis High WY Robinson et al. 1964 115 
B. perplexus - B. gregoryensis Medium WY Robinson et al. 1964 114 
B. perplexus - B. gregoryensis Medium WY Robinson et al. 1964 109 
B. perplexus - B. gregoryensis High WY Gill et al. 1970 226 
B. perplexus - B. gregoryensis High WY Gill et al. 1970 130 
B. perplexus - B. gregoryensis Medium WY Gill et al. 1970 119 
B. perplexus - B. gregoryensis High WY Gill et al. 1970 225 
B. perplexus - B. gregoryensis High WY Gill et al. 1970 117 
B. perplexus - B. gregoryensis High WY Kiteley 1979 111 
B. perplexus - B. gregoryensis Medium CO Scott 1969 85 
B. perplexus - B. gregoryensis High WY Roehler 1990 162 
B. perplexus - B. gregoryensis High WY Roehler 1990 172 
B. perplexus - B. gregoryensis High WY Roehler 1990 166 
B. perplexus - B. gregoryensis High CO Roehler 1990 161 
B. perplexus - B. gregoryensis Medium WY Gill 1974 8 
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Interval Interval 
Confidence State Reference ID 

Number 

B. perplexus - B. gregoryensis Medium WY Gill 1974 12 
B. perplexus - B. gregoryensis Medium WY Gill 1974 15 
B. perplexus - B. gregoryensis High WY Gill 1974 22 
B. perplexus - B. gregoryensis High WY Gill 1974 25 
B. perplexus - B. gregoryensis High WY Gill 1974 28 
B. perplexus - B. gregoryensis High WY Gill 1974 31 
B. perplexus - B. gregoryensis Medium WY Gill 1974 32 
B. perplexus - B. gregoryensis Low WY Johnson et al 2005 65 
B. perplexus - B. gregoryensis Low WY Johnson et al 2005 74 
B. perplexus - B. gregoryensis Low WY Johnson et al 2005 60 
B. perplexus - B. gregoryensis Low WY Johnson et al 2005 73 
B. perplexus - B. gregoryensis Low WY Johnson et al 2005 64 
B. perplexus - B. gregoryensis High WY Minor et al 2022 244 
B. perplexus - B. gregoryensis High CO Minor et al 2022 247 
B. perplexus - B. gregoryensis High CO Minor et al 2022 246 
B. perplexus - B. gregoryensis High CO Minor et al 2022 245 
B. perplexus - B. gregoryensis Medium UT Seymour 2012 46 
B. perplexus - B. gregoryensis High CO Porter 1940 44 
B. perplexus - B. gregoryensis High CO Porter 1940 44 
B. perplexus - B. gregoryensis High CO Porter 1940 123 
B. perplexus - B. gregoryensis High CO Porter 1940 66 
B. perplexus - B. gregoryensis High CO Porter 1940 66 
B. perplexus - B. gregoryensis High CO Porter 1940 66 
B. perplexus - B. gregoryensis High CO Porter 1940 59 
B. perplexus - B. gregoryensis High CO Porter 1940 59 
B. perplexus - B. gregoryensis High CO Porter 1940 89 
B. perplexus - B. gregoryensis High CO Porter 1940 86 
B. perplexus - B. gregoryensis High CO Porter 1940 63 
B. perplexus - B. gregoryensis Low UT Fisher et al 1960 90 
B. perplexus - B. gregoryensis Low UT Fisher et al 1960 91 
B. perplexus - B. gregoryensis Low UT Fisher et al 1960 92 
B. perplexus - B. gregoryensis Low UT Fisher et al 1960 104 
B. perplexus - B. gregoryensis Low UT Fisher et al 1960 93 
B. perplexus - B. gregoryensis Low UT Fisher et al 1960 94 
B. perplexus - B. gregoryensis Low UT Fisher et al 1960 95 
B. perplexus - B. gregoryensis Low UT Fisher et al 1960 96 
B. perplexus - B. gregoryensis Low UT Fisher et al 1960 97 
B. perplexus - B. gregoryensis Low SD Bertog et al. 2007 52 
B. perplexus - B. gregoryensis Medium SD Hanczaryk and Gallagher 2007 67 
B. perplexus - B. gregoryensis Low NM Fitter 1958 157 
B. perplexus - B. gregoryensis Low SAS Crockford 1949 149 
B. perplexus - B. gregoryensis Low SAS Crockford 1949 142 
B. perplexus - B. gregoryensis High SAS McNeil and Caldwell 1981 153 
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Interval Interval 
Confidence State Reference ID 

Number 

B. perplexus - B. gregoryensis High MAN McNeil and Caldwell 1981 173 
B. perplexus - B. gregoryensis High MAN McNeil and Caldwell 1981 174 
B. perplexus - B. gregoryensis Low MAN McNeil and Caldwell 1981 180 
B. perplexus - B. gregoryensis High MAN McNeil and Caldwell 1981 180 
B. perplexus - B. gregoryensis High MAN McNeil and Caldwell 1981 135 
B. perplexus - B. gregoryensis High MAN McNeil and Caldwell 1981 136 
B. perplexus - B. gregoryensis High SD McNeil and Caldwell 1981 138 
B. reduncus - B. scotti High WY Gill and Cobban 1966 113 
B. reduncus - B. scotti High WY Gill and Cobban 1966 113 
B. reduncus - B. scotti Low WY Kiteley 1979 111 
B. reduncus - B. scotti High CO Scott 1969 85 
B. reduncus - B. scotti High CO Minor et al 2022 227 
B. reduncus - B. scotti Medium UT Seymour 2012 46 
B. reduncus - B. scotti High CO Porter 1940 44 
B. reduncus - B. scotti High CO Porter 1940 66 
B. reduncus - B. scotti High CO Porter 1940 59 
B. reduncus - B. scotti High CO Porter 1940 86 
B. reduncus - B. scotti High CO Porter 1940 63 
B. reduncus - B. scotti High NM Sealey and Lucas 2022 53 
B. reduncus - B. scotti Low UT Fisher et al 1960 90 
B. reduncus - B. scotti Low UT Fisher et al 1960 91 
B. reduncus - B. scotti Low UT Fisher et al 1960 92 
B. reduncus - B. scotti Low UT Fisher et al 1960 104 
B. reduncus - B. scotti Low UT Fisher et al 1960 94 
B. reduncus - B. scotti Low UT Fisher et al 1960 95 
B. reduncus - B. scotti Low UT Fisher et al 1960 96 
B. reduncus - B. scotti Low UT Fisher et al 1960 98 
B. reduncus - B. scotti Medium CO Warner 1964 2 
B. reduncus - B. scotti High CO Warner 1964 9 
B. reduncus - B. scotti High CO Warner 1964 13 
B. reduncus - B. scotti High CO Warner 1964 18 
B. reduncus - B. scotti Low CO Warner 1964 20 
B. reduncus - B. scotti Medium CO Warner 1964 24 
B. reduncus - B. scotti Medium CO Warner 1964 27 
B. reduncus - B. scotti Low CO Warner 1964 30 
B. reduncus - B. scotti Medium SD Hanczaryk and Gallagher 2007 67 
B. reduncus - B. scotti Medium SD Hanczaryk and Gallagher 2007 105 
B. reduncus - B. scotti Medium MAN McNeil and Caldwell 1981 180 
B. reesidei - B. eliasi High WY Gill and Cobban 1966 113 
B. reesidei - B. eliasi High WY Gill and Cobban 1966 113 
B. reesidei - B. eliasi High WY Gill and Cobban 1966 113 
B. reesidei - B. eliasi Medium WY Robinson et al. 1964 108 
B. reesidei - B. eliasi High WY Robinson et al. 1964 112 
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Interval Interval 
Confidence State Reference ID 

Number 

B. reesidei - B. eliasi High WY Robinson et al. 1964 110 
B. reesidei - B. eliasi Medium WY Gill et al. 1970 127 
B. reesidei - B. eliasi Medium WY Gill et al. 1970 128 
B. reesidei - B. eliasi High WY Gill et al. 1970 129 
B. reesidei - B. eliasi High WY Kiteley 1979 111 
B. reesidei - B. eliasi High CO Roehler 1990 161 
B. reesidei - B. eliasi High WY Gill 1974 11 
B. reesidei - B. eliasi Low WY Johnson et al 2005 60 
B. reesidei - B. eliasi Medium WY Johnson et al 2005 73 
B. reesidei - B. eliasi Low WY Johnson et al 2005 64 
B. reesidei - B. eliasi High CO Minor et al 2022 230 
B. reesidei - B. eliasi High UT Minor et al 2022 231 
B. reesidei - B. eliasi High CO Porter 1940 44 
B. reesidei - B. eliasi High CO Porter 1940 124 
B. reesidei - B. eliasi High NM Sealey and Lucas 2022 33 
B. reesidei - B. eliasi High NM Sealey and Lucas 2022 221 
B. reesidei - B. eliasi Medium NM Sealey and Lucas 2022 50 
B. reesidei - B. eliasi Medium NM Sealey and Lucas 2022 51 
B. reesidei - B. eliasi High NM Sealey and Lucas 2022 131 
B. reesidei - B. eliasi High NM Sealey and Lucas 2022 132 
B. reesidei - B. eliasi High NM Sealey and Lucas 2022 133 
B. reesidei - B. eliasi High NM Sealey and Lucas 2022 77 
B. reesidei - B. eliasi High NM Sealey and Lucas 2022 38 
B. reesidei - B. eliasi High ALB Tsujita 1955 58 
B. reesidei - B. eliasi High ALB Tsujita 1955 58 
B. reesidei - B. eliasi High ALB Tsujita 1955 222 
B. reesidei - B. eliasi High ALB Tsujita 1955 222 
B. reesidei - B. eliasi High ALB Tsujita 1955 79 
B. reesidei - B. eliasi High ALB Tsujita 1955 45 
B. reesidei - B. eliasi High ALB Tsujita 1955 37 
B. reesidei - B. eliasi High ALB Tsujita 1955 125 
B. reesidei - B. eliasi Low MT Heald 1926 191 
D. cheyennense Medium WY Robinson et al. 1964 108 
D. cheyennense High CO Roehler 1990 161 
D. cheyennense High NM Sealey and Lucas 2022 221 
D. cheyennense High NM Sealey and Lucas 2022 77 
D. cheyennense Low NM Caldwell 1953 78 
D. cheyennense Low NM Caldwell 1953 76 
D. cheyennense Low NM Caldwell 1953 55 
D. cheyennense Low NM Hutchinson 1974 151 
D. cheyennense Low MT Johnson and Smith 1964 192 
D. cheyennense Medium MAN McNeil and Caldwell 1981 179 
D. cheyennense Medium MAN McNeil and Caldwell 1981 181 
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Interval Interval 
Confidence State Reference ID 

Number 

D. cheyennense Medium MAN McNeil and Caldwell 1981 182 
D. cheyennense Medium MAN McNeil and Caldwell 1981 183 
D. cheyennense Medium MAN McNeil and Caldwell 1981 184 
D. cheyennense Medium MAN McNeil and Caldwell 1981 185 
D. cheyennense Medium MAN McNeil and Caldwell 1981 186 
D. cheyennense Medium MAN McNeil and Caldwell 1981 137 
D. nebrascense - E. jenneyi High WY Gill and Cobban 1966 113 
D. nebrascense - E. jenneyi Medium WY Robinson et al. 1964 108 
D. nebrascense - E. jenneyi High WY Gill et al. 1970 225 
D. nebrascense - E. jenneyi High WY Gill et al. 1970 117 
D. nebrascense - E. jenneyi High WY Kiteley 1979 111 
D. nebrascense - E. jenneyi High CO Scott 1969 85 
D. nebrascense - E. jenneyi High CO Roehler 1990 161 
D. nebrascense - E. jenneyi High CO Minor et al 2022 228 
D. nebrascense - E. jenneyi High WY Minor et al 2022 229 
D. nebrascense - E. jenneyi Medium UT Seymour 2012 88 
D. nebrascense - E. jenneyi High NM Sealey and Lucas 2022 33 
D. nebrascense - E. jenneyi High NM Sealey and Lucas 2022 53 
D. nebrascense - E. jenneyi Medium NM Sealey and Lucas 2022 224 
D. nebrascense - E. jenneyi Medium CO Warner 1964 2 
D. nebrascense - E. jenneyi Medium CO Warner 1964 9 
D. nebrascense - E. jenneyi Medium CO Warner 1964 13 
D. nebrascense - E. jenneyi Medium CO Warner 1964 18 
D. nebrascense - E. jenneyi Medium CO Warner 1964 20 
D. nebrascense - E. jenneyi Medium CO Warner 1964 24 
D. nebrascense - E. jenneyi Medium CO Warner 1964 27 
D. nebrascense - E. jenneyi Medium CO Warner 1964 30 
D. nebrascense - E. jenneyi Medium SD Hanczaryk and Gallagher 2007 105 
D. nebrascense - E. jenneyi Medium NM Hutchinson 1974 170 
D. nebrascense - E. jenneyi Low NM Fitter 1958 157 
D. nebrascense - E. jenneyi Low MT Johnson and Smith 1964 197 
D. nebrascense - E. jenneyi Low MT Johnson and Smith 1964 192 
D. nebrascense - E. jenneyi High MAN McNeil and Caldwell 1981 179 
D. nebrascense - E. jenneyi Medium MAN McNeil and Caldwell 1981 180 
D. nebrascense - E. jenneyi Medium MAN McNeil and Caldwell 1981 181 
D. nebrascense - E. jenneyi Medium MAN McNeil and Caldwell 1981 182 
D. nebrascense - E. jenneyi Medium MAN McNeil and Caldwell 1981 183 
D. nebrascense - E. jenneyi Medium MAN McNeil and Caldwell 1981 184 
D. nebrascense - E. jenneyi Medium MAN McNeil and Caldwell 1981 185 
D. nebrascense - E. jenneyi Medium MAN McNeil and Caldwell 1981 186 
D. nebrascense - E. jenneyi Medium MAN McNeil and Caldwell 1981 136 
D. nebrascense - E. jenneyi High MAN McNeil and Caldwell 1981 137 
H. birkelundae - H. nebrascensis High WY Gill and Cobban 1966 69 
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Interval Interval 
Confidence State Reference ID 

Number 

H. birkelundae - H. nebrascensis High CO Nwangwu 1977 116 
H. birkelundae - H. nebrascensis Medium SD Pettyjohn 1967 134 
H. birkelundae - H. nebrascensis Low SD Pettyjohn 1967 152 
H. birkelundae - H. nebrascensis High SD Waage 1968 120 
H. birkelundae - H. nebrascensis High SD Waage 1968 159 
H. birkelundae - H. nebrascensis High SD Waage 1968 160 
H. birkelundae - H. nebrascensis Medium SD Waage 1968 163 
H. birkelundae - H. nebrascensis Medium SD Waage 1968 169 
H. birkelundae - H. nebrascensis Medium SD Waage 1968 171 
H. birkelundae - H. nebrascensis Medium SD Waage 1968 177 
H. birkelundae - H. nebrascensis Medium SD Waage 1968 178 
H. birkelundae - H. nebrascensis Medium SD Waage 1968 189 
H. birkelundae - H. nebrascensis Medium SD Waage 1968 140 
H. birkelundae - H. nebrascensis Medium SD Waage 1968 141 
H. birkelundae - H. nebrascensis Medium SD Waage 1968 143 
H. birkelundae - H. nebrascensis Low SD Waage 1968 144 
H. birkelundae - H. nebrascensis Low SD Waage 1968 145 
H. birkelundae - H. nebrascensis Low SD Waage 1968 146 
H. birkelundae - H. nebrascensis Low SD Waage 1968 147 
S. leei - B. sp. (weak flank ribs) Medium WY Gill and Cobban 1966 113 
S. leei - B. sp. (weak flank ribs) Medium WY Robinson et al. 1964 115 
S. leei - B. sp. (weak flank ribs) Medium WY Robinson et al. 1964 114 
S. leei - B. sp. (weak flank ribs) High WY Gill et al. 1970 226 
S. leei - B. sp. (weak flank ribs) High WY Gill et al. 1970 130 
S. leei - B. sp. (weak flank ribs) Medium WY Kiteley 1979 71 
S. leei - B. sp. (weak flank ribs) High CO Scott 1969 85 
S. leei - B. sp. (weak flank ribs) High WY Roehler 1990 162 
S. leei - B. sp. (weak flank ribs) High WY Roehler 1990 148 
S. leei - B. sp. (weak flank ribs) Low WY Gill 1974 12 
S. leei - B. sp. (weak flank ribs) High WY Gill 1974 12 
S. leei - B. sp. (weak flank ribs) High WY Gill 1974 19 
S. leei - B. sp. (weak flank ribs) High WY Gill 1974 16 
S. leei - B. sp. (weak flank ribs) Low WY Johnson et al 2005 106 
S. leei - B. sp. (weak flank ribs) Medium WY Johnson et al 2005 65 
S. leei - B. sp. (weak flank ribs) Low WY Johnson et al 2005 74 
S. leei - B. sp. (weak flank ribs) Low WY Johnson et al 2005 72 
S. leei - B. sp. (weak flank ribs) Low WY Johnson et al 2005 73 
S. leei - B. sp. (weak flank ribs) Low WY Johnson et al 2005 64 
S. leei - B. sp. (weak flank ribs) High WY Minor et al 2022 232 
S. leei - B. sp. (weak flank ribs) High WY Minor et al 2022 233 
S. leei - B. sp. (weak flank ribs) High UT Seymour 2012 82 
S. leei - B. sp. (weak flank ribs) Medium UT Seymour 2012 87 
S. leei - B. sp. (weak flank ribs) Medium UT Seymour 2012 43 
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Confidence State Reference ID 

Number 

S. leei - B. sp. (weak flank ribs) Medium UT Seymour 2012 41 
S. leei - B. sp. (weak flank ribs) Low UT Fisher et al 1960 99 
S. leei - B. sp. (weak flank ribs) Medium UT Fisher et al 1960 99 
S. leei - B. sp. (weak flank ribs) Medium UT Fisher et al 1960 99 
S. leei - B. sp. (weak flank ribs) Low UT Fisher et al 1960 100 
S. leei - B. sp. (weak flank ribs) Low UT Fisher et al 1960 101 
S. leei - B. sp. (weak flank ribs) Low UT Fisher et al 1960 102 
S. leei - B. sp. (weak flank ribs) High UT Fisher et al 1960 102 
S. leei - B. sp. (weak flank ribs) Low UT Fisher et al 1960 103 
S. leei - B. sp. (weak flank ribs) Low UT Fisher et al 1960 90 
S. leei - B. sp. (weak flank ribs) Low UT Fisher et al 1960 91 
S. leei - B. sp. (weak flank ribs) Medium CO Leckie et al 1997 81 
S. leei - B. sp. (weak flank ribs) Medium UT Maberry 1971 122 
S. leei - B. sp. (weak flank ribs) High UT Chan and Newman 1991 10 
S. leei - B. sp. (weak flank ribs) High UT Chan and Newman 1991 14 
S. leei - B. sp. (weak flank ribs) High UT Chan and Newman 1991 17 
S. leei - B. sp. (weak flank ribs) Medium UT Chan and Newman 1991 21 
S. leei - B. sp. (weak flank ribs) Low NM Reeside, 1924 190 
S. leei - B. sp. (weak flank ribs) Low NM Reeside, 1924 207 
S. leei - B. sp. (weak flank ribs) High KS Bertog et al. 2007 83 
S. leei - B. sp. (weak flank ribs) High KS Bertog et al. 2007 48 
S. leei - B. sp. (weak flank ribs) High SD Bertog et al. 2007 248 
S. leei - B. sp. (weak flank ribs) High WY Bertog et al. 2007 126 
S. leei - B. sp. (weak flank ribs) Medium SD Bertog et al. 2007 249 
S. leei - B. sp. (weak flank ribs) Medium ALB Stott 1967 164 
S. leei - B. sp. (weak flank ribs) Medium ALB Stott 1967 165 
S. leei - B. sp. (weak flank ribs) Medium ALB Stott 1967 168 
S. leei - B. sp. (weak flank ribs) Medium ALB Stott 1967 167 
S. leei - B. sp. (weak flank ribs) Low MT Johnson and Smith 1964 203 
S. leei - B. sp. (weak flank ribs) Low MT Johnson and Smith 1964 202 
S. leei - B. sp. (weak flank ribs) Low MT Johnson and Smith 1964 54 
S. leei - B. sp. (weak flank ribs) Low MT Johnson and Smith 1964 54 
S. leei - B. sp. (weak flank ribs) Low MT Johnson and Smith 1964 204 
S. leei - B. sp. (weak flank ribs) Low MT Fuentes et al 2011 150 
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Sedimentary Variable Interpolation 

 Interpolations were performed using ArcGIS Pro (ArcGIS Pro 3.2.0). Cross validation 

comparisons of root mean squared error (RMSE) values were conducted on two example variable layers 

to determine the most appropriate method for the highly clustered, low sample-size datasets. Only two 

variable layers were compared in this way to save time on computation: percent sand in the 

Hoploscaphites birkelundae-Hoploscaphites nebrasensis and Baculites obtusus intervals (Table S5). 

Kriging was not utilized given the scarcity and non-normal distribution of values within the datasets 

(Webster and Oliver 2007; Wang et al. 2017; Zhao et al. 2018). The H. birkelundae-H. nebrasensis and B. 

obtusus percent sand variables were selected for this comparison because they contain one of the lowest 

and highest numbers of sedimentary localities (20 and 63, respectively) and both are highly clustered, 

therefore potentially representing the extremes in potential sources of bias (Figure S2). Inverse Distance 

Weighting (IDW) interpolation of raw values was used to create raster surfaces of these test variables, 

using a cell size of 30km, a power of 2, and the Standard search neighborhood and all other default values 

from the ArcGIS Pro IDW tool. 

Table S5. RMSE results for raw data and averaged/extrapolated data. 

Interval 
RMSE 

Raw Data Smoothed Data 
H. birkelundae-H. nebrascensis 0.268 0.099 
S. leei-B. sp. (weak flank ribs) 0.260 0.064 
B. obtusus 0.211 0.066 

 

 Given that many sedimentary localities are well within 30km of each other and contain 

potentially variable values even within these distances, average values within a 30km range were also 

calculated using the Point Statistic tool in ArcGIS Pro (calculating the mean value of 30km cells within a 

square neighborhood of two cells). This tool was used to calculate the mean of point values within a 

specified neighborhood of two 30km cells and convert those mean values to a 30km raster. Cells in the 

raster with no point values are given NA values. This raster was then converted to vector point values 
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using the Raster to Point tool, and those values were then interpolated using the IDW method as described 

above. Surfaces interpolated using this spatial averaging technique had much lower RMSE values than 

those produced using the raw data, though this result is considered highly biased given that values are 

smoothed prior to interpolation. However, the raster surfaces created using these mean values were 

considered more reasonable based on visual inspection and contain fewer interpolation artifacts caused by 

the raw data, such as bulls-eye patterns and sudden sharp changes in value (Figure S2). Both distance 

from seeps and distance from nearest shoreline were interpolated without smoothing the data first. 

 

 

Figure S2. Example interpolation results for percent sand in the H. birkelundae-H. nebrascensis interval based on 
raw data values and averaged/extrapolated data values. Blue points represent stratigraphic data locations, red points 
represent averaged values calculated using the Point Statistics tool, and dark grey lines represent shorelines. Note 
the lack of artifacts in the averaged/extrapolated interpolation compared to the raw data interpolation. Red colors 
indicate higher percent sand, and cool colors indicate lower percent sand. 
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Distance from Seeps Interpolation Methods: 

 Distance from seep locations was included as a variable in the analysis. This variable was 

calculated by first documenting general seep locations based on literature sources (see reference section). 

These locations did not attempt to include individual seeps, but instead mark the general location of seeps 

within a specific interval based on literature descriptions and map locations (Figure S3). Since seeps are 

often highly clustered in space, within a 10 km from each other (see Metz 2010 for discussion of seep 

distributions), and the raster cell size selected for this analysis is 30km based on taxonomic occurrence 

error allowance, it was not considered necessary to include higher resolution locality information. All 

seep locations were given distance from seep values of zero. 

 Distance from seeps was determined by plotting general seep occurrence localities and creating 

buffer distances around these points at 60km intervals from 60 to 480km (and an additional 2000km 

distance) using the Buffer tool in ArcGIS Pro (using geodesic distance and dissolving features). Points 

were then created along that polygon’s boundary using the Generate Points Along Line tool (using the 

percentage option to create points every 10% of the polygon’s boarder. These points were given the value 

of the initial buffer distance used to create them in meters using the Calculate Fields tool. Once all buffer 

distance polygon boundaries were converted into point distributions, these points were collected into a 

single feature class using the Merge tool. Merged points were then used to interpolate a new surface of 

distance from seeps. This analysis and all others performed in ArcGIS Pro were performed using the USA 

Contiguous Albers Equal Area Conic projected coordinate system which preserves area values. 
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Figure S3. Map of hydrothermal seep locations across the WIS, colored by age. Strandlines are from the 
S. leei-B. sp. (weak flank ribs), which provides the larges seaway extent. 
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Distance from Strandlines Interpolation 

 Strandlines for each biostratigraphic interval were produced based on relevant publications (Gill 

and Cobban, 1973; Slattery et al., 2015; Cobban et al. 1994; Roberts and Krischbaum 1995) and adjusted 

based on the taxonomic occurrence data as needed. Vector line feature classes were produced in ArcGIS 

Pro and converted to point features using the Generate Points along Line tool every 120km along the 

shoreline, including endpoints. The Near tool was used to calculate the angle and distance from each point 

on the western shoreline to the nearest point along the eastern shoreline. These values were then used to 

calculate latitude and longitude values along the same angle at 5%, 25%, 50%, 75% and 95% of the total 

distance from a point on the western shoreline to the nearest point along the eastern shoreline. Vector 

points were created at these locations and given their distance from the closest shoreline as an integer 

attribute, i.e., a point created at 75% of the distance from a western shoreline point to an eastern shoreline 

point were given a value of 25% of the total distance between the two points (see Appendix 1-2 for code). 

These points were used to interpolate raster surfaces of distance from the nearest shoreline using the IDW 

method as described above.  

Masking by Shoreline/Outcrop Polygons 

 All variable raster surfaces were clipped based on relevant Upper Cretaceous outcrop polygons 

and strandlines boundaries (see above for discussion strandline production). USA State geologic outcrop 

polygons with relevant formation polygons were extracted based on age (CDC 1996; Green 1992; Green 

et al. 1994; Green et al. 1997; Hintze et al. 2000; North Dakota Geological Survey 2001; Ross and 

Jorgina 1992; Tomhave and Schulz 2004; Vuke et al 2007). Outcrop polygons were given a buffer of 

30km distance using the Buffer tool, to account for taxonomic locality error and provide slightly more 

area for analysis on the assumption that some outcrop features will not be accounted for by the outcrop 

polygons, especially when geographically small. The buffered outcrop polygon was merged with biozone 

strandline boundary polygons to create a mask layer for each interval. Interpolation raster layers for each 

variable in each interval were then clipped to the mask extents of their respective interval using the 

Extract by Mask tool. 
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Environmental Variables Correlation 

 All interpolated layers were exported as TIF files and input into R to run analysis (Figures S4). 

These layers were analyzed for autocorrelation using the pairs function in R (Figures S5). Each interval 

was evaluated for correlation with variables removed that showed a Pearson correlation coefficient of 0.8 

or greater. All intervals included a different combination of variables following removal of variables to 

reduce correlation (Table S6 and S7). Shale, though present in all intervals, strongly correlated with other 

variables in all intervals, and was therefore removed from all analysis. All other variables were present in 

at least five intervals. 

Comparisons with Substage and Stage 

 Aggregations were also performed at the substage and stage level, when reasonable, creating five 

total substage time bins (lower, middle, and upper Campanian, and lower and upper Maastrichtian) and a 

single stage-level aggregation for the Maastrichtian. A Campanian stage bin was not created, given that 

the Campanian spans ~ 11.5 Ma, which was not considered to represent a meaningful level of 

environmental aggregation. 

 Aggregation and interpolations for Substages and the Maastrichtian were created using the same 

process used for biozone intervals. When possible, the same initial interpolation layers used for biozone 

intervals were recycled for use in the larger temporal bins, including the B. baculus-B. grandis distance to 

seep and distance to shore raster layers for the lower Maastrichtian and Maastrichtian and all S. leei-B. sp. 

(weak flank ribs) raster layers for the lower Campanian. To make shorelines for lower temporal resolution 

bins, shoreline polygons were merged and boundaries were dissolved to create a single, new polygon. In 

the case of the upper Campanian, where this new merged polygon showed highly irregular boundaries 

including right angles, shorelines were smoothed manually to reduce harsh angle artifacts (Figure S4). 

Raster layers for each lower resolution temporal bin were then clipped to these new shoreline boundaries 

using the smoothed polygons. 
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Table S6. Table of variables that had Pearson’s correlation coefficient values less than 0.80 in each biozone. Y=Yes, N=No, and NA=not present  

Interval Dist. to 
Shore 

Dist. to 
Seeps 

Percent 
Pebble 

Percent 
Sand 

Percent 
Shale Percent Silt Percent 

Mud 
Percent 

Limestone 
Bedding 

Style 
Bioturbation 

Bed 
Thickness 

H. birkelundae-
H. nebrascensis Y NA Y N N Y N Y N N Y 

B. clinolobatus Y NA Y Y N N Y N N N Y 

B. baculus-B. 
grandis Y Y Y Y N Y Y Y N Y Y 

B. reesidei-B. 
eliasi Y N Y Y N Y Y Y Y Y Y 

B. compressus-B. 
cuneatus Y Y NA Y N Y Y N N Y N 

D. cheyennense Y N NA Y N Y Y Y N N N 

D. nebrascense-
E. jenneyi Y Y NA Y N Y Y Y Y Y Y 

B. reduncus-B. 
scotti Y Y NA Y N Y Y Y Y Y N 

B. perplexus-B. 
gregoryensis Y Y Y Y N Y Y Y Y Y Y 

B. maclearni-B. 
sp. (smooth) Y NA N Y Y N Y Y N Y Y 

B. obtusus Y NA NA Y N Y Y Y Y N Y 

S. leei-B. sp. 
(weak flank ribs) Y NA Y Y N Y Y Y Y N N 
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Table S7. Table of variables used in temporal comparison of niche overlap, indicated with an asterisk. Y=less than 0.80 Spearman’s correlation with another 
variable, N=greater than or equal to 0.80 Spearman’s correlation with another variable, and NA=not present in interval. 

 
Dist. to 
Shore 

Dist. to 
Seeps 

Percent 
Pebble 

Percent 
Sand 

Percent 
Shale 

Percent 
Silt 

Percent 
Mud 

Percent 
Limestone 

Bedding 
Style 

Bioturbat
ion 

Bed 
Thickness 

Upper 
Campanian Y* Y Y Y* N Y* Y* Y Y Y* Y 

B. reesidei-B. 
eliasi Y* N Y Y* N Y* Y* Y Y Y* Y 

B. compressus-B. 
cuneatus Y* Y NA Y* N Y* Y* N N Y* N 

D. nebrascense-
E. jenneyi Y* Y NA Y* N Y* Y* Y Y Y* Y 

Middle 
Campanian Y* Y Y Y* N Y* Y* Y* N Y* Y 

B. reduncus-B. 
scotti Y* Y NA Y* N Y* Y* Y* Y Y* N 

B. maclearni-B. 
sp. (smooth) Y* NA N Y* N Y* Y* Y* N Y* Y 
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Stratigraphic Database: 

Raw stratigraphic data, collected using the methods described above, can be found in the 
separate excel table (Table S28). 
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Results 
Figure S4. Raster map layers for each interval.
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Figure S5. Correlation charts for environmental raster layers with variables removed to ensure all Pearson’s 
Correlation Coefficients were less than 0.80.



Supplementary Materials for Purcell and Myers, 20XX 598 
 

598 
 



Supplementary Materials for Purcell and Myers, 20XX 599 
 

599 
 



Supplementary Materials for Purcell and Myers, 20XX 600 
 

600 
 



Supplementary Materials for Purcell and Myers, 20XX 601 
 

601 
 



Supplementary Materials for Purcell and Myers, 20XX 602 
 

602 
 



Supplementary Materials for Purcell and Myers, 20XX 603 
 

603 
 



Supplementary Materials for Purcell and Myers, 20XX 604 
 

604 
 



Supplementary Materials for Purcell and Myers, 20XX 605 
 

605 
 



Supplementary Materials for Purcell and Myers, 20XX 606 
 

606 
 



Supplementary Materials for Purcell and Myers, 20XX 607 
 

607 
 



Supplementary Materials for Purcell and Myers, 20XX 608 
 

608 
 



Supplementary Materials for Purcell and Myers, 20XX 609 
 

609 
 



Supplementary Materials for Purcell and Myers, 20XX 610 
 

610 
 



Supplementary Materials for Purcell and Myers, 20XX 611 
 

611 
 



Supplementary Materials for Purcell and Myers, 20XX 612 
 

612 
 



Supplementary Materials for Purcell and Myers, 20XX 613 
 

613 
 



Supplementary Materials for Purcell and Myers, 20XX 614 
 

614 
 

 

 

  



Supplementary Materials for Purcell and Myers, 20XX 615 
 

615 
 

Figure S6. Overlap comparison plots of species’ niches in different temporal bins. Blue represents regions of niche 
stability, red regions of niche expansion (i.e., where the longer interval niche has expanded beyond the biozone 
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interval niche), and green represents regions of niche unfilling (i.e., where the longer interval niche has moved away 
from the biozone interval niche). Red lines represent the extent of environmental space realized within the longer 
interval, green lines represent the extent of environmental space realized within the biozone interval, and the red 
arrow indicates the shift of the niche centroid between the two species. Non-analogous conditions are indicated by 
regions where the extent of environmental parameters in the different intervals do not overlap. 

 

Figure S7. Overlap comparison plots of ingroup Inoceramus species’ niches. Blue represents regions of niche 
stability, red regions of niche expansion (i.e., where the second listed species has expanded beyond the niche of the 
first listed species), and green represents regions of niche unfilling (i.e., where the second listed species niche has 
moved away from space occupied by the first listed species). Red lines represent the extent of environmental space 
realized within the interval and the red arrow indicates the shift of the niche centroid between the two species. 
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Figure S8a. Overlap comparison plots of comparison species’ niches. Blue represents regions of niche stability, red 
regions of niche expansion (i.e., where the second listed species has expanded beyond the niche of the first listed 
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species), and green represents regions of niche unfilling (i.e., where the second listed species niche has moved away 
from space occupied by the first listed species). Red lines represent the extent of environmental space realized 
within the interval and the red arrow indicates the shift of the niche centroid between the two species. 

 
Figure S8b. Overlap comparison plots of comparison species’ niches. Blue represents regions of niche stability, red 
regions of niche expansion (i.e., where the second listed species has expanded beyond the niche of the first listed 
species), and green represents regions of niche unfilling (i.e., where the second listed species niche has moved away 
from space occupied by the first listed species). Red lines represent the extent of environmental space realized 
within the interval and the red arrow indicates the shift of the niche centroid between the two species. 
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Figure S9. Overlap comparison plots of Inoceramus species’ niches and the Inoceramus genus niche. Blue 
represents regions of niche stability, red regions of niche expansion (i.e., where the genus has expanded beyond the 
species), and green represents regions of niche unfilling (i.e., where the genus niche has moved away from space 
occupied by the species). Red lines represent the extent of environmental space realized within the interval and the 
red arrow indicates the shift of the niche centroid between the two species. 
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Table S8. Niche overlap values for temporal bin comparisons including I and D overlap values, and niche expansion, stability, and unfilling. 

Species Intervals Compared D value I value Expansion Stability Unfilling 
I. convexus B. reduncus-B. scotti to Mid Campanian 0.31 0.44 0.09 0.91 0.24 
I. convexus D. nebrascense-E. jenneyi to Upper Campanian 0.68 0.84 0.12 0.88 0.15 
I. barabini B. reesidei-B. eliasi to Upper Campanian 0.41 0.58 0.42 0.58 0.05 
I. barabini D. nebrascense-E. jenneyi to Upper Campanian 0.43 0.59 0.18 0.82 0.16 
I. sagensis B. reesidei-B. eliasi to Upper Campanian 0.43 0.63 0.37 0.63 0.01 
I. sagensis B. compressus-B. cuneatus to Upper Campanian 0.43 0.62 0.29 0.71 0.00 
I. sublaevis B. reduncus-B. scotti to Mid Campanian 0.41 0.62 0.01 0.99 0.14 
I. sublaevis D. nebrascense-E. jenneyi to Upper Campanian 0.49 0.62 0.38 0.62 0.19 
I. azerbaydjanensis B. maclearni-B. sp. (smooth) to Mid Campanian 0.09 0.27 0.69 0.31 0.24 
I. oblongus B. reesidei-B. eliasi to Upper Campanian 0.55 0.70 0.19 0.81 0.16 
I. saskatchewanensis B. reduncus-B. scotti to Mid Campanian 0.46 0.63 0.00 1.00 0.15 
C. imbricatula B. perplexus-B. gregoryensis to Mid Campanian 0.018* 0.154 0.545 0.545 0.543 
C. imbricatula B. reduncus-B. scotti to Mid Campanian 0.224 0.253 0.756 0.756 0.547 
C. imbricatula D. nebrascense-E. jenneyi to Upper Campanian 0.297 0.307 0.589 0.589 0.527 
C. imbricatula B. reesidei-B. eliasi to Upper Campanian 0.273 0.535 0.381 0.381 0.932 
L. subundata D. nebrascense-E. jenneyi to Upper Campanian 0.267 0.267 0.339 0.339 0.489 
L. subundata B. reesidei-B. eliasi to Upper Campanian 0.896 0.854 0.870 0.870 0.154 
C. nebrascensis D. nebrascense-E. jenneyi to Upper Campanian 0.511 0.581 0.697 0.697 0.685 
C. nebrascensis B. reesidei-B. eliasi to Upper Campanian 0.321 0.367 0.158 0.158 0.790 
C. nebrascensis B. baculus-B. grandis to Lower Maastrichtian 0.014* 0.012* 0.212 0.212 0.006* 
C. nebrascensis B. baculus-B. grandis to Maastrichtian 0.275 0.579 0.798 0.798 0.429 
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Table S9. Results of greater niche equivalency test for temporal bin comparisons including p-values for I and D overlap (greater than random), and niche 
expansion (less than random), stability (greater than random), and unfilling (less than random). 

Greater Niche Equivalency Test 

Species Intervals Compared D value I Value Expansion 
(lower) 

Stability 
(higher) 

Unfilling 
(lower) 

I. convexus B. reduncus-B. scotti vs. Mid Campanian 0.413 0.463 0.190 0.190 0.812 
I. convexus D. nebrascense-E. jenneyi vs. Upper Campanian 0.008* 0.002* 0.208 0.208 0.275 
I. barabini B. reesidei-B. eliasi vs. Upper Campanian 0.495 0.549 0.729 0.729 0.220 
I. barabini D. nebrascense-E. jenneyi vs Upper Campanian 0.140 0.255 0.194 0.194 0.709 
I. sagensis B. reesidei-B. eliasi vs. Upper Campanian 0.493 0.495 0.739 0.739 0.166 
I. sagensis B. compressus-B. cuneatus vs. Upper Campanian 0.820 0.846 0.904 0.904 0.066 
I. sublaevis B. reduncus-B. scotti vs. Mid Campanian 0.064 0.114 0.040* 0.040* 0.709 
I. sublaevis D. nebrascense-E. jenneyi vs. Upper Campanian 0.054 0.140 0.415 0.415 0.397 
I. azerbaydjanensis B. maclearni-B. sp. (smooth) vs. Mid Campanian 0.966 0.970 0.984 0.984 0.774 
I. oblongus B. reesidei-B. eliasi vs. Upper Campanian 0.142 0.178 0.293 0.293 0.527 
I. saskatchewanensis B. reduncus-B. scotti vs. Mid Campanian 0.154 0.311 0.068 0.068 0.415 
C. imbricatula B. perplexus-B. gregoryensis to Mid Campanian 0.018* 0.154 0.545 0.545 0.543 
C. imbricatula B. reduncus-B. scotti to Mid Campanian 0.224 0.253 0.756 0.756 0.547 
C. imbricatula D. nebrascense-E. jenneyi to Upper Campanian 0.297 0.307 0.589 0.589 0.527 
C. imbricatula B. reesidei-B. eliasi to Upper Campanian 0.273 0.535 0.381 0.381 0.932 
L. subundata D. nebrascense-E. jenneyi to Upper Campanian 0.267 0.267 0.339 0.339 0.489 
L. subundata B. reesidei-B. eliasi to Upper Campanian 0.896 0.854 0.870 0.870 0.154 
C. nebrascensis D. nebrascense-E. jenneyi to Upper Campanian 0.511 0.581 0.697 0.697 0.685 
C. nebrascensis B. reesidei-B. eliasi to Upper Campanian 0.321 0.367 0.158 0.158 0.790 
C. nebrascensis B. baculus-B. grandis to Lower Maastrichtian 0.014* 0.012* 0.212 0.212 0.006* 
C. nebrascensis B. baculus-B. grandis to Maastrichtian 0.275 0.579 0.798 0.798 0.429 
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Table S10. Results of lower niche equivalency test for temporal bin comparisons including p-values for I and D overlap (less than random), and niche expansion 
(greater than random), stability (less than random), and unfilling (greater than random). 

Lower Niche Equivalency Test 

Species Intervals Compared D value I Value Expansion 
(higher) 

Stability 
(lower) 

Unfilling 
(higher) 

I. convexus B. reduncus-B. scotti to Mid Campanian 0.621 0.575 0.818 0.818 0.190 
I. convexus D. nebrascense-E. jenneyi to Upper Campanian 0.988 0.996 0.800 0.800 0.715 
I. barabini B. reesidei-B. eliasi to Upper Campanian 0.495 0.429 0.273 0.273 0.739 
I. barabini D. nebrascense-E. jenneyi to Upper Campanian 0.892 0.766 0.810 0.810 0.313 
I. sagensis B. reesidei-B. eliasi to Upper Campanian 0.499 0.497 0.261 0.261 0.870 
I. sagensis B. compressus-B. cuneatus to Upper Campanian 0.174 0.170 0.098 0.098 0.930 
I. sublaevis B. reduncus-B. scotti to Mid Campanian 0.940 0.886 0.968 0.968 0.295 
I. sublaevis D. nebrascense-E. jenneyi to Upper Campanian 0.944 0.832 0.565 0.565 0.607 
I. azerbaydjanensis B. maclearni-B. sp. (smooth) to Mid Campanian 0.034* 0.034* 0.020* 0.020* 0.244 
I. oblongus B. reesidei-B. eliasi to Upper Campanian 0.842 0.822 0.671 0.671 0.489 
I. saskatchewanensis B. reduncus-B. scotti to Mid Campanian 0.808 0.675 0.930 0.930 0.587 
C. imbricatula B. perplexus-B. gregoryensis to Mid Campanian 0.990 0.850 0.479 0.479 0.431 
C. imbricatula B. reduncus-B. scotti to Mid Campanian 0.754 0.709 0.196 0.196 0.421 
C. imbricatula D. nebrascense-E. jenneyi to Upper Campanian 0.701 0.697 0.435 0.435 0.481 
C. imbricatula B. reesidei-B. eliasi to Upper Campanian 0.750 0.461 0.647 0.647 0.058 
L. subundata D. nebrascense-E. jenneyi to Upper Campanian 0.693 0.691 0.639 0.639 0.411 
L. subundata B. reesidei-B. eliasi to Upper Campanian 0.104 0.148 0.134 0.134 1.000 
C. nebrascensis D. nebrascense-E. jenneyi to Upper Campanian 0.501 0.429 0.250 0.250 0.343 
C. nebrascensis B. reesidei-B. eliasi to Upper Campanian 0.749 0.689 0.832 0.832 0.232 
C. nebrascensis B. baculus-B. grandis to Lower Maastrichtian 0.982 0.990 0.806 0.806 0.994 
C. nebrascensis B. baculus-B. grandis to Maastrichtian 0.719 0.423 0.204 0.204 0.581 
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Table S11. Results of greater niche similarity test for temporal bin comparisons including p-values for I and D overlap (greater than random), and niche 
expansion (less than random), stability (greater than random), and unfilling (less than random). 

Greater Niche Similarity Test 

Species Intervals Compared D value I Value Expansion 
(lower) 

Stability 
(higher) 

Unfilling 
(lower) 

I. convexus B. reduncus-B. scotti vs. Mid Campanian 0.243 0.241 0.171 0.171 0.147 
I. convexus D. nebrascense-E. jenneyi vs. Upper Campanian 0.001* 0.001* 0.022* 0.022* 0.069 
I. barabini B. reesidei-B. eliasi vs. Upper Campanian 0.034* 0.021* 0.080 0.080 0.067 
I. barabini D. nebrascense-E. jenneyi vs Upper Campanian 0.059 0.045* 0.133 0.133 0.078 
I. sagensis B. reesidei-B. eliasi vs. Upper Campanian 0.113 0.063 0.205 0.205 0.013* 
I. sagensis B. compressus-B. cuneatus vs. Upper Campanian 0.133 0.113 0.166 0.166 0.008* 
I. sublaevis B. reduncus-B. scotti vs. Mid Campanian 0.105 0.023* 0.003* 0.003* 0.190 
I. sublaevis D. nebrascense-E. jenneyi vs. Upper Campanian 0.003* 0.001* 0.126 0.126 0.177 
I. azerbaydjanensis B. maclearni-B. sp. (smooth) vs. Mid Campanian 0.165 0.122 0.161 0.161 0.190 
I. oblongus B. reesidei-B. eliasi vs. Upper Campanian 0.014 0.016 0.191 0.191 0.016* 
I. saskatchewanensis B. reduncus-B. scotti vs. Mid Campanian 0.028 0.017 0.024 0.024 0.136 
C. imbricatula B. perplexus-B. gregoryensis to Mid Campanian 0.002* 0.006* 0.191 0.191 0.204 
C. imbricatula B. reduncus-B. scotti to Mid Campanian 0.102 0.065 0.239 0.239 0.146 
C. imbricatula D. nebrascense-E. jenneyi to Upper Campanian 0.093 0.081 0.153 0.153 0.094 
C. imbricatula B. reesidei-B. eliasi to Upper Campanian 0.085 0.127 0.168 0.168 0.114 
L. subundata D. nebrascense-E. jenneyi to Upper Campanian 0.076 0.065 0.133 0.133 0.076 
L. subundata B. reesidei-B. eliasi to Upper Campanian 0.337 0.241 0.139 0.139 0.058 
C. nebrascensis D. nebrascense-E. jenneyi to Upper Campanian 0.003* 0.004* 0.016* 0.016* 0.282 
C. nebrascensis B. reesidei-B. eliasi to Upper Campanian 0.040* 0.027* 0.021* 0.021* 0.082 
C. nebrascensis B. baculus-B. grandis to Lower Maastrichtian 0.001* 0.001* 0.005* 0.005* 0.003* 
C. nebrascensis B. baculus-B. grandis to Maastrichtian 0.105 0.127 0.118 0.118 0.153 
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Table S12. Results of lower niche similarity test of temporal bin sizes including p-values for I and D overlap (less than random), and niche expansion (greater 
than random), stability (less than random), and unfilling (greater than random). 

Lower Niche Similarity Test 

Species Intervals Compared D value I Value Expansion 
(higher) 

Stability 
(lower) 

Unfilling 
(higher) 

I. convexus B. reduncus-B. scotti to Mid Campanian 0.765 0.764 0.838 0.838 0.847 
I. convexus D. nebrascense-E. jenneyi to Upper Campanian 1.000 1.000 0.984 0.984 0.936 
I. barabini B. reesidei-B. eliasi to Upper Campanian 0.961 0.979 0.910 0.910 0.929 
I. barabini D. nebrascense-E. jenneyi to Upper Campanian 0.958 0.971 0.899 0.899 0.934 
I. sagensis B. reesidei-B. eliasi to Upper Campanian 0.889 0.940 0.792 0.792 0.984 
I. sagensis B. compressus-B. cuneatus to Upper Campanian 0.844 0.857 0.813 0.813 0.986 
I. sublaevis B. reduncus-B. scotti to Mid Campanian 0.876 0.976 0.999 0.999 0.819 
I. sublaevis D. nebrascense-E. jenneyi to Upper Campanian 0.993 0.996 0.870 0.870 0.830 
I. azerbaydjanensis B. maclearni-B. sp. (smooth) to Mid Campanian 0.871 0.908 0.867 0.867 0.828 
I. oblongus B. reesidei-B. eliasi to Upper Campanian 0.994 0.990 0.827 0.827 0.992 
I. saskatchewanensis B. reduncus-B. scotti to Mid Campanian 0.976 0.982 0.977 0.977 0.862 
C. imbricatula B. perplexus-B. gregoryensis to Mid Campanian 1.000 1.000 0.834 0.834 0.812 
C. imbricatula B. reduncus-B. scotti to Mid Campanian 0.886 0.907 0.747 0.747 0.826 
C. imbricatula D. nebrascense-E. jenneyi to Upper Campanian 0.916 0.930 0.878 0.878 0.924 
C. imbricatula B. reesidei-B. eliasi to Upper Campanian 0.930 0.898 0.866 0.866 0.909 
L. subundata D. nebrascense-E. jenneyi to Upper Campanian 0.910 0.933 0.877 0.877 0.926 
L. subundata B. reesidei-B. eliasi to Upper Campanian 0.630 0.762 0.867 0.867 1.000 
C. nebrascensis D. nebrascense-E. jenneyi to Upper Campanian 0.995 0.994 0.991 0.991 0.705 
C. nebrascensis B. reesidei-B. eliasi to Upper Campanian 0.957 0.973 0.981 0.981 0.933 
C. nebrascensis B. baculus-B. grandis to Lower Maastrichtian 1.000 1.000 0.989 0.989 0.997 
C. nebrascensis B. baculus-B. grandis to Maastrichtian 0.915 0.881 0.899 0.899 0.867 
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Figure S10. Correlation plot of duration ratio to niche overlap (D value). This plot represents non-averaged 
correlation data.
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Ingroup Comparison: 
Table S13. Niche overlap values for Inoceramus species comparisons including I and D overlap values, and niche expansion, stability, and unfilling. 

Species Interval D value I value Expansion Stability Unfilling 
I. convexus vs. I. sublaevis B. reduncus-B. scotti 0.721 0.779 0.674 0.326 0.505 
I. convexus vs. I. saskatchewanensis B. reduncus-B. scotti 0.518 0.633 0.217 0.783 0.540 
I. sublaevis vs. I. saskatchewanensis B. reduncus-B. scotti 0.491 0.585 0.231 0.769 0.383 
I. convexus vs. I. barabini D. nebrascense-E. jenneyi 0.106 0.289 0.589 0.411 0.101 
I. convexus vs. I. sublaevis B. reesidei-B. eliasi 0.088 0.254 0.674 0.326 0.505 
I. barabini vs. I. sublaevis D. nebrascense-E. jenneyi 0.796 0.851 0.186 0.814 0.495 
I. barabini vs. I. sagensis B. reesidei-B. eliasi 0.675 0.719 0.344 0.656 0.181 
I. barabini vs. I. oblongus B. reesidei-B. eliasi 0.545 0.621 0.406 0.594 0.295 
I. oblongus vs. I. sagensis B. reesidei-B. eliasi 0.777 0.845 0.125 0.875 0.087 

 

Table S14. Results of greater niche equivalency test for Inoceramus species comparisons including p-values for I and D overlap (greater than random), and niche 
expansion (less than random), stability (greater than random), and unfilling (less than random). 

Greater Niche Equivalency Test 

Species Intervals Compared D value I Value Expansion 
(lower) 

Stability 
(higher) 

Unfilling 
(lower) 

I. convexus vs. I. sublaevis B. reduncus-B. scotti 0.912 0.882 0.926 0.926 0.810 
I. convexus vs. I. saskatchewanensis B. reduncus-B. scotti 0.695 0.663 0.381 0.381 0.884 
I. sublaevis vs. I. saskatchewanensis B. reduncus-B. scotti 0.677 0.741 0.617 0.617 0.749 
I. convexus vs. I. barabini D. nebrascense-E. jenneyi 0.866 0.884 0.934 0.934 0.303 
I. convexus vs. I. sublaevis D. nebrascense-E. jenneyi 0.912 0.882 0.926 0.926 0.810 
I. barabini vs. I. sublaevis D. nebrascense-E. jenneyi 0.066 0.092 0.202 0.202 0.591 
I. barabini vs. I. sagensis B. reesidei-B. eliasi 0.052 0.072 0.511 0.511 0.152 
I. barabini vs. I. oblongus B. reesidei-B. eliasi 0.130 0.186 0.589 0.589 0.357 
I. oblongus vs. I. sagensis B. reesidei-B. eliasi 0.012* 0.018* 0.158 0.158 0.132 

 

  



Supplementary Materials for Purcell and Myers, 20XX 627 
 

627 
 

Table S15. Results of lower niche equivalency test for Inoceramus species comparisons including p-values for I and D overlap (less than random), and niche 
expansion (greater than random), stability (less than random), and unfilling (greater than random). 

Lower Niche Equivalency Test 

Species Intervals Compared D value I Value Expansion 
(higher) 

Stability 
(lower) 

Unfilling 
(higher) 

I. convexus vs. I. sublaevis B. reduncus-B. scotti 0.068 0.112 0.060 0.060 0.162 
I. convexus vs. I. saskatchewanensis B. reduncus-B. scotti 0.317 0.319 0.689 0.689 0.140 
I. sublaevis vs. I. saskatchewanensis B. reduncus-B. scotti 0.281 0.253 0.347 0.347 0.240 
I. convexus vs. I. barabini D. nebrascense-E. jenneyi 0.122 0.110 0.076 0.076 0.669 
I. convexus vs. I. sublaevis D. nebrascense-E. jenneyi 0.068 0.112 0.060 0.060 0.162 
I. barabini vs. I. sublaevis D. nebrascense-E. jenneyi 0.930 0.910 0.798 0.798 0.443 
I. barabini vs. I. sagensis B. reesidei-B. eliasi 0.966 0.934 0.543 0.543 0.850 
I. barabini vs. I. oblongus B. reesidei-B. eliasi 0.862 0.828 0.371 0.371 0.629 
I. oblongus vs. I. sagensis B. reesidei-B. eliasi 0.986 0.980 0.832 0.832 0.866 

 

Table S16. Results of greater niche similarity test for Inoceramus species comparisons including p-values for I and D overlap (greater than random), and niche 
expansion (less than random), stability (greater than random), and unfilling (less than random). 

Greater Niche Similarity Test 

Species Intervals Compared D value I value 
Expansion 

(lower) 
Stability 
(higher) 

Unfilling 
(lower) 

I. convexus vs. I. sublaevis B. reduncus-B. scotti 0.431 0.276 0.392 0.392 0.247 
I. convexus vs. I. saskatchewanensis B. reduncus-B. scotti 0.112 0.193 0.381 0.381 0.246 
I. sublaevis vs. I. saskatchewanensis B. reduncus-B. scotti 0.221 0.239 0.353 0.353 0.179 
I. convexus vs. I. barabini D. nebrascense-E. jenneyi 0.429 0.361 0.209 0.209 0.232 
I. convexus vs. I. sublaevis D. nebrascense-E. jenneyi 0.431 0.276 0.392 0.392 0.247 
I. barabini vs. I. sublaevis D. nebrascense-E. jenneyi 0.001* 0.001* 0.251 0.251 0.045* 
I. barabini vs. I. sagensis B. reesidei-B. eliasi 0.015* 0.028* 0.026* 0.026* 0.164 
I. barabini vs. I. oblongus B. reesidei-B. eliasi 0.038* 0.068 0.072 0.072 0.206 
I. oblongus vs. I. sagensis B. reesidei-B. eliasi 0.048* 0.043* 0.058 0.058 0.037* 
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Table S17. Results of lower niche similarity test for Inoceramus species comparisons including p-values for I and D overlap (less than random), and niche 
expansion (greater than random), stability (less than random), and unfilling (greater than random). 

Lower Niche Similarity Test 

Species Intervals Compared D value I value 
Expansion 

(higher) 
Stability 
(lower) 

Unfilling 
(higher) 

I. convexus vs. I. sublaevis B. reduncus-B. scotti 0.554 0.704 0.618 0.618 0.777 
I. convexus vs. I. saskatchewanensis B. reduncus-B. scotti 0.890 0.817 0.616 0.616 0.764 
I. sublaevis vs. I. saskatchewanensis B. reduncus-B. scotti 0.780 0.772 0.661 0.661 0.822 
I. convexus vs. I. barabini D. nebrascense-E. jenneyi 0.592 0.672 0.806 0.806 0.787 
I. convexus vs. I. sublaevis D. nebrascense-E. jenneyi 0.554 0.704 0.618 0.618 0.777 
I. barabini vs. I. sublaevis D. nebrascense-E. jenneyi 1.000 0.999 0.769 0.769 0.947 
I. barabini vs. I. sagensis B. reesidei-B. eliasi 0.985 0.977 0.975 0.975 0.864 
I. barabini vs. I. oblongus B. reesidei-B. eliasi 0.959 0.924 0.916 0.916 0.785 
I. oblongus vs. I. sagensis B. reesidei-B. eliasi 0.945 0.952 0.937 0.937 0.955 
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Comparison taxa Comparisons: 
Table S18. Niche overlap values for Inoceramus species to the genus comparisons including I and D overlap values, and niche expansion, stability, and unfilling. 

Species Compared Interval D value I value Expansion Stability Unfilling 
C. imbricatula vs. I. convexus B. reduncus-B. scotti 0.247 0.425 0.665 0.335 0.164 
C. imbricatula vs. I. sublaevis B. reduncus-B. scotti 0.383 0.525 0.473 0.527 0.076 
C. imbricatula vs. I. saskatchewanensis B. reduncus-B. scotti 0.443 0.654 0.368 0.632 0.085 
C. nebrascensis vs. I. barabini D. nebrascense-E. jenneyi 0.832 0.918 0.069 0.931 0.092 
C. imbricatula vs. I. convexus D. nebrascense-E. jenneyi 0.147 0.267 0.280 0.720 0.582 
C. imbricatula vs. I. sublaevis D. nebrascense-E. jenneyi 0.207 0.290 0.784 0.216 0.834 
C. nebrascensis vs. I. barabini D. nebrascense-E. jenneyi 0.832 0.918 0.069 0.931 0.092 
C. nebrascensis vs. I. convexus D. nebrascense-E. jenneyi 0.072 0.248 0.088 0.912 0.668 
C. nebrascensis vs. I. sagensis D. nebrascense-E. jenneyi 0.854 0.925 0.116 0.884 0.431 
L. subundata vs. I. barabini D. nebrascense-E. jenneyi 0.700 0.791 0.167 0.833 0.093 
L. subundata vs. I. convexus D. nebrascense-E. jenneyi 0.104 0.260 0.187 0.813 0.604 
L. subundata vs. I. sublaevis D. nebrascense-E. jenneyi 0.571 0.661 0.426 0.574 0.658 
L. subundata vs. I. sagensis B. compressus-B. cuneatus 0.294 0.467 0.362 0.638 0.114 
C. nebrascensis vs. I. barabini B. reesidei-B. eliasi 0.611 0.709 0.062 0.938 0.371 
C. nebrascensis vs. I. sagensis B. reesidei-B. eliasi 0.655 0.771 0.084 0.916 0.248 
C. nebrascensis vs. I. oblongus B. reesidei-B. eliasi 0.547 0.700 0.126 0.874 0.315 
C. imbricatula vs. I. barabini B. reesidei-B. eliasi 0.599 0.659 0.137 0.863 0.396 
C. imbricatula vs. I. sagensis B. reesidei-B. eliasi 0.786 0.852 0.034 0.966 0.133 
C. imbricatula vs. I. oblongus B. reesidei-B. eliasi 0.710 0.834 0.021 0.979 0.160 
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Table S19. Results of greater niche equivalency test for Inoceramus species to comparison species comparisons including p-values for I and D overlap (greater 
than random), and niche expansion (less than random), stability (greater than random), and unfilling (less than random). 

Greater Equivalency Test (p-values) 

Species Interval D value I value 
Expansion 

(lower) 
Stability 
(higher) 

Unfilling 
(lower) 

C. imbricatula vs. I. convexus B. reduncus-B. scotti 0.800 0.743 0.884 0.884 0.345 
C. imbricatula vs. I. sublaevis B. reduncus-B. scotti 0.549 0.593 0.667 0.667 0.263 
C. imbricatula vs. I. saskatchewanensis B. reduncus-B. scotti 0.669 0.607 0.495 0.495 0.226 
C. nebrascensis vs. I. barabini D. nebrascense-E. jenneyi 0.012* 0.006* 0.116 0.116 0.182 
C. imbricatula vs. I. convexus D. nebrascense-E. jenneyi 0.788 0.888 0.717 0.717 0.908 
C. imbricatula vs. I. sublaevis D. nebrascense-E. jenneyi 0.782 0.800 0.946 0.946 0.958 
C. nebrascensis vs. I. barabini D. nebrascense-E. jenneyi 0.012* 0.006* 0.116 0.116 0.182 
C. nebrascensis vs. I. convexus D. nebrascense-E. jenneyi 0.900 0.814 0.070 0.070 0.944 
C. nebrascensis vs. I. sagensis D. nebrascense-E. jenneyi 0.068 0.054 0.042* 0.042* 0.545 
L. subundata vs. I. barabini D. nebrascense-E. jenneyi 0.026* 0.040* 0.337 0.337 0.182 
L. subundata vs. I. convexus D. nebrascense-E. jenneyi 0.850 0.886 0.451 0.451 0.906 
L. subundata vs. I. sublaevis D. nebrascense-E. jenneyi 0.311 0.359 0.561 0.561 0.794 
L. subundata vs. I. sagensis B. compressus-B. cuneatus 0.599 0.693 0.597 0.597 0.591 
C. nebrascensis vs. I. barabini B. reesidei-B. eliasi 0.070 0.096 0.112 0.112 0.539 
C. nebrascensis vs. I. sagensis B. reesidei-B. eliasi 0.060 0.042* 0.178 0.178 0.443 
C. nebrascensis vs. I. oblongus B. reesidei-B. eliasi 0.259 0.214 0.303 0.303 0.463 
C. imbricatula vs. I. barabini B. reesidei-B. eliasi 0.112 0.164 0.148 0.148 0.593 
C. imbricatula vs. I. sagensis B. reesidei-B. eliasi 0.014* 0.010* 0.030* 0.030* 0.190 
C. imbricatula vs. I. oblongus B. reesidei-B. eliasi 0.046* 0.020* 0.026* 0.026* 0.246 
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Table S20. Results of lower niche equivalency test for Inoceramus species to comparison species comparisons including p-values for I and D overlap (less than 
random), and niche expansion (greater than random), stability (less than random), and unfilling (greater than random). 

Lower Equivalency Test (p-values) 

Species Interval D value I value 
Expansion 

(higher) 
Stability 
(lower) 

Unfilling 
(higher) 

C. imbricatula vs. I. convexus B. reduncus-B. scotti 0.226 0.277 0.138 0.138 0.679 
C. imbricatula vs. I. sublaevis B. reduncus-B. scotti 0.503 0.489 0.345 0.345 0.715 
C. imbricatula vs. I. saskatchewanensis B. reduncus-B. scotti 0.323 0.425 0.525 0.525 0.764 
C. nebrascensis vs. I. barabini D. nebrascense-E. jenneyi 0.994 1.000 0.880 0.880 0.854 
C. imbricatula vs. I. convexus D. nebrascense-E. jenneyi 0.192 0.098 0.303 0.303 0.082 
C. imbricatula vs. I. sublaevis D. nebrascense-E. jenneyi 0.214 0.176 0.054 0.054 0.034* 
C. nebrascensis vs. I. barabini D. nebrascense-E. jenneyi 0.994 1.000 0.880 0.880 0.854 
C. nebrascensis vs. I. convexus D. nebrascense-E. jenneyi 0.068 0.148 0.932 0.932 0.044* 
C. nebrascensis vs. I. sagensis D. nebrascense-E. jenneyi 0.932 0.942 0.964 0.964 0.511 
L. subundata vs. I. barabini D. nebrascense-E. jenneyi 0.982 0.952 0.689 0.689 0.802 
L. subundata vs. I. convexus D. nebrascense-E. jenneyi 0.184 0.122 0.567 0.567 0.098 
L. subundata vs. I. sublaevis D. nebrascense-E. jenneyi 0.641 0.601 0.443 0.443 0.196 
L. subundata vs. I. sagensis B. compressus-B. cuneatus 0.421 0.357 0.417 0.417 0.429 
C. nebrascensis vs. I. barabini B. reesidei-B. eliasi 0.932 0.908 0.866 0.866 0.421 
C. nebrascensis vs. I. sagensis B. reesidei-B. eliasi 0.932 0.940 0.848 0.848 0.581 
C. nebrascensis vs. I. oblongus B. reesidei-B. eliasi 0.735 0.810 0.737 0.737 0.549 
C. imbricatula vs. I. barabini B. reesidei-B. eliasi 0.900 0.858 0.848 0.848 0.423 
C. imbricatula vs. I. sagensis B. reesidei-B. eliasi 0.988 0.990 0.974 0.974 0.794 
C. imbricatula vs. I. oblongus B. reesidei-B. eliasi 0.946 0.982 0.982 0.982 0.794 
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Table S21. Results of greater niche similarity test for Inoceramus species to comparison species comparisons including p-values for I and D overlap (greater than 
random), and niche expansion (less than random), stability (greater than random), and unfilling (less than random). 

Greater Similarity Test (p-values) 

Species Interval D value I value 
Expansion 

(lower) 
Stability 
(higher) 

Unfilling 
(lower) 

C. imbricatula vs. I. convexus B. reduncus-B. scotti 0.411 0.399 0.295 0.295 0.325 
C. imbricatula vs. I. sublaevis B. reduncus-B. scotti 0.306 0.362 0.147 0.147 0.294 
C. imbricatula vs. I. saskatchewanensis B. reduncus-B. scotti 0.112 0.054 0.074 0.074 0.038* 
C. nebrascensis vs. I. barabini D. nebrascense-E. jenneyi 0.001* 0.001* 0.001* 0.001* 0.199 
C. imbricatula vs. I. convexus D. nebrascense-E. jenneyi 0.398 0.349 0.305 0.305 0.304 
C. imbricatula vs. I. sublaevis D. nebrascense-E. jenneyi 0.356 0.332 0.626 0.626 0.536 
C. nebrascensis vs. I. barabini D. nebrascense-E. jenneyi 0.001* 0.001* 0.001* 0.001* 0.199 
C. nebrascensis vs. I. convexus D. nebrascense-E. jenneyi 0.449 0.300 0.015* 0.015* 0.350 
C. nebrascensis vs. I. sublaevis D. nebrascense-E. jenneyi 0.015* 0.006* 0.045* 0.045* 0.267 
L. subundata vs. I. barabini D. nebrascense-E. jenneyi 0.101 0.099 0.138 0.138 0.115 
L. subundata vs. I. convexus D. nebrascense-E. jenneyi 0.501 0.422 0.356 0.356 0.305 
L. subundata vs. I. sublaevis D. nebrascense-E. jenneyi 0.028* 0.050* 0.448 0.448 0.232 
L. subundata vs. I. sagensis B. compressus-B. cuneatus 0.265 0.234 0.158 0.158 0.167 
C. nebrascensis vs. I. barabini B. reesidei-B. eliasi 0.006* 0.008* 0.098 0.098 0.029* 
C. nebrascensis vs. I. sagensis B. reesidei-B. eliasi 0.067 0.047* 0.045* 0.045* 0.122 
C. nebrascensis vs. I. oblongus B. reesidei-B. eliasi 0.101 0.062 0.083 0.083 0.149 
C. imbricatula vs. I. barabini B. reesidei-B. eliasi 0.017* 0.039* 0.172 0.172 0.028* 
C. imbricatula vs. I. sagensis B. reesidei-B. eliasi 0.044* 0.049* 0.035* 0.035* 0.038* 
C. imbricatula vs. I. oblongus B. reesidei-B. eliasi 0.076 0.053 0.018* 0.018* 0.054 
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Table S22. Results of lower niche similarity test for Inoceramus species to comparison species comparisons including p-values for I and D overlap (less than 
random), and niche expansion (greater than random), stability (less than random), and unfilling (greater than random). 

Lower Similarity Test (p-values) 

Species Interval D value I value 
Expansion 

(higher) 
Stability 
(lower) 

Unfilling 
(higher) 

C. imbricatula vs. I. convexus B. reduncus-B. scotti 0.601 0.608 0.727 0.727 0.667 
C. imbricatula vs. I. sublaevis B. reduncus-B. scotti 0.716 0.683 0.844 0.844 0.742 
C. imbricatula vs. I. saskatchewanensis B. reduncus-B. scotti 0.901 0.953 0.937 0.937 0.954 
C. nebrascensis vs. I. barabini D. nebrascense-E. jenneyi 1.000 1.000 0.999 0.999 0.771 
C. imbricatula vs. I. convexus D. nebrascense-E. jenneyi 0.615 0.678 0.725 0.725 0.707 
C. imbricatula vs. I. sublaevis D. nebrascense-E. jenneyi 0.628 0.637 0.358 0.358 0.435 
C. nebrascensis vs. I. barabini D. nebrascense-E. jenneyi 1.000 1.000 0.999 0.999 0.771 
C. nebrascensis vs. I. convexus D. nebrascense-E. jenneyi 0.536 0.725 0.985 0.985 0.623 
C. nebrascensis vs. I. sublaevis D. nebrascense-E. jenneyi 0.993 0.998 0.952 0.952 0.719 
L. subundata vs. I. barabini D. nebrascense-E. jenneyi 0.910 0.907 0.863 0.863 0.907 
L. subundata vs. I. convexus D. nebrascense-E. jenneyi 0.517 0.566 0.650 0.650 0.698 
L. subundata vs. I. sublaevis D. nebrascense-E. jenneyi 0.980 0.942 0.535 0.535 0.762 
L. subundata vs. I. sagensis B. compressus-B. cuneatus 0.707 0.727 0.822 0.822 0.824 
C. nebrascensis vs. I. barabini B. reesidei-B. eliasi 0.988 0.989 0.875 0.875 0.976 
C. nebrascensis vs. I. sagensis B. reesidei-B. eliasi 0.939 0.955 0.948 0.948 0.907 
C. nebrascensis vs. I. oblongus B. reesidei-B. eliasi 0.875 0.923 0.923 0.923 0.846 
C. imbricatula vs. I. barabini B. reesidei-B. eliasi 0.972 0.956 0.827 0.827 0.969 
C. imbricatula vs. I. sagensis B. reesidei-B. eliasi 0.927 0.924 0.939 0.939 0.950 
C. imbricatula vs. I. oblongus B. reesidei-B. eliasi 0.933 0.949 0.967 0.967 0.956 
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Species to Genus (all occurrences) Comparison 
Table S23. Niche overlap values for Inoceramus species to the genus comparisons including I and D overlap values, and niche expansion, stability, and unfilling. 

Species Interval D value I value Expansion Stability Unfilling 
I. convexus B. reduncus-B. scotti 0.721 0.826 0.112 0.888 0.078 
I. sublaevis B. reduncus-B. scotti 0.740 0.832 0.087 0.913 0.020 

I. saskatchewanensis B. reduncus-B. scotti 0.679 0.844 0.348 0.652 0.018 
I. convexus D. nebrascense-E. jenneyi 0.221 0.466 0.512 0.488 0.000 
I. sublaevis D. nebrascense-E. jenneyi 0.427 0.549 0.680 0.320 0.237 
I. barabini D. nebrascense-E. jenneyi 0.509 0.643 0.224 0.776 0.119 
I. barabini B. reesidei-B. eliasi 0.465 0.676 0.481 0.519 0.000 
I. sagensis B. reesidei-B. eliasi 0.477 0.687 0.302 0.698 0.000 
I. oblongus B. reesidei-B. eliasi 0.408 0.636 0.334 0.666 0.000 

 

Table S24. Results of greater niche equivalency test for Inoceramus species to genus (all possible occurrences) comparisons including p-values for I and D 
overlap (greater than random), and niche expansion (less than random), stability (greater than random), and unfilling (less than random). 

Greater Niche Equivalency Test 

Species Intervals Compared D value I value 
Expansion 

(lower) 
Stability 
(higher) 

Unfilling 
(lower) 

I. convexus B. reduncus-B. scotti 0.132 0.152 0.160 0.160 0.766 
I. sublaevis B. reduncus-B. scotti 0.126 0.190 0.150 0.150 0.473 

I. saskatchewanensis B. reduncus-B. scotti 0.359 0.263 0.725 0.725 0.497 
I. convexus D. nebrascense-E. jenneyi 0.697 0.655 0.735 0.735 0.399 
I. sublaevis D. nebrascense-E. jenneyi 0.441 0.565 0.930 0.930 0.990 
I. barabini D. nebrascense-E. jenneyi 0.347 0.375 0.415 0.415 0.874 
I. barabini B. reesidei-B. eliasi 0.511 0.435 0.816 0.816 0.307 
I. sagensis B. reesidei-B. eliasi 0.527 0.467 0.535 0.535 0.295 
I. oblongus B. reesidei-B. eliasi 0.607 0.519 0.485 0.485 0.377 
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Table S25. Results of lower niche equivalency test for Inoceramus species to genus (all possible occurrences) comparisons including p-values for I and D overlap 
(less than random), and niche expansion (greater than random), stability (less than random), and unfilling (greater than random). 

Lower Niche Equivalency Test 

Species Intervals Compared D value I value 
Expansion 

(higher) 
Stability 
(lower) 

Unfilling 
(higher) 

I. convexus B. reduncus-B. scotti 0.886 0.860 0.854 0.854 0.246 
I. sublaevis B. reduncus-B. scotti 0.886 0.776 0.852 0.852 0.531 
I. saskatchewanensis B. reduncus-B. scotti 0.631 0.707 0.279 0.279 0.489 
I. convexus D. nebrascense-E. jenneyi 0.269 0.307 0.246 0.246 1.000 
I. sublaevis D. nebrascense-E. jenneyi 0.595 0.485 0.056 0.056 0.006* 
I. barabini D. nebrascense-E. jenneyi 0.687 0.673 0.611 0.611 0.134 
I. barabini B. reesidei-B. eliasi 0.469 0.561 0.188 0.188 1.000 
I. sagensis B. reesidei-B. eliasi 0.491 0.567 0.443 0.443 1.000 
I. oblongus B. reesidei-B. eliasi 0.447 0.533 0.533 0.533 1.000 

 

Table S26. Results of greater niche similarity test for Inoceramus species to genus (all possible occurrences) comparisons including p-values for I and D overlap 
(greater than random), and niche expansion (less than random), stability (greater than random), and unfilling (less than random). 

Greater Niche Similarity Test 

Species Intervals Compared D value I value 
Expansion 

(lower) 
Stability 
(higher) 

Unfilling 
(lower) 

I. convexus B. reduncus-B. scotti 0.114 0.141 0.225 0.225 0.100 
I. sublaevis B. reduncus-B. scotti 0.165 0.194 0.144 0.144 0.125 
I. saskatchewanensis B. reduncus-B. scotti 0.060 0.047* 0.145 0.145 0.148 
I. convexus D. nebrascense-E. jenneyi 0.292 0.262 0.202 0.202 0.238 
I. sublaevis D. nebrascense-E. jenneyi 0.137 0.215 0.347 0.347 0.442 
I. barabini D. nebrascense-E. jenneyi 0.152 0.154 0.170 0.170 0.047* 
I. barabini B. reesidei-B. eliasi 0.033* 0.022* 0.041* 0.041* 0.157 
I. sagensis B. reesidei-B. eliasi 0.206 0.164 0.089 0.089 0.097 
I. oblongus B. reesidei-B. eliasi 0.212 0.174 0.076 0.076 0.068 
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Table S27. Results of lower niche similarity test for Inoceramus species to genus (all possible occurrences) comparisons including p-values for I and D overlap 
(less than random), and niche expansion (greater than random), stability (less than random), and unfilling (greater than random). 

Lower Niche Similarity Test 

Species Intervals Compared D value I value 
Expansion 

(higher) 
Stability 
(lower) 

Unfilling 
(higher) 

I. convexus B. reduncus-B. scotti 0.907 0.880 0.764 0.764 0.923 
I. sublaevis B. reduncus-B. scotti 0.858 0.829 0.869 0.869 0.877 
I. saskatchewanensis B. reduncus-B. scotti 0.936 0.958 0.831 0.831 0.825 
I. convexus D. nebrascense-E. jenneyi 0.729 0.763 0.836 0.836 1.000 
I. sublaevis D. nebrascense-E. jenneyi 0.883 0.804 0.672 0.672 0.558 
I. barabini D. nebrascense-E. jenneyi 0.840 0.849 0.831 0.831 0.952 
I. barabini B. reesidei-B. eliasi 0.972 0.981 0.965 0.965 1.000 
I. sagensis B. reesidei-B. eliasi 0.827 0.860 0.906 0.906 1.000 
I. oblongus B. reesidei-B. eliasi 0.779 0.827 0.900 0.900 1.000 
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Appendix C-4. R Code 

library(ecospat) 

library(raster) 

library(rgbif) 

library(terra) 

library(geodata) 

 

library(ade4) 

library(rlist) 

 

library(raster) # for raster analysis 

library(sf) # for spatial data analysis 

library(dplyr) #  

library(scales) 

library(dismo) # a collection of ENM/SDM tools 

library(tidyr) 

library(colorRamps) 

library(ENMeval) # for a few new tools in ENM/SDM 

library(ggplot2) 

# library(GGally) # Use for ggpairs fuction (not used...) 

library(spThin) 

library(sdm) 

library(rasterVis) 

 

 

######### READ IN ENVRIONMENTAL DATA ######### 

 

setwd("C:/Users/Ceara/Documents/Province Project/ENM_Analysis_Code-and-Files") 

 

# Function to get stacked raster layers of environmental proxies (with proper names for plotting) 

get_rasters<- function(interval_abrev_strg,seep_presence){ 
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  if (seep_presence== TRUE){ 

    sr <- raster::raster(paste0("Env Raster Files/",interval_abrev_strg,"_sr_av_idw_clip.tif")) # Dist to Shore 

    se <- raster::raster(paste0("Env Raster Files/",interval_abrev_strg,"_se_av_idw_clip.tif")) # Dist to Seeps 

    p <- raster::raster(paste0("Env Raster Files/",interval_abrev_strg,"_p_av_idw_clip.tif")) # % Pebble 

    s <- raster::raster(paste0("Env Raster Files/",interval_abrev_strg,"_s_av_idw_clip.tif")) # % Sand 

    sh <- raster::raster(paste0("Env Raster Files/",interval_abrev_strg,"_sh_av_idw_clip.tif")) # % Shale 

    sl <- raster::raster(paste0("Env Raster Files/",interval_abrev_strg,"_sl_av_idw_clip.tif")) # % Silt 

    m <- raster::raster(paste0("Env Raster Files/",interval_abrev_strg,"_m_av_idw_clip.tif")) # % Mud 

    l <- raster::raster(paste0("Env Raster Files/",interval_abrev_strg,"_l_av_idw_clip.tif")) # % LS 

    bs <- raster::raster(paste0("Env Raster Files/",interval_abrev_strg,"_bs_av_idw_clip.tif")) # Bed Style 

    b <- raster::raster(paste0("Env Raster Files/",interval_abrev_strg,"_b_av_idw_clip.tif")) # Bioturbation 

    t <- raster::raster(paste0("Env Raster Files/",interval_abrev_strg,"_t_av_idw_clip.tif")) # Bed Thickness 

     

    ### Stack env parameters 

    stacked_env = stack(sr,se,p,s,sl,sh,m,l,bs,b,t) 

     

    names(stacked_env) <- c("Dist_to_Shore","Dist_to_Seeps", 
"Percent_Pebble","Percent_Sand","Percent_Shale","Percent_Silt","Percent_Mud", 

                            "Percent_Limestone","Bedding_Style","Bioturbation","Avg_Bed_Thickness") 

     

  } else { 

    sr <- raster::raster(paste0("Env Raster Files/",interval_abrev_strg,"_sr_av_idw_clip.tif")) # Dist to Shore 

    p <- raster::raster(paste0("Env Raster Files/",interval_abrev_strg,"_p_av_idw_clip.tif")) # % Pebble 

    s <- raster::raster(paste0("Env Raster Files/",interval_abrev_strg,"_s_av_idw_clip.tif")) # % Sand 

    sh <- raster::raster(paste0("Env Raster Files/",interval_abrev_strg,"_sh_av_idw_clip.tif")) # % Shale 

    sl <- raster::raster(paste0("Env Raster Files/",interval_abrev_strg,"_sl_av_idw_clip.tif")) # % Silt 

    m <- raster::raster(paste0("Env Raster Files/",interval_abrev_strg,"_m_av_idw_clip.tif")) # % Mud 

    l <- raster::raster(paste0("Env Raster Files/",interval_abrev_strg,"_l_av_idw_clip.tif")) # % LS 

    bs <- raster::raster(paste0("Env Raster Files/",interval_abrev_strg,"_bs_av_idw_clip.tif")) # Bed Style 

    b <- raster::raster(paste0("Env Raster Files/",interval_abrev_strg,"_b_av_idw_clip.tif")) # Bioturbation 

    t <- raster::raster(paste0("Env Raster Files/",interval_abrev_strg,"_t_av_idw_clip.tif")) # Bed Thickness 
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    ### Stack env parameters 

    stacked_env = stack(sr,p,s,sl,sh,m,l,bs,b,t) 

     

    names(stacked_env) <- 
c("Dist_to_Shore","Percent_Pebble","Percent_Sand","Percent_Shale","Percent_Silt","Percent_Mud", 

                            "Percent_Limestone","Bedding_Style","Bioturbation","Avg_Bed_Thickness") 

  } 

   

  return(stacked_env) 

} 

 

 

# Use above function to get stacked rasters for each time bin 

 

maastr_env <- get_rasters("maastr",FALSE) 

camplow_env <- get_rasters("camplow",FALSE) 

campmid_env <- get_rasters("campmid",TRUE) 

campup_env <- get_rasters("campup",TRUE) 

maastrlow_env <-  get_rasters("maastrlow",TRUE) 

maastrup_env <-  get_rasters("maastrup",FALSE) 

 

 

 

birk_env <- get_rasters("birk",FALSE) 

clin_env <- get_rasters("clin",FALSE) 

bacu_env <- get_rasters("bacu",TRUE) 

rees_env <-  get_rasters("rees",TRUE) 

comp_env <-  get_rasters("comp",TRUE) 

chey_env <- get_rasters("chey",TRUE) 

nebr_env <- get_rasters("nebr",TRUE) 

redu_env <- get_rasters("redu",TRUE) 
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perp_env <-  get_rasters("perp",TRUE) 

macl_env <-  get_rasters("macl",FALSE) 

obtu_env <- get_rasters("obtu",FALSE) 

leei_env <-  get_rasters("leei",FALSE) 

 

 

#### Remove the variables that are NA or that correlate more than 0.8 Pearson's Corr Coef from raster stacks 
#### 

 

# H. birkelundae- H. nebrascensis 

birk_env_clean <- birk_env[[c(1:2,5,7,10)]] 

# Removed all but Dist to shore, Pebble, Silt, Limestone, and Bed thickness 

 

# B. clinobatus 

clin_env_clean <- clin_env[[c(1:3,6,10)]] 

# Removed all but Dist to shore, Pebble, Sand, Mud, and Bed thickness 

 

# B. baculus-B. grandis 

bacu_env_clean <- bacu_env[[c(1:4,6:8,10:11)]] 

# Removed all but Dist to shore, Dist to seeps, Pebble, Sand, Silt, Mud, LS, Bioturb, and Bed thickness 

 

# B. reesidei-B. eliasi 

rees_env_clean <- rees_env[[c(1,3:4,6:11)]] 

# Removed all but Dist to shore, Pebble, Sand, Silt, Mud, LS, Bed Style, Bioturb, and Bed thickness 

 

# B. compressus-B. cuneatus 

comp_env_clean <- comp_env[[c(1:2,4,6:7,10)]] 

# Removed all but Dist to shore, Dist to Seeps, Sand, Silt, Mud, and Bioturbation 

 

# D. cheyennense 

chey_env_clean <- chey_env[[c(1,4,6:8)]] 

# Removed all but Dist to shore, Sand, Silt, Mud, and LS 
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# D. nebrascense-E. jenneyi 

nebr_env_clean <- nebr_env[[c(1:2,4,6:11)]] 

# Removed all but Dist to shore, dist to seeps, Sand, Silt, Mud, LS, Bed style, Bioturb, and Bed thickness 

 

 

# B. reduncus-B. scotti 

redu_env_clean <- redu_env[[c(1:2,4,6:10)]] 

# Removed all but Dist to shore, dist to seeps, Sand, Silt, Mud, LS, Bed style, Bioturb 

 

# B. perplexus-B. gregoryensis 

perp_env_clean <- perp_env[[c(1:4,6:11)]] 

# Removed all but Dist to shore, dist to seeps, Sand, Silt, Mud, LS, Bed style, Bioturb 

 

# B. maclearni-B. sp. (smooth) 

macl_env_clean <- macl_env[[c(1,3,5:7,9:10)]] 

# Removed all but Dist to shore, dist to seeps, Sand, Silt, Mud, LS, Bed style, Bioturb 

 

# B. obtusus 

obtu_env_clean <- obtu_env[[c(1,3,5:8,10)]] 

# Removed all but Dist to shore, Sand, Silt, Mud, LS, Bed style, and Bed Thickness 

 

# S. leei-B. sp. (weak flank ribs) 

leei_env_clean <- leei_env[[c(1:3,5:8)]] 

# Removed all but Dist to shore, Pebble, Sand, Silt, Mud, LS, Bed style 

 

pairs(obtu_env_clean) 

 

 

#### Remove the variables that are not shared between intervals (substage-biozone) #### 
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# B. baculus-B. grandis 

bacu_env_shared <-bacu_env[[c(1,3,4,6:8,11)]] 

 

# B. reesidei-B. eliasi 

rees_env_shared <- rees_env[[c(1,4,6:7,10)]] 

# Removed all but Dist to shore, Pebble, Sand, Silt, Mud, LS, Bed Style, Bioturb, and Bed thickness 

 

# B. compressus-B. cuneatus 

comp_env_shared <- comp_env[[c(1,4,6:7,10)]] 

# Removed all but Dist to shore, Dist to Seeps, Sand, Silt, Mud, and Bioturbation 

 

# D. nebrascense-E. jenneyi 

nebr_env_shared <- nebr_env[[c(1,4,6:7,10)]] 

# Removed all but Dist to shore, dist to seeps, Sand, Silt, Mud, LS, Bed style, Bioturb, and Bed thickness 

 

# B. reduncus-B. scotti 

redu_env_shared <- redu_env[[c(1,4,6:8,10)]] 

# Removed all but Dist to shore, Sand, Silt, Mud, LS, Bed style, Bioturb 

 

# B. maclearni-B. sp. (smooth) 

macl_env_shared <- macl_env[[c(1,3,5,6:7,9)]] 

 

# B. perplexus-B. gregoryensis 

perp_env_shared <- perp_env[[c(1,4,6:8,10)]] 

 

# Upper Campanian 

campup_env_shared <- campup_env[[c(1,4,6:7,10)]] 

# Removed all but Dist to shore, Dist to seeps, Pebble, Sand, Silt, Mud, LS, Bed style, Bioturb, Bed thickness 

 

# Middle Campanian 
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campmid_env_shared <- campmid_env[[c(1,4,6:8,10)]] 

 

# Lower Maastrichtian 

maastrlow_env_shared <- maastrlow_env[[c(1,3,4,6:8,11)]] 

 

# Maastrichtian 

maastr_env_shared <- maastr_env[[c(1,2,3,5:7,10)]] 

 

#### Read in species occurrence data for the taxa at each relevant interval of comparison #### 

 

# set name to use in calling/naming files 

bara_nebr_name = "Ibarabini_nebr" 

 

bara_rees_name = "Ibarabini_rees" 

 

bara_campup_name = "Ibarabini_campup" 

 

 

conv_redu_name = "Iconvexus_redu" 

 

conv_nebr_name = "Iconvexus_nebr" 

 

conv_campmid_name = "Iconvexus_campmid" 

 

conv_campup_name = "Iconvexus_campup" 

 

 

sage_comp_name = "Isagensis_comp" 

 

sage_rees_name = "Isagensis_rees" 
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sage_campup_name = "Isagensis_campup" 

 

 

subl_redu_name = "Isublaevis_redu" 

 

subl_nebr_name = "Isublaevis_nebr" 

 

subl_campmid_name = "Isublaevis_campmid" 

 

subl_campup_name = "Isublaevis_campup" 

 

 

 

azer_macl_name <- "Iazerbaydjanensis_macl" 

 

azer_campmid_name <- "Iazerbaydjanensis_campmid" 

 

 

oblo_rees_name <- "Ioblongus_rees" 

 

oblo_campup_name <- "Ioblongus_campup" 

 

sask_redu_name <- "Isaskatchewanensis_redu" 

 

sask_campmid_name <- "Isaskatchewanensis_campmid" 

 

# Outgroup Taxa: 

 

chla_nebr_name <- "Cnebrascensis_nebr" 

chla_rees_name <- "Cnebrascensis_rees" 

chla_bacu_name <- "Cnebrascensis_bacu" 
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chla_campup_name <- "Cnebrascensis_campup" 

chla_maastrlow_name <- "Cnebrascensis_maastrlow" 

chla_maastr_name <- "Cnebrascensis_maa" 

 

luci_nebr_name <- "Lsubundata_nebr" 

luci_comp_name <- "Lsubundata_comp" 

luci_campup_name <- "Lsubundata_campup" 

 

 

cten_perp_name <- "Cimbricatula_perp" 

cten_redu_name <- "Cimbricatula_redu" 

cten_nebr_name <- "Cimbricatula_nebr" 

cten_rees_name <- "Cimbricatula_rees" 

cten_campup_name <- "Cimbricatula_campup" 

cten_campmid_name <- "Cimbricatula_campmid" 

 

 

# Additional taxa for analysis 

 

cmon_macl_name <- "Cmontanensis_macl" 

cmon_perp_name <- "Cmontanensis_perp" 

cmon_campmid_name <- "Cmontanensis_campmid" 

cmon_redu_name <- "Cmontanensis_redu" 

cmon_comp_name <- "Cmontanensis_comp" 

cmon_campup_name <- "Cmontanensis_campup" 

 

hnod_comp_name <- "Hnodosus_comp" 

hnod_rees_name <- "Hnodosus_rees" 

hnod_campup_name <- "Hnodosus_campup" 

 

ifib_clin_name <- "Ifibrosus_clin" 



Supplementary Materials for Purcell and Myers, 20XX 653 
 

653 
 

ifib_maastrlow_name <- "Ifibrosus_maastrlow" 

ifib_maastr_name <- "Ifibrosus_maastr" 

 

 

pmee_nebr_name <- "Pmeeki_nebr" 

pmee_chey_name <- "Pmeeki_chey" 

pmee_comp_name <- "Pmeeki_comp" 

pmee_campup_name <- "Pmeeki_campup" 

 

psyr_leei_name <- "Psyrtale_leei"  

psyr_camplow_name <- "Psyrtale_camplow"  

 

# Read in the occurrence data for the relevant intervals 

conv_redu <- read.csv(as.character(paste0("Thinned_taxa_csvs/",conv_redu_name,"_thin1.csv"))) 

conv_nebr <- read.csv(as.character(paste0("Thinned_taxa_csvs/",conv_nebr_name,"_thin1.csv"))) 

conv_campmid <- read.csv(as.character(paste0("Thinned_taxa_csvs/",conv_campmid_name,"_thin1.csv"))) 

conv_campup <- read.csv(as.character(paste0("Thinned_taxa_csvs/",conv_campup_name,"_thin1.csv"))) 

 

 

bara_rees <- read.csv(as.character(paste0("Thinned_taxa_csvs/",bara_rees_name,"_thin1.csv"))) 

bara_nebr <- read.csv(as.character(paste0("Thinned_taxa_csvs/",bara_nebr_name,"_thin1.csv"))) 

bara_campup <- read.csv(as.character(paste0("Thinned_taxa_csvs/",bara_campup_name,"_thin1.csv"))) 

 

 

sage_comp <- read.csv(as.character(paste0("Thinned_taxa_csvs/",sage_comp_name,"_thin1.csv"))) 

sage_rees <- read.csv(as.character(paste0("Thinned_taxa_csvs/",sage_rees_name,"_thin1.csv"))) 

sage_campup <- read.csv(as.character(paste0("Thinned_taxa_csvs/",sage_campup_name,"_thin1.csv"))) 

 

 

subl_redu <- read.csv(as.character(paste0("Thinned_taxa_csvs/",subl_redu_name,"_thin1.csv"))) 

subl_nebr <- read.csv(as.character(paste0("Thinned_taxa_csvs/",subl_nebr_name,"_thin1.csv"))) 
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subl_campmid <- read.csv(as.character(paste0("Thinned_taxa_csvs/",subl_campmid_name,"_thin1.csv"))) 

subl_campup <- read.csv(as.character(paste0("Thinned_taxa_csvs/",subl_campup_name,"_thin1.csv"))) 

 

 

 

azer_macl <- read.csv(as.character(paste0("Thinned_taxa_csvs/",azer_macl_name,"_thin1.csv"))) 

azer_campmid <- read.csv(as.character(paste0("Thinned_taxa_csvs/",azer_campmid_name,"_thin1.csv"))) 

 

 

oblo_rees <- read.csv(as.character(paste0("Thinned_taxa_csvs/",oblo_rees_name,"_thin1.csv"))) 

oblo_campup <- read.csv(as.character(paste0("Thinned_taxa_csvs/",oblo_campup_name,"_thin1.csv"))) 

 

 

sask_redu <- read.csv(as.character(paste0("Thinned_taxa_csvs/",sask_redu_name,"_thin1.csv"))) 

sask_campmid <- read.csv(as.character(paste0("Thinned_taxa_csvs/",sask_campmid_name,"_thin1.csv"))) 

 

 

 

# Outgroup Taxa: 

 

chla_nebr <- read.csv(as.character(paste0("Thinned_taxa_csvs/",chla_nebr_name,"_thin1.csv"))) 

chla_rees <- read.csv(as.character(paste0("Thinned_taxa_csvs/",chla_rees_name,"_thin1.csv"))) 

 

chla_bacu <- read.csv(as.character(paste0("Thinned_taxa_csvs/",chla_bacu_name,"_thin1.csv"))) 

chla_campup <- read.csv(as.character(paste0("Thinned_taxa_csvs/",chla_campup_name,"_thin1.csv"))) 

chla_maastrlow <- read.csv(as.character(paste0("Thinned_taxa_csvs/",chla_maastrlow_name,"_thin1.csv"))) 

chla_maastr <- read.csv(as.character(paste0("Thinned_taxa_csvs/",chla_maastr_name,"_thin1.csv"))) 

 

 

luci_nebr <- read.csv(as.character(paste0("Thinned_taxa_csvs/",luci_nebr_name,"_thin1.csv"))) 

luci_comp <- read.csv(as.character(paste0("Thinned_taxa_csvs/",luci_comp_name,"_thin1.csv"))) 
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luci_campup <- read.csv(as.character(paste0("Thinned_taxa_csvs/",luci_campup_name,"_thin1.csv"))) 

 

 

cten_perp <- read.csv(as.character(paste0("Thinned_taxa_csvs/",cten_perp_name,"_thin1.csv"))) 

cten_redu <- read.csv(as.character(paste0("Thinned_taxa_csvs/",cten_redu_name,"_thin1.csv"))) 

cten_nebr <- read.csv(as.character(paste0("Thinned_taxa_csvs/",cten_nebr_name,"_thin1.csv"))) 

cten_rees <- read.csv(as.character(paste0("Thinned_taxa_csvs/",cten_rees_name,"_thin1.csv"))) 

 

cten_campup <- read.csv(as.character(paste0("Thinned_taxa_csvs/",cten_campup_name,"_thin1.csv"))) 

cten_campmid <- read.csv(as.character(paste0("Thinned_taxa_csvs/",cten_campmid_name,"_thin1.csv"))) 

 

# Additional Taxa for an analysis 

cmon_macl <- read.csv(as.character(paste0("Thinned_taxa_csvs/",cmon_macl_name,"_thin1.csv"))) 

cmon_perp <- read.csv(as.character(paste0("Thinned_taxa_csvs/",cmon_perp_name,"_thin1.csv"))) 

cmon_campmid <- read.csv(as.character(paste0("Thinned_taxa_csvs/",cmon_campmid_name,"_thin1.csv"))) 

cmon_redu <- read.csv(as.character(paste0("Thinned_taxa_csvs/",cmon_redu_name,"_thin1.csv"))) 

cmon_comp <- read.csv(as.character(paste0("Thinned_taxa_csvs/",cmon_comp_name,"_thin1.csv"))) 

cmon_campup <- read.csv(as.character(paste0("Thinned_taxa_csvs/",cmon_campup_name,"_thin1.csv"))) 

 

 

hnod_comp <- read.csv(as.character(paste0("Thinned_taxa_csvs/",hnod_comp_name,"_thin1.csv"))) 

hnod_rees <- read.csv(as.character(paste0("Thinned_taxa_csvs/",hnod_rees_name,"_thin1.csv"))) 

hnod_campup <- read.csv(as.character(paste0("Thinned_taxa_csvs/",hnod_campup_name,"_thin1.csv"))) 

 

 

ifib_clin <- read.csv(as.character(paste0("Thinned_taxa_csvs/",ifib_clin_name,"_thin1.csv"))) 

ifib_maastrlow <- read.csv(as.character(paste0("Thinned_taxa_csvs/",ifib_maastrlow_name,"_thin1.csv"))) 

ifib_maastr <- read.csv(as.character(paste0("Thinned_taxa_csvs/","Ifibrosus_maa","_thin1.csv"))) 
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pmee_macl <- read.csv(as.character(paste0("Thinned_taxa_csvs/",pmee_nebr_name,"_thin1.csv"))) 

pmee_perp <- read.csv(as.character(paste0("Thinned_taxa_csvs/",pmee_chey_name,"_thin1.csv"))) 

pmee_comp <- read.csv(as.character(paste0("Thinned_taxa_csvs/",pmee_comp_name,"_thin1.csv"))) 

pmee_campup <- read.csv(as.character(paste0("Thinned_taxa_csvs/",pmee_campup_name,"_thin1.csv"))) 

 

 

psyr_leei <- read.csv(as.character(paste0("Thinned_taxa_csvs/",psyr_leei_name,"_thin1.csv"))) 

psyr_camplow <- read.csv(as.character(paste0("Thinned_taxa_csvs/",psyr_camplow_name,"_thin1.csv"))) 

 

 

#### Thin Genus level information (by selecting all relevant spp occ from database) #### 

# Function to thin spp occ by 30km in intervals if >6 initial occurrences, creates csvs and outputs summary table 

thin_taxa_by_interv<- function(taxa_names,occ_data,tax_abrev){ 

  # Subset out species from occ table 

  spp_dat <- subset(occ_data,Taxa_name %in% taxa_names, select=c(Taxa_name,Lat,Long,interval_biozone)) 

  # remove duplicate locations 

  spp_dat <- unique(spp_dat) 

  # Get list of number of occ in each interval 

  unique_interv<- as.data.frame(table(spp_dat$interval_biozone)) 

  unique_interv_7great <- subset(unique_interv, Freq >6) 

  unique_interv_7great <- unique_interv_7great$Var1 

  # Get list of df of occ for each interval with >6 occ 

  inter_dat_list <- list()  # create empty list to hold df for each relevant interval 

  for (i in 1:length(unique_interv_7great)){ 

    spp_dat_inter <- subset(spp_dat,interval_biozone==unique_interv_7great[i]) # subset out by interval name 

    inter_dat_list[[i]] <-spp_dat_inter[,c("Taxa_name","Lat","Long")] # get just the lat/lon and taxa name 

  } 

   

  # Run thinning on each df in list: 

  for (i in 1:nrow(as.data.frame(unique_interv_7great))){ 

    # Thinning function: 
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    thin_tax_in_loop <- function(tax,file_name){ 

      tax <- as.data.frame(tax) 

      thin(tax, long.col="Long", lat.col="Lat", spec.col="Taxa_name", thin.par=30, reps=1, 

           out.dir="C:/Users/ceara/Documents/Province Project/ENM_Analysis_Code-and-
Files/Thinned_taxa_csvs", out.base=file_name, write.log.file=FALSE, verbose=FALSE) 

    } 

    taxa_interval_name=as.character(paste(tax_abrev,unique(unique_interv_7great[i]), sep="_")) # Set the name 
of output file 

    thin_tax_in_loop(inter_dat_list[[i]],taxa_interval_name) # run thinning function to output files 

  } 

  output_list<-list() 

  for (i in 1:length(unique_interv_7great)){ 

    taxa_interval_name=as.character(paste(tax_abrev,unique(unique_interv_7great[i]), sep="_")) # Set the name 
of output file 

    output_list[[i]] <- read.csv(as.character(paste0("Thinned_taxa_csvs/",taxa_interval_name,"_thin1.csv"))) 

    output_list[[i]]$interval <- taxa_interval_name 

  } 

  # Summarize the output CSV files into a vector of occ counts (frequency) 

  summarize<- function (df){as.data.frame(table(df$interval))} # function to get frequency counts of each 
interval 

  output_list<-sapply(output_list,summarize) # apply the above function to each df 

  rownames(output_list) <- c("Taxa-Interval","Freq") # renamed the summary table row names 

   

  return(output_list) 

} 

 

 

# Make lists of names to use for genus-level analysis in relevant intervals 

redu_tax_names <- c("Inoceramus convexus","Inoceramus sublaevis", "Inoceramus saskatchewanensis") 

nebr_tax_names <- c("Inoceramus barabini","Inoceramus convexus","Inoceramus sublaevis") 

rees_tax_names <- c("Inoceramus barabini","Inoceramus sagensis","Inoceramus oblongus") 

 

#### Thin Genus level inforamtion (using all occ, including Inoceramus w/out spp ID) 
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# Read in occ database (with spp-genus combine in column Taxa_name) 

tax_sp_inter <- read.csv('FE_data_compress_fe_3-7-23_basins_Fm_update_gen-sp_name_interval_update.csv') 

 

# Extract all relevant spp names to use for collecting Inoceramus genus data 

ino_spp_df <- unique(subset(tax_sp_inter,Updated_Genus == "Inoceramus", select=c(Taxa_name))) 

 

ino_spp_vec <- as.character(ino_spp_df[,1]) # make into a character vector 

 

# Make lists of names to use for genus-level analysis in relevant intervals 

redu_tax_names <- ino_spp_vec 

nebr_tax_names <- ino_spp_vec 

rees_tax_names <- ino_spp_vec 

 

# Use above function to run thinning on genus-level data in relevant intervals 

# Inoceramus_redu<- thin_taxa_by_interv(redu_tax_names,tax_sp_inter,"Inoceramus_all_redu") 

#  

# Inoceramus_nebr<- thin_taxa_by_interv(nebr_tax_names,tax_sp_inter,"Inoceramus_all_nebr") 

#  

# Inoceramus_nebr<- thin_taxa_by_interv(rees_tax_names,tax_sp_inter,"Inoceramus_all_rees") 

 

#### Read in Genus Occurrence data for the taxa at each relevant interval of comparison  #### 

# Read in the genus occurrence data for the relevant intervals 

Inoceramus_redu <- read.csv(as.character(paste0("Thinned_taxa_csvs/","Inoceramus_redu_B. reduncus-B. 
scotti","_thin1.csv"))) 

Inoceramus_nebr <- read.csv(as.character(paste0("Thinned_taxa_csvs/","Inoceramus_nebr_D. nebrascense-E. 
jenneyi","_thin1.csv"))) 

Inoceramus_rees <- read.csv(as.character(paste0("Thinned_taxa_csvs/","Inoceramus_rees_B. reesidei-B. 
eliasi","_thin1.csv"))) 

 

Inoceramus_all_redu <- read.csv(as.character(paste0("Thinned_taxa_csvs/","Inoceramus_all_redu_B. reduncus-
B. scotti","_thin1.csv"))) 

Inoceramus_all_nebr <- read.csv(as.character(paste0("Thinned_taxa_csvs/","Inoceramus_all_nebr_D. 
nebrascense-E. jenneyi","_thin1.csv"))) 
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Inoceramus_all_rees <- read.csv(as.character(paste0("Thinned_taxa_csvs/","Inoceramus_all_rees_B. reesidei-B. 
eliasi","_thin1.csv"))) 

 

#### MAKE MAPS? Using the directions from this site: https://plantarum.ca/2021/07/29/ecospat/ #### 

 

# Tell what columns are lat/long 

coordinates(conv_redu) <- c("Long", 

                         "Lat")  

 

# Download the maps of North American countries to plot 

NorthAmerica <- gadm(country = country_codes("North America")$ISO3, 

                     level = 0, resolution = 2, 

                     path = "maps_basemaps") 

us <- gadm(country = "USA", level = 1, resolution = 2, 

           path = "maps_basemaps") 

canada <- gadm(country = "CAN", level = 1, resolution = 2, 

               path = "maps_basemaps") 

 

# bind the maps into a single feature to map 

CanUS <- rbind(NorthAmerica,us, canada) 

 

# Plot the maps 

plot(CanUS, xlim = c(-115, -95),ylim = c(55, 23), 

     border = "gray") 

points(conv_redu,pch=16,col = "red") 

 

#### Run function to prep data for use in ecospat (clean NAs, make into spatial object, extract values, etc) #### 

run_data_prep <- function(taxa_inter_name, interval_raster_stack){ 

   

  # Call the thinned data file   

  tax_test <- read.csv(as.character(paste0("Thinned_taxa_csvs/",taxa_inter_name,"_thin1.csv"))) 
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  # Convert occ pts for taxa to spatial points 

  coordinates(tax_test) = ~ Long + Lat 

   

   

  # make sure to set spatial coor system (WGS 84) 

  myCRS1 <- CRS("+init=epsg:4326") 

  crs(tax_test) <- myCRS1 

   

  # project raster stack back to WGS 84 coor system 

  interval_raster_proj <- projectRaster(interval_raster_stack, crs=myCRS1) 

   

  # look at conditions at train occ locations (find nulls, or pts that are not loc on variable values) 

  conditions_occ <- raster::extract(interval_raster_proj,tax_test) # Use the thinned, cleaned taxa data and the env 
stacked rasters to extract variable vals 

  bad_rec <- is.na(conditions_occ[,1]) # Get the locations of those extracted pts with NA (no vals) 

  table(bad_rec) # Look at the list of NA locations 

  conditions_occ[bad_rec,] # Another way to look at it  

   

  # remove null values from occ 

  occ <- tax_test[!bad_rec,] # take out the pts that are over null vals 

  occ # Check result 

   

  # extract env values for occurrences 

  occ <- cbind(occ, extract(interval_raster_proj, occ)) 

   

  #Plot final data: 

  par(mfrow=c(1,1)) 

  plot(interval_raster_proj[[1]]) # plot env layer 

  plot(occ, add=T, col="red") # Plot occ pts 

   

  output_list <- list(occ, interval_raster_proj) 
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  return(output_list) 

   

} 

 

# Use function to prep the data for further analysis: output is list of occ then env data 

conv_redu_prep <- run_data_prep(conv_redu_name,redu_env_shared) 

conv_campmid_prep <- run_data_prep(conv_campmid_name,campmid_env_shared) 

conv_nebr_prep <- run_data_prep(conv_nebr_name,nebr_env_shared) 

conv_campup_prep <- run_data_prep(conv_campup_name,campup_env_shared) 

 

bara_rees_prep <- run_data_prep(bara_rees_name,rees_env_shared) 

bara_nebr_prep <- run_data_prep(bara_nebr_name,nebr_env_shared) 

bara_campup_prep <- run_data_prep(bara_campup_name,campup_env_shared) 

 

sage_comp_prep <- run_data_prep(sage_comp_name,comp_env_shared) 

sage_rees_prep <- run_data_prep(sage_rees_name,rees_env_shared) 

sage_campup_prep <- run_data_prep(sage_campup_name,campup_env_shared) 

 

 

subl_redu_prep <- run_data_prep(subl_redu_name,redu_env_shared) 

subl_campmid_prep <- run_data_prep(subl_campmid_name,campmid_env_shared) 

subl_nebr_prep <- run_data_prep(subl_nebr_name,nebr_env_shared) 

subl_campup_prep <- run_data_prep(subl_campup_name,campup_env_shared) 

 

 

azer_macl_prep <- run_data_prep(azer_macl_name,macl_env_shared) 

azer_campmid_prep <- run_data_prep(azer_campmid_name,campmid_env_shared) 

 

 

oblo_rees_prep <- run_data_prep(oblo_rees_name,rees_env_shared) 

oblo_campup_prep <- run_data_prep(oblo_campup_name,campup_env_shared) 
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sask_redu_prep <- run_data_prep(sask_redu_name,redu_env_shared) 

sask_campmid_prep <- run_data_prep(sask_campmid_name,campmid_env_shared) 

 

# Outgroup Taxa: 

 

chla_nebr_prep <- run_data_prep(chla_nebr_name,nebr_env_shared) 

chla_rees_prep <- run_data_prep(chla_rees_name,rees_env_shared) 

chla_bacu_prep <- run_data_prep(chla_bacu_name,bacu_env_shared) 

 

chla_campup_prep <- run_data_prep(chla_campup_name,campup_env_shared) 

chla_maastrlow_prep <- run_data_prep(chla_maastrlow_name,maastrlow_env_shared) 

chla_maastr_prep <- run_data_prep(chla_maastr_name,maastr_env_shared) 

 

 

luci_nebr_prep <- run_data_prep(luci_nebr_name,nebr_env_shared) 

luci_comp_prep <- run_data_prep(luci_comp_name,comp_env_shared) 

 

luci_campup_prep <- run_data_prep(luci_campup_name,campup_env_shared) 

 

 

cten_campmid_prep <- run_data_prep(cten_campmid_name,campmid_env_shared) 

cten_campup_prep <- run_data_prep(cten_campup_name,campup_env_shared) 

 

cten_perp_prep <- run_data_prep(cten_perp_name,perp_env_shared) 

cten_redu_prep <- run_data_prep(cten_redu_name,redu_env_shared) 

cten_nebr_prep <- run_data_prep(cten_nebr_name,nebr_env_shared) 

cten_rees_prep <- run_data_prep(cten_rees_name,rees_env_shared) 
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# Additional taxa for analysis 

cmon_rees_prep <- run_data_prep(cmon_rees_name,rees_env_shared) 

cmon_rees_prep <- run_data_prep(cmon_rees_name,rees_env_shared) 

cmon_rees_prep <- run_data_prep(cmon_rees_name,rees_env_shared) 

cmon_rees_prep <- run_data_prep(cmon_rees_name,rees_env_shared) 

 

 

cmon_rees_prep <- run_data_prep(cmon_rees_name,rees_env_shared) 

cmon_rees_prep <- run_data_prep(cmon_rees_name,rees_env_shared) 

 

 

cmon_rees_prep <- run_data_prep(cmon_rees_name,rees_env_shared) 

 

 

cmon_rees_prep <- run_data_prep(cmon_rees_name,rees_env_shared) 

cmon_rees_prep <- run_data_prep(cmon_rees_name,rees_env_shared) 

cmon_rees_prep <- run_data_prep(cmon_rees_name,rees_env_shared) 

 

 

cmon_rees_prep <- run_data_prep(cmon_rees_name,rees_env_shared) 

 

# Function to prep genus level data for analysis 

prep_genus <- function(gen_data,interval_raster_stack){ 

  # Convert occ pts for taxa to spatial points 

  coordinates(gen_data) = ~ Long + Lat 

   

   

  # make sure to set spatial coor system (WGS 84) 

  myCRS1 <- CRS("+init=epsg:4326") 

  crs(gen_data) <- myCRS1 
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  # project raster stack back to WGS 84 coor system 

  interval_raster_proj <- projectRaster(interval_raster_stack, crs=myCRS1) 

   

  # look at conditions at train occ locations (find nulls, or pts that are not loc on variable values) 

  conditions_occ <- raster::extract(interval_raster_proj,gen_data) # Use the thinned, cleaned taxa data and the 
env stacked rasters to extract variable vals 

  bad_rec <- is.na(conditions_occ[,1]) # Get the locations of those extracted pts with NA (no vals) 

  table(bad_rec) # Look at the list of NA locations 

  conditions_occ[bad_rec,] # Another way to look at it  

   

  # remove null values from occ 

  occ <- gen_data[!bad_rec,] # take out the pts that are over null vals 

  occ # Check result 

   

  # extract env values for occurrences 

  occ <- cbind(occ, extract(interval_raster_proj, occ)) 

   

  #Plot final data: 

  par(mfrow=c(1,1)) 

  plot(interval_raster_proj[[1]]) # plot env layer 

  plot(occ, add=T, col="red") # Plot occ pts 

   

  output_list <- list(occ, interval_raster_proj) 

   

  return(output_list) 

   

} 

 

# Use above function to prep genus data 

Inoceramus_redu_prep <- prep_genus(Inoceramus_redu,redu_env_shared) 

Inoceramus_nebr_prep <- prep_genus(Inoceramus_nebr,nebr_env_shared) 

Inoceramus_rees_prep <- prep_genus(Inoceramus_rees,rees_env_shared) 
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# Use above function to prep genus including no spp ID data 

Inoceramus_all_redu_prep <- prep_genus(Inoceramus_all_redu,redu_env_shared) 

Inoceramus_all_nebr_prep <- prep_genus(Inoceramus_all_nebr,nebr_env_shared) 

Inoceramus_all_rees_prep <- prep_genus(Inoceramus_all_rees,rees_env_shared) 

 

#### Run Ecospat analysis to compare overlap (make plots and tables) #### 

# Function to run ecospat overlap comparison, calc overlap and other vals, and create PCA summary and 
overlap plots 

run_ecospat_dyn <- function(first_occ_env_list,second_occ_env_list,spp_comp_title,spp_comp_pdf_name){ 

  ## Extract values to matrix for each raster stack of env proxy variables: 

  first_bg<- getValues(first_occ_env_list[[2]]) 

  second_bg <- getValues(second_occ_env_list[[2]]) 

   

  ## Clean out missing values: 

  first_bg <- first_bg[complete.cases(first_bg), ] 

  second_bg <- second_bg[complete.cases(second_bg), ] 

   

  ## Combined global environment: 

  joined_bg <- rbind(first_bg, second_bg) 

   

   

  # Run PCA analysis on combine BG pts (all env data) 

  pca_joined_bg <- dudi.pca(joined_bg, center = TRUE, 

                            scale = TRUE, scannf = FALSE, nf = 2) 

  joined_bg_scores <- pca_joined_bg$li # get the pca scores 

   

  # Start saving figures to pdf file 

  pdf(paste("Figures/",spp_comp_pdf_name, "ecospat_overlap_comparison.pdf")) 

   

  # look at variable contribution 
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  ecospat.plot.contrib(contrib=pca_joined_bg$co, eigen=pca_joined_bg$eig) 

   

   

  # Map occurrence data into the 2d ordination (have to coerce spatialPointsDataFrame inot data.frame) 

  # Explicitly match the colnames so only using the right ones 

  # Only selected the li element (doesn't include others) 

  first_occ_scores <- 

    suprow(pca_joined_bg, 

           data.frame(first_occ_env_list[[1]])[, colnames(joined_bg)])$li    

  second_occ_scores <- 

    suprow(pca_joined_bg, 

           data.frame(second_occ_env_list[[1]])[, colnames(joined_bg)])$li 

   

  # Map BG data to the 2d ordination 

  first_bg_scores <- suprow(pca_joined_bg, first_bg)$li 

  second_bg_scores <- suprow(pca_joined_bg, second_bg)$li 

   

   

  # density distribution for first interval 

  grid_first <- ecospat.grid.clim.dyn( 

    glob = joined_bg_scores, 

    glob1 = first_bg_scores, 

    sp = first_occ_scores, 

    R = 100, 

    th.sp = 0 

  ) 

   

  # density distribution for second interval 

  grid_second <- ecospat.grid.clim.dyn( 

    glob = joined_bg_scores, 

    glob1 = second_bg_scores, 
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    sp = second_occ_scores, 

    R = 100, 

    th.sp = 0 

  ) 

   

   

  D_overlap <- ecospat.niche.overlap (grid_first, grid_second, cor=T)  

 # Schoener's D metric and I metric 

   

  #Make summary table of D and I metrics 

  d_i_overlap <- matrix(nrow=1,ncol=2) 

  d_i_overlap[1,1] <- D_overlap[[1]] 

  d_i_overlap[1,2] <- D_overlap[[2]] 

  colnames(d_i_overlap) <- c("D_val","I_val") 

   

  # Finally we’re ready to do the Niche Quantification/Comparisons. We’ll use the  

  #PCA scores for the global environment, the native and invasive environments,  

  #and the native and invasive occurrence records 

   

  first_grid <- ecospat.grid.clim.dyn(joined_bg_scores, 

                                      first_bg_scores, 

                                      first_occ_scores) 

   

  second_grid <- ecospat.grid.clim.dyn(joined_bg_scores, 

                                       second_bg_scores,  

                                       second_occ_scores) 

   

   

  ecospat.plot.niche.dyn(first_grid,title=paste(spp_comp_title,"\nEcospat Overlap Comparison"), second_grid, 

                         quant = 0.05, name.axis1="PC1",name.axis2="PC2") 

  ecospat.shift.centroids(first_occ_scores, second_occ_scores, first_bg_scores, second_bg_scores) 
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  ## Niche Equivalency Test 

  ## Obs: observed overlaps, sim: similulated overlaps, p.D: pvalue of the test on D 

  ## p.I: pvalue of the test on I 

  ## Test for greater or lower equivalency  

  eq_testgr <- ecospat.niche.equivalency.test(first_grid, second_grid, 

                                              rep=500, overlap.alternative = "higher", 

                                              expansion.alternative = "lower", 

                                              stability.alternative = "higher", 

                                              unfilling.alternative = "lower", 

                                              ncores=4) ##rep = 1000 recommended for operational runs 

  eq_testlw <- ecospat.niche.equivalency.test(first_grid, second_grid, 

                                              rep=500, overlap.alternative = "lower", 

                                              expansion.alternative = "higher", 

                                              stability.alternative = "lower", 

                                              unfilling.alternative = "higher", 

                                              ncores=4) ##rep = 1000 recommended for operational runs 

   

  # write D and I values of equivalency test 

  EQ_DI = cbind("Obs_D"=eq_testgr$obs$D,"Obs_I"=eq_testgr$obs$I) 

   

  # write p values of equivalency test 

  p_EQ_DI = 
cbind("p.D_GR"=eq_testgr$p.D,"p.I_GR"=eq_testgr$p.I,"p.D_LW"=eq_testlw$p.D,"p.I_LW"=eq_testlw$p.D) 

   

  # write p values of expansion, stability, and unfilling 

  p_EQ_dynam = 
cbind("p.expan"=eq_testgr$p.expansion,"p.stab"=eq_testgr$p.stability,"p.unfill"=eq_testgr$p.unfilling) 

   

  ## Test for greater (niche conservatism) or lower (niche divergence) similarity 

  sim_testgr <- ecospat.niche.similarity.test(first_grid, second_grid, 
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                                              rep=1000, overlap.alternative = "higher", 

                                              expansion.alternative = "lower", 

                                              stability.alternative = "higher", 

                                              unfilling.alternative = "lower", 

                                              rand.type=1,ncores=4)  

  sim_testlw <- ecospat.niche.similarity.test(first_grid, second_grid, 

                                              rep=1000, overlap.alternative = "lower", 

                                              expansion.alternative = "higher", 

                                              stability.alternative = "lower", 

                                              unfilling.alternative = "higher", 

                                              rand.type=1,ncores=4)  

   

  # write D and I values of equivalency test 

  SIM_DI = cbind("Obs_D"=sim_testgr$obs$D,"Obs_I"=sim_testgr$obs$I) 

   

  # write p values of similarity test 

  p_SIM_DI = 
cbind("p.D_GR"=sim_testgr$p.D,"p.I_GR"=sim_testgr$p.I,"p.D_LW"=sim_testlw$p.D,"p.I_LW"=sim_testlw$
p.D) 

   

   

  # write p values of expansion, stability, and unfilling 

  p_SIM_dynam = 
cbind("p.expan"=sim_testgr$p.expansion,"p.stab"=sim_testgr$p.stability,"p.unfill"=sim_testgr$p.unfilling) 

   

   

  # Plot test distributions 

  ecospat.plot.overlap.test(eq_testgr, "D", "Greater Equivalency") 

  ecospat.plot.overlap.test(eq_testlw, "D", "Lower Equivalency") 

  ecospat.plot.overlap.test(sim_testgr, "D", "Greater Similarity") 

  ecospat.plot.overlap.test(sim_testlw, "D", "Lower Similarity") 
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  dev.off() # close the pdf so will stop adding plots 

   

  ## Plot niche space for first (grid.clim1) and second (grid.clim2) intervals (NOT WORKING, THEY MIGHT 
BE FIXING IT) 

  # ecospat.plot.niche(grid_first, title=spp_first_inter_name, name.axis1='PC1', name.axis2='PC2', cor=FALSE) 

  # ecospat.plot.niche(grid_second, title=spp_second_inter_name, name.axis1='PC1', name.axis2='PC2') 

   

   

  ### Look at niche expansion, stability, and unfilling 

  # NA=analysis on entire area, 0=analysis on only overlapping, 0.05=analysis on 5th quantile intersection 

  dynam_allAreas = ecospat.niche.dyn.index (grid_first, grid_second, intersection=NA)  

  dynam_overlap = ecospat.niche.dyn.index (grid_first, grid_second, intersection=0) 

   

  # write csv of niche dynamic percentages 

  Niche_Ex_St = cbind("AllAreas"=dynam_allAreas$dynamic.index.w, 

                      "Overlapping"=dynam_overlap$dynamic.index.w) 

   

  list_outputs <- list(d_i_overlap,eq_testgr,eq_testlw,sim_testgr,sim_testlw,Niche_Ex_St) 

  names(list_outputs) <- 
c("D_I_Overlap","Eq_Test_Great","Eq_Test_Low","Sim_Test_Great","Sim_Test_Low","Niche_dynamics") 

  return(list_outputs) 

   

} 

 

 

#### TEMPORAL RESOLUTION COMPARISON #### 

# Use above function to make plots of overlap comparison and produce list of overlap metric results 

# (output is in the form of a list including 1-D/I values of overlap, 2-Greater Equiv results (also list), 

# 3-Lower Equiv results, 4-Greater Similarity results, 5-Lower Similarity results, and 6-niche dynamics) 

conv_redu_campmid_overlap <- run_ecospat_dyn(conv_redu_prep,conv_campmid_prep, 

                                             "I. convextus B. reduncus-B. scotti\nvs. Middle 
Campanian","Iconv_redu_to_midcamp") 
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conv_nebr_campup_overlap <- run_ecospat_dyn(conv_nebr_prep,conv_campup_prep, 

                                            "I. convextus D. nebrascense-E. jenneyi\nvs. Upper 
Campanian","Iconv_nebr_to_upcamp") 

 

bara_rees_campup_overlap <- run_ecospat_dyn(bara_rees_prep,bara_campup_prep, 

                                             "I. barabini\nB. reesidei-B. eliasi\nvs. Upper Campanian","Ibara_rees_to_upcamp") 

 

bara_nebr_campup_overlap <- run_ecospat_dyn(bara_nebr_prep,bara_campup_prep, 

                                            "I. barabini\nD. nebrascense-E. jenneyi\nvs. Upper 
Campanian","Ibara_nebr_to_upcamp") 

 

sage_rees_campup_overlap <- run_ecospat_dyn(sage_rees_prep,sage_campup_prep, 

                                             "I. sagensis\nB. reesidei-B. eliasi\nvs. Upper Campanian","Isage_rees_to_upcamp") 

 

sage_comp_campup_overlap <- run_ecospat_dyn(sage_comp_prep,sage_campup_prep, 

                                            "I. sagensis\nB. compressus-B. cuneatus\nvs. Upper 
Campanian","Isage_comp_to_upcamp") 

 

subl_redu_campmid_overlap <- run_ecospat_dyn(subl_redu_prep,subl_campmid_prep, 

                                             "I. sublaevis\nB. reduncus-B. scotti\nvs. Middle 
Campanian","Isubl_redu_to_midcamp") 

 

subl_nebr_campup_overlap <- run_ecospat_dyn(subl_nebr_prep,subl_campup_prep, 

                                            "I. sublaevis\nD. nebrascense-E. jenneyi\nvs. Upper 
Campanian","Isubl_nebr_to_upcamp") 

 

azer_macl_campmid_overlap <- run_ecospat_dyn(azer_macl_prep,azer_campmid_prep, 

                                             "I. azerbaydjanensis\nB. maclearni-B. sp. (smooth)\nvs. Middle 
Campanian","Iazer_macl_to_midcamp") 

 

sask_redu_campmid_overlap <- run_ecospat_dyn(sask_redu_prep,sask_campmid_prep, 

                                             "I. saskatchewanensis\nB. reduncus-B. scotti\nvs. Middle 
Campanian","Isask_redu_to_midcamp") 
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oblo_rees_campup_overlap <- run_ecospat_dyn(oblo_rees_prep,oblo_campup_prep, 

                                             "I. oblongus\nB. reesidei-B. eliasi\nvs. Upper 
Campanian","Ioblo_rees_to_upcamp") 

 

cten_perp_campmid_overlap <- run_ecospat_dyn(cten_perp_prep,cten_campmid_prep, 

                                             "C. imbricatula\nB. perplexus-B. gregoryensis\nvs. Middle 
Campanian","Cimbr_perp_to_midcamp") 

 

 

cten_redu_campmid_overlap <- run_ecospat_dyn(cten_redu_prep,cten_campmid_prep, 

                                             "C. imbricatula\nB. reduncus-B. scotti\nvs. Middle 
Campanian","Cimbr_redu_to_midcamp") 

 

 

cten_nebr_campup_overlap <- run_ecospat_dyn(cten_nebr_prep,cten_campup_prep, 

                                            "C. imbricatula\nD. nebrascense-E. jenneyi\nvs. Upper 
Campanian","Cimbr_nebr_to_upcamp") 

 

 

cten_rees_campup_overlap <- run_ecospat_dyn(cten_rees_prep,cten_campup_prep, 

                                             "C. imbricatula\nB. reesidei-B. eliasi\nvs. Upper 
Campanian","Cimbr_rees_to_upcamp") 

 

luci_nebr_campup_overlap <- run_ecospat_dyn(luci_nebr_prep,luci_campup_prep, 

                                             "L. subundata\nD. nebrascense-E. jenneyi\nvs. Upper 
Campanian","Lsubu_nebr_to_upcamp") 

 

luci_rees_campup_overlap <- run_ecospat_dyn(luci_comp_prep,luci_campup_prep, 

                                            "L. subundata\nB. compressus-B. cuneatus\nvs. Upper 
Campanian","Lsubu_comp_to_upcamp") 

 

chla_nebr_campup_overlap <- run_ecospat_dyn(chla_nebr_prep,chla_campup_prep, 
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                                            "C. nebrascensis\nD. nebrascense-E. jenneyi\nvs. Upper 
Campanian","Cnebr_nebr_to_upcamp") 

 

chla_rees_campup_overlap <- run_ecospat_dyn(chla_rees_prep,chla_campup_prep, 

                                            "C. nebrascensis\nB. reesidei-B. eliasi\nvs. Upper 
Campanian","Cnebr_rees_to_upcamp") 

 

chla_bacu_maastrlow_overlap <- run_ecospat_dyn(chla_bacu_prep,chla_maastrlow_prep, 

                                            "C. nebrascensis\nB. baculus-B. grandis\nvs. Lower 
Maastrichtian","Cnebr_bacu_to_lowmaas") 

 

chla_bacu_maastr_overlap <- run_ecospat_dyn(chla_bacu_prep,chla_maastr_prep, 

                                               "C. nebrascensis\nB. baculus-B. grandis\nvs. 
Maastrichtian","Cnebr_bacu_to_maas") 

 

#### Summarize Temporal Resolution Comparisons and Export Tables #### 

# Combine the results of observed overlap 

make_D_I_row <- function(data1,name,interval){ 

  named1 <- as.data.frame(cbind(name,interval,data1[[2]]$obs$D,data1[[2]]$obs$I)) 

  colnames(named1) <- c("species","Intervals_compared","D_val","I_val") 

  named1[,c(3:4)] <- as.numeric(as.character(named1[,c(3:4)])) 

  return(named1) 

} 

 

# Outgroup Tables 

 

conv_redu_campmid_D_I_row <- make_D_I_row(conv_redu_campmid_overlap,"I. convexus","B. reduncus-B. 
scotti to Mid Campanian") 

conv_nebr_campup_D_I_row <- make_D_I_row(conv_nebr_campup_overlap,"I. convexus","D. nebrascense-E. 
jenneyi to Upper Campanian") 

 

bara_rees_campup_D_I_row <- make_D_I_row(bara_rees_campup_overlap,"I. barabini","B. reesidei-B. eliasi 
to Upper Campanian") 
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bara_nebr_campup_D_I_row <- make_D_I_row(bara_nebr_campup_overlap,"I. barabini","D. nebrascense-E. 
jenneyi to Upper Campanian") 

 

sage_rees_campup_D_I_row <- make_D_I_row(sage_rees_campup_overlap,"I. sagensis","B. reesidei-B. eliasi 
to Upper Campanian") 

sage_comp_campup_D_I_row <- make_D_I_row(sage_comp_campup_overlap,"I. sagensis","B. compressus-B. 
cuneatus to Upper Campanian") 

 

subl_redu_campmid_D_I_row <- make_D_I_row(subl_redu_campmid_overlap,"I. sublaevis","B. reduncus-B. 
scotti to Mid Campanian") 

subl_nebr_campup_D_I_row <- make_D_I_row(subl_nebr_campup_overlap,"I. sublaevis","D. nebrascense-E. 
jenneyi to Upper Campanian") 

 

azer_macl_campmid_D_I_row <- make_D_I_row(azer_macl_campmid_overlap,"I. azerbaydjanensis","B. 
maclearni-B. sp. (smooth) to Mid Campanian") 

 

oblo_rees_campup_D_I_row <- make_D_I_row(oblo_rees_campup_overlap,"I. oblongus","B. reesidei-B. eliasi 
to Upper Campanian") 

 

sask_redu_campmid_D_I_row <- make_D_I_row(sask_macl_campmid_overlap,"I. saskatchewanensis","B. 
reduncus-B. scotti to Mid Campanian") 

 

temp_res_I_D_results <- 
rbind(conv_redu_campmid_D_I_row,conv_nebr_campup_D_I_row,bara_rees_campup_D_I_row, 

                              bara_nebr_campup_D_I_row,sage_rees_campup_D_I_row,sage_comp_campup_D_I_row, 

                              subl_redu_campmid_D_I_row,subl_nebr_campup_D_I_row,azer_macl_campmid_D_I_row, 

                              oblo_rees_campup_D_I_row,sask_redu_campmid_D_I_row) 

 

# Outgroup tables 

 

conv_redu_campmid_D_I_row <- make_D_I_row(cten_perp_campmid_overlap,"C. imbricatula","B. perplexus-
B. gregoryensis to Mid Campanian") 

conv_nebr_campup_D_I_row <- make_D_I_row(cten_redu_campmid_overlap,"C. imbricatula","B. reduncus-B. 
scotti to Upper Campanian") 
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bara_rees_campup_D_I_row <- make_D_I_row(cten_nebr_campup_overlap,"C. imbricatula","D. nebrascense-
E. jenneyi to Upper Campanian") 

bara_nebr_campup_D_I_row <- make_D_I_row(cten_rees_campup_overlap,"C. imbricatula","B. reesidei-B. 
eliasi to Upper Campanian") 

 

sage_rees_campup_D_I_row <- make_D_I_row(luci_nebr_campup_overlap,"L. subundata","D. nebrascense-E. 
jenneyi to Upper Campanian") 

sage_comp_campup_D_I_row <- make_D_I_row(luci_rees_campup_overlap,"L. subundata","B. reesidei-B. 
eliasi to Upper Campanian") 

 

subl_redu_campmid_D_I_row <- make_D_I_row(chla_nebr_campup_overlap,"C. nebrascensis","D. 
nebrascense-E. jenneyi to Upper Campanian") 

subl_nebr_campup_D_I_row <- make_D_I_row(chla_rees_campup_overlap,"C. nebrascensis","B. reesidei-B. 
eliasi to Upper Campanian") 

 

azer_macl_campmid_D_I_row <- make_D_I_row(chla_bacu_maastrlow_overlap,"C. nebrascensis","B. baculus-
B. grandis to Lower Maastrichtian") 

 

oblo_rees_campup_D_I_row <- make_D_I_row(chla_bacu_maastr_overlap,"C. nebrascensis","B. baculus-B. 
grandis to Maastrichtian") 

 

 

temp_res_outgroup_I_D_results <- 
rbind(conv_redu_campmid_D_I_row,conv_nebr_campup_D_I_row,bara_rees_campup_D_I_row, 

                              bara_nebr_campup_D_I_row,sage_rees_campup_D_I_row,sage_comp_campup_D_I_row, 

                              subl_redu_campmid_D_I_row,subl_nebr_campup_D_I_row,azer_macl_campmid_D_I_row, 

                              oblo_rees_campup_D_I_row) 

 

# Combine the results of equivalency tests 

make_exp_p_row <- function(data1,name,interval){ 

  named1 <- as.data.frame(cbind(name,interval,data1[[2]]$p.D,data1[[2]]$p.I,data1[[3]]$p.D,data1[[3]]$p.I)) 

  colnames(named1) <- 
c("species","Intervals_compared","Greater_Eq_p_D","Greater_Eq_p_I","Lower_Eq_p_D","Lower_Eq_p_I") 

  named1[,c(3:4)] <- as.numeric(as.character(named1[,c(3:4)])) 

  return(named1) 



Supplementary Materials for Purcell and Myers, 20XX 676 
 

676 
 

} 

 

conv_redu_campmid_eq_row <- make_exp_p_row(conv_redu_campmid_overlap,"I. convexus","B. reduncus-B. 
scotti to Mid Campanian") 

conv_nebr_campup_eq_row <- make_exp_p_row(conv_nebr_campup_overlap,"I. convexus","D. nebrascense-
E. jenneyi to Upper Campanian") 

 

bara_rees_campup_eq_row <- make_exp_p_row(bara_rees_campup_overlap,"I. barabini","B. reesidei-B. eliasi 
to Upper Campanian") 

bara_nebr_campup_eq_row <- make_exp_p_row(bara_nebr_campup_overlap,"I. barabini","D. nebrascense-E. 
jenneyi to Upper Campanian") 

 

sage_rees_campup_eq_row <- make_exp_p_row(sage_rees_campup_overlap,"I. sagensis","B. reesidei-B. eliasi 
to Upper Campanian") 

sage_comp_campup_eq_row <- make_exp_p_row(sage_comp_campup_overlap,"I. sagensis","B. compressus-
B. cuneatus to Upper Campanian") 

 

subl_redu_campmid_eq_row <- make_exp_p_row(subl_redu_campmid_overlap,"I. sublaevis","B. reduncus-B. 
scotti to Mid Campanian") 

subl_nebr_campup_eq_row <- make_exp_p_row(subl_nebr_campup_overlap,"I. sublaevis","D. nebrascense-E. 
jenneyi to Upper Campanian") 

 

azer_macl_campmid_eq_row <- make_exp_p_row(azer_macl_campmid_overlap,"I. azerbaydjanensis","B. 
maclearni-B. sp. (smooth) to Mid Campanian") 

 

oblo_rees_campup_eq_row <- make_exp_p_row(oblo_rees_campup_overlap,"I. oblongus","B. reesidei-B. eliasi 
to Upper Campanian") 

 

sask_redu_campmid_eq_row <- make_exp_p_row(sask_macl_campmid_overlap,"I. saskatchewanensis","B. 
reduncus-B. scotti to Mid Campanian") 

 

temp_res_eq_results <- 
rbind(conv_redu_campmid_eq_row,conv_nebr_campup_eq_row,bara_rees_campup_eq_row, 

      bara_nebr_campup_eq_row,sage_rees_campup_eq_row,sage_comp_campup_eq_row, 

      subl_redu_campmid_eq_row,subl_nebr_campup_eq_row,azer_macl_campmid_eq_row, 

      oblo_rees_campup_eq_row,sask_redu_campmid_eq_row) 
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# Outgroup tables 

 

conv_redu_campmid_eq_row <- make_exp_p_row(cten_perp_campmid_overlap,"C. imbricatula","B. 
perplexus-B. gregoryensis to Mid Campanian") 

conv_nebr_campup_eq_row <- make_exp_p_row(cten_redu_campmid_overlap,"C. imbricatula","B. reduncus-
B. scotti to Upper Campanian") 

 

bara_rees_campup_eq_row <- make_exp_p_row(cten_nebr_campup_overlap,"C. imbricatula","D. nebrascense-
E. jenneyi to Upper Campanian") 

bara_nebr_campup_eq_row <- make_exp_p_row(cten_rees_campup_overlap,"C. imbricatula","B. reesidei-B. 
eliasi to Upper Campanian") 

 

sage_rees_campup_eq_row <- make_exp_p_row(luci_nebr_campup_overlap,"L. subundata","D. nebrascense-E. 
jenneyi to Upper Campanian") 

sage_comp_campup_eq_row <- make_exp_p_row(luci_rees_campup_overlap,"L. subundata","B. reesidei-B. 
eliasi to Upper Campanian") 

 

subl_redu_campmid_eq_row <- make_exp_p_row(chla_nebr_campup_overlap,"C. nebrascensis","D. 
nebrascense-E. jenneyi to Upper Campanian") 

subl_nebr_campup_eq_row <- make_exp_p_row(chla_rees_campup_overlap,"C. nebrascensis","B. reesidei-B. 
eliasi to Upper Campanian") 

 

azer_macl_campmid_eq_row <- make_exp_p_row(chla_bacu_maastrlow_overlap,"C. nebrascensis","B. 
baculus-B. grandis to Lower Maastrichtian") 

 

oblo_rees_campup_eq_row <- make_exp_p_row(chla_bacu_maastr_overlap,"C. nebrascensis","B. baculus-B. 
grandis to Maastrichtian") 

 

 

temp_res_outgroup_eq_results <- 
rbind(conv_redu_campmid_eq_row,conv_nebr_campup_eq_row,bara_rees_campup_eq_row, 

                                       bara_nebr_campup_eq_row,sage_rees_campup_eq_row,sage_comp_campup_eq_row, 

                                       subl_redu_campmid_eq_row,subl_nebr_campup_eq_row,azer_macl_campmid_eq_row, 

                                       oblo_rees_campup_eq_row) 
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# Combine the results of equivalency tests of Dynamics (p-vals) 

make_exp_dyn_p_row <- function(data1,name,interval){ 

  named1 <- 
as.data.frame(cbind(name,interval,data1[[2]]$p.expansion,data1[[2]]$p.stability,data1[[2]]$p.unfilling, 

                                data1[[3]]$p.expansion,data1[[3]]$p.stability,data1[[3]]$p.unfilling)) 

  colnames(named1) <- 
c("species","Intervals_compared","Greater_Eq_p_expansion","Greater_Eq_p_stability","Greater_Eq_p_unfillin
g", 

                        "Lower_Eq_p_expansion","Lower_Eq_p_stability","Lower_Eq_p_unfilling") 

  named1[,c(3:4)] <- as.numeric(as.character(named1[,c(3:4)])) 

  return(named1) 

} 

 

conv_redu_campmid_eq_dyn_p_row <- make_exp_dyn_p_row(conv_redu_campmid_overlap,"I. convexus","B. 
reduncus-B. scotti to Mid Campanian") 

conv_nebr_campup_eq_dyn_p_row <- make_exp_dyn_p_row(conv_nebr_campup_overlap,"I. convexus","D. 
nebrascense-E. jenneyi to Upper Campanian") 

 

bara_rees_campup_eq_dyn_p_row <- make_exp_dyn_p_row(bara_rees_campup_overlap,"I. barabini","B. 
reesidei-B. eliasi to Upper Campanian") 

bara_nebr_campup_eq_dyn_p_row <- make_exp_dyn_p_row(bara_nebr_campup_overlap,"I. barabini","D. 
nebrascense-E. jenneyi to Upper Campanian") 

 

sage_rees_campup_eq_dyn_p_row <- make_exp_dyn_p_row(sage_rees_campup_overlap,"I. sagensis","B. 
reesidei-B. eliasi to Upper Campanian") 

sage_comp_campup_eq_dyn_p_row <- make_exp_dyn_p_row(sage_comp_campup_overlap,"I. sagensis","B. 
compressus-B. cuneatus to Upper Campanian") 

 

subl_redu_campmid_eq_dyn_p_row <- make_exp_dyn_p_row(subl_redu_campmid_overlap,"I. sublaevis","B. 
reduncus-B. scotti to Mid Campanian") 

subl_nebr_campup_eq_dyn_p_row <- make_exp_dyn_p_row(subl_nebr_campup_overlap,"I. sublaevis","D. 
nebrascense-E. jenneyi to Upper Campanian") 

 

azer_macl_campmid_eq_dyn_p_row <- make_exp_dyn_p_row(azer_macl_campmid_overlap,"I. 
azerbaydjanensis","B. maclearni-B. sp. (smooth) to Mid Campanian") 
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oblo_rees_campup_eq_dyn_p_row <- make_exp_dyn_p_row(oblo_rees_campup_overlap,"I. oblongus","B. 
reesidei-B. eliasi to Upper Campanian") 

 

sask_redu_campmid_eq_dyn_p_row <- make_exp_dyn_p_row(sask_macl_campmid_overlap,"I. 
saskatchewanensis","B. reduncus-B. scotti to Mid Campanian") 

 

 

temp_res_eq_dyn_p_results <- 
rbind(conv_redu_campmid_eq_dyn_p_row,conv_nebr_campup_eq_dyn_p_row,bara_rees_campup_eq_dyn_p_r
ow, 

                             
bara_nebr_campup_eq_dyn_p_row,sage_rees_campup_eq_dyn_p_row,sage_comp_campup_eq_dyn_p_row, 

                             
subl_redu_campmid_eq_dyn_p_row,subl_nebr_campup_eq_dyn_p_row,azer_macl_campmid_eq_dyn_p_row, 

                             oblo_rees_campup_eq_dyn_p_row,sask_redu_campmid_eq_dyn_p_row) 

 

# Outgroup tables 

 

conv_redu_campmid_eq_dyn_p_row <- make_exp_dyn_p_row(cten_perp_campmid_overlap,"C. 
imbricatula","B. perplexus-B. gregoryensis to Mid Campanian") 

conv_nebr_campup_eq_dyn_p_row <- make_exp_dyn_p_row(cten_redu_campmid_overlap,"C. 
imbricatula","B. reduncus-B. scotti to Upper Campanian") 

 

bara_rees_campup_eq_dyn_p_row <- make_exp_dyn_p_row(cten_nebr_campup_overlap,"C. imbricatula","D. 
nebrascense-E. jenneyi to Upper Campanian") 

bara_nebr_campup_eq_dyn_p_row <- make_exp_dyn_p_row(cten_rees_campup_overlap,"C. imbricatula","B. 
reesidei-B. eliasi to Upper Campanian") 

 

sage_rees_campup_eq_dyn_p_row <- make_exp_dyn_p_row(luci_nebr_campup_overlap,"L. subundata","D. 
nebrascense-E. jenneyi to Upper Campanian") 

sage_comp_campup_eq_dyn_p_row <- make_exp_dyn_p_row(luci_rees_campup_overlap,"L. subundata","B. 
reesidei-B. eliasi to Upper Campanian") 

 

subl_redu_campmid_eq_dyn_p_row <- make_exp_dyn_p_row(chla_nebr_campup_overlap,"C. 
nebrascensis","D. nebrascense-E. jenneyi to Upper Campanian") 

subl_nebr_campup_eq_dyn_p_row <- make_exp_dyn_p_row(chla_rees_campup_overlap,"C. nebrascensis","B. 
reesidei-B. eliasi to Upper Campanian") 
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azer_macl_campmid_eq_dyn_p_row <- make_exp_dyn_p_row(chla_bacu_maastrlow_overlap,"C. 
nebrascensis","B. baculus-B. grandis to Lower Maastrichtian") 

 

oblo_rees_campup_eq_dyn_p_row <- make_exp_dyn_p_row(chla_bacu_maastr_overlap,"C. nebrascensis","B. 
baculus-B. grandis to Maastrichtian") 

 

 

temp_res_outgroup_eq_dyn_p_results <- 
rbind(conv_redu_campmid_eq_dyn_p_row,conv_nebr_campup_eq_dyn_p_row,bara_rees_campup_eq_dyn_p_r
ow, 

                                      
bara_nebr_campup_eq_dyn_p_row,sage_rees_campup_eq_dyn_p_row,sage_comp_campup_eq_dyn_p_row, 

                                      
subl_redu_campmid_eq_dyn_p_row,subl_nebr_campup_eq_dyn_p_row,azer_macl_campmid_eq_dyn_p_row, 

                                      oblo_rees_campup_eq_dyn_p_row) 

 

# Combine the results of similarity tests 

make_sim_p_row <- function(data1,name,interval){ 

  named1 <- as.data.frame(cbind(name,interval,data1[[4]]$p.D,data1[[4]]$p.I,data1[[5]]$p.D,data1[[5]]$p.I)) 

  colnames(named1) <- 
c("species","Intervals_compared","Greater_Sim_p_D","Greater_Sim_p_I","Lower_Sim_p_D","Lower_Sim_p_I
") 

  named1[,c(3:4)] <- as.numeric(as.character(named1[,c(3:4)])) 

  return(named1) 

} 

 

conv_redu_campmid_sim_row <- make_sim_p_row(conv_redu_campmid_overlap,"I. convexus","B. reduncus-
B. scotti to Mid Campanian") 

conv_nebr_campup_sim_row <- make_sim_p_row(conv_nebr_campup_overlap,"I. convexus","D. nebrascense-
E. jenneyi to Upper Campanian") 

 

bara_rees_campup_sim_row <- make_sim_p_row(bara_rees_campup_overlap,"I. barabini","B. reesidei-B. eliasi 
to Upper Campanian") 

bara_nebr_campup_sim_row <- make_sim_p_row(bara_nebr_campup_overlap,"I. barabini","D. nebrascense-E. 
jenneyi to Upper Campanian") 
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sage_rees_campup_sim_row <- make_sim_p_row(sage_rees_campup_overlap,"I. sagensis","B. reesidei-B. 
eliasi to Upper Campanian") 

sage_comp_campup_sim_row <- make_sim_p_row(sage_comp_campup_overlap,"I. sagensis","B. compressus-
B. cuneatus to Upper Campanian") 

 

subl_redu_campmid_sim_row <- make_sim_p_row(subl_redu_campmid_overlap,"I. sublaevis","B. reduncus-B. 
scotti to Mid Campanian") 

subl_nebr_campup_sim_row <- make_sim_p_row(subl_nebr_campup_overlap,"I. sublaevis","D. nebrascense-E. 
jenneyi to Upper Campanian") 

 

azer_macl_campmid_sim_row <- make_sim_p_row(azer_macl_campmid_overlap,"I. azerbaydjanensis","B. 
maclearni-B. sp. (smooth) to Mid Campanian") 

 

oblo_rees_campup_sim_row <- make_sim_p_row(oblo_rees_campup_overlap,"I. oblongus","B. reesidei-B. 
eliasi to Upper Campanian") 

 

sask_redu_campmid_sim_row <- make_sim_p_row(sask_macl_campmid_overlap,"I. saskatchewanensis","B. 
reduncus-B. scotti to Mid Campanian") 

 

temp_res_sim_results <- 
rbind(conv_redu_campmid_sim_row,conv_nebr_campup_sim_row,bara_rees_campup_sim_row, 

      bara_nebr_campup_sim_row,sage_rees_campup_sim_row,sage_comp_campup_sim_row, 

      subl_redu_campmid_sim_row,subl_nebr_campup_sim_row,azer_macl_campmid_sim_row, 

      oblo_rees_campup_sim_row,sask_redu_campmid_sim_row) 

 

# Outgroup tables 

 

conv_redu_campmid_sim_row <- make_sim_p_row(cten_perp_campmid_overlap,"C. imbricatula","B. 
perplexus-B. gregoryensis to Mid Campanian") 

conv_nebr_campup_sim_row <- make_sim_p_row(cten_redu_campmid_overlap,"C. imbricatula","B. reduncus-
B. scotti to Upper Campanian") 

 

bara_rees_campup_sim_row <- make_sim_p_row(cten_nebr_campup_overlap,"C. imbricatula","D. 
nebrascense-E. jenneyi to Upper Campanian") 
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bara_nebr_campup_sim_row <- make_sim_p_row(cten_rees_campup_overlap,"C. imbricatula","B. reesidei-B. 
eliasi to Upper Campanian") 

 

sage_rees_campup_sim_row <- make_sim_p_row(luci_nebr_campup_overlap,"L. subundata","D. nebrascense-
E. jenneyi to Upper Campanian") 

sage_comp_campup_sim_row <- make_sim_p_row(luci_rees_campup_overlap,"L. subundata","B. reesidei-B. 
eliasi to Upper Campanian") 

 

subl_redu_campmid_sim_row <- make_sim_p_row(chla_nebr_campup_overlap,"C. nebrascensis","D. 
nebrascense-E. jenneyi to Upper Campanian") 

subl_nebr_campup_sim_row <- make_sim_p_row(chla_rees_campup_overlap,"C. nebrascensis","B. reesidei-B. 
eliasi to Upper Campanian") 

 

azer_macl_campmid_sim_row <- make_sim_p_row(chla_bacu_maastrlow_overlap,"C. nebrascensis","B. 
baculus-B. grandis to Lower Maastrichtian") 

 

oblo_rees_campup_sim_row <- make_sim_p_row(chla_bacu_maastr_overlap,"C. nebrascensis","B. baculus-B. 
grandis to Maastrichtian") 

 

temp_res_outgroup_sim_results <- 
rbind(conv_redu_campmid_sim_row,conv_nebr_campup_sim_row,bara_rees_campup_sim_row, 

                                            
bara_nebr_campup_sim_row,sage_rees_campup_sim_row,sage_comp_campup_sim_row, 

                                            
subl_redu_campmid_sim_row,subl_nebr_campup_sim_row,azer_macl_campmid_sim_row, 

                                            oblo_rees_campup_sim_row) 

 

# Combine the results of equivalency tests of Dynamics (p-vals) 

make_sim_dyn_p_row <- function(data1,name,interval){ 

  named1 <- 
as.data.frame(cbind(name,interval,data1[[4]]$p.expansion,data1[[4]]$p.stability,data1[[4]]$p.unfilling, 

                                data1[[5]]$p.expansion,data1[[5]]$p.stability,data1[[5]]$p.unfilling)) 

  colnames(named1) <- 
c("species","Intervals_compared","Greater_Sim_p_expansion","Greater_Sim_p_stability","Greater_Sim_p_unfi
lling", 

                        "Lower_Sim_p_expansion","Lower_Sim_p_stability","Lower_Sim_p_unfilling") 
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  named1[,c(3:4)] <- as.numeric(as.character(named1[,c(3:4)])) 

  return(named1) 

} 

 

conv_redu_campmid_sim_dyn_p_row <- make_sim_dyn_p_row(conv_redu_campmid_overlap,"I. 
convexus","B. reduncus-B. scotti to Mid Campanian") 

conv_nebr_campup_sim_dyn_p_row <- make_sim_dyn_p_row(conv_nebr_campup_overlap,"I. convexus","D. 
nebrascense-E. jenneyi to Upper Campanian") 

 

bara_rees_campup_sim_dyn_p_row <- make_sim_dyn_p_row(bara_rees_campup_overlap,"I. barabini","B. 
reesidei-B. eliasi to Upper Campanian") 

bara_nebr_campup_sim_dyn_p_row <- make_sim_dyn_p_row(bara_nebr_campup_overlap,"I. barabini","D. 
nebrascense-E. jenneyi to Upper Campanian") 

 

sage_rees_campup_sim_dyn_p_row <- make_sim_dyn_p_row(sage_rees_campup_overlap,"I. sagensis","B. 
reesidei-B. eliasi to Upper Campanian") 

sage_comp_campup_sim_dyn_p_row <- make_sim_dyn_p_row(sage_comp_campup_overlap,"I. sagensis","B. 
compressus-B. cuneatus to Upper Campanian") 

 

subl_redu_campmid_sim_dyn_p_row <- make_sim_dyn_p_row(subl_redu_campmid_overlap,"I. sublaevis","B. 
reduncus-B. scotti to Mid Campanian") 

subl_nebr_campup_sim_dyn_p_row <- make_sim_dyn_p_row(subl_nebr_campup_overlap,"I. sublaevis","D. 
nebrascense-E. jenneyi to Upper Campanian") 

 

azer_macl_campmid_sim_dyn_p_row <- make_sim_dyn_p_row(azer_macl_campmid_overlap,"I. 
azerbaydjanensis","B. maclearni-B. sp. (smooth) to Mid Campanian") 

 

oblo_rees_campup_sim_dyn_p_row <- make_sim_dyn_p_row(oblo_rees_campup_overlap,"I. oblongus","B. 
reesidei-B. eliasi to Upper Campanian") 

 

sask_redu_campmid_sim_dyn_p_row <- make_sim_dyn_p_row(sask_macl_campmid_overlap,"I. 
saskatchewanensis","B. reduncus-B. scotti to Mid Campanian") 
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temp_res_sim_dyn_p_results <- 
rbind(conv_redu_campmid_sim_dyn_p_row,conv_nebr_campup_sim_dyn_p_row,bara_rees_campup_sim_dyn
_p_row, 

                                   
bara_nebr_campup_sim_dyn_p_row,sage_rees_campup_sim_dyn_p_row,sage_comp_campup_sim_dyn_p_row, 

                                   
subl_redu_campmid_sim_dyn_p_row,subl_nebr_campup_sim_dyn_p_row,azer_macl_campmid_sim_dyn_p_ro
w, 

                                   oblo_rees_campup_sim_dyn_p_row,sask_redu_campmid_sim_dyn_p_row) 

 

# Outgroup tables 

 

conv_redu_campmid_sim_dyn_p_row <- make_sim_dyn_p_row(cten_perp_campmid_overlap,"C. 
imbricatula","B. perplexus-B. gregoryensis to Mid Campanian") 

conv_nebr_campup_sim_dyn_p_row <- make_sim_dyn_p_row(cten_redu_campmid_overlap,"C. 
imbricatula","B. reduncus-B. scotti to Upper Campanian") 

 

bara_rees_campup_sim_dyn_p_row <- make_sim_dyn_p_row(cten_nebr_campup_overlap,"C. imbricatula","D. 
nebrascense-E. jenneyi to Upper Campanian") 

bara_nebr_campup_sim_dyn_p_row <- make_sim_dyn_p_row(cten_rees_campup_overlap,"C. imbricatula","B. 
reesidei-B. eliasi to Upper Campanian") 

 

sage_rees_campup_sim_dyn_p_row <- make_sim_dyn_p_row(luci_nebr_campup_overlap,"L. subundata","D. 
nebrascense-E. jenneyi to Upper Campanian") 

sage_comp_campup_sim_dyn_p_row <- make_sim_dyn_p_row(luci_rees_campup_overlap,"L. subundata","B. 
reesidei-B. eliasi to Upper Campanian") 

 

subl_redu_campmid_sim_dyn_p_row <- make_sim_dyn_p_row(chla_nebr_campup_overlap,"C. 
nebrascensis","D. nebrascense-E. jenneyi to Upper Campanian") 

subl_nebr_campup_sim_dyn_p_row <- make_sim_dyn_p_row(chla_rees_campup_overlap,"C. 
nebrascensis","B. reesidei-B. eliasi to Upper Campanian") 

 

azer_macl_campmid_sim_dyn_p_row <- make_sim_dyn_p_row(chla_bacu_maastrlow_overlap,"C. 
nebrascensis","B. baculus-B. grandis to Lower Maastrichtian") 

 

oblo_rees_campup_sim_dyn_p_row <- make_sim_dyn_p_row(chla_bacu_maastr_overlap,"C. nebrascensis","B. 
baculus-B. grandis to Maastrichtian") 
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temp_res_outgroup_sim_dyn_p_results <- 
rbind(conv_redu_campmid_sim_dyn_p_row,conv_nebr_campup_sim_dyn_p_row,bara_rees_campup_sim_dyn
_p_row, 

                                       
bara_nebr_campup_sim_dyn_p_row,sage_rees_campup_sim_dyn_p_row,sage_comp_campup_sim_dyn_p_row, 

                                       
subl_redu_campmid_sim_dyn_p_row,subl_nebr_campup_sim_dyn_p_row,azer_macl_campmid_sim_dyn_p_ro
w, 

                                       oblo_rees_campup_sim_dyn_p_row) 

 

# Combine the results of niche dynamics 

make_dynam_row <- function(data1,name,interval){ 

  data <- as.data.frame(data1[[6]]) 

  named1 <- as.data.frame(cbind(name,interval,t(data[,2]))) 

  colnames(named1) <- c("species","Intervals_compared","Expansion","Stability","Unfilling") 

  named1[,c(3:5)] <- as.numeric(as.character(named1[,c(3:5)])) 

  return(named1) 

} 

 

conv_redu_campmid_dyn_row <- make_dynam_row(conv_redu_campmid_overlap,"I. convexus","B. reduncus-
B. scotti to Mid Campanian") 

conv_nebr_campup_dyn_row <- make_dynam_row(conv_nebr_campup_overlap,"I. convexus","D. 
nebrascense-E. jenneyi to Upper Campanian") 

 

bara_rees_campup_dyn_row <- make_dynam_row(bara_rees_campup_overlap,"I. barabini","B. reesidei-B. 
eliasi to Upper Campanian") 

bara_nebr_campup_dyn_row <- make_dynam_row(bara_nebr_campup_overlap,"I. barabini","D. nebrascense-E. 
jenneyi to Upper Campanian") 

 

sage_rees_campup_dyn_row <- make_dynam_row(sage_rees_campup_overlap,"I. sagensis","B. reesidei-B. 
eliasi to Upper Campanian") 

sage_comp_campup_dyn_row <- make_dynam_row(sage_comp_campup_overlap,"I. sagensis","B. compressus-
B. cuneatus to Upper Campanian") 
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subl_redu_campmid_dyn_row <- make_dynam_row(subl_redu_campmid_overlap,"I. sublaevis","B. reduncus-
B. scotti to Mid Campanian") 

subl_nebr_campup_dyn_row <- make_dynam_row(subl_nebr_campup_overlap,"I. sublaevis","D. nebrascense-
E. jenneyi to Upper Campanian") 

 

azer_macl_campmid_dyn_row <- make_dynam_row(azer_macl_campmid_overlap,"I. azerbaydjanensis","B. 
maclearni-B. sp. (smooth) to Mid Campanian") 

 

oblo_rees_campup_dyn_row <- make_dynam_row(oblo_rees_campup_overlap,"I. oblongus","B. reesidei-B. 
eliasi to Upper Campanian") 

 

sask_redu_campmid_dyn_row <- make_dynam_row(sask_macl_campmid_overlap,"I. saskatchewanensis","B. 
reduncus-B. scotti to Mid Campanian") 

 

temp_res_dyn_results <- 
rbind(conv_redu_campmid_dyn_row,conv_nebr_campup_dyn_row,bara_rees_campup_dyn_row, 

      bara_nebr_campup_dyn_row,sage_rees_campup_dyn_row,sage_comp_campup_dyn_row, 

      subl_redu_campmid_dyn_row,subl_nebr_campup_dyn_row,azer_macl_campmid_dyn_row, 

      oblo_rees_campup_dyn_row,sask_redu_campmid_dyn_row) 

 

# Outgroup tables 

 

conv_redu_campmid_dyn_row <- make_dynam_row(cten_perp_campmid_overlap,"C. imbricatula","B. 
perplexus-B. gregoryensis to Mid Campanian") 

conv_nebr_campup_dyn_row <- make_dynam_row(cten_redu_campmid_overlap,"C. imbricatula","B. 
reduncus-B. scotti to Upper Campanian") 

 

bara_rees_campup_dyn_row <- make_dynam_row(cten_nebr_campup_overlap,"C. imbricatula","D. 
nebrascense-E. jenneyi to Upper Campanian") 

bara_nebr_campup_dyn_row <- make_dynam_row(cten_rees_campup_overlap,"C. imbricatula","B. reesidei-B. 
eliasi to Upper Campanian") 

 

sage_rees_campup_dyn_row <- make_dynam_row(luci_nebr_campup_overlap,"L. subundata","D. nebrascense-
E. jenneyi to Upper Campanian") 

sage_comp_campup_dyn_row <- make_dynam_row(luci_rees_campup_overlap,"L. subundata","B. reesidei-B. 
eliasi to Upper Campanian") 
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subl_redu_campmid_dyn_row <- make_dynam_row(chla_nebr_campup_overlap,"C. nebrascensis","D. 
nebrascense-E. jenneyi to Upper Campanian") 

subl_nebr_campup_dyn_row <- make_dynam_row(chla_rees_campup_overlap,"C. nebrascensis","B. reesidei-
B. eliasi to Upper Campanian") 

 

azer_macl_campmid_dyn_row <- make_dynam_row(chla_bacu_maastrlow_overlap,"C. nebrascensis","B. 
baculus-B. grandis to Lower Maastrichtian") 

 

oblo_rees_campup_dyn_row <- make_dynam_row(chla_bacu_maastr_overlap,"C. nebrascensis","B. baculus-B. 
grandis to Maastrichtian") 

 

temp_res_outgroup_dyn_results <- 
rbind(conv_redu_campmid_dyn_row,conv_nebr_campup_dyn_row,bara_rees_campup_dyn_row, 

                                             
bara_nebr_campup_dyn_row,sage_rees_campup_dyn_row,sage_comp_campup_dyn_row, 

                                             
subl_redu_campmid_dyn_row,subl_nebr_campup_dyn_row,azer_macl_campmid_dyn_row, 

                                             oblo_rees_campup_dyn_row) 

 

## Write csv files of results 

write.csv(temp_res_outgroup_I_D_results,file="tables/temp_res_outgroup_I_D_results.csv") 

write.csv(temp_res_outgroup_eq_results,file="tables/temp_res_outgroup_eq_results.csv") 

write.csv(temp_res_outgroup_sim_results,file="tables/temp_res_outgroup_sim_results.csv") 

write.csv(temp_res_outgroup_dyn_results,file="tables/temp_res_outgroup_dyn_results.csv") 

write.csv(temp_res_outgroup_eq_dyn_p_results,file="tables/temp_res_outgroup_eq_dyn_p_results.csv") 

write.csv(temp_res_outgroup_sim_dyn_p_results,file="tables/temp_res_outgroup_sim_dyn_p_results.csv") 

 

#### SPECIES WITHIN SAME INTERVAL COMPARISON #### 

# Use above function to make plots of overlap comparison between spp and produce list of overlap metric 
results 

 

conv_to_subl_redu_overlap <- run_ecospat_dyn(conv_redu_prep,subl_redu_prep, 

                                             "I. convextus to I. sublaevis\nB. reduncus-B. scotti","Iconv_to_Isubl_redu_") 
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conv_to_sask_redu_overlap <- run_ecospat_dyn(conv_redu_prep,sask_redu_prep, 

                                             "I. convextus to I. saskatchewanensis\nB. reduncus-B. 
scotti","Iconv_to_Isask_redu_") 

 

subl_to_sask_redu_overlap <- run_ecospat_dyn(subl_redu_prep,sask_redu_prep, 

                                             "I. sublaevis to I. saskatchewanensis\nB. reduncus-B. 
scotti","Isubl_to_Isask_redu_") 

 

conv_to_bara_nebr_overlap <- run_ecospat_dyn(conv_nebr_prep,bara_nebr_prep, 

                                            "I. convextus to I. barabini\nD. nebrascense-E. jenneyi","Iconv_to_Ibara_nebr") 

 

conv_to_subl_nebr_overlap <- run_ecospat_dyn(conv_nebr_prep,subl_nebr_prep, 

                                             "I. convextus to I. sublaevis\nD. nebrascense-E. jenneyi","Iconv_to_Isubl_nebr") 

 

bara_to_subl_nebr_overlap <- run_ecospat_dyn(bara_nebr_prep,subl_nebr_prep, 

                                             "I. barabini to I. sublaevis\nD. nebrascense-E. jenneyi","Ibara_to_Isubl_nebr") 

 

bara_to_sage_rees_overlap <- run_ecospat_dyn(bara_rees_prep,sage_rees_prep, 

                                             "I. barabini to I. sagensis\nB. reesidei-B. eliasi","Ibara_to_Isage_rees") 

 

bara_to_oblo_rees_overlap <- run_ecospat_dyn(bara_rees_prep,oblo_rees_prep, 

                                             "I. barabini to I. oblongus\nB. reesidei-B. eliasi","Ibara_to_Ioblo_rees") 

 

oblo_to_sage_rees_overlap <- run_ecospat_dyn(oblo_rees_prep,sage_rees_prep, 

                                             "I. oblongus to I. sagensis\nB. reesidei-B. eliasi","Ioblo_to_Isage_rees") 

 

#### Summarize Species Comparisons and Export Tables #### 

# Combine the results of observed overlap 

make_D_I_row <- function(data1,name,interval){ 

  named1 <- as.data.frame(cbind(name,interval,data1[[2]]$obs$D,data1[[2]]$obs$I)) 

  colnames(named1) <- c("species","Intervals_compared","D_val","I_val") 
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  named1[,c(3:4)] <- as.numeric(as.character(named1[,c(3:4)])) 

  return(named1) 

} 

 

conv_to_subl_redu_D_I_row <- make_D_I_row(conv_to_subl_redu_overlap,"I. convexus vs. I. sublaevis","B. 
reduncus-B. scotti") 

 

conv_to_sask_redu_D_I_row <- make_D_I_row(conv_to_sask_redu_overlap,"I. convexus vs. I. 
saskatchewanensis","B. reduncus-B. scotti") 

 

subl_to_sask_redu_D_I_row <- make_D_I_row(subl_to_sask_redu_overlap,"I. sublaevis vs. I. 
saskatchewanensis","B. reduncus-B. scotti") 

 

conv_to_bara_nebr_D_I_row <- make_D_I_row(conv_to_bara_nebr_overlap,"I. convexus vs. I. barabini","D. 
nebrascense-E. jenneyi") 

 

conv_to_subl_nebr_D_I_row <- make_D_I_row(conv_to_subl_nebr_overlap,"I. convexus vs. I. sublaevis","B. 
reesidei-B. eliasi") 

 

bara_to_subl_nebr_D_I_row <- make_D_I_row(bara_to_subl_nebr_overlap,"I. barabini vs. I. sublaevis","D. 
nebrascense-E. jenneyi") 

 

bara_to_sage_rees_D_I_row <- make_D_I_row(bara_to_sage_rees_overlap,"I. barabini vs. I. sagensis","B. 
reesidei-B. eliasi") 

 

bara_to_oblo_rees_D_I_row <- make_D_I_row(bara_to_oblo_rees_overlap,"I. barabini vs. I. oblongus","B. 
reesidei-B. eliasi") 

 

oblo_to_sage_rees_D_I_row <- make_D_I_row(oblo_to_sage_rees_overlap,"I. oblongus vs. I. sagensis","B. 
reesidei-B. eliasi") 

 

 

species_compare_I_D_results <- rbind(conv_to_subl_redu_D_I_row,conv_to_sask_redu_D_I_row, 

                                     subl_to_sask_redu_D_I_row,conv_to_bara_nebr_D_I_row, 

                                     conv_to_subl_nebr_D_I_row, 
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                                     bara_to_subl_nebr_D_I_row,bara_to_sage_rees_D_I_row, 

                                     bara_to_oblo_rees_D_I_row,oblo_to_sage_rees_D_I_row) 

 

# Combine the results of equivalency tests 

make_exp_p_row <- function(data1,name,interval){ 

  named1 <- as.data.frame(cbind(name,interval,data1[[2]]$p.D,data1[[2]]$p.I,data1[[3]]$p.D,data1[[3]]$p.I)) 

  colnames(named1) <- 
c("species","Intervals_compared","Greater_Eq_p_D","Greater_Eq_p_I","Lower_Eq_p_D","Lower_Eq_p_I") 

  named1[,c(3:4)] <- as.numeric(as.character(named1[,c(3:4)])) 

  return(named1) 

} 

 

conv_to_subl_eq_row <- make_exp_p_row(conv_to_subl_redu_overlap,"I. convexus vs. I. sublaevis","B. 
reduncus-B. scotti") 

 

conv_to_sask_eq_row <- make_exp_p_row(conv_to_sask_redu_overlap,"I. convexus vs. I. 
saskatchewanensis","B. reduncus-B. scotti") 

 

subl_to_sask_eq_row <- make_exp_p_row(subl_to_sask_redu_overlap,"I. sublaevis vs. I. 
saskatchewanensis","B. reduncus-B. scotti") 

 

conv_to_bara_eq_row <- make_exp_p_row(conv_to_bara_nebr_overlap,"I. convexus vs. I. barabini","D. 
nebrascense-E. jenneyi") 

 

conv_to_subl_eq_row <- make_exp_p_row(conv_to_subl_nebr_overlap,"I. convexus vs. I. sublaevis","D. 
nebrascense-E. jenneyi") 

 

bara_to_subl_eq_row <- make_exp_p_row(bara_to_subl_nebr_overlap,"I. barabini vs. I. sublaevis","D. 
nebrascense-E. jenneyi") 

 

bara_to_sage_eq_row <- make_exp_p_row(bara_to_sage_rees_overlap,"I. barabini vs. I. sagensis","B. reesidei-
B. eliasi") 

 

bara_to_oblo_eq_row <- make_exp_p_row(bara_to_oblo_rees_overlap,"I. barabini vs. I. oblongus","B. reesidei-
B. eliasi") 
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oblo_to_sage_eq_row <- make_exp_p_row(oblo_to_sage_rees_overlap,"I. oblongus vs. I. sagensis","B. 
reesidei-B. eliasi") 

 

 

species_compare_eq_results <- rbind(conv_to_subl_eq_row,conv_to_sask_eq_row, 

                                    subl_to_sask_eq_row,conv_to_bara_eq_row, 

                                    conv_to_subl_eq_row, 

                                    bara_to_subl_eq_row,bara_to_sage_eq_row, 

                                    bara_to_oblo_eq_row,oblo_to_sage_eq_row) 

 

# Combine the results of equivalency tests of Dynamics (p-vals) 

make_exp_dyn_p_row <- function(data1,name,interval){ 

  named1 <- 
as.data.frame(cbind(name,interval,data1[[2]]$p.expansion,data1[[2]]$p.stability,data1[[2]]$p.unfilling, 

                                data1[[3]]$p.expansion,data1[[3]]$p.stability,data1[[3]]$p.unfilling)) 

  colnames(named1) <- 
c("species","Intervals_compared","Greater_Eq_p_expansion","Greater_Eq_p_stability","Greater_Eq_p_unfillin
g", 

                        "Lower_Eq_p_expansion","Lower_Eq_p_stability","Lower_Eq_p_unfilling") 

  named1[,c(3:4)] <- as.numeric(as.character(named1[,c(3:4)])) 

  return(named1) 

} 

conv_to_subl_eq_dyn_p_row <- make_exp_dyn_p_row(conv_to_subl_redu_overlap,"I. convexus vs. I. 
sublaevis","B. reduncus-B. scotti") 

 

conv_to_sask_eq_dyn_p_row <- make_exp_dyn_p_row(conv_to_sask_redu_overlap,"I. convexus vs. I. 
saskatchewanensis","B. reduncus-B. scotti") 

 

subl_to_sask_eq_dyn_p_row <- make_exp_dyn_p_row(subl_to_sask_redu_overlap,"I. sublaevis vs. I. 
saskatchewanensis","B. reduncus-B. scotti") 

 

conv_to_bara_eq_dyn_p_row <- make_exp_dyn_p_row(conv_to_bara_nebr_overlap,"I. convexus vs. I. 
barabini","D. nebrascense-E. jenneyi") 
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conv_to_subl_eq_dyn_p_row <- make_exp_dyn_p_row(conv_to_subl_nebr_overlap,"I. convexus vs. I. 
sublaevis","D. nebrascense-E. jenneyi") 

 

bara_to_subl_eq_dyn_p_row <- make_exp_dyn_p_row(bara_to_subl_nebr_overlap,"I. barabini vs. I. 
sublaevis","D. nebrascense-E. jenneyi") 

 

bara_to_sage_eq_dyn_p_row <- make_exp_dyn_p_row(bara_to_sage_rees_overlap,"I. barabini vs. I. 
sagensis","B. reesidei-B. eliasi") 

 

bara_to_oblo_eq_dyn_p_row <- make_exp_dyn_p_row(bara_to_oblo_rees_overlap,"I. barabini vs. I. 
oblongus","B. reesidei-B. eliasi") 

 

oblo_to_sage_eq_dyn_p_row <- make_exp_dyn_p_row(oblo_to_sage_rees_overlap,"I. oblongus vs. I. 
sagensis","B. reesidei-B. eliasi") 

 

 

species_compare_eq_dyn_p_results <- rbind(conv_to_subl_eq_dyn_p_row,conv_to_sask_eq_dyn_p_row, 

                                          subl_to_sask_eq_dyn_p_row,conv_to_bara_eq_dyn_p_row, 

                                          conv_to_subl_eq_dyn_p_row, 

                                          bara_to_subl_eq_dyn_p_row,bara_to_sage_eq_dyn_p_row, 

                                          bara_to_oblo_eq_dyn_p_row,oblo_to_sage_eq_dyn_p_row) 

 

# Combine the results of similarity tests 

make_sim_p_row <- function(data1,name,interval){ 

  named1 <- as.data.frame(cbind(name,interval,data1[[4]]$p.D,data1[[4]]$p.I,data1[[5]]$p.D,data1[[5]]$p.I)) 

  colnames(named1) <- 
c("species","Intervals_compared","Greater_Sim_p_D","Greater_Sim_p_I","Lower_Sim_p_D","Lower_Sim_p_I
") 

  named1[,c(3:4)] <- as.numeric(as.character(named1[,c(3:4)])) 

  return(named1) 

} 
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conv_to_subl_sim_row <- make_sim_p_row(conv_to_subl_redu_overlap,"I. convexus vs. I. sublaevis","B. 
reduncus-B. scotti") 

 

conv_to_sask_sim_row <- make_sim_p_row(conv_to_sask_redu_overlap,"I. convexus vs. I. 
saskatchewanensis","B. reduncus-B. scotti") 

 

subl_to_sask_sim_row <- make_sim_p_row(subl_to_sask_redu_overlap,"I. sublaevis vs. I. 
saskatchewanensis","B. reduncus-B. scotti") 

 

conv_to_bara_sim_row <- make_sim_p_row(conv_to_bara_nebr_overlap,"I. convexus vs. I. barabini","D. 
nebrascense-E. jenneyi") 

 

conv_to_subl_sim_row <- make_sim_p_row(conv_to_subl_nebr_overlap,"I. convexus vs. I. sublaevis","D. 
nebrascense-E. jenneyi") 

 

bara_to_subl_sim_row <- make_sim_p_row(bara_to_subl_nebr_overlap,"I. barabini vs. I. sublaevis","D. 
nebrascense-E. jenneyi") 

 

bara_to_sage_sim_row <- make_sim_p_row(bara_to_sage_rees_overlap,"I. barabini vs. I. sagensis","B. 
reesidei-B. eliasi") 

 

bara_to_oblo_sim_row <- make_sim_p_row(bara_to_oblo_rees_overlap,"I. barabini vs. I. oblongus","B. 
reesidei-B. eliasi") 

 

oblo_to_sage_sim_row <- make_sim_p_row(oblo_to_sage_rees_overlap,"I. oblongus vs. I. sagensis","B. 
reesidei-B. eliasi") 

 

 

species_compare_sim_results <- rbind(conv_to_subl_sim_row,conv_to_sask_sim_row, 

                                     subl_to_sask_sim_row,conv_to_bara_sim_row, 

                                     conv_to_subl_sim_row, 

                                     bara_to_subl_sim_row,bara_to_sage_sim_row, 

                                     bara_to_oblo_sim_row,oblo_to_sage_sim_row) 

 

# Combine the results of equivalency tests of Dynamics (p-vals) 
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make_sim_dyn_p_row <- function(data1,name,interval){ 

  named1 <- 
as.data.frame(cbind(name,interval,data1[[4]]$p.expansion,data1[[4]]$p.stability,data1[[4]]$p.unfilling, 

                                data1[[5]]$p.expansion,data1[[5]]$p.stability,data1[[5]]$p.unfilling)) 

  colnames(named1) <- 
c("species","Intervals_compared","Greater_Sim_p_expansion","Greater_Sim_p_stability","Greater_Sim_p_unfi
lling", 

                        "Lower_Sim_p_expansion","Lower_Sim_p_stability","Lower_Sim_p_unfilling") 

  named1[,c(3:4)] <- as.numeric(as.character(named1[,c(3:4)])) 

  return(named1) 

} 

 

conv_to_subl_sim_dyn_p_row <- make_sim_dyn_p_row(conv_to_subl_redu_overlap,"I. convexus vs. I. 
sublaevis","B. reduncus-B. scotti") 

 

conv_to_sask_sim_dyn_p_row <- make_sim_dyn_p_row(conv_to_sask_redu_overlap,"I. convexus vs. I. 
saskatchewanensis","B. reduncus-B. scotti") 

 

subl_to_sask_sim_dyn_p_row <- make_sim_dyn_p_row(subl_to_sask_redu_overlap,"I. sublaevis vs. I. 
saskatchewanensis","B. reduncus-B. scotti") 

 

conv_to_bara_sim_dyn_p_row <- make_sim_dyn_p_row(conv_to_bara_nebr_overlap,"I. convexus vs. I. 
barabini","D. nebrascense-E. jenneyi") 

 

conv_to_subl_sim_dyn_p_row <- make_sim_dyn_p_row(conv_to_subl_nebr_overlap,"I. convexus vs. I. 
sublaevis","D. nebrascense-E. jenneyi") 

 

bara_to_subl_sim_dyn_p_row <- make_sim_dyn_p_row(bara_to_subl_nebr_overlap,"I. barabini vs. I. 
sublaevis","D. nebrascense-E. jenneyi") 

 

bara_to_sage_sim_dyn_p_row <- make_sim_dyn_p_row(bara_to_sage_rees_overlap,"I. barabini vs. I. 
sagensis","B. reesidei-B. eliasi") 

 

bara_to_oblo_sim_dyn_p_row <- make_sim_dyn_p_row(bara_to_oblo_rees_overlap,"I. barabini vs. I. 
oblongus","B. reesidei-B. eliasi") 
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oblo_to_sage_sim_dyn_p_row <- make_sim_dyn_p_row(oblo_to_sage_rees_overlap,"I. oblongus vs. I. 
sagensis","B. reesidei-B. eliasi") 

 

 

species_compare_sim_dyn_p_results <- rbind(conv_to_subl_sim_dyn_p_row,conv_to_sask_sim_dyn_p_row, 

                                           subl_to_sask_sim_dyn_p_row,conv_to_bara_sim_dyn_p_row, 

                                           conv_to_subl_sim_dyn_p_row, 

                                           bara_to_subl_sim_dyn_p_row,bara_to_sage_sim_dyn_p_row, 

                                           bara_to_oblo_sim_dyn_p_row,oblo_to_sage_sim_dyn_p_row) 

 

# Combine the results of niche dynamics 

make_dynam_row <- function(data1,name,interval){ 

  data <- as.data.frame(data1[[6]]) 

  named1 <- as.data.frame(cbind(name,interval,t(data[,2]))) 

  colnames(named1) <- c("species","Intervals_compared","Expansion","Stability","Unfilling") 

  named1[,c(3:5)] <- as.numeric(as.character(named1[,c(3:5)])) 

  return(named1) 

} 

 

conv_to_subl_dyn_row <- make_dynam_row(conv_to_subl_redu_overlap,"I. convexus vs. I. sublaevis","B. 
reduncus-B. scotti") 

 

conv_to_sask_dyn_row <- make_dynam_row(conv_to_sask_redu_overlap,"I. convexus vs. I. 
saskatchewanensis","B. reduncus-B. scotti") 

 

subl_to_sask_dyn_row <- make_dynam_row(subl_to_sask_redu_overlap,"I. sublaevis vs. I. 
saskatchewanensis","B. reduncus-B. scotti") 

 

conv_to_bara_dyn_row <- make_dynam_row(conv_to_bara_nebr_overlap,"I. convexus vs. I. barabini","D. 
nebrascense-E. jenneyi") 

 

conv_to_subl_dyn_row <- make_dynam_row(conv_to_subl_nebr_overlap,"I. convexus vs. I. sublaevis","D. 
nebrascense-E. jenneyi") 
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bara_to_subl_dyn_row <- make_dynam_row(bara_to_subl_nebr_overlap,"I. barabini vs. I. sublaevis","D. 
nebrascense-E. jenneyi") 

 

bara_to_sage_dyn_row <- make_dynam_row(bara_to_sage_rees_overlap,"I. barabini vs. I. sagensis","B. 
reesidei-B. eliasi") 

 

bara_to_oblo_dyn_row <- make_dynam_row(bara_to_oblo_rees_overlap,"I. barabini vs. I. oblongus","B. 
reesidei-B. eliasi") 

 

oblo_to_sage_dyn_row <- make_dynam_row(oblo_to_sage_rees_overlap,"I. oblongus vs. I. sagensis","B. 
reesidei-B. eliasi") 

 

species_compare_dyn_results <- rbind(conv_to_subl_dyn_row,conv_to_sask_dyn_row, 

                                     subl_to_sask_dyn_row,conv_to_bara_dyn_row, 

                                     conv_to_subl_dyn_row, 

                                     bara_to_subl_dyn_row,bara_to_sage_dyn_row, 

                                     bara_to_oblo_dyn_row,oblo_to_sage_dyn_row) 

 

## Write csv files of results 

write.csv(species_compare_I_D_results,file="tables/species_compare_I_D_results.csv") 

write.csv(species_compare_eq_results,file="tables/species_compare_eq_results.csv") 

write.csv(species_compare_sim_results,file="tables/species_compare_sim_results.csv") 

write.csv(species_compare_dyn_results,file="tables/species_compare_dyn_results.csv") 

write.csv(species_compare_eq_dyn_p_results,file="tables/species_compare_eq_dyn_p_results.csv") 

write.csv(species_compare_sim_dyn_p_results,file="tables/species_compare_sim_dyn_p_results.csv") 

 

#### INOCERAMUS TO OUTGROUP COMPARISONS #### 

 

cten_to_conv_redu_overlap <- run_ecospat_dyn(cten_redu_prep,conv_redu_prep, 

                                             "C. imbricatula to I. convexus\nB. reduncus-B. scotti","Cimbr_to_Iconv_redu_") 

 

cten_to_subl_redu_overlap <- run_ecospat_dyn(cten_redu_prep,subl_redu_prep, 

                                             "C. imbricatula to I. sublaevis\nB. reduncus-B. scotti","Cimbr_to_Isubl_redu_") 
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cten_to_sask_redu_overlap <- run_ecospat_dyn(cten_redu_prep,sask_redu_prep, 

                                             "C. imbricatula to I. saskatchewanensis\nB. reduncus-B. 
scotti","Cimbr_to_Isask_redu_") 

 

cten_to_bara_nebr_overlap <- run_ecospat_dyn(cten_nebr_prep,bara_nebr_prep, 

                                             "C. imbricatula to I. barabini\nD. nebrascense-E. jenneyi","Cimbr_to_Ibara_nebr_") 

 

cten_to_conv_nebr_overlap <- run_ecospat_dyn(cten_nebr_prep,conv_nebr_prep, 

                                             "C. imbricatula to I. convexus\nD. nebrascense-E. 
jenneyi","Cimbr_to_Iconv_nebr_") 

 

cten_to_subl_nebr_overlap <- run_ecospat_dyn(cten_nebr_prep,subl_nebr_prep, 

                                             "C. imbricatula to I. sublaevis\nD. nebrascense-E. 
jenneyi","Cimbr_to_Isubl_nebr_") 

 

chla_to_bara_nebr_overlap <- run_ecospat_dyn(chla_nebr_prep,bara_nebr_prep, 

                                             "C. nebrascensis to I. barabini\nD. nebrascense-E. 
jenneyi","Cnebr_to_Ibara_nebr_") 

 

chla_to_conv_nebr_overlap <- run_ecospat_dyn(chla_nebr_prep,conv_nebr_prep, 

                                             "C. nebrascensis to I. convexus\nD. nebrascense-E. 
jenneyi","Cnebr_to_Iconv_nebr_") 

 

chla_to_subl_nebr_overlap <- run_ecospat_dyn(chla_nebr_prep,subl_nebr_prep, 

                                             "C. nebrascensis to I. sublaevis\nD. nebrascense-E. 
jenneyi","Cnebr_to_Isubl_nebr_") 

 

luci_to_bara_nebr_overlap <- run_ecospat_dyn(luci_nebr_prep,bara_nebr_prep, 

                                             "L. subundata to I. barabini\nD. nebrascense-E. jenneyi","Lsubu_to_Ibara_nebr_") 

 

luci_to_conv_nebr_overlap <- run_ecospat_dyn(luci_nebr_prep,conv_nebr_prep, 

                                             "L. subundata to I. convexus\nD. nebrascense-E. jenneyi","Lsubu_to_Iconv_nebr_") 
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luci_to_subl_nebr_overlap <- run_ecospat_dyn(luci_nebr_prep,subl_nebr_prep, 

                                             "L. subundata to I. sublaevis\nD. nebrascense-E. jenneyi","Lsubu_to_Isubl_nebr_") 

 

luci_to_sage_comp_overlap <- run_ecospat_dyn(luci_comp_prep,sage_comp_prep, 

                                             "L. subundata to I. sagensis\nB. compressus-B. cuneatus","Lsubu_to_Isage_comp") 

 

chla_to_bara_rees_overlap <- run_ecospat_dyn(chla_rees_prep,bara_rees_prep, 

                                             "C. nebrascensis to I. barabini\nB. reesidei-B. eliasi","Cnebr_to_Ibara_rees") 

 

chla_to_sage_rees_overlap <- run_ecospat_dyn(chla_rees_prep,sage_rees_prep, 

                                             "C. nebrascensis to I. sagensis\nB. reesidei-B. eliasi","Cnebr_to_Isage_rees") 

 

chla_to_oblo_rees_overlap <- run_ecospat_dyn(chla_rees_prep,oblo_rees_prep, 

                                             "C. nebrascensis to I. oblongus\nB. reesidei-B. eliasi","Cnebr_to_Ioblo_rees") 

 

cten_to_bara_rees_overlap <- run_ecospat_dyn(cten_rees_prep,bara_rees_prep, 

                                             "C. imbricatula to I. barabini\nB. reesidei-B. eliasi","Cimbr_to_Ibara_rees") 

 

cten_to_sage_rees_overlap <- run_ecospat_dyn(cten_rees_prep,sage_rees_prep, 

                                             "C. imbricatula to I. sagensis\nB. reesidei-B. eliasi","Cimbr_to_Isage_rees") 

 

cten_to_oblo_rees_overlap <- run_ecospat_dyn(cten_rees_prep,oblo_rees_prep, 

                                             "C. imbricatula to I. oblongus\nB. reesidei-B. eliasi","Cibmr_to_Ioblo_rees") 

 

#### Summarize Outgroup Comparisons and Export Tables #### 

# Combine the results of observed overlap 

make_D_I_row <- function(data1,name,interval){ 

  named1 <- as.data.frame(cbind(name,interval,data1[[2]]$obs$D,data1[[2]]$obs$I)) 

  colnames(named1) <- c("species","Intervals_compared","D_val","I_val") 

  named1[,c(3:4)] <- as.numeric(as.character(named1[,c(3:4)])) 

  return(named1) 
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} 

 

cten_to_conv_redu_D_I_row <- make_D_I_row(cten_to_conv_redu_overlap,"C. imbricatula vs. I. 
convexus","B. reduncus-B. scotti") 

 

cten_to_subl_redu_D_I_row <- make_D_I_row(cten_to_subl_redu_overlap,"C. imbricatula vs. I. sublaevis","B. 
reduncus-B. scotti") 

 

cten_to_sask_redu_D_I_row <- make_D_I_row(cten_to_sask_redu_overlap,"C. imbricatula vs. I. 
saskatchewanensis","B. reduncus-B. scotti") 

 

cten_to_bara_nebr_D_I_row <- make_D_I_row(cten_to_bara_nebr_overlap,"C. imbricatula vs. I. barabini","D. 
nebrascense-E. jenneyi") 

 

cten_to_conv_nebr_D_I_row <- make_D_I_row(cten_to_conv_nebr_overlap,"C. imbricatula vs. I. 
convexus","D. nebrascense-E. jenneyi") 

 

cten_to_subl_nebr_D_I_row <- make_D_I_row(cten_to_subl_nebr_overlap,"C. imbricatula vs. I. sublaevis","D. 
nebrascense-E. jenneyi") 

 

chla_to_bara_nebr_D_I_row <- make_D_I_row(chla_to_bara_nebr_overlap,"C. nebrascensis vs. I. barabini","D. 
nebrascense-E. jenneyi") 

 

chla_to_conv_nebr_D_I_row <- make_D_I_row(chla_to_conv_nebr_overlap,"C. nebrascensis vs. I. 
convexus","D. nebrascense-E. jenneyi") 

 

chla_to_subl_nebr_D_I_row <- make_D_I_row(chla_to_subl_nebr_overlap,"C. nebrascensis vs. I. sagensis","D. 
nebrascense-E. jenneyi") 

 

luci_to_bara_nebr_D_I_row <- make_D_I_row(luci_to_bara_nebr_overlap,"L. subundata vs. I. barabini","D. 
nebrascense-E. jenneyi") 

 

luci_to_conv_nebr_D_I_row <- make_D_I_row(luci_to_conv_nebr_overlap,"L. subundata vs. I. convexus","D. 
nebrascense-E. jenneyi") 
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luci_to_subl_nebr_D_I_row <- make_D_I_row(luci_to_subl_nebr_overlap,"L. subundata vs. I. sublaevis","D. 
nebrascense-E. jenneyi") 

 

luci_to_sage_comp_D_I_row <- make_D_I_row(luci_to_sage_comp_overlap,"L. subundata vs. I. sagensis","B. 
compressus-B. cuneatus") 

 

chla_to_bara_rees_D_I_row <- make_D_I_row(chla_to_bara_rees_overlap,"C. nebrascensis vs. I. barabini","B. 
reesidei-B. eliasi") 

 

chla_to_sage_rees_D_I_row <- make_D_I_row(chla_to_sage_rees_overlap,"C. nebrascensis vs. I. sagensis","B. 
reesidei-B. eliasi") 

 

chla_to_oblo_rees_D_I_row <- make_D_I_row(chla_to_oblo_rees_overlap,"C. nebrascensis vs. I. 
oblongus","B. reesidei-B. eliasi") 

 

cten_to_bara_rees_D_I_row <- make_D_I_row(cten_to_bara_rees_overlap,"C. imbricatula vs. I. barabini","B. 
reesidei-B. eliasi") 

 

cten_to_sage_rees_D_I_row <- make_D_I_row(cten_to_sage_rees_overlap,"C. imbricatula vs. I. sagensis","B. 
reesidei-B. eliasi") 

 

cten_to_oblo_rees_D_I_row <- make_D_I_row(cten_to_oblo_rees_overlap,"C. imbricatula vs. I. oblongus","B. 
reesidei-B. eliasi") 

 

outgroup_compare_I_D_results <- 
rbind(cten_to_conv_redu_D_I_row,cten_to_subl_redu_D_I_row,cten_to_sask_redu_D_I_row, 

                                      chla_to_bara_nebr_D_I_row,cten_to_conv_nebr_D_I_row,cten_to_subl_nebr_D_I_row, 

                                      chla_to_bara_nebr_D_I_row,chla_to_conv_nebr_D_I_row,chla_to_subl_nebr_D_I_row, 

                                      luci_to_bara_nebr_D_I_row,luci_to_conv_nebr_D_I_row,luci_to_subl_nebr_D_I_row, 

                                      luci_to_sage_comp_D_I_row, 

                                      chla_to_bara_rees_D_I_row,chla_to_sage_rees_D_I_row,chla_to_oblo_rees_D_I_row, 

                                      cten_to_bara_rees_D_I_row,cten_to_sage_rees_D_I_row,cten_to_oblo_rees_D_I_row) 

 

# Combine the results of equivalency tests 

make_exp_p_row <- function(data1,name,interval){ 
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  named1 <- as.data.frame(cbind(name,interval,data1[[2]]$p.D,data1[[2]]$p.I,data1[[3]]$p.D,data1[[3]]$p.I)) 

  colnames(named1) <- 
c("species","Intervals_compared","Greater_Eq_p_D","Greater_Eq_p_I","Lower_Eq_p_D","Lower_Eq_p_I") 

  named1[,c(3:4)] <- as.numeric(as.character(named1[,c(3:4)])) 

  return(named1) 

} 

 

cten_to_conv_redu_eq_row <- make_exp_p_row(cten_to_conv_redu_overlap,"C. imbricatula vs. I. 
convexus","B. reduncus-B. scotti") 

 

cten_to_subl_redu_eq_row <- make_exp_p_row(cten_to_subl_redu_overlap,"C. imbricatula vs. I. 
sublaevis","B. reduncus-B. scotti") 

 

cten_to_sask_redu_eq_row <- make_exp_p_row(cten_to_sask_redu_overlap,"C. imbricatula vs. I. 
saskatchewanensis","B. reduncus-B. scotti") 

 

cten_to_bara_nebr_eq_row <- make_exp_p_row(cten_to_bara_nebr_overlap,"C. imbricatula vs. I. barabini","D. 
nebrascense-E. jenneyi") 

 

cten_to_conv_nebr_eq_row <- make_exp_p_row(cten_to_conv_nebr_overlap,"C. imbricatula vs. I. 
convexus","D. nebrascense-E. jenneyi") 

 

cten_to_subl_nebr_eq_row <- make_exp_p_row(cten_to_subl_nebr_overlap,"C. imbricatula vs. I. 
sublaevis","D. nebrascense-E. jenneyi") 

 

chla_to_bara_nebr_eq_row <- make_exp_p_row(chla_to_bara_nebr_overlap,"C. nebrascensis vs. I. 
barabini","D. nebrascense-E. jenneyi") 

 

chla_to_conv_nebr_eq_row <- make_exp_p_row(chla_to_conv_nebr_overlap,"C. nebrascensis vs. I. 
convexus","D. nebrascense-E. jenneyi") 

 

chla_to_subl_nebr_eq_row <- make_exp_p_row(chla_to_subl_nebr_overlap,"C. nebrascensis vs. I. 
sagensis","D. nebrascense-E. jenneyi") 

 

luci_to_bara_nebr_eq_row <- make_exp_p_row(luci_to_bara_nebr_overlap,"L. subundata vs. I. barabini","D. 
nebrascense-E. jenneyi") 
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luci_to_conv_nebr_eq_row <- make_exp_p_row(luci_to_conv_nebr_overlap,"L. subundata vs. I. convexus","D. 
nebrascense-E. jenneyi") 

 

luci_to_subl_nebr_eq_row <- make_exp_p_row(luci_to_subl_nebr_overlap,"L. subundata vs. I. sublaevis","D. 
nebrascense-E. jenneyi") 

 

luci_to_sage_comp_eq_row <- make_exp_p_row(luci_to_sage_comp_overlap,"L. subundata vs. I. sagensis","B. 
compressus-B. cuneatus") 

 

chla_to_bara_rees_eq_row <- make_exp_p_row(chla_to_bara_rees_overlap,"C. nebrascensis vs. I. barabini","B. 
reesidei-B. eliasi") 

 

chla_to_sage_rees_eq_row <- make_exp_p_row(chla_to_sage_rees_overlap,"C. nebrascensis vs. I. 
sagensis","B. reesidei-B. eliasi") 

 

chla_to_oblo_rees_eq_row <- make_exp_p_row(chla_to_oblo_rees_overlap,"C. nebrascensis vs. I. 
oblongus","B. reesidei-B. eliasi") 

 

cten_to_bara_rees_eq_row <- make_exp_p_row(cten_to_bara_rees_overlap,"C. imbricatula vs. I. barabini","B. 
reesidei-B. eliasi") 

 

cten_to_sage_rees_eq_row <- make_exp_p_row(cten_to_sage_rees_overlap,"C. imbricatula vs. I. sagensis","B. 
reesidei-B. eliasi") 

 

cten_to_oblo_rees_eq_row <- make_exp_p_row(cten_to_oblo_rees_overlap,"C. imbricatula vs. I. oblongus","B. 
reesidei-B. eliasi") 

 

outgroup_compare_eq_results <- 
rbind(cten_to_conv_redu_eq_row,cten_to_subl_redu_eq_row,cten_to_sask_redu_eq_row, 

                                     chla_to_bara_nebr_eq_row,cten_to_conv_nebr_eq_row,cten_to_subl_nebr_eq_row, 

                                     chla_to_bara_nebr_eq_row,chla_to_conv_nebr_eq_row,chla_to_subl_nebr_eq_row, 

                                     luci_to_bara_nebr_eq_row,luci_to_conv_nebr_eq_row,luci_to_subl_nebr_eq_row, 

                                     luci_to_sage_comp_eq_row, 

                                     chla_to_bara_rees_eq_row,chla_to_sage_rees_eq_row,chla_to_oblo_rees_eq_row, 
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                                     cten_to_bara_rees_eq_row,cten_to_sage_rees_eq_row,cten_to_oblo_rees_eq_row) 

 

# Combine the results of equivalency tests of Dynamics (p-vals) 

make_exp_dyn_p_row <- function(data1,name,interval){ 

  named1 <- 
as.data.frame(cbind(name,interval,data1[[2]]$p.expansion,data1[[2]]$p.stability,data1[[2]]$p.unfilling, 

                                data1[[3]]$p.expansion,data1[[3]]$p.stability,data1[[3]]$p.unfilling)) 

  colnames(named1) <- 
c("species","Intervals_compared","Greater_Eq_p_expansion","Greater_Eq_p_stability","Greater_Eq_p_unfillin
g", 

                        "Lower_Eq_p_expansion","Lower_Eq_p_stability","Lower_Eq_p_unfilling") 

  named1[,c(3:4)] <- as.numeric(as.character(named1[,c(3:4)])) 

  return(named1) 

} 

 

cten_to_conv_redu_eq_dyn_p_row <- make_exp_dyn_p_row(cten_to_conv_redu_overlap,"C. imbricatula vs. I. 
convexus","B. reduncus-B. scotti") 

 

cten_to_subl_redu_eq_dyn_p_row <- make_exp_dyn_p_row(cten_to_subl_redu_overlap,"C. imbricatula vs. I. 
sublaevis","B. reduncus-B. scotti") 

 

cten_to_sask_redu_eq_dyn_p_row <- make_exp_dyn_p_row(cten_to_sask_redu_overlap,"C. imbricatula vs. I. 
saskatchewanensis","B. reduncus-B. scotti") 

 

cten_to_bara_nebr_eq_dyn_p_row <- make_exp_dyn_p_row(cten_to_bara_nebr_overlap,"C. imbricatula vs. I. 
barabini","D. nebrascense-E. jenneyi") 

 

cten_to_conv_nebr_eq_dyn_p_row <- make_exp_dyn_p_row(cten_to_conv_nebr_overlap,"C. imbricatula vs. I. 
convexus","D. nebrascense-E. jenneyi") 

 

cten_to_subl_nebr_eq_dyn_p_row <- make_exp_dyn_p_row(cten_to_subl_nebr_overlap,"C. imbricatula vs. I. 
sublaevis","D. nebrascense-E. jenneyi") 

 

chla_to_bara_nebr_eq_dyn_p_row <- make_exp_dyn_p_row(chla_to_bara_nebr_overlap,"C. nebrascensis vs. I. 
barabini","D. nebrascense-E. jenneyi") 
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chla_to_conv_nebr_eq_dyn_p_row <- make_exp_dyn_p_row(chla_to_conv_nebr_overlap,"C. nebrascensis vs. 
I. convexus","D. nebrascense-E. jenneyi") 

 

chla_to_subl_nebr_eq_dyn_p_row <- make_exp_dyn_p_row(chla_to_subl_nebr_overlap,"C. nebrascensis vs. I. 
sublaevis","D. nebrascense-E. jenneyi") 

 

luci_to_bara_nebr_eq_dyn_p_row <- make_exp_dyn_p_row(luci_to_bara_nebr_overlap,"L. subundata vs. I. 
barabini","D. nebrascense-E. jenneyi") 

 

luci_to_conv_nebr_eq_dyn_p_row <- make_exp_dyn_p_row(luci_to_conv_nebr_overlap,"L. subundata vs. I. 
convexus","D. nebrascense-E. jenneyi") 

 

luci_to_subl_nebr_eq_dyn_p_row <- make_exp_dyn_p_row(luci_to_subl_nebr_overlap,"L. subundata vs. I. 
sublaevis","D. nebrascense-E. jenneyi") 

 

luci_to_sage_comp_eq_dyn_p_row <- make_exp_dyn_p_row(luci_to_sage_comp_overlap,"L. subundata vs. I. 
sagensis","B. compressus-B. cuneatus") 

 

chla_to_bara_rees_eq_dyn_p_row <- make_exp_dyn_p_row(chla_to_bara_rees_overlap,"C. nebrascensis vs. I. 
barabini","B. reesidei-B. eliasi") 

 

chla_to_sage_rees_eq_dyn_p_row <- make_exp_dyn_p_row(chla_to_sage_rees_overlap,"C. nebrascensis vs. I. 
sagensis","B. reesidei-B. eliasi") 

 

chla_to_oblo_rees_eq_dyn_p_row <- make_exp_dyn_p_row(chla_to_oblo_rees_overlap,"C. nebrascensis vs. I. 
oblongus","B. reesidei-B. eliasi") 

 

cten_to_bara_rees_eq_dyn_p_row <- make_exp_dyn_p_row(cten_to_bara_rees_overlap,"C. imbricatula vs. I. 
barabini","B. reesidei-B. eliasi") 

 

cten_to_sage_rees_eq_dyn_p_row <- make_exp_dyn_p_row(cten_to_sage_rees_overlap,"C. imbricatula vs. I. 
sagensis","B. reesidei-B. eliasi") 

 

cten_to_oblo_rees_eq_dyn_p_row <- make_exp_dyn_p_row(cten_to_oblo_rees_overlap,"C. imbricatula vs. I. 
oblongus","B. reesidei-B. eliasi") 
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outgroup_compare_eq_dyn_p_results <- 
rbind(cten_to_conv_redu_eq_dyn_p_row,cten_to_subl_redu_eq_dyn_p_row,cten_to_sask_redu_eq_dyn_p_row
, 

                                           
chla_to_bara_nebr_eq_dyn_p_row,cten_to_conv_nebr_eq_dyn_p_row,cten_to_subl_nebr_eq_dyn_p_row, 

                                           
chla_to_bara_nebr_eq_dyn_p_row,chla_to_conv_nebr_eq_dyn_p_row,chla_to_subl_nebr_eq_dyn_p_row, 

                                           
luci_to_bara_nebr_eq_dyn_p_row,luci_to_conv_nebr_eq_dyn_p_row,luci_to_subl_nebr_eq_dyn_p_row, 

                                           luci_to_sage_comp_eq_dyn_p_row, 

                                           
chla_to_bara_rees_eq_dyn_p_row,chla_to_sage_rees_eq_dyn_p_row,chla_to_oblo_rees_eq_dyn_p_row, 

                                           
cten_to_bara_rees_eq_dyn_p_row,cten_to_sage_rees_eq_dyn_p_row,cten_to_oblo_rees_eq_dyn_p_row) 

 

# Combine the results of similarity tests 

make_sim_p_row <- function(data1,name,interval){ 

  named1 <- as.data.frame(cbind(name,interval,data1[[4]]$p.D,data1[[4]]$p.I,data1[[5]]$p.D,data1[[5]]$p.I)) 

  colnames(named1) <- 
c("species","Intervals_compared","Greater_Sim_p_D","Greater_Sim_p_I","Lower_Sim_p_D","Lower_Sim_p_I
") 

  named1[,c(3:4)] <- as.numeric(as.character(named1[,c(3:4)])) 

  return(named1) 

} 

 

cten_to_conv_redu_sim_row <- make_sim_p_row(cten_to_conv_redu_overlap,"C. imbricatula vs. I. 
convexus","B. reduncus-B. scotti") 

 

cten_to_subl_redu_sim_row <- make_sim_p_row(cten_to_subl_redu_overlap,"C. imbricatula vs. I. 
sublaevis","B. reduncus-B. scotti") 

 

cten_to_sask_redu_sim_row <- make_sim_p_row(cten_to_sask_redu_overlap,"C. imbricatula vs. I. 
saskatchewanensis","B. reduncus-B. scotti") 
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cten_to_bara_nebr_sim_row <- make_sim_p_row(cten_to_bara_nebr_overlap,"C. imbricatula vs. I. 
barabini","D. nebrascense-E. jenneyi") 

 

cten_to_conv_nebr_sim_row <- make_sim_p_row(cten_to_conv_nebr_overlap,"C. imbricatula vs. I. 
convexus","D. nebrascense-E. jenneyi") 

 

cten_to_subl_nebr_sim_row <- make_sim_p_row(cten_to_subl_nebr_overlap,"C. imbricatula vs. I. 
sublaevis","D. nebrascense-E. jenneyi") 

 

chla_to_bara_nebr_sim_row <- make_sim_p_row(chla_to_bara_nebr_overlap,"C. nebrascensis vs. I. 
barabini","D. nebrascense-E. jenneyi") 

 

chla_to_conv_nebr_sim_row <- make_sim_p_row(chla_to_conv_nebr_overlap,"C. nebrascensis vs. I. 
convexus","D. nebrascense-E. jenneyi") 

 

chla_to_subl_nebr_sim_row <- make_sim_p_row(chla_to_subl_nebr_overlap,"C. nebrascensis vs. I. 
sublaevis","D. nebrascense-E. jenneyi") 

 

luci_to_bara_nebr_sim_row <- make_sim_p_row(luci_to_bara_nebr_overlap,"L. subundata vs. I. barabini","D. 
nebrascense-E. jenneyi") 

 

luci_to_conv_nebr_sim_row <- make_sim_p_row(luci_to_conv_nebr_overlap,"L. subundata vs. I. 
convexus","D. nebrascense-E. jenneyi") 

 

luci_to_subl_nebr_sim_row <- make_sim_p_row(luci_to_subl_nebr_overlap,"L. subundata vs. I. sublaevis","D. 
nebrascense-E. jenneyi") 

 

luci_to_sage_comp_sim_row <- make_sim_p_row(luci_to_sage_comp_overlap,"L. subundata vs. I. 
sagensis","B. compressus-B. cuneatus") 

 

chla_to_bara_rees_sim_row <- make_sim_p_row(chla_to_bara_rees_overlap,"C. nebrascensis vs. I. 
barabini","B. reesidei-B. eliasi") 

 

chla_to_sage_rees_sim_row <- make_sim_p_row(chla_to_sage_rees_overlap,"C. nebrascensis vs. I. 
sagensis","B. reesidei-B. eliasi") 
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chla_to_oblo_rees_sim_row <- make_sim_p_row(chla_to_oblo_rees_overlap,"C. nebrascensis vs. I. 
oblongus","B. reesidei-B. eliasi") 

 

cten_to_bara_rees_sim_row <- make_sim_p_row(cten_to_bara_rees_overlap,"C. imbricatula vs. I. barabini","B. 
reesidei-B. eliasi") 

 

cten_to_sage_rees_sim_row <- make_sim_p_row(cten_to_sage_rees_overlap,"C. imbricatula vs. I. 
sagensis","B. reesidei-B. eliasi") 

 

cten_to_oblo_rees_sim_row <- make_sim_p_row(cten_to_oblo_rees_overlap,"C. imbricatula vs. I. 
oblongus","B. reesidei-B. eliasi") 

 

 

 

outgroup_compare_sim_results <- 
rbind(cten_to_conv_redu_sim_row,cten_to_subl_redu_sim_row,cten_to_sask_redu_sim_row, 

                                      chla_to_bara_nebr_sim_row,cten_to_conv_nebr_sim_row,cten_to_subl_nebr_sim_row, 

                                      chla_to_bara_nebr_sim_row,chla_to_conv_nebr_sim_row,chla_to_subl_nebr_sim_row, 

                                      luci_to_bara_nebr_sim_row,luci_to_conv_nebr_sim_row,luci_to_subl_nebr_sim_row, 

                                      luci_to_sage_comp_sim_row, 

                                      chla_to_bara_rees_sim_row,chla_to_sage_rees_sim_row,chla_to_oblo_rees_sim_row, 

                                      cten_to_bara_rees_sim_row,cten_to_sage_rees_sim_row,cten_to_oblo_rees_sim_row) 

 

# Combine the results of equivalency tests of Dynamics (p-vals) 

make_sim_dyn_p_row <- function(data1,name,interval){ 

  named1 <- 
as.data.frame(cbind(name,interval,data1[[4]]$p.expansion,data1[[4]]$p.stability,data1[[4]]$p.unfilling, 

                                data1[[5]]$p.expansion,data1[[5]]$p.stability,data1[[5]]$p.unfilling)) 

  colnames(named1) <- 
c("species","Intervals_compared","Greater_Sim_p_expansion","Greater_Sim_p_stability","Greater_Sim_p_unfi
lling", 

                        "Lower_Sim_p_expansion","Lower_Sim_p_stability","Lower_Sim_p_unfilling") 

  named1[,c(3:4)] <- as.numeric(as.character(named1[,c(3:4)])) 

  return(named1) 
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} 

 

cten_to_conv_redu_sim_dyn_p_row <- make_sim_dyn_p_row(cten_to_conv_redu_overlap,"C. imbricatula vs. 
I. convexus","B. reduncus-B. scotti") 

 

cten_to_subl_redu_sim_dyn_p_row <- make_sim_dyn_p_row(cten_to_subl_redu_overlap,"C. imbricatula vs. I. 
sublaevis","B. reduncus-B. scotti") 

 

cten_to_sask_redu_sim_dyn_p_row <- make_sim_dyn_p_row(cten_to_sask_redu_overlap,"C. imbricatula vs. I. 
saskatchewanensis","B. reduncus-B. scotti") 

 

cten_to_bara_nebr_sim_dyn_p_row <- make_sim_dyn_p_row(cten_to_bara_nebr_overlap,"C. imbricatula vs. I. 
barabini","D. nebrascense-E. jenneyi") 

 

cten_to_conv_nebr_sim_dyn_p_row <- make_sim_dyn_p_row(cten_to_conv_nebr_overlap,"C. imbricatula vs. 
I. convexus","D. nebrascense-E. jenneyi") 

 

cten_to_subl_nebr_sim_dyn_p_row <- make_sim_dyn_p_row(cten_to_subl_nebr_overlap,"C. imbricatula vs. I. 
sublaevis","D. nebrascense-E. jenneyi") 

 

chla_to_bara_nebr_sim_dyn_p_row <- make_sim_dyn_p_row(chla_to_bara_nebr_overlap,"C. nebrascensis vs. 
I. barabini","D. nebrascense-E. jenneyi") 

 

chla_to_conv_nebr_sim_dyn_p_row <- make_sim_dyn_p_row(chla_to_conv_nebr_overlap,"C. nebrascensis vs. 
I. convexus","D. nebrascense-E. jenneyi") 

 

chla_to_subl_nebr_sim_dyn_p_row <- make_sim_dyn_p_row(chla_to_subl_nebr_overlap,"C. nebrascensis vs. 
I. sublaevis","D. nebrascense-E. jenneyi") 

 

luci_to_bara_nebr_sim_dyn_p_row <- make_sim_dyn_p_row(luci_to_bara_nebr_overlap,"L. subundata vs. I. 
barabini","D. nebrascense-E. jenneyi") 

 

luci_to_conv_nebr_sim_dyn_p_row <- make_sim_dyn_p_row(luci_to_conv_nebr_overlap,"L. subundata vs. I. 
convexus","D. nebrascense-E. jenneyi") 
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luci_to_subl_nebr_sim_dyn_p_row <- make_sim_dyn_p_row(luci_to_subl_nebr_overlap,"L. subundata vs. I. 
sublaevis","D. nebrascense-E. jenneyi") 

 

luci_to_sage_comp_sim_dyn_p_row <- make_sim_dyn_p_row(luci_to_sage_comp_overlap,"L. subundata vs. I. 
sagensis","B. compressus-B. cuneatus") 

 

 

 

chla_to_bara_rees_sim_dyn_p_row <- make_sim_dyn_p_row(chla_to_bara_rees_overlap,"C. nebrascensis vs. I. 
barabini","B. reesidei-B. eliasi") 

 

chla_to_sage_rees_sim_dyn_p_row <- make_sim_dyn_p_row(chla_to_sage_rees_overlap,"C. nebrascensis vs. I. 
sagensis","B. reesidei-B. eliasi") 

 

chla_to_oblo_rees_sim_dyn_p_row <- make_sim_dyn_p_row(chla_to_oblo_rees_overlap,"C. nebrascensis vs. I. 
oblongus","B. reesidei-B. eliasi") 

 

cten_to_bara_rees_sim_dyn_p_row <- make_sim_dyn_p_row(cten_to_bara_rees_overlap,"C. imbricatula vs. I. 
barabini","B. reesidei-B. eliasi") 

 

cten_to_sage_rees_sim_dyn_p_row <- make_sim_dyn_p_row(cten_to_sage_rees_overlap,"C. imbricatula vs. I. 
sagensis","B. reesidei-B. eliasi") 

 

cten_to_oblo_rees_sim_dyn_p_row <- make_sim_dyn_p_row(cten_to_oblo_rees_overlap,"C. imbricatula vs. I. 
oblongus","B. reesidei-B. eliasi") 

 

outgroup_compare_sim_dyn_p_results <- 
rbind(cten_to_conv_redu_sim_dyn_p_row,cten_to_subl_redu_sim_dyn_p_row,cten_to_sask_redu_sim_dyn_p_
row, 

                                            
chla_to_bara_nebr_sim_dyn_p_row,cten_to_conv_nebr_sim_dyn_p_row,cten_to_subl_nebr_sim_dyn_p_row, 

                                            
chla_to_bara_nebr_sim_dyn_p_row,chla_to_conv_nebr_sim_dyn_p_row,chla_to_subl_nebr_sim_dyn_p_row, 

                                            
luci_to_bara_nebr_sim_dyn_p_row,luci_to_conv_nebr_sim_dyn_p_row,luci_to_subl_nebr_sim_dyn_p_row, 

                                            luci_to_sage_comp_sim_dyn_p_row, 
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chla_to_bara_rees_sim_dyn_p_row,chla_to_sage_rees_sim_dyn_p_row,chla_to_oblo_rees_sim_dyn_p_row, 

                                            
cten_to_bara_rees_sim_dyn_p_row,cten_to_sage_rees_sim_dyn_p_row,cten_to_oblo_rees_sim_dyn_p_row) 

 

# Combine the results of niche dynamics 

make_dynam_row <- function(data1,name,interval){ 

  data <- as.data.frame(data1[[6]]) 

  named1 <- as.data.frame(cbind(name,interval,t(data[,2]))) 

  colnames(named1) <- c("species","Intervals_compared","Expansion","Stability","Unfilling") 

  named1[,c(3:5)] <- as.numeric(as.character(named1[,c(3:5)])) 

  return(named1) 

} 

 

cten_to_conv_redu_dyn_row <- make_dynam_row(cten_to_conv_redu_overlap,"C. imbricatula vs. I. 
convexus","B. reduncus-B. scotti") 

 

cten_to_subl_redu_dyn_row <- make_dynam_row(cten_to_subl_redu_overlap,"C. imbricatula vs. I. 
sublaevis","B. reduncus-B. scotti") 

 

cten_to_sask_redu_dyn_row <- make_dynam_row(cten_to_sask_redu_overlap,"C. imbricatula vs. I. 
saskatchewanensis","B. reduncus-B. scotti") 

 

cten_to_bara_nebr_dyn_row <- make_dynam_row(cten_to_bara_nebr_overlap,"C. imbricatula vs. I. 
barabini","D. nebrascense-E. jenneyi") 

 

cten_to_conv_nebr_dyn_row <- make_dynam_row(cten_to_conv_nebr_overlap,"C. imbricatula vs. I. 
convexus","D. nebrascense-E. jenneyi") 

 

cten_to_subl_nebr_dyn_row <- make_dynam_row(cten_to_subl_nebr_overlap,"C. imbricatula vs. I. 
sublaevis","D. nebrascense-E. jenneyi") 

 

chla_to_bara_nebr_dyn_row <- make_dynam_row(chla_to_bara_nebr_overlap,"C. nebrascensis vs. I. 
barabini","D. nebrascense-E. jenneyi") 
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chla_to_conv_nebr_dyn_row <- make_dynam_row(chla_to_conv_nebr_overlap,"C. nebrascensis vs. I. 
convexus","D. nebrascense-E. jenneyi") 

 

chla_to_subl_nebr_dyn_row <- make_dynam_row(chla_to_subl_nebr_overlap,"C. nebrascensis vs. I. 
sublaevis","D. nebrascense-E. jenneyi") 

 

luci_to_bara_nebr_dyn_row <- make_dynam_row(luci_to_bara_nebr_overlap,"L. subundata vs. I. barabini","D. 
nebrascense-E. jenneyi") 

 

luci_to_conv_nebr_dyn_row <- make_dynam_row(luci_to_conv_nebr_overlap,"L. subundata vs. I. 
convexus","D. nebrascense-E. jenneyi") 

 

luci_to_subl_nebr_dyn_row <- make_dynam_row(luci_to_subl_nebr_overlap,"L. subundata vs. I. 
sublaevis","D. nebrascense-E. jenneyi") 

 

luci_to_sage_comp_dyn_row <- make_dynam_row(luci_to_sage_comp_overlap,"L. subundata vs. I. 
sagensis","B. compressus-B. cuneatus") 

 

chla_to_bara_rees_dyn_row <- make_dynam_row(chla_to_bara_rees_overlap,"C. nebrascensis vs. I. 
barabini","B. reesidei-B. eliasi") 

 

chla_to_sage_rees_dyn_row <- make_dynam_row(chla_to_sage_rees_overlap,"C. nebrascensis vs. I. 
sagensis","B. reesidei-B. eliasi") 

 

chla_to_oblo_rees_dyn_row <- make_dynam_row(chla_to_oblo_rees_overlap,"C. nebrascensis vs. I. 
oblongus","B. reesidei-B. eliasi") 

 

 

 

cten_to_bara_rees_dyn_row <- make_dynam_row(cten_to_bara_rees_overlap,"C. imbricatula vs. I. 
barabini","B. reesidei-B. eliasi") 

 

cten_to_sage_rees_dyn_row <- make_dynam_row(cten_to_sage_rees_overlap,"C. imbricatula vs. I. 
sagensis","B. reesidei-B. eliasi") 
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cten_to_oblo_rees_dyn_row <- make_dynam_row(cten_to_oblo_rees_overlap,"C. imbricatula vs. I. 
oblongus","B. reesidei-B. eliasi") 

 

outgroup_compare_dyn_results <- 
rbind(cten_to_conv_redu_dyn_row,cten_to_subl_redu_dyn_row,cten_to_sask_redu_dyn_row, 

                                      chla_to_bara_nebr_dyn_row,cten_to_conv_nebr_dyn_row,cten_to_subl_nebr_dyn_row, 

                                      chla_to_bara_nebr_dyn_row,chla_to_conv_nebr_dyn_row,chla_to_subl_nebr_dyn_row, 

                                      luci_to_bara_nebr_dyn_row,luci_to_conv_nebr_dyn_row,luci_to_subl_nebr_dyn_row, 

                                      luci_to_sage_comp_dyn_row, 

                                      chla_to_bara_rees_dyn_row,chla_to_sage_rees_dyn_row,chla_to_oblo_rees_dyn_row, 

                                      cten_to_bara_rees_dyn_row,cten_to_sage_rees_dyn_row,cten_to_oblo_rees_dyn_row) 

 

## Write csv files of results 

write.csv(outgroup_compare_I_D_results,file="tables/outgroup_compare_I_D_results.csv") 

write.csv(outgroup_compare_eq_results,file="tables/outgroup_compare_eq_results.csv") 

write.csv(outgroup_compare_sim_results,file="tables/outgroup_compare_sim_results.csv") 

write.csv(outgroup_compare_dyn_results,file="tables/outgroup_compare_dyn_results.csv") 

write.csv(outgroup_compare_eq_dyn_p_results,file="tables/outgroup_compare_eq_dyn_p_results.csv") 

write.csv(outgroup_compare_sim_dyn_p_results,file="tables/outgroup_compare_sim_dyn_p_results.csv") 

 

#### SPECIES TO GENUS COMPARISONS #### 

 

conv_to_inoceram_redu_overlap <- run_ecospat_dyn(conv_redu_prep,Inoceramus_redu_prep, 

                                             "I. convextus to Inoceramus\nB. reduncus-B. scotti","Iconv_to_Inocer_redu_") 

 

 

subl_to_inoceram_redu_overlap <- run_ecospat_dyn(subl_redu_prep,Inoceramus_redu_prep, 

                                                 "I. sublaevis to Inoceramus\nB. reduncus-B. scotti","Isubl_to_Inocer_redu_") 

 

sask_to_inoceram_redu_overlap <- run_ecospat_dyn(sask_redu_prep,Inoceramus_redu_prep, 

                                                 "I. saskatchewanensis to Inoceramus\nB. reduncus-B. 
scotti","Isask_to_Inocer_redu_") 
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conv_to_inoceram_nebr_overlap <- run_ecospat_dyn(conv_nebr_prep,Inoceramus_nebr_prep, 

                                             "I. convextus to Inoceramus\nD. nebrascense-E. jenneyi","Iconv_to_Inocer_nebr") 

 

subl_to_inoceram_nebr_overlap <- run_ecospat_dyn(subl_nebr_prep,Inoceramus_nebr_prep, 

                                             "I. sublaevis to Inoceramus\nD. nebrascense-E. jenneyi","Isubl_to_Inocer_nebr") 

 

bara_to_inoceram_nebr_overlap <- run_ecospat_dyn(bara_nebr_prep,Inoceramus_nebr_prep, 

                                             "I. barabini to Inoceramus\nD. nebrascense-E. jenneyi","Ibara_to_Inocer_nebr") 

 

bara_to_inoceram_rees_overlap <- run_ecospat_dyn(bara_rees_prep,Inoceramus_rees_prep, 

                                             "I. barabini to Inoceramus\nB. reesidei-B. eliasi","Ibara_to_Inocer_rees") 

 

sage_to_inoceram_rees_overlap <- run_ecospat_dyn(sage_rees_prep,Inoceramus_rees_prep, 

                                             "I. sagensis to Inoceramus\nB. reesidei-B. eliasi","Isage_to_Inocer_rees") 

 

oblo_to_inoceram_rees_overlap <- run_ecospat_dyn(oblo_rees_prep,Inoceramus_rees_prep, 

                                                 "I. oblongus to Inoceramus\nB. reesidei-B. eliasi","Ioblo_to_Inocer_rees") 

 

 

 

#### Summarize Specise to Genus Comparisons and Export Tables #### 

# Combine the results of observed overlap 

make_D_I_row <- function(data1,name,interval){ 

  named1 <- as.data.frame(cbind(name,interval,data1[[2]]$obs$D,data1[[2]]$obs$I)) 

  colnames(named1) <- c("species","Intervals_compared","D_val","I_val") 

  named1[,c(3:4)] <- as.numeric(as.character(named1[,c(3:4)])) 

  return(named1) 

} 

 

conv_to_inoceram_redu_D_I_row <- make_D_I_row(conv_to_inoceram_redu_overlap,"I. convexus","B. 
reduncus-B. scotti") 
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subl_to_inoceram_redu_D_I_row <- make_D_I_row(subl_to_inoceram_redu_overlap,"I. sublaevis","B. 
reduncus-B. scotti") 

 

sask_to_inoceram_redu_D_I_row <- make_D_I_row(sask_to_inoceram_redu_overlap,"I. 
saskatchewanensis","B. reduncus-B. scotti") 

conv_to_inoceram_nebr_D_I_row <- make_D_I_row(conv_to_inoceram_nebr_overlap,"I. convexus","D. 
nebrascense-E. jenneyi") 

 

subl_to_inoceram_nebr_D_I_row <- make_D_I_row(subl_to_inoceram_nebr_overlap,"I. sublaevis","D. 
nebrascense-E. jenneyi") 

bara_to_inoceram_nebr_D_I_row <- make_D_I_row(bara_to_inoceram_nebr_overlap,"I. barabini","D. 
nebrascense-E. jenneyi") 

 

bara_to_inoceram_rees_D_I_row <- make_D_I_row(bara_to_inoceram_rees_overlap,"I. barabini","B. reesidei-
B. eliasi") 

sage_to_inoceram_rees_D_I_row <- make_D_I_row(sage_to_inoceram_rees_overlap,"I. sagensis","B. reesidei-
B. eliasi") 

 

oblo_to_inoceram_rees_D_I_row <- make_D_I_row(oblo_to_inoceram_rees_overlap,"I. oblongus","B. 
reesidei-B. eliasi") 

 

 

gen_to_sp_I_D_results <- rbind(conv_to_inoceram_redu_D_I_row,subl_to_inoceram_redu_D_I_row, 

                               sask_to_inoceram_redu_D_I_row,conv_to_inoceram_nebr_D_I_row, 

                               subl_to_inoceram_nebr_D_I_row,bara_to_inoceram_nebr_D_I_row, 

                               bara_to_inoceram_rees_D_I_row,sage_to_inoceram_rees_D_I_row, 

                               oblo_to_inoceram_rees_D_I_row) 

 

# Combine the results of equivalency tests 

make_exp_p_row <- function(data1,name,interval){ 

  named1 <- as.data.frame(cbind(name,interval,data1[[2]]$p.D,data1[[2]]$p.I,data1[[3]]$p.D,data1[[3]]$p.I)) 

  colnames(named1) <- 
c("species","Intervals_compared","Greater_Eq_p_D","Greater_Eq_p_I","Lower_Eq_p_D","Lower_Eq_p_I") 

  named1[,c(3:4)] <- as.numeric(as.character(named1[,c(3:4)])) 

  return(named1) 
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} 

 

conv_to_inoceram_redu_eq_row <- make_exp_p_row(conv_to_inoceram_redu_overlap,"I. convexus","B. 
reduncus-B. scotti") 

subl_to_inoceram_redu_eq_row <- make_exp_p_row(subl_to_inoceram_redu_overlap,"I. sublaevis","B. 
reduncus-B. scotti") 

 

sask_to_inoceram_redu_eq_row <- make_exp_p_row(sask_to_inoceram_redu_overlap,"I. 
saskatchewanensis","B. reduncus-B. scotti") 

conv_to_inoceram_nebr_eq_row <- make_exp_p_row(conv_to_inoceram_nebr_overlap,"I. convexus","D. 
nebrascense-E. jenneyi") 

 

subl_to_inoceram_nebr_eq_row <- make_exp_p_row(subl_to_inoceram_nebr_overlap,"I. sublaevis","D. 
nebrascense-E. jenneyi") 

bara_to_inoceram_nebr_eq_row <- make_exp_p_row(bara_to_inoceram_nebr_overlap,"I. barabini","D. 
nebrascense-E. jenneyi") 

 

bara_to_inoceram_rees_eq_row <- make_exp_p_row(bara_to_inoceram_rees_overlap,"I. barabini","B. reesidei-
B. eliasi") 

sage_to_inoceram_rees_eq_row <- make_exp_p_row(sage_to_inoceram_rees_overlap,"I. sagensis","B. reesidei-
B. eliasi") 

 

oblo_to_inoceram_rees_eq_row <- make_exp_p_row(oblo_to_inoceram_rees_overlap,"I. oblongus","B. 
reesidei-B. eliasi") 

 

gen_to_sp_eq_results <- rbind(conv_to_inoceram_redu_eq_row,subl_to_inoceram_redu_eq_row, 

                              sask_to_inoceram_redu_eq_row,conv_to_inoceram_nebr_eq_row, 

                              subl_to_inoceram_nebr_eq_row,bara_to_inoceram_nebr_eq_row, 

                              bara_to_inoceram_rees_eq_row,sage_to_inoceram_rees_eq_row, 

                              oblo_to_inoceram_rees_eq_row) 

 

# Combine the results of equivalency tests of Dynamics (p-vals) 

make_exp_dyn_p_row <- function(data1,name,interval){ 

  named1 <- 
as.data.frame(cbind(name,interval,data1[[2]]$p.expansion,data1[[2]]$p.stability,data1[[2]]$p.unfilling, 



Supplementary Materials for Purcell and Myers, 20XX 716 
 

716 
 

                                data1[[3]]$p.expansion,data1[[3]]$p.stability,data1[[3]]$p.unfilling)) 

  colnames(named1) <- 
c("species","Intervals_compared","Greater_Eq_p_expansion","Greater_Eq_p_stability","Greater_Eq_p_unfillin
g", 

                        "Lower_Eq_p_expansion","Lower_Eq_p_stability","Lower_Eq_p_unfilling") 

  named1[,c(3:4)] <- as.numeric(as.character(named1[,c(3:4)])) 

  return(named1) 

} 

 

conv_to_inoceram_redu_eq_dyn_p_row <- make_exp_dyn_p_row(conv_to_inoceram_redu_overlap,"I. 
convexus","B. reduncus-B. scotti") 

subl_to_inoceram_redu_eq_dyn_p_row <- make_exp_dyn_p_row(subl_to_inoceram_redu_overlap,"I. 
sublaevis","B. reduncus-B. scotti") 

 

sask_to_inoceram_redu_eq_dyn_p_row <- make_exp_dyn_p_row(sask_to_inoceram_redu_overlap,"I. 
saskatchewanensis","B. reduncus-B. scotti") 

conv_to_inoceram_nebr_eq_dyn_p_row <- make_exp_dyn_p_row(conv_to_inoceram_nebr_overlap,"I. 
convexus","D. nebrascense-E. jenneyi") 

 

subl_to_inoceram_nebr_eq_dyn_p_row <- make_exp_dyn_p_row(subl_to_inoceram_nebr_overlap,"I. 
sublaevis","D. nebrascense-E. jenneyi") 

bara_to_inoceram_nebr_eq_dyn_p_row <- make_exp_dyn_p_row(bara_to_inoceram_nebr_overlap,"I. 
barabini","D. nebrascense-E. jenneyi") 

 

bara_to_inoceram_rees_eq_dyn_p_row <- make_exp_dyn_p_row(bara_to_inoceram_rees_overlap,"I. 
barabini","B. reesidei-B. eliasi") 

sage_to_inoceram_rees_eq_dyn_p_row <- make_exp_dyn_p_row(sage_to_inoceram_rees_overlap,"I. 
sagensis","B. reesidei-B. eliasi") 

 

oblo_to_inoceram_rees_eq_dyn_p_row <- make_exp_dyn_p_row(oblo_to_inoceram_rees_overlap,"I. 
oblongus","B. reesidei-B. eliasi") 

 

 

gen_to_sp_eq_dyn_p_results <- 
rbind(conv_to_inoceram_redu_eq_dyn_p_row,subl_to_inoceram_redu_eq_dyn_p_row, 

                                    sask_to_inoceram_redu_eq_dyn_p_row,conv_to_inoceram_nebr_eq_dyn_p_row, 
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                                    subl_to_inoceram_nebr_eq_dyn_p_row,bara_to_inoceram_nebr_eq_dyn_p_row, 

                                    bara_to_inoceram_rees_eq_dyn_p_row,sage_to_inoceram_rees_eq_dyn_p_row, 

                                    oblo_to_inoceram_rees_eq_dyn_p_row) 

 

 

 

# Combine the results of similarity tests 

make_sim_p_row <- function(data1,name,interval){ 

  named1 <- as.data.frame(cbind(name,interval,data1[[4]]$p.D,data1[[4]]$p.I,data1[[5]]$p.D,data1[[5]]$p.I)) 

  colnames(named1) <- 
c("species","Intervals_compared","Greater_Sim_p_D","Greater_Sim_p_I","Lower_Sim_p_D","Lower_Sim_p_I
") 

  named1[,c(3:4)] <- as.numeric(as.character(named1[,c(3:4)])) 

  return(named1) 

} 

 

conv_to_inoceram_redu_sim_row <- make_sim_p_row(conv_to_inoceram_redu_overlap,"I. convexus","B. 
reduncus-B. scotti") 

subl_to_inoceram_redu_sim_row <- make_sim_p_row(subl_to_inoceram_redu_overlap,"I. sublaevis","B. 
reduncus-B. scotti") 

 

sask_to_inoceram_redu_sim_row <- make_sim_p_row(sask_to_inoceram_redu_overlap,"I. 
saskatchewanensis","B. reduncus-B. scotti") 

conv_to_inoceram_nebr_sim_row <- make_sim_p_row(conv_to_inoceram_nebr_overlap,"I. convexus","D. 
nebrascense-E. jenneyi") 

 

subl_to_inoceram_nebr_sim_row <- make_sim_p_row(subl_to_inoceram_nebr_overlap,"I. sublaevis","D. 
nebrascense-E. jenneyi") 

bara_to_inoceram_nebr_sim_row <- make_sim_p_row(bara_to_inoceram_nebr_overlap,"I. barabini","D. 
nebrascense-E. jenneyi") 

 

bara_to_inoceram_rees_sim_row <- make_sim_p_row(bara_to_inoceram_rees_overlap,"I. barabini","B. 
reesidei-B. eliasi") 

sage_to_inoceram_rees_sim_row <- make_sim_p_row(sage_to_inoceram_rees_overlap,"I. sagensis","B. 
reesidei-B. eliasi") 
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oblo_to_inoceram_rees_sim_row <- make_sim_p_row(oblo_to_inoceram_rees_overlap,"I. oblongus","B. 
reesidei-B. eliasi") 

 

 

gen_to_sp_sim_results <- rbind(conv_to_inoceram_redu_sim_row,subl_to_inoceram_redu_sim_row, 

                               sask_to_inoceram_redu_sim_row,conv_to_inoceram_nebr_sim_row, 

                               subl_to_inoceram_nebr_sim_row,bara_to_inoceram_nebr_sim_row, 

                               bara_to_inoceram_rees_sim_row,sage_to_inoceram_rees_sim_row, 

                               oblo_to_inoceram_rees_sim_row) 

 

# Combine the results of equivalency tests of Dynamics (p-vals) 

make_sim_dyn_p_row <- function(data1,name,interval){ 

  named1 <- 
as.data.frame(cbind(name,interval,data1[[4]]$p.expansion,data1[[4]]$p.stability,data1[[4]]$p.unfilling, 

                                data1[[5]]$p.expansion,data1[[5]]$p.stability,data1[[5]]$p.unfilling)) 

  colnames(named1) <- 
c("species","Intervals_compared","Greater_Sim_p_expansion","Greater_Sim_p_stability","Greater_Sim_p_unfi
lling", 

                        "Lower_Sim_p_expansion","Lower_Sim_p_stability","Lower_Sim_p_unfilling") 

  named1[,c(3:4)] <- as.numeric(as.character(named1[,c(3:4)])) 

  return(named1) 

} 

 

conv_to_inoceram_redu_sim_dyn_p_row <- make_sim_dyn_p_row(conv_to_inoceram_redu_overlap,"I. 
convexus","B. reduncus-B. scotti") 

subl_to_inoceram_redu_sim_dyn_p_row <- make_sim_dyn_p_row(subl_to_inoceram_redu_overlap,"I. 
sublaevis","B. reduncus-B. scotti") 

 

sask_to_inoceram_redu_sim_dyn_p_row <- make_sim_dyn_p_row(sask_to_inoceram_redu_overlap,"I. 
saskatchewanensis","B. reduncus-B. scotti") 

conv_to_inoceram_nebr_sim_dyn_p_row <- make_sim_dyn_p_row(conv_to_inoceram_nebr_overlap,"I. 
convexus","D. nebrascense-E. jenneyi") 
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subl_to_inoceram_nebr_sim_dyn_p_row <- make_sim_dyn_p_row(subl_to_inoceram_nebr_overlap,"I. 
sublaevis","D. nebrascense-E. jenneyi") 

bara_to_inoceram_nebr_sim_dyn_p_row <- make_sim_dyn_p_row(bara_to_inoceram_nebr_overlap,"I. 
barabini","D. nebrascense-E. jenneyi") 

 

bara_to_inoceram_rees_sim_dyn_p_row <- make_sim_dyn_p_row(bara_to_inoceram_rees_overlap,"I. 
barabini","B. reesidei-B. eliasi") 

sage_to_inoceram_rees_sim_dyn_p_row <- make_sim_dyn_p_row(sage_to_inoceram_rees_overlap,"I. 
sagensis","B. reesidei-B. eliasi") 

 

oblo_to_inoceram_rees_sim_dyn_p_row <- make_sim_dyn_p_row(oblo_to_inoceram_rees_overlap,"I. 
oblongus","B. reesidei-B. eliasi") 

 

gen_to_sp_sim_dyn_p_results <- 
rbind(conv_to_inoceram_redu_sim_dyn_p_row,subl_to_inoceram_redu_sim_dyn_p_row, 

                                     sask_to_inoceram_redu_sim_dyn_p_row,conv_to_inoceram_nebr_sim_dyn_p_row, 

                                     subl_to_inoceram_nebr_sim_dyn_p_row,bara_to_inoceram_nebr_sim_dyn_p_row, 

                                     bara_to_inoceram_rees_sim_dyn_p_row,sage_to_inoceram_rees_sim_dyn_p_row, 

                                     oblo_to_inoceram_rees_sim_dyn_p_row) 

 

# Combine the results of niche dynamics 

make_dynam_row <- function(data1,name,interval){ 

  data <- as.data.frame(data1[[6]]) 

  named1 <- as.data.frame(cbind(name,interval,t(data[,2]))) 

  colnames(named1) <- c("species","Intervals_compared","Expansion","Stability","Unfilling") 

  named1[,c(3:5)] <- as.numeric(as.character(named1[,c(3:5)])) 

  return(named1) 

} 

 

conv_to_inoceram_redu_dyn_row <- make_dynam_row(conv_to_inoceram_redu_overlap,"I. convexus","B. 
reduncus-B. scotti") 

subl_to_inoceram_redu_dyn_row <- make_dynam_row(subl_to_inoceram_redu_overlap,"I. sublaevis","B. 
reduncus-B. scotti") 
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sask_to_inoceram_redu_dyn_row <- make_dynam_row(sask_to_inoceram_redu_overlap,"I. 
saskatchewanensis","B. reduncus-B. scotti") 

conv_to_inoceram_nebr_dyn_row <- make_dynam_row(conv_to_inoceram_nebr_overlap,"I. convexus","D. 
nebrascense-E. jenneyi") 

 

subl_to_inoceram_nebr_dyn_row <- make_dynam_row(subl_to_inoceram_nebr_overlap,"I. sublaevis","D. 
nebrascense-E. jenneyi") 

bara_to_inoceram_nebr_dyn_row <- make_dynam_row(bara_to_inoceram_nebr_overlap,"I. barabini","D. 
nebrascense-E. jenneyi") 

 

bara_to_inoceram_rees_dyn_row <- make_dynam_row(bara_to_inoceram_rees_overlap,"I. barabini","B. 
reesidei-B. eliasi") 

sage_to_inoceram_rees_dyn_row <- make_dynam_row(sage_to_inoceram_rees_overlap,"I. sagensis","B. 
reesidei-B. eliasi") 

 

oblo_to_inoceram_rees_dyn_row <- make_dynam_row(oblo_to_inoceram_rees_overlap,"I. oblongus","B. 
reesidei-B. eliasi") 

 

 

gen_to_sp_dyn_results <- rbind(conv_to_inoceram_redu_dyn_row,subl_to_inoceram_redu_dyn_row, 

                               sask_to_inoceram_redu_dyn_row,conv_to_inoceram_nebr_dyn_row, 

                               subl_to_inoceram_nebr_dyn_row,bara_to_inoceram_nebr_dyn_row, 

                               bara_to_inoceram_rees_dyn_row,sage_to_inoceram_rees_dyn_row, 

                               oblo_to_inoceram_rees_dyn_row) 

 

 

## Write csv files of results 

write.csv(gen_to_sp_I_D_results,file="tables/gen_to_sp_I_D_results.csv") 

write.csv(gen_to_sp_eq_results,file="tables/gen_to_sp_eq_results.csv") 

write.csv(gen_to_sp_sim_results,file="tables/gen_to_sp_sim_results.csv") 

write.csv(gen_to_sp_dyn_results,file="tables/gen_to_sp_dyn_results.csv") 

write.csv(gen_to_sp_eq_dyn_p_results,file="tables/gen_to_sp_eq_dyn_p_results.csv") 

write.csv(gen_to_sp_sim_dyn_p_results,file="tables/gen_to_sp_sim_dyn_p_results.csv") 
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##### RUN PCA OF MORE THAN 2 SPP TO GENUS #### 

## Extract values to matrix for each raster stack of env proxy variables: 

 

redu_taxa_list <- list(conv_redu_prep,subl_redu_prep,sask_redu_prep,Inoceramus_redu_prep) 

 

nebr_taxa_list <- list(conv_nebr_prep,subl_nebr_prep,bara_nebr_prep,Inoceramus_nebr_prep) 

 

rees_taxa_list <- list(bara_rees_prep,sage_rees_prep,oblo_rees_prep,Inoceramus_rees_prep) 

 

 

name_list_redu <- c("I. convexus","I. sublaevis", "I. saskatchewanensis","Inoceramus") 

name_list_nebr <- c("I. convexus","I. sublaevis","I. barabini","Inoceramus") 

name_list_rees <- c("I. barabini","I. sagensis", "I. oblongus","Inoceramus") 

 

# Create function to tabulate PCA scores for plotting spp and genus information 

  # Function will only take a list of prepped occurrence/raster stack data 

  # and output a list of 1-Joined (global) environment pts, 2-pts for each spp/gen, 

  # and 3-the convex hull index values for creating polygons around spp/gen 

run_gen_spp_pca <- function(occ_raster_list,name_list){ 

   

  bg_score_list <- list() # make list to put bg scores into 

   

  for (i in 1:length(occ_raster_list)){ 

     

    # Get scores for each environment's backgrounds 

    first_bg<- getValues(occ_raster_list[[i]][[2]]) 

     

    ## Clean out missing values: 

    first_bg <- first_bg[complete.cases(first_bg), ] 

     

    bg_score_list[[i]] <- first_bg 
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  } 

   

  ## Combined global environment: 

  joined_bg <- list.rbind(bg_score_list) 

   

  # Run PCA analysis on combine BG pts (all env data) 

  pca_joined_bg <- dudi.pca(joined_bg, center = TRUE, 

                            scale = TRUE, scannf = FALSE, nf = 2) 

  joined_bg_scores <- pca_joined_bg$li # get the pca scores 

   

  occ_loc_list <- list() # Make list to put occ locations in PCA into 

  for (i in 1:length(occ_raster_list)){ 

    # Map occurrence data into the 2d ordination (have to coerce spatialPointsDataFrame into data.frame) 

    # Explicitly match the colnames so only using the right ones 

    # Only selected the li element (doesn't include others) 

    first_occ_scores <- 

      suprow(pca_joined_bg, 

             data.frame(occ_raster_list[[i]][[1]])[, colnames(joined_bg)])$li 

     

    occ_loc_list[[i]] <- first_occ_scores 

     

  } 

   

  # Add column with spp/gen names to occ location list: 

  for (i in 1:length(occ_raster_list)) { 

     

    occ_loc_list[[i]]$tax <- name_list[i] 

     

  } 

   

  # Bind all the taxa localities together 
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  occ_loc_df <- list.rbind(occ_loc_list) 

   

  bg_loc_list <- list() # make list to put bg locations in PCA into 

   

  for (i in 1:length(occ_raster_list)){ 

     

    # Map BG data to the 2d ordination 

    first_bg_scores <- suprow(pca_joined_bg, bg_score_list[[i]])$li 

     

    bg_loc_list[[i]] <- first_bg_scores 

     

  } 

  #  

  # NOT USED ANYMORE, BUT MAYBE STILL WANT TO KEEP IN CASE 

  # hull_list <- list() # make list to hold convex hulls 

  #  

  # for (i in 1:length(occ_raster_list)){ 

  #  

  #   # Make convex hulls to put around points for each spp/genus 

  #   first_hull <- chull(occ_loc_list[[i]]) 

  #   first_hull <- c(first_hull,first_hull[1]) # Get list of index values for making a polygon 

  #  

  #   hull_list[[i]] <- first_hull 

  #  

  # } 

 

  final_list <- list(joined_bg_scores,occ_loc_df) 

   

  return(final_list) 

} 
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# Use above function to make list of PCA information for plotting in each interval 

redu_taxa_pca_list <- run_gen_spp_pca(redu_taxa_list,name_list_redu) 

nebr_taxa_pca_list <- run_gen_spp_pca(nebr_taxa_list,name_list_nebr) 

rees_taxa_pca_list <- run_gen_spp_pca(rees_taxa_list,name_list_rees) 

 

# Use listed outputs from above function run on list of spp/gen to make plots: 

 

library(devtools) 

library(ggConvexHull) 

 

pdf("Figures/pca_genus_to_spp_figures.pdf") 

# REDU 

ggplot(redu_taxa_pca_list[[2]], aes(x=Axis1, y=Axis2)) + # first spp/genus pts 

  geom_point(data=redu_taxa_pca_list[[1]],aes(x=Axis1, y=Axis2),color='grey25') + # global env pts 

  geom_convexhull(alpha = 0.3, aes(fill = tax,color = tax), linewidth = 1) + 

  scale_fill_manual(values = c("#56B4E9", "#E69F00",'#F0E442', '#999999')) + 

  scale_color_manual(values = c("#56B4E9", "#E69F00",'#F0E442', '#999999')) + 

  ggtitle("PCA of Inoceramus genus and Species in B. reduncus-B. scotti") + 

  theme_light() + 

  theme(legend.title = element_blank()) 

 

# NEBR 

ggplot(nebr_taxa_pca_list[[2]], aes(x=Axis1, y=Axis2)) + # first spp/genus pts 

  geom_point(data=nebr_taxa_pca_list[[1]],aes(x=Axis1, y=Axis2),color='grey25') + # global env pts 

  geom_convexhull(alpha = 0.3, aes(fill = tax, color = tax), linewidth = 1) + 

  scale_fill_manual(values = c("#009E73", "#56B4E9", "#F0E442","#999999")) + 

  scale_color_manual(values = c("#009E73", "#56B4E9", "#F0E442","#999999")) + 

  ggtitle("PCA of Inoceramus genus and Species in D. nebrascense-E. jenneyi") + 

  theme_light() + 

  theme(legend.title = element_blank()) 
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# REES 

ggplot(rees_taxa_pca_list[[2]], aes(x=Axis1, y=Axis2)) + # first spp/genus pts 

  geom_point(data=rees_taxa_pca_list[[1]],aes(x=Axis1, y=Axis2),color='grey25') + # global env pts 

  geom_convexhull(alpha = 0.3, aes(fill = tax, color = tax), linewidth = 1) + 

  scale_fill_manual(values = c("#009E73", "#CC79A7", '#0072B2', "#999999")) + 

  scale_color_manual(values = c("#009E73", "#CC79A7", '#0072B2', "#999999")) + 

  ggtitle("PCA of Inoceramus genus and Species in B. reesidei-B. eliasi") + 

  theme_light() + 

  theme(legend.title = element_blank()) 

dev.off() 

 

 

#### SPECIES TO GENUS (ALL OCC, EVEN NO SPP ID) COMPARISONS #### 

 

conv_to_inoceram_all_redu_overlap <- run_ecospat_dyn(conv_redu_prep,Inoceramus_all_redu_prep, 

                                                 "I. convextus to Inoceramus\nB. reduncus-B. 
scotti","Iconv_to_Inocer_all_redu_") 

 

subl_to_inoceram_all_redu_overlap <- run_ecospat_dyn(subl_redu_prep,Inoceramus_all_redu_prep, 

                                                 "I. sublaevis to Inoceramus\nB. reduncus-B. scotti","Isubl_to_Inocer_all_redu_") 

 

sask_to_inoceram_all_redu_overlap <- run_ecospat_dyn(sask_redu_prep,Inoceramus_all_redu_prep, 

                                                 "I. saskatchewanensis to Inoceramus\nB. reduncus-B. 
scotti","Isask_to_Inocer_all_redu_") 

 

conv_to_inoceram_all_nebr_overlap <- run_ecospat_dyn(conv_nebr_prep,Inoceramus_all_nebr_prep, 

                                                 "I. convextus to Inoceramus\nD. nebrascense-E. 
jenneyi","Iconv_to_Inocer_all_nebr") 

 

subl_to_inoceram_all_nebr_overlap <- run_ecospat_dyn(subl_nebr_prep,Inoceramus_all_nebr_prep, 

                                                 "I. sublaevis to Inoceramus\nD. nebrascense-E. 
jenneyi","Isubl_to_Inocer_all_nebr") 
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bara_to_inoceram_all_nebr_overlap <- run_ecospat_dyn(bara_nebr_prep,Inoceramus_all_nebr_prep, 

                                                 "I. barabini to Inoceramus\nD. nebrascense-E. 
jenneyi","Ibara_to_Inocer_all_nebr") 

 

 

 

bara_to_inoceram_all_rees_overlap <- run_ecospat_dyn(bara_rees_prep,Inoceramus_all_rees_prep, 

                                                 "I. barabini to Inoceramus\nB. reesidei-B. eliasi","Ibara_to_Inocer_all_rees") 

 

sage_to_inoceram_all_rees_overlap <- run_ecospat_dyn(sage_rees_prep,Inoceramus_all_rees_prep, 

                                                 "I. sagensis to Inoceramus\nB. reesidei-B. eliasi","Isage_to_Inocer_all_rees") 

 

oblo_to_inoceram_all_rees_overlap <- run_ecospat_dyn(oblo_rees_prep,Inoceramus_all_rees_prep, 

                                                 "I. oblongus to Inoceramus\nB. reesidei-B. eliasi","Ioblo_to_Inocer_all_rees") 

 

 

#### Summarize Species to Genus (all occ) Comparisons and Export Tables #### 

# Combine the results of observed overlap 

make_D_I_row <- function(data1,name,interval){ 

  named1 <- as.data.frame(cbind(name,interval,data1[[2]]$obs$D,data1[[2]]$obs$I)) 

  colnames(named1) <- c("species","Intervals_compared","D_val","I_val") 

  named1[,c(3:4)] <- as.numeric(as.character(named1[,c(3:4)])) 

  return(named1) 

} 

 

conv_to_inoceram_all_redu_D_I_row <- make_D_I_row(conv_to_inoceram_all_redu_overlap,"I. 
convexus","B. reduncus-B. scotti") 

subl_to_inoceram_all_redu_D_I_row <- make_D_I_row(subl_to_inoceram_all_redu_overlap,"I. sublaevis","B. 
reduncus-B. scotti") 

 

sask_to_inoceram_all_redu_D_I_row <- make_D_I_row(sask_to_inoceram_all_redu_overlap,"I. 
saskatchewanensis","B. reduncus-B. scotti") 
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conv_to_inoceram_all_nebr_D_I_row <- make_D_I_row(conv_to_inoceram_all_nebr_overlap,"I. 
convexus","D. nebrascense-E. jenneyi") 

 

subl_to_inoceram_all_nebr_D_I_row <- make_D_I_row(subl_to_inoceram_all_nebr_overlap,"I. sublaevis","D. 
nebrascense-E. jenneyi") 

bara_to_inoceram_all_nebr_D_I_row <- make_D_I_row(bara_to_inoceram_all_nebr_overlap,"I. barabini","D. 
nebrascense-E. jenneyi") 

 

bara_to_inoceram_all_rees_D_I_row <- make_D_I_row(bara_to_inoceram_all_rees_overlap,"I. barabini","B. 
reesidei-B. eliasi") 

sage_to_inoceram_all_rees_D_I_row <- make_D_I_row(sage_to_inoceram_all_rees_overlap,"I. sagensis","B. 
reesidei-B. eliasi") 

 

oblo_to_inoceram_all_rees_D_I_row <- make_D_I_row(oblo_to_inoceram_all_rees_overlap,"I. oblongus","B. 
reesidei-B. eliasi") 

 

gen_to_sp_I_D_results <- rbind(conv_to_inoceram_all_redu_D_I_row,subl_to_inoceram_all_redu_D_I_row, 

                               sask_to_inoceram_all_redu_D_I_row,conv_to_inoceram_all_nebr_D_I_row, 

                               subl_to_inoceram_all_nebr_D_I_row,bara_to_inoceram_all_nebr_D_I_row, 

                               bara_to_inoceram_all_rees_D_I_row,sage_to_inoceram_all_rees_D_I_row, 

                               oblo_to_inoceram_all_rees_D_I_row) 

 

 

# Combine the results of equivalency tests 

make_exp_p_row <- function(data1,name,interval){ 

  named1 <- as.data.frame(cbind(name,interval,data1[[2]]$p.D,data1[[2]]$p.I,data1[[3]]$p.D,data1[[3]]$p.I)) 

  colnames(named1) <- 
c("species","Intervals_compared","Greater_Eq_p_D","Greater_Eq_p_I","Lower_Eq_p_D","Lower_Eq_p_I") 

  named1[,c(3:4)] <- as.numeric(as.character(named1[,c(3:4)])) 

  return(named1) 

} 

 

conv_to_inoceram_all_redu_eq_row <- make_exp_p_row(conv_to_inoceram_all_redu_overlap,"I. 
convexus","B. reduncus-B. scotti") 
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subl_to_inoceram_all_redu_eq_row <- make_exp_p_row(subl_to_inoceram_all_redu_overlap,"I. sublaevis","B. 
reduncus-B. scotti") 

 

sask_to_inoceram_all_redu_eq_row <- make_exp_p_row(sask_to_inoceram_all_redu_overlap,"I. 
saskatchewanensis","B. reduncus-B. scotti") 

conv_to_inoceram_all_nebr_eq_row <- make_exp_p_row(conv_to_inoceram_all_nebr_overlap,"I. 
convexus","D. nebrascense-E. jenneyi") 

 

subl_to_inoceram_all_nebr_eq_row <- make_exp_p_row(subl_to_inoceram_all_nebr_overlap,"I. sublaevis","D. 
nebrascense-E. jenneyi") 

bara_to_inoceram_all_nebr_eq_row <- make_exp_p_row(bara_to_inoceram_all_nebr_overlap,"I. barabini","D. 
nebrascense-E. jenneyi") 

 

bara_to_inoceram_all_rees_eq_row <- make_exp_p_row(bara_to_inoceram_all_rees_overlap,"I. barabini","B. 
reesidei-B. eliasi") 

sage_to_inoceram_all_rees_eq_row <- make_exp_p_row(sage_to_inoceram_all_rees_overlap,"I. sagensis","B. 
reesidei-B. eliasi") 

 

oblo_to_inoceram_all_rees_eq_row <- make_exp_p_row(oblo_to_inoceram_all_rees_overlap,"I. oblongus","B. 
reesidei-B. eliasi") 

 

gen_to_sp_eq_results <- rbind(conv_to_inoceram_all_redu_eq_row,subl_to_inoceram_all_redu_eq_row, 

                              sask_to_inoceram_all_redu_eq_row,conv_to_inoceram_all_nebr_eq_row, 

                              subl_to_inoceram_all_nebr_eq_row,bara_to_inoceram_all_nebr_eq_row, 

                              bara_to_inoceram_all_rees_eq_row,sage_to_inoceram_all_rees_eq_row, 

                              oblo_to_inoceram_all_rees_eq_row) 

 

# Combine the results of equivalency tests of Dynamics (p-vals) 

make_exp_dyn_p_row <- function(data1,name,interval){ 

  named1 <- 
as.data.frame(cbind(name,interval,data1[[2]]$p.expansion,data1[[2]]$p.stability,data1[[2]]$p.unfilling, 

                                data1[[3]]$p.expansion,data1[[3]]$p.stability,data1[[3]]$p.unfilling)) 

  colnames(named1) <- 
c("species","Intervals_compared","Greater_Eq_p_expansion","Greater_Eq_p_stability","Greater_Eq_p_unfillin
g", 

                        "Lower_Eq_p_expansion","Lower_Eq_p_stability","Lower_Eq_p_unfilling") 
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  named1[,c(3:4)] <- as.numeric(as.character(named1[,c(3:4)])) 

  return(named1) 

} 

 

 

conv_to_inoceram_all_redu_eq_dyn_p_row <- make_exp_dyn_p_row(conv_to_inoceram_all_redu_overlap,"I. 
convexus","B. reduncus-B. scotti") 

subl_to_inoceram_all_redu_eq_dyn_p_row <- make_exp_dyn_p_row(subl_to_inoceram_all_redu_overlap,"I. 
sublaevis","B. reduncus-B. scotti") 

 

sask_to_inoceram_all_redu_eq_dyn_p_row <- make_exp_dyn_p_row(sask_to_inoceram_all_redu_overlap,"I. 
saskatchewanensis","B. reduncus-B. scotti") 

conv_to_inoceram_all_nebr_eq_dyn_p_row <- make_exp_dyn_p_row(conv_to_inoceram_all_nebr_overlap,"I. 
convexus","D. nebrascense-E. jenneyi") 

 

subl_to_inoceram_all_nebr_eq_dyn_p_row <- make_exp_dyn_p_row(subl_to_inoceram_all_nebr_overlap,"I. 
sublaevis","D. nebrascense-E. jenneyi") 

bara_to_inoceram_all_nebr_eq_dyn_p_row <- make_exp_dyn_p_row(bara_to_inoceram_all_nebr_overlap,"I. 
barabini","D. nebrascense-E. jenneyi") 

 

bara_to_inoceram_all_rees_eq_dyn_p_row <- make_exp_dyn_p_row(bara_to_inoceram_all_rees_overlap,"I. 
barabini","B. reesidei-B. eliasi") 

sage_to_inoceram_all_rees_eq_dyn_p_row <- make_exp_dyn_p_row(sage_to_inoceram_all_rees_overlap,"I. 
sagensis","B. reesidei-B. eliasi") 

 

oblo_to_inoceram_all_rees_eq_dyn_p_row <- make_exp_dyn_p_row(oblo_to_inoceram_all_rees_overlap,"I. 
oblongus","B. reesidei-B. eliasi") 

 

 

gen_to_sp_eq_dyn_p_results <- 
rbind(conv_to_inoceram_all_redu_eq_dyn_p_row,subl_to_inoceram_all_redu_eq_dyn_p_row, 

                                    sask_to_inoceram_all_redu_eq_dyn_p_row,conv_to_inoceram_all_nebr_eq_dyn_p_row, 

                                    subl_to_inoceram_all_nebr_eq_dyn_p_row,bara_to_inoceram_all_nebr_eq_dyn_p_row, 

                                    bara_to_inoceram_all_rees_eq_dyn_p_row,sage_to_inoceram_all_rees_eq_dyn_p_row, 

                                    oblo_to_inoceram_all_rees_eq_dyn_p_row) 
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# Combine the results of similarity tests 

make_sim_p_row <- function(data1,name,interval){ 

  named1 <- as.data.frame(cbind(name,interval,data1[[4]]$p.D,data1[[4]]$p.I,data1[[5]]$p.D,data1[[5]]$p.I)) 

  colnames(named1) <- 
c("species","Intervals_compared","Greater_Sim_p_D","Greater_Sim_p_I","Lower_Sim_p_D","Lower_Sim_p_I
") 

  named1[,c(3:4)] <- as.numeric(as.character(named1[,c(3:4)])) 

  return(named1) 

} 

 

conv_to_inoceram_all_redu_sim_row <- make_sim_p_row(conv_to_inoceram_all_redu_overlap,"I. 
convexus","B. reduncus-B. scotti") 

subl_to_inoceram_all_redu_sim_row <- make_sim_p_row(subl_to_inoceram_all_redu_overlap,"I. 
sublaevis","B. reduncus-B. scotti") 

 

sask_to_inoceram_all_redu_sim_row <- make_sim_p_row(sask_to_inoceram_all_redu_overlap,"I. 
saskatchewanensis","B. reduncus-B. scotti") 

conv_to_inoceram_all_nebr_sim_row <- make_sim_p_row(conv_to_inoceram_all_nebr_overlap,"I. 
convexus","D. nebrascense-E. jenneyi") 

 

subl_to_inoceram_all_nebr_sim_row <- make_sim_p_row(subl_to_inoceram_all_nebr_overlap,"I. 
sublaevis","D. nebrascense-E. jenneyi") 

bara_to_inoceram_all_nebr_sim_row <- make_sim_p_row(bara_to_inoceram_all_nebr_overlap,"I. 
barabini","D. nebrascense-E. jenneyi") 

 

bara_to_inoceram_all_rees_sim_row <- make_sim_p_row(bara_to_inoceram_all_rees_overlap,"I. barabini","B. 
reesidei-B. eliasi") 

sage_to_inoceram_all_rees_sim_row <- make_sim_p_row(sage_to_inoceram_all_rees_overlap,"I. sagensis","B. 
reesidei-B. eliasi") 

 

oblo_to_inoceram_all_rees_sim_row <- make_sim_p_row(oblo_to_inoceram_all_rees_overlap,"I. 
oblongus","B. reesidei-B. eliasi") 

 

 

gen_to_sp_sim_results <- rbind(conv_to_inoceram_all_redu_sim_row,subl_to_inoceram_all_redu_sim_row, 
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                               sask_to_inoceram_all_redu_sim_row,conv_to_inoceram_all_nebr_sim_row, 

                               subl_to_inoceram_all_nebr_sim_row,bara_to_inoceram_all_nebr_sim_row, 

                               bara_to_inoceram_all_rees_sim_row,sage_to_inoceram_all_rees_sim_row, 

                               oblo_to_inoceram_all_rees_sim_row) 

 

# Combine the results of equivalency tests of Dynamics (p-vals) 

make_sim_dyn_p_row <- function(data1,name,interval){ 

  named1 <- 
as.data.frame(cbind(name,interval,data1[[4]]$p.expansion,data1[[4]]$p.stability,data1[[4]]$p.unfilling, 

                                data1[[5]]$p.expansion,data1[[5]]$p.stability,data1[[5]]$p.unfilling)) 

  colnames(named1) <- 
c("species","Intervals_compared","Greater_Sim_p_expansion","Greater_Sim_p_stability","Greater_Sim_p_unfi
lling", 

                        "Lower_Sim_p_expansion","Lower_Sim_p_stability","Lower_Sim_p_unfilling") 

  named1[,c(3:4)] <- as.numeric(as.character(named1[,c(3:4)])) 

  return(named1) 

} 

 

conv_to_inoceram_all_redu_sim_dyn_p_row <- make_sim_dyn_p_row(conv_to_inoceram_all_redu_overlap,"I. 
convexus","B. reduncus-B. scotti") 

subl_to_inoceram_all_redu_sim_dyn_p_row <- make_sim_dyn_p_row(subl_to_inoceram_all_redu_overlap,"I. 
sublaevis","B. reduncus-B. scotti") 

 

sask_to_inoceram_all_redu_sim_dyn_p_row <- make_sim_dyn_p_row(sask_to_inoceram_all_redu_overlap,"I. 
saskatchewanensis","B. reduncus-B. scotti") 

conv_to_inoceram_all_nebr_sim_dyn_p_row <- make_sim_dyn_p_row(conv_to_inoceram_all_nebr_overlap,"I. 
convexus","D. nebrascense-E. jenneyi") 

 

subl_to_inoceram_all_nebr_sim_dyn_p_row <- make_sim_dyn_p_row(subl_to_inoceram_all_nebr_overlap,"I. 
sublaevis","D. nebrascense-E. jenneyi") 

bara_to_inoceram_all_nebr_sim_dyn_p_row <- make_sim_dyn_p_row(bara_to_inoceram_all_nebr_overlap,"I. 
barabini","D. nebrascense-E. jenneyi") 

 

bara_to_inoceram_all_rees_sim_dyn_p_row <- make_sim_dyn_p_row(bara_to_inoceram_all_rees_overlap,"I. 
barabini","B. reesidei-B. eliasi") 
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sage_to_inoceram_all_rees_sim_dyn_p_row <- make_sim_dyn_p_row(sage_to_inoceram_all_rees_overlap,"I. 
sagensis","B. reesidei-B. eliasi") 

 

oblo_to_inoceram_all_rees_sim_dyn_p_row <- make_sim_dyn_p_row(oblo_to_inoceram_all_rees_overlap,"I. 
oblongus","B. reesidei-B. eliasi") 

 

 

gen_to_sp_sim_dyn_p_results <- 
rbind(conv_to_inoceram_all_redu_sim_dyn_p_row,subl_to_inoceram_all_redu_sim_dyn_p_row, 

                                     
sask_to_inoceram_all_redu_sim_dyn_p_row,conv_to_inoceram_all_nebr_sim_dyn_p_row, 

                                     
subl_to_inoceram_all_nebr_sim_dyn_p_row,bara_to_inoceram_all_nebr_sim_dyn_p_row, 

                                     
bara_to_inoceram_all_rees_sim_dyn_p_row,sage_to_inoceram_all_rees_sim_dyn_p_row, 

                                     oblo_to_inoceram_all_rees_sim_dyn_p_row) 

 

# Combine the results of niche dynamics 

make_dynam_row <- function(data1,name,interval){ 

  data <- as.data.frame(data1[[6]]) 

  named1 <- as.data.frame(cbind(name,interval,t(data[,2]))) 

  colnames(named1) <- c("species","Intervals_compared","Expansion","Stability","Unfilling") 

  named1[,c(3:5)] <- as.numeric(as.character(named1[,c(3:5)])) 

  return(named1) 

} 

 

conv_to_inoceram_all_redu_dyn_row <- make_dynam_row(conv_to_inoceram_all_redu_overlap,"I. 
convexus","B. reduncus-B. scotti") 

subl_to_inoceram_all_redu_dyn_row <- make_dynam_row(subl_to_inoceram_all_redu_overlap,"I. 
sublaevis","B. reduncus-B. scotti") 

 

sask_to_inoceram_all_redu_dyn_row <- make_dynam_row(sask_to_inoceram_all_redu_overlap,"I. 
saskatchewanensis","B. reduncus-B. scotti") 

conv_to_inoceram_all_nebr_dyn_row <- make_dynam_row(conv_to_inoceram_all_nebr_overlap,"I. 
convexus","D. nebrascense-E. jenneyi") 



Supplementary Materials for Purcell and Myers, 20XX 733 
 

733 
 

 

subl_to_inoceram_all_nebr_dyn_row <- make_dynam_row(subl_to_inoceram_all_nebr_overlap,"I. 
sublaevis","D. nebrascense-E. jenneyi") 

bara_to_inoceram_all_nebr_dyn_row <- make_dynam_row(bara_to_inoceram_all_nebr_overlap,"I. 
barabini","D. nebrascense-E. jenneyi") 

 

bara_to_inoceram_all_rees_dyn_row <- make_dynam_row(bara_to_inoceram_all_rees_overlap,"I. barabini","B. 
reesidei-B. eliasi") 

sage_to_inoceram_all_rees_dyn_row <- make_dynam_row(sage_to_inoceram_all_rees_overlap,"I. 
sagensis","B. reesidei-B. eliasi") 

 

oblo_to_inoceram_all_rees_dyn_row <- make_dynam_row(oblo_to_inoceram_all_rees_overlap,"I. 
oblongus","B. reesidei-B. eliasi") 

 

 

gen_to_sp_dyn_results <- rbind(conv_to_inoceram_all_redu_dyn_row,subl_to_inoceram_all_redu_dyn_row, 

                               sask_to_inoceram_all_redu_dyn_row,conv_to_inoceram_all_nebr_dyn_row, 

                               subl_to_inoceram_all_nebr_dyn_row,bara_to_inoceram_all_nebr_dyn_row, 

                               bara_to_inoceram_all_rees_dyn_row,sage_to_inoceram_all_rees_dyn_row, 

                               oblo_to_inoceram_all_rees_dyn_row) 

 

## Write csv files of results 

write.csv(gen_to_sp_I_D_results,file="tables/gen_all_to_sp_I_D_results.csv") 

write.csv(gen_to_sp_eq_results,file="tables/gen_all_to_sp_eq_results.csv") 

write.csv(gen_to_sp_sim_results,file="tables/gen_all_to_sp_sim_results.csv") 

write.csv(gen_to_sp_dyn_results,file="tables/gen_all_to_sp_dyn_results.csv") 

write.csv(gen_to_sp_eq_dyn_p_results,file="tables/gen_all_to_sp_eq_dyn_p_results.csv") 

write.csv(gen_to_sp_sim_dyn_p_results,file="tables/gen_all_to_sp_sim_dyn_p_results.csv") 

 

##### RUN PCA OF MORE THAN 2 SPP TO GENUS #### 

## Extract values to matrix for each raster stack of env proxy variables: 

 

redu_taxa_list <- list(conv_redu_prep,subl_redu_prep,sask_redu_prep,Inoceramus_all_redu_prep) 
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nebr_taxa_list <- list(conv_nebr_prep,subl_nebr_prep,bara_nebr_prep,Inoceramus_all_nebr_prep) 

 

rees_taxa_list <- list(bara_rees_prep,sage_rees_prep,oblo_rees_prep,Inoceramus_all_rees_prep) 

 

 

name_list_redu <- c("I. convexus","I. sublaevis", "I. saskatchewanensis","Inoceramus") 

name_list_nebr <- c("I. convexus","I. sublaevis","I. barabini","Inoceramus") 

name_list_rees <- c("I. barabini","I. sagensis", "I. oblongus","Inoceramus") 

 

# Create function to tabulate PCA scores for plotting spp and genus information 

# Function will only take a list of prepped occurrence/raster stack data 

# and output a list of 1-Joined (global) environment pts, 2-pts for each spp/gen, 

# and 3-the convex hull index values for creating polygons around spp/gen 

run_gen_spp_pca <- function(occ_raster_list,name_list){ 

   

  bg_score_list <- list() # make list to put bg scores into 

   

  for (i in 1:length(occ_raster_list)){ 

     

    # Get scores for each environment's backgrounds 

    first_bg<- getValues(occ_raster_list[[i]][[2]]) 

     

    ## Clean out missing values: 

    first_bg <- first_bg[complete.cases(first_bg), ] 

     

    bg_score_list[[i]] <- first_bg 

  } 

   

  ## Combined global environment: 

  joined_bg <- list.rbind(bg_score_list) 
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  # Run PCA analysis on combine BG pts (all env data) 

  pca_joined_bg <- dudi.pca(joined_bg, center = TRUE, 

                            scale = TRUE, scannf = FALSE, nf = 2) 

  joined_bg_scores <- pca_joined_bg$li # get the pca scores 

   

   

  occ_loc_list <- list() # Make list to put occ locations in PCA into 

  for (i in 1:length(occ_raster_list)){ 

    # Map occurrence data into the 2d ordination (have to coerce spatialPointsDataFrame into data.frame) 

    # Explicitly match the colnames so only using the right ones 

    # Only selected the li element (doesn't include others) 

    first_occ_scores <- 

      suprow(pca_joined_bg, 

             data.frame(occ_raster_list[[i]][[1]])[, colnames(joined_bg)])$li 

     

    occ_loc_list[[i]] <- first_occ_scores 

     

  } 

   

  # Add column with spp/gen names to occ location list: 

  for (i in 1:length(occ_raster_list)) { 

     

    occ_loc_list[[i]]$tax <- name_list[i] 

     

  } 

   

  # Bind all the taxa localities together 

  occ_loc_df <- list.rbind(occ_loc_list) 

   

  bg_loc_list <- list() # make list to put bg locations in PCA into 



Supplementary Materials for Purcell and Myers, 20XX 736 
 

736 
 

   

  for (i in 1:length(occ_raster_list)){ 

     

    # Map BG data to the 2d ordination 

    first_bg_scores <- suprow(pca_joined_bg, bg_score_list[[i]])$li 

     

    bg_loc_list[[i]] <- first_bg_scores 

     

  } 

  #  

  # NOT USED ANYMORE, BUT MAYBE STILL WANT TO KEEP IN CASE 

  # hull_list <- list() # make list to hold convex hulls 

  #  

  # for (i in 1:length(occ_raster_list)){ 

  #  

  #   # Make convex hulls to put around points for each spp/genus 

  #   first_hull <- chull(occ_loc_list[[i]]) 

  #   first_hull <- c(first_hull,first_hull[1]) # Get list of index values for making a polygon 

  #  

  #   hull_list[[i]] <- first_hull 

  #  

  # } 

   

  final_list <- list(joined_bg_scores,occ_loc_df) 

   

  return(final_list) 

} 

 

# Use above function to make list of PCA information for plotting in each interval 

redu_taxa_pca_list <- run_gen_spp_pca(redu_taxa_list,name_list_redu) 

nebr_taxa_pca_list <- run_gen_spp_pca(nebr_taxa_list,name_list_nebr) 
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rees_taxa_pca_list <- run_gen_spp_pca(rees_taxa_list,name_list_rees) 

 

 

# Use listed outputs from above function run on list of spp/gen to make plots: 

 

library(devtools) 

library(ggConvexHull) 

 

pdf("Figures/pca_genus_all_to_spp_figures.pdf") 

# REDU 

ggplot(redu_taxa_pca_list[[2]], aes(x=Axis1, y=Axis2)) + # first spp/genus pts 

  geom_point(data=redu_taxa_pca_list[[1]],aes(x=Axis1, y=Axis2),color='grey25') + # global env pts 

  geom_convexhull(alpha = 0.3, aes(fill = tax,color = tax), linewidth = 1) + 

  scale_fill_manual(values = c("#56B4E9", "#E69F00",'#F0E442', '#999999')) + 

  scale_color_manual(values = c("#56B4E9", "#E69F00",'#F0E442', '#999999')) + 

  ggtitle("PCA of Inoceramus genus and Species in B. reduncus-B. scotti") + 

  theme_light() + 

  theme(legend.title = element_blank()) 

 

# NEBR 

ggplot(nebr_taxa_pca_list[[2]], aes(x=Axis1, y=Axis2)) + # first spp/genus pts 

  geom_point(data=nebr_taxa_pca_list[[1]],aes(x=Axis1, y=Axis2),color='grey25') + # global env pts 

  geom_convexhull(alpha = 0.3, aes(fill = tax, color = tax), linewidth = 1) + 

  scale_fill_manual(values = c("#56B4E9", "#E69F00", "#009E73","#999999")) + 

  scale_color_manual(values = c("#56B4E9", "#E69F00", "#009E73","#999999")) + 

  ggtitle("PCA of Inoceramus genus and Species in D. nebrascense-E. jenneyi") + 

  theme_light() + 

  theme(legend.title = element_blank()) 

 

# REES 

ggplot(rees_taxa_pca_list[[2]], aes(x=Axis1, y=Axis2)) + # first spp/genus pts 
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  geom_point(data=rees_taxa_pca_list[[1]],aes(x=Axis1, y=Axis2),color='grey25') + # global env pts 

  geom_convexhull(alpha = 0.3, aes(fill = tax, color = tax), linewidth = 1) + 

  scale_fill_manual(values = c("#009E73", "#CC79A7", '#0072B2', "#999999")) + 

  scale_color_manual(values = c("#009E73", "#CC79A7", '#0072B2', "#999999")) + 

  ggtitle("PCA of Inoceramus genus and Species in B. reesidei-B. eliasi") + 

  theme_light() + 

  theme(legend.title = element_blank()) 

dev.off() 

 

#### Data review (correlation charts) #### 

 

library(ggplot2) 

 

setwd("C:/Users/ceara/Documents/Province Project/ENM_Analysis_Code-and-Files") 

 

## Duration vs D in interval comparisons 

 

dat <- read.csv("csv_for_dat_analysis/duration_d_stability_vals.csv") 

 

#fit linear regression model to dataset and view model summary 

dat_model <- lm(d~ratio, data=dat) 

summary(dat_model) 

names(summary(dat_model)) 

 

r <- summary(dat_model)$adj.r.squared 

 

## Mean Duration vs mean D in interval 

 

 

dat_mean <- read.csv("csv_for_dat_analysis/mean_duration_d_stability_vals.csv") 

 



Supplementary Materials for Purcell and Myers, 20XX 739 
 

739 
 

#fit linear regression model to dataset and view model summary 

mean_dat_model <- lm(d_mean~ratio, data=dat_mean) 

r_mean_dat <- summary(mean_dat_model)$adj.r.squared 

 

# Export corr plots 

 

cbPalette <- c("#999999", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", 
"#CC79A7") 

 

dat$intervals_compared<-sub("to", "to \n ", dat$intervals_compared)   

dat_mean$t_comparison<-sub("to", "to \n ", dat_mean$t_comparison)   

 

pdf(file = "Figures/corr_plots_duration_overlap.pdf",width = 2.75591, height = 2.75591 ) 

ggplot(data = dat) + 

  geom_point(aes(x = ratio, y = d, color = intervals_compared), shape = 19, size = 0.3) + 

  geom_smooth(method='lm', mapping = aes(x = ratio, y = d), size=0.3) + 

  theme_light() + 

  labs(x ="Duration Ratio (biozone : substage/stage)", y = "D",color = "Intervals Compared") + 

  scale_colour_manual(values=cbPalette) + 

  theme(plot.title = element_text(size=9, hjust=0.5), 

        axis.title.x = element_text(size=9, vjust=2.5), 

        axis.title.y = element_text(size=9, vjust=-1.5), 

        axis.text.x = element_text(size=6, vjust=2), 

        axis.text.y = element_text(size=6, angle=90, hjust=0.5, vjust=-0.5), 

        legend.position="bottom", 

        legend.text = element_text(size=6), 

        legend.title= element_blank(), 

        legend.spacing.x = unit(-0.15, 'cm'), 

        legend.spacing.y = unit(-0.15, 'cm'), 

        legend.box.margin=margin(-12,15,-10,0)) + 

  annotate(geom="text", x=0.4, y=0.9, size = 3, label=paste("R^2 == ", round(r, digits = 3)), parse=TRUE) +  

  guides(color = guide_legend(byrow=TRUE, nrow = 4)) 
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ggplot(data = dat_mean) + 

  geom_point(aes(x = ratio, y = d_mean, color = t_comparison), shape = 19, size = 0.3) + 

  geom_smooth(method='lm', mapping = aes(x = ratio, y = d_mean), size=0.3) + 

  theme_light() + 

  labs(x ="Duration Ratio (biozone : substage/stage)", y = "Mean D",color = "Intervals Compared") + 

  scale_colour_manual(values=cbPalette) + 

  theme(plot.title = element_text(size=9, hjust=0.5), 

        axis.title.x = element_text(size=9, vjust=2.5), 

        axis.title.y = element_text(size=9, vjust=-1.5), 

        axis.text.x = element_text(size=6, vjust=2), 

        axis.text.y = element_text(size=6, angle=90, hjust=0.5, vjust=-0.5), 

        legend.position="bottom", 

        legend.text = element_text(size=6), 

        legend.title= element_blank(), 

        legend.spacing.x = unit(-0.15, 'cm'), 

        legend.spacing.y = unit(-0.15, 'cm'), 

        legend.box.margin=margin(-12,15,-10,0)) + 

  annotate(geom="text", x=0.3, y=1, size = 3, label=paste("R^2 == ", round(r_mean_dat, digits = 3)), 
parse=TRUE) +  

  guides(color = guide_legend(byrow=TRUE,nrow = 4)) 

 

dev.off() 

 

 

## Duration vs mean D in interval (spp comparisons) 

 

dat_spp <- read.csv("spp_d_stability_vals.csv") 

 

ggplot(data = dat_spp) + 

  geom_point(aes(x = short_dur, y = d, color = species)) + 
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  geom_smooth(method='lm', mapping = aes(x = short_dur, y = d)) 

 

 

#fit linear regression model to dataset and view model summary 

model <- lm(d~short_dur, data=dat_spp) 

summary(model) 

 

## Duration ratio vs mean D in interval 

 

dat <- read.csv("duration_d_stability_vals.csv") 

 

# plot the data 

plot(dat$ratio, dat$d, pch = 19, col = "lightblue") 

 

# Add regression line 

abline(lm(dat$d ~ dat$ratio), col = "red", lwd = 3) 

 

# Pearson correlation 

text(paste("Correlation:", round(cor(dat$ratio, dat$d), digits = 2)), x = 0.25, y = 0.78) 

 

## Duration ratio vs mean D in interval 

 

dat_mean <- read.csv("mean_duration_d_stability_vals.csv") 

 

# plot the data 

plot(dat_mean$ratio, dat_mean$d_mean, pch = 19, col = "lightblue") 

 

# Add regression line 

abline(lm(dat_mean$d_mean ~ dat_mean$ratio), col = "red", lwd = 3) 

 

# Pearson correlation 
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text(paste("Correlation:", round(cor(dat_mean$ratio, dat_mean$d_mean), digits = 2)), x = 0.25, y = 0.78) 

 

## Duration vs mean D in interval (spp comparisons) 

 

dat_spp <- read.csv("spp_d_stability_vals.csv") 

 

# plot the data 

plot(dat_spp$short_dur, dat_spp$d, pch = 19, col = "lightblue") 

 

# Add regression line 

abline(lm(dat_spp$d ~ dat_spp$short_dur), col = "red", lwd = 3) 

 

# Pearson correlation 

text(paste("Correlation:", round(cor(dat_spp$short_dur, dat_spp$d), digits = 2)), x = 1.3, y = 0.7) 
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