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ABSTRACT 

Terrestrial ecosystems are critical to human and ecological processes but many 

gaps in our knowledge remain regarding how terrestrial plant communities assemble and 

respond to global change. I used field experiments distributed around the world, 

including long-term experiments from the Sevilleta National Wildlife Refuge (SNWR) in 

New Mexico and deserts of the southwestern U.S., to evaluate the consequences of 

drought and other abiotic stressors on plant communities. Dominant grasses were 

particularly important for the productivity and structure of grasslands at SNWR. In 

general, the structure of desert plant communities had high resistance to extreme drought, 

though grasses and other perennial species were most negatively impacted. Global 

change drivers altered the beta diversity of plant communities both locally and among 

sites. Continued study of how communities respond to abiotic disturbances is of 

increasing importance as we try to conserve modern ecosystems and predict the 

consequences of anthropogenic global change. 
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INTRODUCTION 

Many important questions remain unanswered in the field of community ecology 

such as the importance of dominant species community assembly and how species 

assemble in a community following disturbance. These questions are of growing 

importance in our modern age of global change and climate extremes. Droughts are 

increasingly common, atmospheric deposition is changing soil resources, and climate 

variability is destabilizing biodiversity in terrestrial ecosystems around the world (Clark 

et al. 2001, Ellis et al. 2013, Franklin et al. 2016). 

Ecological communities are the constituent parts of ecosystems, made up of 

assemblages of species interacting with each other (Fukami 2010). The unique role of 

communities in the study of ecology provides an important framework for conservation 

and management of ecosystems (Balvanera et al. 2014). The study of ecological 

communities is situated at the intersection of species’ interactions with the environment, 

and species’ interactions with each other. This dissertation contributes to decades of 

ecological research through an emphasis on the community structure of dryland 

ecosystems, comparison of drought impacts across the hot deserts of the U.S. southwest, 

and using trait-based techniques to study determinism in community assembly across 

spatial scales. 

 Despite evidence that diversity increases functions and services within 

ecosystems, outsized importance of dominant species, known as mass-ratio effects, are 

regularly observed in natural communities (Tilman et al. 2014, Smith et al. 2020). This 

discrepancy not only fuels academic debate, but the relative importance of diversity and 

dominant species in plant communities has consequences for conservation and restoration 
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policy (Balvanera et al. 2014, Mace 2014). In Chapter 1, I use a 23-year species removal 

experiment from the Sevilleta National Wildlife Refuge to determine the role of dominant 

species in semiarid grassland communities. Removal experiments provide an opportunity 

to assess the impact of non-random species loss on natural plant communities at a local 

scale. With these data, I was able to determine both the strength of interactions between 

dominant and subordinate species and the importance of dominant species to net primary 

production. The two ecosystems studied in this chapter represent much of the grassland 

ecosystems of the southwest and the species removed in this experiment, Bouteloua 

gracilis (blue grama) and B. eriopoda (black grama), are two of the most important 

rangeland species in this region. With this study, I provide evidence of interactive effects 

between dominant species and subordinate species within communities as well as the 

unique influence that dominant species can have on the species richness-productivity 

relationships.  

Over the past century, mean precipitation has decreased while precipitation 

variability has increased globally and in the southwestern U.S. (Cook et al. 2004). The 

combination of reduced annual precipitation and increased variability of precipitation 

implies increasing frequency of severe multiyear drought. Recent studies suggest that 

sensitivity of both biodiversity and productivity to precipitation change is greatest in 

drylands (Korell et al. 2021, Maurer et al. 2020, Wilcox et al. 2017). Since drylands 

account for 40% of the Earth’s terrestrial surface, it is crucial that we understand the 

mechanisms by which drought affects dryland ecosystems. In Chapter 2, I use a drought 

experiment distributed across the Chihuahuan, Sonoran, and Mojave deserts to compare 

the impacts of a two-year extreme drought treatment on vegetative cover and five facets 
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of community structure. This experiment, the first coordinated effort of its kind in the hot 

deserts of the U.S., provides an understanding of which aspects of desert plant 

communities are most vulnerable to projected increases in drought frequency and 

severity. 

 Environmental stochasticity and environmental filtering are both important 

mechanisms of community assembly in response to disturbances. In theory, 

environmental stochasticity will generate less similar, or divergent, communities as the 

result of disturbance, while environmental filtering will result in convergence to a 

common community (Grime 2006, Houseman et al. 2008, Fukami 2010). Whether 

disturbances due to global change drivers (GCDs) create divergent or convergent 

community assembly is consequential for beta diversity at local scales and for 

maintenance of biodiversity at global scales. Though the effects of GCDs on community 

similarity have been assessed within sites using traditional species-based methods (Chase 

2007, Houseman et al. 2008), incorporating trait-based methods allows for assessment of 

biodiversity across both local and global scales (Suding et al. 2005). In Chapter 3, I use 

modern, trait-based methods (Blonder 2018, Mammola and Cardoso 2020) to quantify 

divergent and convergent effects of global change drivers on plant communities. With a 

global database of experiments, I test the influence of environmental stochasticity and 

environmental filtering on community assembly in response to five global change 

treatments using both species-based and trait-based methods in the first study of its kind. 

I determine which global change drivers have the greatest impact on the determinism of 

community assembly and demonstrate that the mechanisms of community convergence 

and divergence change across spatial scales.  
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 These three chapters are organized iteratively from local to regional to global 

spatial scales. Combining both long-term and globally distributed experiments provides 

comprehensive insight into the consequences of global change on community assembly. 

Together, these chapters tell a story of the volatility and predictability of plant 

communities, while demonstrating their vulnerability to global change.  
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Abstract 

 Determining the mechanisms by which biodiversity influences ecosystem 

processes is critical to a comprehensive understanding of human impacts on ecosystems. 

Biodiversity has positive impacts on many ecosystem functions, yet debate remains as to 

the role of dominant species in community assembly and ecosystem function. We used a 

dominant species removal experiment to test the influence of dominance in community 

assembly and productivity in two semiarid grasslands with different dominant species. 

Removal of dominant species led to increases in species richness and concurrent 

decreases in productivity. Compensation by subordinate species was incomplete, but 

attributable to different functional groups over time. Species richness and dominance 

were both poor predictors of productivity across ecosystems and treatments. In general, 

we found that the dominant species of these grasslands played a key role that no 

subordinate species filled across 23 years in absence of dominant species. 

 

 

Introduction 

 Considerable empirical and experimental evidence demonstrates that biodiversity 

has positive impacts on many ecosystem functions, including aboveground net primary 

production (NPP), resistance to invasion, resilience to disturbance, and resource use 

(Tilman et al. 2014). Human activities are causing changes to many facets of biodiversity 

through both biotic and abiotic disturbance (Avolio et al. 2021). Therefore, determining 

how the assembly of biodiversity in ecological communities influences ecosystem 
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processes is critical for providing a comprehensive understanding of human impacts on 

ecosystems.  

Biodiversity can be measured as species richness (an inventory of species present) 

or dominance (the relative disparity between abundance among species, and the inverse 

of evenness). Despite evidence of positive effects of species richness on ecosystem 

processes, including NPP (Tilman et al. 2014, Hector et al. 1999), dominant species may 

play the leading role in the productivity of natural communities (Gaston 2011, Genung et 

al 2020). Indeed, some studies have shown that NPP is controlled more by dominant 

species, known as mass-ratio effects, than species richness, per se (Grime 1998, Smith 

and Knapp 2003, Smith et al. 2020). Reconciling how dominant species control NPP is 

an important next step to determine how ecosystems will respond to human-caused 

environmental change.  

In most natural communities, a small number of species exist in high abundance 

(Gaston 2011, Avolio et al. 2019). Due to their commonness on the landscape, this small 

number of dominant species account for a substantial proportion of NPP (Grime, 1998, 

Dee et al. 2019). Mass-ratio effects on productivity are most pronounced in communities 

with highly productive, dominant species because the relative abundance of the dominant 

species directly relates to overall productivity (van der Plas 2019). When highly 

abundant, dominant species have additional impacts on community structure and species 

richness. For example, tall dominant species increase light limitation, thus reducing 

establishment of short-statured species (Hautier et al. 2009, Grman et al. 2021). In 

stressful environments, however, dominant species can facilitate growth of subdominants 

by decreasing heat stress and altering soil moisture and nutrient levels (Bertness and 
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Callaway 1994, Lortie and Callaway 2005). Dominant species also impact the structure 

and composition of communities through competitive or synergistic interactions with 

other species (Ellison et al. 2005, Gaston 2011). In contrast, loss of subordinate species 

may have no effect on NPP. For example, production was maintained in a tallgrass prairie 

ecosystem upon removal of subordinate species, but production decreased when 

dominant species were removed from the community (Smith and Knapp 2003). When a 

dominant species is removed, the resulting release in available resources can be used by a 

diverse species mixture to compensate for loss of production (Allan et al. 2011, Wilcox et 

al. 2017, Zuppinger-Dingley et al. 2014). For example, subordinate species provided 

complete compensation in a South African savanna grassland after the dominant grasses 

declined following a severe drought (Wilcox et al. 2020). Removal experiments, 

however, demonstrate that some dominant species play a unique role in ecosystem 

function as their absence results in incomplete compensation by the subordinate species 

in the community.  

Removal experiments are a useful tool for investigating the influence of dominant 

species on subordinate species by directly testing the ability of subordinate species to 

compensate for the loss of the dominant species and revealing the extent to which 

dominant species affect community composition. For example, one-time removal of the 

dominant species in a shortgrass-steppe grassland, Bouteloua gracilis (blue grama), 

resulted in less than half of ambient vegetative cover for five years, and increased bare 

ground cover for ten years (Munson and Lauenroth 2009). In a wet meadow, removal of 

the dominant resulted in a positive effect on species richness due to the absence of 

competition with the dominant species (Leps 2014). However, numerous other studies 



9 
 

reported little or no effects of dominant species removal on diversity, despite impacts to 

NPP (Roth et al. 2008, Rixen and Mulder 2009, Li et al. 2015). Further research is 

necessary to reconcile the discrepancies and clarify the impacts of dominant species 

removal on species richness-productivity and mass-ratio effects.  

The effects of dominant species on community structure are particularly important 

in dryland ecosystems, where dominance is high, species richness is low, and many 

mechanisms linking the two (such as light limitation) are less important (Korell et al. 

2021, Thomey et al. 2014, Gherardi and Sala 2019). In semiarid grassland ecosystems of 

central New Mexico, dominant perennial grass species make up around 80% of plant 

community cover and determine ecosystem sensitivity of NPP to climate (Rudgers et al. 

2018). The perennial bunchgrass Bouteloua gracilis and stoloniferous B. eriopoda 

dominate the Great Plains and Chihuahuan Desert grasslands, respectively, and they co-

occur across a grassland ecotone in central New Mexico, USA. B. eriopoda is better 

adapted for warmer, drier environments than B. gracilis due to its greater water use 

efficiency and higher optimal temperature, while B. gracilis has a slightly deeper root 

system and is longer lived than B. eriopoda (Peters and Yao 2012). Given differences in 

traits, these dominant species may have different interactions with subordinate species 

where they dominate, despite identical climate conditions, similar soils, and regional 

species pools. Furthermore, the abundance of both dominants declines dramatically 

during drought while forbs persist (Lagueux et al. 2021, Loydi and Collins 2021). 

Previously, a removal experiment comparing these two grasslands found a strong 

negative effect of B. eriopoda removal on total vegetative cover which persisted for all 

16 years of the study. On the other hand, subordinate species compensated for B. gracilis 
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removal after just six years of treatment (Peters and Yao 2012). This study system 

provides a novel opportunity to compare the role of dominant species in mass-ratio 

effects and species richness-productivity relationships without confounding effects of 

climate and regional species pools. 

We used a long-term (1995-2018) species removal experiment in two comparable 

semiarid grasslands to assess the capacity of plant communities to compensate for 

dominant species loss, as well as the importance of dominant species to annual 

productivity. Our goal was to directly address the role of dominance and diversity in 

dryland ecosystem functioning. The co-occurrence of these two grasslands with different 

dominant species under comparable environmental constraints creates ideal conditions 

for studying patterns that determine the relative importance of species richness and 

dominance to ecosystem function. We asked the following questions: (1) How do 

dominant species affect diversity and productivity in these grasslands? (2) Which plant 

functional groups benefit when dominant species are removed? and (3) Do mass-ratio 

effects or species richness predict productivity in these semiarid grasslands?  

 

Methods 

Study site 

 Experiments were conducted at the Sevilleta National Wildlife Refuge (SNWR) 

in central New Mexico, USA (34°20′ N, 106°43′ W). The SNWR is located at the 

transition zone between two grassland ecosystems, the Chihuahuan Desert, which extends 

south into Mexico, and Great Plains, which extends north into Colorado and east into 

Texas. The site receives an average of ~240 mm of precipitation per year, 60% of which 
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occurs in July, August, and September during the summer monsoon (Pennington and 

Collins 2007, Petrie et al. 2014). Mean monthly temperature ranges from 2.6 C in January 

to 24.6 C in July (Peters and Yao 2012). At the study sites, NPP typically ranges from 

100 g/m2 in the Greats Plains to 150 g/m2 in the desert grassland (Table 2). Soils are a 

sandy loam mixture including clay and calcium carbonate classified as Typic Haplargids 

(Kurc and Small, 2007, Peters and Yao 2012).  

The Chihuahuan Desert grassland is dominated by Bouteloua eriopoda (black 

grama), a stoloniferous, C4 perennial grass whose range extends southward through the 

arid regions of the Chihuahuan Desert in the U.S. and Mexico (Kröhl-Dulay et al. 2004). 

The Great Plains grassland is dominated by B. gracilis (blue grama), a long-lived, 

caespitose, C4 perennial grass. Both grasslands feature several subdominant C4 grasses 

including Sporobolis spp. and Pleuraphis jamesii. A mixture of shrubs and subshrubs can 

be found across the landscape including Yucca elata and Guteriezia sarothrae. Common 

forb species include the perennial Machaeranthera pinnatifida and the nonnative Salsola 

tragus (Mulhouse et al. 2017). Legumes are very rare in these grasslands and are not 

functionally distinct from forbs regarding their role in the community, therefore, we 

grouped legumes with forbs for analyses (Collins and Xia 2015). 

Previous studies have compared long-term trends and vegetation dynamics of 

these grasslands specifically in regard to climate. The Chihuahuan Desert grassland 

exhibits constrained production under wet conditions while the Great Plains grassland is 

capable of large production increases in wet years (Rudgers et al. 2018). Both grasslands 

perform poorly under sustained drought, with Chihuahuan Desert grassland exhibiting 

high sensitivity to interannual variation in precipitation (Knapp et al. 2015). Likewise, 
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Collins et al. (2020) found that these grasslands are sensitive to long-term changes in 

climate, particularly the warm and cool phases of the pacific decadal oscillation, and that 

B. gracilis recovers faster from fire than B. eriopoda. The dominant grasses account for 

over 80% of total plant cover in their respective ecosystems (Collins and Xia 2015).  

 

Dominant species removal experiment 

 To determine the role of dominant species in the structure and functioning of 

these grasslands, we used a species removal experiment at the ecotone from Chihuahuan 

Desert to Great Plains grassland. The dominant species removal treatment involved 

removing the dominant species from its respective grassland: B. gracilis in the Great 

Plains grassland and B. eriopoda in the Chihuahuan Desert grassland. Removal 

treatments were accomplished by manually clipping or scraping grasses along the soil 

surface while minimizing soil disturbance and grasses were removed as needed in 

subsequent years (Peters and Yao 2012). B. gracilis and B. eriopoda accounted for 25% 

and 22% of absolute cover, respectively in their grasslands. In 2018 after 23 treatment 

years, B. gracilis and B. eriopoda accounted for only 1.6% and 3.1% absolute cover in 

treatment plots in their respective grasslands. Each site includes five replicate removal 

treatment plots and five control plots; each plot is 3x4 m. Percent cover data were 

collected at the species level and converted into biomass through allometric equations 

based on cover and derived from destructive biomass harvesting (Muldavin et al 2008, 

Rudgers et al. 2019). Data were collected from 1995-2018 at the end of the monsoon 

growing season (September-October). We used current year biomass as our measure of 

NPP for herbaceous species, including grasses and forbs which senesce each winter. NPP 
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for shrubs and other woody species was calculated as current year standing biomass 

minus previous year standing biomass. In 1995 and 2001, plants were not identified to 

species so species richness and dominance metrics were not attainable. Additionally, no 

data were collected in 2013 which prevented calculation of 2014 NPP for shrubs and 

woody species. 

 

Data analysis 

Species richness was calculated as the number of unique species present in a 3x4 

m plot during the sampling period. We calculated dominance using the Berger-Parker 

dominance index: 
𝑀𝑎𝑥 𝑐𝑜𝑣𝑒𝑟 𝑜𝑓 𝑚𝑜𝑠𝑡 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑡 𝑠𝑝𝑒𝑐𝑖𝑒𝑠

𝑆𝑢𝑚 𝑐𝑜𝑣𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑝𝑒𝑐𝑖𝑒𝑠
 (Berger & Parker 1970). This metric 

measures the proportion of the most-dominant species relative to the abundance of the 

entire community (Sasaki and Lauenroth 2011, Koerner et al. 2018). Although other 

metrics of dominance are more closely related to community evenness, this metric is 

directly related to the abundance of the most abundant species, which is appropriate for 

our study because we experimentally removed the most abundant species (Collins et al 

2020, Rudgers et al 2019). The removal experiment allowed us to determine the degree to 

which subordinate species compensated for loss of the dominant. Analyses with 

subdominant species in the control plots include every species except B. gracilis in the 

Great Plains grassland and B. eriopoda in the Chihuahuan Desert grassland.  

 

How do dominant species affect diversity and productivity? 

We created mixed-effects models testing the effect of dominant species removal 

on the species richness of subordinate species between control and treatment plots, as 
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well as comparing NPP between treatments, controls, and the subordinate species of 

controls. Plot was used as a random effect to control for repeated measures and year was 

used as a random effect in an autocorrelation structure using the ‘nlme’ R package (v3.1-

152, Pinheiro et al. 2007). 

 

Which plant functional groups benefit when dominant species are removed? 

We created mixed-effects models to compare percent cover of grasses, shrubs, 

and forbs between control and removal treatments. Plot was used as a random effect to 

control for repeated measures and year was used as a random effect in an autocorrelation 

structure using the ‘nlme’ R package (v3.1-152, Pinheiro et al. 2007). 

 

Do mass-ratio effects or species richness predict productivity in these semiarid 

grasslands?  

We created mixed-effects models to test relationships between both dominance 

and diversity to NPP. Within each model, we compared control and removal to each 

other. Plot was used as a random effect to control for repeated measures and year was 

used as a random effect in an autocorrelation structure using the ‘nlme’ R package (v3.1-

152, Pinheiro et al. 2007). To test for nonlinear relationships, we tested linear, quadratic, 

cubic, and quartic model fits and then compared AIC scores of models, favoring the 

model with the lowest AIC score. Models were considered equivalent when ∆AIC < 2, in 

which case the simpler model was favored. In each case, the linear model was favored. 
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We used R Statistical Software (v4.1.2; R Core Team 2021) for all analyses. The 

‘tidyverse’ (v1.3.1; Wickham et al. 2019) and ‘plyr’ (v1.8.6; Wickham et al. 2011) R 

packages were used for data manipulation and data visualization. We used the ‘mumin’ 

package (v1.43.17; Barton 2020) to summarize the coefficients of mixed-effects models. 

 

Results 

How do dominant species affect diversity and productivity? 

In the Great Plains grassland, species richness of subordinate species averaged 7.1 

in control plots and 11.5 in plots with B. gracilis removal across all years (p < 0.001, 

Table 1, Figure S1). Subordinate species richness of annuals increased from 2.4 to 3.6, 

and subordinate species richness of perennials increased from 4.9 to 8.3. Subordinate 

species richness from grasses increased from 1.8 to 3.8, subordinate species richness 

from forbs increased from 4.5 to 6.1, and subordinate species richness of shrubs increased 

from 1.1 to 1.6. In the Chihuahuan Desert grassland, species richness of subordinate 

species averaged 8.0 in control plots, and 12.3 in plots with B. eriopoda removal across 

all years (p < 0.001, Table 1, Figure S1). Subordinate species richness of annuals 

increased from 2.5 to 4.0, and subordinate species richness of perennials increased from 

5.4 to 8.5. Subordinate species richness of grasses increased from 2.7 to 4.8, subordinate 

species richness of forbs increased from 4.5 to 6.5, and subordinate species richness of 

shrubs increased from 1.1 to 1.3. 

NPP in control plots in the Great Plains grassland averaged 97 g/m2 (range 61 - 

175 g/ m2) from 1995-2018, whereas control plots in the Chihuahuan Desert grassland 

averaged 151 g/m2 (range 68-209 g/m2) (Table 2). Of the total NPP, subordinate species 
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accounted for an average of 10 g/m2 (range 0-29 g/m2) in Great Plains and an average of 

25 g/m2 (range 0-120 g/ m2) in Chihuahuan Desert grassland. Thus, on average, the 

dominant grass B. gracilis accounted for 90% of NPP in Great Plains grassland and B. 

eriopoda accounted for 84% of NPP in the Chihuahuan Desert grassland (Table 2, Figure 

2). When dominant species were removed, subordinate species only partially 

compensated for the loss of NPP from dominant species. In Great Plains grassland, NPP 

of subordinate species increased to 59 g/m2 (range 0-134 g/ m2) when B. gracilis was 

removed, which is nearly five times subordinate NPP in control plots, yet still only 65% 

of the NPP produced by B. gracilis in control plots (Table 2, Figure S1). In Chihuahuan 

Desert grassland, NPP of subordinate species increased to 55 g/m2 (range 0-146 g/ m2) 

when B. eriopoda was removed, approximately twice as much NPP as subordinate 

species in control plots (Table 2, Figure 2). In Chihuahuan Desert grassland, subordinate 

species compensated for only 24% of the NPP by B. eriopoda (Table 2, Figure 2). 

Proportionally, NPP in Chihuahuan Desert grassland declined by 63% when B. eriopoda 

was removed, compared to only a 40% decrease in the Great Plains grassland with B. 

gracilis removal. 

 

Which plant functional groups benefit when dominant species are removed? 

 When dominant grasses were removed, shrub and forb cover increased across all 

years in both grasslands (supplemental Table 1, supplemental Figure 2). In the Great 

Plains grassland, shrub cover increased eight-fold across all years, from 0.7% to 6.4% 

and forb cover more than tripled from 1.5% to 5.3% with removal of B. gracilis (Figure 

S2). In the Chihuahuan Desert grassland, forb cover nearly doubled from 4.4% to 7.6%, 
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but there was no significant response by shrubs across all years. In both grasslands, total 

grass cover was lower following removal of the dominant grass species. Across all years, 

cover of non-dominant grasses increased from 2.2% to 21.4% in Great Plains grassland, 

and from 5.3% to 15.8% in Chihuahuan Desert grassland.  

 The effects of dominant species removal on functional groups varied over time. In 

Great Plains grassland, relative cover of forbs was higher in removal than control plots 

for the first seven years of the experiment, after which the relative cover of shrubs 

increased in the removal treatment relative to control plots over the next seven years 

(Figure 3). By year 14, the relative cover of shrubs in removal plots declined in 

concurrence with an increase in the relative cover of grasses (Figure 3). High grass 

abundance in Great Plains grassland from 2012 to 2018 is attributable to an increase in a 

mixture of B. eriopoda, Pleuraphis jamesii, and Sporobolus spp. In Chihuahuan Desert 

grassland, relative cover of forbs in treatment plots increased during the first seven years 

of study, whereas shrub cover increased from 2004 to 2007, primarily driven by 

increased abundance of Gutierrezia sarothrae. Marked increase in relative grass cover 

began in 2009 and was sustained through 2018 (Figure 3), attributable to increased 

abundance of Pleuraphis jamesii and other perennial grasses. 

 

Do dominance or species richness predict productivity in these semiarid grasslands?  

Under control conditions, the Great Plains grassland had a non-significant 

relationship between species richness and NPP (p = 0.17, slope = 2.3). This relationship 

was significantly negative when B. gracilis was removed from the Great Plains grassland 

(p = 0.02, slope = -4.5) (Table 3, Figure 4). There was no relationship between total NPP 
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and species richness in control plots in the Chihuahuan Desert grassland (p = 0.14, slope 

= 2.2), but after removal of B. eriopoda, this relationship was significantly negative (p = 

0.02 slope = -4.9) (Table 3, Figure 4). 

The Great Plains grassland has a marginally significant correlation between 

dominance and NPP in control plots (p = 0.08, slope = 92.2), however, the Chihuahuan 

Desert grassland had no correlation (p = 0.68, slope = -15.4). When dominant species 

were removed, the relationship was unchanged in both Great Plains and Chihuahuan 

Desert grasslands (Great Plains p=0.21, slope = -81.2; Chihuahuan Desert p=0.39, slope 

= -47.0) (Table 3, Figure 4). 

 

Discussion 

 Using a 23-year dominant species removal experiment in two semiarid grasslands, 

we found suppression of subordinate species by dominant grasses and that subordinate 

species provided only partial compensation for the loss of the dominant species. 

Throughout the study, forb, shrub, and grass functional groups each had phases in time in 

which their abundances increased in removal plots to provide partial compensation for 

dominant species. We found that neither species richness nor dominance was a good 

predictor of NPP and that the removal of dominant species resulted in increasingly 

negative species richness-NPP relationships. In general, B. eriopoda was more essential 

to the NPP and cover of the Chihuahuan Desert grassland than B. gracilis in the Great 

Plains grassland. 

 

Direct effects of dominant species on diversity and productivity 
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 Both B. gracilis and B. eriopoda suppressed establishment and abundance of 

subordinate species. Previous studies have shown that removing dominant species can 

increase local species richness (Collins et al. 2002, Suding et al. 2006), yet numerous 

other removal experiments have reported no diversity effect of dominant removal (e.g., 

Roth et al. 2008, Raffaele and Ruggiero 1995, Souza et al. 2011). Disturbances in 

grasslands tend to promote greater species richness when they disproportionately reduce 

the abundance of dominant species (Grime 2006, Leps 2014, Koerner et al. 2018). 

Griffin-Nolan et al. (2019) reported greater species richness and functional trait diversity 

in these grasslands when the abundances of the dominant species were reduced by 

experimental drought treatments. Other disturbances, such as grazing, fire, or increased 

precipitation variability, could lead to similar selection against dominant species resulting 

in greater species richness in these grasslands (Ladwig et al. 2014, Collins et al. 2020). 

In both grasslands, removal of dominant species led to substantial NPP declines 

even as species richness increased. The Great Plains grassland experienced relatively 

more NPP compensation than the Chihuahuan Desert grassland, but neither site achieved 

full compensation across 23 years of dominant removal. In the Great Plains grassland, B. 

gracilis removal led to increases in the subshrub Gutierrezia sarothrae as well as the 

perennial grasses B. eriopoda, Pleuraphis jamesii, and Sporobolus cryptandrus. 

Similarly, G. sarothrae and P. jamesii increased in abundance in the Chihuahuan Desert 

grassland upon B. eriopoda removal. Disparity between species richness and NPP 

responses to removal of dominant species demonstrates a decoupling of the typically 

positive species richness-NPP relationship, in our case more species generated less 

productivity. Removal experiments in grasslands and tundra similarly find that species-



20 
 

rich communities are unable to compensate for removal of dominants (Smith and Knapp 

2003, Rixen and Mulder 2009, Pinder 1975). However, some ecosystems report few 

impacts of dominant removal on either species richness or productivity (Roth et al. 2008, 

Li et al. 2015, Souza et al. 2011). Previous studies at SNWR found B. gracilis to be a 

better competitor than B. eriopoda (Thomey et al. 2014, Chung and Rudgers 2016). 

Therefore, removal of B. gracilis should make more resources available for subordinate 

species relative to removal of B. eriopoda. Indeed, we found greater compensation by 

subordinate species in Great Plains grassland than Chihuahuan Desert grassland. 

 Lack of compensation in the Chihuahuan Desert grassland upon B. eriopoda 

removal may also be attributable to facilitation. Especially in stressful environments, 

dominant species can have mutualistic interactions with subordinates (Maestre et al. 

2009). In particular, B. eriopoda is known to alter soil resources and increase 

colonization of subordinates in intershrub zones (Schlesinger et al. 1999, Stewart et al. 

2014, Zhang 2021). B. eriopoda primarily spreads through stolons and leaves a 

substantial amount of standing litter once senesced. Combined, the standing litter and 

stolons of B. eriopoda contribute to seed trapping and alter soil resources in Chihuahuan 

Desert ecosystems (Stewart et al. 2014, Peters et al. 2020). In contrast, B. gracilis is a 

more typical perennial bunchgrass, with much smaller basal cover than crown cover 

(Coffin and Lauenroth 1991, Peters 2002). Therefore, growth of B. gracilis is less likely 

to facilitate establishment and growth of surrounding plants than an equivalent abundance 

of B. eriopoda. 

 

Successional pattern of functional groups 
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In both grasslands, dominant species removal led first to an increase in forb 

abundance, followed by an increase in shrubs. Counterintuitively, compensation often 

occurs among functional groups different than the removed species (Bret-Harte et al. 

2008). Peters and Yao (2012) reported similar findings over a shorter time scale in this 

experiment. An initial increase in annual plant cover was most apparent in the first ten 

years of removal treatments, but was more sporadic for the following six years of their 

study (Peters and Yao 2012). A removal experiment in a similar Chihuahuan Desert 

ecosystem found that short-lived annual species were most responsive to functional group 

removal treatments (Buonopane et al. 2005). We found that annuals and other forbs 

remained in similar abundance to control plots for an additional decade of the 

experiment. Annual and short-lived forbs utilize resources made available by dominant 

species removal more quickly than other functional groups (Buonopane et al. 2005). A 

similar increase in forb abundance occurred two years after removal of the dominant 

perennial grass from an alpine meadow (Li et al. 2015). Upon removal of B. gracilis in 

the Colorado shortgrass steppe ecosystem, forb abundance immediately increased and 

persisted over ten years while abundance of graminoids lagged, particularly perennial 

graminoids (Munson and Lauenroth 2009). 

Peters and Yao (2012) reported a steadily increasing abundance of shrubs in the 

Great Plains grassland through the first 16 years of this dominant species removal 

experiment. We found that immediately following their study period (1994-2010), shrub 

abundance in the Great Plains experienced a considerable decline down to levels 

observed in control plots. Indeed, previous study in these semiarid grasslands found that 

shrub encroachment often occurs when shrubs replace B. eriopoda as opposed to B. 
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gracilis (Peters et al. 2006). The waning of shrubs 16 years after removal treatment 

contradicts previous work which suggests shrubs maintain dominance in these grasslands 

once established (Turnbull et al. 2010, Li et al. 2008, Sankey et al. 2012). Decreased 

shrub abundance might have been caused by abiotic disturbance during a severe freezing 

event in 2011 which resulted in immediate damage to Larrea tridentata (creosote bush) 

throughout SNWR (Ladwig et al. 2019). Though L. tridentata was not found in any of 

our experimental plots, other shrub species in Chihuahuan Desert ecosystems, such as 

Gutierrezia saraothrae, are likely limited by freezing as well (Smith et al. 1997).  

Following the decline of shrubs in treatment plots of both grasslands, perennial 

grasses exhibit the greatest increased abundance in dominant species removal plots for 

the last ten years of our study. Other studies of the perennial grasses in SNWR find that 

abundances of dominant grasses tend to increase over time, but are reduced to very low 

abundance by pulse disturbance events such as fire or extreme drought (Báez et al. 2012, 

Ladwig et al. 2014, Collins et al. 2020). Therefore, we expect that abundance of perennial 

grasses, especially B. eriopoda, should continue to increase in the absence of another 

disturbance (Rudgers et al. 2018, Collins et al. 2020). The temporal layering of functional 

group abundance that we found suggests that multi-decadal removal experiments are 

necessary in these grasslands to capture the totality of vegetation change.  

Natural disturbances of these ecosystems often mimic the effects of the removal 

treatment. Drought has a negative effect on grass cover, but a neutral or positive effect on 

shrub and forb cover in these grassland (Báez et al. 2013, see next chapter). Though 

grasses dominate under average conditions, shrubs and forbs perform well in the absence 

of grasses regardless of environmental conditions. Therefore, interactions between 
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dominant grasses and other grass species are likely net facilitative, while their 

interactions with shrubs and forbs are net competitive. Indeed, coexistence of species and 

functional groups over time occurs when interactions change with the variability in 

abiotic conditions (Chesson 2000, Soliveres and Allen 2018). 

 

Species richness and mass-ratio effects 

 Removal of B. gracilis from Great Plains and B. eriopoda from Chihuahuan 

Desert grasslands resulted in a negative species richness-NPP relationship. In the absence 

of dominant species, communities incurred neither synergistic interactions that may lead 

to complementarity effects of species richness, nor the emergence of a new dominant 

species capable of producing selection effects of species richness (Fargione et al. 2007). 

Main effects of dominant species removal created a far greater effect on NPP than either 

species richness or dominance. Recent studies show that mass-ratio effects are more 

important than species loss in determining ecosystem responses to disturbance (Smith 

2011, Winfree et al. 2015, Smith et al. 2020). Since common and abundant species are 

particularly vulnerable to environmental stressors (Wilfahrt et al. 2021), projected 

increases in climate variability and frequency of drought in these grasslands could have a 

considerable impact on their productivity through impacts on the dominant species, as 

opposed to impacts on species richness or other measures of diversity (Rudgers et al. 

2018). Biodiversity is implicated as an important feature for the stability of ecosystems 

facing climate extremes (Isbell et al. 2015). However, biodiversity effects are less 

important for stability in highly asynchronous communities (Valencia et al. 2020, Hallett 

et al. 2014) including those at SNWR.  
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Through this long-term experiment, we demonstrated the existence and 

importance of mass-ratio effects in these grasslands exposed to stressful environmental 

conditions. The dominant species of these grasslands play unique roles in productivity 

that no other species were able to fill even after 23 years. Overall, dominant species can 

inhibit the diversity of communities while being critical to productivity. Compensation by 

subordinates was only partial and occurred in a successional pattern among functional 

groups which unfolded over two decades of the experiment. Disturbances to these 

ecosystems, including drought, fire, and grazing, are likely to disproportionately affect 

the abundances of dominant grass species. Thus, bolstering diversity in these 

communities and mitigating the impact of disturbances will result in more predictable and 

stable ecosystems.  
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Figures 

 

 

Figure 1. Comparison of a,b) subordinate species richness and c,d) subordinate species 

cover in control plots (black), and of all species in plots where the dominant species was 

removed (green) from 1995 to 2018 in a,c) Great Plains dominated by Bouteloua gracilis 

and b,d) Chihuahuan Desert dominated by B. eriopoda at the Sevilleta National Wildlife 

Refuge, New Mexico, USA. Removal of dominant species increases both richness and 

cover subordinate species. Colored points depict means and standard error shown with 

lines around the means. 
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Figure 2. Results of regression models showing the mean (circle point) value of net 

primary production in a) Great Plains grass and b) Chihuahuan Desert grassland for all 

species in control, subordinate species in control, and all species in removal treatments. 

Error bars show standard error of the model (Table 2) and asterisks denote significant 

difference from the control NPP (subordinate species and removal only). 
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Figure 3. Percent cover of subordinate species for a,b) forbs c,d) shrubs and e,f) grasses 

over the 23-year time series (1995-2018). Black points indicate average values from 

control plots containing B. gracilis in the Great Plains grassland and B. eriopoda in the 

Chihuahuan Desert grassland. Colored points indicate average values from treatment 

plots with B. gracilis removed from the Great Plains and B. eriopoda removed from the 

Chihuahuan Desert grassland. Forb cover in treatment plots is initially greater than cover 

in control plots in both grasslands. Shrub cover increases in treatment relative to control 

plots in both grasslands around 2003.Grass cover in both grasslands steadily increases 

over the time series. 
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Figure 4. Relationship between a,b) species richness and net primary production and c,d) 

dominance and net primary production in a,c) Great Plains grassland and b,d) 

Chihuahuan Desert grassland for control plots (black) and plots where dominant species 

were removed (green) (Bouteloua gracilis in Great Plains and B. eriopoda in Chihuahuan 

Desert). Error bands show standard error of regression models (Table 3). 
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Supplemental figure 1. Comparison of subordinate species richness in control vs. 

dominant species removal treatment plots across the 23-year study period. In both 

grasslands, dominant species removal resulted in increased species richness. Model 

results can be found in Table 1, see the methods section for details. 
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Supplemental Figure 2. Percent cover of subordinate species for a,b) forbs c,d) grasses 

and e,f) shrubs by functional groups aggregated across the 23-year time series with and 

without B. gracilis removed from the Great Plains and B. eriopoda removed from the 

Chihuahuan Desert grassland. Model results can be found in Table S1 and year to year 

comparisons can be seen in Figure 3. 
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Tables 

 Control Estimate Removal Estimate p-value 

Great Plains 7.1 11.5 < 0.001 

Chihuahuan Desert 8.0 12.3 < 0.001 

Table 1. Changes to subordinate species richness in response to removal of B. gracilis in 

the Great Plains grassland and B. eriopoda in the Chihuahuan Desert grassland across 23 

years of removal treatments. Year and plot were used as random effects in these models. 

See methods section for details. Visualized in Figure S1. 
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 Treatment Estimate p-value 

Great Plains Control - all species 97.0 <0.001 

 Control - subordinate 

species 

9.8 <0.001 

 B. gracilis removal 58.5 <0.001 

Chihuahuan Desert Control - all species 151.2 <0.001 

 Control - subordinate 

species 

24.9 <0.001 

 B. eriopoda removal 54.69 <0.001 

Table 2. Comparison of NPP of full communities in control conditions, subordinate 

species in controls, and subordinate species after removal of the dominant species in 

Great Plains and Chihuahuan Desert grasslands. Year and plot were used as random 

effects in these models, see methods section for details. Visualized in Figure 2. 
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Productivity ~ Species richness Model term Estimate p-value 

Great Plains Intercept 78.7 < 0.001 

 Species richness 2.3 0.17 

 B. gracilis removal 5.0 0.81 

 Species richness x B. gracilis 

removal 

-4.5 0.02 

Chihuahuan Desert Intercept 131.2 < 0.001 

 Species richness 2.2 0.14 

 B. eriopoda removal -43.2 0.10 

 Species richness x B. eriopoda 

removal 

-4.9 0.017 

 

Productivity ~  Dominance Model Term Estimate p-value 

Great Plains Intercept 16.0 0.73 

 Dominance 92.2 0.078 

 B. gracilis removal 37.8 0.46 

 Dominance x B. gracilis removal -81.2 0.21 

Chihuahuan Desert Intercept 163.4 <0.001 

 Dominance -15.4 0.68 

 B. eriopoda removal -121.8 < 0.01 

 Dominance x B. eriopoda 

removal 

47.0 0.39 
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Table 3. Relationships between species richness and NPP as well as dominance and NPP 

in Great Plains and Chihuahuan Desert grasslands with and without removal of the 

dominant species. In both grasslands, species richness has only weak correlation with 

NPP, but dominance correlations with NPP are strong in both grasslands. See methods 

for model details. Also visualized in Figure 4. 
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Site Functional group Control Estimate Removal Estimate p-value 

Great Plains Forb 1.5 5.3 <0.05 

 Grass 2.2 21.4 <0.001 

 Shrub 1.9 6.0 <0.01 

Chihuahuan Desert Forb 4.4 7.6 <0.01 

 Grass 5.3 15.8 <0.001 

 Shrub 2.8 4.5 0.44 

Table S1. Comparison of functional group cover in controls and when dominant species 

are removed in both Great Plains and Chihuahuan Desert grasslands. Grass functional 

group does not include dominant species. Year and plot were used as random effects in 

these models, see methods section for details. Visualized in Figure S2. 
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Abstract 

 The hot deserts of the southwestern U.S. are experiencing increased frequency 

and severity of drought due to anthropogenic climate change. Plant communities in these 

deserts differ in dominant species and community assembly, which could lead to 

opposing responses to drought over time. Thus, identifying the ways in which these 

desert plant communities respond to drought is critical to assessing the vulnerability of 

these ecosystems to future change. We measured the responses of community cover and 

five facets of community structure for two years in response to a 66% precipitation 

reduction in six sites across the hot deserts of the southwestern U.S. Decreased vegetative 

cover in response to drought was attributable more to the sensitivity of grasses than forbs. 

Though site-level community structure responses were mixed, responses of increased 

evenness were linked to cover responses across sites. Contrary to expectations, 

communities made up of annual species were more resistant to drought effects than those 

dominated by perennial species. In general, we found that community structure, but not 

abundance, was resistant to severe drought in herbaceous communities of southwestern 

U.S. deserts. 

 

 

Introduction 

Drylands cover 40% of Earth’s terrestrial surface and are a critical component of 

human and ecological systems (Maestre et al. 2016, European Commission Joint 

Research Centre 2018). Drylands are more sensitive to drought and disturbance than less-

arid terrestrial ecosystems, making them exceptionally vulnerable to intensifying climatic 
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perturbations caused by anthropogenic climate change (Huxman et al. 2004, Maurer et al. 

2020, Burrell et al. 2020). Climate change forecasts predict greater climate variability and 

increased occurence of climatic extremes, including drought (Intergovernmental Panel of 

Climate Change 2014, 2022, Cook et al. 2004, Dai 2013). In the hot deserts of the U.S. - 

Mojave, Sonoran, and Chihuahuan - increased drought frequency is likely to disrupt 

ecosystem processes through perturbation of plant communities (Collins et al. 2020, 

Munson et al. 2016, McAuliffe and Hamerlynck 2010, Gherardi and Sala 2015). Despite 

the vulnerability of dryland ecosystems to drought, relatively few studies to date have 

experimentally imposed drought conditions in the hottest and driest ecosystems of the 

southwestern U.S. (Yahdjian et al. 2021). Desert ecosystems, are functionally and 

structurally different than more temperate ecosystems since deserts are fundamentally 

water-limited, as opposed to limitation by light, nutrients, temperature, or other 

physiological factors (Wheeler et al. 2021, Berdugo et al. 2022, Hoover et al. 2020, 

Maestre et al. 2016). In addition, the deserts of the southwestern U.S. experience high 

interannual climate variability, making drought a more frequent disturbance on these 

landscapes, historically (Maurer et al. 2020, Gutzler and Robbins 2011). Plant 

communities in deserts may be tolerant of drought due to a long evolutionary history with 

drought, or they may be more senstive to drought due to their fundamental water 

limitation. 

The structure of plant communities responds to disturbance across five facets of 

community assembly: species richness, species evenness, species gains, species losses, 

and reordering of rank abundance (Avolio et al. 2015, 2019, 2021, Jones et al. 2017). 

Species richness quantifies the diversity of species in communities and species evenness 
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quantifies the similarity of abundances within communities. Species gains, losses, and 

rank abundance change all describe how the structure of communities change between 

timepoints by quantifying colonization, local extinction, and community reordering 

(Hallett et al. 2016, Avolio et al. 2019). Plant communities in dryland ecosystems 

respond to drought across these axes of community structure. For example, Korell et al. 

(2021) showed that drought decreases species richness at local scales in drylands. In 

addition, extreme drought can alter rank abundances (Batbaatar et al. 2021) and increase 

evenness (Castillioni et al. 2020) without any effect on species richness in the North 

American Great Plains. In dryland annual communities, drought can also increase 

evenness as a consequence of reduced competition (Alon and Sternberg 2019).  

 Ecosystems comprised of long-lived species, such as perennial grasses or shrubs, 

are more resistent to stressors and are thus expected to be relatively slow to respond to 

disturbance (Chapin et al. 2004, Greaver et al. 2012). In contrast, the same stressor 

applied to ecosystems dominated by short-lived species should elicit a more rapid 

response (Morris et al. 2008, Collins et al. 2008). Plant communities in the hot deserts of 

the U.S. include both long-lived perennial species and short-lived ephemerals. The 

intershrub zones of the Mojave and Sonoran Deserts are comprised of winter annual 

species with life spans of just a few months (Brooks 2000, Venable and Kimball 2012). 

Species of these annual communities can lay dormant in the seedbank for many years and 

only germinate when environmental conditions are favorable (Gremer and Venable 2014, 

Clauss and Venable 2000). Grasslands of the Chihuahuan Desert are dominated by 

perennial grasses which make up over 80% of aboveground production (see previous 

chapter, Muldavin et al. 2008, Rudgers et al. 2018). Due to the abundance of perennial 
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grasses, responses of Chihuahuan Desert grasslands to disturbance are tightly tied to the 

sensitivity of perennial grasses (Collins et al. 2020, Báez et al. 2013, Munson et al. 2013). 

Thus, drought should have a more immediate impact on both the community structure 

and ecosystem processes of annual communities of the intershrub zones in the Mojave 

and Sonoran Deserts than perennial grasslands of the Chihuahuan Desert.  

In this study, we used a coordinated drought experiment in Mojave, Sonoran, and 

Chihuahuan Desert plant communities to assess the effects of extreme drought on 

vegetative cover and community structure over time. Regional distribution of this 

experiment provided distinct community assemblages, and we used two sites in each 

desert to capture a range of grass cover, forb cover, and species pools. Our study 

addressed three questions: (1) Do annual-dominated communities respond more rapidly 

to drought than perennial-dominated communities? (2) Which facets of community 

structure change in response to drought? and (3) Are changes to communitiy structure 

correlated with cover responses over time? 

 

Methods 

Site details 

We established drought experiments at six sites, two each in Mojave, Sonoran, 

and Chihuahuan deserts (Figure 1, Table 1). Both Mojave Desert sites, Granite Cove and 

Molar Junction, were located at the Granite Mountains Desert Research Center, near 

Kelso, CA. Granite Cove was established within a Larrea tridentata (creosote) shrubland 

with an herbaceous community dominated by Schismus barbatus, while Molar Junction 

was established 0.6 km away in a mixed-species shrubland. Abundant species included 
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the annual plants Erodium cicutarium, Acmispon strigosus, and Pectocarya heterocarpa 

(Ohlert et al. 2021). The Sonoran Desert sites, White Tank and McDowell, were located 

at White Tank Mountain and McDowell Mountain regional parks 72 km apart on the west 

and east edges of the Phoenix, AZ metro area, respectively (Wheeler et al. 2021). 

Herbaceous communities at both Sonoran sites were dominated by annual plants 

including Plantago ovata, Pectocarya recurvata, and Schismus arabicus. Two 

Chihuahuan Desert sites, Sevilleta Black and Sevilleta Mixed, were located 4.3 km apart 

at the Sevilleta National Wildlife Refuge north of Socorro, NM. Both are in arid 

grasslands; the Sevilleta Black site is dominated by Bouteloua eriopoda, and the Sevilleta 

Mixed site is co-dominated by B. eriopoda and B. gracilis with a mixture of other C4 

perennial grasses including Pleuraphis jamesii and Sporobolus spp. 

 

Experimental design 

Each site contains 14 2.5x2.5 m plots with a permanent 1x1 m vegetation 

sampling quadrat in the center. With a focus on herbaceous plant communities, we chose 

plot locations in intershrub zones, defined as an area not included within the dripline of a 

shrub canopy. A few plots subsequently included small amounts of woody vegetation due 

to colonization and proliferation of seedlings after plots were established. Each site 

included seven unmanipulated control plots and seven plots were located under rainout 

shelters. Treatment and control plots were spatially paired in the Chihuahuan Desert sites 

and were randomly assigned in the Sonoran and Mojave Desert sites. Rainout shelters 

were constructed of 1-5/8 in. hollow galvanized steel ranging from three to five feet in 

height, sloped from south to north to allow water to run down gutters while minimizing 
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shadows on the plot. Gutters were made of clear acrylic sheets that allow 

photosynthetically active radiation to pass through (Yahdjian & Sala 2002). Triangular 

gutters with width of 4-1/3 in. were made by bending acrylic sheets, 15 of which were 

fastened to the top of each frame in order to reduce rainfall by 66% of ambient year-

round. This 66% rainfall reduction was designed to achieve a target 1 in 100-year drought 

event in coordination with the International Drought Experiment (Lemoine et al. 2016, 

Knapp et al. 2017). Rainout shelters were erected within a week following pretreatment 

data collection to ensure consistent year-round drought treatments. In the first treatment 

year, five of the six sites experienced ambient precipitation close to the 30-year average 

precipitation and one site, White Tank, received approximately 160% of average 

precipitation (Table 1). In the second treatment year, a regional drought led to ambient 

rainfall of about half of the long-term average at McDowell and approximately a quarter 

of the average at both Granite Cove and Molar Junction (Table 1). 

 

Data collection 

We identified each species rooted within each quadrat and visually estimated 

abundance as the percent of ground covered by each species. All data were collected by 

or with supervision of the lead author to ensure measurement consistency. We chose data 

collection dates to coincide with peak biomass of these ecosystems. Typically, peak 

biomass occurs in winter and spring in the Mojave and Sonoran Deserts following winter 

rains and favorable temperatures. In the Chihuahuan Desert, the annual monsoon season 

during July and August results in a peak biomass season in the fall. We therefore 

collected pretreatment community composition data in March 2019 at the Sonoran 
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Desert, April 2019 at the Mojave Desert, and October 2018 at the Chihuahuan Desert 

sites. Vegetation composition was sampled annually for the next two years of drought 

treatments.  

 

Community structure  

Cover of each species within each quadrat was summed to yield a measure of total 

cover. Species were sorted into three functional groups: grass, forb, and shrub. We 

included legumes with forbs because few herbaceous legumes occur at any of the study 

sites, and their abundance was < 1% cover when they did occur. Shrubs accounted for 

minimal vegetative cover and only occurred at two of six sites. We calculated percent 

grass and percent forb as the summed cover of each functional group in a plot divided by 

the summed cover of all functional groups (Table 1). Therefore, percent grass and percent 

forb added up to 100% except when shrubs were present. Species were also classified as 

either annual or perennial based on local knowledge of each species’ life history. Species 

richness was defined as the number of unique species identified in each 1x1 m quadrat. 

We calculated evenness using the EQ index which accounts for the similarity of 

abundances between species based upon a rank-abundance curve and is independent of 

species richness (Smith and Wilson 1996). We used the ‘codyn’ package in R (v2.0.5; 

Hallett et al. 2016, Avolio et al. 2019) to quantify species gains as the number of new 

species in a plot from the previous year divided by the total number of unique species in 

both current and previous year. Similarly, we quantified species losses as the number of 

species present in the previous year, but not present during the current year, divided by 

the number of unique species in both years (Hallett et al. 2016, Avolio et al. 2019). We 
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again used the ‘codyn’ package in R to calculate rank change as the absolute value of the 

average change in species ranks between the current year and previous year for each 

replicate divided by the total number of unique species in both time periods (Hallett et al. 

2016, Avolio et al. 2019). 

 

Response ratios 

We measured effect size using the Relative Interaction Intensity index (RII): 

𝑡 − 𝑐

𝑡 + 𝑐
 

where t equals the value of a community property in a drought treatment plot and c equals 

the value of that community property in a control plot (Armas et al. 2004). RII was 

calculated using the paired treatment and control plots of the Sevilleta sites, and paired to 

neighboring pairs of treatment and control plots at the other sites. RII is bound between -

1 and 1 and can incorporate situations in which the community values are 0, unlike other 

indices such as log response ratio. The latter property of RII is especially important in the 

low-productivity desert plant communities which often have no seasonal growth, 

especially when subjected to drought. We calculated an RII value for pairs of treatment 

and control plots. Pairs were determined by geographic proximity of treatment and 

control plots to minimize the effect of spatial variability. This resulted in seven RII 

values per site with which we used the qt function in the R ‘stats’ package (v4.1.2; R core 

team 2021) to generate 95% confidence intervals for RIIs and we considered responses to 

treatment as significant when the 95% confidence interval did not overlap 0.  

In order to assess the impacts of species richness, evenness, species gains, species 

losses, and rank change on vegetative cover over time, we used mixed regression models 
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comparing RII of those five metrics to the RII of cover. For each year, we created linear 

models to test correlation between the RII of cover and the RII of each community metric 

using site as a random effect. 

We used R Statistical Software (v4.1.2; R Core Team 2021) for all analyses and 

we used the ‘tidyverse’ (v1.3.1; Wickham et al. 2019) and ‘plyr’ (v1.8.6; Wickham et al. 

2011) packages for data manipulation and visualization. Data are available at Ohlert and 

Collins (2021). 

 

Results 

Within-site responses 

Total vegetative cover decreased in response to drought at five of six sites in 

either the first or second years of treatment. In the first treatment year, vegetative cover 

decreased at three sites: White Tank, Sevilleta Black, and Sevilleta Mixed (Figure 2a, 

Table 2). At White Tank, cover fell from 44.2% in control plots to 16.7% in treatment 

plots, at Sevilleta Black, cover decreased from 28.6% in controls to 11.5% in treatment 

plots, and at Sevilleta Mixed, cover fell from 20.3% in controls to 9.6% in treatment 

plots. In the second treatment year, cover decreased at four sites: Granite Cove, Molar 

Junction, White Tank, and Sevilleta Mixed (Figure 2a, Table 2). Due to a severe regional 

drought during the second treatment year, absolute values of cover were particularly low 

at Mojave and Sonoran sites. At Granite Cove, cover was 0.5% in control plots and 0.2% 

in treatment plots, and similarly, cover was reduced from 0.5% in controls to 0.3% in 

treatment plots at Molar Junction. At White Tank, cover was 4.6% in control plots and 

1.9% in treatment plots, and at Sevilleta Mixed, cover fell from 28.5% in controls to 
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19.5% in treatment plots. McDowell was the only site where cover was unaffected by the 

drought treatment in either year.  

Cover changes across years were attributable more to changes in grass cover than 

forb cover. Grass cover significantly decreased in the first year at three sites: White Tank, 

McDowell, and Sevilleta Mixed (Figure 2b, Table 2). At White Tank, grass cover 

decreased from 35.7% in controls to 7.7% in treatment plots, at McDowell, grass cover 

decreased from 33.9% in control plots to 25.2% in treatment plots, and at Sevilleta 

Mixed, grass cover decreased from 18.9% in control plots to 9.3% in treatment plots. In 

the second year, grass cover decreased at just two sites: White Tank and Sevilleta Black 

(Figure 2b, Table 2). At White Tank, grass cover decreased from 2.6% to 0.6% in 

treatment plots. At Sevilleta Black, grass cover fell from 6.8% in control plots to 4.2% in 

treatment plots. Forb cover did not change in the first year at any sites, and in the second 

year, decreased at only Granite Cove from 0.23% in control plots to 0.1% in treatment 

plots (Figure 2c, Table 2). 

 Cover of annual species declined at only White Tank in the first year of treatment 

from 44.2% in control plots to 16.7% in treatment plots (Figure 2d, Table 2). There were 

not enough annual species at Sevilleta Mixed in the first treatment year for analysis as 

only a single control plot had annuals and no treatment plots had annuals. In the second 

treatment year, cover of annual species significantly decreased at three sites: White Tank, 

Molar Junction, and Granite Cove (Figure 2d, Table 2). At White Tank, cover decreased 

from 3.9% in controls to 1.6% in treatment plots. At Molar Junction, cover decreased 

from 0.5% in controls to 0.3% in treatment plots. At Granite Cove, cover of annuals 

decreased from 0.5% in control plots to 0.2% in treatment plots. Cover of annuals was 
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greater in treatment than control plots in the second year at the Sevilleta Mixed site, 

though there were not enough annuals in the first year for this site to be analyzed.  

 Perennial species were only found in the Chihuahuan Desert sites with the 

exception of a single individual found within a drought treatment plot at Molar Junction 

in the first treatment year. Therefore, responses of perennials were only recorded for 

Sevilleta Black and Sevilleta Mixed. In the first treatment year, cover of perennials 

decreased at both Chihuahuan Desert sites dominated by perennial grasses (Figure 2e, 

Table 2). At Sevilleta Black, cover of perennials decreased from 23.7% in controls to 

10.9% in treatment plots and at Sevilleta Mixed, cover of perennials decreased from 

19.9% in control plots to 9.6% in treatment plots. In the second treatment year, perennial 

cover decreased at Sevilleta Mixed from 28.1% in control plots to 16.9% in treatment 

plots (Figure 2e, Table 2).  

 Species richness decreased in response to drought at just Granite Cove in both 

treatment years. In the first treatment year, species richness decreased at Granite Cove 

from an average of 8.1 species per m2 in control plots to an average of 5.3 species per m2 

in treatment plots (Figure 3a, Table 2). In the second treatment year, species richness 

decreased at Granite Cove from 4.6 species per m2 in control plots to an average of 2.0 

species per m2 in treatment plots (Figure 3a, Table 2). Evenness did not change within 

any site in the first treatment year, but in the second year, evenness increased at both 

Molar Junction and White Tank (Figure 3b, Table 2). Species gains decreased with 

drought treatment in the first year at Granite Cove and decreased in the second year at 

White Tank (Figure 3c, Table 2). Species losses were unchanged at all sites in the first 

treatment year. However, in the second treatment year, losses increased at Granite Cove 
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and decreased at Sevilleta Mixed (Figure 3d, Table 2). We found no significant 

difference in rank abundance change in either the first or second treatment years at any 

sites (Figure 3e, Table 2).  

 

Cross-site responses 

Species richness response was not correlated with cover responses in the first 

treatment year (p = 0.85, slope = 0.04, r2m = 0.001) (Figure 4a), but was correlated in the 

second treatment year (p < 0.001, slope = 0.53, r2m = 0.21) (Figure 4b). Evenness 

response was correlated with cover responses in both treatment years, but correlation of 

cover responses with other facets of communities were limited. In the first year, evenness 

responses were negatively correlated with cover responses (p < 0.01, slope = -0.57, r2m = 

0.10) (Figure 4c). The second treatment year had a similar negative correlation (p < 0.01, 

slope = -0.57, r2m = 0.22) (Figure 4d). Responses of species gains were not correlated 

with cover responses in the first treatment year (p = 0.14, slope = 0.14, r2m = 0.04) 

(Figure 4e) and neither in the second treatment year (p = 0.22, slope = 0.11, r2m = 0.05) 

(Figure 4f). Species losses were also not correlated with cover responses in year one (p = 

0.86, slope = -0.02, r2m = 0.001) (Figure 4g) though there was significant negative 

correlation in year two (p < 0.01, slope = -0.23, r2m = 0.16) (Figure 4h). Rank change 

responses were not correlated with cover responses in the first treatment year (p = 0.84, 

slope = 0.03, r2m = 0.001) (Figure 4i) nor in the second (p = 0.97, slope = -0.01, r2m = 

0.00) (Figure 4j).  
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Discussion 

In this study, we assessed the impact of two years of drought on multiple 

dimensions of plant communities in the hot deserts of the southwestern U.S. Drought 

sensitivity of vegetative cover was linked to response of the grass functional group, while 

forb responses were fewer than expected. Responses of species richness, species 

evenness, species gains, species losses, and rank abundance change were sporadic over 

the two years of study, with multiple sites exhibiting no change in community structure 

measures despite considerable responses of functional groups and overall cover. Across 

sites, species evenness responses were negatively correlated with cover responses for 

both treatment years, and cover responses were correlated with species richness responses 

and species losses in the second treatment year only. 

  

Grass sensitivity across deserts 

Over two years of treatment, grasses responded more negatively to drought than 

forbs. Though greater sensitivity to drought of grasses than forbs has been documented in 

grasslands (Koerner and Collins 2014, Zhang et al. 2021, Hallett et al. 2019), the role of 

grasses in these desert communities differs from temperate grassland communities. Grass 

cover in the Sonoran and Mojave Deserts is dominated by nonnative annual grasses 

including Schismus arabicus, S. barbatus, and Bromus rubens (Wheeler et al. 2021, 

Ohlert et al. 2021). Though these nonnative grasses make up a small fraction of the 

annual flora, they comprise a large amount of the biomass of these systems (Wheeler et 

al. 2021, Ohlert et al. 2021). Nonnative grasses are successful invaders of Mojave and 

Sonoran desert ecosystems, but their origin in the Mediterranean region likely leaves 
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them vulnerable to the driest conditions that these desert ecosystems present (Jackson 

1985). Drought may be one of the few disturbances that limits the spread and abundance 

of these nonnative annual grasses (Brooks and Berry 2006). However, senesced grasses 

in the Mojave and Sonoran Deserts promote fire, which easily spreads through the 

intershrub zones and negatively affects cacti and shrubs (McLaughlin and Bowers 1982, 

Thomas 1991, Moloney et al. 2019). As climate variability increases, the Mojave and 

Sonoran Deserts are increasingly at risk of dominance by nonnative grasses and loss of 

prominent perennial flora (Brooks and Chambers 2011, Thomey et al. 2012, Aslan et al. 

2021). 

Similarly, grass flora in the Chihuahuan Desert is dominated by native perennial 

grasses that are sensitive to drought (Báez et al. 2013, Ladwig et al. 2014, Collins et al. 

2020). The dominant grasses of these ecosystems are particularly important to ecosystem 

processes and subdominant species are unable to compensate for their loss (see previous 

chapter). Other studies at these sites similarly find that drought can decrease the growth 

of dominant species without affecting overall diversity (Báez et al. 2013). Indeed, our 

experiment shows a tight link between the responses of grass cover and total vegetative 

cover in the Chihuahuan Desert, despite no change in forb cover or community structure. 

As drought frequency increases in the Chihuahuan Desert, negative impacts on dominant 

perrennial grasses will affect vegetative abundance on the landscape, and may eventually 

lead to reordering of plant communities. 

 

Which aspects of community structure changed? 
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 Drought had relatively few effects on species richness in our study, affecting 

overall species richness at just one site over two years of treatment. Though Tilman and 

Haddi (1992) found consistent negative effects of a regional drought on the species 

richness of four different grassland communities, recent research in temperate grasslands 

of North America shows that drought manipulation can have no effect on species richness 

(Batbaatar et al. 2021, Castillioni et al. 2020). In contrast, a recent metanalysis found that 

drought effects on species richness were greatest in more-arid environments (Korell et al. 

2021). Since total vegetative growth is more sensitive to precipitation change in drylands, 

loss of aboveground vegetation should incur a commensurate decline in richness. Indeed, 

we found that declines in species richness were correlated with declines in vegetative 

cover at the plot scale (Figure 4b). Responses of species richness to drought at the plot 

level, but not at the site level, suggests an additional layer of complexity to the diversity 

of dryland ecosystems which may not be present in temperate grasslands. A similar 

drought manipulation study in annual communities of Mediterranean shrublands with 

greater mean annual precipitation (540 mm) found that drought did not directly affect 

species richness, but changed the slope of the relationship between species richness and 

aboveground net primary production (Alon and Sternberg 2019). Further, drylands have 

relatively high spatial turnover which likely contributes to the variability of responses at 

the plot level (Noy-Meir 1973).  

 Previous studies of drought impacts on evenness report either no effect (Batbaatar 

et al. 2021) or positive effects (Alon and Sternberg 2019, Castillioni et al. 2020). 

Evenness increased in response to drought in annual communities of Mediterranean 

shrublands which was attributed to release from competition (Alon and Sternberg 2019). 
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At the plot level, we found evidence of linkages between changes to evenness and 

changes to cover. In particular, plots with greater increases in evenness, implying reduced 

dominance, had the greatest loss of vegetative cover. Dominant species are known to be 

particularly important drivers of ecosystem processes in response to drought (Smith et al. 

2020, Hoover et al. 2014, Knapp et al. 2020, Báez et al. 2013). Mass-ratio effects drive 

vegetative abundance in the Chihuahuan Desert (see previous chapter), and recent studies 

at the Mojave and Sonoran Desert sites highlight the importance of mass-ratio effects 

with respect to the dominant grasses of those deserts (Ohlert et al. 2021, Wheeler et al. 

2021). Despite increased evenness due to drought, there was no consistent change in rank 

abundance at any site in either treatment year. Rank change is considered an important 

process that restructures communities in response to disturbance (Avolio et al. 2021), and 

previous drought experiments in the North American Great Plains found that extreme 

drought induced greater rank change than ambient (Batbaatar et al. 2021). Lack of rank 

change, despite considerable responses to total vegetative cover, implies that species 

were roughly equally impacted by the drought treatment without obvious shifts to 

dominance or rarity. 

Species turnover should be particularly responsive in communities comprised of 

short-lived plants with high sensitivity to environmental conditions (Collins et al. 2008). 

Annual forbs play a novel role in desert ecosystems through delayed germination while 

waiting for favorable abiotic conditions, often when seasonal rainfall is above average 

(Cayan et al. 1999, Venable and Pake 1999, Bowers 2005, Venable 2007, Gremer and 

Venable 2014). However, we found relatively low turnover even among the annual 

communities in our study comprised of short-lived species. Species gains and losses were 



66 
 

highly variable and not clearly concentrated in any given community type across the six 

sites in our study. Negative correlation between species losses and cover response 

occurred only in the second year of treatment, but such correlations between turnover and 

cover are expected to further magnify with disturbance duration (Smith et al. 2009, Smith 

et al. 2015, Jones et al. 2017). Though communities are expected to continue to change 

over a long period of time with continued resource stress (Komatsu et al. 2019, Seabloom 

et al. 2021), evidence of increased turnover is mixed (Smith et al. 2015, Avolio et al. 

2021, Batbaatar et al. 2021), and long-term drought studies are lacking. Extending 

drought experiments to incorporate multi-year drought effects is necessary to capture the 

full trajectory of change that drought imposes on plant communities, while also 

simulating the types of droughts that are expected to occur in the next century (Trenberth 

et al. 2014, Cook et al. 2015, Bradford et al. 2020). 

Overall, the lack of community change despite considerable negative cover 

responses is contrary to previous studies showing linkages between community changes 

and ecosystem processes (Smith et al. 2015, Kimmel et al. 2019). With this distributed 

experiment, we demonstrated that drought impacts on the vegetative cover of desert 

ecosystems are immediate and concentrated in grasses. Sensitivity of vegetative cover to 

drought is linked to the responses of community structure, in particular, species evenness. 

Further study in dryland ecosystems should include longer duration of treatment and 

incorporate a wide range of communities in order to predict the consequences of drought 

across a variety of desert ecosystems. Understanding the trajectory of changes that 

drought imposes on plant communities will prepare human and ecological systems for 

extreme global change in not only deserts, but all terrestrial ecosystems. 
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Figures 

 

Figure 1. Map of site locations within the hot deserts of the U.S. See Table 1 for further 

information regarding the abiotic and biotic conditions of these sites. 
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Figure 2. Relative Interaction Intensity index (RII) of a) total vegetative cover b) grass 

cover c) forb cover d) cover of annual species and e) cover of perennial species in six 
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desert plant communities in the U.S. hot deserts for two years of drought treatment. Mean 

responses are shown with points and error bars display the 95% confidence interval. 

Asterisks denote significant responses in which 95% confidence intervals do not overlap 

0. RII were not calculated for annual species at Sevilleta Mixed in the first year, nor for 

perennial species in the Mojave and Sonoran Deserts in either treatment years due to a 

lack of data. RII values are shown in Table 2. 
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Figure 3. Relative Interaction Intensity index (RII) of a) species richness b) species 

evenness c) species gains d) species losses and e) rank abundance change in six desert 
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plant communities in the U.S. hot deserts for two years of drought treatment. Mean 

responses are shown with points and error bars display the 95% confidence interval. 

Asterisks denote significant responses in which 95% confidence intervals do not overlap 

0. RII values are shown in Table 2. 
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Figure 4. Relationship between RII responses of a,b) species richness c,d) species 

evenness e,f) species gains g,h) species losses i,j) rank abundance change and RII 

responses of vegetative cover in the a,c,e,g,i) first and b,d,f,h,j) second year of drought 

treatment. The black line shows a significant correlation between the two responses based 

on regression models. See methods for details. Points show responses of paired plots: 

Mojave Desert in red, Sonoran Desert in tan, and Chihuahuan Desert in blue. Significant 

correlations are shown with a black line. 
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Tables 
 

Site Desert MAP MAT Year 1 

precip 

Year 2 

precip 

Elevation Peak 

season 

Site 

species 

% grass % forb 

Granite Cove Mojave 220mm 16C 224mm 56mm 1,128m Spring 15 29 71 

Molar Junction Mojave 220mm 16C 224mm 56mm 1,128m Spring 34 19 81 

White Tank Sonoran 212mm 24C 345mm 241mm 400m Spring 19 79 21 

McDowell Sonoran 295mm 24C 264mm 128mm 204m Spring 18 63 37 

Sevilleta Black Chihuahuan 249mm 14C 243mm 216mm 1,669m Fall 20 70 17 

Sevilleta Mixed Chihuahuan 234mm 14C 227mm 227mm 1,669m Fall 9 96 4 

 

Table 1. Summary of sites including their biotic and abiotic attributes including mean 

annual precipitation (MAP), mean annual temperature (MAT), elevation, peak growing 

season, the total number of unique species in all plots in the pretreatment year (site 

species), and the percentages of vegetative cover comprised by grasses and forbs in the 

pretreatment year. 
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Metric Treatment 

year 

Site Mean RII 95% lower 95% upper 

Cover 1 Sevilleta Black -0.42 -0.75 -0.09 

  Sevilleta Mixed -0.37 -0.60 -0.14 

  McDowell 0.04 -0.19 0.27 

  White Tank -0.42 -0.78 -0.07 

  Molar Junction 0.13 -0.19 0.46 

  Granite Cove 0.19 -0.18 0.56 

 2 Sevilleta Black -0.36 -0.73 0.02 

  Sevilleta Mixed -0.22 -0.37 -0.07 

  McDowell -0.33 -0.79 0.14 

  White Tank -0.50 -0.78 -0.21 

  Molar Junction -0.30 -0.58 -0.01 

  Granite Cove -0.49 -0.63 -0.35 

      

Grass cover 1 Sevilleta Black -0.42 -0.64 -0.20 

  Sevilleta Mixed -0.34 -0.58 -0.10 

  McDowell -0.11 -0.59 0.36 

  White Tank -0.54 -0.87 -0.21 

  Molar Junction -0.00 -0.44 0.44 

  Granite Cove 0.20 -0.41 0.80 

 2 Sevilleta Black -0.27 -0.68 0.14 

  Sevilleta Mixed -0.19 -0.43 0.05 

  McDowell 0.06 -0.59 0.70 

  White Tank -0.71 -0.92 -0.50 

  Molar Junction -0.24 -0.55 0.08 

  Granite Cove -0.57 -0.99 -0.15 

      

Forb cover 1 Sevilleta Black -0.31 -1.14 0.53 

  Sevilleta Mixed -0.44 -1.18 0.30 

  McDowell 0.21 -0.09 0.52 

  White Tank -0.09 -0.77 0.60 

  Molar Junction 0.15 -0.21 0.51 

  Granite Cove 0.24 -0.05 0.53 

 2 Sevilleta Black -0.39 -0.93 0.15 

  Sevilleta Mixed -0.09 -0.63 0.45 

  McDowell -0.34 -0.81 0.13 

  White Tank -0.21 -0.65 0.23 

  Molar Junction -0.32 -0.65 0.01 

  Granite Cove -0.47 -0.62 -0.32 

      

Annual cover 1 Sevilleta Black -0.41 -1.16 0.34 

  Sevilleta Mixed NA NA NA 

  McDowell 0.06 -0.20 0.32 

  White Tank -0.42 -0.78 -0.07 
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  Molar Junction 0.13 -0.19 0.46 

  Granite Cove 0.19 -0.18 0.56 

 2 Sevilleta Black -0.51 -1.11 0.09 

  Sevilleta Mixed 0.83 0.60 1.07 

  McDowell -0.26 -0.77 0.26 

  White Tank -0.51 -0.75 -0.28 

  Molar Junction -0.30 -0.58 -0.01 

  Granite Cove -0.49 -0.63 -0.35 

      

Perennial cover 1 Sevilleta Black -0.38 -0.71 -0.04 

  Sevilleta Mixed -0.36 -0.59 -0.13 

  McDowell NA NA NA 

  White Tank NA NA NA 

  Molar Junction NA NA NA 

  Granite Cove NA NA NA 

 2 Sevilleta Black -0.27 -0.71 0.17 

  Sevilleta Mixed -0.28 -0.43 -0.13 

  McDowell NA NA NA 

  White Tank NA NA NA 

  Molar Junction NA NA NA 

  Granite Cove NA NA NA 

      

Species richness 1 Sevilleta Black -0.09 -0.48 0.31 

  Sevilleta Mixed -0.16 -0.38 0.06 

  McDowell -0.05 -0.25 0.15 

  White Tank -0.04 -0.30 0.22 

  Molar Junction 0.03 -0.11 0.17 

  Granite Cove -0.22 -0.38 -0.06 

 2 Sevilleta Black 0.02 -0.18 0.22 

  Sevilleta Mixed -0.06 -0.22 0.10 

  McDowell -0.12 -0.50 0.25 

  White Tank -0.19 -0.44 0.07 

  Molar Junction -0.12 -0.33 0.10 

  Granite Cove -0.44 -0.60 -0.29 

      

Species evenness 1 Sevilleta Black 0.03 -0.26 0.32 

  Sevilleta Mixed 0.05 -0.35 0.44 

  McDowell -0.08 -0.27 0.11 

  White Tank 0.11 -0.001 0.22 

  Molar Junction -0.02 -0.18 0.15 

  Granite Cove -0.08 -0.22 0.05 

 2 Sevilleta Black 0.05 -0.09 0.19 

  Sevilleta Mixed 0.03 -0.13 0.18 

  McDowell 0.04 -0.29 0.37 

  White Tank 0.29 0.01 0.57 
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  Molar Junction 0.33 0.10 0.57 

  Granite Cove 0.19 -0.03 0.41 

      

Species gains 1 Sevilleta Black -0.28 -1.05 0.48 

  Sevilleta Mixed -0.02 -1.02 0.98 

  McDowell 0.01 -0.51 0.53 

  White Tank 0.08 -0.42 0.58 

  Molar Junction -0.04 -0.68 0.60 

  Granite Cove -0.51 -0.89 -0.13 

 2 Sevilleta Black 0.01 -0.57 0.60 

  Sevilleta Mixed 0.02 -0.44 0.48 

  McDowell 0.10 -0.62 0.81 

  White Tank -0.19 -0.37 -0.01 

  Molar Junction 0.10 -0.92 1.11 

  Granite Cove -0.26 -1.10 0.59 

      

Species losses 1 Sevilleta Black 0.04 -0.34 0.43 

  Sevilleta Mixed 0.6 -0.29 1.49 

  McDowell 0.01 -0.75 0.77 

  White Tank 0.05 -0.12 0.22 

  Molar Junction 0.02 -0.17 0.21 

  Granite Cove 0.16 -0.37 0.70 

 2 Sevilleta Black -0.02 -0.56 0.52 

  Sevilleta Mixed -0.61 -1.15 -0.07 

  McDowell 0.08 -0.47 0.63 

  White Tank 0.12 -0.21 0.45 

  Molar Junction 0.07 -0.07 0.20 

  Granite Cove 0.22 0.01 0.43 

      

Rank change 1 Sevilleta Black -0.04 -0.66 0.57 

  Sevilleta Mixed -0.15 -0.71 0.42 

  McDowell 0.04 -0.17 0.26 

  White Tank -0.06 -0.19 0.06 

  Molar Junction 0.00 -0.09 0.10 

  Granite Cove 0.01 -0.11 0.12 

 2 Sevilleta Black -0.04 -0.35 0.28 

  Sevilleta Mixed 0.00 -0.35 0.35 

  McDowell -0.08 -0.29 0.14 

  White Tank -0.03 -0.21 0.16 

  Molar Junction 0.04 -0.07 0.09 

  Granite Cove 0.07 -0.06 0.20 
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Table 2. Results of RII for total vegetative cover, grass cover, forb cover, annual species 

cover, perennial species cover, species richness, species evenness, species gains, species 

losses, and rank change. Results are considered significant when the upper and lower 

boundary of the 95% confidence interval does not overlap 0. Significant results are 

bolded. NA denotes where not enough data were available to calculate RII. These results 

are visualized in figures 2 and 3. 
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Abstract 

 Global change affects the structure and biodiversity of ecosystems by changing 

the availability of limiting resources such as water and nitrogen. Competing theories 

suggest that in response to a changed resource landscape, communities should either 

converge to a similar assemblage of species due to environmental filtering, or diverge to 

more different community types due to stochastic community assembly. We used a 

database of 220 global change treatments within 52 experiments in herbaceous plant 

communities at 42 sites to study the impact of drought, irrigation, nitrogen addition, 

phosphorus addition, and multiple nutrient addition on convergence and divergence of 

both the species and trait composition of plant communities. Within sites, drought, 

nitrogen addition, and multiple nutrient addition led to divergence of replicates. However, 

treatment communities compared across sites showed convergence of community 

assembly when subjected to drought and multiple nutrient addition. In general, we found 

that global change drivers create divergent responses of communities at local scales and 

convergent responses at global scales.  

 

 

Introduction 

 Biodiversity is one of the most important drivers of ecosystem functions and 

services including ecosystem productivity (Tilman et al. 2014, Duffy et al. 2017), 

resistance to invasion (Kennedy et al. 2002), and carbon storage (Maestra et al. 2012). As 

threats to biodiversity have emerged over the past century, biodiversity research has 

become an important tool to improve conservation and land management to achieve 
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ecological goals (Balvanera et al. 2014, Mace 2014). Changes to our climate and 

environment pose the greatest threat to plant communities by introducing novel 

environmental conditions, including changes to precipitation and soil nutrient availability 

(Clark et al. 2001, Ellis et al. 2013, Franklin et al. 2016). These anthropogenic 

environmental changes (known as global change drivers or GCDs) alter plant community 

structure and function by modifying available resources which can decrease both 

diversity and stability (Komatsu et al. 2019, Seabloom et al. 2021). 

 GCDs impact ecosystems through environmental filters, which may select for a 

subset of species adapted to the GCD. In combination with disturbances, GCDs may lead 

to rapid reordering and turnover in species composition (Avolio et al. 2014, Avolio et al. 

2015, Smith et al. 2009). While most studies to date focus on mean differences in plant 

community richness and composition in response to GCDs, the variability of response is 

equally important for understanding whether GCD effects on biodiversity create more or 

less uniformity within an ecosystem (Fraterrigo and Rusak 2008, Fukami 2010, Murphy 

and Romanuk 2012). Compositional heterogeneity within an ecosystem is reflected in 

spatial beta diversity, the relative amount of dissimilarity in species composition across a 

landscape (Whittaker 1972, Legendre and Caceres 2013). In response to GCDs, plant 

community composition across a landscape can converge, resulting in lower beta 

diversity and species compositions more similar to each other, or diverge, resulting in 

greater beta diversity and species compositions that are less similar to each other 

(Houseman et al. 2008, Avolio et al. 2015, Koerner et al. 2016) (Figure 1). Competing 

theories suggest that environmental filtering and stochastic assembly following 
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disturbance should create either convergence or divergence among plant communities 

(Keddy, 1992, Grime 2006). 

Convergence could occur through environmental filter effects because only a 

subset of all species is adapted for the abiotic conditions of a GCD. Therefore, only 

species adapted for the new environment will persist through the environmental filter 

(Keddy 1992, Chase 2007, Houseman et al. 2011). As beta diversity is linked to 

variability, a change in resource availability may favor species adapted to this resource, 

potentially overwhelming underlying environmental variability (Tilman 1982, Harpole 

and Tilman 2007). For example, traits such as shorter plant height and deeper rooting 

depth may be more likely to persist through environmental filter effects of drought, while 

traits such as higher specific leaf area (SLA) and leaf dry matter content (LDMC) are 

favored with eutrophication of soils (Firn et al. 2019, Tatarko and Knops 2018, Barkaoui 

et al. 2016, Garbowski et al. 2020, Yang et al. 2018). If a GCD has a similar filtering 

effect on species and traits of plant communities across space, those communities will 

become more similar to each other, thus converging. For example, Chase (2007) found 

that drought induced convergence among multitrophic communities in experimental 

ponds by reducing species richness, thus decreasing beta diversity. 

Other evidence suggests that GCDs may induce divergence among plant 

communities by magnifying stochastic processes of community assembly. That is, 

changes in resource availability can magnify processes like priority effects, historical 

contingency, and biological inertia and result in magnification of differences between 

species assemblages across space (Grime 2006, Von Holle et al. 2003). For example, 

continuous fertilization in a low-productivity grassland increased divergence of replicates 
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(i.e. increased beta diversity) by magnifying priority effects (Houseman et al. 2008). 

When subjected to GCDs, established species are better able to utilize an influx of 

resources, such as additional nitrogen, or persist through resource depletion, such as 

drought (Evans et al. 2011, Castillioni et al. 2020, Wilfahrt et al. 2021). Therefore, GCDs 

can create divergence among communities, thus increasing beta diversity, by magnifying 

initial differences in community composition. 

Trait-based studies offer an ability to test the mechanisms of convergence and 

divergence of communities subjected to GCDs (Pavoine et al. 2009, Sandel et al. 2010). 

While analyses of species composition can determine whether subsets of species are 

advantaged by a treatment, trait-based analyses can test whether those subsets of species 

are also more similar to each other functionally (Lavorel and Garnier 2002, Lavorel and 

Grigulis 2012). Therefore, trait-based similarity measures are likely more sensitive to 

environmental filtering effects than species-based similarity measures. For instance, trait-

based analyses can determine whether species in communities subjected to drought have 

similar water use efficiency or rooting depth, whereas non-trait measures could only 

compare the similarity of species identity. Discrepancies between species-based and trait-

based convergence or divergence have been found in studies of community succession 

through time. In semi-natural grasslands, beta diversity of trait composition tends to 

converge over time while beta diversity of species composition remains consistent even 

as alpha diversity changes through succession (Fukami 2005, Helson et al. 2012). 

Conversely, restorations of resource-rich grasslands resulted in convergence of species 

composition, though trait composition neither converged not diverged over time (Catano 

et al. 2021). Indeed, analyses based on species composition alone can lead to an 
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incomplete view of how GCDs alter the variability of community assembly. Moreover, 

species-based methods are incapable of comparing the similarity of communities across 

sites that are responding to the same GCD simply because distant sites may have few or 

no species in common (Clarke et al. 2006). Trait-based analyses, however, can compare 

responses of communities to GCDs across sites as traits create a common currency for 

measuring diversity in plant communities. For example, Bjorkman et al. (2018) used 

community-weighted trait means to track changes in tundra plant communities as a long-

term response to warming and Diaz et al. (2007) used traits to determine the types of 

plants promoted by grazing across sites globally. 

 In this study, we used a global database of 220 global change treatments within 52 

experiments in herbaceous plant communities at 42 sites to study the impact of GCDs on 

convergence and divergence of both the species and trait composition of plant 

communities. We tested the impacts of GCDs on the variability of community 

composition within experiments and between sites. We asked the following questions: (1) 

Do global change drivers create local convergence or divergence within plant 

communities? (2) Are responses of species composition analogous to responses of trait 

assembly within communities? and (3) Do GCDs cause the same directional shifts in 

traits among communities? 

 

Methods 

Species composition data 

 We used datasets of global change experiments in herbaceous terrestrial 

ecosystems from the CoRRE database (corredata.weebly.com). This database includes 
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species identity and relative abundance values for control and treatment plots in plant 

communities subjected to global change treatments. We used only experiments that 

manipulated at least one of the core resources assessed in this study: drought, irrigation, 

nitrogen addition, phosphorus addition, or addition of multiple nutrients (typically N and 

P together). We used only experiments with at least four years of treatment for drought 

and at least five years of treatment for all other manipulations since global change 

treatments can typically take multiple years before impacting plant communities 

(Komatsu et al. 2019, Seabloom et al. 2021). We used measurements from the final year 

of treatment for each experiment to maximize our ability to detect treatment effects. 

Given the importance of replication when studying convergence and divergence across 

replicates, we only used experiments with at least five replicates of each control and 

treatment plot. This left 220 treatments within 52 experiments at 42 sites around the 

world across all treatment groups: 14 drought treatments, 18 irrigation treatments, 72 N 

addition treatments, 9 P addition treatments, and 107 multiple nutrient addition 

treatments. 

 

Trait data 

 We derived trait data using a combination of plant trait databases including TRY 

(Kattge et al. 2011) and the Fine-Root Ecology Database (FRED) (Iversen et al. 2021), in 

addition to categorical trait data collected for the CoRRE database. These data were then 

gap-filled using Bayesian hierarchical probabilistic matrix factorization (Schrodt et al. 

2015). Traits were z-score transformed across all species in the database to create 

comparable scales for analyses. For this study, we used a subset of five continuous traits 
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with correlation values less than 0.35, because high correlation of traits can lead to 

certain species overinfluencing an analysis (Ohlert and Kimmel et al. in revision). The 

traits used were plant vegetative height, leaf dry matter content (LDMC), specific leaf 

area (SLA), rooting depth, and stem specific density. Together, these five traits represent 

a range of plant functions including both above- and belowground processes as well as 

the leaf economic spectrum (Reich 2014, Diaz et al. 2016, Kong et al. 2019). 

 

Distances between communities 

Species composition 

 For each experiment, we separately created non-metric multidimensional scaling 

(NMDS) ordinations to quantify dissimilarity of community composition in response to 

global change treatments based in the Bray-Curtis dissimilarity metric. Each replicate 

was plotted in two-dimensional NMDS space and we calculated the distance of replicates 

to the centroid of treatment group replicates using the betadisper function from the 

‘vegan’ package in R (v2.5-7; Oskanen et al. 2013). With this method, replicates with 

more similar species composition receive shorter distances between centroids. We 

repeated this process for each treatment within each experiment, including for control 

plots. 

 

Trait composition 

 To quantify the distances in trait space between replicates within experiments, we 

used the ‘hypervolume’ package (v3.0.2; Blonder 2018) in R to create five-dimensional 

Gaussian hypervolumes of each replicate weighted by the relative abundance of species 
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within the replicate. Hypervolumes were calculated using the Silverman rule of thumb 

estimator with a 0.95 quantile of type probability with bandwidth calculated out to three 

standard deviations. The five traits used were plant vegetative height, LDMC, SLA, 

rooting depth, and stem specific density. Next, we used the kernel.similarity function in 

the ‘bat’ package (v2.6.0; Mammola and Cardoso 2020) to measure the Euclidean 

distance between the centroids of replicates for each pair of plots within the same 

treatment type (including controls) for each experiment. 

 We quantified distances in trait space across sites using the relative abundance of 

species for each treatment at each site. First, we first used the ‘hypervolume’ package 

(v3.0.2; Blonder 2018) in R to create five-dimensional Gaussian hypervolumes of the 

communities for each treatment within each experiment weighted by the relative 

abundance of species within the treatment (Blonder 2018). Hypervolumes were 

calculated using the Silverman rule of thumb estimator with a 0.95 quantile of type 

probability with bandwidth calculated out to three standard deviations. The five traits 

used were plant vegetative height, LDMC, SLA, rooting depth, and stem specific density. 

Next, we used the kernel.similarity function in the ‘bat’ package (v2.6.0; Mammola and 

Cardoso 2020) in R to measure the Euclidean distance between the centroids of the 

hypervolumes for pairs of experiments with similar treatments (e.g. N addition 

experiments at different sites). This generated a measure of the distance between pairs of 

sites for each treatment type (including controls). 

 

Statistical analyses 
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 For intra-experiment analyses of both NMDS-based species composition and 

hypervolume-based trait composition, we used the distances between pairs of replicates 

to calculate log response ratios (LRR) for each experiment: ln (
𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
). For 

each treatment type, we calculated 95% confidence intervals of the mean of the log 

response ratios using the qt function in the R ‘stats’ package (R core team 2021). We 

considered significance as when confidence intervals of LRRs did not overlap with zero. 

LRRs above zero indicate community divergence (i.e. treatments less similar than 

controls) and LRRs below zero equals convergence (i.e. treatments more similar than 

controls).  

 To test the correlation of species composition LRRs to trait composition LRRs, 

we created linear models with the form: trait composition LRR ~ species composition 

LRR. Models were created separately for each of the five treatment categories and each 

experiment contributed a single species composition LRR value and trait composition 

LRR value. 

To compare the similarity of communities between sites in trait space, we used 

linear models with the form: distance in trait space ~ treatment to compare the pairwise 

distances between communities subjected to global change treatments to the pairwise 

distances of control communities in corresponding experiments.  

 We used R Statistical Software (v4.1.2; R Core Team 2021) for all analyses. The 

‘tidyverse’ (v1.3.1; Wickham et al. 2019) and ‘plyr’ (v1.8.6; Wickham et al. 2011) R 

packages were used for data manipulation and data visualization. 
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Results 

Do global change drivers create local convergence or divergence within plant 

communities? 

 Species composition diverged within experiments in response to three of the five 

global change treatments: drought (mean = 0.18, 95% conf int. min = 0.06, 95% conf int. 

max = 0.30), N addition (mean = 0.08, 95% conf int. min = 0.001, 95% conf int. max = 

0.16), and multiple nutrient addition (mean = 0.24, 95% conf int. min = 0.16, 95% conf 

int. max = 0.32). In all three cases, 95% confidence intervals of the log response ratios 

were above zero (Table 1, Figure 2a). Log response ratios of irrigation (mean = 0.09, 

95% conf int. min = -0.07, 95% conf int. max = 0.25) and phosphorus addition (mean = 

0.06, 95% conf int. min = -0.06, 95% conf int. max = 0.18) treatments did not differ from 

zero across all experiments. 

 We observed fewer patterns of divergence in response to treatments with the trait-

based analysis. Though multiple nutrient addition resulted in trait divergence (mean = 

0.32, 95% conf int. min = 0.22, 95% conf int. max = 0.42), all other GCDs had no 

consistent effect across experiments (drought mean = 0.12, 95% conf int. min = -0.09, 

95% conf int. max = 0.33; irrigation mean = 0.08, 95% conf int. min = -0.21, 95% conf 

int. max = 0.37; N addition mean = -0.02, 95% conf int. min = -0.11, 95% conf int. max 

= 0.07; P addition mean = -0.04, 95% conf int. min = -0.44, 95% conf int. max = 0.36) 

(Table 2, Figure 2b). 

 

Are responses of species composition analogous to responses of trait assembly within 

communities? 
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 Correlation between trait and species composition responses were significant for 

irrigation (P < 0.001, r2 = 0.56) and multiple nutrient addition (p < 0.001, r2 = 0.19), but 

marginally significant for P addition (p = 0.07, r2 = 0.30) and drought (p = 0.07, r2 = 

0.18), and not significant for N addition (p = 0.59, r2 = -0.01) (Table 3). 

 

Do GCDs cause the same directional shifts in traits among communities?  

 Contrary to responses within experiments, both drought and multiple nutrient 

addition converged across experiments (drought p=0.024, multiple nutrients p < 0.001, 

Table 4). Neither irrigation nor phosphorus treatments altered the distances between 

communities in trait-space (irrigation p = 0.23, phosphorus p = 0.65, Table 4). 

 

Discussion 

Three of the five GCDs, drought, N addition, and multiple nutrient addition, 

exhibited divergence within experiments, evidence of environmental stochasticity effects. 

In contrast, two of the five GCDs, drought and multiple nutrient addition, exhibited 

convergence among experiments, evidence of environmental filtering. Importantly, 

effects on species composition were stronger than on trait composition within 

experiments, and correlations between species and trait composition responses were 

weaker than expected. The discrepancy between trait and species responses highlights the 

importance of assessing trait composition when studying community assembly as trait 

composition reflects environmental filtering effects at higher resolution. We suggest that 

the mechanisms driving convergence and divergence of communities changes across 
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spatial scales, with environmental stochasticity a more important factor at local scales 

and environmental filtering more important at regional and global scales.  

 

Species composition within experiments subjected to GCDs 

 When limiting resources, such as nitrogen or phosphorus, are made abundant, 

small differences between communities can be magnified (Fukami 2015). Greater levels 

of added N can lead to greater divergence among communities (Houseman et al. 2008) 

and addition of both N and P magnifies divergence among communities beyond N 

addition alone (Koerner et al. 2016). Adding N can magnify the competitiveness of  

dominant species, regardless of species identity (Inouye and Tilman 1988), and adding 

multiple nutrients in combination with N can further reduce niche dimensionality 

(Harpole and Tilman 2007, Carroll et al. 2021, Wilcots et al. 2021). By magnifying 

differences in initial composition, historical contingency and priority effects are more 

closely tied to species identity than species traits (Fukami et al. 2005, Fukami 2015), thus 

magnifying stochastic processes of community assembly. Indeed, we found that adding 

nitrogen magnified the differences between communities locally, and adding multiple 

limiting nutrients enhanced this effect. 

 Divergence at the local scale in response to drought treatment, however, is not a 

product of resource addition, but of resource subtraction. Whereas resource addition 

creates divergence by spurring growth and magnifying differences between communities, 

drought disturbance eliminates members of the community, thus making space and 

resources available for colonizers (Davis and Pelsor 2001, Bartha et al. 2003, Chesson et 

al. 2004). Though colonizers likely have similar traits following the competition-
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colonization tradeoff (Grime 1977, Pierce et al. 2017), colonizer identity is primarily a 

neutral process based on stochasticity (Hurtt and Pacala 1995, Hubbell 2001). Therefore, 

as drought increases the role of colonization in community composition, assemblages of 

species will be increasingly different despite colonizers sharing similar colonization-

favorable traits. Indeed, we found a strong effect of drought on the divergence of species 

composition, but not trait composition at local scales. Overall, divergence appeared to be 

stimulated by deviation from ambient conditions, regardless of whether the treatment 

added or subtracted resources. Irrigation did not produce effects opposite of drought, but 

rather, irrigation effects were directionally similar to the effects of drought treatment.  

 

Potential mechanisms separating species composition response and trait composition 

response 

 Both trait-based and trait-neutral mechanisms operate simultaneously on 

diversity, resulting in community assembly that is a combination of both mechanisms 

(Suding et al. 2005). In our study, responses of trait composition were only somewhat 

correlated with species composition responses as few treatments conveyed a close 

relationship between the two. This difference is particularly surprising given that both the 

trait composition and species composition measures were weighted by species’ relative 

abundance. Trait composition is a better reflection of environmental filtering than species 

composition since processes that are more neutral in terms of species identity, such as 

colonization and priority effects, are often more deterministic with trait identity (Catford 

et al. 2020, Fargione et al. 2003). Still, discrepancies between trait responses and species 
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responses emphasize that within experiments, increased beta diversity of species 

composition often occur with reduced beta diversity of trait compositions.  

Discrepancies between trait responses and species responses can occur when 

numerous species in the local species pool share similar traits. For example, a drought 

experiment from the Great Plains grassland at the Sevilleta National Wildlife Refuge 

(SNWR) in central New Mexico, USA exhibited divergence of species composition 

(LRR = 0.26), meaning that the plots subjected to drought treatment had less similar 

assemblages of species, while trait composition converged (LRR = -0.51). The species 

that persisted through the drought treatment were mostly small forbs sharing similar 

traits, such as small height and shallow rooting depth. In cases similar to the experiment 

at SNWR, focus on only the responses of species composition would overestimate the 

positive effects of a GCD on beta diversity. Similarly, studying only trait diversity would 

fail to account for other facets of diversity important to communities, such as 

phylogenetic diversity (Cadotte et al. 2009, Cavender-Bares et al. 2009). Thus, 

understanding when species composition responses and trait composition responses 

contrast will help to more accurately characterize GCD effects on ecological 

communities. 

 

Spatial scale determines convergence/divergence dynamics 

Convergence in response to GCDs at the global scale contrasts with the divergent 

responses at local scales. Indeed, the treatments that induced the greatest divergence at 

local scales incurred convergence at global scales. Further, drought and multiple nutrient 

addition which provoked change at local scales also provoked change at global scales. 
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The similarity of responses to drought and multiple nutrient treatments across spatial 

scales implies that these treatments created the greatest disturbance of those communities 

overall. Despite detecting divergent responses of communities at local scales with 

nitrogen addition, nitrogen effects were not great enough to induce detectable change 

across experiments.  

The often-interacting nature of global change effects on the alpha diversity of 

plant communities (Zavaleta et al. 2003, Koerner and Collins 2014, Franklin et al. 2015, 

Harpole et al. 2016, Reich et al. 2020) likely also applies to global change effects on beta 

diversity, that is, simultaneous pressures may interact synergistically to create change in 

communities greater than additive effects. Indeed, our study found that multiple nutrient 

addition treatments had the largest effect sizes on community similarity both within 

experiments and across sites. Similar responses to drought and multiple nutrient addition 

suggest that both resource subtraction and resource addition produce similar change. A 

study of GCD effects on alpha diversity with the same dataset of experiments found that 

responses to treatments were common but largely independent of the identity of the GCD 

(Avolio et al. 2021). 

Together, local divergence and global convergence suggests different mechanisms 

affecting community assembly at different scales. Divergent responses in both species 

and trait composition at local scales reflect environmental stochasticity, while convergent 

responses at global scales reflect environmental filtering. Priority effects and historical 

contingency are primarily local processes (Fukami 2015) since both are tied to the 

potential for colonization within the local species pool and other inherently local 

stochastic effects. Convergent responses of GCDs at global scales is evidence for large-
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scale environmental filtering effects. Though previous studies suggest that GCDs favor 

certain adaptive traits regionally and globally (Bjorkman et al. 2018, Yang et al. 2020), 

we show here that GCDs also increase the similarity of communities around the world by 

selective pressure for the same suites of traits everywhere. As trait convergence takes 

place in response to GCDs, biodiversity loss is extended beyond species extinctions to 

decrease variety in the types of species that persist.  
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Figures 

 

Figure 1. Conceptual figure showing a) convergence and b) divergence among replicates 

in multivariate community space. Panels c and d show the range of distances among 

replicates from panels a and b, respectively. Panels e and f show panels c and d 

represented as log response ratios, where values below 0 denote convergence in treatment 

replicates and values above 0 denote divergence in treatment replicates. 
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Figure 2. Log response ratios of within-experiment responses to five global change 

treatments for a) species composition and b) trait composition. The mean response value 

for each treatment is shown as a single point and error bars are 95% confidence intervals. 

Asterisks denote treatments for which 95% confidence intervals do not cross 0. Values 

above 0 signify divergence of treatment relative to control, while values below 0 signify 

convergence. Means and confidence interval values can be found in Tables 1 and 2.  
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Figure 3. Relationships between log response ratios of species composition and log 

response ratios of trait composition for each of five global change treatments. Lines show 

significant regressions. See Table 3 for regression details.  
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Figure 4. Comparison of the distance between pairs of experiments in control vs. treated 

communities. Bold black lines display the median value, the bottom and top of the box 

display the first and third quartiles of the data, and the whiskers extend 1.5 time the 

interquartile range. Data lying outside 1.5 times the interquartile range are plotted 

individually. Asterisks denote significant differences between control and treatment 

groups based on models described in the methods, the results of which are shown in 

Table 4.  
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Tables 

 

Treatment Mean LRR 

(species 

composition 

95% conf int min 95% conf int max 

Drought 0.18 0.06 0.3 

Irrigation 0.09 -0.07 0.25 

N 0.08 0.001 0.16 

P 0.06 -0.06 0.18 

Multiple nutrient 0.24 0.16 0.32 

 

Table 1. Summary of 95% confidence intervals for log response ratios of species 

composition responses to five GCDs. These results are visualized in Figure 2a. 
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Treatment (traits) Mean LRR 95% conf int min 95% conf int max 

Drought 0.12 -0.09 0.33 

Irrigation 0.08 -0.21 0.37 

N -0.02 -0.11 0.07 

P -0.04 -0.44 0.36 

Multiple nutrient 0.32 0.22 0.42 

 

Table 2. Summary of 95% confidence intervals for log response ratios of trait 

composition responses to five global change treatments. These results are visualized in 

Figure 2b. 
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Treatment Slope p-value r-squared 

Drought 0.86 0.07 0.18 

Irrigation 1.20 <0.001 0.56 

N 0.08 0.59 -0.01 

P 2.03 0.07 0.30 

Multiple nutrient 0.59 <0.001 0.19 

 

Table 3. Regression results of models comparing log response ratios of species 

composition and log response ratios of trait composition for five global change 

treatments. These results are visualized in Figure 3. 
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Treatment Control estimate Treatment 

estimate 

p-value 

Drought 1.67 1.18 0.035 

Irrigation 1.44 1.34 0.27 

N 1.49 1.45 0.17 

P 1.31 1.39 0.65 

Multiple nutrient 1.44 1.43 <0.001 

 

Table 4. Summary of models comparing the trait space distances among sites between 

control plots and plots treated with one of five global change treatments. These results are 

visualized in Figure 4. 
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CONCLUSION 

Assembly of plant communities changes through time, across spatial scales, and is 

often shaped or disrupted by abiotic disturbances. In this dissertation, I used long-term 

experimental data to compare the influence of dominant species on community assembly 

in semiarid grasslands. Additionally, I established a cross-site drought experiment in the 

hot deserts of the U.S. to investigate the impact of drought on community structure in 

desert ecosystems. Finally, to assess determinism of community assembly on a global 

scale, I used modern, trait-based methods to compare the spatial variability of 

communities subjected to global change treatments. 

In the first chapter, I discovered suppression of subordinate species by dominant 

grasses and noted that subordinate species provided only partial compensation for the loss 

of the dominant species. Forb, shrub, and grass functional groups each had phases in 

which they provided partial compensation for dominant species. I found that species 

richness-NPP relationships were contingent upon the presence of dominant species and 

their removal resulted in increasingly negative species richness-NPP relationships. The 

dominant species of these grasslands performed unique roles in productivity that no other 

species were able to fill even after 23 years. Overall, dominant species can inhibit the 

diversity of communities while being critical to productivity.  

In the second chapter, I assessed the impact of drought on multiple dimensions of 

plant communities in the hot deserts of the U.S. southwest. Drought sensitivity of 

vegetative cover was linked to response of the grass functional group, while forb 

responses were rarer than expected. Changes to the evenness of species’ abundances 

played an important role in the impacts of drought on desert ecosystem processes through 
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heightened sensitivity of dominant species to abiotic change. Further understanding of the 

trajectory of change that drought imposes on plant communities will prepare human and 

ecological systems for extreme climate events. 

In the third chapter, I found that global change drivers (GCDs) created divergence 

of community assembly at local scales and convergence of community assembly at 

regional and global scales. Therefore, I suggest that the relative effects of environmental 

stochasticity and environmental filtering on convergence and divergence of communities 

changes across spatial scales. Divergence of communities at local scales is an important 

process for maintaining diverse species pools amidst disturbances, while convergent 

responses of GCDs at global scales are consistent with large-scale environmental filtering 

effects. I show here that GCDs increase the similarity of communities around the world 

by selective pressure for the same suites of traits everywhere. As trait convergence takes 

place in response to GCDs, the consequences of biodiversity loss are extended beyond 

species extinctions by diminishing the range of species that persist through global 

change.  

As plant communities endure shifting environmental conditions, responses to 

disturbances can determine the resistance, resilience, and stability of whole ecosystems. 

Terrestrial plant communities are vulnerable to environmental change brought about by 

anthropogenic influences of our modern world. Studying how communities respond to 

abiotic disturbance is of increasing importance as we seek to conserve modern 

ecosystems and predict the consequences of anthropogenic global change. 
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