






Chapter 1. Introduction

(a) University of Houston

(b) Michigan University

Figure 1.1: Comparison of two Electrical Engineering Curricula
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Chapter 2

Previous Work

2.1 Defining A Curriculum’s Structural Complexity

Before being able to determine the effects a curriculum’s structure has on the ease in

which students can move through it, it is necessary to quantify the structure, or rather

the complexity of a curriculum’s structure. A team of researches at the University of

New Mexico have done just that by introducing two metrics that attempt to capture

properties of a curriculum structure that pertain to a students progressing though

it [12]. As previously seen in figure 1.1, a curriculum can be represented as a graph,

allowing it to be subject to graph theory and complex network analysis, which serves

as the basis of UNM’s work. Computing this metric, which is simply called the

structural complexity of a curriculum, begins by assigning each course a value, called

its course cruciality, which signifies how important the course is in the curriculum.

This value is in turn comprised of two other measures: the course’s blocking factor

and its delay factor.

A course’s delay factor is defined as the number of nodes (or courses) on the

longest path that passes through the node associated with a given course. An ex-

5



Chapter 2. Previous Work

ample can be seen in figure 2.1. In this figure, course A has a delay factor of three

as the longest path that passes through it contains three courses: A, B, and D, as

opposed to the short path with length two that contains courses A and C. Course B

and D share course A’s delay factor of three, while course C only has a delay factor

of two.

Figure 2.1: Delay factors are given for courses A, B, C, and D.

A course’s blocking factor is defined as the number of courses that are blocked

from being taken if the given course is not passed. This is essentially the connectivity

of the course. If there is a path from node i to j then nij is 1 and 0 otherwise. Then,

the blocking factor of course i would be defined as:

Vi =
∑
j

nij (2.1)

An example of blocking factors can be seen in figure 2.2. Here, course A has a

blocking factor of three because it is connected (or blocks) three other courses: B, C

and D. Course B blocks one course, D and course C and D have a blocking factor of

zero because no courses succeed them.

Given a course delay factor Li, and blocking factor, Vi, then its cruciality, Ci is

simply defined to be the sum of the two:

Ci = Vi + Li (2.2)
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Figure 2.2: Blocking Factors are given for courses A, B, C, and D.

A curriculum’s complexity, S, is then defined by the sum over all course crucial-

ities:

S =
n∑
i

Ci (2.3)

2.2 Student Simulations

There has been much research done predicting and analyzing student performance,

the majority of which use statistical analysis or machine learning models [1, 3, 11].

Although less so, there has also been work done in this area using simulations with

a variety of motivations. For example, Webster [14] describes a simulation model

that takes into account student enrollment, teaching resources, and financial data

to run simulation in order to aid financial decision making. Plotnicki and Garfinke

[8] use simulations to determine the best possible schedule of courses that allow the

greatest number of students to easily move through the curriculum and similar work

by Schellekens et al. [10] observed the effects of giving students more flexibility

within a program via simulation.

While all of this research shares some similarity with CASL simulations, the work

that it relates to the most was conducted at San Fransisco State University using

simulations to observe how changes made to a curriculum affect student performance
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[9]. Saltzman and Roeder modeled students flowing through SFSU’s College of Busi-

ness as a discrete event simulation. In their implementation, every semester students

would register for courses using the school’s historic data to determine course de-

mand. Students would then be enrolled in their desired courses given that they met

all course requirements and there was room. Once enrolled, a student would either

pass or fail based on the course’s historic pass-rate. Using this model, they deter-

mined the effects of curriculum changes such as removing courses or prerequisites.

While this method influenced the design of CASL’s simulations there are some

major differences. For example, CASL makes different assumptions about student

behavior. For instance student course demand is not based on historic data. CASL

also lacks a new incoming class each term, tracks more student data (such as GPA)

and can be extend to make pass/fail determinations based on more than just pass-

rate data and supports grade assignments. The largest is differences, however, are

implementation and motivation. While Saltzman and Roeder’s and the others’ sim-

ulations were implemented using commercial software, CASL is free and open source

and does not build the curriculum into the simulation logic, but rather is flexible

enough to perform simulations over any curriculum through a standard format. Fur-

thermore, CASL extends beyond just simulation and provides a way to represent

curriculum-related data in a programming environment that could be useful in other

types of analyses.
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Chapter 3

Library Design & Implementation

3.1 Julia

CASL is implemented in the open-source Julia programming language and made

available as an open-source Julia package. Julia is described as a high-level, high-

performance dynamic programming language for technical computing that “has the

performance of a statically compiled language while providing interactive dynamic

behavior and productivity like Python, LISP or Ruby” [2]. It is built upon an LLVM-

based just-in-time (JIT) compiler which allows it to reach performance close to that

of C and, in many cases, speeds faster than that of R or MATLAB [2]. Julia’s

defining feature is multiple dispatch, but some other notable features are module

support, a type system, parallelism and a built-in package manager. It also has

a thriving community of developers contributing high-quality open source libraries

spanning a range of applications such as machine-learning, statistical analysis, graph

analysis, plotting, and data-handling.

Each of these features contributed to choosing Julia as the language of imple-

mentation. Julia’s type system, ease of use and dynamic nature made it simple
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to implement the library’s various components, methods logic, and support for file

formats such as CSV and JSON made data IO simple. However this ease of devel-

opment did not come at the expense of performance and its support for parallelism

allowed running many simulations much faster as they could be carried out in paral-

lel. Additionally it has a built in package manager with a plethora of packages that

will enable uses extend the library and simulation capabilities with powerful machine

learning and statistical models.

3.2 Architecture and Implementation Details

CASL is comprised of three main components: (1) custom data types, (2) the simu-

lation method, and (3) course performance prediction modules. The first component,

a set of custom data types, represent all the necessary components (curricula, stu-

dents, etc.) over which analyses and simulations can be performed. The second

component of the library is a method that carries out a simulation using a defined

curriculum and a set of students taking into account various simulation parameters

that can be set by the user. The third and final component are modules which are

passed into the simulation method that determine how the virtual students ’perform’

in each course. The library comes with one build-in module based on course pass

rates, but users can develop their own to conduct simulations that suite their needs.

A system diagram can be seen in figure 3.1. The next several sections will describe

each component in greater detail.

3.2.1 Library Data Types

Custom Julia types serve as the foundation of the library allowing curricula and

related entities to be defined a mutable objects allowing analysis and simulation
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Figure 3.1: A component diagram of CASL’s primary components.

to be performed. These data types are: curricula, terms, courses, students, and

simulations. Due to Julia not being an OO language, these entities are not true

objects, but are very similar to structures in C in that they do not have associated

methods, but do have associated attributes. Each type’s attributes describe the

characteristics of the entity it represents as well as provides a place to record statistics

regarding the entity after a simulation is performed.

Course Type

At the heart of every curriculum are courses and every course in a curriculum is

represented by its own object. A course’s attributes include its credit hours, prereq-

uisites, co-requisites, a minimum term requirement and various complexity values,

such as delay and blocking factors along with others. In addition, it also has at-

tributes that are used by the simulation to keep track of its state (such as which

students are enrolled) as well as statistics regarding the course during the simulation

such as its simulated pass-rate, how many students were enrolled each term, grade

distributions, etc. A course also has an attribute, named model, that has no type

and can used to store any value or type for the purpose of storing a model to predict

student grades. This will be explained in more detail later.
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Like all types in Julia, a course object is instantiated via a constructor method

that has the same name as the type. Unlike other languages, Julia allows a type to

have multiple constructors and in this case, the course type has four. Each construc-

tor has the same name, Course(), but the number and types are arguments differ.

All constructors require a name, the number of credits the course is worth, an array

of prerequisites and and array of co requisites with one of the constructors accepting

only these arguments. The others constructors allow more information to be pro-

vided, specifically a pass-rate, a minimum term requirement, or both. Examples of

the constructors can be seen below.
1 # Import the framework

2 using CASL

3

4 # Math 162 course with no pre or c o r e q u i s i t e .

5 math162 = Course ( "Calcu lus I " , 4 , [ ] , [ ] )

6

7 # Physics course with a pas s ra t e o f 90%, and math 162 as a p r e r e q u i s i t e .

8 phys162 = Course ( "Phys ics I I " , 3 , 0 . 9 , [ math162 ] , [ ] )

9

10 # Physics lab with Py s i c i s I I as a c o r e q u i s i t e

11 phys162l = Course ( "Phys ics I I Lab" , 1 , [ ] , [ phys162 ] )

Term Type

The term type essentially represents a collection of courses that, ideally, would be

taken together in the same semester. In addition to a list of courses, a term’s at-

tributes include the total number of students that are enrolled in each of its courses,

the total number of credit hours in that term, and the number of students which

failed courses in the term. The term type only has a single constructor that accepts

an array of courses:
1 using CASL

2

3 # Math 162 course with no pre or c o r e q u i s i t e .

4 math162 = Course ( "Calcu lus I " , 4 , [ ] , [ ] )

5

6 # Physics course with a pas s ra t e o f 90%, and math 162 as a p r e r e q u i s i t e .

7 phys162 = Course ( "Phys ics I I " , 3 , 0 . 9 , [ math162 ] , [ ] )

8

9 # Physics lab with Py s i c i s I I as a c o r e q u i s i t e

12
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10 phys162l = Course ( "Phys ics I I Lab" , 1 , [ ] , [ phys162 ] )

13

14 term1 = Term ( [ math162 ] )

15 term2 = Term ( [ phys162 , phys162l ] )

Curriculum Type

The curriculum type brings the term and course types together to define a com-

plete academic program that contains a structured set of courses that students must

progress through to obtain a degree. This is the type that the library uses to perform

a simulation over a curriculum. Of course the curriculum contains an ordered set

of terms but additional attributes include various structural complexity measures,

and average pass-rate. Also, like the course type it too has an attribute, named

stopoutModel, that can hold any information for the purpose of storing a model to

predict whether a student would stop out at the end of a term. Again, this will be

explained in greater detail later.

The curriculum has two constructors. The first takes a string that represents its

name and an array of terms as arguments. The issue with this constructor, although

it is completely usable, is that it requires the term types, and therefore course types

to already be instantiated. This can be a tedious and time consuming and is not a

very good way to store curricula in a extensible format. To address this problem,

a JSON file format was developed as a straightforward way to define a curriculum

that is easier to create, more portable, as well as easier for a computer to generate

or read.

At the root of this definition is an object with two keys: terms and courses.

The terms key stores the number of terms in the curriculum. The course key stores

an array of objects that represent a course. These objects have the following keys:

name, credits, passrate, term which is the term the course belongs to, prerequisites

which is an array of strings corresponding to the names of the course’s prerequisites,
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and co-requisites which is an array of strings corresponding to the names of course’s

co-requisites. An example can be seen below:

1 {

2 "terms" : 2 ,

3 "courses" : [

4 {

5 "name" : " Calculus I" ,

6 "credits" : 4 ,

7 " passrate " : 0 . 7 ,

8 "term" : 1 ,

9 " corequisites " : [ ] ,

10 " prerequisites " : [ ]

11 } ,

12 {

13 "name" : "Physics II" ,

14 "credits" : 3 ,

15 " passrate " : 0 . 8 ,

16 "term" : 2 ,

17 " corequisites " : [ ] ,

18 " prerequisites " : [ " Calculus I" ]

19 } ,

20 {

21 "name" : "Physics II Lab" ,

22 "credits" : 1 ,

23 " passrate " : 0 . 9 ,

24 "term" : 2 ,

25 " corequisites " : [ "Physics II" ] ,

26 " prerequisites " : [ ]

27 }

28 ]

29 }

The second constructor method accepts a name and another string that is ex-

pected to be a path to one of these JSON files. The method will parse the file and

create course and term objects automatically. This makes it much more convenient

to create a curriculum object along with objects for its associated courses and terms.

Below are examples of these constructors:

1 # Curriculum from term ob j e c t s

2 myCurriculum = Curriculum ( "My Curriculum" , [ term1 term2 ] )

3

4 # Curriculum from JSON f i l e

5 myIdenticalCurr iculum = Curriculum ( "My myIdent ica l Curriculum" , " . / path/ to / curr iculum .

j son " )
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Student Type

Every student in the simulation is represented by its own student object. Therefore,

the student type was designed to contain all the information needed to track a

student’s progress as well as represent the characteristics that define the student and

aid in grade predictions. It was designed to be flexible allowing the user to determine

what characteristics are needed rather than have a set of hard-coded attributes. This

is possible due to a dictionary (an associative array) attribute, named attributes.

The student’s object also stores statistics for simulations such as the total number of

credit hours a student has earned, the term in which each course was completed, the

student’s GPA, grade’s received, if/when the student graduated etc. The student

type only has one constructor which simply takes a dictionary of student attributes

as an argument. Below is an example:
1 using CASL

2

3 # Att r ibute s

4 a t t r i b u t e s = Dict (

5 ’ACT’ => 36 ,

6 ’HSGPA’ => ’3 . 45 ’

7 )

8

9 # Student Object

10 student = Student ( a t t r i b u t e s )

Simulation Type

A simulation object is used to store the results of a simulation, as well as tie all

of the individual pieces together so they can be easily accessed through a single

object. The curriculum, students, and results are all contained within this object.

This makes it easy to keep track of all the data used in a simulation as well as

compare multiple simulations. This object is not created manually, but instead it is

returned when a simulation is performed. The simulation object’s attributes include

a copy of the curriculum that was simulated, all simulation parameters, the number
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of students, graduation and stop-out rates for each term, and arrays that contain

enrolled, graduated and stopped-out students.

3.2.2 Performance Modules

Performance modules are used to predict the grades that students make in their en-

rolled courses during a simulation. These modules give users the ability to specify

exactly what type of prediction model they would like to use, although they must

implement it themselves. Given the number of open-source Julia regression and

machine learning libraries available, a wide variety of techniques can be easily im-

plemented. This makes simulations flexible and allows it to carry out a wide variety

of simulations so that users can find the one that best fits their data.

A performance module is simply a Julia module that contains three functions:

train(), predict_grade(), and predict_stopout(). These methods are used during

the simulation, and do not need to be called by the user manually, therefore it is

important that they are implemented correctly. The train() method is called before

the simulation begins and performs any kind of training that might be necessary

for predictions, accepting a single curriculum object as a parameter. This gives

the user access to all of the courses, where some sort of prediction model will be

trained for each one based on features that the user has selected and will be included

in the student’s attributes. Of course these trained models will need to be stored

somewhere and that is why each course has a model attribute. This attribute is

a dictionary that can store any type of data. The user can take advantage of this

to store any information or objects relevant to the model for each course. Also,

a model for predicting whether or not a student drops out must be trained. Like

the course’s model attribute, the curriculum’s stopoutModel attribute will store any

relevant information. Below is a template function:
1 # SampleModule

16
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2

5 function t r a i n ( curr icu lum )

6 # Loop through each course in a curr icu lum and t r a i n each one

7 for course in curr icu lum . cour s e s

8 # Load some t r a i n i n g data

9 data = read_data_here ( " . / some/ l o c a t i o n /$ ( course . name) . csv " )

10

11 # Train a model

12 # For example , obta in the params f o r a l i n e a r r e g r e s s i o n .

13 model_params = train_model ( data )

14

15 # Store the model

16 course . model [ : params ] = model_params

17 end
18

19 # Model f o r p r ed i c t i n g stopouts

20 # Here t h i s could simply be a p r obab i l i t y .

21 curr iculum . stopoutModel [ : r a t e ] = 0 .1

22 end

The next function, predict_grade(), actually predicts a grade for a student. It

takes two arguments: a course object and a student object. Because the model for

the passed in course object has already been trained, the course’s model contains the

necessary information to construct the model and the student’s attributes contain

the features used in the model, making it possible to predict a grade. As mentioned

previously, grades are represented by floating point numbers that correspond to a

letter grade, therefore a numeric value is expected to be returned. An example can

be seen below:
1 # SampleModule

2 function predict_grade ( course , student )

3 # Get the parameters from course

4 params = course . model [ : params ]

5

6 # Construct model based on the params

7 model = build_model ( params )

8

9 # Construct a f e a tu r e sample from student

10 sample = [ student . a t t r i b u t e s [ :ACT] , student . a t t r i b u t e s [ :GPA] ]

11

12 # Pred ic t grade

13 grade = pr ed i c t (model , sample )

14

15 return grade

16 end

The last function in the performance module, predict_stopout(), takes a student

17



17

Chapter 3. Library Design & Implementation

object, the current term, and the curriculum’s stopoutModel attribute as arguments

and predicts whether or not a student will stop out. This process is similar to

the grade prediction: the model is constructed, and given the student’s features

a prediction will be made. This prediction should return either true, meaning the

student drops out, or false indicating that the student remains enrolled. See example

below:
1 # SampleModule

2 function predict_stopout ( student , currentTerm , model )

3 # Chance o f stopping out

4 chance = model [ : r a t e ] − currentTerm ∗0.01

5

6 # Determine stopout

7 return rand ( ) <= chance

8 end

Once a user constructs one of these modules, they will be able to pass this into

simulation, making use of their defined course prediction model. However, if no mod-

ule is passed in a default module built into CASL will be used. This default model

simply uses the pass-rate of a course as a probability of passing a course. This model

does not so much predict a grade, it predicts whether a student will pass a course by

carrying out a single Bernoulli trial. A successful course attempt is interpreted as

a student making an A and a failed attempt results in the student receiving a F. A

Bernoulli trial is also used to determine stopouts, where the probability of stopping

out is based on the current term and its corresponding real-world retention value at

UNM. Below is the code for this module:
1 # Pred i c t s whether a student w i l l pass a course us ing the course ’ s pa s s ra t e

2 # as a p r obab i l i t y .

3

4 module PassRate

5 # Train the model

6 function t r a i n ( curr icu lum )

7 for course in curr icu lum . cour s e s

8 model = Dict ( )

9 model [ : pa s s ra t e ] = course . pa s s ra t e

10 course . model = model

11 end
12

13 curr iculum . stopoutModel [ : r a t e s ] = [ 0 . 0 838 , 0 .1334 , 0 .0465 , 0 .0631 , 0 .0368 ,

0 .0189 , 0 . 0 165 ] ∗ 100

14 end

18
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15

16 # Pred ic t grade

19 function predict_grade ( course , student )

20 r o l l = rand ( )

21

22 i f r o l l <= course . model [ : pa s s ra t e ]

23 return 4 .0

24 else
25 return 0 .0

26 end
27 end
28

29 # Pred ic t stopout

30 function predict_stopout ( student , currentTerm , model )

31 i f currentTerm > 7

32 return fa l se
33 else
34 r o l l = rand (1 : 100 )

35 return r o l l <= model [ : r a t e s ] [ currentTerm ]

36 end
37 end
38 end

3.2.3 Simulation Method

All of the components that have been described come together to simulate students

flowing through a curriculum. This simulation is carried out through CASL’s sim-

ulate() method. This method requires two required arguments: a curriculum, and

an array of students. It will also accept several optional arguments: max_credits,

duration, performance_model, and stopouts. The first, max_credits, allows the user

to specify the maximum number of credit hours that a student can take in a given

term. If no value is specified, the simulation defaults the value to 18. To specify

how long the simulation will run, the duration argument can be set. The simulation

will run for the specified number of terms as long as enrolled students remain. The

default value is 8. To direct the simulation to use a custom performance module for

grade predictions, the defined module can be passed in as the performance_model

argument. If no model is passed in, the included pass-rate model is used. Finally,

the stopouts argument is a boolean value that allows stopout behavior to be part of

the simulation. If false, students will never stop out, while a true value will use the
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Performance Module’s stopout() method to un-enroll specified students at the end of

every term. An example of how all these pieces come together to run a simulation is

shown below:
1 using CASL

2

3 # Load the user de f ined performance module

4 # in t h i s case c a l l e d ’ ProbitModel ’

5 r e qu i r e ( " . / path/ to /CustomPerformanceModel . j l " )

6 # => CustomModel

7

8 # Load the Curriculum

9 curr iculum = Curriculum ( " . / path/ to / curr icu lum . j son " )

10

11 # Create a s e t o f s tudents with a random ACT and

12 # high schoo l GPA based on a normal d i s t r i b u t i o n

13 students = [ ]

14 for i =1:1000

15 a t t r i b u t e s = Dict (

16 ’ACT’ => random_act ( ) ,

17 ’HSGPA’ => random_gpa ( )

18 )

19 s = Student ( a t t r i b u t e s )

20 push ! ( students , student )

21 end
22

23 # Now a s imulat ion can be run us ing the coures pa s s ra t e model

24 sim1 = s imulate ( curriculum , students )

25 p r i n t l n ( sim1 . gradRate )

26 # => 0.73

27

28 # Tweak the parameters and use the custom performance model

29 sim2 = s imulate ( curriculum , students ; durat ion =10, max_credis=19, performance_model=

CustomModel , s topouts=fa l se )

30 p r i n t l n ( sim2 . gradRate )

31 # => 0.85
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Simulation Details

4.1 Discrete Event Simulations

A discrete-event simulation models a system by emulating a sequence of events, where

every event occurs independently of the others at a particular instance in time and

are characterized by having the following components:

• Starting and Ending States – The simulation will begin in a given state

and will continue until it reaches another state that represents some pre-defined

ending-condition or a point in time.

• Clock – The simulation must keep track of the time that has elapsed after it

begins in any time unit relevant to the domain of the simulation. The clock

does not run continuously as events occur instantaneously, but it does jump to

certain times as events occur.

• List of Events – The system maintains a list of events that can occur during

the simulation. These events are placed in a queue and are usually executed

based on simulation time rather than the time they were enqueued.
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• Statistics – As the ending state is not the only result of interest when running

simulations, the system keeps track of various statistics based on the events

that have occurred.

Using these components, a simulation is constructed using the basic following

logic:

1: Initialize the system

2: Initialize the system clock

3: Schedule the initial event

4: while ending condition is false do

5: Increment clock

6: Perform next event

7: Update system statistics

8: end while

9: Output simulation results

Given these characteristics and basic logic flow, this type of simulation lends itself

well to the process of students flowing through a curriculum within an institution,

much more so than continuous-time simulations and other analytical models. Stu-

dents moving through a curriculum can be viewed as a fixed, chronological sequence

of events. Students will enter the university, enroll in classes, complete or withdraw

from classes, then graduate if all requirements have been met. Given the nature

of this process, modeling students moving through a curriculum as a discrete-event

simulation makes sense.
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4.2 Simulation Assumptions

A student’s academic career within an institution can potentially be a very difficult

thing to model. This is primarily because student behavior can be erratic and un-

predictable even given a structured curriculum. Students might not register for the

courses they should, take courses that do not count, drop classes, take a semester off,

get an override to take a course that they normally would not have been able to, and

various other actions that would otherwise not be considered typical behavior. There

are a vast amount of factors that can influence student behavior, many of which are

not academic and would therefore be very difficult to account for. Furthermore uni-

versities can impose various policies that would also have an effect on how students

register for classes and affect other academic decisions.

Trying to realistically simulate all possible actions that a student can take would

be impossible, therefore several assumptions and decisions are made to simplify stu-

dent behavior down to the basics, making meaningful simulation feasible without

needless complexity. The decision that was the most influential in making these as-

sumptions made was to design the student flow simulation with the primary goal of

performing analytics over curricula and observing the effects their properties have

on students moving through it. This is in contrast to developing a system to provide

realistic simulations of student behavior with the goal of predicting graduation rates

and other statistics. The simulation is potentially capable of this; however it was

not the goal. Thus the other decisions made were done so to put emphasis on how

curricula influence outcomes relative to one another instead of how student behavior

does so. Below is a list of the other assumptions and decisions:

• All students at the beginning of the simulation are treated as first-time, full-

time students. Although in many cases actual freshman might have some

college credit, either through AP-tests, taking college-classes while in high-
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school, or transfers, students in the simulation begin with a clean slate. They

are also treated as full-time students with no notion of ṕart-time’ built in.

• Given that all students are full-time, each semester all students will register

for as many credits as they can. In reality, most students do not hit their

institutions max credit-hour limit, but the simulation will register students in

as many courses as they are allowed—which is set by the user.

• The simulation only deals with a single class of admitted students. There is

no continuous influx of freshman or transfer students each semester within the

simulation.

• Students who stop-out are dis-enrolled permanently. They do not re-enroll.

• Students will only register for courses within the specified curriculum. The

simulation is only aware of the courses specified in the curriculum, so while it

is common for students to register for courses that might not count towards

their major, this behavior is not part of the simulation.

• The order of courses in which students enroll in depends on their ordering

within the curriculum. Students will enroll is the earliest listed course within

the curriculum and will roll in each course they can as until they hit the credit-

hour limit. This process is described in greater detail later.

• The minimum passing grade is universal among all courses. This grade can be

set by the user, and defaults to a C-.

• All course enrollment requirements are strictly enforced. While it is common

for students to obtain permission and subsequent overrides to enroll in a class

they have not met the requirements for, the system does not allow for this.

• All courses within a curriculum are offered every semester.
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• Courses have no notion of capacity. Any number of students can be enrolled

in any course in a given term.

These decisions might seem very restrictive, and in many ways that is intentional.

The idea was not to simplify the simulation for the sake of simplicity, but rather to

put more emphasis on the curriculum and its structural properties. By standardizing

the way students behave, it is possible to compare curricula and how changes to their

structure or difficulty effect outcomes which provides insight into how they might be

improved.

4.3 Simulation Model Logic

The student flow simulation uses the components and basic logic of discrete-event

simulations previously described and adapts them to fit within the domain of students

flowing through a curriculum. The components are defined as follows:

Clock. The unit of time in which the simulation uses is a semester. All events

occur within one semester, therefore the clock will on increment time by one semester.

Starting State. The simulation begins with a set of students which represent

first-time full-time students just enrolled in a university. The clock is set to the first

semester.

Events. The primary events in the simulation emulate basic student behavior

during their academic career:

• Students enroll in the university.

• Student enrolls in the courses that they are able to take.
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• Student takes the classes they enrolled in and are assigned a grade, either

passing or failing.

• Student stopouts.

• Student graduates.

• Student remains enrolled.

Ending Condition. The simulation ends when there are no students enrolled.

Therefore all students have either graduated or stopped out. The simulation could

end before this however as it can also be run for a set amount of semesters.

4.3.1 Control Flow

The simulation begins at its starting state—a set of students with no previous aca-

demic experience and a clock set to semester one. Each student is initiated with

defined attributes. All enrolled students then begin registering for classes using a

systematic approach governed by the way the curriculum is defined. The order of the

courses in the curricula governs the order in which students register. Students will

always register for the earliest courses listed within the curricula and continue regis-

tering for courses until there are no more courses that they can take or they cannot

register for more courses due to the given term credit hour restriction. For example,

if the first term within a curriculum consists of courses A, B, and C, the student will

register for those courses in that order. If the student fails course B, then the follow-

ing term, this will be the first course the student enrolls in. In order for a student

to register for a course, they must meet the course’s enrollment requirements. These

requirements can be prerequisites, co-requisites, a term restriction meaning that the

course cannot be taken until the clock reaches a specified term, and that the student

has not already taken and passed the course. In addition to these requirements,
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a student can only register for so many courses in a given term based on a given

maximum credit hour limit which is set by the user. If a student can register for a

course then they are added to that course’s list of enrolled students and their term

credit hour count is incremented by that courses credit hour value.

Once all students have completed the registration process, every student is as-

signed a grade for the courses they are enrolled in. The method for doing so depends

on the user and will be covered later. The simulation uses the following grades: A+,

A, A-, B+, B, B-, C+, C, C-, D+, D, D-, F, and W. The system also assigns numeric

values to each grade which are 4.33, 4.0, 3.77, 3.33, 3.0, 2.77, 2.33, 2.0, 1.77, 1.33,

1.0, 0.77, 0 and 0, respectively. These values are used for GPA computations, point

calculations, and can possibly be used to determine grades in other courses. The

passing grade can be set by the user, but defaults to a C (2.33). If a student obtains

this grade then their completion of the course is recorded.

Once all students have received their grades for all courses, the students GPA’s

are computed and then the simulation will check to see if each student has completed

all requirements in the curriculum. If they have, then they are removed from the pool

of enrolled students and added to the list of graduated students. The system will

then simulate students stopping out. Again, the user can determine the method used

for doing this which will be explained later. If the student is chosen as a stopout, then

they are removed from the pool of enrolled students and added to a list of stopped

out students. The clock is then incremented by one semester and the registration

process begins for the next semester. These events are then repeated until there are

no students enrolled, or the simulation clock reaches a termination time set by the

user.
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Application in Curricular Analytics

5.1 Charactering Curriculum Complexity

Before describing the contribution the set of tools given by CASL makes to curricu-

lar analysis, it would help to have a more formal definition of curricula complexity.

Consider a curriculum C. The complexity of C, denoted ΨC can be characterized as

some function of two components: structural complexity and instructional complex-

ity, denoted by αC and γC , respectively:

ΨC = f(αC , γC)

A curriculum’s structural complexity, αC , is determined solely from the a curricu-

lum’s structural properties and is therefore also a function of its graph, GC :

αC = g(GC)

A curriculum’s instructional complexity, γC , quantifies the difficulty of the curricu-

lum and can therefore be represented as a function, h(), of each course’s inherent

28



Chapter 5. Application in Curricular Analytics

difficulty:

γC = h(course difficulties)

Given these definitions, curriculum C’s complexity can be expressed as:

ΨC = f(g(GC), h(course difficulties))

There are many factors that might contribute to a curriculum’s difficulty, most

of which might be impossible to quantify therefore making it impossible to perfectly

characterize γC . Likewise, it can also be difficulty to perfectly quantify αC . Even

though the structure of a curriculum lends itself to being quantified more easily

than instructional complexity, it is unknown what structural properties to take into

consideration, making g() difficulty to characterize.

This is where CASL can be very useful. It can aid in better quantifying αC by pro-

viding several measures of structural properties and, through simulation, see which

ones correlate more with success. Similarly, it can also approximate h() through

models that can predict success in a course based off student characteristics. Finally,

through simulations, a connection between a curriculum’s complexity and student

success can be observed without knowing ΨC exactly.

5.2 Structural Complexity and Student Success

One of the primary motivations for the development of CASL demonstrate a rela-

tionship between the structure of a curriculum and the ease in which students can

move through it. More specifically, that there exists a negative correlation between,

ΨC and student success. Several experiments were designed to test this hypothe-

sis by simulating students moving though a curriculum using the CASL’s default
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pass-rate module (students are randomly determined to pass a course based on its

pass-rate). This provides best-case completion rates which can be compared against

a curriculum’s computed structural complexity to determine if such a correlation ex-

ists. Here the following assumptions are made: (1) Student success will be quantified

as simulated completion rates, (2) αC will be quantified as the sum of a curriculum’s

delay and blocking factors, and (3) h() is approximated as the average passrate of a

curriculum’s courses. Therefore, a curriculum’s complexity can be expressed as:

ΨC = f(Cdelay + Cblocking, average passrate)

As a start, the correlation between student completion rates and ΨC is examined

in very simple curricula which can be seen in figure 5.1. These curricula, consisting

of two terms with two courses each make up fundamental patterns that can be found

in actual curricula and span of range of complexities making them good candidates

to begin to understand how structure affects students moving through a curriculum.

For each of these curricula, a series of one hundred simulations were run with

one hundred students each where each simulation had the following parameters: (1)

Every courses had a 50% pass-rate, giving each student a one in two chance of passing

the course. (2) Each student could take up to three courses a term. (3) A duration

of four terms. The results of each set of simulations were averaged together and can

be seen in table 5.1

These tables give insights into how students progress through a curriculum by

showing the percentage of students that have passed each course at the end of each

semester. For example, looking at table 5.1a, 75.2% of students have passed Course A

after the second term. The row at the bottom shows the percentage of students that

have completed all courses (i.e. graduated) at the end of each term. As expected,

the least complex curriculum had the highest completion rate after four terms, while

the most complex curricula had the lowest completion rate. It is also interesting,
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(a) Curriculum

One

(b) Curriculum

Two

(c) Curriculum

Three

(d) Curriculum

Four

(e) Curriculum

Five

(f) Curriculum

Six

(g) Curriculum

Seven

Figure 5.1: Fundamental Curricula Structures

though not surprising, that the two curricula with the same complexity had roughly

the same fourth term completion rate even though their structures were different.

To expand upon the previous experiment similar simulations were conducted over

slightly more complex curricula with an additional term consisting of two courses for

a total of six courses. Even with the addition of only two courses, the number of

structures greatly increases providing a much larger curricula set with a wider range

of complexities. In total, 256 curricula were systematically generated with the three

terms, six courses specification. For each generated curricula, simulations similar to

those done with the simple curricula were carried with slightly different parameters:

(1) Every courses had a 80% pass-rate. (2) Each student can take up to three courses

a term. (3) A duration of five terms. The results of these simulation can be seen in

figure 5.2.
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Table 5.1

(a) Curriculum One
Course Term 1 Term 2 Term 3 Term 4
A 49.62 75.2 87.33 93.73
B 50.64 75.48 87.64 93.97
C 49.98 75.62 87.98 94.14
D 0.0 44.1 71.89 85.77
Completion
Rate 0.0 20.72 49.5 71.63

(b) Curriculum Two
Course Term 1 Term 2 Term 3 Term 4
A 51.19 75.31 87.23 93.48
B 49.94 74.71 87.31 93.45
C 0.0 25.5 51.27 69.39
D 49.3 75.2 87.31 93.59
Completion
Rate 0.0 14.35 39.21 60.41

(c) Curriculum Three
Course Term 1 Term 2 Term 3 Term 4
A 49.96 74.78 87.43 93.38
B 49.68 74.57 87.28 93.95
C 0.0 25.59 50.51 69.2
D 0.0 24.61 49.64 68.83
Completion
Rate 0.0 8.88 30.01 52.57

(d) Curriculum Four
Course Term 1 Term 2 Term 3 Term 4
A 49.98 75.12 87.93 93.92
B 49.76 75.44 87.37 93.73
C 0.0 12.35 34.7 55.21
D 49.98 75.4 87.79 94.33
Completion
Rate 0.0 9.31 30.44 52.3

(e) Curriculum Five
Course Term 1 Term 2 Term 3 Term 4
A 49.9 74.99 87.75 93.6
B 49.93 75.1 88.0 94.05
C 0.0 25.21 50.07 68.75
D 0.0 24.61 49.47 68.61
Completion
Rate 0.0 6.07 24.5 46.93

(f) Curriculum Six
Course Term 1 Term 2 Term 3 Term 4
A 49.92 74.86 87.8 93.74
B 50.63 75.91 88.05 93.85
C 0.0 24.45 50.1 68.89
D 0.0 12.22 34.83 56.31
Completion
Rate 0.0 5.92 23.77 45.39

(g) Curriculum Seven
Course Term 1 Term 2 Term 3 Term 4
A 50.31 75.53 88.12 93.91
B 50.82 75.56 87.55 93.83
C 0.0 12.6 34.16 55.65
D 0.0 12.89 35.47 56.29
Completion
Rate 0.0 6.61 22.15 42.24

Again, the results imply a correlation between structure and completion rates. To

more formally characterize this correlation, linear regression was performed over the

data, the details of which can be seen in table 5.2 and is visualized by the red line in

figure 5.2. The R-Squared value is a 94%. Based on this regression, for every point of

complexity added, the fith-term completion rate will decrease by 0.7%, which is fairly

significant. While these results are good and do indicate a negative correlation, they

are not perfect. Unlike the results from the four-course curricula where the two with

the same complexity resulted in the same completion rates, introducing two more

courses also introduces more variance between completion rates of same-complexity
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Figure 5.2: A plot of complexity vs 5th term graduation rates for six course curricula.

curricula.

Table 5.2: Six-Course Curricula Linear Regression Results

Coefficient Estimate Std Error Z Value Pr(>|z|)
(Intercept) 105.995 0.235982 449.166 <1e-99
Complexity -0.715459 0.0113234 -63.1844 <1e-99

The final set of experiments were conducted over real-world curricula pulled from

curricula.academicdashboards.org, a web service that stores, visualizes and computes

the complexity of curricula. It hosts overs 120 curricula from universities around

that country, and pulling those that have at least eight terms and between 120 and

150 credit hours results in a set of thirty eight curricula. These curricula are then

simulated 50 times each with 1000 students using the parameters: (1) Every courses

had a 80% pass-rate. (2) Each student can take up to eighteen credit hours a term.

(3) A duration of ten terms. A plot of the results can be seen in figure 5.3.
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Figure 5.3: Simulation results of thirty two real-world curricula.

Like the two experiments before, an inverse relationship exists between complex-

ity and completion rates, however here there is much more variance. Again linear

regression was employed, indicated by the red line, and it is easy to see that there

is not as tight of a fit to the results as there was with the six-course curriculum.

This is indicated in the resulting R-Squared value of 43.5%. Figure This is fairly

unsurprising given the more varied nature of the real-world curricula, however there

might be other issues that affect this relationship. For example, the previous two

experiments used sets of curricula that had the same number of courses and therefore

the same number of credit hours. This is not the case with the real-world curricula

which span a range of 120 to 150 credit hours.
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Figure 5.4: Residual plot resulting from simulation results of real world curricula

with delay+blocking as the independent variable.

5.2.1 Evaluating Additional Complexity Measures

While it has been shown that both delay and blocking factors can affect students

moving through a curriculum, they are far from the only way to describe the struc-

tural complexity of a curriculum, and there might in fact be better measures. This

is evident by looking at figures 5.2 and 5.3 and noticing that curricula with the same

for similar complexities produce very different completion rate results and better

characterizing αC might allow for tighter correlation. As a start to exploring other

structural complexity measures, four new course complexity metrics are proposed:

course centrality, course reachability, free courses, and the number of prerequisite

relationships which are all built into CASL.

When a student fails to pass a course, they are probably hindered from taking
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Figure 5.5: Example of course reachability.

Figure 5.6: Example of course centrality.

other courses. In cases like this students might be able to take a course that has no

prerequisite (such as an elective) so that they can still make progress while retaking

their failed course. Therefore the number of courses without any prerequisites in a

curriculum might influence student progress. A course’s reachability describes how

difficult it is to get to. It is defined similarly to that of a course’s blocking factor

but instead of counting the number of courses that can be taken after completing

the given course, it counts the number of courses that must be completed to reach

the given course. A course’s centrality attempts to measure how central a course is

within a curriculum by counting the number of unique paths that a course appears

on. Examples of these two measures can be seen in figures 5.5 and 5.6.

Given these measures the question becomes which of them or combination of

them should be used to best characterize αC . Again, simulation provides a solution.

The experiments so far have tried to show how complexity influences completion

rates by performing linear regression over the results, however this process can be

reversed. It is possible to use regression to allow completion rates to influence the

right characterization of structural complexity. A good way to determine the best
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way to define structural complexity would be to find the combination of structural

measures that correlates the best with simulated graduation rates. To do this, linear

regression was performed for every possible linear combinations of structural mea-

sures as the independent variables and then find the combination that provides the

highest R2 value.

Unsurprisingly, the more features that were used produced better correlations.

The combination that produced the best result was credit hours, delay+blocking,

centrality, reachability, and the number of prerequisite relationships which resulted

in an R2 value of 84%. This is evident in the residual plot of the linear model

shown in figure 5.7. These results show that the proposed definition of complexity,

ΨC , as a function of a curriculum’s structural complexity does provide meaningful

information.

Given these results, the structural complexity is best characterized as a function

of these features:

αC = g(creditsC , (delayC + blockingC), centralityC , reachabilityC , prereqsC)

5.3 Instructional Complexity and Student Success

The previous experiments have all focused on the affects of structural complexity, but

instructional complexity, γC , is also important in defining the overall complexity of a

curriculum. In fact, not only does a curriculum’s instructional complexity influence

student success, but it also has effect on how structural complexity influences success.

To demonstrate this, simulations using real-world curricula were performed with each

curricula having the same passrate over a range of passrates from 0% to 90%. For the

results at each pass-rate value, linear regression was used to determine the correlation

between each structural complexity measure and completion rates. The results are
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Figure 5.7: Residual plot resulting from simulation results of real world curricula with

credit hours, delay+blocking, centrality, reachability, and the number of prerequisites

as the independent variables.

plotted in figure 5.8.

In this figure, it is evident that the structural complexity measures correlate dif-

ferently for different curriculum average-passrates. This makes sense as the structural

of a curriculum that is very difficulty does not matter if students cant pass any of

its courses and likewise also does not matter if students always pass their courses.

Therefore, instructional complexity determines how important a curriculum’s struc-

ture is.

While it is obvious that a curriculum’s difficulty largely affects how students

progress through it, simulations can show the exact nature of this relationship by

simulating the same curriculum (e.g., UNM’s Computer Engineering program) sev-
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Figure 5.8: Graph showing how the completion rate of the Computer Engineering

curriculum at UNM changes with respect to course pass-rates.

eral times while varying the curriculum’s course difficulty. While there is a linear

relationship between structure and success, the influence of instructional complexity

looks very different which can be seen in figure 5.9.

5.4 Course Difficulty Sensitivity Analysis

One of the most common methods for increasing student success is to increase student

success in individual courses. Regardless of the method used, increasing the pass-

rate of critical courses can increase student graduation rates. So then the question

becomes which courses should receive the most attention?

This question can be answered by performing sensitivity analysis over course

pass-rates via simulation. This analysis is done by performing a baseline simulation,

and then increasing a course’s pass-rate, and then measuring the difference. This
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Figure 5.9: Graph showing how the completion rate of the Computer Engineering

curriculum at UNM changes with respect to course pass-rates.

experiment was carried out over three UNM curricula, Computer Engineering, Ac-

counting, and Mechanical Engineering, where pass-rates of every curriculum were

computed using UNM data over the past ten years. To get a baseline completion

rate, a simulation over 1000 students was carried out 20 times and then the eighth-

term completion rates were averaged. Then, one at a time, each course’s pass-rate

is increased up to thirty percent and then an identical simulation was carried out.

Tables 5.3, 5.4, and 5.5 show the results of this analysis—specifically the top five

courses in which an increase in pass-rate had the greatest affect on eighth-term com-

pletion rates. In each curricula, the courses with the highest cruciality had some of

the greatest increases in completion rates with an increase in their pass-rates. This

makes sense as these are courses are on long-paths and block other crucial courses.
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Course Original Pass-rate Increased Pass-rate Cruciality Increase in Completion Rate
MATH 180 0.7397 0.9616 4 0.0282
MGMT 202 0.8038 1 12 0.028
MATH 121 0.7389 0.9606 10 0.0274
ECON 105 0.7904 1 1 0.0227
ECON 106 0.7984 1 8 0.0224

Table 5.3: Accounting Sensitivity Analysis

Course Original Pass-rate Increased Pass-rate Cruciality Increase in Completion Rate
MATH 162 0.7585 0.9861 29 0.0407
MATH 163 0.7502 0.9753 26 0.0404
MATH 264 0.8399 1 16 0.0265
PHYC 160 0.7926 1 25 0.0212
ECON 105 0.7904 1 1 0.0206

Table 5.4: Mechanical Engineering Sensitivity Analysis

Course Original Pass-rate Increased Pass-rate Cruciality Increase in Completion Rate
MATH 162 0.7585 0.9861 19 0.0609
MATH 163 0.7502 0.9753 18 0.0554
PHYC 160 0.7926 1 14 0.0287
MATH 264 0.8399 1 5 0.0251
ECON 105 0.7904 1 1 0.0239

Table 5.5: Computer Engineering Sensitivity Analysis
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Conclusion/Future Work

The software library described in this paper provides a good first step towards provid-

ing tools to perform analytics over curricula and student data. There is still plenty

of work that can be done both on the features of the library itself as well as the

analysis enabled by it. First, the feature set could be expanded especially in terms of

simulation customization. It has been explained that the simulation operates under

several assumptions that were made intentionally, however some of these assumptions

could be lifted. For example, courses can be set to only be offered only in certain

terms, or they could have class-size limits. Furthermore, support could be added for

more robust student-enrollment procedures. In this same vein, more out-of-the-box

modules could be included to predict grades using a variety of machine-learning and

statistical methods. These kinds of improvements of the simulation procedure en-

able more complex student behavior which could lead to making it a more powerful

prediction tool.

In terms of the analytics work enabled by the library, there is always room for

improvement in the kinds of measures that can be devised to quantify the structural

complexity of curricula. While a perfect measure, or set of measures that perfectly
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correlates to both simulated and real-world completion rates probably does not exist,

there might still exist measures that capture structural complexities better than the

ones described here. Furthermore there is also plenty of work to be done analyzing

instructional complexity, or the difficulty of curricula as well. This work took a back

seat to analysis of curricula complexity, but is a wide-open area of research. Using

the library to simply focus on individual courses, rather than a whole curricula,

especially with regards to grade-depiction could yield valuing insights. Combining

this with more configurable simulations could produce accurate predictions and what-

if analysis.

In addition to this work, CASL could also benefit from a GUI implementation.

Given that there is already a community using the tools provided by Curricular

Dashboards and uses a identical format for representing curricula, it would be a good

fit. Although it would be somewhat limited, providing an interface for performing

simulations over curricula that has been uploaded would be powerful and provide a

simple way for users, especially those without programming experience, to benefit

from the library and gain more insights into their curricula—with the hopes that this

insight might prove useful in decision making that could positively impact student

success.
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